WorldWideScience

Sample records for carbon chain anions

  1. Carbon Chain Anions and the Growth of Complex Organic Molecules in Titan’s Ionosphere

    Science.gov (United States)

    Desai, R. T.; Coates, A. J.; Wellbrock, A.; Vuitton, V.; Crary, F. J.; González-Caniulef, D.; Shebanits, O.; Jones, G. H.; Lewis, G. R.; Waite, J. H.; Cordiner, M.; Taylor, S. A.; Kataria, D. O.; Wahlund, J.-E.; Edberg, N. J. T.; Sittler, E. C.

    2017-08-01

    Cassini discovered a plethora of neutral and ionized molecules in Titan’s ionosphere including, surprisingly, anions and negatively charged molecules extending up to 13,800 u q-1. In this Letter, we forward model the Cassini electron spectrometer response function to this unexpected ionospheric component to achieve an increased mass resolving capability for negatively charged species observed at Titan altitudes of 950-1300 km. We report on detections consistently centered between 25.8 and 26.0 u q-1 and between 49.0-50.1 u q-1 which are identified as belonging to the carbon chain anions, CN-/C3N- and/or C2H-/C4H-, in agreement with chemical model predictions. At higher ionospheric altitudes, detections at 73-74 u q-1 could be attributed to the further carbon chain anions C5N-/C6H- but at lower altitudes and during further encounters extend over a higher mass/charge range. This, as well as further intermediary anions detected at >100 u, provide the first evidence for efficient anion chemistry in space involving structures other than linear chains. Furthermore, at altitudes below environments where chain anions have been observed and shows that anion chemistry plays a role in the formation of complex organics within a planetary atmosphere as well as in the interstellar medium.

  2. Carbon Chain Anions and the Growth of Complex Organic Molecules in Titan’s Ionosphere

    Energy Technology Data Exchange (ETDEWEB)

    Desai, R. T.; Coates, A. J.; Wellbrock, A.; González-Caniulef, D.; Jones, G. H.; Lewis, G. R.; Taylor, S. A.; Kataria, D. O. [Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Surrey RH5 6NT (United Kingdom); Vuitton, V. [Université Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble (France); Crary, F. J. [Laboratory for Atmospheric and Space Physics, University of Colorado, Innovation Drive, Boulder, CO 80303 (United States); Shebanits, O.; Wahlund, J.-E. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Waite, J. H. [Space Science and Engineering Division, Southwest Research Institute (SWRI), 6220 Culebra Road, San Antonio, TX 78238 (United States); Cordiner, M.; Sittler, E. C. [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Edberg, N. J. T., E-mail: r.t.desai@ucl.ac.uk [Swedish Institute of Space Physics, Box 537, SE-751 21 Uppsala (Sweden)

    2017-08-01

    Cassini discovered a plethora of neutral and ionized molecules in Titan’s ionosphere including, surprisingly, anions and negatively charged molecules extending up to 13,800 u q{sup −1}. In this Letter, we forward model the Cassini electron spectrometer response function to this unexpected ionospheric component to achieve an increased mass resolving capability for negatively charged species observed at Titan altitudes of 950–1300 km. We report on detections consistently centered between 25.8 and 26.0 u q{sup −1} and between 49.0–50.1 u q{sup −1} which are identified as belonging to the carbon chain anions, CN{sup −}/C{sub 3}N{sup −} and/or C{sub 2}H{sup −}/C{sub 4}H{sup −}, in agreement with chemical model predictions. At higher ionospheric altitudes, detections at 73–74 u q{sup −1} could be attributed to the further carbon chain anions C{sub 5}N{sup −}/C{sub 6}H{sup −} but at lower altitudes and during further encounters extend over a higher mass/charge range. This, as well as further intermediary anions detected at >100 u, provide the first evidence for efficient anion chemistry in space involving structures other than linear chains. Furthermore, at altitudes below <1100 km, the low-mass anions (<150 u q{sup −1}) were found to deplete at a rate proportional to the growth of the larger molecules, a correlation that indicates the anions are tightly coupled to the growth process. This study adds Titan to an increasing list of astrophysical environments where chain anions have been observed and shows that anion chemistry plays a role in the formation of complex organics within a planetary atmosphere as well as in the interstellar medium.

  3. Carbon Chain Anions and the Growth of Complex Organic Molecules in Titan’s Ionosphere

    International Nuclear Information System (INIS)

    Desai, R. T.; Coates, A. J.; Wellbrock, A.; González-Caniulef, D.; Jones, G. H.; Lewis, G. R.; Taylor, S. A.; Kataria, D. O.; Vuitton, V.; Crary, F. J.; Shebanits, O.; Wahlund, J.-E.; Waite, J. H.; Cordiner, M.; Sittler, E. C.; Edberg, N. J. T.

    2017-01-01

    Cassini discovered a plethora of neutral and ionized molecules in Titan’s ionosphere including, surprisingly, anions and negatively charged molecules extending up to 13,800 u q"−"1. In this Letter, we forward model the Cassini electron spectrometer response function to this unexpected ionospheric component to achieve an increased mass resolving capability for negatively charged species observed at Titan altitudes of 950–1300 km. We report on detections consistently centered between 25.8 and 26.0 u q"−"1 and between 49.0–50.1 u q"−"1 which are identified as belonging to the carbon chain anions, CN"−/C_3N"− and/or C_2H"−/C_4H"−, in agreement with chemical model predictions. At higher ionospheric altitudes, detections at 73–74 u q"−"1 could be attributed to the further carbon chain anions C_5N"−/C_6H"− but at lower altitudes and during further encounters extend over a higher mass/charge range. This, as well as further intermediary anions detected at >100 u, provide the first evidence for efficient anion chemistry in space involving structures other than linear chains. Furthermore, at altitudes below <1100 km, the low-mass anions (<150 u q"−"1) were found to deplete at a rate proportional to the growth of the larger molecules, a correlation that indicates the anions are tightly coupled to the growth process. This study adds Titan to an increasing list of astrophysical environments where chain anions have been observed and shows that anion chemistry plays a role in the formation of complex organics within a planetary atmosphere as well as in the interstellar medium.

  4. LONG CARBON-CHAIN MOLECULES AND THEIR ANIONS IN THE STARLESS CORE, LUPUS-1A

    International Nuclear Information System (INIS)

    Sakai, Nami; Shiino, Tatsuya; Yamamoto, Satoshi; Hirota, Tomoya; Sakai, Takeshi

    2010-01-01

    We have recently discovered a new starless core with bright radio emissions of long carbon-chain molecules in the Lupus molecular cloud, which we have named as Lupus-1A. Toward this source, the peak intensities of the C 6 H and C 8 H lines are found to be higher than toward TMC-1 by a factor of 2-3. Even the lines of their anions, C 6 H - and C 8 H - , are also brighter than in TMC-1. Moreover, the line of C 4 H - has been detected for the first time in a starless core. The column densities of these long carbon-chain molecules are almost comparable to those in TMC-1, and hence, this source can be regarded as the second 'TMC-1 like cloud'. TMC-1 has long been an outstanding molecular cloud with rich carbon-chain molecules since its discovery in 1976. In spite of extensive efforts, no comparable sources have been found so far. Lupus-1A will be used for hunting of new interstellar molecules as well as understanding of carbon-chain chemistry through critical comparison of physical and chemical properties with TMC-1. This source is important not only for astronomy but also for molecular science as an ideal spectroscopic laboratory because of narrow line shapes and bright intensities.

  5. Dansyl-labeled anionic amphiphile with a hexadecanoic carbon chain: Synthesis and detection for shape transitions in organized molecular assemblies

    Science.gov (United States)

    Gao, Lining; Xia, Huiyun; Wang, Xiaoman; Li, Li; Chen, Huaxin

    2015-03-01

    The probing properties of a new fluorophore-labeled anionic surfactant, sodium 16-(N-dansyl)aminocetylate (16-DAN-ACA) were investigated systematically in molecular assemblies, especially in the transitions between micelles and vesicles. 16-DAN-ACA can efficiently differentiate the two different aggregate types in mixed cationic and anionic surfactant systems. The fluorescence anisotropy of 16-DAN-ACA was found to be sensitive for directly detecting the micellar growth in micelles containing oppositely charged surfactants; both cationic cetyltrimethylammonium bromide (CTAB) systems and anionic sodium dodecyl sulfate (SDS) systems were studied. The results indicated that the 16-DAN-ACA is a good fluorescent probe for differentiating the different aggregates, and even more can be used to detect the micellar growth.

  6. Highly conductive side chain block copolymer anion exchange membranes.

    Science.gov (United States)

    Wang, Lizhu; Hickner, Michael A

    2016-06-28

    Block copolymers based on poly(styrene) having pendent trimethyl styrenylbutyl ammonium (with four carbon ring-ionic group alkyl linkers) or benzyltrimethyl ammonium groups with a methylene bridge between the ring and ionic group were synthesized by reversible addition-fragmentation radical (RAFT) polymerization as anion exchange membranes (AEMs). The C4 side chain polymer showed a 17% increase in Cl(-) conductivity of 33.7 mS cm(-1) compared to the benzyltrimethyl ammonium sample (28.9 mS cm(-1)) under the same conditions (IEC = 3.20 meq. g(-1), hydration number, λ = ∼7.0, cast from DMF/1-propanol (v/v = 3 : 1), relative humidity = 95%). As confirmed by small angle X-ray scattering (SAXS), the side chain block copolymers with tethered ammonium cations showed well-defined lamellar morphologies and a significant reduction in interdomain spacing compared to benzyltrimethyl ammonium containing block copolymers. The chemical stabilities of the block copolymers were evaluated under severe, accelerated conditions, and degradation was observed by (1)H NMR. The block copolymer with C4 side chain trimethyl styrenylbutyl ammonium motifs displayed slightly improved stability compared to that of a benzyltrimethyl ammonium-based AEM at 80 °C in 1 M NaOD aqueous solution for 30 days.

  7. Modelling the transport of carbonic acid anions through anion-exchange membranes

    International Nuclear Information System (INIS)

    Nikonenko, V.; Lebedev, K.; Manzanares, J.A.; Pourcelly, G.

    2003-01-01

    Electrodiffusion of carbonate and bicarbonate anions through anion-exchange membranes (AEM) is described on the basis of the Nernst-Planck equations taking into account coupled hydrolysis reactions in the external diffusion boundary layers (DBLs) and internal pore solution. The model supposes local electroneutrality as well as chemical and thermodynamic equilibrium. The transport is considered in three layers being an anion exchange membrane and two adjoining diffusion layers. A mechanism of competitive transport of HCO 3 - and CO 3 2- anions through the membrane which takes into account Donnan exclusion of H + ions is proposed. It is predicted that the pH of the depleting solution decreases and that of the concentrating solution increases during electrodialysis (ED). Eventual deviations from local electroneutrality and local chemical equilibrium are discussed

  8. Carbon footprinting in supply chains

    NARCIS (Netherlands)

    Boukherroub, T.; Bouchery, Y.; Corbett, C.J.; Fransoo, J.C.; Tan, T.; Bouchery, Y.; Corbett, C.J.; Fransoo, J.C.; Tan, T.

    2017-01-01

    This chapter presents an overview of the methods and challenges behind carbon footprinting at the supply chain level. We start by providing some information about the scientific background on climate change. This information is necessary to clarify the overall methodology behind carbon footprinting

  9. Cylindrical polymer brushes with dendritic side chains by iterative anionic reactions

    KAUST Repository

    Zhang, Hefeng; Qu, Chengke; He, Junpo

    2015-01-01

    We report in this paper an easy method for the synthesis of cylindrical polymer brushes with dendritic side chains through anionic reaction. The synthesis is accomplished by iteratively grafting a living block copolymer, polyisoprene-. b

  10. Reactivity of niobium cluster anions with nitrogen and carbon monoxide

    Science.gov (United States)

    Mwakapumba, Joseph; Ervin, Kent M.

    1997-02-01

    Reactions of small niobium cluster anions, Nbn-(n = 2-7), with CO and N2 are investigated using a flow tube reactor (flowing afterglow) apparatus. Carbon monoxide chemisorption on niobium cluster anions occurs with faster reaction rates than nitrogen chemisorption on corresponding cluster sizes. N2 addition to niobium cluster anions is much more size-selective than is CO addition. These general trends follow those reported in the literature for reactions of neutral and cationic niobium clusters with CO and N2. Extensive fragmentation of the clusters is observed upon chemisorption. A small fraction of the larger clusters survive and sequentially add multiple CO or N2 units without fragmentation. However, chemisorption saturation is not reached at the experimentally accessible pressure and reagent concentration ranges. The thermochemistry of the adsorption processes and the nature of the adsorbed species, molecular or dissociated, are discussed.

  11. Chain-end modification of living anionic polybutadiene with diphenylethylenes and styrenes

    NARCIS (Netherlands)

    Donkers, E.H.D.; Willemse, R.X.E.; Klumperman, B.

    2005-01-01

    The first step in the transformation of poly(butadienyl)lithium into a macromolecular atom transfer radical polymerization initiator or reversible addition-fragmentation chain transfer agent is the modification of the anionic chain end into a suitable leaving/reinitiating group. We have investigated

  12. Mechanism of action of anions on the electron transport chain in thylakoid membranes of higher plants.

    Science.gov (United States)

    Singh-Rawal, Pooja; Zsiros, Ottó; Bharti, Sudhakar; Garab, Gyozo; Jajoo, Anjana

    2011-04-01

    With an aim to improve our understanding of the mechanisms behind specific anion effects in biological membranes, we have studied the effects of sodium salts of anions of varying valency in thylakoid membranes. Rates of electron transport of PS II and PS I, 77K fluorescence emission and excitation spectra, cyclic electron flow around PS I and circular dichroism (CD) spectra were measured in thylakoid membranes in order to elucidate a general mechanism of action of inorganic anions on photosynthetic electron transport chain. Re-distribution of absorbed excitation energy has been observed as a signature effect of inorganic anions. In the presence of anions, such as nitrite, sulphate and phosphate, distribution of absorbed excitation energy was found to be more in favor of Photosystem I (PS I). The amount of energy distributed towards PS I depended on the valency of the anion. In this paper, we propose for the first time that energy re-distribution and its valence dependence may not be the effect of anions per se. The entry of negative charge (anion) is accompanied by influx of positive charge (protons) to maintain a balance of charge across the thylakoid membranes. As reflected by the CD spectra, the observed energy re-distribution could be a result of structural rearrangements of the protein complexes of PS II caused by changes in the ionic environment of the thylakoid lumen.

  13. Carbon sp chains in graphene nanoholes

    DEFF Research Database (Denmark)

    Castelli, Ivano Eligio; Ferri, Nicola; Onida, Giovanni

    2012-01-01

    Nowadays sp carbon chains terminated by graphene or graphitic-like carbon are synthesized routinely in several nanotech labs. We propose an ab initio study of such carbon-only materials, by computing their structure and stability, as well as their electronic, vibrational and magnetic properties. ...

  14. Effect of the alkyl chain length of the ionic liquid anion on polymer electrolytes properties

    International Nuclear Information System (INIS)

    Leones, Rita; Sentanin, Franciani; Nunes, Sílvia Cristina; Esperança, José M.S.S.; Gonçalves, Maria Cristina

    2015-01-01

    New polymer electrolytes (PEs) based on chitosan and three ionic liquid (IL) families ([C 2 mim][C n SO 3 ], [C 2 mim][C n SO 4 ] and [C 2 mim][diC n PO 4 ]) were synthesized by the solvent casting method. The effect of the length of the alkyl chain of the IL anion on the thermal, morphological and electrochemical properties of the PEs was studied. The solid polymer electrolytes SPE membranes were analyzed by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), polarized optical microscopy (POM), atomic force microscopy (AFM), complex impedance spectroscopy (ionic conductivity) and cyclic voltammetry (CV). The obtained results evidenced an influence of the alkyl chain length of the IL anion on the temperature of degradation, birefringence, surface roughness and ionic conductivity of the membranes. The DSC, XRD and CV results showed independency from the length of the IL-anion-alkyl chain. The PEs displayed an predominantly amorphous morphology, a minimum temperature of degradation of 135 °C, a room temperature (T = 25 °C) ionic conductivity of 7.78 × 10 −4 S cm −1 and a wide electrochemical window of ∼ 4.0 V.

  15. Structural transformations of carbon chains inside nanotubes

    International Nuclear Information System (INIS)

    Warner, Jamie H.; Ruemmeli, Mark H.; Bachmatiuk, Alicja; Buechner, Bernd

    2010-01-01

    In situ aberration-corrected high-resolution transmission electron microscopy is used to examine the structural transformations of carbon chains that occur in the interior region of carbon nanotubes. We find electron-beam irradiation leads to the formation of two-dimensional carbon structures that are freely mobile inside the nanotube. The inner diameter of the nanotube influences the structural transformations of the carbon chains. As the diameter of the nanotube increases, electron-beam irradiation leads to curling of the chains and eventually the formation of closed looped structures. The closed looped structures evolve into spherical fullerenelike structures that exhibit translational motion inside the nanotubes and also coalesce to form larger nanotube structures. These results demonstrate the use of carbon nanotubes as test tubes for growing small carbon nanotubes within the interior by using only electron-beam irradiation at 80 kV.

  16. Anions in Cometary Comae

    Science.gov (United States)

    Charnley, Steven B.

    2011-01-01

    The presence of negative ions (anions) in cometary comae is known from Giotto mass spectrometry of IP/Halley. The anions 0-, OH-, C-, CH- and CN- have been detected, as well as unidentified anions with masses 22-65 and 85-110 amu (Chaizy et al. 1991). Organic molecular anions are known to have a significant impact on the charge balance of interstellar clouds and circumstellar envelopes and have been shown to act as catalysts for the gas-phase synthesis of larger hydrocarbon molecules in the ISM, but their importance in cometary comae has not yet been explored. We present details of the first attempt to model the chemistry of anions in cometary comae. Based on the combined chemical and hydro dynamical model of Rodgers & Charnley (2002), we investigate the role of large carbon-chain anions in cometary coma chemistry. We calculate the effects of these anions on coma thermodynamics, charge balance and examine their impact on molecule formation.

  17. Carbon sp chains in graphene nanoholes

    International Nuclear Information System (INIS)

    Castelli, Ivano E; Ferri, Nicola; Onida, Giovanni; Manini, Nicola

    2012-01-01

    Nowadays sp carbon chains terminated by graphene or graphitic-like carbon are synthesized routinely in several nanotech labs. We propose an ab initio study of such carbon-only materials, by computing their structure and stability, as well as their electronic, vibrational and magnetic properties. We adopt a fair compromise of microscopic realism with a certain level of idealization in the model configurations, and predict a number of properties susceptible to comparison with experiment. (paper)

  18. Carbon sp chains in graphene nanoholes

    Science.gov (United States)

    Castelli, Ivano E.; Ferri, Nicola; Onida, Giovanni; Manini, Nicola

    2012-03-01

    Nowadays sp carbon chains terminated by graphene or graphitic-like carbon are synthesized routinely in several nanotech labs. We propose an ab initio study of such carbon-only materials, by computing their structure and stability, as well as their electronic, vibrational and magnetic properties. We adopt a fair compromise of microscopic realism with a certain level of idealization in the model configurations, and predict a number of properties susceptible to comparison with experiment.

  19. Carbon 14 in the aquatic food chain

    International Nuclear Information System (INIS)

    Mueller, H.; Fischer, E.

    1983-01-01

    In the links of the food chain consisting of water, water plants, and fish from 6 several aquatic ecosystems, the specific C-14 activity of the carbon was determined from 1979 to 1981 and compared with values of the terrestrial food chain. The mean values obtained from the specific acitivities of the links were between 203 and 321 mBq/g C (5.5 and 8.7 pCi/g C). Four of the six mean values differ from the values for the terrestrial food chain of 260 to 240 mBg/g C (7.0 to 6.5 pCi/g C) investigated for 1979 to 1980. The specific-acitivity model is valid for the aquatic food chain only if atmosphere and man are not included as chain links. (orig.) [de

  20. Cylindrical polymer brushes with dendritic side chains by iterative anionic reactions

    KAUST Repository

    Zhang, Hefeng

    2015-05-01

    We report in this paper an easy method for the synthesis of cylindrical polymer brushes with dendritic side chains through anionic reaction. The synthesis is accomplished by iteratively grafting a living block copolymer, polyisoprene-. b-polystyrenyllithium (PI-. b-PSLi), to the main chain and subsequently to the branches in a divergent way. PI segment is short and serves as a precursor for multifunctional branching unit. The grafting reaction involves two successive steps: i) epoxidation of internal double bonds of PI segments, either in main chain or side chains; ii) ring-opening addition to the resulting epoxy group by the living PI-. b-PSLi. Repeating the two steps affords a series of cylindrical polymer brushes with up to 3rd generation and extremely high molecular weight. The branching multiplicity depends on the average number of oxirane groups per PI segment, usually ca. 8 in the present work. The high branching multiplicity leads to tremendous increase in molecular weights of the cylindrical products with generation growth. Several series of cylindrical polymer brushes with tunable aspect ratios are prepared using backbones and branches with controlled lengths. Shape anisotropy is investigated in dilute solution using light scattering technique. Worm-like single molecular morphology with large persistence length is observed on different substrates by atomic force microscopy.

  1. ANIONIC SYNTHESIS OF A "CLICKABLE" MIDDLE-CHAIN AZIDEFUNCTIONALIZED POLYSTYRENE AND ITS APPLICATION IN SHAPE AMPHIPHILES

    Institute of Scientific and Technical Information of China (English)

    Kan Yue; Jinlin He; Chang Liu; Mingjun Huang; Xue-Hui Dong; Kai Guo; Peihong Ni

    2013-01-01

    "Click chemistry" is,by definition,a general functionalization methodology (GFM) and its marriage with living anionic polymerization is particularly powerful in precise macromolecular synthesis.This paper reports the synthesis of a "clickable" middle-chain azide-functionalized polystyrene (mPS-N3) by anionic polymerization and its application in the preparation of novel shape amphiphiles based on polyhedral oligomeric silsesquioxane (POSS).The mPS-N3 was synthesized by coupling living poly(styryl)lithium chains (PSLi) with 3-chloropropylmethyldichlorosilane and subsequent nucleophilic substitution of the chloro group in the presence of sodium azide.Excess PSLi was end-capped with ethylene oxide to facilitate its removal by flash chromatography.The mPS-N3 was then derived into a giant lipid-like shape amphiphile in two steps following a sequential "click" strategy.The copper(I)-catalyzed azide-alkyne cycloaddition between mPS-N3 and alkyne-functionalized vinyl-substituted POSS derivative (VPOSS-alkyne) ensured quantitative ligation to give polystyrene with VPOSS tethered at the middle of the chain (mPS-VPOSS).The thiol-ene reaction with 1-thioglycerol transforms the vinyl groups on the POSS periphery to hydroxyls,resulting in an amphiphilic shape amphiphile,mPS-DPOSS.This synthetic approach is highly efficient and modular.It demonstrates the "click" philosophy of facile complex molecule construction from a library of simple building blocks and also suggests that mPS-N3 can be used as a versatile "clickable" motif in polymer science for the precise synthesis of complex macromolecules.

  2. Low carbon logistics through supply chain design and coordination.

    Science.gov (United States)

    2010-02-01

    "In this project, we propose to address carbon emissions in logistics through supply chain design, planning and : coordination. We argue that (1) supply chain design, planning, and coordination can help reduce carbon emissions : significantly, (2) su...

  3. Carbon chain molecules in interstellar clouds

    International Nuclear Information System (INIS)

    Winnewisser, G.; Walmsley, C.M.

    1979-01-01

    A survey of the distribution of long carbon chain molecules in interstellar clouds shows that their abundance is correlated. The various formation schemes for these molecules are discussed. It is concluded that the ion-molecule type formation mechanisms are more promising than their competitors. They have also the advantage of allowing predictions which can be tested by observations. Acetylene C 2 H 2 and diacetylene HCCCCH, may be very abundant in interstellar clouds. (Auth.)

  4. Bicarbonate adsorption band of the chromatography for carbon isotope separation using anion exchangers

    International Nuclear Information System (INIS)

    Takeda, Kunihiko; Obanawa, Heiichiro; Hata, Masahisa; Sato, Katsuya

    1985-01-01

    The equilibria of bicarbonate ion between two phases were studied for the carbon isotope separation using anion exchangers. The condition of the formation of a bicarbonate adsorption band was quantitatively discussed. The formation of the adsorption band depends on the difference of S-potential which is the sum of the standard redection chemical potentials and L-potential which is the sum of the reduction chemical potential. The isotopic separation factor observed was about 1.012, independent of the concentrations of acid and alkali in the solutions. The isotopic separation factor was considered to be determined by the reaction of bicarbonate ion on anion exchangers and carbon dioxide dissolved in solutions. The enriched carbon isotope whose isotopic abundance ratio ( 13 C/ 12 C) was 1.258 was obtained with the column packed with anion exchangers. (author)

  5. An unusual mono-substituted Keggin anion-chain based 3D framework with 24-membered macrocycles as linker units

    International Nuclear Information System (INIS)

    Pang Haijun; Ma Huiyuan; Yu Yan; Yang Ming; Xun Ye; Liu Bo

    2012-01-01

    A new compound, [Cu I (H 2 O)(Hbpp) 2 ]⊂{[Cu I (bpp)] 2 [PW 11 Cu II O 39 ]} (1) (bpp=1,3-bis(4-pyridyl)propane), has been hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction. In compound 1, the unusual –A–B–A–B– array mono-substituted Keggin anion-chains and 24-membered (Cubpp) 2 cation-macrocycles are linked together to form a (2, 4) connected 3D framework with channels of ca. 9.784×7.771 Å 2 along two directions, in which the [Cu(H 2 O)(Hbpp) 2 ] coordination fragments as guest components are trapped. The photocatalytic experiments of compound 1 were performed, which show a good catalytic activity of compound 1 for photodegradation of RhB. Furthermore, the IR, TGA and electrochemical properties of compound 1 were investigated. - Graphical abstract: An unusual example of mono-substituted Keggin anion-chain based hybrid compound that possesses a 3D structure has been synthesized, which offers a feasible route for synthesis of such compounds. Highlights: ► The first example of –A–B–A–B– array mono-substituted Keggin chain is observed. ► An unusual three dimensional structure based mono-substituted Keggin anion-chains. ► The photocatalysis and electrochemical properties of the title compound were studied.

  6. Spatial Rearrangement and Mobility Heterogeneity of an Anionic Lipid Monolayer Induced by the Anchoring of Cationic Semiflexible Polymer Chains

    Directory of Open Access Journals (Sweden)

    Xiaozheng Duan

    2016-06-01

    Full Text Available We use Monte Carlo simulations to investigate the interactions between cationic semiflexible polymer chains and a model fluid lipid monolayer composed of charge-neutral phosphatidyl-choline (PC, tetravalent anionic phosphatidylinositol 4,5-bisphosphate (PIP2, and univalent anionic phosphatidylserine (PS lipids. In particular, we explore how chain rigidity and polymer concentration influence the spatial rearrangement and mobility heterogeneity of the monolayer under the conditions where the cationic polymers anchor on the monolayer. We find that the anchored cationic polymers only sequester the tetravalent PIP2 lipids at low polymer concentrations, where the interaction strength between the polymers and the monolayer exhibits a non-monotonic dependence on the degree of chain rigidity. Specifically, maximal anchoring occurs at low polymer concentrations, when the polymer chains have an intermediate degree of rigidity, for which the PIP2 clustering becomes most enhanced and the mobility of the polymer/PIP2 complexes becomes most reduced. On the other hand, at sufficiently high polymer concentrations, the anchoring strength decreases monotonically as the chains stiffen—a result that arises from the pronounced competitions among polymer chains. In this case, the flexible polymers can confine all PIP2 lipids and further sequester the univalent PS lipids, whereas the stiffer polymers tend to partially dissociate from the monolayer and only sequester smaller PIP2 clusters with greater mobilities. We further illustrate that the mobility gradient of the single PIP2 lipids in the sequestered clusters is sensitively modulated by the cooperative effects between anchored segments of the polymers with different rigidities. Our work thus demonstrates that the rigidity and concentration of anchored polymers are both important parameters for tuning the regulation of anionic lipids.

  7. Solvation of the fluorine containing anions and their lithium salts in propylene carbonate and dimethoxyethane.

    Science.gov (United States)

    Chaban, Vitaly

    2015-07-01

    Electrolyte solutions based on the propylene carbonate (PC)-dimethoxyethane (DME) mixtures are of significant importance and urgency due to emergence of lithium-ion batteries. Solvation and coordination of the lithium cation in these systems have been recently attended in detail. However, analogous information concerning anions (tetrafluoroborate, hexafluorophosphate) is still missed. This work reports PM7-MD simulations (electronic-structure level of description) to include finite-temperature effects on the anion solvation regularities in the PC-DME mixture. The reported result evidences that the anions appear weakly solvated. This observation is linked to the absence of suitable coordination sites in the solvent molecules. In the concentrated electrolyte solutions, both BF4(-) and PF6(-) prefer to exist as neutral ion pairs (LiBF4, LiPF6).

  8. Global Carbon Fiber Composites Supply Chain Competitiveness Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Sujit Das, Josh Warren, Devin West, Susan M. Schexnayder

    2016-05-01

    This analysis identifies key opportunities in the carbon fiber supply chain where resources and investments can help advance the clean energy economy. The report focuses on four application areas — wind energy, aerospace, automotive, and pressure vessels — that top the list of industries using carbon fiber and carbon fiber reinforced polymers. For each of the four application areas, the report addresses the supply and demand trends within that sector, supply chain, and costs of carbon fiber and components.

  9. Organocatalytic Coupling of Bromo-Lactide with Cyclic Ethers and Carbonates to Chiral Bromo-Diesters: NHC or Anion Catalysis?

    KAUST Repository

    Zhu, Jian-Bo; Tang, Xiaoyan; Falivene, Laura; Caporaso, Lucia; Cavallo, Luigi; Chen, Eugene Y.-X.

    2017-01-01

    In the presence of a N-heterocyclic carbene (NHC) in THF, Br-substituted l-lactide (Br-LA) unexpectedly undergoes exclusive coupling with THF to form a chiral ω-bromo-α-keto-diester. This coupling reaction is completely selective (in a precise 1:1 fashion), readily scalable (>20 g scale), and extremely efficient (with only 50 ppm of NHC loading). Other cyclic ethers and carbonates can also undergo similar coupling with Br-LA, thus offering a class of Br-functionalized chiral diesters with various functions and chain lengths. Combined experimental and computational studies led to a coupling mechanism that proceeds through an anion (bromide)-mediated catalytic cycle, rather than an apparent NHC-catalyzed cycle.

  10. Organocatalytic Coupling of Bromo-Lactide with Cyclic Ethers and Carbonates to Chiral Bromo-Diesters: NHC or Anion Catalysis?

    KAUST Repository

    Zhu, Jian-Bo

    2017-05-03

    In the presence of a N-heterocyclic carbene (NHC) in THF, Br-substituted l-lactide (Br-LA) unexpectedly undergoes exclusive coupling with THF to form a chiral ω-bromo-α-keto-diester. This coupling reaction is completely selective (in a precise 1:1 fashion), readily scalable (>20 g scale), and extremely efficient (with only 50 ppm of NHC loading). Other cyclic ethers and carbonates can also undergo similar coupling with Br-LA, thus offering a class of Br-functionalized chiral diesters with various functions and chain lengths. Combined experimental and computational studies led to a coupling mechanism that proceeds through an anion (bromide)-mediated catalytic cycle, rather than an apparent NHC-catalyzed cycle.

  11. Carbon dioxide transport in molten calcium carbonate occurs through an oxo-Grotthuss mechanism via a pyrocarbonate anion.

    Science.gov (United States)

    Corradini, Dario; Coudert, François-Xavier; Vuilleumier, Rodolphe

    2016-05-01

    The reactivity, speciation and solvation structure of CO2 in carbonate melts are relevant for both the fate of carbon in deep geological formations and for its electroreduction to CO (to be used as fuel) when solvated in a molten carbonate electrolyte. In particular, the high solubility of CO2 in carbonate melts has been tentatively attributed to the formation of the pyrocarbonate anion, C2O5(2-). Here we study, by first-principles molecular dynamics simulations, the behaviour of CO2 in molten calcium carbonate. We find that pyrocarbonate forms spontaneously and the identity of the CO2 molecule is quickly lost through O(2-) exchange. The transport of CO2 in this molten carbonate thus occurs in a fashion similar to the Grotthuss mechanism in water, and is three times faster than molecular diffusion. This shows that Grotthuss-like transport is more general than previously thought.

  12. Design and control of carbon aware supply chains

    NARCIS (Netherlands)

    Hoen, K.M.R.

    2012-01-01

    In this dissertation the impact of carbon emissions on the design and control of supply chains is studied. Increasing awareness for global warming and the role of greenhouse gasses in this has made companies more aware of carbon dioxide emissions caused by supply chains. As a result of this

  13. Understanding aerospace composite components' supply chain carbon emissions

    OpenAIRE

    Chua, Mang Hann; Smyth, Beatrice M.; Murphy, Adrian; Butterfield, Joseph

    2015-01-01

    This paper examines a large structural component and its supply chain. The component is representative of that used in the production of civil transport aircraft and is manufactured from carbon fibre epoxy resin prepreg, using traditional hand layup and autoclave cure. Life cycle assessment (LCA) is used to predict the component’s production carbon emissions. The results determine the distribution of carbon emissions within the supply chain, identifying the dominant production processes as ca...

  14. Anion-Regulated Selective Generation of Cobalt Sites in Carbon: Toward Superior Bifunctional Electrocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Gang [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China; University of Chinese Academy of Sciences, Beijing 100049 P. R. China; Yang, Ce [Chemical Science and Engineering Division, Argonne National Laboratory, 9700 Cass Avenue Lemont IL 60439 USA; Zhao, Wanpeng [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China; University of Chinese Academy of Sciences, Beijing 100049 P. R. China; Li, Qianru [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China; University of Chinese Academy of Sciences, Beijing 100049 P. R. China; Wang, Ning [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China; University of Chinese Academy of Sciences, Beijing 100049 P. R. China; Li, Tao [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 Cass Avenue Lemont IL 60439 USA; Zhou, Hua [X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 Cass Avenue Lemont IL 60439 USA; Chen, Hangrong [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China; Shi, Jianlin [State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-xi Road Shanghai 200050 P. R. China

    2017-11-06

    The introduction of active transition metal sites (TMSs) in carbon enables the synthesis of noble-metal-free electrocatalysts for clean energy conversion applications, however, there are often multiple existing forms of TMSs, which are of different natures and catalytic models. Regulating the evolution of distinctive TMSs is highly desirable but remains challenging to date. Anions, as essential elements involved in the synthesis, have been totally neglected previously in the construction of TMSs. Herein, the effects of anions on the creation of different types of TMSs is investigated for the first time. It is found that the active cobalt-nitrogen sites tend to be selectively constructed on the surface of N-doped carbon by using chloride, while metallic cobalt nanoparticles encased in protective graphite layers are the dominant forms of cobalt species with nitrate ions. The obtained catalysts demonstrate cobalt-sites-dependent activity for ORR and HER in acidic media. And the remarkably enhanced catalytic activities approaching that of benchmark Pt/C in acidic medium has been obtained on the catalyst dominated with cobalt-nitrogen sites, confirmed by the advanced spectroscopic . Our finding demonstrates a general paradigm of anion-regulated evolution of distinctive TMSs, providing a new pathway for enhancing performances of various targeted reactions related with TMSs.

  15. Coordinating a Two-Echelon Supply Chain under Carbon Tax

    Directory of Open Access Journals (Sweden)

    Wei Yu

    2017-12-01

    Full Text Available In this paper, we study the impact of carbon tax on carbon emission and retail price in a two-echelon supply chain consisting of a manufacturer and a retailer. Specifically, by adopting two types of contracts, i.e., the modified wholesale price (MW and the modified cost-sharing contract (MS, supply chain coordination is achieved, which promotes the supply chain efficiency. Our study shows that: (1 with the increase of carbon tax, both the optimal emission reduction level and the optimal retail price increase, and then keep unchanged; (2 neither MW nor MS benefits the manufacturer after the supply chain coordination; and (3 to effectively coordinate the supply chain, we propose an innovative supply chain contract that integrates the firms’ optimal decisions under MW or MS with a two part tariff contract (TPT and a fixed fee the retailer can pay to ensure a win–win solution.

  16. Electronic properties of linear carbon chains: Resolving the controversy

    International Nuclear Information System (INIS)

    Al-Backri, Amaal; Zólyomi, Viktor; Lambert, Colin J.

    2014-01-01

    Literature values for the energy gap of long one-dimensional carbon chains vary from as little as 0.2 eV to more than 4 eV. To resolve this discrepancy, we use the GW many-body approach to calculate the band gap E g of an infinite carbon chain. We also compute the energy dependence of the attenuation coefficient β governing the decay with chain length of the electrical conductance of long chains and compare this with recent experimental measurements of the single-molecule conductance of end-capped carbon chains. For long chains, we find E g = 2.16 eV and an upper bound for β of 0.21 Å −1

  17. Absorption of carbon dioxide in aqueous solutions of imidazolium ionic liquids with carboxylate anions

    Energy Technology Data Exchange (ETDEWEB)

    Baj, Stefan; Krawczyk, Tomasz; Dabrowska, Aleksandra; Siewniak, Agnieszka [Silesian University of Technology, Gliwice (Poland); Sobolewski, Aleksander [Institute for Chemical Processing of Coal, Zabrze (Poland)

    2015-11-15

    The solubility of carbon dioxide at atmospheric pressure in aqueous mixtures of 1,3-alkyl substituted imidazolium ionic liquids (ILs) containing carboxylic anions was studied. The ILs showed increased solubility of CO{sub 2} with decreasing water concentration. The relationship between the CO{sub 2} concentration in solution and the mole fraction of water in the ILs describes a sigmoidal curve. The regression constants of a logistic function were used to quantitatively assess the absorbent capacity and the effect of water on CO{sub 2} absorption. ILs containing the most basic anions, such as pivalate, propionate and acetate, had the best properties. It was observed that the impact of water on absorption primarily depended on the cation structure. The best absorption performance was observed for 1,3-dibutylimidazolium pivalate and 1-butyl-3-methyl imidazolium acetate.

  18. Absorption of carbon dioxide in aqueous solutions of imidazolium ionic liquids with carboxylate anions

    International Nuclear Information System (INIS)

    Baj, Stefan; Krawczyk, Tomasz; Dabrowska, Aleksandra; Siewniak, Agnieszka; Sobolewski, Aleksander

    2015-01-01

    The solubility of carbon dioxide at atmospheric pressure in aqueous mixtures of 1,3-alkyl substituted imidazolium ionic liquids (ILs) containing carboxylic anions was studied. The ILs showed increased solubility of CO 2 with decreasing water concentration. The relationship between the CO 2 concentration in solution and the mole fraction of water in the ILs describes a sigmoidal curve. The regression constants of a logistic function were used to quantitatively assess the absorbent capacity and the effect of water on CO 2 absorption. ILs containing the most basic anions, such as pivalate, propionate and acetate, had the best properties. It was observed that the impact of water on absorption primarily depended on the cation structure. The best absorption performance was observed for 1,3-dibutylimidazolium pivalate and 1-butyl-3-methyl imidazolium acetate.

  19. Effects of inorganic anions on carbon isotope fractionation during Fenton-like degradation of trichloroethene

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunde [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Laboratory of Basin Hydrology and Wetland Eco-restoration, China University of Geosciences, Wuhan 430074 (China); Zhou, Aiguo, E-mail: aiguozhou@cug.edu.cn [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Gan, Yiqun; Li, Xiaoqian [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China)

    2016-05-05

    Highlights: • The effect of inorganic anions on carbon isotope fractionation was evaluated. • The enrichment factors was independent concentration of NO{sub 3}{sup −}, or SO{sub 4}{sup 2−}. • Cl{sup −} significantly influenced the carbon isotope fractionation. - Abstract: Understanding the magnitude and variability in isotope fractionation with respect to specific processes is crucial to the application of stable isotopic analysis as a tool to infer and quantify transformation processes. The variability of carbon isotope fractionation during Fenton-like degradation of trichloroethene (TCE) in the presence of different inorganic ions (nitrate, sulfate, and chloride), was investigated to evaluate the potential effects of inorganic anions on carbon isotope enrichment factor (ε value). A comparison of ε values obtained in deionized water, nitrate solution, and sulfate solution demonstrated that the ε values were identical and not affected by the presence of nitrate and sulfate. In the presence of chloride, however, the ε values (ranging from −6.3 ± 0.8 to 10 ± 1.3‰) were variable and depended on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during Fenton-like degradation of TCE. Thus, caution should be exercised in selecting appropriate ε values for the field application of stable isotope analysis, as various chloride concentrations may be present due to naturally present or introduced with pH adjustment and iron salts during Fenton-like remediation. Furthermore, the effects of chloride on carbon isotope fractionation may be able to provide new insights about reaction mechanisms of Fenton-like processes.

  20. Effects of inorganic anions on carbon isotope fractionation during Fenton-like degradation of trichloroethene

    International Nuclear Information System (INIS)

    Liu, Yunde; Zhou, Aiguo; Gan, Yiqun; Li, Xiaoqian

    2016-01-01

    Highlights: • The effect of inorganic anions on carbon isotope fractionation was evaluated. • The enrichment factors was independent concentration of NO_3"−, or SO_4"2"−. • Cl"− significantly influenced the carbon isotope fractionation. - Abstract: Understanding the magnitude and variability in isotope fractionation with respect to specific processes is crucial to the application of stable isotopic analysis as a tool to infer and quantify transformation processes. The variability of carbon isotope fractionation during Fenton-like degradation of trichloroethene (TCE) in the presence of different inorganic ions (nitrate, sulfate, and chloride), was investigated to evaluate the potential effects of inorganic anions on carbon isotope enrichment factor (ε value). A comparison of ε values obtained in deionized water, nitrate solution, and sulfate solution demonstrated that the ε values were identical and not affected by the presence of nitrate and sulfate. In the presence of chloride, however, the ε values (ranging from −6.3 ± 0.8 to 10 ± 1.3‰) were variable and depended on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during Fenton-like degradation of TCE. Thus, caution should be exercised in selecting appropriate ε values for the field application of stable isotope analysis, as various chloride concentrations may be present due to naturally present or introduced with pH adjustment and iron salts during Fenton-like remediation. Furthermore, the effects of chloride on carbon isotope fractionation may be able to provide new insights about reaction mechanisms of Fenton-like processes.

  1. Transport properties for carbon chain sandwiched between heteroatom-doped carbon nanotubes with different doping sites

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenjiang [Big Data and Information Engineering College of Guizhou University, Guiyang 550025 (China); Guizhou University of Finance and Economics, Guiyang 550025 (China); Deng, Xiaoqing, E-mail: xq-deng@163.com, E-mail: caish@mail.gufe.edu.cn [School of Physics and Electronic Science, Changsha University of Science and Technology, Changsha 410114 (China); Cai, Shaohong, E-mail: xq-deng@163.com, E-mail: caish@mail.gufe.edu.cn [Guizhou University of Finance and Economics, Guiyang 550025 (China)

    2016-07-15

    The First-principles calculation is used to investigate the transport properties of a carbon chain connected with N-and/or B-doped caped carbon nanotube acting as electrodes. The I-V curves of the carbon chain are affected by the N/B doping sites, and rectifying behavior can be obtained distinctly when the carbon chain is just connected onto two doping atom sites (N- chain-B), and a weak rectification occurs when N (B) doping at other sites. Interestingly, the spin-filtering effects exist in the junction when it is doped at other sites, undoped system, or N-terminal carbon chains. However, no this behavior is found in N-chain-B and B-chain-B systems. The analysis on the transmission spectra, PDOS, LDOS, spin density, and the electron transmission pathways give an insight into the observed results for the system.

  2. Transport properties for carbon chain sandwiched between heteroatom-doped carbon nanotubes with different doping sites

    International Nuclear Information System (INIS)

    Liu, Wenjiang; Deng, Xiaoqing; Cai, Shaohong

    2016-01-01

    The First-principles calculation is used to investigate the transport properties of a carbon chain connected with N-and/or B-doped caped carbon nanotube acting as electrodes. The I-V curves of the carbon chain are affected by the N/B doping sites, and rectifying behavior can be obtained distinctly when the carbon chain is just connected onto two doping atom sites (N- chain-B), and a weak rectification occurs when N (B) doping at other sites. Interestingly, the spin-filtering effects exist in the junction when it is doped at other sites, undoped system, or N-terminal carbon chains. However, no this behavior is found in N-chain-B and B-chain-B systems. The analysis on the transmission spectra, PDOS, LDOS, spin density, and the electron transmission pathways give an insight into the observed results for the system.

  3. The thiocyanate anion is a primary driver of carbon dioxide capture by ionic liquids

    Science.gov (United States)

    Chaban, Vitaly

    2015-01-01

    Carbon dioxide, CO2, capture by room-temperature ionic liquids (RTILs) is a vivid research area featuring both accomplishments and frustrations. This work employs the PM7-MD method to simulate adsorption of CO2 by 1,3-dimethylimidazolium thiocyanate at 300 K. The obtained result evidences that the thiocyanate anion plays a key role in gas capture, whereas the impact of the 1,3-dimethylimidazolium cation is mediocre. Decomposition of the computed wave function on the individual molecular orbitals confirms that CO2-SCN binding extends beyond just expected electrostatic interactions in the ion-molecular system and involves partial sharing of valence orbitals.

  4. Hydrothermal carbon nanosphere-based agglomerated anion exchanger for ion chromatography.

    Science.gov (United States)

    Zhao, Qiming; Wu, Shuchao; Zhang, Kai; Lou, Chaoyan; Zhang, Peiming; Zhu, Yan

    2016-10-14

    This work reports the application of hydrothermal carbon nanospheres (HCNSs) as stationary phases in ion chromatography. HCNSs were facilely quaternized through polycondensation of methylamine and 1,4-butanediol diglycidyl ether. The quaternization was confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Owing to the electrostatic interaction, quaternized HCNSs were equably attached onto the surface of sulfonated polystyrene-divinylbenzene (PS-DVB) beads to construct the anion exchangers. The aggregation was verified by scanning electron microscopy and elemental analysis. Common anions, aliphatic monocarboxylic acids, polarizable anions, and aromatic acids were well separated on the stationary phases with good stability and symmetry. The prepared column was further applied to detect phosphate content in Cola drink samples. The limit of detection (S/N=3) was 0.09mg/L, and the relative standard deviation (n=10) of retention time was 0.31%. The average recovery was 99.58%. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. A Multiperiod Supply Chain Network Design Considering Carbon Emissions

    Directory of Open Access Journals (Sweden)

    Yang Peng

    2016-01-01

    Full Text Available This paper introduces a mixed integer linear programming formulation for modeling and solving a multiperiod one-stage supply chain distribution network design problem. The model is aimed to minimize two objectives, the total supply chain cost and the greenhouse gas emissions generated mainly by transportation and warehousing operations. The demand forecast is known for the planning horizon and shortage of demand is allowed at a penalty cost. This scenario must satisfy a minimum service level. Two carbon emission regulatory policies are investigated, the tax or carbon credit and the carbon emission cap. Computational experiments are performed to analyze the trade-offs between the total cost of the supply chain, the carbon emission quantity, and both carbon emission regulatory policies. Results demonstrate that for a certain range the carbon credit price incentivizes the reduction of carbon emissions to the environment. On the other hand, modifying the carbon emission cap inside a certain range could lead to significant reductions of carbon emission while not significantly compromising the total cost of the supply chain.

  6. Impact of Asymmetric Carbon Information on Supply Chain Decisions under Low-Carbon Policies

    Directory of Open Access Journals (Sweden)

    Lei Yang

    2016-01-01

    Full Text Available Through the establishment of the leading manufacturer Stackelberg game model under asymmetric carbon information, this paper investigates the misreporting behaviors of the supply chain members and their influences on supply chain performance. Based on “Benchmarking” allocation mechanism, three policies are considered: carbon emission trading, carbon tax, and a new policy which combined carbon quota and carbon tax mechanism. The results show that, in the three models, the leader in the supply chain, even if he has advantages of carbon information, will not lie about his information. That is because the manufacturer’s misreporting behavior has no effect on supply chain members’ performance. But the retailer will lie about the information when he has carbon information advantage. The high-carbon-emission retailers under the carbon trading policy, all the retailers under the carbon tax policy, and the high-carbon-emission retailers under combined quotas and tax policy would like to understate their carbon emissions. Coordination of revenue sharing contract is studied in supply chain to induce the retailer to declare his real carbon information. Optimal contractual parameters are deduced in the three models, under which the profit of the supply chain can be maximized.

  7. Environmental Conditions Influencing Sorption of Inorganic Anions to Multiwalled Carbon Nanotubes Studied by Column Chromatography.

    Science.gov (United States)

    Metzelder, Florian; Schmidt, Torsten C

    2017-05-02

    Sorption to carbon-based nanomaterials is typically studied in batch experiments. An alternative method offering advantages to study sorption is column chromatography. Sorbent packed columns are used and sorption data are determined by relating sorbate retention to that of a nonretarded tracer. We have now for the first time applied this technique to study the influence of environmental conditions on sorption of inorganic anions (bromide, nitrite, nitrate, and iodide) to multiwalled carbon nanotubes. Deuterium oxide was used as nonretarded tracer. Sorption isotherms were best described by the Freundlich model. Sorption increased in the order bromide 4.5 the surface charge was negative, but sorption was still detectable at pH 6 and 9. Consequently, other forces than electrostatic attraction contributed to sorption. These forces may include H-bonding as indicated by sorption enthalpy determined by variation of column temperature. Overall, column chromatography represents a promising alternative in sorption studies to reveal sorbent properties.

  8. Double-counting in supply chain carbon footprinting

    NARCIS (Netherlands)

    Caro, F.; Corbett, C.J.; Tan, T.; Zuidwijk, R.A.

    2013-01-01

    Carbon footprinting is a tool for firms to determine the total greenhouse gas (GHG) emissions associated with their supply chain or with a unit of final product or service. Carbon footprinting typically aims to identify where best to invest in emission reduction efforts, and/or to determine the

  9. Global Carbon Fiber Composites. Supply Chain Competitiveness Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sujit [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Warren, Joshua A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); West, Devin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Schexnayder, Susan M. [Univ. of Tennessee, Knoxville, TN (United States)

    2016-05-01

    The objective of this study is to identify key opportunities in the carbon fiber (CF) supply chain where resources and investments can help advance the clean energy economy. The report focuses on four application areas—wind energy, aerospace, automotive, and pressure vessels—that top the list of industries using CF and carbon fiber reinforced polymers (CFRP) and are particularly relevant to the mission of U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (DOE EERE). For each of the four application areas, the report addresses the supply and demand trends within that sector, supply chain, and costs of carbon fiber and components.

  10. Exploring backbone-cation alkyl spacers for multi-cation side chain anion exchange membranes

    Science.gov (United States)

    Zhu, Liang; Yu, Xuedi; Hickner, Michael A.

    2018-01-01

    In order to systematically study how the arrangement of cations on the side chain and length of alkyl spacers between cations impact the performance of multi-cation AEMs for alkaline fuel cells, a series of polyphenylene oxide (PPO)-based AEMs with different cationic side chains were synthesized. This work resulted in samples with two or three cations in a side chain pendant to the PPO backbone. More importantly, the length of the spacer between cations varied from 3 methylene (-CH2-) (C3) groups to 8 methylene (C8) groups. The highest conductivity, up to 99 mS/cm in liquid water at room temperature, was observed for the triple-cation side chain AEM with pentyl (C5) or hexyl (C6) spacers. The multi-cation AEMs were found to have decreased water uptake and ionic conductivity when the spacer chains between cations were lengthened from pentyl (C5) or hexyl (C6) to octyl (C8) linking groups. The triple-cation membranes with pentyl (C5) or hexyl (C6) groups between cations showed greatest stability after immersion in 1 M NaOH at 80 °C for 500 h.

  11. Interaction and dynamics of (alkylamide + electrolyte) deep eutectics: Dependence on alkyl chain-length, temperature, and anion identity

    International Nuclear Information System (INIS)

    Guchhait, Biswajit; Das, Suman; Daschakraborty, Snehasis; Biswas, Ranjit

    2014-01-01

    Here we investigate the solute-medium interaction and solute-centered dynamics in (RCONH 2 + LiX) deep eutectics (DEs) via carrying out time-resolved fluorescence measurements and all-atom molecular dynamics simulations at various temperatures. Alkylamides (RCONH 2 ) considered are acetamide (CH 3 CONH 2 ), propionamide (CH 3 CH 2 CONH 2 ), and butyramide (CH 3 CH 2 CH 2 CONH 2 ); the electrolytes (LiX) are lithium perchlorate (LiClO 4 ), lithium bromide (LiBr), and lithium nitrate (LiNO 3 ). Differential scanning calorimetric measurements reveal glass transition temperatures (T g ) of these DEs are ∼195 K and show a very weak dependence on alkyl chain-length and electrolyte identity. Time-resolved and steady state fluorescence measurements with these DEs have been carried out at six-to-nine different temperatures that are ∼100–150 K above their individual T g s. Four different solute probes providing a good spread of fluorescence lifetimes have been employed in steady state measurements, revealing strong excitation wavelength dependence of probe fluorescence emission peak frequencies. Extent of this dependence, which shows sensitivity to anion identity, has been found to increase with increase of amide chain-length and decrease of probe lifetime. Time-resolved measurements reveal strong fractional power dependence of average rates for solute solvation and rotation with fraction power being relatively smaller (stronger viscosity decoupling) for DEs containing longer amide and larger (weaker decoupling) for DEs containing perchlorate anion. Representative all-atom molecular dynamics simulations of (CH 3 CONH 2 + LiX) DEs at different temperatures reveal strongly stretched exponential relaxation of wavevector dependent acetamide self dynamic structure factor with time constants dependent both on ion identity and temperature, providing justification for explaining the fluorescence results in terms of temporal heterogeneity and amide clustering in these multi

  12. Long-chain alkylimidazolium ionic liquids, a new class of cationic surfactants coated on ODS columns for anion-exchange chromatography.

    Science.gov (United States)

    Qiu, Hongdeng; Zhang, Qinghua; Chen, Limei; Liu, Xia; Jiang, Shengxiang

    2008-08-01

    Separations of common inorganic anions were carried out on ODS columns coated with two long-chain alkylimidazolium ionic liquids ([C(12)MIm]Br and [C(14)MIm]Br) as new cationic surfactants for ion chromatography. With phthalate buffer solution as the mobile phases and non-suppressed conductivity detection, high column efficiencies and excellent selectivity were obtained in the separation of inorganic anions. Chromatographic parameters are calculated and the results show that the coated column possesses significant potential for the analysis of some inorganic anions such as CH(3)COO(-), IO(3)(-), Cl(-), BrO(3)(-), NO(2)(-), Br(-), NO(3)(-), SO(4)(2-), I(-), BF(4)(-), and SCN(-). The effect of eluent pH values on the separation of anions has been studied on the column coated with [C(12)MIm]Br. The stability of the coated columns was also examined.

  13. Perchlorate adsorption and desorption on activated carbon and anion exchange resin.

    Science.gov (United States)

    Yoon, In-Ho; Meng, Xiaoguang; Wang, Chao; Kim, Kyoung-Woong; Bang, Sunbaek; Choe, Eunyoung; Lippincott, Lee

    2009-05-15

    The mechanisms of perchlorate adsorption on activated carbon (AC) and anion exchange resin (SR-7 resin) were investigated using Raman, FTIR, and zeta potential analyses. Batch adsorption and desorption results demonstrated that the adsorption of perchlorate by AC and SR-7 resin was reversible. The reversibility of perchlorate adsorption by the resin was also proved by column regeneration test. Solution pH significantly affected perchlorate adsorption and the zeta potential of AC, while it did not influence perchlorate adsorption and the zeta potential of resin. Zeta potential measurements showed that perchlorate was adsorbed on the negatively charged AC surface. Raman spectra indicated the adsorption resulted in an obvious position shift of the perchlorate peak, suggesting that perchlorate was associated with functional groups on AC at neutral pH through interactions stronger than electrostatic interaction. The adsorbed perchlorate on the resin exhibited a Raman peak at similar position as the aqueous perchlorate, indicating that perchlorate was adsorbed on the resin through electrostatic attraction between the anion and positively charged surface sites.

  14. Cyclopropenyl Anions: Carbon Tunneling or Diradical Formation? A Contest between Jahn-Teller and Hund.

    Science.gov (United States)

    Kozuch, Sebastian

    2015-07-14

    The π bond shifting (automerization) by carbon tunneling of cyclopropenyl anions was computationally analyzed by the small curvature tunneling methodology. Similar to other antiaromatic cases, the process is hindered by substituents departing from planarity, since these groups must be realigned along with the π bond shifting. With hydrogens as substituents the tunneling is extremely fast, in a case of both heavy and light atom tunneling. But, with more massive substituents (such as Me and F), and especially with longer groups (such as CN), the tunneling probability is reduced or even virtually canceled. The automerization of triphenylcyclopropyl anion by tunneling was supposed to be impossible due to the high mass of the phenyl groups. However, it was found that the ground state of this species is actually a D3h aromatic triplet, a single-well system that cannot undergo automerization. For this and other systems with π acceptor groups, the superposition of states that generates the second-order Jahn-Teller distortion is diminished, and by Hund's rule, the triplet results in the ground state.

  15. SYSTEMATIC THEORETICAL STUDY ON THE INTERSTELLAR CARBON CHAIN MOLECULES

    Energy Technology Data Exchange (ETDEWEB)

    Etim, Emmanuel E.; Arunan, Elangannan [Inorganic and Physical Chemistry Department, Indian Institute of Science Bangalore, 560012 (India); Gorai, Prasanta; Das, Ankan [Indian Centre for Space Physics, 43 Chalantika, Garia Station Road, Kolkata 700 084 (India); Chakrabarti, Sandip K., E-mail: ankan.das@gmail.com [Department of Chemical Sciences, Federal University Wukari,  Katsina-Ala Road, P.M.B. 1020 Wukari, Taraba State (Nigeria)

    2016-12-01

    In an effort to further our interest in understanding the basic chemistry of interstellar molecules, here we carry out an extensive investigation of the stabilities of interstellar carbon chains; C{sub n}, H{sub 2}C{sub n}, HC{sub n}N and C{sub n}X (X = N, O, Si, S, H, P, H{sup −}, N{sup −}). These sets of molecules account for about 20% of all the known interstellar and circumstellar molecules. Their high abundances, therefore, demand serious attention. High-level ab initio quantum chemical calculations are employed to accurately estimate the enthalpy of formation, chemical reactivity indices, global hardness and softness, and other chemical parameters of these molecules. Chemical modeling of the abundances of these molecular species has also been performed. Of the 89 molecules considered from these groups, 47 have been astronomically observed, and these observed molecules are found to be more stable with respect to other members of the group. Of the 47 observed molecules, 60% are odd-numbered carbon chains. Interstellar chemistry is not actually driven by thermodynamics, but it is primarily dependent on various kinetic parameters. However, we found that the detectability of the odd-numbered carbon chains could be correlated due to the fact that they are more stable than the corresponding even-numbered carbon chains. Based on this aspect, the next possible carbon chain molecule for astronomical observation in each group is proposed. The effect of kinetics in the formation of some of these carbon chain molecules is also discussed.

  16. Carbonate radical anion-induced electron transfer in bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Ravi [Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400 085 (India)]. E-mail: rjudrin@yahoo.com; Mukherjee, T. [Chemistry Group, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2006-07-15

    Reaction of native and thermally denatured bovine serum albumin (BSA) with carbonate radical anion (CO{sub 3}{sup -} radical) has been studied using pulse radiolysis technique. Scavenging of CO{sub 3}{sup -} radical by native BSA and consequent electron transfer from tyrosine to tryptophan radical has been observed to occur with almost same rate constant (k{approx}1.7x10{sup 8} dm{sup 3} mol{sup -1} s{sup -1}) at pH 8.8. Effect of structural changes, due to thermal denaturation, on scavenging of CO{sub 3}{sup -} radical and the electron transfer process have been studied and discussed in this paper.

  17. Formation of carbon nanosheets via simultaneous activation and catalytic carbonization of macroporous anion-exchange resin for supercapacitors application.

    Science.gov (United States)

    Peng, Hui; Ma, Guofu; Sun, Kanjun; Mu, Jingjing; Zhang, Zhe; Lei, Ziqiang

    2014-12-10

    Two-dimensional mesoporous carbon nanosheets (CNSs) have been prepared via simultaneous activation and catalytic carbonization route using macroporous anion-exchange resin (AER) as carbon precursor and ZnCl2 and FeCl3 as activating agent and catalyst, respectively. The iron catalyst in the skeleton of the AER may lead to carburization to form a sheetlike structure during the carbonization process. The obtained CNSs have a large number of mesopores, a maximum specific surface area of 1764.9 m(2) g(-1), and large pore volume of 1.38 cm(3) g(-1). As an electrode material for supercapacitors application, the CNSs electrode possesses a large specific capacitance of 283 F g(-1) at 0.5 A g(-1) and excellent rate capability (64% retention ratio even at 50 A g(-1)) in 6 mol L(-1) KOH. Furthermore, CNSs symmetric supercapacitor exhibits specific energies of 17.2 W h kg(-1) at a power density of 224 W kg(-1) operated in the voltage range of 0-1.8 V in 0.5 mol L(-1) Na2SO4 aqueous electrolyte, and outstanding cyclability (retains about 96% initial capacitance after 5000 cycles).

  18. Negative Differential Resistance in Atomic Carbon Chain-Graphene Junctions

    International Nuclear Information System (INIS)

    An Liping; Liu Chunmei; Liu Nianhua

    2012-01-01

    We investigate the electronic transport properties of atomic carbon chain-graphene junctions by using the density-functional theory combining with the non-equilibrium Green's functions. The results show that the transport properties are sensitively dependent on the contact geometry of carbon chain. From the calculated I-V curve we find negative differential resistance (NDR) in the two types of junctions. The NDR can be considered as a result of molecular orbitals moving related to the bias window. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  19. Halloysite-derived nitrogen doped carbon electrocatalysts for anion exchange membrane fuel cells

    Science.gov (United States)

    Lu, Yaxiang; Wang, Lianqin; Preuß, Kathrin; Qiao, Mo; Titirici, Maria-Magdalena; Varcoe, John; Cai, Qiong

    2017-12-01

    Developing the low-cost, highly active carbonaceous materials for oxygen reduction reaction (ORR) catalysts has been a high-priority research direction for durable fuel cells. In this paper, two novel N-doped carbonaceous materials with flaky and rod-like morphology using the natural halloysite as template are obtained from urea nitrogen source as well as glucose (denoted as GU) and furfural (denoted as FU) carbon precursors, respectively, which can be directly applied as metal-free electrocatalysts for ORR in alkaline electrolyte. Importantly, compared with a benchmark Pt/C (20wt%) catalyst, the as-prepared carbon catalysts demonstrate higher retention in diffusion limiting current density (after 3000 cycles) and enhanced methanol tolerances with only 50-60mV negative shift in half-wave potentials. In addition, electrocatalytic activity, durability and methanol tolerant capability of the two N-doped carbon catalysts are systematically evaluated, and the underneath reasons of the outperformance of rod-like catalysts over the flaky are revealed. At last, the produced carbonaceous catalysts are also used as cathodes in the single cell H2/O2 anion exchange membrane fuel cell (AEMFC), in which the rod-like FU delivers a peak power density as high as 703 mW cm-2 (vs. 1106 mW cm-2 with a Pt/C benchmark cathode catalyst).

  20. Carbonate anion controlled growth of LiCoPO4/C nanorods and its improved electrochemical behavior

    International Nuclear Information System (INIS)

    Gangulibabu; Nallathamby, Kalaiselvi; Meyrick, Danielle; Minakshi, Manickam

    2013-01-01

    Highlights: ► Carbonate anion controlled growth of LiCoPO 4 nanorods has been prepared. ► Mixture of H 2 CO 3 + (NH 4 ) 2 CO 3 increases the CO 3 2− concentration and acts as an effective growth inhibitor. ► Heating the carbonate rich precursor in an inert atmosphere produces a Co 2 P phase that is conductive. ► Addition of super P carbon resulted in an amorphous carbon coating on LiCoPO 4 particles. ► LiCoPO 4 /C nanorods with a co-existence of Co 2 P exhibit excellent discharge capacity with retention on multiple cycling. -- Abstract: LiCoPO 4 /C nanocomposite with growth controlled by carbonate anions was synthesized via a unique solid-state fusion method. Carbonate anions in the form of H 2 CO 3 or a mixture of H 2 CO 3 + (NH 4 ) 2 CO 3 have been used as a growth inhibiting modifier to produce morphology controlled lithium cobalt phosphate. The presence of cobalt phosphide (Co 2 P) as a second phase improved the conductivity and electrochemical properties of the parent LiCoPO 4. The formation of Co 2 P is found to be achievable only in an inert atmosphere. Super P ® carbon (10 wt.%) provided an adherent carbon coating on pristine LiCoPO 4 resulting in the LiCoPO 4 /C composite cathode. This electrode exhibited enhanced electrochemical properties: capacity of 123 mAh g −1 with excellent capacity retention of 89% after 30 cycles, and reasonable rate capability of up to 5 C rate. The synergistic effect of carbonate anions and formation of Co 2 P under inert atmosphere has influenced the electrochemical behavior of LiCoPO 4 /C cathode through controlling the morphology and increasing the conductivity

  1. Global Carbon Fiber Composites Supply Chain Competitiveness Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sujit [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Warren, Josh [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); West, Devin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Schexnayder, Susan M. [Univ. of Tennessee, Knoxville, TN (United States)

    2016-05-01

    This study identifies key opportunities in the carbon fiber supply chain where the United States Department of Energy's Office of Energy Efficiency and Renewable Energy resources and investments can help the United States achieve or maintain a competitive advantage. The report focuses on four application areas--wind energy, aerospace, automotive, and pressure vessels--that top the list of industries using carbon fiber and carbon fiber reinforced polymers and are also particularly relevant to EERE's mission. For each of the four application areas, the report addresses the supply and demand trends within that sector, supply chain, and costs of carbon fiber and components, all contributing to a competitiveness assessment that addresses the United States' role in future industry growth. This report was prepared by researchers at Oak Ridge National Laboratory and the University of Tennessee for the Clean Energy Manufacturing Analysis Center.

  2. Theoretical model to investigate the alkyl chain and anion dependent interactions of gemini surfactant with bovine serum albumin.

    Science.gov (United States)

    Vishvakarma, Vijay K; Kumari, Kamlesh; Patel, Rajan; Dixit, V S; Singh, Prashant; Mehrotra, Gopal K; Chandra, Ramesh; Chakrawarty, Anand Kumar

    2015-05-15

    Surfactants are used to prevent the irreversible aggregation of partially refolded proteins and they also assist in protein refolding. We have reported the design and screening of gemini surfactant to stabilize bovine serum albumin (BSA) with the help of computational tool (iGEMDOCK). A series of gemini surfactant has been designed based on bis-N-alkyl nicotinate dianion via varying the alkyl group and anion. On changing the alkyl group and anion of the surfactant, the value of Log P changes means polarity of surfactant can be tuned. Further, the virtual screening of the gemini surfactant has been carried out based on generic evolutionary method. Herein, thermodynamic data was studied to determine the potential of gemini surfactant as BSA stabilizer. Computational tools help to find out the efficient gemini surfactant to stabilize the BSA rather than to use the surfactant randomly and directionless for the stabilization. It can be confirmed through the experimental techniques. Previously, researcher synthesized one of the designed and used gemini surfactant to stabilize the BSA and their interactions were confirmed through various techniques and computational docking. But herein, the authors find the most competent gemini surfactant to stabilize BSA using computational tools on the basis of energy score. Different from the single chain surfactant, the gemini surfactants exhibit much stronger electrostatic and hydrophobic interactions with the protein and are thus effective at much lower concentrations. Based on the present study, it is expected that gemini surfactants may prove useful in the protein stabilization operations and may thus be effectively employed to circumvent the problem of misfolding and aggregation. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. CARBON-CHAIN SPECIES IN WARM-UP MODELS

    International Nuclear Information System (INIS)

    Hassel, George E.; Harada, Nanase; Herbst, Eric

    2011-01-01

    In previous warm-up chemical models of the low-mass star-forming region L1527, we investigated the evolution of carbon-chain unsaturated hydrocarbon species when the envelope temperature is slightly elevated to T ≈ 30 K. These models demonstrated that enhanced abundances of such species can be explained by gas-phase ion-molecule chemistry following the partial sublimation of methane from grain surfaces. We also concluded that the abundances of hydrocarbon radicals such as the C n H family should be further enhanced as the temperatures increase to higher values, but this conclusion stood in contrast with the lack of unambiguous detection of these species toward hot core and corino sources. Meanwhile, observational surveys have identified C 2 H, C 4 H, CH 3 CCH, and CH 3 OH toward hot corinos (especially IRAS 16293–2422) as well as toward L1527, with lower abundances for the carbon-chain radicals and higher abundances for the other two species toward the hot corinos. In addition, the Herschel Space Telescope has detected the bare linear chain C 3 in 50 K material surrounding young high-mass stellar objects. To understand these new results, we revisit previous warm-up models with an augmented gas-grain network that incorporated reactions from a gas-phase network that was constructed for use with increased temperature up to 800 K. Some of the newly adopted reactions between carbon-chain species and abundant H 2 possess chemical activation energy barriers. The revised model results now better reproduce the observed abundances of unsaturated carbon chains under hot corino (100 K) conditions and make predictions for the abundances of bare carbon chains in the 50 K regions observed by the Herschel HIFI detector.

  4. Analysing destruction channels of interstellar hydrocarbon anions with a 22pol ion-trap

    Energy Technology Data Exchange (ETDEWEB)

    Endres, Eric; Lakhmanskaya, Olga; Best, Thorsten; Hauser, Daniel; Kumar, Sunil; Wester, Roland [Universitaet Innsbruck, Institut fuer Ionenphysik und Angewandte Physik (Austria)

    2014-07-01

    In the interstellar medium (ISM), ion-molecule reactions are considered to play a key role in the formation of complex molecules. The detection of the first interstellar anions, which happen to be carbon chain anions, has raised new interest in the quantitative composition of the ISM and the underlying reaction network. To understand the observed abundance of these carbon chain anions, a detailed analysis of the possible destruction channels is indispensable. A cryogenic 22-pol radio frequency ion trap is an ideal tool to observe reactions that take place slowly, such as carbon chain anions with molecular hydrogen. Furthermore, measurements over a large temperature scale are feasible. Longitudinal optical access to the trap also provides the possibility to make precise photodetachment measurements. Temperature dependent measurements of the reaction rates for the reaction between hydrocarbon chain anions and H{sub 2} are presented.

