WorldWideScience

Sample records for carbon burning

  1. To Burn or not to Burn: Making the Burning of Chocolate Hills of Bohol, Philippines Carbon Neutral

    OpenAIRE

    Nathaniel T. Bantayan; Margaret M Calderon; Flocencia B. Pulhin; Canesio D. Predo; Rose Ann C. Baruga

    2013-01-01

    This study was conducted to evaluate the current management regime of burning vis-à-vis burning with carbon offsets for the Chocolate Hills Natural Monument (CHNM) in Bohol, Philippines. The current scheme of burning to maintain the grass-covered (tree-less) and brown hills to sustain tourist arrivals is seen as environmentally unsound and inconsistent with existing environmental laws. The study estimated the carbon loss from burning and compared the carbon loss value with the tourism income ...

  2. Hydrocarbon and carbon monoxide emissions from biomass burning in Brazil

    International Nuclear Information System (INIS)

    Field measurements of hydrocarbon emissions from biomass burning in the cerrado (grasslands) and selva (tropical forest) regions of Brazil in 1979 and 1980 are characterized and quantified here. Regional consequences of burning activities include increased background mixing ratios of carbon monoxide and ozone, as well as reduced visibility, over extensive areas. Global extrapolation of the emission rate of hydrocarbons from these fires indicates that 6 x 1013 g C of gas phase hydrocarbons and 8 x 1014 g CO may be released annually from biomass burning. These emissions contribute significantly to the global budgets of hydrocarbons and carbon monoxide

  3. Wood-burning stoves in low-carbon dwellings

    DEFF Research Database (Denmark)

    Luis Teles de Carvalho, Ricardo; Jensen, Ole Michael; Afshari, Alireza;

    2013-01-01

    overlooked source for heating. A wood-burning stove is considered low-carbon technology since its fuel is based on local residual biomass. A field study investigating how modern wood-burning stoves operated in modern single-family houses showed that intermittent heat supply occasionally conflicted with the...... primary heating system and that chimney exhaust occasionally conflicted with the ventilation system causing overheating and particles in the indoor environment. Nonetheless, most of the wood-burning stoves contributed considerably to the total heating. On this background, it was concluded that better...... combustion technology and automatics, controlling the interplay between stove and house, can make wood-burning stoves suitable for low-carbon dwellings and meet the remaining heat demand during the coldest period. It was further concluded that new guidelines need to be elaborated about how to install and...

  4. On Carbon Burning in Super Asymptotic Giant Branch Stars

    CERN Document Server

    Farmer, R; Timmes, F X

    2015-01-01

    We explore the detailed and broad properties of carbon burning in Super Asymptotic Giant Branch (SAGB) stars with 2755 MESA stellar evolution models. The location of first carbon ignition, quenching location of the carbon burning flames and flashes, angular frequency of the carbon core, and carbon core mass are studied as a function of the ZAMS mass, initial rotation rate, and mixing parameters such as convective overshoot, semiconvection, thermohaline and angular momentum transport. In general terms, we find these properties of carbon burning in SAGB models are not a strong function of the initial rotation profile, but are a sensitive function of the overshoot parameter. We quasi-analytically derive an approximate ignition density, $\\rho_{ign} \\approx 2.1 \\times 10^6$ g cm$^{-3}$, to predict the location of first carbon ignition in models that ignite carbon off-center. We also find that overshoot moves the ZAMS mass boundaries where off-center carbon ignition occurs at a nearly uniform rate of $\\Delta M_{\\rm...

  5. Burns

    Science.gov (United States)

    ... Chemical burns Burns can be the result of: House and industrial fires Car accidents Playing with matches ... hairs Burned lips and mouth Coughing Difficulty breathing Dark, black-stained mucus Voice changes Wheezing

  6. Generation rate of carbon monoxide from burning charcoal.

    Science.gov (United States)

    Ojima, Jun

    2011-01-01

    Charcoal, often used as cooking fuel at some restaurants, generates a significant amount of carbon monoxide (CO) during its combustion. Every year in Japan, a number of cooks and waiters/waitresses are poisoned by CO emanating from burning charcoal. Although certain ventilation is necessary to prevent the accumulation of CO, it is difficult to estimate the proper ventilation requirement for CO because the generation rate of CO from burning charcoal has not been established. In this study, several charcoals were evaluated in terms of CO generation rate. Sample charcoals were burned in a cooking stove to generate exhaust gas. For each sample, four independent variables -- the mass of the sample, the flow rate of the exhaust gas, CO concentration in the exhaust gas and the combustion time of the sample -- were measured, and the CO generation rate was calculated. The generation rate of CO from the charcoal was shown to be 137-185 ml/min/kW. Theoretical ventilation requirements for charcoals to prevent CO poisoning are estimated to be 41.2-55.6 m(3)/h/kW. PMID:21372432

  7. Burns

    Science.gov (United States)

    ... touching the stove This list is not all-inclusive. You can also burn your airways if you ... extinguishers in key locations at home, work, and school. Remove electrical cords from floors and keep them ...

  8. Inorganic markers, carbonaceous components and stable carbon isotope from biomass burning aerosols in northeast China

    Science.gov (United States)

    Cao, F.; Zhang, Y.; Kawamura, K.

    2015-12-01

    To better characterize the sources of fine particulate matter (i.e. PM2.5) in Sanjiang Plain, Northeast China, aerosol chemical composition such total carbon (TC), organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and inorganic ions were studied as well as stable carbon isotopic composition (δ13C) of TC. Intensively open biomass burning episodes were identified from late September to early October by satellite fire and aerosol optical depth maps. During the biomass burning episodes, concentrations of PM2.5, OC, EC, and WSOC increased by a factor of 4-12 compared to non-biomass-burning periods. Non-sea-salt potassium is strongly correlated with PM2.5, OC, EC and WSOC, suggesting an important contribution of biomass burning emission. The enrichment in both the non-sea-salt potassium and chlorine is significantly larger than other inorganic species, indicating that biomass burning aerosols in Sanjiang Plain is mostly fresh and less aged. In addition, WSOC to OC ratio is relatively lower compared to that reported in biomass burning aerosols in tropical regions, supporting that biomass burning aerosols in Sanjiang Plain is mostly primary and secondary organic aerosols is not significant. A lower average δ13C value (-26.2‰) is found for the biomass-burning aerosols, suggesting a dominant contribution from combustion of C3 plants in the studied region.

  9. Improving global fire carbon emissions estimates by combining moderate resolution burned area and active fire observations

    Science.gov (United States)

    Randerson, J. T.; Chen, Y.; Giglio, L.; Rogers, B. M.; van der Werf, G.

    2011-12-01

    In several important biomes, including croplands and tropical forests, many small fires exist that have sizes that are well below the detection limit for the current generation of burned area products derived from moderate resolution spectroradiometers. These fires likely have important effects on greenhouse gas and aerosol emissions and regional air quality. Here we developed an approach for combining 1km thermal anomalies (active fires; MOD14A2) and 500m burned area observations (MCD64A1) to estimate the prevalence of these fires and their likely contribution to burned area and carbon emissions. We first estimated active fires within and outside of 500m burn scars in 0.5 degree grid cells during 2001-2010 for which MCD64A1 burned area observations were available. For these two sets of active fires we then examined mean fire radiative power (FRP) and changes in enhanced vegetation index (EVI) derived from 16-day intervals immediately before and after each active fire observation. To estimate the burned area associated with sub-500m fires, we first applied burned area to active fire ratios derived solely from within burned area perimeters to active fires outside of burn perimeters. In a second step, we further modified our sub-500m burned area estimates using EVI changes from active fires outside and within of burned areas (after subtracting EVI changes derived from control regions). We found that in northern and southern Africa savanna regions and in Central and South America dry forest regions, the number of active fires outside of MCD64A1 burned areas increased considerably towards the end of the fire season. EVI changes for active fires outside of burn perimeters were, on average, considerably smaller than EVI changes associated with active fires inside burn scars, providing evidence for burn scars that were substantially smaller than the 25 ha area of a single 500m pixel. FRP estimates also were lower for active fires outside of burn perimeters. In our

  10. Carbon production on accreting neutron stars in a new regime of stable nuclear burning

    CERN Document Server

    Keek, L

    2015-01-01

    Accreting neutron stars exhibit Type I X-ray bursts from both frequent hydrogen/helium flashes as well as rare carbon flashes. The latter (superbursts) ignite in the ashes of the former. Hydrogen/helium bursts, however, are thought to produce insufficient carbon to power superbursts. Stable burning could create the required carbon, but this was predicted to only occur at much larger accretion rates than where superbursts are observed. We present models of a new steady-state regime of stable hydrogen and helium burning that produces pure carbon ashes. Hot CNO burning of hydrogen heats the neutron star envelope and causes helium to burn before the conditions of a helium flash are reached. This takes place when the mass accretion rate is around 10% of the Eddington limit: close to the rate where most superbursts occur. We find that increased heating at the base of the envelope sustains steady-state burning by steepening the temperature profile, which increases the amount of helium that burns before a runaway can...

  11. Modeling and simulation of cement clinkering process with compact internal burning of carbon

    International Nuclear Information System (INIS)

    This article describes a mathematical model of the thermodynamic process for Cement Clinkering Process with Compact Internal Burning of Carbon. Using simplifying assumptions, results of calculations are presented based on relevant computerized numerical simulation for a set of typical process parameters obtained from the existing cement shaft kiln operation and the electrical furnace test on the mechanical and chemical performance of the compact coal containing cement raw meal pellets. It is revealed that, the carbon internal burning mode, combining fuel combustion and gas solid heat transfer together as well as preheating, calcining, clinkering and cooling of the raw pellets together, is the origin of the process superiority in respect of equipment simplicity, process enhancement, high energy efficiency and low pollution. Important process details are determined, e.g. the features and lengths of the process zones, the material residence time and the burning mode of carbon in each zone, the clinkering reaction course and the maximum burning temperature. It is concluded that numerical simulations could be useful tool for understanding the new process ideas, as well as conducting the technical development and optimizing the process design. - Highlights: • Twin subsystem model is used to simulate a new type of cement shaft kiln process. • Grain-particle structural model is used to describe the pellet solid gas reactions. • The process superiority resulted from the carbon internal burning mode is revealed. • A series of important process details are determined. • An unprecedented comprehensive picture for cement clinkering process is depicted

  12. Moisture effects on carbon and nitrogen emission from burning of wildland biomass

    Directory of Open Access Journals (Sweden)

    L.-W. A. Chen

    2010-07-01

    Full Text Available Carbon (C and nitrogen (N released from biomass burning have multiple effects on the Earth's biogeochemical cycle, climate change, and ecosystem. These effects depend on the relative abundances of C and N species emitted, which vary with fuel type and combustion conditions. This study systematically investigates the emission characteristics of biomass burning under different fuel moisture contents, through controlled burning experiments with biomass and soil samples collected from a typical alpine forest in North America. Fuel moisture in general lowers combustion efficiency, shortens flaming phase, and introduces prolonged smoldering before ignition. It increases emission factors of incompletely oxidized C and N species, such as carbon monoxide (CO and ammonia (NH3. Substantial particulate carbon and nitrogen (up to 4 times C in CO and 75% of N in NH3 were also generated from high-moisture fuels, maily associated with the pre-flame smoldering. This smoldering process emits particles that are larger and contain lower elemental carbon fractions than soot agglomerates commonly observed in flaming smoke. Hydrogen (H/C ratio and optical properties of particulate matter from the high-moisture fuels show their resemblance to plant cellulous and brown carbon, respectively. These findings have implications for modeling biomass burning emissions and impacts.

  13. Carbon synthesis in steady-state hydrogen and helium burning on accreting neutron stars

    International Nuclear Information System (INIS)

    Superbursts from accreting neutron stars probe nuclear reactions at extreme densities (ρ ≈ 109 g cm–3) and temperatures (T > 109 K). These bursts (∼1000 times more energetic than type I X-ray bursts) are most likely triggered by unstable ignition of carbon in a sea of heavy nuclei made during the rapid proton capture process (rp-process) of regular type I X-ray bursts (where the accumulated hydrogen and helium are burned). An open question is the origin of sufficient amounts of carbon, which is largely destroyed during the rp-process in X-ray bursts. We explore carbon production in steady-state burning via the rp-process, which might occur together with unstable burning in systems showing superbursts. We find that for a wide range of accretion rates and accreted helium mass fractions large amounts of carbon are produced, even for systems that accrete solar composition. This makes stable hydrogen and helium burning a viable source of carbon to trigger superbursts. We also investigate the sensitivity of the results to nuclear reactions. We find that the 14O(α, p)17F reaction rate introduces by far the largest uncertainties in the 12C yield.

  14. 5.3. Obtaining of cryolite-alumina concentrate from carbon-, and fluorine containing wastes by burning method

    International Nuclear Information System (INIS)

    The method of obtaining of cryolite-alumina concentrate from carbon-, and fluorine containing wastes by means of burning method was elaborated. The flowsheet of obtaining of cryolite-alumina concentrate from carbon-, and fluorine containing wastes by means of burning method was considered and presented in this article.

  15. Nuclear fusion in dense matter: Reaction rate and carbon burning

    CERN Document Server

    Gasques, L R; Aguilera, E F; Beard, M; Chamon, L C; Ring, P; Wiescher, M; Yakovlev, D G

    2005-01-01

    In this paper we analyze the nuclear fusion rate between equal nuclei for all five different nuclear burning regimes in dense matter (two thermonuclear regimes, two pycnonuclear ones, and the intermediate regime). The rate is determined by Coulomb barrier penetration in dense environments and by the astrophysical S-factor at low energies. We evaluate previous studies of the Coulomb barrier problem and propose a simple phenomenological formula for the reaction rate which covers all cases. The parameters of this formula can be varied, taking into account current theoretical uncertainties in the reaction rate. The results are illustrated for the example of the ^{12}C+^{12}C fusion reaction. This reaction is very important for the understanding of nuclear burning in evolved stars, in exploding white dwarfs producing type Ia supernovae, and in accreting neutron stars. The S-factor at stellar energies depends on a reliable fit and extrapolation of the experimental data. We calculate the energy dependence of the S-f...

  16. Forensic aspects of carbon monoxide poisoning by charcoal burning in Denmark, 2008-2012

    DEFF Research Database (Denmark)

    Nielsen, Pia Rude; Gheorghe, Alexandra; Lynnerup, Niels

    2014-01-01

    Carbon monoxide (CO) inhalation is a well-known method of committing suicide. There has been a drastic increase in suicide by inhalation of CO, produced from burning charcoal, in some parts of Asia, and a few studies have reported an increased number of these deaths in Europe. CO-related deaths...

  17. Emissions of carbon species, organic polar compounds, potassium, and mercury from prescribed burning activities

    Science.gov (United States)

    Zhang, Y.; Obrist, D.; Zielinska, B.; Gerler, A.

    2012-04-01

    Biomass burning is an important emission source of pollutants to the atmosphere, but few studies have focused on the chemical composition of emissions from prescribed burning activities. Here we present results from a sampling campaign to quantify particulate-phase emissions from various types of prescribed fires including carbon species (Elemental Carbon: EC; Organic Carbon: OC; and Total Carbon: TC); polar organic compounds (12 different compounds and four functional classes); water-soluble potassium (K+); and mercury (Hg). We measured emissions from the following types of prescribed biomass burning in the Lake Tahoe basin located on the California/Nevada border: (i) log piles stacked and dried in the field; (ii) log piles along with green understory vegetation; and (iii) understory green vegetation and surface litter; further emissions were collected from burns conducted in a wood stove: (iv) dried wooden logs; (v) green foliage of understory vegetation collected from the field; and (vi) surface organic litter collected from the field; finally, samples were also taken from (vii) ambient air in residential areas during peak domestic wood combustion season. Results show that OC/EC ratios of prescribed burns in the field ranged from 4 to 10, but lower values (around 1) were observed in controlled stove fires. These results are consistent with an excess of OC emissions over EC found in wildfires. OC/EC ratios, however, showed clear separations between controlled wood stove combustion (higher EC) and prescribed burns in the field (lower EC). We attribute this difference to a higher combustion temperatures and dominance of flaming combustion in wood stove fires. OC positively and linearly correlated to the sum of polar organic compounds across all burn types (r2 of 0.82). The most prevalent group of polar compounds emitted during prescribed fires was resin acids (dehydroabietic, pimaric, and abietic acids), followed by levoglucosan plus mannositol. Negligible

  18. Sensitivity of global terrestrial carbon cycle dynamics to variability in satellite-observed burned area

    Science.gov (United States)

    Poulter, Benjamin; Cadule, Patricia; Cheiney, Audrey; Ciais, Philippe; Hodson, Elke; Peylin, Philippe; Plummer, Stephen; Spessa, Allan; Saatchi, Sassan; Yue, Chao; Zimmermann, Niklaus E.

    2015-02-01

    Fire plays an important role in terrestrial ecosystems by regulating biogeochemistry, biogeography, and energy budgets, yet despite the importance of fire as an integral ecosystem process, significant advances remain to improve its prognostic representation in carbon cycle models. To recommend and to help prioritize model improvements, this study investigates the sensitivity of a coupled global biogeography and biogeochemistry model, LPJ, to observed burned area measured by three independent satellite-derived products, GFED v3.1, L3JRC, and GlobCarbon. Model variables are compared with benchmarks that include pantropical aboveground biomass, global tree cover, and CO2 and CO trace gas concentrations. Depending on prescribed burned area product, global aboveground carbon stocks varied by 300 Pg C, and woody cover ranged from 50 to 73 Mkm2. Tree cover and biomass were both reduced linearly with increasing burned area, i.e., at regional scales, a 10% reduction in tree cover per 1000 km2, and 0.04-to-0.40 Mg C reduction per 1000 km2. In boreal regions, satellite burned area improved simulated tree cover and biomass distributions, but in savanna regions, model-data correlations decreased. Global net biome production was relatively insensitive to burned area, and the long-term land carbon sink was robust, ~2.5 Pg C yr-1, suggesting that feedbacks from ecosystem respiration compensated for reductions in fuel consumption via fire. CO2 transport provided further evidence that heterotrophic respiration compensated any emission reductions in the absence of fire, with minor differences in modeled CO2 fluxes among burned area products. CO was a more sensitive indicator for evaluating fire emissions, with MODIS-GFED burned area producing CO concentrations largely in agreement with independent observations in high latitudes. This study illustrates how ensembles of burned area data sets can be used to diagnose model structures and parameters for further improvement and also

  19. Total mercury, methyl mercury, and carbon in fresh and burned plants and soil in Northwestern Ontario

    International Nuclear Information System (INIS)

    Terrestrial plants and soil contain substantial amounts of organic carbon (C) and mercury. Flooding terrestrial areas stimulates microbial methyl mercury (MeHg) production and fish obtain elevated MeHg concentrations. Our purpose was to determine the loss of C, total mercury (THg), and MeHg from boreal plants and soil after burning to assess the potential of burning before flooding to lower MeHg. Fresh plants contained 4 to 52 ng g-1 dry weight (dw) of THg and 0.1 to 1.3 ng g-1 dw of MeHg. Upland soils contained 162±132 ng g-1 dw of THg and 0.6±0.6 ng g-1 dw of MeHg. Complete burning caused plants to lose 96, 98, 97, and 94% of the mass, C, THg, and MeHg, respectively. Upland soil lost 27, 95, 79, and 82% of the mass, C, THg, and MeHg, respectively. Our results demonstrated that a substantial loss of C, THg, and MeHg was caused by burning. - Burning terrestrial vegetation and soil causes substantial losses of organic carbon, total mercury, and methyl mercury

  20. Technical benefit and risk analysis on cement clinkering process with compact internal burning of carbon

    International Nuclear Information System (INIS)

    This article demonstrates the potential technical benefit and risk for cement clinkering process with compact internal burning of carbon, a laboratory-phase developing technique, from 9 aspects, including the heat consumption of clinkering and exhaust heat utilization, clinker quality, adaptability to alternative fuels, the disposal ability of industrial offal and civil garbage, adaptability to the raw materials and fuels with high content of chlorine, sulphur and alkali, the feasibility of process scale up, the briquetting process of the coal-containing cement raw meal pellet, NOx emission and the capital cost and benefit of conversion project. It is concluded that it will be able to replace the modern precalciner rotary kiln process and to become the main stream technique of cement clinkering process in low carbon economy times. - Highlights: • Compact internal burning of carbon enables cement shaft kiln to run stably. • Compact internal burning of carbon enables cement shaft kiln to scale up. • New process triples energy efficiency with excellent environmental performance. • It will be able to compete with and replace the existing precalciner kiln process. • It will become the mainstream clinkering process in low carbon economy

  1. Moisture effects on carbon and nitrogen emission from burning of wildland biomass

    Directory of Open Access Journals (Sweden)

    L.-W. A. Chen

    2010-03-01

    Full Text Available Carbon (C and nitrogen (N released from biomass burning have multiple effects on the Earth's biogeochemical cycle, climate change, and ecosystem. These effects depend on the relative abundances of C and N species emitted, which vary with fuel type and combustion conditions. This study systematically investigates the emission characteristics under different fuel moisture contents, through controlled burning experiments with biomass and soil collected from a typical alpine forest. Fuel moisture in general lowers combustion efficiency, shortens flaming phase, and introduces prolonged smoldering before ignition. It increases emission factors of incompletely oxidized C and N species, such as carbon monoxide (CO and ammonia (NH3. Substantial particulate carbon and nitrogen (up to 4 times C in CO and 75% of N in NH3 were measured mainly from the pre-flame smoldering of fuels with high moisture contents; this process emits particles larger than soot agglomerates commonly observed in flaming smoke. Hydrogen (H/C ratio and optical properties of particulate carbon from the high-moisture fuels show their resemblance to plant cellulous and brown carbon, respectively. These findings have implications for modeling biomass burning emission and impacts.

  2. Daily burned area and carbon emissions from boreal fires in Alaska

    Science.gov (United States)

    Veraverbeke, S.; Rogers, B. M.; Randerson, J. T.

    2015-06-01

    Boreal fires burn into carbon-rich organic soils, thereby releasing large quantities of trace gases and aerosols that influence atmospheric composition and climate. To better understand the factors regulating boreal fire emissions, we developed a statistical model of carbon consumption by fire for Alaska with a spatial resolution of 450 m and a temporal resolution of 1 day. We used the model to estimate variability in carbon emissions between 2001 and 2012. Daily burned area was mapped using imagery from the Moderate Resolution Imaging Spectroradiometer combined with perimeters from the Alaska Large Fire Database. Carbon consumption was calibrated using available field measurements from black spruce forests in Alaska. We built two nonlinear multiplicative models to separately predict above- and belowground carbon consumption by fire in response to environmental variables including elevation, day of burning within the fire season, pre-fire tree cover and the differenced normalized burn ratio (dNBR). Higher belowground carbon consumption occurred later in the season and for mid-elevation forests. Topographic slope and aspect did not improve performance of the belowground carbon consumption model. Aboveground and belowground carbon consumption also increased as a function of tree cover and the dNBR, suggesting a causal link between the processes regulating these two components of carbon consumption. Between 2001 and 2012, the median carbon consumption was 2.54 kg C m-2. Burning in land-cover types other than black spruce was considerable and was associated with lower levels of carbon consumption than for pure black spruce stands. Carbon consumption originated primarily from the belowground fraction (median = 2.32 kg C m-2 for all cover types and 2.67 kg C m-2 for pure black spruce stands). Total carbon emissions varied considerably from year to year, with the highest emissions occurring during 2004 (69 Tg C), 2005 (46 Tg C), 2009 (26 Tg C), and 2002 (17 Tg C) and a

  3. Black carbon contribution to stabilised SOM in soil under slash and burn agriculture

    Science.gov (United States)

    Rumpel, C.; Chaplot, V.; Valentin, C.

    2008-12-01

    Black carbon (BC) produced during slash and burn agriculture on tropical soils may enhance the soils organic matter content and hence their biological properties. However, once deposited on the soil surface, BC may be subject to erosion and/or microbial decomposition and thus not be preserved on site. Up to now, few studies have been carried out to assess the contribution of BC to the soils stable carbon pool on sites under slash and burn agriculture. The aim of the study was to assess the survival potential of BC in sloping tropical soils of clayey texture. The study was carried out in Northern Laos, where the soils are subjected to addition of black carbon produced by burning of agricultural crop residues. Our conceptual approach included the characterisation of (a) morphologically distinct BC forms and (b) chemical soil fractions. The samples were analysed for elemental content, chemical composition by 13C CPMAS NMR spectroscopy, carbon resistant to acid hydrolysis with HCl, carbon resistant to oxidation with acid dichromate solution and 14C activity. Our results indicated that BC produced by slash and burn agriculture was highly aromatic in nature. Its elemental composition as well as its susceptibility to be lost by chemical oxidation was dependent on its morphology. Acid hydrolysis did not lead to carbon loss from any BC form. We thus hypothesised that BC should be present in the hydrolysis resistant fraction isolated from soil. The charactersation of the chemical composition by 13C CPMAS NMR spectroscopy showed that the hydrolysis residue was composed of highly aromatic carbon. Considering the low lignin content of these soils and the good recovery of bulk soil aromatic carbon signal (80-100%) in the hydrolysis residue, we consider that this fraction may be suitable to assess BC contribution to clayey soils. We suggest that BC isolated as hydrolysis resistant C may represent up to 25% of the soils C as compared to 8% as isolated by acid dichromate oxidation

  4. Characteristics of water-soluble ions and carbon in fine and coarse particles collected near an open burning site

    Science.gov (United States)

    Lin, Chih-Chung; Huang, Kuo-Lin; Tsai, Jen-Hsiung; Lee, Wen-Jhy; Chen, Shui-Jen; Lin, Shao-Kai

    2012-05-01

    This study investigates the chemical characteristics of particles that were collected from the open burning of wax apple agricultural waste, and evaluates the impact of such burning on regional air quality. The water-soluble ions, elemental carbon (EC), and organic carbon (OC) in fine (Dp ≤ 2.5 μm) and coarse (2.5 burning (0.90) was higher than those both before and after burning (0.57 and 0.55, respectively). The particle distributions before and during burning were bi-modal and uni-modal, respectively. During the open burning, the OC or K+ content markedly increased; however, that of secondary aerosol (NH4+, NO3- and SO42-) decreased. The Na+/Cl- molar ratios of fine particles before, after, and during the open burning 0.40, 0.18, and 0.24, respectively; however, the corresponding (Na+ + K+)/Cl- molar ratios were 0.74, 0.99, and 0.39, respectively. OC, K+ and Cl- were quite abundant in the open burning of agricultural waste (wax apple), and the OC/Na+, K+/Na+, and Cl-/Na+ (mass) ratios in fine particles (318, 10.2, and 10.5, respectively) may be used as reference indexes associated with the open burning of wax apple waste.

  5. Experimental evaluation of biomass burning emissions: Nitrogen and carbon containing compounds

    International Nuclear Information System (INIS)

    Data are presented on the nitrogen and carbon emissions of biomass burning. The results of the authors' experiments enable them to calculate new source strengths for many compounds, considering different burning stages and fire conditions on the one hand, and different fuel types and properties, on the other hand. They also presented a method for balancing elemental budgets of fires, which had already been described for carbon compounds by other authors but which is new for the nitrogen inventory. Based on their measurements they show that biomass burning contributes significantly to the global budgets of HCN, CH3CN (possibly the major source), NOx (12%), CO(22%), C2 to C4 hydrocarbons (14%), CH3Cl(41%), and probably also to the global source of C1-C5 aliphatic amines. Further, pyrogenic CO2 amounts are likely to represent a substantial contribution to the global greenhouse warming. An important result, from the study is the identification of N2 emissions, which causes a significant loss of fixed nitrogen (pyro-denitrification) in tropical ecosystems in the order of 5% to 20% of the global nitrogen fixation rate. Because of an interesting interplay between an enhanced postfire nitrogen fixation and an enhanced postfire N2O emission, it is not yet known if losses due to pyro-denitrification are balanced by nitrogen fixation

  6. Estimating Biomass Burning Emissions for Carbon Cycle Science and Resource Monitoring & Management

    Science.gov (United States)

    French, N. H.; McKenzie, D.; Erickson, T. A.; McCarty, J. L.; Ottmar, R. D.; Kasischke, E. S.; Prichard, S. J.; Hoy, E.; Endsley, K.; Hamermesh, N. K.

    2012-12-01

    Biomass burning emissions, including emissions from wildland fire, agricultural and rangeland burning, and peatland fires, impact the atmosphere dramatically. Current tools to quantify emission sources are developing quickly in a response to the need by the modeling community to assess fire's role in the carbon cycle and the land management community to understand fire effects and impacts on air quality. In a project funded by NASA, our team has developed methods to spatially quantify wildland fire emissions for the contiguous United States (CONUS) and Alaska (AK) at regional scales. We have also developed a prototype web-based information system, the Wildland Fire Emissions Information System (WFEIS) to make emissions modeling tools and estimates for the CONUS and AK available to the user community. With new funding through two NASA programs, our team from MTRI, USFS, and UMd will be further developing WFEIS to provide biomass burning emissions estimates for the carbon cycle science community and for land and air quality managers, to improve the way emissions estimates are calculated for a variety of disciplines. In this poster, we review WFEIS as it currently operates and the plans to extend the current system for use by the carbon cycle science community (through the NASA Carbon Monitoring System Program) and resource management community (through the NASA Applications Program). Features to be enhanced include an improved accounting of biomass present in canopy fuels that are available for burning in a forest fire, addition of annually changing vegetation biomass/fuels used in computing fire emissions, and quantification of the errors present in the estimation methods in order to provide uncertainty of emissions estimates across CONUS and AK. Additionally, WFEIS emissions estimates will be compared with results obtained with the Global Fire Emissions Database (GFED), which operates at a global scale at a coarse spatial resolution, to help improve GFED estimates

  7. Large injection of carbon monoxide into the upper troposphere due to intense biomass burning in 1997

    Science.gov (United States)

    Matsueda, Hidekazu; Inoue, Hisayuki Y.; Ishii, Masao; Tsutsumi, Yukitomo

    1999-11-01

    Air samples at 8-13 km were collected regularly using a commercial airliner to obtain long-term measurements of carbon monoxide (CO) mixing ratio in the upper troposphere over the western Pacific between Australia and Japan during April 1993-December 1997. The measurements in 1997 clearly reveal an anomalous CO increase during September to November in the Southern Hemisphere, with a maximum of 320-380 ppb around 20°S in October. Tropical biomass burning, not urban/industrial emissions, was the main source for the enhanced CO in 1997. A similar southern-spring increase due to biomass burning was observed in previous years. The peaks showed a large interannual variation associated with the El Niño/Southern Oscillation (ENSO) events. The largest CO spring peak appeared during the strong El Niño event in 1997, while the weak La Niña year of 1996 was marked by a largely suppressed CO spring peak. The outgoing longwave radiation (OLR) anomaly is largest during the El Niño events indicating that the events cause a longer drought in the tropics and significantly influence the enlargement of biomass burning in tropical Southeast Asia. Thus the most likely cause for the ENSO-cycle CO variability is a year-to-year change of biomass-burning emissions mainly from Southeast Asia. The appearance of the CO spring peak in the southern subtropics is discussed on the basis of the possible long-range transport of biomass-burning CO from Southeast Asia to the upper troposphere over the western South Pacific.

  8. Biomass burning contribution to black carbon in the Western United States Mountain Ranges

    Directory of Open Access Journals (Sweden)

    Y. H. Mao

    2011-11-01

    Full Text Available Forest fires are an important source to carbonaceous aerosols in the Western United States (WUS. We quantify the relative contribution of biomass burning to black carbon (BC in the WUS mountain ranges by analyzing surface BC observations for 2006 from the Interagency Monitoring of PROtected Visual Environment (IMPROVE network using the GEOS-Chem global chemical transport model. Observed surface BC concentrations show broad maxima during late June to early November. Enhanced potassium concentrations and potassium/sulfur ratios observed during the high-BC events indicate a dominant biomass burning influence during the peak fire season. Model surface BC reproduces the observed day-to day and synoptic variabilities in regions downwind of but near urban centers. Major discrepancies are found at elevated mountainous sites during the July-October fire season when simulated BC concentrations are biased low by a factor of two. We attribute these low biases largely to the underestimated (by more than a factor of two and temporally misplaced biomass burning emissions of BC in the model. Additionally, we find that the biomass burning contribution to surface BC concentrations in the USA likely was underestimated in a previous study using GEOS-Chem (Park et al., 2003, because of the unusually low planetary boundary layer (PBL heights in the GEOS-3 meteorological reanalysis data used to drive the model. PBL heights from GEOS-4 and GEOS-5 reanalysis data are comparable to those from the North American Regional Reanalysis (NARR. Model simulations show slightly improved agreements with the observations when driven by GEOS-5 reanalysis data, but model results are still biased low. The use of biomass burning emissions with diurnal cycle, synoptic variability, and plume injection has relatively small impact on the simulated surface BC concentrations in the WUS.

  9. Biomass burning contribution to black carbon in the western United States mountain ranges

    Directory of Open Access Journals (Sweden)

    Y. Mao

    2011-05-01

    Full Text Available Forest fires are an important source to carbonaceous aerosols in the western United States (WUS. We quantify the relative contribution of biomass burning to black carbon (BC in the WUS mountain ranges by analyzing surface BC observations for 2006 from the Interagency Monitoring of PROtected Visual Environment (IMPROVE network using the GEOS-Chem global chemical transport model. Observed surface BC concentrations show broad maxima during late June to early November. Enhanced potassium concentrations and potassium/sulfur ratios observed during the high-BC events indicate a dominant biomass burning influence during the peak fire season. Model surface BC reproduces the observed day-to-day and synoptic variabilities in regions downwind of and near urban centers. Major discrepancies are found at elevated mountainous sites during the July–October when simulated BC concentrations are biased low by a factor of two. We attribute these biases largely to the underestimated and temporally misplaced biomass burning emissions of BC in the model. Additionally, we find that the biomass burning contribution to surface BC concentrations in the US likely was underestimated in a previous study using GEOS-Chem (Park et al., 2003, because of the unusually low planetary boundary layer (PBL heights and weak precipitation in the GEOS-3 meteorological reanalysis data used to drive the model. PBL heights from GEOS-4 and GEOS-5 reanalysis data are comparable to those from the North American Regional Reanalysis (NARR. Model simulations show improved agreements with the observations when driven by GEOS-5 reanalysis data, but model results are still biased low. The use of biomass burning emissions with diurnal cycle, synoptic variability, and plume injection has relatively small impact on the simulated surface BC concentrations in the WUS.

  10. Al4C3 Hydration Thermochemical Analysis for Burned Carbon-containing Refractories with Al

    Institute of Scientific and Technical Information of China (English)

    YANG Ding'ao; YU Zhiming; FAN Liuwu

    2003-01-01

    In this paper, X-ray diffractogram analysis and SEM observation of Al4 C3 formed at high temperature from carbon-containing refractories with Al have been carried out.Aluminum added to carbon-containing refractories reacts with C(s)to form Al4 C3(s) gradually during heating from 600 ℃ to 1200℃.It is considered that the interlocked structure of Al4 C3 plate crystals promotes the outstanding increase of hot modulus of rupture of carbon-containing refractories with Al. The HMOR of carbon-containing refractories added with Al additive from 0 to 5wt% increases by 2.8 times being from 6.5MPa to 18.2MPa.After a thermochemical calculation for hydration reaction processes of Al4 C3 and H2O(g), the equilibrium partial pressure chart of H2O(g)in H2O-Al4C3-Al(OH)3 system vs various temperatures has been attained . The H2O (g) partial pressure in the air needed for the Al4 C3 hydration reaction is no more than 10~18 atm at the temperature below 120℃.It is considered that the burned carbon-containing refractories with Al is extremely easy to hydrate and the cracking of burned carbon-containing refractories is generated because that the hydration expansion is 2.11 times during transforming from Al4 C3 to Al(OH)3.The fundamental measure against hydration of the refractories is to insulate the refractories from H2O(g)by various means such as pitch impregnation or other sealing materials.

  11. Size-dependent wet removal of black carbon in Canadian biomass burning plumes

    Directory of Open Access Journals (Sweden)

    J. W. Taylor

    2014-07-01

    Full Text Available Wet deposition is the dominant mechanism for removing black carbon (BC from the atmosphere, and is key in determining its atmospheric lifetime, vertical gradient and global transport. Despite the importance of BC in the climate system, especially in terms of its ability to modulate the radiative energy budget, there are few quantitative case studies of wet removal in ambient environments. We present a case study of BC wet removal by examining aerosol size distributions and BC coating properties sampled in three Canadian boreal biomass burning plumes, one of which passed through a precipitating cloud. In this plume, the largest and most coated BC particles were found to be preferentially removed, suggesting that nucleation scavenging was the likely dominant mechanism. Calculated mass absorption coefficient (MAC in the plumes showed no significant variation, as the shifts to smaller BC cores and thinner coatings had opposing effects. Similarly, calculated single-scatter albedo (SSA showed little variation, as a large number of non-BC particles were also present in the precipitation-affected plume. The remaining BC cores were smaller than those observed in previous studies of BC in post-precipitation outflow over Asia, possibly due to the thick coatings associated with the biomass burning particles. This study provides important constraints to model parameterisations of BC wet removal in biomass burning regions, which will help to reduce uncertainty in radiative forcing calculations.

  12. Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions

    Science.gov (United States)

    Saleh, R.; Hennigan, C. J.; McMeeking, G. R.; Chuang, W. K.; Robinson, E. S.; Coe, H.; Donahue, N. M.; Robinson, A. L.

    2013-08-01

    Experiments were conducted to investigate light absorption of organic aerosol (OA) in fresh and photo-chemically aged biomass-burning emissions. The experiments considered residential hardwood fuel (oak) and fuels commonly consumed in wild-land and prescribed fires in the United States (pocosin pine and gallberry). Photo-chemical aging was performed in an environmental chamber. We constrained the effective light-absorption properties of the OA using conservative limiting assumptions, and found that both primary organic aerosol (POA) in the fresh emissions and secondary organic aerosol (SOA) produced by photo-chemical aging contain brown carbon, and absorb light to a significant extent. This work presents the first direct evidence that SOA produced in aged biomass-burning emissions is absorptive. For the investigated fuels, SOA is less absorptive than POA in the long visible, but exhibits stronger wavelength-dependence and is more absorptive in the short visible and near-UV. Light absorption by SOA in biomass-burning emissions might be an important contributor to the global radiative forcing budget.

  13. Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions

    Directory of Open Access Journals (Sweden)

    R. Saleh

    2013-08-01

    Full Text Available Experiments were conducted to investigate light absorption of organic aerosol (OA in fresh and photo-chemically aged biomass-burning emissions. The experiments considered residential hardwood fuel (oak and fuels commonly consumed in wild-land and prescribed fires in the United States (pocosin pine and gallberry. Photo-chemical aging was performed in an environmental chamber. We constrained the effective light-absorption properties of the OA using conservative limiting assumptions, and found that both primary organic aerosol (POA in the fresh emissions and secondary organic aerosol (SOA produced by photo-chemical aging contain brown carbon, and absorb light to a significant extent. This work presents the first direct evidence that SOA produced in aged biomass-burning emissions is absorptive. For the investigated fuels, SOA is less absorptive than POA in the long visible, but exhibits stronger wavelength-dependence and is more absorptive in the short visible and near-UV. Light absorption by SOA in biomass-burning emissions might be an important contributor to the global radiative forcing budget.

  14. Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions

    Directory of Open Access Journals (Sweden)

    R. Saleh

    2013-05-01

    Full Text Available Experiments were conducted to investigate light absorption of organic aerosol (OA in fresh and photo-chemically aged biomass-burning emissions. The experiments considered residential hardwood fuel (oak and fuels commonly consumed in wild-land and prescribed fires in the United States (pocosin pine and gallberry. Photo-chemical aging was performed in an environmental chamber. We constrained the light-absorption properties of the OA using conservative limiting assumptions, and found that both primary organic aerosol (POA in the fresh emissions and secondary organic aerosol (SOA produced by photo-chemical aging absorb light to a significant extent, and are categorized as brown carbon. This work presents the first direct evidence that SOA produced in aged biomass-burning emissions is absorptive. For the investigated fuels, SOA is less absorptive than POA in the long visible, but exhibits steeper wavelength-dependence (larger Absorption Ångström Exponent and is more absorptive in the short visible and near-UV. Light absorption by SOA in biomass-burning emissions might be an important contributor to the global radiative forcing budget.

  15. Modeling biomass burning and related carbon emissions during the 21st century in Europe

    KAUST Repository

    Migliavacca, Mirco

    2013-12-01

    In this study we present an assessment of the impact of future climate change on total fire probability, burned area, and carbon (C) emissions from fires in Europe. The analysis was performed with the Community Land Model (CLM) extended with a prognostic treatment of fires that was specifically refined and optimized for application over Europe. Simulations over the 21st century are forced by five different high-resolution Regional Climate Models under the Special Report on Emissions Scenarios A1B. Both original and bias-corrected meteorological forcings is used. Results show that the simulated C emissions over the present period are improved by using bias corrected meteorological forcing, with a reduction of the intermodel variability. In the course of the 21st century, burned area and C emissions from fires are shown to increase in Europe, in particular in the Mediterranean basins, in the Balkan regions and in Eastern Europe. However, the projected increase is lower than in other studies that did not fully account for the effect of climate on ecosystem functioning. We demonstrate that the lower sensitivity of burned area and C emissions to climate change is related to the predicted reduction of the net primary productivity, which is identified as the most important determinant of fire activity in the Mediterranean region after anthropogenic interaction. This behavior, consistent with the intermediate fire-productivity hypothesis, limits the sensitivity of future burned area and C emissions from fires on climate change, providing more conservative estimates of future fire patterns, and demonstrates the importance of coupling fire simulation with a climate driven ecosystem productivity model.

  16. Burning management in the tallgrass prairie affects root decomposition, soil food web structure and carbon flow

    Science.gov (United States)

    Shaw, E. A.; Denef, K.; Milano de Tomasel, C.; Cotrufo, M. F.; Wall, D. H.

    2015-09-01

    Root litter decomposition is a major component of carbon (C) cycling in grasslands, where it provides energy and nutrients for soil microbes and fauna. This is especially important in grasslands where fire is a common management practice and removes aboveground litter accumulation. In this study, we investigated whether fire affects root decomposition and C flow through the belowground food web. In a greenhouse experiment, we applied 13C-enriched big bluestem (Andropogon gerardii) root litter to intact tallgrass prairie soil cores collected from annually burned (AB) and infrequently burned (IB) treatments at the Konza Prairie Long Term Ecological Research (LTER) site. Incorporation of 13C into microbial phospholipid fatty acids and nematode trophic groups was measured on six occasions during a 180-day decomposition study to determine how C was translocated through the soil food web. Results showed significantly different soil communities between treatments and higher microbial abundance for IB. Root decomposition occurred rapidly and was significantly greater for AB. Microbes and their nematode consumers immediately assimilated root litter C in both treatments. Root litter C was preferentially incorporated in a few groups of microbes and nematodes, but depended on burn treatment: fungi, Gram-negative bacteria, Gram-positive bacteria, and fungivore nematodes for AB and only omnivore nematodes for IB. The overall microbial pool of root litter-derived C significantly increased over time but was not significantly different between burn treatments. The nematode pool of root litter-derived C also significantly increased over time, and was significantly higher for the AB treatment at 35 and 90 days after litter addition. In conclusion, the C flow from root litter to microbes to nematodes is not only measurable, but significant, indicating that higher nematode trophic levels are critical components of C flow during root decomposition which, in turn, is significantly

  17. Influence of disturbance on carbon exchange in a permafrost collapse and adjacent burned forest

    Science.gov (United States)

    Myers-Smith, I. H.; McGuire, A.D.; Harden, J.W.; Chapin, F. S., III

    2007-01-01

    We measured CO2 and CH4 exchange from the center of a Sphagnum-dominated permafrost collapse, through an aquatic most, and into a recently burned black spruce forest on the Tanana River floodplain in interior Alaska. In the anomalously dry growing season of 2004, both the collapse and the surrounding burned area were net sink, s for CO2, with a mean daytime net ecosystem exchange of -1.4 ??mol CO2 m-2 s-1, while the moat was a CH4 source with a mean flux of 0.013 ??mol CH4 m-2 s-1. Regression analyses identified temperature as the dominant factor affecting intragrowing season variation in CO2 exchange and soil moisture as the primary control influencing CH4 emissions. CH4 emissions during the wettest portion of the growing season were four times higher than during the driest periods. If temperatures continue to warm, peatlahd vegetation will likely expand with permafrost degradation, resulting in greater carbon accumulation and methane emissions for the landscape as a whole. Copyright 2007 by the American Geophysical Union.

  18. Interactive effects of frequent burning and timber harvesting on above ground carbon biomass in temperate eucalypt forests

    Science.gov (United States)

    Collins, Luke; Penman, Trent; Ximenes, Fabiano; Bradstock, Ross

    2015-04-01

    The sequestration of carbon has been identified as an important strategy to mitigate the effects of climate change. Fuel reduction burning and timber harvesting are two common co-occurring management practices within forests. Frequent burning and timber harvesting may alter forest carbon pools through the removal and redistribution of biomass and demographic and structural changes to tree communities. Synergistic and antagonistic interactions between frequent burning and harvesting are likely to occur, adding further complexity to the management of forest carbon stocks. Research aimed at understanding the interactive effects of frequent fire and timber harvesting on carbon biomass is lacking. This study utilised data from two long term (25 - 30 years) manipulative burning experiments conducted in southern Australia in temperate eucalypt forests dominated by resprouting canopy species. Specifically we examined the effect of fire frequency and harvesting on (i) total biomass of above ground carbon pools and (ii) demographic and structural characteristics of live trees. We also investigated some of the mechanisms driving these changes. Frequent burning reduced carbon biomass by up to 20% in the live tree carbon pool. Significant interactions occurred between fire and harvesting, whereby the reduction in biomass of trees >20 cm diameter breast height (DBH) was amplified by increased fire frequency. The biomass of trees DBH increased with harvesting intensity in frequently burnt areas, but was unaffected by harvesting intensity in areas experiencing low fire frequency. Biomass of standing and fallen coarse woody debris was relatively unaffected by logging and fire frequency. Fire and harvesting significantly altered stand structure over the study period. Comparison of pre-treatment conditions to current conditions revealed that logged sites had a significantly greater increase in the number of small trees (DBH) than unlogged sites. Logged sites showed a significant

  19. Light absorbing organic aerosols (brown carbon) over the tropical Indian Ocean: impact of biomass burning emissions

    International Nuclear Information System (INIS)

    The first field measurements of light absorbing water-soluble organic carbon (WSOC), referred as brown carbon (BrC), have been made in the marine atmospheric boundary layer (MABL) during the continental outflow to the Bay of Bengal (BoB) and the Arabian Sea (ARS). The absorption signal measured at 365 nm in aqueous extracts of aerosols shows a systematic linear increase with WSOC concentration, suggesting a significant contribution from BrC to the absorption properties of organic aerosols. The mass absorption coefficient (babs) of BrC shows an inverse hyperbolic relation with wavelength (from ∼300 to 700 nm), providing an estimate of the Angstrom exponent (αP, range: 3–19; Av: 9 ± 3). The mass absorption efficiency of brown carbon (σabs−BrC) in the MABL varies from 0.17 to 0.72 m2 g−1 (Av: 0.45 ± 0.14 m2 g−1). The αP and σabs−BrC over the BoB are quite similar to that studied from a sampling site in the Indo-Gangetic Plain (IGP), suggesting the dominant impact of organic aerosols associated with the continental outflow. A comparison of the mass absorption efficiency of BrC and elemental carbon (EC) brings to focus the significant role of light absorbing organic aerosols (from biomass burning emissions) in atmospheric radiative forcing over oceanic regions located downwind of the pollution sources. (letter)

  20. Rainforest burning and the global carbon budget: Biomass, combustion efficiency, and charcoal formation in the Brazilian Amazon

    Science.gov (United States)

    Fearnside, Philip M.; Leal, Niwton; Fernandes, Fernando Moreira

    1993-01-01

    Biomass present before and after burning was measured in forest cleared for pasture in a cattle ranch (Fazenda Dimona) near Manaus, Amazonas, Brazil. Aboveground dry weight biomass loading averaged 265 t ha-1 (standard deviation (SD) = 110, n = 6 quadrats) at Fazenda Dimona, which corresponds to approximately 311 t ha-1 total dry weight biomass. A five-category visual classification at 200 points showed highly variable burn quality. Postburn aboveground biomass loading was evaluated by cutting and weighing of 100 m2 quadrats and by line intersect sampling. Quadrats had a mean dry weight of 187 t ha-1 (SD = 69, n = 10), a 29.3% reduction from the preburn mean in the same clearing. Line intersect estimates in 1.65 km of transects indicated that 265 m3 ha-1 (approximately 164 t ha-1 of aboveground dry matter) survived burning. Using carbon contents measured for different biomass components (all ˜50% carbon) and assuming a carbon content of 74.8% for charcoal (from other studies near Manaus), the destructive measurements imply a 27.6% reduction of aboveground carbon pools. Charcoal composed 2.5% of the dry weight of the remains in the postburn destructive quadrats and 2.8% of the volume in the line intersect transects. Thus approximately 2.7% of the preburn aboveground carbon stock was converted to charcoal, substantially less than is generally assumed in global carbon models. The findings confirm high values for biomass in central Amazonia. High variability indicates the need for further studies in many localities and for making maximum use of less laborious indirect methods of biomass estimation. While indirect methods are essential for regional estimates of average biomass, only direct weighing such as that reported here can yield information on combustion efficiency and charcoal formation. Both high biomass and low percentage of charcoal formation suggest the significant potential contribution of forest burning to global climate changes from CO2 and trace gases.

  1. Carbon content of Amazon forest biomass and changes after burning; Conteudo de carbono na biomassa florestal da Amazonia e alteracoes apos a queima

    Energy Technology Data Exchange (ETDEWEB)

    Graca, Paulo Mauricio Lima de Alencastro

    1997-04-01

    The carbon contained in the various types of vegetation in the Brazilian legal Amazon was estimated in 80 Pg, based on data from the literature. Transformations of biomass caused by burning took place in an open forest located in Nova Vida Ranch, Arquimedes, Roraima state. The direct and indirect method to estimate the biomass and charcoal after burning were compared and correlation coefficients are presented. Based on combustion efficiency from the above mentioned location and other localities in the Amazon, the carbon released upon burning was calculated. The annual contribution of carbon emitted to the atmosphere was also calculated and presented 119 refs., 18 figs., 16 tabs.

  2. The legacy of forest harvest and burning on ecosystem carbon storage in the northern midwest, USA

    Science.gov (United States)

    Gough, C. M.; Vogel, C. S.; Harrold, K. H.; George, K. D.; Curtis, P. S.

    2005-12-01

    Over 90 % of the forested area in the upper Great Lakes region was harvested by the early 20th century. In many cases, harvests were followed by uncontrolled burns, similar to current patterns of disturbance in many developing countries. While afforestation in the northern midwest has resulted in increased regional carbon (C) storage, the rate of C storage by forests will depend on the severity of prior disturbance and consequent changes in site quality. We were interested in how long the legacy of poor management practices from the early 20th century would be reflected in forest C storage rates. We investigated C cycling and storage following disturbance in mixed deciduous forests of northern lower Michigan, USA. Study plots ranged in age from 6 to 68 yrs and were created following experimental clear-cut harvesting and fire disturbance. Annual C storage was estimated biometrically from measurements of wood, leaf, fine root, and woody debris mass, mass losses to herbivory, soil carbon content, and soil respiration. Maximum annual carbon storage, or net ecosystem production (NEP), in the disturbed stands was 50 % lower than that of adjacent, undisturbed forest. This decrease was caused by a reduction in site quality following disturbance. However, during regrowth the cut and burned forest rapidly became a net C sink, storing 0.86 Mg C ha-1 yr-1 after six yrs. Carbon storage reached a peak of 1.00 Mg C ha-1 yr-1 after 50 yrs and declined to 0.57 Mg C ha-1 yr-1 after 68 yrs. Above- and below-ground net primary production (NPP) averaged 42 and 59 % of total NPP, respectively, with fine root litter production accounting for 57 % of total NPP. Soil heterotrophic respiration was high, ranging from 4.55 Mg C ha-1 yr-1 in the 6-yr-old stand to 5.74 Mg C ha-1 yr-1 in the 50-yr-old stand. Soil C and coarse woody debris pools exhibited a U-shaped trend over time following disturbance. Mineral soil and coarse woody debris pools lost C at a combined annual rate of 1.10 Mg C ha-1

  3. Palaeodata-informed modelling of large carbon losses from recent burning of boreal forests

    Science.gov (United States)

    Kelly, Ryan; Genet, Helene; McGuire, Anthony; Hu, Feng Sheng

    2016-01-01

    Wildfires play a key role in the boreal forest carbon cycle1, 2, and models suggest that accelerated burning will increase boreal C emissions in the coming century3. However, these predictions may be compromised because brief observational records provide limited constraints to model initial conditions4. We confronted this limitation by using palaeoenvironmental data to drive simulations of long-term C dynamics in the Alaskan boreal forest. Results show that fire was the dominant control on C cycling over the past millennium, with changes in fire frequency accounting for 84% of C stock variability. A recent rise in fire frequency inferred from the palaeorecord5 led to simulated C losses of 1.4 kg C m−2 (12% of ecosystem C stocks) from 1950 to 2006. In stark contrast, a small net C sink of 0.3 kg C m−2 occurred if the past fire regime was assumed to be similar to the modern regime, as is common in models of C dynamics. Although boreal fire regimes are heterogeneous, recent trends6 and future projections7 point to increasing fire activity in response to climate warming throughout the biome. Thus, predictions8 that terrestrial C sinks of northern high latitudes will mitigate rising atmospheric CO2 may be over-optimistic.

  4. Quantifying black carbon from biomass burning by means of levoglucosan - a one year time series at the Arctic observatory Zeppelin

    Science.gov (United States)

    Yttri, K. E.; Myhre, C. Lund; Eckhardt, S.; Fiebig, M.; Dye, C.; Hirdman, D.; Ström, J.; Klimont, Z.; Stohl, A.

    2013-12-01

    Levoglucosan, a highly specific tracer of particulate matter from biomass burning, has been used to study the influence of residential wood burning, agricultural waste burning and boreal forest fire emissions on the Arctic atmosphere black carbon (BC) concentration. A one year time series from March 2008 to March 2009 of levoglucosan has been established at the Zeppelin Observatory in the European Arctic. Elevated concentrations of levoglucosan in winter (Mean: 1.02 ng m-3) compared to summer (Mean: 0.13 ng m-3) were observed, resembling the seasonal variation seen for e.g. sulphate and BC. The mean concentration in the winter period was two to three orders of magnitude lower than typical values reported for European urban areas in winter, and one to two orders of magnitude lower than European rural background concentrations. Episodes of elevated levoglucosan concentration were more frequent in winter than in summer and peak values were higher, exceeding 10 ng m-3 at the most. Concentrations of elemental carbon from biomass burning (ECbb) were obtained by combining measured concentrations of levoglucosan and emission ratios of levoglucosan and EC for wild/agricultural fires and for residential wood burning. Neglecting chemical degradation by OH provides minimum levoglucosan concentrations, corresponding to a mean ECbb concentration of 3.7±1.2 ng m-3 in winter (October-April) and 0.8±0.3 ng m-3 in summer (May-September) or 8.8±4.5% of the measured equivalent black carbon (EBC) concentration in winter and 6.1±3.4% in summer. When accounting for chemical degradation of levoglucosan by OH, an upper estimate of 31-45% of EBC could be attributed to ECbb* (ECbb adjusted for chemical degradation) in winter and wild fires during summer, and residential wood burning in winter. The model overestimates by a factor of 2.2 in winter and 4.4 in summer when compared to the observationally derived mean ECbb concentration, which provides the minimum estimate, whereas it

  5. Forest Understory Fire in the Brazilian Amazon in ENSO and Non-ENSO Years: Area Burned and Committed Carbon Emissions

    Science.gov (United States)

    Alencar, A.; Nepstad, D.; Ver-Diaz, M. Del. C.

    2004-01-01

    "Understory fires" that burn the floor of standing forests are one of the most important types of forest impoverishment in the Amazon, especially during the severe droughts of El Nino Southern Oscillation (ENSO) episodes. However, we are aware of no estimates of the areal extent of these fires for the Brazilian Amazon and, hence, of their contribution to Amazon carbon fluxes to the atmosphere. We calculated the area of forest understory fires for the Brazilian Amazon region during an El Nino (1998) and a non El Nino (1995) year based on forest fire scars mapped with satellite images for three locations in eastern and southern Amazon, where deforestation is concentrated. The three study sites represented a gradient of both forest types and dry season severity. The burning scar maps were used to determine how the percentage of forest that burned varied with distance from agricultural clearings. These spatial functions were then applied to similar forest/climate combinations outside of the study sites to derive an initial estimate for the Brazilian Amazon. Ninety-one percent of the forest area that burned in the study sites was within the first kilometer of a clearing for the non ENSO year and within the first four kilometers for the ENSO year. The area of forest burned by understory forest fire during the severe drought (ENSO) year (3.9 millions of hectares) was 13 times greater than the area burned during the average rainfall year (0.2 million hectares), and twice the area of annual deforestation rate. Dense forest was, proportionally, the forest area most affected by understory fires during the El Nino year, while understory fires were concentrated in transitional forests during the year of average rainfall. Our estimate of aboveground tree biomass killed by fire ranged from 0.06 Pg to 0.38 Pg during the ENSO and from 0,004 Pg to 0,024 Pg during the non ENSO.

  6. Improving Large-scale Biomass Burning Carbon Consumption and Emissions Estimates in the Former Soviet Union based on Fire Weather

    Science.gov (United States)

    Westberg, D. J.; Soja, A. J.; Tchebakova, N.; Parfenova, E. I.; Kukavskaya, E.; de Groot, B.; McRae, D.; Conard, S. G.; Stackhouse, P. W., Jr.

    2012-12-01

    Estimating the amount of biomass burned during fire events is challenging, particularly in remote and diverse regions, like those of the Former Soviet Union (FSU). Historically, we have typically assumed 25 tons of carbon per hectare (tC/ha) is emitted, however depending on the ecosystem and severity, biomass burning emissions can range from 2 to 75 tC/ha. Ecosystems in the FSU span from the tundra through the taiga to the forest-steppe, steppe and desserts and include the extensive West Siberian lowlands, permafrost-lain forests and agricultural lands. Excluding this landscape disparity results in inaccurate emissions estimates and incorrect assumptions in the transport of these emissions. In this work, we present emissions based on a hybrid ecosystem map and explicit estimates of fuel that consider the depth of burning based on the Canadian Forest Fire Weather Index System. Specifically, the ecosystem map is a fusion of satellite-based data, a detailed ecosystem map and Alexeyev and Birdsey carbon storage data, which is used to build carbon databases that include the forest overstory and understory, litter, peatlands and soil organic material for the FSU. We provide a range of potential carbon consumption estimates for low- to high-severity fires across the FSU that can be used with fire weather indices to more accurately estimate fire emissions. These data can be incorporated at ecoregion and administrative territory scales and are optimized for use in large-scale Chemical Transport Models. Additionally, paired with future climate scenarios and ecoregion cover, these carbon consumption data can be used to estimate potential emissions.

  7. Thermal oscillations during carbon burning in an electron-degenerate stellar core

    International Nuclear Information System (INIS)

    Carbon-burning reactions in an electron-degenerate core of mass approaching the Chandrasekhar limit initiate a sequence of thermal oscillations. Prominent roles in driving convection near the center are played both by exothermic nuclear reactions and by the rearrangement of electrons in the Fermi sea that accompanies electron capture on 23Na. Convection provides the energy for driving electrons inward from the outer edge of the core, where they are created by the electron decay of 23Ne, to the center. During the high-temperature phase of an oscillation, the neutrinos emitted from regions near the center of the convective core as a consequence of electron capture are an order of magnitude more energetic than antineutrinos emitted from the edge of the core. During the rising temperature phase of an oscillation, the heating produced by exothermic nuclear reactions and by the electron Fermi sea in response to transfers of electrons to and from the sea is greater than the cooling due to Urca-neutrino losses. Rising temperatures cause an increase in the heating rate. The increased flux of energy forces an increase in the size of the convective core and the Urca-neutrino (neutrinloss rate also increases. Eventually the loss rate overtakes the heating rate temperatures in the convective core drop, and the core shrinks in size. The neutrino loss rate does not, at first, drop as rapidly as does the heating rate. Ultimately, however, the neutrino-loss rate drops below the heating rate, and a new heating phase sets in. Once central density reaches the threshold for electron capture on 21Ne, the convective zone breaks into two parts: a new, smaller core, in which 21Ne and 21F play the same role as did 23Na and 23Ne in the old core; and a convective shell whose edges are limited by the thresholds for electron captures on 23Na and21Ne. The shell continues to oscillate thermally

  8. LandCarbon Conterminous United States Burned Area and Severity Mosaics 2001-2050 Metadata

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The burn area and severity data were stochastically generated using a probabilistic ignition model and mechanistic fire-spread model. The ignition model consisted...

  9. Soil organic carbon fractions in a Vertisol under irrigated cotton production as affected by burning and incorporating cotton stubble

    International Nuclear Information System (INIS)

    The contribution of cotton stubble to the soil organic matter content of Vertisols under cotton production is not well understood. A 3-year experiment was conducted at the Australian Cotton Research Institute to study the effects of burning and incorporating cotton stubble on the recovery of fertiliser nitrogen (N), lint yield, and organic matter levels. This study reports on the changes in soil organic matter fractions as affected by burning and incorporating cotton stubble into the soil. Soil samples collected at the start and end of the 3-year experiment were analysed for total carbon (CT), total N (NT), and δ13C (a measure of 13C/12C isotopic ratios). Labile carbon (CL) was determined by ease of oxidation and non-labile carbon (CNL) was calculated as the difference between CT and CL. Based on the changes in CT, CL, and CNL, a carbon management index (CMI) was calculated. Further analyses were made for total polysaccharides (PT), labile polysaccharides (PL), and light fraction C (LF-C). Stubble management did not significantly affect the NT content of the soil. After 3 years, the stubble-incorporated plots had a significantly higher content of CT, CL, and polysaccharides. Incorporation of stubble into the soil increased the CMI by 41%, whereas burning decreased the CMI by 6%. The amount of LF-C obtained after 3 years in the stubble-incorporated soil was almost double that obtained in the stubble-burnt soil. It was concluded that for sustainable management of soil organic matter in the Vertisols used for cotton production, stubble produced in the system should be incorporated instead of burnt. Copyright (1998) CSIRO Publishing

  10. EXPERIMENTAL ANALYSIS AND ISHIKAWA DIAGRAM FOR BURN ON EFFECT ON MANGANESE SILICON ALLOY MEDIUM CARBON STEEL SHAFT

    Directory of Open Access Journals (Sweden)

    AsmamawTegegne

    2013-12-01

    Full Text Available Burn on/metal penetration is one of the surface defects of metal castings in general and steel castings in particular. A research on the effect of burn on the six ton medium carbon steel shaft for making a roller of cold rolled steel sheet produced at one of the metals industry was carried out. The shaft was cast using sand casting by pouring through riser/feeding head step by step (with time interval of pouring. As it was required to use foam casting method for better surface finish and dimensional accuracy of the cast, the pattern was prepared from polystyrene and embedded by silica sand. Physical observations, photographic analysis, visual inspection, measurement of depth of penetration and fish bone diagram were used as method of results analysis. The shaft produced has strongly affected by sand sintering (burn on/metal penetration. Many reasons may be the case for these defects, however analysis results showed that the use of poorly designed gating system led to turbulence flow, uncontrollable high temperature fused the silica sand and liquid polystyrene penetrated the poorly reclaimed and rammed sand mold as a result of which eroded sand has penetrated the liquid metal deeply and reacted with it, consequently after solidification and finishing the required 240mm diameter of the shaft has reduced un evenly to 133mm minimum and 229mm maximum mm that end in the rejection of the shaft from the product since it is below the required standard for the designed application. In addition, it was not possible to remove the adhered sand by grinding. Thus burn on is included in mechanical type burn on.

  11. Impacts of Frequent Burning on Live Tree Carbon Biomass and Demography in Post-Harvest Regrowth Forest

    Directory of Open Access Journals (Sweden)

    Luke Collins

    2014-04-01

    Full Text Available The management of forest ecosystems to increase carbon storage is a global concern. Fire frequency has the potential to shift considerably in the future. These shifts may alter demographic processes and growth of tree species, and consequently carbon storage in forests. Examination of the sensitivity of forest carbon to the potential upper and lower extremes of fire frequency will provide crucial insight into the magnitude of possible change in carbon stocks associated with shifts in fire frequency. This study examines how tree biomass and demography of a eucalypt forest regenerating after harvest is affected by two experimentally manipulated extremes in fire frequency (i.e., ~3 year fire intervals vs. unburnt sustained over a 23 year period. The rate of post-harvest biomass recovery of overstorey tree species, which constituted ~90% of total living tree biomass, was lower within frequently burnt plots than unburnt plots, resulting in approximately 20% lower biomass in frequently burnt plots by the end of the study. Significant differences in carbon biomass between the two extremes in frequency were only evident after >15–20 years of sustained treatment. Reduced growth rates and survivorship of smaller trees on the frequently burnt plots compared to unburnt plots appeared to be driving these patterns. The biomass of understorey trees, which constituted ~10% of total living tree biomass, was not affected by frequent burning. These findings suggest that future shifts toward more frequent fire will potentially result in considerable reductions in carbon sequestration across temperate forest ecosystems in Australia.

  12. Towards multi-tracer data-assimilation: biomass burning and carbon isotope exchange in SiBCASA

    Directory of Open Access Journals (Sweden)

    I. R. van der Velde

    2014-01-01

    Full Text Available We present an enhanced version of the SiBCASA photosynthetic/biogeochemical model for a future integration with a multi-tracer data-assimilation system. We extended the model with (a biomass burning emissions from the SiBCASA carbon pools using remotely sensed burned area from Global Fire Emissions Database (GFED version 3.1, (b a new set of 13C pools that cycle consistently through the biosphere, and (c, a modified isotopic discrimination scheme to estimate variations in 13C exchange as a~response to stomatal conductance. Previous studies suggest that the observed variations of atmospheric 13C/12C are driven by processes specifically in the terrestrial biosphere rather than in the oceans. Therefore, we quantify in this study the terrestrial exchange of CO2 and 13CO2 as a function of environmental changes in humidity and biomass burning. Based on an assessment of observed respiration signatures we conclude that SiBCASA does well in simulating global to regional plant discrimination. The global mean discrimination value is 15.2‰, and ranges between 4 and 20‰ depending on the regional plant phenology. The biomass burning emissions (annually and seasonally compare favorably to other published values. However, the observed short-term changes in discrimination and the respiration 13C signature are more difficult to capture. We see a too weak drought response in SiBCASA and too slow return of anomalies in respiration. We demonstrate possible ways to improve this, and discuss the implications for our current capacity to interpret atmospheric 13C observations.

