WorldWideScience

Sample records for carbon burning

  1. To Burn or not to Burn: Making the Burning of Chocolate Hills of Bohol, Philippines Carbon Neutral

    OpenAIRE

    Nathaniel T. Bantayan; Margaret M Calderon; Flocencia B. Pulhin; Canesio D. Predo; Rose Ann C. Baruga

    2013-01-01

    This study was conducted to evaluate the current management regime of burning vis-à-vis burning with carbon offsets for the Chocolate Hills Natural Monument (CHNM) in Bohol, Philippines. The current scheme of burning to maintain the grass-covered (tree-less) and brown hills to sustain tourist arrivals is seen as environmentally unsound and inconsistent with existing environmental laws. The study estimated the carbon loss from burning and compared the carbon loss value with the tourism income ...

  2. Rationalizing Burned Carbon with Carbon Monoxide Exported from South America

    Science.gov (United States)

    Chatfield, R.; Freitas, S. R.; SilvaDias, M. A.; SilvaDias, P. O.; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    We present several estimates cross-checking the fluxes of carbon to the atmosphere from burning, comparing models that are based on simple land-surface parameterizations and atmospheric transport dynamics. Both estimates made by NASA Ames and USP modeling techniques are quite high compared to some detailed satellite/land-use studies of emissions. The flux of carbon liberated to the atmosphere via biomass burning is important for several reasons. This flux is a fundamental statistic for the parameterization of the large-scale flux of gases controlling the reactive greenhouse gases methane and ozone. Similarly, it is central to the estimation of the translocation of nitrogen and pyrodenitrification in the tropics. Thirdly, CO2 emitted from rainforest clearing contributes directly to carbon lost from the rainforest system as it contributes to greenhouse gas forcing. While CO2 from pasturage, agriculture, etc, is considered to be reabsorbed seasonally, and so "off budget" for the carbon cycle, it must also be accounted. CO2 anomalies related to daily weather and interannual climatic variation are strong enough to perturb our scientific perception of long-term carbon storage trends. We compare fluxes deduced from land-use statistics (originally, W.M. Hao) and from satellite hot pixels (A. Setzer) with atmospheric fluxes determined by the mesoscale/continental scale models RAMS and MM5, and point to some new work with highly resolved global models (the NASA Data Assimilation Office's GEOS4). Our simulations are tied to events, so that measured tracers like CO tie the models directly to the burning and meteorology of a specific period. We point out a particular sensitivity in estimates based on CO, and indicate how analysis of CO2 along with other biomass-burning tracers may lead to an improved multi-species estimator of carbon burned.

  3. Wood-burning stoves in low-carbon dwellings

    DEFF Research Database (Denmark)

    Luis Teles de Carvalho, Ricardo; Jensen, Ole Michael; Afshari, Alireza;

    2013-01-01

    The European climate change strategy intends to encourage the erection of low-carbon buildings and the upgrading of existing buildings to low-carbon level. At the same time, it is an EU vision to maximise the use of renewable energy resources. In this strategy, small-scale wood-burning is an over......The European climate change strategy intends to encourage the erection of low-carbon buildings and the upgrading of existing buildings to low-carbon level. At the same time, it is an EU vision to maximise the use of renewable energy resources. In this strategy, small-scale wood......-burning is an overlooked source for heating. A wood-burning stove is considered low-carbon technology since its fuel is based on local residual biomass. A field study investigating how modern wood-burning stoves operated in modern single-family houses showed that intermittent heat supply occasionally conflicted...... with the primary heating system and that chimney exhaust occasionally conflicted with the ventilation system causing overheating and particles in the indoor environment. Nonetheless, most of the wood-burning stoves contributed considerably to the total heating. On this background, it was concluded that better...

  4. On Carbon Burning in Super Asymptotic Giant Branch Stars

    CERN Document Server

    Farmer, R; Timmes, F X

    2015-01-01

    We explore the detailed and broad properties of carbon burning in Super Asymptotic Giant Branch (SAGB) stars with 2755 MESA stellar evolution models. The location of first carbon ignition, quenching location of the carbon burning flames and flashes, angular frequency of the carbon core, and carbon core mass are studied as a function of the ZAMS mass, initial rotation rate, and mixing parameters such as convective overshoot, semiconvection, thermohaline and angular momentum transport. In general terms, we find these properties of carbon burning in SAGB models are not a strong function of the initial rotation profile, but are a sensitive function of the overshoot parameter. We quasi-analytically derive an approximate ignition density, $\\rho_{ign} \\approx 2.1 \\times 10^6$ g cm$^{-3}$, to predict the location of first carbon ignition in models that ignite carbon off-center. We also find that overshoot moves the ZAMS mass boundaries where off-center carbon ignition occurs at a nearly uniform rate of $\\Delta M_{\\rm...

  5. 3D Hydrodynamic Simulations of Carbon Burning in Massive Stars

    CERN Document Server

    Cristini, Andrea; Hirschi, Raphael; Arnett, David; Georgy, Cyril; Viallet, Maxime

    2016-01-01

    We present the first detailed three-dimensional (3D) hydrodynamic implicit large eddy simulations of turbulent convection of carbon burning in massive stars. The simulations start with initial radial profiles mapped from a carbon burning shell within a 15$\\,\\textrm{M}_\\odot$ 1D stellar evolution model. We consider 4 resolutions from $128^3$ to $1024^3$ zones. The turbulent flow properties of these carbon burning simulations are very similar to the oxygen burning case. We performed a mean field analysis of the kinetic energy budgets within the Reynolds-averaged Navier-Stokes framework. For the upper convective boundary region, we find that the inferred numerical dissipation is insensitive to resolution for linear mesh resolutions between 512 and 1,024 grid points. For the stiffer and more stratified lower boundary, our highest resolution model still shows signs of decreasing dissipation suggesting that it is not yet fully resolved numerically. We estimate the widths of the upper and lower boundaries to be roug...

  6. Inorganic markers, carbonaceous components and stable carbon isotope from biomass burning aerosols in northeast China

    Science.gov (United States)

    Cao, F.; Zhang, Y.; Kawamura, K.

    2015-12-01

    To better characterize the sources of fine particulate matter (i.e. PM2.5) in Sanjiang Plain, Northeast China, aerosol chemical composition such total carbon (TC), organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and inorganic ions were studied as well as stable carbon isotopic composition (δ13C) of TC. Intensively open biomass burning episodes were identified from late September to early October by satellite fire and aerosol optical depth maps. During the biomass burning episodes, concentrations of PM2.5, OC, EC, and WSOC increased by a factor of 4-12 compared to non-biomass-burning periods. Non-sea-salt potassium is strongly correlated with PM2.5, OC, EC and WSOC, suggesting an important contribution of biomass burning emission. The enrichment in both the non-sea-salt potassium and chlorine is significantly larger than other inorganic species, indicating that biomass burning aerosols in Sanjiang Plain is mostly fresh and less aged. In addition, WSOC to OC ratio is relatively lower compared to that reported in biomass burning aerosols in tropical regions, supporting that biomass burning aerosols in Sanjiang Plain is mostly primary and secondary organic aerosols is not significant. A lower average δ13C value (-26.2‰) is found for the biomass-burning aerosols, suggesting a dominant contribution from combustion of C3 plants in the studied region.

  7. Behaviour of Structural Carbonate Stable Carbon and Oxygen Isotope Compositions in Bioapatite During Burning of Bone

    Science.gov (United States)

    Munro, L. E.; Longstaffe, F. J.; White, C. D.