  5. Interaction and dynamics of (alkylamide + electrolyte) deep eutectics: Dependence on alkyl chain-length, temperature, and anion identity

    Energy Technology Data Exchange (ETDEWEB)

    Guchhait, Biswajit; Das, Suman; Daschakraborty, Snehasis; Biswas, Ranjit, E-mail: ranjit@bose.res.in [Department of Chemical, Biological and Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098 (India)

    2014-03-14

    Here we investigate the solute-medium interaction and solute-centered dynamics in (RCONH{sub 2} + LiX) deep eutectics (DEs) via carrying out time-resolved fluorescence measurements and all-atom molecular dynamics simulations at various temperatures. Alkylamides (RCONH{sub 2}) considered are acetamide (CH{sub 3}CONH{sub 2}), propionamide (CH{sub 3}CH{sub 2}CONH{sub 2}), and butyramide (CH{sub 3}CH{sub 2}CH{sub 2}CONH{sub 2}); the electrolytes (LiX) are lithium perchlorate (LiClO{sub 4}), lithium bromide (LiBr), and lithium nitrate (LiNO{sub 3}). Differential scanning calorimetric measurements reveal glass transition temperatures (T{sub g}) of these DEs are ∼195 K and show a very weak dependence on alkyl chain-length and electrolyte identity. Time-resolved and steady state fluorescence measurements with these DEs have been carried out at six-to-nine different temperatures that are ∼100–150 K above their individual T{sub g}s. Four different solute probes providing a good spread of fluorescence lifetimes have been employed in steady state measurements, revealing strong excitation wavelength dependence of probe fluorescence emission peak frequencies. Extent of this dependence, which shows sensitivity to anion identity, has been found to increase with increase of amide chain-length and decrease of probe lifetime. Time-resolved measurements reveal strong fractional power dependence of average rates for solute solvation and rotation with fraction power being relatively smaller (stronger viscosity decoupling) for DEs containing longer amide and larger (weaker decoupling) for DEs containing perchlorate anion. Representative all-atom molecular dynamics simulations of (CH{sub 3}CONH{sub 2} + LiX) DEs at different temperatures reveal strongly stretched exponential relaxation of wavevector dependent acetamide self dynamic structure factor with time constants dependent both on ion identity and temperature, providing justification for explaining the fluorescence results in

  6. Gas-Grain Models for Interstellar Anion Chemistry

    Science.gov (United States)

    Cordiner, M. A.; Charnely, S. B.

    2012-01-01

    Long-chain hydrocarbon anions C(sub n) H(-) (n = 4, 6, 8) have recently been found to be abundant in a variety of interstellar clouds. In order to explain their large abundances in the denser (prestellar/protostellar) environments, new chemical models are constructed that include gas-grain interactions. Models including accretion of gas-phase species onto dust grains and cosmic-ray-induced desorption of atoms are able to reproduce the observed anion-to-neutral ratios, as well as the absolute abundances of anionic and neutral carbon chains, with a reasonable degree of accuracy. Due to their destructive effects, the depletion of oxygen atoms onto dust results in substantially greater polyyne and anion abundances in high-density gas (with n(sub H2) approx > / cubic cm). The large abundances of carbon-chain-bearing species observed in the envelopes of protostars such as L1527 can thus be explained without the need for warm carbon-chain chemistry. The C6H(-) anion-to-neutral ratio is found to be most sensitive to the atomic O and H abundances and the electron density. Therefore, as a core evolves, falling atomic abundances and rising electron densities are found to result in increasing anion-to-neutral ratios. Inclusion of cosmic-ray desorption of atoms in high-density models delays freeze-out, which results in a more temporally stable anion-to-neutral ratio, in better agreement with observations. Our models include reactions between oxygen atoms and carbon-chain anions to produce carbon-chain-oxide species C6O, C7O, HC6O, and HC7O, the abundances of which depend on the assumed branching ratios for associative electron detachment

  7. Side-by-side comparison of analytical techniques; organic acids, total organic carbon, and anions in PWR secondary cycles

    International Nuclear Information System (INIS)

    Hobart, S.A.; Byers, W.A.; Miller, M.R.; Richards, J.; Silva, H.; Palino, G.F.; Wall, P.S.

    1986-01-01

    Total Organic Carbon TOC samples should be analyzed no later than one week after they are taken and they should be stored in a refrigerated condition, if at all possible. It can be inferred that for TOC levels in the range of 50 to 120 ppb, state-of-the-art sampling and analysis techniques can produce results varying by 20 to 50 ppb. Any proposed limits for TOC should be reviewed in that light. Agreement between anion results appeared to improve over the course of the project. Both contractors agree that increased attention and care with sampling and analytical techniques probably accounted for this improvement. Utility personnel can therefore conclude that proper employee training, supervision, and motivation for proper sampling and analysis are critical if accurate anion results are to be obtained. Resonable agreement between calculated and measured values of cation conductivity suggest that both contractors had accurately determined all major anionic species

  8. 3D hybrid carbon composed of multigraphene bridged by carbon chains

    Directory of Open Access Journals (Sweden)

    Lingyu Liu

    2018-01-01

    Full Text Available The element carbon possesses various stable and metastable allotropes; some of them have been applied in diverse fields. The experimental evidences of both carbon chain and graphdiyne have been reported. Here, we reveal the mystery of an enchanting carbon allotrope with sp-, sp2-, and sp3-hybridized carbon atoms using a newly developed ab initio particle-swarm optimization algorithm for crystal structure prediction. This crystalline allotrope, namely m-C12, can be viewed as braided mesh architecture interwoven with multigraphene and carbon chains. The m-C12 meets the criteria for dynamic and mechanical stabilities and is energetically more stable than carbyne and graphdiyne. Analysis of the B/G and Poisson’s ratio indicates that this allotrope is ductile. Notably, m-C12 is a superconducting carbon with Tc of 1.13 K, which is rare in the family of carbon allotropes.

  9. Mixed Carbon Policies Based on Cooperation of Carbon Emission Reduction in Supply Chain

    Directory of Open Access Journals (Sweden)

    Yongwei Cheng

    2017-01-01

    Full Text Available This paper established cooperation decision model for a mixed carbon policy of carbon trading-carbon tax (environmental tax in a two-stage S-M supply chain. For three different cooperative abatement situations, we considered the supplier driven model, the manufacturer driven model, and the equilibrium game model. We investigated the influence of mixed carbon policy with constraint of reduction targets on supply chain price, productivity, profits, carbon emissions reduction rate, and so on. The results showed that (1 high-strength carbon policies do not necessarily encourage enterprises to effectively reduce emissions, and increasing market acceptance of low carbon products or raising the price of carbon quota can promote the benign reduction; (2 perfect competitive carbon market has a higher carbon reduction efficiency than oligarch carbon market, but their optimal level of cooperation is the same and the realized reduction rate is in line with the intensity of carbon policy; (3 the policy sensitivity of the carbon trading mechanism is stronger than the carbon tax; “paid quota mechanism” can subsidize the cost of abatement and improve reduction initiative. Finally, we use a numerical example to solve the optimal decisions under different market situations, validating the effectiveness of model and the conclusions.

  10. Synthesis, crystal structure and properties of K2Ta2S10: A novel ternary tantalum polysulfide with TaS8 polyhedra forming infinite anionic chains

    International Nuclear Information System (INIS)

    Wu Yuandong; Naether, Christian; Bensch, Wolfgang

    2005-01-01

    The new ternary alkali tantalum polysulfide K 2 Ta 2 S 10 has been synthesized by reacting TaS 2 with an in situ formed melt of K 2 S 3 and S at 773K. The compound crystallizes with four formula units in the monoclinic space group P2 1 /n (No. 14) with lattice parameters of a=14.9989(13)A,b=6.4183(4)A,c=15.1365(13)A,β=117.629(9) o . The structure contains two different zigzag chain anions [TaS 5 ] - , running parallel to the crystallographic b-axis separated by potassium cations. The two crystallographically independent tantalum atoms are in a distorted bi-capped trigonal prismatic environment of eight sulfur atoms which was never observed before. The TaS 8 polyhedra share three S atoms on each side to form the anionic chains. The compound was characterized with FIR and Raman spectroscopy

  11. The effects of an inserted linear carbon chain on the vibration of a carbon nanotube

    International Nuclear Information System (INIS)

    Hu, Z L; Guo, X M; Ru, C Q

    2007-01-01

    An elastic string-elastic shell model is developed to study the coupled vibration of a carbon nanowire made of a linear carbon chain (C-chain) inserted inside a carbon nanotube (CNT). It is shown that the vibration of the inserted C-chain is coupled with vibration of the CNT only for vibration modes with circumferential wavenumber n = 1. In other cases, such as axisymmetric modes (n = 0) or higher-order vibration modes with n≥2, total resultant van der Waals (vdW) force acting on the C-chain due to the innermost tube always vanishes, and therefore vibration of the CNT does not cause vibration of the inserted C-chain, although the existence of the C-chain does have an effect on the vibration of the CNT through the chain-CNT vdW forces acting on the innermost tube. The present model predicts that non-coaxial vibration between the C-chain and the innermost tube does not occur due to negligible bending rigidity of the C-chain. In addition, it is found that the C-chain has most significant effect on the lowest frequency associated with the radial vibration mode for circumferential wavenumber 2 (n = 2). In particular, the effect of the C-chain on the axisymmetric radial breathing frequencies (n = 0) predicted by the present model is found to be in reasonable agreement with known experimental and modeling results available in the literature. The present work offers systematic modeling results on the effects of an inserted C-chain on the vibration of CNTs

  12. Cassini CAPS-ELS observations of carbon-based anions and aerosol growth in Titan's ionosphere

    Science.gov (United States)

    Desai, Ravindra; Coates, Andrew; Wellbrock, Anne; Kataria, Dhiren; Jones, Geraint; Lewis, Gethyn; Waite, J.

    2016-06-01

    Cassini observations of Titans ionosphere revealed an atmosphere rich in positively charged ions with masses up to > 350 amu and negatively charged ions and aerosols with mass over charge ratios as high as 13,800 amu/q. The detection of negatively charged molecules by the Cassini CAPS Electron Spectrometer (CAPS-ELS) was particularly surprising and showed how the synthesis of large aerosol-size particles takes place at altitudes much greater than previously thought. Here, we present further analysis into this CAPS-ELS dataset, through an enhanced understanding of the instrument's response function. In previous studies the intrinsic E/E energy resolution of the instrument did not allow specific species to be identified and the detections were classified into broad mass ranges. In this study we use an updated fitting procedure to show how the ELS mass spectrum can be resolved into specific peaks at multiples of carbon-based anions up to > 100 amu/q. The negatively charged ions and aerosols in Titans ionosphere increase in mass with decreasing altitude, the lightest species being observed close to Titan's exobase of ˜1,450km and heaviest species observed at altitudes < 950km. We identify key stages in this apparent growth process and report on key intermediaries which appear to trigger the rapid growth of the larger aerosol-size particles.

  13. Carbon Incorporation and Anion Dynamics as Synergistic Drivers for Ultrafast Diffusion in Superionic LiCB11H12 and NaCB11H12

    Energy Technology Data Exchange (ETDEWEB)

    Dimitrievska, Mirjana [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Shea, Patrick [Lawrence Livermore National Laboratory; Kweon, Kyoung E. [Lawrence Livermore National Laboratory; Bercx, Marnik [University of Antwerp; Varley, Joel B. [Lawrence Livermore National Laboratory; Tang, Wan Si [National Institute of Standards and Technology; University of Maryland; Skripov, Alexander V. [Ural Division of the Russian Academy of Sciences; Stavila, Vitalie [Sandia National Laboratories; Udovic, Terrence J. [National Institute of Standards and Technology; Wood, Brandon C. [Lawrence Livermore National Laboratory

    2018-02-02

    The disordered phases of LiCB11H12 and NaCB11H12 possess superb superionic conductivities that make them suitable as solid electrolytes. In these materials, cation diffusion correlates with high orientational mobilities of the CB11H12- anions; however, the precise relationship has yet to be demonstrated. In this work, ab initio molecular dynamics and quasielastic neutron scattering are combined to probe anion reorientations and their mechanistic connection to cation mobility over a range of timescales and temperatures. It is found that anions do not rotate freely, but rather transition rapidly between orientations defined by the cation sublattice symmetry. The symmetry-breaking carbon atom in CB11H12- also plays a critical role by perturbing the energy landscape along the instantaneous orientation of the anion dipole, which couples fluctuations in the cation probability density directly to the anion motion. Anion reorientation rates exceed 3 x 1010 s-1, suggesting the underlying energy landscape fluctuates dynamically on diffusion-relevant timescales. Furthermore, carbon is found to modify the orientational preferences of the anions and aid rotational mobility, creating additional symmetry incompatibilities that inhibit ordering. The results suggest that synergy between the anion reorientational dynamics and the carbon-modified cation-anion interaction accounts for the higher ionic conductivity in CB11H12- salts compared with B12H122-.

  14. Energy and carbon balances of wood cascade chains

    Energy Technology Data Exchange (ETDEWEB)

    Sathre, Roger; Gustavsson, Leif [Ecotechnology, Mid Sweden University, SE-831 25 OEstersund (Sweden)

    2006-07-15

    In this study we analyze the energy and carbon balances of various cascade chains for recovered wood lumber. Post-recovery options include reuse as lumber, reprocessing as particleboard, pulping to form paper products, and burning for energy recovery. We compare energy and carbon balances of chains of cascaded products to the balances of products obtained from virgin wood fiber or from non-wood material. We describe and quantify several mechanisms through which cascading can affect the energy and carbon balances: direct cascade effects due to different properties and logistics of virgin and recovered materials, substitution effects due to the reduced demand for non-wood materials when wood is cascaded, and land use effects due to alternative possible land uses when less timber harvest is needed because of wood cascading. In some analyses we assume the forest is a limiting resource, and in others we include a fixed amount of forest land from which biomass can be harvested for use as material or biofuel. Energy and carbon balances take into account manufacturing processes, recovery and transportation energy, material recovery losses, and forest processes. We find that land use effects have the greatest impact on energy and carbon balances, followed by substitution effects, while direct cascade effects are relatively minor. (author)

  15. Measuring Urban Carbon Footprint from Carbon Flows in the Global Supply Chain.

    Science.gov (United States)

    Hu, Yuanchao; Lin, Jianyi; Cui, Shenghui; Khanna, Nina Zheng

    2016-06-21

    A global multiregional input-output (MRIO) model was built for eight Chinese cities to track their carbon flows. For in-depth understanding of urban carbon footprint from the perspectives of production, consumption, and trade balance, four kinds of footprints and four redefined measurement indicators were calculated. From the global supply chain, urban carbon inflows from Mainland China were larger than outflows, while the carbon outflows to European, principal North American countries and East Asia were much larger than inflows. With the rapid urbanization of China, Construction was the largest consumer and Utilities was the largest producer. Cities with higher consumption (such as Dalian, Tianjin, Shanghai, and Beijing) should change their consumption patterns, while cities with lower production efficiency (such as Dalian, Shanghai, Ningbo, and Chongqing) should improve their technology. The cities of net carbon consumption tended to transfer carbon emissions out of them by trading in carbon-intensive products, while the cities of net carbon production tended to produce carbon-intensive products for nonlocal consumers. Our results indicated that urban carbon abatement requires not only rational consumption and industrial symbiosis at the city level, but also tighter collaboration along all stages of the global supply chain.

  16. Removal efficiency of multiple poly- and perfluoroalkyl substances (PFASs) in drinking water using granular activated carbon (GAC) and anion exchange (AE) column tests.

    Science.gov (United States)

    McCleaf, Philip; Englund, Sophie; Östlund, Anna; Lindegren, Klara; Wiberg, Karin; Ahrens, Lutz

    2017-09-01

    Poly- and perfluoroalkyl substances (PFASs) have been detected in drinking water at relatively high concentrations throughout the world which has led to implementation of regulatory guidelines for specific PFASs in drinking water in several European countries and in the U.S. The Swedish National Food Agency has determined that the drinking water of over one third of the country's municipal consumers is at risk or already affected by PFAS contamination. The present study investigated the effects of perfluorocarbon chain length, functional group and isomer structure (branched or linear) on removal of multiple PFASs using granular activated carbon (GAC, Filtrasorb ® 400) and anion exchange (AE, Purolite ® A600) column experiments. The removal of 14 different PFASs, i.e. the C 3 C 11 , C 14 perfluoroalkyl carboxylic acids (PFCAs) (PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFNA, PFDA, PFUnDA, PFDoDA, PFTeDA), perfluorooctane sulfonamide (FOSA), and the C 4 , C 6 , C 8 perfluoroalkyl sulfonic acids (PFSAs) (PFBS, PFHxS, PFOS), was monitored for a 217 day period. The results indicate the selective nature of PFAS removal as the absorbents are loaded with PFASs and dissolved organic carbon (DOC). A clear relationship between perfluorocarbon chain length and removal efficiency of PFASs using GAC and AE was found while PFASs with sulfonate functional groups displayed greater removal efficiency than those with carboxylate groups. Similarly, time to column breakthrough increased with increasing perfluorocarbon chain length and was greater for the PFSAs than the PFCAs for both GAC and AE. Shorter carbon chained PFASs such as PFBA, PFPeA, PFHxA showed desorption behavior and long-chained PFASs showed increased removal towards the end of the experiment indicating agglomeration or micelle development. Linear isomers of PFOS, PFHxS, and perfluorooctane sulfonamide (FOSA) had greater column removal efficiencies using GAC (and also for AE at greater bed volume throughput) than the branched

  17. Probing the effects of the ester functional group, alkyl side chain length and anions on the bulk nanostructure of ionic liquids: a computational study.

    Science.gov (United States)

    Fakhraee, Mostafa; Gholami, Mohammad Reza

    2016-04-14

    The effects of ester addition on nanostructural properties of biodegradable ILs composed of 1-alkoxycarbonyl-3-alkyl-imidazolium cations ([C1COOCnC1im](+), n = 1, 2, 4) combined with [Br](-), [NO3](-), [BF4](-), [PF6](-), [TfO](-), and [Tf2N](-) were explored by using the molecular dynamics (MD) simulations and quantum theory of atoms in molecules (QTAIM) analysis at 400 K. Various thermodynamic properties of these ILs were extensively computed in our earlier work (Ind. Eng. Chem. Res., 2015, 54, 11678-11700). Nano-scale segregation analysis demonstrates the formation of a small spherical island-like hydrocarbon within the continuous ionic domain for ILs with short alkyl side chain ([C1COOC1C1im]), and a sponge-like nanostructure for the compound with long alkyl side chain ([C1COOC4C1im]). Ester-functionalized ILs with ethyl side chain ([C1COOC2C1im]) are the turning point between two different morphologies. Non-polar channels were observed for [C1COOC4C1im] ILs composed of smaller anions such as [Br] and [NO3], whereas clustering organization was found for the other anions. Formation of the spherical micelle-like nanostructure was seen for lengthened cations. Finally, the incorporation of an ester group into the alkyl side chain of the cation leads to stronger segregation between charged and uncharged networks, which consequently increased the possibility of self-assembly and micelle formation.

  18. Influence of alkyl chain length and anion species on ionic liquid structure at the graphite interface as a function of applied potential

    International Nuclear Information System (INIS)

    Li, Hua; Wood, Ross J; Atkin, Rob; Endres, Frank

    2014-01-01

    Atomic force microscopy (AFM) force measurements elucidate the effect of cation alkyl chain length and the anion species on ionic liquid (IL) interfacial structure at highly ordered pyrolytic graphite (HOPG) surfaces as a function of potential. Three ILs are examined: 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([HMIM] FAP), 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([EMIM] FAP), and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIM] TFSA). The step-wise force-distance profiles indicate the ILs adopt a multilayered morphology near the surface. When the surface is biased positively or negatively versus Pt quasireference electrode, both the number of steps, and the force required to rupture each step increase, indicating stronger interfacial structure. At all potentials, push-through forces for [HMIM] FAP are the highest, because the long alkyl chain results in strong cohesive interactions between cations, leading to well-formed layers that resist the AFM tip. The most layers are observed for [EMIM] FAP, because the C 2 chains are relatively rigid and the dimensions of the cation and anion are similar, facilitating neat packing. [EMIM] TFSA has the smallest push-through forces and fewest layers, and thus the weakest interfacial structure. Surface-tip attractive forces are measured for all ILs. At the same potential, the attractions are the strongest for [EMIM] TFSA and the weakest for [HMIM] FAP because the interfacial layers are better formed for the longer alkyl chain cation. This means interfacial forces are stronger, which masks the weak attractive forces. (paper)

  19. A mathematical/physics carbon emission reduction strategy for building supply chain network based on carbon tax policy

    Directory of Open Access Journals (Sweden)

    Li Xueying

    2017-03-01

    Full Text Available Under the background of a low carbon economy, this paper examines the impact of carbon tax policy on supply chain network emission reduction. The integer linear programming method is used to establish a supply chain network emission reduction such a model considers the cost of CO2 emissions, and analyses the impact of different carbon price on cost and carbon emissions in supply chains. The results show that the implementation of a carbon tax policy can reduce CO2 emissions in building supply chain, but the increase in carbon price does not produce a reduction effect, and may bring financial burden to the enterprise. This paper presents a reasonable carbon price range and provides decision makers with strategies towards realizing a low carbon building supply chain in an economical manner.

  20. Formation of interstellar anions

    Science.gov (United States)

    Senent, Maria Luisa

    2012-05-01

    Formation of interstellar anions: M.L. Senent. The recent detection of negative charged species in the ISM1 has instigated enthusiasm for anions in the astrophysical community2. Many of these species are new and entail characterization. How they are formed in astrophysical sources is a question of major relevance. The anion presence in ISM was first predicted theoretically on the basis of electron affinities and on the negative linear chain molecular stabilities. Although very early, they were considered in astrochemical models3-4, their discovery is so recent because their abundances seem to be relatively low. These have to be understood in terms of molecular stabilities, reaction probabilities and radiative and collisional excitations. Then, we present our theoretical work on even carbon chains type Cn and CnH (n=2,4,6) focused to the understanding of anion abundances. We use highly correlated ab initio methods. We performed spectroscopic studies of various isomers that can play important roles as intermediates5-8. In previous papers9-10, we compared C2H and C2H- collisional rates responsible for observed line intensities. Actually, we study hydrogen attachment (Cn +H → CnH and Cn- +H → CnH-) and associative detachment processes (Cn- +H → CnH +e-) for 2, 4 and 6 carbon atom chains11. [1] M.C.McCarthy, C.A.Gottlieb, H.Gupta, P.Thaddeus, Astrophys.J, 652, L141 (2006) [2] V.M.Bierbaum, J.Cernicharo, R.Bachiller, eds., 2011, pp 383-389. [3] A. Dalgarno, R.A. Mc Cray, Astrophys.J,, 181, 95 (1973) [4] E. Herbst E., Nature, 289, 656 (1981); [5] H.Massó, M.L.Senent, P.Rosmus, M.Hochlaf, J.Chem.Phys., 124, 234304 (2006) [6] M.L.Senent, M.Hochlaf, Astrophys. J. , 708, 1452(2010) [7] H.Massó, M.L.Senent, J.Phys.Chem.A, 113, 12404 (2009) [8] D. Hammoutene, M.Hochlaf, M.L.Senent, submitted. [9] A. Spielfiedel, N. Feautrier, F. Najar, D. ben Abdallah, F. Dayou, M.L. Senent, F. Lique, Mon.Not.R.Astron.Soc., 421, 1891 (2012) [10] F.Dumouchel, A, Spielfieldel , M

  1. Electronic and transport properties of a carbon-atom chain in the core of semiconducting carbon nanotubes

    International Nuclear Information System (INIS)

    Chen Jiangwei; Yang Linfeng; Yang Huatong; Dong Jinming

    2003-01-01

    Using the tight-binding calculations, we have studied electronic and transport properties of the semiconducting single-walled carbon nanotubes (SSWNTs) doped by a chain of carbon-atoms, which can be well controlled by density of the encapsulated carbon atoms. When it is lower, weak coupling between the chain atoms and the tube produces flat bands near the Fermi level, which means a great possibility of superconductivity and ferromagnetism for the combined system. The weak coupling also leads to a significant conductance at the Fermi level, which is contributed by both of the tube and the encapsulated carbon-atom chain. Increasing density of the chain carbon atoms, the flat bands near the Fermi level disappear, and the current may be carried only by the carbon-atom chain, thus making the system become an ideal one-dimensional quantum wire with its conducting chain enclosed by a SWNT insulator

  2. A density functional study of carbon monoxide adsorption on small cationic, neutral, and anionic gold clusters

    Science.gov (United States)

    Wu, X.; Senapati, L.; Nayak, S. K.; Selloni, A.; Hajaligol, M.

    2002-08-01

    CO adsorption on small cationic, neutral, and anionic Aun (n=1-6) clusters has been investigated using density functional theory in the generalized gradient approximation. Among various possible CO adsorption sites, the on-top (one-fold coordinated) is found to be the most favorable one, irrespective of the charge state of the cluster. In addition, planar structures are preferred by both the bare and the CO-adsorbed clusters. The adsorption energies of CO on the cationic clusters are generally greater than those on the neutral and anionic complexes, and decrease with size. The adsorption energies on the anions, instead, increase with cluster size and reach a local maximum at Au5CO-, in agreement with recent experiment. The differences in adsorption energies for the different charge states decrease with increasing cluster size.

  3. Density functional study of carbon monoxide adsorption on small cationic, neutral, and anionic aluminum nitride clusters

    Science.gov (United States)

    Guo, Ling

    CO adsorption on small cationic, neutral, and anionic (AlN)n (n = 1-6) clusters has been investigated using density functional theory in the generalized gradient approximation. Among various possible CO adsorption sites, an N on-top (onefold coordinated) site is found to be the most favorable one, irrespective of the charge state of the clusters. The adsorption energies of CO on the anionic (AlN)nCO (n = 2-4) clusters are greater than those on the neutral and cationic complexes. The adsorption energies on the cationic and neutral complexes reflect the odd-even oscillations, and the adsorption energies of CO on the cationic (AlN)nCO (n = 5, 6) clusters are greater than those on the neutral and anionic complexes. The adsorption energies for the different charge states decrease with increasing cluster size.

  4. Process Reengineering of Cold Chain Logistics of Agricultural Products Based on Low-carbon Economy

    OpenAIRE

    Guo, Hong-xia; Shao, Ming

    2012-01-01

    Through the process analysis of cold chain logistics of agricultural products, we find that cold chain logistics of agricultural products contradict the development model of low-carbon economy to some extent. We apply the development idea of low-carbon economy, introduce the third-party logistics companies, establish distribution center of cold chain logistics of agricultural products, and strengthen information sharing, to reengineer the process of cold chain logistics of agricultural produc...

  5. Methods for Shortening and Extending the Carbon Chain in Carbohydrates

    DEFF Research Database (Denmark)

    Monrad, Rune Nygaard

    2008-01-01

    in this thesis focuses on the development and application of transition metal mediated methods for shortening and extending the carbon chain in carbohydrates thereby providing access to lower and higher sugars.A new catalytic procedure for shortening unprotected sugars by one carbon atom has been developed....... The procedure has been employed as the key step in a short five-step synthesis of the unnatural sugar L-threose in 74% overall yield from D-glucose. A zinc-mediated one-pot fragmentation-allylation reaction has been used to elongate D-glucose and D-ribose by three carbon atoms thereby producing carbohydrate......-derived α,ω-dienes, which have been converted into the natural products calystegine A3 and gabosine A. The glycosidase inhibitor calystegine A3 was produced by two similar routes from commercially available methyl α-D-glucopyranoside in 13 and 14 steps with 8.3 and 5.3% overall yield, respectively...

  6. The Impact of Carbon Emissions Policies on Reverse Supply Chain Network Design

    Directory of Open Access Journals (Sweden)

    Bandar A. ALKHAYYAL

    2018-01-01

    Full Text Available Reverse Supply Chain is described as an initiative that plays an important role in the global supply chain for those who seek environmentally responsible solutions for their end-of-life products. The relative economic and environmental benefits of reverse supply chain are influenced by costs and emissions during collection, transportation, recovery facilities, disassembly, recycling, remanufacturing, and disposal of unrecoverable components. The design of reverse supply chain network takes into account social, economic and environmental objectives. This paper addresses the design of reverse supply chain under the three common regulatory policies, strict carbon caps, carbon tax, and carbon cap-and-trade.

  7. Control of calcium carbonate crystallization by using anionic polymethylsiloxanes as templates

    Energy Technology Data Exchange (ETDEWEB)

    Neira-Carrillo, Andronico, E-mail: aneira@uchile.cl [Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, PO Box 2-15, Santiago (Chile); Vasquez-Quitral, Patricio; Paz Diaz, Maria; Soledad Fernandez, Maria; Luis Arias, Jose [Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, PO Box 2-15, Santiago (Chile); Yazdani-Pedram, Mehrdad [Faculty of Chemical and Pharmaceutical Science, University of Chile, S. Livingstone 1007, PO Box 233, Santiago (Chile)

    2012-10-15

    Sulfonated (SO{sub 3}H-PMS) and carboxylated (CO{sub 2}H-PMS) polymethylsiloxanes were synthesized and their effects as anionic template modifier on the CaCO{sub 3} crystal morphologies were evaluated. In vitro crystallization assays of CaCO{sub 3} were performed at room temperature by using gas diffusion method at different concentration, pH and time. SEM images of CaCO{sub 3} showed well-defined short calcite piles (ca. 5 {mu}m) and elongated calcite (ca. 20 {mu}m) when SO{sub 3}H-PMS was used. When CO{sub 2}H-PMS was used, the morphology of CaCO{sub 3} crystals was single-truncated at pH 7-9 and aggregated-modified calcite at pH 10-11. However, at pH 12 the least stable donut-shaped vaterite crystals were formed. EDS and XRD confirmed the presence of Si from anionic PMS templates on the CaCO{sub 3} surfaces and its polymorphism, respectively. Results showed that the selective morphologies of CaCO{sub 3} reflect the electrostatic interaction of anionic groups of functionalized PMS with Ca{sup 2+} adsorbed on CaCO{sub 3} crystals. Rounded and truncated-modified fluorescent CaCO{sub 3} was also produced by the inclusion of functionalized PMS into the lattice of CaCO{sub 3} matrix. We demonstrated that the anionic PMS offer a good modifier for polymer-controlled crystallization and a convenient approach for understanding the biomineralization field. - Graphical abstract: Optical photographs of rounded and truncated-modified fluorescent CaCO{sub 3} produced by the inclusion of sulfonated (SO{sub 3}H-PMS) polymethylsiloxanes into the lattice of CaCO{sub 3} matrix. Insert represents the simulation of modified and fluorescent CaCO{sub 3} crystals using Software JCrystal, (2008). Highlights: Black-Right-Pointing-Pointer We prepared two anionic polymethylsiloxanes (PMS) as templates. Black-Right-Pointing-Pointer Their modifier capacity on the CaCO{sub 3} crystal morphologies was demonstrated. Black-Right-Pointing-Pointer At pH 12, the least stable donut-shaped vaterite

  8. Cloning, characterization and anion inhibition study of a β-class carbonic anhydrase from the caries producing pathogen Streptococcus mutans.

    Science.gov (United States)

    Dedeoglu, Nurcan; De Luca, Viviana; Isik, Semra; Yildirim, Hatice; Kockar, Feray; Capasso, Clemente; Supuran, Claudiu T

    2015-07-01

    The oral pathogenic bacterium involved in human dental caries formation Streptococcus mutans, encodes for two carbonic anhydrase (CA, EC 4.2.1.1) one belonging to the α- and the other one to the β-class. This last enzyme (SmuCA) has been cloned, characterized and investigated for its inhibition profile with a major class of CA inhibitors, the inorganic anions. Here we show that SmuCA has a good catalytic activity for the CO2 hydration reaction, with kcat 4.2×10(5)s(-1) and kcat/Km of 5.8×10(7)M(-1)×s(-1), being inhibited by cyanate, carbonate, stannate, divannadate and diethyldithiocarbamate in the submillimolar range (KIs of 0.30-0.64mM) and more efficiently by sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid (KIs of 15-46μM). The anion inhibition profile of the S. mutans enzyme is very different from other α- and β-CAs investigated earlier. Identification of effective inhibitors of this new enzyme may lead to pharmacological tools useful for understanding the role of S. mutans CAs in dental caries formation, and eventually the development of pharmacological agents with a new mechanism of antibacterial action. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. OBSERVATIONS OF WARM CARBON CHAIN CHEMISTRY IN NGC 3576

    Energy Technology Data Exchange (ETDEWEB)

    Saul, M. [School of Physics, University of New South Wales, Sydney, NSW 2052 (Australia); Tothill, N. F. H. [Faculty of Computing, Engineering and Mathematics, University of Western Sydney, Locked Bag 1797, Penrith South DC, NSW 1797 (Australia); Purcell, C. R., E-mail: msaul@phys.unsw.edu.au, E-mail: n.tothill@uws.edu.au, E-mail: Cormac.Purcell@sydney.edu.au [Institute for Astronomy, University of Sydney, Sydney, NSW 2006 (Australia)

    2015-01-01

    We report observations of warm carbon chain chemistry (WCCC) in NGC 3576, including high angular resolution imaging of an ionization source candidate and the first detection of C{sub 5}H in a massive star-forming region. In order to investigate the environment associated with birthline emergence, we ask how observed chemical conditions relate to Class 0/1 core differentiation: a systemic shift in peak position between species correlates with giant molecular cloud core gradients in turbulence and age. Emission in several molecular lines including HC{sub 3}N (11-10), NH{sub 3} (1, 1), and C{sub 5}H supports the G291.3-0.7 ionization front—transitional pre-main-sequence core interaction regulating the WCCC environment.

  10. Carbon dioxide is tightly bound in the [Co(Pyridine)(CO2)](-) anionic complex.

    Science.gov (United States)

    Graham, Jacob D; Buytendyk, Allyson M; Zhang, Xinxing; Kim, Seong K; Bowen, Kit H

    2015-11-14

    The [Co(Pyridine)(CO2)](-) anionic complex was studied through the combination of photoelectron spectroscopy and density functional theory calculations. This complex was envisioned as a primitive model system for studying CO2 binding to negatively charged sites in metal organic frameworks. The vertical detachment energy (VDE) measured via the photoelectron spectrum is 2.7 eV. Our calculations imply a structure for [Co(Pyridine)(CO2)](-) in which a central cobalt atom is bound to pyridine and CO2 moieties on either sides. This structure was validated by acceptable agreement between the calculated and measured VDE values. Based on our calculations, we found CO2 to be bound within the anionic complex by 1.4 eV.

  11. Carbon dioxide is tightly bound in the [Co(Pyridine)(CO2)]- anionic complex

    Science.gov (United States)

    Graham, Jacob D.; Buytendyk, Allyson M.; Zhang, Xinxing; Kim, Seong K.; Bowen, Kit H.

    2015-11-01

    The [Co(Pyridine)(CO2)]- anionic complex was studied through the combination of photoelectron spectroscopy and density functional theory calculations. This complex was envisioned as a primitive model system for studying CO2 binding to negatively charged sites in metal organic frameworks. The vertical detachment energy (VDE) measured via the photoelectron spectrum is 2.7 eV. Our calculations imply a structure for [Co(Pyridine)(CO2)]- in which a central cobalt atom is bound to pyridine and CO2 moieties on either sides. This structure was validated by acceptable agreement between the calculated and measured VDE values. Based on our calculations, we found CO2 to be bound within the anionic complex by 1.4 eV.

  12. Joint Optimal Production Planning for Complex Supply Chains Constrained by Carbon Emission Abatement Policies

    OpenAIRE

    He, Longfei; Xu, Zhaoguang; Niu, Zhanwen

    2014-01-01

    We focus on the joint production planning of complex supply chains facing stochastic demands and being constrained by carbon emission reduction policies. We pick two typical carbon emission reduction policies to research how emission regulation influences the profit and carbon footprint of a typical supply chain. We use the input-output model to capture the interrelated demand link between an arbitrary pair of two nodes in scenarios without or with carbon emission constraints. We design optim...

  13. Supply Chain Coordination with Carbon Trading Price and Consumers’ Environmental Awareness Dependent Demand

    Directory of Open Access Journals (Sweden)

    Qinghua Pang

    2018-01-01

    Full Text Available Carbon emissions reduction in supply chain is an effective method to reduce the greenhouse effect. The paper investigates the impacts of carbon trading price and consumers’ environmental awareness on carbon emissions in supply chain under the cap-and-trade system. Firstly, it analyzes the centralized decision structure and obtains the requirements to coordinate carbon emissions reduction and order quantity in supply chain. Secondly, it proposes the supply chain coordination mechanism with revenue-sharing contract based on quantity discount policy, and the requirements that the contract parameters need to satisfy are also given. Thirdly, assuming the market demand is affected by consumer’s environmental awareness in addition form, the paper proposes the methods to determine the optimal order quantity and the optimal level of carbon emissions through model optimization. Finally, it investigates the impacts of carbon trading price on carbon emissions in supply chain. The results show that clean manufacturer’s optimal per-unit carbon emissions increase as the carbon trading price increases, while nongreen manufacturer’s optimal per-unit carbon emissions decrease as the carbon trading price increases. For the middle emissions manufacturer, the optimal per-unit carbon emissions depend on the relationship between the carbon trading price and the carbon reduction coefficient.

  14. The formation of carbon chain molecules in IRC + 10216

    International Nuclear Information System (INIS)

    Howe, D.A.; Millar, T.J.

    1990-01-01

    This paper considers the formation of carbon-chain molecules, including C 2n H, C n S, HC 2n+1 N (n = 1-3) and SiC n (n = 1-4), in the outflowing envelope of the late-type carbon star IRC + 10216. The results suggest that the organo-sulphur species C 2 S and C 3 S can be formed in ion-molecule reactions involving acetylene ions and parent CS and SiS molecules. In addition to ion-molecule processes, neutral-neutral reactions can play a significant role in the formation of hydrocarbons and cyanopolyynes with up to six heavy atoms and in the formation of SiC 4 , and suggest that SiC 3 might be observable. However, the short time-scales available in the outflow are such that the observed abundances of the cyanopolyynes larger than HC 5 N cannot be reproduced using the parent molecules and abundances adopted here. (author)

  15. The effect of carbon chain length of starting materials on the formation of carbon dots and their optical properties

    Science.gov (United States)

    Pan, Xiaohua; Zhang, Yan; Sun, Xiaobo; Pan, Wei; Yu, Guifeng; Si, Shuxin; Wang, Jinping

    2018-04-01

    Carbon dots (CDs) have attracted increasing attention due to their high performances and potential applications in wide range of areas. However, their emission mechanism is not clear so far. In order to reveal more factors contributing to the emission of CDs, the effect of carbon chain length of starting materials on the formation of CDs and their optical properties was experimentally investigated in this work. In order to focus on the effect of carbon chain length, the starting materials with C, O, N in fully identical forms and only carbon chain lengths being different were selected for synthesizing CDs, including citric acid (CA) and adipic acid (AA) as carbon sources, and diamines with different carbon chain lengths (H2N(CH2)nNH2, n = 2, 4, 6) as nitrogen sources, as well as ethylenediamine (EDA) as nitrogen source and diacids with different carbon chain lengths (HOOC(CH2)nCOOH, n = 0, 2, 4, 6) as carbon sources. Therefore, the effect of carbon chain length of starting materials on the formation and optical properties of CDs can be systematically investigated by characterizing and comparing the structures and optical properties of as-prepared nine types of CDs. Moreover, the density of –NH2 on the surface of the CDs was quantitatively detected by a spectrophotometry so as to elucidate the relationship between the –NH2 related surface state and the optical properties.

  16. Side-by-side comparison of techniques for analyzing organic acids, total organic carbon, and anions. Final report

    International Nuclear Information System (INIS)

    Byers, W.A.; Richards, J.; Silva, H.; Miller, M.R.; Palino, G.F.; Wall, P.S.

    1986-09-01

    The objective of this project was to compare the organic acids sampling and analysis methods of Westinghouse and NWT Corporation. Sampling was performed at three sites, chosen to represent units with high, intermediate and low levels of organic contamination. To check the precision of each method, concurrent sampling was employed. To check the accuracy of each method, additions of standard organic solutions were made at one of the sites. Inorganic anions were also analyzed at each site by each contractor. Theoretical values of cation conductivity were calculated from organic and inorganic analytical data and compared to values measured onsite at the time of sampling. Total organic carbon (TOC) analyses were performed to evaluate different instruments and sampling techniques, as well as provide additional information on the relationship between TOC and organic acids concentrations. It was concluded that either of the organic acid sampling/analysis techniques used by the contractors can produce reliable results. TOC samples lose organics content with storage time and should be analyzed no later than one week after they are taken; if at all possible, they should be stored in a refrigerated condition. State-of-the art techniques for TOC sampling and analysis can produce results varying by 20 to 50 ppB for levels in the range of 50 to 120 ppB; any proposed limits for TOC should be reviewed in that light. Results of anion analyses are quite sensitive to sampling and analytical techniques. Reasonable agreement between calculated and measured values of cation conductivity suggests that both contractors had accurately determined all major anionic species

  17. Study of the ion-channel behavior on glassy carbon electrode supported bilayer lipid membranes stimulated by perchlorate anion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhiquan; Shi, Jun; Huang, Weimin, E-mail: huangwm@jlu.edu.cn

    2015-10-01

    In this paper, a kind of didodecyldimethylammonium bromide (DDAB) layer membranes was supported on a glassy carbon electrode (GCE). We studied the ion channel behavior of the supported bilayer lipid membrane by scanning electrochemical microscopy (SCEM) in tris(2,2′-bipyridine) ruthenium(II) solution. Perchlorate anion was used as a presence of stimulus and ruthenium(II) complex cations as the probing ions for the measurement of SECM, the lipid membrane channel was opened and exhibited the behavior of distinct SECM positive feedback curve. The channel was in a closed state in the absence of perchlorate anions while reflected the behavior of SECM negative feedback curve. The rates of electron transfer reaction in the lipid membranes surface were detected and it was dependant on the potential of SECM. - Highlights: • The rates of electron transfer reaction in the lipid membranes surface were detected. • Dynamic investigations of ion-channel behavior of supported bilayer lipid membranes by scanning electrochemical microscopy • A novel way to explore the interaction between molecules and supported bilayer lipid membranes.

  18. Optimal Strategies for Low Carbon Supply Chain with Strategic Customer Behavior and Green Technology Investment

    Directory of Open Access Journals (Sweden)

    Wen Jiang

    2016-01-01

    Full Text Available Climate change is mainly caused by excessive emissions of carbon dioxide and other greenhouse gases. In order to reduce carbon emissions, cap and trade policy is implemented by governments in many countries, which has significant impacts on the decisions of companies at all levels of the low carbon supply chain. This paper investigates the decision-making and coordination of a low carbon supply chain consisting of a low carbon manufacturer who produces one product and is allowed to invest in green technology to reduce carbon emissions in production and a retailer who faces stochastic demands formed by homogeneous strategic customers. We investigate the optimal production, pricing, carbon trading, and green technology investment strategies of the low carbon supply chain in centralized (including Rational Expected Equilibrium scenario and quantity commitment scenario and decentralized settings. It is demonstrated that quantity commitment strategy can improve the profit of the low carbon supply chain with strategic customer behavior. We also show that the performance of decentralized supply chain is lower than that of quantity commitment scenario. We prove that the low carbon supply chain cannot be coordinated by revenue sharing contract but by revenue sharing-cost sharing contract.

  19. Dependency of Anion and Chain Length of Imidazolium Based Ionic Liquid on Micellization of the Block Copolymer F127 in Aqueous Solution: An Experimental Deep Insight

    Directory of Open Access Journals (Sweden)

    Jignesh Lunagariya

    2017-07-01

    Full Text Available The non-ionic triblock copolymer, Pluronic® F127, has been selected to observe its interaction with ionic liquids (ILs in aqueous solutions by using DLS, surface tension, and viscosity measurements. The Critical Micelle Concentration (CMC of F127 increased with the addition of ILs, which appeared logical since it increases the solubility of PPO (and PEO moiety, making it behaves more like a hydrophilic block copolymer that is micellized at a higher copolymer concentration. The results from DLS data showed good agreement with those obtained from the surface tension measurements. Upon the addition of ILs, the tendency in micellar size reduction was demonstrated by viscosity results, and therefore, intrinsic viscosity decreased compared to pure F127 in aqueous solution. The results were discussed as a function of alkyl chain length and anions of imidazolium based ILs.

  20. Direct synthesis of sp-bonded carbon chains on graphite surface by femtosecond laser irradiation

    International Nuclear Information System (INIS)

    Hu, A.; Rybachuk, M.; Lu, Q.-B.; Duley, W. W.

    2007-01-01

    Microscopic phase transformation from graphite to sp-bonded carbon chains (carbyne) and nanodiamond has been induced by femtosecond laser pulses on graphite surface. UV/surface enhanced Raman scattering spectra and x-ray photoelectron spectra displayed the local synthesis of carbyne in the melt zone while nanocrystalline diamond and trans-polyacetylene chains form in the edge area of gentle ablation. These results evidence possible direct 'writing' of variable chemical bonded carbons by femtosecond laser pulses for carbon-based applications

  1. Rapid analysis of carbohydrates in aqueous extracts and hydrolysates of biomass using a carbonate-modified anion-exchange column.

    Science.gov (United States)

    Sevcik, Richard S; Mowery, Richard A; Becker, Christopher; Chambliss, C Kevin

    2011-03-04

    Quantitative liquid-chromatography techniques used to characterize carbohydrates present in biomass samples can suffer from long analysis times, limited analyte resolution, poor stability, or a combination of these factors. The current manuscript details a novel procedure enabling resolution of glucose, xylose, arabinose, galactose, mannose, fructose, and sucrose via isocratic elution in less than 5 min. Equivalent conditions also enable analysis of cellobiose and maltose with a minimal increase in chromatographic run time (ca. 3 and 6 min, respectively). Noted chromatographic performance requires that a commercially available anion-exchange column be modified with carbonate prior to analysis. Analytical performance of a modified column was assessed over a 5-day period via repeated analyses of 4 samples, resulting from aqueous extraction or quantitative saccharification of a potential biofuel feedstock (i.e., corn stover or switchgrass). A simple solid phase extraction procedure was utilized to clean up each sample prior to analysis. Analytical accuracy of the extraction protocol was assessed by evaluation of matrix spike recoveries which typically ranged from 84% to 98%. The instrumental variability of measured concentrations in real samples over the 5-day period was generally less than 5% RSD for all detected analytes, independent of sample type. Finally, it is important to note that the modified column exhibited exceptional stability over approximately 800 injections of biofeedstock-based samples. These data demonstrate that a carbonate-modified anion-exchange column can be employed for rapid determination of carbohydrates in biomass samples of lignocellulosic origin. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Nickel group cluster anion reactions with carbon monoxide: Rate coefficients and chemisorption efficiency

    Science.gov (United States)

    Hintz, Paul A.; Ervin, Kent M.

    1994-04-01

    Reactions of Ni-n(n=3-10), Pd-n(n=3-8), and Pt-n(n=3-7) with CO are studied in a flow tube reactor. Bimolecular rate coefficients are measured for the association reaction of CO adsorbing on the cluster surface. The rate coefficients range from about 10% of the collision rate for the trimer anions to near the collision rate for clusters larger than four atoms. The maximum number of CO molecules that bind to each cluster is determined. Whereas the saturation limits for nickel are typical for an 18 electron transition metal, the limits for platinum are lower, reflecting the electron deficient structures observed in condensed phase chemistry. The CO saturated palladium clusters represent the first examples of saturated binary palladium carbonyl compounds. Comparisons are made to similar studies on metal cation and neutral clusters and also to surface scattering studies of nickel group metals.

  3. Hydrothermal synthesis, crystal structure and properties of a novel chain coordination polymer constructed by tetrafunctional phosphonate anions and cobalt ions

    International Nuclear Information System (INIS)

    Guan, Lei; Wang, Ying

    2015-01-01

    A novel cobalt phosphonate, [Co(HL)(H 2 O) 3 ] n (1) (L=N(CH 2 PO 3 H) 3 3− ) has been synthesized by hydrothermal reaction at 150 °C and structurally characterized by X-ray diffraction, infrared spectroscopy, elemental and thermogravimetric analysis. Complex 1 features a 1D chain structure with double-channel built from CoO 6 octahedra bridged together by the phosphonate groups. Each cobalt ion is octahedrally coordinated by three phosphonate oxygen atoms and three water molecules. The coordinated water molecules can form the hydrogen bonds with the phosphonate oxygen atoms to link the 1D chains, building a 2D layered structure, further resulting in a 3D network. The luminescence spectrum indicates an emission maximum at 435 nm. The magnetic susceptibility curve exhibits a dominant antiferromagnetic behavior with a weakly ferromagnetic component at low temperatures. - Graphical abstract: The connectivity between cobalt ions and the ligands results in a chain structure with a 1D double-channel structure, which is constructed by A-type subrings and B-type subrings. - Highlights: • The tetrafunctional phosphonate ligand was used as the ligand. • A novel chain structure can be formed by A-type rings and B-type rings. • Two types of rings can form a 1D double-channel structure, along the c-axis

  4. Kinetic analysis of anionic surfactant adsorption from aqueous solution onto activated carbon and layered double hydroxide with the zero length column method

    NARCIS (Netherlands)

    Schouten, N.; van der Ham, Aloysius G.J.; Euverink, G.J.W.; de Haan, A.B.

    2009-01-01

    Low cost adsorption technology offers high potential to clean-up laundry rinsing water. From an earlier selection of adsorbents, layered double hydroxide (LDH) and granular activated carbon (GAC) proved to be interesting materials for the removal of anionic surfactant, linear alkyl benzene sulfonate

  5. Carbon-14 methylation of the 2-methylbutyryl side chain of mevinolin and its analogs

    International Nuclear Information System (INIS)

    Prakash, S.R.; Ellsworth, R.L.

    1988-01-01

    A one step procedure for the preparation of three labeled mevinolin analogs possessing the 2,2-dimethylbutyryloxy side chain is described. Three lactones were converted into potassium salts of their corresponding di or trihydroxy carboxylic acids from which anionic ester enolates were generated and alkylated with [ 14 ]methyl iodide. Workup and purification by reverse phase HPLC provided the three radiochemically pure mevinolin analogs. The labeled lactones were converted into ammonium salts of their corresponding di or trihydroxy acids. (author)

  6. Carbon-dot-based fluorescent turn-on sensor for selectively detecting sulfide anions in totally aqueous media and imaging inside live cells.

    Science.gov (United States)

    Hou, Xianfeng; Zeng, Fang; Du, Fangkai; Wu, Shuizhu

    2013-08-23

    Sulfide anions are generated not only as a byproduct from industrial processes but also in biosystems. Hence, robust fluorescent sensors for detecting sulfide anions which are fast-responding, water soluble and biocompatible are highly desirable. Herein, we report a carbon-dot-based fluorescent sensor, which features excellent water solubility, low cytotoxicity and a short response time. This sensor is based on the ligand/Cu(II) approach so as to achieve fast sensing of sulfide anions. The carbon dot (CD) serves as the fluorophore as well as the anchoring site for the ligands which bind with copper ions. For this CD-based system, as copper ions bind with the ligands which reside on the surface of the CD, the paramagnetic copper ions efficiently quench the fluorescence of the CD, affording the system a turn-off sensor for copper ions. More importantly, the subsequently added sulfide anions can extract Cu(2+) from the system and form very stable CuS with Cu(2+), resulting in fluorescence enhancement and affording the system a turn-on sensor for sulfide anions. This fast-responding and selective sensor can operate in totally aqueous solution or in physiological milieu with a low detection limit of 0.78 μM. It displays good biocompatibility, and excellent cell membrane permeability, and can be used to monitor S(2-) levels in running water and living cells.

  7. Product carbon footprint assessment supporting the green supply chain construction in household appliance manufacturers

    Science.gov (United States)

    Chen, Jianhua; Sun, Liang; Guo, Huiting

    2017-11-01

    Supply chain carbon emission is one of the factors considered in the green supply chain management. A method was designed to support the green supply chain measures based on the carbon footprint assessment for products. A research for 3 typical household appliances carbon footprint assessment was conducted to explore using product carbon footprint assessment method to guide the green supply chain management of the manufacturers. The result could reflect the differences directions on green supply chain management of manufacturers of washing machine, air conditioner and microwave, respectively That is, the washing machine manufacturer should pay attention to the low carbon activities in upstream suppliers in highest priority, and also the promotion of product energy efficiency. The air conditioner manufacturer should pay attention to the product energy efficiency increasing in highest priority, and the improvement of refrigerant to decrease its GWP. And the microwave manufacture could only focus on the energy efficiency increasing because it contributes most of the carbon emission to its carbon footprint. Besides, the representativeness of product and the applicability of the method were also discussed. As the manufacturer could master the technical information on raw material and components of its products to conduct the product carbon footprint assessment, this method could help the manufacturer to identify the effective green supply chain measures in the preliminary stage.

  8. Atomic carbon chains as spin-transmitters: An ab initio transport study

    DEFF Research Database (Denmark)

    Fürst, Joachim Alexander; Brandbyge, Mads; Jauho, Antti-Pekka

    2010-01-01

    An atomic carbon chain joining two graphene flakes was recently realized in a ground-breaking experiment by Jin et al. (Phys. Rev. Lett., 102 (2009) 205501). We present ab initio results for the electron transport properties of such chains and demonstrate complete spin-polarization of the transmi......An atomic carbon chain joining two graphene flakes was recently realized in a ground-breaking experiment by Jin et al. (Phys. Rev. Lett., 102 (2009) 205501). We present ab initio results for the electron transport properties of such chains and demonstrate complete spin...

  9. Efficient dechlorination of carbon tetrachloride by hydrophobic green rust intercalated with dodecanoate anions

    DEFF Research Database (Denmark)

    Ayala Luis, Karina Barbara; Ginette Anneliese Cooper, Nicola; Bender Koch, Christian

    2012-01-01

    similar to those found in heavily contaminated groundwater close to polluted industrial sites (14 988 mu M) was reduced mainly to the fully dechlorinated products carbon monoxide (CO, yields >54 and formic acid (HCOOH, yields >6. Minor formation of chloroform (CF), the only chlorinated degradation product......The reductive dechlorination of carbon tetrachloride (CT) by Fe-II-Fe-III hydroxide (green rust) intercalated with dodecanoate, (Fe4Fe2III)-Fe-II (OH)(12)(C12H23O2)(2)center dot gamma H2O (designated GR(C12)), at pH similar to 8 and at room temperature was investigated. CT at concentration levels...

  10. Alkyl chain interaction at the surface of room temperature ionic liquids: systematic variation of alkyl chain length (R = C(1)-C(4), C(8)) in both cation and anion of [RMIM][R-OSO(3)] by sum frequency generation and surface tension.

    Science.gov (United States)

    Santos, Cherry S; Baldelli, Steven

    2009-01-29

    The gas-liquid interface of halide-free 1,3-dialkylimidazolium alkyl sulfates [RMIM][R-OSO(3)] with R chain length from C(1)-C(4) and C(8) has been studied systematically using the surface-specific sum frequency generation (SFG) vibrational spectroscopy and surface tension measurements. From the SFG spectra, vibrational modes from the methyl group of both cation and anion are observed for all ionic liquid samples considered in the present study. These results suggest the presence of both ions at the gas-liquid interface, which is further supported by surface tension measurements. Surface tension data show a decreasing trend as the alkyl chain in the imidazolium cation is varied from methyl to butyl chain, with a specific anion. A similar trend is observed when the alkyl chain of the anion is modified and the cation is fixed.

  11. Effects of carbon nanofiller characteristics on PTT chain conformation and dynamics: A computational study

    Energy Technology Data Exchange (ETDEWEB)

    Asadinezhad, Ahmad, E-mail: asadinezhad@cc.iut.ac.ir; Kelich, Payam

    2017-01-15

    Highlights: • Poly (trimethylene terephthalate) (PTT) conformation adopts a folded shape near nanofiller surface. • Graphene and carbon nanotube with different size and chemistry were simulated. • Graphene functionalization induces stronger confinement on PTT chain conformation. • PTT chain motion alters in dynamics mode as it becomes adsorbed onto nanofillers. • PTT reveals further changes near graphene than carbon nanotube surface. - Abstract: The effects of nanofiller chemistry and geometry on static and dynamic properties of an aromatic polyester, poly (trimethylene terephthalate), were addressed thanks to long-run classical molecular dynamics simulation. Two carbon nanofillers, graphene and carbon nanotube, were employed, where graphene was used in pristine and functionalized forms and carbon nanotube was used in two different diameters. The nanofiller geometry and chemistry were found to exert significant effects on conformation and dynamic behavior of PTT chain at the interface within the time scale the simulation was performed. It was found that PTT chain underwent interaction of van der Waals type with nanofiller via two subsequent phases, adsorption and orientation. The former stage, with definite characteristic time, involved translation of polymer chain toward interface while the latter was controlled by vibrational motions of chain atoms. The consequence of interaction was an increase in conformational order of polymer chain by transition to folded shape being favorable for any subsequent structural ordering (crystallization). The interaction of polymer with nanofiller gave rise to a reduction in overall mobility of polymer chain characterized by crossover from normal diffusive motion to subdiffusive mode.

  12. Effects of carbon nanofiller characteristics on PTT chain conformation and dynamics: A computational study

    International Nuclear Information System (INIS)

    Asadinezhad, Ahmad; Kelich, Payam

    2017-01-01

    Highlights: • Poly (trimethylene terephthalate) (PTT) conformation adopts a folded shape near nanofiller surface. • Graphene and carbon nanotube with different size and chemistry were simulated. • Graphene functionalization induces stronger confinement on PTT chain conformation. • PTT chain motion alters in dynamics mode as it becomes adsorbed onto nanofillers. • PTT reveals further changes near graphene than carbon nanotube surface. - Abstract: The effects of nanofiller chemistry and geometry on static and dynamic properties of an aromatic polyester, poly (trimethylene terephthalate), were addressed thanks to long-run classical molecular dynamics simulation. Two carbon nanofillers, graphene and carbon nanotube, were employed, where graphene was used in pristine and functionalized forms and carbon nanotube was used in two different diameters. The nanofiller geometry and chemistry were found to exert significant effects on conformation and dynamic behavior of PTT chain at the interface within the time scale the simulation was performed. It was found that PTT chain underwent interaction of van der Waals type with nanofiller via two subsequent phases, adsorption and orientation. The former stage, with definite characteristic time, involved translation of polymer chain toward interface while the latter was controlled by vibrational motions of chain atoms. The consequence of interaction was an increase in conformational order of polymer chain by transition to folded shape being favorable for any subsequent structural ordering (crystallization). The interaction of polymer with nanofiller gave rise to a reduction in overall mobility of polymer chain characterized by crossover from normal diffusive motion to subdiffusive mode.

  13. Long Carbon Chains in the Warm Carbon-chain-chemistry Source L1527: First Detection of C7H in Molecular Clouds

    Science.gov (United States)

    Araki, Mitsunori; Takano, Shuro; Sakai, Nami; Yamamoto, Satoshi; Oyama, Takahiro; Kuze, Nobuhiko; Tsukiyama, Koichi

    2017-09-01

    Long carbon-chain molecules were searched for toward the low-mass star-forming region L1527, which is a prototypical source of warm carbon-chain chemistry (WCCC), using the 100 m Green Bank Telescope. Long carbon-chain molecules, C7H (2Π1/2), C6H (2Π3/2 and 2Π1/2), CH3C4H, and C6H2 (cumulene carbene, CCCCCCH2), and cyclic species of C3H and C3H2O were detected. In particular, C7H was detected for the first time in molecular clouds. The column density of C7H is determined to be 6 × 1010 cm-2. The column densities of the carbon-chain molecules including CH3C4H and C6H in L1527 relative to those in the starless dark cloud Taurus Molecular Cloud-1 Cyanopolyyne Peak (TMC-1 CP) tend to be systematically lower for long carbon-chain lengths. However, the column densities of C7H and C6H2 do not follow this trend and are found to be relatively abundant in L1527. This result implies that these long carbon-chain molecules are remnants of the cold starless phase. The results—that both the remnants and WCCC products are observed toward L1527—are consistent with the suggestion that the protostar can also be born in the parent core at a relatively early stage in the chemical evolution.

  14. Managing Risk Aversion for Low-Carbon Supply Chains with Emission Abatement Outsourcing.

    Science.gov (United States)

    Wang, Qinpeng; He, Longfei

    2018-02-21

    Reducing carbon emissions, including emission abatement outsourcing at the supply-chain level, is becoming a significant but challenging problem in practice. Confronting this challenge, we therefore break down the practice to focus on a low-carbon supply chain consisting of one supplier, one manufacturer and one third-party emission-reducing contractor. The contractor offers a carbon reduction service to the manufacturer. In view of the increasing proportion of Greenhouse Gases (GHG) emissions and absence of carbon reduction policies in developing countries, we adopt the prospect of consumers' low-carbon preferences to capture the demand sensitivity on carbon emission. By exploiting the Mean-Variance (MV) model, we develop a supply chain game model considering risk aversion. Comparing the supply chain performances of the cases under risk neutrality and risk aversion, we investigate the impact of the risk aversion of the supplier and the manufacturer on the low-carbon supply chain performances, respectively. We show that the risk aversion of chain members will not influence the relationship underlain by the profit-sharing contract between the manufacturer and contractor, whereas they may extend the supplier's concerning range. Although the manufacturer's risk aversion has a positive impact on the wholesale price, interestingly, the supplier's impact on the wholesale price is negative. Furthermore, we propose a contract to coordinate the risk-averse low-carbon supply chain by tuning the aversion levels of the supplier and the manufacturer, respectively. Through numerical study, we draw on managerial insights for industrial practitioners to adopt a low carbon strategy potentially by managing the risk attitudes along the supply chain channel.

  15. Managing Risk Aversion for Low-Carbon Supply Chains with Emission Abatement Outsourcing

    Science.gov (United States)

    Wang, Qinpeng; He, Longfei

    2018-01-01

    Reducing carbon emissions, including emission abatement outsourcing at the supply-chain level, is becoming a significant but challenging problem in practice. Confronting this challenge, we therefore break down the practice to focus on a low-carbon supply chain consisting of one supplier, one manufacturer and one third-party emission-reducing contractor. The contractor offers a carbon reduction service to the manufacturer. In view of the increasing proportion of Greenhouse Gases (GHG) emissions and absence of carbon reduction policies in developing countries, we adopt the prospect of consumers’ low-carbon preferences to capture the demand sensitivity on carbon emission. By exploiting the Mean-Variance (MV) model, we develop a supply chain game model considering risk aversion. Comparing the supply chain performances of the cases under risk neutrality and risk aversion, we investigate the impact of the risk aversion of the supplier and the manufacturer on the low-carbon supply chain performances, respectively. We show that the risk aversion of chain members will not influence the relationship underlain by the profit-sharing contract between the manufacturer and contractor, whereas they may extend the supplier’s concerning range. Although the manufacturer’s risk aversion has a positive impact on the wholesale price, interestingly, the supplier’s impact on the wholesale price is negative. Furthermore, we propose a contract to coordinate the risk-averse low-carbon supply chain by tuning the aversion levels of the supplier and the manufacturer, respectively. Through numerical study, we draw on managerial insights for industrial practitioners to adopt a low carbon strategy potentially by managing the risk attitudes along the supply chain channel. PMID:29466281

  16. Managing Risk Aversion for Low-Carbon Supply Chains with Emission Abatement Outsourcing

    Directory of Open Access Journals (Sweden)

    Qinpeng Wang

    2018-02-01

    Full Text Available Reducing carbon emissions, including emission abatement outsourcing at the supply-chain level, is becoming a significant but challenging problem in practice. Confronting this challenge, we therefore break down the practice to focus on a low-carbon supply chain consisting of one supplier, one manufacturer and one third-party emission-reducing contractor. The contractor offers a carbon reduction service to the manufacturer. In view of the increasing proportion of Greenhouse Gases (GHG emissions and absence of carbon reduction policies in developing countries, we adopt the prospect of consumers’ low-carbon preferences to capture the demand sensitivity on carbon emission. By exploiting the Mean-Variance (MV model, we develop a supply chain game model considering risk aversion. Comparing the supply chain performances of the cases under risk neutrality and risk aversion, we investigate the impact of the risk aversion of the supplier and the manufacturer on the low-carbon supply chain performances, respectively. We show that the risk aversion of chain members will not influence the relationship underlain by the profit-sharing contract between the manufacturer and contractor, whereas they may extend the supplier’s concerning range. Although the manufacturer’s risk aversion has a positive impact on the wholesale price, interestingly, the supplier’s impact on the wholesale price is negative. Furthermore, we propose a contract to coordinate the risk-averse low-carbon supply chain by tuning the aversion levels of the supplier and the manufacturer, respectively. Through numerical study, we draw on managerial insights for industrial practitioners to adopt a low carbon strategy potentially by managing the risk attitudes along the supply chain channel.

  17. Development of high-speed reactive processing system for carbon fiber-reinforced polyamide-6 composite: In-situ anionic ring-opening polymerization

    International Nuclear Information System (INIS)

    Kim, Sang-Woo; Seong, Dong Gi; Yi, Jin-Woo; Um, Moon-Kwang

    2016-01-01

    In order to manufacture carbon fiber-reinforced polyamide-6 (PA-6) composite, we optimized the reactive processing system. The in-situ anionic ring-opening polymerization of ε-caprolactam was utilized with proper catalyst and initiator for PA-6 matrix. The mechanical properties such as tensile strength, inter-laminar shear strength and compressive strength of the produced carbon fiber-reinforced PA-6 composite were measured, which were compared with the corresponding scanning electron microscope (SEM) images to investigate the polymer properties as well as the interfacial interaction between fiber and polymer matrix. Furthermore, kinetics of in-situ anionic ring-opening polymerization of ε-caprolactam will be discussed in the viewpoint of increasing manufacturing speed and interfacial bonding between PA-6 matrix and carbon fiber during polymerization.

  18. Development of high-speed reactive processing system for carbon fiber-reinforced polyamide-6 composite: In-situ anionic ring-opening polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang-Woo; Seong, Dong Gi; Yi, Jin-Woo; Um, Moon-Kwang [Composites Research Division, Korea Institute of Materials Science (KIMS), Changwon, Gyeongnam, 642–831 (Korea, Republic of)

    2016-05-18

    In order to manufacture carbon fiber-reinforced polyamide-6 (PA-6) composite, we optimized the reactive processing system. The in-situ anionic ring-opening polymerization of ε-caprolactam was utilized with proper catalyst and initiator for PA-6 matrix. The mechanical properties such as tensile strength, inter-laminar shear strength and compressive strength of the produced carbon fiber-reinforced PA-6 composite were measured, which were compared with the corresponding scanning electron microscope (SEM) images to investigate the polymer properties as well as the interfacial interaction between fiber and polymer matrix. Furthermore, kinetics of in-situ anionic ring-opening polymerization of ε-caprolactam will be discussed in the viewpoint of increasing manufacturing speed and interfacial bonding between PA-6 matrix and carbon fiber during polymerization.

  19. Carbon emission coefficient measurement of the coal-to-power energy chain in China

    OpenAIRE

    Shiwei Yu; Yi-Ming Wei; Haixiang Guo; Liping Ding

    2012-01-01

    Coal-fired electricity generation has become the largest source of carbon emission in China. This study utilizes life-cycle assessment to assess the effect of carbon emissions and to calculate the coefficient of carbon emissions in coal-to-energy chains. Results show that the carbon emission coefficient of the coal-to-energy chain in China is 875 g/kW h-1, which is a relatively low level compared with that of other countries. CO2 is the main type of greenhouse gas emission and the most abunda...

  20. Anomalous I-V curve for mono-atomic carbon chains

    International Nuclear Information System (INIS)

    Song Bo; Fang Haiping; Sanvito, Stefano

    2010-01-01

    The electronic transport properties of mono-atomic carbon chains were studied theoretically using a combination of density functional theory and the non-equilibrium Green's functions method. The I-V curves for the chains composed of an even number of atoms and attached to gold electrodes through sulfur exhibit two plateaus where the current becomes bias independent. In contrast, when the number of carbon atoms in the chain is odd, the electric current simply increases monotonically with bias. This peculiar behavior is attributed to dimerization of the chains, directly resulting from their one-dimensional nature. The finding is expected to be helpful in designing molecular devices, such as carbon-chain-based transistors and sensors, for nanoscale and biological applications.

  1. Study on the Coordination of Supply Chain Based on Carbon Emissions Trading Considering the Retailers’ Competition

    Directory of Open Access Journals (Sweden)

    Wang Daoping

    2017-01-01

    Full Text Available This paper studies the coordination of supply chain in the context of carbon emissions trading mechanism, which considering the competition between retailers. Centralized and decentralized supply chain models were constructed to discuss the price of product, to avoid the losses of profit from the decentralized decision-making, the revenue-sharing contract was introduced to coordinate the supply chain. Research shows that the carbon emissions trading reduce emissions effectively, but the higher price of carbon emissions trading cut down the total profit of supply chain; The competition between retailers upgrades the supply chain members’ profit; Coordination was achieved by introducing the revenue-sharing contract. Finally, numerical example was given to illustrate the validity of the revenue-sharing contract, and the sensitivity analysis of parameters such as the price of the emissions trading and the retailers’ competition were presented.

  2. The effect of carbon-chain oxygenation in the carbon-carbon dissociation.

    Science.gov (United States)

    Dos Santos, Lisandra Paulino; Baptista, Leonardo

    2018-06-01

    Currently, there is a trend of moving away from the use of fossil fuels to the use of biofuels. This modification changes the molecular structure of gasoline and diesel constituents, which should impact pollutant emissions and engine efficiency. An important property of automotive fuels is the resistance to autoignition. The goal of the present work is to evaluate thermochemical and kinetic parameters that govern the carbon-carbon bond dissociation and relate these parameters, in conjunction with molecular properties, to autoignition resistance. Three model reactions were investigated in the present work: dissociation of ethane, ethanol, and ethanal. All studies were conducted at the multiconfigurational level of theory, and the rate coefficients were evaluated from 300 to 2000 K. The comparison of dissociation energies and Arrhenius expressions indicates that autoignition resistance is related to the kinetic control of dissociation reactions and it is possible to relate the higher octane number of ethanol based fuels to the kinetics parameters of carbon-carbon bond fission. Graphical abstract Effect of the functional group in the Arrhenius parameters of the C-C dissociation. Arrhenius curves calculated at NEVPT2(6,6)/6-311G(2df,2pd).

  3. Stable single helical C- and I-chains inside single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Yao Z; Li Y; Jing X D; Meng F S; Zhao X; Li J H; Qiu Z Y; Yuan Q; Wang W X; Bi L; Liu H; Zhang Y P; Liu C J; Zheng S P; Liu B B

    2016-01-01

    The helicity of stable single helical carbon chains and iodine chains inside single-walled carbon nanotubes (SWCNTs) is studied by calculating the systematic van der Waals interaction energy. The results show that the optimal helical radius increases linearly with increasing tube radius, which produces a constant separation between the chain structure and the tube wall. The helical angle exhibits a ladder-like decrease with increasing tube radius, indicating that a large tube can produce a small helicity in the helical structures. (paper)

  4. Purification and inhibition studies with anions and sulfonamides of an α-carbonic anhydrase from the Antarctic seal Leptonychotes weddellii.

    Science.gov (United States)

    Cincinelli, Alessandra; Martellini, Tania; Innocenti, Alessio; Scozzafava, Andrea; Supuran, Claudiu T

    2011-03-15

    A high activity α-carbonic anhydrase (CA, EC 4.2.1.1) has been purified from various tissues of the Antarctic seal Leptonychotes weddellii. The new enzyme, denominated lwCA, has a catalytic activity for the physiologic CO(2) hydration to bicarbonate reaction, similar to that of the high activity human isoform hCA II, with a k(cat) of 1.1×10(6) s(-1), and a k(cat)/K(m) of 1.4×10(8) M(-1) s(-1). The enzyme was highly inhibited by cyanate, thiocyanate, cyanide, bicarbonate, carbonate, as well as sulfamide, sulfamate, phenylboronic/phenylarsonic acids (K(I)s in the range of 46-100 μM). Many clinically used sulfonamides, such as acetazolamide, methazolamide, dorzolamide, brinzolamide and benzolamide were low nanomolar inhibitors, with K(I)s in the range of 5.7-67 nM. Dichlorophenamide, zonisamide, saccharin and hydrochlorothiazide were weaker inhibitors, with K(I)s in the range of 513-5390 nM. The inhibition profile with anions and sulfonamides of the seal enzyme was rather different from those of the human isoforms hCA I and II. The high sensitivity to bicarbonate inhibition of lwCA, unlike that of the human enzymes, may reflect an evolutionary adaptation to the deep water, high CO(2) partial pressure and hypoxic conditions in which Weddell seals spend much of their life. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Optimization of Location-Routing Problem for Cold Chain Logistics Considering Carbon Footprint.