  13. Anthropogenic, biomass burning, and volcanic emissions of black carbon, organic carbon, and SO2 from 1980 to 2010 for hindcast model experiments

    Directory of Open Access Journals (Sweden)

    D. Streets

    2012-09-01

    Full Text Available Two historical emission inventories of black carbon (BC, primary organic carbon (OC, and SO2 emissions from land-based anthropogenic sources, ocean-going vessels, air traffic, biomass burning, and volcanoes are presented and discussed for the period 1980–2010. These gridded inventories are provided to the internationally coordinated AeroCom Phase II multi-model hindcast experiments. The horizontal resolution is 0.5°×0.5° and 1.0°×1.0°, while the temporal resolution varies from daily for volcanoes to monthly for biomass burning and aircraft emissions, and annual averages for land-based and ship emissions. One inventory is based on inter-annually varying activity rates of land-based anthropogenic emissions and shows strong variability within a decade, while the other one is derived from interpolation between decadal endpoints and thus exhibits linear trends within a decade. Both datasets capture the major trends of decreasing anthropogenic emissions over the USA and Western Europe since 1980, a sharp decrease around 1990 over Eastern Europe and the former USSR, and a steep increase after 2000 over East and South Asia. The inventory differences for the combined anthropogenic and biomass burning emissions in the year 2005 are 34% for BC, 46% for OC, and 13% for SO2. They vary strongly depending on species, year and region, from about 10% to 40% in most cases, but in some cases the inventories differ by 100% or more. Differences in emissions from wild-land fires are caused only by different choices of the emission factors for years after 1996 which vary by a factor of about 1 to 2 for OC depending on region, and by a combination of emission factors and the amount of dry mass burned for years up to 1996. Volcanic SO2 emissions, which are only provided in one inventory, include emissions from explosive, effusive, and quiescent degassing events for 1167 volcanoes.

  14. Facile fabrication of large-scale stable superhydrophobic surfaces with carbon sphere films by burning rapeseed oil

    International Nuclear Information System (INIS)

    Stable anti-corrosive superhydrophobic surfaces were successfully prepared with the carbon nanosphere films by means of depositing the soot of burning rapeseed oil. The method is extremely cheap, facile, time-saving and avoided any of the special equipments, special reagents and complex process control. The method is suitable for the large-scale preparation of superhydrophobic surface and the substrate can be easily changed. The as-prepared surfaces showed stable superhydrophobicity and anti-corrosive property even in many corrosive solutions, such as acidic or basic solutions over a wide pH range. The as-prepared superhydrophobic surface was carefully characterized by the field emission scanning electron microscopy and transmission electron microscope to confirm the synergistic binary geometric structures at micro- and nanometer scale. This result will open a new avenue in the superhydrophobic paint research with these easily obtained carbon nanospheres in the near future.

  15. The application of FORMOSAT-2 high-temporal- and high-spatial resolution imagery for monitoring open straw burning and carbon emission detection

    Directory of Open Access Journals (Sweden)

    C.-C. Liu

    2013-03-01

    Full Text Available Rice is produced in more than 95 countries worldwide and is a staple food for over half of the world's population. Rice is also a major food crop of Taiwan. There are numerous rice crops planted on the western plains of Taiwan, and, after the harvest season, the left-over straw is often burned on-site. The air pollutants from the burning emissions include CO2, CO, CH4 and other suspended particles, most of these being the greenhouse gases which cause global climate change. In this study FORMOSAT-2 satellite images and ground-truth data from 2008 and 2009 are used to conduct supervised classification and calculate the extent of the straw burning areas. It was found that 10% of the paddies in the study area were burned after harvest during this 2-yr period. On this pro rata basis, we calculated the overall carbon emissions from the burning of the straw. The findings showed that these few farmers produced up to 34 000 tons of carbon emissions in 2008, and 40 000 tons in 2009. The study results indicate that remotely sensed images can be used to efficiently evaluate the important characteristics for carbon emission detection. It also provides quantitative results that are relevant to tracking sources of transport pollution, postharvest burning, and Asian dust in Taiwan.

  16. Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions

    OpenAIRE

    Saleh, R.; Hennigan, C. J.; McMeeking, G. R; W. K. Chuang; E. S. Robinson; Coe, H.; Donahue, N. M.; Robinson, A. L.

    2013-01-01

    Experiments were conducted to investigate light absorption of organic aerosol (OA) in fresh and photo-chemically aged biomass-burning emissions. The experiments considered residential hardwood fuel (oak) and fuels commonly consumed in wild-land and prescribed fires in the United States (pocosin pine and gallberry). Photo-chemical aging was performed in an environmental chamber. We constrained the effective light-absorption properties of the OA using conservative limiting assumptions, and foun...

  17. Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions

    OpenAIRE

    Saleh, R.; Hennigan, C. J.; McMeeking, G. R; W. K. Chuang; E. S. Robinson; Coe, H.; Donahue, N. M.; Robinson, A. L.

    2013-01-01

    Experiments were conducted to investigate light absorption of organic aerosol (OA) in fresh and photo-chemically aged biomass-burning emissions. The experiments considered residential hardwood fuel (oak) and fuels commonly consumed in wild-land and prescribed fires in the United States (pocosin pine and gallberry). Photo-chemical aging was performed in an environmental chamber. We constrained the light-absorption properties of the OA using conservative limiting assumptions, and found t...

  18. Increased losses of organic carbon and destabilising of tropical peatlands following deforestation, drainage and burning. (Invited)

    Science.gov (United States)

    Moore, S.; Gauci, V.; Evans, C.; Page, S. E.

    2013-12-01

    Tropical peatlands contain one of the largest pools of terrestrial organic carbon, amounting to about 89,000 teragrams. Approximately 65% of this carbon store is in Indonesia, where extensive anthropogenic degradation in the form of deforestation, drainage and associated fire is converting it into a globally significant source of atmospheric carbon dioxide. Unlike boreal and temperate forests and higher-latitude wetlands, however, the loss of fluvial organic carbon from tropical peats has yet to be fully quantified. Here, we present the first data from intact and degraded peat swamp forest (PSF) catchments in Central Kalimantan, Borneo, that indicate a doubling of fluvial organic carbon losses from tropical peatlands following deforestation and drainage. Through carbon-14 dating of dissolved organic carbon (DO14C), we find that leaching of DOC from intact PSF is derived mainly from recent primary production. In contrast, DOC from disturbed PSF consists mostly of much older carbon from deep within the peat column. When we include this fluvial carbon loss, which is often ignored in peatland carbon budgets, we find that it increases the estimate of total carbon lost from the disturbed peatlands in our study by 22%. We further estimate that since 1990, peatland disturbance has resulted in a 32% increase in fluvial organic carbon flux from Southeast Asia - an increase that equates to more than half of the entire annual fluvial organic carbon flux from all European peatlands. Finally, we monitored fluvial organic carbon fluxes following large-scale peatland fires in 2009/10 within the study sub-catchments and found fluvial carbon fluxes to be 30-70% larger in the fire-affected catchments when compared to fluxes during the same interval in the previous year (pre-fire). This is in marked contrast to the intact catchment (control/no fire) where there were no differences observed in fluxes 'pre to post fire years'. Our sub-catchment findings were also found to be

  19. Reduction of carbon monoxide emissions in burning processes of gaseous fuel mixtures

    International Nuclear Information System (INIS)

    The carbon monoxide produced in the combustion of gaseous fuel mixtures of low hydrocarbon-air content represents a transition component of high risk for living organisms. The limit of admissible concentration of carbon monoxide in the atmosphere is 50 ppm. The paper presents a method of reduction of monoxide carbon present in the combustion emissions which can be can achieved by means of the chemical reaction CO+OH -> H + CO2. The hydroxyl radical can be obtained either by thermic decomposition or by hydrogen injection. (author). 3 figs., 4 refs

  20. Only small changes in soil organic carbon and charcoal concentrations found one year after experimental slash-and-burn in a temperate deciduous forest

    Directory of Open Access Journals (Sweden)

    E. Eckmeier

    2007-02-01

    Full Text Available Anthropogenic fires affected the temperate deciduous forests of Central Europe over millennia. Biomass burning releases carbon to the atmosphere and produces charcoal, which potentially contributes to the stable soil carbon pools and is an important archive of environmental history. The fate of charcoal in soils of temperate deciduous forests, i.e. the processes of charcoal incorporation and transportation, and the effects on soil organic matter are still not clear. In a long-term experimental burning site, we investigated the effects of slash-and-burn and determined soil organic carbon, charcoal carbon and nitrogen concentrations and the soil lightness of colour (L* in the topmost soil material (0–1, 1–2.5 and 2.5–5 cm depths before, immediately after the fire and one year after burning. The main results are that (i only few charcoal particles from the forest floor were incorporated into the soil matrix by soil mixing animals. In 0–1 cm and during one year, the charcoal C concentrations increased only by 0.4 g kg−1 and the proportion of charcoal C to SOC concentrations increased from 2.8 to 3.4%; (ii the SOC concentrations did not show any significant differences; (iii soil lightness significantly decreased in the topmost soil layer and correlated with the concentrations of charcoal C (r=-0.87** and SOC (r=−0.94** in samples 0–5 cm. We concluded that the soil colour depends on the proportion of aromatic charcoal carbon in total organic matter and that Holocene burning could have influenced soil charcoal concentrations and soil colour.

  1. Polar and non-polar organic aerosols from large-scale agricultural-waste burning emissions in Northern India: Implications to organic mass-to-organic carbon ratio.

    Science.gov (United States)

    Rajput, Prashant; Sarin, M M

    2014-05-01

    This study focuses on characteristics of organic aerosols (polar and non-polar) and total organic mass-to-organic carbon ratio (OM/OC) from post-harvest agricultural-waste (paddy- and wheat-residue) burning emissions in Northern India. Aerosol samples from an upwind location (Patiala: 30.2°N, 76.3°E) in the Indo-Gangetic Plain were analyzed for non-polar and polar fractions of organic carbon (OC1 and OC2) and their respective mass (OM1 and OM2). On average, polar organic aerosols (OM2) contribute nearly 85% of the total organic mass (OM) from the paddy- and wheat-residue burning emissions. The water-soluble-OC (WSOC) to OC2 ratio, within the analytical uncertainty, is close to 1 from both paddy- and wheat-residue burning emissions. However, temporal variability and relatively low WSOC/OC2 ratio (Av: 0.67±0.06) is attributed to high moisture content and poor combustion efficiency during paddy-residue burning, indicating significant contribution (∼30%) of aromatic carbon to OC2. The OM/OC ratio for non-polar (OM1/OC1∼1.2) and polar organic aerosols (OM2/OC2∼2.2), hitherto unknown for open agricultural-waste burning emissions, is documented in this study. The total OM/OC ratio is nearly identical, 1.9±0.2 and 1.8±0.2, from paddy- and wheat-residue burning emissions. PMID:24331033

  2. Contribution of brown carbon and lensing to the direct radiative effect of carbonaceous aerosols from biomass and biofuel burning emissions

    Science.gov (United States)

    Saleh, Rawad; Marks, Marguerite; Heo, Jinhyok; Adams, Peter J.; Donahue, Neil M.; Robinson, Allen L.

    2015-10-01

    We present global direct radiative effect (DRE) calculations of carbonaceous aerosols emitted from biomass/biofuel burning addressing the interplay between two poorly constrained contributions to DRE: mixing state of black carbon (lensing) and light absorption by organic aerosol (OA) due to the presence of brown carbon (BrC). We use the parameterization of Saleh et al. (2014) which captures the variability in biomass/biofuel OA absorption. The global mean effect of OA absorption is +0.22 W/m2 and +0.12 W/m2 for externally and internally mixed cases, while the effect of lensing is +0.39 W/m2 and +0.29 W/m2 for nonabsorbing and absorbing OA cases, signifying the nonlinear interplay between OA absorption and lensing. These two effects can be overestimated if not treated simultaneously in radiative transfer calculations. The combined effect of OA absorption and lensing increases the global mean DRE of biomass/biofuel aerosols from -0.46 W/m2 to +0.05 W/m2 and appears to reduce the gap between existing model-based and observationally constrained DRE estimates. We observed a strong sensitivity to these parameters in key regions, where DRE shifts from strongly negative ( +1 W/m2) when accounting for lensing and OA absorption.

  3. Carbon Detonation and Shock-Triggered Helium Burning in Neutron Star Superbursts

    CERN Document Server

    Weinberg, Nevin N

    2007-01-01

    The strong degeneracy of the 12C ignition layer on an accreting neutron star results in a hydrodynamic thermonuclear runaway, in which the nuclear heating time becomes shorter than the local dynamical time. We model the resulting combustion wave during these superbursts as an upward propagating detonation. We solve the reactive fluid flow and show that the detonation propagates through the deepest layers of fuel and drives a shock wave that steepens as it travels upward into lower density material. The shock is sufficiently strong upon reaching the freshly accreted H/He layer that it triggers unstable 4He burning if the superburst occurs during the latter half of the regular Type I bursting cycle; this is likely the origin of the bright Type I precursor bursts observed at the onset of superbursts. The cooling of the outermost shock-heated layers produces a bright, ~0.1s, flash that precedes the Type I burst by a few seconds; this may be the origin of the spike seen at the burst onset in 4U 1820-30 and 4U 1636...

  4. Brown carbon aerosols from burning of boreal peatlands: microphysical properties, emission factors, and implications for direct radiative forcing

    Science.gov (United States)

    Chakrabarty, Rajan K.; Gyawali, Madhu; Yatavelli, Reddy L. N.; Pandey, Apoorva; Watts, Adam C.; Knue, Joseph; Chen, Lung-Wen A.; Pattison, Robert R.; Tsibart, Anna; Samburova, Vera; Moosmüller, Hans

    2016-03-01

    The surface air warming over the Arctic has been almost twice as much as the global average in recent decades. In this region, unprecedented amounts of smoldering peat fires have been identified as a major emission source of climate-warming agents. While much is known about greenhouse gas emissions from these fires, there is a knowledge gap on the nature of particulate emissions and their potential role in atmospheric warming. Here, we show that aerosols emitted from burning of Alaskan and Siberian peatlands are predominantly brown carbon (BrC) - a class of visible light-absorbing organic carbon (OC) - with a negligible amount of black carbon content. The mean fuel-based emission factors for OC aerosols ranged from 3.8 to 16.6 g kg-1. Their mass absorption efficiencies were in the range of 0.2-0.8 m2 g-1 at 405 nm (violet) and dropped sharply to 0.03-0.07 m2 g-1 at 532 nm (green), characterized by a mean Ångström exponent of ≈ 9. Electron microscopy images of the particles revealed their morphologies to be either single sphere or agglomerated "tar balls". The shortwave top-of-atmosphere aerosol radiative forcing per unit optical depth under clear-sky conditions was estimated as a function of surface albedo. Only over bright surfaces with albedo greater than 0.6, such as snow cover and low-level clouds, the emitted aerosols could result in a net warming (positive forcing) of the atmosphere.

  5. Assessing land-use and carbon stock in slash-and-burn ecosystems in tropical mountain of Laos based on time-series satellite images

    OpenAIRE

    Inoue, Yoshio; Kiyono, Yoshiyuki; Asai, Hidetoshi; Ochiai, Yukihito; Qi, Jiaguo; Olioso, Albert; Shiraiwa, Tatsuhiko; HORIE,TAKESHI; Saito, Kazuki; Dounagsavanh, Linkham

    2010-01-01

    In the tropical mountains of Southeast Asia, slash-and-burn (S/B) agriculture is a widely practiced and important food production system. The ecosystem carbon stock in this land-use is linked not only to the carbon exchange with the atmosphere but also with food and resource security. The objective of this study was to provide quantitative information on the land-use and ecosystem carbon stock in the region as well as to infer the impacts of alternative land-use and ecosystem management scen...

  6. Bury or burn North America MSW? LCAs provide answers for climate impacts & carbon neutral power potential.

    Science.gov (United States)

    Morris, Jeffrey

    2010-10-15

    This study uses life cycle assessment (LCA) to compare climate impacts of landfill (LF) and waste-to-energy (WTE) for disposal of municipal solid waste (MSW). To avoid possibly arbitrary assumptions about landfill gas (LFG) capture rates, the study develops a crossover function for LFG capture that indicates the capture rate at which LF and WTE breakeven for climate impacts. Above the crossover rate LF is better for the climate; below WTE is superior. Base case and sensitivity analyses show how this crossover rate is affected by waste composition, electricity conversion efficiency, heat capture, scrap metal recovery, greenhouse gas (GHG) intensity of displaced power, and LCA time horizon. In general, crossover rates are in the 50% to 70% range. Notable exceptions include much higher crossover when WTE has high heat recovery, and much lower crossover for low carbon displaced power. The study also compares GHG emissions for electricity generated by WTE, captured LF methane, coal and natural gas, and concludes that none are carbon neutral. Further, the study tentatively suggests that MSW is a particularly carbon intensive fuel due to GHGs avoidable when readily recyclable materials in MSW are used in manufacturing new products rather than used to generate electricity. PMID:20866062

  7. Pyrogenic carbon from tropical savanna burning: production and stable isotope composition

    Directory of Open Access Journals (Sweden)

    G. Saiz

    2014-10-01

    C4 grasses ranging from 35 to 99% of total biomass. Residues from each fire were partitioned into PyC and further into recalcitrant (HyPyC components, with each of these also partitioned into proximal (> 125 μm and distal (13C compositions of PyC and HyPyC were generally lower by 1–3‰ relative to the original biomass, with marked depletion up to 7 ‰ for grasslands dominated by C4 biomass. δ13C values of CO2 produced by combustion was computed by mass balance and ranged from ~0.4 to 1.3‰. The depletion of 13C in PyC and HyPyC relative to the original biomass has significant implications for the interpretation of δ13C values of savanna soil organic carbon and of ancient PyC preserved in the geologic record, and for global 13C isotopic disequilibria calculations.

  8. Quantifying black carbon from biomass burning by means of levoglucosan - a one-year time series at the Arctic observatory Zeppelin

    Science.gov (United States)

    Yttri, K. E.; Myhre, C. Lund; Eckhardt, S.; Fiebig, M.; Dye, C.; Hirdman, D.; Ström, J.; Klimont, Z.; Stohl, A.

    2014-06-01

    Levoglucosan, a highly specific tracer of particulate matter from biomass burning, has been used to study the influence of residential wood burning, agricultural waste burning and Boreal forest fire emissions on the Arctic atmosphere black carbon (BC) concentration. A one-year time series from March 2008 to March 2009 of levoglucosan has been established at the Zeppelin observatory in the European Arctic. Elevated concentrations of levoglucosan in winter (mean: 1.02 ng m-3) compared to summer (mean: 0.13 ng m-3) were observed, resembling the seasonal variation seen for e.g. sulfate and BC. The mean concentration in the winter period was 2-3 orders of magnitude lower than typical values reported for European urban areas in winter, and 1-2 orders of magnitude lower than European rural background concentrations. Episodes of elevated levoglucosan concentration lasting from 1 to 6 days were more frequent in winter than in summer and peak values were higher, exceeding 10 ng m-3 at the most. Concentrations of elemental carbon from biomass burning (ECbb) were obtained by combining measured concentrations of levoglucosan and emission ratios of levoglucosan and EC for wildfires/agricultural fires and for residential wood burning. Neglecting chemical degradation by OH provides minimum levoglucosan concentrations, corresponding to a mean ECbb concentration of 3.7 ± 1.2 ng m-3 in winter (October-April) and 0.8 ± 0.3 ng m-3 in summer (May-September), or 8.8 ± 4.5% of the measured equivalent black carbon (EBC) concentration in winter and 6.1 ± 3.4% in summer. When accounting for chemical degradation of levoglucosan by OH, an upper estimate of 31-45% of EBC could be attributed to ECbb* (ECbb adjusted for chemical degradation) in winter, whereas no reliable (agricultural fires/wildfires during summer, and residential wood burning in winter. The model overestimates by a factor of 2.2 in winter and 4.4 in summer when compared to the observationally derived mean ECbb concentration

  9. Diurnal variations of organic molecular tracers and stable carbon isotopic compositions in atmospheric aerosols over Mt. Tai in North China Plain: an influence of biomass burning

    Directory of Open Access Journals (Sweden)

    Z. F. Wang

    2012-04-01

    Full Text Available Organic tracer compounds of tropospheric aerosols, as well as organic carbon (OC, elemental carbon (EC, water-soluble organic carbon (WSOC, and stable carbon isotope ratios (δ13C of total carbon (TC have been investigated for aerosol samples collected during early and late periods of Mount Tai eXperiment 2006 (MTX2006 field campaign in North China Plain. Total solvent extracts were investigated by gas chromatography/mass spectrometry. More than 130 organic compounds were detected in the aerosol samples. They were grouped into twelve organic compound classes, including biomass burning tracers, biogenic primary sugars, biogenic secondary organic aerosol (SOA tracers, and anthropogenic tracers such as phthalates, hopanes and polycyclic aromatic hydrocarbons (PAHs. In early June when the field burning activities of wheat straws in North China Plain were very active, the total identified organics (2090 ± 1170 ng m−3 were double those in late June (926 ± 574 ng m−3. All the compound classes were more abundant in early June than in late June, except phthalate esters, which were higher in late June. Levoglucosan (88–1210 ng m−3, 403 ng m−3 was found as the most abundant single compound in early June, while diisobutyl phthalate was the predominant species in late June. During the biomass-burning period in early June, the diurnal trends of most of the primary and secondary organic aerosol tracers were characterized by the concentration peaks observed at mid-night or in early morning, while in late June most of the organic species peaked in late afternoon. This suggests that smoke plumes from biomass burning can uplift the aerosol particulate matter to a certain altitude and then transported to and encountered the summit of Mt. Tai during nighttime. On the basis of the tracer-based method for the estimation of biomass-burning OC, fungal-spore OC and biogenic secondary organic carbon (SOC

  10. Diurnal variations of organic molecular tracers and stable carbon isotopic composition in atmospheric aerosols over Mt. Tai in the North China Plain: an influence of biomass burning

    Directory of Open Access Journals (Sweden)

    P. Q. Fu

    2012-09-01

    Full Text Available Organic tracer compounds, as well as organic carbon (OC, elemental carbon (EC, water-soluble organic carbon (WSOC, and stable carbon isotope ratios (δ13C of total carbon (TC have been investigated in aerosol samples collected during early and late periods of the Mount Tai eXperiment 2006 (MTX2006 field campaign in the North China Plain. Total solvent-extractable fractions were investigated by gas chromatography/mass spectrometry. More than 130 organic compounds were detected in the aerosol samples. They were grouped into twelve organic compound classes, including biomass burning tracers, biogenic primary sugars, biogenic secondary organic aerosol (SOA tracers, and anthropogenic tracers such as phthalates, hopanes and polycyclic aromatic hydrocarbons (PAHs. In early June when the field burning activities of wheat straws in the North China Plain were very active, the total identified organics (2090 ± 1170 ng m−3 were double those in late June (926 ± 574 ng m−3. All the compound classes were more abundant in early June than in late June, except phthalate esters, which were higher in late June. Levoglucosan (88–1210 ng m−3, mean 403 ng m−3 was found as the most abundant single compound in early June, while diisobutyl phthalate was the predominant species in late June. During the biomass-burning period in early June, the diurnal trends of most of the primary and secondary organic aerosol tracers were characterized by the concentration peaks observed at mid-night or in early morning, while in late June most of the organic species peaked in late afternoon. This suggests that smoke plumes from biomass burning can uplift the aerosol particulate matter to a certain altitude, which could be further transported to and encountered the summit of Mt. Tai during nighttime. On the basis of the tracer-based method for the estimation of biomass-burning OC, fungal-spore OC and biogenic secondary

  11. Scavenging of biomass burning refractory black carbon and ice nuclei in a Western Pacific extratropical storm

    Directory of Open Access Journals (Sweden)

    J. L. Stith

    2011-01-01

    Full Text Available In situ airborne sampling of refractory black carbon (rBC particles and Ice Nuclei (IN was conducted in and near an extratropical cyclonic storm in the Western Pacific Ocean during the Pacific Dust Experiment, PACDEX, in the spring of 2007. Airmass origins were from Eastern Asia. Cloud hydrometeors were evaporated by a counterflow virtual impactor and the residue was sampled by a single particle soot photometer (SP2 instrument and a continuous flow diffusion chamber ice nucleus detector. Clouds associated primarily with the warm sector of the storm were sampled at various locations and altitudes. In storm midlevels at temperatures where heterogeneous freezing is expected to be significant (here −24 to −29 °C, IN measurements from ice particle residues generally agreed well with simultaneous measurements of total ice concentrations provided that the measurements were made at ambient temperatures similar to those in the CFDC chamber, suggesting heterogeneous freezing as the dominant ice formation process in the mid levels of these warm sector clouds. Lower in the storm, at warmer temperatures (−22 to −6.4 °C, ice particle concentrations were similar to IN concentrations at CFDC chamber temperatures representative of colder temperatures. This is consistent with ice particles forming at storm mid-levels by heterogeneous freezing on IN, followed by sedimentation to lower altitudes. Homogeneous freezing did not appear to contribute significantly to midlevel ice concentrations and rime-splintering was also unlikely due to the absence of significant supercooled liquid water in the warm sector clouds. IN number concentrations were typically about a~factor of five to ten lower than simultaneous measurements of rBC concentrations in cloud.

  12. Effects of erosion in the fate of soil organic carbon and soil aggregation in a burned Mediterranean hill-slope

    Science.gov (United States)

    Campo, Julian; Cammeraat, Erik; Gimeno-García, Eugenia; Andreu, Vicente

    2016-04-01

    The Intergovernmental Panel on Climate Change indicated a higher degree of confidence that meteorological conditions associated to climate change will be propitious to increasing extreme events manifested, among others, in bigger and more frequent wildfires (IPCC, 2014). Wildfires contribute to shaping the landscape, and also the geomorphological and hydrological processes that operate on soil are affected (Bento-Gonçalves et al., 2012). Whereas, it is well documented that wildfires produce significant changes on erosion processes, the associated fate of soil organic carbon (SOC) has received less attention. This research assesses this gap by studying the loss, redistribution, and stabilization of SOC in a Mediterranean forest hill-slope burned the 28-08-2014, with high severity fire, at the Natural Park of Sierra de Espadán, Spain (39°50'45.11"N, 0°22'20.52"W). To this end, soil was sampled (19-9-2014) in the foot's slope (depositional), middle part (transport) and top (eroding) at two depths (burned areas experiencing soil erosion, transport and deposition, with special attention to the role of aggregation and disaggregation in redistribution processes. Immediately after the fire, SOC content was high (≈50 gC kg-1) as well as the AS (water drop test>146 drops). Significant differences (ANOVA, pBS) and soil depths (topsoil>subsoil). However, no significant differences were observed among eroding (58.8+20.8 gC kg-1), transport (67.3+34.4 gC kg-1), and depositional zones (62.0+31.3 gC kg-1), which is not in agreement with other SOC redistribution studies (Wang et al., 2014). Significant differences (Kruskal-Wallis, pBS) but not between soil depths or hill-slope positions. In the first post-fire erosive rains occurred in the area (29-11-14), closest pluviometer (Sot de Ferrer: 4.5 km) registered a total daily rain up to 64.2 l m-2. In this event a total of 12.7 kg of sediment were collected (contributing area ≈0.25 ha), with a content of 252.6 gC kg-1 the

  13. Emissions of Black Carbon, Organic, and Inorganic Aerosols From Biomass Burning in North America and Asia in 2008

    Science.gov (United States)

    Kondo, Y.; Matsui, H.; Moteki, N.; Sahu, L.; Takegawa, N.; Kajino, M.; Zhao, Y.; Cubison, M. J.; Jimenez, J. L.; Vay, S.; Diskin, G. S.; Anderson, B.; Wisthaler, A.; Mikoviny, T.; Fuelberg, H. E.; Blake, D. R.; Huey, G.; Weinheimer, A. J.; Knapp, D. J.; Brune, W. H.

    2011-01-01

    Reliable assessment of the impact of aerosols emitted from boreal forest fires on the Arctic climate necessitates improved understanding of emissions and the microphysical properties of carbonaceous (black carbon (BC) and organic aerosols (OA)) and inorganic aerosols. The size distributions of BC were measured by an SP2 based on the laser-induced incandescence technique on board the DC-8 aircraft during the NASA ARCTAS campaign. Aircraft sampling was made in fresh plumes strongly impacted by wildfires in North America (Canada and California) in summer 2008 and in those transported from Asia (Siberia in Russia and Kazakhstan) in spring 2008. We extracted biomass burning plumes using particle and tracer (CO, CH3CN, and CH2Cl2) data. OA constituted the dominant fraction of aerosols mass in the submicron range. The large majority of the emitted particles did not contain BC. We related the combustion phase of the fire as represented by the modified combustion efficiency (MCE) to the emission ratios between BC and other species. In particular, we derived the average emission ratios of BC/CO = 2.3 +/- 2.2 and 8.5 +/- 5.4 ng/cu m/ppbv for BB in North America and Asia, respectively. The difference in the BC/CO emission ratios is likely due to the difference in MCE. The count median diameters and geometric standard deviations of the lognormal size distribution of BC in the BB plumes were 136-141 nm and 1.32-1.36, respectively, and depended little on MCE. These BC particles were thickly coated, with shell/core ratios of 1.3-1.6. These parameters can be used directly for improving model estimates of the impact of BB in the Arctic.

  14. Emission characteristics of black carbon in anthropogenic and biomass burning plumes over California during ARCTAS-CARB 2008

    Science.gov (United States)

    Sahu, L. K.; Kondo, Y.; Moteki, N.; Takegawa, N.; Zhao, Y.; Cubison, M. J.; Jimenez, J. L.; Vay, S.; Diskin, G. S.; Wisthaler, A.; Mikoviny, T.; Huey, L. G.; Weinheimer, A. J.; Knapp, D. J.

    2012-08-01

    The impact of aerosols on regional air quality and climate necessitates improved understanding of their emission and microphysical properties. The size distributions of black carbon (BC) and light scattering particles (LSP) were measured with a single particle soot photometer on board the NASA DC-8 aircraft during the ARCTAS mission 2008. Air sampling was made in the air plumes of both urban and forest fire emissions over California during the CARB (California Air Resources Board) phase of the mission. A total of eleven plumes were identified using SO2 and CH3CN tracers for fossil fuel (FF) combustion and biomass burning (BB), respectively. The enhancements of BC and LSP in BB plumes were significantly higher compared to those in FF plumes. The average mass concentration of BC in BB plumes was more than twice that in FF plumes. Except for the BC/CO ratio, distinct emission ratios of BC/CO2, BC/CH3CN, CH3CN/CO, and CO/CO2 were observed in the plumes from the two sources. Similarly, the microphysical properties of BC and LSP also showed distinct behaviors. The BC count median diameter (CMD) of 115 ± 5 nm in FF plumes was smaller compared to 141 ± 9 nm in the BB plumes. BC aerosols were thickly coated in BB plumes, the average shell/core ratios were 1.47 and 1.24 in BB and FF plumes, respectively. In the total mass of submicron aerosols, organic aerosols constituted about 67% in the FF plumes and 84% in BB plumes. The contribution of sulfate was also significant in the FF plumes.

  15. Burn Rehabilitation

    OpenAIRE

    Koray Aydemir; Mehmet Ali Taşkaynatan

    2011-01-01

    Burn injuries are important in terms of causing serious disability and threatening life. With the establishment of modern burn treatment units and advances in acute care management contributed to a reduced mortality rate over the last decades. As a result of improved outcome, more attention has to be given to a comprehensive burn rehabilitation program. Burn rehabilitation is a process that starts from day of admission and continues for months or sometimes years after the initial event. The t...

  16. Assessing land-use and carbon stock in slash-and-burn ecosystems in tropical mountain of Laos based on time-series satellite images

    Science.gov (United States)

    Inoue, Yoshio; Kiyono, Yoshiyuki; Asai, Hidetoshi; Ochiai, Yukihito; Qi, Jiaguo; Olioso, Albert; Shiraiwa, Tatsuhiko; Horie, Takeshi; Saito, Kazuki; Dounagsavanh, Linkham

    2010-08-01

    In the tropical mountains of Southeast Asia, slash-and-burn (S/B) agriculture is a widely practiced and important food production system. The ecosystem carbon stock in this land-use is linked not only to the carbon exchange with the atmosphere but also with food and resource security. The objective of this study was to provide quantitative information on the land-use and ecosystem carbon stock in the region as well as to infer the impacts of alternative land-use and ecosystem management scenarios on the carbon sequestration potential at a regional scale. The study area was selected in a typical slash-and-burn region in the northern part of Laos. The chrono-sequential changes of land-use such as the relative areas of community age and cropping (C) + fallow (F) patterns were derived from the analysis of time-series satellite images. The chrono-sequential analysis showed that a consistent increase of S/B area during the past three decades and a rapid increase after 1990. Approximately 37% of the whole area was with the community age of 1-5 years, whereas 10% for 6-10 years in 2004. The ecosystem carbon stock at a regional scale was estimated by synthesizing the land-use patterns and semi-empirical carbon stock model derived from in situ measurements where the community age was used as a clue to the linkage. The ecosystem carbon stock in the region was strongly affected by the land-use patterns; the temporal average of carbon stock in 1C + 10F cycles, for example, was greater by 33 MgC ha -1 compared to that in 1C + 2F land-use pattern. The amount of carbon lost from the regional ecosystems during 1990-2004 periods was estimated to be 42 MgC ha -1. The study approach proved to be useful especially in such regions with low data-availability and accessibility. This study revealed the dynamic change of land-use and ecosystem carbon stock in the tropical mountain of Laos as affected by land-use. Results suggest the significant potential of carbon sequestration through

  17. Burn Rehabilitation

    Directory of Open Access Journals (Sweden)

    Koray Aydemir

    2011-07-01

    Full Text Available Burn injuries are important in terms of causing serious disability and threatening life. With the establishment of modern burn treatment units and advances in acute care management contributed to a reduced mortality rate over the last decades. As a result of improved outcome, more attention has to be given to a comprehensive burn rehabilitation program. Burn rehabilitation is a process that starts from day of admission and continues for months or sometimes years after the initial event. The term ‘burn rehabilitation’ incorporates the physical, physiological and social aspects of care. Burns can leave a patient with severely debilitating and deforming contractures, which can lead to significant disability when left untreated. Burn rehabilitation aims to prevent the possible complications, minimalize joint contractures and deformities, increase range of motion, control hypertrophic scarring, achieve the best possible functional capacity and to regain the patients vocational and recreational activities. (Journal of the Turkish Society Intensive Care 2011; 9 Suppl: 70-7

  18. Effects of erosion in the fate of soil organic carbon and soil aggregation in a burned Mediterranean hill-slope

    Science.gov (United States)

    Campo, Julian; Cammeraat, Erik; Gimeno-García, Eugenia; Andreu, Vicente

    2016-04-01

    The Intergovernmental Panel on Climate Change indicated a higher degree of confidence that meteorological conditions associated to climate change will be propitious to increasing extreme events manifested, among others, in bigger and more frequent wildfires (IPCC, 2014). Wildfires contribute to shaping the landscape, and also the geomorphological and hydrological processes that operate on soil are affected (Bento-Gonçalves et al., 2012). Whereas, it is well documented that wildfires produce significant changes on erosion processes, the associated fate of soil organic carbon (SOC) has received less attention. This research assesses this gap by studying the loss, redistribution, and stabilization of SOC in a Mediterranean forest hill-slope burned the 28-08-2014, with high severity fire, at the Natural Park of Sierra de Espadán, Spain (39°50'45.11"N, 0°22'20.52"W). To this end, soil was sampled (19-9-2014) in the foot's slope (depositional), middle part (transport) and top (eroding) at two depths (collected from four sediment fences constructed at the foot's slope, and together with soil samples, analysed with regard to SOC content and aggregate stability (AS). The main objective is to increase the understanding on the fate of SOC in Mediterranean burned areas experiencing soil erosion, transport and deposition, with special attention to the role of aggregation and disaggregation in redistribution processes. Immediately after the fire, SOC content was high (≈50 gC kg-1) as well as the AS (water drop test>146 drops). Significant differences (ANOVA, pBS) and soil depths (topsoil>subsoil). However, no significant differences were observed among eroding (58.8+20.8 gC kg-1), transport (67.3+34.4 gC kg-1), and depositional zones (62.0+31.3 gC kg-1), which is not in agreement with other SOC redistribution studies (Wang et al., 2014). Significant differences (Kruskal-Wallis, pBS) but not between soil depths or hill-slope positions. In the first post-fire erosive rains

  19. Influence of biomass burning and anthropogenic emissions on ozone, carbon monoxide and black carbon at the Mt. Cimone GAW-WMO global station (Italy, 2165 m a.s.l.)

    OpenAIRE

    Cristofanelli, P; Fierli, F.; Marinoni, A.; Calzolari, F; Duchi, R.; Burkhart, J.; A. Stohl; M. Maione; Arduini, J.; Bonasoni, P.

    2013-01-01

    This work investigates the variability of ozone (O3), carbon monoxide (CO) and equivalent black carbon (BC) at the Italian Climate Observatory "O. Vittori" (ICO-OV), part of the Mt. Cimone global GAW-WMO station (Italy). For this purpose, ICO-OV observations carried out in the period January 2007–June 2009, have been analyzed and correlated with the outputs of the FLEXPART Lagrangian dispersion model to specifically evaluate the influence of biomass burning (BB) and ant...

  20. Organic aerosols and inorganic species from post-harvest agricultural-waste burning emissions over northern India: impact on mass absorption efficiency of elemental carbon.

    Science.gov (United States)

    Rajput, Prashant; Sarin, M M; Sharma, Deepti; Singh, Darshan

    2014-01-01

    Atmospheric PM2.5 (particulate matter with aerodynamic diameter of ≤ 2.5 μm), collected from a source region [Patiala: 30.2 °N; 76.3 °E; 250 m above mean sea level] of emissions from post-harvest agricultural-waste (paddy-residue) burning in the Indo-Gangetic Plain (IGP), North India, has been studied for its chemical composition and impact on regional atmospheric radiative forcing. On average, organic aerosol mass accounts for 63% of PM2.5, whereas the contribution of elemental carbon (EC) is ∼3.5%. Sulphate, nitrate and ammonium contribute up to ∼85% of the total water-soluble inorganic species (WSIS), which constitutes ∼23% of PM2.5. The potassium-to-organic carbon ratio from paddy-residue burning emissions (KBB(+)/OC: 0.05 ± 0.01) is quite similar to that reported from Amazonian and Savanna forest-fires; whereas non-sea-salt-sulphate-to-OC ratio (nss-SO4(2-)/OC: 0.21) and nss-SO4(2-)/EC ratio of 2.6 are significantly higher (by factor of 5 to 8). The mass absorption efficiency of EC (3.8 ± 1.3 m(2) g(-1)) shows significant decrease with a parallel increase in the concentrations of organic aerosols and scattering species (sulphate and nitrate). A cross plot of OC/EC and nss-SO4(2-)/EC ratios show distinct differences for post-harvest burning emissions from paddy-residue as compared to those from fossil-fuel combustion sources in south-east Asia. PMID:25124269

  1. Uplifting of carbon monoxide from biomass burning and anthropogenic sources to the free troposphere in East Asia

    Science.gov (United States)

    Ding, K.; Liu, J.; Ding, A.; Liu, Q.; Zhao, T. L.; Shi, J.; Han, Y.; Wang, H.; Jiang, F.

    2015-03-01

    East Asia has experienced rapid development with increasing carbon monoxide (CO) emission in the past decades. Therefore, uplifting CO from the boundary layer to the free troposphere in East Asia can have great implications on regional air quality around the world. It can also influence global climate due to the longer lifetime of CO at higher altitudes. In this study, three cases of high CO episodes in the East China Sea and the Sea of Japan from 2003 to 2005 are examined with spaceborne Measurements of Pollution in the Troposphere (MOPITT) data, in combination with aircraft measurements from the Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) program. High CO abundances of 300-550 ppbv are observed in MOZAIC data in the free troposphere during these episodes. These are among the highest CO abundances documented at these altitudes. On average, such episodes with CO over 400 ppbv (in the 2003 and 2004 cases) and between 200 and 300 ppbv (in the 2005 case) may occur 2-5 and 10-20% in time, respectively, in the respective altitudes over the region. Correspondingly, elevated CO is shown in MOPITT daytime data in the middle to upper troposphere in the 2003 case, in the lower to middle troposphere in the 2004 case, and in the upper troposphere in the 2005 case. Through analyses of the simulations from a chemical transport model GEOS-Chem and a trajectory dispersion model FLEXPART, we found different CO signatures in the elevated CO and distinct transport pathways and mechanisms for these cases. In the 2003 case, emissions from large forest fires near Lake Baikal dominated the elevated CO, which had been rapidly transported upward by a frontal system from the fire plumes. In the 2004 case, anthropogenic CO from the North China Plain experienced frontal lifting and mostly reached ~ 700 hPa near the East China Sea, while CO from biomass burning over Indochina experienced orographic lifting, lee-side-trough-induced convection, and frontal lifting

  2. Impacts of Frequent Burning on Live Tree Carbon Biomass and Demography in Post-Harvest Regrowth Forest

    OpenAIRE

    Luke Collins; Trent Penman; Fabiano de Aquino Ximenes; Doug Binns; Alan York; Ross Bradstock

    2014-01-01

    The management of forest ecosystems to increase carbon storage is a global concern. Fire frequency has the potential to shift considerably in the future. These shifts may alter demographic processes and growth of tree species, and consequently carbon storage in forests. Examination of the sensitivity of forest carbon to the potential upper and lower extremes of fire frequency will provide crucial insight into the magnitude of possible change in carbon stocks associated with shifts in fire fre...

  3. Burning Issue: Handling Household Burns

    Science.gov (United States)

    ... take steps to avoid household burns. Never leave cooking food unattended on the stove. Set your water heater’s thermostat to 120 °F or lower to prevent scalding burns. And install smoke alarms on every floor of your home. Keep yourself and your family safe from unexpected ...

  4. Effects of the 2006 El Nino on Tropospheric Ozone and Carbon Monoxide: Implications for Dynamics and Biomass Burning

    Science.gov (United States)

    Chandra, S.; Ziemke, J. R.; Duncan, B. N.; Diehl, t. L.

    2008-01-01

    We have studied the effects of the 2006 El Nino on tropospheric O3 and CO at tropical and sub-tropical latitudes measured from the OMI and MLS instruments on the Aura satellite. The 2006 El Nino-induced drought allowed forest fires set to clear land to burn out of control during October and November in the Indonesian region. The effects of these fires are clearly seen in the enhancement of GO concentration measured from the MLS instrument. We have used a global model of atmospheric chemistry and transport (GMI CTM) to quantify the relative irrrportance of biomass burning and large scale transport: in producing observed changes in tropospheric O3 and CO . The model results show that during October and November both biomass burning and meteorological changes contributed almost equally to the observed increase in tropospheric O3 in the Indonesian region. The biomass component was 4-6 DU but it was limited to the Indonesian region where the fires were most intense, The dynamical component was 4-8 DU but it covered a much larger area in the Indian Ocean extending from South East Asia in the north to western Australia in the south. By December 2006, the effect of biomass taming was reduced to zero and the obsemed changes in tropospheric O3 were mostly due to dynamical effects. The model results show an increase of 2-3% in the global burden of tropospheric ozone. In comparison, the global burdean of CO increased by 8-12%.

  5. Evaluation of wound healing activity of Thunbergia laurifolia supercritical carbon dioxide extract in rats with second-degree burn wounds

    Directory of Open Access Journals (Sweden)

    Juthaporn Kwansang

    2015-01-01

    Full Text Available Thunbergia laurifolia Lindl (TL has been traditionally used as an antidote, anti-inflammatory, and anti-drug addiction. This study investigated the burn wound healing activity of TL leaf extract (TLL from supercritical CO 2 extraction in rats. The extract was prepared to 2.5%, 5%, and 10% gel (TLL gel. Rats were induced to second-degree burn wounds. They were randomly divided into six groups (six rats/group, which five groups were topically applied gel base, 1% silver sulfadiazine gel, 2.5%, 5%, and 10% TLL gel, respectively, for 14 days. Six untreated burn rats were used as the control group. The rats in each group were evaluated for wound healing rate, histological parameters, and wound collagen content. Rats treated with 10% TLL gel had a higher wound healing rate than rats in the control and untreated groups. An increase in collagen content, which indicates good regeneration of wound skin, was observed in the TLL treated rats from a pathological study by Masson′s trichrome and collagen content assay. The results from this study suggest that T. laurifolia leaf extract obtained by supercritical CO 2 extraction promotes the recovery of wound skin by shortening the inflammation phase, increasing collagen content, and stimulating fibroblasts proliferation and migration in wound healing.

  6. Burning Mouth Syndrome

    Science.gov (United States)

    ... OralHealth > Topics > Burning Mouth Syndrome > Burning Mouth Syndrome Burning Mouth Syndrome Main Content Key Points Symptoms Diagnosis Primary and Secondary BMS Treatment Helpful Tips Key Points Burning mouth syndrome is burning pain in the mouth that may ...

  7. Fine particles and carbon monoxide from wood burning in 17th-19th century Danish kitchens: Measurements at two reconstructed farm houses at the Lejre Historical-Archaeological Experimental Center

    DEFF Research Database (Denmark)

    Ryhl-Svendsen, Morten; Clausen, Geo; Chowdhury, Z.;

    2010-01-01

    Carbon monoxide (CO) and particulate matter (PM2.5) were measured in two reconstructed Danish farmhouses (17-19th century) during two weeks of summer. During the first week intensive measurements were performed while test cooking fires were burned, during the second week the houses were monitored...

  8. Uplifting of carbon monoxide from biomass burning and anthropogenic sources to the free troposphere in East Asia

    Directory of Open Access Journals (Sweden)

    K. Ding

    2014-11-01

    Full Text Available East Asia has experienced rapid development with increasing CO emission in the past decades. Therefore, uplifting CO from the boundary layer to the free troposphere in East Asia can have great implications on regional air quality. It can also influence global climate due to the longer lifetime of CO at higher altitudes. In this study, three cases of high CO episodes in East Asia from 2003 to 2005 are examined with spaceborne Measurements Of Pollution In The Troposphere (MOPITT data, in combination with aircraft measurements from the Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC program. High CO abundances of 300–550 ppbv were observed in MOZAIC data in the free troposphere during these episodes. These are among the highest CO abundances documented at these altitudes. Correspondingly, elevated CO was shown in MOPITT daytime data in the middle to upper troposphere in the 2003 case, mostly in the lower to middle troposphere in the 2004 case, and in the upper troposphere in the 2005 case. Through analyses of the simulations from a chemical transport model GEOS-Chem and a trajectory dispersion model FLEXPART, we found different CO signatures in the elevated CO and distinct transport pathways and mechanisms for these cases. In the 2003 case, CO from large forest fires near Lake Baikal dominated the elevated CO, which had been rapidly transported upward by a~frontal system from the fire plumes. In the 2004 case, anthropogenic CO from the North China Plain experienced frontal lifting and mostly reached ~ 700 hPa near the East China Sea, while CO from biomass burning from Indochina experienced orographic lifting, leeside-trough induced convection, and frontal lifting through two separate transport pathways, leading to two distinct CO enhancements around 700 hPa and 300 hPa. In the 2005 case, high CO of ~ 300 ppbv, observed in the MOZAIC data around 350 hPa, originated from the anthropogenic source over the vicinity of the

  9. Sulfone-carbonate ternary electrolyte with further increased capacity retention and burn resistance for high voltage lithium ion batteries

    Science.gov (United States)

    Xue, Leigang; Lee, Seung-Yul; Zhao, Zuofeng; Angell, C. Austen

    2015-11-01

    Safety and high energy density are the two focus issues for current lithium ion batteries. For safety, it has been demonstrated that sulfone electrolytes are much less flammable than the prevailing all-carbonate type, and they are also promising for high voltage batteries due to the high oxidization resistance. However, the high melting points and viscosities greatly restricted their application. Based on our previous work on use of fluidity-enhancing cosolvents to make binary sulfone-carbonate electrolytes, we report here a three-component system that is more conductive and should be even less flammable while additionally having better low temperature stability. The conductivity-viscosity relations have been determined for this electrolyte and are comparable to those of the "standard" carbonate electrolyte. The additional component also produces much improved capacity retention for the LiNi0.5Mn1.5O4 cathode. As with carbonate electrolytes, increase of temperature to 55 °C leads to rapid capacity decrease during cycling, but the capacity loss is due to the salt, not the solvent. The high discharge capacity observed at 25 °C when LiBF4 replaces LiPF6, is fully retained at 55 °C.

  10. Diesel vehicle and urban burning contributions to black carbon concentrations and size distributions in Tijuana, Mexico, during the Cal-Mex 2010 campaign

    Science.gov (United States)

    Takahama, S.; Russell, L. M.; Shores, C. A.; Marr, L. C.; Zheng, J.; Levy, M.; Zhang, R.; Castillo, E.; Rodriguez-Ventura, J. G.; Quintana, P. J. E.; Subramanian, R.; Zavala, M.; Molina, L. T.

    2014-05-01

    Black carbon (BC) was characterized by three complementary techniques - incandescence (single particle soot photometer, SP2, at Parque Morelos), light absorption (cavity ringdown spectrometer with integrating nephelometer, CRDS-Neph, at Parque Morelos and Aethalometers at seven locations), and volatility (volatility tandem differential mobility analyzer, V-TDMA) during the Cal-Mex 2010 campaign. SP2, CRDS-Neph, and Aethalometer measurements characterized the BC mass, and SP2 and V-TDMA measurements also quantified BC-containing particle number, from which mass-mean BC diameters were calculated. On average, the mass concentrations measured in Tijuana (1.8 ± 2.6 μg m-3 at Parque Morelos and 2.6 μg m-3 in other regions of Tijuana) were higher than in San Diego or the international border crossing (0.5 ± 0.6 μg m-3). The observed BC mass concentrations were attributable to nighttime urban burning activities and diesel vehicles, both from the local (Baja California) and transported (Southern California) diesel vehicle fleets. Comparisons of the SP2 and co-located Aethalometers indicated that the two methods measured similar variations in BC mass concentrations (correlation coefficients greater than 0.85), and the mass concentrations were similar for the BC particles identified from nighttime urban burning sources. When the BC source changed to diesel vehicle emissions, the SP2 mass concentrations were lower than the Aethalometer mass concentrations by about 50%, likely indicating a change in the mass absorption efficiency and quantification by the Aethalometers. At Parque Morelos there were up to three different-sized modes of BC mass in particles: one mode below 100 nm, one near 100 nm, and another between 200 and 300 nm. The mode between 200 and 300 nm was associated with urban burning activities that influenced the site during evening hours. When backtrajectories indicated that airmasses came from the south to the Parque Morelos site, BC mass in particles was

  11. Evaluation of the carbon content of aerosols from the burn- ing of biomass in the Brazilian Amazon using thermal, op- tical and thermal-optical analysis methods

    Energy Technology Data Exchange (ETDEWEB)

    Soto-Garcia, Lydia L.; Andreae, Meinrat O.; Andreae, Tracey W.; taxo, Paulo Ar-; Maenhaut, Willy; Kirchstetter, Thomas; Novakov, T.; Chow, Judith C.; Mayol-Bracero, Olga L.

    2011-06-03

    Aerosol samples were collected at a pasture site in the Amazon Basin as part of the project LBA-SMOCC-2002 (Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall and Climate: Aerosols from Biomass Burning Perturb Global and Regional Climate). Sampling was conducted during the late dry season, when the aerosol composition was dominated by biomass burning emissions, especially in the submicron fraction. A 13-stage Dekati low-pressure impactor (DLPI) was used to collect particles with nominal aerodynamic diameters (D{sub p}) ranging from 0.03 to 0.10 m. Gravimetric analyses of the DLPI substrates and filters were performed to obtain aerosol mass concentrations. The concentrations of total, apparent elemental, and organic carbon (TC, EC{sub a}, and OC) were determined using thermal and thermal-optical analysis (TOA) methods. A light transmission method (LTM) was used to determine the concentration of equivalent black carbon (BC{sub e}) or the absorbing fraction at 880 nm for the size-resolved samples. During the dry period, due to the pervasive presence of fires in the region upwind of the sampling site, concentrations of fine aerosols (D{sub p} < 2.5 {mu}m: average 59.8 {mu}g m{sup -3}) were higher than coarse aerosols (D{sub p} > 2.5 {mu}m: 4.1 {mu}g m{sup -3}). Carbonaceous matter, estimated as the sum of the particulate organic matter (i.e., OC x 1.8) plus BC{sub e}, comprised more than 90% to the total aerosol mass. Concentrations of EC{sub a} (estimated by thermal analysis with a correction for charring) and BCe (estimated by LTM) averaged 5.2 {+-} 1.3 and 3.1 {+-} 0.8 {mu}g m{sup -3}, respectively. The determination of EC was improved by extracting water-soluble organic material from the samples, which reduced the average light absorption {angstrom} exponent of particles in the size range of 0.1 to 1.0 {mu}m from > 2.0 to approximately 1.2. The size-resolved BC{sub e} measured by the LTM showed a clear maximum between 0.4 and

  12. Technology for the Recovery of Fuel and Adsorbent Carbons from Coal Burning Utility Ash Ponds and Landfills

    Energy Technology Data Exchange (ETDEWEB)

    J.G. Groppo; T.L. Robl

    2005-09-30

    Several sampling techniques were evaluated to recover representative core samples from the ash ponds at Western Kentucky Energy's Coleman Station. The most successful was a combination of continuous-flight augers and specially designed soft-sediment sampling tubes driven by a Hammerhead drill mounted on an amphibious ARGO vehicle. A total of 51 core samples were recovered and analyzed in 3 ft sections and it was determined that there are 1,354,974 tons of ash in Pond C. Of the over 1.35M tons of ash present, 14% or 190K tons can be considered as coarse (+100 mesh). Pond C contains approximately 88K tons of carbon, nearly half of which is coarse and potentially recoverable with spiral concentration while the fine carbon (-100 mesh) is recoverable with froth flotation. There are 1.27M tons of carbon-free ash, 12% of which is coarse and potentially usable as block sand. Spiral concentration testing on bulk samples showed that product grade of 30 to 38% C (4200 to 5500 Btu/lb) was obtainable. When this product was cleaned again in an additional stage of spiral concentration, the product grade was improved to 7200 to 8200 Btu/lb with an accompanying 13 to 29% decrease in yield. Release analysis of hydraulically classified pond ash showed that froth flotation could provide froth products with as high a grade as 9000 Btu/lb with a yield of 5%. Increasing yield to 10% reduced froth grade to 7000 Btu/lb. Batch flotation provided froth grades as high as 6500 Btu/lb with yields of 7% with 1.5 lb/ton SPP and 1 lb/ton frother. Column flotation test results were similar to those achieved in batch flotation in terms of both grade and yield, however, carbon recoveries were lower (<70%). High airflow rate was required to achieve >50% carbon recovery and using wash water improved froth grade. Bottom ash samples were recovered from each of the units at Coleman Station. Characterization confirmed that sufficient quantity and quality of material is generated to produce a

  13. Uplifting of carbon monoxide from biomass burning and anthropogenic sources to the free troposphere in East Asia

    Science.gov (United States)

    Ding, Ke; Liu, Jane; Ding, Aijun; Liu, Qiang; Zhao, Tianliang; Shi, Jiancheng; Han, Yong; Wang, Hengmao; Jiang, Fei

    2016-04-01

    East Asia has experienced rapid development with increasing carbon monoxide (CO) emission in the past decades. Therefore, uplifting CO from the boundary layer to the free troposphere in East Asia can have great implications on regional air quality around the world. It can also influence global climate due to the longer lifetime of CO at higher altitudes. In this study, three cases of high CO episodes in the East China Sea and the Sea of Japan from 2003 to 2005 are examined with spaceborne Measurements of Pollution in the Troposphere (MOPITT) data, in combination with aircraft measurements from the Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) program. Through analyses of the simulations from a chemical transport model GEOS-Chem and a trajectory dispersion model FLEXPART, we found different CO signatures in the elevated CO and distinct transport pathways and mechanisms for these cases.

  14. Bioprocesses for removal of carbon dioxide and nitrogen oxide by microalgae for the utilization of gas generated during coal burning

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Michele Greque de; Costa, Jorge Alberto Vieira [Fundacao Universidade Federal do Rio Grande, Rio Grande (Brazil)

    2008-07-01

    The aim of this work was to study the removal of CO{sub 2} and NO by microalgae and to evaluate the kinetic characteristics of the cultures. Spirulina sp. showed {mu}{sub max} and X{sub max} (0.11 d{sup -1}, 1.11 g L{sup -1} d{sup -1}) when treated with CO{sub 2} and NaNO{sub 3}. The maximum CO{sub 2} removal was 22.97% for S. obliquus treated with KNO{sub 3} and atmospheric CO{sub 2}. The S. obliquus showed maximum NO removal (21.30%) when treated with NO and CO{sub 2}. Coupling the cultivation of these microalgae with the removal of CO{sub 2} and NO has the potential not only to reduce the costs of culture media but also to offset carbon and nitrogen emissions. 19 refs., 3 figs., 2 tabs.

  15. Burning plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Furth, H.P.; Goldston, R.J.; Zweben, S.J. (Princeton Univ., NJ (USA). Plasma Physics Lab.); Sigmar, D.J. (Massachusetts Inst. of Tech., Cambridge, MA (USA))

    1990-10-01

    The fraction of fusion-reaction energy that is released in energetic charged ions, such as the alpha particles of the D-T reaction, can be thermalized within the reacting plasma and used to maintain its temperature. This mechanism facilitates the achievement of very high energy-multiplication factors Q, but also raises a number of new issues of confinement physics. To ensure satisfactory reaction operation, three areas of energetic-ion interaction need to be addressed: single-ion transport in imperfectly symmetric magnetic fields or turbulent background plasmas; energetic-ion-driven (or stabilized) collective phenomena; and fusion-heat-driven collective phenomena. The first of these topics is already being explored in a number of tokamak experiments, and the second will begin to be addressed in the D-T-burning phase of TFTR and JET. Exploration of the third topic calls for high-Q operation, which is a goal of proposed next-generation plasma-burning projects. Planning for future experiments must take into consideration the full range of plasma-physics and engineering R D areas that need to be addressed on the way to a fusion power demonstration.

  16. Century-long Record of Black Carbon in an Ice Core from the Eastern Pamirs: Estimated Contributions from Biomass Burning

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Mo; Xu, B.; Kaspari, Susan D.; Gleixner, Gerd; Schwab, Valerie; Zhao, Huabiao; Wang, Hailong; Yao, Ping

    2015-08-01

    We analyzed refractory black carbon (rBC) in an ice core spanning 1875-2000 AD from Mt. Muztagh Ata, the Eastern Pamirs, using a Single Particle Soot Photometer (SP2). Additionally a pre-existing levoglucosan record from the same ice core was used to differentiate rBC that originated from open fires, energy-related combustion of biomass, and fossil fuel combustion. Mean rBC concentrations increased four-fold since the mid-1970s and reached maximum values at the end of 1980s. The observed decrease of the rBC concentrations during the 1990s was likely driven by the economic recession of former USSR countries in Central Asia. Levoglucosan concentrations showed a similar temporal trend to rBC concentrations, exhibiting a large increase around 1980 AD followed by a decrease in the 1990s that was likely due to a decrease in energy-related biomass combustion. The time evolution of levoglucosan/rBC ratios indicated stronger emissions from open fires during the 1940s-1950s, while the increase in rBC during the 1980s-1990s was caused from an increase in energy-related combustion of biomass and fossil fuels.

  17. Century-long record of black carbon in an ice core from the Eastern Pamirs: Estimated contributions from biomass burning

    Science.gov (United States)

    Wang, Mo; Xu, Baiqing; Kaspari, Susan D.; Gleixner, Gerd; Schwab, Valérie F.; Zhao, Huabiao; Wang, Hailong; Yao, Ping

    2015-08-01

    We analyzed refractory black carbon (rBC) in an ice core spanning 1875-2000 AD from Mt. Muztagh Ata, the Eastern Pamirs, using a Single Particle Soot Photometer (SP2). Additionally a pre-existing levoglucosan record from the same ice core was used to differentiate rBC that originated from open fires, energy-related combustion of biomass, and fossil fuel combustion. Mean rBC concentrations increased four-fold since the mid-1970s and reached maximum values at end of the 1980s. The observed decrease of the rBC concentrations during the 1990s was likely driven by the economic recession of former USSR countries in Central Asia. Levoglucosan concentrations showed a similar temporal trend to rBC concentrations, exhibiting a large increase around 1980 AD followed by a decrease in the 1990s that was likely due to a decrease in energy-related biomass combustion. The time evolution of levoglucosan/rBC ratios indicated stronger emissions from open fires during the 1940s-1950s, while the increase in rBC during the 1980s-1990s was caused from an increase in energy-related combustion of biomass and fossil fuels.

  18. Difference in production routes of water-soluble organic carbon in PM2.5 observed during non-biomass and biomass burning periods in Gwangju, Korea.

    Science.gov (United States)

    Yu, Geun-Hye; Cho, Sung-Yong; Bae, Min-Suk; Park, Seung-Shik

    2014-07-01

    4 h integrated PM2.5 samples were collected from an urban site of Gwangju, Korea, for five days and analyzed for organic carbon and elemental carbon (OC and EC), total water-soluble OC (WSOC), hydrophilic and hydrophobic WSOC fractions (WSOCHPI and WSOCHPO), oxalate, and inorganic ionic species (sodium (Na(+)), ammonium (NH4(+)), potassium (K(+)), calcium (Ca(2+)), magnesium (Mg(2+)), chloride (Cl(-)), nitrate (NO3(-)), and sulfate (SO4(2-))) to investigate the possible sources of water-soluble organic aerosols. Two types of sampling periods were classified according to the regression relationship between black carbon (BC) concentrations measured at wavelengths of 370 nm (BC370nm) and 880 nm (BC880nm) using an aethalometer; the first period was traffic emission influence ("non-biomass burning (BB) period") and the second was biomass burning influence ("BB period"). The slope of the regression equation (BC370nm/BC880nm) was 0.95 for the non-BB period and 1.29 for the BB period. However, no noticeable difference in the WSOC/OC ratio, which can be used to infer the extent of secondary organic aerosol (SOA) formation, was found between the non-BB (0.61, range = 0.43-0.75) and BB (0.61, range = 0.52-0.68) periods, due to significant contribution of primary BB emissions to the WSOC. The concentrations of OC, WSOC and K(+), which were used as the BB emission markers, were 15.7 μg C m(-3) (11.5-24.3), 9.4 μg C m(-3) (7.0-12.7), and 1.2 μg m(-3) (0.6-2.7), respectively, during the BB period, and these results were approximately 1.7, 1.7, and 3.9 times higher than those during the non-BB period. During the non-BB period, good correlations among WSOC, SO4(2-) and oxalate, and poor correlations among WSOC, EC, and K(+) suggest that SOA is probably an important source of WSOC (and WSOCHPI) concentration. For the WSOC fractions, better correlations among WSOCHPI, oxalate (R(2) = 0.52), and SO4(2-) (R(2) = 0.57) were found than among WSOCHPO, oxalate (R(2) = 0.23), and SO4

  19. Uncertainty assessment of source attribution of PM(2.5) and its water-soluble organic carbon content using different biomass burning tracers in positive matrix factorization analysis--a case study in Beijing, China.

    Science.gov (United States)

    Tao, Jun; Zhang, Leiming; Zhang, Renjian; Wu, Yunfei; Zhang, Zhisheng; Zhang, Xiaoling; Tang, Yixi; Cao, Junji; Zhang, Yuanhang

    2016-02-01

    Daily PM2.5 samples were collected at an urban site in Beijing during four one-month periods in 2009-2010, with each period in a different season. Samples were subject to chemical analysis for various chemical components including major water-soluble ions, organic carbon (OC) and water-soluble organic carbon (WSOC), element carbon (EC), trace elements, anhydrosugar levoglucosan (LG), and mannosan (MN). Three sets of source profiles of PM2.5 were first identified through positive matrix factorization (PMF) analysis using single or combined biomass tracers - non-sea salt potassium (nss-K(+)), LG, and a combination of nss-K(+) and LG. The six major source factors of PM2.5 included secondary inorganic aerosol, industrial pollution, soil dust, biomass burning, traffic emission, and coal burning, which were estimated to contribute 31±37%, 39±28%, 14±14%, 7±7%, 5±6%, and 4±8%, respectively, to PM2.5 mass if using the nss-K(+) source profiles, 22±19%, 29±17%, 20±20%, 13±13%, 12±10%, and 4±6%, respectively, if using the LG source profiles, and 21±17%, 31±18%, 19±19%, 11±12%, 14±11%, and 4±6%, respectively, if using the combined nss-K(+) and LG source profiles. The uncertainties in the estimation of biomass burning contributions to WSOC due to the different choices of biomass burning tracers were around 3% annually and up to 24% seasonally in terms of absolute percentage contributions, or on a factor of 1.7 annually and up to a factor of 3.3 seasonally in terms of the actual concentrations. The uncertainty from the major source (e.g. industrial pollution) was on a factor of 1.9 annually and up to a factor of 2.5 seasonally in the estimated WSOC concentrations. PMID:26595400

  20. Burns in diabetic patients

    OpenAIRE

    Maghsoudi, Hemmat; Aghamohammadzadeh, Naser; Khalili, Nasim

    2008-01-01

    CONTEXT AND AIMS: Diabetic burn patients comprise a significant population in burn centers. The purpose of this study was to determine the demographic characteristics of diabetic burn patients. MATERIALS AND METHODS: Prospective data were collected on 94 diabetic burn patients between March 20, 2000 and March 20, 2006. Of 3062 burns patients, 94 (3.1%) had diabetes; these patients were compared with 2968 nondiabetic patients with burns. Statistical analysis was performed using the statistical...