    2003-12-01

    Bioapatite, the principal inorganic phase comprising bone, commonly contains a small fraction of carbonate, which has been substituted into the phosphate structure during bone formation. The isotopic compositions of both the phosphate oxygen and the structural carbonate oxygen are now commonly used in palaeoclimatological and bioarchaeological investigations. The potential for post-mortem alteration of these isotopic compositions, therefore, is of interest, with the behaviour of structural carbonate being of most concern. In bioarchaeological studies, alteration of bone isotopic compositions has the potential to occur not only during low-temperature processes associated with burial but also during food preparation involving heating (burning, boiling). Here, we examine the stable isotopic behaviour of structural carbonate oxygen and carbon, and coexisting phosphate oxygen during the burning of bone. Freshly deceased (6determined using powder X-ray diffraction (pXRD), and Fourier transform infra-red spectroscopy (FTIR). Combined differential thermal and thermogravimetric analyses (DTA/TG) were used to evaluate weight loss and associated reactions during heating. Stable carbon isotope compositions of the bioapatite remain relatively constant (+/-1‰ ) during heating to 650° C. A 4‰ increase in stable carbon isotopic composition then occurs between 650-750° C, accompanied by an increase in CI, followed by a 10‰ decline at temperatures above 800° C, as carbonate carbon is lost. Carbonate and phosphate oxygen isotopic compositions are correlated over the entire heating range, with carbonate being enriched relative to phosphate by about 8-10‰ below 500° C, 5-6‰ between 500-700° C, and 8-10‰ above 700° C. CI and oxygen isotopic compositions of carbonate and phosphate are not well correlated. Only modest CI changes are recorded from 25-675° C, compared with much larger changes in oxygen isotopic composition, especially above 300° C. On average, original

  8. Carbon production on accreting neutron stars in a new regime of stable nuclear burning

    CERN Document Server

    Keek, L

    2015-01-01

    Accreting neutron stars exhibit Type I X-ray bursts from both frequent hydrogen/helium flashes as well as rare carbon flashes. The latter (superbursts) ignite in the ashes of the former. Hydrogen/helium bursts, however, are thought to produce insufficient carbon to power superbursts. Stable burning could create the required carbon, but this was predicted to only occur at much larger accretion rates than where superbursts are observed. We present models of a new steady-state regime of stable hydrogen and helium burning that produces pure carbon ashes. Hot CNO burning of hydrogen heats the neutron star envelope and causes helium to burn before the conditions of a helium flash are reached. This takes place when the mass accretion rate is around 10% of the Eddington limit: close to the rate where most superbursts occur. We find that increased heating at the base of the envelope sustains steady-state burning by steepening the temperature profile, which increases the amount of helium that burns before a runaway can...

  9. How do Biomass Burning Carbon Monixide Emissions from South America influence Satellite Observed Columns over Africa?

    Science.gov (United States)

    Krol, M. C.; van Leeuwen, T. T.; Aouizerats, B.; van der Werf, G.

    2015-12-01

    Large amounts of Carbon Monoxide (CO) are emitted during biomass burning events. These emissions severely perturb the atmospheric composition. For this reason, satellite observations of CO can help to constrain emissions from biomass burning. Other sources of CO, such as the production of CO from naturally emitted non-methane hydrocarbons, may interfere with CO from biomass burning and inverse modeling efforts to estimate biomass burning emissions have to account for these CO sources. The atmospheric lifetime of CO varies from weeks to months, depending on the availability of atmospheric OH for atmospheric oxidation of CO to carbon dioxide. This means that CO can be transported over relatively long distances. It also implies that satellite-observed CO does not necessarily originate from the underlying continent, but may be caused by distant emissions transported to the observation location. In this presentation we focus on biomass burning emissions from South America and Southern Africa during 2010. This year was particularly dry over South America with a large positive anomaly in biomass burning in the 2010 burning season (July-October). We will adress the question how CO plumes from South America biomass burning influence satellite observations from the Infrared Atmospheric Sounding Interferometer (IASI) instrument over Southern Africa. For this we employ the TM5 atmospheric chemistry model, with 1x1 degree zoom resolutions over Africa and South America. Also, we use the TM5-4DVAR code to estimate CO biomass burning emissions using IASI CO observations. The accompanying image shows IASI CO oberservations over Africa on August 27, 2010, compared to the columns simulated with TM5. Clear signs of intercontinental transport from South America are visible over the Southermost region.

  10. Carbon synthesis in steady-state hydrogen and helium burning on accreting neutron stars

    International Nuclear Information System (INIS)

    Superbursts from accreting neutron stars probe nuclear reactions at extreme densities (ρ ≈ 109 g cm–3) and temperatures (T > 109 K). These bursts (∼1000 times more energetic than type I X-ray bursts) are most likely triggered by unstable ignition of carbon in a sea of heavy nuclei made during the rapid proton capture process (rp-process) of regular type I X-ray bursts (where the accumulated hydrogen and helium are burned). An open question is the origin of sufficient amounts of carbon, which is largely destroyed during the rp-process in X-ray bursts. We explore carbon production in steady-state burning via the rp-process, which might occur together with unstable burning in systems showing superbursts. We find that for a wide range of accretion rates and accreted helium mass fractions large amounts of carbon are produced, even for systems that accrete solar composition. This makes stable hydrogen and helium burning a viable source of carbon to trigger superbursts. We also investigate the sensitivity of the results to nuclear reactions. We find that the 14O(α, p)17F reaction rate introduces by far the largest uncertainties in the 12C yield.

  11. Unburned Carbon Loss in Fly Ash of CFB Boilers Burning Hard Coal

    Institute of Scientific and Technical Information of China (English)

    L(U) Junfu(吕俊复); WANG Qimin(王启民); LI Yong(黎永); YUE Guangxi(岳光溪); Yam Y.Lee; Baldur Eliasson; SHEN Jiezhong(沈解忠); YU Long(于龙)

    2003-01-01

    The unburned carbon loss in fly ash of circulating fluidized bed (CFB) boilers, most of which are burning active fuels such as lignite or peat, is normally very low. However, most CFB boilers in China usually burn hard coals such as anthracite and bituminous coal and coal wastes, so the carbon content in the fly ash from these boilers is higher than expected. This paper investigates the source of unburned carbon in the fly ash of CFB boilers burning hard coal through a series of field tests and laboratory investigations. The char behavior during combustion, including fragmentation and deactivation, which is related to the parent coal, has an important impact on the carbon burnout in CFB boilers. The research shows that char deactivation occurs during char burnout in fluidized bed combustion, especially for large particles of low rank coal. The uneven mixing of solids and air in the core region of the furnace also causes poor burnout of carbon in CFB fly ash. An index describing the volatile content (as dry ash free basis) over the heating value is proposed to present the coal rank. The coal combustion efficiency is shown to be strongly connected with this coal index. Several changes in the CFB boiler design are suggested to reduce the unburned carbon loss in the fly ash.

  12. Moisture effects on carbon and nitrogen emission from burning of wildland biomass

    Directory of Open Access Journals (Sweden)

    L.-W. A. Chen

    2010-03-01

    Full Text Available Carbon (C and nitrogen (N released from biomass burning have multiple effects on the Earth's biogeochemical cycle, climate change, and ecosystem. These effects depend on the relative abundances of C and N species emitted, which vary with fuel type and combustion conditions. This study systematically investigates the emission characteristics under different fuel moisture contents, through controlled burning experiments with biomass and soil collected from a typical alpine forest. Fuel moisture in general lowers combustion efficiency, shortens flaming phase, and introduces prolonged smoldering before ignition. It increases emission factors of incompletely oxidized C and N species, such as carbon monoxide (CO and ammonia (NH3. Substantial particulate carbon and nitrogen (up to 4 times C in CO and 75% of N in NH3 were measured mainly from the pre-flame smoldering of fuels with high moisture contents; this process emits particles larger than soot agglomerates commonly observed in flaming smoke. Hydrogen (H/C ratio and optical properties of particulate carbon from the high-moisture fuels show their resemblance to plant cellulous and brown carbon, respectively. These findings have implications for modeling biomass burning emission and impacts.

  13. Synthesis of carbon-containing composite materials in burning mode

    Directory of Open Access Journals (Sweden)

    Roza Abdulkarimova

    2012-03-01

    Full Text Available The possibility of obtaining multicomponent refractory composition materials on the basis of quarts containing raw material by SHS method was studied. It is shown that a complex use of preliminary mechanochemicala ctivatin (MA and modification of the charge mixture with carbon containing additives contributes to formation of carbide and nitride phases in synthesis products.

  14. Pyrogenic carbon from tropical savanna burning: production and stable isotope composition

    Science.gov (United States)

    Saiz, G.; Wynn, J. G.; Wurster, C. M.; Goodrick, I.; Nelson, P. N.; Bird, M. I.

    2015-03-01

    Widespread burning of mixed tree-grass ecosystems represents the major natural locus of pyrogenic carbon (PyC) production. PyC is a significant, pervasive and yet poorly understood "slow-cycling" form of carbon present in the atmosphere, hydrosphere, soils and sediments. We conducted 16 experimental burns on a rainfall transect through northern Australian savannas with C4 grasses ranging from 35 to 99% of total biomass. Residues from each fire were partitioned into PyC and further into recalcitrant (HyPyC) components, with each of these fluxes also partitioned into proximal components (>125 μm), likely to remain close to the site of burning, and distal components (residence time, with shorter duration fires resulting in higher HyPyC yields. The carbon isotope (δ13C) compositions of PyC and HyPyC were generally lower by 1-3‰ relative to the original biomass, with marked depletion up to 7‰ for grasslands dominated by C4 biomass. δ13C values of CO2 produced by combustion were computed by mass balance and ranged from ~0.4 to 1.3‰. The depletion of 13C in PyC and HyPyC relative to the original biomass has significant implications for the interpretation of δ13C values of savanna soil organic carbon and of ancient PyC preserved in the geologic record, as well as for global 13C isotopic disequilibria calculations.