    Science.gov (United States)

    Wang, Songyi; Tao, Fengming; Shi, Yuhe

    2018-01-06

    In order to solve the optimization problem of logistics distribution system for fresh food, this paper provides a low-carbon and environmental protection point of view, based on the characteristics of perishable products, and combines with the overall optimization idea of cold chain logistics distribution network, where the green and low-carbon location-routing problem (LRP) model in cold chain logistics is developed with the minimum total costs as the objective function, which includes carbon emission costs. A hybrid genetic algorithm with heuristic rules is designed to solve the model, and an example is used to verify the effectiveness of the algorithm. Furthermore, the simulation results obtained by a practical numerical example show the applicability of the model while provide green and environmentally friendly location-distribution schemes for the cold chain logistics enterprise. Finally, carbon tax policies are introduced to analyze the impact of carbon tax on the total costs and carbon emissions, which proves that carbon tax policy can effectively reduce carbon dioxide emissions in cold chain logistics network.

  6. Optimization of Location–Routing Problem for Cold Chain Logistics Considering Carbon Footprint

    Science.gov (United States)

    Wang, Songyi; Tao, Fengming; Shi, Yuhe

    2018-01-01

    In order to solve the optimization problem of logistics distribution system for fresh food, this paper provides a low-carbon and environmental protection point of view, based on the characteristics of perishable products, and combines with the overall optimization idea of cold chain logistics distribution network, where the green and low-carbon location–routing problem (LRP) model in cold chain logistics is developed with the minimum total costs as the objective function, which includes carbon emission costs. A hybrid genetic algorithm with heuristic rules is designed to solve the model, and an example is used to verify the effectiveness of the algorithm. Furthermore, the simulation results obtained by a practical numerical example show the applicability of the model while provide green and environmentally friendly location-distribution schemes for the cold chain logistics enterprise. Finally, carbon tax policies are introduced to analyze the impact of carbon tax on the total costs and carbon emissions, which proves that carbon tax policy can effectively reduce carbon dioxide emissions in cold chain logistics network. PMID:29316639

  7. Optimization of Location–Routing Problem for Cold Chain Logistics Considering Carbon Footprint

    Directory of Open Access Journals (Sweden)

    Songyi Wang

    2018-01-01

    Full Text Available In order to solve the optimization problem of logistics distribution system for fresh food, this paper provides a low-carbon and environmental protection point of view, based on the characteristics of perishable products, and combines with the overall optimization idea of cold chain logistics distribution network, where the green and low-carbon location–routing problem (LRP model in cold chain logistics is developed with the minimum total costs as the objective function, which includes carbon emission costs. A hybrid genetic algorithm with heuristic rules is designed to solve the model, and an example is used to verify the effectiveness of the algorithm. Furthermore, the simulation results obtained by a practical numerical example show the applicability of the model while provide green and environmentally friendly location-distribution schemes for the cold chain logistics enterprise. Finally, carbon tax policies are introduced to analyze the impact of carbon tax on the total costs and carbon emissions, which proves that carbon tax policy can effectively reduce carbon dioxide emissions in cold chain logistics network.

  8. Simulation and Optimization of One Live Pig Low-Carbon Industry Chain Using SD-RCCM

    Directory of Open Access Journals (Sweden)

    Jiuping Xu

    2013-01-01

    Full Text Available The destruction of the natural environment has been drawing more and more attention. Developing low-carbon industry chains is an effective solution to the conflict between rapid economic growth and high CO2 emissions. Summarizing various traditional and new industry chain sustainable development, live pig industry was chosen as a typical industry chain to study low-carbon development using a system dynamics and random chance-constrained model (SD-RCCM. Leshan, a world natural and cultural heritage area in China, was selected as a typical city to analyze the low-carbon pig industry. Three different programs based on distribution ratios were selected to study this industry. The results showed that program 1, which considers both environmental and economic benefits, realizes sustainable development. In order to extend the pig industry chain and fully utilize pig ordure and other waste, introducing a Clean Development Mechanism (CDM and household biogas exploitation program is recommended.

  9. REACTIVITY OF ANIONS IN INTERSTELLAR MEDIA: DETECTABILITY AND APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Senent, M. L. [Departamento de Quimica y Fisica Teoricas, Instituto de Estructura de la Materia, IEM-C.S.I.C., Serrano 121, Madrid E-28006 (Spain); Hochlaf, M., E-mail: senent@iem.cfmac.csic.es, E-mail: hochlaf@univ-mlv.fr [Laboratoire de Modelisation et Simulation Multi Echelle, Universite Paris-Est, MSME UMR 8208 CNRS, 5 boulevard Descartes, F-77454 Marne-la-Vallee (France)

    2013-05-01

    We propose a general rule to distinguish between detectable and undetectable astronomical anions. We believe that only few anions live long enough in the interstellar medium and thus can be detected. Our method is based on quantum mechanical calculations capable of describing accurately the evolution of electronic states during chemical processes. The still not fully understood reactivity at low temperatures is discussed considering non-adiabatic effects. The role of excited states has usually been neglected in previous works which basically focused on the ground electronic state for interpretations of experimental observations. Here, we deal with unsaturated carbon chains (e.g., C{sub n} H{sup -}), which show a high density of electronic states close to their corresponding ground electronic states, complex molecular dynamics, and non-adiabatic phenomena. Our general rule shows that it is not sufficient that anions exist in the gas phase (in the laboratory) to be present in media such as astrophysical media, since formation and decomposition reactions of these anions may allow the population of anionic electronic states to autodetach, forming neutrals. For C{sub n} H, reactivity depends strongly on n, where long and short chains behave differently. Formation of linear chains is relevant.

  10. Formation of Anionic C, N-bearing Chains in the Interstellar Medium via Reactions of H- with HC x N for Odd-valued x from 1 to 7

    Science.gov (United States)

    Gianturco, F. A.; Satta, M.; Yurtsever, E.; Wester, R.

    2017-11-01

    We investigate the relative efficiencies of low-temperature chemical reactions in the interstellar medium with H- anion reacting in the gas phase with cyanopolyyne neutral molecules, leading to the formation of anionic {{{C}}}x{{{N}}}- linear chains of different lengths and of H2. All the reactions turn out to be without barriers, highly exothermic reactions that provide a chemical route to the formation of anionic chains of the same length. Some of the anions have been observed in the dark molecular clouds and in the diffuse interstellar envelopes. Quantum calculations are carried out for the corresponding reactive potential energy surfaces for all the odd-numbered members of the series (x = 1, 3, 5, 7). We employ the minimum energy paths to obtain the relevant transition state configurations and use the latter within the variational transition state model to obtain the chemical rates. The present results indicate that at typical temperatures around 100 K, a set of significantly larger rate values exists for x = 3 and x = 5, while the rate values are smaller for CN- and {{{C}}}7{{{N}}}-. At those temperatures, however, all the rates turn out to be larger than the estimates in the current literature for the radiative electron attachment (REA) rates, thus indicating the greater importance of the present chemical path with respect to REA processes at those temperatures. The physical reasons for our findings are discussed in detail and linked with the existing observational findings.

  11. Carbon emission coefficient measurement of the coal-to-power energy chain in China

    International Nuclear Information System (INIS)

    Yu, Shiwei; Wei, Yi-Ming; Guo, Haixiang; Ding, Liping

    2014-01-01

    Highlights: • CO 2 emissions coefficient of the coal-energy chain in China is currently at 875 g/kW h −1 . • The emission coefficient is a relatively low level compared with other countries. • CO 2 is the main type of GHG emission and the most direct emission in the chain. • A great decline of potential energy use exists in the coal mining process of China compared with other countries. - Abstract: Coal-fired electricity generation has become the largest source of carbon emission in China. This study utilizes life-cycle assessment to assess the effect of carbon emissions and to calculate the coefficient of carbon emissions in coal-to-energy chains. Results show that the carbon emission coefficient of the coal-to-energy chain in China is 875 g/kW h −1 , which is a relatively low level compared with that of other countries. CO 2 is the main type of greenhouse gas emission and is the most abundant type of direct emission. China has to reduce electrical consumption in the coal-mining process to reduce carbon emissions in coal-to-energy chains. Moreover, China has to facilitate railway-line construction to improve the proportion of railway transportation to coal transportation

  12. Polymerization Initiated at the Sidewalls of Carbon Nanotubes

    Science.gov (United States)

    Tour, James M.; Hudson, Jared L.

    2011-01-01

    A process has been developed for growing polymer chains via anionic, cationic, or radical polymerization from the side walls of functionalized carbon nanotubes, which will facilitate greater dispersion in polymer matrices, and will greatly enhance reinforcement ability in polymeric material.

  13. Determination of Short-Chain Chlorinated Paraffins by Carbon Skeleton Gas Chromatography

    OpenAIRE

    PELLIZZATO FRANCESCA; RICCI MARINA; HELD ANDREA; EMONS HENDRIK

    2008-01-01

    Short-Chain Chlorinated Paraffins (SCCPs) are highly complex technical mixtures of polychlorinated n-alkanes with a chlorination degree between 50 and 70 % by mass, and a linear carbon chain length from C10 to C13, constituted by thousands of homologues, diastereomers and enantiomers. They have been used in many different applications, such as extreme pressure additives in lubricants and cutting fluids, plasticizers in PVC, and flame retardants in paints, adhesives and sealants. SCCPs are tox...

  14. A SEARCH FOR CARBON-CHAIN-RICH CORES IN DARK CLOUDS

    International Nuclear Information System (INIS)

    Hirota, Tomoya; Ohishi, Masatoshi; Yamamoto, Satoshi

    2009-01-01

    We present results of a survey of CCS, HC 3 N, and HC 5 N toward 40 dark cloud cores to search for 'Carbon-Chain-Producing Regions (CCPRs)', where carbon-chain molecules are extremely abundant relative to NH 3 , as in L1495B, L1521B, L1521E, and the cyanopolyyne peak of TMC-1. We have mainly observed toward cores where the NH 3 lines are weak, not detected, or not observed in previous surveys, and the CCS, HC 3 N, and HC 5 N lines have been detected toward 17, 17, and 5 sources, respectively. Among them, we have found a CCPR, L492, and its possible candidates, L1517D, L530D, L1147, and L1172B. They all show low abundance ratios of [NH 3 ]/[CCS] (hereafter called the NH 3 /CCS ratio) indicating the chemical youth. Combining our results with those of previous surveys, we have found a significant variation of the NH 3 /CCS ratio among dark cloud cores and among molecular cloud complexes. Such a variation is also suggested by the detection rates of carbon-chain molecules. For instance, the NH 3 /CCS ratios are higher and the detection rates of carbon-chain molecules are lower in the Ophiuchus cores than in the Taurus cores. An origin of these systematic abundance variation is discussed in terms of the difference in the evolutionary stage or the contraction timescale. We have also identified a carbon-chain-rich star-forming core, L483, where intense HC 3 N and HC 5 N lines are detected. This is a possible candidate for a core with 'Warm Carbon-Chain Chemistry'.

  15. Decision and coordination of low-carbon supply chain considering technological spillover and environmental awareness.

    Science.gov (United States)

    Xu, Lang; Wang, Chuanxu; Li, Hui

    2017-06-08

    We focus on the impacts of technological spillovers and environmental awareness in a two-echelon supply chain with one-single supplier and one-single manufacturer to reduce carbon emission. In this supply chain, carbon abatement investment becomes one of key factors of cutting costs and improving profits, which is reducing production costs in the components and products-the investment from players in supply chain. On the basis of optimality theory, the centralized and decentralized models are respectively established to investigate the optimal decisions and profits. Further, setting the players' profits of the decentralized scenario as the disagreement points, we propose a bargaining-coordination contract through revenue-cost sharing to enhance the performance. Finally, by theoretical comparison and numerical analysis, the results show that: (i) The optimal profits of players and supply chain improve as technological spillovers and environmental awareness increase, and the profits of them in the bargaining-coordination contract are higher than that in the decentralized scenario; (ii) Technological spillovers between the players amplify the impact of "free-ride" behavior, in which the supplier always incentives the manufacturer to improve carbon emission intensity, but the cooperation will achieves and the profits will improve only when technological spillovers and environmental awareness are great; (iii) The contract can effectively achieve coordinated supply chain, and improve carbon abatement investment.

  16. Quasiparticle and excitonic gaps of one-dimensional carbon chains.

    Science.gov (United States)

    Mostaani, E; Monserrat, B; Drummond, N D; Lambert, C J

    2016-06-01

    We report diffusion quantum Monte Carlo (DMC) calculations of the quasiparticle and excitonic gaps of hydrogen-terminated oligoynes and extended polyyne. The electronic gaps are found to be very sensitive to the atomic structure in these systems. We have therefore optimised the geometry of polyyne by directly minimising the DMC energy with respect to the lattice constant and the Peierls-induced carbon-carbon bond-length alternation. We find the bond-length alternation of polyyne to be 0.136(2) Å and the excitonic and quasiparticle gaps to be 3.30(7) and 3.4(1) eV, respectively. The DMC zone-centre longitudinal optical phonon frequency of polyyne is 2084(5) cm(-1), which is consistent with Raman spectroscopic measurements for large oligoynes.

  17. The effect of electrostatic and electrohydrodynamic forces on the chaining of carbon nanofibres in liquid epoxy

    International Nuclear Information System (INIS)

    Sharma, A; Bakis, C E; Wang, K W

    2010-01-01

    The formation of chains of aligned carbon nanofibres (CNFs) in polymers is a subject of great interest in the field of multifunctional nanocomposites. The mechanism of CNF chain assembly and growth in a low viscosity epoxy is investigated by developing a finite element model of a chain attached to an electrode. The model examines the combined effects of electrostatic and electrohydrodynamic forces on chain morphology. The electrohydrodynamic forces are modelled using the theory of ac electro-osmosis. The predictions of the model are supported by experimental results. The experiments were conducted on a CNF/epoxy/amine mixture by applying an ac field at frequencies ranging from 100 to 100 000 Hz. The predictions of the model qualitatively capture the variations of chain morphology and growth rate as functions of ac frequency. Higher frequencies promote a more uniform and denser network of chains. The rate of growth of chains is highest at an intermediate frequency. A uniform network of chains was observed at frequencies of 1 kHz and greater in the experiments. The rate of growth of chains was maximized at a frequency of 1 kHz for a liquid viscosity of 0.03 Pa s.

  18. Carbon Footprint estimation for a Sustainable Improvement of Supply Chains: State of the Art

    Directory of Open Access Journals (Sweden)

    Pilar Cordero

    2013-07-01

    Full Text Available Purpose: This paper examines the current methodologies and approaches developed to estimate carbon footprint in supply chains and the studies existing in the literature review about the application of these methodologies and other new approaches proposed by some authors.Design/methodology/approach: Literature review about methodologies developed by some authors for determining greenhouse gases emissions throughout the supply chain of a given sector or organization.Findings and Originality/value: Due to its usefulness for the design and management of a sustainable supply chain management, methodologies for calculating carbon footprint across the supply chain are recommended by many authors not only to reduce GHG emissions but also to optimize it in a cost-effective manner. Although these approaches are in first stages of development and the literature is scarce, different methodologies for estimating CF emissions which include EIO analysis models and standardized methods and guidance have been developed, some of them applicable to supply chains especially methodologies for calculating CF of a specific economic sector supply chain in a territory or country and for calculating CF of an organization applicable to the estimation of GHG emissions of a specific company supply chain.

  19. Preparation, physicochemical characterisation and magnetic properties of Cu-Al layered double hydroxides with CO 32- and anionic surfactants with different alkyl chains in the interlayer

    Science.gov (United States)

    Trujillano, Raquel; Holgado, María Jesús; Pigazo, Fernando; Rives, Vicente

    2006-03-01

    Layered double hydroxides with the hydrotalcite-like structure, containing Cu(II) and Al(III) in the layers, and different alkyl sulphonates in the interlayer, have been prepared and characterised by powder X-ray diffraction, FT-IR spectroscopy, differential thermal analysis and thermogravimetric analysis. Their magnetic properties have been also studied. Except for the sample containing octadecanesulphonate in the interlayer, for which an excess of sulphonate exists, pure crystalline phases have been obtained in the other cases. Upon heating, combustion of the organic chain takes place at lower temperature than for the corresponding sodium salts. A two-dimensional antiferromagnetic behaviour is observed at 200 K in all samples containing intercalated sulphonate. The χT value is lower for the samples containing interlayer sulphonates (with layer-layer distances in the 21-31 Å range), than for a carbonate-containing analogue (basal spacing 7.51 Å).

  20. Theoretical realization of cluster-assembled hydrogen storage materials based on terminated carbon atomic chains.

    Science.gov (United States)

    Liu, Chun-Sheng; An, Hui; Guo, Ling-Ju; Zeng, Zhi; Ju, Xin

    2011-01-14

    The capacity of carbon atomic chains with different terminations for hydrogen storage is studied using first-principles density functional theory calculations. Unlike the physisorption of H(2) on the H-terminated chain, we show that two Li (Na) atoms each capping one end of the odd- or even-numbered carbon chain can hold ten H(2) molecules with optimal binding energies for room temperature storage. The hybridization of the Li 2p states with the H(2)σ orbitals contributes to the H(2) adsorption. However, the binding mechanism of the H(2) molecules on Na arises only from the polarization interaction between the charged Na atom and the H(2). Interestingly, additional H(2) molecules can be bound to the carbon atoms at the chain ends due to the charge transfer between Li 2s2p (Na 3s) and C 2p states. More importantly, dimerization of these isolated metal-capped chains does not affect the hydrogen binding energy significantly. In addition, a single chain can be stabilized effectively by the C(60) fullerenes termination. With a hydrogen uptake of ∼10 wt.% on Li-coated C(60)-C(n)-C(60) (n = 5, 8), the Li(12)C(60)-C(n)-Li(12)C(60) complex, keeping the number of adsorbed H(2) molecules per Li and stabilizing the dispersion of individual Li atoms, can serve as better building blocks of polymers than the (Li(12)C(60))(2) dimer. These findings suggest a new route to design cluster-assembled hydrogen storage materials based on terminated sp carbon chains.

  1. Greenhouse gas and carbon profile of the U.S. forest products industry value chain

    Science.gov (United States)

    Linda S. Heath; Van Maltby; Reid Miner; Kenneth E. Skog; James E. Smith; Jay Unwin; Brad Upton

    2010-01-01

    A greenhouse gas and carbon accounting profile was developed for the U.S. forest products industry value chain for 1990 and 2004-2005 by examining net atmospheric fluxes of CO2 and other greenhouse gases (GHGs) using a variety of methods and data sources. Major GHG emission sources include direct and indirect (from purchased electricity...

  2. Synthesis and characterization of hafnium carbide microcrystal chains with a carbon-rich shell via CVD

    International Nuclear Information System (INIS)

    Tian, Song; Li, Hejun; Zhang, Yulei; Liu, Sen; Fu, Yangxi; Li, Yixian; Qiang, Xinfa

    2013-01-01

    Graphical abstract: Novel HfC microcrystal chains have been synthesized via a catalyst-assisted chemical vapor deposition process. SEM results show the chains have a periodically changing diameter and a nanoscale sharpening tip. Analysis of TEM/SAED/EELS/EDX data shows the single-crystal chains grow along a [0 0 1] direction and consist of a HfC core and a thin carbon-rich shell with embedded HfC nanocrystallites surrounding the core. This work achieves the controllable preparation of nanoscale HfC sharpening tips for application as a point electron emission source and facilitates the application of HfC ultrafast laser-triggered tips in attosecond science. Highlights: •HfC microcrystal chains were synthesized by a catalyst-assisted CVD. •The chains grow along a [0 0 1] direction and have a periodically changing diameter. •Single-crystal HfC core is sheathed by a thin carbon-rich shell. •A growth mechanism model is proposed to explain the growth of microcrystal chians. •This work achieves the controllable preparation of nanoscale HfC sharpening tips. -- Abstract: Novel hafnium carbide (HfC) microcrystal chains, with a periodically changing diameter and a nanoscale sharpening tip at the chain end, have been synthesized via a catalyst-assisted chemical vapor deposition (CVD) process. The as-synthesized chains with many octahedral microcrystals have diameters of between several hundreds of nm and 6 μm and lengths of ∼500 μm. TEM diffraction studies show that the chains are single-crystalline HfC and preferentially grow along a [0 0 1] crystal orientation. TEM/EELS/EDX analysis proves the chains are composed of a HfC core and a thin (several tens of nm to 100 nm) carbon-rich shell with the embedded HfC nanocrystallites (typically below 10 nm) surrounding the core. The growth mechanism model for the chains based on the vapor–liquid–solid process, the vapor–solid process, and the HfC crystal growth characteristics is discussed

  3. High performance current and spin diode of atomic carbon chain between transversely symmetric ribbon electrodes.

    Science.gov (United States)

    Dong, Yao-Jun; Wang, Xue-Feng; Yang, Shuo-Wang; Wu, Xue-Mei

    2014-08-21

    We demonstrate that giant current and high spin rectification ratios can be achieved in atomic carbon chain devices connected between two symmetric ferromagnetic zigzag-graphene-nanoribbon electrodes. The spin dependent transport simulation is carried out by density functional theory combined with the non-equilibrium Green's function method. It is found that the transverse symmetries of the electronic wave functions in the nanoribbons and the carbon chain are critical to the spin transport modes. In the parallel magnetization configuration of two electrodes, pure spin current is observed in both linear and nonlinear regions. However, in the antiparallel configuration, the spin-up (down) current is prohibited under the positive (negative) voltage bias, which results in a spin rectification ratio of order 10(4). When edge carbon atoms are substituted with boron atoms to suppress the edge magnetization in one of the electrodes, we obtain a diode with current rectification ratio over 10(6).

  4. A strategic decision-making model considering the social costs of carbon dioxide emissions for sustainable supply chain management.

    Science.gov (United States)

    Tseng, Shih-Chang; Hung, Shiu-Wan

    2014-01-15

    Incorporating sustainability into supply chain management has become a critical issue driven by pressures from governments, customers, and various stakeholder groups over the past decade. This study proposes a strategic decision-making model considering both the operational costs and social costs caused by the carbon dioxide emissions from operating such a supply chain network for sustainable supply chain management. This model was used to evaluate carbon dioxide emissions and operational costs under different scenarios in an apparel manufacturing supply chain network. The results showed that the higher the social cost rate of carbon dioxide emissions, the lower the amount of the emission of carbon dioxide. The results also suggested that a legislation that forces the enterprises to bear the social costs of carbon dioxide emissions resulting from their economic activities is an effective approach to reducing carbon dioxide emissions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Joint Optimal Production Planning for Complex Supply Chains Constrained by Carbon Emission Abatement Policies

    Directory of Open Access Journals (Sweden)

    Longfei He

    2014-01-01

    Full Text Available We focus on the joint production planning of complex supply chains facing stochastic demands and being constrained by carbon emission reduction policies. We pick two typical carbon emission reduction policies to research how emission regulation influences the profit and carbon footprint of a typical supply chain. We use the input-output model to capture the interrelated demand link between an arbitrary pair of two nodes in scenarios without or with carbon emission constraints. We design optimization algorithm to obtain joint optimal production quantities combination for maximizing overall profit under regulatory policies, respectively. Furthermore, numerical studies by featuring exponentially distributed demand compare systemwide performances in various scenarios. We build the “carbon emission elasticity of profit (CEEP” index as a metric to evaluate the impact of regulatory policies on both chainwide emissions and profit. Our results manifest that by facilitating the mandatory emission cap in proper installation within the network one can balance well effective emission reduction and associated acceptable profit loss. The outcome that CEEP index when implementing Carbon emission tax is elastic implies that the scale of profit loss is greater than that of emission reduction, which shows that this policy is less effective than mandatory cap from industry standpoint at least.

  6. Effect of Li Termination on the Electronic and Hydrogen Storage Properties of Linear Carbon Chains: A TAO-DFT Study

    OpenAIRE

    Seenithurai, Sonai; Chai, Jeng-Da

    2017-01-01

    Accurate prediction of the electronic and hydrogen storage properties of linear carbon chains (C n ) and Li-terminated linear carbon chains (Li2C n ), with n carbon atoms (n?=?5?10), has been very challenging for traditional electronic structure methods, due to the presence of strong static correlation effects. To meet the challenge, we study these properties using our newly developed thermally-assisted-occupation density functional theory (TAO-DFT), a very efficient electronic structure meth...

  7. Phosphazene-promoted anionic polymerization

    KAUST Repository

    Zhao, Junpeng

    2014-01-01

    In the recent surge of metal-free polymerization techniques, phosphazene bases have shown their remarkable potential as organic promoters/catalysts for the anionic polymerization of various types of monomers. By complexation with the counterion (e.g. proton or lithium cation), phosphazene base significantly improve the nucleophilicity of the initiator/chain-end resulting in rapid and usually controlled anionic/quasi-anionic polymerization. In this review, we will introduce the general mechanism, i.e. in situ activation (of initiating sites) and polymerization, and summarize the applications of such a mechanism on macromolecular engineering toward functionalized polymers, block copolymers and complex macromolecular architectures.

  8. Recycling of agricultural solid waste, coir pith: Removal of anions, heavy metals, organics and dyes from water by adsorption onto ZnCl2 activated coir pith carbon

    International Nuclear Information System (INIS)

    Namasivayam, C.; Sangeetha, D.

    2006-01-01

    The abundant lignocellulosic agricultural waste, coir pith is used to develop ZnCl 2 activated carbon and applied to the removal of toxic anions, heavy metals, organic compounds and dyes from water. Sorption of inorganic anions such as nitrate, thiocyanate, selenite, chromium(VI), vanadium(V), sulfate, molybdate, phosphate and heavy metals such as nickel(II) and mercury(II) has been studied. Removal of organics such as resorcinol, 4-nitrophenol, catechol, bisphenol A, 2-aminophenol, quinol, O-cresol, phenol and 2-chlorophenol has also been investigated. Uptake of acidic dyes such as acid brilliant blue, acid violet, basic dyes such as methylene blue, rhodamine B, direct dyes such as direct red 12B, congo red and reactive dyes such as procion red, procion orange were also examined to assess the possible use of the adsorbent for the treatment of contaminated ground water. Favorable conditions for maximum removal of all adsorbates at the adsorbate concentration of 20 mg/L were used. Results show that ZnCl 2 activated coir pith carbon is effective for the removal of toxic pollutants from water

  9. Carbon dioxide is tightly bound in the [Co(Pyridine)(CO{sub 2})]{sup −} anionic complex

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Jacob D.; Buytendyk, Allyson M.; Zhang, Xinxing; Bowen, Kit H., E-mail: kbowen@jhu.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Kim, Seong K. [Department of Chemistry, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2015-11-14

    The [Co(Pyridine)(CO{sub 2})]{sup −} anionic complex was studied through the combination of photoelectron spectroscopy and density functional theory calculations. This complex was envisioned as a primitive model system for studying CO{sub 2} binding to negatively charged sites in metal organic frameworks. The vertical detachment energy (VDE) measured via the photoelectron spectrum is 2.7 eV. Our calculations imply a structure for [Co(Pyridine)(CO{sub 2})]{sup −} in which a central cobalt atom is bound to pyridine and CO{sub 2} moieties on either sides. This structure was validated by acceptable agreement between the calculated and measured VDE values. Based on our calculations, we found CO{sub 2} to be bound within the anionic complex by 1.4 eV.

  10. Nuclear spin-spin coupling constants of linear carbon chains terminated by coronene molecules: a first principles study

    International Nuclear Information System (INIS)

    Oliveira, Joao Paulo Cavalcante; Mota, F. de Brito; Rivelino, Roberto

    2011-01-01

    Full text. Carbon nano wires made of long linear atomic chains have attracted considerable interest due to their potential applications in nano electronics. We report a density-functional-theory study of the nuclear spin-spin coupling constants for nano assemblies made of two coronene molecules bridged by carbon linear chains, considering distinct sizes and spin multiplicities. Also, we examine the effects of two terminal conformations (syn and anti) of the terminal anchor pieces on the magnetic properties of the carbon chains via 13 C NMR calculations. Our results reveal that simplified chemical models such as those based on cumulenes or polyynes are not appropriate to describe the linear chains with sp 2 terminations. For these types of atomic chains, the electronic ground state of the even-numbered chains can be singlet or triplet, whereas the ground state of the odd-numbered chains can be doublet or quartet. We discuss how the 13 C NMR chemical shift absorption is affected by increasing the size and changing the parity of the linear carbon chains. We have found that the J coupling constants between the carbon atoms in the linear chains present a well-defined pattern, in good accordance with our electronic structure calculations. For example, in the -C 4 - units we obtain couplings of 43.8, 114.5, 84.6, 114.5, and 43.8 Hz from one end to the other

  11. Electron spin resonance and optical studies on the radiolysis of carbon tetrachloride. II. Structure and reaction of CClṡ-4 radical anion in tetramethylsilane low-temperature solids

    Science.gov (United States)

    Muto, Hachizo; Nunome, Keichi

    1991-04-01

    An electron spin resonance (ESR) and optical study of carbon tetrachloride radical anion has been made to provide for a better understanding of the radiolysis of CCl4, following CClṡ+4 cation previously studied. It was found that the anion was metastably trapped in tetramethylsilane (TMS) matrices γ irradiated at 4 or 77 K. The g tensor and the hyperfine coupling tensors of all atoms of the radical were determined from ESR spectral simulation by using 12 CCl4 and the 13C enriched compound: g∥=2.004-5, g1=2.015,(A∥,A⊥) =(24.3,18.3) mT for 13C, (0.9, 0.2) mT for one 35Cl atom, and (A1,A2=A3)=(1.98,0.45) mT for the other three equivalent 35Cl atoms. From these parameters and a consideration on the g anisotropy combined with the optical data, the anion was found to have a predissociating molecular structure (CCl3ṡṡṡCl) ˙- with C3v symmetry, where the unpaired electron occupies A*1γ antibonding orbital. The carbon atom has a large spin density and near sp3 hybridization: ρp=0.62, ρs=0.18, ρp/ρs=3.4, and three Cl atoms and the other Cl atom have the spin densities ρp=0.10 and ρp=0.05, respectively. The species had two optical absorptions at λmax=265 and 370 nm which were assigned to the Eγ-A*1γ and A1γ-A*1γ electronic transitions, respectively. The anion converted to CCl ṡ3 radical by warming to ˜150 K in the TMS matrix. The present results have given unequivocal ESR and optical spectroscopic evidence and support for the assignment of the 370 nm band reported in the radiolyses of organic solutions containing CCl4.

  12. First-principles study on electron transport properties of carbon-silicon mixed chains

    Science.gov (United States)

    Hu, Wei; Zhou, Qinghua; Liang, Yan; Liu, Wenhua; Wang, Tao; Wan, Haiqing

    2018-03-01

    In this paper, the transport properties of carbon-silicon mixed chains are studied by using the first-principles. We studied five atomic chain models. In these studies, we found that the equilibrium conductances of atomic chains appear to oscillate, the maximum conductance and the minimum conductance are more than twice the difference. Their I-V curves are linear and show the behavior of metal resistance, M5 system and M2 system current ratio is the largest in 0.9 V, which is 3.3, showing a good molecular switch behavior. In the case of bias, while the bias voltage increases, the transmission peaks move from the Fermi level. The resonance transmission peak height is reduced near the Fermi level. In the higher energy range, a large resonance transmission peak reappears, there is still no energy cut-off range.

  13. Electronic structure and transport of a carbon chain between graphene nanoribbon leads

    International Nuclear Information System (INIS)

    Zhang, G P; Fang, X W; Yao, Y X; Wang, C Z; Ho, K M; Ding, Z J

    2011-01-01

    The electronic structure and transport property of a carbon chain between two graphene nanoribbon leads are studied using an ab initio tight-binding (TB) model and Landauer's formalism combined with a non-equilibrium Green's function. The TB Hamiltonian and overlap matrices are extracted from first-principles density functional calculations through the quasi-atomic minimal basis orbital scheme. The accuracy of the TB model is demonstrated by comparing the electronic structure from the TB model with that from first-principles density functional theory. The results of electronic transport on a carbon atomic chain connected to armchair and zigzag graphene ribbon leads, such as different transport characters near the Fermi level and at most one quantized conductance, reveal the effect of the electronic structure of the leads and the scattering from the atomic chain. In addition, bond length alternation and an interesting transmission resonance are observed in the atomic chain connected to zigzag graphene ribbon leads. Our approach provides a promising route to quantitative investigation of both the electronic structure and transport property of large systems.

  14. DEPLETION OF CCS IN A CANDIDATE WARM-CARBON-CHAIN-CHEMISTRY SOURCE L483

    International Nuclear Information System (INIS)

    Hirota, Tomoya; Sakai, Nami; Yamamoto, Satoshi

    2010-01-01

    We have carried out an observation of the CCS (J N = 2 1 -1 0 ) line with the Very Large Array in its D-configuration toward a protostellar core L483 (IRAS 18140-0440). This is a candidate source of the newly found carbon-chain-rich environment called 'Warm-Carbon-Chain-Chemistry (WCCC)', according to the previous observations of carbon-chain molecules. The CCS distribution in L483 is found to consist of two clumps aligned in the northwest-southeast direction, well tracing the CCS ridge observed with the single-dish radio telescope. The most remarkable feature is that CCS is depleted at the core center. Such a CCS distribution with the central hole is consistent with those of previously observed prestellar and protostellar cores, but it is rather unexpected for L483. This is because the distribution of CS, which is usually similar to that of CCS, is centrally peaked. Our results imply that the CCS (J N = 2 1 -1 0 ) line would selectively trace the outer cold envelope in the chemically less evolved phase that is seriously resolved out with the interferometric observation. Thus, it is most likely that the high abundance of CCS in L483 relative to the other WCCC sources is not due to the activity of the protostar, although it would be related to its younger chemical evolutionary stage, or a short timescale of the prestellar phase.

  15. Optical Properties of a Single Carbon Chain-Doped Silicene Nanoribbon

    Science.gov (United States)

    Lu, Dao-Bang; Song, Yu-Ling; Huang, Xiao-yu; Wang, Chong

    2018-05-01

    Using first-principles spin polarization density function theory calculations, we have studied the electronic and optical properties of zigzag-edge silicene nanoribbons (ZSiNRs) doped with a single carbon chain. Because of the doped carbon chain, there are several defect states in the band structures of ZSiNRs across the Fermi level, and the ferromagnetic ground state is metallic. The dielectric functions in all three dimensions are completely different from each other, and thus the system exhibits strong optical anisotropism. The carbon chain influenced the dielectric functions most at low energy. The first peak in the E//x direction of the dielectric spectrum exhibits a significant blueshift, and its value has changed as well. The main absorption wavelength depends on the polarization direction of the incident light, but occurs within the UV region for all polarization directions. The peaks of the energy loss spectra correspond to the trailing edges in the reflectivity spectrum, and the highest peak corresponds to a plasmon frequency. Our results could be useful for investigating nanodevices based on silicene nanoribbons.

  16. Reconstitution of CO2 Regulation of SLAC1 Anion Channel and Function of CO2-Permeable PIP2;1 Aquaporin as CARBONIC ANHYDRASE4 Interactor

    Science.gov (United States)

    Zeise, Brian; Xu, Danyun; Rappel, Wouter-Jan; Boron, Walter F.; Schroeder, Julian I.

    2016-01-01

    Dark respiration causes an increase in leaf CO2 concentration (Ci), and the continuing increases in atmospheric [CO2] further increases Ci. Elevated leaf CO2 concentration causes stomatal pores to close. Here, we demonstrate that high intracellular CO2/HCO3− enhances currents mediated by the Arabidopsis thaliana guard cell S-type anion channel SLAC1 upon coexpression of any one of the Arabidopsis protein kinases OST1, CPK6, or CPK23 in Xenopus laevis oocytes. Split-ubiquitin screening identified the PIP2;1 aquaporin as an interactor of the βCA4 carbonic anhydrase, which was confirmed in split luciferase, bimolecular fluorescence complementation, and coimmunoprecipitation experiments. PIP2;1 exhibited CO2 permeability. Mutation of PIP2;1 in planta alone was insufficient to impair CO2- and abscisic acid-induced stomatal closing, likely due to redundancy. Interestingly, coexpression of βCA4 and PIP2;1 with OST1-SLAC1 or CPK6/23-SLAC1 in oocytes enabled extracellular CO2 enhancement of SLAC1 anion channel activity. An inactive PIP2;1 point mutation was identified that abrogated water and CO2 permeability and extracellular CO2 regulation of SLAC1 activity. These findings identify the CO2-permeable PIP2;1 as key interactor of βCA4 and demonstrate functional reconstitution of extracellular CO2 signaling to ion channel regulation upon coexpression of PIP2;1, βCA4, SLAC1, and protein kinases. These data further implicate SLAC1 as a bicarbonate-responsive protein contributing to CO2 regulation of S-type anion channels. PMID:26764375

  17. Four Novel Zn (II Coordination Polymers Based on 4′-Ferrocenyl-3,2′:6′,3′′-Terpyridine: Engineering a Switch from 1D Helical Polymer Chain to 2D Network by Coordination Anion Modulation

    Directory of Open Access Journals (Sweden)

    Lufei Xiao

    2017-11-01

    Full Text Available Four novel ZnII coordination polymers, [(ZnCl22(L2]n (1, [(ZnBr22(L2]n (2, and [(ZnI22(L2]n (3 and {[Zn(SCN2]1.5(L3}n (4, have been synthesized based on 4′-ferrocenyl-3,2′:6′,3′′-terpyridine with ZnII ions and different coordination anions under similar ambient conditions. Their structures have been confirmed using single crystal X-ray diffraction analysis, showing that complexes 1–3 are one-dimensional (1D double-stranded metal ion helical polymer chains and complex 4 is of a two-dimensional (2D network. The structural transformations of them from a 1D polymer chain to a 2D network under the influence of the coordination anions has been systematic investigated. Furthermore, the optical band gaps have been measured by optical diffuse reflectance spectroscopy, revealing that the ligand and the complexes should have semiconductor properties.

  18. Variability in carbon isotope fractionation of trichloroethene during degradation by persulfate activated with zero-valent iron: Effects of inorganic anions

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yunde [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Zhou, Aiguo, E-mail: aiguozhou@cug.edu.cn [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China); Gan, Yiqun; Li, Xiaoqian [State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074 (China); School of Environmental Studies, China University of Geosciences, Wuhan 430074 (China)

    2016-04-01

    Stable carbon isotope analysis has the potential to be used for assessing the performance of in situ remediation of organic contaminants. Successful application of this isotope technique requires understanding the magnitude and variability in carbon isotope fractionation associated with the reactions under consideration. This study investigated the influence of inorganic anions (sulfate, bicarbonate, and chloride) on carbon isotope fractionation of trichloroethene (TCE) during its degradation by persulfate activated with zero-valent iron. The results demonstrated that the significant carbon isotope fractionation (enrichment factors ε ranging from − 3.4 ± 0.3 to − 4.3 ± 0.3 ‰) was independent on the zero-iron dosage, sulfate concentration, and bicarbonate concentration. However, the ε values (ranging from − 7.0 ± 0.4 to − 13.6 ± 1.2 ‰) were dependent on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during TCE degradation by persulfate activated with zero-valent iron. The dependence of ε values on chloride concentration, indicated that TCE degradation mechanisms may be different from the degradation mechanism caused by sulfate radical (SO{sub 4}·{sup −}). Ignoring the effect of chloride on ε value may cause numerous uncertainties in quantitative assessment of the performance of the in situ chemical oxidation (ISCO). - Highlights: • Significant C isotope fractionation for TCE degradation by Fe{sup 0} activated persulfate. • The enrichment factors was independent of Fe{sup 0}, SO{sub 4}{sup 2−}, or HCO{sub 3}{sup −} concentration. • Cl{sup −} significantly influenced the carbon isotope fractionation.

  19. Variability in carbon isotope fractionation of trichloroethene during degradation by persulfate activated with zero-valent iron: Effects of inorganic anions

    International Nuclear Information System (INIS)

    Liu, Yunde; Zhou, Aiguo; Gan, Yiqun; Li, Xiaoqian

    2016-01-01

    Stable carbon isotope analysis has the potential to be used for assessing the performance of in situ remediation of organic contaminants. Successful application of this isotope technique requires understanding the magnitude and variability in carbon isotope fractionation associated with the reactions under consideration. This study investigated the influence of inorganic anions (sulfate, bicarbonate, and chloride) on carbon isotope fractionation of trichloroethene (TCE) during its degradation by persulfate activated with zero-valent iron. The results demonstrated that the significant carbon isotope fractionation (enrichment factors ε ranging from − 3.4 ± 0.3 to − 4.3 ± 0.3 ‰) was independent on the zero-iron dosage, sulfate concentration, and bicarbonate concentration. However, the ε values (ranging from − 7.0 ± 0.4 to − 13.6 ± 1.2 ‰) were dependent on the chloride concentration, indicating that chloride could significantly affect carbon isotope fractionation during TCE degradation by persulfate activated with zero-valent iron. The dependence of ε values on chloride concentration, indicated that TCE degradation mechanisms may be different from the degradation mechanism caused by sulfate radical (SO_4·"−). Ignoring the effect of chloride on ε value may cause numerous uncertainties in quantitative assessment of the performance of the in situ chemical oxidation (ISCO). - Highlights: • Significant C isotope fractionation for TCE degradation by Fe"0 activated persulfate. • The enrichment factors was independent of Fe"0, SO_4"2"−, or HCO_3"− concentration. • Cl"− significantly influenced the carbon isotope fractionation.

  20. Global reverse supply chain design for solid waste recycling under uncertainties and carbon emission constraint.

    Science.gov (United States)

    Xu, Zhitao; Elomri, Adel; Pokharel, Shaligram; Zhang, Qin; Ming, X G; Liu, Wenjie

    2017-06-01

    The emergence of concerns over environmental protection, resource conservation as well as the development of logistics operations and manufacturing technology has led several countries to implement formal collection and recycling systems of solid waste. Such recycling system has the benefits of reducing environmental pollution, boosting the economy by creating new jobs, and generating income from trading the recyclable materials. This leads to the formation of a global reverse supply chain (GRSC) of solid waste. In this paper, we investigate the design of such a GRSC with a special emphasis on three aspects; (1) uncertainty of waste collection levels, (2) associated carbon emissions, and (3) challenges posed by the supply chain's global aspect, particularly the maritime transportation costs and currency exchange rates. To the best of our knowledge, this paper is the first attempt to integrate the three above-mentioned important aspects in the design of a GRSC. We have used mixed integer-linear programming method along with robust optimization to develop the model which is validated using a sample case study of e-waste management. Our results show that using a robust model by taking the complex interactions characterizing global reverse supply chain networks into account, we can create a better GRSC. The effect of uncertainties and carbon constraints on decisions to reduce costs and emissions are also shown. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Electronic transport in large systems through a QUAMBO-NEGF approach: Application to atomic carbon chains

    International Nuclear Information System (INIS)

    Fang, X.W.; Zhang, G.P.; Yao, Y.X.; Wang, C.Z.; Ding, Z.J.; Ho, K.M.

    2011-01-01

    The conductance of single-atom carbon chain (SACC) between two zigzag graphene nanoribbons (GNR) is studied by an efficient scheme utilizing tight-binding (TB) parameters generated via quasi-atomic minimal basis set orbitals (QUAMBOs) and non-equilibrium Green's function (NEGF). Large systems (SACC contains more than 50 atoms) are investigated and the electronic transport properties are found to correlate with SACC's parity. The SACCs provide a stable off or on state in broad energy region (0.1-1 eV) around Fermi energy. The off state is not sensitive to the length of SACC while the corresponding energy region decreases with the increase of the width of GNR. -- Highlights: → Graphene has many superior electronic properties. → First-principles calculation are accurate but limited to system size. → QUAMBOs construct tight-binding parameters with spatial localization, and then use divide-and-conquer method. → SACC (single carbon atom chain): structure and transport show even-odd parity, and long chains are studied.

  2. TMRT OBSERVATIONS OF CARBON-CHAIN MOLECULES IN SERPENS SOUTH 1a

    Energy Technology Data Exchange (ETDEWEB)

    Li, Juan; Shen, Zhi-Qiang; Wang, Junzhi; Chen, Xi; Wu, Ya-Jun; Zhao, Rong-Bing; Wang, Jin-Qing; Zuo, Xiu-Ting; Fan, Qing-Yuan; Hong, Xiao-Yu; Jiang, Dong-Rong; Li, Bin; Liang, Shi-Guang; Ling, Quan-Bao; Liu, Qing-Hui; Qian, Zhi-Han; Zhang, Xiu-Zhong; Zhong, Wei-Ye; Ye, Shu-Hua, E-mail: lijuan@shao.ac.cn [Department of Radio Science and Technology, Shanghai Astronomical Observatory, 80 Nandan RD, Shanghai 200030 (China)

    2016-06-20

    We report Shanghai Tian Ma Radio Telescope (TMRT) detections of several long carbon-chain molecules in the C and Ku bands, including HC{sub 3}N, HC{sub 5}N, HC{sub 7}N, HC{sub 9}N, C{sub 3}S, C{sub 6}H, and C{sub 8}H toward the starless cloud Serpens South 1a. We detected some transitions (HC{sub 9}N J = 13–12, F = 12–11, and F = 14–13; H{sup 13}CCCN J = 2–1, F = 1–0, and F = 1–1; HC{sup 13}CCN J = 2–1, F = 2–2, F = 1–0, and F = 1–1; HCC{sup 13}CN J = 2–1, F = 1–0, and F = 1–1) and resolved some hyperfine components (HC{sub 5}N J = 6–5, F = 5–4; H{sup 13}CCCN J = 2–1, F = 2–1) for the first time in the interstellar medium. The column densities of these carbon-chain molecules in the range 10{sup 12}–10{sup 13} cm{sup −2} are comparable to two carbon-chain molecule rich sources, TMC-1 and Lupus-1A. The abundance ratios are 1.00:(1.11 ± 0.15):(1.47 ± 0.18) for [H{sup 13}CCCN]:[HC{sup 13}CCN]:[HCC{sup 13}CN]. This result implies that the {sup 13}C isotope is also concentrated in the carbon atom adjacent to the nitrogen atom in HC{sub 3}N in Serpens South 1a, which is similar to TMC-1. The [HC{sub 3}N]/[H{sup 13}CCCN] ratio of 78 ± 9, the [HC{sub 3}N]/[HC{sup 13}CCN] ratio of 70 ± 8, and the [HC{sub 3}N]/[HCC{sup 13}CN] ratio of 53 ± 4 are also comparable to those in TMC-1. Serpens South 1a proves to be a suitable testing ground for understanding carbon-chain chemistry.

  3. The biosynthesis of nitrogen-, sulfur-, and high-carbon chain-containing sugars.

    Science.gov (United States)

    Lin, Chia-I; McCarty, Reid M; Liu, Hung-wen

    2013-05-21

    Carbohydrates serve many structural and functional roles in biology. While the majority of monosaccharides are characterized by the chemical composition (CH2O)n, modifications including deoxygenation, C-alkylation, amination, O- and N-methylation, which are characteristic of many sugar appendages of secondary metabolites, are not uncommon. Interestingly, some sugar molecules are formed via modifications including amine oxidation, sulfur incorporation, and "high-carbon" chain attachment. Most of these unusual sugars have been identified over the past several decades as components of microbially produced natural products, although a few high-carbon sugars are also found in the lipooligosaccharides of the outer cell walls of Gram-negative bacteria. Despite their broad distribution in nature, these sugars are considered "rare" due to their relative scarcity. The biosynthetic steps that underlie their formation continue to perplex researchers to this day and many questions regarding key transformations remain unanswered. This review will focus on our current understanding of the biosynthesis of unusual sugars bearing oxidized amine substituents, thio-functional groups, and high-carbon chains.

  4. Effect of doxorubicin on the order and dynamics of the acyl chains of anionic and zwitterionic phospholipids in liquid-crystalline mixed model membranes

    NARCIS (Netherlands)

    Wolf, de F.A.; Nicolaij, K.; Kruijff, de B.

    1992-01-01

    We investigated the effect of the antineoplastic drug doxorubicin on the order of the acyl chains in liquid-crystalline mixed bilayers consisting of dioleoylphosphatidylserine (DOPS) or -phosphatidic acid (DOPA), and dioleoylphosphatidylcholine (DOPC) or - hosphatidylethanolamine (DOPE). Previous

  5. Ab initio predictions on the rotational spectra of carbon-chain carbene molecules

    Science.gov (United States)

    Maluendes, S. A.; McLean, A. D.; Loew, G. H. (Principal Investigator)

    1992-01-01

    We predict rotational constants for the carbon-chain molecules H2C=(C=)nC, n=3-8, using ab initio computations, observed values for the earlier members in the series, H2CCC and H2CCCC with n=1 and 2, and empirical geometry corrections derived from comparison of computation and experiment on related molecules. H2CCC and H2CCCC have already been observed by radioastronomy; higher members in the series, because of their large dipole moments, which we have calculated, are candidates for astronomical searches. Our predictions can guide searches and assist in both astronomical and laboratory detection.

  6. Empirical Study of China’s Provincial Carbon Responsibility Sharing: Provincial Value Chain Perspective

    Directory of Open Access Journals (Sweden)

    Rui Xie

    2017-04-01

    Full Text Available Against the background of global warming, China has vowed to meet a series of carbon emissions reduction targets and plans to launch a national carbon emissions rights trading market by 2017. Therefore, from the provincial value chain perspective, using input-output tables from China in 2002, 2007, and 2010, this study constructs models to calculate the CO2 emissions responsibility of each province under the production, consumption, and value capture principles, respectively. Empirical results indicate that Shandong, Hebei, Jiangsu, Guangdong, and Henan bear the most responsibility for CO2 emissions under the three principles in China, while Hainan and Qinghai have the least responsibility. However, there is a great difference in the proportion of carbon emissions responsibility for each province during the same period under different principles or different periods under the same principle. For consumption-oriented areas such as Beijing, Tianjin, Zhejiang, Shanghai, and Guangdong, the production principle is more favorable, and the consumption principle is more beneficial for production-oriented provinces such as Hebei, Henan, Liaoning, Shanxi, Inner Mongolia, and Shaanxi. However, the value capture principle strikes a compromise of the CO2 emissions responsibility of each province between the production and consumption principles, and it shares the CO2 emissions responsibility based on the actual value captured by each province in the provincial value chain. The value capture principle is conducive to the fair and reasonable division of CO2 emissions rights of each province by sectors, as well as the construction of a standardized carbon emissions rights trading market.

  7. Analysis of Carbon Emission Reduction in a Dual-Channel Supply Chain with Cap-And-Trade Regulation and Low-Carbon Preference

    Directory of Open Access Journals (Sweden)

    Xiaoyan Wang

    2018-02-01

    Full Text Available This paper focuses on the reduction of carbon emissions driven by cap-and-trade regulation and consumers’ low-carbon preference in a dual-channel supply chain. Under the low-carbon environment, we also discuss the pricing strategies and the profits for the supply chain members using the Stackelberg game model in two cases. In the first (second case where the initial proportion of consumers who prefer the online direct channel (traditional retail channel is “larger”, the direct sale price of low-carbon products could be set higher than (equal to the wholesale price. And it is shown that in both cases, tighter cap-and-trade regulation and higher low-carbon preference stimulate the manufacturer to cut carbon emissions in its production process. However, improving consumers’ low-carbon preference is more acceptable to the supply chain members. It always benefits the manufacturer and the retailer. In comparison, the firm’s profit increases with carbon price only when the clean production level is relatively high. Our findings can provide useful managerial insights for policy-makers and firms in the development of low-carbon sustainability.

  8. The Biosynthesis of Nitrogen-, Sulfur-, and High-carbon Chain-containing Sugars†

    Science.gov (United States)

    Lin, Chia-I; McCarty, Reid M.; Liu, Hung-wen

    2013-01-01

    Carbohydrates serve many structural and functional roles in biology. While the majority of monosaccharides are characterized by the chemical composition: (CH2O)n, modifications including deoxygenation, C-alkylation, amination, O- and N-methylation, which are characteristic of many sugar appendages of secondary metabolites, are not uncommon. Interestingly, some sugar molecules are formed via modifications including amine oxidation, sulfur incorporation, and “high-carbon” chain attachment. Most of these unusual sugars have been identified over the past several decades as components of microbially produced natural products, although a few high-carbon sugars are also found in the lipooligosaccharides of the outer cell walls of Gram-negative bacteria. Despite their broad distribution in nature, these sugars are considered “rare” due to their relative scarcity. The biosynthetic steps that underlie their formation continue to perplex researchers to this day and many questions regarding key transformations remain unanswered. This review will focus on our current understanding of the biosynthesis of unusual sugars bearing oxidized amine substituents, thio-functional groups, and high-carbon chains. PMID:23348524

  9. Distributions of carbon pricing on extraction, combustion and consumption of fossil fuels in the global supply-chain

    Science.gov (United States)

    Karstensen, Jonas; Peters, Glen

    2018-01-01

    Pricing carbon is one of the most important tools to reduce emissions and mitigate climate change. Already, about 40 nations have implemented explicit or implicit carbon prices, and a carbon price was explicitly stated as a mitigation strategy by many nations in their emission pledges submitted to the Paris Agreement. The coverage of carbon prices varies significantly between nations though, often only covering a subset of sectors in the economy. We investigate the propagation of carbon prices along the global supply-chain when the carbon price is applied at the point where carbon is removed from the ground (extraction), is combusted (production), or where goods and services are consumed (consumption). We consider both the regional and sectoral effects, and compare the carbon price income and costs relative to economic output. We find that implementation using different accounting systems makes a significant difference to revenues and increased expenditure, and that domestic and global trade plays a significant role in spreading the carbon price between sectors and countries. A few single sectors experience the largest relative price increases (especially electricity and transport), but most of the carbon price is ultimately paid by households for goods and services due to the large expenditure and indirect supply chain impacts. We finally show that a global carbon price will generate a larger share of revenue relative to GDP in non-OECD nations than OECD nations, independent on the point of implementation.

  10. Investigation of the adsorption of polymer chains on amine-functionalized double-walled carbon nanotubes.

    Science.gov (United States)

    Ansari, R; Ajori, S; Rouhi, S

    2015-12-01

    Molecular dynamics (MD) simulations were used to study the adsorption of different polymer chains on functionalized double-walled carbon nanotubes (DWCNTs). The nanotubes were functionalized with two different amines: NH2 (a small amine) and CH2-NH2 (a large amine). Considering three different polymer chains, all with the same number of atoms, the effect of polymer type on the polymer-nanotube interaction was studied. In general, it was found that covalent functionalization considerably improved the polymer-DWCNT interaction. By comparing the results obtained with different polymer chains, it was observed that, unlike polyethylene and polyketone, poly(styrene sulfonate) only weakly interacts with the functionalized DWCNTs. Accordingly, the smallest radius of gyration was obtained with adsorbed poly(styrene sulfonate). It was also observed that the DWCNTs functionalized with the large amine presented more stable interactions with polyketone and poly(styrene sulfonate) than with polyethylene, whereas the DWCNTs functionalized with the small amine showed better interfacial noncovalent bonding with polyethylene.

  11. Technology scale and supply chains in a secure, affordable and low carbon energy transition

    International Nuclear Information System (INIS)

    Hoggett, Richard

    2014-01-01

    Highlights: • Energy systems need to decarbonise, provide security and remain affordable. • There is uncertainty over which technologies will best enable this to happen. • A strategy to deal with uncertainty is to assess a technologies ability to show resilience, flexibility and adaptability. • Scale is important and smaller scale technologies are like to display the above characteristics. • Smaller scale technologies are therefore more likely to enable a sustainable, secure, and affordable energy transition. - Abstract: This research explores the relationship between technology scale, energy security and decarbonisation within the UK energy system. There is considerable uncertainty about how best to deliver on these goals for energy policy, but a focus on supply chains and their resilience can provide useful insights into the problems uncertainty causes. Technology scale is central to this, and through an analysis of the supply chains of nuclear power and solar photovoltaics, it is suggested that smaller scale technologies are more likely to support and enable a secure, low carbon energy transition. This is because their supply chains are less complex, show more flexibility and adaptability, and can quickly respond to changes within an energy system, and as such they are more resilient than large scale technologies. These characteristics are likely to become increasingly important in a rapidly changing energy system, and prioritising those technologies that demonstrate resilience, flexibility and adaptability will better enable a transition that is rapid, sustainable, secure and affordable

  12. Highly efficient transition metal and nitrogen co-doped carbide-derived carbon electrocatalysts for anion exchange membrane fuel cells

    Science.gov (United States)

    Ratso, Sander; Kruusenberg, Ivar; Käärik, Maike; Kook, Mati; Puust, Laurits; Saar, Rando; Leis, Jaan; Tammeveski, Kaido

    2018-01-01

    The search for an efficient electrocatalyst for oxygen reduction reaction (ORR) to replace platinum in fuel cell cathode materials is one of the hottest topics in electrocatalysis. Among the many non-noble metal catalysts, metal/nitrogen/carbon composites made by pyrolysis of cheap materials are the most promising with control over the porosity and final structure of the catalyst a crucial point. In this work we show a method of producing a highly active ORR catalyst in alkaline media with a controllable porous structure using titanium carbide derived carbon as a base structure and dicyandiamide along with FeCl3 or CoCl2 as the dopants. The resulting transition metal-nitrogen co-doped carbide derived carbon (M/N/CDC) catalyst is highly efficient for ORR electrocatalysis with the activity in 0.1 M KOH approaching that of commercial 46.1 wt.% Pt/C. The catalyst materials are also investigated by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy to characterise the changes in morphology and composition causing the raise in electrochemical activity. MEA performance of M/N/CDC cathode materials in H2/O2 alkaline membrane fuel cell is tested with the highest power density reached being 80 mW cm-2 compared to 90 mW cm-2 for Pt/C.

  13. Formation of long carbon chain molecules during laser vaporization of graphite

    International Nuclear Information System (INIS)

    Heath, J.R.; Zhang, Q.; O'Brien, S.C.; Curl, R.F.; Kroto, H.W.; Smalley, R.E.

    1987-01-01

    Graphite is laser vaporized into a He carrier gas containing various simple molecules such as H 2 , H 2 O, NH 3 , and CH 3 CN, supersonically expanded, and skimmed into a molecular beam, and the beam is interrogated by photoionization time-of-flight mass spectrometry. Without added reactants in the He carrier gas, C/sub n/ species up to n = 130 are readily observed. Two distributions separated at about n = 40 appear to be present with the low n species the focus of this work. In the presence of added reagents, new species appear as a result of reaction. These are satisfactorily explained on the basis that a significant proportion of the C/sub n/ species initially formed are reactive radicals with linear carbon chain structures which can readily add H, N, or CN at the ends to form relatively stable polyynes or cyanopolyynes. Some of the cyanopolyynes detected have also been observed in the interstellar medium, and circumstellar carbon condensation processes in the atmospheres of carbon-rich stars similar to those studied here are suggested as possible synthetic sources

  14. Cu sbnd Al sbnd Fe layered double hydroxides with CO32- and anionic surfactants with different alkyl chains in the interlayer

    Science.gov (United States)

    Trujillano, Raquel; Holgado, María Jesús; González, José Luis; Rives, Vicente

    2005-08-01

    Layered double hydroxides (LDHs), with the hydrotalcite-like structure containing Cu(II), Al(III) and Fe(III) in the layers, and different alkyl sulfonates in the interlayer, have been prepared and characterized by powder X-ray diffraction, FT-IR spectroscopy, differential thermal analysis and thermogravimetric analysis. Pure crystalline phases have been obtained in all cases. Upon heating, combustion of the organic chain takes place at lower temperature than the corresponding sodium salts.

  15. Application of Carbon Footprint to an agro-biogas supply chain in Southern Italy

    International Nuclear Information System (INIS)

    Ingrao, Carlo; Rana, Roberto; Tricase, Caterina; Lombardi, Mariarosaria

    2015-01-01

    Highlights: • We used the methodological approach established by UNI EN ISO 14067 (2013). • We studied in detail an LCI of an agro-biogas supply chain located in Southern Italy. • Carbon sequestration was enabled by no-tillage practice in the investigated farm. • Low impacts were observed for transportation due to the short supply chain. • Environmental improvement was shown by reduction of the ammonium nitrate use. - Abstract: Over the last few years, agro-biogas has been receiving great attention since it enables replacement of natural gas, thereby representing a tool which reduces greenhouse gas emissions and other environmental impacts. In this context, this paper is aimed at the application of the Carbon Footprint (CF) to an agro-biogas supply chain (SC) in Southern Italy, according to ISO/TS 14067:2013, so as to calculate the related 100-year Global Warming Potential (GWP 100 ). The topic was addressed because agro-biogas SCs, though being acknowledged worldwide as sustainable ways to produce both electricity and heat, can be source of GHG emissions and therefore environmental assessments and improvements are needed. Additionally, the performed literature review highlighted deficiencies in PCF assessments, so this study could contribute to enriching the international knowledge on the environmental burdens associated with agro-biogas SCs. The analysis was conducted using a life-cycle approach, thus including in the assessment: functional unit choice, system border definition and inventory analysis development. The primary data needed was provided by a farm located in the province of Foggia (Apulia region in Southern Italy), already equipped with anaerobic digestion and cogeneration plant for biogas production and utilisation. Results from this study are in agreement with those found by some of the most relevant studies in the sector. Indeed, it was possible to observe that GWP 100 was almost entirely due to cropland farming and, in particular, to the

  16. Game Theoretic Analysis of Carbon Emission Reduction and Sales Promotion in Dyadic Supply Chain in Presence of Consumers’ Low-Carbon Awareness

    Directory of Open Access Journals (Sweden)

    Liangjie Xia

    2014-01-01

    Full Text Available The paper studies how the combination of the manufacturer’s carbon emission reduction and the retailer’s emission reduction relevant promotion impacts the performances of a dyadic supply chain in low-carbon environment. We consider three typical scenarios, that is, centralized and decentralized without or with side-payment. We compare measures of supply chain performances, such as profitabilities, emission reduction efficiencies, and effectiveness, in these scenarios. To improve chain-wide performances, a new side-payment contract is designed to coordinate the supply chain and numerical experiments are also conducted. We find the following. (1 In decentralized setting, the retailer will provide emission cutting allowance to the manufacturer only if their unit product profit margin is higher enough than the manufacturer’s, and the emission reduction level of per unit product is a monotonically increasing function with respect to the cost pooling proportion provided by the retailer; (2 the new side-payment contract can coordinate the dyadic supply chain successfully due to its integrating sales promotion effort and emission reduction input, which results in system pareto optimality under decentralized individual rationality but achieves a collective rationality effect in the centralized setting; (3 when without external force’s regulation, consumers’ low-carbon awareness is to enhance consumers’ utility and decrease profits of supply chain firms.

  17. A Novel “Off-On” Fluorescent Probe Based on Carbon Nitride Nanoribbons for the Detection of Citrate Anion and Live Cell Imaging

    Directory of Open Access Journals (Sweden)

    Yanling Hu

    2018-04-01

    Full Text Available A novel fluorescent “off-on” probe based on carbon nitride (C3N4 nanoribbons was developed for citrate anion (C6H5O73− detection. The fluorescence of C3N4 nanoribbons can be quenched by Cu2+ and then recovered by the addition of C6H5O73−, because the chelation between C6H5O73− and Cu2+ blocks the electron transfer between Cu2+ and C3N4 nanoribbons. The turn-on fluorescent sensor using this fluorescent “off-on” probe can detect C6H5O73− rapidly and selectively, showing a wide detection linear range (1~400 μM and a low detection limit (0.78 μM in aqueous solutions. Importantly, this C3N4 nanoribbon-based “off-on” probe exhibits good biocompatibility and can be used as fluorescent visualizer for exogenous C6H5O73− in HeLa cells.

  18. Production and in vitro characterization of 3D porous scaffolds made of magnesium carbonate apatite (MCA)/anionic collagen using a biomimetic approach

    International Nuclear Information System (INIS)

    Sader, Marcia S.; Martins, Virginia C.A.; Gomez, Santiago; LeGeros, Racquel Z.; Soares, Gloria A.

    2013-01-01

    3D porous scaffolds are relevant biomaterials to bone engineering as they can be used as templates to tissue reconstruction. The aim of the present study was to produce and characterize in vitro 3D magnesium-carbonate apatite/collagen (MCA/col) scaffolds. They were prepared by using biomimetic approach, followed by cross-linking with 0.25% glutaraldehyde solution (GA) and liofilization. Results obtained with Fourier-transform infrared spectroscopy (FT-IR) confirmed the type-B carbonate substitution, while by X-ray diffraction (XRD), a crystallite size of ∼ 10 nm was obtained. Optical and electron microscopy showed that the cylindrical samples exhibited an open-porous morphology, with apatite nanocrystals precipitated on collagen fibrils. The cross-linked 3D scaffolds showed integrity when immersed in culture medium up to 14 days. Also, the immersion of such samples into an acid buffer solution, to mimic the osteoclastic resorption environment, promotes the release of important ions for bone repair, such as calcium, phosphorus and magnesium. Bone cells (SaOs2) adhered, and proliferated on the 3D composite scaffolds, showing that synthesis and the cross-linking processes did not induce cytotoxicity. Highlights: • 3D scaffolds of Mg-carbonate–apatite and anionic-collagen were produced. • The biomimetic approach and the cross-linking with 0.25% GA solution were employed. • The scaffolds showed open-porous structure and apatite crystals on collagen fibrils. • The cross-linked scaffolds exhibited integrity when immersed in culture medium. • SaOs2 cells adhered and proliferated on the cross-linked scaffolds confirming no cytotoxicity

  19. Bicarbonate uptake via an anion exchange protein is the main mechanism of inorganic carbon acquisition by the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae) under variable pH.

    Science.gov (United States)

    Fernández, Pamela A; Hurd, Catriona L; Roleda, Michael Y

    2014-12-01

    Macrocystis pyrifera is a widely distributed, highly productive, seaweed. It is known to use bicarbonate (HCO3 (-) ) from seawater in photosynthesis and the main mechanism of utilization is attributed to the external catalyzed dehydration of HCO3 (-) by the surface-bound enzyme carbonic anhydrase (CAext ). Here, we examined other putative HCO3 (-) uptake mechanisms in M. pyrifera under pHT 9.00 (HCO3 (-) : CO2  = 940:1) and pHT 7.65 (HCO3 (-) : CO2  = 51:1). Rates of photosynthesis, and internal CA (CAint ) and CAext activity were measured following the application of AZ which inhibits CAext , and DIDS which inhibits a different HCO3 (-) uptake system, via an anion exchange (AE) protein. We found that the main mechanism of HCO3 (-) uptake by M. pyrifera is via an AE protein, regardless of the HCO3 (-) : CO2 ratio, with CAext making little contribution. Inhibiting the AE protein led to a 55%-65% decrease in photosynthetic rates. Inhibiting both the AE protein and CAext at pHT 9.00 led to 80%-100% inhibition of photosynthesis, whereas at pHT 7.65, passive CO2 diffusion supported 33% of photosynthesis. CAint was active at pHT 7.65 and 9.00, and activity was always higher than CAext , because of its role in dehydrating HCO3 (-) to supply CO2 to RuBisCO. Interestingly, the main mechanism of HCO3 (-) uptake in M. pyrifera was different than that in other Laminariales studied (CAext -catalyzed reaction) and we suggest that species-specific knowledge of carbon uptake mechanisms is required in order to elucidate how seaweeds might respond to future changes in HCO3 (-) :CO2 due to ocean acidification. © 2014 Phycological Society of America.

  20. Production and in vitro characterization of 3D porous scaffolds made of magnesium carbonate apatite (MCA)/anionic collagen using a biomimetic approach

    Energy Technology Data Exchange (ETDEWEB)

    Sader, Marcia S., E-mail: msader@metalmat.ufrj.br [Prog. Engenharia Metalúrgica e Materiais, COPPE/UFRJ, RJ (Brazil); Martins, Virginia C.A. [Depto. de Química e Física Molecular, IQSC/USP, SP (Brazil); Gomez, Santiago [Dept. Anatomía Patológica, Universidad de Cádiz, Cadiz (Spain); LeGeros, Racquel Z. [Department of Biomaterials and Biomimetics, New York University College of Dentistry, NY (United States); Soares, Gloria A. [Prog. Engenharia Metalúrgica e Materiais, COPPE/UFRJ, RJ (Brazil)

    2013-10-15

    3D porous scaffolds are relevant biomaterials to bone engineering as they can be used as templates to tissue reconstruction. The aim of the present study was to produce and characterize in vitro 3D magnesium-carbonate apatite/collagen (MCA/col) scaffolds. They were prepared by using biomimetic approach, followed by cross-linking with 0.25% glutaraldehyde solution (GA) and liofilization. Results obtained with Fourier-transform infrared spectroscopy (FT-IR) confirmed the type-B carbonate substitution, while by X-ray diffraction (XRD), a crystallite size of ∼ 10 nm was obtained. Optical and electron microscopy showed that the cylindrical samples exhibited an open-porous morphology, with apatite nanocrystals precipitated on collagen fibrils. The cross-linked 3D scaffolds showed integrity when immersed in culture medium up to 14 days. Also, the immersion of such samples into an acid buffer solution, to mimic the osteoclastic resorption environment, promotes the release of important ions for bone repair, such as calcium, phosphorus and magnesium. Bone cells (SaOs2) adhered, and proliferated on the 3D composite scaffolds, showing that synthesis and the cross-linking processes did not induce cytotoxicity. Highlights: • 3D scaffolds of Mg-carbonate–apatite and anionic-collagen were produced. • The biomimetic approach and the cross-linking with 0.25% GA solution were employed. • The scaffolds showed open-porous structure and apatite crystals on collagen fibrils. • The cross-linked scaffolds exhibited integrity when immersed in culture medium. • SaOs2 cells adhered and proliferated on the cross-linked scaffolds confirming no cytotoxicity.

  1. Effects of supercritical carbon dioxide on immobile bound polymer chains on solid substrates

    Science.gov (United States)

    Sen, Mani; Asada, Mitsunori; Jiang, Naisheng; Endoh, Maya K.; Akgun, Bulent; Satija, Sushil; Koga, Tadanori

    2013-03-01

    Adsorbed polymer layers formed on flat solid substrates have recently been the subject of extensive studies because it is postulated to control the dynamics of technologically relevant polymer thin films, for example, in lithography. Such adsorbed layers have been reported to hinder the mobility of polymer chains in thin films even at a large length scale. Consequently, this bound layer remains immobile regardless of processing techniques (i.e. thermal annealing, solvent dissolution, etc). Here, we investigate the use of supercritical carbon dioxide (scCO2) as a novel plasticizer for bound polystyrene layers formed on silicon substrates. In-situ swelling and interdiffusion experiments using neutron reflectivity were performed. As a result, we found the anomalous plasticization effects of scCO2 on the bound polymer layers near the critical point where the anomalous adsorption of CO2 molecules in polymer thin films has been reported previously. Acknowledgement: We acknowledge the financial support from NSF Grant No. CMMI-084626.

  2. Game Theoretic Analysis of Carbon Emission Abatement in Fashion Supply Chains Considering Vertical Incentives and Channel Structures

    Directory of Open Access Journals (Sweden)

    Longfei He

    2015-04-01

    Full Text Available We study an emission-dependent dyadic fashion supply chain made up of a supplier and a manufacturer, both of which can reduce their own component/product emissions to serve the carbon-footprint sensitive consumers. With Carbon Tax regulation, we consider four scenarios resulting from two ways in form of adopting transfer price contract and/or introducing third-party emission-reduction service (TPERS to enhance the efficiency of systematic emission reductions. We refine four models from these corresponding scenarios, which in turn constitute a decision-making framework composed of determining vertical incentives and choosing supply chain structures. By exploiting Stackelberg games in all models, we compare their emission reduction efficiencies and profitability for each pair of settings. Theoretic analysis and numerical studies show that adopting vertical transfer payment schemes can definitely benefit channel carbon footprint reduction and Pareto improvement of supply chain profitability, regardless of whether the emission-reduction service exists or not. However, whether introducing TPERS or not is heavily depending on systematic parameters when the transfer payment incentive is adopted there. We also provide insights on the sensitivity of carbon tax parameters with respect to the supply chain performance, overall carbon emission reduction, vertical incentive and TPERS adopting decision-makings.