  1. Burning Mouth Syndrome and "Burning Mouth Syndrome".

    Science.gov (United States)

    Rifkind, Jacob Bernard

    2016-03-01

    Burning mouth syndrome is distressing to both the patient and practitioner unable to determine the cause of the patient's symptoms. Burning mouth syndrome is a diagnosis of exclusion, which is used only after nutritional deficiencies, mucosal disease, fungal infections, hormonal disturbances and contact stomatitis have been ruled out. This article will explore the many causes and treatment of patients who present with a chief complaint of "my mouth burns," including symptomatic treatment for those with burning mouth syndrome. PMID:27209717

  2. Burn Injuries: Burn Depth, Physiopathology and Type of Burns

    OpenAIRE

    Kemalettin Koltka

    2011-01-01

    A significant burn injury is a serious and mortal event. The most important threat to life is hypovolemic shock with complex pathophysiologic mechanisms. Burn depth is classified as first, second, or third degree. Local inflammatory response results a vasodilatation and an increase in vascular permeability. A burn injury is a three dimensional ischemic wound. Zone of coagulation is the zone with maximum damage. Zone of stasis consists of damaged but viable tissues, the tissue is salvageable. ...

  3. Burn Injuries: Burn Depth, Physiopathology and Type of Burns

    Directory of Open Access Journals (Sweden)

    Kemalettin Koltka

    2011-07-01

    Full Text Available A significant burn injury is a serious and mortal event. The most important threat to life is hypovolemic shock with complex pathophysiologic mechanisms. Burn depth is classified as first, second, or third degree. Local inflammatory response results a vasodilatation and an increase in vascular permeability. A burn injury is a three dimensional ischemic wound. Zone of coagulation is the zone with maximum damage. Zone of stasis consists of damaged but viable tissues, the tissue is salvageable. In zone of hyperemia tissue perfusion is increased. At the beginning, cardiac output falls and systemic vascular resistance increases; cardiac performance improves as hypovolemia is corrected with fluid resuscitation. While cardiac output increases systemic vascular resistance falls below normal values and a hypermetabolic state develops. Pulmonary vascular resistance increases immediately after thermal injury and this is more prolonged. To avoid secondary pulmonary complications, the smallest resuscitation volume of fluids that maintains adequate tissue perfusion should be given. Changes parallel to the cardiovascular response develop in other organ systems. The reasons of burn injury can be thermal, electrical, chemical or radiation. It is important to know the exact mechanism of burn injury because of different therapies for a specific cause. In this review information about burn depth, local and systemic responses to burn injury and major causes of burn injury are presented. (Journal of the Turkish Society Intensive Care 2011; 9 Suppl:1-6

  4. Treating and Preventing Burns

    Science.gov (United States)

    ... Issues Listen Español Text Size Email Print Share Treating and Preventing Burns Page Content Article Body Burns ... home, out of children’s reach, and away from heat or ignition sources. Lower the temperature of your ...

  5. Burns and Fire Safety

    Science.gov (United States)

    ... Tap water burns most often occur in the bathroom and tend to be more severe and cover a larger portion of the body than other scald burns. 9 10 11 A survey found that only 8 percent of adults felt ...

  6. Optimization of burn referrals

    DEFF Research Database (Denmark)

    Reiband, Hanna K; Lundin, Kira; Alsbjørn, Bjarne;

    2014-01-01

    INTRODUCTION: Correct estimation of the severity of burns is important to obtain the right treatment of the patient and to avoid over- and undertriage. In this study we aimed to assess how often the guidelines for referral of burn injured patients are met at the national burn centre (NBC), Denmar...

  7. First Aid: Burns

    Science.gov (United States)

    ... Story" 5 Things to Know About Zika & Pregnancy First Aid: Burns KidsHealth > For Parents > First Aid: Burns Print A A A Text Size Scald ... THIS TOPIC Kitchen: Household Safety Checklist Fireworks Safety First Aid: Sunburn Firesetting Fire Safety Burns Household Safety: Preventing ...

  8. Understanding the Crystallinity Indices Behavior of Burned Bones and Teeth by ATR-IR and XRD in the Presence of Bioapatite Mixed with Other Phosphate and Carbonate Phases

    OpenAIRE

    Giampaolo Piga; David Gonçalves; T. J. U. Thompson; Antonio Brunetti; Assumpció Malgosa; Stefano Enzo

    2016-01-01

    We have critically investigated the ATR-IR spectroscopy data behavior of burned human teeth as opposed to the generally observed behavior in human bones that were subjected to heat treatment, whether deliberate or accidental. It is shown that the deterioration of the crystallinity index (CI) behavior sometimes observed in bones subjected to high temperature appears to be of higher frequency in the case of bioapatite from teeth. This occurs because the formation of the β-tricalcium phosphate (...

  9. Burn wound coverage and burn wound closure

    Czech Academy of Sciences Publication Activity Database

    Konigová, R.; Matoušková, Eva; Brož, L.

    2000. s. 9. [International Symposium and Course on Burns and Fire Desaster Management. Jerusalem Meeting /3./. 13.02.2000-16.02.2000, Jerusalem] R&D Projects: GA MZd IZ4368 Subject RIV: EB - Genetics ; Molecular Biology

  10. Revised (Mixed-Effects) Estimation for Forest Burning Emissions of Gases and Smoke, Fire/Emission Factor Typology, and Potential Remote Sensing Classification of Types for Ozone and Black-Carbon Simulation

    Science.gov (United States)

    Chatfield, Robert B.; Segal Rozenhaimer, M.

    2014-01-01

    We summarize recent progress (a) in correcting biomass burning emissions factors deduced from airborne sampling of forest fire plumes, (b) in understanding the variability in reactivity of the fresh plumes sampled in ARCTAS (2008), DC3 (2012), and SEAC4RS (2013) airborne missions, and (c) in a consequent search for remotely sensed quantities that help classify forest-fire plumes. Particle properties, chemical speciation, and smoke radiative properties are related and mutually informative, as pictures below suggest (slopes of lines of same color are similar). (a) Mixed-effects (random-effects) statistical modeling provides estimates of both emission factors and a reasonable description of carbon-burned simultaneously. Different fire plumes will have very different contributions to volatile organic carbon reactivity; this may help explain differences of free NOx(both gas- and particle-phase), and also of ozone production, that have been noted for forest-fire plumes in California. Our evaluations check or correct emission factors based on sequential measurements (e.g., the Normalized Ratio Enhancement and similar methods). We stress the dangers of methods relying on emission-ratios to CO. (b) This work confirms and extends many reports of great situational variability in emissions factors. VOCs vary in OH reactivity and NOx-binding. Reasons for variability are not only fuel composition, fuel condition, etc., but are confused somewhat by rapid transformation and mixing of emissions. We use "unmixing" (distinct from mixed-effects) statistics and compare briefly to approaches like neural nets. We focus on one particularly intense fire the notorious Yosemite Rim Fire of 2013. In some samples, NOx activity was not so suppressed by binding into nitrates as in other fires. While our fire-typing is evolving and subject to debate, the carbon-burned delta(CO2+CO) estimates that arise from mixed effects models, free of confusion by background-CO2 variation, should provide a

  11. Effects of the 2006 El Niño on tropospheric ozone and carbon monoxide: implications for dynamics and biomass burning

    OpenAIRE

    Chandra, S.; Ziemke, J. R.; B. N. Duncan; T. L. Diehl; Livesey, N. J.; Froidevaux, L.

    2009-01-01

    We have studied the effects of the 2006 El Niño on tropospheric O3 and CO at tropical and sub-tropical latitudes measured from the OMI and MLS instruments on the Aura satellite. The 2006 El Niño-induced drought caused forest fires (largely set to clear land) to burn out of control during October and November in the Indonesian region. The effects of these fires are clearly seen in the enhancement of CO concentration measured from the MLS instrument. We have used a global...

  12. Influence of biomass burning and anthropogenic emissions on ozone, carbon monoxide and black carbon concentrations at the Mt. Cimone GAW-WMO global station (Italy, 2165 m a.s.l.

    Directory of Open Access Journals (Sweden)

    P. Cristofanelli

    2012-08-01

    Full Text Available This work investigates the variability of ozone (O3, carbon monoxide (CO and equivalent black carbon (BC concentrations at the Italian Climate Observatory "O. Vittori" (ICO-OV, part of the Mt. Cimone global GAW-WMO station (Italy. For this purpose, ICO-OV observations carried out in the period January 2007–June 2009, have been analysed and correlated with the output of the FLEXPART Lagrangian dispersion model to specifically evaluate the influence of biomass burning (BB and anthropogenic emissions younger than 20 days. During the investigation period, the average O3, CO and BC concentrations at ICO-OV were 54 ± 3 ppbv, 122 ± 7 ppbv and 213 ± 34 ng m−3 (mean ± expanded uncertainty with p<95%, with clear seasonal cycles characterized by summer maxima and winter minima for O3 and BC and spring maximum and summer minimum for CO.

    According to FLEXPART output, BB impact is maximized during the warm months from July to September but appeared to have a significant contribution to the observed tracer concentrations only during specific transport events. We characterised in detail five major events with respect to transport scales (i.e. global, regional and local, source regions and O3, CO and BC variations. For these events, very large variability of enhancement ratios O3/CO (from −0.22 to 0.71 and BC/CO (from 2.69 to 29.83 ng m−3 ppbv−1 were observed.

    CO related with anthropogenic emissions (COant contributed to 17.4% of the mean CO value observed at ICO-OV, with the warm months appearing particularly affected by transport events of air-masses rich in anthropogenic pollution. The proportion of tracer variability that is described by FLEXPART COant peaked to 37% (in May–September for CO, 19% (in May–September for O3 and 32% (in January–April for BC. During May–September, the analysis of

  13. Influence of biomass burning and anthropogenic emissions on ozone, carbon monoxide and black carbon at the Mt. Cimone GAW-WMO global station (Italy, 2165 m a.s.l.

    Directory of Open Access Journals (Sweden)

    P. Cristofanelli

    2013-01-01

    Full Text Available This work investigates the variability of ozone (O3, carbon monoxide (CO and equivalent black carbon (BC at the Italian Climate Observatory "O. Vittori" (ICO-OV, part of the Mt. Cimone global GAW-WMO station (Italy. For this purpose, ICO-OV observations carried out in the period January 2007–June 2009, have been analyzed and correlated with the outputs of the FLEXPART Lagrangian dispersion model to specifically evaluate the influence of biomass burning (BB and anthropogenic emissions younger than 20 days. During the investigation period, the average O3, CO and BC at ICO-OV were 54 ± 3 ppb, 122 ± 7 ppb and 213 ± 34 ng m−3 (mean ± expanded uncertainty with p < 95%, with clear seasonal cycles characterized by summer maxima and winter minima for O3 and BC and spring maximum and summer minimum for CO.

    According to FLEXPART outputs, BB impact is maximized during the warm months from July to September but appeared to have a significant contribution to the observed tracers only during specific transport events. We characterised in detail five "representative" events with respect to transport scales (i.e. global, regional and local, source regions and O3, CO and BC variations. For these events, very large variability of enhancement ratios O3/CO (from −0.22 to 0.71 and BC/CO (from 2.69 to 29.83 ng m−3 ppb−1 were observed.

    CO contributions related with anthropogenic emissions (COant contributed to 17.4% of the mean CO value observed at ICO-OV, with the warm months appearing particularly affected by transport events of air-masses rich in anthropogenic pollution. The proportion of tracer variability that is described by FLEXPART COant peaked to 37% (in May–September for CO, 19% (in May–September for O3 and 32% (in January–April for BC. During May–September, the analysis of the correlation

  14. Burn mouse models

    DEFF Research Database (Denmark)

    Calum, Henrik; Høiby, Niels; Moser, Claus

    2014-01-01

    Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third-degree b......Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third...... with infected burn wound compared with the burn wound only group. The burn mouse model resembles the clinical situation and provides an opportunity to examine or develop new strategies like new antibiotics and immune therapy, in handling burn wound victims much....

  15. Burns and epilepsy.

    Science.gov (United States)

    Berrocal, M

    1997-01-01

    This is a report of the first descriptive analytic study of a group of 183 burn patients, treated in the Burn Unit at the University Hospital of Cartagena, Colombia during the period since January 1985 until December 1990. There is presented experience with the selected group of 24 patients in whom the diagnosis of burn was associated with epilepsy. There is also analysed and described the gravity of the scars sequels, neurological disorders, the complication of the burn and an impact of this problem on the patient, his (her) family and the community. It is very important to report that there was found Neurocisticercosis in 66.6% of the group of burn patients with epilepsy, and it is probably the first risk factor of burn in this group. PMID:9212488

  16. Perineal Burns in Children

    OpenAIRE

    Ameh AEmmanuel

    2004-01-01

    Perineal burns are not common in childhood but when they occur, they can produce severe complications. Conservative management by open wound care and topical agents is effective in most cases. However, in deep burns and when control of infection proves problematic, diverting colostomy may be necessary to control infection and achieve wound healing and graft take. Burns wound excision and skin grafting may be required in such cases. Contractures of various forms may develop and require plastic...

  17. Temporal trends in atmospheric PM₂.₅, PM₁₀, elemental carbon, organic carbon, water-soluble organic carbon, and optical properties: impact of biomass burning emissions in the Indo-Gangetic Plain.

    Science.gov (United States)

    Ram, Kirpa; Sarin, M M; Tripathi, S N

    2012-01-17

    The first simultaneous measurements and analytical data on atmospheric concentrations of PM(2.5), PM(10), inorganic constituents, carbonaceous species, and their optical properties (aerosol optical depth, AOD; absorption coefficient, b(abs); mass absorption efficiency, σ(abs); and single scattering albedo, SSA) from an urban site (Kanpur) in the Indo-Gangetic Plain are reported here. Significantly high aerosol mass concentration (>100 μg m(-3)) and AOD (> 0.3) are seen as a characteristic feature throughout the sampling period, from October 2008 to April 2009. The temporal variability in the mass fractions of carbonaceous species (EC, OC, and WSOC) is pronounced during October-January when emissions from biomass burning are dominant and OC is a major constituent (∼30%) of PM(2.5) mass. The WSOC/OC ratio varies from 0.21 to 0.65, suggesting significant contribution from secondary organic aerosols (SOAs). The mass fraction of SO(4)(2-) in PM(2.5) (Av: 12.5%) exceeds that of NO(3)(-) and NH(4)(+). Aerosol absorption coefficient (@ 678 nm) decreases from 90 Mm(-1) (in December) to 20 Mm(-1) (in April), and a linear regression analysis of the data for b(abs) and EC (n = 54) provides a measure of the mass absorption efficiency of EC (9.6 m(2) g(-1)). In contrast, scattering coefficient (@ 678 nm) increases from 98 Mm(-1) (in January) to 1056 Mm(-1) (in April) and an average mass scattering efficiency of 3.0 ± 0.9 m(2) g(-1) is obtained for PM(10) samples. The highest b(scat) was associated with the dust storm event (April 17, 2009) over northern Iraq, eastern Syria, and southern Turkey; thus, resulting in high SSA (0.93 ± 0.02) during March-April compared to 0.82 ± 0.04 in October-February. These results have implications to large temporal variability in the atmospheric radiative forcing due to aerosols over northern India. PMID:22192056

  18. Fossil fuel burning in Taylor Valley, southern Victoria Land, Antarctica: Estimating the role of scientific activities on carbon and nitrogen reservoirs and fluxes

    International Nuclear Information System (INIS)

    Particulate organic and elemental carbon and nitrogen as well as NOx fluxes from scientific activities have been computed for Taylor Valley, Antarctica (∼78degree S). These authropogenic fluxes have been compared to both the natural fluxes and landscape reservoirs as determined from Long-Term Ecological Research (LTER) investigations in the valley. The anthropogenic, nongaseous carbon fluxes are minor compared to the natural fluxes, while the anthropogenic NOx flux may be potentially important over decadal time scales

  19. Biomass burning and the disappearing tropical rainforest

    International Nuclear Information System (INIS)

    The author discusses the implications of reduced biological diversity as a result of slash and burn agriculture in the tropical rainforest. The importance of global management of forests to prevent a buildup of carbon dioxide and the resulting greenhouse effect is emphasized

  20. Burns and military clothing.

    Science.gov (United States)

    McLean, A D

    2001-02-01

    Burn injury is a ubiquitous threat in the military environment. The risks during combat are well recognised, but the handling of fuel, oil, munitions and other hot or flammable materials during peacetime deployment and training also imposes an inherent risk of accidental burn injury. Over the last hundred years, the burn threat in combat has ranged from nuclear weapons to small shoulder-launched missiles. Materials such as napalm and white phosphorus plainly present a risk of burn, but the threat extends to encompass personnel in vehicles attacked by anti-armour weapons, large missiles, fuel-air explosives and detonations/conflagrations on weapons platforms such as ships. Large numbers of burn casualties were caused at Pearl Harbor, in Hiroshima and Nagasaki, Vietnam, during the Arab/Israeli Wars and in the Falkland Islands conflict. The threat from burns is unlikely to diminish, indeed new developments in weapons seek to exploit the vulnerability of the serviceman and servicewoman to burns. Clothing can be a barrier to some types of burn--both inherently in the properties of the material, but also by trapping air between clothing layers. Conversely, ignition of the clothing may exacerbate a burn. There is hearsay that burnt clothing products within a wound may complicate the clinical management, or that materials that melt (thermoplastic materials) should not be worn if there is a burn threat. This paper explores the incidence of burn injury, the mechanisms of heat transfer to bare skin and skin covered by materials, and the published evidence for the complication of wound management by materials. Even light-weight combat clothing can offer significant protection to skin from short duration flash burns; the most vulnerable areas are the parts of the body not covered--face and hands. Multilayered combat clothing can offer significant protection for short periods from engulfment by flames; lightweight tropical wear with few layers offers little protection. Under

  1. Crude oil burning mechanisms

    DEFF Research Database (Denmark)

    van Gelderen, Laurens; Malmquist, Linus Mattias Valdemar; Jomaas, Grunde

    2015-01-01

    In order to improve predictions for the burning efficiency and the residue composition of in-situ burning of crude oil, the burning mechanism of crude oil was studied in relation to the composition of its hydrocarbon mixture, before, during and after the burning. The surface temperature, flame...... height, mass loss rate and residues of three hydrocarbon liquids (n-octane, dodecane and hexadecane), two crude oils (DUC and REBCO) and one hydrocarbon liquid mixture of the aforementioned hydrocarbon liquids were studied using the Crude Oil Flammability Apparatus. The experimental results were compared...... to the predictions of four conceptual models that describe the burning mechanism of multicomponent fuels. Based on the comparisons, hydrocarbon liquids were found to be best described by the Equilibrium Flash Vaporization model, showing a constant gas composition and gasification rate. The...

  2. Burning mouth syndrome

    Directory of Open Access Journals (Sweden)

    K A Kamala

    2016-01-01

    Full Text Available Burning mouth syndrome (BMS is multifactorial in origin which is typically characterized by burning and painful sensation in an oral cavity demonstrating clinically normal mucosa. Although the cause of BMS is not known, a complex association of biological and psychological factors has been identified, suggesting the existence of a multifactorial etiology. As the symptom of oral burning is seen in various pathological conditions, it is essential for a clinician to be aware of how to differentiate between symptom of oral burning and BMS. An interdisciplinary and systematic approach is required for better patient management. The purpose of this study was to provide the practitioner with an understanding of the local, systemic, and psychosocial factors which may be responsible for oral burning associated with BMS, and review of treatment modalities, therefore providing a foundation for diagnosis and treatment of BMS.

  3. Carbon Emissions from Residue Burn Piles Estimated Using LiDAR or Ground Based Measurements of Pile Volumes in a Coastal Douglas-Fir Forest

    Science.gov (United States)

    Trofymow, J. A.; Coops, N.; Hayhurst, D.

    2012-12-01

    Following forest harvest, residues left on site and roadsides are often disposed of to reduce fire risk and free planting space. In coastal British Columbia burn piles are the main method of disposal, particularly for accumulations from log processing. Quantification of residue wood in piles is required for: smoke emission estimates, C budget calculations, billable waste assessment, harvest efficiency monitoring, and determination of bioenergy potentials. A second-growth Douglas-fir dominated (DF1949) site on eastern Vancouver Island and subject of C flux and budget studies since 1998, was clearcut in winter 2011, residues piled in spring and burned in fall. Prior to harvest, the site was divided into 4 blocks to account for harvest plans and ecosite conditions. Total harvested wood volume was scaled for each block. Residue pile wood volume was determined by a standard Waste and Residue Survey (WRS) using field estimates of pile base area and plot density (wood volume / 0.005 ha plot) on 2 piles per block, by a smoke emissions geometric method with pile volumes estimated as ellipsoidal paraboloids and packing ratios (wood volume / pile volume) for 2 piles per block, as well as by five other GIS methods using pile volumes and areas from LiDAR and orthophotography flown August 2011, a LiDAR derived digital elevation model (DEM) from 2008, and total scaled wood volumes of 8 sample piles disassembled November 2011. A weak but significant negative relationship was found between pile packing ratio and pile volume. Block level avoidable+unavoidable residue pile wood volumes from the WRS method (20.0 m3 ha-1 SE 2.8) were 30%-50% of the geometric (69.0 m3 ha-1 SE 18.0) or five GIS/LiDAR (48.0 to 65.7 m3 ha-1 ) methods. Block volumes using the 2008 LiDAR DEM (unshifted 48.0 m3 ha-1 SE 3.9, shifted 53.6 m3 ha-1 SE 4.2) to account for pre-existing humps or hollows beneath piles were not different from those using the 2011 LiDAR DEM (50.3 m3 ha-1 SE 4.0). The block volume ratio

  4. Geographic patterns of carbon dioxide emissions from fossil-fuel burning, hydraulic cement production, and gas flaring on a one degree by one degree grid cell basis: 1950 to 1990

    Energy Technology Data Exchange (ETDEWEB)

    Brenkert, A.L. [ed.] [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Andres, R.J. [Univ. of Alaska, Fairbanks, AK (United States). Inst. of Northern Engineering; Marland, G. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Fung, I. [Univ. of Victoria, British Columbia (Canada)]|[National Aeronautics and Space Administration, New York, NY (United States). Goddard Inst. for Space Studies; Matthews, E. [Columbia Univ., New York, NY (United States)]|[National Aeronautics and Space Administration, New York, NY (United States). Goddard Inst. for Space Studies

    1997-03-01

    Data sets of one degree latitude by one degree longitude carbon dioxide (CO{sub 2}) emissions in units of thousand metric tons of carbon (C) per year from anthropogenic sources have been produced for 1950, 1960, 1970, 1980 and 1990. Detailed geographic information on CO{sub 2} emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions. Global, regional and national annual estimates for 1950 through 1992 were published previously. Those national, annual CO{sub 2} emission estimates were based on statistics on fossil-fuel burning, cement manufacturing and gas flaring in oil fields as well as energy production, consumption and trade data, using the methods of Marland and Rotty. The national annual estimates were combined with gridded one-degree data on political units and 1984 human populations to create the new gridded CO{sub 2} emission data sets. The same population distribution was used for each of the years as proxy for the emission distribution within each country. The implied assumption for that procedure was that per capita energy use and fuel mix is uniform over a political unit. The consequence of this first-order procedure is that the spatial changes observed over time are solely due to changes in national energy consumption and nation-based fuel mix. Increases in emissions over time are apparent for most areas.

  5. Biomass Burning Observation Project Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Kleinman, KI [Brookhaven National Laboratory; Sedlacek, AJ [Brookhaven National Laboratory

    2013-09-01

    Aerosols from biomass burning perturb Earth’s climate through the direct radiative effect (both scattering and absorption) and through influences on cloud formation and precipitation and the semi-direct effect. Despite much effort, quantities important to determining radiative forcing such as the mass absorption coefficients (MAC) of light-absorbing carbon, secondary organic aerosol (SOA) formation rates, and cloud condensation nuclei (CCN) activity remain in doubt. Field campaigns in northern temperate latitudes have been overwhelmingly devoted to other aerosol sources in spite of biomass burning producing about one-third of the fine particles (PM2.5) in the U.S.

  6. Effect of chromium on the kinetics of anode carbon burning from Fe-Cr-Csub(sat). [from 1723-1873k

    Energy Technology Data Exchange (ETDEWEB)

    Plyshevskij, A.A.; Shakirov, M.M. (Sibirskij Metallurgicheskij Inst., Novokuznetsk (USSR))

    1981-01-01

    Kinetics of carbon anode oxidation out of alloys Fe-Cr-Ssub(sat) under slag (52% Al/sub 2/O/sub 3/+41% CaO+7% MgO) are studied by the method of stationary polarization curves within the temperature range from 1723-1873 K. It is shown that exchange current Isub(o) practically does not change with the growth of Cr concentration in the alloy up to 10%. Further Cr content decreases the isub(o) value. isub(o) value of the activation energy, calculated according to the temperature dependence constitutes 220+-20 kJ/mol for all alloys, though there exists a weak tendency to its increase with the Cr concentration growth. Obtained data are explained by the carbon bond increase with melting at Cr introduction.

  7. Prescribed burning plan : Stillwater NWR : de Braga Burn Unit 67

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This 1991 Annual Prescribed Burning Plan for Stillwater NWR calls for all 67 acres of the de Braga burn unit to be burned. The objective of this burn is to remove...

  8. Crude oil burning mechanisms

    DEFF Research Database (Denmark)

    van Gelderen, Laurens; Malmquist, L.M.V.; Jomaas, Grunde

    2015-01-01

    In order to improve predictions for the burning efficiency and the residue composition of in-situ burning of crude oil, the burning mechanism of crude oil was studied in relation to the composition of its hydrocarbon mixture, before, during and after the burning. The surface temperature, flame...... height, mass loss rate and residues of three hydrocarbon liquids (n-octane, dodecane and hexadecane), two crude oils (DUC and REBCO) and one hydrocarbon liquid mixture of the aforementioned hydrocarbon liquids were studied using the Crude Oil Flammability Apparatus. The experimental results were compared...... on the highest achievable oil slick temperature. Based on this mechanism, predictions can then be made depending on the hydrocarbon composition of the fuel and the measured surface temperature....

  9. A Burning Question

    Institute of Scientific and Technical Information of China (English)

    LAN XINZHEN

    2010-01-01

    @@ As heaping piles of garbage grow in cities and communities across China,a divide has formed over two possible solutions to this smelly problem: Should excessive mounds of trash be burned,or should it be buried?

  10. Advances in burn treatment

    OpenAIRE

    Lahoda, LU; Vogt, PM

    2006-01-01

    The German-speaking burn specialist, organized in the DAV (Deutsche Arbeitsgemeinschaft für Verbrennungsmedizin) held their yearly meeting in 2004 in Rottach-Egern, Bavaria. Participants from Switzerland, Germany and Austria found a high standing, very well organized and thorough program summoned by the host, Dr. Guido Graf Henckel von Donnersmarck, Munich. The topics consisted of reconstructive surgery, skin substitutes and replacement, advances in burn medicine over the last 10 years and bu...

  11. Burning mouth syndrome

    OpenAIRE

    Sudha Jimson; Rajesh, E.; R Jayasri Krupaa; M. Kasthuri

    2016-01-01

    Burning mouth syndrome is a debilitating medical condition affecting nearly 1.3 million of Americans. Its common features include a burning painful sensation in the mouth, often associated with dysgeusia and xerostomia, despite normal salivation. Classically, symptoms are better in the morning, worsen during the day and typically subside at night. Its etiology is largely multifactorial, and associated medical conditions may include gastrointestinal, urogenital, psychiatric, neurologic and met...

  12. Emissions from Open Burning: Evaluation Challenges at Different Scales

    Science.gov (United States)

    Wiedinmyer, C.; Emmons, L. K.; Raffuse, S. M.; Larkin, N. K.

    2011-12-01

    Open burning, whether wildland fires, prescribed burning, burning as part of agricultural practices, or even the burning of waste, emits significant amounts of trace gases and particulate matter to the atmosphere. These emissions can play an important role in local and regional air quality, global atmospheric chemistry, and climatic processes. Many valuable efforts have been put forth to estimate the emissions from open burning, ranging from event-specific and local scales, to regional and global scales. The results from these efforts are extremely valuable, since the inclusion of open burning events is essential to models that simulate air quality, chemistry, and climate. However, evaluation of these emission estimates remains a significant challenge and the uncertainty associated with the estimates is high. Burning emissions are episodic in nature, often occur on heterogeneous landscapes, and are variable throughout a day, a week, and even over months and seasons. The quantity and species of open burning emissions depend on the type of fuel burned, the condition of the fuel, and the way in which the fire burns. These characteristics add inherent difficulties for constraining open burning emissions. Additionally, the transport and transformation of open burning emissions in the atmosphere provides further challenges to their evaluation. This presentation will summarize some of the recent advances in open burning emission estimates, including emission estimates over various spatial and temporal scales that have been developed for various applications. Many efforts to evaluate the emissions, using measurements and models, have already been accomplished, providing information of success and challenges we still face. For example, recent studies using chemical transport models and observations from aircraft studies suggest that the carbon monoxide emissions predicted by the Fire INventory from NCAR in North America are too low. The results of the evaluations can be

  13. The media glorifying burns: a hindrance to burn prevention.

    Science.gov (United States)

    Greenhalgh, David G; Palmieri, Tina L

    2003-01-01

    The media have a profound influence on the actions of children and adults. Burns and burn prevention tend to be ignored or even mocked. The purpose of this presentation is to reveal the callousness of the media in its dealings with burns and burn prevention. Printed materials with a relationship to burns, risk of burning, or disrespect for the consequences of burns were collected. The materials were tabulated into four categories: comics, advertisements (ads), articles that made light of burns, and television shows that portrayed behavior that would risk burn injury. Most burn-related materials were found in comics or advertisements. Several comics made light of high-risk behavior with flames, scald injury, contact injury, or burns. In addition, several advertisements showed people on fire or actions that could easily lead to burns. Several articles and televisions shows portrayed high-risk behavior that, in some instances, led to copycat injuries. Flames are frequently used to sell items that target adolescent boys or young men. The high incidence injuries that frequent this population parallel the high-risk behaviors portrayed by the media. The media portrays flames and high-risk behavior for burn injury as being cool, funny, and without consequence. The use of flames on clothing and recreational equipment (skateboards, hot rods) particularly targets the high-risk adolescent male. The burn community should make the media aware of the harm it causes with its callous depiction and glorification of burns. PMID:12792237

  14. Influence of biomass burning and anthropogenic emissions on ozone, carbon monoxide and black carbon concentrations at the Mt. Cimone GAW-WMO global station (Italy, 2165 m a.s.l.)

    OpenAIRE

    Cristofanelli, P; Fierli, F.; Marinoni, A.; Duchi, R.; Burkhart, J.; A. Stohl; M. Maione; Arduini, J.; Bonasoni, P.

    2012-01-01

    This work investigates the variability of ozone (O3), carbon monoxide (CO) and equivalent black carbon (BC) concentrations at the Italian Climate Observatory "O. Vittori" (ICO-OV), part of the Mt. Cimone global GAW-WMO station (Italy). For this purpose, ICO-OV observations carried out in the period January 2007–June 2009, have been analysed and correlated with the output of the FLEXPART Lagrangian dispersion model to specifically evaluate the influence of biomass...

  15. Open Questions in Stellar Helium Burning Addressed With Real Photons

    OpenAIRE

    Gai, Moshe

    2003-01-01

    The outcome of helium burning is the formation of the two elements, carbon and oxygen. The ratio of carbon to oxygen at the end of helium burning is crucial for understanding the final fate of a progenitor star and the nucleosynthesis of heavy elements in Type II supernova, with oxygen rich star predicted to collapse to a black hole, and a carbon rich star to a neutron star. Type Ia supernovae (SNeIa) are used as standard candles for measuring cosmological distances with the use of an empiric...

  16. Surface free energy ( γsd) of active carbons determined by inverse gas chromatography: influences of the origin of precursors, the burn off level and the chemical modification

    Science.gov (United States)

    Cossarutto, L.; Vagner, C.; Finqueneisel, G.; Weber, J. V.; Zimny, T.

    2001-06-01

    The dispersive component of the surface free energies ( γsd) of commercial active carbons (AC) from various origins were determined by inverse gas chromatography at infinite dilution (IGC-ID). This method discriminates clearly the AC produced from wood (and activated/carbonised with phosphoric acid) and those from coconut-shell (carbonised and steam activated at 850°C). The values for the last AC (from coconut) are twice higher than the values for AC of wood origin. The structure and shape of the pores have to be considered to explain these values. It seems that for AC, IGC-ID globally characterises the most energetic micropores. This can be observed, in this work, by two ways: (i) washing of commercial AC (chemically activated) allows to liberate a part of the micropores blocked by soluble phosphate and consequently increases the γsd value; (ii) modifying coconuts AC by chemical treatment (formamide) results in a strong decrease of both microporosity and γsd value. On the contrary, thermal activation of the modified AC increases at the same time the microporosity and the surface free energy. Finally, we demonstrate that the IGC method is also an useful tool to monitor in situ the evolutions of the surface properties of carbonaceous materials.

  17. Psychiatric aspects of burn

    Directory of Open Access Journals (Sweden)

    Dalal P

    2010-10-01

    Full Text Available Burn injuries and their subsequent treatment cause one of the most excruciating forms of pain imaginable. The psychological aspects of burn injury have been researched in different parts of the world, producing different outcomes. Studies have shown that greater levels of acute pain are associated with negative long-term psychological effects such as acute stress disorder, depression, suicidal ideation, and post-traumatic stress disorder for as long as 2 years after the initial burn injury. The concept of allostatic load is presented as a potential explanation for the relationship between acute pain and subsequent psychological outcomes. A biopsychosocial model is also presented as a means of obtaining better inpatient pain management and helping to mediate this relationship.

  18. Decadal emission estimates of carbon dioxide, sulfur dioxide, and nitric oxide emissions from coal burning in electric power generation plants in India.

    Science.gov (United States)

    Mittal, Moti L; Sharma, Chhemendra; Singh, Richa

    2014-10-01

    This study aims to estimate the emissions of carbon dioxide (CO₂), sulfur dioxide (SO₂), and nitric oxide (NO) for coal combustion in thermal power plants in India using plant-specific emission factors during the period of 2001/02 to 2009/10. The mass emission factors have been theoretically calculated using the basic principles of combustion under representative prevailing operating conditions in the plants and fuel composition. The results show that from 2001/02 to 2009/10 period, total CO₂ emissions have increased from 324 to 499 Mt/year; SO₂ emissions have increased from 2,519 to 3,840 kt/year; and NO emissions have increased from 948 to 1,539 kt/year from the Indian coal-fired power plants. National average emissions per unit of electricity from the power plants do not show a noticeable improvement during this period. Emission efficiencies for new plants that use improved technology are found to be better than those of old plants. As per these estimates, the national average of CO₂ emissions per unit of electricity varies between 0.91 and 0.95 kg/kWh while SO₂ and NO emissions vary in the range of 6.9 to 7.3 and 2.8 to 2.9 g/kWh, respectively. Yamunagar plant in Haryana state showed the highest emission efficiencies with CO₂ emissions as 0.58 kg/kWh, SO₂ emissions as 3.87 g/kWh, and NO emissions as 1.78 g/kWh, while the Faridabad plant has the lowest emission efficiencies with CO₂ emissions as 1.5 kg/kWh, SO₂ emissions as 10.56 g/kWh, and NO emissions as 4.85 g/kWh. Emission values at other plants vary between the values of these two plants. PMID:25004854

  19. Electrothermal Ring Burn

    OpenAIRE

    Yakup Çil; Hamza Yıldız; Özlem Karabudak Abuaf

    2012-01-01

    Low-voltage fountainheads such as car, tractor or motorcycle batteries are predisposed to produce large currents. Any metal object that comes into contact with these batteries may result in short-circuit. This may result in rapid and excessive heating of metal object and an electrothermal burn. Herein we presented a motorcycle driver who was 28-year-old man with electrothermal ring burn which was caused by metal chain that was used as a ring. (Turk J Dermatol 2012; 6: 106-7)

  20. Electrothermal Ring Burn

    Directory of Open Access Journals (Sweden)

    Yakup Çil

    2012-09-01

    Full Text Available Low-voltage fountainheads such as car, tractor or motorcycle batteries are predisposed to produce large currents. Any metal object that comes into contact with these batteries may result in short-circuit. This may result in rapid and excessive heating of metal object and an electrothermal burn. Herein we presented a motorcycle driver who was 28-year-old man with electrothermal ring burn which was caused by metal chain that was used as a ring. (Turk J Dermatol 2012; 6: 106-7

  1. Burning mouth syndrome

    Directory of Open Access Journals (Sweden)

    Sudha Jimson

    2015-01-01

    Full Text Available Burning mouth syndrome (BMS is a complex disorder that is characterized by warm or burning sensation in the oral mucosa without changes on physical examination. It occurs more commonly in middle-aged and elderly women and often affects the tip of the tongue, lateral borders, lips, hard and soft palate. This condition is probably of multi-factorial origin, often idiopathic, and its etiopathogensis is unknown. BMS can be classified into two clinical forms namely primary and secondary BMS. As a result, a multidisciplinary approach is required for better control of the symptoms. In addition, psychotherapy and behavioral feedback may also help eliminate the BMS symptoms.

  2. Macro-Particle Charcoal C Content following Prescribed Burning in a Mixed-Conifer Forest, Sierra Nevada, California

    OpenAIRE

    Wiechmann, Morgan L.; Hurteau, Matthew D; Kaye, Jason P.; Jessica R. Miesel

    2015-01-01

    Fire suppression and changing climate have resulted in increased large wildfire frequency and severity in the western United States, causing carbon cycle impacts. Forest thinning and prescribed burning reduce high-severity fire risk, but require removal of biomass and emissions of carbon from burning. During each fire a fraction of the burning vegetation and soil organic matter is converted into charcoal, a relatively stable carbon form. We sought to quantify the effects of pre-fire fuel load...

  3. Burn Safety Awareness on Playgrounds: Thermal Burns from Playground Equipment

    Science.gov (United States)

    ... Safety Awareness on Playgrounds Thermal Burns from Playground Equipment The U.S. Consumer Product Safety Commission CPSC wants ... of the risk of thermal burns from playground equipment. You may remember the metal slides of your ...

  4. Management of acute burns and burn shock resuscitation.

    Science.gov (United States)

    Faldmo, L; Kravitz, M

    1993-05-01

    Initial management of minor and moderate, uncomplicated burn injury focuses on wound management and patient comfort. Initial management of patients with major burn injury requires airway support, fluid resuscitation for burn shock, treatment for associated trauma and preexisting medical conditions, management of adynamic ileus, and initial wound treatment. Fluid resuscitation, based on assessment of the extent and depth of burn injury, requires administration of intravenous fluids using resuscitation formula guidelines for the initial 24 hours after injury. Inhalation injury complicates flame burns and increases morbidity and mortality. Electrical injury places patients at risk for cardiac arrest, metabolic acidosis, and myoglobinuria. Circumferential full-thickness burns to extremities compromise circulation and require escharotomy or fasciotomy. Circumferential torso burns compromise air exchange and cardiac return. Loss of skin function places patients at risk for hypothermia, fluid and electrolyte imbalances, and systemic sepsis. The first 24 hours after burn injury require aggressive medical management to assure survival and minimize complications. PMID:8489882

  5. Estimates of black carbon and size-resolved particle number emission factors from residential wood burning based on ambient monitoring and model simulations.

    Science.gov (United States)

    Olivares, Gustavo; Ström, Johan; Johansson, Christer; Gidhagen, Lars

    2008-06-01

    In this paper we derive typical emission factors for coarse particulate matter (PM(10)), oxides of nitrogen (NO(x)), black carbon (BC), and number particle size distributions based on a combination of measurements and air quality dispersion modeling. The advantage of this approach is that the emission factors represent integrated emissions from several vehicle types and different types of wood stoves. Normally it is very difficult to estimate the total emissions in cities on the basis of laboratory measurements on single vehicles or stoves because of the large variability in conditions. The measurements were made in Temuco, Chile, between April 18 and June 15, 2005 at two sites. The first one was located in a residential area relatively far from major roads. The second site was located in a busy street in downtown Temuco where wood consumption is low. The measurements support the assumption that the monitoring sites represent the impact of different emission sources, namely traffic and residential wood combustion (RWC). Fitting model results to the available measurements, emission factors were obtained for PM(10) (RWC = 2160 +/- 100 mg/kg; traffic = 610 +/- 51 mg/veh-km), NO(x) (RWC = 800 +/- 100 mg/kg; traffic = 4400 +/- 100 mg/veh-km), BC (RWC = 74 +/- 6 mg/kg; traffic = 60 +/- 3 mg/veh-km) and particle number (N) with size distribution between 25 and 600 nm (N(25-600)) (RWC = 8.9 +/- 1 x 10(14) pt/kg; traffic = 6.7 +/- 0.5 x 10(14) pt/veh-km). The obtained emission factors are comparable to results reported in the literature. The size distribution of the N emission factors for traffic was shown to be different than for RWC. The main difference is that although traffic emissions show a bimodal size distribution with a main mode below 30 nm and a secondary one around 100 nm, RWC emissions show the main mode slightly below 100 nm and a smaller nucleation mode below 50 nm. PMID:18581814

  6. Wood would burn

    International Nuclear Information System (INIS)

    Absract: In view of the world-wide problem of energy sustainability and greenhouse gas production (carbon dioxide), it is timely to review the issues involved in generating heat and power from all fuels and especially new (to the UK) solid fuels, including high moisture fuels such as wood, SRF, oil shale, tar sands and brown coal, which will become major international fuels as oil and gas become depleted. The combustion properties of some of these materials are significantly different from traditional coal, oil and gas fuels, however the technology proposed herein is also applicable to these conventional fuels. This paper presents some innovative combustion system options and the associated technical factors that must be considered for their implementation. For clarity of understanding, the novel concepts will be largely presented in terms of a currently developing solid fuel market; biomass wood chips. One of the most important characteristics of many solid fuels to be used in the future (including oil shale and brown coal) is their high moisture content of up to 60%. This could be removed by utilising low grade waste heat that is widely available in industry to dry the fuel and thus reduce transport costs. Burning such dried wood for power generation also increases the energy available from combustion and thus acts as a thermal transformer by upgrading the low grade heat to heat available at combustion temperatures. The alternative approach presented here is to recover the latent heat by condensing the extrinsic moisture and the water formed during combustion. For atmospheric combustion, the temperature of the condensed combustion products is below the dew point at about 55-65 oC and is only suitable for recovery in an efficient district heating system. However, in order to generate power from the latent heat, the condensation temperature must be increased to the level where the heat can be used in the thermodynamic power cycle. This can be achieved by increasing

  7. Fat burn X: burning more than fat.

    Science.gov (United States)

    Hannabass, Kyle; Olsen, Kevin Robert

    2016-01-01

    A 50-year-old man presented with a 2-day history of bilateral lower extremity cramping and dark urine. The patient was found to have a creatine phosphokinase (CPK) elevated of up to 2306 U/L, a serum uric acid of 9.7 mg/dL and 101 red blood cell's per high-powered field on urinalysis. On questioning, the patient endorsed daily exercise with free weights. There were no changes in his regular exercise and medication regimen, no muscle trauma, no recent drug use and no illness. The patient did mention using a new fat burner known as 'Fat Burn X', which he had begun taking 2 days prior to the onset of his muscle cramps. The patient was given normal saline intravenous fluid resuscitation for 48 h with resultant normalisation of his CPK and creatinine, and was discharged with primary care follow-up. PMID:26811412

  8. Burning clean and green

    International Nuclear Information System (INIS)

    A new style of oil burner has been developed for use on exploration platforms offshore. The design improves oil combustion through enhanced air induction, producing stable flames in the clean burn region which do not generate smoke and oil fallout. Successful tests have led to it now being ready for commercial exploitation. (UK)

  9. Accumulative eschar after burn.

    Science.gov (United States)

    Ma, Fushun

    2016-02-01

    Eschar formation is a potential sequela of burn injuries. Definitive management may include escharectomy and eschar debridement. After eschar removal, the wound can be covered with a skin graft or reepithelialization. For prolonged refractory eschar on the fingertips, topical use of rb-bFGF after debridement can achieve an optimal outcome. PMID:26862412

  10. Accumulative eschar after burn

    OpenAIRE

    Ma, Fushun

    2015-01-01

    Key Clinical Message Eschar formation is a potential sequela of burn injuries. Definitive management may include escharectomy and eschar debridement. After eschar removal, the wound can be covered with a skin graft or reepithelialization. For prolonged refractory eschar on the fingertips, topical use of rb‐bFGF after debridement can achieve an optimal outcome.

  11. An assessment of burn care professionals' attitudes to major burn.

    LENUS (Irish Health Repository)

    Murphy, A D

    2008-06-01

    The resuscitation of severe burn remains a controversial area within the burn care profession. There is ongoing debate as to what percentage burn is associated with a sufficient quality of life to support initial resuscitation efforts. We conducted a survey of delegates at the 39th Annual Meeting of the British Burns Association (2005), regarding attitudes towards resuscitation following major burns. Respondents were asked the maximum percentage total body surface area (TBSA) burn beyond which they would not wish to be resuscitated. They were also asked what maximum TBSA they perceived to be commensurate with an acceptable quality of life (QOL). One hundred and forty three of 300 delegates responded to the questionnaire. Thirty three percent of respondents would not wish to be resuscitated with 50-75% TBSA burns or greater. A further 35% would not wish to have life-sustaining intervention with 75-95% TBSA burns or greater. The remaining 32% indicated that they would not want resuscitation with TBSA burns>95%. Regardless of TBSA affected, 16% would not wish resuscitation if they had full thickness facial burns, a further 10% did not want resuscitation if both their hands and faces were affected. Our survey demonstrates the diversity of personal preference amongst burn care professionals. This would suggest that a unifying philosophy regarding the resuscitation of extensive burns will remain elusive.

  12. Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0 – Part 2: Analysis of the biomass burning contribution and the modern carbon fraction

    Directory of Open Access Journals (Sweden)

    J. L. Jimenez

    2009-12-01

    Full Text Available Submicron aerosol was analyzed during the MILAGRO field campaign in March 2006 at the T0 urban supersite in Mexico City with a High-Resolution Aerosol Mass Spectrometer (AMS and complementary instrumentation. Positive Matrix Factorization (PMF of high resolution AMS spectra identified a biomass burning OA (BBOA component, which includes several large plumes that appear to be from forest fires within the region. Here, we show that the AMS BBOA concentration at T0 correlates with fire counts in the vicinity of Mexico City and that most of the BBOA variability is captured when the FLEXPART model is used for the dispersion of fire emissions as estimated from satellite fire counts. The resulting FLEXPART fire impact index correlates well with the observed BBOA, CH3CN, levoglucosan, and potassium, indicating that wildfires in the region surrounding Mexico City are the dominant source of BBOA at T0 during MILAGRO. The impact of distant BB sources such as the Yucatan is small during this period. All fire tracers are correlated, with BBOA and levoglucosan showing little background, acetonitrile having a well-known tropospheric background of ~100–150 ppt, and PM2.5 potassium having a background of ~160 ng m−3 (two-thirds of its average concentration, which does not appear to be related to BB sources. We define two high fire periods based on satellite fire counts and predicted fire impacts. We then compare these periods with a low fire period when the impact of regional fires is about a factor of 5 smaller. Fire tracers are very elevated in the high fire periods whereas tracers of urban pollution do not change between these periods. Dust is also elevated during the high BB period but this appears to be coincidental due to the drier conditions and not driven by direct dust emission from the fires. The AMS oxygenated OA factor (OOA, mostly secondary OA or SOA does not show an increase during the fire periods or a

  13. Back Bay Wilderness burning support

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document is a memorandum concerning prescribed burns between members of the Bureau of Sport Fisheries and Wildlife. It states that burning should be supported...

  14. Treatment of hydrofluoric acid burns

    Energy Technology Data Exchange (ETDEWEB)

    Thiele, B.; Winter, U.J.; Mahrle, G.; Steigleder, G.K.

    1986-01-31

    A chemical-plant worker sustained hydrofluoric acid burns during cleaning procedures. Intra-arterial perfusion and intralesional injections of calcium gluconate solution prevented progression of the burns into deeper tissue layers.

  15. [Treatment of hydrofluoric acid burns].

    Science.gov (United States)

    Thiele, B; Winter, U J; Mahrle, G; Steigleder, G K

    1986-01-31

    A chemical-plant worker sustained hydrofluoric acid burns during cleaning procedures. Intra-arterial perfusion and intralesional injections of calcium gluconate solution prevented progression of the burns into deeper tissue layers. PMID:3943470

  16. [Burn injuries and mental health].

    Science.gov (United States)

    Palmu, Raimo; Vuola, Jyrki

    2016-01-01

    Currently a large proportion of patients with severe burn injuries survive. This gives increasing challenges also for psychological recovery after the trauma. More than half of burn patients have mental disorders already before the burn injury but also patients who previously had no mental disorders may suffer from them. Some of the hospitalize burn patients have injuries due to suicidal attempts. Only a small proportion of burn patients receive appropriate psychiatric care although psychosocial interventions specifically planned for burn victims exist. More frequent screening of symtoms of mental disorders and psychiatric consultation, also after acute care in hospital, could lead to better management of post-burn psychiatric care as well as better management of the burn treatment and rehabilitation itself. PMID:27089616

  17. Systemic Responses to Burn Injury

    OpenAIRE

    ÇAKIR, Barış; YEĞEN, Berrak Ç.

    2004-01-01

    The major causes of death in burn patients include multiple organ failure and infection. It is important for the clinician to understand the pathophysiology of burn injury and the effects it will have on the pharmacokinetics of a drug. The local and systemic inflammatory response to thermal injury is extremely complex, resulting in both local burn tissue damage and deleterious systemic effects on all other organ systems distant from the burn area itself. Thermal injury initiates systemic infl...

  18. Friction Burns: Epidemiology and Prevention

    OpenAIRE

    Agrawal, A; Raibagkar, S.C.; Vora, H.J.

    2008-01-01

    This epidemiological study deals with 60 patients with friction burns between January 2004 and January 2006. The age group most affected was that between 21 and 30 years, with male predominance. Road traffic accidents were the commonest cause of friction burns (56 patients), and the lower limb was the most frequently affected part of the body. Patient management was performed according to the degree of the burn injury. It is suggested that most friction burn injuries are neglected on admissio...

  19. Light absorption by biomass burning source emissions

    Science.gov (United States)

    Cheng, Yuan; Engling, Guenter; Moosmüller, Hans; Arnott, W. Patrick; Chen, L.-W. Antony; Wold, Cyle E.; Hao, Wei Min; He, Ke-bin

    2016-02-01

    Black carbon (BC) aerosol has relatively short atmospheric lifetimes yet plays a unique and important role in the Earth's climate system, making it an important short-term climate mitigation target. Globally, biomass burning is the largest source of BC emissions into the atmosphere. This study investigated the mass absorption efficiency (MAE) of biomass burning BC generated by controlled combustion of various wildland fuels during the Fire Laboratory at Missoula Experiments (FLAME). MAE values derived from a photoacoustic spectrometer (∼7.8 m2/g at a wavelength of 532 nm) were in good agreement with those suggested for uncoated BC when the emission ratios of organic carbon (OC) to elemental carbon (EC) were extremely low (i.e., below 0.3). With the increase of OC/EC, two distinct types of biomass smoke were identified. For the first type, MAE exhibited a positive dependence on OC/EC, while the overestimation of the light absorption coefficient (babs) by a filter-based method was less significant and could be estimated by a nearly constant correction factor. For the second type, MAE was biased low and correlated negatively with OC/EC, while the overestimation of babs by the filter-based method was much more significant and showed an apparent OC/EC dependence. This study suggests that BC emission factors determined by the commonly used thermal-optical methods might be sustantially overestimated for some types of biomass burning emissions. Our results also indicate that biomass burning emissions may include some liquid-like organics that can significantly bias filter-based babs measurements.

  20. Post-fire vegetation phenology in Siberian burn scars

    OpenAIRE

    BALZTER, Heiko; Cuevas-Gonzalez, Maria; Gerard, France; Riano, David

    2008-01-01

    Boreal forests comprise one third of global forested area and are the largest terrestrial carbon store. Forest fires are the regions most dynamic disturbance factor, occurring mainly in Siberia, Russian Far East, Canada and Alaska, and these fires represent a globally important release of terrestrial carbon to the atmosphere, via the burning of vegetation and organic soils. Currently the boreal region is believed to be a net carbon sink,but climate change predictions indicate significant b...

  1. Is proportion burned severely related to daily area burned?

    International Nuclear Information System (INIS)

    The ecological effects of forest fires burning with high severity are long-lived and have the greatest impact on vegetation successional trajectories, as compared to low-to-moderate severity fires. The primary drivers of high severity fire are unclear, but it has been hypothesized that wind-driven, large fire-growth days play a significant role, particularly on large fires in forested ecosystems. Here, we examined the relative proportion of classified burn severity for individual daily areas burned that occurred during 42 large forest fires in central Idaho and western Montana from 2005 to 2007 and 2011. Using infrared perimeter data for wildfires with five or more consecutive days of mapped perimeters, we delineated 2697 individual daily areas burned from which we calculated the proportions of each of three burn severity classes (high, moderate, and low) using the differenced normalized burn ratio as mapped for large fires by the Monitoring Trends in Burn Severity project. We found that the proportion of high burn severity was weakly correlated (Kendall τ = 0.299) with size of daily area burned (DAB). Burn severity was highly variable, even for the largest (95th percentile) in DAB, suggesting that other variables than fire extent influence the ecological effects of fires. We suggest that these results do not support the prioritization of large runs during fire rehabilitation efforts, since the underlying assumption in this prioritization is a positive relationship between severity and area burned in a day. (letters)

  2. Burn Teams and Burn Centers: The Importance of a Comprehensive Team Approach to Burn Care

    OpenAIRE

    Al-Mousawi, Ahmed M.; Mecott-Rivera, Gabriel A.; Jeschke, Marc G.; Herndon, David N

    2009-01-01

    Advances in burn care have been colossal, but while extra work is needed, it is clear that the organized effort of burn teams can continue making improvements in survival rates and quality of life possible for patients. Burn patients are unique, representing the most severe model of trauma,33 and hence this necessitates treatment in the best facilities available for that endeavor. Burn centers have developed to meet these intricate needs but can only function productively and most efficiently...

  3. Carbonaceous aerosols from different tropical biomass burning sources

    Science.gov (United States)

    Cachier, Hélène; Brémond, Marie-Pierre; Buat-Ménard, Patrick

    1989-08-01

    FOLLOWING a repetitive pattern, biomass burning affects the intertropical belt on a continental scale during the dry season1. The importance of these anthropogenic activities with regard to carbonaceous-component emissions into the global atmosphere is now well recognized2-4. It has been suggested that large injections of black carbon aerosols from the Tropics are of potential importance for the radiative and chemical balance of the troposphere5-10. Studies on carbonaceous aerosols have indicated that, on an annual basis, the intensity of the emissions from tropical biomass burning could compare with that of emissions from fossil-fuel burning in industrial countries7,8. Also, results from combustion chamber experiments have determined the important range of the emission factor for both the organic and the black carbon components of the aerosol1-16. Following on from our earlier studies on total atmospheric particulate carbon (Ct) and isotopic composition (δ13C) (ref. 2), we now present new data on the black carbon content (Cb) of atmospheric particles sampled during the biomass-burning season in the wooden savannah of the Ivory Coast. The Cb/Ct ratio is generally lower than expected and highly variable. This variability indicates that there are drastic changes in source apportionment, which from our isotope studies may be ascribed to the variety of vegetation fuel and also to the mode of combustion. Therefore the Cb/Ct ratio can potentially discriminate biomass-burning emissions from different tropical ecosystems.

  4. Burns and beauty nails

    Science.gov (United States)

    Bélanger, Richard E; Marcotte, Marie-Eve; Bégin, François

    2013-01-01

    A case involving a five-month-old girl brought to the emergency department with burns over her abdomen is described. The child was reported to have spilled two small bottles of beauty nail adhesive on her clothes while her mother was preparing dinner. After undressing the infant, the mother discovered several lesions on the child’s abdomen and quickly sought medical attention. Given the unusual circumstances of the presentation, the child was hospitalized for both treatment and supervision. The beauty nail adhesive contained cyanoacrylate. In addition to its well-appreciated adhesive capacity, cyanoacrylate, in the presence of cotton or other tissues, is known to produce an exothermic reaction that may cause burns. Cyanoacrylate-based products, due to their possible adverse effects, should be kept away from children as advised. Odd injuries should always raise concerns about the possibility of inflicted injury. PMID:24421671

  5. The Burning Saints

    DEFF Research Database (Denmark)

    Xygalatas, Dimitris

    The Anastenaria are Orthodox Christians in Northern Greece who observe a unique annual ritual cycle focused on two festivals, dedicated to Saint Constantine and Saint Helen. The festivals involve processions, music, dancing, animal sacrifices, and culminate in an electrifying fire-walking ritual....... Carrying the sacred icons of the saints, participants dance over hot coals as the saint moves them. The Burning Saints presents an analysis of these rituals and the psychology behind them. Based on long-term fieldwork, The Burning Saints traces the historical development and sociocultural context of the...... Greek fire-walking rituals. As a cognitive ethnography, the book aims to identify the social, psychological and neurobiological factors which may be involved and to explore the role of emotional and physiological arousal in the performance of such ritual. A study of participation, experience and meaning...

  6. [Chemical and electrical burns].

    Science.gov (United States)

    Sanchez, Raymond

    2002-12-15

    Chemical burns are less frequent in routine practice, but could be very serious owing to the complexity and severity of their actions. Influx of casualty after a civil disaster (industrial explosion) or military (war or terrorism) is possible. The action of these agents could be prolonged and deep. In addition to the skin, respiratory lesions and general intoxication could be observed. The urgent local treatment rely essentially on prolonged washing. Prevention and adequate emergency care could limit the serious consequences of these accidents. Accidents (thermal burns or electrisations) due to high or low voltage electricity are frequent. The severity is linked with the affected skin but especially with internal lesions, muscular, neurological or cardiac lesions. All cases of electrisation need hospital care. Locally, the lesions are often deep with difficult surgical repairs and often require amputation. Aesthetic and functional sequela are therefore frequent. Secondary complications could appear several months after the accident: cataract, dysesthesia and hypotonia. PMID:12621941

  7. Burns and beauty nails

    OpenAIRE

    Richard E. Bélanger; Marcotte, Marie-Eve; Bégin, François

    2013-01-01

    A case involving a five-month-old girl brought to the emergency department with burns over her abdomen is described. The child was reported to have spilled two small bottles of beauty nail adhesive on her clothes while her mother was preparing dinner. After undressing the infant, the mother discovered several lesions on the child’s abdomen and quickly sought medical attention. Given the unusual circumstances of the presentation, the child was hospitalized for both treatment and supervision. T...

  8. Burns: Treatment and Outcomes

    OpenAIRE

    Burd, Andrew

    2010-01-01

    Burns can cause extensive and devastating injuries of the head and neck. Prevention of the initial injury must always be a priority, but once an injury has occurred, then prevention of progression of the damage together with survival of the patient must be the immediate goals. The acute care will have a major influence on the subsequent scarring, reconstructive need, and long-term outcome. In the majority of cases, the reconstruction will involve restoration of form and function to the soft t...

  9. Technology of straw burning

    International Nuclear Information System (INIS)

    The paper deals with the example of application of straw as fuel for a power plant with capacity of 1 MW, which is reconstructed from an old coal power plant. The article shows the advantages of straw as a source of energy, analyses the physical and chemical characteristics and temperature parameters, typical for straw. Moreover it indicates the specific circumstances of the straw burning processes. The paper focuses also on preparation and storing of straw for public use and in the energy sector. Comparing with fossil fuel, straw is a low-caloric natural source, whose energy value reached to 14-19 MJ/kg. This value depends partly on the kind of straw and its water or moisture content (MC). To the basic characteristics of energy aspects belong: - energy or heating value (HV) MJ/kg (in LPG it is MJ/ m3); - burning temperature; - melting point - temperature of ash; - weight kg/m3; - density; - Energy density MWh /m3; - Energy potential GJ/t; - Size-homogeneity of straw; - Water or Moisture Content (MC). The above mentioned characteristics have an influence on technical parameters of straw-burning boiler. These parameters define conditions process of straw preparation. (author)

  10. Million year records of biomass burning from Australia and Africa

    International Nuclear Information System (INIS)

    A chemical technique has been developed which can isolate elemental carbon (charcoal, soot, etc) derived from biomass burning in any sediment containing any quantity of elemental carbon. Sediment samples (generally containing 0.01 to 0.001% elemental carbon) are decarbonated using 1 N HCl, and silicate minerals are destroyed by HF/HCl. The demineralized residue, containing organic carbon and elemental carbon is the;n subjected to an acid oxidation using a K2Cr2O7/H2SO4 solution. This procedure destroys 95% of the organic carbon with only minor loss of dense charcoal particles. The small and action of remaining acid-resistant organic carbon is then rapidly destroyed using an additional alkaline oxidation step with a KOH/H2O2 reagent. This leaves a residue composed entirely of elemental carbon. The amount of elemental carbon is determined by combustion of the sample, cryogenic purification of the resultant CO2 and manometric measurement of CO2 yield. The carbon-isotope composition of the CO2 was then determined by mass spectrometry, in order to provide information on the type of vegetation being burnt. The carbon-isotope composition of elemental carbon suggests that the bulk of carbon during the large scale events was derived from a C4 source. The concurrence of large biomass burning events with transition periods in global climate, suggests that the large-scale biomass burning may be one mechanism whereby terrestrial organic carbon accumulated during interglacial periods is transferred to other reservoirs at the onset of the following glacial period

  11. Impact of biomass burning on the atmosphere

    International Nuclear Information System (INIS)

    Fire has played an important part in biogeochemical cycling throughout most of the history of our planet. Ice core studies have been very beneficial in paleoclimate studies and constraining the budgets of biogeochemical cycles through the past 160,000 years of the Vostok ice core. Although to date there has been no way of determining cause and effect, concentration of greenhouse gases directly correlates with temperature in ice core analyses. Recent ice core studies on Greenland have shown that significant climate change can be very rapid on the order of a decade. This chapter addresses the coupled evolution of our planet's atmospheric composition and biomass burning. Special attention is paid to the chemical and climatic impacts of biomass burning on the atmosphere throughout the last century, specifically looking at the cycles of carbon, nitrogen, and sulfur. Information from ice core measurements may be useful in understanding the history of fire and its historic affect on the composition of the atmosphere and climate

  12. Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes

    Directory of Open Access Journals (Sweden)

    K. A. Pratt

    2011-12-01

    Full Text Available Biomass burning represents a major global source of aerosols impacting direct radiative forcing and cloud properties. Thus, the goal of a number of current studies involves developing a better understanding of how the chemical composition and mixing state of biomass burning aerosols evolve during atmospheric aging processes. During the Ice in Clouds Experiment-Layer Clouds (ICE-L in the fall of 2007, smoke plumes from two small Wyoming Bureau of Land Management prescribed burns were measured by on-line aerosol instrumentation aboard a C-130 aircraft, providing a detailed chemical characterization of the particles. After ~2–4 min of aging, submicron smoke particles, produced primarily from sagebrush combustion, consisted predominantly of organics by mass, but were comprised primarily of internal mixtures of organic carbon, elemental carbon, potassium chloride, and potassium sulfate. Significantly, the fresh biomass burning particles contained minor mass fractions of nitrate and sulfate, suggesting that hygroscopic material is incorporated very near or at the point of emission. The mass fractions of ammonium, sulfate, and nitrate increased with aging up to ~81–88 min and resulted in acidic particles. Decreasing black carbon mass concentrations occurred due to dilution of the plume. Increases in the fraction of oxygenated organic carbon and the presence of dicarboxylic acids, in particular, were observed with aging. Cloud condensation nuclei measurements suggested all particles >100 nm were active at 0.5% water supersaturation in the smoke plumes, confirming the relatively high hygroscopicity of the freshly emitted particles. For immersion/condensation freezing, ice nuclei measurements at −32 °C suggested activation of ~0.03–0.07% of the particles with diameters greater than 500 nm.

  13. Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes

    Science.gov (United States)

    Pratt, K. A.; Murphy, S. M.; Subramanian, R.; Demott, P. J.; Kok, G. L.; Campos, T.; Rogers, D. C.; Prenni, A. J.; Heymsfield, A. J.; Seinfeld, J. H.; Prather, K. A.

    2011-12-01

    Biomass burning represents a major global source of aerosols impacting direct radiative forcing and cloud properties. Thus, the goal of a number of current studies involves developing a better understanding of how the chemical composition and mixing state of biomass burning aerosols evolve during atmospheric aging processes. During the Ice in Clouds Experiment-Layer Clouds (ICE-L) in the fall of 2007, smoke plumes from two small Wyoming Bureau of Land Management prescribed burns were measured by on-line aerosol instrumentation aboard a C-130 aircraft, providing a detailed chemical characterization of the particles. After ~2-4 min of aging, submicron smoke particles, produced primarily from sagebrush combustion, consisted predominantly of organics by mass, but were comprised primarily of internal mixtures of organic carbon, elemental carbon, potassium chloride, and potassium sulfate. Significantly, the fresh biomass burning particles contained minor mass fractions of nitrate and sulfate, suggesting that hygroscopic material is incorporated very near or at the point of emission. The mass fractions of ammonium, sulfate, and nitrate increased with aging up to ~81-88 min and resulted in acidic particles. Decreasing black carbon mass concentrations occurred due to dilution of the plume. Increases in the fraction of oxygenated organic carbon and the presence of dicarboxylic acids, in particular, were observed with aging. Cloud condensation nuclei measurements suggested all particles >100 nm were active at 0.5% water supersaturation in the smoke plumes, confirming the relatively high hygroscopicity of the freshly emitted particles. For immersion/condensation freezing, ice nuclei measurements at -32 °C suggested activation of ~0.03-0.07% of the particles with diameters greater than 500 nm.