  15. Dissolved organic carbon in rainwater from areas heavily impacted by sugar cane burning

    Science.gov (United States)

    Coelho, C. H.; Francisco, J. G.; Nogueira, R. F. P.; Campos, M. L. A. M.

    This work reports on rainwater dissolved organic carbon (DOC) from Ribeirão Preto (RP) and Araraquara over a period of 3 years. The economies of these two cities, located in São Paulo state (Brazil), are based on agriculture and related industries, and the region is strongly impacted by the burning of sugar cane foliage before harvesting. Highest DOC concentrations were obtained when air masses traversed sugar cane fields burned on the same day as the rain event. Significant increases in the DOC volume weighted means (VWM) during the harvest period, for both sites, and a good linear correlation ( r = 0.83) between DOC and K (a biomass burning marker) suggest that regional scale organic carbon emissions prevail over long-range transport. The DOC VWMs and standard deviations were 272 ± 22 μmol L -1 ( n = 193) and 338 ± 40 μmol L -1 ( n = 80) for RP and Araraquara, respectively, values which are at least two times higher than those reported for other regions influenced by biomass burning, such as the Amazon. These high DOC levels are discussed in terms of agricultural activities, particularly the large usage of biogenic fuels in Brazil, as well as the analytical method used in this work, which includes volatile organic carbon when reporting DOC values. Taking into account rainfall volume, estimated annual rainwater DOC fluxes for RP (4.8 g C m -2 yr -1) and Araraquara (5.4 g C m -2 yr -1) were close to that previously found for the Amazon region (4.8 g C m -2 yr -1). This work also discusses whether previous calculations of the global rainwater carbon flux may have been underestimated, since they did not consider large inputs from biomass combustion sources, and suffered from a possible analytical bias.

  16. Daily burned area and carbon emissions from boreal fires in Alaska

    Science.gov (United States)

    Veraverbeke, S.; Rogers, B. M.; Randerson, J. T.

    2015-06-01

    Boreal fires burn into carbon-rich organic soils, thereby releasing large quantities of trace gases and aerosols that influence atmospheric composition and climate. To better understand the factors regulating boreal fire emissions, we developed a statistical model of carbon consumption by fire for Alaska with a spatial resolution of 450 m and a temporal resolution of 1 day. We used the model to estimate variability in carbon emissions between 2001 and 2012. Daily burned area was mapped using imagery from the Moderate Resolution Imaging Spectroradiometer combined with perimeters from the Alaska Large Fire Database. Carbon consumption was calibrated using available field measurements from black spruce forests in Alaska. We built two nonlinear multiplicative models to separately predict above- and belowground carbon consumption by fire in response to environmental variables including elevation, day of burning within the fire season, pre-fire tree cover and the differenced normalized burn ratio (dNBR). Higher belowground carbon consumption occurred later in the season and for mid-elevation forests. Topographic slope and aspect did not improve performance of the belowground carbon consumption model. Aboveground and belowground carbon consumption also increased as a function of tree cover and the dNBR, suggesting a causal link between the processes regulating these two components of carbon consumption. Between 2001 and 2012, the median carbon consumption was 2.54 kg C m-2. Burning in land-cover types other than black spruce was considerable and was associated with lower levels of carbon consumption than for pure black spruce stands. Carbon consumption originated primarily from the belowground fraction (median = 2.32 kg C m-2 for all cover types and 2.67 kg C m-2 for pure black spruce stands). Total carbon emissions varied considerably from year to year, with the highest emissions occurring during 2004 (69 Tg C), 2005 (46 Tg C), 2009 (26 Tg C), and 2002 (17 Tg C) and a

  17. Black carbon contribution to stabilised SOM in soil under slash and burn agriculture

    Science.gov (United States)

    Rumpel, C.; Chaplot, V.; Valentin, C.

    2008-12-01

    Black carbon (BC) produced during slash and burn agriculture on tropical soils may enhance the soils organic matter content and hence their biological properties. However, once deposited on the soil surface, BC may be subject to erosion and/or microbial decomposition and thus not be preserved on site. Up to now, few studies have been carried out to assess the contribution of BC to the soils stable carbon pool on sites under slash and burn agriculture. The aim of the study was to assess the survival potential of BC in sloping tropical soils of clayey texture. The study was carried out in Northern Laos, where the soils are subjected to addition of black carbon produced by burning of agricultural crop residues. Our conceptual approach included the characterisation of (a) morphologically distinct BC forms and (b) chemical soil fractions. The samples were analysed for elemental content, chemical composition by 13C CPMAS NMR spectroscopy, carbon resistant to acid hydrolysis with HCl, carbon resistant to oxidation with acid dichromate solution and 14C activity. Our results indicated that BC produced by slash and burn agriculture was highly aromatic in nature. Its elemental composition as well as its susceptibility to be lost by chemical oxidation was dependent on its morphology. Acid hydrolysis did not lead to carbon loss from any BC form. We thus hypothesised that BC should be present in the hydrolysis resistant fraction isolated from soil. The charactersation of the chemical composition by 13C CPMAS NMR spectroscopy showed that the hydrolysis residue was composed of highly aromatic carbon. Considering the low lignin content of these soils and the good recovery of bulk soil aromatic carbon signal (80-100%) in the hydrolysis residue, we consider that this fraction may be suitable to assess BC contribution to clayey soils. We suggest that BC isolated as hydrolysis resistant C may represent up to 25% of the soils C as compared to 8% as isolated by acid dichromate oxidation

  18. Experimental evaluation of biomass burning emissions: Nitrogen and carbon containing compounds

    International Nuclear Information System (INIS)

    Data are presented on the nitrogen and carbon emissions of biomass burning. The results of the authors' experiments enable them to calculate new source strengths for many compounds, considering different burning stages and fire conditions on the one hand, and different fuel types and properties, on the other hand. They also presented a method for balancing elemental budgets of fires, which had already been described for carbon compounds by other authors but which is new for the nitrogen inventory. Based on their measurements they show that biomass burning contributes significantly to the global budgets of HCN, CH3CN (possibly the major source), NOx (12%), CO(22%), C2 to C4 hydrocarbons (14%), CH3Cl(41%), and probably also to the global source of C1-C5 aliphatic amines. Further, pyrogenic CO2 amounts are likely to represent a substantial contribution to the global greenhouse warming. An important result, from the study is the identification of N2 emissions, which causes a significant loss of fixed nitrogen (pyro-denitrification) in tropical ecosystems in the order of 5% to 20% of the global nitrogen fixation rate. Because of an interesting interplay between an enhanced postfire nitrogen fixation and an enhanced postfire N2O emission, it is not yet known if losses due to pyro-denitrification are balanced by nitrogen fixation

  19. Estimating Biomass Burning Emissions for Carbon Cycle Science and Resource Monitoring & Management

    Science.gov (United States)

    French, N. H.; McKenzie, D.; Erickson, T. A.; McCarty, J. L.; Ottmar, R. D.; Kasischke, E. S.; Prichard, S. J.; Hoy, E.; Endsley, K.; Hamermesh, N. K.