  3. CARBON FOOTPRINT IN SUSTAINABLE FOOD CHAIN AND ITS IMPORTANCE FOR FOOD CONSUMER

    Directory of Open Access Journals (Sweden)

    Piotr Konieczny

    2013-09-01

    Full Text Available Freshness, sensory attributes and food safety are currently indicated as main criteria in respect to food purchasing decisions. However, growing number of consumers are ready to choose also environmentally friendly food products. Carbon Footprint (CF expressed in CO2 equivalent of greenhouse gas emission seems to be an innovative indicator useful to evaluate environmental impacts associated with production and distribution of food. The review carried out in this study is based mainly on data presented in papers and reports published in recent decade, including some opinions available on various internet websites. In this study are discussed some examples of CF values calculated both, production of primary raw materials, food processing stages, final products transporting and activities taken during food preparation in the household, as well. The CF indicator offers also a new tool to promote disposition of food products distributed e.g. through big international supermarket chains. Mostly due to the suggestion of ecological institutions, direct comparison of CF values for different food products leads even to postulate almost total elimination of less eco-friendly animal origin food (like red meat from the diet of typical consumer. So, improving the state of consumers education in respect to environmental issues of whole food chain might effect not only their eating habits but also their health.

  4. Detection of cadmium ion in water using films of nanocomposite of functionalized carbon nanotubes and anionic polymer

    Science.gov (United States)

    Taneja, Parul; Manjuladevi, V.; Gupta, R. K.

    2018-05-01

    Presence of cadmium in drinking water is one of the major threats to human health. According to international standards, the maximum permission concentration of cadmium ion in drinking water should be less than 0.002 to 0.010mg/l (2-10 ppb). It is one of the major contaminants in potable water in western part of Indian subcontinent. It is found up to 2.3 to 8.6 mg/l in Rajasthan water. In this article, we report our study on detection of cadmium ion in water employing a sensing layer of nanocomposites of functionalized single walled carbon nanotubes (SWCNTs) and polyacrylic acid (PAA). The film was deposited onto 5 MHz AT-cut quartz crystal of a quartz crystal microbalance (QCM). The response was collected in both static and dynamic mode. We obtained a linear response curve in a given concentration range of cadmium ion indicating the suitability of the functional layer for cadmium ion detection in water. The surface morphology of the functional layer was studied using atomic force microscope before and after sensing.

  5. Production of long chain alkyl esters from carbon dioxide and electricity by a two-stage bacterial process.

    Science.gov (United States)

    Lehtinen, Tapio; Efimova, Elena; Tremblay, Pier-Luc; Santala, Suvi; Zhang, Tian; Santala, Ville

    2017-11-01

    Microbial electrosynthesis (MES) is a promising technology for the reduction of carbon dioxide into value-added multicarbon molecules. In order to broaden the product profile of MES processes, we developed a two-stage process for microbial conversion of carbon dioxide and electricity into long chain alkyl esters. In the first stage, the carbon dioxide is reduced to organic compounds, mainly acetate, in a MES process by Sporomusa ovata. In the second stage, the liquid end-products of the MES process are converted to the final product by a second microorganism, Acinetobacter baylyi in an aerobic bioprocess. In this proof-of-principle study, we demonstrate for the first time the bacterial production of long alkyl esters (wax esters) from carbon dioxide and electricity as the sole sources of carbon and energy. The process holds potential for the efficient production of carbon-neutral chemicals or biofuels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. The Location-Routing Problem with Full Truckloads in Low-Carbon Supply Chain Network Designing

    Directory of Open Access Journals (Sweden)

    Cheng Chen

    2018-01-01

    Full Text Available In recent years, low-carbon supply chain network design has been the focus of studies as the development of low-carbon economy. The location-routing problem with full truckloads (LRPFT is investigated in this paper, which extends the existing studies on the LRP to full truckloads problem within the regional many-to-many raw material supply network. A mathematical model with dual objectives of minimizing total cost and environmental effects simultaneously is developed to determine the number and locations of facilities and optimize the flows among different kinds of nodes and routes of trucks as well. A novel multiobjective hybrid approach named NSGA-II-TS is proposed by combining a known multiobjective algorithm, NSGA-II, and a known heuristics, Tabu Search (TS. A chromosome presentation based on natural number and modified partially mapping crossover operator for the LRPFT are designed. Finally, the computational effectiveness of the hybrid approach is validated by the numerical results and a practical case study is applied to demonstrate the tradeoff between total cost and CO2 emission in the LRPFT.

  7. Bioaccumulation and Toxicity of Single-Walled Carbon Nanotubes to Benthic Organisms at the Base of the Marine Food Chain

    Science.gov (United States)

    As the use of single-walled carbon nanotubes (SWNTs) increases over time, so does the potential for environmental release. This research aimed to determine the toxicity, bioavailability, and bioaccumulation of SWNTs in marine benthic organisms at the base of the food chain. The t...

  8. Influence of the competition of anions (hydroxides, carbonates) on the complexation of trivalent lanthanides by natural organic matter: case of humic substances

    International Nuclear Information System (INIS)

    Kouhail, Yasmine

    2016-01-01

    The aim of this study is to acquire and refine complexation data for understanding the fate of lanthanides in the environment where the concentrations of organic matter are highly variable. This study is focusing on both the description and understanding of the interactions between the europium(III) and a Suwannee River fulvic acid (SRFA) as a representative of humic substances (HS), and the influence of major anions present in natural waters, i.e. hydroxides and carbonates ions, in these interactions. To understand the ternary systems Eu-OH-SRFA and EU-CO_3-SRFA, Eu-SRFA and EU-CO_3 binary systems are first investigated by time-resolved luminescence spectroscopy (TRLS) for wide ranges of pH, ionic strength, Eu(III), SRFA and CO_3 concentrations. This study shows that the structures of humic substances are influenced by the presence of Eu(III). Interaction constants are determined for the Eu-SRFA binary system and are used for the understanding of the EU-CO_3-SRFA ternary system. EU-CO_3-SRF A ternary complexes are highlighted by SLRT, and an interaction constant has also been proposed in the frame of the NICA-Donnan model. Variations in size of EuSRFA complexes as a function of europium and SRFA concentrations are presented, and the impact of these variations on NICA-Donnan parameters is investigated. The results of this work are challenging modeling concepts of metal-HS interactions at various HS concentrations, in particular for the consideration of electrostatic effects. (author) [fr

  9. Carbon and water footprint of pork supply chain in Catalonia: From feed to final products.

    Science.gov (United States)

    Noya, Isabel; Aldea, Xavier; Gasol, Carles M; González-García, Sara; Amores, Maria José; Colón, Joan; Ponsá, Sergio; Roman, Isabel; Rubio, Miguel A; Casas, Eudald; Moreira, María Teresa; Boschmonart-Rives, Jesús

    2016-04-15

    A systematic tool to assess the Carbon Footprint (CF) and Water Footprint (WF) of pork production companies was developed and applied to representative Catalan companies. To do so, a cradle-to-gate environmental assessment was carried out by means of the LCA methodology, taking into account all the stages involved in the pork chain, from feed production to the processing of final products, ready for distribution. In this approach, the environmental results are reported based on eight different functional units (FUs) according to the main pork products obtained. With the aim of ensuring the reliability of the results and facilitating the comparison with other available reports, the Product Category Rules (PCR) for Catalan pork sector were also defined as a basis for calculations. The characterization results show fodder production as the main contributor to the global environmental burdens, with contributions higher than 76% regardless the environmental indicator or the life cycle stage considered, which is in agreement with other published data. In contrast, the results in terms of CF and WF lay above the range of values reported elsewhere. However, major discrepancies are mainly due to the differences in the co-products allocation criteria. In this sense, economic/physical allocation and/or system expansion have been mostly considered in literature. In contrast, no allocation was considered appropriate in this study, according to the characteristics of the industries and products under assessment; thus, the major impacts fall on the main product, which derives on comparatively higher environmental burdens. Finally, due to the relevance of fodder production in the overall impact assessment results, strategies to reduce greenhouse gases (GHG) emissions as well as water use associated to this stage were proposed in the pork supply chain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Study of the chain termination in the polymerization of seven-membered carbonate cyclic

    International Nuclear Information System (INIS)

    Carpentier, Jean-Francois; Casagrande Junior, Osvaldo de; Gil, Marcelo Priebe

    2011-01-01

    Methyl substituted seven-membered ring carbonate (7CC), namely 4-methyl-1,3-dioxepan-2-one (α-Me7CC) have been synthesized in good yield (up to 50%) upon cyclization of the corresponding α-diols issued from green renewable acid. ( I mmortal ) Ring-opening polymerization (iROP) of this monomer has been carried out using various catalysts combined with an alcohol acting as a co-initiator and a chain transfer agent. The Lewis acid Al(OTf) 3 or the organometallic complexes [(BDI iPr )Zn(N(SiMe 3 ) 2 )] ((BDI iPr ) = 2-((2,6-diisopropylphenyl)amido)-4-((2,6- diisopropylphenyl)-imino)-2-pentene] and [(ONOO tBu )Y(N(SiHMe 2 ) 2 )(THF)] (ONOO tBu = amino-alkoxy-bis( phenolate)) successfully afforded the corresponding poly(α-Me7CC) with quite good control and activities. Detailed microstructural analysis of the poly(a-Me7CC) using 1 H and 13 C NMR and MALDI-TOF-MS techniques revealed the higher regioselectivity -with preferential ring-opening at the most hindered oxygen-acyl O-C(O)O bond, i.e. close to the α-Me substituent- of the zinc-based system followed by the yttrium as compared to the lack of selectivity of the aluminum one, in the ROP of α-Me7CC. (author)

  11. In situ treatment with activated carbon reduces bioaccumulation in aquatic food chains.

    Science.gov (United States)

    Kupryianchyk, D; Rakowska, M I; Roessink, I; Reichman, E P; Grotenhuis, J T C; Koelmans, A A

    2013-05-07

    In situ activated carbon (AC) amendment is a new direction in contaminated sediment management, yet its effectiveness and safety have never been tested on the level of entire food chains including fish. Here we tested the effects of three different AC treatments on hydrophobic organic chemical (HOC) concentrations in pore water, benthic invertebrates, zooplankton, and fish (Leuciscus idus melanotus). AC treatments were mixing with powdered AC (PAC), mixing with granular AC (GAC), and addition-removal of GAC (sediment stripping). The AC treatments resulted in a significant decrease in HOC concentrations in pore water, benthic invertebrates, zooplankton, macrophytes, and fish. In 6 months, PAC treatment caused a reduction of accumulation of polychlorobiphenyls (PCB) in fish by a factor of 20, bringing pollutant levels below toxic thresholds. All AC treatments supported growth of fish, but growth was inhibited in the PAC treatment, which was likely explained by reduced nutrient concentrations, resulting in lower zooplankton (i.e., food) densities for the fish. PAC treatment may be advised for sites where immediate ecosystem protection is required. GAC treatment may be equally effective in the longer term and may be adequate for vulnerable ecosystems where longer-term protection suffices.

  12. Optical Absorptions of Oxygenated Carbon Chain Cations in the Gas Phase

    Science.gov (United States)

    Hardy, F.-X.; Rice, C. A.; Chakraborty, A.; Fulara, J.; Maier, J. P.

    2016-06-01

    The gas-phase electronic spectra of linear OC4O+ and a planar C6H2O+ isomer were obtained at a rotational temperature of ≈10 K. Absorption measurements in a 6 K neon matrix were followed by gas-phase observations in a cryogenic radiofrequency ion trap. The origin bands of the 1{}2{{{\\Pi }}}u ≤ftarrow X{}2{{{\\Pi }}}g transition of OC4O+ and the 1{}2A{}2 ≤ftarrow X{}2B1 of HCCC(CO)CCH+ lie at 417.31 ± 0.01 nm and 523.49 ± 0.01 nm, respectively. These constitute the first electronic spectra of oxygenated carbon chain cations studied under conditions that are relevant to the diffuse interstellar bands (DIBs), as both have a visible transition. The recent analysis of the 579.5 nm DIB indicates that small carriers, five to seven heavy atoms, continue to be possible candidates (Huang & Oka 2015). Astronomical implications are discussed regarding this kind of oxygenated molecules.

  13. The Impact of Carbon Emissions Policies on Reverse Supply Chain Network Design

    OpenAIRE

    Bandar A. ALKHAYYAL; Surendra M. GUPTA

    2018-01-01

    Reverse Supply Chain is described as an initiative that plays an important role in the global supply chain for those who seek environmentally responsible solutions for their end-of-life products. The relative economic and environmental benefits of reverse supply chain are influenced by costs and emissions during collection, transportation, recovery facilities, disassembly, recycling, remanufacturing, and disposal of unrecoverable components. The design of reverse supply chain network takes in...

  14. Pricing, Carbon Emission Reduction, Low-Carbon Promotion and Returning Decision in a Closed-Loop Supply Chain under Vertical and Horizontal Cooperation

    Directory of Open Access Journals (Sweden)

    Hui Li

    2017-11-01

    Full Text Available In this paper, we examine the influences of vertical and horizontal cooperation models on the optimal decisions and performance of a low-carbon closed-loop supply chain (CLSC with a manufacturer and two retailers, and study optimal operation in the competitive pricing, competitive the low-carbon promotion, the carbon emission reduction, the used-products collection and the profits. We consider the completely decentralized model, M-R vertical cooperation model, R-R horizontal cooperation model, M-R-R vertical and horizontal cooperation model and completely centralized model, and also identify the optimal decision results and profits. It can be observed from a systematic comparison and numerical analysis that the completely centralized model is best in all optimal decision results among all models. In semi-cooperation, the M-R vertical cooperation model is positive, the R-R horizontal cooperation model is passive, and the positivity of the M-R-R vertical and horizontal cooperation model decreases with competitive intensity increasing in the used-products returning, carbon emissions reduction level, low-carbon promotion effort and the profits of the manufacturer and the entire supply chain.

  15. Pricing, Carbon Emission Reduction, Low-Carbon Promotion and Returning Decision in a Closed-Loop Supply Chain under Vertical and Horizontal Cooperation

    Science.gov (United States)

    Li, Hui; Wang, Chuanxu; Shang, Meng; Ou, Wei

    2017-01-01

    In this paper, we examine the influences of vertical and horizontal cooperation models on the optimal decisions and performance of a low-carbon closed-loop supply chain (CLSC) with a manufacturer and two retailers, and study optimal operation in the competitive pricing, competitive the low-carbon promotion, the carbon emission reduction, the used-products collection and the profits. We consider the completely decentralized model, M-R vertical cooperation model, R-R horizontal cooperation model, M-R-R vertical and horizontal cooperation model and completely centralized model, and also identify the optimal decision results and profits. It can be observed from a systematic comparison and numerical analysis that the completely centralized model is best in all optimal decision results among all models. In semi-cooperation, the M-R vertical cooperation model is positive, the R-R horizontal cooperation model is passive, and the positivity of the M-R-R vertical and horizontal cooperation model decreases with competitive intensity increasing in the used-products returning, carbon emissions reduction level, low-carbon promotion effort and the profits of the manufacturer and the entire supply chain. PMID:29104268

  16. Pricing, Carbon Emission Reduction, Low-Carbon Promotion and Returning Decision in a Closed-Loop Supply Chain under Vertical and Horizontal Cooperation.

    Science.gov (United States)

    Li, Hui; Wang, Chuanxu; Shang, Meng; Ou, Wei

    2017-11-01

    In this paper, we examine the influences of vertical and horizontal cooperation models on the optimal decisions and performance of a low-carbon closed-loop supply chain (CLSC) with a manufacturer and two retailers, and study optimal operation in the competitive pricing, competitive the low-carbon promotion, the carbon emission reduction, the used-products collection and the profits. We consider the completely decentralized model, M-R vertical cooperation model, R-R horizontal cooperation model, M-R-R vertical and horizontal cooperation model and completely centralized model, and also identify the optimal decision results and profits. It can be observed from a systematic comparison and numerical analysis that the completely centralized model is best in all optimal decision results among all models. In semi-cooperation, the M-R vertical cooperation model is positive, the R-R horizontal cooperation model is passive, and the positivity of the M-R-R vertical and horizontal cooperation model decreases with competitive intensity increasing in the used-products returning, carbon emissions reduction level, low-carbon promotion effort and the profits of the manufacturer and the entire supply chain.

  17. Anion exchange membrane

    Science.gov (United States)

    Verkade, John G; Wadhwa, Kuldeep; Kong, Xueqian; Schmidt-Rohr, Klaus

    2013-05-07

    An anion exchange membrane and fuel cell incorporating the anion exchange membrane are detailed in which proazaphosphatrane and azaphosphatrane cations are covalently bonded to a sulfonated fluoropolymer support along with anionic counterions. A positive charge is dispersed in the aforementioned cations which are buried in the support to reduce the cation-anion interactions and increase the mobility of hydroxide ions, for example, across the membrane. The anion exchange membrane has the ability to operate at high temperatures and in highly alkaline environments with high conductivity and low resistance.

  18. Elevated levels of short carbon-chain PFCAs in breast milk among Korean women: Current status and potential challenges.

    Science.gov (United States)

    Kang, Habyeong; Choi, Kyungho; Lee, Haeng-Shin; Kim, Do-Hee; Park, Na-Youn; Kim, Sunmi; Kho, Younglim

    2016-07-01

    Breast milks can be contaminated with perfluoroalkyl substances (PFASs). Exposure to PFASs during early stages of life may lead to adverse health effects among breastfed infants. To date, perfluorootanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have been most frequently measured PFASs in breast milks worldwide. Information on shorter carbon-chain PFASs in breast milk is scarce. In this study, breast milks were sampled from 264 Korean lactating women, and measured for seventeen PFASs, including ten perfluoroalkyl carboxylates (PFCAs), four perfluoroalkyl sulfonates, and three perfluoroalkyl sulfonamides. PFOA and PFOS were detected in 98.5% of the breast milk samples, with median concentrations of 0.072 and 0.050ng/mL, respectively. Perfluoropentanoic acid (PFPeA), perfluorohexanoic acid (PFHxA), and perfluoroheptanoic acid (PFHpA) were detected in higher frequencies, ranging between 67.4% and 81.8%. The concentrations of short carbon-chain PFCAs in breast milk such as PFPeA and PFHxA were the highest ever reported to date, and were comparable to that of PFOS. Concentrations of shorter chain PFCA in breast milk tended to be higher among the women with longer lactation period, while those of PFOA showed the opposite trend, suggesting a possibility that breastfeeding might be an important route of excretion for PFOA among lactating women. Fish consumption and the use of consumer products, e.g., skin care products, cosmetics and non-stick coated cooking utensils, were identified as significant predictors of PFAS concentrations in breast milk. Health risks associated with PFOA and PFOS exposure through breastfeeding were estimated negligible, however, risks of the short carbon-chain PFCAs could not be assessed because of lack of relevant toxicological information. Further efforts for source identification and exposure management measures for shorter chain PFCAs are necessary. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Greenhouse gas emissions in milk and dairy product chains: Improving the carbon footprint of dairy products

    Energy Technology Data Exchange (ETDEWEB)

    Flysjoe, A.M.

    2012-11-01

    The present PhD project has focused on some of the most critical methodological aspects influencing GHG emission estimates of milk and dairy products and how the methodology can be improved. In addition, the Carbon Footprint (CF) for different types of dairy products has been analysed. Based on these results, mitigation options have been identified along the entire dairy value chain. The key methodological challenges analysed in the present study are: estimation of CH{sub 4} and N{sub 2}O emissions, assessment of CO{sub 2} emissions from land use change (LUC), co-product handling, and definition of the functional unit. Estimates of the biogenic emissions CH{sub 4} and N{sub 2}O are associated with large uncertainties due to the complexity and natural variation in biological processes. Accounting for these variations resulted in a {+-}30-50% variation in the CF for milk in Sweden and New Zealand (excluding emissions from LUC). The inclusion of emissions from LUC can drastically affect the CF of dairy products, and different models can even provide contradictory results. Thus, it is suggested that emissions associated with LUC are reported separately and that underlying assumptions are clearly explained. Accounting for the by-product beef is decisive for the CF of milk, and when designing future strategies for the dairy sector, milk and meat production needs to be addressed in an integrated approach. It is shown that an increase in milk yield per cow does not necessarily result in a lower CF of milk, when taking into account the alternative production of the by-product beef. This demonstrates that it is important to investigate interactions between different product chains, i.e. to apply system thinking. The CF of dairy products from Arla Foods analysed in the present study range from: 1.2-5.5 kg CO{sub 2}e per kg fresh dairy products, 7.3-10.9 kg CO{sub 2}e per kg butter and butter blends, 4.5-9.9 kg CO{sub 2}e per kg cheese, and 1.0-17.4 kg CO{sub 2}e per kg milk

  20. Greenhouse gas emissions in milk and dairy product chains: Improving the carbon footprint of dairy products

    Energy Technology Data Exchange (ETDEWEB)

    Flysjoe, A M

    2012-11-01

    The present PhD project has focused on some of the most critical methodological aspects influencing GHG emission estimates of milk and dairy products and how the methodology can be improved. In addition, the Carbon Footprint (CF) for different types of dairy products has been analysed. Based on these results, mitigation options have been identified along the entire dairy value chain. The key methodological challenges analysed in the present study are: estimation of CH{sub 4} and N{sub 2}O emissions, assessment of CO{sub 2} emissions from land use change (LUC), co-product handling, and definition of the functional unit. Estimates of the biogenic emissions CH{sub 4} and N{sub 2}O are associated with large uncertainties due to the complexity and natural variation in biological processes. Accounting for these variations resulted in a {+-}30-50% variation in the CF for milk in Sweden and New Zealand (excluding emissions from LUC). The inclusion of emissions from LUC can drastically affect the CF of dairy products, and different models can even provide contradictory results. Thus, it is suggested that emissions associated with LUC are reported separately and that underlying assumptions are clearly explained. Accounting for the by-product beef is decisive for the CF of milk, and when designing future strategies for the dairy sector, milk and meat production needs to be addressed in an integrated approach. It is shown that an increase in milk yield per cow does not necessarily result in a lower CF of milk, when taking into account the alternative production of the by-product beef. This demonstrates that it is important to investigate interactions between different product chains, i.e. to apply system thinking. The CF of dairy products from Arla Foods analysed in the present study range from: 1.2-5.5 kg CO{sub 2}e per kg fresh dairy products, 7.3-10.9 kg CO{sub 2}e per kg butter and butter blends, 4.5-9.9 kg CO{sub 2}e per kg cheese, and 1.0-17.4 kg CO{sub 2}e per kg milk

  1. 1H NMR study of effects of synergistic anion and metal ion binding on pH titration of the histidinyl side-chain residues of the half-molecules of ovotransferrin

    International Nuclear Information System (INIS)

    Woodworth, R.C.; Butcher, N.D.; Brown, S.A.; Brown-Mason, A.

    1987-01-01

    Separation of ovotransferrin into C-terminal (OTf/2C) and N-terminal (OTf/2N) half-molecules has made possible the resolution of all expected histidinyl C(2)H resonances by proton nuclear magnetic resonance at 250 MHz. The chemical shift of many of the resonances decreases with increasing pH, allowing construction of titration curves, whereas a few resonances fail to titrate. On formation of the Ga/sup III/OTf/2(C 2 O 4 ) ternary complexes, two of the low-field C(2)H resonances in each half-molecule fail to titrate. This behavior implicates the imidazole groups giving rise to these resonances as ligands to the bound metal ion. A third C(2)H resonance in each half-molecule undergoes a marked reduction in pK'/sub a/ on formation of the ternary complex. The imidazole group displaying this resonance is implicated in a proton-relay scheme involved in binding the synergistic anion, oxalate, and a water of hydration on the bound metal ion. The titration curves for the various imidazole resonances have been fit to a four-parameter equation involving estimation of the pK'/sub a/, the limiting chemical shift values, and a Hill constant n. Hill constants of 1, which suggests positive cooperativity in the titration of this residue. The basis for this behavior cannot be rationalized at this time. 13 C NMR studies of [zeta- 13 C]Arg-OTf suggest the Arg side chains may not be intimately involved in formation of the ternary complex

  2. A Fuzzy-Grey Multicriteria Decision Making Approach for Green Supplier Selection in Low-Carbon Supply Chain

    Directory of Open Access Journals (Sweden)

    Qinghua Pang

    2017-01-01

    Full Text Available Due to the increasing awareness of global warming and environmental protection, many practitioners and researchers have paid much attention to the low-carbon supply chain management in recent years. Green supplier selection is one of the most critical activities in the low-carbon supply chain management, so it is important to establish the comprehensive criteria and develop a method for green supplier selection in low-carbon supply chain. The paper proposes a fuzz-grey multicriteria decision making approach to deal with these problems. First, the paper establishes 4 main criteria and 22 subcriteria for green supplier selection. Then, a method integrating fuzzy set theory and grey relational analysis is proposed. It uses the membership function of normal distribution to compare each supplier and uses grey relation analysis to calculate the weight of each criterion and improves fuzzy comprehensive evaluation. The proposed method can make the localization of individual green supplier more objectively and more accurately in the same trade. Finally, a case study in the steel industry is presented to demonstrate the effectiveness of the proposed approach.

  3. The relevance of supply chain characteristics in GHG emissions: The carbon footprint of Maltese juices.

    Science.gov (United States)

    Roibás, L; Rodríguez-García, S; Valdramidis, V P; Hospido, A

    2018-05-01

    Foods and drinks are major contributors (17%) to the greenhouse gas (GHG) emissions caused by private consumption in Europe. The carbon footprint (CF) of a certain product expresses the total GHG emissions over its whole life cycle, and its calculation for foodstuff is a necessary first step to reduce their contribution to global warming. The calculation of the CF of Maltese food products is especially relevant for two reasons: the economic characteristics of the island, whose food sector is highly dependent on imports, implying longer transport distances; and the Maltese electricity production mix, based almost exclusively on oil combustion. The CF of ten multi-fruit juices marketed in Malta has been determined, covering all the processes from the agricultural stage to the distribution of the final products. As a functional unit (FU), a 250 ml bottle of packaged product arriving at the retailer has been considered. The Maltese orange juice, the only final product in which only local ingredients are used, presents the lowest CF (0.50 kgCO 2 /FU), while the remaining ones range from 0.67 kgCO 2 /FU to 0.80 kgCO 2 /FU. The major contributor to all the CFs is juice processing at the Maltese plant (0.42 kgCO 2 /FU), mainly due to the use of electricity (78%). The influence of both the electricity mix and the Maltese supply chain in the CF of the final products has been demonstrated. Alternatives to reduce the impacts of the final products have been proposed and evaluated that could lower the average CF of the juices by 32%. The calculation of the CF of Maltese juices represents an innovative case study due to the characteristics of the island, and it is expected to act as a first step to lower their environmental impacts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. The odd-carbon medium-chain fatty triglyceride triheptanoin does not reduce hepatic steatosis.

    Science.gov (United States)

    Comhair, Tine M; Garcia Caraballo, Sonia C; Dejong, Cornelis H C; Lamers, Wouter H; Koehler, S Eleonore

    2017-02-01

    Non-alcoholic fatty-liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome. Previously, we showed that a high-protein diet minimized diet-induced development of fatty liver and even reversed pre-existing steatosis. A high-protein diet leads to amino-acid catabolism, which in turn causes anaplerosis of the tricarboxylic-acid (TCA) cycle. Therefore, we hypothesized that anaplerosis of the TCA cycle could be responsible for the high-protein diet-induced improvement of NAFLD by channeling amino acids into the TCA cycle. Next we considered that an efficient anaplerotic agent, the odd-carbon medium-chain triglyceride triheptanoin (TH), might have similar beneficial effects. C57BL/6J mice were fed low-fat (8en%) or high-fat (42en%) oleate-containing diets with or without 15en% TH for 3 weeks. TH treatment enhanced the hepatic capacity for fatty-acid oxidation by a selective increase in hepatic Ppara, Acox, and Cd36 expression, and a decline in plasma acetyl-carnitines. It also induced pyruvate cycling through an increased hepatic PCK1 protein concentration and it increased thermogenesis reflected by an increased Ucp2 mRNA content. TH, however, did not reduce hepatic lipid content. The comparison of the present effects of dietary triheptanoin with a previous study by our group on protein supplementation shows that the beneficial effects of the high-protein diet are not mimicked by TH. This argues against anaplerosis as the sole explanatory mechanism for the anti-steatotic effect of a high-protein diet. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  5. An Integrated Carbon Policy-Based Interactive Strategy for Carbon Reduction and Economic Development in a Construction Material Supply Chain

    Directory of Open Access Journals (Sweden)

    Liming Zhang

    2017-11-01

    Full Text Available Carbon emissions from the construction material industry have become of increasing concern due to increasingly urbanization and extensive infrastructure. Faced with serious atmospheric deterioration, governments have been seeking to reduce carbon emissions, with carbon trading and carbon taxes being considered the most effective regulatory policies. Over time, there has been a global consensus that integrated carbon trading/carbon tax policies are more effective in reducing carbon emissions. However, in an integrated carbon reduction policy framework, balancing the relationship between emission reductions and low-carbon benefits has been found to be a critical issue for governments and enterprises in both theoretical research and carbon emission reduction practices. As few papers have sought to address these issues, this paper seeks to reach a trade-off between economic development and environmental protection involving various stakeholders: regional governments which aim to maximize social benefits, and producers who seek economic profit maximization. An iterative interactive algorithmic method with fuzzy random variables (FRVs is proposed to determine the satisfactory equilibrium between these decision-makers. This methodology is then applied to a real-world case to demonstrate its practicality and efficiency.

  6. Molecular dynamics investigation of the physisorption and interfacial characteristics of NBR chains on carbon nanotubes with different characteristics

    Directory of Open Access Journals (Sweden)

    Kun Li

    2017-07-01

    Full Text Available The present study investigates the physisorption and interfacial interactions between multiwalled carbon nanotubes (MWNTs with different characteristics, including different numbers of walls and different functional groups, and acrylonitrile-butadiene rubber (NBR polymer chains based on molecular dynamics simulations performed using modeled MWNT/NBR compound systems. The effects of the initial orientation of NBR chains and their relative distances to nanotubes, number of nanotube layers, and the surface functional groups of nanotubes on nanotube/polymer interactions are examined. Analysis is conducted according to the final configuration obtained in conjunction with the binding energy (Eb, radius of gyration (Rg and end-to-end distance (h. The results show that the final conformations of NBR chains adsorbed on MWNT surfaces is associated with the initial relative angle of the NBR chains and their distance from the nanotubes. For non-functionalized MWNTs, Eb is almost directly proportional to Rg under equivalent parameters. Moreover, it is observed that functional groups hinder the wrapping of NBR chains on the MWNT surfaces. This indicates that functional groups do not always benefit the macro-mechanical properties of the composites. Moreover, the type of the major interaction force has been dramatically changed into electrostatic force from vdW force because of functionalization.

  7. Molecular dynamics investigation of the physisorption and interfacial characteristics of NBR chains on carbon nanotubes with different characteristics

    Science.gov (United States)

    Li, Kun; Gu, Boqin

    2017-07-01

    The present study investigates the physisorption and interfacial interactions between multiwalled carbon nanotubes (MWNTs) with different characteristics, including different numbers of walls and different functional groups, and acrylonitrile-butadiene rubber (NBR) polymer chains based on molecular dynamics simulations performed using modeled MWNT/NBR compound systems. The effects of the initial orientation of NBR chains and their relative distances to nanotubes, number of nanotube layers, and the surface functional groups of nanotubes on nanotube/polymer interactions are examined. Analysis is conducted according to the final configuration obtained in conjunction with the binding energy (Eb), radius of gyration (Rg) and end-to-end distance (h). The results show that the final conformations of NBR chains adsorbed on MWNT surfaces is associated with the initial relative angle of the NBR chains and their distance from the nanotubes. For non-functionalized MWNTs, Eb is almost directly proportional to Rg under equivalent parameters. Moreover, it is observed that functional groups hinder the wrapping of NBR chains on the MWNT surfaces. This indicates that functional groups do not always benefit the macro-mechanical properties of the composites. Moreover, the type of the major interaction force has been dramatically changed into electrostatic force from vdW force because of functionalization.

  8. Magnetic properties of a single iron atomic chain encapsulated in armchair carbon nanotubes: A Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, PB 63, 46000 Safi (Morocco); Jabar, A. [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, PB 63, 46000 Safi (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Benyoussef, A. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hlil, E.K. [Institut Néel, CNRS, Université Grenoble Alpes, 25 rue des Martyrs BP 166, 38042 Grenoble cedex 9 (France)

    2017-06-15

    Highlights: • Magnetic properties of Fe atom chain wrapped in armchair carbon nanotubes have been studied. • Transition temperature of iron and carbon have been calculated using Monte Carlo simulations. • The multiples magnetic hysteresis have been found. - Abstract: The magnetic properties have been investigated of FeCu{sub x}C{sub 1−x} for a Fe atom chain wrapped in armchair (N,N) carbon nanotubes (N = 4,6,8,10,12) diluted by Cu{sup 2+} ions using Monte Carlo simulations. The thermal total magnetization and magnetic susceptibility are found. The reduced transition temperatures of iron and carbon have been calculated for different N and the exchange interactions. The total magnetization is obtained for different exchange interactions and crystal field. The Magnetic hysteresis cycles are obtained for different N, the reduced temperatures and exchange interactions. The multiple magnetic hysteresis is found. This system shows it can be used as magnetic nanostructure possessing potential current and future applications in permanent magnetism, magnetic recording and spintronics.

  9. Analysis of carbon emission regulations in supply chains with volatile demand.

    Science.gov (United States)

    2014-07-01

    This study analyzes an inventory control problem of a company in stochastic demand environment under carbon emissions : regulations. In particular, a continuous review inventory model with multiple suppliers is investigated under carbon taxing and ca...

  10. Calcium silicate structure and carbonation shrinkage of a tobermorite-based material

    International Nuclear Information System (INIS)

    Matsushita, Fumiaki; Aono, Yoshimichi; Shibata, Sumio

    2004-01-01

    Carbonated autoclaved aerated concretes (AACs) show no shrinkage at a degree of carbonation approximately less than 20%. The 29 Si MAS NMR spectrum showed that at a degree of carbonation less than 25%, the typical double-chain silicate anion structure of tobermorite-11A was well maintained and interlayer Ca ions were exchanged with protons. This corresponded to the absence of carbonation shrinkage at a degree of carbonation less than 20%. When the degree of carbonation increased from 25% to 50% up to 60%, the double-chain silicate anion structure of tobermorite-11A was decomposed and Ca ions in the Ca-O layers were dissolved, showing a possible mechanism of carbonation shrinkage

  11. The Closed-Loop Supply Chain Network Equilibrium with Products Lifetime and Carbon Emission Constraints in Multiperiod Planning Horizon

    Directory of Open Access Journals (Sweden)

    Guitao Zhang

    2014-01-01

    Full Text Available This paper studies a closed-loop supply chain network equilibrium problem in multiperiod planning horizons with consideration of product lifetime and carbon emission constraints. The closed-loop supply chain network consists of suppliers tier, manufacturer tier, retailers tier, and demand markets tier, in which the manufacturers collect used products from the demand markets directly. Product lifetime is introduced to denote the maximum times of manufacturing and remanufacturing, and the relation between adjacent periods is described by inventory transfer. By variational inequalities and complementary theory, the optimal behaviors of all the players are modeled, and, in turn, the governing closed-loop supply chain network equilibrium model is established. The model is solved by modified project contraction algorithm with fixed step. Optimal equilibrium results are computed and analyzed through numerical examples. The impacts of collection rate, remanufacturing conversion rate, product lifetime, and carbon emission cap on equilibrium states are analyzed. Finally, several managerial insights are given to provide decision support for entrepreneurs and government official along with some inspirations for future research.

  12. The chemistry of molecular anions in circumstellar sources

    Energy Technology Data Exchange (ETDEWEB)

    Agúndez, Marcelino [LUTH, Observatoire de Paris-Meudon, 5 Place Jules Janssen, 92190 Meudon (France); Cernicharo, José [Departamento de Astrofísica, CAB, CSIC-INTA, Ctra. de Torrejón a Ajalvir km 4, 28850 Madrid (Spain); Guélin, Michel [Institut de Radioastronomie Millimétrique, 300 rue de la Piscine, 38406 Saint Martin d' Héres (France)

    2015-01-22

    The detection of negatively charged molecules in the interstellar and circumstellar medium in the past four years has been one of the most impacting surprises in the area of molecular astrophysics. It has motivated the interest of astronomers, physicists, and chemists on the study of the spectroscopy, chemical kinetics, and prevalence of molecular anions in the different astronomical regions. Up to six different molecular anions have been discovered in space to date, the last one being the small ion CN{sup −}, which has been observed in the envelope of the carbon star IRC +10216 and which contrary to the other larger anions is not formed by electron attachment to CN, but through reactions of large carbon anions with nitrogen atoms. Here we briefly review the current status of our knowledge of the chemistry of molecular anions in space, with particular emphasis on the circumstellar source IRC +10216, which to date is the astronomical source harboring the largest variety of anions.

  13. De Novo Biosynthesis of Glutarate via α-Keto Acid Carbon Chain Extension and Decarboxylation Pathway in Escherichia coli.

    Science.gov (United States)

    Wang, Jian; Wu, Yifei; Sun, Xinxiao; Yuan, Qipeng; Yan, Yajun

    2017-10-20

    Microbial based bioplastics are promising alternatives to petroleum based synthetic plastics due to their renewability and economic feasibility. Glutarate is one of the most potential building blocks for bioplastics. The recent biosynthetic routes for glutarate were mostly based on the l-lysine degradation pathway from Pseudomonas putida that required lysine either by feeding or lysine overproduction via genetic manipulations. Herein, we established a novel glutarate biosynthetic pathway by incorporation of a "+1" carbon chain extension pathway from α-ketoglutarate (α-KG) in combination with α-keto acid decarboxylation pathway in Escherichia coli. Introduction of homocitrate synthase (HCS), homoaconitase (HA) and homoisocitrate dehydrogenase (HICDH) from Saccharomyces cerevisiae into E. coli enabled "+1" carbon extension from α-KG to α-ketoadipate (α-KA), which was subsequently converted into glutarate by a promiscuous α-keto acid decarboxylase (KivD) and a succinate semialdehyde dehydrogenase (GabD). The recombinant E. coli coexpressing all five genes produced 0.3 g/L glutarate from glucose. To further improve the titers, α-KG was rechanneled into carbon chain extension pathway via the clustered regularly interspersed palindromic repeats system mediated interference (CRISPRi) of essential genes sucA and sucB in tricarboxylic acid (TCA) cycle. The final strain could produce 0.42 g/L glutarate, which was increased by 40% compared with the parental strain.

  14. Effect of Nanodisperse Carbon Fillers and Isocyanate Chain Extender on Structure and Properties of Poly(ethylene terephthalate

    Directory of Open Access Journals (Sweden)

    Vladimir Agabekov

    2012-01-01

    Full Text Available The effect of diisocyanate chain extender (CE on the mechanical, rheological, and relaxation properties, as well as on molecular weight and crystallizability, of starting poly(ethylene terephthalate (PET and its composites containing carbon nanomaterials (CNM such as carbon nanotubes (CNTs and commercial carbon (CC has been studied. The composites were compounded in molten PET using twin-screw extruder (screw diameter 35 mm; L/D=40. To improve the distribution of CNM in the polymeric matrix (before introduction into the melt, they were blended with PET powder and subjected to an ultrasonic treatment in methylene chloride. The salient features of the materials structure were estimated based on DSC and relaxation spectrometry (dynamic mechanical analysis data. It has been found that CNM additives partly suppress the PET-chain extension reactions which take place during interaction between macromolecular end groups and CE. Besides, both CNT and CC favour crystallizability of the modified PET owing to nucleation of the crystallization process. The influence of CNT appears to be more effective than that of CC. Enhancements in true mechanical strength and deformability of PET/CE/CNM composites, as against PET/CE materials, were found to be most clearly exhibited by the CNT-containing composites.

  15. Analyzing the impact of carbon regulatory mechanisms on supply chain management.

    Science.gov (United States)

    2014-07-01

    The objective of this research is developing a toolset for designing and managing cost : efficient and environmentally friendly supply chains for perishable products. : The models we propose minimize transportation and inventory holding costs in the ...

  16. Functionalization of vertically aligned carbon nanotubes with polystyrene via surface initiated reversible addition fragmentation chain transfer polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, Thomas; Gibson, Christopher T.; Constantopoulos, Kristina; Shapter, Joseph G. [Flinders Centre for Nanoscale Science and Technology, School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA, 5001 (Australia); Ellis, Amanda V., E-mail: amanda.ellis@flinders.edu.au [Flinders Centre for Nanoscale Science and Technology, School of Chemical and Physical Sciences, Flinders University, GPO Box 2100, Adelaide, SA, 5001 (Australia)

    2012-01-15

    Here we demonstrate the covalent attachment of vertically aligned (VA) acid treated single-walled carbon nanotubes (SWCNTs) onto a silicon substrate via dicyclohexylcarbodiimide (DCC) coupling chemistry. Subsequently, the pendant carboxyl moieties on the sidewalls of the VA-SWCNTs were derivatized to acyl chlorides, and then finally to bis(dithioester) moieties using a magnesium chloride dithiobenzoate salt. The bis(dithioester) moieties were then successfully shown to act as a chain transfer agent (CTA) in the reversible addition fragmentation chain transfer (RAFT) polymerization of styrene in a surface initiated 'grafting-from' process from the VA-SWCNT surface. Atomic force microscopy (AFM) verified vertical alignment of the SWCNTs and the maintenance thereof throughout the synthesis process. Finally, Raman scattering spectroscopy and AFM confirmed polystyrene functionalization.

  17. Functionalization of vertically aligned carbon nanotubes with polystyrene via surface initiated reversible addition fragmentation chain transfer polymerization

    International Nuclear Information System (INIS)

    Macdonald, Thomas; Gibson, Christopher T.; Constantopoulos, Kristina; Shapter, Joseph G.; Ellis, Amanda V.

    2012-01-01

    Here we demonstrate the covalent attachment of vertically aligned (VA) acid treated single-walled carbon nanotubes (SWCNTs) onto a silicon substrate via dicyclohexylcarbodiimide (DCC) coupling chemistry. Subsequently, the pendant carboxyl moieties on the sidewalls of the VA-SWCNTs were derivatized to acyl chlorides, and then finally to bis(dithioester) moieties using a magnesium chloride dithiobenzoate salt. The bis(dithioester) moieties were then successfully shown to act as a chain transfer agent (CTA) in the reversible addition fragmentation chain transfer (RAFT) polymerization of styrene in a surface initiated “grafting-from” process from the VA-SWCNT surface. Atomic force microscopy (AFM) verified vertical alignment of the SWCNTs and the maintenance thereof throughout the synthesis process. Finally, Raman scattering spectroscopy and AFM confirmed polystyrene functionalization.

  18. Surface modification of carbon nanotubes via combination of mussel inspired chemistry and chain transfer free radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Qing; Tian, Jianwen; Liu, Meiying; Zeng, Guangjian; Huang, Qiang [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Wang, Ke; Zhang, Qingsong [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China); Deng, Fengjie, E-mail: fengjiedeng@aliyun.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China)

    2015-08-15

    Graphical abstract: A novel strategy combination of mussel inspired chemistry and chain transfer free radical polymerization has been developed for surface modification of carbon nanotubes with polymers for the first time. - Highlights: • Surface modification of CNTs via mussel inspired chemistry. • Preparation of aminated polymers through free radical polymerization. • Functionalized CNTs with aminated polymers via Michael addition reaction. • Highly dispersed CNTs in organic and aqueous solution. - Abstract: In this work, a novel strategy for surface modification of carbon nanotubes (CNTs) was developed via combination of mussel inspired chemistry and chain transfer free radical polymerization. First, pristine CNTs were functionalized with polydopamine (PDA), which is formed via self-polymerization of dopamine in alkaline conditions. These PDA functionalized CNTs can be further reacted with amino-terminated polymers (named as PDMC), which was synthesized through chain transfer free radical polymerization using cysteamine hydrochloride as chain transfer agent and methacryloxyethyltrimethyl ammonium chloride as the monomer. PDMC perfectly conjugated with CNT-PDA was ascertained by a series of characterization techniques including transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), thermal gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). The dispersibility of obtained CNT nanocomposites (named as CNT-PDA-PDMC) was further examined. Results showed that the dispersibility of CNT-PDA-PDMC in aqueous and organic solutions was obviously enhanced. Apart from PDMC, many other amino-terminated polymers can also be used to functionalization of CNTs via similar strategy. Therefore, the method described in this work should be a general strategy for fabrication various polymer nanocomposites.

  19. Joint Decision-Making and the Coordination of a Sustainable Supply Chain in the Context of Carbon Tax Regulation and Fairness Concerns.

    Science.gov (United States)

    Liu, Zhi; Zheng, Xiao-Xue; Gong, Ben-Gang; Gui, Yun-Miao

    2017-11-27

    Carbon tax regulation and consumers' low-carbon preference act as incentives for firms to abate emissions. Manufacturers can improve product sustainability and retailers can strengthen the promotion of low-carbon products as part of such abatement. Current incomplete rationality also affects product sustainability and low-carbon promotion level. In this context, we consider a supply chain with a manufacturer and a retailer and investigate the impacts of the manufacturer's and the retailer's fairness concerns on their production sustainability level, low-carbon promotion level and profitability. We also explore the coordination contract. The results show that the manufacturer's and the retailer's fairness concerns decrease their product sustainability and low-carbon promotion level, together with the profits of the system and the manufacturer. With regard to the retailer's fairness concern, the product sustainability level and the manufacturer's profit are lower; moreover, the low-carbon promotion level and the profits of the supply chain and the retailer are higher. A revenue-sharing contract can coordinate the supply chain perfectly; however, members' fairness concerns increase the difficulty of coordination. Finally, the numerical results reveal that carbon tax regulation can encourage the manufacturer to enhance the product sustainability level. Further, the impacts on the low-carbon promotion level and firms' profitability are related to the cost coefficients of product sustainability.

  20. Joint Decision-Making and the Coordination of a Sustainable Supply Chain in the Context of Carbon Tax Regulation and Fairness Concerns

    Directory of Open Access Journals (Sweden)

    Zhi Liu

    2017-11-01

    Full Text Available Carbon tax regulation and consumers’ low-carbon preference act as incentives for firms to abate emissions. Manufacturers can improve product sustainability and retailers can strengthen the promotion of low-carbon products as part of such abatement. Current incomplete rationality also affects product sustainability and low-carbon promotion level. In this context, we consider a supply chain with a manufacturer and a retailer and investigate the impacts of the manufacturer’s and the retailer’s fairness concerns on their production sustainability level, low-carbon promotion level and profitability. We also explore the coordination contract. The results show that the manufacturer’s and the retailer’s fairness concerns decrease their product sustainability and low-carbon promotion level, together with the profits of the system and the manufacturer. With regard to the retailer’s fairness concern, the product sustainability level and the manufacturer’s profit are lower; moreover, the low-carbon promotion level and the profits of the supply chain and the retailer are higher. A revenue-sharing contract can coordinate the supply chain perfectly; however, members’ fairness concerns increase the difficulty of coordination. Finally, the numerical results reveal that carbon tax regulation can encourage the manufacturer to enhance the product sustainability level. Further, the impacts on the low-carbon promotion level and firms’ profitability are related to the cost coefficients of product sustainability.

  1. Cost-Sharing Contracts for Energy Saving and Emissions Reduction of a Supply Chain under the Conditions of Government Subsidies and a Carbon Tax

    Directory of Open Access Journals (Sweden)

    Yi Yuyin

    2018-03-01

    Full Text Available To study the cooperation of upstream and downstream enterprises of a supply chain in energy saving and emissions reduction, we establish a Stackelberg game model. The retailer moves first to decide a cost-sharing contract, then the manufacturer determines the energy-saving level, carbon-emission level, and wholesale price successively. In the end, the retailer determines the retail price. As a regulation, the government provides subsidies for energy-saving products, while imposing a carbon tax on the carbon emitted. The results show that (1 both the energy-saving cost-sharing (ECS and the carbon emissions reduction cost-sharing (CCS contracts are not the dominant strategy of the two parties by which they can facilitate energy savings and emissions reductions; (2 compared with single cost-sharing contracts, the bivariate cost-sharing (BCS contract for energy saving and emissions reduction is superior, although it still cannot realise prefect coordination of the supply chain; (3 government subsidy and carbon tax policies can promote the cooperation of both the upstream and downstream enterprises of the supply chain—a subsidy policy can always drive energy saving and emissions reductions, while a carbon tax policy does not always exert positive effects, as it depends on the initial level of pollution and the level of carbon tax; and (4 the subsidy policy reduces the coordination efficiency of the supply chain, while the influences of carbon tax policy upon the coordination efficiency relies on the initial carbon-emission level.

  2. Supplier Selection Study under the Respective of Low-Carbon Supply Chain: A Hybrid Evaluation Model Based on FA-DEA-AHP

    Directory of Open Access Journals (Sweden)

    Xiangshuo He

    2018-02-01

    Full Text Available With the development of global environment and social economy, it is an indispensable choice for enterprises to achieve sustainable growth through developing low-carbon economy and constructing low-carbon supply chain. Supplier is the source of chain, thus selecting excellent low-carbon supplier is the foundation of establishing efficient low-carbon supply chain. This paper presents a novel hybrid model for supplier selection integrated factor analysis (FA, data envelopment analysis (DEA, with analytic hierarchy process (AHP, namely FA-DEA-AHP. First, an evaluation index system is built, incorporating product level, qualification, cooperation ability, and environmental competitiveness. FA is utilized to extract common factors from the 18 pre-selected indicators. Then, DEA is applied to establish the pairwise comparison matrix and AHP is employed to rank these low-carbon suppliers comprehensively and calculate the validity of the decision-making units. Finally, an experiment study with seven cement suppliers in a large industrial enterprise is carried out in this paper. The results reveal that the proposed technique can not only select effective suppliers, but also realize a comprehensive ranking. This research has enriched the methodology of low-carbon supplier evaluation and selection, as well as owns theoretical value in exploring the coordinated development of low-carbon supply chain to some extent.

  3. Non-detection of HC11N towards TMC-1: constraining the chemistry of large carbon-chain molecules

    Science.gov (United States)

    Loomis, Ryan A.; Shingledecker, Christopher N.; Langston, Glen; McGuire, Brett A.; Dollhopf, Niklaus M.; Burkhardt, Andrew M.; Corby, Joanna; Booth, Shawn T.; Carroll, P. Brandon; Turner, Barry; Remijan, Anthony J.

    2016-12-01

    Bell et al. reported the first detection of the cyanopolyyne HC11N towards the cold dark cloud TMC-1; no subsequent detections have been reported towards any source. Additional observations of cyanopolyynes and other carbon-chain molecules towards TMC-1 have shown a log-linear trend between molecule size and column density, and in an effort to further explore the underlying chemical processes driving this trend, we have analysed Green Bank Telescope observations of HC9N and HC11N towards TMC-1. Although we find an HC9N column density consistent with previous values, HC11N is not detected and we derive an upper limit column density significantly below that reported in Bell et al. Using a state-of-the-art chemical model, we have investigated possible explanations of non-linearity in the column density trend. Despite updating the chemical model to better account for ion-dipole interactions, we are not able to explain the non-detection of HC11N, and we interpret this as evidence of previously unknown carbon-chain chemistry. We propose that cyclization reactions may be responsible for the depleted HC11N abundance, and that products of these cyclization reactions should be investigated as candidate interstellar molecules.

  4. China’s inter-regional spillover of carbon emissions and domestic supply chains

    International Nuclear Information System (INIS)

    Meng, Bo; Xue, Jinjun; Feng, Kuishuang; Guan, Dabo; Fu, Xue

    2013-01-01

    In this study, we apply the inter-regional input–output model to explain the relationship between China’s inter-regional spillover of CO 2 emissions and domestic supply chains for 2002 and 2007. Based on this model, we propose alternative indicators such as the trade in CO 2 emissions, CO 2 emissions in trade and the regional trade balances of CO 2 emissions. Our results do not only reveal the nature and significance of inter-regional environmental spillover within China’s domestic regions but also demonstrate how CO 2 emissions are created and distributed across regions via domestic and global production networks. Results show that a region’s CO 2 emissions depend on its intra-regional production technology, energy use efficiency, as well as its position and participation degree in domestic and global supply chains. - Highlights: • An IO model is used to measure China’s inter-regional spillover of CO 2 emissions. • We focus on the relationship between CO 2 emissions and domestic supply chains. • New indexes for identifying the consumer–producer responsibility are proposed. • A region’s emission depends on its position and participation level in supply chains

  5. Fluoroalkyl and Alkyl Chains Have Similar Hydrophobicities in Binding to the “Hydrophobic Wall” of Carbonic Anhydrase

    Energy Technology Data Exchange (ETDEWEB)

    J Mecinovic; P Snyder; K Mirica; S Bai; E Mack; R Kwant; D Moustakas; A Heroux; G Whitesides

    2011-12-31

    The hydrophobic effect, the free-energetically favorable association of nonpolar solutes in water, makes a dominant contribution to binding of many systems of ligands and proteins. The objective of this study was to examine the hydrophobic effect in biomolecular recognition using two chemically different but structurally similar hydrophobic groups, aliphatic hydrocarbons and aliphatic fluorocarbons, and to determine whether the hydrophobicity of the two groups could be distinguished by thermodynamic and biostructural analysis. This paper uses isothermal titration calorimetry (ITC) to examine the thermodynamics of binding of benzenesulfonamides substituted in the para position with alkyl and fluoroalkyl chains (H{sub 2}NSO{sub 2}C{sub 6}H{sub 4}-CONHCH{sub 2}(CX{sub 2}){sub n}CX{sub 3}, n = 0-4, X = H, F) to human carbonic anhydrase II (HCA II). Both alkyl and fluoroalkyl substituents contribute favorably to the enthalpy and the entropy of binding; these contributions increase as the length of chain of the hydrophobic substituent increases. Crystallography of the protein-ligand complexes indicates that the benzenesulfonamide groups of all ligands examined bind with similar geometry, that the tail groups associate with the hydrophobic wall of HCA II (which is made up of the side chains of residues Phe131, Val135, Pro202, and Leu204), and that the structure of the protein is indistinguishable for all but one of the complexes (the longest member of the fluoroalkyl series). Analysis of the thermodynamics of binding as a function of structure is compatible with the hypothesis that hydrophobic binding of both alkyl and fluoroalkyl chains to hydrophobic surface of carbonic anhydrase is due primarily to the release of nonoptimally hydrogen-bonded water molecules that hydrate the binding cavity (including the hydrophobic wall) of HCA II and to the release of water molecules that surround the hydrophobic chain of the ligands. This study defines the balance of enthalpic and

  6. Inhibition of nuclear waste solutions containing multiple aggressive anions

    International Nuclear Information System (INIS)

    Congdon, J.W.

    1987-01-01

    The inhibition of localized corrosion of carbon steel in caustic, high-level radioactive waste solutions was studied using cyclic potentiodynamic polarization scans, supplemented by partially immersed coupon tests. The electrochemical tests provided a rapid and accurate means of determining the relationship between the minimum inhibitor requirements and the concentration of the aggressive anions in this system. Nitrate, sulfate, chloride, and fluoride were identified as aggressive anions, however, no synergistic effects were observed between these anions. This observation may have important theoretical implications because it tends to contradict the behavior of aggressive anions as predicted by existing theories for localized corrosion. 10 refs., 5 figs., 2 tabs

  7. Patchy proteins, anions and the Hofmeister series

    Energy Technology Data Exchange (ETDEWEB)

    Lund, Mikael; Jungwirth, Pavel [Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo namesti 2, 16610 Prague 6 (Czech Republic); Center for Complex Molecular Systems and Biomolecules, Flemingovo namesti 2, 16610 Prague 6 (Czech Republic)], E-mail: mikael.lund@uochb.cas.cz

    2008-12-10

    We investigate specific anion binding to a range of patchy protein models and use our results to probe protein-protein interactions for aqueous lysozyme solutions. Our molecular simulation studies show that the ion-protein interaction mechanism and strength largely depend on the nature of the interfacial amino acid residues. Via direct ion pairing, small anions interact with charged side-chains while larger anions are attracted to non-polar residues due to several solvent assisted mechanisms. Incorporating ion and surface specificity into a mesoscopic model for protein-protein interactions we calculate the free energy of interaction between lysozyme molecules in aqueous solutions of sodium chloride and sodium iodide. In agreement with experiment, our finding is that 'salting out' follows the reverse Hofmeister series for pH below the iso-electric point and the direct series for pH above pI.

  8. Application of nitrogen and carbon stable isotopes (δ(15N and δ(13C to quantify food chain length and trophic structure.

    Directory of Open Access Journals (Sweden)

    Matthew J Perkins

    Full Text Available Increasingly, stable isotope ratios of nitrogen (δ(15N and carbon (δ(13C are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR using δ(15N, and carbon range (CR using δ(13C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in δ(15N or δ(13C from source to consumer between trophic levels and among food chains. δ(15N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰, and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. δ(13C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of δ(13C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority

  9. Application of Nitrogen and Carbon Stable Isotopes (δ15N and δ13C) to Quantify Food Chain Length and Trophic Structure

    Science.gov (United States)

    Perkins, Matthew J.; McDonald, Robbie A.; van Veen, F. J. Frank; Kelly, Simon D.; Rees, Gareth; Bearhop, Stuart

    2014-01-01

    Increasingly, stable isotope ratios of nitrogen (δ15N) and carbon (δ13C) are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR) using δ15N, and carbon range (CR) using δ13C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in δ15N or δ13C from source to consumer) between trophic levels and among food chains. δ15N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰), and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. δ13C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of δ13C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority of ecological systems

  10. Application of nitrogen and carbon stable isotopes (δ(15)N and δ(13)C) to quantify food chain length and trophic structure.

    Science.gov (United States)

    Perkins, Matthew J; McDonald, Robbie A; van Veen, F J Frank; Kelly, Simon D; Rees, Gareth; Bearhop, Stuart

    2014-01-01

    Increasingly, stable isotope ratios of nitrogen (δ(15)N) and carbon (δ(13)C) are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR) using δ(15)N, and carbon range (CR) using δ(13)C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in δ(15)N or δ(13)C from source to consumer) between trophic levels and among food chains. δ(15)N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰), and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. δ(13)C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of δ(13)C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority of

  11. Adsorption and desorption dynamics of citric acid anions in soil

    KAUST Repository

    Oburger, E.; Leitner, D.; Jones, D. L.; Zygalakis, K. C.; Schnepf, A.; Roose, T.

    2011-01-01

    The functional role of organic acid anions in soil has been intensively investigated, with special focus on (i) microbial respiration and soil carbon dynamics, (ii) nutrient solubilization or (iii) metal detoxification and reduction of plant metal

  12. Cognition and Synaptic-Plasticity Related Changes in Aged Rats Supplemented with 8- and 10-Carbon Medium Chain Triglycerides.

    Directory of Open Access Journals (Sweden)

    Dongmei Wang

    Full Text Available Brain glucose hypometabolism is a common feature of Alzheimer's disease (AD. Previous studies have shown that cognition is improved by providing AD patients with an alternate energy source: ketones derived from either ketogenic diet or supplementation with medium chain triglycerides (MCT. Recently, data on the neuroprotective capacity of MCT-derived medium chain fatty acids (MCFA suggest 8-carbon and 10-carbon MCFA may have cognition-enhancing properties which are not related to ketone production. We investigated the effect of 8 week treatment with MCT8, MCT10 or sunflower oil supplementation (5% by weight of chow diet in 21 month old Wistar rats. Both MCT diets increased ketones plasma similarly compared to control diet, but MCT diets did not increase ketones in the brain. Treatment with MCT10, but not MCT8, significantly improved novel object recognition memory compared to control diet, while social recognition increased in both MCT groups. MCT8 and MCT10 diets decreased weight compared to control diet, where MCFA plasma levels were higher in MCT10 groups than in MCT8 groups. Both MCT diets increased IRS-1 (612 phosphorylation and decreased S6K phosphorylation (240/244 but only MCT10 increased Akt phosphorylation (473. MCT8 supplementation increased synaptophysin, but not PSD-95, in contrast MCT10 had no effect on either synaptic marker. Expression of Ube3a, which controls synaptic stability, was increased by both MCT diets. Cortex transcription via qPCR showed that immediate early genes related to synaptic plasticity (arc, plk3, junb, egr2, nr4a1 were downregulated by both MCT diets while MCT8 additionally down-regulated fosb and egr1 but upregulated grin1 and gba2. These results demonstrate that treatment of 8- and 10-carbon length MCTs in aged rats have slight differential effects on synaptic stability, protein synthesis and behavior that may be independent of brain ketone levels.

  13. The Biosynthesis of Nitrogen-, Sulfur-, and High-carbon Chain-containing Sugars†

    OpenAIRE

    Lin, Chia-I; McCarty, Reid M.; Liu, Hung-wen

    2013-01-01

    Carbohydrates serve many structural and functional roles in biology. While the majority of monosaccharides are characterized by the chemical composition: (CH2O)n, modifications including deoxygenation, C-alkylation, amination, O- and N-methylation, which are characteristic of many sugar appendages of secondary metabolites, are not uncommon. Interestingly, some sugar molecules are formed via modifications including amine oxidation, sulfur incorporation, and “high-carbon” chain attachment. Most...

  14. The Effect of Single, Binary and Ternary Anions of Chloride, Carbonate and Phosphate on the Release of 2,4-Dichlorophenoxyacetate Intercalated into the Zn–Al-layered Double Hydroxide Nanohybrid

    Directory of Open Access Journals (Sweden)

    Zainal Zulkarnain

    2009-01-01

    Full Text Available Abstract Intercalation of beneficial anion into inorganic host has lead to an opportunity to synthesize various combinations of new organic–inorganic nanohybrids with various potential applications; especially, for the controlled release formulation and storage purposes. Investigation on the release behavior of 2,4-dichlorophenoxyacetate (2,4-D intercalated into the interlayer of Zn–Al-layered double hydroxide (ZAN have been carried out using single, binary and ternary aqueous systems of chloride, carbonate and phosphate. The release behavior of the active agent 2,4-D from its double-layered hydroxide nanohybrid ZANDI was found to be of controlled manner governed by pseudo-second order kinetics. It was found that carbonate medium yielded the highest accumulated release of 2,4-D, while phosphate in combination with carbonate and/or nitrate speeds up the release rate of 2,4-D. These results indicate that it is possible to design and develop new delivery system of latex stimulant compound with controlled release property based on 2,4-D that is known as a substance to increase latex production of rubber tree,Hevea brasiliensis.

  15. Bond length and electric current oscillation of long linear carbon chains: Density functional theory, MpB model, and quantum spin transport studies

    International Nuclear Information System (INIS)

    Oeiras, R. Y.; Silva, E. Z. da

    2014-01-01

    Carbon linear atomic chains attached to graphene have experimentally been produced. Motivated by these results, we study the nature of the carbon bonds in these nanowires and how it affects their electrical properties. In the present study we investigate chains with different numbers of atoms and we observe that nanowires with odd number of atoms present a distinct behavior than the ones with even numbers. Using graphene nanoribbons as leads, we identify differences in the quantum transport of the chains with the consequence that even and odd numbered chains have low and high electrical conduction, respectively. We also noted a dependence of current with the wire size. We study this unexpected behavior using a combination of first principles calculations and simple models based on chemical bond theory. From our studies, the electrons of carbon nanowires present a quasi-free electron behavior and this explains qualitatively the high electrical conduction and the bond lengths with unexpected values for the case of odd nanowires. Our study also allows the understanding of the electric conduction dependence with the number of atoms and their parity in the chain. In the case of odd number chains a proposed π-bond (MpB) model describes unsaturated carbons that introduce a mobile π-bond that changes dramatically the structure and transport properties of these wires. Our results indicate that the nature of bonds plays the main role in the oscillation of quantum electrical conduction for chains with even and odd number of atoms and also that nanowires bonded to graphene nanoribbons behave as a quasi-free electron system, suggesting that this behavior is general and it could also remain if the chains are bonded to other materials

  16. A ‘Carbon Saving Multiplier’ as an alternative to rebound in considering reduced energy supply chain requirements from energy efficiency?

    International Nuclear Information System (INIS)

    Turner, Karen; Katris, Antonios

    2017-01-01

    A growing area of research into rebound effects from increased energy efficiency involves application of demand-driven input-output models to consider indirect energy consumption effects associated with re-spending decisions by households with reduced energy spending requirements. However, there is often a lack of clarity in applied studies as to how indirect effects involving energy use and/or carbon emissions in supply chains of both energy and non-energy goods and services have been calculated. We propose that more transparency for policymakers may be introduced by replacing consideration of what are often referred to as ‘indirect rebound’ effects with a simple Carbon Saving Multiplier metric. We illustrate using results from a demand-driven input-output model that tracks supply chain activity at national and/or global level. We argue that this captures and conveys the same information on quantity adjustments in energy used in supply chain activity but does so in a manner that is more positive, transparent, understandable and useful for a policy audience. This is achieved by focusing (here via carbon emissions) on the net benefits of changes in different types of energy use at both household and supply chain levels when energy efficiency improves in households. - Highlights: • Considers energy supply adjustments when household energy efficiency improves. • Focuses on energy supply chain impacts that may offset direct rebound effects. • Carbon Saving Multiplier proposed as a useful indicator of net energy use benefits.

  17. Impact of carbon monoxide partial pressures on methanogenesis and medium chain fatty acids production during ethanol fermentation.

    Science.gov (United States)

    Esquivel-Elizondo, Sofia; Miceli, Joseph; Torres, Cesar I; Krajmalnik-Brown, Rosa

    2018-02-01

    Medium-chain fatty acids (MCFA) are important biofuel precursors. Carbon monoxide (CO) is a sustainable electron and carbon donor for fatty acid elongation, since it is metabolized to MCFA precursors, it is toxic to most methanogens, and it is a waste product generated in the gasification of waste biomass. The main objective of this work was to determine if the inhibition of methanogenesis through the continuous addition of CO would lead to increased acetate or MCFA production during fermentation of ethanol. The effects of CO partial pressures (P CO ; 0.08-0.3 atm) on methanogenesis, fatty acids production, and the associated microbial communities were studied in batch cultures fed with CO and ethanol. Methanogenesis was partially inhibited at P CO  ≥ 0.11 atm. This inhibition led to increased acetate production during the first phase of fermentation (0-19 days). However, a second addition of ethanol (day 19) triggered MCFA production only at P CO  ≥ 0.11 atm, which probably occurred through the elongation of acetate with CO-derived ethanol and H 2 :CO 2 . Accordingly, during the second phase of fermentation (days 20-36), the distribution of electrons to acetate decreased at higher P CO , while electrons channeled to MCFA increased. Most probably, Acetobacterium, Clostridium, Pleomorphomonas, Oscillospira, and Blautia metabolized CO to H 2 :CO 2 , ethanol and/or fatty acids, while Peptostreptococcaceae, Lachnospiraceae, and other Clostridiales utilized these metabolites, along with the provided ethanol, for MCFA production. These results are important for biotechnological systems where fatty acids production are preferred over methanogenesis, such as in chain elongation systems and microbial fuel cells. © 2017 Wiley Periodicals, Inc.

  18. Low-Dimensional Network Formation in Molten Sodium Carbonate.

    Science.gov (United States)

    Wilding, Martin C; Wilson, Mark; Alderman, Oliver L G; Benmore, Chris; Weber, J K R; Parise, John B; Tamalonis, Anthony; Skinner, Lawrie

    2016-04-15

    Molten carbonates are highly inviscid liquids characterized by low melting points and high solubility of rare earth elements and volatile molecules. An understanding of the structure and related properties of these intriguing liquids has been limited to date. We report the results of a study of molten sodium carbonate (Na2CO3) which combines high energy X-ray diffraction, containerless techniques and computer simulation to provide insight into the liquid structure. Total structure factors (F(x)(Q)) are collected on the laser-heated carbonate spheres suspended in flowing gases of varying composition in an aerodynamic levitation furnace. The respective partial structure factor contributions to F(x)(Q) are obtained by performing molecular dynamics simulations treating the carbonate anions as flexible entities. The carbonate liquid structure is found to be heavily temperature-dependent. At low temperatures a low-dimensional carbonate chain network forms, at T = 1100 K for example ~55% of the C atoms form part of a chain. The mean chain lengths decrease as temperature is increased and as the chains become shorter the rotation of the carbonate anions becomes more rapid enhancing the diffusion of Na(+) ions.

  19. New Molecular Detections in TMC-1 with the Green Bank Telescope: Carbon-Chain and Aromatic Molecules

    Science.gov (United States)

    Burkhardt, Andrew Michael

    2018-01-01

    Polycyclic aromatic hydrocarbons (PAHs) and polycyclic aromatic nitrogen heterocycles PA(N)Hs are believed to be widespread throughout the Universe, and are likely responsible for the unidentified infrared bands. However, the individual detection of aromatic molecules has been limited to a single weak absorption feature of an infrared bending mode of benzene (c-C6H6). The cold core TMC-1 has long been a source of new molecular detections, particularly for unsaturated carbon-rich molecules that are appealing potential precursors of PA(N)Hs. Through deep observations with the Green Bank Telescope of TMC-1, we report the first rotational detection of an aromatic molecule, benzonitrile (c-C6H5CN), along with 8 new isotopologues of HC5N and HC7N and an entirely new molecular family (HC5O, HC7O). These new detections provide crucial insights to the formation of PAHs and the underlying carbon-chain chemistry of dark clouds.

  20. Medium-chain-length poly-3-hydroxyalkanoates-carbon nanotubes composite anode enhances the performance of microbial fuel cell.

    Science.gov (United States)

    Hindatu, Y; Annuar, M S M; Subramaniam, R; Gumel, A M

    2017-06-01

    Insufficient power generation from a microbial fuel cell (MFC) hampers its progress towards utility-scale development. Electrode modification with biopolymeric materials could potentially address this issue. In this study, medium-chain-length poly-3-hydroxyalkanoates (PHA)/carbon nanotubes (C) composite (CPHA) was successfully applied to modify the surface of carbon cloth (CC) anode in MFC. Characterization of the functional groups on the anodic surface and its morphology was carried out. The CC-CPHA composite anode recorded maximum power density of 254 mW/m 2 , which was 15-53% higher than the MFC operated with CC-C (214 mW/m 2 ) and pristine CC (119 mW/m 2 ) as the anode in a double-chambered MFC operated with Escherichia coli as the biocatalyst. Electrochemical impedance spectroscopy and cyclic voltammetry showed that power enhancement was attributed to better electron transfer capability by the bacteria for the MFC setup with CC-CPHA anode.

  1. NOR and nitroxide-based HAS in accelerated photooxidation of carbon-chain polymers; comparison with secondary HAS: an ESRI and ATR FTIR study

    Czech Academy of Sciences Publication Activity Database

    Pilař, Jan; Michálková, Danuše; Šeděnková, Ivana; Pfleger, Jiří; Pospíšil, Jan

    2011-01-01

    Roč. 96, č. 5 (2011), s. 847-862 ISSN 0141-3910 R&D Projects: GA AV ČR IAA400500804 Institutional research plan: CEZ:AV0Z40500505 Keywords : commodity carbon-chain polymers * photodegradation * accelerated weathering Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.769, year: 2011

  2. Equilibrium polymerization of cyclic carbonate oligomers. III. Chain branching and the gel transition

    Science.gov (United States)

    Ballone, P.; Jones, R. O.