  14. Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes

    Directory of Open Access Journals (Sweden)

    K. A. Pratt

    2011-06-01

    Full Text Available Biomass burning represents a major global source of aerosols impacting direct radiative forcing and cloud properties. Thus, the goal of a number of current studies involves developing a better understanding of how the chemical composition and mixing state of biomass burning aerosols evolve during atmospheric aging processes. During the Ice in Cloud Experiment – Layer Clouds (ICE-L in fall of 2007, smoke plumes from two small Wyoming Bureau of Land Management prescribed burns were measured by on-line aerosol instrumentation aboard a C-130 aircraft, providing a detailed chemical characterization of the particles. After ~2–4 min of aging, submicron smoke particles, produced primarily from sagebrush combustion, consisted predominantly of organics by mass, but were comprised primarily of internal mixtures of organic carbon, elemental carbon, potassium chloride, and potassium sulfate. Significantly, 100 % of the fresh biomass burning particles contained minor mass fractions of nitrate and sulfate, suggesting that hygroscopic material is incorporated very near or at the point of emission. The mass fractions of ammonium, sulfate, and nitrate increased with aging up to ~81–88 min and resulted in acidic particles, with both nitric acid and sulfuric acid present. Decreasing black carbon mass concentrations occurred due to dilution of the plume. Increases in the fraction of oxygenated organic carbon and the presence of dicarboxylic acids, in particular, were observed with aging. Cloud condensation nuclei measurements suggested all particles >100 nm were active at 0.5 % water supersaturation in the smoke plumes, confirming the relatively high hygroscopicity of the freshly emitted particles. For immersion/condensation freezing, ice nuclei measurements at −32 °C suggested activation of ~0.03–0.07 % of the particles with diameters greater than 500 nm.

  15. Determination of biomass burning emission factors. Methods and results

    International Nuclear Information System (INIS)

    Biomass burning, in a broad sense, encompasses different burning practices, including open and confined burnings, and different types of vegetation. Emission factors of gaseous or particulate trace compounds are directly dependent both on the fuel type and the combustion process. Emission factors are generally calculated by stoichiometric considerations using the carbon mass balance method, applied either to combustion chamber experiments or to field experiments based on ground-level measurements or aircraft sampling in smoke plumes. There have been a number of experimental studies in the last 10 years to investigate wildfires in tropical, temperate, or boreal regions. This article presents an overview of measurement methods and experimental data on emission factors of reactive or radiatively active trace compounds, including trace gases and particles. It focuses on fires in tropical regions, that is, forest and savanna fires, agricultural burns, charcoal production, use of fuel wood and charcoal combustion. 6 figs., 8 tabs., 65 refs

  16. Acoustic emission strand burning technique for motor burning rate prediction

    Science.gov (United States)

    Christensen, W. N.

    1978-01-01

    An acoustic emission (AE) method is being used to measure the burning rate of solid propellant strands. This method has a precision of 0.5% and excellent burning rate correlation with both subscale and large rocket motors. The AE procedure burns the sample under water and measures the burning rate from the acoustic output. The acoustic signal provides a continuous readout during testing, which allows complete data analysis rather than the start-stop clockwires used by the conventional method. The AE method helps eliminate such problems as inhibiting the sample, pressure increase and temperature rise, during testing.

  17. Tokamak burn control

    International Nuclear Information System (INIS)

    Research of the fusion plasma thermal instability and its control is reviewed. General models of the thermonuclear plasma are developed. Techniques of stability analysis commonly employed in burn control research are discussed. Methods for controlling the plasma against the thermal instability are reviewed. Emphasis is placed on applications to tokamak confinement concepts. Additional research which extends the results of previous research is suggested. Issues specific to the development of control strategies for mid-term engineering test reactors are identified and addressed. 100 refs., 24 figs., 10 tabs

  18. Explosive hydrogen burning

    International Nuclear Information System (INIS)

    Although an impressive quantity of work has been devoted to understanding nucleosynthesis during explosive hydrogen burning, much work remain to be done. Reactions which occur in novae, x-ray bursts, and supernovae are discussed. Much attention is given to the reactions of hot CNO cycles and of reactions in the rp-process. The many reactions described in this review are not all of the reactions which may be of interest to nuclear physicists, although the rates of those reactions not discussed are essentially unknown. 123 refs., 9 figs

  19. Complicated Burn Resuscitation.

    Science.gov (United States)

    Harrington, David T

    2016-10-01

    More than 4 decades after the creation of the Brooke and Parkland formulas, burn practitioners still argue about which formula is the best. So it is no surprise that there is no consensus about how to resuscitate a thermally injured patient with a significant comorbidity such as heart failure or cirrhosis or how to resuscitate a patient after an electrical or inhalation injury or a patient whose resuscitation is complicated by renal failure. All of these scenarios share a common theme in that the standard rule book does not apply. All will require highly individualized resuscitations. PMID:27600129

  20. Prognosis and treatment of burns.

    OpenAIRE

    Mann, R; Heimbach, D

    1996-01-01

    Survival rates for burn patients in general have improved markedly over the past several decades. The development of topical antibiotic therapy for burn wounds, the institution of the practice of early excision and grafting, and major advances in intensive care management have all contributed to this success. In this review we address these 3 important advances in the modern treatment of burn injuries and provide a brief historical overview of these accomplishments and others, emphasizing spe...

  1. Topical agents in burn care

    OpenAIRE

    Momčilović Dragan

    2002-01-01

    Introduction Understanding of fluid shifts and recognition of the importance of early and appropriate fluid replacement therapy have significantly reduced mortality in the early post burn period. After the bum patient successfully passes the resuscitation period, the burn wound represents the greatest threat to survival. History Since the dawn of civilization, man has been trying to find an agent which would help burn wounds heal, and at the same time, not harm general condition of the injure...

  2. Animal Models in Burn Research

    OpenAIRE

    Abdullahi, A.; Amini-Nik, S.; Jeschke, M.G

    2014-01-01

    Burn injury is a severe form of trauma affecting more than two million people in North America each year. Burn trauma is not a single pathophysiological event but a devastating injury that causes structural and functional deficits in numerous organ systems. Due to its complexity and the involvement of multiple organs, in vitro experiments cannot capture this complexity nor address the pathophysiology. In the past two decades, a number of burn animal models have been developed to replicate the...

  3. Rehabilitation of the burn patient

    OpenAIRE

    Procter Fiona

    2010-01-01

    Rehabilitation is an essential and integral part of burn treatment. It is not something which takes place following healing of skin grafts or discharge from hospital; instead it is a process that starts from day one of admission and continues for months and sometimes years after the initial event. Burns rehabilitation is not something which is completed by one or two individuals but should be a team approach, incorporating the patient and when appropriate, their family. The term ′Burns...

  4. BACTERIOLOGICAL STUDY OF BURNS INFECTION

    OpenAIRE

    Shareen; Basavarajappa; Hanumanthappa

    2015-01-01

    A burn is a wound in which there is coagulative necrosis of the tissue, majority of which are caused by heat. Burn injury is a major public health problem in many areas of the world. Burns predispose to infection by damaging the protective barrier function of the skin, thus facilitating the entry of pa thogenic microorganisms and by inducing systemic immunosuppression . (1) OBJECTIVE : The present study was therefore undertaken to isolate and identify the a...

  5. Mexico city aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) - Part 2: Analysis of the biomass burning contribution and the non-fossil carbon fraction

    Energy Technology Data Exchange (ETDEWEB)

    Aiken, A.C.; Wang, J.; de Foy, B.; Wiedinmyer, C.; DeCarlo, P. F.; Ulbrich, I. M.; Wehrli, M. N.; Szidat, S.; Prevot, A. S. H.; Noda, J.; Wacker, L.; Volkamer, R.; Fortner, E.; Laskin, A.; Shutthanandan, V.; Zheng, J.; Zhang, R.; Paredes-Miranda, G.; Arnott, W. P.; Molina, L. T.; Sosa, G.; Querol, X.; Jimenez, J. L.

    2010-06-16

    Submicron aerosol was analyzed during the MILAGRO field campaign in March 2006 at the T0 urban supersite in Mexico City with a High-Resolution Aerosol Mass Spectrometer (AMS) and complementary instrumentation. Positive Matrix Factorization (PMF) of high resolution AMS spectra identified a biomass burning organic aerosol (BBOA) component, which includes several large plumes that appear to be from forest fires within the region. Here, we show that the AMS BBOA concentration at T0 correlates with fire counts in the vicinity of Mexico City and that most of the BBOA variability is captured when the FLEXPART model is used for the dispersion of fire emissions as estimated from satellite fire counts. The resulting FLEXPART fire impact factor (FIF) correlates well with the observed BBOA, acetonitrile (CH3CN), levoglucosan, and potassium, indicating that wildfires in the region surrounding Mexico City are the dominant source of BBOA at T0 during MILAGRO. The impact of distant BB sources such as the Yucatan is small during this period. All fire tracers are correlated, with BBOA and levoglucosan showing little background, acetonitrile having a well-known tropospheric background of {approx}100-150 pptv, and PM2.5 potassium having a background of {approx}160 ng m3 (two-thirds of its average concentration), which does not appear to be related to BB sources. We define two high fire periods based on satellite fire counts and FLEXPART-predicted FIFs. We then compare these periods with a low fire period when the impact of regional fires is about a factor of 5 smaller. Fire tracers are very elevated in the high fire periods whereas tracers of urban pollution do not change between these periods. Dust is also elevated during the high BB period but this appears to be coincidental due to the drier conditions and not driven by direct dust emission from the fires. The AMS oxygenated organic aerosol (OA) factor (OOA, mostly secondary OA or SOA) does not show an increase during the fire

  6. Vitamin C in Burn Resuscitation.

    Science.gov (United States)

    Rizzo, Julie A; Rowan, Matthew P; Driscoll, Ian R; Chung, Kevin K; Friedman, Bruce C

    2016-10-01

    The inflammatory state after burn injury is characterized by an increase in capillary permeability that results in protein and fluid leakage into the interstitial space, increasing resuscitative requirements. Although the mechanisms underlying increased capillary permeability are complex, damage from reactive oxygen species plays a major role and has been successfully attenuated with antioxidant therapy in several disease processes. However, the utility of antioxidants in burn treatment remains unclear. Vitamin C is a promising antioxidant candidate that has been examined in burn resuscitation studies and shows efficacy in reducing the fluid requirements in the acute phase after burn injury. PMID:27600125

  7. Nutrition Support in Burn Patients

    Directory of Open Access Journals (Sweden)

    Cem Aydoğan

    2012-08-01

    Full Text Available Severe burn trauma causes serious metabolic derangements. Increased metabolic rate which is apart of a pathophysiologic characteristic of burn trauma results in protein-energy malnutrition. This situation causes impaired wound healing, muscle and fat tissue’s breakdown, growth retardation in children and infections. Nutrition support is vital in the treatment strategies of burn victims to prevent high mortal and disabling complications in this devastating trauma. Our aim in this study is to review management of nutrition in burn victims. (Journal of the Turkish Society Intensive Care 2012; 10: 74-83

  8. PSI Effects on Plasma Burn-through in JET

    CERN Document Server

    Kim, Hyun-Tae; Fundamenski, W; contributors, EFDA-JET

    2013-01-01

    Plasma Surface Interaction(PSI) effects on plasma burn-through are compared for the carbon wall and the ITER-Like Wall(ILW) at JET. For the carbon wall, the radiation barrier and C2+ influx have a significant linear correlation whereas the radiation barrier in the ILW does not have such a linear correlation with Be 1+ influx. The JET data are explained by the simulation results of the DYON code. The radiation barrier in the carbon wall JET is dominated by the carbon radiation, but the radiation barrier in the ILW is mainly from the deuterium radiation rather than the beryllium radiation.

  9. Sodium and sulfur release and recapture during black liquor burning

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, W.J.; Iisa, K.; Wag, K.; Reis, V.V.; Boonsongsup, L.; Forssen, M.; Hupa, M.

    1995-08-01

    The objective of this study was to provide data on sulfur and sodium volatilization during black liquor burning, and on SO2 capture by solid sodium carbonate and sodium chloride. This data was interpreted and modeled into rate equations suitable for use in computational models for recovery boilers.

  10. Oral Rehydration Therapy in Burn Patients

    Science.gov (United States)

    2014-04-24

    Burn Any Degree Involving 20-29 Percent of Body Surface; Burn Any Degree Involving 30-39 Percent of Body Surface; Burn Any Degree Involving 40-49 Percent of Body Surface; Burn Any Degree Involving 50-59 Percent of Body Surface; Burn Any Degree Involving 60-65 Percent of Body Surface

  11. In-situ burning of Orimulsion : small scale burns

    International Nuclear Information System (INIS)

    This study examined the feasibility of burning Orimulsion. In-situ burning has always been a viable method for cleaning oil spills on water because it can effectively reduce the amount of spilled oil and eliminate the need to collect, store, transport and dispose of recovered oil. Orimulsion, however, behaves very differently from conventional oil when it is spilled because of its composition of 70 per cent bitumen in 30 per cent water. In-situ burning of this surfactant-stablized oil-in-water emulsion has never been seriously considered because of the perception that Orimulsion could not be ignited, and if it could, ignition would not be sustained. In this study, burn tests were conducted on 3 scales in a Cleveland Open Cup apparatus of 5 cm, 10 cm and 50 cm diameters. Larger scale burns were conducted in specially built pans. All tests were conducted on salt water which caused the bitumen to separate from the water. The objective was to determine if sufficient vapours could be generated to ignite the Orimulsion. The study also measured if a sustained flame would result in successful combustion. Both objectives were successfully accomplished. Diesel fuel was used to ignite the Orimulsion in the specially designed pan for large scale combustion. Quantitative removal of Orimulsion was achieved in all cases, but in some burns it was necessary to re-ignite the Orimulsion. It was noted that when Orimulsion burns, some trapped water droplets in the bitumen explode with enough force to extinguish a small flame. This did not occur on large-scale burns. It was concluded that the potential for successful in-situ burning increases with size. It was determined that approximately 1 mm in thickness of diesel fuel is needed to ignite a burn. 5 refs., 3 tabs., 4 figs

  12. Fuel burning and climate

    International Nuclear Information System (INIS)

    Emission of soot particles and other air pollution indoors constitutes a considerable health hazard for a major part of the population in many developing countries, one of them being China. In these countries problems relating to poverty are the most important risk factors, undernourishment being the dominating reason. Number four on the list of the most serious health hazards is indoor air pollution caused by burning of coal and biomass in the households. Very high levels of soot particles occur indoors because of incomplete combustion in old-fashioned stoves and by use of low quality fuel such as sticks and twigs and straw and other waste from agriculture. This leads to an increase in a series of acute and chronic respiratory diseases, including lung cancer. It has been pointed out in recent years that emissions due to incomplete combustion of coal and biomass can contribute considerably to climate changes

  13. Wanted: Clean Coal Burning Technology

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    China is intent on developing clean coal burning technology, an objective it can achieve through installing desulfurization facilities at coal-burning power plants that will control SO2 emissions and environmental pollution. According to kuo Yi, deputy director general of the Department of Science and Technology of the State Environmental Protection Agency, China is a major coal-buming country:

  14. Fires and Burns Involving Home Medical Oxygen

    Science.gov (United States)

    ... nfpa.org Fires and Burns Involving Home Medical Oxygen The air is normally 21% oxygen. Oxygen is not flammable, but fire needs it to burn. ¾ When more oxygen is present, any fire that starts will burn ...

  15. Emissions of oxygenated volatile organic compounds from open crop burning in Yangtze River Delta region, China

    Science.gov (United States)

    Tanimoto, H.; Kudo, S.; Pan, X.; Inomata, S.; Saito, S.; Kanaya, Y.; Wang, Z.

    2013-12-01

    Measurements of volatile organic compounds (VOCs) were made by gas chromatography/flame ionization detection/mass spectrometry (GC/FID/MS) and proton transfer reaction-mass spectrometry (PTR-MS) at Rudong, a rural area of Central East China in June 2010. During the campaign we identified several plumes originated from open biomass burning by the simultaneous enhancements of carbon monoxide and acetonitrile. Based on positive matrix factorization (PMF) analysis, the contribution of biomass burning was in the range from 60 to 80% for the plumes. We found that oxygenated VOCs were predominant for these events. The emission ratios of OVOCs to CO for open crop burnings derived in this work were found to be high. Combined with the updated CO emissions of 12.7 Tg per year from crop burning, we estimated OVOC emissions from crop burning can be about 1.2 Tg per year, accounting for substantial amount of VOCs emitted from crop burning.

  16. Sedation and Analgesia in Burn

    Directory of Open Access Journals (Sweden)

    Özkan Akıncı

    2011-07-01

    Full Text Available Burn injury is one of the most serious injuries that mankind may face. In addition to serious inflammation, excessive fluid loss, presence of hemodynamic instability due to intercurrent factors such as debridements, infections and organ failure, very different levels and intensities of pain, psychological problems such as traumatic stress disorder, depression, delirium at different levels that occur in patient with severe burn are the factors which make it difficult to provide the patient comfort. In addition to a mild to moderate level of baseline permanent pain in burn patients, which is due to tissue damage, there is procedural pain as well, which occurs by treatments such as grafting and dressings, that are severe, short-term burst style 'breakthrough' pain. Movement and tactile stimuli are also seen in burn injury as an effect to sensitize the peripheral and central nervous system. Even though many burn centers have established protocols to struggle with the pain, studies show that pain relief still inadequate in burn patients. Therefore, the treatment of burn pain and the prevention of possible emergence of future psychiatric problems suc as post-traumatic stress disorder, the sedative and anxiolytic agents should be used as a recommendation according to the needs and hemodynamic status of individual patient. (Journal of the Turkish Society Intensive Care 2011; 9 Suppl: 26-30

  17. Alcohol use and burn injury.

    Science.gov (United States)

    Jones, J D; Barber, B; Engrav, L; Heimbach, D

    1991-01-01

    Charts of 108 consecutive adult patients with flame burns of 20% to 70% total body surface area were reviewed to determine the incidence of acute alcohol intoxication and the likelihood that intoxicated patients were chronic alcohol abusers, to assess morbidity and mortality in the alcoholic patient with burns, and to characterize the intervention used in postdischarge treatment of the alcoholic patient with burns who survives. Twenty-seven percent of patients were acutely intoxicated at the time of injury. Evidence for chronic alcohol abuse was apparent in 90% of intoxicated patients, compared to only 11% of nonintoxicated patients (p = 0.0001). Alcoholic patients with burns not only had an overall mortality rate three times that of nonalcoholics (p = 0.001) but also died of smaller burns (p less than 0.05). Surviving alcoholic patients with burns required significantly more intravenous antibiotics and a longer hospitalization. Social service evaluation of use of alcohol was made in 84% of the cases of surviving intoxicated burn victims. Further intervention was undertaken in two thirds of these cases, usually involving an outpatient treatment program. PMID:2050723

  18. Topical agents in burn care

    Directory of Open Access Journals (Sweden)

    Momčilović Dragan

    2002-01-01

    Full Text Available Introduction Understanding of fluid shifts and recognition of the importance of early and appropriate fluid replacement therapy have significantly reduced mortality in the early post burn period. After the bum patient successfully passes the resuscitation period, the burn wound represents the greatest threat to survival. History Since the dawn of civilization, man has been trying to find an agent which would help burn wounds heal, and at the same time, not harm general condition of the injured. It was not until the XX century, after the discovery of antibiotics, when this condition was fulfilled. In 1968, combining silver and sulfadiazine, fox made silver-sulfadiazine, which is a 1% hydro-soluble cream and a superior agent in topical treatment of burns today. Current topical agents None of the topical antimicrobial agents available today, alone or combined, have the characteristics of ideal prophylactic agents, but they eliminate colonization of burn wound, and invasive infections are infrequent. With an excellent spectrum of activity, low toxicity, and ease of application with minimal pain, silver-sulfadiazine is still the most frequently used topical agent. Conclusion The incidence of invasive infections and overall mortality have been significantly reduced after introduction of topical burn wound antimicrobial agents into practice. In most burn patients the drug of choice for prophylaxis is silver sulfadiazine. Other agents may be useful in certain clinical situations.

  19. Rehabilitation of the burn patient

    Directory of Open Access Journals (Sweden)

    Procter Fiona

    2010-10-01

    Full Text Available Rehabilitation is an essential and integral part of burn treatment. It is not something which takes place following healing of skin grafts or discharge from hospital; instead it is a process that starts from day one of admission and continues for months and sometimes years after the initial event. Burns rehabilitation is not something which is completed by one or two individuals but should be a team approach, incorporating the patient and when appropriate, their family. The term ′Burns Rehabilitation′ incorporates the physical, psychological and social aspects of care and it is common for burn patients to experience difficulties in one or all of these areas following a burn injury. Burns can leave a patient with severely debilitating and deforming contractures, which can lead to significant disability when left untreated. The aims of burn rehabilitation are to minimise the adverse effects caused by the injury in terms of maintaining range of movement, minimising contracture development and impact of scarring, maximising functional ability, maximising psychological wellbeing, maximising social integration

  20. Combustion of biomass as a global carbon sink

    OpenAIRE

    Ball, Rowena

    2008-01-01

    This note is intended to highlight the important role of black carbon produced from biomass burning in the global carbon cycle, and encourage further research in this area. Consideration of the fundamental physical chemistry of cellulose thermal decomposition suggests that suppression of biomass burning or biasing burning practices to produce soot-free flames must inevitably transfer more carbon to the atmosphere. A simple order-of-magnitude quantitative analysis indicates that black carbon m...

  1. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): Emissions of trace gases and light-absorbing carbon from wood and dung cooking fires, garbage and crop residue burning, brick kilns, and other sources

    OpenAIRE

    Stockwell, Chelsea E.; Christian, Ted J.; Goetz, J. Douglas; Jayarathne, Thilina; Bhave, Prakash V.; Praveen, Puppala S.; Adhikari, Sagar; Maharjan, Rashmi; DeCarlo, Peter F.; Stone1, Elizabeth A.; Saikawa, Eri; Blake, Donald R; Simpson, Isobel; Yokelson, Robert J.; Panday, Arnico K.

    2016-01-01

    The Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) campaign took place in and around the Kathmandu Valley and in the Indo-Gangetic plains (IGP) of southern Nepal during April 2015. The source characterization phase targeted numerous important but undersampled (and often inefficient) combustion sources that are widespread in the developing world such as cooking with a variety of stoves and solid fuels, brick kilns, open burning of municipal solid waste (a.k.a. trash or garbag...

  2. Protocolized Resuscitation of Burn Patients.

    Science.gov (United States)

    Cancio, Leopoldo C; Salinas, Jose; Kramer, George C

    2016-10-01

    Fluid resuscitation of burn patients is commonly initiated using modified Brooke or Parkland formula. The fluid infusion rate is titrated up or down hourly to maintain adequate urine output and other endpoints. Over-resuscitation leads to morbid complications. Adherence to paper-based protocols, flow sheets, and clinical practice guidelines is associated with decreased fluid resuscitation volumes and complications. Computerized tools assist providers. Although completely autonomous closed-loop control of resuscitation has been demonstrated in animal models of burn shock, the major advantages of open-loop and decision-support systems are identifying trends, enhancing situational awareness, and encouraging burn team communication. PMID:27600131

  3. Open questions in stellar helium burning studied with photons

    International Nuclear Information System (INIS)

    The outcome of helium burning is the formation of the two elements, carbon and oxygen. The ratio of carbon to oxygen at the end of helium burning is crucial for understanding the final fate of a progenitor star and the nucleosynthesis of heavy elements in Type II supernova. While an oxygen rich star is predicted to end up as a black hole, a carbon rich star leads to a neutron star. Type Ia supernovae (SNIa) are used as standard candles for measuring cosmological distances with the use of an empirical light curve-luminosity stretching factor. It is essential to understand helium burning that creates the carbon/oxygen white dwarf and thus the initial stage of SNIa. Since the triple alpha-particle capture reaction, 8Be(α, γ)12C, the first burning stage in helium burning, is well understood, one must extract the cross section of the 12C(α, γ)16O reaction at the Gamow peak (300 keV) with high accuracy of approximately 10% or better. This goal has not been achieved, despite repeated strong statements that appeared in the literature. Constraints from the beta-delayed alpha-particle emission of 16N were shown to not sufficiently restrict the p-wave cross section factor; e.g. low values can not be ruled out. Measurements at low energies, are thus mandatory for measuring the elusive cross section factor for the 12O(α, γ)16O reaction. We are constructing a Time Projection Chamber (TPC) for use with high intensity photon beams extracted from the HIγS-TUNL facility at Duke University to study the 16O(γ, α)12C reaction, and thus the direct reaction at low energies, as low as 0.7 MeV. This work is in progress. (author)

  4. Levoglucosan indicates high levels of biomass burning aerosols over oceans from the Arctic to Antarctic

    Science.gov (United States)

    Hu, Q.; Xie, Z.; Wang, X.; Kang, H.; Zhang, P.

    2015-12-01

    Biomass burning discharges numerous kinds of gases and aerosols, such as carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), black carbon (BC), alcohols, organic acids and persistent organic pollutants (POPs), and is known to affect air quality, global carbon cycle, and climate. However, the extent to which biomass burning gases/aerosols are present on a global scale, especially in the marine atmosphere, is poorly understood. Here we measure levoglucosan, a superior molecular tracer of biomass burning aerosols because of its single source, in marine air from the Arctic Ocean through the North and South Pacific Ocean to coastal Antarctica during burning season. Levoglucosan was found to be present in all regions at ng/m3 levels. As a whole, levoglucosan concentrations in the Southern Hemisphere were comparable to those in the Northern Hemisphere. Marine air in the mid-latitudes (30°-60° N and S) has the highest levoglucosan loading due to the emission from adjacent lands. Air over the Arctic Ocean which affected by biomass burning in the east Siberia has intermediate loading. Equatorial latitudes is the main source of biomass burning emissions, however, levoglucosan is in relatively low level. Large amount of precipitation and high hydroxyl radical concentration in this region cause more deposition and degradation of levoglucosan during transport. Previous studies were debatable on the influence of biomass burning on the Antarctic because of uncertain source of BC. Here via levoglucosan, it is proved that although far away from emission sources, the Antarctic is still affected by biomass burning aerosols which may be derived from South America. Biomass burning has a significant impact on mercury (Hg) and water-soluble organic carbon (WSOC) in marine aerosols from pole to pole, with more contribution to WSOC in the Northern Hemisphere than in the Southern Hemisphere.

  5. Phoenix Society for Burn Survivors

    Science.gov (United States)

    ... Learn More For First Responders & Medical Professionals Phoenix Society is the leader in connecting the burn recovery ... It can be a... Continue Reading The Phoenix Society, Inc. 1835 RW Berends Dr. SW Grand Rapids, ...

  6. Burns, hypertrophic scar and galactorrhea

    Directory of Open Access Journals (Sweden)

    Hamid Karimi

    2013-07-01

    Full Text Available An 18-year old woman was admitted to Motahari Burn Center suffering from 30% burns. Treatment modalities were carried out for the patient and she was discharged after 20 days. Three to four months later she developed hypertrophic scar on her chest and upper limbs .At the same time she developed galactorrhea in both breasts and had a disturbed menstrual cycle four months post-burn. On investigation, we found hyperprolactinemia and no other reasons for the high level of prolactin were detected. She received treatment for both the hypertrophic scar and the severe itching she was experiencing. After seven months, her prolactin level had decreased but had not returned to the normal level. It seems that refractory hypertrophic scar is related to the high level of prolactin in burns patients.

  7. Wound Care in Burn Patients

    OpenAIRE

    Orhan Çizmeci; Samet Vasfi Kuvat

    2011-01-01

    Wound care in one of the most important prognostic factors in burn victims. Open wound carries risks for infection due to hypothermia, protein and fluid losses. In addition, unhealed wounds are the major risk factors for acute-subacute or chronic complications in burn patients. Although no exact algorithm exists for open wound treatment, early escarectomy or debridement together with grafting is the best option. Ointments together with topical epithelizing agents without dressings are generea...

  8. Characterization of gas and particle emissions from laboratory burns of peat

    Science.gov (United States)

    Black, Robert R.; Aurell, Johanna; Holder, Amara; George, Ingrid J.; Gullett, Brian K.; Hays, Michael D.; Geron, Chris D.; Tabor, Dennis

    2016-05-01

    Peat cores collected from two locations in eastern North Carolina (NC, USA) were burned in a laboratory facility to characterize emissions during simulated field combustion. Particle and gas samples were analyzed to quantify emission factors for particulate matter (PM2.5), organic carbon (OC), elemental carbon, light absorbing carbon, absorption Angstrom exponent, metals, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated dibenzodioxins/dibenzofurans (PCDDs/PCDFs). CO from the smoldering burns, up to 7 h in duration, contributed approximately 16% of the total carbon emitted. Emission factors for black carbon (BC) and light absorbing carbon (UVPM) were considerably lower than those found for forest litter burns. Emission factors for PCDDs/PCDFs were near published values for forest fuels, at 1-4 ng toxic equivalents (TEQ)/kg carbon burned (Cb). Total PAH concentrations of ≥12 mg/kg were higher than published data from biomass burns, but roughly the same in terms of toxicity. Application of these emission factors to the noteworthy 2008 "Evans Road" fire in NC indicates that PM2.5 and PCDD/PCDF emissions from this fire may have been 4-6% of the annual US inventory and 5% of the annual OC amount.

  9. DIFFERENTIATING PERIMORTEM AND POSTMORTEM BURNING

    Directory of Open Access Journals (Sweden)

    Brahmaji Master

    2015-01-01

    Full Text Available One of the most challenging cases in forensic medicine is ascertaining the cause of death of burnt bodies under suspicious circumstances. The key questions that arise at the time of investigation include: 1  Was the person alive or dead prior to fire accident?  Did the victim die because of burn?  If death was not related to burns, could burns play a role in causing death?  Were the burns sustained accidentally, did the person commit suicide or was the person murdered?  Are the circumstances suggesting an attempt to conceal crime?  How was the fire started?  How was the victim identified?  In case of mass fatalities, who died first? Postmortem burning of corpses is supposed to be one of the ways to hide a crime. Differentiating the actual cause of death in burn patients is therefore important. Medical examiners usually focus on the defining the changes that occur in tissues while forensic anthropologists deal with the changes related to the bone with or without any the influence of other tissues. Under the circumstances of fire, differentiating the perimortem trauma from that of postmortem cause of bone fractures is vital in determining the cause and motive of death

  10. Fuel characteristics and emissions from biomass burning and land-use change in Nigeria

    International Nuclear Information System (INIS)

    Nigeria is one of the 13 low-latitude countries that have significant biomass burning activities. Biomass burning occurs in moist savanna, dry forests, and forest plantations. Fires in the forest zone are associated with slash-and-burn agriculture; the areal extent of burning is estimated to be 80% of the natural savanna. In forest plantations, close to 100% of litter is burned. Current estimates of emissions from land-use change are based on a 1976 national study and extrapolations from it. The following non-carbon dioxide (CO2) trace gas emissions were calculated from savanna burning: methane (CH4), 145 gigagrams (Gg); carbon monoxide (CO), 3831 Gg; nitrous oxide (N2O), 2 Gg; and nitrogen oxides (NOx), 49 Gg. Deforestation rates in forests and woodlands are 300 x 103 ha (kilohectare, or kha) and 200 x kha per year, respectively. Trace gas emissions from deforestation were estimated to be 300 Gg CH4, 2.4 Gg N2O, and 24 Gg NOx. CO2 emissions from burning, decay of biomass, and long-term emissions from soil totaled 125,561 Gg. These estimates should be viewed as preliminary, because greenhouse gas emission inventories from burning, deforestation, and land-use change require two components: fuel load and emission factors. Fuel load is dependent on the areal extent of various land uses, and the biomass stocking and some of these data in Nigeria are highly uncertain. 9 tabs., 44 refs

  11. Fuel characteristics and emissions from biomass burning and land-use change in Nigeria.

    Science.gov (United States)

    Isichei, A O; Muoghalu, J I; Akeredolu, F A; Afolabi, O A

    1995-01-01

    Nigeria is one of the 13 low-latitude countries that have significant biomass burning activities. Biomass burning occurs in moist savanna, dry forests, and forest plantations. Fires in the forest zone are associated with slash-and-burn agriculture; the areal extent of burning is estimated to be 80% of the natural savanna. In forest plantations, close to 100% of litter is burned. Current estimates of emissions from land-use change are based on a 1976 national study and extrapolations from it. The following non-carbon dioxide (CO2) trace gas emissions were calculated from savanna burning: methane (CH4), 145 gigagrams (Gg); carbon monoxide (CO), 3831 Gg; nitrous oxide (N2O), 2 Gg; and nitrogen oxides (NOx), 49 Gg. Deforestation rates in forests and woodlands are 300 × 10(3) ha (kilohectare, or kha) and 200 × kha per year, respectively. Trace gas emissions from deforestation were estimated to be 300 Gg CH4, 2.4 Gg N2O, and 24 Gg NOx. CO2 emissions from burning, decay of biomass, and long-term emissions from soil totaled 125 561 Gg. These estimates should be viewed as preliminary, because greenhouse gas emission inventories from burning, deforestation, and land-use change require two components: fuel load and emission factors. Fuel load is dependent on the areal extent of various land uses, and the biomass stocking and some of these data in Nigeria are highly uncertain. PMID:24197951

  12. Impact of trash burning on air quality in Mexico City.

    Science.gov (United States)

    Hodzic, A; Wiedinmyer, C; Salcedo, D; Jimenez, J L

    2012-05-01

    Air pollution experienced by expanding urban areas is responsible for serious health effects and death for millions of people every year. Trash burning is a common disposal method in poor areas, yet it is uncontrolled in many countries, and its contribution to air pollution is unclear due to uncertainties in its emissions. Here we develop a new trash burning emission inventory for Mexico City based on inverse socioeconomic levels and recently measured emission factors, and apply a chemistry-transport model to analyze the effects on pollutant concentrations. Trash burning is estimated to emit 25 tons of primary organic aerosols (POA) per day, which is comparable to fossil fuel POA emissions in Mexico City, and causes an increase in average organic aerosol concentrations of ∼0.3 μg m(-3) downtown and up to 2 μg m(-3) in highly populated suburbs near the sources of emission. An evaluation using submicrometer antimony suggests that our emission estimates are reasonable. Mitigation of trash burning could reduce the levels of organic aerosols by 2-40% and those of PM(2.5) by 1-15% over the metropolitan area. The trash burning contributions to carbon monoxide, nitrogen oxides, and volatile organic compounds were found to be very small (organic aerosols are also very small. PMID:22458823

  13. Effect of fasting on the metabolic response of liver to experimental burn injury.

    Directory of Open Access Journals (Sweden)

    Mehmet A Orman

    Full Text Available Liver metabolism is altered after systemic injuries such as burns and trauma. These changes have been elucidated in rat models of experimental burn injury where the liver was isolated and perfused ex vivo. Because these studies were performed in fasted animals to deplete glycogen stores, thus simplifying quantification of gluconeogenesis, these observations reflect the combined impact of fasting and injury on liver metabolism. Herein we asked whether the metabolic response to experimental burn injury is different in fed vs. fasted animals. Rats were subjected to a cutaneous burn covering 20% of the total body surface area, or to similar procedures without administering the burn, hence a sham-burn. Half of the animals in the burn and sham-burn groups were fasted starting on postburn day 3, and the others allowed to continue ad libitum. On postburn day 4, livers were isolated and perfused for 1 hour in physiological medium supplemented with 10% hematocrit red blood cells. The uptake/release rates of major carbon and nitrogen sources, oxygen, and carbon dioxide were measured during the perfusion and the data fed into a mass balance model to estimate intracellular fluxes. The data show that in fed animals, injury increased glucose output mainly from glycogen breakdown and minimally impacted amino acid metabolism. In fasted animals, injury did not increase glucose output but increased urea production and the uptake of several amino acids, namely glutamine, arginine, glycine, and methionine. Furthermore, sham-burn animals responded to fasting by triggering gluconeogenesis from lactate; however, in burned animals the preferred gluconeogenic substrate was amino acids. Taken together, these results suggest that the fed state prevents the burn-induced increase in hepatic amino acid utilization for gluconeogenesis. The role of glycogen stores and means to increase and/or maintain internal sources of glucose to prevent increased hepatic amino acid

  14. Review of Burn Research for Year 2014.

    Science.gov (United States)

    Sen, Soman; Palmieri, Tina; Greenhalgh, David

    2015-01-01

    Management of burn injuries requires treatments and interventions from many disciplines. Worldwide, burn patients suffer from physical and psychological challenges that impact their lives socially and economically. In this review, we will highlight a handful of the numerous articles published in multiple areas of burn care. The areas of burn care addressed in the article are: epidemiology; burn resuscitation, critical care, and infection; nutrition and metabolism; pain and rehabilitation; prevention and firefighter safety; psychology; and reconstruction and wounds. PMID:26204384

  15. Carbon Monoxide Poisoning

    Science.gov (United States)

    ... natural gas, propane, oil, and methane) burn incompletely. ** Carbon Monoxide can have different effects on people based on its concentration in the air that people breathe, and the person’s health condition.**** Each year, carbon monoxide poisoning claims approximately 480 lives and sends another ...

  16. A review of biomass burning emissions part III: intensive optical properties of biomass burning particles

    Directory of Open Access Journals (Sweden)

    J. S. Reid

    2005-01-01

    Full Text Available Because of its wide coverage over much of the globe, biomass burning has been widely studied in the context of direct radiative forcing. Such study is warranted as smoke particles scatter and at times absorb solar radiation efficiently. Further, as much of what is known about smoke transport and impacts is based on remote sensing measurements, the optical properties of smoke particles have far reaching effects into numerous aspects of biomass burning studies. Global estimates of direct forcing have been widely varying, ranging from near zero to −1 W m-2. A significant part of this difference can be traced to varying assumptions on the optical properties of smoke. This manuscript is the third part of four examining biomass-burning emissions. Here we review and discuss the literature concerning measurement and modeling of optical properties of biomass-burning particles. These include available data from published sensitivity studies, field campaigns, and inversions from the Aerosol Robotic Network (AERONET of Sun photometer sites. As a whole, optical properties reported in the literature are varied, reflecting both the dynamic nature of fires, variations in smoke aging processes and differences in measurement technique. We find that forward modeling or ''internal closure'' studies ultimately are of little help in resolving outstanding measurement issues due to the high degree of degeneracy in solutions when using ''reasonable'' input parameters. This is particularly notable with respect to index of refraction and the treatment of black carbon. Consequently, previous claims of column closure may in fact be more ambiguous. Differences between in situ and retrieved ωo values have implications for estimates of mass scattering and mass absorption efficiencies. In this manuscript we review and discuss this community dataset. Strengths and lapses are pointed out, future research topics are prioritized, and best estimates and uncertainties of key

  17. A review of biomass burning emissions part III: intensive optical properties of biomass burning particles

    Directory of Open Access Journals (Sweden)

    J. S. Reid

    2004-09-01

    Full Text Available Because of its wide coverage over much of the globe, biomass burning has been widely studied in the context of direct radiative forcing. Such study is warranted as smoke particles scatter and at times absorb solar radiation efficiently. Further, as much of what is known about smoke transport and impacts is based on remote sensing measurements, the optical properties of smoke particles have far reaching effects into numerous aspects of biomass burning studies. Global estimates of direct forcing have been widely varying, ranging from near zero to −1 Wm−2. A significant part of this difference can be traced to varying assumptions on the optical properties of smoke. This manuscript is the third part of four examining biomass-burning emissions. Here we review and discuss the literature concerning measurement and modeling of optical properties of biomass-burning particles. These include available data from published sensitivity studies, field campaigns, and inversions from the Aerosol Robotic Network (AERONET of Sun photometer sites. As a whole, optical properties reported in the literature are varied, reflecting both the dynamic nature of fires, variations in smoke aging processes and differences in measurement technique. We find that forward modeling or "internal closure" studies ultimately are of little help in resolving outstanding measurement issues due to the high degree of degeneracy in solutions when using "reasonable" input parameters. This is particularly notable with respect to index of refraction and the treatment of black carbon. Consequently, previous claims of column closure may in fact be more ambiguous. Differences between in situ and retrieved ωo values have implications for estimates of mass scattering and mass absorption efficiencies. In this manuscript we review and discuss this community dataset. Strengths and lapses are pointed out, future research topics are prioritized, and best estimates and

  18. Chemical characterisation of particle emissions from burning leaves

    Science.gov (United States)

    Schmidl, Christoph; Bauer, Heidi; Dattler, Astrid; Hitzenberger, Regina; Weissenboeck, Gerlinde; Marr, Iain L.; Puxbaum, Hans

    Particulate matter emissions (PM10) from open-air burning of dry leaves were sampled and analysed for a series of organic and inorganic species, including carbon fractions, anhydrosugars, humic-like substances (HULIS), water-soluble ions, metals and organic trace components. The study was performed to investigate whether open-air burning of leaves in rural areas is a potential source of high amounts of unexplained organic matter (OM) in ambient PM. Results of the carbon analysis indicated that the amount of OM, more than 90% of emitted PM10, is significantly higher in smoke from leaves than from wood burning [Schmidl, C., Marr, I.L., Caseiro, A., Kotianova, P., Berner, A., Bauer, H., Kasper-Giebl, A., Puxbaum, H., 2008. Chemical characterization of fine particle emissions from wood stove combustion of common woods growing in mid-European Alpine regions. Atmospheric Environment 42, 126-141, till now considered as the main combustion source of organic PM used in source apportionment. While the proportion of total carbon (TC), 67% of PM10, is very similar to that in wood smoke, the make-up of the total carbon is different. In wood smoke, levels of elemental carbon (EC) equivalent to soot, of around 20% were found, however in leaf smoke EC was very low, between 0 and 10% depending on the analytical methodology. In addition chemical markers were identified that permit the discrimination of wood smoke from leaf smoke in ambient PM samples. In particular the levels of anhydrosugars, sugar alcohols, PAH and n-alkanes in leaf smoke differ significantly from those in wood smoke. The ratios of levoglucosan to galactosan and benzo[a]pyrene to tetracosane differ by an order of magnitude between smoke of leaf burning and that of typical mid-European firewood (Schmidl et al., 2008). Furthermore sugar alcohols were found in notable concentrations in leaf burning samples, which were not found in wood smoke. Complete chemical profiles for leaf burning as a particulate matter source

  19. Burning mouth syndrome: Current concepts.

    Science.gov (United States)

    Nasri-Heir, Cibele; Zagury, Julyana Gomes; Thomas, Davis; Ananthan, Sowmya

    2015-01-01

    Burning mouth syndrome (BMS) is a chronic pain condition. It has been described by the International Headache Society as "an intra-oral burning or dysesthetic sensation, recurring daily for more than 2 h/day for more than 3 months, without clinically evident causative lesions." BMS is frequently seen in women in the peri-menopausal and menopausal age group in an average female/male ratio of 7:1. The site most commonly affected is the anterior two-thirds of the tongue. The patient may also report taste alterations and oral dryness along with the burning. The etiopathogenesis is complex and is not well-comprehended. The more accepted theories point toward a neuropathic etiology, but the gustatory system has also been implicated in this condition. BMS is frequently mismanaged, partly because it is not well-known among healthcare providers. Diagnosis of BMS is made after other local and systemic causes of burning have been ruled out as then; the oral burning is the disease itself. The management of BMS still remains a challenge. Benzodiazepines have been used in clinical practice as the first-line medication in the pharmacological management of BMS. Nonpharmacological management includes cognitive behavioral therapy and complementary and alternative medicine (CAM). The aim of this review is to familiarize healthcare providers with the diagnosis, pathogenesis, and general characteristics of primary BMS while updating them with the current treatment options to better manage this group of patients. PMID:26929531

  20. Waste: energy to burn

    International Nuclear Information System (INIS)

    Incinerated, transformed into fuel or a gas, waste is a versatile source of energy. It is as once a problem and a resource that is increasingly the focus of green policies. According to the 2009 World Waste Survey, between 3.4 and 4 billion tons of waste are produced each year worldwide. Leading the pack is China, with 300 million tons produced in 2005, followed closely by the United States, with 238 million tons. But the United States wins the per capita count with 760 kg of waste produced per year per inhabitant; Australia comes in second. In Europe, 500 kg of waste is produced per capita per year for a total of 2 billion tons generated annually, and a growth rate of 10% in ten years' time. Between 2/3 and 3/4 of these waste materials are sorted, and a portion of them is recycled. The rest is either carted away to a dumping ground, or incinerated. But this waste is primarily domestic, and still contains energy, energy that can be recovered. The added bonus is two-fold: an additional source of energy is created by transforming waste, called waste-to- wheel or waste-to-energy (WTE), and the decomposition of organic waste does not give off GHGs. Two ways are known today to transform wastes into energy: the thermal process, where heat is extracted from the waste (and sometimes converted into electricity), and the non-thermal process, which comprises collecting energy in a chemical form (biogas, biofuel). Both technologies depend on the type of waste to be treated: plastic materials, household refuse, fermentable elements, sludge residue from sewage treatment plants, agricultural waste, forestry industry waste, etc. The thermal process is by far the most widely employed. 74% of waste is incinerated in Japan, and around 30 to 55% in most European countries. The second process does not burn waste and is better suited to wet and organic matter, i.e., to waste that contains quantities of biomass: fermentable waste, sludge, agricultural waste and the gas given off at

  1. Scaling housing interventions for wood-burning stoves worldwide

    DEFF Research Database (Denmark)

    Luis Teles de Carvalho, Ricardo; Jensen, Ole Michael; da Cruz Tarelho, Luís António;

    2013-01-01

    The wood-burning stove is the most popular energy technology in the world since about 3 billion people rely on it for both domestic cooking and heating purposes. It is estimated that in 2030 more than 200 million people will be affected by this abundant energy source. Large-scale clean stove...... programs have been being implemented worldwide, but still there is a lack of innovations targeting its efficient carbon retrofitting into the built environment. This research aims to catalog the most common wood-burning stove designs used in both developed and developing countries, scaling the existent...... levels of complexity concerning stove integration in distinct building envelopes. A representative calculation of the environmental performance of improved stoves was carried out in order to compare the carbon reduction potential in developing and developed regions, considering representative conditions...

  2. Advanced tokamak burning plasma experiment

    International Nuclear Information System (INIS)

    A new reduced size ITER-RC superconducting tokamak concept is proposed with the goals of studying burn physics either in an inductively driven standard tokamak (ST) mode of operation, or in a quasi-steady state advanced tokamak (AT) mode sustained by non-inductive means. This is achieved by reducing the radiation shield thickness protecting the superconducting magnet by 0.34 m relative to ITER and limiting the burn mode of operation to pulse lengths as allowed by the TF coil warming up to the current sharing temperature. High gain (Q≅10) burn physics studies in a reversed shear equilibrium, sustained by RF and NB current drive techniques, may be obtained. (author)

  3. Burn Control Mechanisms in Tokamaks

    Science.gov (United States)

    Hill, Maxwell; Stacey, Weston

    2013-10-01

    Burn control and passive safety in accident scenarios will be an important design consideration in future tokamaks, especially those used as a neutron source for fusion-fission hybrid reactors, such as the Subcritical Advanced Burner Reactor (SABR) concept. At Georgia Tech, we are developing a new burning plasma dynamics code to investigate passive safety mechanisms that could prevent power excursions in tokamak reactors. This code solves the coupled set of balance equations governing burning plasmas in conjunction with a two-point SOL-divertor model. Predictions have been benchmarked against data from DIII-D. We are examining several potential negative feedback mechanisms to limit power excursions: i) ion-orbit loss, ii) thermal instabilities, iii) the degradation of alpha-particle confinement resulting from ripples in the toroidal field, iv) modifications to the radial current profile, v) ``divertor choking'' and vi) Type 1 ELMs.

  4. Epidemiology of severe burn injuries in a Tertiary Burn Centre in Tehran, Iran

    OpenAIRE

    Mohammadi-Barzelighi, H.; Alaghehbandan, R.; Motevallian, A.; Alinejad, F.; Soleimanzadeh-Moghadam, S.; Sattari, M.; A R Lari

    2011-01-01

    The aim of the study was to examine the epidemiological characteristics of hospitalized burn patients in a tertiary burn centre in Tehran, Iran. A hospital-based cross-sectional study of all hospitalized patients with burn injuries was conducted in Motahari Burn and Reconstruction Center in Tehran from August to December 2010. Medical records of all hospitalized burn patients were reviewed and pertinent information was captured. A total of 135 patients with severe burns requiring hospitalizat...

  5. BACTERIOLOGICAL STUDY OF BURNS INFECTION

    Directory of Open Access Journals (Sweden)

    Shareen

    2015-10-01

    Full Text Available A burn is a wound in which there is coagulative necrosis of the tissue, majority of which are caused by heat. Burn injury is a major public health problem in many areas of the world. Burns predispose to infection by damaging the protective barrier function of the skin, thus facilitating the entry of pa thogenic microorganisms and by inducing systemic immunosuppression . (1 OBJECTIVE : The present study was therefore undertaken to isolate and identify the aerobic bacterial flora in burn patients and its antibiotic susceptibility pattern. MATERIAL & METHODS : A total of 100 patients admitted with different degree of burns were studied. Wound swabs were taken with aseptic precautions by dry sterile cotton swab sticks. These swabs were transported to the microbiology laboratory and the isolates were identified based on standard microbiological methods. Antibiotic susceptibility testing was done by Kirby Bauer’s disc diffusion method. RESULT : A total of 127 bacterial pathogens were isolated from 100 patients. Of these, 69% were monomicrobial in nature and 28% wer e polymicrobial. The most frequent cause of infection was found to be Staphylococcus aureus (39.4%, followed by Pseudomonas aeruginosa (14.2%, Klebsiella pneumonia (13.4%, E.coli (8.7% and Acinetobacter species (7.9%.Out of the total Staphylococcus au reus isolates, 19 were Methicillin sensitive and 31 were Methicillin resistant (MRSA. All the MRSA strains were 100% sensitive to Vancomycin and Linezolid. The Pseudomonas aeruginosa isolates were most sensitive to Amikacin (9 4.4%, Fluroquinolones (61.1% . CONCLUSION : Staphylococcus aureus and Pseudomonas aeruginosa were major causes of infection in burn wounds. Therefore it is necessary to implement urgent measures for restriction of nosocomial infections, sensible limitation on the use of antimicrobial agents, strict disinfection and hygiene.

  6. Features of tobacco burning processed by ultra high-frequency electromagnetic field

    International Nuclear Information System (INIS)

    Full text: Fields of IR-spectroscopy and different thermal analysis (DTA) process of burning of the tobacco processed high-frequency electromagnetic field have been investigated. On the basis of the obtained data methods DTA basis of burning is divided into stages: 1.radiation decay; 2. combustion and burning; 3. decomposition of burning remains. Temperature intervals thermic effects of each stage which served as criterion for the fact and a degree of the fermentations are determined. By IR-specters of burning remains of tobacco it has been established that if the basic structure changes of tobacco weight caused by oxidizing processes, sublimation of accolades and by disappearing hydrogen and carbon as their oxides occur at lower temperature interval

  7. Ozone photochemistry in boreal biomass burning plumes

    Directory of Open Access Journals (Sweden)

    M. Parrington

    2013-08-01

    Full Text Available We present an analysis of ozone (O3 photochemistry observed by aircraft measurements of boreal biomass burning plumes over eastern Canada in the summer of 2011. Measurements of O3 and a number of key chemical species associated with O3 photochemistry, including non-methane hydrocarbons (NMHCs, nitrogen oxides (NOx and total nitrogen containing species (NOy, were made from the UK FAAM BAe-146 research aircraft as part of the "quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites" (BORTAS experiment between 12 July and 3 August 2011. The location and timing of the aircraft measurements put BORTAS into a unique position to sample biomass burning plumes from the same source region in Northwestern Ontario with a range of ages. We found that O3 mixing ratios measured in biomass burning plumes were indistinguishable from non-plume measurements, but evaluating them in relationship to measurements of carbon monoxide (CO, total alkyl nitrates (ΣAN and the surrogate species NOz (= NOy-NOx revealed that the potential for O3 production increased with plume age. We used NMHC ratios to estimate photochemical ages of the observed biomass burning plumes between 0 and 10 days. The BORTAS measurements provided a wide dynamic range of O3 production in the sampled biomass burning plumes with ΔO3/ΔCO enhancement ratios increasing from 0.020 ± 0.008 ppbv ppbv−1 in plumes with photochemical ages less than 2 days to 0.55 ± 0.29 ppbv ppbv−1 in plumes with photochemical ages greater than 5 days. We found that the main contributing factor to the variability in the ΔO3/ΔCO enhancement ratio was ΔCO in plumes with photochemical ages less than 4 days, and that was a transition to ΔO3 becoming the main contributing factor in plumes with ages greater than 4 days. In comparing O3 mixing ratios with components of the NOy budget, we observed that plumes with ages between 2 and 4 days were characterised

  8. Global burned area and biomass burning emissions from small fires

    NARCIS (Netherlands)

    Randerson, J.T; Chen, Y.; Werf, van der G.R.; Rogers, B.M.; Morton, D.C.

    2012-01-01

    [1] In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires ofte

  9. Demographics of pediatric burns in Vellore, India.

    Science.gov (United States)

    Light, Timothy D; Latenser, Barbara A; Heinle, Jackie A; Stolpen, Margaret S; Quinn, Keely A; Ravindran, Vinitha; Chacko, Jacob

    2009-01-01

    The American Burn Association, Children's Burn Foundation, and Christian Medical College in Vellore, India have partnered together to improve pediatric burn care in Southern India. We report the demographics and outcomes of burns in this center, and create a benchmark to measure the effect of the partnership. A comparison to the National Burn Repository is made to allow for generalization and assessment to other burn centers, and to control for known confounders such as burn size, age, and mechanism. Charts from the pediatric burn center in Vellore, India were retrospectively reviewed and compared with data in the American Burn Association National Burn Registry (NBR) for patients younger than 16 years. One hundred nineteen pediatric patients with burns were admitted from January 2004 through April 2007. Average age was 3.8 years; average total body surface area burn was 24%: 64% scald, 30% flame, 6% electric. Annual death rate was 10%, with average fatal total body surface area burn was 40%. Average lengths of stay for survivors was 15 days. Delay of presentation was common (45% of all patients). Thirty-five of 119 patients received operations (29%). Flame burn patients were older (6.1 years vs 2.6 years), larger (30 vs 21%), had a higher fatality rate (19.4 vs 7.7%), and more of them were female (55 vs 47%) compared with scald burn patients. Electric burn patients were oldest (8.3 years) and all male. When compared with data in the NBR, average burn size was larger in Vellore (24 vs 9%). The mortality rate was higher in Vellore (10.1 vs 0.5%). The average mortal burn size in Vellore was smaller (40 vs 51%). Electric burns were more common in Vellore (6.0 vs 1.6%). Contact burns were almost nonexistent in Vellore (0.9 vs 13.1%). The differences in pediatric burn care from developing health care systems to burn centers in the US are manifold. Nonpresentation of smaller cases, and incomplete data in the NBR explain many of the differences. However, burns at this

  10. Local biomass burning is a dominant cause of the observed precipitation reduction in southern Africa

    Science.gov (United States)

    Hodnebrog, Øivind; Myhre, Gunnar; Forster, Piers M.; Sillmann, Jana; Samset, Bjørn H.

    2016-04-01

    Observations indicate a precipitation decline over large parts of southern Africa since the 1950s. Concurrently, atmospheric concentrations of greenhouse gases and aerosols have increased due to anthropogenic activities. Here we show that local black carbon and organic carbon aerosol emissions from biomass burning activities are a main cause of the observed decline in southern African dry season precipitation over the last century. Near the main biomass burning regions, global and regional modelling indicates precipitation decreases of 20-30%, with large spatial variability. Increasing global CO2 concentrations further contribute to precipitation reductions, somewhat less in magnitude but covering a larger area. Whereas precipitation changes from increased CO2 are driven by large-scale circulation changes, the increase in biomass burning aerosols causes local drying of the atmosphere. This study illustrates that reducing local biomass burning aerosol emissions may be a useful way to mitigate reduced rainfall in the region.

  11. Fuel characteristics and trace gases produced through biomass burning

    OpenAIRE

    BAMBANG HERO SAHARJO; SHIGETO SUDO; SEIICHIRO YONEMURA; HARUO TSURUTA

    2010-01-01

    Saharjo BH, Sudo S, Yonemura S, Tsuruta H (2010) Fuel characteristics and trace gases produced through biomass burning. Biodiversitas 11: 40-45. Indonesian 1997/1998 forest fires resulted in forest destruction totally 10 million ha with cost damaged about US$ 10 billion, where more than 1 Gt CO2 has been released during the fire episode and elevating Indonesia to one of the largest polluters of carbon in the world where 22% of world’s carbon dioxide produced. It has been found that 80-90% of ...

  12. Epidemiology of U.K. military burns.

    Science.gov (United States)

    Foster, Mark Anthony; Moledina, Jamil; Jeffery, Steve L A

    2011-01-01

    The authors review the etiology of U.K. military burns in light of increasing hybrid warfare. Analysis of the nature of these injured personnel will provide commanders with the evidence to plan for on-going and future operations. Case notes of all U.K. Armed Forces burn injured patients who were evacuated to the Royal Centre for Defence Medicine were reviewed. Demographics, burn severity, pattern, and mortality details were included. There were 134 U.K. military personnel with burns requiring return to the United Kingdom during 2001-2007. The median age was 27 (20-62) years. Overall, 60% of burns seen were "accidental." Burning waste, misuse or disrespect of fuel, and scalds were the most prevalent noncombat burns. Areas commonly burned were the face, legs, and hands. During 2006-2007 in the two major conflicts, more than 59% (n = 36) of the burned patients evacuated to the United Kingdom were injured during combat. Burns sustained in combat represent 5.8% of all combat casualties and were commonly associated with other injuries. Improvised explosive device, minestrike, and rocket-propelled grenade were common causes. The mean TBSA affected for both groups was 5% (1-70). The majority of combat burn injuries have been small in size. Greater provision of flame retardant equipment and clothing may reduce the extent and number of combat burns in the future. The numbers of noncombat burns are being reduced by good military discipline. PMID:21422938

  13. Acute changes in oxygen consumption and body temperature after burn injury.

    OpenAIRE

    Childs, C.; Little, R. A.

    1994-01-01

    This study describes the pattern of oxygen consumption (VO2), rectal temperature (Tr), and acral skin temperature (Tac) in sleeping and resting (awake) burned children nursed in a thermoneutral environment. Measurements of respiratory gas exchange (VO2 and carbon dioxide production (VCO2)) were made using an open circuit, flow through system of indirect calorimetry. Tr and Tac were monitored continuously. Sixteen patients were studied during the first 18 hours after being burned. Three phases...

  14. Origin, variability and age of biomass burning plumes intercepted during BORTAS-B

    OpenAIRE

    D. P. Finch; Palmer, P.I.; M. Parrington

    2014-01-01

    We use the GEOS-Chem atmospheric chemistry transport model to interpret aircraft measurements of carbon monoxide (CO) in biomass burning outflow taken during the 2011 BORTAS-B campaign over eastern Canada. The model has some skill reproducing the observed variability (r = 0.45) but has a negative bias for observations below 100 ppb and a positive bias above 300 ppb. We find that observed CO variations are largely due to NW North American biomass burning, as...

  15. High-Resolution Mapping of Biomass Burning Emissions in Three Tropical Regions.

    Science.gov (United States)

    Shi, Yusheng; Matsunaga, Tsuneo; Yamaguchi, Yasushi

    2015-09-15

    Biomass burning in tropical regions plays a significant role in atmospheric pollution and climate change. This study quantified a comprehensive monthly biomass burning emissions inventory with 1 km high spatial resolution, which included the burning of vegetation, human waste, and fuelwood for 2010 in three tropical regions. The estimations were based on the available burned area product MCD64A1 and statistical data. The total emissions of all gases and aerosols were 17382 Tg of CO2, 719 Tg of CO, 30 Tg of CH4, 29 Tg of NOx, 114 Tg of NMOC (nonmethane organic compounds), 7 Tg of SO2, 10 Tg of NH3, 79 Tg of PM2.5 (particulate matter), 45 Tg of OC (organic carbon), and 6 Tg of BC (black carbon). Taking CO as an example, vegetation burning accounted for 74% (530 Tg) of the total CO emissions, followed by fuelwood combustion and human waste burning. Africa was the biggest emitter (440 Tg), larger than Central and South America (113 Tg) and South and Southeast Asia (166 Tg). We also noticed that the dominant fire types in vegetation burning of these three regions were woody savanna/shrubland, savanna/grassland, and forest, respectively. Although there were some slight overestimations, our results are supported by comparisons with previously published data. PMID:26287650

  16. Chorioretinal burn: body temperature dependence

    International Nuclear Information System (INIS)

    Irradiance thresholds for chorioretinal damage in rhesus monkeys vary linearly with core temperatures between 34 and 390C. Damage results from the combined thermal effects of retinal irradiation and the body temperature. Visible damage is calculated to occur at a tissue temperature of 42.50C. Fever increases the retina's susceptibility to burns from the sun, lasers, and other radiant energy sources

  17. Antibiotics and the burn patient.

    Science.gov (United States)

    Ravat, François; Le-Floch, Ronan; Vinsonneau, Christophe; Ainaud, Pierre; Bertin-Maghit, Marc; Carsin, Hervé; Perro, Gérard

    2011-02-01

    Infection is a major problem in burn care and especially when it is due to bacteria with hospital-acquired multi-resistance to antibiotics. Moreover, when these bacteria are Gram-negative organisms, the most effective molecules are 20 years old and there is little hope of any new product available even in the distant future. Therefore, it is obvious that currently available antibiotics should not be misused. With this aim in mind, the following review was conducted by a group of experts from the French Society for Burn Injuries (SFETB). It examined key points addressing the management of antibiotics for burn patients: when to use or not, time of onset, bactericidia, combination, adaptation, de-escalation, treatment duration and regimen based on pharmacokinetic and pharmacodynamic characteristics of these compounds. The authors also considered antibioprophylaxis and some other key points such as: infection diagnosis criteria, bacterial inoculae and local treatment. French guidelines for the use of antibiotics in burn patients have been designed up from this work. PMID:20510518

  18. Suicidal burn in Hong Kong.

    Science.gov (United States)

    Chan, R C; Burd, A

    2012-09-01

    The aim of our study is to review our experience in the management of patients who sustained burns associated with suicidal attempts over a 10-year period. In particular, we look into the outcome and incidence of self-harm/suicide after discharge among the survivors. Thirty-one patients with median age 36 years, ranging from 10 to 74, were included. Twenty-three (74%) were males and eight (26%) were females. Nearly three quarters (74%) of our patients had a known history of psychiatric illness: 11 had known history of substance abuse; 3 of them had drug-induced psychosis; 6 had schizophrenia; 5 had depression; 4 had personality disorders; 1 had pathological gambling and another one had adjustment disorder. Relationship problems and work/financial difficulties were the commonest reason for the suicidal attempts. Self-inflicted flame burn was the most frequent (39%; 12 patients) method of burning. Six patients (19%) died. The remaining 25 patients healed and were discharged. Seventeen patients required ICU care. The median length of stay in ICU was 7 days. The overall median length of stay was 35 days. The median follow up time for those survived is 63 months. Only 4 of these patients had further suicidal/parasuicidal attempts. Despite the high mortality, once these patients survived the initial injury, they are unlikely to commit suicide again. Thus, we believe that aggressive resuscitation should therefore be advocated for all suicidal burn patients. PMID:22360959

  19. Burning mouth syndrome and menopause

    Directory of Open Access Journals (Sweden)

    Parveen Dahiya

    2013-01-01

    Full Text Available Menopause is a physiological process typically occurring in the fifth decade of life. One of the most annoying oral symptoms in this age group is the burning mouth syndrome (BMS, which may be defined as an intraoral burning sensation occurring in the absence of identifiable oral lesion or laboratory findings. Pain in burning mouth syndrome may be described as burning, tender, tingling, hot, scalding, and numb sensation in the oral mucosa. Multiple oral sites may be involved, but the anterior two-third part and the tip of tongue are most commonly affected site. There is no definite etiology for BMS other than the precipitating causative factors, and it is still considered idiopathic. Various treatment options like use of benzodiazepine, anti-depressants, analgesics, capsaicin, alpha lipoic acids, and cognitive behavioral therapy are found to be effective, but definite treatment is still unknown. The present article discusses some of the recent concepts of etiopathogenesis of BMS as well as the role of pharmacotherapeutic management in this disorder.

  20. Burning mouth syndrome: Present perspective

    Directory of Open Access Journals (Sweden)

    Ramesh Parajuli

    2015-07-01

    Full Text Available Introduction: Burning mouth syndrome is characterized by chronic oral pain or burning sensation affecting the oral mucosa in the absence of obvious visible mucosal lesions. Patient presenting with the burning mouth sensation or pain is frequently encountered in clinical practice which poses a challenge to the treating clinician. Its exact etiology remains unknown which probably has multifactorial origin. It often affects middle or old age women and it may be accompanied by xerostomia and altered taste. Objective: To review the current concepts regarding etiopathogenesis, diagnosis and management of this disorder. Methods and methodology: A literature review was conducted on PubMed/Medline and Google scholar about the burning mouth syndrome and the representative articles were selected and reviewed. Conclusion: There is no universal consensus regarding diagnosis, etiology and treatment of BMS. BMS is a diagnosis of exclusion which probably has multifactorial origin. Various pharmacological and non pharmacological treatments are available but it is difficult to achieve curative treatment so reassurance is of great importance while treating the patients. Combination of cognitive behavioral therapy, alpha lipoic acid and/or clonazepam has shown promising results.