    2012-12-01

    Biomass burning emissions, including emissions from wildland fire, agricultural and rangeland burning, and peatland fires, impact the atmosphere dramatically. Current tools to quantify emission sources are developing quickly in a response to the need by the modeling community to assess fire's role in the carbon cycle and the land management community to understand fire effects and impacts on air quality. In a project funded by NASA, our team has developed methods to spatially quantify wildland fire emissions for the contiguous United States (CONUS) and Alaska (AK) at regional scales. We have also developed a prototype web-based information system, the Wildland Fire Emissions Information System (WFEIS) to make emissions modeling tools and estimates for the CONUS and AK available to the user community. With new funding through two NASA programs, our team from MTRI, USFS, and UMd will be further developing WFEIS to provide biomass burning emissions estimates for the carbon cycle science community and for land and air quality managers, to improve the way emissions estimates are calculated for a variety of disciplines. In this poster, we review WFEIS as it currently operates and the plans to extend the current system for use by the carbon cycle science community (through the NASA Carbon Monitoring System Program) and resource management community (through the NASA Applications Program). Features to be enhanced include an improved accounting of biomass present in canopy fuels that are available for burning in a forest fire, addition of annually changing vegetation biomass/fuels used in computing fire emissions, and quantification of the errors present in the estimation methods in order to provide uncertainty of emissions estimates across CONUS and AK. Additionally, WFEIS emissions estimates will be compared with results obtained with the Global Fire Emissions Database (GFED), which operates at a global scale at a coarse spatial resolution, to help improve GFED estimates

  20. Dynamic light absorption of biomass burning organic carbon photochemically aged under natural sunlight

    Directory of Open Access Journals (Sweden)

    M. Zhong

    2013-08-01

    Full Text Available Wood burning aerosol produced under smoldering conditions was photochemically aged with different relative humidity (RH and NOx conditions using a 104 m3 dual outdoor chamber under natural sunlight. Light absorption of organic carbon (OC was measured over the course of photooxidation using a UV–visible spectrometer connected to an integrating sphere. At high RH, the color decayed rapidly. NOx slightly prolonged the color of wood smoke, suggesting that NOx promotes the formation of chromophores via secondary processes. Overall, the mass absorption cross-section (integrated between 280 nm and 600 nm of OC increased by 11–54% (except high RH in the morning and then gradually decreased by 19–68% in the afternoon. This dynamic change in light absorption of wood burning OC can be explained by two mechanisms: chromophore formation and sunlight bleaching. To investigate the effect of chemical transformation on light absorption, wood smoke particles were characterized using various spectrometers. The intensity of fluorescence, which is mainly related to polycyclic aromatic hydrocarbons (PAHs, rapidly decreased with time indicating the potential bleaching of PAHs. A decline of levoglucosan concentrations evinced the change of POA with time. The aerosol water content measured by Fourier transform infrared spectroscopy showed that wood burning aerosol became less hygroscopic as photooxidation proceeded. A similar trend in light absorption changes has been observed in ambient smoke aerosol originating from the 2012 County Line Wildfire in Florida. We conclude that the biomass burning OC becomes less light absorbing after 8–9 h sunlight exposure compared to fresh wood burning OC.

  1. Large injection of carbon monoxide into the upper troposphere due to intense biomass burning in 1997

    Science.gov (United States)

    Matsueda, Hidekazu; Inoue, Hisayuki Y.; Ishii, Masao; Tsutsumi, Yukitomo

    1999-11-01

    Air samples at 8-13 km were collected regularly using a commercial airliner to obtain long-term measurements of carbon monoxide (CO) mixing ratio in the upper troposphere over the western Pacific between Australia and Japan during April 1993-December 1997. The measurements in 1997 clearly reveal an anomalous CO increase during September to November in the Southern Hemisphere, with a maximum of 320-380 ppb around 20°S in October. Tropical biomass burning, not urban/industrial emissions, was the main source for the enhanced CO in 1997. A similar southern-spring increase due to biomass burning was observed in previous years. The peaks showed a large interannual variation associated with the El Niño/Southern Oscillation (ENSO) events. The largest CO spring peak appeared during the strong El Niño event in 1997, while the weak La Niña year of 1996 was marked by a largely suppressed CO spring peak. The outgoing longwave radiation (OLR) anomaly is largest during the El Niño events indicating that the events cause a longer drought in the tropics and significantly influence the enlargement of biomass burning in tropical Southeast Asia. Thus the most likely cause for the ENSO-cycle CO variability is a year-to-year change of biomass-burning emissions mainly from Southeast Asia. The appearance of the CO spring peak in the southern subtropics is discussed on the basis of the possible long-range transport of biomass-burning CO from Southeast Asia to the upper troposphere over the western South Pacific.

  2. Biomass burning contribution to black carbon in the western United States mountain ranges

    Directory of Open Access Journals (Sweden)

    Y. Mao

    2011-05-01

    Full Text Available Forest fires are an important source to carbonaceous aerosols in the western United States (WUS. We quantify the relative contribution of biomass burning to black carbon (BC in the WUS mountain ranges by analyzing surface BC observations for 2006 from the Interagency Monitoring of PROtected Visual Environment (IMPROVE network using the GEOS-Chem global chemical transport model. Observed surface BC concentrations show broad maxima during late June to early November. Enhanced potassium concentrations and potassium/sulfur ratios observed during the high-BC events indicate a dominant biomass burning influence during the peak fire season. Model surface BC reproduces the observed day-to-day and synoptic variabilities in regions downwind of and near urban centers. Major discrepancies are found at elevated mountainous sites during the July–October when simulated BC concentrations are biased low by a factor of two. We attribute these biases largely to the underestimated and temporally misplaced biomass burning emissions of BC in the model. Additionally, we find that the biomass burning contribution to surface BC concentrations in the US likely was underestimated in a previous study using GEOS-Chem (Park et al., 2003, because of the unusually low planetary boundary layer (PBL heights and weak precipitation in the GEOS-3 meteorological reanalysis data used to drive the model. PBL heights from GEOS-4 and GEOS-5 reanalysis data are comparable to those from the North American Regional Reanalysis (NARR. Model simulations show improved agreements with the observations when driven by GEOS-5 reanalysis data, but model results are still biased low. The use of biomass burning emissions with diurnal cycle, synoptic variability, and plume injection has relatively small impact on the simulated surface BC concentrations in the WUS.

  3. Biomass burning contribution to black carbon in the Western United States Mountain Ranges

    Directory of Open Access Journals (Sweden)

    Y. H. Mao

    2011-11-01

    Full Text Available Forest fires are an important source to carbonaceous aerosols in the Western United States (WUS. We quantify the relative contribution of biomass burning to black carbon (BC in the WUS mountain ranges by analyzing surface BC observations for 2006 from the Interagency Monitoring of PROtected Visual Environment (IMPROVE network using the GEOS-Chem global chemical transport model. Observed surface BC concentrations show broad maxima during late June to early November. Enhanced potassium concentrations and potassium/sulfur ratios observed during the high-BC events indicate a dominant biomass burning influence during the peak fire season. Model surface BC reproduces the observed day-to day and synoptic variabilities in regions downwind of but near urban centers. Major discrepancies are found at elevated mountainous sites during the July-October fire season when simulated BC concentrations are biased low by a factor of two. We attribute these low biases largely to the underestimated (by more than a factor of two and temporally misplaced biomass burning emissions of BC in the model. Additionally, we find that the biomass burning contribution to surface BC concentrations in the USA likely was underestimated in a previous study using GEOS-Chem (Park et al., 2003, because of the unusually low planetary boundary layer (PBL heights in the GEOS-3 meteorological reanalysis data used to drive the model. PBL heights from GEOS-4 and GEOS-5 reanalysis data are comparable to those from the North American Regional Reanalysis (NARR. Model simulations show slightly improved agreements with the observations when driven by GEOS-5 reanalysis data, but model results are still biased low. The use of biomass burning emissions with diurnal cycle, synoptic variability, and plume injection has relatively small impact on the simulated surface BC concentrations in the WUS.

  4. Al4C3 Hydration Thermochemical Analysis for Burned Carbon-containing Refractories with Al

    Institute of Scientific and Technical Information of China (English)

    YANG Ding'ao; YU Zhiming; FAN Liuwu

    2003-01-01

    In this paper, X-ray diffractogram analysis and SEM observation of Al4 C3 formed at high temperature from carbon-containing refractories with Al have been carried out.Aluminum added to carbon-containing refractories reacts with C(s)to form Al4 C3(s) gradually during heating from 600 ℃ to 1200℃.It is considered that the interlocked structure of Al4 C3 plate crystals promotes the outstanding increase of hot modulus of rupture of carbon-containing refractories with Al. The HMOR of carbon-containing refractories added with Al additive from 0 to 5wt% increases by 2.8 times being from 6.5MPa to 18.2MPa.After a thermochemical calculation for hydration reaction processes of Al4 C3 and H2O(g), the equilibrium partial pressure chart of H2O(g)in H2O-Al4C3-Al(OH)3 system vs various temperatures has been attained . The H2O (g) partial pressure in the air needed for the Al4 C3 hydration reaction is no more than 10~18 atm at the temperature below 120℃.It is considered that the burned carbon-containing refractories with Al is extremely easy to hydrate and the cracking of burned carbon-containing refractories is generated because that the hydration expansion is 2.11 times during transforming from Al4 C3 to Al(OH)3.The fundamental measure against hydration of the refractories is to insulate the refractories from H2O(g)by various means such as pitch impregnation or other sealing materials.