    2002-10-01

    Ring-opening polymerization of cyclic polycarbonate oligomers, where monofunctional active sites act on difunctional monomers to produce an equilibrium distribution of rings and chains, leads to a "living polymer." Monte Carlo simulations [two-dimensional (2D) and three-dimensional (3D)] of the effects of single [J. Chem. Phys. 115, 3895 (2001)] and multiple active sites [J. Chem. Phys. 116, 7724 (2002)] are extended here to trifunctional active sites that lead to branching. Low concentrations of trifunctional particles c3 reduce the degree of polymerization significantly in 2D, and higher concentrations (up to 32%) lead to further large changes in the phase diagram. Gel formation is observed at high total density and sizable c3 as a continuous transition similar to percolation. Polymer and gel are much more stable in 3D than in 2D, and both the total density and the value of c3 required to produce high molecular weight aggregates are reduced significantly. The degree of polymerization in high-density 3D systems is increased by the addition of trifunctional monomers and reduced slightly at low densities and low c3. The presence of branching makes equilibrium states more sensitive (in 2D and 3D) to changes in temperature T. The stabilities of polymer and gel are enhanced by increasing T, and—for sufficiently high values of c3—there is a reversible polymer-gel transformation at a density-dependent floor temperature.

  3. Life Cycle Assessment and Carbon Footprint in the Wine Supply-Chain

    Science.gov (United States)

    Pattara, Claudio; Raggi, Andrea; Cichelli, Angelo

    2012-06-01

    Global warming represents one of the most critical internationally perceived environmental issues. The growing, and increasingly global, wine sector is one of the industries which is under increasing pressure to adopt approaches for environmental assessment and reporting of product-related greenhouse gas emissions. The International Organization for Vine and Wine has recently recognized the need to develop a standard and objective methodology and a related tool for calculating carbon footprint (CF). This study applied this tool to a wine previously analyzed using the life cycle assessment (LCA) methodology. The objective was to test the tool as regards both its potential and possible limitations, and thus to assess its suitability as a standard tool. Despite the tool's user-friendliness, a number of limitations were noted including the lack of accurate baseline data, a partial system boundary and the impossibility of dealing with the multi-functionality issue. When the CF and LCA results are compared in absolute terms, large discrepancies become obvious due to a number of different assumptions, as well as the modeling framework adopted. Nonetheless, in relative terms the results seem to be quite consistent. However, a critical limitation of the CF methodology was its focus on a single issue, which can lead to burden shifting. In conclusion, the study confirmed the need for both further improvement and adaptation to additional contexts and further studies to validate the use of this tool in different companies.

  4. Targeting Antibodies to Carbon Nanotube Field Effect Transistors by Pyrene Hydrazide Modification of Heavy Chain Carbohydrates

    Directory of Open Access Journals (Sweden)

    Steingrimur Stefansson

    2012-01-01

    Full Text Available Many carbon nanotube field-effect transistor (CNT-FET studies have used immobilized antibodies as the ligand binding moiety. However, antibodies are not optimal for CNT-FET detection due to their large size and charge. Their size can prevent ligands from reaching within the Debye length of the CNTs and a layer of charged antibodies on the circuits can drown out any ligand signal. In an attempt to minimize the antibody footprint on CNT-FETs, we examined whether pyrene hydrazide modification of antibody carbohydrates could reduce the concentration required to functionalize CNT circuits. The carbohydrates are almost exclusively on the antibody Fc region and this site-specific modification could mediate uniform antibody orientation on the CNTs. We compared the hydrazide modification of anti-E. coli O157:H7 polyclonal antibodies to pyrenebutanoic acid succinimidyl ester-coated CNTs and carbodiimide-mediated antibody CNT attachment. Our results show that the pyrene hydrazide modification was superior to those methods with respect to bacteria detection and less than 1 nM labeled antibody was required to functionalize the circuits.

  5. Surface properties and aggregate morphology of partially fluorinated carboxylate-type anionic gemini surfactants.

    Science.gov (United States)

    Yoshimura, Tomokazu; Bong, Miri; Matsuoka, Keisuke; Honda, Chikako; Endo, Kazutoyo

    2009-11-01

    Three anionic homologues of a novel partially fluorinated carboxylate-type anionic gemini surfactant, N,N'-di(3-perfluoroalkyl-2-hydroxypropyl)-N,N'-diacetic acid ethylenediamine (2C(n)(F) edda, where n represents the number of carbon atoms in the fluorocarbon chain (4, 6, and 8)) were synthesized. In these present gemini surfactants, the relatively small carboxylic acid moieties form hydrophilic head groups. The surface properties or structures of the aggregates of these surfactants are strongly influenced by the nonflexible fluorocarbons and small head groups; this is because these surfactants have a closely packed molecular structure. The equilibrium surface tension properties of these surfactants were measured at 298.2K for various fluorocarbon chain lengths. The plot of the logarithm of the critical micelle concentration (cmc) against the fluorocarbon chain lengths for 2C(n)(F) edda (n=4, 6, and 8) showed a minimum for n=6. Furthermore, the lowest surface tension of 2C(6)(F) edda at the cmc was 16.4mNm(-1). Such unique behavior has not been observed even in the other fluorinated surfactants. Changes in the shapes and sizes of these surfactant aggregate with concentration were investigated by dynamic light scattering and transmission electron microscopy (TEM). The TEM micrographs showed that in an aqueous alkali solution, 2C(n)(F) edda mainly formed aggregates with stringlike (n=4), cagelike (n=6), and distorted bilayer structures (n=8). The morphological changes in the aggregates were affected by the molecular structure composed of nonflexible fluorocarbon chains and flexible hydrocarbon chains.

  6. Towards a Carbon-Neutral Energy Sector: Opportunities and Challenges of Coordinated Bioenergy Supply Chains-A PSE Approach

    Directory of Open Access Journals (Sweden)

    Luis Puigjaner

    2015-06-01

    Full Text Available The electricity generation sector needs to reduce its environmental impact and dependence on fossil fuel, mainly from coal. Biomass is one of the most promising future options to produce electricity, given its potential contribution to climate change mitigation. Even though biomass is an old source of energy, it is not yet a well-established commodity. The use of biomass in large centralised systems requires the establishment of delivery channels to provide the desired feedstock with the necessary attributes, at the right time and place. In terms of time to deployment and cost of the solution, co-combustion/co-gasification of biomass and coal are presented as transition and short-medium term alternatives towards a carbon-neutral energy sector. Hence, there is a need to assess an effective introduction of co-combustion/co-gasification projects in the current electricity production share. The purpose of this work is to review recent steps in Process Systems Engineering towards bringing into reality individualised and ad-hoc solutions, by building a common but adjustable design platform to tailored approaches of biomass-based supply chains. Current solutions and the latest developments are presented and future needs under study are also identified.

  7. Assessing the fate of nutrients and carbon in the bioenergy chain through the modeling of biomass growth and conversion.

    Science.gov (United States)

    François, Jessica; Fortin, Mathieu; Patisson, Fabrice; Dufour, Anthony

    2014-12-02

    A forest growth model was coupled to a model of combined heat and power (CHP) production in a gasification plant developed in Aspen Plus. For a given production, this integrated forest-to-energy model made it possible to predict the annual flows in wood biomass, carbon, and nutrients, including N, S, P, and K, from the forest to the air emissions (NOx, SOx, PAH, etc.) and ash flows. We simulated the bioenergy potential of pure even-aged high-forest stands of European beech, an abundant forest type in Northeastern France. Two forest management practices were studied, a standard-rotation and a shorter-rotation scenario, along with two wood utilizations: with or without fine woody debris (FWD) harvesting. FWD harvesting tended to reduce the forested area required to supply the CHP by 15–22% since larger amounts of energy wood were available for the CHP process, especially in the short-rotation scenario. Because less biomass was harvested, the short-rotation scenario with FWD decreased the nutrient exports per hectare and year by 4–21% compared to standard practices but increased the amount of N, S, and P in the CHP process by 2–9%. This increase in the input nutrient flows had direct consequences on the inorganic air emissions, thus leading to additional NOx and SO2 emissions. This model is a valuable tool for assessing the life cycle inventories of the entire bioenergy chain.

  8. New anion-exchange polymers for improved separations

    International Nuclear Information System (INIS)

    Jarvinen, G.D.; Barr, M.E.; Marsh, S.F.

    1997-01-01

    Objective is to improve the understanding of how the structure of a new class of anion-exchange polymers controls the binding of anionic actinide complexes from solution. This is needed to develop practical separation systems that will reduce the cost of actinide processing operations within the DOE complex. In addition anion exchange is widely used in industry. Several new series of bifunctional anion- exchange polymers have been designed, synthesized, and tested for removing Pu(IV), Am(III), and U(VI) from nitric acid. The polymers contain a pyridinium site derived from the host poly(4-vinylpyridine) and a second cationic site attached through a chain of 2 to 6 methylene groups. The new polymers removed Pu four to ten times more efficiently than the best commercial materials

  9. Molecular sieve isolation technique for use in stable carbon isotope analysis of individual long-chain n-alkanes in crude oil

    International Nuclear Information System (INIS)

    Yamada, Keita; Kon, Makoto; Naraoka, Hiroshi; Ishiwatari, Ryoshi; Uzaki, Minoru.

    1994-01-01

    An isolation procedure of microgram amounts of long-chain n-alkanes from crude oil using molecular sieve was examined for its applicability to stable carbon isotope analysis by gas chromatography/isotope ratio mass spectrometry (GC/IRMS). The procedure examined is as follows: molecular sieve (type 5A, 200 mg) in 1 ml of isooctane solvent are mixed with a saturated hydrocarbon fraction extracted from an appropriate amount (approx. 20 mg) of crude oil and stayed at room temperatures for more than 3 hours. Long-chain n-alkanes are isolated by extraction with n-hexane after dissolution of the resulting molecular sieve with 47% hydrofluoric acid solution. The recoveries were 90±6% for C 15 -C 34 n-alkanes when their total amounts applied do not exceed 1.4 mg. No effect of the isolation procedure on carbon isotope ratios of n-alkanes was observed. (author)

  10. Anionic surface binders

    OpenAIRE

    Aljaž-Rožič Mateja; Hočevar Nežka

    2004-01-01

    The MELAMIN Chemical Factory in Kočevje manufactures synthetic resins and binders for the paper industry. Binders based on AKD (alkyl ketene dimer) are produced which are used for binding paper and cardboard in the range of neutral and partially basic pH. Cationic and, lately, anionic binders are mostly used for the bulk binding of paper and board. The possibility of using AKD binders on paper or board surfaces is presented. In this case partially cationic AKD binders may be applied. When opt...

  11. Measuring the environmental sustainability performance of global supply chains: A multi-regional input-output analysis for carbon, sulphur oxide and water footprints.

    Science.gov (United States)

    Acquaye, Adolf; Feng, Kuishuang; Oppon, Eunice; Salhi, Said; Ibn-Mohammed, Taofeeq; Genovese, Andrea; Hubacek, Klaus

    2017-02-01

    Measuring the performance of environmentally sustainable supply chains instead of chain constitute has become a challenge despite the convergence of the underlining principles of sustainable supply chain management. This challenge is exacerbated by the fact that supply chains are inherently dynamic and complex and also because multiple measures can be used to characterize performances. By identifying some of the critical issues in the literature regarding performance measurements, this paper contributes to the existing body of literature by adopting an environmental performance measurement approach for economic sectors. It uses economic sectors and evaluates them on a sectoral level in specific countries as well as part of the Global Value Chain based on the established multi-regional input-output (MRIO) modeling framework. The MRIO model has been used to calculate direct and indirect (that is supply chain or upstream) environmental effects such as CO 2 , SO 2 , biodiversity, water consumption and pollution to name just a few of the applications. In this paper we use MRIO analysis to calculate emissions and resource consumption intensities and footprints, direct and indirect impacts, and net emission flows between countries. These are exemplified by using carbon emissions, sulphur oxide emissions and water use in two highly polluting industries; Electricity production and Chemical industry in 33 countries, including the EU-27, Brazil, India and China, the USA, Canada and Japan from 1995 to 2009. Some of the highlights include: On average, direct carbon emissions in the electricity sector across all 27 member states of the EU was estimated to be 1368 million tons and indirect carbon emissions to be 470.7 million tons per year representing 25.6% of the EU-27 total carbon emissions related to this sector. It was also observed that from 2004, sulphur oxide emissions intensities in electricity production in India and China have remained relatively constant at about 62

  12. The many ways of making anionic clays

    Indian Academy of Sciences (India)

    Together with hydrotalcite-like layered double hydroxides, bivalent and trivalent metal hydroxides and their hydroxy salts are actually anionic clays consisting of positively charged hydroxide layers with anions intercalated in the interlayer region. The anionic clays exhibit anion sorption, anion diffusion and exchange ...

  13. Elucidating adsorption mechanisms of phthalate esters upon carbon nanotubes/graphene and natural organic acid competitive effects in water by DFT and MD calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhuang; Wang, Se; Chen, Min Dong; Xu, Defu [Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu KeyLaboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), School ofEnvironmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing (China); Tang, Lili [Jiangsu Environmental Monitoring Centre, Nanjing (China); Wang, Degao [Dept. of Environmental Science and Engineering, Dalian Maritime University, Dalian (China)

    2015-06-15

    Simulations at multiple levels were performed to investigate the aqueous adsorption of phthalate esters (PAEs) on carbon nanoparticles and to find the competitive effect of a low molecular weight natural organic acid (benzoic acid) on the adsorption process. Six PAEs of varying alkyl side chain lengths and three carbon-based nanomaterials including a single-walled carbon nanotube (SWNT), double-walled carbon nanotube (DWNT), and graphene (G) were studied. Results showed that the adsorption energies calculated using density functional theory increase with increasing length of the PAE alkyl chain. G exhibits higher adsorption capacity for the PAEs than SWNT and DWNT. The absolute adsorption energies of these systems also display a positive linear correlation with the hydrophobicity of the PAE molecules. Molecular dynamics simulations indicate that the presence of neutral/anionic benzoic acid in water alleviates the PAE adsorption. Furthermore, anionic benzoic acid exerts more impact on the PAE adsorption than the neutral form.

  14. First principles studies of the electronic properties and catalytic activity of single-walled carbon nanotube doped with Pt clusters and chains

    International Nuclear Information System (INIS)

    Hayes, Kayla E.; Lee, Hee-Seung

    2012-01-01

    Highlights: ► Electronic and magnetic properties of (5, 5)-SWNT doped with Pt clusters and chains. ► Pt-doping can change metallic (5, 5)-SWNT to semiconducting CNT. ► Oxygen adsorption on Pt-doped (5, 5)-SWNT is barrierless process. ► Pt-doping reduces the activation barrier of oxygen dissociation reaction. ► Adsorbed oxygen has 2 O 2 - – character. - Abstract: We report the results of density functional theory calculations on the electronic structures, geometrical parameters, and magnetic properties of a wide variety of Pt clusters/chains adsorbed on metallic (5,5) single-walled carbon nanotube (SWNT). It was found that the electronic band structures of Pt/CNT systems are very sensitive to the small changes in the geometries of Pt clusters and chains. In some cases, metallic (5, 5)-SWNT becomes a small-gap semiconducting nanotube with adsorbed Pt clusters and chains. We also investigated the dissociation of molecular oxygen on the (5, 5)-SWNT doped with a single Pt atom via the nudged elastic band (NEB) method. The NEB results showed that the activation barrier is lowered even with a single Pt atom compared to that of pristine SWNT. It was found that the electronic structure of molecular oxygen adsorbed on Pt-doped CNT resembles that of 2 O 2 - , which should facilitate the dissociation process.

  15. Effect of Amphiphilic Alkyl Chain Length Upon Purified LATEX Stability

    International Nuclear Information System (INIS)

    Amira Amir Hassan; Amir Hashim Mohd Yatim

    2015-01-01

    Rubber particles in purified latex (PL) are stabilized by a film of protein and fatty acid soap (surfactant). Saturated straight-chain fatty acid soaps can assist an enhancement of latex stability. However, whether the alkyl chain length plays an important role in increasing the stability is still an issue. The aim of this study is to investigate the effect of alkyl chain length of anionic surfactant on the stability of purified latex. The fatty acid soap of decanoate (9), laurate (11), sodium dodecyl sulphate (SDS) (12) and palmitate (15) were used. The numbers in parentheses indicating the number of carbon present in alkyl chain of the soap. The results showed that the impact of alkyl chain length on the stability of latex is in the order of laurate > decanoate > SDS > palmitate > purified latex accordingly. The alkyl chain length does giving a significant effect on latex stability after longer stirring time. The particle size of latex with the presence of surfactant is greater compare to a single particle itself due to extension of particles diameter. Thus suitable interaction of the nonpolar tail of surfactant with the hydrophobic regions of latex surface played a major role in maintaining a stable latex system. (author)

  16. Synthesis of SnO2 pillared carbon using long chain alkylamine grafted graphene oxide: an efficient anode material for lithium ion batteries.

    Science.gov (United States)

    Reddy, M Jeevan Kumar; Ryu, Sung Hun; Shanmugharaj, A M

    2016-01-07

    With the objective of developing new advanced composite materials that can be used as anodes for lithium ion batteries (LIBs), herein we describe the synthesis of SnO2 pillared carbon using various alkylamine (hexylamine; dodecylamine and octadecylamine) grafted graphene oxides and butyl trichlorotin precursors followed by its calcination at 500 °C for 2 h. While the grafted alkylamine induces crystalline growth of SnO2 pillars, thermal annealing of alkylamine grafted graphene oxide results in the formation of amorphous carbon coated graphene. Field emission scanning electron microscopy (FE-SEM) results reveal the successful formation of SnO2 pillared carbon on the graphene surface. X-ray diffraction (XRD), transmission electron microscopy (TEM) and Raman spectroscopy characterization corroborates the formation of rutile SnO2 crystals on the graphene surface. A significant rise in the BET surface area is observed for SnO2 pillared carbon, when compared to pristine GO. Electrochemical characterization studies of SnO2 pillared carbon based anode materials showed an enhanced lithium storage capacity and fine cyclic performance in comparison with pristine GO. The initial specific capacities of SnO2 pillared carbon are observed to be 1379 mA h g(-1), 1255 mA h g(-1) and 1360 mA h g(-1) that decrease to 750 mA h g(-1), 643 mA h g(-1) and 560 mA h g(-1) depending upon the chain length of grafted alkylamine on the graphene surface respectively. Electrochemical impedance spectral analysis reveals that the exchange current density of SnO2 pillared carbon based electrodes is higher, corroborating its enhanced electrochemical activity in comparison with GO based electrodes.

  17. A density functional theory study on the carbon chain growth of ethanol formation on Cu-Co (111) and (211) surfaces

    Science.gov (United States)

    Ren, Bohua; Dong, Xiuqin; Yu, Yingzhe; Wen, Guobin; Zhang, Minhua

    2017-08-01

    Calculations based on the first-principle density functional theory were carried out to study the most controversial reactions in ethanol formation from syngas on Cu-Co surfaces: CO dissociation mechanism and the key reactions of carbon chain growth of ethanol formation (HCO insertion reactions) on four model surfaces (Cu-Co (111) and (211) with Cu-rich or Co-rich surfaces) to investigate the synergy of the Cu and Co components since the complete reaction network of ethanol formation from syngas is a huge computational burden to calculate on four Cu-Co surface models. We investigated adsorption of important species involved in these reactions, activation barrier and reaction energy of H-assisted dissociation mechanism, directly dissociation of CO, and HCO insertion reactions (CHx + HCO → CHxCHO (x = 1-3)) on four Cu-Co surface models. It was found that reactions on Cu-rich (111) and (211) surfaces all have lower activation barrier in H-assisted dissociation and HCO insertion reactions, especially CH + HCO → CHCHO reaction. The PDOS of 4d orbitals of surface Cu and Co atoms of all surfaces were studied. Analysis of d-band center of Cu and Co atoms and the activation barrier data suggested the correlation between electronic property and catalytic performance. Cu-Co bimetallic with Cu-rich surface allows Co to have higher catalytic activity through the interaction of Cu and Co atom. Then it will improve the adsorption of CO and catalytic activity of Co. Thus it is more favorable to the carbon chain growth in ethanol formation. Our study revealed the factors influencing the carbon chain growth in ethanol production and explained the internal mechanism from electronic property aspect.

  18. Dynamics of transfer of electron excitation in a donor-acceptor system with a carbon chain and ways of its relaxation

    Directory of Open Access Journals (Sweden)

    M.M. Sevryukova

    2017-12-01

    Full Text Available The optical properties and dynamics of transport of electron excitation and the ways of its relaxation in the supramolecular D–π–A complex on the basis of merocyanines have been investigated. There have been found two components in the transfer of charge: fast and slow, which correspond to different conformational states of the carbon chain in merocyanines. It was found that the main photoluminescence of the studied molecular solutions of merocyanines by its nature is similar to the exciplex luminescence, as a manifestation of resonant and charge transfer interaction in an excited state. The lifetime in this state is about 2000 ps.

  19. A density functional theory study on the carbon chain growth of ethanol formation on Cu-Co (111) and (211) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Bohua; Dong, Xiuqin; Yu, Yingzhe [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Wen, Guobin [Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China); Zhang, Minhua, E-mail: mhzhang@tju.edu.cn [Key Laboratory for Green Chemical Technology of Ministry of Education, R& D Center for Petrochemical Technology, Tianjin University, Tianjin 300072 (China); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072 (China)

    2017-08-01

    Highlights: • Calculations based on the first-principle density functional theory were carried out to study ethanol formation from syngas on Cu-Co surfaces. • The most controversial reactions in ethanol formation from syngas were researched: CO dissociation mechanism and the key reactions of carbon chain growth of ethanol formation (HCO insertion reactions (CHx + HCO → CHxCHO (x = 1–3))). • Four model surfaces (Cu-Co (111) and (211) with Cu-rich or Co-rich surfaces) were built to investigate the synergy of the Cu and Co components. • The PDOS of 4d orbitals and d-band center analysis of surface Cu and Co atoms of all surfaces were studied to reveal correlation between electronic property and catalytic performance. - Abstract: Calculations based on the first-principle density functional theory were carried out to study the most controversial reactions in ethanol formation from syngas on Cu-Co surfaces: CO dissociation mechanism and the key reactions of carbon chain growth of ethanol formation (HCO insertion reactions) on four model surfaces (Cu-Co (111) and (211) with Cu-rich or Co-rich surfaces) to investigate the synergy of the Cu and Co components since the complete reaction network of ethanol formation from syngas is a huge computational burden to calculate on four Cu-Co surface models. We investigated adsorption of important species involved in these reactions, activation barrier and reaction energy of H-assisted dissociation mechanism, directly dissociation of CO, and HCO insertion reactions (CH{sub x} + HCO → CH{sub x}CHO (x = 1–3)) on four Cu-Co surface models. It was found that reactions on Cu-rich (111) and (211) surfaces all have lower activation barrier in H-assisted dissociation and HCO insertion reactions, especially CH + HCO → CHCHO reaction. The PDOS of 4d orbitals of surface Cu and Co atoms of all surfaces were studied. Analysis of d-band center of Cu and Co atoms and the activation barrier data suggested the correlation between

  20. On the Wrapping of Polyglycolide, Poly(Ethylene Oxide), and Polyketone Polymer Chains Around Single-Walled Carbon Nanotubes Using Molecular Dynamics Simulations

    Science.gov (United States)

    Rouhi, S.; Alizadeh, Y.; Ansari, R.

    2015-02-01

    By using molecular dynamics simulations, the interaction between a single-walled carbon nanotube and three different polymers has been studied in this work. The effects of various parameters such as the nanotube geometry and temperature on the interaction energy and radius of gyration of polymers have been explored. By studying the snapshots of polymers along the single-walled carbon nanotube, it has been shown that 50 ps can be considered as a suitable time after which the shape of polymer chains around the nanotube remains almost unchanged. It is revealed that the effect of temperature on the interaction energy and radius of gyration of polymers in the range of 250 to 500 K is not significant Also, it is shown that the interaction energy depends on the nanotube diameter.

  1. Simultaneous anionic and cationic redox

    Science.gov (United States)

    Jung, Sung-Kyun; Kang, Kisuk

    2017-12-01

    It is challenging to unlock anionic redox activity, accompanied by full utilization of available cationic redox process, to boost capacity of battery cathodes. Now, material design by tuning the metal-oxygen interaction is shown to be a promising solution.

  2. Schlenk Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar; Zhao, Junpeng; Zhang, Hefeng; Hadjichristidis, Nikolaos; Mays, Jimmy

    2015-01-01

    Anionic polymerization-high vacuum techniques (HVTs) are doubtlessly the most prominent and reliable experimental tools to prepare polymer samples with well-defined and, in many cases, complex macromolecular architectures. Due to the high demands

  3. The Response of Heterotrophic Prokaryote and Viral Communities to Labile Organic Carbon Inputs Is Controlled by the Predator Food Chain Structure.

    Science.gov (United States)

    Sandaa, Ruth-Anne; Pree, Bernadette; Larsen, Aud; Våge, Selina; Töpper, Birte; Töpper, Joachim P; Thyrhaug, Runar; Thingstad, Tron Frede

    2017-08-23

    Factors controlling the community composition of marine heterotrophic prokaryotes include organic-C, mineral nutrients, predation, and viral lysis. Two mesocosm experiments, performed at an Arctic location and bottom-up manipulated with organic-C, had very different results in community composition for both prokaryotes and viruses. Previously, we showed how a simple mathematical model could reproduce food web level dynamics observed in these mesocosms, demonstrating strong top-down control through the predator chain from copepods via ciliates and heterotrophic nanoflagellates. Here, we use a steady-state analysis to connect ciliate biomass to bacterial carbon demand. This gives a coupling of top-down and bottom-up factors whereby low initial densities of ciliates are associated with mineral nutrient-limited heterotrophic prokaryotes that do not respond to external supply of labile organic-C. In contrast, high initial densities of ciliates give carbon-limited growth and high responsiveness to organic-C. The differences observed in ciliate abundance, and in prokaryote abundance and community composition in the two experiments were in accordance with these predictions. Responsiveness in the viral community followed a pattern similar to that of prokaryotes. Our study provides a unique link between the structure of the predator chain in the microbial food web and viral abundance and diversity.

  4. Bactericidal peptidoglycan recognition protein induces oxidative stress in Escherichia coli through a block in respiratory chain and increase in central carbon catabolism.

    Science.gov (United States)

    Kashyap, Des R; Kuzma, Marcin; Kowalczyk, Dominik A; Gupta, Dipika; Dziarski, Roman

    2017-09-01

    Mammalian Peptidoglycan Recognition Proteins (PGRPs) kill both Gram-positive and Gram-negative bacteria through simultaneous induction of oxidative, thiol and metal stress responses in bacteria. However, metabolic pathways through which PGRPs induce these bactericidal stress responses are unknown. We screened Keio collection of Escherichia coli deletion mutants and revealed that deleting genes for respiratory chain flavoproteins or for tricarboxylic acid (TCA) cycle resulted in increased resistance of E. coli to PGRP killing. PGRP-induced killing depended on the production of hydrogen peroxide, which required increased supply of NADH for respiratory chain oxidoreductases from central carbon catabolism (glycolysis and TCA cycle), and was controlled by cAMP-Crp. Bactericidal PGRP induced a rapid decrease in respiration, which suggested that the main source of increased production of hydrogen peroxide was a block in respiratory chain and diversion of electrons from NADH oxidoreductases to oxygen. CpxRA two-component system was a negative regulator of PGRP-induced oxidative stress. By contrast, PGRP-induced thiol stress (depletion of thiols) and metal stress (increase in intracellular free Zn 2+ through influx of extracellular Zn 2+ ) were mostly independent of oxidative stress. Thus, manipulating pathways that induce oxidative, thiol and metal stress in bacteria could be a useful strategy to design new approaches to antibacterial therapy. © 2017 John Wiley & Sons Ltd.

  5. Radical anion structure of β-halogen-substituted acetamides in X-ray-irradiated single crystals: an INDO and EPR study

    International Nuclear Information System (INIS)

    Samskog, P.O.; Kispert, L.D.

    1984-01-01

    The anion radicals of bromodifluoroacetamide and chlorodifluoroacetamide are investigated by using the INDO method and EPR spectroscopy. INDO calculations for the anions give a spin density distribution in agreement with that suggested from experiment. Results of the analyses show that the unpaired electron occupies the sigma* orbital composed of the rho orbitals, along the C/sub β/-X bond, on the carbon and the unique halogen atoms. The results are compared to the radical anion in trifluoroacetamide. The electronic structure of SCF 2 CONH 2 - radical anions is a π-radical anion when X = F and a sigma*-radical anion when X = Cl and Br. 2 figures, 4 tables

  6. Evaluation of a Regional Retrofit Programme to Upgrade Existing Housing Stock to Reduce Carbon Emissions, Fuel Poverty and Support the Local Supply Chain

    Directory of Open Access Journals (Sweden)

    Joanne Louise Patterson

    2016-12-01

    Full Text Available The first-ever legally binding global climate deal that will be adopted by 195 countries was introduced in Paris in 2015, highlighting that climate change is being recognised as a real and urgent global problem. Legislative interventions need to be accompanied by significant action across all sectors of the built environment through reducing energy demand, providing energy supply from low carbon sources and combining with this with energy storage to enable necessary targets to be met. Retrofitting existing buildings is critical to making these cuts as 80% of buildings currently in existence will still be present in 2050. These retrofits need to be undertaken rapidly using replicable and affordable solutions that benefit both the householder whilst significantly reducing emissions. This paper will present an evaluation of a £9.6 million regional scale retrofit programme funded under the Welsh Governments Arbed 1 Programme which aimed to reduce fuel poverty, reduce carbon emissions and support the energy efficiency and renewable supply chain and encourage recruitment and training in the sector. Results have been obtained from desk top data collection and energy modelling calculations. The evaluation work presents the technical, environmental and economic impacts of the programme and demonstrates lessons learnt to help improve the implementation of the other regional retrofit projects providing evidence of the impacts of a large scale retrofit programme that are necessary for the deep carbon reductions required in the near future.

  7. Synthesis of All-carbon Chains and Nanoparticles by Chemical Transformation of Halogenated Hydrocarbons at Low Temperatures

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav

    č. 196 (2001), s. 22-38 ISSN 0371-5345 R&D Projects: GA ČR GA203/98/1168; GA ČR GA203/99/1015; GA ČR GA203/00/0634 Institutional research plan: CEZ:AV0Z4040901 Keywords : halogenated hydrocarbon * electrochemical carbon * fullerenes Subject RIV: CG - Electrochemistry

  8. Monitoring CO{sub 2} emissions along the logistics chain. Carbon footprinting; Monitoring fuer den CO{sub 2}-Ausstoss in der Logistikkette. Carbon Footprint - Teilgutachten

    Energy Technology Data Exchange (ETDEWEB)

    Schmied, Martin [Oeko-Institut e.V., Berlin (Germany); Knoerr, Wolfgang [ifeu - Institut fuer Energie- und Umweltforschung Heidelberg GmbH, Heidelberg (Germany)

    2012-07-15

    The aim of the project was to develop a standardized methodology to calculate GHG emissions along the logistics chain and to incorporate this methodology in the development of the european CEN standard prEN 16258. Meanwhile a draft standard - entitled ''Methodology for calculation and declaration on energy consumptions and GHG emissions in transport services'' is existing. To simplify the usage of the draft standard prEN 16258 for freight forwarders and logistics operators, guidelines/ a manual was developed in addition, which are published and distributed by the Association of German Freight Forwarders and Logistics Operators (Deutscher Speditions- und Logistikverband - DSLV).

  9. Structures and properties of anionic clay minerals

    International Nuclear Information System (INIS)

    Koch, Chr. Bender

    1998-01-01

    The Moessbauer spectra of pyroaurite-sjoegrenite-type compounds (PTC) (layered anion exchangers) are discussed with reference to the crystal structure, cation order, and crystallite morphology. It is shown that cation-ordered layers are produced in the synthesis of carbonate and sulphate types of green rust. In contrast, synthetic and natural pyroaurite only occurs as disordered types. The redox chemistry of Fe(III) within the metal hydroxide layer is illustrated with examples of electrochemical oxidation and reversible reduction by boiling glycerol. The chemistry of iron in the interlayer is exemplified by the intercalation of Fe-cyanide complexes in hydrotalcite. This reaction may be used as a probe for the charge distribution in the interlayer

  10. Highly purified, multi-wall carbon nanotubes induce light-chain 3B expression in human lung cells

    International Nuclear Information System (INIS)

    Tsukahara, Tamotsu; Matsuda, Yoshikazu; Usui, Yuki; Haniu, Hisao

    2013-01-01

    Highlights: •HTT2800-treated BEAS-2B cells induced LC3B in a time-dependent manner. •HTT2800-treated BEAS-2B cells showed decreased cell proliferation that was both time- and dose-dependent. •Addition of 3-MA, LC3B-II protein and mRNA levels were significantly decreased. •3-MA and E64-d + pepstatin A, but not brefeldin A, provided protection against HTT2800-induced cell death. •These results suggest that HTT2800 predominantly causes autophagy rather than apoptotic cell death in BEAS-2B cells. -- Abstract: Bronchial epithelial cells are targets of inhalation and play a critical role in the maintenance of mucosal integrity as mechanical barriers against various particles. Our previous result suggest that vapor-grown carbon fiber, HTT2800, which is one of the most highly purified multi-wall carbon nanotubes (MWCNT) showed cellular uptake of the carbon nanotube, increased cell death, enhanced DNA damage, and induced cytokine release. Increasing evidence suggests that autophagy may critically influence vital cellular processes such as apoptosis, cell proliferation and inflammation and thereby may play a critical role in pulmonary diseases. Autophagy was recently recognized as a critical cell death pathway, and autophagosome accumulation has been found to be associated with the exposure of various nanoparticles. In this study, the authors focus on the autophagic responses of HTT2800 exposure. The HTT2800-exposed cells induced LC3B expression and induced cell growth inhibition

  11. Highly purified, multi-wall carbon nanotubes induce light-chain 3B expression in human lung cells

    Energy Technology Data Exchange (ETDEWEB)

    Tsukahara, Tamotsu, E-mail: ttamotsu@kanazawa-med.ac.jp [Department of Hematology and Immunology, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Ishikawa 920-0293 (Japan); Matsuda, Yoshikazu [Clinical Pharmacology Educational Center, Nihon Pharmaceutical University, Ina-machi, Saitama 362-0806 (Japan); Usui, Yuki [Research Center for Exotic Nanocarbons, Shinshu University, 4-17-1 Wakasato, Nagano-shi, Nagano 380-8553 (Japan); Haniu, Hisao [Department of Orthopaedic Surgery, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621 (Japan)

    2013-10-18

    Highlights: •HTT2800-treated BEAS-2B cells induced LC3B in a time-dependent manner. •HTT2800-treated BEAS-2B cells showed decreased cell proliferation that was both time- and dose-dependent. •Addition of 3-MA, LC3B-II protein and mRNA levels were significantly decreased. •3-MA and E64-d + pepstatin A, but not brefeldin A, provided protection against HTT2800-induced cell death. •These results suggest that HTT2800 predominantly causes autophagy rather than apoptotic cell death in BEAS-2B cells. -- Abstract: Bronchial epithelial cells are targets of inhalation and play a critical role in the maintenance of mucosal integrity as mechanical barriers against various particles. Our previous result suggest that vapor-grown carbon fiber, HTT2800, which is one of the most highly purified multi-wall carbon nanotubes (MWCNT) showed cellular uptake of the carbon nanotube, increased cell death, enhanced DNA damage, and induced cytokine release. Increasing evidence suggests that autophagy may critically influence vital cellular processes such as apoptosis, cell proliferation and inflammation and thereby may play a critical role in pulmonary diseases. Autophagy was recently recognized as a critical cell death pathway, and autophagosome accumulation has been found to be associated with the exposure of various nanoparticles. In this study, the authors focus on the autophagic responses of HTT2800 exposure. The HTT2800-exposed cells induced LC3B expression and induced cell growth inhibition.

  12. Pu Anion Exchange Process Intensification

    International Nuclear Information System (INIS)

    Taylor-Pashow, Kathryn M. L.

    2017-01-01

    This research is focused on improving the efficiency of the anion exchange process for purifying plutonium. While initially focused on plutonium, the technology could also be applied to other ion-exchange processes. Work in FY17 focused on the improvement and optimization of porous foam columns that were initially developed in FY16. These foam columns were surface functionalized with poly(4-vinylpyridine) (PVP) to provide the Pu specific anion-exchange sites. Two different polymerization methods were explored for maximizing the surface functionalization with the PVP. The open-celled polymeric foams have large open pores and large surface areas available for sorption. The fluid passes through the large open pores of this material, allowing convection to be the dominant mechanism by which mass transport takes place. These materials generally have very low densities, open-celled structures with high cell interconnectivity, small cell sizes, uniform cell size distributions, and high structural integrity. These porous foam columns provide advantages over the typical porous resin beads by eliminating the slow diffusion through resin beads, making the anion-exchange sites easily accessible on the foam surfaces. The best performing samples exceeded the Pu capacity of the commercially available resin, and also offered the advantage of sharper elution profiles, resulting in a more concentrated product, with less loss of material to the dilute heads and tails cuts. An alternate approach to improving the efficiency of this process was also explored through the development of a microchannel array system for performing the anion exchange.

  13. Ionic liquids comprising heteraromatic anions

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, William F.; Brennecke, Joan F.; Maginn, Edward J.; Mindrup, Elaine; Gurkan, Burcu; Price, Erica; Goodrich, Brett

    2018-04-24

    Some embodiments described herein relate to ionic liquids comprising an anion of a heteraromatic compound such as optionally substituted pyrrolide, optionally substituted pyrazolide, optionally substituted indolide, optionally substituted phospholide, or optionally substituted imidazolide. Methods and devices for gas separation or gas absorption related to these ionic liquids are also described herein.

  14. Pu Anion Exchange Process Intensification

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M. L. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-06

    This research is focused on improving the efficiency of the anion exchange process for purifying plutonium. While initially focused on plutonium, the technology could also be applied to other ion-exchange processes. Work in FY17 focused on the improvement and optimization of porous foam columns that were initially developed in FY16. These foam columns were surface functionalized with poly(4-vinylpyridine) (PVP) to provide the Pu specific anion-exchange sites. Two different polymerization methods were explored for maximizing the surface functionalization with the PVP. The open-celled polymeric foams have large open pores and large surface areas available for sorption. The fluid passes through the large open pores of this material, allowing convection to be the dominant mechanism by which mass transport takes place. These materials generally have very low densities, open-celled structures with high cell interconnectivity, small cell sizes, uniform cell size distributions, and high structural integrity. These porous foam columns provide advantages over the typical porous resin beads by eliminating the slow diffusion through resin beads, making the anion-exchange sites easily accessible on the foam surfaces. The best performing samples exceeded the Pu capacity of the commercially available resin, and also offered the advantage of sharper elution profiles, resulting in a more concentrated product, with less loss of material to the dilute heads and tails cuts. An alternate approach to improving the efficiency of this process was also explored through the development of a microchannel array system for performing the anion exchange.

  15. IMPROVING OF ANION EXCHANGERES REGENERATION

    Directory of Open Access Journals (Sweden)

    Muzher M. Ibrahim

    2013-05-01

    Full Text Available Inthis study, Different basis [NaOH and KOH] of variable concentration are usedto reactivate Anion exchangers employing different schemes .The Laboratoryresults showed large improvement in efficiency of these exchangers ( i.eoperating time was increased from 12 to 42 hours .The results of this work showed that the environmentalload (waste water can be reduced greatly when using the proposed regenerationscheme .

  16. Quantum mechanics of toroidal anions

    International Nuclear Information System (INIS)

    Afanas'ev, G.N.

    1990-01-01

    We consider a toroidal solenoid with an electric charge attached to it. It turns out that statistical properties of the wave function describing interacting toroidal anions depend on both their relative position and orientation. The influence of the particular gauge choice on the exchange properties of the wave function is studied. 30 refs.; 6 figs

  17. Anion binding in biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Feiters, Martin C [Department of Organic Chemistry, Institute for Molecules and Materials, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen (Netherlands); Meyer-Klaucke, Wolfram [EMBL Hamburg Outstation at DESY, Notkestrasse 85, D-22607 Hamburg (Germany); Kostenko, Alexander V; Soldatov, Alexander V [Faculty of Physics, Southern Federal University, Sorge 5, Rostov-na-Donu, 344090 (Russian Federation); Leblanc, Catherine; Michel, Gurvan; Potin, Philippe [Centre National de la Recherche Scientifique and Universite Pierre et Marie Curie Paris-VI, Station Biologique de Roscoff, Place Georges Teissier, BP 74, F-29682 Roscoff cedex, Bretagne (France); Kuepper, Frithjof C [Scottish Association for Marine Science, Dunstaffnage Marine Laboratory, Oban, Argyll PA37 1QA, Scotland (United Kingdom); Hollenstein, Kaspar; Locher, Kaspar P [Institute of Molecular Biology and Biophysics, ETH Zuerich, Schafmattstrasse 20, Zuerich, 8093 (Switzerland); Bevers, Loes E; Hagedoorn, Peter-Leon; Hagen, Wilfred R, E-mail: m.feiters@science.ru.n [Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft (Netherlands)

    2009-11-15

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L{sub 3} (2p{sub 3/2}) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  18. Anion binding in biological systems

    International Nuclear Information System (INIS)

    Feiters, Martin C; Meyer-Klaucke, Wolfram; Kostenko, Alexander V; Soldatov, Alexander V; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Kuepper, Frithjof C; Hollenstein, Kaspar; Locher, Kaspar P; Bevers, Loes E; Hagedoorn, Peter-Leon; Hagen, Wilfred R

    2009-01-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L 3 (2p 3/2 ) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  19. Anion binding in biological systems

    Science.gov (United States)

    Feiters, Martin C.; Meyer-Klaucke, Wolfram; Kostenko, Alexander V.; Soldatov, Alexander V.; Leblanc, Catherine; Michel, Gurvan; Potin, Philippe; Küpper, Frithjof C.; Hollenstein, Kaspar; Locher, Kaspar P.; Bevers, Loes E.; Hagedoorn, Peter-Leon; Hagen, Wilfred R.

    2009-11-01

    We compare aspects of biological X-ray absorption spectroscopy (XAS) studies of cations and anions, and report on some examples of anion binding in biological systems. Brown algae such as Laminaria digitata (oarweed) are effective accumulators of I from seawater, with tissue concentrations exceeding 50 mM, and the vanadate-containing enzyme haloperoxidase is implicated in halide accumulation. We have studied the chemical state of iodine and its biological role in Laminaria at the I K edge, and bromoperoxidase from Ascophyllum nodosum (knotted wrack) at the Br K edge. Mo is essential for many forms of life; W only for certain archaea, such as Archaeoglobus fulgidus and the hyperthermophilic archaeon Pyrococcus furiosus, and some bacteria. The metals are bound and transported as their oxo-anions, molybdate and tungstate, which are similar in size. The transport protein WtpA from P. furiosus binds tungstate more strongly than molybdate, and is related in sequence to Archaeoglobus fulgidus ModA, of which a crystal structure is known. We have measured A. fulgidus ModA with tungstate at the W L3 (2p3/2) edge, and compared the results with the refined crystal structure. XAS studies of anion binding are feasible even if only weak interactions are present, are biologically relevant, and give new insights in the spectroscopy.

  20. Access to Functionalized Steroid Side Chains via Modified Julia Olefination

    Science.gov (United States)

    Izgu, Enver Cagri; Burns, Aaron C.; Hoye, Thomas R.

    2011-01-01

    Various functionalized steroidal side chains were conveniently accessed by a modified Julia olefination strategy using a common sulfone donor and an appropriate α-branched aldehyde acceptor. For the coupling of these hindered classes of reaction partners (and in contrast to typically observed trends), the benzothiazolyl(BT)-sulfone anion gave superior outcomes compared to the phenyltetrazolyl(PT)-sulfone anion. PMID:21244047

  1. Specificity of anion-binding in the substrate-pocket ofbacteriorhodopsin

    Energy Technology Data Exchange (ETDEWEB)

    Facciotti, Marc T.; Cheung, Vincent S.; Lunde, Christopher S.; Rouhani, Shahab; Baliga, Nitin S.; Glaeser, Robert M.

    2003-08-30

    The structure of the D85S mutant of bacteriorhodopsin with a nitrate anion bound in the Schiff-base binding site, and the structure of the anion-free protein have been obtained in the same crystal form. Together with the previously solved structures of this anion pump, in both the anion-free state and bromide-bound state, these new structures provide insight into how this mutant of bacteriorhodopsin is able to bind a variety of different anions in the same binding pocket. The structural analysis reveals that the main structural change that accommodates different anions is the repositioning of the polar side-chain of S85. On the basis of these x-ray crystal structures, the prediction is then made that the D85S/D212N double mutant might bind similar anions and do so over a broader pH range than does the single mutant. Experimental comparison of the dissociation constants, K{sub d}, for a variety of anions confirms this prediction and demonstrates, in addition, that the binding affinity is dramatically improved by the D212N substitution.

  2. Tripodal receptors for cation and anion sensors

    NARCIS (Netherlands)

    Kuswandi, Bambang; Nuriman, [Unknown; Verboom, Willem; Reinhoudt, David

    2006-01-01

    This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing

  3. Methods and systems for measuring anions

    KAUST Repository

    Masih, Dilshad; Mohammed, Omar F.; Aly, Shawkat M.; Alarousu, Erkki

    2016-01-01

    Embodiments of the present disclosure provide for methods for detecting the presence and/or concentration of anions in a solution, systems for detecting the presence and/or concentration of anions in a solution, anion sensor systems, and the like.

  4. Methods and systems for measuring anions

    KAUST Repository

    Masih, Dilshad

    2016-08-18

    Embodiments of the present disclosure provide for methods for detecting the presence and/or concentration of anions in a solution, systems for detecting the presence and/or concentration of anions in a solution, anion sensor systems, and the like.

  5. Critical Metals in Strategic Energy Technologies. Assessing Rare Metals as Supply-Chain Bottlenecks in Low-Carbon Energy Technologies

    International Nuclear Information System (INIS)

    Moss, R.L.; Tzimas, E.; Kara, H.; Willis, P.; Kooroshy, J.

    2011-11-01

    Due to the rapid growth in demand for certain materials, compounded by political risks associated with the geographical concentration of the supply of them, a shortage of these materials could be a potential bottleneck to the deployment of low-carbon energy technologies. In order to assess whether such shortages could jeopardise the objectives of the EU's Strategic Energy Technology Plan (SET-Plan), an improved understanding of these risks is vital. In particular, this report examines the use of metals in the six low-carbon energy technologies of SET-Plan, namely: nuclear, solar, wind, bioenergy, carbon capture and storage (CCS) and electricity grids. The study looks at the average annual demand for each metal for the deployment of the technologies in Europe between 2020 and 2030. The demand of each metal is compared to the respective global production volume in 2010. This ratio (expressed as a percentage) allows comparing the relative stress that the deployment of the six technologies in Europe is expected to create on the global supplies for these different metals. The study identifies 14 metals for which the deployment of the six technologies will require 1% or more (and in some cases, much more) of current world supply per annum between 2020 and 2030. These 14 metals, in order of decreasing demand, are tellurium, indium, tin, hafnium, silver, dysprosium, gallium, neodymium, cadmium, nickel, molybdenum, vanadium, niobium and selenium. The metals are examined further in terms of the risks of meeting the anticipated demand by analysing in detail the likelihood of rapid future global demand growth, limitations to expanding supply in the short to medium term, and the concentration of supply and political risks associated with key suppliers. The report pinpoints 5 of the 14 metals to be at high risk, namely: the rare earth metals neodymium and dysprosium, and the by-products (from the processing of other metals) indium, tellurium and gallium. The report explores a

  6. Managing a sustainable, low carbon supply chain in the English National Health Service: The views of senior managers.

    Science.gov (United States)

    Grose, Jane; Richardson, Janet

    2013-04-18

    Objectives:In an effort to reduce costs and respond to climate change, health care providers (Trusts) in England have started to change how they purchase goods and services. Many factors, both internal and external, affect the supply chain. Our aim was to identify those factors, so as to maintain future supply and business continuity in health and social care.Methods:Qualitative interviews with 20 senior managers from private and public sector health service providers and social care providers in south west England. Interviews were recorded, transcribed and thematically analysed.Results:There were four areas of concern: contradictions with government legislation which caused confusion about how best to deliver sustainable solutions; procurement was unclear and created multiple approaches to purchasing bulk items at low cost; internal organizational systems needed to be reconsidered to embed sustainability; and embedding sustainability requires a review of organizational systems. There are examples of sustainability solutions throughout the National Health Service (NHS) but the response continues to be patchy. More research is needed into why some Trusts and some staff do not recognize the benefits of a core approach or find the systems unable to respond.Conclusions:The NHS is one of the major purchasers of goods and services in England and is therefore in an excellent position to encourage sustainable resource management, manufacturing, use and disposal.

  7. Simultaneous anion and cation mobility in polypyrrole

    DEFF Research Database (Denmark)

    Skaarup, Steen; Bay, Lasse; Vidanapathirana, K.

    2003-01-01

    and the expulsion of anions; a broad anodic peak centered at ca. - 0.5 V representing the expulsion of cations; and a second broad peak at +0.2 to +0.5 V corresponding to anions being inserted. Although the motion of cations is the most important, as expected, there is a significant anion contribution, thereby...... complicating reproducibility when employing PPy(DBS) polymers as actuators. When the cation is doubly charged, it enters the film less readily, and anions dominate the mobility. Using a large and bulky cation switches the mechanism to apparently total anion motion. The changes in area of the three peaks...

  8. Hybrid capacitive deionization with anion-exchange membranes for lithium extraction

    OpenAIRE

    Siekierka Anna; Bryjak Marek

    2017-01-01

    Lithium is considered to be a critical material for various industrial fields. We present our studies on extraction lithium from diluted aqueous solution by novel hybrid system based on a membrane capacitive deionization and batteries desalination. Hybrid CDI is comprised by a lithium selective adsorbent, activated carbon electrode and anion-exchange membranes. Here, we demonstrated implication of various type of anion-exchange membranes and influence their properties on effective capacity an...

  9. Assessment of carbon footprint and energy performance of the extra virgin olive oil chain in Umbria, Italy.

    Science.gov (United States)

    Rinaldi, S; Barbanera, M; Lascaro, E

    2014-06-01

    The cradle to grave carbon footprint (CF) and energy footprint (EF) analysis of extra virgin olive oil (EVOO) produced in the Province of Perugia (Umbria, Italy) is assessed. In this study, olive orchard cultivation, EVOO extraction, bottling, packaging, storage at -18°C and distribution in the main importing countries were studied from a life cycle assessment perspective, with the main objective of identifying the processes with the largest environmental impacts. The selected functional unit was 1L of EVOO, packaged for distribution. Inventory data was gathered mainly through both direct communication using questionnaires and direct measurements. To determine the CF the ISO/TS 14067:2013 was followed while the EF was evaluated according to ISO standards 14040 and 14044. Results showed that the most impacting process is the distribution, mainly due to the choice of employing air transport. The main other hot spots identified were the olive orchard fertilization, EVOO freezing during its storage at the olive mill factory and the manufacture of glass bottles. Suggested improvement opportunities included shifts in the EVOO transportation policy, the introduction of lighter glass bottles in the bottling process, the use of cooling agent with lower global warming potential and the employment of biodiesel in the farming machineries. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Rejuvenation processes applied to 'poisoned' anion exchangers in uranium processing

    International Nuclear Information System (INIS)

    Gilmore, A.J.

    1979-11-01

    The removal of 'poisons' from anion exchangers in uranium processing of Canadian radioactive ores is commonly called rejuvenation or regeneration. The cost of the ion exchange recovery of uranium is adversely affected by a decrease in the capacity and efficiency of the anion exchangers, due to their being 'poisoned' by silica, elemental sulphur, molybdenum and tetrathionates. These 'poisons' have a high affinity for the anion exchangers, are adsorbed in preference to the uranyl complex, and do not desorb with the reagents used normally in the uranyl desorption phase. The frequency of rejuvenation and the reagents required for rejuvenation are determined by the severity of the 'poisoning' accumulated by the exchanger in contact with the uranium leach liquor. Caustic soda (NaOH) at approximately equal to 18 cents/lb is commonly used to remove uranium anion exchangers of tetrathionate ((S 4 0 6 )/-/-) 'poisons'. A potential saving in operating cost would be of consequence if other reagents, e.g. sodium carbonate (Na 2 CO 3 ) at approximately equal to 3.6 cents/lb or calcium hydroxide (Ca(OH) 2 ) at approximately equal to 1.9 cents/lb, were effective in removing (S 4 0 6 )/-/-) from a 'poisoned' exchanger. A rejuvenation process for a test program was adopted after a perusal of the literature

  11. Supramolecular Chemistry of Environmentally Relevant Anions

    International Nuclear Information System (INIS)

    Bowman-James, Kristin; Moyer, B.A.; Sessler, Jonathan L.

    2003-01-01

    The goal of this project is the development of highly selective extractants for anions targeting important and timely problems of critical interest to the EMSP mission. In particular, sulfate poses a special problem in cleaning up the Hanford waste tanks in that it interferes with vitrification, but available technologies for sulfate removal are limited. The basic chemical aspects of anion receptor design of functional pH independent systems as well as design of separations strategies for selective and efficient removal of targeted anions have been probed. Key findings include: (1) some of the first synthetic sulfate-selective anion-binding agents; (2) simple, structure-based methods for modifying the intrinsic anion selectivity of a given class of anion receptors; and (3) the first system capable of extracting sulfate from acidic, nitrate-containing aqueous media. Receptor design, structural influences on anion binding affinities, and findings from liquid-liquid extraction studies will be discussed

  12. Anion

    Directory of Open Access Journals (Sweden)

    A. Vadivel Murugan

    2003-01-01

    . Its characterization is investigated by Fourier Transform Infrared Spectroscopy (FT-IR and Scanning Electron Microscopy (SEM. The hybrid material presents predominantly high electronic conductivities of around 2.0 and 7.0 S cm-1 at 300 and 400K respectively.

  13. Fe electron transfer and atom exchange in goethite: influence of Al-substitution and anion sorption.

    Science.gov (United States)

    Latta, Drew E; Bachman, Jonathan E; Scherer, Michelle M

    2012-10-02

    The reaction of Fe(II) with Fe(III) oxides and hydroxides is complex and includes sorption of Fe(II) to the oxide, electron transfer between sorbed Fe(II) and structural Fe(III), reductive dissolution coupled to Fe atom exchange, and, in some cases mineral phase transformation. Much of the work investigating electron transfer and atom exchange between aqueous Fe(II) and Fe(III) oxides has been done under relatively simple aqueous conditions in organic buffers to control pH and background electrolytes to control ionic strength. Here, we investigate whether electron transfer is influenced by cation substitution of Al(III) in goethite and the presence of anions such as phosphate, carbonate, silicate, and natural organic matter. Results from (57)Fe Mössbauer spectroscopy indicate that both Al-substitution (up to 9%) and the presence of common anions (PO(4)(3-), CO(3)(2-), SiO(4)(4-), and humic acid) does not inhibit electron transfer between aqueous Fe(II) and Fe(III) in goethite under the conditions we studied. In contrast, sorption of a long-chain phospholipid completely shuts down electron transfer. Using an enriched isotope tracer method, we found that Al-substitution in goethite (10%), does, however, significantly decrease the extent of atom exchange between Fe(II) and goethite (from 43 to 12%) over a month's time. Phosphate, somewhat surprisingly, appears to have little effect on the rate and extent of atom exchange between aqueous Fe(II) and goethite. Our results show that electron transfer between aqueous Fe(II) and solid Fe(III) in goethite can occur under wide range of geochemical conditions, but that the extent of redox-driven Fe atom exchange may be dependent on the presence of substituting cations such as Al.

  14. Study of the simultaneous complexation of a cation and of an anion using functionalized calixarenes

    International Nuclear Information System (INIS)

    Moli, Ch.

    2002-03-01

    The chemical reprocessing of irradiated nuclear fuels leads to the production of high-level radioactive liquid wastes which contain long-lived toxic radioelements. In the framework of the long-term management of these wastes, important research work is carried out for the separation of these radioelements for their further transmutation or immobilization inside specific matrices. These radioelements are present in acid solutions of fission products in the form of cations (cesium), anions (technetium, selenium) and molecules (iodine). Crown calixarenes have been successfully used for the extraction of cesium thanks to their exceptional selectivities. This work is mainly based on the use of the chelating properties of calixarenes for the extraction of anionic radioelements. Calixarenes functionalized by amino-carbon chains have been selected. The synthesis of amine calix[4]arenes and calix[6]arenes is described and their extractive and ionophoretic properties with respect to radioelements are shown using aqueous selective separation techniques like the liquid-liquid extraction and the supported liquid membrane transport. Technetium and selenium are extracted by amine calixarenes from a 10 -2 M aqueous solution of nitric acid. At this acidity, no selenium transport is observed, while technetium transport is efficient: the solution is quasi-totally decontaminated in 6 hours. Molecular iodine is efficiently extracted with a simple organic diluent, the 1,2-nitro-phenyl-hexyl-ether, from a strongly concentrated aqueous solution of nitric acid (HNO 3 = 3 M). The transport of iodine becomes faster and more efficient when its concentration in the solution is higher. (J.S.)

  15. Amino Acid Functionalization of Doped Single-Walled Carbon Nanotubes: Effects of Dopants and Side Chains as Well as Zwitterionic Stabilizations.

    Science.gov (United States)

    Jiang, Lisha; Zhu, Chang; Fu, Yujie; Yang, Gang

    2017-04-06

    Functionalization of single-walled carbon nanotubes (SWCNTs) is necessitated in a number of conditions such as drug delivery, and here amino acid functionalization of SWCNTs is conducted within the framework of density functional theory. Functionalization efficiencies of Gly are largely determined by dopants, as a combined effect of atomic radius, electronic configuration, and distortion to SWCNTs. Different functionalization sites in Gly have divergent interaction strengths with M/SWCNTs that decline as O b > N > O a , and this trend seems almost independent of the identity of metallic dopants. B/SWCNT behaves distinctly and prefers to the N site. Dopants affect principally interaction strengths, while amino acids regulate significantly both functionalization configurations and interaction energies. Then focus is given to stabilization of zwitterionic amino acids due to enhanced interactions with the widely used zwitterionic drugs. All metallic dopants render zwitterionic Gly to be the most stable, and side chains in amino acids rather than dopants in M/SWCNTs cause more pronounced effects to zwitterionic stabilizations. Charge transfers between amino acids and M/SWCNTs are closely associated with zwitterionic stabilization effects, and different charge transfer mechanisms between M/SWCNTs and metal ions are interpreted. Thus, this work provides a comprehensive understanding of amino acid functionalization of M/SWCNTs.

  16. Study on the effective utilization of palm oil (Part 1). Survey of catalysts for oxidative cleavage of palm stearin into mono and dibasic acids with middle carbon chains

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Yasuhiko; Shiina, Hisako; Mamuro, Hideo; Nakasato, Satoshi; Ooi, T L; S H, Ong A

    1987-05-01

    Production of palm oil in Malaysia increases annually and it is estimated that the production will reach 6 million tons in 1990. Palm stearin which constitutes 20% or more of palm oil is not suitable for the food production, but if it is successfully converted into mono and dibasic acids with middle carbon chains, a big potential demand as excellent lubricating oil is expected. Chemical Engineering Institute, Agency of Industrial Science and Technology studied this matter jointly with Malaysian Institute of Palm Oil. Various metal (II) ion-exchanged zeolites which were considered to be effective catalysts for the above conversion were screened and from the analytical results utilizing signal strength of carboxyl proton, it was found that several catalysts were effective for the formation of carboxylic acids. Furthermore, it was revealed that Mn (II) ion-exchanged zeolite 5A and Co(II)-Cu(II) ion-exchanged zeolite Y were the catalysts suitable for the objective of this study, but a study for finding out the conditions to obtain high conversion ratio is required. (4 tabs, 28 refs)

  17. Ultrasensitive electrochemical detection of microRNA-21 combining layered nanostructure of oxidized single-walled carbon nanotubes and nanodiamonds by hybridization chain reaction.

    Science.gov (United States)

    Liu, Lingzhi; Song, Chao; Zhang, Zhang; Yang, Juan; Zhou, Lili; Zhang, Xing; Xie, Guoming

    2015-08-15

    Measurement of microRNA (miRNA) levels in body fluids is a crucial tool for the early diagnosis and prognosis of cancers. In this study, we developed an electrochemical assay to detect miRNA-21 by fabricating the electrode with layer-by-layer assembly of oxidized single-walled carbon nanotubes and nanodiamonds. Tetrahedron-structured probes with free-standing probe on the top served as receptors to hybridize with target miRNA directly. The probes were immobilized on the deposited gold nanoparticles through a well-established strong Au-S bond. The electrochemical signal was mainly derived from an ultrasensitive pattern by combining hybridization chain reaction with DNA-functionalized AuNPs, which provided DNAzyme to catalyze H2O2 reduction. Differential pulse voltammetry was applied to record the electrochemical signals, which was increased linearly with the target miRNA-21, and the linear detection range was 10 fM to 1.0 nM. The limit of detection reached 1.95 fM (S/N=3), and the proposed biosensor exhibited good reproducibility and stability, as well as high sensitivity. Hence, this biosensor has a promising potential in clinical application. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Environmental behavior of inorganic anions

    International Nuclear Information System (INIS)

    Garland, T.R.; Cataldo, D.A.; Fellows, R.J.; Wildung, R.E.

    1987-01-01

    Recent efforts have addressed two aspects of anion behavior in the soil/plant system. The first involves evaluation of the gaseous component of the terrestrial iodine cycle in soils and plants. Field analyses of 129 I in soils and vegetation adjacent to a fuels reprocessing facility, which was idle for 10 years prior to the study, indicated that there may be a significant gaseous component to the terrestrial iodine cycle. Soil substrates, including a silt-sand, organic forest soil, quartz sand, and a sterilized soil, were amended with radioiodide, and the rates and quality of the volatile components evaluated

  19. Rejuvenation of the anion exchanger used for uranium recovery

    International Nuclear Information System (INIS)

    Yan, T.-Y.; Espenscheid, W.F.

    1986-01-01

    The present invention is directed to improving the performance of strong base anionic exchange resins used in uranium recovery that exhibit an undesirable decrease in loading capacity and in total exchange capacity. The invention comprises treating an anionic exchange resin to remove physically adsorbed and occluded fouling agents and to remove poisons which may be chemically bound to active ion groups on the resin. The process involves treating the resin, after the uranium ion exchange stage, with an alkaline carbonate solution, preferably treating the resin with an acid eluant first. The acid treatment dissolves insoluble fouling agents which are physically occluded or adsorbed by the resin and that the weak base treatment augments that result and probably removes poisons which are physically or chemically bound to the resin

  20. Effect of surfactant alkyl chain length on the dispersion, and thermal and dynamic mechanical properties of LDPE/organo-LDH composites

    Directory of Open Access Journals (Sweden)

    2011-05-01

    Full Text Available Low density polyethylene/layered double hydroxide (LDH composites were prepared via melt compounding using different kinds of organo-LDHs and polyethylene-grafted maleic anhydride as the compatibilizer. The organo-LDHs were successfully prepared by converting a commercial MgAl-carbonate LDH into a MgAl-nitrate LDH, which was later modified by anion exchange with linear and branched sodium alkyl sulfates having different alkyl chain lengths (nc = 6, 12 and 20. It was observed that, depending on the size of the surfactant alkyl chain, different degrees of polymer chain intercalation were achieved, which is a function of the interlayer distance of the organo-LDHs, of the packing level of the alkyl chains, and of the different interaction levels between the surfactant and the polymer chains. In particular, when the number of carbon atoms of the surfactant alkyl chain is larger than 12, the intercalation of polymer chains in the interlayer space and depression of the formation of large aggregates of organo-LDH platelets are favored. A remarkable improvement of the thermal-oxidative degradation was evidenced for all of the composites; whereas only a slight increase of the crystallization temperature and no significant changes of both melting temperature and degree of crystallinity were achieved. By thermodynamic mechanical analysis, it was evidenced that a softening of the matrix is may be due to the plasticizing effect of the surfactant.

  1. Schlenk Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar

    2015-09-01

    Anionic polymerization-high vacuum techniques (HVTs) are doubtlessly the most prominent and reliable experimental tools to prepare polymer samples with well-defined and, in many cases, complex macromolecular architectures. Due to the high demands for time and skilled technical personnel, HVTs are currently used in only a few research laboratories worldwide. Instead, most researchers in this filed are attracted to more facile Schlenk techniques. The basic principle of this technique followed in all laboratories is substantially the same, i.e. the use of alternate vacuum and inert gas atmosphere in glass apparatus for the purification/charging of monomer, solvents, additives, and for the manipulation of air-sensitive compounds such as alkyl metal initiators, organometallic or organic catalysts. However, it is executed quite differently in each research group in terms of the structure of Schlenk apparatus (manifolds, connections, purification/storage flasks, reactors, etc.), the use of small supplementary devices (soft tubing, cannulas, stopcocks, etc.) and experimental procedures. The operational methods are partly purpose-oriented while also featured by a high flexibility, which makes it impossible to describe in detail each specific one. In this chapter we will briefly exemplify the application of Schlenk techniques for anionic polymerization by describing the performance of a few experiments from our own work.

  2. Falling chains

    OpenAIRE

    Wong, Chun Wa; Yasui, Kosuke

    2005-01-01

    The one-dimensional fall of a folded chain with one end suspended from a rigid support and a chain falling from a resting heap on a table is studied. Because their Lagrangians contain no explicit time dependence, the falling chains are conservative systems. Their equations of motion are shown to contain a term that enforces energy conservation when masses are transferred between subchains. We show that Cayley's 1857 energy nonconserving solution for a chain falling from a resting heap is inco...

  3. Communication: Remarkable electrophilicity of the oxalic acid monomer: An anion photoelectron spectroscopy and theoretical study

    International Nuclear Information System (INIS)

    Buonaugurio, Angela; Graham, Jacob; Buytendyk, Allyson; Bowen, Kit H.; Ryder, Matthew R.; Gutowski, Maciej; Keolopile, Zibo G.; Haranczyk, Maciej

    2014-01-01

    Our experimental and computational results demonstrate an unusual electrophilicity of oxalic acid, the simplest dicarboxylic acid. The monomer is characterized by an adiabatic electron affinity and electron vertical detachment energy of 0.72 and 1.08 eV (±0.05 eV), respectively. The electrophilicity results primarily from the bonding carbon-carbon interaction in the singly occupied molecular orbital of the anion, but it is further enhanced by intramolecular hydrogen bonds. The well-resolved structure in the photoelectron spectrum is reproduced theoretically, based on Franck-Condon factors for the vibronic anion → neutral transitions

  4. Partial molar volume of anionic polyelectrolytes in aqueous solution.

    Science.gov (United States)

    Salamanca, Constain; Contreras, Martín; Gamboa, Consuelo

    2007-05-15

    In this work the partial molar volumes (V) of different anionic polyelectrolytes and hydrophobically modified polyelectrolytes (PHM) were measured. Polymers like polymaleic acid-co-styrene, polymaleic acid-co-1-olefin, polymaleic acid-co-vinyl-2-pyrrolidone, and polyacrylic acid (abbreviated as MAS-n, PA-n-K2, AMVP, and PAA, respectively) were employed. These materials were investigated by density measurements in highly dilute aqueous solutions. The molar volume results allow us to discuss the effect of the carboxylic groups and the contributions from the comonomeric principal chain. The PAA presents the smaller V, while the largest V value was for AMVP. The V of PHM shows a linear relationship with the number of methylene groups in the lateral chain. It is found that the magnitude of the contribution per methylene group decreases as the hydrophobic character of the environment increases.

  5. Study of the chain termination in the polymerization of seven-membered carbonate cyclic; Estudo da terminacao de cadeia na polymerizacao de carbonatos ciclicos de 7 membros

    Energy Technology Data Exchange (ETDEWEB)

    Carpentier, Jean-Francois [Laboratoire Catalyse et Organometalliques, CNRS - Universite de Rennes 1 - Sciences Chimiques de Rennes (France); Casagrande Junior, Osvaldo de; Gil, Marcelo Priebe [Laboratorio de Catalise Molecular, Instituto de Quimica, Universidade Federal do Rio Grande do Sul (Brazil)

    2011-07-01

    Methyl substituted seven-membered ring carbonate (7CC), namely 4-methyl-1,3-dioxepan-2-one ({alpha}-Me7CC) have been synthesized in good yield (up to 50%) upon cyclization of the corresponding {alpha}-diols issued from green renewable acid. ('Immortal') Ring-opening polymerization (iROP) of this monomer has been carried out using various catalysts combined with an alcohol acting as a co-initiator and a chain transfer agent. The Lewis acid Al(OTf){sub 3} or the organometallic complexes [(BDI{sup iPr})Zn(N(SiMe{sub 3}){sub 2})] ((BDI{sup iPr}) = 2-((2,6-diisopropylphenyl)amido)-4-((2,6- diisopropylphenyl)-imino)-2-pentene] and [(ONOO{sup tBu})Y(N(SiHMe{sub 2}){sub 2})(THF)] (ONOO{sup tBu} = amino-alkoxy-bis(phenolate)) successfully afforded the corresponding poly({alpha}-Me7CC) with quite good control and activities. Detailed microstructural analysis of the poly(a-Me7CC) using {sup 1}H and {sup 13}C NMR and MALDI-TOF-MS techniques revealed the higher regioselectivity -with preferential ring-opening at the most hindered oxygen-acyl O-C(O)O bond, i.e. close to the {alpha}-Me substituent- of the zinc-based system followed by the yttrium as compared to the lack of selectivity of the aluminum one, in the ROP of {alpha}-Me7CC. (author)

  6. The adsorption-desorption transition of double-stranded DNA interacting with an oppositely charged dendrimer induced by multivalent anions.

    Science.gov (United States)

    Jiang, Yangwei; Zhang, Dong; Zhang, Yaoyang; Deng, Zhenyu; Zhang, Linxi

    2014-05-28

    The adsorption-desorption transition of DNA in DNA-dendrimer solutions is observed when high-valence anions, such as hexavalent anions, are added to the DNA-dendrimer solutions. In the DNA-dendrimer solutions with low-valence anions, dendrimers bind tightly with the V-shaped double-stranded DNA. When high-valence anions, such as pentavalent or hexavalent anions, are added to the DNA-dendrimer solutions, the double-stranded DNA chains can be stretched straightly and the dendrimers are released from the double-stranded DNA chains. In fact, adding high-valence anions to the solutions can change the charge spatial distribution in the DNA-dendrimer solutions, and weaken the electrostatic interactions between the positively charged dendrimers and the oppositely charged DNA chains. Adsorption-desorption transition of DNA is induced by the overcharging of dendrimers. This investigation is capable of helping us understand how to control effectively the release of DNA in gene/drug delivery because an effective gene delivery for dendrimers includes non-covalent DNA-dendrimer binding and the effective release of DNA in gene therapy.

  7. A New Role for CO2: Controlling Agent of the Anionic Ring-Opening Polymerization of Cyclic Esters

    KAUST Repository

    Varghese, Jobi K.; Goncalves, Theo; Huang, Kuo-Wei; Hadjichristidis, Nikolaos; Gnanou, Yves; Feng, Xiaoshuang

    2017-01-01

    Conventional anionic ring-opening of polymerization (AROP) of cyclic esters suffers from the nonselective and concomitant attack of the monomer and of the polymer chains by the growing active species, which results in polyester samples with uncontrolled molar masses and broad polydispersity due to the competition between propagation and transesterification reactions. In this report, we describe a new AROP system mediated by a controlled amount of CO2 which prevents transesterification reactions from occurring. Using lithium monomethyl diethylene glycoxide (MEEOLi) as initiator and 1.5 equiv of CO2, ε-caprolactone could be polymerized under truly “living” conditions in dichloromethane (DCM) at 70 °C, as evidenced by the control of molar masses, the narrow polydispersity indexes (Mn up to ∼40 kg/mol, Đ < 1.16), and also successful chain extension experiments. Lithium carbonate used as initiator in the presence of 0.5 equiv of CO2 afforded similar polymerization results. Experiments carried out with other alkoxide salts and solvents demonstrate that CO2 is indispensable as well as lithium and noncoordinating solvents for the suppression of transesterifications. A similar strategy was applied for the AROP of l-lactide (LLA). At −20 °C, LLA could be polymerized under living conditions with undetectable level of transesterification as demonstrated by MALDI-ToF analysis. To account for the polymerization mechanism occurring in the presence of a slight excess of CO2, we resorted to computational studies. It appears that a fast equilibrium takes place between two tetrameric aggregates, one dormant comprising four carbonates (RCO3Li)4, and an active one involving three carbonates and one alkoxide (RCO3Li)3(ROLi). The latter is shown to selectively ring-open cyclic ester without indulging in transesterifications like (ROLi)4 precursors.