  1. MHD control in burning plasmas MHD control in burning plasmas

    Science.gov (United States)

    Donné, Tony; Liang, Yunfeng

    2012-07-01

    Fusion physics focuses on the complex behaviour of hot plasmas confined by magnetic fields with the ultimate aim to develop a fusion power plant. In the future generation of tokamaks like ITER, the power generated by the fusion reactions substantially exceeds the external input power (Pfusion}/Pin >= 10). When this occurs one speaks of a burning plasma. Twenty per cent of the generated fusion power in a burning plasma is carried by the charged alpha particles, which transfer their energy to the ambient plasma in collisions, a process called thermalization. A new phenomenon in burning plasmas is that the alpha particles, which form a minority but carry a large fraction of the plasma kinetic energy, can collectively drive certain types of magneto-hydrodynamic (MHD) modes, while they can suppress other MHD modes. Both types of MHD modes can have desirable effects on the plasma, as well as be detrimental to the plasma. For example, the so-called sawtooth instability, on the one hand, is largely responsible for the transport of the thermalized alpha particles out of the core, but, on the other hand, may result in the loss of the energetic alphas before they have fully thermalized. A further undesirable effect of the sawtooth instability is that it may trigger other MHD modes such as neoclassical tearing modes (NTMs). These NTMs, in turn, are detrimental to the plasma confinement and in some cases may even lead to disruptive termination of the plasma. At the edge of the plasma, finally, so-called edge localized modes or ELMs occur, which result in extremely high transient heat and particle loads on the plasma-facing components of a reactor. In order to balance the desired and detrimental effects of these modes, active feedback control is required. An additional complication occurs in a burning plasma as the external heating power, which is nowadays generally used for plasma control, is small compared to the heating power of the alpha particles. The scientific challenge

  2. A review of hydrofluoric acid burn management.

    Science.gov (United States)

    McKee, Daniel; Thoma, Achilleas; Bailey, Kristy; Fish, Joel

    2014-01-01

    Hydrofluoric acid (HF) causes a unique chemical burn. Much of the current treatment knowledge of HF burns is derived from case reports, small case series, animal studies and anecdotal evidence. The management can be challenging because clinical presentation and severity of these burns vary widely. Plastic surgeons managing burn patients must have a basic understanding of the pathophysiology, the range of severity in presentation and the current treatment options available for HF burns. The present article reviews the current understanding of the pathophysiology and systemic effects associated with severe HF burns. Furthermore, it distinguishes between minor and life-threatening HF burns and describes several of the basic techniques that are available to treat patients with HF burns. PMID:25114621

  3. A five-century sedimentary geochronology of biomass burning in Nicaragua and Central America

    International Nuclear Information System (INIS)

    In spite of the extensive use of fire as an agricultural agent in Central America today, little is known of its history of biomass burning or agriculture. As an indicator of the burning practices on the adjacent land, a sedimentary record of carbonized particles sheds light on the trends in frequency and areal extent of biomass burning. This research focuses on a sediment core recovered from an anoxic site in the Pacific Ocean adjacent to the Central American Isthmus and reports a five-century record of charcoal deposition. The research illustrates that biomass burning has been an important ecological factor in the Pacific watershed of Central America at least during the past five centuries. Fluxes of charcoal have generally decreased toward the present suggesting a reduction in the charcoal source function. Perhaps, five centuries ago, the frequency of biomass burning was greater than it is today, larger areas were burned, or biomass per unit area of burned grassland was greater. The major type of biomass burned throughout this five-century period has been grass, as opposed to woods, indicating that any major deforestation of the Pacific watershed of Central America occurred prior to the Conquest

  4. Pediatric burn rehabilitation: Philosophy and strategies

    OpenAIRE

    Shohei Ohgi; Shouzhi Gu

    2013-01-01

    Burn injuries are a huge public health issue for children throughout the world, with the majority occurring in developing countries. Burn injuries can leave a pediatric patient with severely debilitating and deforming contractures, which can lead to significant disability when left untreated. Rehabilitation is an essential and integral part of pediatric burn treatment. The aim of this article was to review the literature on pediatric burn rehabilitation from the Medline, CINAHL, and Web of Sc...

  5. Clinical profile of burn injured patients

    OpenAIRE

    Efstathiou, Flora; Svardagalou, Paraskevi

    2016-01-01

    Abstract Introduction: Burn injury is a severe systemic disease with social implications. Aim: The recording of patient’s clinical profile with burn injury worldwide and in Greece, the outcome and impact of the injury on the patient’s mental health and social, professional and family life. Methods: There were collected surveys and reports concerned burn victims, men and women, teenagers and adults of all types and severities of burns in the world and in Greece. The inf...

  6. Burn healing plants in Iranian Traditional Medicine

    OpenAIRE

    Sh. Fahimi; H. Hajimehdipoor; Abdollahi, M.; S.A. Mortazavi

    2015-01-01

    Burns are known as one of the most common forms of injury with devastating consequences. Despite the discovery of several antiseptics, burn wound healing has still remained a challenge to modern medicine. Herbal products seem to possess moderate efficacy with no or less toxicity and are less expensive compared to synthetic drugs. Burn is a well-known disorder in Iranian Traditional Medicine (ITM). Iranian physicians have divided burns into various types based on the cause and recommended trea...

  7. Identification and estimation of the biomass burning contribution to Beijing aerosol using levoglucosan as a molecular marker

    International Nuclear Information System (INIS)

    Two series of size-selective aerosol samples, PM2.5 and PM10, were collected in Beijing from July 2002 to July 2003. The samples were analyzed for levoglucosan and related saccharidic compounds, organic and elemental carbon, and ionic species. Levoglucosan and related saccharidic compounds were mostly present in the fine size fraction. The contribution from biomass burning to the carbonaceous aerosol in Beijing was estimated; biomass burning was responsible for 18-38% of the PM2.5 organic carbon and for 14-32% of the PM10 organic carbon. The biomass burning marker levoglucosan was present all year round in Beijing. High levoglucosan concentrations in October and November were attributed to corn field burning and burning of fallen leaves, while the high level observed on 7 May 2003 was tracked back to a boreal forest fire more than 1000 km away in northeastern China. The biomass burning contribution to the Beijing aerosol is made up of two parts, a background component, which is due to biofuel burning all year round in the neighboring countryside households, and a superimposed component from seasonal crop burning events and wild fires. (authors)

  8. Airborne characterization of smoke marker ratios from prescribed burning

    Directory of Open Access Journals (Sweden)

    A. P. Sullivan

    2014-05-01

    Full Text Available A Particle-into-Liquid Sampler – Total Organic Carbon and fraction collector system was flown aboard aTwin Otter aircraft sampling prescribed burning emissions in South Carolina in November2011 to obtain smoke marker measurements. The fraction collector provided 2 min time-integrated off-line samples for carbohydrate (i.e., smoke markers levoglucosan, mannosan, galactosan analysis by high-performance anion-exchange chromatography with pulsed amperometric detection. Each fire location appeared to have aunique Δ levoglucosan / Δ water-soluble organic carbon (WSOC ratio (RF01/RF02/RF03/RF05 = 0.163 ± 0.007 μg C μg C−1, RF08 = 0.115 ± 0.011 μg C μg C−1, RF09A = 0.072 ± 0.028 μg C μg C−1, RF09B = 0.042 ± 0.008 μg C μg C−1. These ratios were comparable to those obtained from controlled laboratory burns and suggested that the emissions sampled during RF01/RF02/RF03/RF05 were dominated by the burning of grasses, RF08 by leaves, RF09A by needles, and RF09B by marsh grasses. These findings were further supported by the Δ galactosan / Δ levoglucosan ratios (RF01/RF02/RF03/RF05 = 0.067 ± 0.004 μg μg−1, RF08 = 0.085 ± 0.009 μg μg−1, RF09A = 0.101 ± 0.029 μg μg−1 obtained as well as by the ground-based fuel and filter sample analyses during RF01/RF02/RF03/RF05. Differences between Δ potassium / Δ levoglucosan ratios obtained for these prescribed fires vs. laboratory-scale measurements suggest that some laboratory burns may not accurately represent potassium emissions from prescribed burns. The Δ levoglucosan / Δ WSOC ratio had no clear dependence on smoke age or fire dynamics suggesting that this ratio is more dependent on the type of fuel being burned. Levoglucosan was stable over a timescale of at least 1.5 h and could be useful to help estimate the air quality impacts of biomass burning.

  9. Early Enteral Nutrition for Burn Injury

    OpenAIRE

    Mandell, Samuel P.; Gibran, Nicole S.

    2014-01-01

    Significance: Nutrition has been recognized as a critical component of acute burn care and ultimate wound healing. Debate remains over the appropriate timing of enteral nutrition and the benefit of supplemental trace elements, antioxidants, and immunonutrition for critically ill burn patients. Pharmacotherapy to blunt the metabolic response to burn injury plays a critical role in effective nutritional support.

  10. Aggregation of erythrocytes in burn disease

    OpenAIRE

    Levin, Grigory Y; Egorihina, Marpha N

    2011-01-01

    The manuscript describes experiments designed to examine factors that influence erythrocytes aggregation within the blood of burn patients. Results showed that the rate and degree of erythrocytes aggregation increased significantly in burn patients, and what is especially unfavorable for microcirculation, erythrocytes disaggregation decreased. We show that normalization of blood plasma contents completely restores erythrocytes aggregation and disaggregation of burn patients. The rate and degr...

  11. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste utilization. 816.87 Section 816.87 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal...

  12. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste utilization. 817.87 Section 817.87 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal...

  13. Mexico City Aerosol Analysis during MILAGRO using High Resolution Aerosol Mass Spectrometry at the Urban Supersite (T0). Part 2: Analysis of the Biomass Burning Contribution and the Modern Carbon Fraction

    Energy Technology Data Exchange (ETDEWEB)

    Aiken, Allison; de Foy, B.; Wiedinmyer, Christine; DeCarlo, Peter; Ulbrich, Ingrid M.; Wehrli, M. N.; Szidat, S.; Prevot, A. S. H.; Noda, J.; Wacker, L.; Volkamer, Rainer M.; Fortner, Edward; Wang, J. X.; Laskin, Alexander; Shutthanandan, V.; Zheng, J.; Zhang, Renyi; Paredes-Miranda, Guadalupe L.; Arnott, W. P.; Molina, Luis; Sosa, G.; Querol, X.; Jimenez, J. L.

    2010-06-16

    Submicron aerosol was analyzed during the MILAGRO field campaign in March 2006 at the T0 urban supersite in Mexico City with a High-Resolution Aerosol Mass Spectrometer (AMS) and complementary instrumentation. Positive Matrix Factorization (PMF) of high resolution AMS spectra identified a biomass burning OA (BBOA) component, which includes several large plumes that appear to be from forest fires within the region. Here, we show that the AMS BBOA concentration at T0 correlates with fire counts in the vicinity of Mexico City and that most of the BBOA variability is captured when the FLEXPART model is used for the dispersion of fire emissions as estimated from satellite fire counts. The resulting FLEXPART fire impact index correlates well with the observed BBOA, CH3CN, levoglucosan, and potassium, indicating that wildfires in the region surrounding Mexico City are the dominant source of BBOA at T0 during MILAGRO. The impact of distant BB sources such as the Yucatan is very small during this period. All fire tracers are correlated, with BBOA and levoglucosan showing little background, acetonitrile having a well-known tropospheric background of ~100-150 ppt, and PM2.5 potassium having a background of ~160 ng m-3 (two-thirds of its average concentration), which does not appear to be related to BB sources.

  14. Burn Prevention for Families with Children with Special Needs

    Medline Plus

    Full Text Available ... Burns and Scalds Burn Prevention for Families With Children With Special Needs Watch this video to learn ... know about burn prevention if you have a child with special needs. Read our burn prevention tips | ...

  15. Hydrofluoric acid burns of the eye.

    Science.gov (United States)

    McCulley, J P; Whiting, D W; Petitt, M G; Lauber, S E

    1983-06-01

    A case of hydrofluoric acid (HF) burns of the eye is reported and a review is presented of our investigation into the mechanism of HF toxicity in ocular tissues. A number of therapeutic procedures that have been successful in the treatment of HF skin burns were studied in the rabbit for use in the eye. Immediate single irrigation with water, normal saline or isotonic magnesium chloride solution is the most effective therapy for ocular HF burns. Extrapolation of other skin burn treatments to use in the eye is unacceptable due to the toxicity of these agents in normal eyes and the additive damage caused in burned eyes. PMID:6886845

  16. Pediatric burn rehabilitation: Philosophy and strategies

    Directory of Open Access Journals (Sweden)

    Shohei Ohgi

    2013-09-01

    Full Text Available Burn injuries are a huge public health issue for children throughout the world, with the majority occurring in developing countries. Burn injuries can leave a pediatric patient with severely debilitating and deforming contractures, which can lead to significant disability when left untreated. Rehabilitation is an essential and integral part of pediatric burn treatment. The aim of this article was to review the literature on pediatric burn rehabilitation from the Medline, CINAHL, and Web of Science databases. An attempt has been made to present the basic aspects of burn rehabilitation, provide practical information, and discuss the goals and conceptualization of rehabilitation as well as the development of rehabilitation philosophy and strategies.

  17. Epidemiology of paediatric burns in Iran

    OpenAIRE

    Karimi, H.; Montevalian, A.; Motabar, A.R.; Safari, R.; Parvas, M.S.; Vasigh, M.

    2012-01-01

    We surveyed the epidemiology of the patients in a tertiary burn care centre (the Motahari Burn Hospital) in Tehran in the 4-yr period 2005-2009. Scalding was the major cause of burn injury for patients under the age of 6, while there were many more flame and electrical burns in late childhood. Males were mainly affected (male to female ratio, 1.7:1). Most burns occurred in the summer, probably due to older children’s increased outdoor activities during school vacations. Most of the injuries t...

  18. Management of post burn hand deformities

    Directory of Open Access Journals (Sweden)

    Sabapathy S

    2010-10-01

    Full Text Available The hand is ranked among the three most frequent sites of burns scar contracture deformity. One of the major determinants of the quality of life in burns survivors is the functionality of the hands. Burns deformities, although largely preventable, nevertheless do occur when appropriate treatment is not provided in the acute situation or when they are part of a major burns. Reconstructive procedures can greatly improve the function of the hands. Appropriate choice of procedures and timing of surgery followed by supervised physiotherapy can be a boon for a burns survivor.

  19. Burns related to sunbed use.

    Science.gov (United States)

    Hemington-Gorse, S J; Slattery, M A; Drew, P J

    2010-09-01

    The quest for a year round tan has led to an increase in the use of artificial tanning devices, namely sunbeds. There has been much debate in the press recently regarding the dangers of sunbed use and calls for tighter regulation of the industry, particularly the licensing of unmanned tanning salons. The dangers of sunbed use have long been recognised and the body of evidence linking sunbed use to skin malignancy is growing, in fact this month the Lancet published a review from the International Agency for Research on Cancer classifying UV emitting tanning devices as carcinogenic to humans. At the Welsh Centre for Burns and Plastic Surgery we noticed a rise in the number of patients presenting with burns related to sunbed use and present our data surrounding this injury over the last 6 years. PMID:20171016

  20. The colors of biomass burning aerosols in the atmosphere

    Science.gov (United States)

    Liu, Chao; Chung, Chul Eddy; Zhang, Feng; Yin, Yan

    2016-06-01

    Biomass burning aerosols mainly consist of black carbon (BC) and organic aerosols (OAs), and some of OAs are brown carbon (BrC). This study simulates the colors of BrC, BC and their mixture with scattering OAs in the ambient atmosphere by using a combination of light scattering simulations, a two-stream radiative transfer model and a RGB (Red, Green, Blue) color model. We find that both BCs and tar balls (a class of BrC) appear brownish at small particle sizes and blackish at large sizes. This is because the aerosol absorption Ångström exponent (AAE) largely controls the color and larger particles give smaller AAE values. At realistic size distributions, BCs look more blackish than tar balls, but still exhibit some brown color. However, when the absorptance of aerosol layer at green wavelength becomes larger than approximately 0.8, all biomass burning aerosols look blackish. The colors for mixture of purely scattering and absorptive carbonaceous aerosol layers in the atmosphere are also investigated. We suggest that the brownishness of biomass burning aerosols indicates the amount of BC/BrC as well as the ratio of BC to BrC.

  1. Helium burning and neutron sources in the stars

    Science.gov (United States)

    Aliotta, M.; Junker, M.; Prati, P.; Straniero, O.; Strieder, F.

    2016-04-01

    Helium burning represents an important stage of stellar evolution as it contributes to the synthesis of key elements such as carbon, through the triple- α process, and oxygen, through the 12C( α, γ)16O reaction. It is the ratio of carbon to oxygen at the end of the helium burning stage that governs the following phases of stellar evolution leading to different scenarios depending on the initial stellar mass. In addition, helium burning in Asymptotic Giant Branch stars, provides the two main sources of neutrons, namely the 13C( α, n)16O and the 22Ne( α, n)25Mg, for the synthesis of about half of all elements heavier than iron through the s-process. Given the importance of these reactions, much experimental work has been devoted to the study of their reaction rates over the last few decades. However, large uncertainties still remain at the energies of astrophysical interest which greatly limit the accuracy of stellar models predictions. Here, we review the current status on the latest experimental efforts and show how measurements of these important reaction cross sections can be significantly improved at next-generation deep underground laboratories.

  2. Candidemia in major burns patients.

    Science.gov (United States)

    Renau Escrig, Ana I; Salavert, Miguel; Vivó, Carmen; Cantón, Emilia; Pérez Del Caz, M Dolores; Pemán, Javier

    2016-06-01

    Major burn patients have characteristics that make them especially susceptible to candidemia, but few studies focused on this have been published. The objectives were to evaluate the epidemiological, microbiological and clinical aspects of candidemia in major burn patients, determining factors associated with a poorer prognosis and mortality. We conducted a retrospective observational study of candidemia between 1996 and 2012 in major burn patients admitted to the La Fe University Hospital, Valencia, Spain. The study included 36 episodes of candidemia in the same number of patients, 55.6% men, mean age 37.33 years and low associated comorbidity. The incidence of candidemia varied between 0.26 and 6.09 episodes/1000 days stay in the different years studied. Candida albicans was the most common species (61.1%) followed by Candida parapsilosis (27.8%). Candidemia by C. krusei, C. glabrata or C. tropicalis were all identified after 2004. Central vascular catheter (CVC) was established as a potential source of candidemia in 36.1%, followed by skin and soft tissues of thermal injury (22.2%) and urinary tract (8.3%). Fluconazole was used in 19 patients (52.7%) and its in vitro resistance rate was 13.9%. The overall mortality was 47.2%, and mortality related to candidemia was 30.6%. Factors associated with increased mortality were those related to severe infection and shock. CVC was the most usual focus of candidemia. Fluconazole was the most common antifungal drug administered. The management of candidemia in major burn patients is still a challenge. PMID:26931414

  3. Global biomass burning: Atmospheric, climatic, and biospheric implications

    International Nuclear Information System (INIS)

    As a significant source of atmospheric gases, biomass burning must be addressed as a major environmental problem. Biomass burning includes burning forests and savanna grasslands for land clearing and conversion, burning agricultural stubble and waste after harvesting, and burning biomass fuels. The editor discusses the history of biomass burning and provides an overview of the individual chapters

  4. Soil Hydrophobicity in Andisol under Soil Surface Burning

    Science.gov (United States)

    Obuchi, Atsuko; Mizoguchi, Masaru; Nishimura, Taku; Imoto, Hiromi; Miyazaki, Tsuyoshi

    Soil is known to exhibit hydrophobic properties after a forest fire. Experiments conducted by DeBano et al., (1976) showed that the organic compounds in the soil become volatized under high-temperatures, move downward along the soil temperature gradient, and form a hydrophobic layer deep within the soil profile. However, less is known about effects of oxygen atmosphere on morphological changes of organic matter in soil. In this study, we sought to clarify the increase in soil hydrophobicity as well as the changes in carbon and nitrogen content in response to heating of the ground surface in the field and both column and muffle furnace heating in the laboratory. In the muffle furnace burning, soil samples heated under oxygen-deprived conditions exhibited similar carbon and nitrogen dynamics and increased hydrophobicity with temperatures those observed in the field and column experiments. Soil samples under oxygen-deprived condition showed hydrophobicity and some carbon content by heating with 300°C and higher, while almost no carbon remained after heating with 400°C under oxygen available condition. Soil C/N ratio increased by heating with higher temperature under oxygen-deprived condition. Results suggested limited supply of oxygen might have an effect to produce soil hydrophobicity under soil surface burning.

  5. Okanagan indoor wood burning appliance inventory survey

    International Nuclear Information System (INIS)

    A survey was conducted to determine the usage and nature of wood burning appliances used by residents in British Columbia's Okanagan region. The objective was to better understand this source of air quality concern and to facilitate strategic planning, guidelines and legislation. The survey also provides a baseline to track the effectiveness of any reduction strategies. It identifies the different types of wood burning appliances used in the community and presents residential options about potential bylaws to protect air quality. The receptivity of households to switch to more efficient wood burning appliances was also examined. The survey completes a portion of an overall emissions inventory for the Okanagan Valley. Environment Canada uses the particulate loading results to model the air quality in the airshed. Results showed that approximately 21 per cent of the households in the Okanagan use indoor wood burning appliances, and burn an average of 2.3 cords of wood each year. Only 11 per cent of the appliances are considered to have advanced burning technology. It is projected that the use of wood burning appliances in the Okanagan will increase by 5 to 7 per cent in the next 2 years. Most residents have good burning habits, but some improvements can still be made. Many residents are considering exchanging old wood burning appliances for clean burning technology appliances for environmental and health reasons. Most households would support a bylaw to control nuisance amounts of smoke from wood burning appliances. 20 tabs., 5 figs

  6. Uncertainty analysis of moderate- versus coarse-scale satellite fire products for quantifying agricultural burning: Implications for Air Quality in European Russia, Belarus, and Lithuania

    Science.gov (United States)

    McCarty, J. L.; Krylov, A.; Prishchepov, A. V.; Banach, D. M.; Potapov, P.; Tyukavina, A.; Rukhovitch, D.; Koroleva, P.; Turubanova, S.; Romanenkov, V.

    2015-12-01

    Cropland and pasture burning are common agricultural management practices that negatively impact air quality at a local and regional scale, including contributing to short-lived climate pollutants (SLCPs). This research focuses on both cropland and pasture burning in European Russia, Lithuania, and Belarus. Burned area and fire detections were derived from 500 m and 1 km Moderate Resolution Imaging Spectroradiometer (MODIS), 30 m Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager (OLI) data. Carbon, particulate matter, volatile organic carbon (VOCs), and harmful air pollutants (HAPs) emissions were then calculated using MODIS and Landsat-based estimates of fire and land-cover and land-use. Agricultural burning in Belarus, Lithuania, and European Russia showed a strong and consistent seasonal geographic pattern from 2002 to 2012, with the majority of fire detections occurring in March - June and smaller peak in July and August. Over this 11-year period, there was a decrease in both cropland and pasture burning throughout this region. For Smolensk Oblast, a Russian administrative region with comparable agro-environmental conditions to Belarus and Lithuania, a detailed analysis of Landsat-based burned area estimations for croplands and pastures and field data collected in summer 2014 showed that the agricultural burning area can be up to 10 times higher than the 1 km MODIS active fire estimates. In general, European Russia is the main source of agricultural burning emissions compared to Lithuania and Belarus. On average, all cropland burning in European Russia as detected by the MCD45A1 MODIS Burned Area Product emitted 17.66 Gg of PM10 while annual burning of pasture in Smolensk Oblast, Russia as detected by Landsat burn scars emitted 494.85 Gg of PM10, a 96% difference. This highlights that quantifying the contribution of pasture burning and burned area versus cropland burning in agricultural regions is important for accurately

  7. Radioactive implications from coal burning

    International Nuclear Information System (INIS)

    Lignites burning in the Greek Coal Power Plants (CPP) contain naturally occurring radionuclides mainly arising from the uranium series. Radium-226 concentrations in lignites burning in the three Coal Power Plants of the 3.02 GW energy centre, the greatest in Greece (Valley of Ptolemais, North Greece), varied from about 30 to 132 Bq kg-1 (average 65.5 Bq kg-1. About 1.3 % of 226 Ra is discharged to the environment in particulate form - fly ash - by the stacks of thermal power stations, burning coal at a rate 14.3 Mt (GH y)-1. The collective effective dose equivalent (EDE) commitment to the population 44400 living in the region of these plants, due to inhalation was estimated to be 0.13 man Sv y-1, that is an order of magnitude higher than that recommended for such a population. Doses from inhaled radon and radon progeny might cause an excess of 3-7 cancer deaths this year. (author)

  8. Wound Care in Burn Patients

    Directory of Open Access Journals (Sweden)

    Orhan Çizmeci

    2011-07-01

    Full Text Available Wound care in one of the most important prognostic factors in burn victims. Open wound carries risks for infection due to hypothermia, protein and fluid losses. In addition, unhealed wounds are the major risk factors for acute-subacute or chronic complications in burn patients. Although no exact algorithm exists for open wound treatment, early escarectomy or debridement together with grafting is the best option. Ointments together with topical epithelizing agents without dressings are genereally adequate for first-degree burns. However, topical antibacterial agents are usually required for second to third-degree wounds. Standart treatment for the open wound without epithelization is autologous skin grafting. In cases where more than 50% of the skin surface in affected, autologus donor skin may not be enough. For these cases, epidermal cell culture in vitro may be used. Mesenchymal stem cell applications which have immunosupressive effects should be utilized in cases where cells need to be prepared as allografts. (Journal of the Turkish Society intensive Care 2011; 9 Suppl: 51-4

  9. In-situ burning of spilled oil

    International Nuclear Information System (INIS)

    Laboratory and field investigations have now demonstrated that the effective, sustained combustion of spilled oil on water requires that the oil being burned be at least 2-3 mm thick. This requires a properly manipulated fire containment boom to keep the spilled oil thick enough to support combustion. There are numerous situations where controlled in-situ burning of spilled oil can be carried out quickly, safely, and effectively. Some of the more significant burn experiences, the basics of controlled burning, and several different spill scenarios in which burning could be used as an effective response technique are presented. These scenarios include offshore exploration and production operations, marine pipeline accidents, tanker accidents, and spills into rivers and streams. Environmental constraints on in-situ burning are discussed. Nomograms are included which can be used to calculate the boom capacities and burn rates. 15 refs., 10 figs

  10. [Burns care following a nuclear incident].

    Science.gov (United States)

    Bargues, L; Donat, N; Jault, P; Leclerc, T

    2010-09-30

    Radiation injuries are usually caused by radioactive isotopes in industry. Detonations of nuclear reactors, the use of military nuclear weapons, and terrorist attacks represent a risk of mass burn casualties. Ionizing radiation creates thermal burns, acute radiation syndrome with pancytopenia, and a delayed cutaneous syndrome. After a latency period, skin symptoms appear and the depth of tissue damages increase with dose exposure. The usual burn resuscitation protocols have to be applied. Care of these victims also requires assessment of the level of radiation, plus decontamination by an experienced team. In nuclear disasters, the priority is to optimize the available resources and reserve treatment to patients with the highest probability of survival. After localized nuclear injury, assessment of burn depth and surgical techniques of skin coverage are the main difficulties in a burn centre. Training in medical facilities and burn centres is necessary in the preparation for management of the different types of burn injuries. PMID:21991218

  11. Modeling the impacts of biomass burning on air quality in and around Mexico City

    Directory of Open Access Journals (Sweden)

    W. Lei

    2012-09-01

    Full Text Available The local and regional impacts of open fires and trash burning on ground-level ozone (O3 and fine carbonaceous aerosols in the Mexico City Metropolitan Area (MCMA and surrounding region during two high fire periods in March 2006 have been evaluated using WRF-CHEM model. The model captured reasonably well the measurement-derived magnitude and temporal variation of the biomass burning organic aerosol (BBOA, and the simulated impacts of open fires on organic aerosol (OA were consistent with many observation-based estimates. We did not detect significant effects of open fires and trash burning on surface O3 concentrations in the MCMA and surrounding region. In contrast, they had important influences on OA and elemental carbon (EC, contributing about 60, 22, 33, and 22% to primary OA (POA, secondary OA (SOA, total OA (TOA, and EC, respectively, on both the local and regional scales. Although the emissions of trash burning are substantially lower than those from open fires, trash burning made slightly smaller but comparable contributions to OA as open fires did, and exerted an even higher influence on EC. SOA formation due to the open fires and trash burning enhanced the OA concentration by about 10 and 5% in the MCMA, respectively. On the annual basis and taking the biofuel use emissions into consideration, we estimated that biomass burning contributed about 60, 30, and 25%, respectively, to the loadings of POA, SOA and EC in both the MCMA and its surrounding region, with about 35, 18, and 15% from open fires and trash burning. The estimates of biomass burning impacts in this study may contain considerable uncertainties due to the uncertainties in their emission estimates, extrapolations and the nature of spot comparison. More observation and modeling studies are needed to accurately assess the impacts of biomass burning on tropospheric chemistry, regional and global air quality, and climate change.

  12. In Situ Chemical Characterization of Aged Biomass-Burning Aerosols Impacting Cold Wave Clouds

    OpenAIRE

    Pratt, Kerri A.; Heymsfield, Andrew J.; Twohy, Cynthia H.; Murphy, Shane M.; DeMott, Paul J.; Hudson , James G.; R. Subramanian; Wang, Zhien; Seinfeld, John H.; Prather, Kimberly A.

    2010-01-01

    During the Ice in Clouds Experiment–Layer Clouds (ICE-L), aged biomass-burning particles were identified within two orographic wave cloud regions over Wyoming using single-particle mass spectrometry and electron microscopy. Using a suite of instrumentation, particle chemistry was characterized in tandem with cloud microphysics. The aged biomass-burning particles comprised ~30%–40% by number of the 0.1–1.0-μm clear-air particles and were composed of potassium, organic carbon, elemental carbon,...

  13. Carbonaceous aerosols from prescribed burning of a boreal forest ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Mazurek, M.A. (Brookhaven National Lab., Upton, NY (United States)); Cofer, W.R. III; Levine, J.S. (National Aeronautics and Space Administration, Hampton, VA (United States). Langley Research Center)

    1990-10-01

    The identity and ambient mass concentrations of radiatively important carbonaceous aerosols were measured for a boreal forest prescribed burn conducted in northern Ontario, CAN in August 1989. Nonsize-segregated airborne particles were collected for smoldering-fire and full-fire conditions using a helicopter sampling platform. Total carbon (TC), organic carbon (OC) and elemental carbon (EC) were measured. Smoke plume mass concentrations of the OC and EC particles were greatest for full-fire conditions and had ranges of 1.560 to 2.160 mg/m{sup {minus}1} (OC) and 0.120 to 0.160 mg/m{sup {minus}3} (EC) with OC:EC ratios of 10 to 18, respectively. Smoldering fire conditions showed smoke plume OC and EC levels of 0.570--1.030 mg/m{sup {minus}3} (OC) and 0.006--0.050 mg/m{sup {minus}3} (EC) and much higher ratios of OC:EC (21 to 95). These aerosol data indicate the formation of EC particles is greatest during full-fire combustion of boreal forest material relative to smoldering combustion. However, EC particles comprise a minor fraction of the particulate carbon smoke aerosols for both full-fire and smoldering conditions; the major component of carbonaceous smoke aerosols emitted during the prescribed burn is OC. Overall, the OC and EC in-plume smoke aerosol data show nonuniform production of these particles during various stages of the prescribed burn, and major differences in the type of carbonaceous aerosol that is generated (OC versus EC).

  14. Carbonaceous aerosols from prescribed burning of a boreal forest ecosystem

    International Nuclear Information System (INIS)

    The identity and ambient mass concentrations of radiatively important carbonaceous aerosols were measured for a boreal forest prescribed burn conducted in northern Ontario, CAN in August 1989. Nonsize-segregated airborne particles were collected for smoldering-fire and full-fire conditions using a helicopter sampling platform. Total carbon (TC), organic carbon (OC) and elemental carbon (EC) were measured. Smoke plume mass concentrations of the OC and EC particles were greatest for full-fire conditions and had ranges of 1.560 to 2.160 mg/m-1 (OC) and 0.120 to 0.160 mg/m-3 (EC) with OC:EC ratios of 10 to 18, respectively. Smoldering fire conditions showed smoke plume OC and EC levels of 0.570--1.030 mg/m-3 (OC) and 0.006--0.050 mg/m-3 (EC) and much higher ratios of OC:EC (21 to 95). These aerosol data indicate the formation of EC particles is greatest during full-fire combustion of boreal forest material relative to smoldering combustion. However, EC particles comprise a minor fraction of the particulate carbon smoke aerosols for both full-fire and smoldering conditions; the major component of carbonaceous smoke aerosols emitted during the prescribed burn is OC. Overall, the OC and EC in-plume smoke aerosol data show nonuniform production of these particles during various stages of the prescribed burn, and major differences in the type of carbonaceous aerosol that is generated (OC versus EC)

  15. Evaluation of released source terms from burning mock combustible waste

    International Nuclear Information System (INIS)

    To evaluate quantitatively confinement capability of the radioactive materials in the nuclear fuel facility under the fire accident, analysis of accident sequence, including clogging characteristics of the ventilation filters, needs to be performed. For the purpose of the evaluation, accumulation of the source term data such as release rates of the smoke and energy, and particle size distribution of the smoke during the fire accident is necessary. Therefore, experiments for evaluating burning characteristics of combustible solid wastes and recovered solvents, which are disposed from the facilities, have been performed by using the mock combustible wastes and the method for estimating the source terms has been investigated. When mixtures of rubber and cloth gloves as mock combustible solid wastes were burnt, the smoke with above 1 μm in diameter was confined in the carbonized residue of cloth gloves and the release ratio of the smoke in the burning of mixtures was decreased compared with the burning of only rubber gloves. The source terms were evaluated with the cell ventilation system safety analysis code CELVA-1D by using the experimental results as the input, such as temperature of the gas phase, total burnt weight and total collected weight of the smoke under the burning of rubber gloves as mock wastes. The source terms calculated by the CELVA-1D reasonably agreed with the values estimated from the recommended calculation parameters in the Nuclear Fuel Cycle Facility Accident Analysis Handbook (NUREG-1320). Therefore, the present CELVA-1D method for evaluating the source terms during burning is considered to be valid. This means that the source terms can be estimated by using this method if the information such as the temperature of the gas phase, total burnt weight and total collected weight of the smoke are given. (author)

  16. Airborne measurements of carbonaceous aerosols in southern Africa during the dry, biomass burning season

    Energy Technology Data Exchange (ETDEWEB)

    Kirchstetter, Thomas W.; Novakov, T.; Hobbs, Peter V.; Magi, Brian

    2002-06-17

    Particulate matter collected aboard the University of Washington's Convair-580 research aircraft over southern Africa during the dry, biomass burning season was analyzed for total carbon, organic carbon, and black carbon contents using thermal and optical methods. Samples were collected in smoke plumes of burning savanna and in regional haze. A known artifact, produced by the adsorption of organic gases on the quartz filter substrates used to collect the particulate matter samples, comprised a significant portion of the total carbon collected. Consequently, conclusions derived from the data are greatly dependent on whether or not organic carbon concentrations are corrected for this artifact. For example, the estimated aerosol co-albedo (1 - single scattering albedo), which is a measure of aerosol absorption, of the biomass smoke samples is 60 percent larger using corrected organic carbon concentrations. Thus, the corrected data imply that the biomass smoke is 60 percent more absorbing than do the uncorrected data. The black carbon to (corrected) organic carbon mass ratio (BC/OC) of smoke plume samples (0.18/2610.06) is lower than that of samples collected in the regional haze (0.25/2610.08). The difference may be due to mixing of biomass smoke with background air characterized by a higher BC/OC ratio. A simple source apportionment indicates that biomass smoke contributes about three-quarters of the aerosol burden in the regional haze, while other sources (e.g., fossil fuel burning) contribute the remainder.

  17. Characterization of particulate matter emission from open burning of rice straw

    Science.gov (United States)

    Kim Oanh, Nguyen Thi; Ly, Bich Thuy; Tipayarom, Danutawat; Manandhar, Bhai Raja; Prapat, Pongkiatkul; Simpson, Christopher D.; Sally Liu, L.-J.

    2011-01-01

    Emission from field burning of crop residue, a common practice in many parts of the world today, has potential effects on air quality, atmosphere and climate. This study provides a comprehensive size and compositional characterization of particulate matter (PM) emission from rice straw (RS) burning using both in situ experiments (11 spread field burning) and laboratory hood experiments (3 pile and 6 spread burning) that were conducted during 2003-2006 in Thailand. The carbon balance and emission ratio method was used to determine PM emission factors (EF) in the field experiments. The obtained EF varied from field to hood experiments reflecting multiple factors affecting combustion and emission. In the hood experiments, EF were found to be depending on the burning types (spread or pile), moisture content and the combustion efficiency. In addition, in the field experiments, burning rate and EF were also influenced by weather conditions, i.e. wind. Hood pile burning produced significantly higher EF (20 ± 8 g kg -1 RS) than hood spread burning (4.7 ± 2.2 g kg -1 RS). The majority of PM emitted from the field burning was PM 2.5 with EF of 5.1 ± 0.7 g m -2 or 8.3 ± 2.7 g kg -1 RS burned. The coarse PM fraction (PM 10-2.5) was mainly generated by fire attention activities and was relatively small, hence the resulting EF of PM 10 (9.4 ± 3.5 g kg -1 RS) was not significantly higher than PM 2.5. PM size distribution was measured across 8 size ranges (from 9.0 μm). The largest fractions of PM, EC and OC were associated with PM 1.1. The most significant components in PM 2.5 and PM 10 include OC, water soluble ions and levoglucosan. Relative abundance of some methoxyphenols (e.g., acetylsyringone), PAHs (e.g., fluoranthene and pyrene), organochlorine pesticides and PCBs may also serve as additional signatures for the PM emission. Presence of these toxic compounds in PM of burning smoke increases the potential toxic effects of the emission. For illustration, an estimation

  18. Chemical characterisation of fine particles from biomass burning

    Energy Technology Data Exchange (ETDEWEB)

    Saarnio, K.

    2013-10-15

    Biomass burning has lately started to attract attention because there is a need to decrease the carbon dioxide (CO{sub 2}) emissions from the combustion of fossil fuels. Biomass is considered as CO{sub 2} neutral fuel. However, the burning of biomass is one of the major sources of fine particles both at the local and global scale. In addition to the use of biomass as a fuel for heat energy production, biomass burning emissions can be caused, e.g. by slash-and-burn agriculture and wild open-land fires. Indeed, the emissions from biomass burning are crucially important for the assessment of the potential impacts on global climate and local air quality and hence on human health. The chemical composition of fine particles has a notable influence on these impacts. The overall object of this thesis was to gain knowledge on the chemistry of fine particles that originate from biomass burning as well as on the contribution of biomass burning emissions to the ambient fine particle concentrations. For this purpose novel analytical methods were developed and tested in this thesis. Moreover, the thesis is based on ambient aerosol measurements that were carried out in six European countries at 12 measurement sites during 2002-2011. Additionally, wood combustion experiments were conducted in a laboratory. The measurements included a wide range of techniques: filter and impactor samplings, offline chemical analyses (chromatographic and mass spectrometric techniques, thermal-optical method), and online measurements of particles' physical properties and chemical composition (incl. particle number and mass concentrations and size distributions, concentrations of carbonaceous components, water-soluble ions, and tracer compounds). This thesis presents main results of different studies aimed towards chemical characterisation of fine particle emissions from biomass burning. It was found that wood combustion had a significant influence on atmospheric fine particle concentrations in

  19. Combustion of biomass as a global carbon sink

    CERN Document Server

    Ball, Rowena

    2008-01-01

    This note is intended to highlight the important role of black carbon produced from biomass burning in the global carbon cycle, and encourage further research in this area. Consideration of the fundamental physical chemistry of cellulose thermal decomposition suggests that suppression of biomass burning or biasing burning practices to produce soot-free flames must inevitably transfer more carbon to the atmosphere. A simple order-of-magnitude quantitative analysis indicates that black carbon may be a significant carbon reservoir that persists over geological time scales.

  20. Fuel characteristics and trace gases produced through biomass burning

    Directory of Open Access Journals (Sweden)

    BAMBANG HERO SAHARJO

    2010-01-01

    Full Text Available Saharjo BH, Sudo S, Yonemura S, Tsuruta H (2010 Fuel characteristics and trace gases produced through biomass burning. Biodiversitas 11: 40-45. Indonesian 1997/1998 forest fires resulted in forest destruction totally 10 million ha with cost damaged about US$ 10 billion, where more than 1 Gt CO2 has been released during the fire episode and elevating Indonesia to one of the largest polluters of carbon in the world where 22% of world’s carbon dioxide produced. It has been found that 80-90% of the fire comes from estate crops and industrial forest plantation area belongs to the companies which using fire illegally for the land preparation. Because using fire is cheap, easy and quick and also support the companies purpose in achieving yearly planted area target. Forest management and land use practices in Sumatra and Kalimantan have evolved very rapidly over the past three decades. Poor logging practices resulted in large amounts of waste will left in the forest, greatly elevating fire hazard. Failure by the government and concessionaires to protect logged forests and close old logging roads led to and invasion of the forest by agricultural settlers whose land clearances practices increased the risk of fire. Several field experiments had been done in order to know the quality and the quantity of trace produced during biomass burning in peat grass, peat soil and alang-alang grassland located in South Sumatra, Indonesia. Result of research show that different characteristics of fuel burned will have the different level also in trace gasses produced. Peat grass with higher fuel load burned produce more trace gasses compared to alang-alang grassland and peat soil.

  1. Burns

    Science.gov (United States)

    ... have young children, use safety latches in your home When cooking, keep pot handles turned toward the rear of the stove, and never leave pans unattended. Do not leave hot cups of coffee on tables or counter edges. Do not carry hot liquids or food near your child or while holding your child. ...

  2. Burns

    Science.gov (United States)

    ... and Answers page . Share Print E-mail House Image Highlight Header Learn More Highlight Body Other NIGMS Fact Sheets Related Links Up to top This page last reviewed on April 06, 2016 Social Media Links Bookmark & Share Free Subscriptions Twitter Facebook YouTube ...

  3. Ozone photochemistry in boreal biomass burning plumes

    Directory of Open Access Journals (Sweden)

    M. Parrington

    2013-01-01

    Full Text Available We present an analysis of ozone photochemistry observed by aircraft measurements of boreal biomass burning plumes over Eastern Canada in the summer of 2011. Measurements of ozone and a number of key chemical species associated with ozone photochemistry, including non-methane hydrocarbons (NMHCs, nitrogen oxides (NOx and total nitrogen containing species (NOy, were made from the UK FAAM BAe-146 research aircraft as part of the quantifying the impact of BOReal forest fires on tropospheric oxidants over the Atlantic using Aircraft and Satellites (BORTAS experiment between 12 July and 3 August 2011. We found that ozone mixing ratios measured in biomass burning plumes were indistinguishable from non-plume measurements, but evaluating them in relationship to measurements of carbon monoxide (CO, total alkyl nitrates (ΣAN and the surrogate species NOz (=NOy - NOx revealed that the potential for ozone production increased with plume age. We used NMHC ratios to estimate photochemical ages of the observed biomass burning plumes between 0 and 15 days. Ozone production, calculated from ΔO3/ΔCO enhancement ratios, increased from 0.020 ± 0.008 ppbv ppbv−1 in plumes with photochemical ages less than 2 days to 0.55 ± 0.29 ppbv ppbv−1 in plumes with photochemical ages greater than 5 days. In comparing ozone mixing ratios with components of the NOy budget we observed that plumes with ages between 2 and 4 days were characterised by high aerosol loading, relative humidity greater than 40%, and low ozone production efficiencies of 8 ppbv ppbv−1 relative to ΣAN and 2 ppbv ppbv−1 relative to NOz. In plumes with ages greater than 4 days, ozone production efficiency increased to 473 ppbv ppbv−1 relative to ΣAN and 155 ppbv ppbv−1 relative to NOz. From the BORTAS measurements we estimated

  4. Coal and cremation at the Tschudi burn, Chan Chan, Northern Peru

    Science.gov (United States)

    Brooks, W.E.; Galvez, Mora C.; Jackson, J.C.; McGeehin, J.P.; Hood, D.G.

    2008-01-01

    Analyses of a 20-30 cm thick, completely combusted ash at the 25 ?? 70 m Tschudi burn at Chan Chan, northern Peru??, contain 52-55 wt% SiO2, 180-210 ppm zirconium and are consistent with coal ash. Soil geochemistry across the burn showed elevated calcium and phosphorus content, possible evidence for reported human cremation. A calcined, 5 g, 4.5 cm skull fragment recovered from the burn was confirmed as human by protein radioimmunoassay (pRIA). X-ray diffraction showed that the bone had been heated to 520??C. The burn took place c. ad 1312-1438 based on interpretation of a 14C date on carbonized plant tinder. ?? 2008 University of Oxford.

  5. Estimation of fuel burning rate and heating value with highly variable properties for optimum combustion control

    International Nuclear Information System (INIS)

    Estimating solid residue gross burning rate and heating value burning in a power plant furnace is essential for adequate manipulation to achieve energy conversion optimization and plant performance. A model based on conservation equations of mass and thermal energy is established in this work to calculate the instantaneous gross burning rate and lower heating value of solid residue fired in a combustion chamber. Comparing the model with incineration plant control room data indicates that satisfactory predictions of fuel burning rates and heating values can be obtained by assuming the moisture-to-carbon atomic ratio (f/a) within the typical range from 1.2 to 1.8. Agreement between mass and thermal analysis and the bed-chemistry model is acceptable. The model would be useful for furnace fuel and air control strategy programming to achieve optimum performance in energy conversion and pollutant emission reduction

  6. Seasonal, interannual, and long-term variabilities in biomass burning activity over South Asia.

    Science.gov (United States)

    Bhardwaj, P; Naja, M; Kumar, R; Chandola, H C

    2016-03-01

    The seasonal, interannual, and long-term variations in biomass burning activity and related emissions are not well studied over South Asia. In this regard, active fire location retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS), the retrievals of aerosol optical depth (AOD) from MODIS Terra, and tropospheric column NO2 from Ozone Monitoring Instrument (OMI) are used to understand the effects of biomass burning on the tropospheric pollution loadings over South Asia during 2003-2013. Biomass burning emission estimates from Global Fire Emission Database (GFED) and Global Fire Assimilation System (GFAS) are also used to quantify uncertainties and regional discrepancies in the emissions of carbon monoxide (CO), nitrogen oxide (NOx), and black carbon (BC) due to biomass burning in South Asia. In the Asian continent, the frequency of fire activity is highest over Southeast Asia, followed by South Asia and East Asia. The biomass burning activity in South Asia shows a distinct seasonal cycle that peaks during February-May with some differences among four (north, central, northeast, and south) regions in India. The annual biomass burning activity in north, central, and south regions shows an increasing tendency, particularly after 2008, while a decrease is seen in northeast region during 2003-2013. The increase in fire counts over the north and central regions contributes 24 % of the net enhancement in fire counts over South Asia. MODIS AOD and OMI tropospheric column NO2 retrievals are classified into high and low fire activity periods and show that biomass burning leads to significant enhancement in tropospheric pollution loading over both the cropland and forest regions. The enhancement is much higher (110-176 %) over the forest region compared to the cropland (34-62 %) region. Further efforts are required to understand the implications of biomass burning on the regional air quality and climate of South Asia. PMID:26503008

  7. Incidence of cardiac events in burned patients.

    Science.gov (United States)

    Meyers, David G; Hoestje, Sara M; Korentager, Richard A

    2003-06-01

    Given the increased level of adrenergic stimulation in burn patients, it would be expected that they would experience an increased incidence of cardiac arrhythmias and other cardiac events. We performed a retrospective chart review of 56 acute burn patients matched by age, length of hospital stay, and sex to 56 trauma patients, all of whom had been continuously monitored electrocardiographically. Burn and trauma patients were similar in injury severity, admission laboratory values, and prior history of cardiopulmonary diseases. Arrhythmias were noted in 34% of burn patients and 28% of trauma patients. One myocardial infarction and six deaths occurred in burn patients. No myocardial infarctions or deaths were observed in trauma patients. A past history of cardiopulmonary disease increased the risk of myocardial infarction or death by 6.6 times. Cardiac arrhythmias and other events are relatively infrequent and benign in burn patients and are similar to those experienced by other patients with acute injuries. PMID:12781616

  8. How to manage a minor burn.

    Science.gov (United States)

    Rowley-Conwy, Gabrielle

    2016-07-20

    Rationale and key points This article outlines the technique for dressing a minor burn. The nurse should be aware of national burn care referral guidance, and have the knowledge and skills to establish the severity and extent of a burn. The nurse should also be able to determine whether referral to a regional specialist centre is required. » The extent and severity of a burn determines its ongoing management. » The burn wound requires regular evaluation, since its appearance and management needs can change over time. » Competence in general wound care is essential for nurses undertaking this procedure. Reflective activity 'How to' articles can help update your practice and ensure it remains evidence based. Apply this article to your practice. Reflect on and write a short account of: » The classification of burn depth and guidelines for specialist referral. » How you think this article will change your practice. Subscribers can update their reflective accounts at rcni.com/portfolio. PMID:27440365

  9. [Abnormality in bone metabolism after burn].

    Science.gov (United States)

    Gong, X; Xie, W G

    2016-08-20

    Burn causes bone metabolic abnormality in most cases, including the changes in osteoblasts and osteoclasts, bone mass loss, and bone absorption, which results in decreased bone mineral density. These changes are sustainable for many years after burn and even cause growth retardation in burned children. The mechanisms of bone metabolic abnormality after burn include the increasing glucocorticoids due to stress response, a variety of cytokines and inflammatory medium due to inflammatory response, vitamin D deficiency, hypoparathyroidism, and bone loss due to long-term lying in bed. This article reviews the pathogenesis and regularity of bone metabolic abnormality after burn, the relationship between bone metabolic abnormality and burn area/depth, and the treatment of bone metabolic abnormality, etc. and discusses the research directions in the future. PMID:27562160

  10. Epidemiological data, outcome, and costs of burn patients in Kermanshah

    OpenAIRE

    Karami Matin, B.; Karami Matin, R.; Ahmadi Joybari, T.; Ghahvehei, N.; M Haghi; M. Ahmadi; S. Rezaei

    2012-01-01

    Burn injuries in both developed and developing countries cause long-term disability, mortality, and socio-economic costs that are imposed on patients, families, and societies. This study was carried out to investigate the epidemiology, outcome, and cost of hospitalization of 388 burn patients admitted to the Imam Khomeini Hospital Burn Center in Kermanshah, Iran, between 21 March 2011 and 20 March 2012. The data about demographics, cause of burns, degree of burns, outcome of burns, burned bod...

  11. Cheiloplasty in Post-burn Deformed Lips

    OpenAIRE

    Saadeldeen, W.M.

    2009-01-01

    The lip is a part of the face that is frequently affected by burn injury. Post-burn scar sequelae in this area often result in cosmetic disfigurement and psychological upsets in patients, especially young adult females. A burn destroys the aesthetic features and lines of the lip. Plastic and reconstructive surgery of the face has a long history. Many local and regional flaps have been used for reconstruction of surgical or traumatic defects. Procedures to enhance the cosmetic features of the ...

  12. The Integrated Burn Information System - Microbiology Module

    OpenAIRE

    McManus, A T; Henderson, J. R.

    1985-01-01

    Infection is the most common serious complication occurring in hospitalized burn patients. Since this institute was established more than 35 years ago, the Microbiology section has provided direct clinical microbiology support and has collected epidemiological and historical data concerning the identification, incidence and treatment of infections in burn patients. With the availability of a centralized computer facility, microbiology data were added to the integrated burn information system,...

  13. Comparison of tokamak burn cycle options

    International Nuclear Information System (INIS)

    Experimental confirmation of noninductive current drive has spawned a number of suggestions as to how this technique can be used to extend the fusion burn period and improve the reactor prospects of tokamaks. Several distinct burn cycles, which employ various combinations of Ohmic and noninductive current generation, are possible, and we will study their relative costs and benefits for both a commerical reactor as well as an INTOR-class device. We begin with a review of the burn cycle options

  14. Infection control in severely burned patients

    OpenAIRE

    Coban, Yusuf Kenan

    2012-01-01

    In the last two decades, much progress has been made in the control of burn wound infection and nasocomial infections (NI) in severely burned patients. The continiually changing epidemiology is partially related to greater understanding of and improved techniques for burn patient management as well as effective hospital infection control measures. With the advent of antimicrobial chemotherapeutic agents, infection of the wound site is now not as common as, for example, urinary and blood strea...

  15. Epidemiology and Statistical Modeling in Burn Injuries

    OpenAIRE

    Sadeghi Bazargani, Homayoun

    2010-01-01

    An important issue in assessing the epidemiology of injuries, including burns, is the investigation of appropriate methodologies and statistical modeling techniques to study injuries in an efficient and trustworthy manner. The overall aim of this thesis is to analyze epidemiological patterns and assess the appropriateness of supervised statistical models to investigate burn risks and patterns. This thesis contains four papers: the first two concern descriptive epidemiology of burns in Arda...

  16. Neuroendocrine Stress Response after Burn Trauma

    OpenAIRE

    Lindahl, Andreas

    2013-01-01

    Some aspects of the stress response during acute intensive care for severe burns are described and quantified by measuring hormonal and neuroendocrine patterns and relating these to organ function in the short term. This includes an assessment of whether there are markers for the severity of stress that are better than conventional descriptors of the severity of a burn in predicting failing organ function. P-CgA after a major burn injury is an independent and better predictor of organ dysfunc...

  17. Catalytic combustion in small wood burning appliances

    Energy Technology Data Exchange (ETDEWEB)

    Oravainen, H. [VTT Energy, Jyvaeskylae (Finland)

    1996-12-31

    There is over a million hand fired small heating appliances in Finland where about 5,4 million cubic meters of wood fuel is used. Combustion in such heating appliances is a batch-type process. In early stages of combustion when volatiles are burned, the formation of carbon monoxide (CO) and other combustible gases are difficult to avoid when using fuels that have high volatile matter content. Harmful emissions are formed mostly after each fuel adding but also during char burnout period. When the CO-content in flue gases is, say over 0.5 %, also other harmful emissions will be formed. Methane (CH{sub 4}) and other hydrocarbons are released and the amount of polycyclic aromatic hydrocarbons (PAH)-compounds can be remarkable. Some PAH-compounds are very carcinogenic. It has been estimated that in Finland even more than 90 % of hydrocarbon and PAH emissions are due to small scale wood combustion. Emissions from transportation is excluded from these figures. That is why wood combustion has a net effect on greenhouse gas phenomena. For example carbon monoxide emissions from small scale wood combustion are two fold compared to that of energy production in power plants. Methane emission is of the same order as emission from transportation and seven fold compared with those of energy production. Emissions from small heating appliances can be reduced by developing the combustion techniques, but also by using other means, for example catalytic converters. In certain stages of the batch combustion, temperature is not high enough, gas mixing is not good enough and residence time is too short for complete combustion. When placed to a suitable place inside a heating appliance, a catalytic converter can oxidize unburned gases in the flue gas into compounds that are not harmful to the environment. (3 refs.)

  18. Global carbon footprint

    International Nuclear Information System (INIS)

    The designated culprit of global warming, carbon dioxide (CO2), is primarily given off by the burning of fossil fuels. Whether by a specific technology, a sector, an economy or from one country to another, the quantities emitted are not the same. But the necessity of lowering these emissions is nonetheless urgent for all

  19. Biomass burning contributions to urban aerosols in a coastal Mediterranean city.

    Science.gov (United States)

    Reche, C; Viana, M; Amato, F; Alastuey, A; Moreno, T; Hillamo, R; Teinilä, K; Saarnio, K; Seco, R; Peñuelas, J; Mohr, C; Prévôt, A S H; Querol, X

    2012-06-15

    Mean annual biomass burning contributions to the bulk particulate matter (PM(X)) load were quantified in a southern-European urban environment (Barcelona, Spain) with special attention to typical Mediterranean winter and summer conditions. In spite of the complexity of the local air pollution cocktail and the expected low contribution of biomass burning emissions to PM levels in Southern Europe, the impact of these emissions was detected at an urban background site by means of tracers such as levoglucosan, K(+) and organic carbon (OC). The significant correlation between levoglucosan and OC (r(2)=0.77) and K(+) (r(2)=0.65), as well as a marked day/night variability of the levoglucosan levels and levoglucosan/OC ratios was indicative of the contribution from regional scale biomass burning emissions during night-time transported by land breezes. In addition, on specific days (21-22 March), the contribution from long-range transported biomass burning aerosols was detected. Quantification of the contribution of biomass burning aerosols to PM levels on an annual basis was possible by means of the Multilinear Engine (ME). Biomass burning emissions accounted for 3% of PM(10) and PM(2.5) (annual mean), while this percentage increased up to 5% of PM(1). During the winter period, regional-scale biomass burning emissions (agricultural waste burning) were estimated to contribute with 7±4% of PM(2.5) aerosols during night-time (period when emissions were clearly detected). Long-range transported biomass burning aerosols (possibly from forest fires and/or agricultural waste burning) accounted for 5±2% of PM(2.5) during specific episodes. Annually, biomass burning emissions accounted for 19%-21% of OC levels in PM(10), PM(2.5) and PM(1). The contribution of this source to K(+) ranged between 48% for PM(10) and 97% for PM(1) (annual mean). Results for K(+) from biomass burning evidenced that this tracer is mostly emitted in the fine fraction, and thus coarse K(+) could not be

  20. A Spatio-temporal Data Mining Approach to Global scale Burned Area Monitoring

    Science.gov (United States)

    Mithal, V.; Khandelwal, A.; Nayak, G.; Kumar, V.; Nemani, R. R.; Oza, N.

    2014-12-01

    We present a novel technique for burned area mapping in forests using the Enhanced Vegetation Index (EVI) from the MODIS 16-day Level 3 1km Vegetation Indices (MOD13A2) and the Active Fire (AF) from the MODIS 8-day Level 3 1km Thermal Anomalies and Fire products (MOD14A2). The proposed method leverages the spatial and temporal co-occurrence of thermal anomalies and vegetation loss caused due to forest fires to detect burned areas. Our approach derives features from Enhanced Vegetation Index that target locations which show an abrupt change in their vegetation time series that take at least several months to recover. One unique aspect of our approach is that it uses data from multiple months around the fire event and is therefore more robust to issues in data quality. Comparison with other burned area products show that our approach detects several large previously undetected burned areas across multiple geographical regions. In particular, we found that our approach detects several large burned regions in the tropical forests of Indonesia and South America that had been missed by the state-of-arts burned area approaches. For example, using our approach in Indonesia we discovered that the state-of-the-art MODIS Burned area product had missed around 20,000 sq. km. of burned area (nearly as much burned area as it has reported). We show that all these previously unreported burned areas detected by our approach are actually significant fires which suffered a large, abrupt loss in their vegetation at the time of the fire event and take at least several months to recover back to their normal vegetation. To evaluate these burned areas we compared the Landsat-based composites before and after the date of the event. Our Landsat analysis shows that the burned areas detected by the proposed approach are true burns with a very small error of commission. We believe our work has the potential to provide a scalable approach to global forest monitoring as well as reduce the

  1. Spectral Hole Burning via Kerr Nonlinearity

    Science.gov (United States)

    Khan, Anwar Ali; Abdul Jabar, M. S.; Jalaluddin, M.; Bacha, Bakht Amin; Iftikhar, Ahmad

    2015-10-01

    Spectral hole burning is investigated in an optical medium in the presence of Doppler broadening and Kerr nonlinearity. The Kerr nonlinearity generates coherent hole burning in the absorption spectrum. The higher order Kerr nonlinearity enhances the typical lamb dip of the hole. Normal dispersion in the hole burning region while Steep anomalous dispersion between the two hole burning regions also enhances with higher order Kerr effect. A large phase shift creates large delay or advancement in the pulse propagation while no distortion is observed in the pulse. These results provide significant steps to improve optical memory, telecom devices, preservation of information and image quality. Supported by Higher Education Commission (HEC) of Pakistan

  2. ISBI Practice Guidelines for Burn Care.

    Science.gov (United States)

    Isbi Practice Guidelines Committee

    2016-08-01

    Practice guidelines (PGs) are recommendations for diagnosis and treatment of diseases and injuries, and are designed to define optimal evaluation and management. The first PGs for burn care addressed the issues encountered in developed countries, lacking consideration for circumstances in resource-limited settings (RLS). Thus, the mission of the 2014-2016 committee established by the International Society for Burn Injury (ISBI) was to create PGs for burn care to improve the care of burn patients in both RLS and resource-abundant settings. An important component of this effort is to communicate a consensus opinion on recommendations for burn care for different aspects of burn management. An additional goal is to reduce costs by outlining effective and efficient recommendations for management of medical problems specific to burn care. These recommendations are supported by the best research evidence, as well as by expert opinion. Although our vision was the creation of clinical guidelines that could be applicable in RLS, the ISBI PGs for Burn Care have been written to address the needs of burn specialists everywhere in the world. PMID:27542292

  3. Burn healing plants in Iranian Traditional Medicine

    Directory of Open Access Journals (Sweden)

    Sh. Fahimi

    2015-11-01

    Full Text Available Burns are known as one of the most common forms of injury with devastating consequences. Despite the discovery of several antiseptics, burn wound healing has still remained a challenge to modern medicine. Herbal products seem to possess moderate efficacy with no or less toxicity and are less expensive compared to synthetic drugs. Burn is a well-known disorder in Iranian Traditional Medicine (ITM. Iranian physicians have divided burns into various types based on the cause and recommended treatment for each type. According to ITM references, herbal therapy was the major treatment prescribed by Iranian physicians for burns. In the present study, seven ancient Iranian medical texts were screened for the herbs with burn healing effects along with their applied dosage forms. The medicinal herbs were listed and scored based on the frequency of their repetition. Moreover, the best scientific name that was suitable for each plant as well as surveying modern studies about their biological effects has been carried out. In our investigation eighteen plants with seven topical application categories have been obtained as the most frequent herbs for burn healing in ITM. Modern studies have revealed that these plants have shown some biological activities such as anti-inflammatory, antimicrobial and antioxidant effects which might establish the relationship between the mentioned activities and burn wound healing property. This list can provide a suitable resource for future researches in the field of burn treatment.

  4. Aeromonas hydrophila in a burn patient.

    Science.gov (United States)

    Yasti, Ahmet Cinar; Otan, Emrah; Doganay, Mutlu; Kama, Nuri A

    2009-01-01

    Infectious consequences are still a major problem and leading cause of mortality in burn patients. Among others, aeromonads need special concern because they mimic pseudomonal infections; however, they have a more rapid progression with considerable mortality if undiagnosed promptly. Here, we present a major burn case extinguished with tap water pooled in a tank. With the possibility of aeromonal infection in mind, the patient underwent aggressive debridement with proper antibiotic medication, which resulted in a successful patient management. Aeromonads should always be kept in mind in burn cases that contacted with tanked water or soil after the burn. PMID:19692919

  5. Diffusive Nuclear Burning in Neutron Star Envelopes

    CERN Document Server

    Chang, P

    2003-01-01

    We present a new mode of hydrogen burning on neutron stars (NSs) called diffusive nuclear burning (DNB). In DNB, the burning occurs in the exponentially suppressed tail of hydrogen that extends to the hotter regions of the envelope where protons are readily captured. Diffusive nuclear burning changes the compositional structure of the envelope on timescales $\\sim 10^{2-4} {\\rm yrs}$, much shorter than otherwise expected. This mechanism is applicable to the physics of young pulsars, millisecond radio pulsars (MSPs) and quiescent low mass X-ray binaries (LMXBs).

  6. [Burning oral sensation: when is really BMS?].

    Science.gov (United States)

    Spadari, Fracesco; Garagiola, Umberto; Dzsida, Eszter; Azzi, Lorenzo; Kálmán, Fanni Sára

    2015-12-01

    The aims and purposes of this systematic review of the international literature are to discuss and clarify some considerations on Burning Mouth Syndrome (BMS). Over the last 40 years, many researchers have addressed this disease clinically or experimentally. Thus, the etiology and pathogenesis of BMS remain unclear. We analyzed the etiopathogenesis of Burning Mouth Syndrome and of the burning oral sensation and currently, we could not find a consensus on the diagnosis and classification of BMS. Further studies are required to better understand the pathogenesis of BMS, and a "Gold Standard" classification is required because not every burning sensation in the mouth is BMS. PMID:26863819

  7. Burn site groundwater interim measures work plan.

    Energy Technology Data Exchange (ETDEWEB)

    Witt, Jonathan L. (North Wind, Inc., Idaho Falls, ID); Hall, Kevin A. (North Wind, Inc., Idaho Falls, ID)

    2005-05-01

    This Work Plan identifies and outlines interim measures to address nitrate contamination in groundwater at the Burn Site, Sandia National Laboratories/New Mexico. The New Mexico Environment Department has required implementation of interim measures for nitrate-contaminated groundwater at the Burn Site. The purpose of interim measures is to prevent human or environmental exposure to nitrate-contaminated groundwater originating from the Burn Site. This Work Plan details a summary of current information about the Burn Site, interim measures activities for stabilization, and project management responsibilities to accomplish this purpose.

  8. Greenhouse gas emissions from forest, land use and biomass burning in Tanzania

    International Nuclear Information System (INIS)

    Carbon dioxide (CO2) and methane (CH4) gases are the main contributors to the greenhouse effect that consequently results in global warming. This paper examines the sources and sinks of these gases from/to forest, land use and biomass burning and their likely contribution to climate change using IPCC/OECD methodology. Emissions have been calculated in mass units of carbon and nitrogen Emissions and uptake have been summed for each gas and the emissions converted to full molecular weights. Mismanagement of forests and land misuse have contributed much to greenhouse gas emissions in Tanzania. For example, cultivation methods, forest clearing, burning of savannah grass and indiscriminate logging (non-sustainable logging) have contributed significantly to greenhouse gas emissions. These categories contribute more than 90% of total CO2 emissions. However, the study shows that shifting cultivation, savannah burning and forest clearing for conversion to permanent crop land and pasture are the main contributors

  9. Electrical burns of the abdomen

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar Srivastava

    2013-01-01

    Full Text Available A 35-year-old male farmer came in contact with 11,000 volts high tension electric wire and sustained full thickness burn wounds over scapula, upper limb and anterior abdominal wall along with perforation of the intestine. Patient was initially managed conservatively in general surgery ward and was referred to us after 3 days with necrosis of the burned skin and muscles over the shoulder and abdomen. Patient was initially managed conservatively and then thorough debridement of the necrotic skin over the left shoulder and upper arm was done and the area was split skin grafted. Patient developed enterocutaneous fistula, which healed over a period of 8 weeks. The granulating wound over the abdomen was also skin grafted and patient was discharged after 18 days. About 4 months, after the discharge patient presented with ventral hernia. Repair of ventral hernia by synthetic mesh application and reconstruction of the abdominal wall with a free tensor fascia lata flap was done over the mesh, but the flap failed. Then after debridement two random pattern transposition skin flaps, one from the right upper and another from the left lower abdomen were transposed over the abdominal wound and donor area was skin grafted. Patient was discharged after 17 days.