  5. Derivation of burn scar depths and estimation of carbon emissions with LIDAR in Indonesian peatlands.

    Science.gov (United States)

    Ballhorn, Uwe; Siegert, Florian; Mason, Mike; Limin, Suwido

    2009-12-15

    During the 1997/98 El Niño-induced drought peatland fires in Indonesia may have released 13-40% of the mean annual global carbon emissions from fossil fuels. One major unknown in current peatland emission estimations is how much peat is combusted by fire. Using a light detection and ranging data set acquired in Central Kalimantan, Borneo, in 2007, one year after the severe peatland fires of 2006, we determined an average burn scar depth of 0.33 +/- 0.18 m. Based on this result and the burned area determined from satellite imagery, we estimate that within the 2.79 million hectare study area 49.15 +/- 26.81 megatons of carbon were released during the 2006 El Niño episode. This represents 10-33% of all carbon emissions from transport for the European Community in the year 2006. These emissions, originating from a comparatively small area (approximately 13% of the Indonesian peatland area), underline the importance of peat fires in the context of green house gas emissions and global warming. In the past decade severe peat fires occurred during El Niño-induced droughts in 1997, 2002, 2004, 2006, and 2009. Currently, this important source of carbon emissions is not included in IPCC carbon accounting or in regional and global carbon emission models. Precise spatial measurements of peat combusted and potential avoided emissions in tropical peat swamp forests will also be required for future emission trading schemes in the framework of Reduced Emissions from Deforestation and Degradation in developing countries.

  6. Forensic aspects of carbon monoxide poisoning by charcoal burning in Denmark, 2008-2012

    DEFF Research Database (Denmark)

    Nielsen, Pia Rude; Gheorghe, Alexandra; Lynnerup, Niels

    2014-01-01

    Carbon monoxide (CO) inhalation is a well-known method of committing suicide. There has been a drastic increase in suicide by inhalation of CO, produced from burning charcoal, in some parts of Asia, and a few studies have reported an increased number of these deaths in Europe. CO-related deaths...... found in 9 cases. Data suggest that this method of death has increased significantly in Denmark. Therefore, it is highly relevant to draw attention to the subject, to increase awareness as well as prevent future escalation....

  7. Size-dependent wet removal of black carbon in Canadian biomass burning plumes

    Directory of Open Access Journals (Sweden)

    J. W. Taylor

    2014-07-01

    Full Text Available Wet deposition is the dominant mechanism for removing black carbon (BC from the atmosphere, and is key in determining its atmospheric lifetime, vertical gradient and global transport. Despite the importance of BC in the climate system, especially in terms of its ability to modulate the radiative energy budget, there are few quantitative case studies of wet removal in ambient environments. We present a case study of BC wet removal by examining aerosol size distributions and BC coating properties sampled in three Canadian boreal biomass burning plumes, one of which passed through a precipitating cloud. In this plume, the largest and most coated BC particles were found to be preferentially removed, suggesting that nucleation scavenging was the likely dominant mechanism. Calculated mass absorption coefficient (MAC in the plumes showed no significant variation, as the shifts to smaller BC cores and thinner coatings had opposing effects. Similarly, calculated single-scatter albedo (SSA showed little variation, as a large number of non-BC particles were also present in the precipitation-affected plume. The remaining BC cores were smaller than those observed in previous studies of BC in post-precipitation outflow over Asia, possibly due to the thick coatings associated with the biomass burning particles. This study provides important constraints to model parameterisations of BC wet removal in biomass burning regions, which will help to reduce uncertainty in radiative forcing calculations.

  8. Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions

    Science.gov (United States)

    Saleh, R.; Hennigan, C. J.; McMeeking, G. R.; Chuang, W. K.; Robinson, E. S.; Coe, H.; Donahue, N. M.; Robinson, A. L.

    2013-08-01

    Experiments were conducted to investigate light absorption of organic aerosol (OA) in fresh and photo-chemically aged biomass-burning emissions. The experiments considered residential hardwood fuel (oak) and fuels commonly consumed in wild-land and prescribed fires in the United States (pocosin pine and gallberry). Photo-chemical aging was performed in an environmental chamber. We constrained the effective light-absorption properties of the OA using conservative limiting assumptions, and found that both primary organic aerosol (POA) in the fresh emissions and secondary organic aerosol (SOA) produced by photo-chemical aging contain brown carbon, and absorb light to a significant extent. This work presents the first direct evidence that SOA produced in aged biomass-burning emissions is absorptive. For the investigated fuels, SOA is less absorptive than POA in the long visible, but exhibits stronger wavelength-dependence and is more absorptive in the short visible and near-UV. Light absorption by SOA in biomass-burning emissions might be an important contributor to the global radiative forcing budget.

  9. Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions

    Directory of Open Access Journals (Sweden)

    R. Saleh

    2013-08-01

    Full Text Available Experiments were conducted to investigate light absorption of organic aerosol (OA in fresh and photo-chemically aged biomass-burning emissions. The experiments considered residential hardwood fuel (oak and fuels commonly consumed in wild-land and prescribed fires in the United States (pocosin pine and gallberry. Photo-chemical aging was performed in an environmental chamber. We constrained the effective light-absorption properties of the OA using conservative limiting assumptions, and found that both primary organic aerosol (POA in the fresh emissions and secondary organic aerosol (SOA produced by photo-chemical aging contain brown carbon, and absorb light to a significant extent. This work presents the first direct evidence that SOA produced in aged biomass-burning emissions is absorptive. For the investigated fuels, SOA is less absorptive than POA in the long visible, but exhibits stronger wavelength-dependence and is more absorptive in the short visible and near-UV. Light absorption by SOA in biomass-burning emissions might be an important contributor to the global radiative forcing budget.

  10. Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions

    Directory of Open Access Journals (Sweden)

    R. Saleh

    2013-05-01

    Full Text Available Experiments were conducted to investigate light absorption of organic aerosol (OA in fresh and photo-chemically aged biomass-burning emissions. The experiments considered residential hardwood fuel (oak and fuels commonly consumed in wild-land and prescribed fires in the United States (pocosin pine and gallberry. Photo-chemical aging was performed in an environmental chamber. We constrained the light-absorption properties of the OA using conservative limiting assumptions, and found that both primary organic aerosol (POA in the fresh emissions and secondary organic aerosol (SOA produced by photo-chemical aging absorb light to a significant extent, and are categorized as brown carbon. This work presents the first direct evidence that SOA produced in aged biomass-burning emissions is absorptive. For the investigated fuels, SOA is less absorptive than POA in the long visible, but exhibits steeper wavelength-dependence (larger Absorption Ångström Exponent and is more absorptive in the short visible and near-UV. Light absorption by SOA in biomass-burning emissions might be an important contributor to the global radiative forcing budget.

  11. Modeling biomass burning and related carbon emissions during the 21st century in Europe

    KAUST Repository

    Migliavacca, Mirco

    2013-12-01

    In this study we present an assessment of the impact of future climate change on total fire probability, burned area, and carbon (C) emissions from fires in Europe. The analysis was performed with the Community Land Model (CLM) extended with a prognostic treatment of fires that was specifically refined and optimized for application over Europe. Simulations over the 21st century are forced by five different high-resolution Regional Climate Models under the Special Report on Emissions Scenarios A1B. Both original and bias-corrected meteorological forcings is used. Results show that the simulated C emissions over the present period are improved by using bias corrected meteorological forcing, with a reduction of the intermodel variability. In the course of the 21st century, burned area and C emissions from fires are shown to increase in Europe, in particular in the Mediterranean basins, in the Balkan regions and in Eastern Europe. However, the projected increase is lower than in other studies that did not fully account for the effect of climate on ecosystem functioning. We demonstrate that the lower sensitivity of burned area and C emissions to climate change is related to the predicted reduction of the net primary productivity, which is identified as the most important determinant of fire activity in the Mediterranean region after anthropogenic interaction. This behavior, consistent with the intermediate fire-productivity hypothesis, limits the sensitivity of future burned area and C emissions from fires on climate change, providing more conservative estimates of future fire patterns, and demonstrates the importance of coupling fire simulation with a climate driven ecosystem productivity model.

  12. Chemical characteristics and light-absorbing property of water-soluble organic carbon in Beijing: Biomass burning contributions

    Science.gov (United States)

    Yan, Caiqing; Zheng, Mei; Sullivan, Amy P.; Bosch, Carme; Desyaterik, Yury; Andersson, August; Li, Xiaoying; Guo, Xiaoshuang; Zhou, Tian; Gustafsson, Örjan; Collett, Jeffrey L.