  8. A New Role for CO2: Controlling Agent of the Anionic Ring-Opening Polymerization of Cyclic Esters

    KAUST Repository

    Varghese, Jobi K.

    2017-08-15

    Conventional anionic ring-opening of polymerization (AROP) of cyclic esters suffers from the nonselective and concomitant attack of the monomer and of the polymer chains by the growing active species, which results in polyester samples with uncontrolled molar masses and broad polydispersity due to the competition between propagation and transesterification reactions. In this report, we describe a new AROP system mediated by a controlled amount of CO2 which prevents transesterification reactions from occurring. Using lithium monomethyl diethylene glycoxide (MEEOLi) as initiator and 1.5 equiv of CO2, ε-caprolactone could be polymerized under truly “living” conditions in dichloromethane (DCM) at 70 °C, as evidenced by the control of molar masses, the narrow polydispersity indexes (Mn up to ∼40 kg/mol, Đ < 1.16), and also successful chain extension experiments. Lithium carbonate used as initiator in the presence of 0.5 equiv of CO2 afforded similar polymerization results. Experiments carried out with other alkoxide salts and solvents demonstrate that CO2 is indispensable as well as lithium and noncoordinating solvents for the suppression of transesterifications. A similar strategy was applied for the AROP of l-lactide (LLA). At −20 °C, LLA could be polymerized under living conditions with undetectable level of transesterification as demonstrated by MALDI-ToF analysis. To account for the polymerization mechanism occurring in the presence of a slight excess of CO2, we resorted to computational studies. It appears that a fast equilibrium takes place between two tetrameric aggregates, one dormant comprising four carbonates (RCO3Li)4, and an active one involving three carbonates and one alkoxide (RCO3Li)3(ROLi). The latter is shown to selectively ring-open cyclic ester without indulging in transesterifications like (ROLi)4 precursors.

  9. Chain-modified radioiodinated fatty acids

    International Nuclear Information System (INIS)

    Otto, C.A.

    1987-01-01

    Several carbon chain manipulations have been studied in terms of their effects on myocardial activity levels and residence time. The manipulations examined included: chain length, chain branching, chain unsaturation, and carbon-iodine bond stabilization. It was found that chain length affects myocardial activity levels for both straight-chain alkyl acids and branched chain alkyl and aryl acids. Similar results have been reported for the straight-chain aryl acids. Generally, the longer chain lengths correlated with higher myocardial activity levels and longer residence times. This behavior is attributed to storage as triglycerides. Branched chain acids are designed to be anti-metabolites but only the aryl β-methyl acids possessed the expected time course of constant or very slowly decreasing activity levels. The alkyl β-methyl acids underwent rapid deiodination - a process apparently independent of β-oxidation. Inhibition of β-oxidation by incorporation of carbon-carbon double and triple bonds was studied. Deiodination of ω-iodo alkyl fatty acids prevented an assessment of suicide inhibition using an unsaturated alkynoic acid. Stabilization of the carbon-iodine bond by attachment of iodine to a vinylic or aryl carbon was studied. The low myocardial values and high blood values observed for an eleven carbon ω-iodo vinylic fatty acid were not encouraging but ω-iodo aryl fatty acids appear to avoid the problems of rapid deiodination. (Auth.)

  10. Test procedure for anion exchange chromatography

    International Nuclear Information System (INIS)

    Cooper, T.D.

    1994-01-01

    Plutonium from stored nitrate solutions will be sorbed onto anion exchange resins and converted to storable plutonium dioxide. Useful information will be simultaneously gained on the thermal stability and ion exchange capacity of four commercially available anion exchange resins over several years and under severe degradative conditions. This information will prove useful in predicting the safe and efficient lifetimes of these resins

  11. Tripodal Receptors for Cation and Anion Sensors

    Directory of Open Access Journals (Sweden)

    David N. Reinhoudt

    2006-08-01

    Full Text Available This review discusses different types of artificial tripodal receptors for the selectiverecognition and sensing of cations and anions. Examples on the relationship between structure andselectivity towards cations and anions are described. Furthermore, their applications as potentiometricion sensing are emphasised, along with their potential applications in optical sensors or optodes.

  12. Neutral anion receptors: design and application

    NARCIS (Netherlands)

    Antonisse, M.M.G.; Reinhoudt, David

    1998-01-01

    After the development of synthetic cation receptors in the late 1960s, only in the past decade has work started on the development of synthetic neutral anion receptors. Combination and preorganization of different anion binding groups, like amides, urea moieties, or Lewis acidic metal centers lead

  13. Creating molecular macrocycles for anion recognition

    Directory of Open Access Journals (Sweden)

    Amar H. Flood

    2016-03-01

    Full Text Available The creation and functionality of new classes of macrocycles that are shape persistent and can bind anions is described. The genesis of triazolophane macrocycles emerges out of activity surrounding 1,2,3-triazoles made using click chemistry; and the same triazoles are responsible for anion capture. Mistakes made and lessons learnt in anion recognition provide deeper understanding that, together with theory, now provides for computer-aided receptor design. The lessons are acted upon in the creation of two new macrocycles. First, cyanostars are larger and like to capture large anions. Second is tricarb, which also favors large anions but shows a propensity to self-assemble in an orderly and stable manner, laying a foundation for future designs of hierarchical nanostructures.

  14. Anion channels: master switches of stress responses.

    Science.gov (United States)

    Roelfsema, M Rob G; Hedrich, Rainer; Geiger, Dietmar

    2012-04-01

    During stress, plant cells activate anion channels and trigger the release of anions across the plasma membrane. Recently, two new gene families have been identified that encode major groups of anion channels. The SLAC/SLAH channels are characterized by slow voltage-dependent activation (S-type), whereas ALMT genes encode rapid-activating channels (R-type). Both S- and R-type channels are stimulated in guard cells by the stress hormone ABA, which leads to stomatal closure. Besides their role in ABA-dependent stomatal movement, anion channels are also activated by biotic stress factors such as microbe-associated molecular patterns (MAMPs). Given that anion channels occur throughout the plant kingdom, they are likely to serve a general function as master switches of stress responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Synthetic approaches towards new polymer systems by the combination of living carbocationic and anionic polymerizations

    DEFF Research Database (Denmark)

    Feldthusen, Jesper; Ivan, Bela; Muller, Axel. H.E.

    1996-01-01

    Recent efforts to obtain block copolymers by combination of living carbocationic and anionic polymerizations are presented.When tolyl-ended polyisobutylene was used as macroinitiator of anionic polymerization of methacrylate derivatives mixtures of homopolymers and block copolymers were formed due...... to incomplete lithiation of this chain end.In another approach a new functionalization method was developed by end-quenching living polyisobutylene with 1,1-diphenylethylene. After transformation of the groups into 2,2-diphenylvinyl end groups and lithiation polymers were synthesized from protected acrylate...

  16. Anion Gap Blood Test: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... https://medlineplus.gov/labtests/aniongapbloodtest.html Anion Gap Blood Test To use the sharing features on this page, please enable JavaScript. What is an Anion Gap Blood Test? An anion gap blood test is a way ...

  17. Production of medium-chain fatty acids and higher alcohols by a synthetic co-culture grown on carbon monoxide or syngas

    NARCIS (Netherlands)

    Diender, M.; Stams, A.J.M.; Machado de Sousa, D.Z.

    2016-01-01

    Background
    Synthesis gas, a mixture of CO, H2, and CO2, is a promising renewable feedstock for bio-based production of organic chemicals. Production of medium-chain fatty acids can be performed via chain elongation, utilizing acetate and ethanol as main substrates. Acetate and ethanol are main

  18. Organic anion and cation transport in vitro by dog choroid plexus: Effects of neuroleptics and tricyclic antidepressants

    Energy Technology Data Exchange (ETDEWEB)

    Barany, E H [Uppsala Univ. (Sweden)

    1979-01-01

    Dog lateral choroid plexus accumulates the cation /sup 14/C-emepronium and the divalent anion /sup 125/I-iodipamide in vitro. At 10 ..mu..M, high potency neuroleptics with a substituted piperazine side chain and also haloperidol depress only the uptake of the cation and even stimulate the uptake of the anion. In contrast, at 1-10..mu..M, the accumulation of both test substances is inhibited by neuroleptics and tricyclic antidepresssants with an aliphatic side chain. Such unspecific effects on seemingly unrelated transport systems at concentrations reached clinically in the CSF might explain some side actions of low potency neuroleptics and antidepressants.

  19. Anion-π Catalysts with Axial Chirality.

    Science.gov (United States)

    Wang, Chao; Matile, Stefan

    2017-09-04

    The idea of anion-π catalysis is to stabilize anionic transition states by anion-π interactions on aromatic surfaces. For asymmetric anion-π catalysis, π-acidic surfaces have been surrounded with stereogenic centers. This manuscript introduces the first anion-π catalysts that operate with axial chirality. Bifunctional catalysts with tertiary amine bases next to π-acidic naphthalenediimide planes are equipped with a bulky aromatic substituent in the imide position to produce separable atropisomers. The addition of malonic acid half thioesters to enolate acceptors is used for evaluation. In the presence of a chiral axis, the selective acceleration of the disfavored but relevant enolate addition was much better than with point chirality, and enantioselectivity could be observed for the first time for this reaction with small-molecule anion-π catalysts. Enantioselectivity increased with the π acidity of the π surface, whereas the addition of stereogenic centers around the aromatic plane did not cause further improvements. These results identify axial chirality of the active aromatic plane generated by atropisomerism as an attractive strategy for asymmetric anion-π catalysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Anodization of Zr-Nb-Cu alloy in mandelic acid - effect of solvent and anionic impurities

    International Nuclear Information System (INIS)

    Lavanya, A.; Raghunath Reddy, G.; Ch Anjaneyulu

    2004-01-01

    Anodization of zirconium-niobium-copper (ZNC) alloy in 0.1 M mandelic acid has been carried out. The effect of solvent (ethylene glycol) and added anionic impurities (sulphates, phosphates and carbonates) showed better kinetic results (formation rate, current efficiency and differential field of formation). (author)

  1. Inorganic-organic hybrid polyoxometalate containing supramolecular helical chains: Preparation, characterization and application in chemically bulk-modified electrode

    International Nuclear Information System (INIS)

    Han Zhangang; Zhao Yulong; Peng Jun; Liu Qun; Wang Enbo

    2005-01-01

    An inorganic-organic hybrid polyoxometalate (POM) (Hbpy) 4 [SiMo 12 O 40 ] (1) (bpy = 2,4-bipyridine), has been prepared and characterized. X-ray diffraction study reveals that compound 1 contains interesting organic double helical chains. The hybrid nanoparticles was used as a solid bulkmodifier to fabricate a three-dimensional chemically modified carbon paste electrode (1-CPE) by direct mixing. The electrochemical behavior and electrocatalysis of 1-CPE has been studied in detail. The results indicate that 1-CPE has a good electrocatalytic activity toward the reduction of nitrite in 1 M H 2 SO 4 aqueous solution. 1-CPE shows remarkable stability that can be ascribed to the interactions existed between POM anions and organic double helical bpy chains, which are very important for practical applications in electrode modification

  2. First observation of alkyne radical anions by electron spin resonance spectroscopy: Hexyne/n-hexane mixed crystals

    International Nuclear Information System (INIS)

    Matsuura, K.; Muto, H.

    1991-01-01

    The radical anions of alkynes have been first observed by electron spin resonance spectroscopy following alkene anions previously studied. Hexyne radical anions were formed in 1-, 2-, or 3-hexyne/n--hexane mixed crystals irradiated at 4.2 or 77 K. The characters of the anions were as follows; (a) the α-proton hyperfine coupling is very large (∼4.5 mT for the 1-hexyne anion), (b) the β-proton couplings are very small (∼1.0 mT for C--H β proton with the conformational angle of 0 degree), and (c) the radicals show a negative g shift (2.0014). From these observations, it was found that the anions have a nonlinear(bent) molecule structure in the anticonfiguration (trans C--C≡C--C) with the bend angle ∼60 degree, and that the unpaired electron orbital is approximately composed of the anticombination of the sp 2 hybrid orbitals of the C≡C carbon atoms. A discussion based on complete neglect of differential overlap (CNDO) molecular orbital (MO) calculations was given for the observed negative g shift, which was shown to be characteristic of the alkyne anions which have a high-lying unpaired electron orbital and an antibonding 2p--2p π carbon orbital just above it on the upper energy side

  3. Anion effect controlling the selectivity in the zinc-catalysed copolymerisation of CO2 and cyclohexene oxide

    Directory of Open Access Journals (Sweden)

    Sait Elmas

    2015-01-01

    Full Text Available The choice of the anion has a surprisingly strong effect on the incorporation of CO2 into the polymer obtained during the zinc-catalysed copolymerisation of CO2 and cyclohexene oxide. The product span ranges from polyethercarbonates, where short polyether sequences alternate with carbonate linkages, to polycarbonates with a strictly alternating sequence of the repeating units. Herein, we report on the influence of the coordination ability of the anion on the selectivity and kinetics of the copolymerisation reaction.

  4. Synthetic cation-selective nanotube: permeant cations chaperoned by anions.

    Science.gov (United States)

    Hilder, Tamsyn A; Gordon, Dan; Chung, Shin-Ho

    2011-01-28

    The ability to design ion-selective, synthetic nanotubes which mimic biological ion channels may have significant implications for the future treatment of bacteria, diseases, and as ultrasensitive biosensors. We present the design of a synthetic nanotube made from carbon atoms that selectively allows monovalent cations to move across and rejects all anions. The cation-selective nanotube mimics some of the salient properties of biological ion channels. Before practical nanodevices are successfully fabricated it is vital that proof-of-concept computational studies are performed. With this in mind we use molecular and stochastic dynamics simulations to characterize the dynamics of ion permeation across a single-walled (10, 10), 36 Å long, carbon nanotube terminated with carboxylic acid with an effective radius of 5.08 Å. Although cations encounter a high energy barrier of 7 kT, its height is drastically reduced by a chloride ion in the nanotube. The presence of a chloride ion near the pore entrance thus enables a cation to enter the pore and, once in the pore, it is chaperoned by the resident counterion across the narrow pore. The moment the chaperoned cation transits the pore, the counterion moves back to the entrance to ferry another ion. The synthetic nanotube has a high sodium conductance of 124 pS and shows linear current-voltage and current-concentration profiles. The cation-anion selectivity ratio ranges from 8 to 25, depending on the ionic concentrations in the reservoirs.

  5. Carbonization

    Energy Technology Data Exchange (ETDEWEB)

    Hennebutte, H G; Goutal, E

    1921-07-04

    Materials such as coal, peat, or schist are subjected to a rising temperature in successive stages in apparatus in which the distillation products are withdrawn at each stage. For example in a three-stage process, the acid products of the first or low-temperature stage are fixed in a suitable reagent, the basic products from a second or higher-temperature stage are absorbed in an acid reagent, hydrocarbons being retained by solvents, while the third are subjected to a pyrogenation process carried out in a closed vessel. Wherein the material is subjected in stages to a rising temperature, the gasified products being withdrawn at each stage, and are prevented as far as possible from mixing with the carbonized products.

  6. High Vacuum Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar; Hadjichristidis, Nikolaos; Mays, Jimmy

    2015-01-01

    Anionic polymerization high vacuum techniques (HVTs) are the most suitable for the preparation of polymer samples with well-defined complex macromolecular architectures. Though HVTs require glassblowing skill for designing and making polymerization

  7. Study of the simultaneous complexation of a cation and of an anion using functionalized calixarenes; Etude de la complexation simultanee d'un cation et d'un anion par des calixarenes fonctionnalises

    Energy Technology Data Exchange (ETDEWEB)

    Moli, Ch. [CEA Cadarache, Dept. d' Etudes des Dechets, DED, 13 - Saint Paul lez Durance (France)]|[Universite Louis Pasteur, 67 - Strasbourg (France)

    2002-03-01

    The chemical reprocessing of irradiated nuclear fuels leads to the production of high-level radioactive liquid wastes which contain long-lived toxic radioelements. In the framework of the long-term management of these wastes, important research work is carried out for the separation of these radioelements for their further transmutation or immobilization inside specific matrices. These radioelements are present in acid solutions of fission products in the form of cations (cesium), anions (technetium, selenium) and molecules (iodine). Crown calixarenes have been successfully used for the extraction of cesium thanks to their exceptional selectivities. This work is mainly based on the use of the chelating properties of calixarenes for the extraction of anionic radioelements. Calixarenes functionalized by amino-carbon chains have been selected. The synthesis of amine calix[4]arenes and calix[6]arenes is described and their extractive and ionophoretic properties with respect to radioelements are shown using aqueous selective separation techniques like the liquid-liquid extraction and the supported liquid membrane transport. Technetium and selenium are extracted by amine calixarenes from a 10{sup -2} M aqueous solution of nitric acid. At this acidity, no selenium transport is observed, while technetium transport is efficient: the solution is quasi-totally decontaminated in 6 hours. Molecular iodine is efficiently extracted with a simple organic diluent, the 1,2-nitro-phenyl-hexyl-ether, from a strongly concentrated aqueous solution of nitric acid (HNO{sub 3} = 3 M). The transport of iodine becomes faster and more efficient when its concentration in the solution is higher. (J.S.)

  8. Study of the simultaneous complexation of a cation and of an anion using functionalized calixarenes; Etude de la complexation simultanee d'un cation et d'un anion par des calixarenes fonctionnalises

    Energy Technology Data Exchange (ETDEWEB)

    Moli, Ch [CEA Cadarache, Dept. d' Etudes des Dechets, DED, 13 - Saint Paul lez Durance (France); [Universite Louis Pasteur, 67 - Strasbourg (France)

    2002-03-01

    The chemical reprocessing of irradiated nuclear fuels leads to the production of high-level radioactive liquid wastes which contain long-lived toxic radioelements. In the framework of the long-term management of these wastes, important research work is carried out for the separation of these radioelements for their further transmutation or immobilization inside specific matrices. These radioelements are present in acid solutions of fission products in the form of cations (cesium), anions (technetium, selenium) and molecules (iodine). Crown calixarenes have been successfully used for the extraction of cesium thanks to their exceptional selectivities. This work is mainly based on the use of the chelating properties of calixarenes for the extraction of anionic radioelements. Calixarenes functionalized by amino-carbon chains have been selected. The synthesis of amine calix[4]arenes and calix[6]arenes is described and their extractive and ionophoretic properties with respect to radioelements are shown using aqueous selective separation techniques like the liquid-liquid extraction and the supported liquid membrane transport. Technetium and selenium are extracted by amine calixarenes from a 10{sup -2} M aqueous solution of nitric acid. At this acidity, no selenium transport is observed, while technetium transport is efficient: the solution is quasi-totally decontaminated in 6 hours. Molecular iodine is efficiently extracted with a simple organic diluent, the 1,2-nitro-phenyl-hexyl-ether, from a strongly concentrated aqueous solution of nitric acid (HNO{sub 3} = 3 M). The transport of iodine becomes faster and more efficient when its concentration in the solution is higher. (J.S.)

  9. Photoelectron spectroscopy of the 6-azauracil anion.

    Science.gov (United States)

    Chen, Jing; Buonaugurio, Angela; Dolgounitcheva, Olga; Zakrzewski, V G; Bowen, Kit H; Ortiz, J V

    2013-02-14

    We report the photoelectron spectrum of the 6-azauracil anion. The spectrum is dominated by a broad band exhibiting a maximum at an electron binding energy (EBE) of 1.2 eV. This spectral pattern is indicative of a valence anion. Our calculations were carried out using ab initio electron propagator and other many-body methods. Comparison of the anion and corresponding neutral of 6-azauracil with those of uracil shows that substituting a nitrogen atom for C-H at the C6 position of uracil gives rise to significant changes in the electronic structure of 6-azauracil versus that of uracil. The adiabatic electron affinity (AEA) of the canonical 6-azauracil tautomer is substantially larger than that of canonical uracil. Among the five tautomeric, 6-azauracil anions studied computationally, the canonical structure was found to be the most stable. The vertical detachment energies (VDE) of the canonical, valence-bound anion of 6-azauracil and its closest "very-rare" tautomer have been calculated. Electron propagator calculations on the canonical anion yield a VDE value that is in close agreement with the experimentally determined VDE value of 1.2 eV. The AEA value of 6-azauracil, assessed at the CCSD(T) level of theory to be 0.5 eV, corresponds with the EBE value of the onset of the experimental spectrum.

  10. Carbonylation of 1-hexene in the presence of palladium-anion-exchange resin catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, A.L.; Pirozhkov, S.D.; Buiya, M.A.; Lunin, A.F.; Karapetyan, L.P.; Saldadze, K.M.

    1986-06-20

    Activated charcoal, silica gel, and zeolites containing palladium are active in the carbonylation of lower olefins by carbon monoxide. In the present work, they studied the carbonylation of 1-hexene in the presence of a series of palladium catalysts containing An-221, An-251, and AN-511 anion-exchange catalysts produced in the USSR as the supports. A catalyst obtained by the deposition of palladium(II) on weakly basic anion-exchange resins displays high efficiency in the carbonylation of 1-hexene with the formation of a nixture of enanthoic and 2-methylcaproic acids.

  11. Source Attribution of Cyanides using Anionic Impurity Profiling, Stable Isotope Ratios, Trace Elemental Analysis and Chemometrics

    Energy Technology Data Exchange (ETDEWEB)

    Mirjankar, Nikhil S.; Fraga, Carlos G.; Carman, April J.; Moran, James J.

    2016-01-08

    Chemical attribution signatures (CAS) for chemical threat agents (CTAs) are being investigated to provide an evidentiary link between CTAs and specific sources to support criminal investigations and prosecutions. In a previous study, anionic impurity profiles developed using high performance ion chromatography (HPIC) were demonstrated as CAS for matching samples from eight potassium cyanide (KCN) stocks to their reported countries of origin. Herein, a larger number of solid KCN stocks (n = 13) and, for the first time, solid sodium cyanide (NaCN) stocks (n = 15) were examined to determine what additional sourcing information can be obtained through anion, carbon stable isotope, and elemental analyses of cyanide stocks by HPIC, isotope ratio mass spectrometry (IRMS), and inductively coupled plasma optical emission spectroscopy (ICP-OES), respectively. The HPIC anion data was evaluated using the variable selection methods of Fisher-ratio (F-ratio), interval partial least squares (iPLS), and genetic algorithm-based partial least squares (GAPLS) and the classification methods of partial least squares discriminate analysis (PLSDA), K nearest neighbors (KNN), and support vector machines discriminate analysis (SVMDA). In summary, hierarchical cluster analysis (HCA) of anion impurity profiles from multiple cyanide stocks from six reported country of origins resulted in cyanide samples clustering into three groups: Czech Republic, Germany, and United States, independent of the associated alkali metal (K or Na). The three country groups were independently corroborated by HCA of cyanide elemental profiles and corresponded to countries with known solid cyanide factories. Both the anion and elemental CAS are believed to originate from the aqueous alkali hydroxides used in cyanide manufacture. Carbon stable isotope measurements resulted in two clusters: Germany and United States (the single Czech stock grouped with United States stocks). The carbon isotope CAS is believed to

  12. Probing Intermolecular Electron Delocalization in Dimer Radical Anions by Vibrational Spectroscopy

    International Nuclear Information System (INIS)

    Mani, Tomoyasu; Brookhaven National Laboratory; Grills, David C.

    2017-01-01

    Delocalization of charges is one of the factors controlling charge transport in conjugated molecules. It is considered to play an important role in the performance of a wide range of molecular technologies, including organic solar cells and organic electronics. Dimerization reactions are well-suited as a model to investigate intermolecular spatial delocalization of charges. And while dimerization reactions of radical cations are well investigated, studies on radical anions are still scarce. Upon dimerization of radical anions with neutral counterparts, an electron is considered to delocalize over the two molecules. By using time-resolved infrared (TRIR) detection coupled with pulse radiolysis, we show that radical anions of 4-n-hexyl-4'-cyanobiphenyl (6CB) undergo such dimerization reactions, with an electron equally delocalized over the two molecules. We have recently demonstrated that nitrile ν(C≡N) vibrations respond to the degree of electron localization of nitrile-substituted anions: we can quantify the changes in the electronic charges from the neutral to the anion states in the nitriles by monitoring the ν(C≡N) IR shifts. In the first part of this article, we show that the sensitivity of the ν(C≡N) IR shifts does not depend on solvent polarity. In the second part, we describe how probing the shifts of the nitrile IR vibrational band unambiguously confirms the formation of dimer radical anions, with K dim = 3 × 10 4 M –1 . IR findings are corroborated by electronic absorption spectroscopy and electronic structure calculations. We find that the presence of a hexyl chain and the formation of π–π interactions are both crucial for dimerization of radical anions of 6CB with neutral 6CB. Our study provides clear evidence of spatial delocalization of electrons over two molecular fragments.

  13. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    International Nuclear Information System (INIS)

    Bowman-James, K.; Wilson, G.; Moyer, B. A.

    2004-01-01

    This project involves the design and synthesis of receptors for oxoanions of environmental importance, including emphasis on high level and low activity waste. Target anions have included primarily oxoanions and a study of the basic concepts behind selective binding of target anions. A primary target has been sulfate because of its deleterious influence on the vitrification of tank wastes

  14. CHAIN 2

    International Nuclear Information System (INIS)

    Bailey, D.

    1998-04-01

    The Second Processing Chain (CHAIN2) consists of a suite of ten programs which together provide a full local analysis of the bulk plasma physics within the JET Tokamak. In discussing these ten computational models this report is intended to fulfil two broad purposes. Firstly it is meant to be used as a reference source for any user of CHAIN2 data, and secondly it provides a basic User Manual sufficient to instruct anyone in running the CHAIN2 suite of codes. In the main report text each module is described in terms of its underlying physics and any associated assumptions or limitations, whilst deliberate emphasis is put on highlighting the physics and mathematics of the calculations required in deriving each individual datatype in the standard module PPF output. In fact each datatype of the CHAIN2 PPF output listed in Appendix D is cross referenced to the point in the main text where its evaluation is discussed. An effort is made not only to give the equation used to derive a particular data profile but also to explicitly define which external data sources are involved in the computational calculation

  15. Hybrid capacitive deionization with anion-exchange membranes for lithium extraction

    Directory of Open Access Journals (Sweden)

    Siekierka Anna

    2017-01-01

    Full Text Available Lithium is considered to be a critical material for various industrial fields. We present our studies on extraction lithium from diluted aqueous solution by novel hybrid system based on a membrane capacitive deionization and batteries desalination. Hybrid CDI is comprised by a lithium selective adsorbent, activated carbon electrode and anion-exchange membranes. Here, we demonstrated implication of various type of anion-exchange membranes and influence their properties on effective capacity and energy requirements in charge/discharge steps. We described a configuration with anion-exchange membrane characterized by adsorption capacity of 35 mg/g of Li+ with 0.08Wh/g and removal efficiency of 60 % of lithium ions, using novel selective desalination technique.

  16. Hybrid capacitive deionization with anion-exchange membranes for lithium extraction

    Science.gov (United States)

    Siekierka, Anna; Bryjak, Marek

    2017-11-01

    Lithium is considered to be a critical material for various industrial fields. We present our studies on extraction lithium from diluted aqueous solution by novel hybrid system based on a membrane capacitive deionization and batteries desalination. Hybrid CDI is comprised by a lithium selective adsorbent, activated carbon electrode and anion-exchange membranes. Here, we demonstrated implication of various type of anion-exchange membranes and influence their properties on effective capacity and energy requirements in charge/discharge steps. We described a configuration with anion-exchange membrane characterized by adsorption capacity of 35 mg/g of Li+ with 0.08Wh/g and removal efficiency of 60 % of lithium ions, using novel selective desalination technique.

  17. Infrared spectroscopy of anionic hydrated fluorobenzenes

    International Nuclear Information System (INIS)

    Schneider, Holger; Vogelhuber, Kristen M.; Weber, J. Mathias

    2007-01-01

    We investigate the structural motifs of anionic hydrated fluorobenzenes by infrared photodissociation spectroscopy and density functional theory. Our calculations show that all fluorobenzene anions under investigation are strongly distorted from the neutral planar molecular geometries. In the anions, different F atoms are no longer equivalent, providing structurally different binding sites for water molecules and giving rise to a multitude of low-lying isomers. The absorption bands for hexa- and pentafluorobenzene show that only one isomer for the respective monohydrate complexes is populated in our experiment. For C 6 F 6 - ·H 2 O, we can assign these bands to an isomer where water forms a weak double ionic hydrogen bond with two F atoms in the ion, in accord with the results of Bowen et al. [J. Chem. Phys. 127, 014312 (2007), following paper.] The spectroscopic motif of the binary complexes changes slightly with decreasing fluorination of the aromatic anion. For dihydrated hexafluorobenzene anions, several isomers are populated in our experiments, some of which may be due to hydrogen bonding between water molecules

  18. Adsorption and desorption dynamics of citric acid anions in soil

    KAUST Repository

    Oburger, E.

    2011-07-26

    The functional role of organic acid anions in soil has been intensively investigated, with special focus on (i) microbial respiration and soil carbon dynamics, (ii) nutrient solubilization or (iii) metal detoxification and reduction of plant metal uptake. Little is known about the interaction dynamics of organic acid anions with the soil matrix and the potential impact of adsorption and desorption processes on the functional significance of these effects. The aim of this study was to characterize experimentally the adsorption and desorption dynamics of organic acid anions in five agricultural soils differing in iron and aluminium oxide contents and using citrate as a model carboxylate. Results showed that both adsorption and desorption processes were fast in all soils, reaching a steady state within approximately 1 hour. However, for a given total soil citrate concentration (ct) the steady state was critically dependent on the starting conditions of the experiment, whether most of the citrate was initially present in solution (cl) or held on the solid phase (cs). Specifically, desorption-led processes resulted in significantly smaller steady-state solution concentrations than adsorption-led processes, indicating that hysteresis occurred. As it is not possible to distinguish between different adsorption and desorption pools in soil experimentally, a new dynamic hysteresis model that relies only on measured soil solution concentrations was developed. The model satisfactorily explained experimental data and was able to predict dynamic adsorption and desorption behaviour. To demonstrate its use, we applied the model to two relevant situations involving exudation and microbial degradation. The study highlighted the complex nature of citrate adsorption and desorption dynamics in soil. We conclude that existing models need to incorporate both temporal and hysteresis components to describe realistically the role and fate of organic acids in soil processes. © 2011 The

  19. Natural minerals and synthetic materials for sorption of radioactive anions

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Mun Ja; Chun, Kwan Sik; Kim, Seung Soo

    1998-07-01

    Technetium-99 and iodine-129 are fission products with long half-lives, and exist as highly soluble anionic species. Studies on natural and synthetic materials sorbing TcO{sub 4} and/or I have been performed by several researchers. The application of these materials as an additive in the high-level waste disposal has been considered. The iron- or sulfide-containing minerals such as metal iron, iron powder, stibnite and pyrrhotite show a high capacity for TcO{sub 4} sorption. And the small amounts of activated carbon are reported to have high distribution coefficients recently. In the iodine sorption studies, sulfide-, copper-, lead- or mercury-containing minerals can be a candidate. Pyrite, chalcopyrite, galena, Cu{sub 2}S and CuS reveal a high capacity for I sorption. The synthetic materials were found to have high sorption capacity and compensate the defects of natural minerals, which contain hydrous oxides such as zirconium oxide, aluminium oxide and mercarbide. The mercarbide has the high distribution coefficients for the sorption of TcO{sub 4} and I. Recently it was proposed that the synthetic clay, hydrotalcite, could be useful for the fixation of anion. However, to determine the applicability of those natural and synthetic materials as an additive to a buffer or backfill material for sorption of TcO{sub 4} and/or I, the sorption behavior of the anions on those materials under the repository conditions should be identified. (author). 32 refs., 21 tabs., 10 figs

  20. Cytotoxic mechanisms of hydrosulfide anion and cyanide anion in primary rat hepatocyte cultures

    International Nuclear Information System (INIS)

    Thompson, Rodney W.; Valentine, Holly L.; Valentine, William M.

    2003-01-01

    Hydrogen sulfide and hydrogen cyanide are known to compromise mitochondrial respiration through inhibition of cytochrome c oxidase and this is generally considered to be their primary mechanism of toxicity. Experimental studies and the efficiency of current treatment protocols suggest that H 2 S may exert adverse physiological effects through additional mechanisms. To evaluate the role of alternative mechanisms in H 2 S toxicity, the relative contributions of electron transport inhibition, uncoupling of mitochondrial respiration, and opening of the mitochondrial permeability transition pore (MPTP) to hydrosulfide and cyanide anion cytotoxicity in primary hepatocyte cultures were examined. Supplementation of hepatocytes with the glycolytic substrate, fructose, rescued hepatocytes from cyanide anion induced toxicity, whereas fructose supplementation increased hydrosulfide anion toxicity suggesting that hydrosulfide anion may compromise glycolysis in hepatocytes. Although inhibitors of the MPTP opening were protective for hydrosulfide anion, they had no effect on cyanide anion toxicity, consistent with an involvement of the permeability transition pore in hydrosulfide anion toxicity but not cyanide anion toxicity. Exposure of isolated rat liver mitochondria to hydrosulfide did not result in large amplitude swelling suggesting that if H 2 S induces the permeability transition it does so indirectly through a mechanism requiring other cellular components. Hydrosulfide anion did not appear to be an uncoupler of mitochondrial respiration in hepatocytes based upon the inability of oligomycin and fructose to protect hepatocytes from hydrosulfide anion toxicity. These findings support mechanisms additional to inhibition of cytochrome c oxidase in hydrogen sulfide toxicity. Further investigations are required to assess the role of the permeability transition in H 2 S toxicity, determine whether similar affects occur in other cell types or in vivo and evaluate whether this may

  1. Gas-Phase Reactivity of Microsolvated Anions

    DEFF Research Database (Denmark)

    Thomsen, Ditte Linde

    the gas-phase α-effect. The experimental studies are performed by means of the flowing after glow selected ion flow tube technique, and these are supplemented by electronic structure calculations. The α-nucleophile employed is the microsolvated hydrogen peroxide anion whose reactivity is compared......Gas-phase studies of ion-molecule reactions shed light on the intrinsic factors that govern reactivity; and even solvent effects can be examined in the gasphase environment by employing microsolvated ions. An area that has received considerable attention with regard to the interplay between...... to that of a series of microsolvated oxygen centered anions. The association of the nucleophiles with a single water or methanol molecule allows the α-effect to be observed in the SN2 reaction with methyl chloride; this effect was not apparent in the reactions of the unsolvated anions. The results suggest...

  2. New borohydride anion B6H7-

    International Nuclear Information System (INIS)

    Kuznetsov, I.Yu.; Vinitskij, D.M.; Solntsev, K.A.

    1985-01-01

    The [Ni(Bipy) 3 ] (B 6 H 7 ) 2 , (Ph 4 P)B 6 H 7 , [Ni(Phen) 3 ](B 6 H 7 ) 2 crystals (where Bipy = bipyridine, Phen = phenathroline, Ph = phenyl) are obtained via the exchange reaction with a subsequent recrystallization from aqua-acetonic and acetonic solutions. The structure is studied of a new borohydride anion B 6 H 7 - possessing a four-valence bond unique for polyhedral borohydride anions. A triangular face of boride skeleton coordinating a hydrogen atom is considerably larger than other faces, and the electron density on this hydrogen atom is evidently much higher than at the end hydride hydrogen atoms. The trend of B 6 H 7 - anion to form statistically disordered structurs testifies to a rather slight effect of the seventh hydrogen atom position on the structure pattern of the ionic crystal lattice

  3. The absorption of plutonium by anion resins

    Energy Technology Data Exchange (ETDEWEB)

    Durham, R. W.; Mills, R.

    1961-10-15

    Equilibrium experiments have shown Pu{sup +4} to be absorbed from nitric acid onto an anion resin as a complex anion Pu(NO{sub 3}){sub 6}{sup -2}. The amount of absorption is dependent on the plutonium and nitric acid concentrations in the equilibrium solution with a maximum at 7N to 8N HNO{sub 3}. A low cross-linked resin has a higher capacity and reaches equilibrium more rapidly than the normally supplied resin. Saturation capacity of one per cent cross-linked Nalcite SBR (Dowex 1), 50 -- 100 mesh, is 385 mg Pu/gram dry resin. (author)

  4. High Vacuum Techniques for Anionic Polymerization

    KAUST Repository

    Ratkanthwar, Kedar

    2015-09-01

    Anionic polymerization high vacuum techniques (HVTs) are the most suitable for the preparation of polymer samples with well-defined complex macromolecular architectures. Though HVTs require glassblowing skill for designing and making polymerization reactor, it is the best way to avoid any termination of living polymers during the number of steps for the synthesis of polymers with complex structure. In this chapter, we describe the different polymerization reactors and HVTs for the purification of monomers, solvents, and other reagents for anionic polymerization as well as few model reactions for the synthesis of polymers with simple to complex structure.

  5. Dibromine radical anion reactions with heme enzymes

    International Nuclear Information System (INIS)

    Gebicka, L.; Gebicki, J.L.

    1996-01-01

    Reactions of Br 2 radical anion with heme enzymes, catalase horseradish peroxidase, have been studied by pulse radiolysis. It has been found that Br 2 - does not react with the heme centre of investigated enzymes. Dibromine radical anion reacts with tryptophan residues of catalase without any influence on the activity of catalase. It is suggested that in pulse radiolysis studies, where horseradish peroxidase is at about tenfold excess toward Br 2 - , the enzyme is modified rather by Br 2 , than by Br 2 - . (author). 26 refs., 3 figs

  6. Tetrel Bonding as a Vehicle for Strong and Selective Anion Binding

    Directory of Open Access Journals (Sweden)

    Steve Scheiner

    2018-05-01

    Full Text Available Tetrel atoms T (T = Si, Ge, Sn, and Pb can engage in very strong noncovalent interactions with nucleophiles, which are commonly referred to as tetrel bonds. The ability of such bonds to bind various anions is assessed with a goal of designing an optimal receptor. The Sn atom seems to form the strongest bonds within the tetrel family. It is most effective in the context of a -SnF3 group and a further enhancement is observed when a positive charge is placed on the receptor. Connection of the -SnF3 group to either an imidazolium or triazolium provides a strong halide receptor, which can be improved if its point of attachment is changed from the C to an N atom of either ring. Aromaticity of the ring offers no advantage nor is a cyclic system superior to a simple alkyl amine of any chain length. Placing a pair of -SnF3 groups on a single molecule to form a bipodal dicationic receptor with two tetrel bonds enhances the binding, but falls short of a simple doubling. These two tetrel groups can be placed on opposite ends of an alkyl diamine chain of any length although SnF3+NH2(CH2nNH2SnF3+ with n between 2 and 4 seems to offer the strongest halide binding. Of the various anions tested, OH− binds most strongly: OH− > F− > Cl− > Br− > I−. The binding energy of the larger NO3− and HCO3− anions is more dependent upon the charge of the receptor. This pattern translates into very strong selectivity of binding one anion over another. The tetrel-bonding receptors bind far more strongly to each anion than an equivalent number of K+ counterions, which leads to equilibrium ratios in favor of the former of many orders of magnitude.

  7. Anion transport and GABA signaling

    Directory of Open Access Journals (Sweden)

    Christian Andreas Huebner

    2013-10-01

    Full Text Available Whereas activation of GABAA receptors by GABA usually results in a hyperpolarizing influx of chloride into the neuron, the reversed chloride driving force in the immature nervous system results in a depolarizing efflux of chloride. This GABAergic depolarization is deemed to be important for the maturation of the neuronal network. The concept of a developmental GABA switch has mainly been derived from in vitro experiments and reliable in vivo evidence is still missing. As GABAA receptors are permeable for both chloride and bicarbonate, the net effect of GABA also critically depends on the distribution of bicarbonate. Whereas chloride can either mediate depolarizing or hyperpolarizing currents, bicarbonate invariably mediates a depolarizing current under physiological conditions. Intracellular bicarbonate is quickly replenished by cytosolic carbonic anhydrases. Intracellular bicarbonate levels also depend on different bicarbonate transporters expressed by neurons. The expression of these proteins is not only developmentally regulated but also differs between cell types and even subcellular regions. In this review we will summarize current knowledge about the role of some of these transporters for brain development and brain function.

  8. Heavy Chain Diseases

    Science.gov (United States)

    ... of heavy chain produced: Alpha Gamma Mu Alpha Heavy Chain Disease Alpha heavy chain disease (IgA heavy ... the disease or lead to a remission. Gamma Heavy Chain Disease Gamma heavy chain disease (IgG heavy ...

  9. Melatonin and the electron transport chain.

    Science.gov (United States)

    Hardeland, Rüdiger

    2017-11-01

    Melatonin protects the electron transport chain (ETC) in multiple ways. It reduces levels of ·NO by downregulating inducible and inhibiting neuronal nitric oxide synthases (iNOS, nNOS), thereby preventing excessive levels of peroxynitrite. Both ·NO and peroxynitrite-derived free radicals, such as ·NO 2 , hydroxyl (·OH) and carbonate radicals (CO 3 · - ) cause blockades or bottlenecks in the ETC, by ·NO binding to irons, protein nitrosation, nitration and oxidation, changes that lead to electron overflow or even backflow and, thus, increased formation of superoxide anions (O 2 · - ). Melatonin improves the intramitochondrial antioxidative defense by enhancing reduced glutathione levels and inducing glutathione peroxidase and Mn-superoxide dismutase (Mn-SOD) in the matrix and Cu,Zn-SOD in the intermembrane space. An additional action concerns the inhibition of cardiolipin peroxidation. This oxidative change in the membrane does not only initiate apoptosis or mitophagy, as usually considered, but also seems to occur at low rate, e.g., in aging, and impairs the structural integrity of Complexes III and IV. Moreover, elevated levels of melatonin inhibit the opening of the mitochondrial permeability transition pore and shorten its duration. Additionally, high-affinity binding sites in mitochondria have been described. The assumption of direct binding to the amphipathic ramp of Complex I would require further substantiation. The mitochondrial presence of the melatonin receptor MT 1 offers the possibility that melatonin acts via an inhibitory G protein, soluble adenylyl cyclase, decreased cAMP and lowered protein kinase A activity, a signaling pathway shown to reduce Complex I activity in the case of a mitochondrial cannabinoid receptor.

  10. Revisiting imidazolium based ionic liquids: Effect of the conformation bias of the [NTf2] anion studied by molecular dynamics simulations

    Science.gov (United States)

    Neumann, Jan; Golub, Benjamin; Odebrecht, Lisa-Marie; Ludwig, Ralf; Paschek, Dietmar

    2018-05-01

    We study ionic liquids composed of 1-alkyl-3-methylimidazolium cations and bis(trifluoromethyl-sulfonyl)imide anions ([CnMIm][NTf2]) with varying chain-length n = 2, 4, 6, 8 by using molecular dynamics simulations. We show that a reparametrization of the dihedral potentials as well as charges of the [NTf2] anion leads to an improvement of the force field model introduced by Köddermann, Paschek, and Ludwig [ChemPhysChem 8, 2464 (2007)] (KPL-force field). A crucial advantage of the new parameter set is that the minimum energy conformations of the anion (trans and gauche), as deduced from ab initio calculations and Raman experiments, are now both well represented by our model. In addition, the results for [CnMIm][NTf2] show that this modification leads to an even better agreement between experiment and molecular dynamics simulation as demonstrated for densities, diffusion coefficients, vaporization enthalpies, reorientational correlation times, and viscosities. Even though we focused on a better representation of the anion conformation, also the alkyl chain-length dependence of the cation behaves closer to the experiment. We strongly encourage to use the new NGOLP (Neumann, Golub, Odebrecht, Ludwig, Paschek) force field for the [NTf2] anion instead of the earlier KPL parameter set for computer simulations aiming to describe the thermodynamics, dynamics, and also structure of imidazolium-based ionic liquids.

  11. The assessment of pellicular anion-exchange resins for the determination of anions by ion chromatography

    International Nuclear Information System (INIS)

    Pohlandt, C.

    1981-01-01

    Because pellicular anion-exchange resins suitable for the determination, by ion chromatography, of anions with alkaline eluents were unavailable in South Africa at the inception of this work, an attempt was made to prepare such resins. In this study it is shown that the pellicular resins produced are more efficient than the surface-aminated resins used previously. The simultaneous separation and determination of five common anions is demonstrated. The method was applied to the analysis of uranium leach liquors, effluent samples, and a solid sample of ferric oxide (goethite)

  12. Carbonate and Bicarbonate Ion Transport in Alkaline Anion Exchange Membranes

    Science.gov (United States)

    2013-06-25

    comparable assumptions, a similar equation can be derived starting with the Nernst -Planck equation . σ = ∑ σi = ∑ F2z2i RT (ε− ε0)q D0i 1 + δi Ci [1] Using Eq...an appropriate ion-membrane diffusion coefficient. Finally, an equation derived from the dusty fluid model can be used to calculate the ionic...Finally, an equation derived from the dusty fluid model can be used to calculate the ionic conductivity of the membrane in different counter ion forms

  13. Anion-induced structural transformation of a sulfate-incorporated 2D Cd(II)–organic framework

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Li-Wei [Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan (China); Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan (China); Luo, Tzuoo-Tsair [Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan (China); Wang, Chih-Min [Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202, Taiwan (China); Lee, Gene-Hsiang; Peng, Shie-Ming [Department of Chemistry, National Taiwan University, Taipei 107, Taiwan (China); Liu, Yen-Hsiang [Department of Chemistry, Fu Jen Catholic University, New Taipei City 242, Taiwan (China); Lee, Sheng-Long [Institute of Materials Science and Engineering, National Central University, Taoyuan 320, Taiwan (China); Lu, Kuang-Lieh [Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan (China)

    2016-07-15

    A Cd(II)–organic framework {[Cd_2(tpim)_4(SO_4)(H_2O)_2]·(SO_4)·21H_2O}{sub n} (1) was synthesized by reacting CdSO{sub 4}·8/3H{sub 2}O and 2,4,5-tri(4-pyridyl)imidazole (tpim) under hydrothermal conditions. A structural analysis showed that compound 1 adopts a layered structure in which the [Cd(tpim){sub 2}]{sub n} chains are linked by sulfate anions. These 2D layers are further packed into a 3D supramolecular framework via π–π interactions. The structure contains two types of SO{sub 4}{sup 2−} anions, i.e., bridging SO{sub 4}{sup 2−} and free SO{sub 4}{sup 2−} anions, the latter of which are included in the large channels of the framework. Compound 1 exhibits interesting anion exchange behavior. In the presence of SCN{sup −} anions, both the bridging and free SO{sub 4}{sup 2−} anions in 1 were completely exchanged by SCN{sup −} ligands to form a 1D species [Cd(tpim){sub 2}(SCN){sub 2}] (1A), in which the SCN{sup –} moieties function as a monodentate ligand. On the other hand, when compound 1 was ion exchanged with N{sub 3}{sup −} anions in aqueous solution, the bridging SO{sub 4}{sup 2−} moieties remained intact, and only the free guest SO{sub 4}{sup 2−} were replaced by N{sub 3}{sup −} anions. The gas adsorption behavior of the activated compound 1 was also investigated. - Highlights: • An interesting anion-induced structural transformation of a sulfate-incorporated 2D Cd(II)–organic framework is reported. • The sulfate-incorporated 2D layer compound exhibits very different anion exchange behavior with respect to SCN{sup −} and N{sub 3}{sup −}. • Both the bridging and free SO{sub 4}{sup 2−} anions in the 2D structure were completely exchanged by SCN{sup −} ligands, resulting in the formation of a 1D species. However, in the case of N{sub 3}{sup −} anions, only the free guest SO{sub 4}{sup 2−} in the structure was replaced.

  14. Interstellar dehydrogenated PAH anions: vibrational spectra

    Science.gov (United States)

    Buragohain, Mridusmita; Pathak, Amit; Sarre, Peter; Gour, Nand Kishor

    2018-03-01

    Interstellar polycyclic aromatic hydrocarbon (PAH) molecules exist in diverse forms depending on the local physical environment. Formation of ionized PAHs (anions and cations) is favourable in the extreme conditions of the interstellar medium (ISM). Besides in their pure form, PAHs are also likely to exist in substituted forms; for example, PAHs with functional groups, dehydrogenated PAHs etc. A dehydrogenated PAH molecule might subsequently form fullerenes in the ISM as a result of ongoing chemical processes. This work presents a density functional theory (DFT) calculation on dehydrogenated PAH anions to explore the infrared emission spectra of these molecules and discuss any possible contribution towards observed IR features in the ISM. The results suggest that dehydrogenated PAH anions might be significantly contributing to the 3.3 μm region. Spectroscopic features unique to dehydrogenated PAH anions are highlighted that may be used for their possible identification in the ISM. A comparison has also been made to see the size effect on spectra of these PAHs.

  15. Anion-conducting polymer, composition, and membrane

    Science.gov (United States)

    Pivovar, Bryan S [Los Alamos, NM; Thorn, David L [Los Alamos, NM

    2009-09-01

    Anion-conducing polymers and membranes with enhanced stability to aqueous alkali include a polymer backbone with attached sulfonium, phosphazenium, phosphazene, and guanidinium residues. Compositions also with enhanced stability to aqueous alkali include a support embedded with sulfonium, phosphazenium, and guanidinium salts.

  16. Synthesis of azaphenanthridines via anionic ring closure

    DEFF Research Database (Denmark)

    Hansen, Henriette Møller; Lysén, M.; Begtrup, M.

    2005-01-01

    A new and convergent synthesis of azaphenanthridines via an anionic ring closure is reported. Ortho-lithiation/in situ borylation of cyanopyridines produces the corresponding cyanopyridylboronic esters, which undergo a Suzuki-Miyaura cross-coupling to give the key intermediates. Addition of lithium...

  17. The motley family of polar compounds (MV)[M(X{sub 5-x}X Prime {sub x})] based on anionic chains of trans-connected M{sup (III)}(X,X Prime ){sub 6} octahedra (M=Bi, Sb; X, X Prime =Cl, Br, I) and methylviologen (MV) dications

    Energy Technology Data Exchange (ETDEWEB)

    Leblanc, Nicolas [Laboratoire MOLTECH-Anjou, UMR-CNRS 6200, Universite d' Angers 2 Bd Lavoisier, 49045 Angers (France); Mercier, Nicolas, E-mail: nicolas.mercier@univ-angers.fr [Laboratoire MOLTECH-Anjou, UMR-CNRS 6200, Universite d' Angers 2 Bd Lavoisier, 49045 Angers (France); Allain, Magali; Toma, Oksana [Laboratoire MOLTECH-Anjou, UMR-CNRS 6200, Universite d' Angers 2 Bd Lavoisier, 49045 Angers (France); Auban-Senzier, Pascale; Pasquier, Claude [Laboratoire de Physique des Solides, UMR-CNRS 8502, Bat. 510,Universite Paris Sud, 91405 Orsay (France)

    2012-11-15

    The search for hybrid organic-inorganic materials remains a great challenge in the field of ferroelectrics. Following the discovery of the room temperature ferroelectric material (MV)[BiI{sub 3}Cl{sub 2}] (MV{sup 2+}: methylviologen) exhibiting the highest polarization value in the field of hybrid ferroelectrics, we report here nine new hybrids with the general formulation (MV)[M{sup (III)}X{sub 5-x}X Prime {sub x}] (M=Bi, Sb; X, X Prime =Cl, Br, I): (MV)[BiCl{sub 3.3}Br{sub 1.7}] (1), (MV)[BiCl{sub 1.3}Br{sub 3.7}] (2), (MV)[BiBr{sub 3.2}I{sub 1.8}] (3), (MV)[SbCl{sub 5}] (4), (MV)[SbBr{sub 5}] (5), (MV)[SbCl{sub 3.8}Br{sub 1.2}] (6), (MV)[SbCl{sub 2.4}Br{sub 2.6}] (7), (MV)[SbI{sub 3}Cl{sub 2}] (8) and (MV)[SbBr{sub 3.8}I{sub 1.2}] (9). Depending on the presence of polar chains or not, and on the coupling of polar chains, two types of centrosymmetrical structures [C1] and [C2] and two types of polar structures [P1] and [P2] are defined. (2) undergoes a paraelectric-to-relaxor ferroelectric transition around 100-150 K depending of the frequency showing that the Curie temperature, T{sub C}, of (MV)[BiBr{sub 5}] (243 K) can be modulated by the substitution of Br by Cl. The most interesting family is the [P2] type because the syn coupling of polar chains is in favor of high polarization values, as in (MV)[BiI{sub 3}Cl{sub 2}]. Five of the nine new hybrids, (4), (6-9), which have the [P2] type structure are potential ferroelectrics. - Graphical abstract: The methylviologen haloantimonate (MV)[SbX{sub 5-x}X Prime {sub x}] families (X, X Prime =Cl, Br, I) - [P1] and [P2] are the two kinds of polar structures - and view of the (MV)[SbBr{sub 3.8}I{sub 1.2}] hybrid based on chiral polar chains which are in syn coupling. Highlights: Black-Right-Pointing-Pointer Nine hybrids based on methylviologen and halometalate chains have been discovered. Black-Right-Pointing-Pointer The polar nature of chains is due to the ns{sup 2} stereoactivity of Sb{sup (III)} or Bi{sup (III

  18. The effects of fouled anion resin on condensate polishing plant performance at Dungeness B power station

    International Nuclear Information System (INIS)

    Bates, Chris

    2008-01-01

    The return to power, after an outage, at Dungeness B Power Station was delayed because of problems in achieving an in-specification feedwater acid conductivity. Dungeness B has a full flow cation/mixed bed condensate polishing plant (CPP). Investigations showed that the acid conductivity was produced by carbon dioxide and organic impurities both by-passing the CPP and slipping through it. Resin analysis showed that the anion resin had severely impaired sulfate removal kinetics. The paper covers the work done to try and identify the nature and source of the organics and their effect on the anion resin. One significant finding was that the carbonate removal kinetics were as impaired as those for sulfate removal; this had not been previously experienced in the CPP at any British Energy plant. (orig.)

  19. Understanding weakly coordinating anions: tetrakis(pentafluorophenyl)borate paired with inorganic and organic cations.

    Science.gov (United States)

    Andreeva, Nadezhda A; Chaban, Vitaly V

    2017-03-01

    Efficient design of ionic compounds requires a systematic understanding of cation-anion interactions. Weakening of electrostatic attraction is essential to increase the liquid range of the ionic compound and decrease its melting point. Here, we report simulations of the closest-approach cation-anion distances in a variety of ion pairs containing the tetrakis(pentafluorophenyl)borate (TFPB - ) anion. Small alkali cations (Li + , Na + ) penetrate the TFPB - core, whereas K + and larger organic cations do not. In the latter case, the shortest possible distance from the cations to the boron atom of TFPB - ranges from 0.50 nm to 0.63 nm. TFPB - was shown to be substantially rigid, providing a steric hindrance to thermodynamically efficient cation-anion coordination. Our results prove that TFPB - is more efficient for electrostatic charge confinement than the tetraoctylammonium cation, whereas the perfluorophenyl group is more efficient than linear alkyl chains. These simulations will motivate development of TFPB - -based ionic liquids with low phase transition points. Graphical Abstract Ionic configuration of the equilibrated "TFPB + K"system.

  20. Regulation of organic anion transport in the liver

    NARCIS (Netherlands)

    Roelofsen, H; Jansen, PLM

    1997-01-01

    In several liver diseases the biliary transport is disturbed, resulting in, for example, jaundice and cholestasis. Many of these symptoms can be attributed to altered regulation of hepatic transporters. Organic anion transport, mediated by the canalicular multispecific organic anion transporter

  1. Changes in plasma osmolality and anion gap: potential predictors of ...

    African Journals Online (AJOL)

    Changes in plasma osmolality and anion gap: potential predictors of ... PROMOTING ACCESS TO AFRICAN RESEARCH ... Objective: To determine the relationship of mortality to plasma osmolality and anion gap inpatients on haemodialysis.

  2. Electrocoagulation-Adsorption to Remove Anionic and Cationic Dyes from Aqueous Solution by PV-Energy

    OpenAIRE

    Castañeda-Díaz, J.; Pavón-Silva, T.; Gutiérrez-Segura, E.; Colín-Cruz, A.

    2017-01-01

    The cationic dye malachite green (MG) and the anionic dye Remazol yellow (RY) were removed from aqueous solutions using electrocoagulation-adsorption processes. Batch and continuous electrocoagulation procedures were performed and compared. Carbonaceous materials obtained from industrial sewage sludge and commercial activated carbons were used to adsorb dyes from aqueous solutions in column systems with a 96–98% removal efficiency. The continuous electrocoagulation-adsorption system was more ...

  3. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    International Nuclear Information System (INIS)

    Sessler, Jonathan L.

    2007-01-01

    The major thrust of this project, led by the University of Kansas (Prof. Kristin Bowman-James), entails an exploration of the basic determinants of anion recognition and their application to the design, synthesis, and testing of novel sulfate extractants. A key scientific inspiration for the work comes from the need, codified in simple-to-appreciate terms by the Oak Ridge National Laboratory component of the team (viz. Dr. Bruce Moyer), for chemical entities that can help in the extractive removal of species that have low solubilities in borosilicate glass. Among such species, sulfate anion, has been identified as particularly insidious. Its presence interferes with the vitrification process, thus rendering the remediation of tank waste from, e.g., the Hanford site far more difficult and expensive. The availability of effective extractants, that would allow for the separation of separating sulfate from the major competing anions in the waste, especially nitrate, could allow for pre-vitrification removal of sulfate via liquid-liquid extraction. The efforts at The University of Texas, the subject of this report, have thus concentrated on the development of new sulfate receptors. These systems are designed to increase our basic understanding of anion recognition events and set the stage for the development of viable sulfate anion extractants. In conjunction with the Oak Ridge National Laboratory (ORNL) members of the research team, several of these new receptors were studied as putative extractants, with two of the systems being shown to act as promising synergists for anion exchange.

  4. In Situ formation of pentafluorophosphate benzimidazole anion stabilizes high-temperature performance of lithium-ion batteries

    International Nuclear Information System (INIS)

    Pradanawati, Sylvia Ayu; Wang, Fu-Ming; Rick, John

    2014-01-01

    Highlights: • A new pentafluorophosphate benzimidazole anion was formed by Lewis acid-base reaction. • This pentafluorophosphate benzimidazole anion is fabricated with the benzimidazole anion and PF 5 . • This pentafluorophosphate benzimidazole anion avoids the ominous side reactions that PF 5 reacts SEI to form LiF and HF at high temperature. • The additional pentafluorophosphate benzimidazole anion formation well maintains the battery performance at 60 °C measurement compares to the electrolyte only with contains the salt, LiPF 6 . - Abstract: Lithium salts play a critical role in initiating electrochemical reactions in Li-ion batteries. Single Li ions dissociate from bulk-salt and associate with carbonates to form a solid electrolyte interface (SEI) during the first charge-discharge of the battery. SEI formation and the chemical stability of salt must both be controlled and optimized to minimize irreversible reactions in SEI formation and to suppress the decomposition of the salt at high temperatures. This study synthesizes a new benzimidazole-based anion in the electrolyte. This anion, pentafluorophosphate benzimidazole, results from a Lewis acid-base reaction between the benzimidazole anion and PF 5 . The new pentafluorophosphate benzimidazole anion inhibits the decomposition of LiPF 6 by inhibiting PF 5 side reactions, which degrade the SEI, and lead to the formation of LiF and HF at high temperatures. In addition, the use of the pentafluorophosphate benzimidazole anion results in the formation of a modified SEI that is able to modify the battery's performance. Cyclic voltammetry, scanning electron microscopy, differential scanning calorimetry, electrochemical impedance spectroscopy, as well as charge-discharge and X-ray photoelectron spectroscopy measurements have been used to characterize the materials in this study. The formation of the pentafluorophosphate benzimidazole anion in the electrolyte caused a 14% decrease in the activation energy

  5. New compounds bearing [M(S_2O_7)_3]"2"- anions (M = Si, Ge, Sn): Syntheses and characterization of A_2[Si(S_2O_7)_3] (A = Na, K, Rb), A_2[Ge(S_2O_7)_3] (A = Li, Na, K, Rb, Cs), A_2[Sn(S_2O_7)_3] (A = Na, K), and the unique germanate Hg_2[Ge(S_2O_7)_3]Cl_2 with cationic "1_∞[HgCl_2_/_2]"+ chains

    International Nuclear Information System (INIS)

    Logemann, Christian; Witt, Julia; Wickleder, Mathias S.; Gunzelmann, Daniel; Senker, Juergen

    2012-01-01

    The reaction of the group 14 tetrachlorides MCl_4 (M = Si, Ge, Sn) with oleum (65 % SO_3) at elevated temperatures led to the unique anionic complexes [M(S_2O_7)_3]"2"- that show the central M atoms in coordination of three chelating S_2O_7"2"- groups. The mean distances M-O within the complexes increase from 175 pm (M = Si) via 186 pm (M = Ge) up to 200 pm (M = Sn). The charge balance for the [M(S_2O_7)_3]"2"- anions is achieved by alkaline metal ions A"+ (A = Li, Na, K, Rb, Cs) which were implemented in the syntheses in form of their sulfates. The size of the A"+ ions, i.e. their coordination requirement causes the crystallographic differences in the crystal structures, while the structure of the complex [M(S_2O_7)_3]"2"- anions remains essentially unaffected. Furthermore, we were able to characterize the unique germanate Hg_2[Ge(S_2O_7)_3]Cl_2 which forms when HgCl_2 is added as a source for the counter cation. The Hg"2"+ and the Cl"- ions form infinite cationic chains according to "1_∞[HgCl_2_/_2]"+ which take care for the charge compensation. For selected examples of the compounds the thermal behavior has been monitored by means of thermal analyses and X-ray powder diffraction. For A being an alkaline metal the decomposition product is a mixture of the sulfates A_2SO_4 and the dioxides MO_2, whereas Hg_2[Ge(S_2O_7)_3]Cl_2 shows a more complicated decomposition. The tris-(disulfato)-silicate Na_2[Si(S_2O_7)_3] has additionally been examined by solid state "2"9Si and "2"3Na NMR spectroscopic measurements. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Saturated Branched Chain, Normal Odd-Carbon-Numbered, and n-3 (Omega-3) Polyunsaturated Fatty Acids in Freshwater Fish in the Northeastern United States.

    Science.gov (United States)

    Wang, Dong Hao; Jackson, James R; Twining, Cornelia; Rudstam, Lars G; Zollweg-Horan, Emily; Kraft, Clifford; Lawrence, Peter; Kothapalli, Kumar; Wang, Zhen; Brenna, J Thomas

    2016-10-04

    The fatty acid profiles of wild freshwater fish are poorly characterized as a human food source for several classes of fatty acids, particularly for branched chain fatty acids (BCFA), a major bioactive dietary component known to enter the US food supply primarily via dairy and beef fat. We evaluated the fatty acid content of 27 freshwater fish species captured in the northeastern US with emphasis on the BCFA and bioactive polyunsaturated fatty acids (PUFA) most associated with fish, specifically n-3 (omega-3) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Mean BCFA content across all species was 1.0 ± 0.5% (mean ± SD) of total fatty acids in edible muscle, with rainbow smelt (Osmerus mordax) and pumpkinseed (Lepomis gibbosus) the highest at >2% BCFA. In comparison, EPA + DHA constituted 28% ± 7% of total fatty acids. Across all fish species, the major BCFA were iso-15:0, anteiso-15:0, iso-16:0, iso-17:0 and anteiso-17:0. Fish skin had significantly higher BCFA content than muscle tissues, at 1.8% ± 0.7%, but lower EPA and DHA. Total BCFA in fish skins was positively related with that in muscle (r 2 = 0.6). The straight chain saturates n-15:0 and n-17:0 which have been identified previously as markers for dairy consumption were relatively high with means of 0.4% and 0.6%, respectively, and may be an underappreciated marker for seafood intake. Consuming a standardized portion, 70 g (2.5 oz), of wild freshwater fish contributes only small amounts of BCFA, 2.5-24.2 mg, to the American diet, while it adds surprisingly high amounts of EPA + DHA (107 mg to 558 mg).

  7. Effects of Hofmeister Anions on the LCST of PNIPAM as a Function of Molecular Weight

    Science.gov (United States)

    Zhang, Yanjie; Furyk, Steven; Sagle, Laura B.; Cho, Younhee; Bergbreiter, David E.; Cremer, Paul S.

    2008-01-01

    The effect of a series of sodium salts on the lower critical solution temperature (LCST) of poly(N-isopropylacrylamide), PNIPAM, was investigated as a function of molecular weight and polymer concentration with a temperature gradient microfluidic device under a dark-field microscope. In solutions containing sufficient concentrations of kosmotropic anions, the phase transition of PNIPAM was resolved into two separate steps for higher molecular weight samples. The first step of this two step transition was found to be sensitive to the polymer’s molecular weight and solution concentration, while the second step was not. Moreover, the binding of chaotropic anions to the polymer was also influenced by molecular weight. Both sets of results could be explained by the formation of intramolecular and intermolecular hydrogen-bonding between polymer chains. By contrast, the hydrophobic hydration of the isopropyl moieties and polymer backbone was found to be unaffected by either the polymer’s molecular weight or solution concentration. PMID:18820735

  8. Water permeation through anion exchange membranes

    Science.gov (United States)

    Luo, Xiaoyan; Wright, Andrew; Weissbach, Thomas; Holdcroft, Steven

    2018-01-01

    An understanding of water permeation through solid polymer electrolyte (SPE) membranes is crucial to offset the unbalanced water activity within SPE fuel cells. We examine water permeation through an emerging class of anion exchange membranes, hexamethyl-p-terphenyl poly (dimethylbenzimidazolium) (HMT-PMBI), and compare it against series of membrane thickness for a commercial anion exchange membrane (AEM), Fumapem® FAA-3, and a series of proton exchange membranes, Nafion®. The HMT-PMBI membrane is found to possess higher water permeabilities than Fumapem® FAA-3 and comparable permeability than Nafion (H+). By measuring water permeation through membranes of different thicknesses, we are able to decouple, for the first time, internal and interfacial water permeation resistances through anion exchange membranes. Permeation resistances on liquid/membrane interface is found to be negligible compared to that for vapor/membrane for both series of AEMs. Correspondingly, the resistance of liquid water permeation is found to be one order of magnitude smaller compared to that of vapor water permeation. HMT-PMBI possesses larger effective internal water permeation coefficient than both Fumapem® FAA-3 and Nafion® membranes (60 and 18% larger, respectively). In contrast, the effective interfacial permeation coefficient of HMT-PMBI is found to be similar to Fumapem® (±5%) but smaller than Nafion®(H+) (by 14%).

  9. Enhanced DOC removal using anion and cation ion exchange resins.

    Science.gov (United States)

    Arias-Paic, Miguel; Cawley, Kaelin M; Byg, Steve; Rosario-Ortiz, Fernando L

    2016-01-01

    Hardness and DOC removal in a single ion exchange unit operation allows for less infrastructure, is advantageous for process operation and depending on the water source, could enhance anion exchange resin removal of dissolved organic carbon (DOC). Simultaneous application of cationic (Plus) and anionic (MIEX) ion exchange resin in a single contact vessel was tested at pilot and bench scales, under multiple regeneration cycles. Hardness removal correlated with theoretical predictions; where measured hardness was between 88 and 98% of the predicted value. Comparing bench scale DOC removal of solely treating water with MIEX compared to Plus and MIEX treated water showed an enhanced DOC removal, where removal was increased from 0.5 to 1.25 mg/L for the simultaneous resin application compared to solely applying MIEX resin. A full scale MIEX treatment plant (14.5 MGD) reduced raw water DOC from 13.7 mg/L to 4.90 mg/L in the treated effluent at a bed volume (BV) treatment rate of 800, where a parallel operation of a simultaneous MIEX and Plus resin pilot (10 gpm) measured effluent DOC concentrations of no greater than 3.4 mg/L, even at bed volumes of treatment 37.5% greater than the full scale plant. MIEX effluent compared to simultaneous Plus and MIEX effluent resulted in differences in fluorescence intensity that correlated to decreases in DOC concentration. The simultaneous treatment of Plus and MIEX resin produced water with predominantly microbial character, indicating the enhanced DOC removal was principally due to increased removal of terrestrially derived organic matter. The addition of Plus resin to a process train with MIEX resin allows for one treatment process to remove both DOC and hardness, where a single brine waste stream can be sent to sewer at a full-scale plant, completely removing lime chemical addition and sludge waste disposal for precipitative softening processes. Published by Elsevier Ltd.

  10. Tunnel current across linear homocatenated germanium chains

    International Nuclear Information System (INIS)

    Matsuura, Yukihito

    2014-01-01

    The electronic transport properties of germanium oligomers catenating into linear chains (linear Ge chains) have been theoretically studied using first principle methods. The conduction mechanism of a Ge chain sandwiched between gold electrodes was analyzed based on the density of states and the eigenstates of the molecule in a two-probe environment. Like that of silicon chains (Si chains), the highest occupied molecular orbital of Ge chains contains the extended σ-conjugation of Ge 4p orbitals at energy levels close to the Fermi level; this is in contrast to the electronic properties of linear carbon chains. Furthermore, the conductance of a Ge chain is expected to decrease exponentially with molecular length L. The decay constant β, which is defined as e −βL , of a Ge chain is similar to that of a Si chain, whereas the conductance of the Ge chains is higher than that of Si chains even though the Ge–Ge bond length is longer than the Si–Si bond length

  11. Unit and internal chain profiles of maca amylopectin.

    Science.gov (United States)

    Zhang, Ling; Li, Guantian; Yao, Weirong; Zhu, Fan

    2018-03-01

    Unit chain length distributions of amylopectin and its φ, β-limit dextrins, which reflect amylopectin internal structure from three maca starches, were determined by high-performance anion-exchange chromatography with pulsed amperometric detection after debranching, and the samples were compared with maize starch. The amylopectins exhibited average chain lengths ranging from 16.72 to 17.16, with ranges of total internal chain length, external chain length, and internal chain length of the maca amylopectins at 12.49 to 13.68, 11.24 to 11.89, and 4.27 to 4.48. The average chain length, external chain length, internal chain length, and total internal chain length were comparable in three maca amylopectins. Amylopectins of the three maca genotypes studied here presented no significant differences in their unit chain length profiles, but did show significant differences in their internal chain profiles. Additional genetic variations between different maca genotypes need to be studied to provide unit- and internal chain profiles of maca amylopectin. Copyright © 2017. Published by Elsevier Ltd.

  12. Hydration of a Large Anionic Charge Distribution - Naphthalene-Water Cluster Anions

    Science.gov (United States)

    Weber, J. Mathias; Adams, Christopher L.

    2010-06-01

    We report the infrared spectra of anionic clusters of naphthalene with up to three water molecules. Comparison of the experimental infrared spectra with theoretically predicted spectra from quantum chemistry calculations allow conclusions regarding the structures of the clusters under study. The first water molecule forms two hydrogen bonds with the π electron system of the naphthalene moiety. Subsequent water ligands interact with both the naphthalene and the other water ligands to form hydrogen bonded networks, similar to other hydrated anion clusters. Naphthalene-water anion clusters illustrate how water interacts with negative charge delocalized over a large π electron system. The clusters are interesting model systems that are discussed in the context of wetting of graphene surfaces and polyaromatic hydrocarbons.