  10. Amniotic membrane for burn trauma

    International Nuclear Information System (INIS)

    Amniotic membranes are derived from human placentae at birth. They have two layers mainly the amniotic and the chorionic surfaces which are separated by a thin layer of connective tissues. The two layers are separated during procurement, the placenta and the chorionic side are discarded and the amnion membranes are then further processed. Amnion membranes are normally procured from placentae which are normally free of infections, i.e; the mothers are antenatally screened for sexually transmitted diseases or AlDs related diseases. Intrapartum the mother should not be having chorioamnionitis or jaundice. Sometimes the amniotic membranes are acquired from fresh elective caeserian sections. After processing, the amniotic membranes are packed in two layers of polypropylene and radiated with cobalt 60 at a dose of about 25 kGy. The amniotic membranes are clinically used to cover burn surfaces especially effective for superficial or partial thickness burns. The thin membranes adhered well to the trauma areas and peeled off automatically by the second week. No change of dressing were necessary during these times because of the close adherence, there were less chance of external contamination or infections of these wounds. Due to their flexibility they are very useful to cover difference contours of the human body for example the face, body, elbows or knees. However our experience revealed that amniotic membranes are not useful for third degree bums because the membranes dissolves by the enzymes present in the wounds

  11. Global analysis of the persistence of the spectral signal associated with burned areas

    Science.gov (United States)

    Melchiorre, A.; Boschetti, L.

    2015-12-01

    Systematic global burned area maps at coarse spatial resolution (350 m - 1 km) have been produced in the past two decades from several Earth Observation (EO) systems (including MODIS, Spot-VGT, AVHRR, MERIS), and have been extensively used in a variety of applications related to emissions estimation, fire ecology, and vegetation monitoring (Mouillot et al. 2014). There is however a strong need for moderate to high resolution (10-30 m) global burned area maps, in order to improve emission estimations, in particular on heterogeneous landscapes and for local scale air quality applications, for fire management and environmental restoration, and in support of carbon accounting (Hyer and Reid 2009; Mouillot et al. 2014; Randerson et al. 2012). Fires causes a non-permanent land cover change: the ash and charcoal left by the fire can be visible for a period ranging from a few weeks in savannas and grasslands ecosystems, to over a year in forest ecosystems (Roy et al. 2010). This poses a major challenge for designing a global burned area mapping system from moderate resolution (10-30 m) EO data, due to the low revisit time frequency of the satellites (Boschetti et al. 2015). As a consequence, a quantitative assessment of the permanence of the spectral signature of burned areas at global scale is a necessary step to assess the feasibility of global burned area mapping with moderate resolution sensors. This study presents a global analysis of the post-fire reflectance of burned areas, using the MODIS MCD45A1 global burned area product to identify the location and timing of burning, and the MO(Y)D09 global surface reflectance product to retrieve the time series of reflectance values after the fire. The result is a spatially explicit map of persistence of burned area signal, which is then summarized by landcover type, and by fire zone using the subcontinental regions defined by Giglio et al. (2006).

  12. Global combustion: the connection between fossil fuel and biomass burning emissions (1997-2010).

    Science.gov (United States)

    Balch, Jennifer K; Nagy, R Chelsea; Archibald, Sally; Bowman, David M J S; Moritz, Max A; Roos, Christopher I; Scott, Andrew C; Williamson, Grant J

    2016-06-01

    Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to energy acquisition and livelihoods. Using global data on both fossil fuel and biomass burning emissions, we tested this relationship over a 14 year period (1997-2010). The global average annual carbon emissions from biomass burning during this time were 2.2 Pg C per year (±0.3 s.d.), approximately one-third of fossil fuel emissions over the same period (7.3 Pg C, ±0.8 s.d.). There was a significant inverse relationship between average annual fossil fuel and biomass burning emissions. Fossil fuel emissions explained 8% of the variation in biomass burning emissions at a global scale, but this varied substantially by land cover. For example, fossil fuel burning explained 31% of the variation in biomass burning in woody savannas, but was a non-significant predictor for evergreen needleleaf forests. In the land covers most dominated by human use, croplands and urban areas, fossil fuel emissions were more than 30- and 500-fold greater than biomass burning emissions. This relationship suggests that combustion practices may be shifting from open landscape burning to contained combustion for industrial purposes, and highlights the need to take into account how humans appropriate combustion in global modelling of contemporary fire. Industrialized combustion is not only an important driver of atmospheric change, but also an important driver of landscape change through companion declines in human-started fires.This article is part of the themed issue 'The interaction of fire and mankind'. PMID:27216509

  13. Deciding Where to Burn: Stakeholder Priorities for Prescribed Burning of a Fire-Dependent Ecosystem

    Directory of Open Access Journals (Sweden)

    Aaron Moody

    2011-03-01

    Full Text Available Multiagency partnerships increasingly work cooperatively to plan and implement fire management. The stakeholders that comprise such partnerships differ in their perceptions of the benefits and risks of fire use or nonuse. These differences inform how different stakeholders prioritize sites for burning, constrain prescribed burning, and how they rationalize these priorities and constraints. Using a survey of individuals involved in the planning and implementation of prescribed fire in the Onslow Bight region of North Carolina, we examined how the constraints and priorities for burning in the longleaf pine (Pinus palustris ecosystem differed among three stakeholder groups: prescribed burn practitioners from agencies, practitioners from private companies, and nonpractitioners. Stakeholder groups did not differ in their perceptions of constraints to burning, and development near potentially burned sites was the most important constraint identified. The top criteria used by stakeholders to decide where to burn were the time since a site was last burned, and a site's ecosystem health, with preference given to recently burned sites in good health. Differences among stakeholder groups almost always pertained to perceptions of the nonecological impacts of burning. Prescribed burning priorities of the two groups of practitioners, and particularly practitioners from private companies, tended to be most influenced by nonecological impacts, especially through deprioritization of sites that have not been burned recently or are in the wildland-urban interface (WUI. Our results highlight the difficulty of burning these sites, despite widespread laws in the southeast U.S. that limit liability of prescribed burn practitioners. To avoid ecosystem degradation on sites that are challenging to burn, particularly those in the WUI, conservation partnerships can facilitate demonstration projects involving public and private burn practitioners on those sites. In summary

  14. How Disabling Are Pediatric Burns? Functional Independence in Dutch Pediatric Patients with Burns

    Science.gov (United States)

    Disseldorp, Laurien M.; Niemeijer, Anuschka S.; Van Baar, Margriet E.; Reinders-Messelink, Heleen A.; Mouton, Leonora J.; Nieuwenhuis, Marianne K.

    2013-01-01

    Although the attention for functional outcomes after burn injury has grown over the past decades, little is known about functional independence in performing activities of daily living in children after burn injury. Therefore, in this prospective cohort study functional independence was measured by burn care professionals with the WeeFIM[R]…

  15. National programme for prevention of burn injuries

    Directory of Open Access Journals (Sweden)

    Gupta J

    2010-10-01

    Full Text Available The estimated annual burn incidence in India is approximately 6-7 million per year. The high incidence is attributed to illiteracy, poverty and low level safety consciousness in the population. The situation becomes further grim due to the absence of organized burn care at primary and secondary health care level. But the silver lining is that 90% of burn injuries are preventable. An initiative at national level is need of the hour to reduce incidence so as to galvanize the available resources for more effective and standardized treatment delivery. The National Programme for Prevention of Burn Injuries is the endeavor in this line. The goal of National programme for prevention of burn injuries (NPPBI would be to ensure prevention and capacity building of infrastructure and manpower at all levels of health care delivery system in order to reduce incidence, provide timely and adequate treatment to burn patients to reduce mortality, complications and provide effective rehabilitation to the survivors. Another objective of the programme will be to establish a central burn registry. The programme will be launched in the current Five Year Plan in Medical colleges and their adjoining district hospitals in few states. Subsequently, in the next five year plan it will be rolled out in all the medical colleges and districts hospitals of the country so that burn care is provided as close to the site of accident as possible and patients need not to travel to big cities for burn care. The programme would essentially have three components i.e. Preventive programme, Burn injury management programme and Burn injury rehabilitation programme.

  16. Biomass burning emissions of trace gases and particles in marine air at Cape Grim, Tasmania

    OpenAIRE

    S. J. Lawson; Keywood, M. D.; I. E. Galbally; Gras, J. L.; Cainey, J. M.; M. E. Cope; Krummel, P. B.; Fraser, P. J; L. P. Steele; S. T. Bentley; C. P. Meyer; Ristovski, Z; A. H. Goldstein

    2015-01-01

    Biomass burning (BB) plumes were measured at the Cape Grim Baseline Air Pollution Station during the 2006 Precursors to Particles campaign, when emissions from a fire on nearby Robbins Island impacted the station. Measurements made included non-methane organic compounds (NMOCs) (PTR-MS), particle number size distribution, condensation nuclei (CN) > 3 nm, black carbon (BC) concentration, cloud condensation nuclei (CCN) number, ozone (O3), methane (CH4), carbon monoxide (CO...

  17. Preparation of very pure active carbon

    International Nuclear Information System (INIS)

    The preparation of very pure active carbon is described. Starting from polyvinylidene chloride active carbon is prepared by carbonization in a nitrogen atmosphere, grinding, sieving and activation of the powder fraction with CO2 at 9500 to approximately 50% burn-off. The concentrations of trace and major elements are reduced to the ppb and ppm level, respectively. In the present set-up 100 g of carbon grains and approximately 50 g of active carbon powder can be produced weekly

  18. Actinide burning and waste disposal

    International Nuclear Information System (INIS)

    Here we review technical and economic features of a new proposal for a synergistic waste-management system involving reprocessing the spent fuel otherwise destined for a U.S. high-level waste repository and transmuting the recovered actinides in a fast reactor. The proposal would require a U.S. fuel reprocessing plant, capable of recovering and recycling all actinides, including neptunium americium, and curium, from LWR spent fuel, at recoveries of 99.9% to 99.999%. The recovered transuranics would fuel the annual introduction of 14 GWe of actinide-burning liquid-metal fast reactors (ALMRs), beginning in the period 2005 to 2012. The new ALMRs would be accompanied by pyrochemical reprocessing facilities to recover and recycle all actinides from discharged ALMR fuel. By the year 2045 all of the LWR spent fuel now destined f a geologic repository would be reprocessed. Costs of constructing and operating these new reprocessing and reactor facilities would be borne by U.S. industry, from the sale of electrical energy produced. The ALMR program expects that ALMRs that burn actinides from LWR spent fuel will be more economical power producers than LWRs as early as 2005 to 2012, so that they can be prudently selected by electric utility companies for new construction of nuclear power plants in that era. Some leaders of DOE and its contractors argue that recovering actinides from spent fuel waste and burning them in fast reactors would reduce the life of the remaining waste to about 200-300 years, instead of 00,000 years. The waste could then be stored above ground until it dies out. Some argue that no geologic repositories would be needed. The current view expressed within the ALMR program is that actinide recycle technology would not replace the need for a geologic repository, but that removing actinides from the waste for even the first repository would simplify design and licensing of that repository. A second geologic repository would not be needed. Waste now planned

  19. Burns: an update on current pharmacotherapy

    Science.gov (United States)

    Rojas, Yesinia; Finnerty, Celeste C.; Radhakrishnan, Ravi S.; Herndon, David N.

    2013-01-01

    Introduction The world-wide occurrence of burn injuries remains high despite efforts to reduce injury incidence through public awareness campaigns and improvements in living conditions. In 2004, almost 11 million people experienced burns severe enough to warrant medical treatment. Advances over the past several decades in aggressive resuscitation, nutrition, excision, and grafting have reduced morbidity and mortality. Incorporation of pharmacotherapeutics into treatment regimens may further reduce complications of severe burn injuries. Areas covered Severe burn injuries, as well as other forms of stress and trauma, trigger a hypermetabolic response that, if left untreated, impedes recovery. In the past two decades, use of anabolic agents, beta adrenergic receptor antagonists, and anti-hyperglycemic agents has successfully counteracted post-burn morbidities including catabolism, the catecholamine-mediated response, and insulin resistance. Here we review the most up-to-date information on currently used pharmacotherapies in the treatment of these sequelae of severe burns and the insights that have expanded our understanding of the pathophysiology of severe burns. Expert opinion Existing drugs offer promising advances in the care of burn injuries. Continued gains in our understanding of the molecular mechanisms driving the hypermetabolic response will enable the application of additional existing drugs to be broadened to further attenuate the hypermetabolic response. PMID:23121414

  20. Burn Injury Arise From Flying Balloon Toys

    Directory of Open Access Journals (Sweden)

    Yalcin Kulahci

    2007-08-01

    Full Text Available Many of peoples are faced minor or major burn injuries in their life. Even the most widespread burn cause is flame injuries, too different burn cause pointed out in literature like Acetylen burns. The cases which imply in literature, mostly causes from explosion of high pressure acetylene tube, metal oxygene patch flame or carbide lamp using from cave explorers. An interesting acetylene burn cause in Turkey was publised by the authors. This cases was to come into being from flying toy balloons flame. 80 person was injured from flying toy ballons flame in a meeting in 2002. Although this potential risks of acetylene, helium have not any of some risk. But helium was provided from other countries and have more price. The injuries which caused from acetylene burns like 1st -2nd degree burns. Consequently that was known helium is more avaliable for using in toy sector, and never cause burn injuries like this. [TAF Prev Med Bull. 2007; 6(4: 291-296

  1. Bubble bath burns: an unusual case.

    Science.gov (United States)

    Nizamoglu, Metin; Tan, Alethea; El-Muttardi, Naguib

    2016-01-01

    We present an unusual case of flash burn injury in an adolescent following accidental combination of foaming bath bubbles and tea light candle flame. There has not been any reported similar case described before. This serves as a learning point for public prevention and clinicians managing burn injuries. PMID:27583271

  2. Intensive Care Management in Pediatric Burn Patients

    Directory of Open Access Journals (Sweden)

    Ayşe Ebru Sakallıoğlu Abalı

    2011-07-01

    Full Text Available Burn injury is still a leading cause of morbidity and mortality in children. This article aimed to review the current principles of management from initial assessment to early management and intensive care for pediatric burn patients. (Journal of the Turkish Society Intensive Care 2011; 9 Suppl: 62-9

  3. A ring burn--electric or contact?

    Science.gov (United States)

    Attalla, M F; el-Ekiabi, S; Al-Baker, A

    1990-02-01

    A circumferential band of deep burn affecting the ring finger sustained by a car electrician is presented. Although it was caused by short circuiting the car battery by a metal spanner and the ring he was wearing, the injury was purely a contact burn. PMID:2322399

  4. Skin Dendritic Cells in Burn Patients

    OpenAIRE

    D’Arpa, N.; D’Amelio, L.; Accardo-Palumbo, A.; Pileri, D.; Mogavero, R.; Amato, G.; Napoli, B.; Alessandro, G.; Lombardo, C.; F. Conte

    2009-01-01

    The body's immunological response to burn injury has been a subject of great inquiry in recent years. Burn injury disturbs the immune system, resulting in a progressive suppression of the immune response that is thought to contribute to the development of sepsis. Dendritic cells (DCs) are potent antigen-presenting cells that possess the ability to stimulate naïve T cells.

  5. Acute pain management in burn patients

    DEFF Research Database (Denmark)

    Gamst-Jensen, Hejdi; Vedel, Pernille Nygaard; Lindberg-Larsen, Viktoria Oline;

    2014-01-01

    OBJECTIVE: Burn patients suffer excruciating pain due to their injuries and procedures related to surgery, wound care, and mobilization. Acute Stress Disorder, Post-Traumatic Stress Disorder, chronic pain and depression are highly prevalent among survivors of severe burns. Evidence-based pain...

  6. How Does the Freezer Burn Our Food?

    Science.gov (United States)

    Schmidt, Shelly J.; Lee, Joo Won

    2009-01-01

    Freezer burn is a common problem that significantly affects the color, texture, and flavor of frozen foods. Food science students should be able to clearly explain the causes and consequences of freezer burn. However, it is difficult to find a modern, detailed, accurate, yet concise, explanation of the mechanism and factors influencing the rate of…

  7. Epidemiology of major burns at the Lebanese Burn Center in Geitawi, Lebanon

    OpenAIRE

    Ghanimé, G.; Rizkallah, N.; Said, J.M.

    2013-01-01

    Burn care is one of the few areas in medicine considered both medically and surgically challenging, with burn injuries affecting people of all ages and both sexes. Between May 1992 and March 2012, 1,524 patients were admitted to the Lebanese Burn Center in Geitawi, with an average length of stay (LOS) of 36.5 days. The most frequently encountered injuries were thermal burns, generally resulting from domestic accidents. Of our patients, 47% were from rural areas and burned body surface (BBS) w...

  8. Spatio-Temporal Trends of Fire in Slash and Burn Agriculture Landscape: A Case Study from Nagaland, India

    OpenAIRE

    Padalia, H.; Mondal, P. P.

    2014-01-01

    Increasing incidences of fire from land conversion and residue burning in tropics is the major concern in global warming. Spatial and temporal monitoring of trends of fire incidences is, therefore, significant in order to determine contribution of carbon emissions from slash and burn agriculture. In this study, we analyzed time-series Terra / Aqua MODIS satellite hotspot products from 2001 to 2013 to derive intra- and inter-annual trends in fire incidences in Nagaland state, located ...

  9. Crusted Scabies in the Burned Patient

    DEFF Research Database (Denmark)

    Berg, Jais Oliver; Alsbjørn, Bjarne

    2011-01-01

    The objectives of this study were 1) to describe a case of crusted scabies (CS) in a burned patient, which was primarily undiagnosed and led to a nosocomial outbreak in the burn unit; 2) to analyze and discuss the difficulties in diagnosing and treating this subset of patients with burn injury; and...... 3) to design a treatment strategy for future patients. Case analysis and literature review were performed. The index patient had undiagnosed crusted scabies (sive Scabies norvegica) with the ensuing mite hyperinfestation when admitted to the department with minor acute dermal burns. Conservative...... healing and autograft healing were impaired because of the condition. Successful treatment of the burns was only accomplished secondarily to scabicide treatment. An outbreak of scabies among staff members indirectly led to diagnosis. CS is ubiquitous, and diagnosis may be difficult. This is the first...

  10. Sexual Function Following Burn Injuries: Literature Review.

    Science.gov (United States)

    Pandya, Atisha A; Corkill, Helen A; Goutos, Ioannis

    2015-01-01

    Sexual function is a profound facet of the human personality. Burns due their sudden and devastating nature can have longstanding effects on intimate function by virtue of physical sequelae as well as alterations in body image and perceived desirability. A considerable number of patients encounter problems with intimate function in burns rehabilitation; nevertheless, the topic appears to be poorly addressed in specialist centers worldwide. Review of the literature suggests that a number of parameters can affect the quality of sexual life following burn injuries including age at the time of injury, location, and severity of the burn as well as coping mechanisms employed by the individual survivor. Addressing issues of intimacy relies on awareness, education, and a holistic approach on behalf of the multidisciplinary team members and, to this effect, recommendations are made on managing sexual function concerns in burns rehabilitation. PMID:25423439

  11. A study on hydrogen burn due to the operation of containment spray system

    International Nuclear Information System (INIS)

    The bounding calculation for inflammable gas combustion due to the steam condensation by the operation of the containment spray system was performed. Sensitivity study was performed for two initiating events, station blackout and loss of coolant accident. The parameters for sensitivity study are the condition of cavity, wet or dry, and the timing of operation of the containment spray system. It is shown, based on MAAP4 analyses, that: for dry cavity, auto-ignition burn and hydrogen laden jet burn due to the high temperature in the reactor cavity consumes large amount of burnable gas in the containment and reduces the peak pressure at the global burn by flammability criteria; for wet cavity, large amount of hydrogen and carbon monoxide are generated after dryout of the reactor cavity, but burn is prohibited due to the low gas temperature in the high concentration of the steam. The late operation of the containment spray system condenses the steam rapidly, which results in the global burn at high concentration of burnable gas in the containment. The containment peak pressure from this burn is determined to be high enough to threaten the containment integrity significantly. (author). 3 refs., 3 tabs

  12. Microbiological Monitoring and Proteolytic Study of Clinical Samples From Burned and Burned Wounded Patients

    International Nuclear Information System (INIS)

    In this study, clinical samples were collected from 100 patients admitted to Burn and Plastic Surgery Department, Faculty of Medicine, Ain Shams University, Egypt, over a period of 12 months. The proteolytic activity of 110 clinical samples taken from surfaces swabs which taken from burned and burned wounded patients with different ages and gender was examined. Screening for the proteolytic activity produced by pathogenic bacteria isolated from burned and burned wounded patients was evaluated as gram positive Bacilli and gram negative bacilli showed high proteolytic activity (46.4%) while 17.9% showed no activity. The isolated bacteria proved to have proteolytic activity were classified into high, moderate and weak. The pathogenic bacteria isolated from burned and burned wounded patients and showing proteolytic activity were identified as Pseudomonas aeruginosa, Proteus mirabilis, Proteus vulgaris, Bacillus megaterium, Bacillus cereus, Staphylococcus aureus, Escherichia coli, Klebsiella ozaeanae, Klebsiella oxytoca, Klebsiella pneumoniae and Pseudomonas fluoresces.

  13. Impacts of prescribed burning on soil greenhouse gas fluxes in a suburban native forest of south-eastern Queensland, Australia

    Science.gov (United States)

    Zhao, Y.; Wang, Y. Z.; Xu, Z. H.; Fu, L.

    2015-11-01

    Prescribed burning is a forest management practice that is widely used in Australia to reduce the risk of damaging wildfires. Prescribed burning can affect both carbon (C) and nitrogen (N) cycling in the forest and thereby influence the soil-atmosphere exchange of major greenhouse gases, i.e. carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). To quantify the impact of a prescribed burning (conducted on 27 May 2014) on greenhouse gas exchange and the potential controlling mechanisms, we carried out a series of field measurements before (August 2013) and after (August 2014 and November 2014) the fire. Gas exchange rates were determined in four replicate plots which were burned during the combustion and in another four adjacent unburned plots located in green islands, using a set of static chambers. Surface soil properties including temperature, pH, moisture, soil C and N pools were also determined either by in situ measurement or by analysing surface 10 cm soil samples. All of the chamber measurements indicated a net sink of atmospheric CH4, with mean CH4 uptake ranging from 1.15 to 1.99 mg m-2 d-1. Prescribed burning significantly enhanced CH4 uptake as indicated by the significant higher CH4 uptake rates in the burned plots measured in August 2014. In the following 3 months, the CH4 uptake rate was recovered to the pre-burning level. Mean CO2 emission from the forest soils ranged from 2721.76 to 7113.49 mg m-2 d-1. The effect of prescribed burning on CO2 emission was limited within the first 3 months, as no significant difference was observed between the burned and the adjacent unburned plots in both August and November 2014. The CO2 emissions showed more seasonal variations, rather than the effects of prescribed burning. The N2O emission in the plots was quite low, and no significant impact of prescribed burning was observed. The changes in understory plants and litter layers, surface soil temperature, C and N substrate availability and microbial

  14. Kitchen Cooking Burns a Real Danger for Kids

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_160530.html Kitchen Cooking Burns a Real Danger for Kids Establish a ' ... this burn accident was not an isolated case. Cooking burns are common among American children, but can ...

  15. 1994 Prescribed Burning Plan: Shiawassee National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This Prescribed Burn Plan provides a description of each burn unit on the Refuge and summarizes the safety concerns, monitoring, and burn operations for these units.

  16. MORBIDITY AND SURVIVAL PROBABILITY IN BURN PATIENTS IN MODERN BURN CARE

    Science.gov (United States)

    Jeschke, Marc G.; Pinto, Ruxandra; Kraft, Robert; Nathens, Avery B.; Finnerty, Celeste C.; Gamelli, Richard L.; Gibran, Nicole S.; Klein, Matthew B.; Arnoldo, Brett D.; Tompkins, Ronald G.; Herndon, David N.

    2014-01-01

    Objective Characterizing burn sizes that are associated with an increased risk of mortality and morbidity is critical because it would allow identifying patients who might derive the greatest benefit from individualized, experimental, or innovative therapies. Although scores have been established to predict mortality, few data addressing other outcomes exist. The objective of this study was to determine burn sizes that are associated with increased mortality and morbidity after burn. Design and Patients Burn patients were prospectively enrolled as part of the multicenter prospective cohort study, Inflammation and the Host Response to Injury Glue Grant, with the following inclusion criteria: 0–99 years of age, admission within 96 hours after injury, and >20% total body surface area burns requiring at least one surgical intervention. Setting Six major burn centers in North America. Measurements and Main Results Burn size cutoff values were determined for mortality, burn wound infection (at least two infections), sepsis (as defined by ABA sepsis criteria), pneumonia, acute respiratory distress syndrome, and multiple organ failure (DENVER2 score >3) for both children (<16 years) and adults (16–65 years). Five-hundred seventy-three patients were enrolled, of which 226 patients were children. Twenty-three patients were older than 65 years and were excluded from the cutoff analysis. In children, the cutoff burn size for mortality, sepsis, infection, and multiple organ failure was approximately 60% total body surface area burned. In adults, the cutoff for these outcomes was lower, at approximately 40% total body surface area burned. Conclusions In the modern burn care setting, adults with over 40% total body surface area burned and children with over 60% total body surface area burned are at high risk for morbidity and mortality, even in highly specialized centers. PMID:25559438

  17. [Quantification of crop residue burned areas based on burning indices using Landsat 8 image].

    Science.gov (United States)

    Ma, Jian-hang; Song, Kai-shar; Wen, Zhi-dan; Shao, Tian-tian; Li, Bo-nan; Qi, Cai

    2015-11-01

    Crop residue burning leads to atmospheric pollution and is an enormous waste of crop residue resource. Crop residue burning can be monitored timely in large regions as the fire points can be recognized through remotely sensed image via thermal infrared bands. However, the area, the detailed distribution pattern and especially the severity of the burning areas cannot be derived only by the thermal remote sensing approach. The burning index, which was calculated with two or more spectral bands at where the burned and unburned areas have distinct spectral characteristics, is widely used in the forest fire investigation. However its potential application for crop residue burning evaluation has not been explored. With two Landsat 8 images that cover a part of the Songnen Plain, three burning indices, i.e., the normalized burned ratio (NBR), the normalized burned ratio incorporating the thermal band (NBRT), and the burned area index (BAI), were used to classify the crop residue burned and unburned areas. The overall classification accuracies were 91.9%, 92.3%, and 87.8%, respectively. The correlation analysis between the indices and the crop residue coverage indicated that the NBR and NBRT were positively correlated with the crop residue coverage (R2 = 0.73 and 0.64, respectively) with linear regression models, while the BAI was exponentially correlated with the crop residue coverage (R2 = 0.68). The results indicated that the use of burning indices in crop residue burning monitoring could quantify crop residue burning severity and provide valuable data for evaluating atmospheric pollution. PMID:26915202

  18. Calcium and ER Stress Mediate Hepatic Apoptosis after Burn Injury

    OpenAIRE

    Jeschke, Marc G.; Gauglitz, Gerd G.; Song, Juquan; Kulp, Gabriela A; Finnerty, Celeste C.; Cox, Robert A.; Barral, José M.; Herndon, David N; Boehning, Darren

    2009-01-01

    A hallmark of the disease state following severe burn injury is decreased liver function, which results in gross metabolic derangements that compromise patient survival. The underlying mechanisms leading to hepatocyte dysfunction post-burn are essentially unknown. The aim of the present study was to determine the underlying mechanisms leading to hepatocyte dysfunction and apoptosis post-burn. Rats were randomized to either control (no burn) or burn (60% total body surface area burn) and sacri...

  19. Role of Antioxidants in the Treatment of Burn Lesions

    OpenAIRE

    Al-Jawad, F.H.; Sahib, A.S.; Al-Kaisy, A.A.

    2008-01-01

    Burns are a major health problem worldwide, with high mortality and morbidity in addition to causing changes in the quality of life of burn patients. Utilizing antioxidant therapeutic strategies depending on new mechanisms involved in the pathogenesis of burns-related "oxidative stress" may be considered a promising step in burns management. This study involved 180 burn patients of varying age and either sex and with varying burns percentages. The patients were subdivided into six groups (A, ...

  20. Burn wound: How it differs from other wounds?

    OpenAIRE

    Tiwari, V K

    2012-01-01

    Management of burn injury has always been the domain of burn specialists. Since ancient time, local and systemic remedies have been advised for burn wound dressing and burn scar prevention. Management of burn wound inflicted by the different physical and chemical agents require different regimes which are poles apart from the regimes used for any of the other traumatic wounds. In extensive burn, because of increased capillary permeability, there is extensive loss of plasma leading to shock wh...

  1. Reactive burn models and ignition & growth concept

    Directory of Open Access Journals (Sweden)

    Shaw M.S.

    2011-01-01

    Full Text Available Plastic-bonded explosives are heterogeneous materials. Experimentally, shock initiation is sensitive to small amounts of porosity, due to the formation of hot spots (small localized regions of high temperature. This leads to the Ignition & Growth concept, introduced by LeeTarver in 1980, as the basis for reactive burn models. A homo- genized burn rate needs to account for three meso-scale physical effects: (i the density of active hot spots or burn centers; (ii the growth of the burn fronts triggered by the burn centers; (iii a geometric factor that accounts for the overlap of deflagration wavelets from adjacent burn centers. These effects can be combined and the burn model defined by specifying the reaction progress variable λ = g(s as a function of a dimensionless reaction length s(t = rbc/ℓbc, rather than by specifying an explicit burn rate. The length scale ℓbc(Ps = [Nbc(Ps]−1/3 is the average distance between burn centers, where Nbc is the number density of burn centers activated by the lead shock. The reaction length rbc(t = ∫t0 D(P(t′dt′ is the distance the burn front propagates from a single burn center, where D(P is the deflagration speed as a function of the local pressure and t is the time since the shock arrival. A key implementation issue is how to determine the lead shock strength in conjunction with a shock capturing scheme. We have developed a robust algorithm for this purpose based on the Hugoniot jump condition for the energy. The algorithm utilizes the time dependence of density, pressure and energy within each cell. The method is independent of the numerical dissipation used for shock capturing. It is local and can be used in one or more space dimensions. The burn model has a small number of parameters which can be calibrated to fit velocity gauge data from shock initiation experiments.

  2. Lean-burn engines UHC emission reduction

    International Nuclear Information System (INIS)

    The effect of adding hydrogen to methane as a fuel for spark ignited engines has been extensively investigated. Both the possibility of adding a limited amount of hydrogen as well as equal amounts of hydrogen and carbon dioxide to natural gas has been investigated. A 10 vol% addition of hydrogen to the natural gas caused a reduction in UHC of approximately 40%, and an increase in efficiency of approximately three percentage points at the test engine. It is unknown if the gain is representative for large engines. Similar results for UHC reduction and efficiency were obtained for combined hydrogen and carbon dioxide addition. The carbon dioxide was added by exhaust gas recirculation. However, the price of hydrogen, makes this idea uneconomical even when carbon dioxide is readily available through recirculation of engine exhaust. Adiabatic prereforming may be used to convert natural gas into methane, hydrogen and carbon dioxide in order to generate hydrogen and at the same time increase the methane number. The process has been found to be competitive with adding of hydrogen but it is still not economical. The effect of NO/NO2 on methane oxidation has been studied both theoretically and experimentally. A detailed kinetic modelling study of the UHC conversion dependency of exhaust gas parameters is reported and the project has contributed to the theoretical understanding of the oxidation chemistry. Both NO and NH3 addition to the engine inlet was used to increase the NOx level, and the general trend was a decrease in UHC as the NOx level increased, both in cylinger, manifold and rector. From the data it is concluded that NO and NH3 addition have identical effects. The results show a 15-35% decrease in manifold UHC. However, the increased emissions of NOx and CO associated with this process must be realised. Field tests show a 28% UHC reduction without an increase in CO emission. The UHC oxidation in the exhaust reactor has been tested at increased NOx levels and the

  3. Effect of sugarcane residue management (mulching versus burning) on organic matter in a clayey Oxisol from southern Brazil

    OpenAIRE

    Razafimbelo, Tantely; Barthès, Bernard; Larré Larrouy, Marie-Christine; De Luca, E. F.; Laurent, Jean-Yves; Cerri, C. C.; Feller, Christian

    2006-01-01

    Changes in residue management may help sustain land productivity, and may have noticeable consequences in the global carbon budget when large areas are involved. The effects of sugarcane residue management on topsoil carbon were assessed in a clayey Oxisol of Brazil, largest world's producer of sugarcane. The carbon concentration of the whole soil and particle-size fractions were determined in a long-duration sugarcane plantation (50 years), with either a pre-harvest residue burning (BUR) or ...

  4. Pediatric burn wound impetigo after grafting.

    Science.gov (United States)

    Aikins, Kimberly; Prasad, Narayan; Menon, Seema; Harvey, John G; Holland, Andrew J A

    2015-01-01

    Modern burn care techniques have reduced the risk of infection of the acute burn wound, resulting in more rapid healing and a lower incidence of graft loss. Secondary breakdown may still occur. The loss of epithelium in association with multifocal superficial abscesses and ulceration has been termed burns impetigo. This may result in considerable morbidity and require prolonged treatment. The events preceding development, the impact on the patient, and the ideal treatment appear unclear and poorly reported. In 5 years, between 2006 and 2011, 406 pediatric burns were treated with skin grafts, with 7% developing burns impetigo. Time to resolution ranged from 5 to 241 days: the mean time to complete healing was greatest with conservative management (96 days), followed by antibacterial dressings (37 days), oral antibiotics (36 days), topical steroids (16 days), and oral antibiotics in combination with topical steroids (13.5 days). Burns impetigo resulted in significant morbidity, requiring multiple visits to the treatment center and prolonged symptoms. Delay in diagnosis and treatment resulted in worse outcomes. Prompt consideration of burns impetigo should occur when postgraft patients present with suggestive clinical signs and treatment with oral antibiotics plus topical steroids should be considered. PMID:24823337

  5. Factors affecting mortality in patients with burns

    Directory of Open Access Journals (Sweden)

    Halil Erbiş

    2015-09-01

    Full Text Available Objective: The increase in life quality and expectancy causes an increase in the elderly population. Improvements in burn treatment resulted in decreased mortality in children and young adults but in elderly patients burns are still an important trauma that should be handed differently than other age groups. The aim of this study was to evaluate the factors effecting mortality in patients with burns over 45 years old. Methods: Fifty-eight patients over 45 years of age, who were treated in our burns unit in the last 3 years were included in our study. Their age, burn percentage and depth, coexisting diseases and mortality rates were examined retrospectively. Results: The average age of surviving patients was 57.4 years while it was 70 years for nonsurviving patients (p=0.002. The width of burn area was 21.1 % in surviving and 50 % in nonsurviving patients (p<0.01. The effect of additional coexistent diseases on mortality was significant (p=0.001. The most common reasons of mortality were sepsis and congestive heart failure. Conclusion: We found out that the age, percentage of burns and coexistent diseases had a negative effect on success of treatment and mortality. Mortality rates will decrease in these cases with careful follow-up and a multidisciplinary approach. J Clin Exp Invest 2015; 6 (3: 240-243

  6. Characterization of residual coke during burning

    Energy Technology Data Exchange (ETDEWEB)

    Pieck, C.L.; Jablonski, E.L.; Parera, J.M. (Inst. de Investigaciones in Catalisis y Petroquimica, Santiago del Estero 2654, 3000 Santa Fe (Argentina)); Frety, R. (Conventionne a l' Univ. Claude Bernard, Lyon I (France))

    1992-04-01

    In this paper coke remaining from the partial burning of coke deposited during the commercial re-forming of naphtha on a Pt-Re/Al[sub 2]O[sub 3] catalyst is studied. Burning temperatures are 623-923 K, and the remaining coke is characterized by temperature-programmed oxidation, X-ray diffraction, electron diffraction, IR, [sup 13]C CP-MAS NMR, electron spectroscopy for chemical analysis, electron paramagnetic resonance, and chemical analysis. After coke is burned at 673 K, the residual coke shows the minimum value in the H/C ratio and the maximum in the thickness of the aromatic layers, degree of organization, C==O concentration, binding energy of C 1s, peak width, and g value. This agrees with the model of coke burning: at low temperatures, the burning is selective; the more hydrogenated and amorphous carbonaceous species are burnt first. At high temperatures, the burning is nonselective and all species are simultaneously burnt. Coke is partially oxidized during burning, and intermediate species with C==O and C--OH groups are formed.

  7. Burning characteristics of microcellular combustible objects

    Directory of Open Access Journals (Sweden)

    Wei-tao Yang

    2014-06-01

    Full Text Available Microcellular combustible objects for application of combustible case, caseless ammunition or combustible detonator-holding tubes are fabricated through one-step foaming process, in which supercritical CO2 is used as foaming agent. The formulations consist of inert polymer binder and ultra fine RDX. For the inner porous structures of microcellular combustible objects, the cell sizes present a unimodal or bimodal distribution by adjusting the foaming conditions. Closed bomb test is to investigate the influence of both porous structure style and RDX content on burning behavior. The sample with bimodal distribution of cell sizes burns faster than that with unimodal distribution, and the concentration of RDX can influence the burning characteristics in a positive manner. In addition, the translation of laminar burning to convective burning is determined by burning rate versus pressure curves of samples at two different loading densities, and the resulting transition pressure is 30 MPa. Moreover, the samples with bigger sample size present higher burning rate, resulting in providing deeper convective depth. Dynamic vivacity of samples is also studied. The results show that the vivacity increases with RDX content and varies with inner structure.

  8. Burning characteristics of microcellular combustible objects

    Institute of Scientific and Technical Information of China (English)

    Wei-tao YANG; Yu-xiang LI; San-jiu YING

    2014-01-01

    Microcellular combustible objects for application of combustible case, caseless ammunition or combustible detonator-holding tubes are fabricated through one-step foaming process, in which supercritical CO2 is used as foaming agent. The formulations consist of inert polymer binder and ultra fine RDX. For the inner porous structures of microcellular combustible objects, the cell sizes present a unimodal or bimodal distribution by adjusting the foaming conditions. Closed bomb test is to investigate the influence of both porous structure style and RDX content on burning behavior. The sample with bimodal distribution of cell sizes burns faster than that with unimodal distribution, and the concentration of RDX can influence the burning characteristics in a positive manner. In addition, the translation of laminar burning to convective burning is determined by burning rate versus pressure curves of samples at two different loading densities, and the resulting transition pressure is 30 MPa. Moreover, the samples with bigger sample size present higher burning rate, resulting in providing deeper convective depth. Dynamic vivacity of samples is also studied. The results show that the vivacity increases with RDX content and varies with inner structure.

  9. Childhood burns in south eastern Nigeria

    Directory of Open Access Journals (Sweden)

    Okoro Philemon

    2009-01-01

    Full Text Available Background: Burns injuries are recognized as a major health problem worldwide. In children and, particularly, in our environment where poverty, ignorance and disease are still high, they constitute significant morbidity and mortality. Previous studies on this topic in parts of Nigeria either lumped adults and children together or were retrospective. We, therefore, prospectively studied the current trends in burns in children. Patients and Methods: This prospective study of burns spanned over a period of 18 months (June 2006-December 2007 at the Paediatric Surgery Units of the Imo State University Teaching Hospital, Orlu, and the Federal Medical Centre, Owerri, Imo State. Data were collected and analysed for age, sex, cause/type of burn, place of burn, presence or absence of adult/s, initial prehospital intervention, interval between injury and presentation, surface area and depth of burn and treatment and outcome. Results: Fifty-three patients were studied, 31 (58.4% were male and 22 (41.6% were female (M:F = 1.4:1. Patients mostly affected were aged 2 years and below. The most common cause of burns was hot water in 31 (58.5% patients. The vast majority of these injuries happened in a domestic environment (92.5% and in the presence of competent adult/s (88.7%. Outcome of treatment was good: there were two (3.8% deaths and 46 (86% patients had complete recovery. Conclusion: Burns is still a major health problem among children in south eastern Nigeria. Fortunately, outcome of appropriate treatment is good. However, we think that poor safety consciousness among parents is a major predisposing factor. Public enlightenment on measures to ensure safe home environment may be necessary to avoid or limit childhood burns.

  10. Re-burning of ash in grate boilers; Omfoerbraenning av askor i rosterpannor

    Energy Technology Data Exchange (ETDEWEB)

    Bergqvist, Kristina; Myringer, Aase; Nordgren, Daniel; Rydberg, Stina [Vattenfall Utveckling AB, Aelvkarleby (Sweden)

    2005-03-01

    High contents of unburnt carbon in ashes that are dumped or recycled, is questionable from both an economical and an environmental point of view. The content of unburnt carbon in bottom and fly ash from grate boilers varies greatly between different plants but can sometimes exceed 50 %. Re-burning of ash that is separated before a final dust separation, is a relatively cheep and simple method for reducing the content of unburnt carbon in ash, which both reduces the fuel cost and the deposit cost, i.e. the cost of landfilling or recycling. As from 2005 it is prohibited to deposit ash with a too high content of unburnt organic material; the content is limited to 18 weight % of unburnt carbon. The study was carried out in two phases. The aim of the first phase was to map the different techniques used for re-burning ash that are used in grate boilers today. The mapping was done through telephone interviews and comprises technical descriptions of the systems, gathering of operational know-how, installations costs and the effect of the systems on the amount of ash generated at the plants and the content of unburnt carbon in the ash. In order to accomplish a deeper technical and economical evaluation of ash re-burning systems, the second phase involved field studies at two plants. In addition screening tests were done to investigate the connection between the content of unburnt carbon and particle size. The potential of reducing the amount of circulated inorganic material by sieving the ash before bringing it back to the furnace could thereby be determined. 13 plants that utilize re-burning of ash were identified, of which two plants re-burn the bottom ash that floats up to the surface in the wet ash removal system. The remaining 11 plants re-burn fly ash. At three plants the fly ash is first separated in a mesh sieve or similar equipment and only the coarser fly ash is re-burnt. As the amount of bottom ash that surfaces in the wet ash-removal is relatively small

  11. In-situ burning of heavy oils and Orimulsion : mid-scale burns

    Energy Technology Data Exchange (ETDEWEB)

    Fingas, M.F.; Fieldhouse, B.; Brown, C.E.; Gamble, L. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Div]|[Environment Canada, Ottawa, ON (Canada). River Road Environmental Technology Centre; Cooper, D. [SAIC Canada, Ottawa, ON (Canada)

    2004-07-01

    In-situ burning is considered to be a viable means to clean oil spills on water. In-situ burning, when performed under the right conditions, can reduce the volume of spilled oil and eliminate the need to collect, store, transport and dispose of the recovered oil. This paper presented the results of bench-scale in-situ burning tests in which Bunker C, Orimulsion and weathered bitumen were burned outdoors during the winter in burn pans of approximately 1 square metre. Each test was conducted on salt water which caused the separation of the bitumen from the water in the Orimulsion. Small amounts of diesel fuel was used to ignite the heavy oils. Quantitative removal of the fuels was achieved in all cases, but re-ignition was required for the Orimulsion. Maximum efficiency was in the order of 70 per cent. The residue was mostly asphaltenes and resins which cooled to a solid, glass like material that could be readily removed. The study showed that the type of oil burned influences the behaviour of the burns. Bunker C burned quite well and Orimulsion burned efficiently, but re-ignition was necessary. It was concluded that there is potential for burning heavy oils of several types in-situ. 6 refs., 7 tabs., 18 figs.

  12. Environmental significance of atmospheric emission resulting from in situ burning of oiled salt marsh

    International Nuclear Information System (INIS)

    The environmental significance of atmospheric emissions resulting from in-situ burning used as remediation technique for removal of petroleum hydrocarbons entering Louisiana coastal salt marshes was quantified. Research conducted documented atmospheric pollutants produced and emitted to the atmosphere as the result of burning of oil contaminated wetlands. Samples collected from the smoke plume contained a variety of gaseous sulfur and carbon compounds. Carbonyl sulfide and carbon disulfide were the main volatile sulfur compounds. In contrast, concentrations of sulfur dioxide were almost negligible. Concentrations of methane and carbon dioxide in the smoke plume increased compared to ambient levels. Air samples collected for aromatic hydrocarbons in the smoke plume were dominated by pyrogenic or combustion derived aromatic hydrocarbons. The particulate fraction was dominated by phenanthrene and the C-1 and C-2 alkylated phenanthrene homologues. The vapor fraction was dominated by naphthalene and the C-1 to C-3 naphthalene homologues. (author)

  13. Hypnosis for the treatment of burn pain.

    Science.gov (United States)

    Patterson, D R; Everett, J J; Burns, G L; Marvin, J A

    1992-10-01

    The clinical utility of hypnosis for controlling pain during burn wound debridement was investigated. Thirty hospitalized burn patients and their nurses submitted visual analog scales (VAS) for pain during 2 consecutive daily wound debridements. On the 1st day, patients and nurses submitted baseline VAS ratings. Before the next day's would debridement, Ss received hypnosis, attention and information, or no treatment. Only hypnotized Ss reported significant pain reductions relative to pretreatment baseline. This result was corroborated by nurse VAS ratings. Findings indicate that hypnosis is a viable adjunct treatment for burn pain. Theoretical and practical implications and future research directions are discussed. PMID:1383302

  14. [Major Burn Trauma Management and Nursing Care].

    Science.gov (United States)

    Lo, Shu-Fen

    2015-08-01

    Major burn injury is one of the most serious and often life-threatening forms of trauma. Burn patients not only suffer from the physical, psychological, social and spiritual impacts of their injury but also experience considerable changes in health-related quality of life. This paper presents a review of the literature on the implications of previous research and clinical care guidelines related to major burn injuries in order to help clinical practice nurses use evidence-based care guidelines to respond to initial injury assessments, better manage the complex systemic response to these injuries, and provide specialist wound care, emotional support, and rehabilitation services. PMID:26242439

  15. Simulation of burning tokamak plasmas

    International Nuclear Information System (INIS)

    To simulate dynamical behaviour of tokamak fusion reactors, a zero-dimensional time-dependent particle and power balance code has been developed. The zero-dimensional plasma model is based on particle and power balance equations that have been integrated over the plasma volume using prescribed profiles for plasma parameters. Therefore, the zero-dimensional model describes the global dynamics of a fusion reactor. The zero-dimensional model has been applied to study reactor start-up, and plasma responses to changes in the plasma confinement, fuelling rate, and impurity concentration, as well as to study burn control via fuelling modulation. Predictions from the zero-dimensional code have been compared with experimental data and with transport calculations of a higher dimensionality. In all cases, a good agreement was found. The advantage of the zero-dimensional code, as compared to higher-dimensional transport codes, is the possibility to quickly scan the interdependencies between reactor parameters. (88 refs., 58 figs., 6 tabs.)

  16. The ALMR actinide burning system

    International Nuclear Information System (INIS)

    The advanced liquid-metal reactor (ALMR) actinide burning system is being developed under the sponsorship of the US Department of Energy to bring its unique capabilities to fruition for deployment in the early 21st century. The system consists of four major parts: the reactor plant, the metal fuel and its recycle, the processing of light water reactor (LWR) spent fuel to extract the actinides, and the development of a residual waste package. This paper addresses the status and outlook for each of these four major elements. The ALMR is being developed by an industrial group under the leadership of General Electric (GE) in a cost-sharing arrangement with the US Department of Energy. This effort is nearing completion of the advanced conceptual design phase and will enter the preliminary design phase in 1994. The innovative modular reactor design stresses simplicity, economics, reliability, and availability. The design has evolved from GE's PRISM design initiative and has progressed to the final stages of a prelicensing review by the US Nuclear Regulatory Commission (NRC); a safety evaluation report is expected by the end of 1993. All the major issues identified during this review process have been technically resolved. The next design phases will focus on implementation of the basic safety philosophy of passive shutdown to a safe, stable condition, even without scram, and passive decay heat removal. Economic projections to date show that it will be competitive with non- nuclear and advanced LWR nuclear alternatives

  17. Impact of Biomass Burning Aerosols on the Biosphere over Amazonia

    Science.gov (United States)

    Malavelle, F.; Haywood, J.; Mercado, L.; Folberth, G.; Bellouin, N.

    2014-12-01

    Biomass burning (BB) smoke from deforestation and the burning of agricultural waste emit a complex cocktail of aerosol particles and gases. BB emissions show a regional hotspot over South America on the edges of Amazonia. These major perturbations and impacts on surface temperature, surface fluxes, chemistry, radiation, rainfall, may have significant consequent impacts on the Amazon rainforest, the largest and most productive carbon store on the planet. There is therefore potential for very significant interaction and interplay between aerosols, clouds, radiation and the biosphere in the region. Terrestrial carbon production (i.e. photosynthesis) is intimately tied to the supply of photosynthetically active radiation (PAR - i.e. wavelengths between 300-690 nm). PAR in sufficient intensity and duration is critical for plant growth. However, if a decrease in total radiation is accompanied by an increase in the component of diffuse radiation, plant productivity may increase due to higher light use efficiency per unit of PAR and less photosynthetic saturation. This effect, sometimes referred as diffuse light fertilization effect, could have increased the global land carbon sink by approximately one quarter during the global dimming period and is expected to be a least as important locally. By directly interacting with radiation, BB aerosols significantly reduce the total amount of PAR available to plant canopies. In addition, BB aerosols also play a centre role in cloud formation because they provide the necessary cloud condensation nuclei, hence indirectly altering the water cycle and the components and quantity of PAR. In this presentation, we use the recent observations from the South American Biomass Burning Analysis (SAMBBA) to explore the impact of radiation changes on the carbon cycle in the Amazon region caused by BB emissions. A parameterisation of the impact of diffuse and direct radiation upon photosynthesis rates and net primary productivity in the

  18. Global biomass burning. Atmospheric, climatic, and biospheric implications

    International Nuclear Information System (INIS)

    Biomass burning is a significant source of atmospheric gases and, as such, may contribute to global climate changes. Biomass burning includes burning forests and savanna grasslands for land clearing, burning agricultural stubble and waste after harvesting, and burning biomass fuels. The chapters in this volume include the following topics: remote sensing of biomass burning from space;geographical distribution of burning; combustion products of burning in tropical, temperate and boreal ecosystems; burning as a global source of atmospheric gases and particulates; impacts of biomass burning gases and particulates on global climate; and the role of biomass burning on biodiversity and past global extinctions. A total of 1428 references are cited for the 63 chapters. Individual chapters are indexed separately for the data bases

  19. The Application of Erosive Burning to Propellant Charge Interior Ballistics

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-lin

    2009-01-01

    Erosive burning is a common burning phenomenon of the gunpowder with inner holes. The actual combustion law of the gunpowder with inner holes can be changed by erosive burning. Pressure difference between the inner and the outer of hole caused by loading density variation of the propellant charge makes erosive burning occur at inner holes during in-bore burning. The effect of erosive burning on burning speed of the propellant is studied by using the effects of flow rate, heat transfer and erosion of the combustion gas in inner holes on burning rate. The mathematic model of erosive burning of the propellant is established. The effects of the factors such as loading density, inner hole size and grain length on erosive burning and interior ballistic performance are analyzed .The method to improve the bore pressure for small charge mass and small firing range by erosive burning is proposed.

  20. Avaliação de atributos físicos e estoques de carbono e nitrogênio em solos com queima e sem queima de canavial Evaluation of physical properties and soil carbon and nitrogen stocks as affected by burning or green trash management of sugarcane

    Directory of Open Access Journals (Sweden)

    Edgar Fernando de Luca

    2008-04-01

    carried out in cropping systems involving pre-harvest burning of aerial sugarcane residues. Nowadays the green trash management of sugarcane residues has become a common practice, although the effects are still poorly documented. The objective of this work was to compare topsoil carbon and nitrogen stocks, aggregation and bulk density in Brazilian sugarcane plantations where aerial residues were either burned (Cq or left on the soil surface (Sq after harvest. The study was carried out in three plantations, one on a clayey soil (Latossolo Vermelho, LVdf, i.e. Typic Hapludox and two on sandy soils (Argissolo Vermelho-Amarelo, PVAd, i.e. Typic Hapludult, and Neossolo Quartzarênico, RQo, i.e. Quartzpsamment. On each plantation, the experimental design included six replications per treatment. After three crops, the accumulated aerial residue biomass in Sq treatment amounted to 40 t ha-1 of DM from which 4.5 and 3.6 t ha-1 of DM (i.e. 11 and 9 % were still present at the soil surface in LVdf and RQo, respectively. This represented 1.60 and 1.35 t ha-1 of C and 0.022 and 0.021 t ha-1 of N, respectively. As a result, soil carbon at a 0-20 cm depth increased by 6.3 and 4.7 t ha-1 in LVdf and RQo, respectively. Over the three-year period, the rate of carbon sequestration in the litter and topsoil in the Sq treatment was 2.63 and 2.02 t ha-1 yr-1 in LVdf and RQo, respectively. Topsoil content of stable macroaggregates was also higher with Sq than with Cq: 814 vs. 693 g kg-1 in LVdf, and 516 vs, 420 g kg-1 in RQo, respectively. On the other hand, Sq caused topsoil compaction (PVAd and RQo due to the mechanized harvest system. In the Brazilian soils under study, green trash management of sugarcane residues improved the topsoil properties and promoted carbon and nitrogen sequestration in the litter and topsoil.

  1. Treatment of radiation burns, 1987 [videorecording

    International Nuclear Information System (INIS)

    After the accident at Chernobyl, patients with various degrees of radiation burns were given treatment at Moscow hospital No. 6. The video shows the radiation injuries as well as therapy and treatment in detail

  2. On burning a lump of coal

    CERN Document Server

    Alonso-Serrano, Ana

    2015-01-01

    Burning something, (e.g. the proverbial lump of coal, or an encyclopaedia for that matter), in a blackbody furnace leads to an approximately Planck emission spectrum with an average entropy/information transfer of approximately $3.9 \\pm 2.5$ bits per emitted photon. This quantitative and qualitative result depends only on the underlying unitarity of the quantum physics of burning, combined with the statistical mechanics of blackbody radiation. The fact that the utterly standard and unitarity preserving process of burning something (in fact, burning anything) nevertheless *has* an associated entropy/information budget, and the quantitative *size* of that entropy/information budget, is a severely under-appreciated feature of standard quantum statistical physics.

  3. Protect the Ones You Love: Burns Safety

    Science.gov (United States)

    ... Recreational Safety Child Abuse and Neglect Prevention Youth Violence Prevention ... keep our children safe and secure and help them live to their full potential. Knowing how to prevent leading causes of child injury, like burns, is a step ...

  4. Prescribed Burn Cycles 4-yr Rotation

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document contains a map and a table showing the number of acres and locations of planned burns and wildfires on St. Vincent National Wildlife Refuge between...

  5. Treatment of burn injuries with keratinocyte cultures

    International Nuclear Information System (INIS)

    The German Institute for Cell and Tissue Replacement (DIZG) provides burned patients with skin and amnion for a temporary wound closure. Severely burned patients (>60% BSA for adults, >40% BSA for children) were supplied with autologous and allogenic grafts from cultured keratinocytes. The keratinocyte culture is done under GMP-conditions using the method of Rheinwald and Green. The 3T3 fibroblasts were irradiated with 60 Gy and used as feeder cells to produce keratinocyte sheets within 3 weeks. In this time up to 6.000 cm are available. The sheets were harvested by detachment with dispase (1,2 U/ml), fixed to gauze and transported to the hospital. The DIZG has a 3 years experience in the treatment of burns with keratinocyte sheets. The sheets were transplanted to patients in different hospitals, the total transplanted area is about 30.000 cm. This paper describes the experiences with ten severely burned patients treated with keratinocyte sheet

  6. Nutrition and Metabolic Support in Burn

    Directory of Open Access Journals (Sweden)

    Perihan Ergin Özcan

    2011-07-01

    Full Text Available Burn injury results in a dramatic increase of the basal metabolic rate. Severe burn injury nearly doubles resting energy expenditure and hypermetabolism associated with burn results in a loss of body fat stores and a loss of visceral and structural protein mass. The clinical effects of these changes include immunosuppression, delayed wound healing, and generalized muscle weakness. Post burn, the metabolic and catabolic responses are prolonged in severity and time course, lasting weeks to months in contrast to the days and weeks observed in other injuries. Nutrition support provides the substrates and nutrients to prevent the complications of deficiencies as well as supporting wound healing, and recovery from hormonal and metabolic abnormalities after thermal injury. (Journal of the Turkish Society Intensive Care 2011; 9 Suppl: 21-5

  7. Burned Microporous Alumina-Graphite Brick

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ 1 Scope This standard specifies the definition,classifica-tion,technical requirements,test methods,inspection rules,marking,packing,transportation and quality certificate of burned microporous alumina-graphite brick.

  8. Using Pig skin to treat Burns

    International Nuclear Information System (INIS)

    The paper discusses the use of irradiated Pig Skin for the treatment of Burns, traumatic dermal denudations and poorly healing Decubitus ulcers. It gives a brief history of Pig skin use its characteristics

  9. On burning a lump of coal

    Science.gov (United States)

    Alonso-Serrano, Ana; Visser, Matt

    2016-06-01

    Burning something, (e.g. the proverbial lump of coal, or an encyclopaedia for that matter), in a blackbody furnace leads to an approximately Planck emission spectrum with an average entropy/information transfer of approximately 3.9 ± 2.5 bits per emitted photon. This quantitative and qualitative result depends only on the underlying unitarity of the quantum physics of burning, combined with the statistical mechanics of blackbody radiation. The fact that the utterly standard and unitarity preserving process of burning something (in fact, burning anything) nevertheless has an associated entropy/information budget, and the quantitative size of that entropy/information budget, is a severely under-appreciated feature of standard quantum statistical physics.

  10. Predictors of insulin resistance in pediatric burn injury survivors 24 to 36 months post-burn

    Science.gov (United States)

    Chondronikola, Maria; Meyer, Walter J.; Sidossis, Labros S.; Ojeda, Sylvia; Huddleston, Joanna; Stevens, Pamela; Børsheim, Elisabet; Suman, Oscar E.; Finnerty, Celeste C.; Herndon, David N.

    2014-01-01

    Background Burn injury is a dramatic event with acute and chronic consequences including insulin resistance. However, factors associated with insulin resistance have not been previously investigated. Purpose To identify factors associated with long-term insulin resistance in pediatric burn injury survivors. Methods The study sample consisted of 61 pediatric burn injury survivors 24 to 36 months after the burn injury, who underwent an oral glucose tolerance test. To assess insulin resistance, we calculated the area under the curve for glucose and insulin. The diagnostic criteria of the American Diabetes Association were used to define individuals with impaired glucose metabolism. Additional data collected include body composition, anthropometric measurements, burn characteristics and demographic information. The data were analyzed using multivariate linear regression analysis. Results Approximately 12% of the patients met the criteria for impaired glucose metabolism. After adjusting for possible confounders, burn size, age and percent body fat were associated with the area under the curve for glucose (p<0.05 for all). Time post-burn and lean mass were inversely associated with the area under the curve for glucose (p<0.05 for both). Similarly, older age predicted higher insulin area under the curve. Conclusion A significant proportion of pediatric injury survivors suffer from glucose abnormalities 24–36 months post-burn. Burn size, time post-burn, age, lean mass and adiposity are significant predictors of insulin resistance in pediatric burn injury survivors. Clinical evaluation and screening for abnormal glucose metabolism should be emphasized in patients with large burns, older age and survivors with high body fat. PMID:24918945

  11. Micafungin Concentrations in the Plasma and Burn Eschar of Severely Burned Patients

    OpenAIRE

    Sasaki, Junichi; Yamanouchi, Satoshi; Kudo, Daisuke; Endo, Tomoyuki; Nomura, Ryosuke; Takuma, Kiyotsugu; Kushimoto, Shigeki; Shinozawa, Yotaro; Kishino, Satoshi; Hori, Shingo; Aikawa, Naoki

    2012-01-01

    Micafungin concentrations in plasma and burn eschar after daily intravenous infusion (1 h) of micafungin (200 to 300 mg) were investigated for six patients with severe burns. Micafungin treatment was initiated more than 72 h after the burn injuries. The peak and trough levels in the plasma after the initial administration and repeated administrations for more than 4 days were comparable with or slightly lower than the reported values for healthy volunteers. Micafungin concentrations in the pl...

  12. Influence of early post-burn enteral nutrition on clinical outcomes of patients with extensive burns

    OpenAIRE

    Lu, Guozhong; Huang, Jiren; Yu, Junjie; Zhu, Yugang; Cai, Liangliang; Gu, Zaiqiu; Su, Qinghe

    2011-01-01

    Sepsis commonly occurs in severe post-burn patients, often resulting in death. We aimed to evaluate the influence of early enteral feeding on outcomes in patients with extensive burns, including infection incidence, healing and mortality. We retrospectively reviewed 60 patients with extensive burns, 35 who had received early enteral nutrition and 25 who had received parenteral nutrition. Average healing time, infection incidence and mortality were clinically observed. Hemoglobin and serum alb...

  13. Treatment of Burning Mouth Syndrome With Amisulpride

    OpenAIRE

    Rodriguez-Cerdeira, Carmen; Sanchez-Blanco, Elena

    2012-01-01

    Background Burning mouth syndrome (BMS) is a frequently occurring disease characterized by a burning or painful sensation in the tongue and/or other oral sites without clinical mucosal abnormalities or lesions. Its etiopathology is unknown, although local, systemic, and psychological factors have been associated with BMS. The syndrome is multifactorial, and its management remains unsatisfactory. The purpose of this study was to obtain preliminary data regarding the efficacy and tolerability o...

  14. The Local Treatment of Burns With Antibiotics

    OpenAIRE

    Napoli, B.; D’Arpa, N.; Masellis, A.; Masellis, M.

    2005-01-01

    After presenting an analysis of the principal antiseptics used for the local treatment of burns, highlighting their toxicity and the limitations of their antibacterial effectiveness, we describe the therapeutic protocol used in our burns centre (where antibacterial treatment consists exclusively of antibiotics for both local and systemic use). We review the data regarding actual and predicted mortality, and mortality due to septicaemia during the years 2000-2003.

  15. Parents’ experience confronting child burning situation

    OpenAIRE

    Valdira Vieira de Oliveira; Ariadne da Silva Fonseca; Maísa Tavares de Souza Leite; Luciana Soares dos Santos; Adélia Dayane Guimarães Fonseca; Conceição Vieira da Silva Ohara

    2016-01-01

    Objective: to understand experiences of parents in a child burning situation during the hospitalization process. Methods: phenomenological research in view of Martin Heidegger, held with seven assisting parents at a pediatrics unit of a general hospital in Montes Claros. The information was obtained by phenomenological interview, containing the question guide: “What does it mean to you being with a son who is suffering with burns?”. Results: during the experience, parents revealed anguish, fe...

  16. Van burn-out naar bevlogenheid

    OpenAIRE

    Hoekx, Laura

    2015-01-01

    Het fenomeen burn-out is tegenwoordig niet meer uit de media weg te denken. Steeds meer mensen gaan ten onder aan werkstress en geraken opgebrand. Dat heeft niet alleen voor de persoon in kwestie negatieve gevolgen, zowel mentaal als lichamelijk, maar ook voor de organisatie. Een minder bekend en relatief nieuw begrip is bevlogenheid of engagement, de tegenhanger van burn-out. Bevlogen mensen zijn energiek, voelen zich betrokken bij de organisatie en kunnen lang en onvermoeibaar doorgaan met ...

  17. Increased mortality in hypernatremic burned patients

    OpenAIRE

    de Lange, Thomas; Mailänder, Peter; Stollwerck, Peter. L.; Stang, Felix H.; Siemers, Frank; Namdar, Thomas

    2010-01-01

    Introduction: In-hospital hypernatremia develops usually iatrogenically from inadequate or inappropriate fluid prescription. In severely burned patient an extensive initial fluid resuscitation is necessary for burn shock survival. After recovering of cellular integrity the circulating volume has to be normalized. Hereby extensive water and electrolyte shifts can provoke hypernatremia. Purpose: Is a hypernatremic state associated with increased mortality? Method: Retrospective study for the in...

  18. Increased mortality in hypernatremic burned patients

    OpenAIRE

    Namdar, T; Siemers, F; Stollwerck, PL; Stang, FH; Mailänder, P; de Lange, T

    2010-01-01

    Introduction: In-hospital hypernatremia develops usually iatrogenically from inadequate or inappropriate fluid prescription. In severely burned patient an extensive initial fluid resuscitation is necessary for burn shock survival. After recovering of cellular integrity the circulating volume has to be normalized. Hereby extensive water and electrolyte shifts can provoke hypernatremia.Purpose: Is a hypernatremic state associated with increased mortality?Method: Retrospective study for the i...

  19. Transdermal fluid loss in severely burned patients

    Directory of Open Access Journals (Sweden)

    Lange, Thomas

    2010-01-01

    Full Text Available Introduction: The skin protects against fluid and electrolyte loss. Burn injury does affect skin integrity and protection against fluid loss is lost. Thus, a systemic dehydration can be provoked by underestimation of fluid loss through burn wounds. Purpose: We wanted to quantify transdermal fluid loss in burn wounds. Method: Retrospective study. 40 patients admitted to a specialized burn unit were analyzed and separated in two groups without (Group A or with (Group B hypernatremia. Means of daily infusion-diuresis-ratio (IDR and the relationship to totally burned surface area (TBSA were analyzed. Results: In Group A 25 patients with a mean age of 47±18 years, a mean TBSA of 23±11%, and a mean abbreviated burned severity index (ABSI score of 6.9±2.1 were summarized. In Group B 15 patients with a mean age of 47±22 years, a mean TBSA of 30±13%, and a mean ABSI score of 8.1±1.7 were included. Statistical analysis of the period from day 3 to day 6 showed a significant higher daily IDR-amount in Group A (Group A vs. Group B: 786±1029 ml vs. –181±1021 ml; p<0.001 and for daily IDR-TBSA-ratio (Group A vs. Group B: 40±41 ml/% vs. –4±36 ml/%; p<0.001. Conclusions: There is a systemic relevant transdermal fluid loss in burn wounds after severe burn injury. Serum sodium concentration can be used to calculate need of fluid resuscitation for fluid maintenance. There is a need of an established fluid removal strategy to avoid water and electrolyte imbalances.