    2015-11-01

    Emissions from biomass burning contribute significantly to water-soluble organic carbon (WSOC) and light-absorbing organic carbon (brown carbon). Ambient atmospheric samples were collected at an urban site in Beijing during winter and summer, along with source samples from residential crop straw burning. Carbonaceous aerosol species, including organic carbon (OC), elemental carbon (EC), WSOC and multiple saccharides as well as water-soluble potassium (K+) in PM2.5 (fine particulate matter with size less than 2.5 μm) were measured. Chemical signatures of atmospheric aerosols in Beijing during winter and summer days with significant biomass burning influence were identified. Meanwhile, light absorption by WSOC was measured and quantitatively compared to EC at ground level. The results from this study indicated that levoglucosan exhibited consistently high concentrations (209 ± 145 ng m-3) in winter. Ratios of levoglucosan/mannosan (L/M) and levoglucosan/galacosan (L/G) indicated that residential biofuel use is an important source of biomass burning aerosol in winter in Beijing. Light absorption coefficient per unit ambient WSOC mass calculated at 365 nm is approximately 1.54 ± 0.16 m2 g-1 in winter and 0.73 ± 0.15 m2 g-1 in summer. Biomass burning derived WSOC accounted for 23 ± 7% and 16 ± 7% of total WSOC mass, and contributed to 17 ± 4% and 19 ± 5% of total WSOC light absorption in winter and summer, respectively. It is noteworthy that, up to 30% of total WSOC light absorption was attributed to biomass burning in significant biomass-burning-impacted summer day. Near-surface light absorption (over the range 300-400 nm) by WSOC was about ∼40% of that by EC in winter and ∼25% in summer.

  13. Burning management in the tallgrass prairie affects root decomposition, soil food web structure and carbon flow

    Science.gov (United States)

    Shaw, E. A.; Denef, K.; Milano de Tomasel, C.; Cotrufo, M. F.; Wall, D. H.

    2015-09-01

    Root litter decomposition is a major component of carbon (C) cycling in grasslands, where it provides energy and nutrients for soil microbes and fauna. This is especially important in grasslands where fire is a common management practice and removes aboveground litter accumulation. In this study, we investigated whether fire affects root decomposition and C flow through the belowground food web. In a greenhouse experiment, we applied 13C-enriched big bluestem (Andropogon gerardii) root litter to intact tallgrass prairie soil cores collected from annually burned (AB) and infrequently burned (IB) treatments at the Konza Prairie Long Term Ecological Research (LTER) site. Incorporation of 13C into microbial phospholipid fatty acids and nematode trophic groups was measured on six occasions during a 180-day decomposition study to determine how C was translocated through the soil food web. Results showed significantly different soil communities between treatments and higher microbial abundance for IB. Root decomposition occurred rapidly and was significantly greater for AB. Microbes and their nematode consumers immediately assimilated root litter C in both treatments. Root litter C was preferentially incorporated in a few groups of microbes and nematodes, but depended on burn treatment: fungi, Gram-negative bacteria, Gram-positive bacteria, and fungivore nematodes for AB and only omnivore nematodes for IB. The overall microbial pool of root litter-derived C significantly increased over time but was not significantly different between burn treatments. The nematode pool of root litter-derived C also significantly increased over time, and was significantly higher for the AB treatment at 35 and 90 days after litter addition. In conclusion, the C flow from root litter to microbes to nematodes is not only measurable, but significant, indicating that higher nematode trophic levels are critical components of C flow during root decomposition which, in turn, is significantly

  14. Influence of disturbance on carbon exchange in a permafrost collapse and adjacent burned forest

    Science.gov (United States)

    Myers-Smith, I. H.; McGuire, A.D.; Harden, J.W.; Chapin, F. S., III

    2007-01-01

    We measured CO2 and CH4 exchange from the center of a Sphagnum-dominated permafrost collapse, through an aquatic most, and into a recently burned black spruce forest on the Tanana River floodplain in interior Alaska. In the anomalously dry growing season of 2004, both the collapse and the surrounding burned area were net sink, s for CO2, with a mean daytime net ecosystem exchange of -1.4 ??mol CO2 m-2 s-1, while the moat was a CH4 source with a mean flux of 0.013 ??mol CH4 m-2 s-1. Regression analyses identified temperature as the dominant factor affecting intragrowing season variation in CO2 exchange and soil moisture as the primary control influencing CH4 emissions. CH4 emissions during the wettest portion of the growing season were four times higher than during the driest periods. If temperatures continue to warm, peatlahd vegetation will likely expand with permafrost degradation, resulting in greater carbon accumulation and methane emissions for the landscape as a whole. Copyright 2007 by the American Geophysical Union.

  15. Interactive effects of frequent burning and timber harvesting on above ground carbon biomass in temperate eucalypt forests

    Science.gov (United States)

    Collins, Luke; Penman, Trent; Ximenes, Fabiano; Bradstock, Ross

    2015-04-01

    The sequestration of carbon has been identified as an important strategy to mitigate the effects of climate change. Fuel reduction burning and timber harvesting are two common co-occurring management practices within forests. Frequent burning and timber harvesting may alter forest carbon pools through the removal and redistribution of biomass and demographic and structural changes to tree communities. Synergistic and antagonistic interactions between frequent burning and harvesting are likely to occur, adding further complexity to the management of forest carbon stocks. Research aimed at understanding the interactive effects of frequent fire and timber harvesting on carbon biomass is lacking. This study utilised data from two long term (25 - 30 years) manipulative burning experiments conducted in southern Australia in temperate eucalypt forests dominated by resprouting canopy species. Specifically we examined the effect of fire frequency and harvesting on (i) total biomass of above ground carbon pools and (ii) demographic and structural characteristics of live trees. We also investigated some of the mechanisms driving these changes. Frequent burning reduced carbon biomass by up to 20% in the live tree carbon pool. Significant interactions occurred between fire and harvesting, whereby the reduction in biomass of trees >20 cm diameter breast height (DBH) was amplified by increased fire frequency. The biomass of trees DBH increased with harvesting intensity in frequently burnt areas, but was unaffected by harvesting intensity in areas experiencing low fire frequency. Biomass of standing and fallen coarse woody debris was relatively unaffected by logging and fire frequency. Fire and harvesting significantly altered stand structure over the study period. Comparison of pre-treatment conditions to current conditions revealed that logged sites had a significantly greater increase in the number of small trees (DBH) than unlogged sites. Logged sites showed a significant

  16. Light absorbing organic aerosols (brown carbon) over the tropical Indian Ocean: impact of biomass burning emissions

    International Nuclear Information System (INIS)

    The first field measurements of light absorbing water-soluble organic carbon (WSOC), referred as brown carbon (BrC), have been made in the marine atmospheric boundary layer (MABL) during the continental outflow to the Bay of Bengal (BoB) and the Arabian Sea (ARS). The absorption signal measured at 365 nm in aqueous extracts of aerosols shows a systematic linear increase with WSOC concentration, suggesting a significant contribution from BrC to the absorption properties of organic aerosols. The mass absorption coefficient (babs) of BrC shows an inverse hyperbolic relation with wavelength (from ∼300 to 700 nm), providing an estimate of the Angstrom exponent (αP, range: 3–19; Av: 9 ± 3). The mass absorption efficiency of brown carbon (σabs−BrC) in the MABL varies from 0.17 to 0.72 m2 g−1 (Av: 0.45 ± 0.14 m2 g−1). The αP and σabs−BrC over the BoB are quite similar to that studied from a sampling site in the Indo-Gangetic Plain (IGP), suggesting the dominant impact of organic aerosols associated with the continental outflow. A comparison of the mass absorption efficiency of BrC and elemental carbon (EC) brings to focus the significant role of light absorbing organic aerosols (from biomass burning emissions) in atmospheric radiative forcing over oceanic regions located downwind of the pollution sources. (letter)

  17. Use of levoglucosan, potassium, and water-soluble organic carbon to characterize the origins of biomass-burning aerosols

    Science.gov (United States)

    Urban, Roberta Cerasi; Lima-Souza, Michele; Caetano-Silva, Letícia; Queiroz, Maria Eugênia C.; Nogueira, Raquel F. P.; Allen, Andrew G.; Cardoso, Arnaldo A.; Held, Gerhard; Campos, Maria Lucia A. M.