  13. Separation of boron isotopes by ion exchange chromatography: studies on regeneration of strong base anion exchange resins

    International Nuclear Information System (INIS)

    Sharma, B.K.; Subramanian, R.; Mathur, P.K.

    1994-01-01

    The optimum conditions for the regeneration of strong base anion exchange resins of type-I and type-II were determined for cost-effective separation of isotopes of boron by ion exchange chromatography where the hydroxyl form of an anion exchange resin is equilibrated with boric acid solution containing mannitol as a complexing reagent. The possibility of using unspent alkali content of the effluent was also exploited. Removal of carbonate impurity from Rayon grade caustic lye (used as regenerant after dilution) and recycling of Ba(OH) 2 was studied to avoid waste disposal problems. (author)

  14. Zwitterion radicals and anion radicals from electron transfer and solvent condensation with the fingerprint developing agent ninhydrin.

    Science.gov (United States)

    Schertz, T D; Reiter, R C; Stevenson, C D

    2001-11-16

    Ninhydrin (the fingerprint developing agent) spontaneously dehydrates in liquid ammonia and in hexamethylphosphoramide (HMPA) to form indantrione, which has a sufficiently large solution electron affinity to extract an electron from the solvent (HMPA) to produce the indantrione anion radical. In liquid NH(3), the presence of trace amounts of amide ion causes the spontaneous formation of an anion radical condensation product, wherein the no. 2 carbon (originally a carbonyl carbon) becomes substituted with -NH(2) and -OH groups. In HMPA, the indantrione anion radical spontaneously forms condensation products with the HMPA to produce a variety of zwitterionic radicals, wherein the no. 2 carbon becomes directly attached to a nitrogen of the HMPA. The mechanisms for the formation of the zwitterionic paramagnetic condensation products are analogous to that observed in the reaction of ninhydrin with amino acids to yield Ruhemann's Purple, the contrast product in fingerprint development. The formation of anion and zwitterionic radical condensation products from ninhydrin and nitrogen-containing solvents may represent an example of a host of analogous polyketone-solvent reactions.

  15. Chain reaction

    International Nuclear Information System (INIS)

    Balogh, Brian.

    1991-01-01

    Chain Reaction is a work of recent American political history. It seeks to explain how and why America came to depend so heavily on its experts after World War II, how those experts translated that authority into political clout, and why that authority and political discretion declined in the 1970s. The author's research into the internal memoranda of the Atomic Energy Commission substantiates his argument in historical detail. It was not the ravages of American anti-intellectualism, as so many scholars have argued, that brought the experts back down to earth. Rather, their decline can be traced to the very roots of their success after World War II. The need to over-state anticipated results in order to garner public support, incessant professional and bureaucratic specialization, and the sheer proliferation of expertise pushed arcane and insulated debates between experts into public forums at the same time that a broad cross section of political participants found it easier to gain access to their own expertise. These tendencies ultimately undermined the political influence of all experts. (author)

  16. Monohydrocalcite: a promising remediation material for hazardous anions

    International Nuclear Information System (INIS)

    Fukushi, Keisuke; Munemoto, Takashi; Sakai, Minoru; Yagi, Shintaro

    2011-01-01

    The formation conditions, solubility and stability of monohydrocalcite (MHC, CaCO 3 ·H 2 O), as well as sorption behaviors of toxic anions on MHC, are reviewed to evaluate MHC as a remediation material for hazardous oxyanions. MHC is a rare mineral in geological settings that occurs in recent sediments in saline lakes. Water temperature does not seem to be an important factor for MHC formation. The pH of lake water is usually higher than 8 and the Mg/Ca ratio exceeds 4. MHC synthesis experiments as a function of time indicate that MHC is formed from amorphous calcium carbonate and transforms to calcite and/or aragonite. Most studies show that MHC forms from solutions containing Mg, which inhibits the formation of stable calcium carbonates. The solubility of MHC is higher than those of calcite, aragonite and vaterite, but lower than those of ikaite and amorphous calcium carbonate at ambient temperature. The solubility of MHC decreases with temperature. MHC is unstable and readily transforms to calcite or aragonite. The transformation consists of the dissolution of MHC and the subsequent formation of stable phases from the solution. The rate-limiting steps of the transformation of MHC are the nucleation and growth of stable crystalline phases. Natural occurrences indicate that certain additives, particularly PO 4 and Mg, stabilize MHC. Laboratory studies confirm that a small amount of PO 4 in solution (>30 μM) can significantly inhibit the transformation of MHC. MHC has a higher sorption capacity for PO 4 than calcite and aragonite. The modes of PO 4 uptake are adsorption on the MHC surface at moderate phosphate concentrations and precipitation of secondary calcium phosphate minerals at higher concentrations. Arsenate is most likely removed from the solution during the transformation of MHC. The proposed sorption mechanism of arsenate is coprecipitation during crystallization of aragonite. The arsenic sorption capacity by MHC is significantly higher than simple

  17. Monohydrocalcite: a promising remediation material for hazardous anions

    Science.gov (United States)

    Fukushi, Keisuke; Munemoto, Takashi; Sakai, Minoru; Yagi, Shintaro

    2011-12-01

    The formation conditions, solubility and stability of monohydrocalcite (MHC, CaCO3·H2O), as well as sorption behaviors of toxic anions on MHC, are reviewed to evaluate MHC as a remediation material for hazardous oxyanions. MHC is a rare mineral in geological settings that occurs in recent sediments in saline lakes. Water temperature does not seem to be an important factor for MHC formation. The pH of lake water is usually higher than 8 and the Mg/Ca ratio exceeds 4. MHC synthesis experiments as a function of time indicate that MHC is formed from amorphous calcium carbonate and transforms to calcite and/or aragonite. Most studies show that MHC forms from solutions containing Mg, which inhibits the formation of stable calcium carbonates. The solubility of MHC is higher than those of calcite, aragonite and vaterite, but lower than those of ikaite and amorphous calcium carbonate at ambient temperature. The solubility of MHC decreases with temperature. MHC is unstable and readily transforms to calcite or aragonite. The transformation consists of the dissolution of MHC and the subsequent formation of stable phases from the solution. The rate-limiting steps of the transformation of MHC are the nucleation and growth of stable crystalline phases. Natural occurrences indicate that certain additives, particularly PO4 and Mg, stabilize MHC. Laboratory studies confirm that a small amount of PO4 in solution (>30 μM) can significantly inhibit the transformation of MHC. MHC has a higher sorption capacity for PO4 than calcite and aragonite. The modes of PO4 uptake are adsorption on the MHC surface at moderate phosphate concentrations and precipitation of secondary calcium phosphate minerals at higher concentrations. Arsenate is most likely removed from the solution during the transformation of MHC. The proposed sorption mechanism of arsenate is coprecipitation during crystallization of aragonite. The arsenic sorption capacity by MHC is significantly higher than simple adsorption

  18. Monohydrocalcite: a promising remediation material for hazardous anions

    Directory of Open Access Journals (Sweden)

    Keisuke Fukushi, Takashi Munemoto, Minoru Sakai and Shintaro Yagi

    2011-01-01

    Full Text Available The formation conditions, solubility and stability of monohydrocalcite (MHC, CaCO3centerdotH2O, as well as sorption behaviors of toxic anions on MHC, are reviewed to evaluate MHC as a remediation material for hazardous oxyanions. MHC is a rare mineral in geological settings that occurs in recent sediments in saline lakes. Water temperature does not seem to be an important factor for MHC formation. The pH of lake water is usually higher than 8 and the Mg/Ca ratio exceeds 4. MHC synthesis experiments as a function of time indicate that MHC is formed from amorphous calcium carbonate and transforms to calcite and/or aragonite. Most studies show that MHC forms from solutions containing Mg, which inhibits the formation of stable calcium carbonates. The solubility of MHC is higher than those of calcite, aragonite and vaterite, but lower than those of ikaite and amorphous calcium carbonate at ambient temperature. The solubility of MHC decreases with temperature. MHC is unstable and readily transforms to calcite or aragonite. The transformation consists of the dissolution of MHC and the subsequent formation of stable phases from the solution. The rate-limiting steps of the transformation of MHC are the nucleation and growth of stable crystalline phases. Natural occurrences indicate that certain additives, particularly PO4 and Mg, stabilize MHC. Laboratory studies confirm that a small amount of PO4 in solution (>30 μM can significantly inhibit the transformation of MHC. MHC has a higher sorption capacity for PO4 than calcite and aragonite. The modes of PO4 uptake are adsorption on the MHC surface at moderate phosphate concentrations and precipitation of secondary calcium phosphate minerals at higher concentrations. Arsenate is most likely removed from the solution during the transformation of MHC. The proposed sorption mechanism of arsenate is coprecipitation during crystallization of aragonite. The arsenic sorption capacity by MHC is significantly

  19. Graphene-coated polymeric anion exchangers for ion chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Cao, Minyi; Lou, Chaoyan [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028 (China); Wu, Shuchao, E-mail: wushch2002@163.com [Zhejiang Institute of Geology and Mineral Resources, Hangzhou 310007 (China); Zhang, Peimin [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028 (China); Zhi, Mingyu [Hangzhou Vocational & Technical College, Hangzhou, 310018 (China); Zhu, Yan, E-mail: zhuyan@zju.edu.cn [Department of Chemistry, Xixi Campus, Zhejiang University, Hangzhou 310028 (China)

    2017-06-01

    Carbonaceous stationary phases have gained much attention for their peculiar selectivity and robustness. Herein we report the fabrication and application of a graphene-coated polymeric stationary phase for anion exchange chromatography. The graphene-coated particles were fabricated by a facile evaporation-reduction method. These hydrophilic particles were proven appropriate substrates for grafting of hyperbranched condensation polymers (HBCPs) to make pellicular anion exchangers. The new phase was characterized by zeta potentials, Fourier transform infrared spectroscopy, thermogravimetry and scanning electron microscope. Frontal displacement chromatography showed that the capacities of the anion exchangers were tuned by both graphene amount and HBCPs layer count. The chromatographic performance of graphene-coated anion exchangers was demonstrated with separation of inorganic anions, organic acids, carbohydrates and amino acids. Good reproducibility was obtained by consecutive injections, indicating high chemical stability of the coating. - Highlights: • Graphene-coated polymeric particles were fabricated by a facile method. • Hyperbranched condensation polymers (HBCPs) were grafted from graphene-coated particles to make anion exchangers. • Graphene amount and HBCPs layer count had significant effects on the anion exchange capacities. • Separation of diverse anionic analytes on the anion exchangers was demonstrated. • The prepared anion exchangers exhibited high stability.

  20. Effects of arginine on multimodal anion exchange chromatography.

    Science.gov (United States)

    Hirano, Atsushi; Arakawa, Tsutomu; Kameda, Tomoshi

    2015-12-01

    The effects of arginine on binding and elution properties of a multimodal anion exchanger, Capto adhere, were examined using bovine serum albumin (BSA) and a monoclonal antibody against interleukin-8 (mAb-IL8). Negatively charged BSA was bound to the positively charged Capto adhere and was readily eluted from the column with a stepwise or gradient elution using 1M NaCl at pH 7.0. For heat-treated BSA, small oligomers and remaining monomers were also eluted using a NaCl gradient, whereas larger oligomers required arginine for effective elution. The positively charged mAb-IL8 was bound to Capto adhere at pH 7.0. Arginine was also more effective for elution of the bound mAb-IL8 than was NaCl. The results imply that arginine interacts with the positively charged Capto adhere. The mechanism underlying the interactions of arginine with Capto adhere was examined by calculating the binding free energy between an arginine molecule and a Capto adhere ligand in water through molecular dynamics simulations. The overall affinity of arginine for Capto adhere is attributed to the hydrophobic and π-π interactions between an arginine side chain and the aromatic moiety of the ligand as well as hydrogen bonding between arginine and the ligand hydroxyl group, which may account for the characteristics of protein elution using arginine. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Infrared Spectroscopy of Discrete Uranyl Anion Complexes

    International Nuclear Information System (INIS)

    Groenewold, G. S.; Gianotto, Anita K.; McIIwain, Michael E.; Van Stipdonk, Michael J.; Kullman, Michael; Moore, David T.; Polfer, Nick; Oomens, Jos; Infante, Ivan A.; Visscher, Lucas; Siboulet, Bertrand; De Jong, Wibe A.

    2008-01-01

    The Free-Electron Laser for Infrared Experiments (FELIX) w 1 as used to study the wavelength-resolved multiple photon photodissociation of discrete, gas phase uranyl (UO2 2 2+) complexes containing a single anionic ligand (A), with or without ligated solvent molecules (S). The uranyl antisymmetric and symmetric stretching frequencies were measured for complexes with general formula [UO2A(S)n]+, where A was either hydroxide, methoxide, or acetate; S was water, ammonia, acetone, or acetonitrile; and n = 0-3. The values for the antisymmetric stretching frequency for uranyl ligated with only an anion ([UO2A]+) were as low or lower than measurements for [UO2]2+ ligated with as many as five strong neutral donor ligands, and are comparable to solution phase values. This result was surprising because initial DFT calculations predicted values that were 30-40 cm-1 higher, consistent with intuition but not with the data. Modification of the basis sets and use of alternative functionals improved computational accuracy for the methoxide and acetate complexes, but calculated values for the hydroxide were greater than the measurement regardless of the computational method used. Attachment of a neutral donor ligand S to [UO2A]+ produced [UO2AS]+, which produced only very modest changes to the uranyl antisymmetric stretch frequency, and did not universally shift the frequency to lower values. DFT calculations for [UO2AS]+ were in accord with trends in the data, and showed that attachment of the solvent was accommodated by weakening of the U-anion bond as well as the uranyl. When uranyl frequencies were compared for [UO2AS]+ species having different solvent neutrals, values decreased with increasing neutral nucleophilicity

  2. Silica-grafted ionic liquids for revealing the respective charging behaviors of cations and anions in supercapacitors.

    Science.gov (United States)

    Dou, Qingyun; Liu, Lingyang; Yang, Bingjun; Lang, Junwei; Yan, Xingbin

    2017-12-19

    Supercapacitors based on activated carbon electrodes and ionic liquids as electrolytes are capable of storing charge through the electrosorption of ions on porous carbons and represent important energy storage devices with high power delivery/uptake. Various computational and instrumental methods have been developed to understand the ion storage behavior, however, techniques that can probe various cations and anions of ionic liquids separately remain lacking. Here, we report an approach to monitoring cations and anions independently by using silica nanoparticle-grafted ionic liquids, in which ions attaching to silica nanoparticle cannot access activated carbon pores upon charging, whereas free counter-ions can. Aided by this strategy, conventional electrochemical characterizations allow the direct measurement of the respective capacitance contributions and acting potential windows of different ions. Moreover, coupled with electrochemical quartz crystal microbalance, this method can provide unprecedented insight into the underlying electrochemistry.

  3. Data on heavy metals and selected anions in the Persian popular herbal distillates

    OpenAIRE

    Keshtkar, Mozhgan; Dobaradaran, Sina; Soleimani, Farshid; Karbasdehi, Vahid Noroozi; Mohammadi, Mohammad Javad; Mirahmadi, Roghayeh; Ghasemi, Fatemeh Faraji

    2016-01-01

    In this data article, we determined the concentration levels of heavy metals including Pb, Co, Cd, Mn, Mg, Fe and Cu as well as selected anions including NO3− , NO2−, PO4−3 and SO4−2 in the most used and popular herbal distillates in Iran. It is well known that heavy metals may pose a serious health hazard due to their bioaccumulation throughout the trophic chain (“Heavy metals (Cd, Cu, Ni and Pb) content in two fish species of Persian Gulf in Bushehr Port, Iran” (Dobaradaran et al., 2013) [1...

  4. Probes for anionic cell surface detection

    Science.gov (United States)

    Smith, Bradley D.

    2013-03-05

    Embodiments of the present invention are generally directed to compositions comprising a class of molecular probes for detecting the presence of anionic cell surfaces. Embodiments include compositions that are enriched for these compositions and preparations, particularly preparations suitable for use as laboratory/clinical reagents and diagnostic indicators, either alone or as part of a kit. An embodiment of the invention provides for a highly selective agent useful in the discernment and identification of dead or dying cells, such as apoptotic cells, in a relatively calcium-free environment. An embodiment of the invention provides a selective agent for the identification of bacteria in a mixed population of bacterial cells and nonbacterial cells.

  5. The role of polymer nanolayer architecture on the separation performance of anion-exchange membrane adsorbers: I. Protein separations.

    Science.gov (United States)

    Bhut, Bharat V; Weaver, Justin; Carter, Andrew R; Wickramasinghe, S Ranil; Husson, Scott M

    2011-11-01

    This contribution describes the preparation of strong anion-exchange membranes with higher protein binding capacities than the best commercial resins. Quaternary amine (Q-type) anion-exchange membranes were prepared by grafting polyelectrolyte nanolayers from the surfaces of macroporous membrane supports. A focus of this study was to better understand the role of polymer nanolayer architecture on protein binding. Membranes were prepared with different polymer chain graft densities using a newly developed surface-initiated polymerization protocol designed to provide uniform and variable chain spacing. Bovine serum albumin and immunoglobulin G were used to measure binding capacities of proteins with different size. Dynamic binding capacities of IgG were measured to evaluate the impact of polymer chain density on the accessibility of large size protein to binding sites within the polyelectrolyte nanolayer under flow conditions. The dynamic binding capacity of IgG increased nearly linearly with increasing polymer chain density, which suggests that the spacing between polymer chains is sufficient for IgG to access binding sites all along the grafted polymer chains. Furthermore, the high dynamic binding capacity of IgG (>130 mg/mL) was independent of linear flow velocity, which suggests that the mass transfer of IgG molecules to the binding sites occurs primarily via convection. Overall, this research provides clear evidence that the dynamic binding capacities of large biologics can be higher for well-designed macroporous membrane adsorbers than commercial membrane or resin ion-exchange products. Specifically, using controlled polymerization leads to anion-exchange membrane adsorbers with high binding capacities that are independent of flow rate, enabling high throughput. Results of this work should help to accelerate the broader implementation of membrane adsorbers in bioprocess purification steps. Copyright © 2011 Wiley Periodicals, Inc.

  6. Homologue Structure of the SLAC1 Anion Channel for Closing Stomata in Leaves

    Energy Technology Data Exchange (ETDEWEB)

    Y Chen; L Hu; M Punta; R Bruni; B Hillerich; B Kloss; B Rost; J Love; S Siegelbaum; W Hendrickson

    2011-12-31

    The plant SLAC1 anion channel controls turgor pressure in the aperture-defining guard cells of plant stomata, thereby regulating the exchange of water vapour and photosynthetic gases in response to environmental signals such as drought or high levels of carbon dioxide. Here we determine the crystal structure of a bacterial homologue (Haemophilus influenzae) of SLAC1 at 1.20 {angstrom} resolution, and use structure-inspired mutagenesis to analyse the conductance properties of SLAC1 channels. SLAC1 is a symmetrical trimer composed from quasi-symmetrical subunits, each having ten transmembrane helices arranged from helical hairpin pairs to form a central five-helix transmembrane pore that is gated by an extremely conserved phenylalanine residue. Conformational features indicate a mechanism for control of gating by kinase activation, and electrostatic features of the pore coupled with electrophysiological characteristics indicate that selectivity among different anions is largely a function of the energetic cost of ion dehydration.

  7. GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters.

    Science.gov (United States)

    Ramesh, Sunita A; Tyerman, Stephen D; Xu, Bo; Bose, Jayakumar; Kaur, Satwinder; Conn, Vanessa; Domingos, Patricia; Ullah, Sana; Wege, Stefanie; Shabala, Sergey; Feijó, José A; Ryan, Peter R; Gilliham, Matthew; Gillham, Matthew

    2015-07-29

    The non-protein amino acid, gamma-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to biotic and abiotic stress, and regulates plant growth. Until now it was not known whether GABA exerts its effects in plants through the regulation of carbon metabolism or via an unidentified signalling pathway. Here, we demonstrate that anion flux through plant aluminium-activated malate transporter (ALMT) proteins is activated by anions and negatively regulated by GABA. Site-directed mutagenesis of selected amino acids within ALMT proteins abolishes GABA efficacy but does not alter other transport properties. GABA modulation of ALMT activity results in altered root growth and altered root tolerance to alkaline pH, acid pH and aluminium ions. We propose that GABA exerts its multiple physiological effects in plants via ALMT, including the regulation of pollen tube and root growth, and that GABA can finally be considered a legitimate signalling molecule in both the plant and animal kingdoms.

  8. Perspective: Electrospray photoelectron spectroscopy: From multiply-charged anions to ultracold anions

    International Nuclear Information System (INIS)

    Wang, Lai-Sheng

    2015-01-01

    Electrospray ionization (ESI) has become an essential tool in chemical physics and physical chemistry for the production of novel molecular ions from solution samples for a variety of spectroscopic experiments. ESI was used to produce free multiply-charged anions (MCAs) for photoelectron spectroscopy (PES) in the late 1990 s, allowing many interesting properties of this class of exotic species to be investigated. Free MCAs are characterized by strong intramolecular Coulomb repulsions, which create a repulsive Coulomb barrier (RCB) for electron emission. The RCB endows many fascinating properties to MCAs, giving rise to meta-stable anions with negative electron binding energies. Recent development in the PES of MCAs includes photoelectron imaging to examine the influence of the RCB on the electron emission dynamics, pump-probe experiments to examine electron tunneling through the RCB, and isomer-specific experiments by coupling PES with ion mobility for biological MCAs. The development of a cryogenically cooled Paul trap has led to much better resolved PE spectra for MCAs by creating vibrationally cold anions from the room temperature ESI source. Recent advances in coupling the cryogenic Paul trap with PE imaging have allowed high-resolution PE spectra to be obtained for singly charged anions produced by ESI. In particular, the observation of dipole-bound excited states has made it possible to conduct vibrational autodetachment spectroscopy and resonant PES, which yield much richer vibrational spectroscopic information for dipolar free radicals than traditional PES

  9. Zero-point energy effects in anion solvation shells.

    Science.gov (United States)

    Habershon, Scott

    2014-05-21

    By comparing classical and quantum-mechanical (path-integral-based) molecular simulations of solvated halide anions X(-) [X = F, Cl, Br and I], we identify an ion-specific quantum contribution to anion-water hydrogen-bond dynamics; this effect has not been identified in previous simulation studies. For anions such as fluoride, which strongly bind water molecules in the first solvation shell, quantum simulations exhibit hydrogen-bond dynamics nearly 40% faster than the corresponding classical results, whereas those anions which form a weakly bound solvation shell, such as iodide, exhibit a quantum effect of around 10%. This observation can be rationalized by considering the different zero-point energy (ZPE) of the water vibrational modes in the first solvation shell; for strongly binding anions, the ZPE of bound water molecules is larger, giving rise to faster dynamics in quantum simulations. These results are consistent with experimental investigations of anion-bound water vibrational and reorientational motion.

  10. Process for removing sulfate anions from waste water

    Science.gov (United States)

    Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.

    1997-01-01

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  11. Carbon dioxide as chemical feedstock

    National Research Council Canada - National Science Library

    Aresta, M

    2010-01-01

    ... Dioxide as an Inert Solvent for Chemical Syntheses 15 Alessandro Galia and Giuseppe Filardo Introduction 15 Dense Carbon Dioxide as Solvent Medium for Chemical Processes 15 Enzymatic Catalysis in Dense Carbon Dioxide 18 Other Reactions in Dense Carbon Dioxide 19 Polymer Synthesis in Supercritical Carbon Dioxide 20 Chain Polymerizations: Synt...

  12. Reactive carbon-chain molecules: synthesis of 1-diazo-2,4-pentadiyne and spectroscopic characterization of triplet pentadiynylidene (H-C[triple bond]C-:C-C[triple bond]C-H).

    Science.gov (United States)

    Bowling, Nathan P; Halter, Robert J; Hodges, Jonathan A; Seburg, Randal A; Thomas, Phillip S; Simmons, Christopher S; Stanton, John F; McMahon, Robert J

    2006-03-15

    1-Diazo-2,4-pentadiyne (6a), along with both monodeuterio isotopomers 6b and 6c, has been synthesized via a route that proceeds through diacetylene, 2,4-pentadiynal, and 2,4-pentadiynal tosylhydrazone. Photolysis of diazo compounds 6a-c (lambda > 444 nm; Ar or N2, 10 K) generates triplet carbenes HC5H (1) and HC5D (1-d), which have been characterized by IR, EPR, and UV/vis spectroscopy. Although many resonance structures contribute to the resonance hybrid for this highly unsaturated carbon-chain molecule, experiment and theory reveal that the structure is best depicted in terms of the dominant resonance contributor of penta-1,4-diyn-3-ylidene (diethynylcarbene, H-C[triple bond]C-:C-C[triple bond]C-H). Theory predicts an axially symmetric (D(infinity h)) structure and a triplet electronic ground state for 1 (CCSD(T)/ANO). Experimental IR frequencies and isotope shifts are in good agreement with computed values. The triplet EPR spectrum of 1 (absolute value(D/hc) = 0.6157 cm(-1), absolute value(E/hc) = 0.0006 cm(-1)) is consistent with an axially symmetric structure, and the Curie law behavior confirms that the triplet state is the ground state. The electronic absorption spectrum of 1 exhibits a weak transition near 400 nm with extensive vibronic coupling. Chemical trapping of triplet HC5H (1) in an O2-doped matrix affords the carbonyl oxide 16 derived exclusively from attack at the central carbon.

  13. Anion photoelectron spectroscopy of radicals and clusters

    Energy Technology Data Exchange (ETDEWEB)

    Travis, Taylor R. [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    Anion photoelectron spectroscopy is used to study free radicals and clusters. The low-lying 2Σ and 2π states of C2nH (n = 1--4) have been studied. The anion photoelectron spectra yielded electron affinities, term values, and vibrational frequencies for these combustion and astrophysically relevant species. Photoelectron angular distributions allowed the author to correctly assign the electronic symmetry of the ground and first excited states and to assess the degree of vibronic coupling in C2H and C4H. Other radicals studied include NCN and I3. The author was able to observe the low-lying singlet and triplet states of NCN for the first time. Measurement of the electron affinity of I3 revealed that it has a bound ground state and attachment of an argon atom to this moiety enabled him to resolve the symmetric stretching progression.

  14. Anion concurrence and anion selectivity in the sorption of radionuclides by organotones

    International Nuclear Information System (INIS)

    Behnsen, Julia G.

    2007-01-01

    Some long-lived and radiologically important nuclear fission products, such as I-129 (half-life t 1/2 = 1,6 . 10 7 a), Tc-99 (t 1/2 = 2,1 . 10 5 a), and Se-79 (t 1/2 = 6,5 . 10 4 a) are anionic in aqueous environments. This study focuses on the adsorption of such anions to organoclays and the understanding of the selectivity of the process. The organoclays used in this study were prepared from a bentonite (MX-80) and a vermiculite clay, and the cationic surfactants hexadcylpyridium, hexadecyltrimethylammonium, and benzethonium. Surfactant adsorption to the bentonite exceeds the cation exchange capacity of the clay, with the surplus positive charge being balanced by the co-adsorption of chloride. The interlayer distance of the bentonites is increased sufficiently to contain bi- and pseudotrimolecular structures of the surfactants. Adsorption experiments were carried out using the batch technique. Anion adsorption of iodide, perrhenate, selenite, nitrate, and sulphate is mainly due to ion exchange with chloride. As an additional adsorption mechanism, the incorporation of inorganic ion pairs into the interlayer space of the clay is proposed as a result of experiments showing differences in the adsorption levels of sodium and potassium iodide. Anion adsorption results show a clear selectivity of the organoclays, with the affinity sequence being: ReO - 4 > I - > NO - 3 > Cl - > SO 2- 4 > SeO 2- 3 . This sequence corresponds to the sequence of increasing hydration energies of the anions, thus selectivity could be due to the process of minimization of free energy of the system. (orig.)

  15. A green approach for preparing anion exchange membrane based on cardo polyetherketone powders

    Science.gov (United States)

    Hu, Jue; Zhang, Chengxu; Zhang, Xiaodong; Chen, Longwei; Jiang, Lin; Meng, Yuedong; Wang, Xiangke

    2014-12-01

    Anion exchange membranes (AEMs) have attracted great attention due to their irreplaceable role in platinum-free fuel cell applications. The majority of AEM preparations have been performed in two steps: the grafting of functional groups and quaternization. Here, we adopted a simpler, more eco-friendly approach for the first time to prepare AEMs by atmospheric-pressure plasma-grafting. This approach enables the direct introduction of anion exchange groups (benzyltrimethylammonium groups) into the polymer matrix, overcoming the need for toxic chloromethyl ether and quaternization reagents. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and 1H NMR spectroscopy results demonstrate that benzyltrimethylammonium groups have been successfully grafted into the cardo polyetherketone (PEK-C) matrix. Thermogravimetric analysis reveals that the plasma-grafting technique is a facile and non-destructive method able to improve the thermal stability of the polymer matrix due to the strong preservation of the PEK-C backbone structure and the cross-linking of the grafted side chains. The plasma-grafted PG-NOH membrane, which shows satisfactory alcohol resistance (ethanol permeability of 6.3 × 10-7 cm2 s-1), selectivity (1.2 × 104 S s cm-3), thermal stability (safely used below 130 °C), chemical stability, anion conductivity (7.7 mS cm-1 at 20 °C in deionized water) and mechanical properties is promising for the construction of high-performance fuel cells.

  16. Data on heavy metals and selected anions in the Persian popular herbal distillates

    Directory of Open Access Journals (Sweden)

    Mozhgan Keshtkar

    2016-09-01

    Full Text Available In this data article, we determined the concentration levels of heavy metals including Pb, Co, Cd, Mn, Mg, Fe and Cu as well as selected anions including NO3− , NO2−, PO4−3 and SO4−2 in the most used and popular herbal distillates in Iran. It is well known that heavy metals may pose a serious health hazard due to their bioaccumulation throughout the trophic chain (“Heavy metals (Cd, Cu, Ni and Pb content in two fish species of Persian Gulf in Bushehr Port, Iran” (Dobaradaran et al., 2013 [1]; “Comparative investigation of heavy metal, trace, and macro element contents in commercially valuable fish species harvested off from the Persian Gulf” (Abadi et al., 2015 [2] as well as some other environmental pollutions, “Assessment of sediment quality based on acid-volatile sulfide and simultaneously extracted metals in heavily industrialized area of Asaluyeh, Persian Gulf: concentrations, spatial distributions, and sediment bioavailability/toxicity” (Arfaeinia et al., 2016 [3]. The concentration levels of heavy metals and anions in herbal distillates samples were determined using flame atomic absorption spectrometry (FAAS, Varian AA240, Australia and a spectrophotometer (M501 Single Beam Scanning UV/VIS, UK respectively. Keywords: Daily intake, Herbal distillates, Heavy metals, Selected anions

  17. An anionic defensin from Plutella xylostella with potential activity against Bacillus thuringiensis.

    Science.gov (United States)

    Xu, X-X; Zhang, Y-Q; Freed, S; Yu, J; Gao, Y-F; Wang, S; Ouyang, L-N; Ju, W-Y; Jin, F-L

    2016-12-01

    Insect defensins, are cationic peptides that play an important role in immunity against microbial infection. In the present study, an anionic defensin from Plutella xylostella, (designated as PxDef) was first cloned and characterized. Amino acid sequence analysis showed that the mature peptide owned characteristic six-cysteine motifs with predicted isoelectric point of 5.57, indicating an anionic defensin. Quantitative real-time polymerase chain reaction analysis showed that PxDef was significantly induced in epidermis, fat body, midgut and hemocytes after injection of heat-inactivated Bacillus thuringiensis, while such an induction was delayed by the injection of live B. thuringiensis in the 4th instar larvae of P. xylostella. Knocking down the expression of nuclear transcription factor Dorsal in P. xylostella by RNA interference significantly decreased the mRNA level of PxDef, and increased the sensitivity of P. xylostella larvae to the infection by live B. thuringiensis. The purified recombinant mature peptide (PxDef) showed higher activity against Gram-positive bacteria, with the minimum inhibition concentrations of 1.6 and 2.6 µM against B. thuringiensis and Bacillus subtilis, respectively. To our knowledge, this is the first report about an anionic PxDef, which may play an important role in the immune system of P. xylostella against B. thuringiensis.

  18. Ultrathin nanofibrous films prepared from cadmium hydroxide nanostrands and anionic surfactants.

    Science.gov (United States)

    Peng, Xinsheng; Karan, Santanu; Ichinose, Izumi

    2009-08-04

    We developed a simple fabrication method of ultrathin nanofibrous films from the dispersion of cadmium hydroxide nanostrands and anionic surfactants. The nanostrands were prepared in a dilute aqueous solution of cadmium chloride by using 2-aminoethanol. They were highly positively charged and gave bundlelike fibers upon mixing an aqueous solution of anionic surfactant. The nanostrand/surfactant composite fibers were filtered on an inorganic membrane filter. The resultant nanofibrous film was very uniform in the area of a few centimeters square when the thickness was not less than 60 nm. The films obtained with sodium tetradecyl sulfate (STS) had a composition close to the electroneutral complex, [Cd37(OH)68(H2O)n] x 6(STS), as confirmed by energy dispersive X-ray analysis. They were water-repellent with a contact angle of 117 degrees, and the value slightly decreased with the alkyl chain length of anionic surfactants. Ultrathin nanofibrous films were stable enough to be used for ultrafiltration at pressure difference of 90 kPa. We could effectively separate Au nanoparticles of 40 nm at an extremely high filtration rate of 14000 L/(h m2 bar).

  19. X-ray structure determination of new monomers to establish their polymerizability: copolymerization of two tetrasubstituted electrophilic olefins with electron-rich styrenes giving polymers with an average 1.25 functional groups per chain carbon atom

    International Nuclear Information System (INIS)

    Hall, H.K. Jr.; Reineke, K.E.; Ried, J.H.; Sentman, R.C.; Miller, D.

    1982-01-01

    X-ray crystal structure determination for two tetrasubstituted electrophilic olefins, tetramethyl ethylenetetracarboxylate TMET and dimethyl dicyanofumarate DDCF, revealed two fundamentally different molecular structures. TMET is a nonplanar molecule that possesses two opposite ester groups planar and the others above and below the molecular plane. In contrast, DDCF is a molecule for which both ester groups lie in the plane of the double bond and nitrile groups. DDCF underwent thermal spontaneous copolymerization with electron-rich styrenes to give 1:1 alternating copolymers in moderate yields and molecular weights. These copolymers, which result from the first copolymerization of a tetrasubstituted olefin, possess an average functionality of 1.25 per chain carbon atom. Polymerization is made possible by low steric hindrance and the high delocalization in the propagating radical. The yields were limited by competing cycloaddition reaction. The corresponding diethyl ester also copolymerized, but not so well. Neither electrophilic olefin homopolymerized under γ-irradiation. TMET did not copolymerize at all when treated under identical conditions

  20. Purification of degraded TBP solvent using macroreticular anion exchange resin

    International Nuclear Information System (INIS)

    Kartha, P.K.S.; Kutty, P.V.E.; Janaradanan, C.; Ramanujam, A.; Dhumwad, R.K.

    1989-01-01

    Tri-n-butyl phosphate (TBP) diluted with a suitable diluent is commonly used for solvent extraction in Purex process for the recovery of uranium and plutonium from irradiated nuclear fuels. This solvent gets degraded due to various factors, the main degradation product being dibutyl phosphoric acid (HDBP). A solvent cleanup step is generally incorporated in the process for removing the degradation products from the used solvent. A liquid-liquid cleanup system using sodium carbonate or sodium hydroxide solution is routinely used. Considering certain advantages, like the possibility of loading the resin almost to saturation capacity and the subsequent disposal of the spent resin by incineration and the feasibility of adopting it to the process, a liquid-solid system has been tried as an alternate method, employing various available macroreticular anion exchange resins in OH - form for the sorption of HDBP from TBP. After standardizing the various conditions for the satisfactory removal of HDBP from TBP using synthetic mixtures, resins were tested with process solvent in batch contacts. The parameters studied were (1) capacity of different resins for HDBP sorption (2) influence of acidity, uranium and HDBP on the sorption behaviour of the latter (3) removal of fission products from the solvent by the resin and (4) regeneration and recycling of the resin. (author). 2 figs., 13 tabs., 17 refs

  1. Gamma radiation effect on gas production in anion exchange resins

    Energy Technology Data Exchange (ETDEWEB)

    Traboulsi, A. [CEA Marcoule, DEN/DTCD/SPDE/LCFI, BP 17171, 30207 Bagnols-sur-Cèze Cedex (France); E.A. LISA – METICA, Aix Marseille Université, Pôle de l’Etoile, case 451, 13397 Marseille Cedex 20 (France); Labed, V., E-mail: veronique.labed@cea.fr [CEA Marcoule, DEN/DTCD/SPDE/LCFI, BP 17171, 30207 Bagnols-sur-Cèze Cedex (France); Dauvois, V. [CEA Saclay, DEN/DANS/DPC/SECR/LSRM, 91191 Gif sur Yvette Cedex (France); Dupuy, N.; Rebufa, C. [E.A. LISA – METICA, Aix Marseille Université, Pôle de l’Etoile, case 451, 13397 Marseille Cedex 20 (France)

    2013-10-01

    Radiation-induced decomposition of Amberlite IRA400 anion exchange resin in hydroxide form by gamma radiolysis has been studied at various doses in different atmospheres (anaerobic, anaerobic with liquid water, and aerobic). The effect of these parameters on the degradation of ion exchange resins is rarely investigated in the literature. We focused on the radiolysis gases produced by resin degradation. When the resin was irradiated under anaerobic conditions with liquid water, the liquid phase over the resin was also analyzed to identify any possible water-soluble products released by degradation of the resin. The main products released are trimethylamine (TMA), molecular hydrogen (H{sub 2g}) and carbon dioxide (CO{sub 2g}). TMA and H{sub 2g} are produced in all the irradiation atmospheres. However, TMA was in gaseous form under anaerobic and aerobic conditions and in aqueous form in presence of liquid water. In the latter conditions, TMA{sub aq} was associated with aqueous dimethylamine (DMA{sub aq}), monomethylamine (MMA{sub aq}) and ammonia (NH{sub 4}{sup +}{sub aq}). CO{sub 2g} is formed in the presence of oxygen due to oxidation of organic compounds present in the system, in particular the degradation products such as TMA{sub g}.

  2. Fluorescence anisotropy of tyrosinate anion using one-, two- and three-photon excitation: tyrosinate anion fluorescence.

    Science.gov (United States)

    Kierdaszuk, Borys

    2013-03-01

    We examined the emission spectra and steady-state anisotropy of tyrosinate anion fluorescence with one-photon (250-310 nm), two-photon (570-620 nm) and three-photon (750-930 nm) excitation. Similar emission spectra of the neutral (pH 7.2) and anionic (pH 13) forms of N-acetyl-L-tyrosinamide (NATyrA) (pKa 10.6) were observed for all modes of excitation, with the maxima at 302 and 352 nm, respectively. Two-photon excitation (2PE) and three-photon excitation (3PE) spectra of the anionic form were the same as that for one-photon excitation (1PE). In contrast, 2PE spectrum from the neutral form showed ~30-nm shift to shorter wavelengths relative to 1PE spectrum (λmax 275 nm) at two-photon energy (550 nm), the latter being overlapped with 3PE spectrum, both at two-photon energy (550 nm). Two-photon cross-sections for NATyrA anion at 565-580 nm were 10 % of that for N-acetyl-L-tryptophanamide (NATrpA), and increased to 90 % at 610 nm, while for the neutral form of NATyrA decreased from 2 % of that for NATrpA at 570 nm to near zero at 585 nm. Surprisingly, the fundamental anisotropy of NATyrA anion in vitrified solution at -60 °C was ~0.05 for 2PE at 610 nm as compared to near 0.3 for 1PE at 305 nm, and wavelength-dependence appears to be a basic feature of its anisotropy. In contrast, the 3PE anisotropy at 900 nm was about 0.5, and 3PE and 1PE anisotropy values appear to be related by the cos(6) θ to cos(2) θ photoselection factor (approx. 10/6) independently of excitation wavelength. Attention is drawn to the possible effect of tyrosinate anions in proteins on their multi-photon induced fluorescence emission and excitation spectra as well as excitation anisotropy spectra.

  3. CHAINS-PC, Decay Chain Atomic Densities

    International Nuclear Information System (INIS)

    1994-01-01

    1 - Description of program or function: CHAINS computes the atom density of members of a single radioactive decay chain. The linearity of the Bateman equations allows tracing of interconnecting chains by manually accumulating results from separate calculations of single chains. Re-entrant loops can be treated as extensions of a single chain. Losses from the chain are also tallied. 2 - Method of solution: The Bateman equations are solved analytically using double-precision arithmetic. Poles are avoided by small alterations of the loss terms. Multigroup fluxes, cross sections, and self-shielding factors entered as input are used to compute the effective specific reaction rates. The atom densities are computed at any specified times. 3 - Restrictions on the complexity of the problem: Maxima of 100 energy groups, 100 time values, 50 members in a chain

  4. Once upon Anion: A Tale of Photodetachment

    Science.gov (United States)

    Lineberger, W. Carl

    2013-04-01

    This contribution is very much a personal history of a journey through the wonderful world of anion chemistry, and a tale of how advances in laser technologies, theoretical methods, and computational capabilities continuously enabled advances in our understanding. It is a story of the excitement and joy that come from the opportunity to add to the fabric of science, and to do so by working as a group of excited explorers with common goals. The participants in this journey include me, my students and postdoctoral associates, my collaborators, and our many generous colleagues. It all happened, in the words of the Beatles, “with a little help from my friends.” Actually, it was so much more than a little help!

  5. Adsorption of an anionic dispersant on lignite

    Energy Technology Data Exchange (ETDEWEB)

    Yavuz, R.; Kucukbayrak, S. [Istanbul Technical University, Istanbul (Turkey). Dept. of Chemical Engineering, Chemical & Metallurgical Engineering Faculty

    2001-12-01

    Since coal is not a homogeneous substance but a mixture of carbonaceous materials and mineral matter, it has a variety of surface properties. Therefore, it is not easy to control the properties of coal suspensions by simply adjusting variables, such as pH and/or electrolyte. A chemical agent needs to be added to control the properties of the coal suspensions. The adsorption behavior of an anionic dispersant in the presence of a wetting agent using some Turkish lignite samples was investigated. The effects of dispersant concentration, temperature and pH on the dispersant adsorption were studied systematically, and the experimental results are presented. Pellupur B69 as a dispersant, commercial mixture of formaldehyde condensate sodium salt of naphthalene sulphonic acid, and Texapon N{sub 2}5 as a wetting agent, a sodium lauryl ether sulfate, have been used.

  6. Advanced polymer chemistry of organometallic anions

    International Nuclear Information System (INIS)

    Chamberlin, R.M.; Abney, K.D.; Balaich, G.J.; Fino, S.A.

    1997-01-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of the project was to prepare and characterize new polymers incorporating cobalt dicarbollide. Specific goals were to prepare polymerizable cobalt dicarbollide monomers using the nucleophilic substitution route discovered in laboratories and to establish the reaction conditions required to form polymers from these complexes. This one-year project resulted in two publications (in press), and provided the foundation for further investigations into polymer synthesis and characterization using cobalt dicarbollide and other metallocarboranes. Interest in synthesizing organometallic polymers containing the cobalt bis(dicarbollide) anion is motivated by their possible application as cation exchange materials for the remediation of cesium-137 and strontium-90 from nuclear wastes

  7. Luminescent Surface Quaternized Carbon Dots

    KAUST Repository

    Bourlinos, Athanasios B.; Zbořil, Radek; Petr, Jan; Bakandritsos, Aristides; Krysmann, Marta; Giannelis, Emmanuel P.

    2012-01-01

    Thermal oxidation of a salt precursor made from the acid base combination of tris(hydroxymethyl)aminomethane and betaine hydrochloride results in light-emitting surface quaternized carbon dots that are water-dispersible, display anion exchange properties, and exhibit uniform size/surface charge. © 2011 American Chemical Society.

  8. Luminescent Surface Quaternized Carbon Dots

    KAUST Repository

    Bourlinos, Athanasios B.

    2012-01-10

    Thermal oxidation of a salt precursor made from the acid base combination of tris(hydroxymethyl)aminomethane and betaine hydrochloride results in light-emitting surface quaternized carbon dots that are water-dispersible, display anion exchange properties, and exhibit uniform size/surface charge. © 2011 American Chemical Society.

  9. Formation and stabilization of anionic metal complexes in concentrated aqueous quaternary ammonium salt solutions

    International Nuclear Information System (INIS)

    Aronson, F.L.; Hwang, L.L.Y.; Ronca, N.; Solomon, N.A.; Steigman, J.

    1985-01-01

    Anionic complexes of transition metals were stabilized in aqueous solutions containing high concentrations of various short-chain quaternary ammonium salts. Compounds with longer paraffin chains were effective in much less concentrated solution. Complex ions were detected spectrophotometrically. FeCl 4 - , which is usually formed in concentrated HCl, was the predominant Fe(III) complex in 30 m choline chloride containing only 0.12 M HCl. A yellow transitory Tc(VII) chloro-addition intermediate, formed in the reduction of TcO 4 - by concentrated HCl, was stabilized when the solution also contained 25 m choline chloride. Its spectrum, as well as the isolation of an already known Tc(VII) bipyridyl complex, is reported. Concentrated organic electrolytes also stabilized Tc(V) oxide halides against disproportionation and Tc(IV) hexahalides against hydrolysis. Halochromates of Cr(VI) were formed and stabilized in dilute acid containing quaternary ammonium salts. Their UV spectra showed the well-resolved vibronic fine structure associated with the symmetric chromium-to-oxygen charge-transfer band. It is known that these progressions are resolved in aprotic solvents, but not in aqueous acidic solution alone, and that the loss of fine structure in aqueous media is due to hydrogen bonding. The stabilization of anionic metal complexes and the resolution of vibronic structure in halochromates are probably consequences of water-structure-enforced ion paring. The present work suggests that the water molecules in immediate contact with the complex anions are more strongly hydrogen bonded to each other than to the complex. 21 references, 4 figures

  10. Anion binding by biotin[6]uril in water

    DEFF Research Database (Denmark)

    Lisbjerg, Micke; Nielsen, Bjarne Enrico; Milhøj, Birgitte Olai

    2015-01-01

    In this contribution we show that the newly discovered 6 + 6 biotin-formaldehyde macrocycle Biotin[6]uril binds a variety of anionic guest molecules in water. We discuss how and why the anions are bound based on data obtained using NMR spectroscopy, mass spectrometry, isothermal titration...

  11. A colorimetric tetrathiafulvalene-calix 4 pyrrole anion sensor

    DEFF Research Database (Denmark)

    Nielsen, K. A.

    2012-01-01

    The interaction and colorimetric sensing properties of a tetrathiafulvalene substituted calix[4]pyrrole sensor with anions were investigated using H-1 NMR and absorption spectroscopic techniques. Visual color changes were observed upon addition of different anions (Cl-, Br-, CN-, and Ac......O-) to a solution of the sensor. (C) 2012 Elsevier Ltd. All rights reserved....

  12. Diffuse neutron scattering from anion-excess strontium chloride

    DEFF Research Database (Denmark)

    Goff, J.P.; Clausen, K.N.; Fåk, B.

    1992-01-01

    The defect structure and diffusional processes have been studied in the anion-excess fluorite (Sr, Y)Cl2.03 by diffuse neutron scattering techniques. Static cuboctahedral clusters found at ambient temperature break up at temperatures below 1050 K, where the anion disorder is highly dynamic. The a...

  13. Protonation Reaction of Benzonitrile Radical Anion and Absorption of Product

    DEFF Research Database (Denmark)

    Holcman, Jerzy; Sehested, Knud

    1975-01-01

    The rate constant for the protonation of benzonitrile radical anions formed in pulse radiolysis of aqueous benzonitrile solutions is (3.5 ± 0.5)× 1010 dm3 mol–1 s–1. A new 270 nm absorption band is attributed to the protonated benzonitrile anion. The pK of the protonation reaction is determined t...

  14. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    International Nuclear Information System (INIS)

    Moyer, Bruce a.; Bostick, Debra A.; Fowler, Christopher J.; Kang, Hyun-Ah; Ruas, Alexandre; Delmau, Laetitia H.; Haverlock, Tamara J.; Llinares, Jose M.; Hossain, Alamgir; Kang, S. O.; Bowman-James, Kristin; Shriver, James A.; Marquez, Manuel; Sessler, Jonathan L.

    2005-01-01

    The major thrust of this project led by the University of Kansas (Prof. Kristin Bowman-Jones) entails the exploration of the principles of recognition and separation of sulfate by the design, synthesis, and testing of novel sulfate extractants. A key science need for the cleanup of tank wastes at Hanford has been identified in developing methods to separate those bulk waste components that have low solubilities in borosilicate glass. Sulfate has been identified as a particularly difficult and expensive problem in that its concentration in the waste is relatively high, its solubility in glass is especially low, and it interferes with the performance of both vitrification equipment and the glass waste form. The new extractants will be synthesized by the University of Kansas and the University of Texas, Austin. Oak Ridge National Laboratory (ORNL) is subjecting the new extractants to experiments that will determine their properties and effectiveness in separating sulfate from the major competing anions in the waste, especially nitrate. Such experiments will entail primarily liquid-liquid extraction. Current efforts focus on exciting new systems in which the anion receptors act as synergists for anion exchange

  15. AT Base Pair Anions vs. (9-methyl-A)(1-methyl-T) Base Pair Anions

    International Nuclear Information System (INIS)

    Radisic, Dunja; Bowen, Kit H.; Dabkowska, Iwona; Storoniak, Piotr; Rak, Janusz; Gutowski, Maciej S.

    2005-01-01

    The anionic base pairs of adenine and thymine, (AT)-, and 9-methyladenine and 1-methylthymine, (MAMT)-, have been investigated both theoretically and experimentally in a complementary, synergistic study. Calculations on (AT)- found that it had undergone a barrier-free proton transfer (BFPT) similar to that seen in other dimer anion systems and that its structural configuration that was neither Watson-Crick (WC) nor Hoogsteen (HS). The vertical detachment energy (VDE) of (AT)- was determined by anion photoelectron spectroscopy and found to be in agreement with the VDE value predicted by theory for the BFPT mechanism. An AT pair in DNA is structurally immobilized into the WC configuration, in part, by being bonded to the sugars of the double helix. This circumstance was mimicked by methylating the sites on both A and T where these sugars would have been tied, viz., 9-methyladenine and 1-methylthymine. Calculations found no BFPT in (MAMT)- and a resulting (MAMT)- configuration that wa s either HS or WC, with the configurations differing in stability by ca. 2 kcal/mol. The photoelectron spectrum of (MAMT)- occurred at a completely different electron binding energy than had (AT)-. Moreover, the VDE value of (MAMT)- was in agreement with that predicted by theory. The configuration of (MAMT)- and its lack of electron-induced proton transfer are inter-related. While there may be other pathways for electron-induced damage, BFPT in the WC/HS configurations of (AT)- is not feasible

  16. AT base pair anions versus (9-methyl-A)(1-methyl-T) base pair anions.

    Science.gov (United States)

    Radisic, Dunja; Bowen, Kit H; Dabkowska, Iwona; Storoniak, Piotr; Rak, Janusz; Gutowski, Maciej

    2005-05-04

    The anionic base pairs of adenine and thymine, (AT)(-), and 9-methyladenine and 1-methylthymine, (MAMT)(-), have been investigated both theoretically and experimentally in a complementary, synergistic study. Calculations on (AT)(-) found that it had undergone a barrier-free proton transfer (BFPT) similar to that seen in other dimer anion systems and that its structural configuration was neither Watson-Crick (WC) nor Hoogsteen (HS). The vertical detachment energy (VDE) of (AT)(-) was determined by anion photoelectron spectroscopy and found to be in agreement with the VDE value predicted by theory for the BFPT mechanism. An AT pair in DNA is structurally immobilized into the WC configuration, in part, by being bonded to the sugars of the double helix. This circumstance was mimicked by methylating the sites on both A and T where these sugars would have been tied, viz., 9-methyladenine and 1-methylthymine. Calculations found no BFPT in (MAMT)(-) and a resulting (MAMT)(-) configuration that was either HS or WC, with the configurations differing in stability by ca. 2 kcal/mol. The photoelectron spectrum of (MAMT)(-) occurred at a completely different electron binding energy than had (AT)(-). Moreover, the VDE value of (MAMT)(-) was in agreement with that predicted by theory. The configuration of (MAMT)(-) and its lack of electron-induced proton transfer are inter-related. While there may be other pathways for electron-induced DNA alterations, BFPT in the WC/HS configurations of (AT)(-) is not feasible.

  17. Superoxide anion production by human neutrophils activated by Trichomonas vaginalis.

    Science.gov (United States)

    Song, Hyun-Ouk; Ryu, Jae-Sook

    2013-08-01

    Neutrophils are the predominant inflammatory cells found in vaginal discharges of patients infected with Trichomonas vaginalis. In this study, we examined superoxide anion (O2 (.-)) production by neutrophils activated by T. vaginalis. Human neutrophils produced superoxide anions when stimulated with either a lysate of T. vaginalis, its membrane component (MC), or excretory-secretory product (ESP). To assess the role of trichomonad protease in production of superoxide anions by neutrophils, T. vaginalis lysate, ESP, and MC were each pretreated with a protease inhibitor cocktail before incubation with neutrophils. Superoxide anion production was significantly decreased by this treatment. Trichomonad growth was inhibited by preincubation with supernatants of neutrophils incubated for 3 hr with T. vaginalis lysate. Furthermore, myeloperoxidase (MPO) production by neutrophils was stimulated by live trichomonads. These results indicate that the production of superoxide anions and MPO by neutrophils stimulated with T. vaginalis may be a part of defense mechanisms of neutrophils in trichomoniasis.

  18. Coumarin amide derivatives as fluorescence chemosensors for cyanide anions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qianqian [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China); Liu, Zhiqiang [State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong (China); Cao, Duxia, E-mail: duxiacao@ujn.edu.cn [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China); Guan, Ruifang, E-mail: mse_guanrf@ujn.edu.cn [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China); Wang, Kangnan; Shan, Yanyan; Xu, Yongxiao; Ma, Lin [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China)

    2015-07-01

    Four coumarin amide derivatives with 4-methyl coumarin or pyrene as terminal group have been synthesized. Their photophysical properties and recognition properties for cyanide anions have been examined. The results indicate that the compounds can recognize cyanide anions with obvious absorption and fluorescence spectra change, at the same time, obvious color and fluorescence change can be observed by naked eye. The in situ hydrogen nuclear magnetic resonance spectra and photophysical properties change confirm that Michael additions between the chemosensors and cyanide anions take place at the 4-position of coumarin. - Highlights: • Four coumarin amide derivatives with 4-methyl coumarin or pyrene as terminal group were synthesized. • The compounds can recognize cyanide anions with obvious absorption and fluorescence spectra change. • Michael additions between the chemosensors and cyanide anions take place at the 4-position of coumarin.

  19. The Thermodynamics of Anion Complexation to Nonpolar Pockets.

    Science.gov (United States)

    Sullivan, Matthew R; Yao, Wei; Tang, Du; Ashbaugh, Henry S; Gibb, Bruce C

    2018-02-08

    The interactions between nonpolar surfaces and polarizable anions lie in a gray area between the hydrophobic and Hofmeister effects. To assess the affinity of these interactions, NMR and ITC were used to probe the thermodynamics of eight anions binding to four different hosts whose pockets each consist primarily of hydrocarbon. Two classes of host were examined: cavitands and cyclodextrins. For all hosts, anion affinity was found to follow the Hofmeister series, with associations ranging from 1.6-5.7 kcal mol -1 . Despite the fact that cavitand hosts 1 and 2 possess intrinsic negative electrostatic fields, it was determined that these more enveloping hosts generally bound anions more strongly. The observation that the four hosts each possess specific anion affinities that cannot be readily explained by their structures, points to the importance of counter cations and the solvation of the "empty" hosts, free guests, and host-guest complexes, in defining the affinity.

  20. Immunity of the Fe-N-C catalysts to electrolyte adsorption: phosphate but not perchloric anions

    DEFF Research Database (Denmark)

    Hu, Yang; Jensen, Jens Oluf; Pan, Chao

    2018-01-01

    often carried out, like for Pt-based catalysts, in dilute perchloric acid by assuming its non-adsorbing nature on the active sites. The assumption is however not true. In this work, a typical Fe-N-C catalyst was first synthesized by high-pressure pyrolysis in the presence of carbon support...... and thoroughly characterized in terms of morphology, structure and active site distribution. The subsequent electrochemical characterization of the catalyst shows strong adsorption and poisoning effect of, in addition to the known Cl-, perchloric anions on the oxygen reduction reaction (ORR) activity...

  1. Degradation of anionic surfactants using the reactor based on dielectric barrier discharge

    Directory of Open Access Journals (Sweden)

    Aonyas Munera Mustafa

    2016-01-01

    Full Text Available Two anionic surfactants (sodium lauryl sulfate - SDS and sodium dodecylbenzenesulfonate - SDBS were treated with dielectric barrier discharge. Loss of surfactant activity, decrease of chemical oxygen demand and total organic carbon as well as lower toxicity of degradation products were determined. Effects of catalysts - hydrogen peroxide and iron (II, on parameters mentioned above, were determined. Catalysts affect the degradation of SDBS and in the case of SDS catalysts have no effect on degradation. Both catalysts induce the decrease of COD and TOC values. Toxicity of solutions after the plasma treatment is lower in all the systems tested. [Projekat Ministarstva nauke Republike Srbije, br. OI 172030

  2. Importance of balancing membrane and electrode water in anion exchange membrane fuel cells

    Science.gov (United States)

    Omasta, T. J.; Wang, L.; Peng, X.; Lewis, C. A.; Varcoe, J. R.; Mustain, W. E.

    2018-01-01

    Anion exchange membrane fuel cells (AEMFCs) offer several potential advantages over proton exchange membrane fuel cells (PEMFCs), most notably to overcome the cost barrier that has slowed the growth and large scale implementation of fuel cells for transportation. However, limitations in performance have held back AEMFCs, specifically in the areas of stability, carbonation, and maximum achievable current and power densities. In order for AEMFCs to contend with PEMFCs for market viability, it is necessary to realize a competitive cell performance. This work demonstrates a new benchmark for a H2/O2 AEMFC with a peak power density of 1.4 W cm-2 at 60 °C. This was accomplished by taking a more precise look at balancing necessary membrane hydration while preventing electrode flooding, which somewhat surprisingly can occur both at the anode and the cathode. Specifically, radiation-grafted ETFE-based anion exchange membranes and anion exchange ionomer powder, functionalized with benchmark benzyltrimethylammonium groups, were utilized to examine the effects of the following parameters on AEMFC performance: feed gas flow rate, the use of hydrophobic vs. hydrophilic gas diffusion layers, and gas feed dew points.

  3. Logistic chain modelling

    NARCIS (Netherlands)

    Slats, P.A.; Bhola, B.; Evers, J.J.M.; Dijkhuizen, G.

    1995-01-01

    Logistic chain modelling is very important in improving the overall performance of the total logistic chain. Logistic models provide support for a large range of applications, such as analysing bottlenecks, improving customer service, configuring new logistic chains and adapting existing chains to

  4. Ionic liquids containing symmetric quaternary phosphonium cations and phosphorus-containing anions, and their use as lubricant additives

    Science.gov (United States)

    Qu, Jun; Luo, Huimin

    2018-05-01

    An ionic liquid composition having the following generic structural formula: ##STR00001## wherein R1, R2, R3, and R4 are equivalent and selected from hydrocarbon groups containing at least three carbon atoms, and X- is a phosphorus-containing anion, particularly an organophosphate, organophosphonate, or organophosphinate anion, or a thio-substituted analog thereof containing hydrocarbon groups with at least three carbon atoms. Also described are lubricant compositions comprising the above ionic liquid and a base oil, wherein the ionic liquid is dissolved in the base oil. Further described are methods for applying the ionic liquid or lubricant composition onto a mechanical device for which lubrication is beneficial, with resulting improvement in friction reduction, wear rate, and/or corrosion inhibition.

  5. Diffusion and retention of organic anions in Callovian-Oxfordian clay rock

    International Nuclear Information System (INIS)

    Rasamimanana, Sabrina

    2016-01-01

    The Callovo-Oxfordian mud-stone (CO_x) is studied as a possible host rock for a deep disposal of radioactive waste (Cigeo project). Indeed, besides being very weakly permeable, it presents a high content of clayey minerals, capable of retaining radionuclides under cationic form and to delay strongly their transport. Nevertheless, some waste packages may release a significant amount of organic molecules, capable of complexing these radionuclides and drastically increase their mobility. So, the objective of this work was to better understand the diffusive behavior of several organic molecules of interest in this mudstone, by investigating at first their affinity with the host rock. The retention of organic molecules under anionic form (acetate, phthalate, adipate, benzoate, and citrate) was quantified on to the dispersed CO_x mudstone using adsorption/desorption batch experiments. Experiments on de-carbonated rock and clay fraction only (≤ 2μm) were also performed to identify solid phases and chemical functions responsible for the retention. a correlation of the intensity of retention, R_d, was pointed out whit the dipole moment μ(Orga.), providing a qualitative estimate of retention capacity for polar hydrophilic organic molecules. So, phthalate, slightly polar, displays a reversible retention (R_d ≅1,6 L.kg"-"1), mainly on clayey phases. Citrate, very polar and strongly adsorbed (R_d ≅ 40 L.kg"-"1), displays a persistent desorption hysteresis and an affinity to different solid phases (clayey minerals and minor oxides). Lastly, acetate, adipate and benzoate, weakly polar, display a lower affinity with rock (R_d ≤ 0,2 L.kg"-"1). The diffusive behavior in compact rock of these organic anions was then studied. The effective diffusion coefficient and retardation factor values were quantified. The low diffusivity, [D_e/D_0](Organic Anions) ≅ 0,1 a0,25 * [D_e/D_0](Water) evidences an effect of anionic exclusion, with a same intensity as that observed for

  6. Monohydrocalcite: a promising remediation material for hazardous anions

    Energy Technology Data Exchange (ETDEWEB)

    Fukushi, Keisuke [Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan); Munemoto, Takashi [Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sakai, Minoru [Department of Earth and Planetary Sciences, Faculty of Science, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan); Yagi, Shintaro [Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan)

    2011-12-15

    The formation conditions, solubility and stability of monohydrocalcite (MHC, CaCO{sub 3}{center_dot}H{sub 2}O), as well as sorption behaviors of toxic anions on MHC, are reviewed to evaluate MHC as a remediation material for hazardous oxyanions. MHC is a rare mineral in geological settings that occurs in recent sediments in saline lakes. Water temperature does not seem to be an important factor for MHC formation. The pH of lake water is usually higher than 8 and the Mg/Ca ratio exceeds 4. MHC synthesis experiments as a function of time indicate that MHC is formed from amorphous calcium carbonate and transforms to calcite and/or aragonite. Most studies show that MHC forms from solutions containing Mg, which inhibits the formation of stable calcium carbonates. The solubility of MHC is higher than those of calcite, aragonite and vaterite, but lower than those of ikaite and amorphous calcium carbonate at ambient temperature. The solubility of MHC decreases with temperature. MHC is unstable and readily transforms to calcite or aragonite. The transformation consists of the dissolution of MHC and the subsequent formation of stable phases from the solution. The rate-limiting steps of the transformation of MHC are the nucleation and growth of stable crystalline phases. Natural occurrences indicate that certain additives, particularly PO{sub 4} and Mg, stabilize MHC. Laboratory studies confirm that a small amount of PO{sub 4} in solution (>30 {mu}M) can significantly inhibit the transformation of MHC. MHC has a higher sorption capacity for PO{sub 4} than calcite and aragonite. The modes of PO{sub 4} uptake are adsorption on the MHC surface at moderate phosphate concentrations and precipitation of secondary calcium phosphate minerals at higher concentrations. Arsenate is most likely removed from the solution during the transformation of MHC. The proposed sorption mechanism of arsenate is coprecipitation during crystallization of aragonite. The arsenic sorption capacity by MHC

  7. Bowl adamanzanes-bicyclic tetraamines: syntheses and crystal structures of complexes with cobalt(III) and chelating coordinated oxo-anions

    DEFF Research Database (Denmark)

    Broge, Louise; Søtofte, Inger; Jensen, Kristian

    2007-01-01

    complex is provided. Four of the seven complexes contain a chelate coordinating oxo-anion ( sulfate, formiate, nitrate, carbonate). Equilibration of these species with the corresponding diaqua complex is generally slow. The rates of equilibration in 5 mol dm(-3) perchloric acid at 25 degrees C have been...

  8. Sustainable Supply Chain Design

    DEFF Research Database (Denmark)

    Bals, Lydia; Tate, Wendy

    A significant conceptual and practical challenge is how to integrate triple bottom line (TBL; including economic, social and environmental) sustainability into global supply chains. Although this integration is necessary to slow down global resource depletion, understanding is limited of how...... to implement TBL goals across the supply chain. In supply chain design, the classic economic perspective still dominates, although the idea of the TBL is more widely disseminated. The purpose of this research is to add to the sustainable supply chain management literature (SSCM) research agenda...... by incorporating the physical chain, and the (information and financial) support chains into supply chain design. This manuscript tackles issues of what the chains are designed for and how they are designed structurally. Four sustainable businesses are used as illustrative case examples of innovative supply chain...

  9. Building sustainable supply chains: consumer choice or direct management?

    Energy Technology Data Exchange (ETDEWEB)

    Hebditch, David; Blackmore, Emma

    2012-06-15

    Putting a 'carbon label' on products to show how much carbon dioxide is emitted during their production, transport and disposal has been heralded as a powerful route to sustainability within companies' supply chains. Several leading firms have joined the Carbon Trust carbon labelling scheme over the past five years, including UK-based retail giant Tesco, which as early as 2007 promised to use carbon labels on all its products. But earlier this year, the multinational said it was dropping carbon labels and instead directly managing its supply chains. Many other companies are similarly choosing direct management over consumer choice as the most effective route to emission reductions. In so doing, they are shouldering greater responsibility for the emissions and impacts of their supply chains. But environmental concerns must not be allowed to trump development needs and companies must not unfairly disadvantage smaller-scale producers in developing countries.

  10. Simultaneous determination of inorganic and organic anions by ion chromatography

    International Nuclear Information System (INIS)

    Park, Yang Soon; Joe, Ki Soo; Han, Sun Ho; Park, Soon Dal; Choi, Kwang Soon

    1999-06-01

    Four methods were investigated for the simultaneous determination of several inorganic and organic anions in aqueous solution by ion chromatography. The first is two columns coupled system. The second is the gradient elution system with an anion exchange column. The third is the system with a mixed-mode stationary phase. The fourth is the system with an anion exchange column and the eluant of low conductivity without ion suppressor. The advantages and disadvantages of individual systems were discussed. The suitable methods were proposed for the application to the samples of the nuclear power industry and the environment. (author)

  11. Unusual structures of MgF5- superhalogen anion

    Science.gov (United States)

    Anusiewicz, Iwona; Skurski, Piotr

    2007-05-01

    The vertical electron detachment energies (VDE) of three MgF5- anions were calculated at the outer valence Green function level with the 6-311 + G(3df) basis sets. This species was found to form unusual geometrical structures each of which corresponds to an anionic state exhibiting superhalogen nature. The global minimum structure was described as a system in which two central magnesium atoms are linked via symmetrical triangle formed by three fluorine atoms. Extremely large electron binding energies of these anions (exceeding 8.5 eV in all cases) were predicted and discussed.

  12. Catalytic Performance of Microwave Functionalized NH2-MIL-53 for Cyclic Carbonate Synthesis from CO2 and Epoxides.

    Science.gov (United States)

    Seok, Han-Geul; Kim, Dong-Woo; Yang, Jeung-Gyu; Kim, Moon-Il; Park, Dae-Won

    2016-05-01

    The efficacy of microwave irradiation in the quaternization of amino-functionalized MIL-53 metal-organic framework (MOF) as well as the catalytic activity of the resultant MOF in the cycloaddition of carbon dioxide with epoxides under solvent-free conditions has been studied. A series of NH2-MIL-53 were synthesized and quaternized by reacting alkyl halide of various alkyl chains and anions under microwave irradiation. The post-functionalized F-MIL-53-AXs were characterized through solid-state XRD, FT-IR, XPS, and TGA. F-MIL-53-Mel prepared by microwave method showed higher AGC yield than that by the conventional heating method. F-MIL-53-AXs with iodide anion exhibited the best catalytic activity irrespective of the alkyl chain length, in agreement with the generally accepting order of nucleophilicity, ClMIL-53-AX catalysts were found to exhibit high thermal stability and were reusable over than three times, without any significant lowering of activity.

  13. Inhibition of filiform corrosion on organic-coated AA2024-T3 by smart-release cation and anion-exchange pigments

    International Nuclear Information System (INIS)

    Williams, G.; McMurray, H.N.

    2012-01-01

    Highlights: ► Filiform corrosion (FFC) inhibition by various smart-release pigments was evaluated by SKP. ► Rare earth cation-containing pigments were ineffective at halting FFC propagation. ► Metal oxo-anions and organic copper-specific agents were exchanged into hydrotalcite. ► Effective inhibition of FFC was demonstrated by anions which stopped copper re-plating. - Abstract: In-coating cation and anion exchange pigments are studied with respect to their ability to inhibit chloride-induced filiform corrosion (FFC) on organic-coated AA2024-T3 aluminium alloy substrates. In-situ scanning Kelvin probe potentiometry is used to quantify both underfilm potentials associated with populations of propagating corrosion filaments and the kinetics of coating disbondment. Smart-release bentonite pigments containing exchangeable cerium (III) and yttrium (III) cations are shown to be largely ineffective in reducing rates of FFC propagation. The reasons for this are discussed in terms of the chemistry of the electrolyte-filled corrosion filament head. In contrast, anion-exchange hydrotalcite (HT) based pigments are highly effective inhibitors of FFC. A comparison of the extent of FFC observed for various inorganic exchangeable anions is made with as-received HT comprising carbonate anions. Of the anions evaluated, exchangeable chromate unsurprisingly provides the highest FFC inhibition efficiency. It is also demonstrated that exchanging the native carbonate ions for certain organic species which act as complexing agents for copper ions, gives rise to an equivalent level of FFC inhibition. The implication of these findings with respect to the mechanism of FFC on copper containing aluminium alloys is considered.

  14. Ionic liquid based on α-amino acid anion and N7,N9-dimethylguaninium cation ([dMG][AA]): theoretical study on the structure and electronic properties.

    Science.gov (United States)

    Shakourian-Fard, Mehdi; Fattahi, Alireza; Bayat, Ahmad

    2012-06-07

    The interactions between five amino acid based anions ([AA](-) (AA = Gly, Phe, His, Try, and Tyr)) and N7,N9-dimethylguaninium cation ([dMG](+)) have been investigated by the hybrid density functional theory method B3LYP together with the basis set 6-311++G(d,p). The calculated interaction energy was found to decrease in magnitude with increasing side-chain length in the amino acid anion. The interaction between the [dMG](+) cation and [AA](-) anion in the most stable configurations of ion pairs is a hydrogen bonding interaction. These hydrogen bonds (H bonds) were analyzed by the quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analysis. Finally, several correlations between electron densities in bond critical points of hydrogen bonds and interaction energy as well as vibrational frequencies in the most stable configurations of ion pairs have been checked.

  15. Electrochemical solid-phase microextraction of anions and cations using polypyrrole coatings and an integrated three-electrode device.