  20. Violates stem wood burning sustainable development?

    DEFF Research Database (Denmark)

    Czeskleba-Dupont, Rolf

    2008-01-01

    friendly effects of substituting wood burning for fossil fuels. With reference to Bent Sørensen's classical work on 'Renewable Energy' the assumption of CO2-neutrality regarding incineration is problematised when applied to plants with long rotation periods as trees. Registered CO2-emissions from wood...... burning are characterised together with particle and PAH emissions. The positive treatment of wood stove-technology in the Danish strategy for sustainable development (draft 2007) is critically evaluated and approaches to better regulation are identified....

  1. Epidemiology and screening of intentional burns in children in a Dutch burn centre.

    Science.gov (United States)

    Bousema, Sara; Stas, Helene G; van de Merwe, Marjolijn H; Oen, Irma M M H; Baartmans, Martin G A; van Baar, Margriet E

    2016-09-01

    International estimates of the incidence of non-accidental burns (NAB) in children admitted to burn centres vary from 1% to 25%. Hardly any data about Dutch figures exist. The aim of this study was to evaluate the incidence, treatment and outcome of burns due to suspected child abuse in paediatric burns. We described the process of care and outcome, including the accuracy of the SPUTOVAMO screening tool and examined child, burn and treatment characteristics related to suspicions of child abuse or neglect. A retrospective study was conducted in children aged 0-17 years with a primary admission after burn injuries to the burn centre Rotterdam in the period 2009-2013. Data on patient, injury and treatment characteristics were collected, using the Dutch Burn Repository R3. In addition, medical records were reviewed. In 498 paediatric admissions, suspected child abuse or neglect was present in 43 children (9%). 442 screening questionnaires (89%) were completed. In 52 out of 442 questionnaires (12%) the completed SPUTOVAMO had one or more positive signs. Significant independent predictors for suspected child abuse were burns in the genital area or buttocks (OR=3.29; CI: 143-7.55) and a low socio-economic status (OR=2.52; 95%CI: 1.30-4.90). The incidence of suspected child abuse indicating generation of additional support in our population is comparable to studies with a similar design in other countries. PMID:27211360

  2. Spatial frequency domain imaging of burn wounds in a preclinical model of graded burn severity

    Science.gov (United States)

    Nguyen, John Quan; Crouzet, Christian; Mai, Tuan; Riola, Kathleen; Uchitel, Daniel; Liaw, Lih-Huei; Bernal, Nicole; Ponticorvo, Adrien; Choi, Bernard; Durkin, Anthony J.

    2013-06-01

    Frequent monitoring of early-stage burns is necessary for deciding optimal treatment and management. Both superficial and full thickness burns are relatively easy to diagnose based on clinical observation. In between these two extremes are superficial-partial thickness and deep-partial thickness burns. These burns, while visually similar, differ dramatically in terms of clinical treatment and are known to progress in severity over time. The objective of this study was to determine the potential of spatial frequency domain imaging (SFDI) for noninvasively mapping quantitative changes in chromophore and optical properties that may be an indicative of burn wound severity. A controlled protocol of graded burn severity was developed and applied to 17 rats. SFDI data was acquired at multiple near-infrared wavelengths over a course of 3 h. Burn severity was verified using hematoxylin and eosin histology. From this study, we found that changes in water concentration (edema), deoxygenated hemoglobin concentration, and optical scattering (tissue denaturation) to be statistically significant at differentiating superficial partial-thickness burns from deep-partial thickness burns.

  3. Instrumented tube burns: theoretical and experimental observations

    Energy Technology Data Exchange (ETDEWEB)

    Yarrington, Cole Davis [Los Alamos National Laboratory; Obrey, Stephen J [Los Alamos National Laboratory; Foley, Timothy J [Los Alamos National Laboratory; Son, Steven F [Los Alamos National Laboratory

    2009-01-01

    The advent of widely available nanoscale energetic composites has resulted in a flurry of novel applications. One of these applications is the use of nanomaterials in energetic compositions. In compositions that exhibit high sensitivity to stimulus, these materials are often termed metastable intermolecular composites (MIC). More generally, these compositions are simply called nanoenergetics. Researchers have used many different experimental techniques to analyze the various properties of nanoenergetic systems. Among these various techniques, the confined tube burn is a simple experiment that is capable of obtaining much data related to the combustion of these materials. The purpose of this report is to review the current state of the confined tube burn experiment, including the drawbacks of the technique and possible remedies. As this report is intended to focus on the specific experimental technique, data from many different energetic materials, and experimental configurations will be presented. The qualitative and quantitative data that can be gathered using confined tube burn experiments include burning rates, total impulse, pressure rise rate, and burning rate differences between different detector types. All of these measurements lend insight into the combustion properties and mechanisms of specific nanoenergetics. Finally, certain data indicates a more complicated flow scenario which may need to be considered when developing burn tube models.

  4. Antithrombin in the treatment of burn trauma.

    Science.gov (United States)

    Kowal-Vern, Areta; Orkin, Bruce A

    2016-02-01

    Antithrombin (AT) is a natural anticoagulant with anti-inflammatory properties that has demonstrated value in sepsis, disseminated intravascular coagulation and in burn and inhalation injury. With high doses, AT may decrease blood loss during eschar excision, reducing blood transfusion requirements. There are no human randomized, placebo-controlled studies, which have tested the true benefit of this agent in these conditions. Two main forms of AT are either plasma-derived AT (phAT) and recombinant AT (rhAT). Major ovine studies in burn and smoke inhalation injury have utilized rhAT. There have been no studies which have either translated the basic rhAT research in burn trauma, or determined the tolerance and pharmacokinetics of rhAT concentrate infusions in burn patients. Advantages of rhAT infusions are no risk of blood borne diseases and lower cost. However, the majority of human burn patient studies have been conducted utilizing phAT. Recent Japanese clinical trials have started using phAT in abdominal sepsis successfully. This review examines the properties of both phAT and rhAT, and analyzes studies in which they have been utilized. We believe that it is time to embark on a randomized placebo-controlled multi-center trial to establish the role of AT in both civilian and military patients with burn trauma. PMID:26855890

  5. [Invasive yeast infections in severely burned patients].

    Science.gov (United States)

    Renau, Ana Isabel; García-Vidal, Carolina; Salavert, Miguel

    2016-01-01

    Currently, there are few studies on candidaemia in the severely burned patient. These patients share the same risk factors for invasive fungal infections as other critically ill patients, but have certain characteristics that make them particularly susceptible. These include the loss of skin barrier due to extensive burns, fungal colonisation of the latter, and the use of hydrotherapy or other topical therapies (occasionally with antimicrobials). In addition, the increased survival rate achieved in recent decades in critically burned patients due to the advances in treatment has led to the increase of invasive Candida infections. This explains the growing interest in making an earlier and more accurate diagnosis, as well as more effective treatments to reduce morbidity and mortality of candidaemia in severe burned patients. A review is presented on all aspects of the burned patient, including the predisposition and risk factors for invasive candidiasis, pathogenesis of candidaemia, underlying immunodeficiency, local epidemiology and antifungal susceptibility, evolution and prognostic factors, as well as other non-Candida yeast infections. Finally, we include specific data on our local experience in the management of candidaemia in severe burned patients, which may serve to quantify the problem, place it in context, and offer a realistic perspective. PMID:27395025

  6. [The Nutrition Care of Severe Burn Patients].

    Science.gov (United States)

    Hsieh, Yu-Hsiu

    2016-02-01

    In addition to recent advances in burn patient care techniques such as maintaining warm circumambient temperature, the early excision of wounds, and the use of closed dressing, providing nutrition support through early feeding has proven instrumental in greatly increasing the survival rate of burn patients. Severe burns complicated by many factors initiate tremendous physiological stress that leads to postburn hypermetabolism that includes enhanced tissue catabolism, the loss of muscle mass, and decreases in the body's reservoirs of protein and energy. These problems have become the focus of burn therapy. Treating severe burns aims not only to enhance survival rates but also to restore normal bodily functions as completely as possible. Recent research evaluating the application of anabolic agents and immune-enhance formula for severe burns therapy has generated significant controversy. Inadequate caloric intake is one of the main differences among the related studies, with the effect of many special nutrients such as bran acid amides not taken into consideration. Therefore, considering the sufficiency of caloric and protein intake is critical in assessing effectiveness. Only after patients receive adequate calories and protein may the effect of special nutrients such as glutamine and supplements be evaluated effectively. PMID:26813059

  7. Community energy plan : village of Burns Lake

    International Nuclear Information System (INIS)

    Climate change has a significant impact on the lives of Canadians and their economies. In northern British Columbia, the ability to grow, process and transport food will likely change. The rising cost of fuel and other natural resources will create a need for more resilient communities. This report presented a community energy plan for Burns Lake in order to provide the first steps toward building on an already resilient community. The report answered questions about Burns Lake's energy consumption and greenhouse gas (GHG) emissions as well as the community's views on energy issues. The report provided background information on the Village of Burns Lake and discussed climate change in Burns Lake, energy use, and greenhouse gas emissions. The report also described community engagement by way of a questionnaire on fuel prices, homes and public opinion in Burns Lake. A strategy was also outlined. It was concluded that the village of Burns Lake is well positioned to face challenges regarding future energy use. The community is looking to the municipality for support and leadership, in order to deliver through active opportunities to reduce greenhouse gas emissions. 6 figs., 4 appendices.

  8. Assessment of Electrosurgery Burns in Cardiac Surgery

    Science.gov (United States)

    Jalali, Seyyed Mehdi; Moradi, Mohammad; Khalaj, Alireza; Pazouki, Alireza; Tamannaie, Zeinab; Ghanbari, Sajjad

    2015-01-01

    Background: Monopolar surgery is applied mostly in major operations, while bipolar is used in delicate ones. Attention must be paid in electrosurgery application to avoid electrical burns. Objectives: We aimed to assess factors associated with electrosurgery burns in cardiac surgery operating rooms. Patients and Methods: This was a case-control study in which two groups of 150 patients undergoing cardiac surgery in Imam Khomeini Hospital were recruited. Several factors like gender, age, operation duration, smoking, diseases, infection, atopia, , immunosuppressive drugs use, hepatic cirrhosis, and pulmonary diseases were compared between the two groups. Patients were observed for 24 hours for development of any burn related to the operation. Data was analyzed using SPSS v.11.5, by Chi square and T-test. Results: Patients in the two groups were similar except for two factors. DM and pulmonary diseases which showed significant differences (P = 0.005 and P = 0.002 respectively). Seventy-five patients from controls and 35 from the study group developed burns, which was significant (P ˂ 0.0001). Conclusions: None of the factors were significantly related to developing burns. The differences between the two groups highlights the importance of systems modifications to lessen the incidence of burns. PMID:26839854

  9. 49 CFR 195.226 - Welding: Arc burns.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding: Arc burns. 195.226 Section 195.226 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.226 Welding: Arc burns. (a) Each arc burn must be repaired. (b) An arc burn...

  10. Improving the simulation of organic aerosols from anthropogenic and burning sources: a simplified SOA formation mechanism and the impact of trash burning

    Science.gov (United States)

    Hodzic, A.; Wiedinmyer, C.; Jimenez, J. L.

    2011-12-01

    Organic aerosols (OA) are an major component of fine aerosols, but their sources are poorly understood. We present results of two methods to improve OA predictions in anthropogenic pollution and biomass-burning impacted regions. (1) An empirical parameterization for secondary organic aerosol (SOA) formation in polluted air and biomass burning smoke is implemented into community chemistry-transport models (WRF/Chem and CHIMERE) and tested in this work, towards the goal of a computationally inexpensive method to calculate pollution and biomass burning SOA. This approach is based on the observed proportionality of SOA concentrations to excess CO and photochemical age of the airmass, as described in Hodzic and Jimenez (GMDD, 2011). The oxygen to carbon ratio in organic aerosols is also parameterizated vs. photochemical aged based on the ambient observations, and is used to estimate the aerosol hygroscopicity and CCN activity. The predicted SOA is assessed against observations from the Mexico City metropolitan area during the MILAGRO 2006 field experiment, and compared to previous model results using the more complex volatility basis approach (VBS) of Robinson et al.. The results suggest that the simplified approach reproduces the observed average SOA mass within 30% in the urban area and downwind, and gives better results than the original VBS. In addition to being much less computationally expensive than VBS-type methods, the empirical approach can also be used in regions where the emissions of SOA precursors are not yet available. (2) The contribution of trash burning emissions to primary and secondary organic aerosols in Mexico City are estimated, using a recently-developed emission inventory. Submicron antimony (Sb) is used as a garbage-burning tracer following the results of Christian et al. (ACP 2010), which allows evaluation of the emissions inventory. Results suggests that trash burning may be an appreciable source of organic aerosols in the Mexico City

  11. The Correlation Between the Burning Features, the Burning Agent and Motivation in Burn Victims Attending Shahid Motahari Hospital in Tehran During 2009: letter to Editor

    Directory of Open Access Journals (Sweden)

    Kamran Aghakhani M.D.

    2011-06-01

    Full Text Available Burning is one of the commonest causes of death. Due to the high rate of death among burn victims epidemiological investigation of burning, burning agents and the relevant motivations can be of great preventive value.1 In this cross-sectional study all the hospitalized patients in Shahid Motahari Burn Hospital at Tehran city in the year 2009 were included in the study. The collected data were analyzed by SPSS (ver. 17 software. Out of the 1548 hospitalized patients for burn, 1134 (73.3% left hospital in good conditions, 47 (3% left in relatively good conditions, 289 (18.7% died and 78 (5% persons left the Hospital satisfactorily on their own volition. About two-thirds of the patients were men. The mean age of the burn victims was 27.9±18.3 years, 16% of them being 5 years old or younger. The highest percentage of burn area was 30% of the total body surface which was seen in 20 to 30-year old patients. 58.7% of burns had been caused by fire. 94% of the burns had happened accidentally, 5% by suicidal and 1% by homicidal acts. The highest percentage of burn was observed in patients in whom the burn agent was fire. Six (4% persons had first degree, 820 (53% persons had second degree and 722 (46.6% had third degree burns. In patients who had committed suicide third degree burns were higher than second degree burns (7.7% vs. 2%. 24.4% of women and 16.6% of men died due to the burns. The rate of death in patients less than 50 years of age was 18% but the figure increased to 24% in those above 50. A burn area less than or more than 10% was, respectively correlated with 2.1% and 22.1% of deaths. 34.8% of the patients with third degree burns and 4.6% of those with second and first degree burns died. 58.3% of the suicidal patient died due to the severity of the burns relative to 16.7% due to other causes. 89 (5.7% patients had respiratory tract burns and the death rate was 58.4% among these patients while the death rate was 16.2% in patients without

  12. The use of levoglucosan for tracing biomass burning in PM2.5 samples in Tuscany (Italy)

    International Nuclear Information System (INIS)

    Levoglucosan was present in all samples and its concentrations showed a pronounced annual cycle with maximum levels in the cold season. The annual percentage of ratios of levoglucosan to OC ranged from 0.04 to 9.75% evidencing a major contribution of biomass burning to the aerosol OC during the winter. In the urban-background site, OC was strongly correlated with EC in winter, suggesting that the major fraction of OC was generated as primary particles along with EC. A background levoglucosan component showed that biomass burning was continuously taking place in all the investigated sites. The biomass burning contribution to the Tuscany aerosol was made up of a background component and an additional component during winter probably due to wood burning for domestic heating. - Highlights: ► PM2.5 samples were collected from three sites of different typology in Tuscany, Italy. ► Levoglucosan, OC and EC were investigated to estimate biomass burning contribution. ► Correlations between levoglucosan, OC and EC were evaluated. ► Levoglucosan showed a pronounced annual cycle with maximum levels in the cold season. ► A background biomass burning contribution was estimated in all sites. - Levoglucosan, organic and elemental carbon were investigated to estimate contribution of biomass burning in Italy

  13. Mesoscale experiments help to evaluate in-situ burning of oil spills

    International Nuclear Information System (INIS)

    Burning of spilled oil has distinct advantages over other cleanup countermeasures. It offers the potential to convert rapidly large quantities of oil into its primary combustion products, carbon dioxide and water, with a small percentage of other unburned and residue by-products. Disadvantages include the dispersal of the combustion products into the air. Mesoscale and laboratory experiments have been conducted to measure the burning characteristics of crude oil fires. Measurements on crude oil pool fires from 0.4 m to 17.2 m in effective diameter were made to obtain data on the rate of burning, heat release rate, composition of the combustion products, and downwind dispersion of the products. The smaller experiments were performed in laboratories at the National Institute of Standards and Technology and the Fire Research Institute in Japan; and the larger ones at the US Coast Guard Fire Safety and Test Detachment in Mobile, Alabama. From these experiments, the value for surface regression rate of a burning crude oil spill was found to be 0.055 mm/s. A major concern for public safety is the content and extent of the smoke plume from the fires. Smoke yield, the fraction of the oil mass burned that is emitted as particulate, was found to be 13 percent. A large-eddy simulation calculation method for smoke plume trajectory and smoke particulate deposition developed by NIST showed that the smoke particulate deposition from a 114 m2 burn would occur in striations over a long, slender area 3.2 km wide and 258 km downwind of the burn

  14. Vegetation structure and fire weather influence variation in burn severity and fuel consumption during peatland wildfires

    Science.gov (United States)

    Davies, G. M.; Domènech, R.; Gray, A.; Johnson, P. C. D.

    2016-01-01

    Temperate peatland wildfires are of significant environmental concern but information on their environmental effects is lacking. We assessed variation in burn severity and fuel consumption within and between wildfires that burnt British moorlands in 2011 and 2012. We adapted the composite burn index (pCBI) to provide semi-quantitative estimates of burn severity. Pre- and post-fire surface (shrubs and graminoids) and ground (litter, moss, duff) fuel loads associated with large wildfires were assessed using destructive sampling and analysed using a generalised linear mixed model (GLMM). Consumption during wildfires was compared with published estimates of consumption during prescribed burns. Burn severity and fuel consumption were related to fire weather, assessed using the Canadian Fire Weather Index System (FWI System), and pre-fire vegetation type. pCBI varied 1.6 fold between, and up to 1.7 fold within, wildfires. pCBI was higher where moisture codes of the FWI System indicated drier fuels. Spatial variation in pre- and post-fire fuel load accounted for a substantial proportion of the variance in fuel loads. Average surface fuel consumption was a linear function of pre-fire fuel load. Average ground fuel combustion completeness could be predicted by the Buildup Index. Carbon release ranged between 0.36 and 1.00 kg C m-2. The flammability of ground fuel layers may explain the higher C release-rates seen for wildfires in comparison to prescribed burns. Drier moorland community types appear to be at greater risk of severe burns than blanket-bog communities.

  15. Orion Burn Management, Nominal and Response to Failures

    Science.gov (United States)

    Odegard, Ryan; Goodman, John L.; Barrett, Charles P.; Pohlkamp, Kara; Robinson, Shane

    2016-01-01

    An approach for managing Orion on-orbit burn execution is described for nominal and failure response scenarios. The burn management strategy for Orion takes into account per-burn variations in targeting, timing, and execution; crew and ground operator intervention and overrides; defined burn failure triggers and responses; and corresponding on-board software sequencing functionality. Burn-to- burn variations are managed through the identification of specific parameters that may be updated for each progressive burn. Failure triggers and automatic responses during the burn timeframe are defined to provide safety for the crew in the case of vehicle failures, along with override capabilities to ensure operational control of the vehicle. On-board sequencing software provides the timeline coordination for performing the required activities related to targeting, burn execution, and responding to burn failures.

  16. Characterization of the particulate emissions from the BP Deepwater Horizon surface oil burns.

    Science.gov (United States)

    Gullett, Brian K; Hays, Michael D; Tabor, Dennis; Wal, Randy Vander

    2016-06-15

    Sampling of the smoke plumes from the BP Deepwater Horizon surface oil burns led to the unintentional collection of soot particles on the sail of an instrument-bearing, tethered aerostat. This first-ever plume sampling from oil burned at an actual spill provided an opportunistic sample from which to characterize the particles' chemical properties for polycyclic aromatic hydrocarbons (PAHs), organic carbon, elemental carbon, metals, and polychlorinated dibenzodioxins/dibenzofurans (PCDDs/PCDFs) and physical properties for size and nanostructure. Thermal-optical analyses indicated that the particulate matter was 93% carbon with 82% being refractory elemental carbon. PAHs accounted for roughly 68μg/g of the PM filter mass and 5mg/kg oil burned, much lower than earlier laboratory based studies. Microscopy indicated that the soot is distinct from more common soot by its aggregate size, primary particle size, and nanostructure. PM-bound metals were largely unremarkable but PCDD/PCDF formation was observed, contrary to other's findings. Levels of lighter PCDD/PCDF and PAH compounds were reduced compared to historical samples, possibly due to volatilization or photo-oxidation. PMID:27084200

  17. Burned gas and unburned mixture composition prediction in biodiesel-fuelled compression igniton engine

    International Nuclear Information System (INIS)

    A prediction of burned gas and unburned mixture composition from a variety of methyl ester based bio diesel combustion in compression ignition engine, in comparison with conventional diesel fuel is presented. A free-energy minimisation scheme was used to determine mixture composition. Firstly, effects of bio diesel type were studied without exhaust gas recirculation (EGR). The combustion of the higher hydrogen-to-carbon molar ratio (H/C) bio diesel resulted in lower carbon dioxide and oxygen emissions but higher water vapour in the exhaust gases, compared to those of lower H/C ratios. At the same results also show that relative air-to-fuel ratio, that bio diesel combustion gases contain a higher amount of water vapour and a higher level of carbon dioxide compared to those of diesel. Secondly, influences of EGR (burned gas fraction) addition to bio diesel-fuelled engine on unburned mixture were simulated. For both diesel and bio diesel, the increased burned gas fraction addition to the fresh charge increased carbon dioxide and water vapour emissions while lowering oxygen content, especially for the bio diesel case. The prediction was compared with experimental results from literatures; good agreement was found. This can be considered to be a means for explaining some phenomenon occurring in bio diesel-fuelled engines. (author)

  18. Children with burns referred for child abuse evaluation: Burn characteristics and co-existent injuries.

    Science.gov (United States)

    Pawlik, Marie-Christin; Kemp, Alison; Maguire, Sabine; Nuttall, Diane; Feldman, Kenneth W; Lindberg, Daniel M

    2016-05-01

    Intentional burns represent a serious form of physical abuse that must be identified to protect children from further harm. This study is a retrospectively planned secondary analysis of the Examining Siblings To Recognize Abuse (ExSTRA) network data. Our objective was to describe the characteristics of burns injuries in children referred to Child Abuse Pediatricians (CAPs) in relation to the perceived likelihood of abuse. We furthermore compare the extent of diagnostic investigations undertaken in children referred to CAPs for burn injuries with those referred for other reasons. Within this dataset, 7% (215/2890) of children had burns. Children with burns were older than children with other injuries (median age 20 months vs. 10 months). Physical abuse was perceived as likely in 40.9% (88) and unlikely in 59.1% (127). Scalds accounted for 52.6% (113) and contact burns for 27.6% (60). Several characteristics of the history and burn injury were associated with a significantly higher perceived likelihood of abuse, including children with reported inflicted injury, absent or inadequate explanation, hot water as agent, immersion scald, a bilateral/symmetric burn pattern, total body surface area ≥10%, full thickness burns, and co-existent injuries. The rates of diagnostic testing were significantly lower in children with burns than other injuries, yet the yield of skeletal survey and hepatic transaminases testing were comparable between the two groups. This would imply that children referred to CAPs for burns warrant the same level of comprehensive investigations as those referred for other reasons. PMID:27088728

  19. Randomized controlled trial of the absorbency of four dressings and their effects on the evaporation of burn wounds

    Institute of Scientific and Technical Information of China (English)

    CHEN Jiong; HAN Chun-mao; SU Guo-liang; TANG Zhi-jian; SU Shi-jie; LIN Xiao-wei

    2007-01-01

    Background Wound dressings are divided into traditional and new types. The new dressings are thought to accelerate wound healing. The purpose of this study was to supplement the scanty data on the absorbency of the new dressings and their effects on evaporation from the burn surface.Methods The water absorption rate of four dressings (carbon fiber dressing, hydrogel dressing, silver nanoparticle dressing, and vaseline gauze) were measured by the immersion-weight gain method. A total of 120 inpatients with 10%superficial partial-thickness burn wounds were randomly assigned to four groups, each with 30 participants. Carbon fiber dressing, hydrogel dressing, and silver nanoparticle dressing were used in groups A, B, and C as the primary dressing,and traditional vaseline gauze was used in group D as the control. Multi-spot evaporation from normal skin and naked wound, and from wounds covered with each of the four dressings was measured post-burn on days 1, 3, 5, and 7 by an EP-I evaporimeter under conditions of 21 ℃ -22 ℃ ambient temperature and 74%-78% humidity.Results The absorption rates of the four dressings were 988% with carbon fiber dressing, 96% with silver nanoparticle,41% with vaseline gauze, and 6% with hydrogel. Evaporation from the naked burn wounds was about 1/3 higher than from normal skin (P<0.01). Compared with wounds without applied dressing, evaporation from dressed wounds decreased and was time-dependent (P<0.01). The evaporation of wounds with carbon fiber dressing was the lowest ((13.40±2.82)ml·h-1·m-2,P<0.01) on day 1 post-burn,compared with the other groups.Conclusion All four dressings have water retention capacity while carbon fiber dressing has the highest absorption rate and shows the best containment and evaporation from the burn wound.

  20. Modeling the impacts of biomass burning on air quality in and around Mexico City

    Directory of Open Access Journals (Sweden)

    W. Lei

    2013-03-01

    Full Text Available The local and regional impacts of open fires and trash burning on ground-level ozone (O3 and fine carbonaceous aerosols in the Mexico City Metropolitan Area (MCMA and surrounding region during two high fire periods in March 2006 have been evaluated using WRF-CHEM model. The model captured reasonably well the measurement-derived magnitude and temporal variation of the biomass burning organic aerosol (BBOA, and the simulated impacts of open fires on organic aerosol (OA were consistent with many observation-based estimates. We did not detect significant effects of open fires and trash burning on surface O3 concentrations in the MCMA and surrounding region. In contrast, they had important influences on OA and elemental carbon (EC, increasing primary OA (POA by ~60%, secondary OA (SOA by ~22%, total OA (TOA = POA + SOA by ~33%, and EC by ~22%, on both the local (urban and regional scales. Although the emissions of trash burning are substantially lower than those from open fires, trash burning made slightly smaller but comparable contributions to OA as open fires did, and exerted an even higher influence on EC. Of the ~22% enhancement in SOA concentrations (equivalent to a ~15% increase in TOA simulated, about two third was attributed to the open fires and one-third to the trash burning. On the annual basis and taking the biofuel use emissions into consideration, we estimated that open fires, trash burning and biofuel use together contributed about 60% to the loading of POA, 30% to SOA, and 25% to EC in both the MCMA and its surrounding region, of which the open fires and trash burning contributed about 35% to POA, 18% to SOA, and 15% to EC. The estimates of biomass burning impacts in this study may contain considerable uncertainties due to the uncertainties in their emission estimates in magnitude, temporal and spatial distribution, extrapolations and the nature of spot comparison. More observation and modeling studies are needed to accurately assess

  1. Modeling the impacts of biomass burning on air quality in and around Mexico City

    Science.gov (United States)

    Lei, W.; Li, G.; Molina, L. T.

    2013-03-01

    The local and regional impacts of open fires and trash burning on ground-level ozone (O3) and fine carbonaceous aerosols in the Mexico City Metropolitan Area (MCMA) and surrounding region during two high fire periods in March 2006 have been evaluated using WRF-CHEM model. The model captured reasonably well the measurement-derived magnitude and temporal variation of the biomass burning organic aerosol (BBOA), and the simulated impacts of open fires on organic aerosol (OA) were consistent with many observation-based estimates. We did not detect significant effects of open fires and trash burning on surface O3 concentrations in the MCMA and surrounding region. In contrast, they had important influences on OA and elemental carbon (EC), increasing primary OA (POA) by ~60%, secondary OA (SOA) by ~22%, total OA (TOA = POA + SOA) by ~33%, and EC by ~22%, on both the local (urban) and regional scales. Although the emissions of trash burning are substantially lower than those from open fires, trash burning made slightly smaller but comparable contributions to OA as open fires did, and exerted an even higher influence on EC. Of the ~22% enhancement in SOA concentrations (equivalent to a ~15% increase in TOA) simulated, about two third was attributed to the open fires and one-third to the trash burning. On the annual basis and taking the biofuel use emissions into consideration, we estimated that open fires, trash burning and biofuel use together contributed about 60% to the loading of POA, 30% to SOA, and 25% to EC in both the MCMA and its surrounding region, of which the open fires and trash burning contributed about 35% to POA, 18% to SOA, and 15% to EC. The estimates of biomass burning impacts in this study may contain considerable uncertainties due to the uncertainties in their emission estimates in magnitude, temporal and spatial distribution, extrapolations and the nature of spot comparison. More observation and modeling studies are needed to accurately assess the

  2. What could have caused pre-industrial biomass burning emissions to exceed current rates?

    Science.gov (United States)

    van der Werf, G. R.; Peters, W.; van Leeuwen, T. T.; Giglio, L.

    2013-01-01

    Recent studies based on trace gas mixing ratios in ice cores and charcoal data indicate that biomass burning emissions over the past millennium exceeded contemporary emissions by up to a factor of 4 for certain time periods. This is surprising because various sources of biomass burning are linked with population density, which has increased over the past centuries. We have analysed how emissions from several landscape biomass burning sources could have fluctuated to yield emissions that are in correspondence with recent results based on ice core mixing ratios of carbon monoxide (CO) and its isotopic signature measured at South Pole station (SPO). Based on estimates of contemporary landscape fire emissions and the TM5 chemical transport model driven by present-day atmospheric transport and OH concentrations, we found that CO mixing ratios at SPO are more sensitive to emissions from South America and Australia than from Africa, and are relatively insensitive to emissions from the Northern Hemisphere. We then explored how various landscape biomass burning sources may have varied over the past centuries and what the resulting emissions and corresponding CO mixing ratio at SPO would be, using population density variations to reconstruct sources driven by humans (e.g., fuelwood burning) and a new model to relate savanna emissions to changes in fire return times. We found that to match the observed ice core CO data, all savannas in the Southern Hemisphere had to burn annually, or bi-annually in combination with deforestation and slash and burn agriculture exceeding current levels, despite much lower population densities and lack of machinery to aid the deforestation process. While possible, these scenarios are unlikely and in conflict with current literature. However, we do show the large potential for increased emissions from savannas in a pre-industrial world. This is mainly because in the past, fuel beds were probably less fragmented compared to the current situation

  3. What could have caused pre-industrial biomass burning emissions to exceed current rates?

    Directory of Open Access Journals (Sweden)

    G. R. van der Werf

    2013-01-01

    Full Text Available Recent studies based on trace gas mixing ratios in ice cores and charcoal data indicate that biomass burning emissions over the past millennium exceeded contemporary emissions by up to a factor of 4 for certain time periods. This is surprising because various sources of biomass burning are linked with population density, which has increased over the past centuries. We have analysed how emissions from several landscape biomass burning sources could have fluctuated to yield emissions that are in correspondence with recent results based on ice core mixing ratios of carbon monoxide (CO and its isotopic signature measured at South Pole station (SPO. Based on estimates of contemporary landscape fire emissions and the TM5 chemical transport model driven by present-day atmospheric transport and OH concentrations, we found that CO mixing ratios at SPO are more sensitive to emissions from South America and Australia than from Africa, and are relatively insensitive to emissions from the Northern Hemisphere. We then explored how various landscape biomass burning sources may have varied over the past centuries and what the resulting emissions and corresponding CO mixing ratio at SPO would be, using population density variations to reconstruct sources driven by humans (e.g., fuelwood burning and a new model to relate savanna emissions to changes in fire return times. We found that to match the observed ice core CO data, all savannas in the Southern Hemisphere had to burn annually, or bi-annually in combination with deforestation and slash and burn agriculture exceeding current levels, despite much lower population densities and lack of machinery to aid the deforestation process. While possible, these scenarios are unlikely and in conflict with current literature. However, we do show the large potential for increased emissions from savannas in a pre-industrial world. This is mainly because in the past, fuel beds were probably less fragmented compared to the

  4. What could have caused pre-industrial biomass burning emissions to exceed current rates?

    Directory of Open Access Journals (Sweden)

    G. R. van der Werf

    2012-08-01

    Full Text Available Recent studies based on trace gas mixing ratios in ice cores and charcoal data indicate that biomass burning emissions over the past millennium exceeded contemporary emissions by up to a factor of 4 for certain time periods. This is surprising because various sources of biomass burning are linked with population density, which has increased over the past centuries. Here we have analyzed how emissions from several biomass burning sources could have fluctuated to yield emissions that are in correspondence with recent results based on ice core mixing ratios of carbon monoxide (CO and its isotopic signature measured at South Pole station (SPO. Based on estimates of contemporary fire emissions and the TM5 chemical transport model, we found that CO mixing ratios at SPO are more sensitive to emissions from South America and Australia than from Africa, and are relatively insensitive to emissions from the Northern Hemisphere. We then explored how various biomass burning sources may have varied over the past centuries and what the resulting emissions and corresponding CO mixing ratio at SPO would be, using population density variations to reconstruct sources driven by humans (e.g. fuelwood burning and a new model to relate savanna emissions to changes in fire return times. We found that to match the observed ice core CO data all savannas in the Southern Hemisphere had to burn annually, or bi-annually in combination with deforestation and slash and burn agriculture matching current levels despite much lower population densities and lack of machinery to aid the deforestation process. While possible, these scenarios are unlikely and in conflict with current literature. However, we do show the large potential for increased emissions from savannas in a pre-industrial world. This is mainly because in the past, fuel beds were probably less fragmented compared to the current situation; we show that the majority of savannas have not burned in the past 10 yr, even

  5. Impacts of prescribed burning on soil greenhouse gas fluxes in a suburban native forest of south-eastern Queensland, Australia

    Directory of Open Access Journals (Sweden)

    Y. Zhao

    2015-07-01

    Full Text Available Prescribed burning is a forest management practice that is widely used in Australia to reduce the risk of damaging wildfires. It can affect both carbon (C and nitrogen (N cycling in the forest and thereby influence the soil–atmosphere exchange of major greenhouse gases, i.e. carbon dioxide (CO2, methane (CH4 and nitrous oxide (N2O. To quantify the impact of a prescribed burning (conducted on 27 May 2014 on greenhouse gas exchange and the potential controlling mechanisms, we carried out a series of field measurements before (August 2013 and after (August 2014 and November 2014 the fire. Gas exchange rates were determined at 4 replicate sites which were burned during the combustion and another 4 adjacent unburned sites located in green islands, using a set of static chambers. Surface soil properties including temperature, pH, moisture, soil C and N pools were also determined either by in situ measurement or by analysing surface 10 cm soil samples. All of the chamber measurements indicated a net sink of atmospheric CH4, with mean CH4 uptake ranging from 1.15 to 1.99 mg m−2 day−1. The burning significantly enhanced CH4 uptake as indicated by the significant higher CH4 uptake rates at the burned sites measured in August 2014. While within the next 3 months the CH4 uptake rate was recovered to pre-burning levels. Mean CO2 emission from forest soils ranged from 2721.76 to 7113.49 mg m−2 day−1. The effect of prescribed burning on CO2 emission was limited within the first 3 months, as no significant difference was observed between the burned and the adjacent unburned sites in both August and November 2014. The temporal dynamics of the CO2 emission presented more seasonal variations, rather than burning effects. The N2O emission at the studied sites was quite low, and no significant impact of burning was observed. The changes in understory plants and litter layers, surface soil temperature, C and N substrate availability and microbial activities

  6. The role of biomass burning in the budget and cycle of carbonaceous soot aerosols and their climate impact

    International Nuclear Information System (INIS)

    In this chapter, the authors estimate the climate impact from biomass burning due to both the direct radiative effects of smoke and the indirect effects on cloud albedo. They use the model of Walton et al. run in conjunction with the Lawrence Livermore National Laboratory version of the National Center for Atmospheric Research Community Climate Model 1 (NCAR CCM1). They describe the sources of aerosol particles from biomass burning as well as their soot content. After describing their model, they compare this latter quantity (or the predicted soot or black carbon concentration) to measured soot concentrations in the Southern Hemisphere. This provides a partial confirmation of their modeling procedures. Further confirmation of their predicted aerosol concentrations is also presented by comparing their predicted smoke optical depths with typical optical depths measured from satellites. Finally, the authors present the predicted change in outgoing solar radiation from biomass burning and summarize our estimate of the climate impact from biomass burning together with their conclusions

  7. Modulation of inflammatory and catabolic responses in severely burned children by early burn wound excision in the first 24 hours

    NARCIS (Netherlands)

    Barret, JP; Herndon, DN

    2003-01-01

    Hypothesis: Early burn wound excision modulates the hypermetabolic response in severe pediatric burn injuries. Design: Before-after trial. Setting: A 30-bed burn referral center in a private, university-affiliated hospital. Methods: We studied 35 severely burned children who were divided into 2 grou

  8. Burn size determines the inflammatory and hypermetabolic response

    OpenAIRE

    Jeschke, Marc G.; Mlcak, Ronald P.; Finnerty, Celeste C.; Norbury, William B.; Gauglitz, Gerd G.; Kulp, Gabriela A; Herndon, David N

    2007-01-01

    Background Increased burn size leads to increased mortality of burned patients. Whether mortality is due to inflammation, hypermetabolism or other pathophysiologic contributing factors is not entirely determined. The purpose of the present study was to determine in a large prospective clinical trial whether different burn sizes are associated with differences in inflammation, body composition, protein synthesis, or organ function. Methods Pediatric burned patients were divided into four burn ...

  9. Pediatric Burns in the Bedouin Population in Southern Israel

    OpenAIRE

    Cohen, Arnon D; Gurfinkel, R.; Glezinger, R.; Kriger, Y.; Yancolevich, N.; Rosenberg, L

    2007-01-01

    Burn trauma is an important public health concern, with increased risk for burns in children. A cross-sectional study was performed to describe the epidemiological characteristics and risk factors for burns in hospitalized Bedouin children in Soroka University Medical Center during the years 2001–2002. In a population of 558 hospitalized burn-injured patients, 282 Bedouin children were identified. Two hundred and sixty five patients (94.0%) had burns involving less than 20% of the body surfac...

  10. Aetiology and Outcome of Elderly Burn Patients in Tabriz, Iran

    OpenAIRE

    H. Maghsoudi; Ghaffari, A

    2009-01-01

    Background. Geriatric patients, usually defined as being 65 years of age or over, now make up about 10% of the major burn population. Main aim. To conduct a prospective study of elderly burn patients, analysing the predictive value of age, gender, total body surface area (TBSA) burned, inhalation trauma, pre-morbid conditions, and mortality. Methods. A 10-year prospective study of burn victims hospitalized in a major burn centre in Iran was conducted to analyse the association between age, pe...

  11. Epidemiology of outpatient burns in Iran: an update

    OpenAIRE

    Karimi, H.; Motevalian, S.A.; M. Momeni

    2014-01-01

    Burn injury remains a serious and devastating issue faced by developing countries. It is also true, however, that the developed world still tackles many of the challenges caused by burns. In order to reduce this problem through preventive programs, the characteristics of this type of injury must be studied and well documented in each setting. Our study aims to show the epidemiology, demographic distribution and clinical outcomes of burns patients referred to Motahari Burn Hospital, the burn c...

  12. Bacterial and fungal colonization of burn wounds

    Directory of Open Access Journals (Sweden)

    Jefferson Lessa Soares de Macedo

    2005-08-01

    Full Text Available A prospective study of fungal and bacterial flora of burn wounds was carried out from February 2004 to February 2005 at the Burns Unit of Hospital Regional da Asa Norte, Brasília, Brazil. During the period of the study, 203 patients were treated at the Burns Unit. Wound swab cultures were assessed at weekly intervals for four weeks. Three hundred and fifty four sampling procedures (surface swabs were performed from the burn wounds. The study revealed that bacterial colonization reached 86.6% within the first week. Although the gram-negative organisms, as a group, were more predominant, Staphylococcus aureus (28.4% was the most prevalent organism in the first week. It was however surpassed by Pseudomonas aeruginosa form third week onwards. For S. aureus and P. aeruginosa vancomycin and polymyxin were found to be the most effective drugs. Most of the isolates showed high level resistance to antimicrobial agents. Fungi were found to colonize the burn wound late during the second week postburn, with a peak incidence during the third and fourth weeks. Species identification of fungi revealed that Candida tropicalis was the most predominant, followed by Candida parapsilosis. It is crucial for every burn institution to determine the specific pattern of burn wound microbial colonization, the time-related changes in the dominant flora, and the antimicrobial sensitivity profiles. This would enable early treatment of imminent septic episodes with proper empirical systemic antibiotics, without waiting for culture results, thus improving the overall infection-related morbidity and mortality.

  13. Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles

    International Nuclear Information System (INIS)

    Biomass burning is widespread, especially in the tropics. It serves to clear land for shifting cultivation, to convert forests to agricultural and pastoral lands, and to remove dry vegetation in order to promote agricultural productivity and the growth of higher yield grasses. Furthermore, much agricultural waste and fuel wood is being combusted, particularly in developing countries. Biomass containing 2 to 5 petagrams of carbon is burned annually (1 petagram = 1015 grams), producing large amounts of trace gases and aerosol particles that play important roles in atmospheric chemistry and climate. Emissions of carbon monoxide and methane by biomass burning affect the oxidation efficiency of the atmosphere by reacting with hydroxyl radicals, and emissions of nitric oxide and hydrocarbons lead to high ozone concentrations in the tropics during the dry season. Large quantities of smoke particles are produced as well, and these can serve as cloud condensation nuclei. These particles may thus substantially influence cloud microphysical and optical properties, an effect that could have repercussions for the radiation budget and the hydrological cycle in the tropics. Widespread burning may also disturb biogeochemical cycles, especially that of nitrogen. About 50% of the nitrogen in the biomass fuel can be released as molecular nitrogen. This pyrodenitrification process causes a sizable loss of fixed nitrogen in tropical ecosystems, in the range of 10 to 20 teragrams per year (1 teragram = 1012 grams)

  14. Satellite Remote Sensing of Atmospheric Pollution: the Far-Reaching Impact of Burning in Southern Africa

    Science.gov (United States)

    Fishman, Jack; Al-Saadi, Jassim A.; Neil, Doreen O.; Creilson, John K.; Severance, Kurt; Thomason, Larry W.; Edwards, David R.

    2008-01-01

    When the first observations of a tropospheric trace gas were obtained in the 1980s, carbon monoxide enhancements from tropical biomass burning dominated the observed features. In 2005, an active remote-sensing system to provide detailed information on the vertical distribution of aerosols and clouds was launched, and again, one of the most imposing features observed was the presence of emissions from tropical biomass burning. This paper presents a brief overview of space-borne observations of the distribution of trace gases and aerosols and how tropical biomass burning, primarily in the Southern Hemisphere, has provided an initially surprising picture of the distribution of these species and how they have evolved from prevailing transport patterns in that hemisphere. We also show how interpretation of these observations has improved significantly as a result of the improved capability of trajectory modeling in recent years and how information from this capability has provided additional insight into previous measurements form satellites. Key words: pollution; biomass burning; aerosols; tropical trace gas emissions; Southern Hemisphere; carbon monoxide.

  15. Biomass Burning and Polonium-210 in the Atmosphere: a Review

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Fernando P. [Instituto Superior Tecnico/Campus Tecnologico e Nuclear/(IST/CTN), Universidade de Lisboa, Estrada Nacional 10 - ao km 139,7 - 2695-066 Bobadela LRS (Portugal)

    2014-07-01

    Naturally-occurring radionuclides, such as those of uranium series, are part of the lithosphere and hydrosphere and plants do accumulate them up to a certain extent being the activity concentrations in plants generally low, less than 10 Bq/kg (dry weight). Forest and vegetation fires, as well as biomass burning for energy production, release large amounts of carbon, particulate materials, and gaseous compounds into the atmosphere including the naturally-occurring radionuclides present in plants. Near forest fires, and at local and regional scales, surface aerosol sampling followed by radionuclide analysis showed enhanced radionuclide concentrations, especially those of {sup 210}Po. In surface air with smoke from wild fires {sup 210}Po concentration attained 70 mBq/m{sup 3}, more than 2000 times above {sup 210}Po background in surface air, and aerosols displayed {sup 210}Po/{sup 210}Pb concentration ratios up to 12, i.e., about 20 times higher than the average concentration ratio in surface air. Taking into account the amount of plant biomass burned every year, the total activity of {sup 210}Po released into the atmosphere from this source is able to disrupt the usual {sup 210}Po/{sup 210}Pb concentration ratios in atmosphere and atmospheric depositions. A review of atmospheric polonium sources is presented. (authors)

  16. Biomass Burning and Polonium-210 in the Atmosphere: a Review

    International Nuclear Information System (INIS)

    Naturally-occurring radionuclides, such as those of uranium series, are part of the lithosphere and hydrosphere and plants do accumulate them up to a certain extent being the activity concentrations in plants generally low, less than 10 Bq/kg (dry weight). Forest and vegetation fires, as well as biomass burning for energy production, release large amounts of carbon, particulate materials, and gaseous compounds into the atmosphere including the naturally-occurring radionuclides present in plants. Near forest fires, and at local and regional scales, surface aerosol sampling followed by radionuclide analysis showed enhanced radionuclide concentrations, especially those of 210Po. In surface air with smoke from wild fires 210Po concentration attained 70 mBq/m3, more than 2000 times above 210Po background in surface air, and aerosols displayed 210Po/210Pb concentration ratios up to 12, i.e., about 20 times higher than the average concentration ratio in surface air. Taking into account the amount of plant biomass burned every year, the total activity of 210Po released into the atmosphere from this source is able to disrupt the usual 210Po/210Pb concentration ratios in atmosphere and atmospheric depositions. A review of atmospheric polonium sources is presented. (authors)

  17. Special considerations in paediatric burn patients

    Directory of Open Access Journals (Sweden)

    Sharma Ramesh

    2010-10-01

    Full Text Available Burn injuries are a major cause of morbidity and mortality in children. In India, the figure constitutes about one-fourth of the total burn accidents. The management of paediatric burns can be a major challenge for the treating unit. One has to keep in mind that "children are not merely small adults"; there are certain features in this age group that warrant special attention. The peculiarities in the physiology of fluid and electrolyte handling, the uniqueness of the energy requirement and the differences in the various body proportions in children dictate that the paediatric burn management should be taken with a different perspective than for adults. This review article would deal with the special situations that need to be addressed while treating this special class of thermal injuries. We must ensure that not only the children survive the initial injury, but also the morbidity and complications are minimized. If special care is taken during the initial management of paediatric burn injuries, these children can be effectively integrated into the society as very useful and productive members.

  18. Medical response to the radioinduced burns

    International Nuclear Information System (INIS)

    For over two years the Hospital for Burns in Buenos Aires has been studying the burns caused by radiation, in accordance to an agreement with the Nuclear Regulatory Authority (ARN) of Argentina. The analysis of each case showed the importance of the differential diagnosis from conventional injuries, of this early diagnosis depends the possibility of treatment from the 0 (zero) hour (time at which the accident took place) and achieve the wound healing with the best possible treatment, weather it is medical or surgical in nature. The Hospital's medical staff has developed the necessary skills to recognize this type of burns from an early stage. Most patients arrive to the consultation on their own accord due to the general practitioners inability to correctly diagnose the wounds appeared after radiotherapy has been applied. In this article, we present the general guidelines that the doctors of the Hospital for Burns follow in the presence of radio inducted injuries, objectifying the ethiopathogenic differences of the various burns. (author)

  19. Ventilator associated pneumonia in major paediatric burns.

    Science.gov (United States)

    Rogers, Alan David; Deal, Cailin; Argent, Andrew Charles; Hudson, Donald Anthony; Rode, Heinz

    2014-09-01

    More than three-quarters of deaths related to major burns are a consequence of infection, which is frequently ventilator associated pneumonia (VAP). A retrospective study was performed, over a five-year period, of ventilated children with major burns. 92 patients were included in the study; their mean age was 3.5 years and their mean total body surface area burn was 30%. 62% of the patients sustained flame burns, and 31% scalds. The mean ICU stay was 10.6 days (range 2-61 days) and the mean ventilation time was 8.4 days (range 2-45 days). There were 59 documented episodes of pneumonia in 52 patients with a rate of 30 infections per 1000 ventilator days. Length of ventilation and the presence of inhalational injury correlate with the incidence of VAP. 17.4% of the patients died (n=16); half of these deaths may be attributed directly to pneumonia. Streptococcus pneumonia, Pseudomonas aeruginosa, Acinetobacter baumanii and Staphylococcus aureus were the most prominent aetiological organisms. Broncho-alveolar lavage was found to be more specific and sensitive at identifying the organism than other methods. This study highlights the importance of implementing strictly enforced strategies for the prevention, detection and management of pneumonia in the presence of major burns. PMID:24468505

  20. Increased mortality in hypernatremic burned patients

    Directory of Open Access Journals (Sweden)

    Lange, Thomas

    2010-01-01

    Full Text Available Introduction: In-hospital hypernatremia develops usually iatrogenically from inadequate or inappropriate fluid prescription. In severely burned patient an extensive initial fluid resuscitation is necessary for burn shock survival. After recovering of cellular integrity the circulating volume has to be normalized. Hereby extensive water and electrolyte shifts can provoke hypernatremia. Purpose: Is a hypernatremic state associated with increased mortality? Method: Retrospective study for the incidence of hypernatremia and survival in 40 patients with a totally burned surface area (TBSA >10%. Age, sex, TBSA, ABSI-Score and fluid resuscitation within the first 24 hours were analyzed. Patients were separated in two groups without (Group A or with (Group B hypernatremia. Results: Hypernatremia occurred on day 5±1.4. No significant difference for age, sex, TBSA, ABSI-Score and fluid resuscitation within the first 24 hours were calculated. In Group A all patients survived, while 3 of the hypernatremic patient in Group B died during ICU-stay (Odds-ratio = 1.25; 95% CI 0.971–1.61; p=0.046. Conclusion: Burned patients with an in-hospital acquired hypernatremia have an increased mortality risk. In case of a hypernatremic state early intervention is obligatory. There is a need of a fluid removal strategy in severely burned patient to avoid water imbalance.

  1. The Carbon Crisis in 90 Seconds

    Science.gov (United States)

    Griffith, Peter

    2011-01-01

    This is a banana; and this is a chunk of coal. The banana is sweet and delicious and fun to eat... the coal is ... none of those things. But they are much more alike than they seem. Both were made by plants and store energy from the sun and carbon gas from the air around us. When you eat the banana, you use the energy stored in the banana to run and jump; and you release carbon gas back into the air around you. Now, carbon in the banana is young fast carbon: just weeks ago the banana was carbon gas in the air, and hours after you eat it, you breathe out the same carbon back into the air. When we burn coal in power plants, we use the energy stored in the coal to generate electricity that powers our homes and factories; and we release carbon gas back into the air around us. But, the carbon in the coal is old slow carbon. Plants took the coal carbon out of the air hundreds of millions of years ago. That carbon has been locked up ever since, and would stay locked up, if people hadn't dug up the coal and burned it. So now by burning coal and oil, people are adding lots and lots of old carbon to the atmosphere, faster than plants and the oceans can take it out. Why do I care? Because carbon gas in the atmosphere acts like a blanket, trapping heat, and making the whole planet warmer. My name is Peter, and I'm a carbon cycle scientist at NASA. We use satellites to watch how the world is warming. We can see the glaciers and the ice caps melting; and the air, land, and oceans warming. So we know we all have to change the way we produce and use energy, to burn less coal and oil, to prevent the planet from getting too warm.

  2. A New Metric for Quantifying Burn Severity: The Relativized Burn Ratio

    Directory of Open Access Journals (Sweden)

    Sean A. Parks

    2014-02-01

    Full Text Available Satellite-inferred burn severity data have become increasingly popular over the last decade for management and research purposes. These data typically quantify spectral change between pre-and post-fire satellite images (usually Landsat. There is an active debate regarding which of the two main equations, the delta normalized burn ratio (dNBR and its relativized form (RdNBR, is most suitable for quantifying burn severity; each has its critics. In this study, we propose and evaluate a new Landsat-based burn severity metric, the relativized burn ratio (RBR, that provides an alternative to dNBR and RdNBR. For 18 fires in the western US, we compared the performance of RBR to both dNBR and RdNBR by evaluating the agreement of these metrics with field-based burn severity measurements. Specifically, we evaluated (1 the correspondence between each metric and a continuous measure of burn severity (the composite burn index and (2 the overall accuracy of each metric when classifying into discrete burn severity classes (i.e., unchanged, low, moderate, and high. Results indicate that RBR corresponds better to field-based measurements (average R2 among 18 fires = 0.786 than both dNBR (R2 = 0.761 and RdNBR (R2 = 0.766. Furthermore, the overall classification accuracy achieved with RBR (average among 18 fires = 70.5% was higher than both dNBR (68.4% and RdNBR (69.2%. Consequently, we recommend RBR as a robust alternative to both dNBR and RdNBR for measuring and classifying burn severity.

  3. Synthesis and characterization of the natural and burned hydrotalcite

    International Nuclear Information System (INIS)

    The synthesis and the structural and surface properties of the natural and burned hydrotalcite using salts of AlCl3 and MgCl2.6H2O its were studied. Its were used those analysis of BET, IR, XRD, TGA and SEM to characterize these materials. The obtained product was identified as the natural or carbonated hydrotalcite of chemical formula Mg6Al2(OH)16CO3.4H2O. The hydrotalcite was roasted at 500 C during 5 h and the was obtained roasted hydrotalcite (HTC) that is a material of high selectivity toward the anions that it can be efficiently used as adsorbent material in studies of adsorption for the treatment of anionic radioactive waste present in watery solution. (Author)

  4. Simulation of triton burn-up in JET plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Loughlin, M.J.; Balet, B.; Jarvis, O.N.; Stubberfield, P.M. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    This paper presents the first triton burn-up calculations for JET plasmas using the transport code TRANSP. Four hot ion H-mode deuterium plasmas are studied. For these discharges, the 2.5 MeV emission rises rapidly and then collapses abruptly. This phenomenon is not fully understood but in each case the collapse phase is associated with a large impurity influx known as the ``carbon bloom``. The peak 14 MeV emission occurs at this time, somewhat later than that of the 2.5 MeV neutron peak. The present results give a clear indication that there are no significant departures from classical slowing down and spatial diffusion for tritons in JET plasmas. (authors). 7 refs., 3 figs., 1 tab.

  5. The structure of l2C and stellar helium burning

    International Nuclear Information System (INIS)

    The rate of stellar formation of carbon at high temperatures (T > 3 GK) may increase beyond that which is expected from the Hoyle state at 7.654 MeV due to contributions from higher lying states in 12C. The long sought for second 2+ state predicted at 9 - 10 MeV excitation energy in 12C was predicted to significantly increase the production of 12C. An Optical Readout Time Projection Chamber (O-TPC) operating with the gas mixture of CO2 (80%) + N2(20%) at 100 torr with gamma beams from the HIγS facility of TUNL at Duke was used to study the formation of carbon (and oxygen) during helium burning. Preliminary measurements were carried out at beam energies: E = 9.51, 9.61, 9.72, 10.00, 10.54, 10.84 and 11.14 MeV. Extra attention was paid for separating the carbon dissociation events, 12C(γ,3α), from the oxygen dissociation events, 16O(γ, α)12C. Complete angular distributions were measured giving credence to a newly identified 2+ state just below 10.0 MeV.

  6. The evolution of the epidemic of charcoal-burning suicide in Taiwan: a spatial and temporal analysis.

    Directory of Open Access Journals (Sweden)

    Shu-Sen Chang

    2010-01-01

    Full Text Available BACKGROUND: An epidemic of carbon monoxide poisoning suicide by burning barbecue charcoal has occurred in East Asia in the last decade. We investigated the spatial and temporal evolution of the epidemic to assess its impact on the epidemiology of suicide in Taiwan. METHODS AND FINDINGS: Age-standardised rates of suicide and undetermined death by charcoal burning were mapped across townships (median population aged 15 y or over = 27,000 in Taiwan for the periods 1999-2001, 2002-2004, and 2005-2007. Smoothed standardised mortality ratios of charcoal-burning and non-charcoal-burning suicide and undetermined death across townships were estimated using Bayesian hierarchical models. Trends in overall and method-specific rates were compared between urban and rural areas for the period 1991-2007. The epidemic of charcoal-burning suicide in Taiwan emerged more prominently in urban than rural areas, without a single point of origin, and rates of charcoal-burning suicide remained highest in the metropolitan regions throughout the epidemic. The rural excess in overall suicide rates prior to 1998 diminished as rates of charcoal-burning suicide increased to a greater extent in urban than rural areas. CONCLUSIONS: The charcoal-burning epidemic has altered the geography of suicide in Taiwan. The observed pattern and its changes in the past decade suggest that widespread media coverage of this suicide method and easy access to barbecue charcoal may have contributed to the epidemic. Prevention strategies targeted at these factors, such as introducing and enforcing guidelines on media reporting and restricting access to charcoal, may help tackle the increase of charcoal-burning suicides. Please see later in the article for the Editors' Summary.

  7. Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980-2010 period

    NARCIS (Netherlands)

    Granier, C.; Bessagnet, B.; Bond, T.; D'Angiola, A.; Gon, H.D. van der; Frost, G.J.; Heil, A.; Kaiser, J.W.; Kinne, S.; Klimont, Z.; Kloster, S.; Lamarque, J.-F.; Liousse, C.; Masui, T.; Meleux, F.; Mieville, A.; Ohara, T.; Raut, J.-C.; Riahi, K.; Schultz, M.G.; Smith, S.J.; Thompson, A.; Aardenne, J. van; Werf, G.R. van der; Vuuren, D.P. van

    2011-01-01

    Several different inventories of global and regional anthropogenic and biomass burning emissions are assessed for the 1980-2010 period. The species considered in this study are carbon monoxide, nitrogen oxides, sulfur dioxide and black carbon. The inventories considered include the ACCMIP historical

  8. BURN SIZE AND SURVIVAL PROBABILITY IN PEDIATRIC PATIENTS IN MODERN BURN CARE

    Science.gov (United States)

    Kraft, Robert; Herndon, David N; Al-Mousawi, Ahmed M; Williams, Felicia N; Finnerty, Celeste C; Jeschke, Marc G

    2012-01-01

    Background Patient survival following severe burn injury is largely determined by burn size. Modern developments in burn care have tremendously improved survival and outcomes. However, no large analysis on outcomes in pediatric burn patients with current treatment regimen exists. This study was designed to identify the burn size presently associated with significant increases in morbidity and mortality in pediatric burn patients. Methods Single center prospective observational cohort study utilizing the clinical data of severely burned pediatric patients admitted between 1998 and 2009. This study included 952 severely burned pediatric patients with burns over at least 30% of their total body surface area (TBSA). Patients were stratified by burn size in 10% increments, ranging from 30 to 100%, with a secondary assignment made according to the outcome of a receiver operating characteristic (ROC) analysis. Statistical analysis was performed using Student’s t-test, χ2 test, logistic regression and ROC analysis, as appropriate, with significance set at p<0.05. Findings All groups were comparable in age (age in years: 30–39: 6.1±5.1, 40–49: 7.1±5.2, 50–59: 7.6±5.1, 60–69: 7.2±5.1, 70–79: 8.3±5.9, 80–89: 8.4±5.6, 90–100: 9.6±5.4), and gender distribution (male: 30–39: 68%, 40–49: 64%, 50–59: 65%, 60–69: 59%, 70–79: 71%, 80–89: 62%, 90–100: 82%). Mortality (30–39: 3%, 40–49: 3%, 50–59: 7%, 60–69: 16%, 70–79: 22%, 80–89: 35%, 90–100: 55%), multi-organ failure (30–39: 6%, 40–49: 6%, 50–59: 12%, 60–69: 27%, 70–79: 29%, 80–89: 44%, 90–100: 45%), and sepsis (30–39: 2%, 40–49: 5%, 50–59: 6%, 60–69: 15%, 70–79: 13%, 80–89: 22%, 90–100: 26%), increased significantly (p<0.001) among the groups and at a threshold of 62% TBSA. Comparison of patients with burns larger than 62% with those smaller showed significant differences in inflammatory (Cytokines), acute phase (CRP) and hypermetabolic responses (REE

  9. A clarion to recommit and reaffirm burn rehabilitation.

    Science.gov (United States)

    Richard, Reginald L; Hedman, Travis L; Quick, Charles D; Barillo, David J; Cancio, Leopoldo C; Renz, Evan M; Chapman, Ted T; Dewey, William S; Dougherty, Mary E; Esselman, Peter C; Forbes-Duchart, Lisa; Franzen, Beth J; Hunter, Hope; Kowalske, Karen; Moore, Merilyn L; Nakamura, Dana Y; Nedelec, Bernedette; Niszczak, Jon; Parry, Ingrid; Serghiou, Michael; Ward, R Scott; Holcomb, John B; Wolf, Steven E

    2008-01-01

    Burn rehabilitation has been a part of burn care and treatment for many years. Yet, despite of its longevity, the rehabilitation outcome of patients with severe burns is less than optimal and appears to have leveled off. Patient survival from burn injury is at an all-time high. Burn rehabilitation must progress to the point where physical outcomes parallel survival statistics in terms of improved patient well-being. This position article is a treatise on burn rehabilitation and the state of burn rehabilitation patient outcomes. It describes burn rehabilitation interventions in brief and why a need is felt to bring this issue to the forefront. The article discusses areas for change and the challenges facing burn rehabilitation. Finally, the relegation and acceptance of this responsibility are addressed. PMID:18388581

  10. Cost analysis of a major burn.

    Science.gov (United States)

    Lofts, J A

    1991-11-27

    A retrospective review was undertaken of 26 patients admitted to Middlemore Hospital between January 1986 to July 1989 with burns totalling more than 30% of total body surface area. An attempt was made to estimate the total cost of successful inpatient management of a major burn using known and assumed values. The new schedule of interboard hospital charges was also employed for greater accuracy. The 20 survivors had a mean initial hospital stay of 68.7 days at a cost of between $37,077 and $40,702 (1989 values) and $46,069 (1991 values). This latter figure equates to an average cost of $647 per patient per day or, alternatively, $927 per % burn. Suggestions to reduce costs and improve treatment include: earlier excision and grafting; the establishment of a regional skin bank and keratinocyte culture facility to aid wound closure; and guidelines on antibiotic prescribing. PMID:1745459

  11. Burning plasmas in ITER for energy source

    International Nuclear Information System (INIS)

    Fusion research and development has two aspects. One is an academic research on science and technology, i.e., discovery and understanding of unexpected phenomena and, development of innovative technology, respectively. The other is energy source development to realize fusion as a viable energy future. Fusion research has been made remarkable progress in the past several decades, and ITER will soon realize burning plasma that is essential for both academic research and energy development. With ITER, scientific research on unknown phenomena such as self-organization of the plasma in burning state will become possible and it contributes to create a variety of academic outcome. Fusion researchers will have a responsibility to generate actual energy, and electricity generation immediately after the success of burning plasma control experiment in ITER is the next important step that has to be discussed seriously. (author)

  12. An overview of burning mouth syndrome.

    Science.gov (United States)

    Salerno, Carmen; Di Stasio, Dario; Petruzzi, Massimo; Lauritano, Dorina; Gentile, Enrica; Guida, Agostino; Maio, Claudio; Tammaro, Mariasofia; Serpico, Rosario; Lucchese, Alberta

    2016-01-01

    Burning mouth syndrome (BMS) is characterised by the presence of a burning sensation in the oral mucosa in the absence of any clinically apparent mucosal sign. It occurs more commonly in older women and often affects the tongue tip and lateral borders, lips, and hard and soft palates. Besides the burning sensation, patients with BMS may complain of unremitting oral mucosal pain, dysgeusia, and xerostomia. The exact pathophysiology of primary BMS remains unknown. A major challenge for the clinician is the treatment of BMS: identifying possible causative factors is the first step, but BMS is often idiopathic. Drug therapy, in addition to behavioural therapy and psychotherapy, may help to eliminate the symptoms. Considering the growing incidence of BMS in older people, further research is required to determine the true efficacy of current management strategies for patients with this disorder. PMID:26709657

  13. Epidemiologic study of scald burns in victims in Tehran burn hospital

    Directory of Open Access Journals (Sweden)

    Kamran Aghakhani

    2013-10-01

    Full Text Available Background: Damages caused by scald burns are common and can cause severe complications and death. The purpose of this study was to define risk groups and then methods of prevention and treatment is designed to fit. Methods: Data for this retrospective study of hospitalized patients in Shahid Motahari Hospital in Tehran from 2007-2011 were compiled. Data including age, sex, cause of burn, and degree of burn and ultimate fate of the victims were collected from scald burns. Burns caused by boiling water and hot food (Scald , in two age groups : 12 and under 12 years ( children and more than 12 years ( adults were compared in terms of statistics . Results: A total of 1150 patients consisting of males (57.9% and females (42.1% were studied. The most common age was 1 year old and 50% of patients were under 3 years of age. 87.9% burned with boiling water and 12.1% had experienced burns with hot food. Incentive to burn was 0.3% cross burning and 99.7% incident. A maximum number of burns in children 12 years and younger males (42.1% and a minimum number in men over 12 years (15.7% were observed. Mean percentage of burns was 11% in over 12 years group and 30.9% in 12 and under 12 years group. The average hospital stay was 11.4 days and the mortality rate was 4.8%. The final status of the patients was as fallows: full recovery 904 cases (78.6%, partial recovery 134 (11.7%, clearance with personal consent 41 (3.6%, death 55 (4.8% and 16 cases (3.1% were among other reasons. Conclusion: In general it can be said, scald burns incidence in individuals aged 12 and younger were more than the older ones and the mean of burns was lower in individuals with over 12 years old. There was a sexual preference for males under 12 years. Mortality rate in the two groups has not any statistically significant difference. There was no statistically significant association between sex and mortality rate. Some of our findings are depending on cultural, social and economic

  14. Burn wound: How it differs from other wounds?

    Directory of Open Access Journals (Sweden)

    V K Tiwari

    2012-01-01

    Full Text Available Management of burn injury has always been the domain of burn specialists. Since ancient time, local and systemic remedies have been advised for burn wound dressing and burn scar prevention. Management of burn wound inflicted by the different physical and chemical agents require different regimes which are poles apart from the regimes used for any of the other traumatic wounds. In extensive burn, because of increased capillary permeability, there is extensive loss of plasma leading to shock while whole blood loss is the cause of shock in other acute wounds. Even though the burn wounds are sterile in the beginning in comparison to most of other wounds, yet, the death in extensive burns is mainly because of wound infection and septicemia, because of the immunocompromised status of the burn patients. Eschar and blister are specific for burn wounds requiring a specific treatment protocol. Antimicrobial creams and other dressing agents used for traumatic wounds are ineffective in deep burns with eschar. The subeschar plane harbours the micro-organisms and many of these agents are not able to penetrate the eschar. Even after complete epithelisation of burn wound, remodelling phase is prolonged. It may take years for scar maturation in burns. This article emphasizes on how the pathophysiology, healing and management of a burn wound is different from that of other wounds.