    2012-12-01

    Three chemical species related to biomass burning, levoglucosan, potassium and water-soluble organic carbon (WSOC), were measured in aerosol samples collected in a rural area on the outskirts of the municipality of Ourinhos (São Paulo State, Brazil). This region is representative of the rural interior of the State, where the economy is based on agro-industrial production, and the most important crop is sugar cane. The manual harvesting process requires that the cane be first burned to remove excess foliage, leading to large emissions of particulate materials to the atmosphere. Most of the levoglucosan (68-89%) was present in small particles (biomass burning occurs. In contrast, WSOC showed no diurnal pattern, with an average concentration of 5.38 ± 2.97 μg m-3 (n = 27). A significant linear correlation between levoglucosan and WSOC (r = 0.54; n = 26; p biomass burning was in fact an important source of WSOC in the study region. A moderate (but significant) linear correlation between levoglucosan and potassium concentrations (r = 0.62; n = 40; p biomass burning) were considered, the linear coefficient increased to 0.91 (n = 9). In this case, the average levoglucosan/K+ ratio was 0.24, which may be typical of biomass burning in the study region. This ratio is about 5 times lower than that previously found for Amazon aerosol collected during the day, when flaming combustion prevails. This suggests that the levoglucosan/K+ ratio may be especially helpful for characterization of the type of vegetation burned (such as crops or forest), when biomass-burning is the dominant source of potassium. The relatively high concentrations of WSOC (and inorganic ions) suggest an important influence on the formation of cloud condensation nuclei, which is likely to affect cloud formation and precipitation patterns.

  18. Rainforest burning and the global carbon budget: Biomass, combustion efficiency, and charcoal formation in the Brazilian Amazon

    Science.gov (United States)

    Fearnside, Philip M.; Leal, Niwton; Fernandes, Fernando Moreira

    1993-01-01

    Biomass present before and after burning was measured in forest cleared for pasture in a cattle ranch (Fazenda Dimona) near Manaus, Amazonas, Brazil. Aboveground dry weight biomass loading averaged 265 t ha-1 (standard deviation (SD) = 110, n = 6 quadrats) at Fazenda Dimona, which corresponds to approximately 311 t ha-1 total dry weight biomass. A five-category visual classification at 200 points showed highly variable burn quality. Postburn aboveground biomass loading was evaluated by cutting and weighing of 100 m2 quadrats and by line intersect sampling. Quadrats had a mean dry weight of 187 t ha-1 (SD = 69, n = 10), a 29.3% reduction from the preburn mean in the same clearing. Line intersect estimates in 1.65 km of transects indicated that 265 m3 ha-1 (approximately 164 t ha-1 of aboveground dry matter) survived burning. Using carbon contents measured for different biomass components (all ˜50% carbon) and assuming a carbon content of 74.8% for charcoal (from other studies near Manaus), the destructive measurements imply a 27.6% reduction of aboveground carbon pools. Charcoal composed 2.5% of the dry weight of the remains in the postburn destructive quadrats and 2.8% of the volume in the line intersect transects. Thus approximately 2.7% of the preburn aboveground carbon stock was converted to charcoal, substantially less than is generally assumed in global carbon models. The findings confirm high values for biomass in central Amazonia. High variability indicates the need for further studies in many localities and for making maximum use of less laborious indirect methods of biomass estimation. While indirect methods are essential for regional estimates of average biomass, only direct weighing such as that reported here can yield information on combustion efficiency and charcoal formation. Both high biomass and low percentage of charcoal formation suggest the significant potential contribution of forest burning to global climate changes from CO2 and trace gases.

  19. Inferring brown carbon content from UV aerosol absorption measurements during biomass burning season

    Science.gov (United States)

    Mok, J.; Krotkov, N. A.; Arola, A. T.; Torres, O.; Jethva, H. T.; Andrade, M.; Labow, G. J.; Eck, T. F.; Li, Z.; Dickerson, R. R.; Stenchikov, G. L.; Osipov, S.

    2015-12-01

    Measuring spectral dependence of light absorption by colored organic or "brown" carbon (BrC) is important, because of its effects on photolysis rates of ozone and surface ultraviolet (UV) radiation. Enhanced UV spectral absorption by BrC can in turn be exploited for simultaneous retrievals of BrC and black carbon (BC) column amounts in field campaigns. We present an innovative ground-based retrieval of BC and BrC volume fractions and their mass absorption efficiencies during the biomass burning season in Santa Cruz, Bolivia in September-October 2007. Our method combines retrieval of BC volume fraction using AERONET inversion in visible wavelengths with the inversion of total BC+BrC absorption (i.e., column effective imaginary refractive index, kmeas) using Diffuse/Direct irradiance measurements in UV wavelengths. First, we retrieve BrC volume fraction by fitting kmeas at 368nm using Maxwell-Garnett (MG) mixing rules assuming: (1) flat spectral dependence of kBC, (2) known value of kBrC at 368nm from laboratory absorption measurements or smoke chamber experiments, and (3) known BC volume fraction from AERONET inversion. Next, we derive kBrC in short UVB wavelengths by fitting kmeas at 305nm, 311nm, 317nm, 325nm, and 332nm using MG mixing rules and fixed volume fractions of BC and BrC. Our retrievals show larger than expected spectral dependence of kBrC in UVB wavelengths, implying reduced surface UVB irradiance and inhibited photolysis rates of surface ozone destruction. We use a one-dimensional chemical box model to show that the observed strong wavelength dependence of BrC absorption leads to inhibited photolysis of ozone to O(1D), a loss mechanism, while having little impact or even accelerating photolysis of NO2, an ozone production mechanism. Although BC only absorption in biomass burning aerosols is important for climate radiative forcing in the visible wavelengths, additional absorption by BrC is important because of its impact on surface UVB radiation

  20. Carbon content of Amazon forest biomass and changes after burning; Conteudo de carbono na biomassa florestal da Amazonia e alteracoes apos a queima

    Energy Technology Data Exchange (ETDEWEB)

    Graca, Paulo Mauricio Lima de Alencastro

    1997-04-01

    The carbon contained in the various types of vegetation in the Brazilian legal Amazon was estimated in 80 Pg, based on data from the literature. Transformations of biomass caused by burning took place in an open forest located in Nova Vida Ranch, Arquimedes, Roraima state. The direct and indirect method to estimate the biomass and charcoal after burning were compared and correlation coefficients are presented. Based on combustion efficiency from the above mentioned location and other localities in the Amazon, the carbon released upon burning was calculated. The annual contribution of carbon emitted to the atmosphere was also calculated and presented 119 refs., 18 figs., 16 tabs.

  1. The legacy of forest harvest and burning on ecosystem carbon storage in the northern midwest, USA

    Science.gov (United States)

    Gough, C. M.; Vogel, C. S.; Harrold, K. H.; George, K. D.; Curtis, P. S.

    2005-12-01

    Over 90 % of the forested area in the upper Great Lakes region was harvested by the early 20th century. In many cases, harvests were followed by uncontrolled burns, similar to current patterns of disturbance in many developing countries. While afforestation in the northern midwest has resulted in increased regional carbon (C) storage, the rate of C storage by forests will depend on the severity of prior disturbance and consequent changes in site quality. We were interested in how long the legacy of poor management practices from the early 20th century would be reflected in forest C storage rates. We investigated C cycling and storage following disturbance in mixed deciduous forests of northern lower Michigan, USA. Study plots ranged in age from 6 to 68 yrs and were created following experimental clear-cut harvesting and fire disturbance. Annual C storage was estimated biometrically from measurements of wood, leaf, fine root, and woody debris mass, mass losses to herbivory, soil carbon content, and soil respiration. Maximum annual carbon storage, or net ecosystem production (NEP), in the disturbed stands was 50 % lower than that of adjacent, undisturbed forest. This decrease was caused by a reduction in site quality following disturbance. However, during regrowth the cut and burned forest rapidly became a net C sink, storing 0.86 Mg C ha-1 yr-1 after six yrs. Carbon storage reached a peak of 1.00 Mg C ha-1 yr-1 after 50 yrs and declined to 0.57 Mg C ha-1 yr-1 after 68 yrs. Above- and below-ground net primary production (NPP) averaged 42 and 59 % of total NPP, respectively, with fine root litter production accounting for 57 % of total NPP. Soil heterotrophic respiration was high, ranging from 4.55 Mg C ha-1 yr-1 in the 6-yr-old stand to 5.74 Mg C ha-1 yr-1 in the 50-yr-old stand. Soil C and coarse woody debris pools exhibited a U-shaped trend over time following disturbance. Mineral soil and coarse woody debris pools lost C at a combined annual rate of 1.10 Mg C ha-1

  2. Quantifying black carbon from biomass burning by means of levoglucosan - a one year time series at the Arctic observatory Zeppelin

    Science.gov (United States)

    Yttri, K. E.; Myhre, C. Lund; Eckhardt, S.; Fiebig, M.; Dye, C.; Hirdman, D.; Ström, J.; Klimont, Z.; Stohl, A.