    Science.gov (United States)

    Liljegren, Gustav; Pettersson, Jean; Markides, Karin E; Nyholm, Leif

    2002-05-01

    A method for the extraction, transfer and desorption of anions and cations under controlled potential conditions employing a new integrated three-electrode device is described. The device, containing working, reference and counter electrodes, was prepared from tubes that could be moved vertically with respect to each other. In this way, a small amount of solvent, held by capillary force, remained between the electrodes when the device was lifted out of a solution after an extraction. This design allowed the potential control to be maintained at all times. With the new integrated device, it was possible to perform potential controlled desorption into vials containing as little as 200 microl of solution. The required ion exchange capacity was obtained by electrodeposition of a polypyrrole coating on the surface of the glassy carbon working electrode. Solid-phase microextractions of several cations or anions were performed simultaneously under potentiostatic control by doping the polypyrrole coating with different anions such as perchlorate and p-toluenesulfonate. The efficiency of the extractions, which could be altered by varying the potential of the working electrode, could be increased by 150 to 200% compared to extractions using normal solid-phase microextraction conditions under open circuit conditions. A constant potential of +1.0 V and -0.5 V with respect to the silver pseudo reference electrode, was found to be well-suited for the extraction of samples containing ppm concentrations of anions (chloride, nitrite, bromide, nitrate, sulfate and phosphate) and cations (cadmium, cobalt and zinc), respectively.

  16. Nitrate Anion Exchange in Pu-238 Aqueous Scrap Recovery Operations

    International Nuclear Information System (INIS)

    Pansoy-Hjelvik, M.E.; Silver, G.L.; Reimus, M.A.H.; Ramsey, K.B.

    1999-01-01

    Strong base, nitrate anion exchange (IX) is crucial to the purification of 238 Pu solution feedstocks with gross levels of impurities. This paper discusses the work involved in bench scale experiments to optimize the nitrate anion exchange process. In particular, results are presented of experiments conducted to (a) demonstrate that high levels of impurities can be separated from 238 Pu solutions via nitrate anion exchange and, (b) work out chemical pretreatment methodology to adjust and maintain 238 Pu in the IV oxidation state to optimize the Pu(IV)-hexanitrato anionic complex sorption to Reillex-HPQ resin. Additional experiments performed to determine the best chemical treatment methodology to enhance recovery of sorbed Pu from the resin, and VIS-NIR absorption studies to determine the steady state equilibrium of Pu(IV), Pu(III), and Pu(VI) in nitric acid are discussed

  17. Dehydroabiethylamine acetate as metal-containing anion precipitant

    International Nuclear Information System (INIS)

    Skrylev, L.D.; Borisov, V.A.

    1979-01-01

    The precipitation is studied of vanadate, tungstate-, molybdate- and chromate-ions by dehydroabiethylamine acetate. The degree of precipitation of metal-bearing anions is a function of the anion and of pH of the treated solutions. There exists a predetermined value of pH for each anion, at which the content of metal-bearing anion in the ultra-filtrate is at a minimum. For vanadate-ions, this pH is 5.0; for tungstate-ions, 3.0; for molybdate-ions, 4.0; for chrommate-ions, 8.0. The heats of solution of methavanadate, paratungstate, paramolybdate and dehydroabiethylamine chromate, calculated in accordance with the Vant-Hoff equation, range between 3.5 and 8.3 kJ/mole; free energy varies between 45.8 and 137.5 kJ/mole; and entropy varies between 110 and 371 J/degree mole

  18. Detection of cyanide anion by zinc porphyrin-spiropyran dyad

    International Nuclear Information System (INIS)

    Kho, Young Min; Hur, Dae Young; Shin, Eun Ju

    2016-01-01

    Versatile methods of the sensitive and selective detection for cyanide anion to monitor toxic cyanide have been developed. These include colorimetric, colorimetric, chromatographic, and electrochemical analyses. Among those methods for cyanide detection, optical methods based on absorption and fluorescence spectroscopy are relatively simple, inexpensive, and sensitive. A number of organic sensors for cyanide anion have been designed and synthesized. Absorption and/or fluorescence spectra of these sensors are changed by forming coordination complex or bonding covalently with cyanide. Compared with other anions, cyanide anion has some characteristic properties, such as its strong nucleophilicity and high binding affinity toward metal ions, and is superior and useful for the development of the sensors. Both covalent bond-based sensors and coordination complex-based sensors have been developed for cyanide detection. The results indicate that ZnP-SP plays a role as a CN"- selective, colorimetric sensor either without or with UV irradiation

  19. Electronic spectra of anions intercalated in layered double hydroxides

    Indian Academy of Sciences (India)

    groups of the layers and interlayer water through the termi- nal atom symmetry ... results in a reaction with the metal hydroxide layers lead- ing to the ..... List of band positions observed for potassium salts of anion and LDH samples. Salts.

  20. Detection of cyanide anion by zinc porphyrin-spiropyran dyad

    Energy Technology Data Exchange (ETDEWEB)

    Kho, Young Min; Hur, Dae Young; Shin, Eun Ju [Dept. of Chemistry, Sunchon National University, Suncheon (Korea, Republic of)

    2016-10-15

    Versatile methods of the sensitive and selective detection for cyanide anion to monitor toxic cyanide have been developed. These include colorimetric, colorimetric, chromatographic, and electrochemical analyses. Among those methods for cyanide detection, optical methods based on absorption and fluorescence spectroscopy are relatively simple, inexpensive, and sensitive. A number of organic sensors for cyanide anion have been designed and synthesized. Absorption and/or fluorescence spectra of these sensors are changed by forming coordination complex or bonding covalently with cyanide. Compared with other anions, cyanide anion has some characteristic properties, such as its strong nucleophilicity and high binding affinity toward metal ions, and is superior and useful for the development of the sensors. Both covalent bond-based sensors and coordination complex-based sensors have been developed for cyanide detection. The results indicate that ZnP-SP plays a role as a CN{sup -} selective, colorimetric sensor either without or with UV irradiation.

  1. Two independent anion transport systems in rabbit mandibular salivary glands

    DEFF Research Database (Denmark)

    Novak, I; Young, J A

    1986-01-01

    Cholinergically stimulated Cl and HCO3 transport in perfused rabbit mandibular glands has been studied with extracellular anion substitution and administration of transport inhibitors. In glands perfused with HCO3-free solutions, replacement of Cl with other anions supported secretion in the foll......Cholinergically stimulated Cl and HCO3 transport in perfused rabbit mandibular glands has been studied with extracellular anion substitution and administration of transport inhibitors. In glands perfused with HCO3-free solutions, replacement of Cl with other anions supported secretion...... stimulated secretion by about 30%, but when infused in addition to furosemide (0.1 mmol/l), it inhibited by about 20%. Amiloride (1.0 mmol/l) caused no inhibition. The results suggest that there are at least three distinct carriers in the rabbit mandibular gland. One is a furosemide-sensitive Na-coupled Cl...

  2. Mechanism of protection of adenosine from sulphate radical anion ...

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Repair by caffeic acid; repair of adenosine radicals; oxidation by sulphate radical anions. ... known that hydroxycinnamic acids are natural anti- oxidants ... acid. 2. Experimental ..... ously and independently under kinetic conditions at.

  3. Intestinal transporters for endogenic and pharmaceutical organic anions

    DEFF Research Database (Denmark)

    Grandvuinet, Anne Sophie; Vestergaard, Henrik Tang; Rapin, Nicolas

    2012-01-01

    This review provides an overview of intestinal human transporters for organic anions and stresses the need for standardization of the various in-vitro methods presently employed in drug-drug interaction (DDI) investigations....

  4. Expanding frontiers in materials chemistry and physics with multiple anions.

    Science.gov (United States)

    Kageyama, Hiroshi; Hayashi, Katsuro; Maeda, Kazuhiko; Attfield, J Paul; Hiroi, Zenji; Rondinelli, James M; Poeppelmeier, Kenneth R

    2018-02-22

    During the last century, inorganic oxide compounds laid foundations for materials synthesis, characterization, and technology translation by adding new functions into devices previously dominated by main-group element semiconductor compounds. Today, compounds with multiple anions beyond the single-oxide ion, such as oxyhalides and oxyhydrides, offer a new materials platform from which superior functionality may arise. Here we review the recent progress, status, and future prospects and challenges facing the development and deployment of mixed-anion compounds, focusing mainly on oxide-derived materials. We devote attention to the crucial roles that multiple anions play during synthesis, characterization, and in the physical properties of these materials. We discuss the opportunities enabled by recent advances in synthetic approaches for design of both local and overall structure, state-of-the-art characterization techniques to distinguish unique structural and chemical states, and chemical/physical properties emerging from the synergy of multiple anions for catalysis, energy conversion, and electronic materials.

  5. Synthesis and anion binding properties of porphyrins and related compounds

    KAUST Repository

    Figueira, Flá vio; Rodrigues, Joã o M M; Farinha, Andreia; Cavaleiro, José A S; Tomé , Joã o P C

    2016-01-01

    promising. In this review, we summarize the most recent developments in anion binding studies while outlining the strategies that may be used to synthesize and functionalize these type of macrocycles. © 2016 World Scientific Publishing Company.

  6. Changing certain dietary cationic and anionic minerals: Impact on ...

    African Journals Online (AJOL)

    Changing certain dietary cationic and anionic minerals: Impact on blood chemistry, milk ... Increased blood pH and serum HCO3 were noticed in buffaloes fed with LC ... Serum calcium and chloride increased with decreased DCAD level while ...

  7. Ion-exchange concentration of inorganic anions from aqueous solution

    Directory of Open Access Journals (Sweden)

    L. P. Bondareva

    2016-01-01

    Full Text Available Monitoring of natural waters in the present time - consuming process, the accuracy of which is influenced by many factors: the composition of water, the presence of impurities and "interfering" components. The water sample preparation process includes the step of concentration and separation of ions determined. The most versatile, efficient, and frequently used method is the concentration of inorganic anions from aqueous solutions by ion exchanger, which can optimize the composition of water to the optimal for identification and quantitative determination of anions. The characteristics of sorption chloride, nitrate and sulfate ions of basic anion exchange resin AВ-17 and Purolite A430 were compared in the article. The constants of protolysis of ion exchangers both AB 17 and Purolite A430 are the same and equal 0.037 ± 0,002. The value of total capacity (POE Purolite A430 was 4.3 mmol/g, AB 17 – 3.4 mmol/g. The studied ion exchangers have the same type of ionic groups – quaternary ammonium, but their number and denotes differ. The number of quaternary ammonium groups is higher in Purolite A430, respectively the number of absorbed anions of these ion exchanger is higher. The values of dynamic exchange capacity (DOE of ion exchanger Purolite A430 is higher than these values of AB-17 and equal to 1.48 ± 0.03 mmol / dm3 for chloride ion, 1.50 ± 0.03 mmol / dm3 for nitrate ion, 1.62 ± 0.03 mmol / dm3 for sulfate ion. The values of the POE and DOE of anion-exchange resins Purolite A430 and AV-17 and the characteristics of the individual sorption of chloride, nitrate, sulfate ions showed an advantage of the Purolite for the concentrationing of anions. It is found that times of anions sorption from triple-anion solutions by Purolite A430 are significantly different for different anions, and these times are close for anion-exchanger AV-17. It proves the possibility of quantitative separation and concentration by anion-exchanger Purolite A430.

  8. The Global Value Chain

    DEFF Research Database (Denmark)

    Sørensen, Olav Jull

    The conference paper aims to develop the global value chain concept by including corporate internal value adding activities and competition to the basic framework in order to turn the global value chain into a strategic management tool......The conference paper aims to develop the global value chain concept by including corporate internal value adding activities and competition to the basic framework in order to turn the global value chain into a strategic management tool...

  9. (100) faceted anion voids in electron irradiated fluorite

    International Nuclear Information System (INIS)

    Johnson, E.

    1979-01-01

    High fluence electron irradiation of fluorite crystals in the temperature range 150 to 320 K results in formation of a simple cubic anion void superlattice. Above 320 K the damage structure changes to a random distribution of large [001] faceted anion voids. This voidage behaviour, similar to that observed in a range of irradiated metals, is discussed in terms points defect rather than conventional colour centre terminology. (Auth.)

  10. Determination of nitrate by anion exchange with ultraviolet detection

    Energy Technology Data Exchange (ETDEWEB)

    McComas, J.G.

    1976-01-01

    A weak base anion exchange resin is synthesized by surface bonding 3-aminopropyltriethoxysilane to silica gel. This silylated silica gel is used to separate nitrate from interferences. The nitrate is then determined by measuring its absorbance at 220 nm. An interference study was performed and no anions commonly found in potable water interferes. A comparison of this method was made with the brucine method on real samples and satisfactory agreement was obtained between the two methods.

  11. Fluid circulation and diagenesis of carbonated and sandstone reservoirs in the fronts and fore-lands of folded chains: the Salt Range case - Poswar (Pakistan); Circulation des fluides et diagenese des reservoirs carbonates et greseux dans les fronts de chaines plissees et leur avant pays: le cas du Salt Range - Poswar (Pakistan)

    Energy Technology Data Exchange (ETDEWEB)

    Benchilla, L.

    2003-05-01

    The Salt Range-Poswar Province is located in the western foothills of the Himalayas, in northern Pakistan. It extends over 170 km from the Main Boundary Thrust (MBT) in the north to the Salt Range in the south. The Salt Range itself is dominantly an ENE-trending structure, but it comprises also a NNW-trending lateral ramp which connects to the west with the Surghar Range. The Salt Range constitutes the frontal part of a detached allochthonous thrust sheet. The sedimentary cover is indeed entirely detached from its substratum along Infracambrian salt horizons. Palaeozoic to Eocene platform series are well exposed in the hanging wall, whereas Neogene molasse has been extensively under-thrust in the footwall of this large over-thrust. The North Potwar Basin is bordered by the Khari-Murat Ridge and coeval back-thrusts in the south, by the northern flank of the Soan syncline in the southeast, and by the MBT in the north. In addition to Neogene outcrops, it also comprises a number of surface anticlines and thrust fronts along which the Eocene platform carbonates are exposed. The Datta Formation is the main Jurassic oil reservoir in the Potwar Basin. It is a fluvio-deltaic deposit which comprises large porous and permeable channels associated to many-calcareous interbeds. The formations crop out well in both the Nammal and Chichali Gorges. The oil field of Toot, located in the western part of the basin, is producing from this reservoir. The petrographic observations show that diagenesis occurred mainly early and was controlled by the fluvio-deltaic environment. (author)

  12. The gecko visual pigment: the anion hypsochromic effect.

    Science.gov (United States)

    Crescitelli, F; Karvaly, B

    1991-01-01

    The 521-pigment in the retina of the Tokay gecko (Gekko gekko) readily responds to particular physical and chemical changes in its environment. When solubilized in chloride deficient state the addition of Class I anions (Cl-, Br-) induces a bathochromic shift of the absorption spectrum. Class II anions (NO3-, IO3-, N3-, OCN-, SCN-, SeCN-, N(CN)2-), which exhibit ambidental properties, cause an hypsochromic shift. Class III anions (F-, I-, NO2-, CN-, AsO3-, SO2(4-), S2O2(3-) have no spectral effect on the 521-pigment. Cations appear to have no influence on the pigment absorption and Class I anions prevent or reverse the hypsochromic shift caused by Class II anions. It is suggested that the spectral displacements reflect specific changes in the opsin conformation, which alter the immediate (dipolar) environment of the retinal chromophore. The protein conformation seems to promote excited-state processes most in the native 521-pigment state and least in the presence of Class II anions. This in turn suggests that the photosensitivity of the 521-pigment is controlled by the excited rather than by the ground-state properties of the pigment.

  13. Electrochemical corrosion of grinding media and effect of anions present in industrial waters; Corrosion electroquimica de medios de molienda y efecto de aniones presentes en aguas industriales

    Energy Technology Data Exchange (ETDEWEB)

    Magne, L.; Navarro, P.; Vargas, C.; Carrasco, S.

    2001-07-01

    The steel used in the minerals processing as grinding media (balls or bars), is an important input in terms of cost of the process. Considering the importance of the steel consumption in these processes, this work is guided to evaluate to laboratory scale the effect of the anions present in the industrial waters on the electrochemical corrosion of grinding media. Tests in electrochemical cell, were accomplished measuring potential and corrosion current to four electrodes that were manufactured using sufficiently pure sample of chalcopyrite, bornite, enargite and steel ball. The ions used in the tests were chlorides, sulfates, nitrates and carbonates in concentrations from 1 to 180 ppm in individual form or in mixtures, according to the levels measurement of these in industrial waters. (Author) 10 refs.

  14. Selected anionic and cationic surface active agents: case study on the Kłodnica sediments

    Directory of Open Access Journals (Sweden)

    Olkowska Ewa

    2017-03-01

    Full Text Available Surface active agents (surfactants are a group of chemical compounds, which are used as ingredients of detergents, cleaning products, cosmetics and functional products. After use, wastes containing surfactants or their degradation products are discharged to wastewater treatment plants or directly into surface waters. Due to their specific properties of SAAs, compounds are able to migrate between different environmental compartments such as soil, sediment, water or even living organisms and accumulate there. Surfactants can have a harmful effect on living organisms. They can connect with bioactive molecules and modify their function. Additionally, they have the ability to migrate into cells and cause their damage or death. For these reasons investigation of individual surfactants should be conducted. The presented research has been undertaken to obtain information about SAA contamination of sediment from the River Kłodnica catchment caused by selected anionic (linear alkylbenzene sulfonates (LAS C10-C13 and cationic (alkylbenzyldimethylammonium (BDMA-C12-16, alkyl trimethyl ammonium (DTMA, hexadecyl piridinium chloride (HP chlorides surfactants. This river flows through an area of the Upper Silesia Industrial Region where various companies and other institutions (e.g. coal mining, power plants, metallurgy, hospitals are located. To determine their concentration the following analytical tools have been applied: accelerated solvent extraction– solid phase extraction – high performance liquid chromatography – UV-Vis (anionic SAAs and conductivity (cationic SAAs detectors. In all sediments anionic SAAs have been detected. The concentrations of HTMA and BDMA-C16 in tested samples were higher than other cationic analytes. Generally, levels of surfactants with longer alkyl chains were higher and this observation can confirm their higher susceptibility to sorption on solid surfaces.

  15. A proposal for a green supply chain strategy

    Directory of Open Access Journals (Sweden)

    Carola Pinto Taborga

    2018-05-01

    Findings: The paper identifies some specific steps for developing a Green Supply Chain Strategy. The case study developed, demonstrates the importance of following a proper methodology based on a set of steps, it also demonstrates that some alternatives focus on improving the supply chain, such as the facilities location, can also improve the key performance indicator related with carbon emission.  Originality/value: The study provides guidance for manufacturing companies in implementing their Green Supply Chain Strategy.

  16. Chain transitivity in hyperspaces

    International Nuclear Information System (INIS)

    Fernández, Leobardo; Good, Chris; Puljiz, Mate; Ramírez, Ártico

    2015-01-01

    Given a non-empty compact metric space X and a continuous function f: X → X, we study the dynamics of the induced maps on the hyperspace of non-empty compact subsets of X and on various other invariant subspaces thereof, in particular symmetric products. We show how some important dynamical properties transfer across induced systems. These amongst others include, chain transitivity, chain (weakly) mixing, chain recurrence, exactness by chains. From our main theorem we derive an ε-chain version of Furstenberg’s celebrated 2 implies n Theorem. We also show the implications our results have for dynamics on continua.

  17. Decisive Markov Chains

    OpenAIRE

    Abdulla, Parosh Aziz; Henda, Noomene Ben; Mayr, Richard

    2007-01-01

    We consider qualitative and quantitative verification problems for infinite-state Markov chains. We call a Markov chain decisive w.r.t. a given set of target states F if it almost certainly eventually reaches either F or a state from which F can no longer be reached. While all finite Markov chains are trivially decisive (for every set F), this also holds for many classes of infinite Markov chains. Infinite Markov chains which contain a finite attractor are decisive w.r.t. every set F. In part...

  18. Gushing metal chain

    Science.gov (United States)

    Belyaev, Alexander; Sukhanov, Alexander; Tsvetkov, Alexander

    2016-03-01

    This article addresses the problem in which a chain falls from a glass from some height. This phenomenon demonstrates a paradoxical rise of the chain over the glass. To explain this effect, an initial hypothesis and an appropriate theory are proposed for calculating the steady fall parameters of the chain. For this purpose, the modified Cayley's problem of falling chain given its rise due to the centrifugal force of upward inertia is solved. Results show that the lift caused by an increase in linear density at the part of chain where it is being bent (the upper part) is due to the convergence of the chain balls to one another. The experiments confirm the obtained estimates of the lifting chain.

  19. Vibrational Spectroscopy of Cation and Anion Channelrhodopsins

    Science.gov (United States)

    Yi, Adrian S.

    Optogenetics is a technique to control and monitor cell activity with light by expression of specific microbial rhodopsins. Cation channelrhodopsins (CCRs) and anion channelrhodopsins (ACRs) have been demonstrated to activate and silence cell activity, respectively. In this dissertation, the molecular mechanisms of two channelrhodopsins are studied: a CCR from Chlamydomonas augustae (CaChR1) and an ACR from Guillardia theta (GtACR1). The recently discovered GtACR1is especially interesting, as it achieves neural silencing with 1/1000th of the light intensity compared to previous microbial rhodopsin silencing ion pumps. Static and time-resolved resonance Raman, FTIR difference, and UV-visible spectroscopies were utilized in addition to various biochemical and genetic techniques to explore the molecular mechanisms of these channelrhodopsins. In CaChR1, Glu169 and Asp299 residues are located nearby the Schiff base (SB) similar to the homologous residues Asp85 and Asp212, which exist in an ionized state in unphotolyzed bacteriorhodopsin (BR) and play a key role in proton pumping. We observe significant changes in the protonation states of the SB, Glu169, and Asp299 of CaChR1 leading up to the open-channel P2 state, where all three groups exist in a charge neutral state. This unusual charge neutrality along with the position of these groups in the CaChR1 ion channel suggests that charge neutrality plays an important role in cation gating and selectivity in these low efficiency CCRs. Significant differences exist in the photocycle and protonation/hydrogen bonding states of key residues inGtACR1compared to BR and CaChR1. Resonance Raman studies reveal that in the unphotolyzed state of GtACR1, residues Glu68, Ser97 (BR Asp85 homolog), and Asp234 (BR Asp212 homolog) located near the SB exist in charge neutral states. Furthermore, upon K formation, these residues do not change their protonation states. At room temperature, a slow decay of the red-shifted K intermediate is

  20. Data on heavy metals and selected anions in the Persian popular herbal distillates.

    Science.gov (United States)

    Keshtkar, Mozhgan; Dobaradaran, Sina; Soleimani, Farshid; Karbasdehi, Vahid Noroozi; Mohammadi, Mohammad Javad; Mirahmadi, Roghayeh; Ghasemi, Fatemeh Faraji

    2016-09-01

    In this data article, we determined the concentration levels of heavy metals including Pb, Co, Cd, Mn, Mg, Fe and Cu as well as selected anions including [Formula: see text] , [Formula: see text], [Formula: see text] and [Formula: see text] in the most used and popular herbal distillates in Iran. It is well known that heavy metals may pose a serious health hazard due to their bioaccumulation throughout the trophic chain ("Heavy metals (Cd, Cu, Ni and Pb) content in two fish species of Persian Gulf in Bushehr Port, Iran" (Dobaradaran et al., 2013) [1]; "Comparative investigation of heavy metal, trace, and macro element contents in commercially valuable fish species harvested off from the Persian Gulf" (Abadi et al., 2015) [2]) as well as some other environmental pollutions, "Assessment of sediment quality based on acid-volatile sulfide and simultaneously extracted metals in heavily industrialized area of Asaluyeh, Persian Gulf: concentrations, spatial distributions, and sediment bioavailability/toxicity" (Arfaeinia et al., 2016) [3]. The concentration levels of heavy metals and anions in herbal distillates samples were determined using flame atomic absorption spectrometry (FAAS, Varian AA240, Australia) and a spectrophotometer (M501 Single Beam Scanning UV/VIS, UK) respectively.

  1. Temperature and anion responsive self-assembly of ionic liquid block copolymers coating gold nanoparticles

    Science.gov (United States)

    Li, Junbo; Zhao, Jianlong; Wu, Wenlan; Liang, Ju; Guo, Jinwu; Zhou, Huiyun; Liang, Lijuan

    2016-06-01

    In this paper, double hydrophilic ionic liquid block copolymers (ILBCs), poly poly[1-methyl-3-(2-methacryloyloxy propylimidazolium bromine)]- block-(N-isopropylacrylamide) (PMMPImB- b-PNIPAAm) was first synthesized by reversible additionfragmentation chain transfer (RAFT) and then attached on the surface of gold nanoparticles (Au NPs) via a strong gold-sulfur bonding for preparing hybrid nanoparticles (PMMPImB- b-PNIPAAm-@-Au NPs). The hybrid NPs had a three layers micelle-like structure, including a gold core, thermo-responsive inner shell and anion responsive outer corona. The self-assembling behavior of thermal- and anion-response from shell and corona were respectively investigated by change of temperature and addition of (CF3SO2)2N-. The results showed the hybrid NPs retained a stable dispersion beyond the lower critical solution temperature (LCST) because of the space or electrostatic protecting by outer PMMPImB. However, with increasing concentration of (CF3SO2)2N-, the micellization of self-assembling PMMPImB- b-PNIPAAm-@-Au NPs was induced to form micellar structure containing the core with hydrophobic PMMPImB-(CF3SO2)2N- surrounded by composite shell of Au NPs-PNIPAAm via the anionresponsive properties of ILBCs. These results indicated that the block copolymers protected plasmonic nanoparticles remain self-assembling properties of block copolymers when phase transition from outer corona polymer.

  2. Ab initio theoretical study of dipole-bound anions of molecular complexes: (HF)3- and (HF)4- anions

    Science.gov (United States)

    Ramaekers, Riet; Smith, Dayle M. A.; Smets, Johan; Adamowicz, Ludwik

    1997-12-01

    Ab initio calculations have been performed to determine structures and vertical electron detachment energy (VDE) of the hydrogen fluoride trimer and tetramer anions, (HF)3- and (HF)4-. In these systems the excess electron is bound by the dipole field of the complex. It was determined that, unlike the neutral complexes which prefer the cyclic structures, the equilibrium geometries of the anions have "zig-zag" shapes. For both complexes the predicted VDEs are positive [210 meV and 363 meV for (HF)3- and (HF)4-, respectively], indicating that the anions are stable systems with respect to the vertical electron detachment. These results were obtained at the coupled-cluster level of theory with single, double and triple excitations [CCSD(T) method; the triple-excitation contribution in this method is calculated approximately using the perturbation approach] with the anion geometries obtained using the second-order Møller-Plesset perturbation theory (MP2) method. The same approach was also used to determine the adiabatic electron affinities (AEA) of (HF)3 and (HF)4. In addition to the electronic contribution, we also calculated the contributions (using the harmonic approximation) resulting from different zero-point vibration energies of the neutral and anionic clusters. The calculations predicted that while the AEA of (HF)3 is positive (44 meV), the AEA for (HF)4 is marginally negative (-16 meV). This suggests that the (HF)3- anion should be a stable system, while the (HF)4- is probably metastable.

  3. Chemistry of the oxophosphinidene ligand. 2. Reactivity of the anionic complexes [MCp{P(O)R*}(CO)(2)](-) (M = Mo, W; R* = 2,4,6-C(6)H(2)(t)Bu(3)) toward electrophiles based on elements different from carbon.

    Science.gov (United States)

    Alonso, María; Alvarez, M Angeles; García, M Esther; Ruiz, Miguel A; Hamidov, Hayrullo; Jeffery, John C

    2010-12-20

    The anionic oxophosphinidene complexes (H-DBU)[MCp{P(O)R*}(CO)(2)] (M = Mo, W; R* = 2,4,6-C(6)H(2)(t)Bu(3); Cp = η(5)-C(5)H(5), DBU = 1,8-diazabicyclo [5.4.0] undec-7-ene) displayed multisite reactivity when faced with different electrophilic reagents. The reactions with the group 14 organochloride compounds ER(4-x)Cl(x) (E = Si, Ge, Sn, Pb) led to either phosphide-like, oxophosphinidene-bridged derivatives [MCp{P(OE')R*}(CO)(2)] (E' = SiMe(3), SiPh(3), GePh(3), GeMe(2)Cl) or to terminal oxophosphinidene complexes [MCp{P(O)R*}(CO)(2)(E')] (E' = SnPh(3), SnPh(2)Cl, PbPh(3); Mo-Pb = 2.8845(4) Å for the MoPb compound). A particular situation was found in the reaction with SnMe(3)Cl, this giving a product existing in both tautomeric forms, with the phosphide-like complex [MCp{P(OSnMe(3))R*}(CO)(2)] prevailing at room temperature and the tautomer [MCp{P(O)R*}(CO)(2)(SnMe(3))] being the unique species present below 203 K in dichloromethane solution. The title anions also showed a multisite behavior when reacting with transition-metal based electrophiles. Thus, the reactions with the complexes [M'Cp(2)Cl(2)] (M' = Ti, Zr) gave phosphide-like derivatives [MCp{P(OM')R*}(CO)(2)] (M = Mo, M' = TiCp(2)Cl, ZrCp(2)Cl; M = W, M' = ZrCp(2)Cl), displaying a bridging κ(1),κ(1)-P,O- oxophosphinidene ligand connecting MCp(CO)(2) and M'Cp(2)Cl metal fragments (W-P = 2.233(1) Å, O-Zr = 2.016(4) Å for the WZr compound]. In contrast, the reactions with the complex [AuCl{P(p-tol)(3)}] gave the metal-metal bonded derivatives trans-[MCp{P(O)R*}(CO)(2){AuP(p-tol)(3)}] (M = Mo, W; Mo-Au = 2.7071(7) Å). From all the above results it was concluded that the terminal oxophosphinidene complexes are preferentially formed under conditions of orbital control, while charge-controlled reactions tend to give derivatives with the electrophilic fragment bound to the oxygen atom of the oxophosphinidene ligand (phosphide-like, oxophosphinidene-bridged derivatives).

  4. Sustainable and Resilient Supply Chain Network Design under Disruption Risks

    Directory of Open Access Journals (Sweden)

    Sonia Irshad Mari

    2014-09-01

    Full Text Available Sustainable supply chain network design is a rich area for academic research that is still in its infancy and has potential to affect supply chain performance. Increasing regulations for carbon and waste management are forcing firms to consider their supply chains from ecological and social objectives, but in reality, however, facilities and the links connecting them are disrupted from time to time, due to poor weather, natural or manmade disasters or a combination of any other factors. Supply chain systems drop their sustainability objectives while coping with these unexpected disruptions. Hence, the new challenges for supply chain managers are to design an efficient and effective supply chain network that will be resilient enough to bounce back from any disruption and that also should have sufficient vigilance to offer same sustainability under a disruption state. This paper focuses on ecological sustainability, because an environmental focus in a supply chain system is more important and also links with other pillars of sustainability, as the products need to be produced, packed and transported in an ethical way, which should not harm social balance and the environment. Owing to importance of the considered issue, this paper attempts to introduce a network optimization model for a sustainable and resilient supply chain network by incorporating (1 sustainability via carbon emissions and embodied carbon footprints and (2 resilience by incorporating location-specific risks. The proposed goal programming (GP model optimizes the total cost, while considering the resilience and sustainability of the supply chain network.

  5. Radiolytic preparation of ETFE and PFA based anion exchange membranes for alkaline fuel cell

    International Nuclear Information System (INIS)

    Ko, Beom-Seok; Sohn, Joon-Yong; Nho, Young-Chang; Shin, Junhwa

    2011-01-01

    In this study, a versatile monomer, vinylbenzyl chloride (VBC) was radiolytically grafted onto a partially fluorinated ETFE and perfluorinated polymer PFA films. The VBC grafted films were treated with trimethylamine to prepare the alkaline anion exchange membranes (AAEMs). No significant differences in the ion exchange capacities and water uptakes were observed between the ETFE and PFA based AAEMs with similar degree of grafting (DOG). However, the distribution patterns of the graft chains over the cross-section of the ETFE and PFA based AAEMs were found to be quite different; the even distribution was observed from the ETFE based AAEMs while the uneven distribution was observed from the PFA based AAEMs. It was also found that the PFA based AAEMs have the higher ionic conductivity and chemical stability, compared to the ETFE based AAEMs.

  6. Synthesis and characterization of new class of ionic liquids containing phenolate anion

    International Nuclear Information System (INIS)

    Lethesh, Kallidanthiyil Chellappan; Wilfred, Cecilia Devi; Taha, M. F.; Thanabalan, M.

    2014-01-01

    In these manuscript novel ionic liquids containing a new class of 'phenolate' anions was synthesized and characterized. 1-methylmidazole with different alkyl chains such as butyl, hexyl and octyl groups was used as the cationic part. All the ionic liquids were obtained as liquids at room temperature. The synthesized ionic liquids were characterized using 1 H NMR and 13 C NMR spectroscopy. The thermal stability of the ionic liquids was studied using thermo gravimetric analysis (TGA). The effect of temperature on the density and viscosity of the ionic liquids were studied over a temperature range from 293.15 K to 373.15K at atmospheric pressure. From the experimental values of density, the molecular volume, standard molar entropy and the lattice energy of the ionic liquids were calculated

  7. Synthesis and characterization of new class of ionic liquids containing phenolate anion

    Energy Technology Data Exchange (ETDEWEB)

    Lethesh, Kallidanthiyil Chellappan, E-mail: lethesh.chellappan@petronas.com.my [PETRONAS Ionic Liquids Center, Universiti Teknologi PETRONAS (Malaysia); Wilfred, Cecilia Devi; Taha, M. F. [Department of Chemical Engineering, Universiti Teknologi PETRONAS (Malaysia); Thanabalan, M. [Fundamental and Applied Sciences, Universiti Teknologi PETRONAS (Malaysia)

    2014-10-24

    In these manuscript novel ionic liquids containing a new class of 'phenolate' anions was synthesized and characterized. 1-methylmidazole with different alkyl chains such as butyl, hexyl and octyl groups was used as the cationic part. All the ionic liquids were obtained as liquids at room temperature. The synthesized ionic liquids were characterized using {sup 1}H NMR and {sup 13}C NMR spectroscopy. The thermal stability of the ionic liquids was studied using thermo gravimetric analysis (TGA). The effect of temperature on the density and viscosity of the ionic liquids were studied over a temperature range from 293.15 K to 373.15K at atmospheric pressure. From the experimental values of density, the molecular volume, standard molar entropy and the lattice energy of the ionic liquids were calculated.

  8. Lithium-conducting ionic melt electrolytes from polyether-functionalized fluorosulfonimide anions

    International Nuclear Information System (INIS)

    Hallac, B.B.; Geiculescu, O.E.; Rajagopal, R.V.; Creager, S.E.; DesMarteau, D.D.

    2008-01-01

    Solvent-free lithium-conducting ionic melt (IM) electrolytes were synthesized and characterized with respect to chemical structure, purity, and ion transport properties. The melts consist of lithium (perfluorovinylether)sulfonimide salts attached covalently to a lithium-solvating polyether chain. Ionic conductivities are relatively high which is a consequence of the favorable combination of the low lattice energy of the lithium fluorosulfonimide salt (low basicity of the fluorosulfonimide anion), the relatively low viscosity of the polyether matrix, and the relatively high salt content of the melts. Galvanostatic dc polarization experiments, using cells with non-blocking Li electrodes, indicate that salt concentration polarization does not occur in these electrolytes as dc current is passed through them

  9. Anionic sorbents for arsenic and technetium species

    International Nuclear Information System (INIS)

    Lucero, Daniel A.; Moore, Robert Charles; Bontchev, Ranko Panayotov; Hasan, Ahmed Ali Mohamed; Zhao, Hongting; Salas, Fred Manuel; Holt, Kathleen Caroline

    2003-01-01

    Two sorbents, zirconium coated zeolite and magnesium hydroxide, were tested for their effectiveness in removing arsenic from Albuquerque municipal water. Results for the zirconium coated zeolite indicate that phosphate present in the water interfered with the sorption of arsenic. Additionally, there was a large quantity of iron and copper present in the water, corrosion products from the piping system, which may have interfered with the uptake of arsenic by the sorbent. Magnesium hydroxide has also been proven to be a strong sorbent for arsenic as well as other metals. Carbonate, present in water, has been shown to interfere with the sorption of arsenic by reacting with the magnesium hydroxide to form magnesium carbonate. The reaction mechanism was investigated by FT-IR and shows that hydrogen bonding between an oxygen on the arsenic species and a hydrogen on the Mg(OH)2 is most likely the mechanism of sorption. This was also confirmed by RAMAN spectroscopy and XRD. Technetium exists in multiple oxidation states (IV and VII) and is easily oxidized from the relatively insoluble Tc(IV) form to the highly water soluble and mobile Tc(VII) form. The two oxidation states exhibit different sorption characteristics. Tc(VII) does not sorb to most materials whereas Tc(IV) will strongly sorb to many materials. Therefore, it was determined that it is necessary to first reduce the Tc (using SnCl2) before sorption to stabilize Tc in the environment. Additionally, the effect of carbonate and phosphate on the sorption of technetium by hydroxyapatite was studied and indicated that both have a significant effect on reducing Tc sorption

  10. Electronic structure of incident carbon ions on a graphite surface

    International Nuclear Information System (INIS)

    Kiuchi, Masato; Takeuchi, Takae; Yamamoto, Masao.

    1997-01-01

    The electronic structure of an incident carbon ion on a graphite surface is discussed on the basis of ab initio molecular orbital calculations. A carbon cation forms a covalent bond with the graphite, and a carbon nonion is attracted to the graphite surface through van der Waals interaction. A carbon anion has no stable state on a graphite surface. The charge effects of incident ions become clear upon detailed examination of the electronic structure. (author)

  11. Benzonitrile: Electron affinity, excited states, and anion solvation

    Science.gov (United States)

    Dixon, Andrew R.; Khuseynov, Dmitry; Sanov, Andrei

    2015-10-01

    We report a negative-ion photoelectron imaging study of benzonitrile and several of its hydrated, oxygenated, and homo-molecularly solvated cluster anions. The photodetachment from the unsolvated benzonitrile anion to the X ˜ 1 A 1 state of the neutral peaks at 58 ± 5 meV. This value is assigned as the vertical detachment energy (VDE) of the valence anion and the upper bound of adiabatic electron affinity (EA) of benzonitrile. The EA of the lowest excited electronic state of benzonitrile, a ˜ 3 A 1 , is determined as 3.41 ± 0.01 eV, corresponding to a 3.35 eV lower bound for the singlet-triplet splitting. The next excited state, the open-shell singlet A ˜ 1 A 1 , is found about an electron-volt above the triplet, with a VDE of 4.45 ± 0.01 eV. These results are in good agreement with ab initio calculations for neutral benzonitrile and its valence anion but do not preclude the existence of a dipole-bound state of similar energy and geometry. The step-wise and cumulative solvation energies of benzonitrile anions by several types of species were determined, including homo-molecular solvation by benzonitrile, hydration by 1-3 waters, oxygenation by 1-3 oxygen molecules, and mixed solvation by various combinations of O2, H2O, and benzonitrile. The plausible structures of the dimer anion of benzonitrile were examined using density functional theory and compared to the experimental observations. It is predicted that the dimer anion favors a stacked geometry capitalizing on the π-π interactions between the two partially charged benzonitrile moieties.

  12. Isotope effect study of κ-(BEDT-TTF)2Cu(NCS)2: Labeling in the anion

    International Nuclear Information System (INIS)

    Kini, A.M.; Wang, H.H.; Schlueter, J.A.

    1995-01-01

    Since the initial discovery of organic superconductivity in 1979, a large number of organic superconductors have now been synthesized. However, the mechanism of electron-pairing in these novel superconductors has remained largely unresolved. Isotope effect studies constitute an important experimental tool for the investigation of whether or not the electron-pairing mechanism in organic superconductors is phonon-mediated, as in conventional superconductors. Recent isotope effect studies in the authors' laboratory, involving seven different isotopically labeled BEDT-TTF (or ET) derivatives, have demonstrated the following: (1) intramolecular phonon modes involving C double-bond C and Csingle bondS stretching vibrations in the ET donor molecule are not the dominant mediators of electron-pairing, and (2) in κ-(ET) 2 Cu(NCS) 2 , there exist two competing isotope effects--a normal mass effect, i.e., lowering of T c upon isotopic labeling, when the ET molecular mass is increased by concurrent 13 C and 34 S labeling, in addition to an inverse isotope effect upon deuterium labeling in ET. It is of great interest to investigate if there is an isotope effect when the charge-compensating anions, which are also located within the non-conducting layer in the superconducting cation-radical salts, are isotopically labeled. The existence of an isotope effect when the anions are labeled would be indicative of electron-pairing with the mediation of vibrational frequencies associated with the anions. In this paper, the authors present the results of the first isotope effect study in which isotopic labeling in the anion portion of κ-(ET) 2 Cu(NCS) 2 is carried out. The authors find no isotope effect when the carbon and nitrogen atoms of the thiocyanate groups in the anion are replaced with 13 C and 15 N isotopes

  13. Exceptional Structural Compliance of the B12F122- Superweak Anion.

    Science.gov (United States)

    Peryshkov, Dmitry V; Strauss, Steven H

    2017-04-03

    The single-crystal X-ray structures, thermogravimetric analyses, and/or FTIR spectra of a series of salts of the B 12 F 12 2- anion and homoleptic Ag(L) n + cations are reported (L = CH 2 Cl 2 , n = 2; L = PhCH 3 , n = 3; L = CH 3 CN; n = 2-4; L = CO, n = 1, 2). The superweak-anion nature of B 12 F 12 2- (Y 2- ) was demonstrated by the rapid reaction of microcrystalline Ag 2 (Y) with 1 atm of CO to form a nonclassical silver(I) carbonyl compound with an FTIR ν(CO) band at 2198 cm -1 (and with the proposed formula [Ag(CO) n ] 2 [Y]). In contrast, microcrystalline Ag 2 (B 12 Cl 12 ) did not exhibit ν(CO) bands and therefore did not form Ag(CO) + species, even after 32 h under 24 atm of CO. When Ag 2 (Y) was treated with carbon monoxide pressures higher than 1 atm, a new ν(CO) band at 2190 cm -1 appeared, which is characteristic of a Ag(CO) 2 + dicarbonyl cation. Both Ag 2 (CH 3 CN) 8 (Y) and Ag 2 (CH 3 CN) 5 (Y) rapidly lost coordinated CH 3 CN at 25 °C to form Ag 2 (CH 3 CN) 4 (Y), which formed solvent-free Ag 2 (Y) only after heating above 100 °C. Similarly, Ag 2 (PhCH 3 ) 6 (Y) rapidly lost coordinated PhCH 3 at 25 °C to form Ag 2 (PhCH 3 ) 2 (Y), which formed Ag 2 (Y) after heating above 150 °C, and Ag 2 (CH 2 Cl 2 ) 4 (Y) rapidly lost three of the four coordinated CH 2 Cl 2 ligands between 25 and 100 °C and formed Ag 2 (Y) when it was heated above 200 °C. Solvent-free Ag 2 (Y) was stable until it was heated above 380 °C. The rapid evaporative loss of coordinated ligands at 25 °C from nonporous crystalline solids requires equally rapid structural reorganization of the lattice and is one of three manifestations of the structural compliance of the Y 2- anion reported in this work. The second, more quantitative, manifestation is that Ag + bond-valence sums for Ag 2 (CH 3 CN) n (Y) are virtually constant, 1.20 ± 0.03, for n = 8, 5, 4, because the Y 2- anion precisely compensated for the lost CH 3 CN ligands by readily forming the necessary number of weak

  14. Direct evidence for the ring opening of monosaccharide anions in the gas phase: photodissociation of aldohexoses and aldohexoses derived from disaccharides using variable-wavelength infrared irradiation in the carbonyl stretch region

    NARCIS (Netherlands)

    Brown, D. J.; Stefan, S. E.; Berden, G.; Steill, J.D.; Oomens, J.; Eyler, J.R.; Bendiak, B.

    2011-01-01

    All eight d-aldohexoses and aldohexoses derived from the non-reducing end of disaccharides were investigated by variable-wavelength infrared multiple-photon dissociation (IRMPD) as anions in the negative-ion mode. Spectroscopic evidence supports the existence of a relatively abundant open-chain

  15. Direct evidence for the ring opening of monosaccharide anions in the gas phase: photodissociation of aldohexoses and aldohexoses derived from disaccharides using variable-wavelength infrared irradiation in the carbonyl stretch region

    NARCIS (Netherlands)

    Brown, D. J.; Stefan, S. E.; G. Berden,; Steill, J. D.; Oomens, J.; Eyler, J. R.; Bendiak, B.

    2011-01-01

    All eight D-aldohexoses and aldohexoses derived from the non-reducing end of disaccharides were investigated by variable-wavelength infrared multiple-photon dissociation (IRMPD) as anions in the negative-ion mode. Spectroscopic evidence supports the existence of a relatively abundant open-chain

  16. Dependence of the product chain-length on detergents for long-chain E-polyprenyl diphosphate synthases

    Science.gov (United States)

    Pan, Jian-Jung; Ramamoorthy, Gurusankar; Poulter, C. Dale

    2013-01-01

    Long-chain E-polyprenyl diphosphate synthases (E-PDS) catalyze repetitive addition of isopentenyl diphosphate (IPP) to the growing prenyl chain of an allylic diphosphate. The polyprenyl diphosphate products are required for the biosynthesis of ubiquinones and menaquinones required for electron transport during oxidative phosphorylation to generate ATP. In vitro, the long-chain PDSs require addition of phospholipids or detergents to the assay buffer to enhance product release and maintain efficient turnover. During preliminary assays of product chain-length with anionic, zwitterionic, and non-ionic detergents, we discovered considerable variability. Examination of a series of non-ionic PEG detergents with several long-chain E-PDSs from different organisms revealed that in vitro incubations with nonaethylene glycol monododecyl ether or Triton X-100 typically gave chain lengths that corresponded to those of the isoprenoid moieties in respiratory quinones synthesized in vivo. In contrast incubations in buffer with n-butanol, CHAPS, DMSO, n-octyl-β-glucopyranoside, or β-cyclodextrin or in buffer without detergent typically proceeded more slowly and gave a broad range of chain lengths. PMID:23802587

  17. Metal-Oxide Film Conversions Involving Large Anions

    International Nuclear Information System (INIS)

    Pretty, S.; Zhang, X.; Shoesmith, D.W.; Wren, J.C.

    2008-01-01

    The main objective of my research is to establish the mechanism and kinetics of metal-oxide film conversions involving large anions (I - , Br - , S 2- ). Within a given group, the anions will provide insight on the effect of anion size on the film conversion, while comparison of Group 6 and Group 7 anions will provide insight on the effect of anion charge. This research has a range of industrial applications, for example, hazardous radioiodine can be immobilized by reaction with Ag to yield AgI. From the perspective of public safety, radioiodine is one of the most important fission products from the uranium fuel because of its large fuel inventory, high volatility, and radiological hazard. Additionally, because of its mobility, the gaseous iodine concentration is a critical parameter for safety assessment and post-accident management. A full kinetic analysis using electrochemical techniques has been performed on the conversion of Ag 2 O to (1) AgI and (2) AgBr. (authors)

  18. Metal-Oxide Film Conversions Involving Large Anions

    Energy Technology Data Exchange (ETDEWEB)

    Pretty, S.; Zhang, X.; Shoesmith, D.W.; Wren, J.C. [The University of Western Ontario, Chemistry Department, 1151 Richmond St., N6A 5B7, London, Ontario (Canada)

    2008-07-01

    The main objective of my research is to establish the mechanism and kinetics of metal-oxide film conversions involving large anions (I{sup -}, Br{sup -}, S{sup 2-}). Within a given group, the anions will provide insight on the effect of anion size on the film conversion, while comparison of Group 6 and Group 7 anions will provide insight on the effect of anion charge. This research has a range of industrial applications, for example, hazardous radioiodine can be immobilized by reaction with Ag to yield AgI. From the perspective of public safety, radioiodine is one of the most important fission products from the uranium fuel because of its large fuel inventory, high volatility, and radiological hazard. Additionally, because of its mobility, the gaseous iodine concentration is a critical parameter for safety assessment and post-accident management. A full kinetic analysis using electrochemical techniques has been performed on the conversion of Ag{sub 2}O to (1) AgI and (2) AgBr. (authors)

  19. Anion analysis in uranium more concentrates by ion chromatography

    International Nuclear Information System (INIS)

    Badaut, V.

    2009-01-01

    In the present exploratory study, the applicability of anionic impurities or attributing nuclear material to a certain chemical process or origin has been investigated. Anions (e.g., nitrate, sulphate, fluoride, chloride) originate from acids or salt solutions that are used for processing of solutions containing uranium or plutonium. The study focuses on uranium ore concentrates ('yellow cakes') originating from different mines. Uranium is mined from different types of ore body and depending on the type of rock, different chemical processes for leaching, dissolving and precipitating the uranium need to be applied. Consequently, the anionic patterns observed in he products of these processes (the 'ore concentrates') are different. The concentrations of different anionic species were measured by ion chromatography using conductivity detection. The results show clear differences of anion concentrations and patterns between samples from different uranium mines. Besides this, differences between sampling campaigns n a same mine were also observed indicating that the uranium ore is not homogeneous in a mine. These within-mine variations, however, were smaller than the between-mine variations. (author)

  20. Vertical detachment energies of anionic thymidine: Microhydration effects.

    Science.gov (United States)

    Kim, Sunghwan; Schaefer, Henry F

    2010-10-14

    Density functional theory has been employed to investigate microhydration effects on the vertical detachment energy (VDE) of the thymidine anion by considering the various structures of its monohydrates. Structures were located using a random searching procedure. Among 14 distinct structures of the anionic thymidine monohydrate, the low-energy structures, in general, have the water molecule bound to the thymine base unit. The negative charge developed on the thymine moiety increases the strength of the intermolecular hydrogen bonding between the water and base units. The computed VDE values of the thymidine monohydrate anions are predicted to range from 0.67 to 1.60 eV and the lowest-energy structure has a VDE of 1.32 eV. The VDEs of the monohydrates of the thymidine anion, where the N(1)[Single Bond]H hydrogen of thymine has been replaced by a 2(')-deoxyribose ring, are greater by ∼0.30 eV, compared to those of the monohydrates of the thymine anion. The results of the present study are in excellent agreement with the accompanying experimental results of Bowen and co-workers [J. Chem. Phys. 133, 144304 (2010)].

  1. Identification of inorganic anions by gas chromatography/mass spectrometry.

    Science.gov (United States)

    Sakayanagi, Masataka; Yamada, Yaeko; Sakabe, Chikako; Watanabe, Kunio; Harigaya, Yoshihiro

    2006-03-10

    Inorganic anions were identified by using gas chromatography/mass spectrometry (GC/MS). Derivatization of the anions was achieved with pentafluorobenzyl p-toluenesulphonate (PFB-Tos) as the reaction reagent and a crown ether as a phase transfer catalyst. When PFB-Br was used as the reaction reagent, the retention time of it was close to those of the derivatized inorganic anions and interfered with the analysis. In contrast, the retention time of PFB-Tos differed greatly from the PFB derivatives of the inorganic anions and the compounds of interest could be detected without interference. Although the PFB derivatives of SO4, S2O3, CO3, ClO4, and ClO3 could not be detected, the derivatives of F, Cl, Br, I, CN, OCN, SCN, N3, NO3, and NO2 were detected using PFB-Tos as the derivatizing reagent. The inorganic anions were detectable within 30 ng approximately, which is of sufficient sensitivity for use in forensic chemistry. Accurate mass number was measured for each PFB derivative by high-resolution mass spectrometry (HRMS) within a measurement error of 2 millimass units (mmu), which allowed determination of the compositional formula from the mass number. In addition, actual analysis was performed successively by our method using trial samples of matrix.

  2. Separation of transfer ribonucleic acids on polystyrene anion exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Singhal, R.P.; Griffin, G.D.; Novelli, G.D.

    1976-11-16

    The transfer RNA separation by chromatography on strong-base-polystyrene exchange materials is examined and compared with the widely used reversed-phase chromatography. Results indicate important differences in some transfer RNA (tRNA) elution patterns by the anion-exchange chromatography, as compared with the reversed-phase chromatography. Transfer RNAs containing hydrophobic groups are adsorbed more strongly. The anion exchanger has twice the number of theoretical plates. Single peaks of tRNA/sub 2//sup Glu/ and tRNA/sub 1//sup Phe/ obtained from the reversed-phase column give multiple peaks on polystyrene anion-exchange chromatography. All six leucine tRNAs (Escherichia coli) and differences in tRNA populations synthesized during early and late stages of the dividing lymphocytes from normal human blood can be characterized by the anion-exchange chromatography. Different separation profiles are obtained by two separation systems for tyrosine tRNAs from mouse liver and mouse-plasma-cell tumor. The results indicate that, in contrast to the reversed-phase chromatography, strong-base-polystyrene anion-exchange chromatography is capable of separating tRNAs with minor structural differences.

  3. Editorial: Supply Chain Management

    Directory of Open Access Journals (Sweden)

    Dimitrios Aidonis

    2017-05-01

    Full Text Available This special issue has followed up the 3rd Olympus International Conference on Supply Chains held on Athens Metropolitan Expo, November 7 & 8 2015, Greece. The Conference was organized by the Department of Logistics Technological Educational Institute of Central Macedonia, in collaboration with the: a Laboratory of Quantitative Analysis, Logistics and Supply Chain Management of the Department of Mechanical Engineering, Aristotle University of Thessaloniki (AUTH, b Greek Association of Supply Chain Management (EEL of Northern Greece and the c Supply Chain & Logistics Journal. During the 2-Days Conference more than 60 research papers were presented covering the following thematic areas: (i Transportation, (ii Best Practices in Logistics, (iii Information and Communication Technologies in Supply Chain Management, (iv Food Logistics, (v New Trends in Business Logistics, and (vi Green Supply Chain Management. Three keynote invited speakers addressed interesting issues for the Operational Research, the Opportunities and Prospects of Greek Ports chaired Round Tables with other Greek and Foreign Scientists and Specialists.

  4. Supply Chain Management og Supply Chain costing

    DEFF Research Database (Denmark)

    Nielsen, Steen; Mortensen, Ole

    2002-01-01

    Formålet med denne artikel er at belyse de muligheder som ligger i at integrere virksomhedens økonomiske styring med begrebet Supply Chain Management (SCM). Dette søges belyst ved først at beskrive den teoretiske ramme, hvori SCM indgår. Herefter analyseres begrebet Supply Chain Costing (SCC) som...... Århus. Et resultat er, at via begrebet Supply Chain Costing skabes der mulighed for at måle logistikkædens aktiviteter i kr./øre. Anvendelsen af denne information har også strategisk betydning for at kunne vælge kunde og leverandør. Ved hjælp af integrationen skabes der også helt nye mulighed...

  5. Supply chain components

    OpenAIRE

    Vieraşu, T.; Bălăşescu, M.

    2011-01-01

    In this article I will go through three main logistics components, which are represented by: transportation, inventory and facilities, and the three secondary logistical components: information, production location, price and how they determine performance of any supply chain. I will discuss then how these components are used in the design, planning and operation of a supply chain. I will also talk about some obstacles a supply chain manager may encounter.

  6. Supply chain components

    Directory of Open Access Journals (Sweden)

    Vieraşu, T.

    2011-01-01

    Full Text Available In this article I will go through three main logistics components, which are represented by: transportation, inventory and facilities, and the three secondary logistical components: information, production location, price and how they determine performance of any supply chain. I will discuss then how these components are used in the design, planning and operation of a supply chain. I will also talk about some obstacles a supply chain manager may encounter.

  7. Markov Tail Chains

    OpenAIRE

    janssen, Anja; Segers, Johan

    2013-01-01

    The extremes of a univariate Markov chain with regularly varying stationary marginal distribution and asymptotically linear behavior are known to exhibit a multiplicative random walk structure called the tail chain. In this paper we extend this fact to Markov chains with multivariate regularly varying marginal distributions in Rd. We analyze both the forward and the backward tail process and show that they mutually determine each other through a kind of adjoint relation. In ...

  8. Economy, market and chain

    OpenAIRE

    Sukkel, W.; Hommes, M.

    2009-01-01

    In their pursuit of growth and professionalisation, the Dutch organic sector focuses primarily on market development. But how do you stimulate the market for organic foods? This is the subject of many research projects concerning market, consumer preferences and the supply chain. These projects focus specifically at consumer purchasing behaviour, product development, supply chain formation and minimising cost price. As a rule, this research takes place in close cooperation with chain actors

  9. Polarity and Nonpolarity of Ionic Liquids Viewed from the Rotational Dynamics of Carbon Monoxide.

    Science.gov (United States)

    Yasaka, Y; Kimura, Y

    2015-12-17

    The rotational dynamics of carbon monoxide (CO) in a molten salt, ionic liquids (ILs), and alkanes were investigated by (17)O NMR T1 measurements using labeled C(17)O. The molten salt and the studied ILs have the bis(trifluoromethanesulfonyl)imide anion ([NTf2](-)) in common. In hexane near room temperature, the rotational relaxation times are close to the values predicted from the slip boundary condition in the Stokes-Einstein-Debye (SED) theory. However, in contradiction to the theoretical prediction, the rotational relaxation times decrease as the value of η/T increases, where η and T are the viscosity and absolute temperature, respectively. In other alkanes and ILs used in this study, the rotational relaxation times are much faster than those predicted by SED, and show a unique dependence on the number of alkyl carbons. For the same value of η/T, the CO rotational relaxation times in ILs composed of short-alkyl-chain-length imidazolium cations (1-ethyl-3-methylimidazolium and 1-butyl-3-methylimidazolium) are close to those for a molten salt (Cs[NTf2]). On the other hand, the rotational relaxation times in ILs composed of long-chain-length imidazolium (1-methyl-3-octylimidazolium) and phosphonium (tributylmethylphosphonium and tetraoctylphosphonium) cations are much shorter than the SED predictions. This deviation from theory increases as the alkyl chain length increases. We also found that the rotational relaxation times in dodecane and squalane are similar to those in ILs with a similar number of alkyl carbons. These results are discussed in terms of heterogeneous solvation and in comparison with the translational diffusion of CO in ILs.

  10. Supply chain planning classification

    Science.gov (United States)

    Hvolby, Hans-Henrik; Trienekens, Jacques; Bonde, Hans

    2001-10-01

    Industry experience a need to shift in focus from internal production planning towards planning in the supply network. In this respect customer oriented thinking becomes almost a common good amongst companies in the supply network. An increase in the use of information technology is needed to enable companies to better tune their production planning with customers and suppliers. Information technology opportunities and supply chain planning systems facilitate companies to monitor and control their supplier network. In spite if these developments, most links in today's supply chains make individual plans, because the real demand information is not available throughout the chain. The current systems and processes of the supply chains are not designed to meet the requirements now placed upon them. For long term relationships with suppliers and customers, an integrated decision-making process is needed in order to obtain a satisfactory result for all parties. Especially when customized production and short lead-time is in focus. An effective value chain makes inventory available and visible among the value chain members, minimizes response time and optimizes total inventory value held throughout the chain. In this paper a supply chain planning classification grid is presented based current manufacturing classifications and supply chain planning initiatives.

  11. Branched-chain dicationic ionic liquids for fatty acid methyl ester assessment by gas chromatography.

    Science.gov (United States)

    Talebi, Mohsen; Patil, Rahul A; Sidisky, Leonard M; Berthod, Alain; Armstrong, Daniel W

    2017-12-06

    Twelve bis- or dicationic ionic liquids (ILs) including eight based on imidazolium, a single one based on phosphonium, and three based on pyrrolidinium cationic units were prepared with the bis(trifluoromethyl sulfonyl) imide anion. The two identical cationic moieties were attached by different alkyl spacers having three or five carbons and differing alkyl substituents attached to the spacer. The SLB-IL111 column, as the most polar commercial stationary phase known, was included in the study for comparison. Isothermal separations of a rapeseed oil fatty acid methyl ester (FAME) sample were used to study and compare the 12 IL-based column performances and selectivities. The retention times of the most retained methyl esters of lignoceric (C24:0) and erucic (C22:1) acids were used to estimate the IL polarity. The phosphonium dicationic IL column was, by far, the least polar. Imidazolium-based dicationic IL columns were the most polar. Polarity and selectivity for the FAME separation were somewhat related. The separation of a 37-FAME standard mixture allowed the investigation of selectivity variations observed on the 12 IL-based columns under temperature gradients up to 230 °C. The remarkable selectivity of the IL-based columns is demonstrated by the detailed analysis of the cis/trans C18:1 isomers of a partially hydrogenated vegetable oil sample on 30-m columns, separations competing with that done following an "official method" performed on a 100-m column. Graphical abstract Separation of fatty acid methyl esters on a 30-m 3m 2 C 5 (mpy) 2 . 2NTf 2 branched-chain dicationic IL-based column. Branched chain dicationic ILs show great selectivity for separation of cis/trans, ω-3/ω-6, and detailed analysis of cis/trans fats.

  12. On-line determination of anions in pulp mills by capillary electrophoresis (CE); Tehdasoloissa tapahtuva anionien kapillaarielektroforeettinen on-line maeaeritys ja sen hyoedyntaeminen prosessivalvonnassa - MPKY 02

    Energy Technology Data Exchange (ETDEWEB)

    Kokkonen, R; Holmberg, M; Vainikka, V [Finnish Pulp and Paper Research Institute, Espoo (Finland)

    1999-12-31

    The aim of the study was to set-up a process control system for on-line measurement of certain anions. Typical anions which forms precipitates in pulp and paper mills are oxalate, carbonate and sulphate. Thus it is important to develop a continuous process analyzing system to control concentration levels of this anions. For the preliminary tests of continuous determinations of chloride and sulphate anions in tap water a simple on-line system was build in KCL (The Finnish Pulp and Paper Research Institute) and connected to a capillary electroforesis apparatus. In the preliminary tests a chromate buffer (ph = 7.6) was used. Separation of chloride and sulphate was excellent but the stability of buffer was not good enough and it was usable only for few hours. After experimental studies VTT developed a stable capillary electrophoresis method based on mixed amine buffer and this was selected for an on-line method for determination of anions in process waters of the pulp and paper industry. In the preliminary on-line test (r = 20) repeatabilities of migration times of sulphate and chloride with the chromate buffer were < 5 % (RSD) and peak heights < 15 % (RSD). With the mixed amine buffer repeatabilities were better. The preliminary tests showed that it is possible to connect a capillary electrophoresis system to on-line measurements. For the moment no commercial on-line CE apparatus is available. (orig.)

  13. On-line determination of anions in pulp mills by capillary electrophoresis (CE); Tehdasoloissa tapahtuva anionien kapillaarielektroforeettinen on-line maeaeritys ja sen hyoedyntaeminen prosessivalvonnassa - MPKY 02

    Energy Technology Data Exchange (ETDEWEB)

    Kokkonen, R.; Holmberg, M.; Vainikka, V. [Finnish Pulp and Paper Research Institute, Espoo (Finland)

    1998-12-31

    The aim of the study was to set-up a process control system for on-line measurement of certain anions. Typical anions which forms precipitates in pulp and paper mills are oxalate, carbonate and sulphate. Thus it is important to develop a continuous process analyzing system to control concentration levels of this anions. For the preliminary tests of continuous determinations of chloride and sulphate anions in tap water a simple on-line system was build in KCL (The Finnish Pulp and Paper Research Institute) and connected to a capillary electroforesis apparatus. In the preliminary tests a chromate buffer (ph = 7.6) was used. Separation of chloride and sulphate was excellent but the stability of buffer was not good enough and it was usable only for few hours. After experimental studies VTT developed a stable capillary electrophoresis method based on mixed amine buffer and this was selected for an on-line method for determination of anions in process waters of the pulp and paper industry. In the preliminary on-line test (r = 20) repeatabilities of migration times of sulphate and chloride with the chromate buffer were < 5 % (RSD) and peak heights < 15 % (RSD). With the mixed amine buffer repeatabilities were better. The preliminary tests showed that it is possible to connect a capillary electrophoresis system to on-line measurements. For the moment no commercial on-line CE apparatus is available. (orig.)

  14. Theoretical study on effects of curvature of graphene in conjunction with simultaneous anion- and - stacking interactions

    Directory of Open Access Journals (Sweden)

    Pouya Karimi

    2015-12-01

    Full Text Available A graphene sheet (C102H30 has been rolled up by computational quantum chemistry methods to construct single-walled carbon nanotube fragments (SWCNTFs. The anion-π interactions of F- anion together with π-π stacking interactions of benzene on inner face and outer face of the central rings of SWCNTFs have been concurrently investigated. Structural parameters and energy data of the ternary benzene-SWCNTF-F- complexes were considered. Also, effects of charge transfer and aromaticity were estimated to determine how curvature of graphene influences on simultaneous anion-π and π-π stacking interactions.  Results indicate that curvature of graphene leads to structural changes in SWCNTFs which effects on simultaneous interactions of F- anion and benzene with SWCNTFs. Also, results show that although p-p stacking is a weak interaction, but it can impact on order of binding energies in complexes involved both p-p stacking and anion-p interactions. 

  15. Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO 2 signal transduction in guard cell

    KAUST Repository

    Xue, Shaowu; Hu, Honghong; Ries, Amber; Merilo, Ebe; Kollist, Hannes; Schroeder, Julian I

    2011-01-01

    Plants respond to elevated CO(2) via carbonic anhydrases that mediate stomatal closing, but little is known about the early signalling mechanisms following the initial CO(2) response. It remains unclear whether CO(2), HCO(3)(-) or a combination activates downstream signalling. Here, we demonstrate that bicarbonate functions as a small-molecule activator of SLAC1 anion channels in guard cells. Elevated intracellular [HCO(3)(-)](i) with low [CO(2)] and [H(+)] activated S-type anion currents, whereas low [HCO(3)(-)](i) at high [CO(2)] and [H(+)] did not. Bicarbonate enhanced the intracellular Ca(2+) sensitivity of S-type anion channel activation in wild-type and ht1-2 kinase mutant guard cells. ht1-2 mutant guard cells exhibited enhanced bicarbonate sensitivity of S-type anion channel activation. The OST1 protein kinase has been reported not to affect CO(2) signalling. Unexpectedly, OST1 loss-of-function alleles showed strongly impaired CO(2)-induced stomatal closing and HCO(3)(-) activation of anion channels. Moreover, PYR/RCAR abscisic acid (ABA) receptor mutants slowed but did not abolish CO(2)/HCO(3)(-) signalling, redefining the convergence point of CO(2) and ABA signalling. A new working model of the sequence of CO(2) signalling events in gas exchange regulation is presented.

  16. Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO 2 signal transduction in guard cell

    KAUST Repository

    Xue, Shaowu

    2011-03-18

    Plants respond to elevated CO(2) via carbonic anhydrases that mediate stomatal closing, but little is known about the early signalling mechanisms following the initial CO(2) response. It remains unclear whether CO(2), HCO(3)(-) or a combination activates downstream signalling. Here, we demonstrate that bicarbonate functions as a small-molecule activator of SLAC1 anion channels in guard cells. Elevated intracellular [HCO(3)(-)](i) with low [CO(2)] and [H(+)] activated S-type anion currents, whereas low [HCO(3)(-)](i) at high [CO(2)] and [H(+)] did not. Bicarbonate enhanced the intracellular Ca(2+) sensitivity of S-type anion channel activation in wild-type and ht1-2 kinase mutant guard cells. ht1-2 mutant guard cells exhibited enhanced bicarbonate sensitivity of S-type anion channel activation. The OST1 protein kinase has been reported not to affect CO(2) signalling. Unexpectedly, OST1 loss-of-function alleles showed strongly impaired CO(2)-induced stomatal closing and HCO(3)(-) activation of anion channels. Moreover, PYR/RCAR abscisic acid (ABA) receptor mutants slowed but did not abolish CO(2)/HCO(3)(-) signalling, redefining the convergence point of CO(2) and ABA signalling. A new working model of the sequence of CO(2) signalling events in gas exchange regulation is presented.

  17. An Anthracene-Based Tripodal Chemosensor for Anion Sensing

    Directory of Open Access Journals (Sweden)

    Whitney A. Quinn

    2010-05-01

    Full Text Available An anthracene-based tripodal ligand was synthesized from the condensation of tren with 9-anthraldehyde, and the subsequent reduction with sodium borohydride. The neutral ligand was protonated from the reaction with p-toluenesulfonic acid to give a triply charged chemosensor that was examined for its anion binding ability toward fluoride, chloride, bromide, sulfate and nitrate by the fluorescence spectroscopy in DMSO. The addition of an anion to the ligand resulted in an enhancement in fluorescence intensity at the excitation of 310 nm. Analysis of the spectral changes suggested that the ligand formed a 1:1 complex with each of the anions, showing strong affinity for fluoride and sulfate in DMSO. The unsubstituted tren was reacted with sulfuric acid to form a sulfate complex and the structure was determined by the X-ray crystallography. Analysis of the complex revealed that three sulfates are held between two ligands by multiple hydrogen bonding interactions with protonated amines.

  18. Copper(I) coordination compounds with closododecaborate anion

    International Nuclear Information System (INIS)

    Malinina, E.A.; Drozdova, V.V.; Mustyatsa, V.N.; Goeva, L.V.; Polyakova, I.N.; Votinova, N.A.; Zhizhin, K.Yu.; Kuznetsov, N.T.

    2006-01-01

    Cu(I) Complexes with closo-dodecaborate anion Cat[CuB 12 H 12 ], where Cat= Cs + , Ph 4 P + , Ph 4 As + , R x NH 4-x + (R=Me, Et, Pr, Bu, X=3-4) are synthesized. Synthesis of complexes was conducted in the copper(II) salt-salt of dodecaborate anion-sulfur dioxide (sodium sulfite) system. Structure of the complex [Cu 2 (NCCH 3 ) 4 B 12 H 12 ] assigned by X-ray structural analysis discloses that B 12 H 12 2- anion enters into the inner sphere of metal-complexing agent, and connection of closo-borate ligand with the metal is caused by the formation of three-centric metal-hydrogen-boron bonds [ru

  19. Cell wall bound anionic peroxidases from asparagus byproducts.

    Science.gov (United States)

    Jaramillo-Carmona, Sara; López, Sergio; Vazquez-Castilla, Sara; Jimenez-Araujo, Ana; Rodriguez-Arcos, Rocio; Guillen-Bejarano, Rafael

    2014-10-08

    Asparagus byproducts are a good source of cationic soluble peroxidases (CAP) useful for the bioremediation of phenol-contaminated wastewaters. In this study, cell wall bound peroxidases (POD) from the same byproducts have been purified and characterized. The covalent forms of POD represent >90% of the total cell wall bound POD. Isoelectric focusing showed that whereas the covalent fraction is constituted primarily by anionic isoenzymes, the ionic fraction is a mixture of anionic, neutral, and cationic isoenzymes. Covalently bound peroxidases were purified by means of ion exchange chromatography and affinity chromatography. In vitro detoxification studies showed that although CAP are more effective for the removal of 4-CP and 2,4-DCP, anionic asparagus peroxidase (AAP) is a better option for the removal of hydroxytyrosol (HT), the main phenol present in olive mill wastewaters.

  20. Synthesis and anion binding properties of porphyrins and related compounds

    KAUST Repository

    Figueira, Flávio

    2016-12-02

    Over the last two decades the preparation of pyrrole-based receptors for anion recognition has attracted considerable attention. In this regard porphyrins, phthalocyanines and expanded porphyrins have been used as strong and selective receptors while the combination of those with different techniques and materials can boost their applicability in different applications as chemosensors and extracting systems. Improvements in the field, including the synthesis of this kind of compounds, can contribute to the development of efficient, cheap, and easy-to-prepare anion receptors. Extensive efforts have been made to improve the affinity and selectivity of these compounds and the continuous expansion of related research makes this chemistry even more promising. In this review, we summarize the most recent developments in anion binding studies while outlining the strategies that may be used to synthesize and functionalize these type of macrocycles. © 2016 World Scientific Publishing Company.