  15. Smouldering natural fires:Comparison of burning dynamics in boreal peat and Mediterranean humus

    OpenAIRE

    Rein, G; Garcia, J.; SIMEONI, A.; Tihay, V.; Ferrat, L.

    2008-01-01

    Smouldering of the forest subsurface can be responsible for a large fraction of the total fuel consumed during wildfires. Subsurface fires can take place in organic material stored in shallow forest layers such as duff or humus, and in deeper layers such as peat, landfills and coal seams. These fires play a major role in the global emission to the atmosphere, the destruction of carbon storage in the soil and the damage to the natural environment. Burning dynamics in two different ecosystems a...

  16. The influence of biomass burning on the global distribution of selected non-methane organic compounds

    OpenAIRE

    Lewis, A. C.; Evans, M J; J. R. Hopkins; S. Punjabi; Read, K A; R. M. Purvis; Andrews, S. J.; Moller, S. J.; Carpenter, L. J.; J. D. Lee; A. R. Rickard; Palmer, P. I.; M. Parrington

    2013-01-01

    Forests fires are a significant source of chemicals to the atmosphere including numerous non-methane organic compounds (NMOCs). We report airborne measurement of hydrocarbons, acetone and methanol from >500 whole air samples collected over Eastern Canada, including interceptions of several different boreal biomass burning plumes. From these and concurrent measurements of carbon monoxide (CO) we derive fire emission ratios for 29 different organic species relative to the emission of CO. Th...

  17. The influence of biomass burning on the global distribution of selected non-methane organic compounds

    OpenAIRE

    Lewis, A. C.; Evans, M J; J. R. Hopkins; S. Punjabi; Read, K A; R. M. Purvis; Andrews, S. J.; Moller, S. J.; Carpenter, L. J.; J. D. Lee; A. R. Rickard; Palmer, P. I.; M. Parrington

    2013-01-01

    Forests fires are a significant source of chemicals to the atmosphere including numerous non-methane organic compounds (NMOCs). We report airborne measurement of hydrocarbons, acetone and methanol from > 500 whole air samples collected over Eastern Canada, including interceptions of several different boreal biomass burning plumes. From these and concurrent measurements of carbon monoxide (CO) we derive fire emission ratios for 29 different organic species relative to the emission of CO. Th...

  18. Understorey fire frequency and the fate of burned forests in southern Amazonia

    OpenAIRE

    D. C. Morton; Le Page, Y.; DeFries, R.; G. J. Collatz; Hurtt, G. C.

    2013-01-01

    Recent drought events underscore the vulnerability of Amazon forests to understorey fires. The long-term impact of fires on biodiversity and forest carbon stocks depends on the frequency of fire damages and deforestation rates of burned forests. Here, we characterized the spatial and temporal dynamics of understorey fires (1999–2010) and deforestation (2001–2010) in southern Amazonia using new satellite-based estimates of annual fire activity (greater than 50 ha) and deforestation (greater th...

  19. Origin, variability and age of biomass burning plumes intercepted during BORTAS-B

    OpenAIRE

    D. P. Finch; Palmer, P.I.; M. Parrington

    2014-01-01

    We use the GEOS-Chem atmospheric chemistry transport model to interpret aircraft measurements of carbon monoxide (CO) in biomass burning outflow taken during the 2011 BORTAS-B campaign over eastern Canada. The model has some skill reproducing the observed variability, with a Spearman's rank correlation rs = 0.65, but has a positive negative bias for observations 300 ppb. We find that observed CO variations are largely due to fires over Ontario, as expected, with smaller an...

  20. Risk factors for mortality in burn children

    Directory of Open Access Journals (Sweden)

    Maria Teresa Rosanova

    2014-04-01

    Full Text Available Studies about risk factors for mortality in burn children are scarce. We conducted this study to evaluate the risk factors for mortality in pediatric burn patients. We included 110 patients. Mean age was 31.5 months (range: 1 to 204. The burn surface was between 1% and 95%(median 27% Type of burn was: A or superfitial in 39 patients (36%, AB or intermediate in 19 (17%, and B or full thickness in 52 (47%. Inhalatory injury was present in 52 patients (47%. Invasive procedures were: venous catheter, 90 patients (82%, arterial catheter, 83patients (75.5%, urinary catheter, 86 patients (78%, and mechanical ventilation, 75 patients (68%. In 84 patients, 128 infections were diagnosed. in 53 cases (48%. Multiresistant Pseudomonas aeruginosa and Acynetobacter baumannii were the most common organisms isolated. The median length of hospital stay was 33 days (r: 8-139 days. Seventeen patients (15% died and 14 of them of infection-related causes. Age 40% burn surface, presence of inhalatory syndrome, use of venous catheter, arterial catheter, urinary catheter and mechanical ventilation, positive blood cultures, colistin use in documented multiresistant infections, antifungal use and graft requirement, were identified as risks factors for mortality in the univariate analysis. By multivariate analysis: age <4 years, Garcés 4, colistin use in multiresistant infections, mechanical ventilation and graft requirement were independent variables related with mortality. CONCLUSIONS: In this series of burn children age < 4 years, Garces index score 4, colistin use in documented multiresistant infections, mechanical ventilation and graft requirement were identified as independent variables related with mortality.

  1. Addition agents effects on hydrocarbon fuels burning

    Science.gov (United States)

    Larionov, V. M.; Mitrofanov, G. A.; Sakhovskii, A. V.

    2016-01-01

    Literature review on addition agents effects on hydrocarbon fuels burning has been conducted. The impact results in flame pattern and burning velocity change, energy efficiency increase, environmentally harmful NOx and CO emission reduction and damping of self-oscillations in flow. An assumption about water molecules dissociation phenomenon existing in a number of practical applications and being neglected in most explanations for physical- chemical processes taking place in case of injection of water/steam into combustion zone has been noted. The hypothesis about necessity of water dissociation account has been proposed. It can be useful for low temperature combustion process control and NOx emission reduction.

  2. Control of a burning tokamak plasma

    Energy Technology Data Exchange (ETDEWEB)

    Burmeister, R.E.; Mandrekas, J.; Stacey, W.M.

    1993-03-01

    This report is a review of the literature relevant to the control of the thermonuclear burn in a tokamak plasma. Some basic tokamak phenomena are reviewed, and then control by modulation of auxiliary heating and fueling is discussed. Other possible control methods such as magnetic ripple, plasma compression, and impurity injection as well as more recent proposed methods such as divertor biasing and L- to H-mode transition are also reviewed. The applications of modern control theory to the tokamak burn control problem are presented. The control results are summarized and areas of further research are identified.

  3. Three-dimensional simulations of burning thermals

    Science.gov (United States)

    Aspden, Andy; Bell, John; Woosley, Stan

    2010-11-01

    Flame ignition in type Ia supernovae (SNe Ia) leads to isolated bubbles of burning buoyant fluid. As a bubble rises due to gravity, it becomes deformed by shear instabilities and transitions to a turbulent buoyant vortex ring. Morton, Taylor and Turner (1956) introduced the entrainment assumption, which can be applied to inert thermals. In this study, we use the entrainment assumption, suitably modified to account for burning, to predict the late-time asymptotic behaviour of these turbulent buoyant vortex rings in SNe Ia. The theory is validated against three- dimensional simulations with adaptive mesh refinement at effective resolutions up to 4096^3.

  4. Inflammatory pain in experimental burns in man

    DEFF Research Database (Denmark)

    Pedersen, J L

    2000-01-01

    Human experimental pain models are important tools in pain research. The primary aims of pain research in normal man is 1) to provide insight in pain mechanisms, 2) to provide a rational basis for clinical trials of pain relieving interventions, and 3) to confirm the anti-nociceptive effects...... inflammatory responses to superficial thermal burns in skin have been studied in healthy volunteers. Burns have the potential for releasing most of the inflammatory and chemical mediators that produce sensitisation and excitation of nociceptors, and the intense nociceptive input during injury produces...

  5. Nuclear fuel burn-up economy

    International Nuclear Information System (INIS)

    In the period 1981-1985, for the needs of Utility Organization, Beograd, and with the support of the Scientific Council of SR Srbija, work has been performed on the study entitled 'Nuclear Fuel Burn-up Economy'. The forst [phase, completed during the year 1983 comprised: comparative analysis of commercial NPP from the standpoint of nuclear fuel requirements; development of methods for fuel burn-up analysis; specification of elements concerning the nuclear fuel for the tender documentation. The present paper gives the short description of the purpose, content and results achieved in the up-to-now work on the study. (author)

  6. Burning Velocity Measurements in Aluminum-Air Suspensions using Bunsen Type Dust Flames

    Science.gov (United States)

    Lee, John; Goroshin, Samuel; Kolbe, Massimiliano

    2001-01-01

    Laminar burning velocity (sometimes also referred in literature as fundamental or normal flame propagation speed) is probably the most important combustion characteristic of the premixed combustible mixture. The majority of experimental data on burning velocities in gaseous mixtures was obtained with the help of the Bunsen conical flame. The Bunsen cone method was found to be sufficiently accurate for gaseous mixtures with burning velocities higher than 10-15 cm/s at normal pressure. Hans Cassel was the first to demonstrate that suspensions of micron-size solid fuel particles in a gaseous oxidizer can also form self-sustained Bunsen flames. He was able to stabilize Bunsen flames in a number of suspensions of different nonvolatile solid fuels (aluminum, carbon, and boron). Using the Bunsen cone method he estimated burning velocities in the premixed aluminum-air mixtures (particle size less than 10 microns) to be in the range of 30-40 cm/s. Cassel also found, that the burning velocity in dust clouds is a function of the burner diameter. In our recent work, we have used the Bunsen cone method to investigate dependence of burning velocity on dust concentration in fuel-rich aluminum dust clouds. Burning velocities in stoichiometric and fuel-rich aluminum dust suspensions with average particle sizes of about 5 microns were found to be in the range of 20-25 cm/s and largely independent on dust concentration. These results raise the question to what degree burning velocities derived from Bunsen flame specifically and other dust flame configurations in general, are indeed fundamental characteristics of the mixture and to what degree are they apparatus dependent. Dust flames in comparison to gas combustion, are thicker, may be influenced by radiation heat transfer in the flame front, respond differently to heat losses, and are fundamentally influenced by the particular flow configuration due to the particles inertia. Since characteristic spatial scales of dust flames are

  7. Increasing the utility of the Functional Assessment for Burns Score: Not just for major burns.

    Science.gov (United States)

    Smailes, Sarah T; Engelsman, Kayleen; Rodgers, Louise; Upson, Clara

    2016-02-01

    The Functional Assessment for Burns (FAB) score is established as an objective measure of physical function that predicts discharge outcome in adult patients with major burn. However, its validity in patients with minor and moderate burn is unknown. This is a multi-centre evaluation of the predictive validity of the FAB score for discharge outcome in adult inpatients with minor and moderate burns. FAB assessments were undertaken within 48h of admission to (FAB 1), and within 48h of discharge (FAB 2) from burn wards in 115 patients. Median age was 45 years and median burn size 4%. There were significant improvements in the patients' FAB scores (ppatients were discharged home (no social care) and 17 patients discharged to further inpatient rehabilitation or home with social care. FAB 1 score (≤14) is strongly associated with discharge to inpatient rehabilitation or home with social care (p=0.0001) and as such can be used to facilitate early discharge planning. FAB 2 (≤30) independently predicts discharge outcome to inpatient rehabilitation or home with social care (ppatients with minor and moderate burns. PMID:26508532

  8. Influence of fuel mass load, oxygen supply and burning rate on emission factor and size distribution of carbonaceous particulate matter from indoor corn straw burning

    Institute of Scientific and Technical Information of China (English)

    Guofeng Shen; Miao Xue; Siye Wei; Yuanchen Chen; Bin Wang; Rong Wang; Huizhong Shen

    2013-01-01

    The uncertainty in emission estimation is strongly associated with the variation in emission factor (EF),which could be influenced bya variety of factors such as fuel properties,stove type,fire management and even methods used in measurements.The impacts of thesefactors are complicated and often interact with each other.Controlled burning experiments were conducted to investigate the influencesof fuel mass load,air supply and burning rate on the emissions and size distributions of carbonaceous particulate matter (PM) fromindoor corn straw bunting in a cooking stove.The results showed that the EFs of PM (EFpM),organic carbon (EFoc) and elementalcarbon (EFEc) were independent of the fuel mass load.The differences among them under different burning rates or air supply amountswere also found to be insignificant (P > 0.05) in the tested circumstances.PM from the indoor corn straw burning was dominated byfine PM with diameter less than 2.1 μm,contributing 86.4% ± 3.9% of the total.The size distribution of PM was influenced by theburning rate and air supply conditions.On average,EFPM,EFoc and EFEC for corn straw burned in a residential cooking stove were(3.84 ± 1.02),(0.846 ± 0.895) and (0.391 ± 0.350) g/kg,respectively.EFPM,EFoc and EFEc were found to be positively correlatedwith each other (P < 0.05),but they were not significantly correlated with the EF of co-emitted CO,suggesting that special attentionshould be paid to the use of CO as a surrogate for other incomplete combustion pollutants.

  9. Molecular characterization of urban organic aerosol in tropical India: contributions of biomass/biofuel burning, plastic burning, and fossil fuel combustion

    Directory of Open Access Journals (Sweden)

    P. Q. Fu

    2009-10-01

    Full Text Available Organic molecular composition of PM10 samples, collected at Chennai in tropical India, was studied using capillary gas chromatography/mass spectrometry. Twelve organic compound classes were detected in the aerosols, including aliphatic lipids, sugar compounds, lignin products, terpenoid biomarkers, sterols, aromatic acids, phthalates, hopanes, and polycyclic aromatic hydrocarbons (PAHs. At daytime, phthalates was found to be the most abundant compound class; while at nighttime, fatty acids was the dominant one. Concentrations of total quantified organics were higher in summer (611–3268 ng m−3, average 1586 ng m−3 than in winter (362–2381 ng m−3, 1136 ng m−3, accounting for 11.5±1.93% and 9.35±1.77% of organic carbon mass in summer and winter, respectively. Di-(2-ethylhexyl phthalate, C16 fatty acid, and levoglucosan were identified as the most abundant single compounds. The nighttime maxima of most organics in the aerosols indicate a land/sea breeze effect in tropical India, although some other factors such as local emissions and long-range transport may also influence the composition of organic aerosols. The abundances of anhydrosugars (e.g., levoglucosan, lignin and resin products, hopanes and PAHs in the Chennai aerosols suggest that biomass burning and fossil fuel combustion are significant sources of organic aerosols in tropical India. Interestingly, terephthalic acid was maximized at nighttime, which is different from those of phthalic and isophthalic acids. A positive correlation was found between the concentration of 1,3,5-triphenylbenzene (a tracer for plastic burning and terephthalic acid, suggesting that field burning of municipal solid wastes including plastics is a significant source of terephthalic acid. This study demonstrates that, in addition to biomass burning and fossil fuel combustion, the open-burning of plastics also contributes to the organic

  10. Molecular characterization of urban organic aerosol in tropical India: contributions of biomass/biofuel burning, plastic burning, and fossil fuel combustion

    Science.gov (United States)

    Fu, P. Q.; Kawamura, K.; Pavuluri, C. M.; Swaminathan, T.

    2009-10-01

    Organic molecular composition of PM10 samples, collected at Chennai in tropical India, was studied using capillary gas chromatography/mass spectrometry. Twelve organic compound classes were detected in the aerosols, including aliphatic lipids, sugar compounds, lignin products, terpenoid biomarkers, sterols, aromatic acids, phthalates, hopanes, and polycyclic aromatic hydrocarbons (PAHs). At daytime, phthalates was found to be the most abundant compound class; while at nighttime, fatty acids was the dominant one. Concentrations of total quantified organics were higher in summer (611-3268 ng m-3, average 1586 ng m-3) than in winter (362-2381 ng m-3, 1136 ng m-3), accounting for 11.5±1.93% and 9.35±1.77% of organic carbon mass in summer and winter, respectively. Di-(2-ethylhexyl) phthalate, C16 fatty acid, and levoglucosan were identified as the most abundant single compounds. The nighttime maxima of most organics in the aerosols indicate a land/sea breeze effect in tropical India, although some other factors such as local emissions and long-range transport may also influence the composition of organic aerosols. The abundances of anhydrosugars (e.g., levoglucosan), lignin and resin products, hopanes and PAHs in the Chennai aerosols suggest that biomass burning and fossil fuel combustion are significant sources of organic aerosols in tropical India. Interestingly, terephthalic acid was maximized at nighttime, which is different from those of phthalic and isophthalic acids. A positive correlation was found between the concentration of 1,3,5-triphenylbenzene (a tracer for plastic burning) and terephthalic acid, suggesting that field burning of municipal solid wastes including plastics is a significant source of terephthalic acid. This study demonstrates that, in addition to biomass burning and fossil fuel combustion, the open-burning of plastics also contributes to the organic aerosols in South Asia.

  11. Diversity of the soil biota in burned areas of southern taiga forests (Tver oblast)

    Science.gov (United States)

    Gongalsky, K. B.; Zaitsev, A. S.; Korobushkin, D. I.; Saifutdinov, R. A.; Yazrikova, T. E.; Benediktova, A. I.; Gorbunova, A. Yu.; Gorshkova, I. A.; Butenko, K. O.; Kosina, N. V.; Lapygina, E. V.; Kuznetsova, D. M.; Rakhleeva, A. A.; Shakhab, S. V.

    2016-03-01

    Relations between soil biota diversity and its contribution to the performance of some ecosystem functions were assessed based on the results obtained in undisturbed and burned spruce forests near the Central Forest Nature Biosphere Reserve (Tver oblast). In August 2014, in two 4-year-old burned areas, abiotic parameters of the soils, indicators of the state of the microbial communities, the number, taxonomic diversity, and the abundance of the main groups of soil invertebrates (testate amoebae, nematodes, enchytraeids, mites, collembolans, and the mesofauna as a whole) were determined. In the soils of the burned areas, higher CO2, CH4, and N2O emissions were observed. The number of bacterial cells remained similar, and the total length of active mycelium was not significantly different. All this implies a certain intensification of biogenic processes promoting the mobilization of carbon and nitrogen after fire. The number of most of the groups of soil animals was lower (not always significantly) in the burned area than that in the soils of the undisturbed forests. The changes in the taxonomic diversity were specific for each taxon studied. Overall, the diversity of invertebrates was related to the litter thickness. However, the high taxonomic diversity of soil fauna did not always correspond to the active functioning of the ecosystem. Thus, for some taxa, a quite close correlation was found, for instance, between the total number of species (of testate amoebae in particular) and the berry crop, as well as between the soil mesofauna population and the dead wood stock. The total diversity of the investigated taxa included in the detrital trophic web was the most reliable indicator of the carbon stock in the burned areas.

  12. Trace elements in atmospheric aerosols from background regions and biomass burning from the Amazon Basin

    International Nuclear Information System (INIS)

    Aerosol particles from the tropical rain forest and from savannah biomass burning were collected in several experiments in the Amazon Basin. The size distribution of atmospheric trace elements was measured under both background and biomass burning conditions. Sampling from aircraft was performed over a large area of the Amazon Basin in August/September 1991. The aerosol mass concentration, black carbon and trace element concentrations were determined for fine and coarse aerosol particles. Particle induced X ray emission (PIXE) was used to measure the concentrations of up to 22 elements: Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Zr and Pb. During the dry season, when most of the biomass burning occurs, the concentration of inhalable particles exceeds 300 μg/m3 in regions far from the direct influence of emissions from biomass burning. Large amounts of fine particles are injected into the atmosphere, where they can travel over long distances. These particles are rich in K, P, S, Ca, Mg, Cl, Si, Zn, Rb, Sr, Zr and other trace elements. The emissions of trace elements and heavy metals into the global atmosphere owing to biomass burning are very significant, but are currently not considered in global atmospheric heavy metal inventories. Several essential nutrients, such as P, K, S and others, are transported into the atmosphere as a result of biomass burning processes. Most of the particles are water soluble and can be active as cloud condensation nuclei, with the potential to change the cloud formation mechanisms in the Amazon Basin and other regions of the planet. 22 refs, 5 figs, 1 tab

  13. Burn injuries in eastern Zambia: impact of multidisciplinary teaching teams.

    Science.gov (United States)

    Edwards, Dianna; Heard, Jason; Latenser, Barbara A; Quinn, Keely Y; van Bruggen, Jaap; Jovic, Goran

    2011-01-01

    The American Burn Association/Children's Burn Foundation (ABA/CBF) sponsors teams who offer burn education to healthcare providers in Zambia, a sub-Saharan country. The goals of this study are 1) to acquire burn-patient demographics for the Eastern Province, Zambia and 2) to assess the early impact of the ABA/CBF-sponsored burn teams. This is a retrospective chart review of burn patients admitted in one mission hospital in Katete, Zambia, July 2002 to June 2009. July 2002 to December 2006 = data before ABA/CBF burn teams and January 2007 to June 2009 = burn care data during/after burn outreach. There were 510 burn patients hospitalized, male:female ratio 1.2:1. Average age = 15.6 years, with 44% younger than 5 years. Average TBSA burned = 11% and mean fatal TBSA = 25%. Average hospital length of stay = 16.9 days survivors and 11.6 days nonsurvivors. Most common mechanisms of burn injuries: flame (52%) and scald (41%). Ninety-two patients (18%) died and 23 (4.5%) left against medical advice. There were 191 (37.4%) patients who underwent 410 surgical procedures (range 1-13/patient). There were 138 (33.7%) sloughectomies, 118 (28.7%) skin grafts, 39 (9.5%) amputations, and 115 (28.1%) other procedures. Changes noted in the 2007 to 2009 time period: more patients had burn diagrams (48.6 vs 27.6%, P set for a sub-Saharan region in Africa. There has been a statistically significant improvement in documentation of burn size as well as administration of analgesics, validating the efficacy of the ABA/CBF-sponsored burn teams. Continued contact with burn teams may lead to increased use of resuscitation fluids, topical antimicrobials, and more patients undergoing operative intervention, translating into improved burn patient outcomes. PMID:21131848

  14. Pain insensitivity syndrome misinterpreted as inflicted burns.

    Science.gov (United States)

    van den Bosch, Gerbrich E; Baartmans, Martin G A; Vos, Paul; Dokter, Jan; White, Tonya; Tibboel, Dick

    2014-05-01

    We present a case study of a 10-year-old child with severe burns that were misinterpreted as inflicted burns. Because of multiple injuries since early life, the family was under suspicion of child abuse and therefore under supervision of the Child Care Board for 2 years before the boy was burned. Because the boy incurred the burns without feeling pain, we conducted a thorough medical examination and laboratory testing, evaluated detection and pain thresholds, and used MRI to study brain morphology and brain activation patterns during pain between this patient and 3 healthy age- and gender-matched controls. We found elevated detection and pain thresholds and lower brain activation during pain in the patient compared with the healthy controls and reference values. The patient received the diagnosis of hereditary sensory and autonomic neuropathy type IV on the basis of clinical findings and the laboratory testing, complemented with the altered pain and detection thresholds and MRI findings. Hereditary sensory and autonomic neuropathy IV is a very rare congenital pain insensitivity syndrome characterized by the absence of pain and temperature sensation combined with oral mutilation due to unawareness, fractures, and anhidrosis caused by abnormalities in the peripheral nerves. Health care workers should be aware of the potential presence of this disease to prevent false accusations of child abuse. PMID:24733875

  15. Reclaiming body image: the hidden burn.

    Science.gov (United States)

    Willis-Helmich, J J

    1992-01-01

    At the age of 4, I incurred a major burn injury that left 45% of my body with permanent scars. Normal clothing covers most of the scars. I was able to reclaim a positive body image through a gradual process of verbal and "body" disclosure. As an adult, I joined a burn survivors' self-help group; as a result of talking with other burn survivors, my self expectations increased. Later, I joined a facilitated group in which nudity and personal growth were the norm. In this group, I was the only person who had experienced a major physical trauma. I replaced my strongly held beliefs that others could not accept my unclothed, burn-injured body with the belief that some persons can, and I came to a personal understanding of why others could not. Fun, exercise, and relaxation led to a reclamation of positive feelings about my unclothed body and allowed my femininity and the character of my body image to emerge and become integrated. PMID:1572860

  16. Pathogenic alteration in severe burn wounds.

    Science.gov (United States)

    Fu, Yang; Xie, Bing; Ben, DaoFeng; Lv, KaiYang; Zhu, ShiHui; Lu, Wei; Tang, HongTai; Cheng, DaSheng; Ma, Bing; Wang, GuangYi; Xiao, ShiChu; Wang, GuangQing; Xia, ZhaoFan

    2012-02-01

    The present study aims to define the trend of time related changes with local bacterial alteration of bacterial resistance in severe burns in our burn center during a 12-year period. Retrospective analysis of microbiological results on severely burned wounds between 1998 and 2009 was carried out. A study of 3615 microbial isolates was performed. Staphylococcus aureus was the most commonly isolated pathogen (38.2%) followed by A. baumannii (16.2%), Streptococcus viridans (11.4%), Pseudomonas aeruginosa (10.4%), coagulase-negative staphylococci (CNS, 9.2%). The species ratios of S. aureus and A. baumannii increased significantly from 1st to 8th week of hospitalization, while those of Streptococcus viridans, P. aeruginosa and coagulase-negative staphylococci decreased during the same period. Bacterial resistance rates were compared between the periods 1998-2003 and 2004-2009. Vancomycin remained as the most sensitive antibiotic in S. aureus including methicillin-resistant S. aureus (MRSA). It was very likely that the majority of infections caused by Streptococcus viridans, P. aeruginosa and coagulase-negative staphylococci occurred in the early stage of burn course and the majority of infections caused by A. baumannii occurred 4 weeks after admission. The use of different antibiotics was probably the major contributor to these trends. PMID:22100426

  17. Peculiar Features of Burning Alternative Motor Fuels

    Directory of Open Access Journals (Sweden)

    M. Assad

    2006-01-01

    Full Text Available Some peculiar features of air-hydrogen mixture combustion process in a modeling combustion chamber are given in the paper. Dependences of burning duration of various fuel types on initial pressure have been obtained. The paper considers dynamics of changes in pressure and ignition rate of some fuel types in the combustion chamber.

  18. Protect the Ones You Love From Burns

    Centers for Disease Control (CDC) Podcasts

    2008-12-10

    This podcast, developed as part of the Protect the Ones You Love initiative, discusses steps parents can take to help protect their children from burns, one of the leading causes of child injury.  Created: 12/10/2008 by National Center for Injury Prevention and Control (NCIPC).   Date Released: 12/10/2008.

  19. Diffusive Nuclear Burning on Neutron Star Envelopes

    CERN Document Server

    Chang, P

    2003-01-01

    We calculate the rate of hydrogen burning for neutron stars (NSs) with hydrogen atmospheres and an underlying reservoir of nuclei capable of proton capture. This burning occurs in the exponentially suppressed diffusive tail of H that extends to the hotter depths of the envelope where protons are rapidly captured. This process, which we call diffusive nuclear burning (DNB), can change the H abundance at the NS photosphere on timescales as short as $10^{2-4}$ years. In the absence of diffusion, the hydrogen at the photosphere (where $T\\approx 10^6 {\\rm K}$ and $\\rho\\sim 0.1 {\\rm g cm^{-2}}$) would last for far longer than a Hubble time. Our work impacts the understanding of the evolution of surface abundances of isolated NSs, which is important to their thermal spectrum and their effective temperature-core temperature relation. In this paper, we calculate the rate of H burning when the overall consumption rate is controlled by the nuclear timescales, rather than diffusion timescales. The immediate application i...

  20. Analysis of antibiotic consumption in burn patients.

    Science.gov (United States)

    Soleymanzadeh-Moghadam, Somayeh; Azimi, Leila; Amani, Laleh; Rastegar Lari, Aida; Alinejad, Faranak; Rastegar Lari, Abdolaziz

    2015-01-01

    Infection control is very important in burn care units, because burn wound infection is one of the main causes of morbidity and mortality among burn patients. Thus, the appropriate prescription of antibiotics can be helpful, but unreasonable prescription can have detrimental consequences, including greater expenses to patients and community alike. The aim of this study was to determine the effect of antibiotic therapy on the emergence of antibiotic-resistant bacteria. 525 strains of Pseudomonas aeruginosa, Acinetobacter baumannii and Staphylococcus aureus were isolated from 335 hospitalized burn patients. Antibiotic susceptibility tests were performed after identification the strains. The records of patients were audited to find the antibiotic used. The results indicated that P. aeruginosa is the most prevalent Gram-negative bacteria. Further, it showed a relation between abuse of antibiotics and emergence of antibiotic resistance. Control of resistance to antibiotics by appropriate prescription practices not only facilitates prevention of infection caused by multi-drug resistant (MDR) microorganisms, but it can also decrease the cost of treatment. PMID:26124986

  1. Analysis of antibiotic consumption in burn patients

    Directory of Open Access Journals (Sweden)

    Soleymanzadeh-Moghadam, Somayeh

    2015-06-01

    Full Text Available Infection control is very important in burn care units, because burn wound infection is one of the main causes of morbidity and mortality among burn patients. Thus, the appropriate prescription of antibiotics can be helpful, but unreasonable prescription can have detrimental consequences, including greater expenses to patients and community alike. The aim of this study was to determine the effect of antibiotic therapy on the emergence of antibiotic-resistant bacteria. 525 strains of and were isolated from 335 hospitalized burn patients. Antibiotic susceptibility tests were performed after identification the strains. The records of patients were audited to find the antibiotic used.The results indicated that is the most prevalent Gram-negative bacteria. Further, it showed a relation between abuse of antibiotics and emergence of antibiotic resistance. Control of resistance to antibiotics by appropriate prescription practices not only facilitates prevention of infection caused by multi-drug resistant (MDR microorganisms, but it can also decrease the cost of treatment.

  2. Medical management of radiation burns - some experiences

    International Nuclear Information System (INIS)

    Localized exposure resulting in radiation burns are serious injuries, seen not only in this country but all over the world. All of these injuries have resulted from accidents in Industrial Radiography (non-destructive testing). In our country all these injuries have occurred in the private sectors who handle these radiography sources. These sources can be of Iridium-192 or Cobalt-60. Some of these accidents have occurred involving trained radiographers but sometimes casual workers have been exposed. Skin is highly vulnerable to the external radiation exposure. Damage of varying extent can be seen following radiotherapy and accidents involving X- and gamma-ray sources. The reaction is related to the absorbed dose, which in turn is dependent upon the energy of radiation and weather it is particulate or electromagnetic radiation. Beta particles give up their energy within a short range and hence are more hazardous. Radiation burns develop slowly and blister formation occurs usually after 4 weeks. After exposure the skin response occurs in the form of transient erythema, fixed erythema, transepidermal burns, full thickness radiation burns and epilation. In radiation accidents, particularly those involving X-ray machines, the patients may not be aware of the time of accident and the dose may not be known in those circumstances. The medical management and treatment of such patients, therefore, has its own challenges. This talk will share some experiences on treatment of radiation injuries. (author)

  3. Accidental radioisotope burns - Management of late sequelae

    Directory of Open Access Journals (Sweden)

    Varghese Bipin

    2010-10-01

    Full Text Available Accidental radioisotope burns are rare. The major components of radiation injury are burns, interstitial pneumonitis, acute bone marrow suppression, acute renal failure and adult respiratory distress syndrome. Radiation burns, though localized in distribution, have systemic effects, and can be extremely difficult to heal, even after multiple surgeries. In a 25 year old male who sustained such trauma by accidental industrial exposure to Iridium192 the early presentation involved recurrent haematemesis, pancytopenia and bone marrow suppression. After three weeks he developed burns in contact areas in the left hand, left side of the chest, abdomen and right inguinal region. All except the inguinal wound healed spontaneously but the former became a non-healing ulcer. Pancytopenia and bone marrow depression followed. He was treated with morphine and NSAIDs, epidural buprinorphine and bupivicaine for pain relief, steroids, antibiotics followed by wound excision and reconstruction with tensor fascia lata(TFL flap. Patient had breakdown of abdominal scar later and it was excised with 0.5 cm margins up to the underlying muscle and the wound was covered by a latissimis dorsi flap. Further scar break down and recurrent ulcers occurred at different sites including left wrist, left thumb and right heel in the next two years which needed multiple surgical interventions.

  4. Burning mouth syndrome: a review and update.

    Science.gov (United States)

    Silvestre, Francisco J; Silvestre-Rangil, Javier; López-Jornet, Pía

    2015-05-16

    Burning mouth syndrome (BMS) is mainly found in middle aged or elderly women and is characterized by intense burning or itching sensation of the tongue or other regions of the oral mucosa. It can be accompanied by xerostomia and dysgeusia. The syndrome generally manifests spontaneously, and the discomfort is typically of a continuous nature but increases in intensity during the evening and at night. Although BMS classically has been attributed to a range of factors, in recent years evidence has been obtained relating it peripheral (sensory C and/or trigeminal nerve fibers) or central neuropathic disturbances (involving the nigrostriatal dopaminergic system). The differential diagnosis requires the exclusion of oral mucosal lesions or blood test alterations that can produce burning mouth sensation. Patient management is based on the avoidance of causes of oral irritation and the provision of psychological support. Drug treatment for burning sensation in primary BMS of peripheral origin can consist of topical clonazepam, while central type BMS appears to improve with the use of antidepressants such as duloxetine, antiseizure drugs such as gabapentin, or amisulpride. PMID:25952601

  5. Reactive burn models and ignition & growth concept

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph S [Los Alamos National Laboratory; Shaw, Milton S [Los Alamos National Laboratory

    2010-01-01

    Plastic-bonded explosives are heterogeneous materials. Experimentally, shock initiation is sensitive to small amounts of porosity, due to the formation of hot spots (small localized regions of high temperature). This leads to the Ignition and Growth concept, introduced by Lee and Tarver in 1980, as the basis for reactive burn models. A homogeneized burn rate needs to account for three mesoscale physical effects (i) the density of burnt hot spots, which depends on the lead shock strength; (ii) the growth of the burn fronts triggered by hot spots, which depends on the local deflagration speed; (iii) a geometric factor that accounts for the overlap of deflagration wavelets from adjacent hot spots. These effects can be combined and the burn model defined by specifying the reaction progress variable {lambda}(t) as a function of a dimensionless reaction length {tau}{sub hs}(t)/{ell}{sub hs}, rather than by xpecifying an explicit burn rate. The length scale {ell}{sub hs} is the average distance between hot spots, which is proportional to [N{sub hs}(P{sub s})]{sup -1/3}, where N{sub hs} is the number density of hot spots activated by the lead shock. The reaction length {tau}{sub hs}(t) = {line_integral}{sub 0}{sup t} D(P(t'))dt' is the distance the burn front propagates from a single hot spot, where D is the deflagration speed and t is the time since the shock arrival. A key implementation issue is how to determine the lead shock strength in conjunction with a shock capturing scheme. They have developed a robust algorithm for this purpose based on the Hugoniot jump condition for the energy. The algorithm utilizes the time dependence of density, pressure and energy within each cell. The method is independent of the numerical dissipation used for shock capturing. It is local and can be used in one or more space dimensions. The burn model has a small number of parameters which can be calibrated to fit velocity gauge data from shock initiation experiments.

  6. The contributions of biomass burning to primary and secondary organics: A case study in Pearl River Delta (PRD), China.

    Science.gov (United States)

    Wang, BaoLin; Liu, Ying; Shao, Min; Lu, SiHua; Wang, Ming; Yuan, Bin; Gong, ZhaoHeng; He, LingYan; Zeng, LiMin; Hu, Min; Zhang, YuanHang

    2016-11-01

    Synchronized online measurements of gas- and particle- phase organics including non-methane hydrocarbons (NMHCs), oxygenated volatile organic compounds (OVOCs) and submicron organic matters (OM) were conducted in November 2010 at Heshan, Guangdong provincial supersite, China. Several biomass burning events were identified by using acetonitrile as a tracer, and enhancement ratios (EnRs) of organics to carbon monoxide (CO) obtained from this work generally agree with those from rice straw burning in previous studies. The influences of biomass burning on NMHCs, OVOCs and OM were explored by comparing biomass burning impacted plumes (BB plumes) and non-biomass burning plumes (non-BB plumes). A photochemical age-based parameterization method was used to characterize primary emission and chemical behavior of those three organic groups. The emission ratios (EmRs) of NMHCs, OVOCs and OM to CO increased by 27-71%, 34-55% and 67% in BB plumes, respectively, in comparison with non-BB plumes. The estimated formation rate of secondary organic aerosol (SOA) in BB plumes was found to be 24% faster than non-BB plumes. By applying the above emission ratios to the whole PRD, the annual emissions of VOCs and OM from open burning of crop residues would be 56.4 and 3.8Gg in 2010 in PRD, respectively. PMID:27371770

  7. Impact of biomass burning on haze pollution in the Yangtze River delta, China: a case study in summer 2011

    Science.gov (United States)

    Cheng, Z.; Wang, S.; Fu, X.; Watson, J. G.; Jiang, J.; Fu, Q.; Chen, C.; Xu, B.; Yu, J.; Chow, J. C.; Hao, J.

    2014-05-01

    Open biomass burning is an important source of air pollution in China and globally. Joint observations of air pollution were conducted in five cities (Shanghai, Hangzhou, Ningbo, Suzhou and Nanjing) of the Yangtze River delta, and a heavy haze episode with visibility 2.9-9.8 km was observed from 28 May to 6 June 2011. The contribution of biomass burning was quantified using both ambient monitoring data and the WRF/CMAQ (Weather Research and Forecasting (WRF) and Community Multiscale Air Quality (CMAQ)) model simulation. It was found that the average and maximum daily PM2.5 concentrations during the episode were 82 and 144 μgm-3, respectively. Weather pattern analysis indicated that stagnation enhanced the accumulation of air pollutants, while the following precipitation event scavenged the pollution. Mixing depth during the stagnant period was 240-399 m. Estimation based on observation data and CMAQ model simulation indicated that biomass open burning contributed 37% of PM2.5, 70% of organic carbon and 61% of elemental carbon. Satellite-detected fire spots, back-trajectory analysis and air quality model simulation were integrated to identify the locations where the biomass was burned and the pollutants transport. The results suggested that the impact of biomass open burning is regional, due to the substantial inter-province transport of air pollutants. PM2.5 exposure level could be reduced 47% for the YRD region if complete biomass burning is forbidden and significant health benefit is expected. These findings could improve the understanding of heavy haze pollution, and suggest the need to ban open biomass burning during post-harvest seasons.

  8. Burn Pre-Approval Area, Geographic NAD83, LOSCO (2000) [burn_preapproval_area_LOSCO_2000

    Data.gov (United States)

    Louisiana Geographic Information Center — This is a region dataset delineating the areas of offshore Louisiana having Regional Response Team VI (RRT 6) pre-approval for the use of in-situ burning, according...

  9. Ultrasonic pulse-echo determination of burn depth in partial-thickness burns

    International Nuclear Information System (INIS)

    A number of possible techniques for measuring burn depth were considered, and it was concluded that high-frequency ultrasound offers the best possibility for investigation of burn injury. A conventional ultrasonic pulse-echo system was assembled and modified so that small distances in tissue (less than or equal to 1 mm) can be resolved. Typical transducers used during the course of measurements on human and porcine skin are described. Ultimate success of the ultrasonic technique is dependent on the validity of the assumption that the acoustic impedance of necrotic burn tissue is sufficiently different from that of viable tissue to allow for ultrasonic reflections at the interface between burned and viable tissue. In general, this assumption seems to have been valid in animal and human experiments carried out to date

  10. Solar burn reactivation induced by methotrexate.

    Science.gov (United States)

    DeVore, Kelli J

    2010-04-01

    Solar burn reactivation, a rare and idiosyncratic drug reaction, has been reported with the use of a variety of drugs. This reaction is believed to be the result of exposure to ultraviolet light during the subsiding phase of an acute inflammatory reaction. It affects areas of the body that have been previously sunburned. We describe a 16-year-old girl who was receiving treatment for acute lymphoblastic leukemia and experienced a second-degree solar burn reactivation reaction to methotrexate. The patient had a mild sunburn on her face and shoulders the day she went to the oncology clinic for her interim maintenance chemotherapy with vincristine 1.5 mg/m(2)/dose and methotrexate 100 mg/m(2)/dose. Three days later, she returned to the clinic with a 2-day history of fever (solar burn reactivation reaction. She was admitted to the children's hospital and treated with sodium bicarbonate, acetaminophen with codeine, ondansetron, and silvadene cream. On hospital day 3, the patient's methotrexate level decreased to less than 0.1 mM. The sunburn continued to heal, and after a 14-day hospital stay, complicated by a streptococcal infection, grade 3 mucositis, bacteremia, and mild gastritis and duodenitis, the patient recovered and was discharged. Use of the Naranjo adverse drug reaction probability scale indicated a probable relationship (score of 6) between the patient's solar burn reactivation and methotrexate. Although methotrexate-induced solar burn reactivation is rare, clinicians should be aware of this potential adverse reaction and consider delaying administration of methotrexate by 5-7 days if a patient reports ultraviolet-related erythema in the past 2-4 days or presents with a notable sunburn. PMID:20334462

  11. Methoxyphenols in smoke from biomass burning

    Energy Technology Data Exchange (ETDEWEB)

    Kjaellstrand, J.

    2000-07-01

    Wood and other forest plant materials were burned in laboratory experiments with the ambition to simulate the natural burning course in a fireplace or a forest fire. Smoke samples were taken and analysed with respect to methoxyphenols, using gas chromatography and mass spectrometry. Different kinds of bio pellets, intended for residential heating were studied in the same way. The aim of a first study was to establish analytical data to facilitate further research. Thirty-six specific methoxyphenols were identified, and gas chromatographic retention and mass spectrometric data were determined for these. In a subsequent study, the methoxyphenol emissions from the burning of wood and other forest plant materials were investigated. Proportions and concentrations of specific methoxyphenols were determined. Methoxyphenols and anhydrosugars, formed from the decomposition of lignin and cellulose respectively, were the most prominent semi-volatile compounds in the biomass smoke. The methoxyphenol compositions reflected the lignin structures of different plant materials. Softwood smoke contained almost only 2-methoxyphenols, while hardwood smoke contained both 2-methoxyphenols and 2,6-dimethoxyphenols. The methoxyphenols in smoke from pellets, made of sawdust, bark and lignin, reflected the source of biomass. Although smoke from incompletely burned wood contains mainly methoxyphenols and anhydrosugars, there is also a smaller amount of well-known hazardous compounds present. The methoxyphenols are antioxidants. They appear mainly condensed on particles and are presumed to be inhaled together with other smoke components. As antioxidants, phenols interrupt free radical chain reactions and possibly counteract the effect of hazardous smoke components. Health hazards of small-scale wood burning should be re-evaluated considering antioxidant effects of the methoxyphenols.

  12. PCDD AND PCDF EMISSIONS FROM SIMULATED SUGARCANE FIELD BURNING

    Science.gov (United States)

    The emissions from simulated sugarcane field burns were sampled and analyzed for polychlorinated dibenzodioxins and dibenzofurans (PCDDs and PCDFs). Sugarcane leaves from Hawaii and Florida were burned in a manner simulating the natural physical dimensions and biomass density fou...

  13. Burn Prevention for Families with Children with Special Needs

    Medline Plus

    Full Text Available ... Safety Tips Get Involved Giving Donate Safety Tips Age ... this video to learn what you need to know about burn prevention if you have a child with special needs. Read our burn prevention tips | ...

  14. 1980 Prescribed Burning Progam: Union Slough National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document outlines a prescribed burning program for Union Slough National Wildlife Refuge. The following information is provided; names of burn units,...

  15. Characterization of burn injuries using terahertz time-domain spectroscopy

    Science.gov (United States)

    Arbab, M. Hassan; Dickey, Trevor C.; Winebrenner, Dale P.; Chen, Antao; Mourad, Pierre D.

    2011-03-01

    The accuracy rates of the clinical assessment techniques used in grading burn injuries remain significantly low for partial thickness burns. In this paper, we present experimental results from terahertz characterization of 2nd and 3rd degree burn wounds induced on a rat model. Reflection measurements were obtained from the surface of both burned and normal skin using pulsed terahertz spectroscopy. Signal processing techniques are described for interpretation of the acquired terahertz waveform and differentiation of burn wounds. Furthermore, the progression of burn injuries is shown by comparison between acute characterization and 72-hours survival studies. While the water content of healthy and desiccated skin has been considered as a source of terahertz signal contrast, it is demonstrated that other biological effects such as formation of post-burn interstitial edema as well as the density of the discrete scattering structures in the skin (such as hair follicles, sweat glands, etc.) play a significant role in the terahertz response of the burn wounds.

  16. Etiology of Burn Injuries Among 0-6 Aged Children in One University Hospital Burn Unit, Bursa, Turkey

    Directory of Open Access Journals (Sweden)

    Neriman Akansel

    2013-01-01

    Full Text Available Background; Children whose verbal communications are not fully developed are the ones at risk for burn injuries. Causes of burn injuries vary among different age groups and scald injuries are the common cause of burn injuries among children. The majority of burns result from contact with thermal agents such as flame, hot surfaces, or hot liquids.Aim: The aim of this study was to determine etiologic factors of the burn injured children Methods: Data were collected for burn injured children treated in Uludag University Medical Hospital Burn Unit between January 2001 – December 2008. Patients’ demographic variables, etiology of burn injury, TBSA(total body surface area, degree of the burn injury, duration of hospitalization was detected from medical records of the hospitalized patients.Results: The mean age of the children was 2.5±1.5 (median=2. Although 4.6 % of burned patients were under one year of age, most of the children (67.8% were between 1-3 years. All of the patients were burned as a result of accident and house environment was the place where the burn incident occurred. Burn injuries occurredmostly during summer (29.9% and spring (28.7%. Scald injuries (75.3% were mostly seen burn injury types all among other burn injuries.Conclusions: Lack of supervision and observation are usually the most common causes of burn injuries in children. Statistical differences were found among age groups according to their burn etiology (p<0.05. An effect of TBSA on patient survival was statistically significant (p<0.000 and also statistically significant results were seen among age groups according to their TBSA’s (p<0.005.

  17. The leading causes of death after burn injury in a single pediatric burn center

    OpenAIRE

    Williams, Felicia N.; Herndon, David N; Hawkins, Hal K.; Lee, Jong O; Cox, Robert A.; Kulp, Gabriela A; Finnerty, Celeste C.; Chinkes, David L.; Jeschke, Marc G.

    2009-01-01

    Introduction Severe thermal injury is characterized by profound morbidity and mortality. Advances in burn and critical care, including early excision and grafting, aggressive resuscitation and advances in antimicrobial therapy have made substantial contributions to decrease morbidity and mortality. Despite these advances, death still occurs. Our aim was to determine the predominant causes of death in burned pediatric patients in order to develop new treatment avenues and future trajectories a...

  18. Covering techniques for severe burn treatment: lessons for radiological burn accidents

    International Nuclear Information System (INIS)

    Covering techniques for severe burn treatment: lessons for radiological burn accidents. After a severe burn, the injured person is weakened by a risk of infection and a general inflammation. The necrotic tissues have to be removed because they are toxic for the organism. The injured person also needs to be covered by a cutaneous envelope, which has to be done by a treatment centre for burned people. The different techniques are the following: - auto grafts on limited burned areas; - cutaneous substitutes to cover temporary extended burned areas. Among them: natural substitutes like xenografts (pork skin, sheep skin,..) or allografts (human skin), - treated natural substitutes which only maintain the extracellular matrix. Artificial skins belong to this category and allow the development of high quality scars, - cell cultures in the laboratory: multiplying the individual cells and grafting them onto the patient. This technique is not common but allows one to heal severely injured patients. X-ray burns are still a problem. Their characteristics are analysed: intensive, permanent, antalgic resistant pain. They are difficult to compare with heat burns. In spite of a small number of known cases, we can give some comments and guidance on radio necrosis cures: the importance of the patients comfort, of ending the pain, of preventing infection, and nutritional balance. At the level of epidermic inflammation and phlyctena (skin blisters), the treatment may be completed by the use of growth factors. At the level of necrosis, after a temporary cover, an auto graft can be considered only if a healthy basis is guaranteed. The use of cellular cultures in order to obtain harmonious growth factors can be argued. (author)

  19. Deciding Where to Burn: Stakeholder Priorities for Prescribed Burning of a Fire-Dependent Ecosystem

    OpenAIRE

    Aaron Moody; Jennifer K. Costanza

    2011-01-01

    Multiagency partnerships increasingly work cooperatively to plan and implement fire management. The stakeholders that comprise such partnerships differ in their perceptions of the benefits and risks of fire use or nonuse. These differences inform how different stakeholders prioritize sites for burning, constrain prescribed burning, and how they rationalize these priorities and constraints. Using a survey of individuals involved in the planning and implementation of prescribed fire in the Onsl...

  20. Cytokine expression profile over time in burned mice

    OpenAIRE

    Finnerty, Celeste C.; Przkora, Rene; Herndon, David N; Jeschke, Marc G.

    2008-01-01

    The persistent inflammatory response induced by a severe burn increases patient susceptibility to infections and sepsis, potentially leading to multi-organ failure and death. In order to use murine models to develop interventions that modulate the post-burn inflammatory response, the response in mice and the similarities to the human response must first be determined. Here we present the temporal serum cytokine expression profiles in burned in comparison to sham mice and human burn patients. ...

  1. From Cholera to Burns: A Role for Oral Rehydration Therapy

    OpenAIRE

    Milner, S. M.; Green, W.B.; Asuku, M.E.; M. Feldman; Makam, R.; Noppenberger, D; Price, L A; Prosciak, M.; van Loon, I.N.

    2011-01-01

    According to the practice guidelines of the American Burn Association on burn shock resuscitation, intravenous (IV) fluid therapy is the standard of care for the replacement of fluid and electrolyte losses in burn injury of ≥20% of the total body surface area. However, in mass burn casualties, IV fluid resuscitation may be delayed or unavailable. Oral rehydration therapy (ORT), which has been shown to be highly effective in the treatment of dehydration in epidemics of cholera, could be an alt...

  2. CASE REPORT Playing Football Burns More Than Just Calories

    OpenAIRE

    Wain, Richard A. J.; Shah, Syed H. A.

    2010-01-01

    Objective: To highlight the case of a sports-related alkali burn due to a common household chemical and emphasize the importance of a detailed medical history in chemical burns patients. Methods: A single-patient case study is presented along with references from existing literature. Results: Alkaline burn injuries associated with sports have previously been described in the literature; however, this case demonstrates an unusual presentation of a chemical burn with a readily available househo...

  3. Optimizing advanced liquid metal reactors for burning actinides

    International Nuclear Information System (INIS)

    In this report, the process to design an Advanced Liquid Metal Reactor (ALMR) for burning the transuranic part of nuclear waste is discussed. The influence of design parameters on ALMR burner performance is studied and the results are incorporated in a design schedule for optimizing ALMRs for burning transuranics. This schedule is used to design a metallic and an oxide fueled ALMR burner to burn as much as possible transurancis. The two designs burn equally well. (orig.)

  4. Bacteremia in burned patients admitted to Sina Hospital, Tabriz, Iran

    OpenAIRE

    Parviz Saleh; Hamid Noshad

    2014-01-01

    Introduction: One of the most important causes of mortality and morbidity in burn wards is infection, and it is the major reason of death in burn injuries. There are several reasons that make burn victims predisposed to infection. The current study aimed to investigate the role of different factors that have an effect on bacteremia occurrence in burn patients and factors which are relevant to mortality in these patients. Methods: This descriptive-analytic study conducted in a 1...

  5. Psychological Aspects of Paediatric Burns (A Clinical Review)

    OpenAIRE

    A Sousa

    2010-01-01

    Burn injuries in childhood can be traumatic with lasting effects until adulthood. This article reviews the various psychological issues one confronts when treating paediatric patients with burn injuries. A wide range of factors influence recovery and rehabilitation from paediatric burns. The role of family members, family dynamics, parental reactions, parental psychiatric illness, and pre-morbid psychiatric illness in the child are important factors. The entire family and the burned child hav...

  6. Epidemiologic Characteristics of Occupational Burns in Yazd, Iran

    OpenAIRE

    Seyyed Jalil Mirmohammadi; Amir Houshang Mehrparvar; Kazem Kazemeini; Mehrdad Mostaghaci

    2013-01-01

    Objective: Occupational burns are among the important causes of work-related fatalities and absenteeism. Epidemiologic assessment of these injuries is important to define high-risk jobs. We designed this study to evaluate the epidemiology of occupational burns in Yazd, an industrial province in Iran. Methods: This is a prospective study on work-related burns in a 1-year period (2008-2009). A questionnaire was completed for them about the characteristics of the burn injury. Results: Th...

  7. [Prevention and treatment strategy for burn wound sepsis in children].

    Science.gov (United States)

    Niu, Xihua; Li, Xiaoling

    2016-02-01

    Wound sepsis is one of the main causes of death in patients with severe burn and trauma. The high incidence of burn wound sepsis in children is attributed to their imperfect immune system function, poor resistance against infection, and the weakened skin barrier function after burn. The key to reduce the mortality of pediatric patients with burn wound sepsis is to enhance the understanding of its etiology, epidemiology, pathogenesis, and diagnostic criteria, in order to improve its early diagnosis and treatment. PMID:26902271

  8. Posttraumatic Stress and Cognitive Processes in Patients with Burns

    OpenAIRE

    Sveen, Josefin

    2011-01-01

    A severe burn is one of the most traumatic injuries a person can experience. Posttraumatic stress disorder (PTSD) is relatively common after burns, and can be devastating for the individual’s possibilities for recovery. The principal aims were to gain knowledge regarding posttraumatic stress symptoms and cognitive processes after burn and to evaluate methods for assessing symptoms of PTSD up to one year after burn. The psychometric properties of a Swedish version of the Impact of Event Scale-...

  9. Modalities for the Assessment of Burn Wound Depth

    OpenAIRE

    Devgan, Lara; Bhat, Satyanarayan; Aylward, S.; Spence, Robert J.

    2006-01-01

    Objective: Burn wound depth is a significant determinant of patient treatment and morbidity. While superficial partial-thickness burns generally heal by re-epithelialization with minimal scarring, deeper wounds can form hypertrophic or contracted scars, often requiring surgical excision and grafting to prevent a suboptimal result. In addition, without timely intervention, more superficial burn wounds can convert to deeper wounds. As such, the rapid and accurate assessment of burn wound depth ...

  10. Current Treatment Options in Challenging Oral Diseases: Burning Mouth Syndrome

    Directory of Open Access Journals (Sweden)

    Bilgen Erdoğan

    2012-12-01

    Full Text Available Burning mouth syndrome is a chronic condition characterized by burning pain without any signs of an oral mucosal pathology, that usually affects postmenopausal women. Burning sensation is often accompanied by dysgeusia and xerostomia. The pathogenesis of the disease is unknown and an effective treatment option for most of the patients has not been defined yet. The aim of this review is to present current pharmacological and physicological treatments of burning mouth syndrome.

  11. Current Treatment Options in Challenging Oral Diseases: Burning Mouth Syndrome

    OpenAIRE

    Bilgen Erdoğan; Murat Yılmaz

    2012-01-01

    Burning mouth syndrome is a chronic condition characterized by burning pain without any signs of an oral mucosal pathology, that usually affects postmenopausal women. Burning sensation is often accompanied by dysgeusia and xerostomia. The pathogenesis of the disease is unknown and an effective treatment option for most of the patients has not been defined yet. The aim of this review is to present current pharmacological and physicological treatments of burning mouth syndrome.

  12. Music therapy for children with severe burn injury

    OpenAIRE

    Edwards, Jane

    1998-01-01

    peer-reviewed Music therapy for children with severe burns is a developing field of practice and research interest in pediatric music therapy. The following article presents an overview of the nature of severe burn injury and provides a rationale for the use of music therapy in the Burn Unit. The application of song writing techniques to address needs of children receiving care for severe burns in a hospital setting is presented.

  13. Remote sensing-based estimates of annual and seasonal emissions from crop residue burning in the contiguous United States.

    Science.gov (United States)

    McCarty, Jessica L

    2011-01-01

    Crop residue burning is an extensive agricultural practice in the contiguous United States (CONUS). This analysis presents the results of a remote sensing-based study of crop residue burning emissions in the CONUS for the time period 2003-2007 for the atmospheric species of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), nitrogen dioxide (NO2, sulfur dioxide (SO2), PM2.5 (particulate matter [PM] burned area and associated crop types were derived from Moderate Resolution Imaging Spectroradiometer (MODIS) products. Emission factors, fuel load, and combustion completeness estimates were derived from the scientific literature, governmental reports, and expert knowledge. Emissions were calculated using the bottom-up approach in which emissions are the product of burned area, fuel load, and combustion completeness for each specific crop type. On average, annual crop residue burning in the CONUS emitted 6.1 Tg of CO2, 8.9 Gg of CH4, 232.4 Gg of CO, 10.6 Gg of NO2, 4.4 Gg of SO2, 20.9 Gg of PM2.5, and 28.5 Gg of PM10. These emissions remained fairly consistent, with an average interannual variability of crop residue burning emissions of +/- 10%. The states with the highest emissions were Arkansas, California, Florida, Idaho, Texas, and Washington. Most emissions were clustered in the southeastern United States, the Great Plains, and the Pacific Northwest. Air quality and carbon emissions were concentrated in the spring, summer, and fall, with an exception because of winter harvesting of sugarcane in Florida, Louisiana, and Texas. Sugarcane, wheat, and rice residues accounted for approximately 70% of all crop residue burning and associated emissions. Estimates of CO and CH4 from agricultural waste burning by the U.S. Environmental Protection Agency were 73 and 78% higher than the CO and CH4 emission estimates from this analysis, respectively. This analysis also showed that crop residue burning emissions are a minor source of CH4 emissions (agricultural sources

  14. 30 CFR 56.6903 - Burning explosive material.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Burning explosive material. 56.6903 Section 56... MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives General Requirements § 56.6903 Burning explosive material. If explosive material is suspected of burning at the...

  15. Interaction mechanisms of organic contaminants with burned straw ash charcoal.

    Science.gov (United States)

    Huang, Wenhai; Chen, Baoliang

    2010-01-01

    Black carbons (e.g., charcoal) have a great impact on the transport of organic contaminants in soil and water because of its strong affinity and ubiquity in the environment. To further elucidate their interaction mechanism, sorption of polar (p-nitrotoluene, m-dinitrobenzene and nitrobenzene) and nonpolar (naphthalene) aromatic contaminants to burned straw ash charcoal under different de-ashed treatments were investigated. The sorption isotherms fitted well with Freundlich equation, and the Freundlich N values were all around 0.31-0.38, being independent of the sorbate properties and sorbent types. After sequential removal of ashes by acid treatments (HCl and HCl-HF), both adsorption and partition were enhanced due to the enrichment of charcoal component. The separated contribution of adsorption and partition to total sorption were quantified. The effective carbon content in ash charcoal functioned as adsorption sites, partition phases, and hybrid regions with adsorption and partition were conceptualized and calculated. The hybrid regions increased obviously after de-ashed treatment. The linear relationships of Freundlich N values with the charring-temperature of charcoal or biochar (the charred byproduct in biomass pyrolysis) were observed based on the current study and the cited publications which included 15 different temperatures (100-850 degrees C), 10 kinds of precursors of charcoal/biochar, and 10 organic sorbates. PMID:21235190

  16. Abdominal fat reducing outcome of exercise training: fat burning or hydrocarbon source redistribution?

    Science.gov (United States)

    Kuo, Chia-Hua; Harris, M Brennan

    2016-07-01

    Fat burning, defined by fatty acid oxidation into carbon dioxide, is the most described hypothesis to explain the actual abdominal fat reducing outcome of exercise training. This hypothesis is strengthened by evidence of increased whole-body lipolysis during exercise. As a result, aerobic training is widely recommended for obesity management. This intuition raises several paradoxes: first, both aerobic and resistance exercise training do not actually elevate 24 h fat oxidation, according to data from chamber-based indirect calorimetry. Second, anaerobic high-intensity intermittent training produces greater abdominal fat reduction than continuous aerobic training at similar amounts of energy expenditure. Third, significant body fat reduction in athletes occurs when oxygen supply decreases to inhibit fat burning during altitude-induced hypoxia exposure at the same training volume. Lack of oxygen increases post-meal blood distribution to human skeletal muscle, suggesting that shifting the postprandial hydrocarbons towards skeletal muscle away from adipose tissue might be more important than fat burning in decreasing abdominal fat. Creating a negative energy balance in fat cells due to competition of skeletal muscle for circulating hydrocarbon sources may be a better model to explain the abdominal fat reducing outcome of exercise than the fat-burning model. PMID:27152424

  17. Understorey fire frequency and the fate of burned forests in southern Amazonia.

    Science.gov (United States)

    Morton, D C; Le Page, Y; DeFries, R; Collatz, G J; Hurtt, G C

    2013-06-01

    Recent drought events underscore the vulnerability of Amazon forests to understorey fires. The long-term impact of fires on biodiversity and forest carbon stocks depends on the frequency of fire damages and deforestation rates of burned forests. Here, we characterized the spatial and temporal dynamics of understorey fires (1999-2010) and deforestation (2001-2010) in southern Amazonia using new satellite-based estimates of annual fire activity (greater than 50 ha) and deforestation (greater than 10 ha). Understorey forest fires burned more than 85 500 km(2) between 1999 and 2010 (2.8% of all forests). Forests that burned more than once accounted for 16 per cent of all understorey fires. Repeated fire activity was concentrated in Mato Grosso and eastern Pará, whereas single fires were widespread across the arc of deforestation. Routine fire activity in Mato Grosso coincided with annual periods of low night-time relative humidity, suggesting a strong climate control on both single and repeated fires. Understorey fires occurred in regions with active deforestation, yet the interannual variability of fire and deforestation were uncorrelated, and only 2.6 per cent of forests that burned between 1999 and 2008 were deforested for agricultural use by 2010. Evidence from the past decade suggests that future projections of frontier landscapes in Amazonia should separately consider economic drivers to project future deforestation and climate to project fire risk. PMID:23610169

  18. Global estimation of CO emissions using three sets of satellite data for burned area

    Science.gov (United States)

    Jain, Atul K.

    Using three sets of satellite data for burned areas together with the tree cover imagery and a biogeochemical component of the Integrated Science Assessment Model (ISAM) the global emissions of CO and associated uncertainties are estimated for the year 2000. The available fuel load (AFL) is calculated using the ISAM biogeochemical model, which accounts for the aboveground and surface fuel removed by land clearing for croplands and pasturelands, as well as the influence on fuel load of various ecosystem processes (such as stomatal conductance, evapotranspiration, plant photosynthesis and respiration, litter production, and soil organic carbon decomposition) and important feedback mechanisms (such as climate and fertilization feedback mechanism). The ISAM estimated global total AFL in the year 2000 was about 687 Pg AFL. All forest ecosystems account for about 90% of the global total AFL. The estimated global CO emissions based on three global burned area satellite data sets (GLOBSCAR, GBA, and Global Fire Emissions Database version 2 (GFEDv2)) for the year 2000 ranges between 320 and 390 Tg CO. Emissions from open fires are highest in tropical Africa, primarily due to forest cutting and burning. The estimated overall uncertainty in global CO emission is about ±65%, with the highest uncertainty occurring in North Africa and Middle East region (±99%). The results of this study suggest that the uncertainties in the calculated emissions stem primarily from the area burned data.

  19. Converting moving-grate incineration from combustion to gasification - numerical simulation of the burning characteristics.

    Science.gov (United States)

    Yang, Yao Bin; Sharifi, Vida N; Swithenbank, Jim

    2007-01-01

    Waste incineration is a politically sensitive issue in the UK. The major current technology is based on direct combustion of wastes in a moving-grate furnace. However, general public opinion prefers non-direct burning technologies. Waste gasification is one of those nearest technologies available. By reducing the primary air-flow rate through the grate of a packed-bed system, operation of the existing solid-waste incineration equipment can be easily converted from combustion mode to gasification mode without major modification of the hardware. The potential advantages of this are lower dust carry-over in the flue gases, lower bed temperature (and therefore lower NO(x) formation in the bed), simplified gas-treatment procedures and lower running cost, among other benefits. The major disadvantages are, however, reduced throughput of the wastes and possibly higher carbon in the ash at exit. In this study, numerical simulation of both combustion and gasification of municipal solid wastes in a full-scale moving grate furnace is carried out employing advanced mathematical models. Burning characteristics, including burning rate, gas composition, temperature and burning efficiency as a function of operating parameters are investigated. Detailed comparisons between the combustion mode and gasification mode are made. The study helps to explore new incineration technology and optimise furnace operating conditions. PMID:16730435

  20. Initial estimates of mercury emissions to the atmosphere from global biomass burning.

    Science.gov (United States)

    Friedli, H R; Arellano, A F; Cinnirella, S; Pirrone, N

    2009-05-15

    The average global annual mercury emission estimate from biomass burning (BMB) for 1997-2006 is 675 +/- 240 Mg/year. This is equivalentto 8% of all currently known anthropogenic and natural mercury emissions. By season, the largest global emissions occur in August and September, the lowest during northern winters. The interannual variability is large and region-specific, and responds to drought conditions. During this particular time period, the largest mercury emissions are from tropical and boreal Asia, followed by Africa and South America. They do not coincide with the largest carbon biomass burning emissions, which originate from Africa. Frequently burning grasslands in Africa and Australia, and agricultural waste burning globally, contribute relatively little to the mercury budget The released mercury from BMB is eventually deposited locally and globally and contributes to the formation of toxic bioaccumulating methyl mercury. Furthermore, increasing temperature in boreal regions, where the largest soil mercury pools reside, is expected to exacerbate mercury emission because of more frequent larger, and more intense fires. PMID:19544847