    2013-12-01

    Levoglucosan, a highly specific tracer of particulate matter from biomass burning, has been used to study the influence of residential wood burning, agricultural waste burning and boreal forest fire emissions on the Arctic atmosphere black carbon (BC) concentration. A one year time series from March 2008 to March 2009 of levoglucosan has been established at the Zeppelin Observatory in the European Arctic. Elevated concentrations of levoglucosan in winter (Mean: 1.02 ng m-3) compared to summer (Mean: 0.13 ng m-3) were observed, resembling the seasonal variation seen for e.g. sulphate and BC. The mean concentration in the winter period was two to three orders of magnitude lower than typical values reported for European urban areas in winter, and one to two orders of magnitude lower than European rural background concentrations. Episodes of elevated levoglucosan concentration were more frequent in winter than in summer and peak values were higher, exceeding 10 ng m-3 at the most. Concentrations of elemental carbon from biomass burning (ECbb) were obtained by combining measured concentrations of levoglucosan and emission ratios of levoglucosan and EC for wild/agricultural fires and for residential wood burning. Neglecting chemical degradation by OH provides minimum levoglucosan concentrations, corresponding to a mean ECbb concentration of 3.7±1.2 ng m-3 in winter (October-April) and 0.8±0.3 ng m-3 in summer (May-September) or 8.8±4.5% of the measured equivalent black carbon (EBC) concentration in winter and 6.1±3.4% in summer. When accounting for chemical degradation of levoglucosan by OH, an upper estimate of 31-45% of EBC could be attributed to ECbb* (ECbb adjusted for chemical degradation) in winter and wild fires during summer, and residential wood burning in winter. The model overestimates by a factor of 2.2 in winter and 4.4 in summer when compared to the observationally derived mean ECbb concentration, which provides the minimum estimate, whereas it

  3. Forest Understory Fire in the Brazilian Amazon in ENSO and Non-ENSO Years: Area Burned and Committed Carbon Emissions

    Science.gov (United States)

    Alencar, A.; Nepstad, D.; Ver-Diaz, M. Del. C.

    2004-01-01

    "Understory fires" that burn the floor of standing forests are one of the most important types of forest impoverishment in the Amazon, especially during the severe droughts of El Nino Southern Oscillation (ENSO) episodes. However, we are aware of no estimates of the areal extent of these fires for the Brazilian Amazon and, hence, of their contribution to Amazon carbon fluxes to the atmosphere. We calculated the area of forest understory fires for the Brazilian Amazon region during an El Nino (1998) and a non El Nino (1995) year based on forest fire scars mapped with satellite images for three locations in eastern and southern Amazon, where deforestation is concentrated. The three study sites represented a gradient of both forest types and dry season severity. The burning scar maps were used to determine how the percentage of forest that burned varied with distance from agricultural clearings. These spatial functions were then applied to similar forest/climate combinations outside of the study sites to derive an initial estimate for the Brazilian Amazon. Ninety-one percent of the forest area that burned in the study sites was within the first kilometer of a clearing for the non ENSO year and within the first four kilometers for the ENSO year. The area of forest burned by understory forest fire during the severe drought (ENSO) year (3.9 millions of hectares) was 13 times greater than the area burned during the average rainfall year (0.2 million hectares), and twice the area of annual deforestation rate. Dense forest was, proportionally, the forest area most affected by understory fires during the El Nino year, while understory fires were concentrated in transitional forests during the year of average rainfall. Our estimate of aboveground tree biomass killed by fire ranged from 0.06 Pg to 0.38 Pg during the ENSO and from 0,004 Pg to 0,024 Pg during the non ENSO.

  4. Problem of soot aggregates separation and purification for Carbon isotopic composition analyses - burning experiment and real black layers from speleothems examples

    Science.gov (United States)

    Hercman, Helena; Zawidzki, Pawel; Majewska, Agata

    2015-04-01

    Burning products are often used as an indicator of fire or prehistoric men activities. When it consists of macroscopically visible black layer it may be studied by different methods. When it is dispersed within sediment it is necessary to apply method for burning product separation. Soot aggregates as a result of incomplete combustion of organic materials are most reliable indication of burning. Size of soot particles is too small to observe by optical microscopy. There are two main advantages of application of transmission electron microscopy (TEM) for investigations of samples formed as a result of organic materials (like wood) combustion. First, it makes possible to investigate not only morphology but also its interior structure. The carbon layers arrangement is characteristic for particles obtained from combustion processes, and it directly confirm that these particles were formed that way. And second, analysis of chemical composition using of EDS spectroscopy in transmission microscope are precise and it spatial resolution is about a few nanometers. Burning chamber for wood burning experiments was constructed. It allows wood burning with controlling of burning temperature, carbon isotopic composition in carbon dioxide of burning atmosphere and carbon dioxide originated during burning. Burning products are collected on the plates with controlling of plates material, temperature and distance from flame. Two types of samples were studied. The first type of samples consisted the products of recent wood burning. The second type of samples consisted of black layers collected from speleothems. Soot aggregates were chemically separated from other burning products collected on plates. Process of chemical separation and purity of soot material were tested by TEM observations. Isotopic carbon composition at each step of soot separation as well as original wood fragments was analysed at the Isotopic Laboratory for Dating and Palaeoenvironment Studies, Polish Academy of

  5. Improving Large-scale Biomass Burning Carbon Consumption and Emissions Estimates in the Former Soviet Union based on Fire Weather

    Science.gov (United States)

    Westberg, D. J.; Soja, A. J.; Tchebakova, N.; Parfenova, E. I.; Kukavskaya, E.; de Groot, B.; McRae, D.; Conard, S. G.; Stackhouse, P. W., Jr.

    2012-12-01

    Estimating the amount of biomass burned during fire events is challenging, particularly in remote and diverse regions, like those of the Former Soviet Union (FSU). Historically, we have typically assumed 25 tons of carbon per hectare (tC/ha) is emitted, however depending on the ecosystem and severity, biomass burning emissions can range from 2 to 75 tC/ha. Ecosystems in the FSU span from the tundra through the taiga to the forest-steppe, steppe and desserts and include the extensive West Siberian lowlands, permafrost-lain forests and agricultural lands. Excluding this landscape disparity results in inaccurate emissions estimates and incorrect assumptions in the transport of these emissions. In this work, we present emissions based on a hybrid ecosystem map and explicit estimates of fuel that consider the depth of burning based on the Canadian Forest Fire Weather Index System. Specifically, the ecosystem map is a fusion of satellite-based data, a detailed ecosystem map and Alexeyev and Birdsey carbon storage data, which is used to build carbon databases that include the forest overstory and understory, litter, peatlands and soil organic material for the FSU. We provide a range of potential carbon consumption estimates for low- to high-severity fires across the FSU that can be used with fire weather indices to more accurately estimate fire emissions. These data can be incorporated at ecoregion and administrative territory scales and are optimized for use in large-scale Chemical Transport Models. Additionally, paired with future climate scenarios and ecoregion cover, these carbon consumption data can be used to estimate potential emissions.

  6. After the Burn: Forest Carbon Stocks and Fluxes across fire disturbed landscapes in Colorado, U.S.A.

    Science.gov (United States)

    Barnes, R. T.; Buma, B.; Wolf, K.; Elwood, K. K.; Fehsenfeld, T.; Kehlenbeck, M.

    2015-12-01

    In terrestrial ecosystems, ecological disturbances can strongly regulate material and energy flows. This often results from the reduction in biomass and associated ecological relationships and physiological processes. Researchers have noted an increase in the size and severity of disturbances, such as wildfire, in recent decades. While there is significant research examining post-disturbance carbon stocks and recovery, there is less known about the fate and quality of post-disturbance carbon pools. In an effort to understand the recovery and resilience of forest carbon stocks to severe wildfire we examined the carbon and black carbon (pyrogenic) stocks (e.g. above ground biomass, coarse woody debris, charcoal, soils) and export fluxes (stream export, soil respiration) within the burn scars of three Colorado fires (Hayman in 2002, Hinman in 2002, and Waldo Canyon in 2012) and compared them to nearby unburned forested ecosystems. The Hayman and Hinman fire comparison allows us to quantify differences between fire impacts in Ponderosa-Douglas Fir (montane) and Spruce-Fir (subalpine) ecosystems, while the Hayman and Waldo Canyon comparison gives us insights into how recovery time influences carbon biogeochemistry in these systems. We will present preliminary data comparing and relating terrestrial carbon and black carbon stocks, soil respiration rates, and watershed export fluxes.

  7. LandCarbon Conterminous United States Burned Area and Severity Mosaics 2001-2050 Metadata

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The burn area and severity data were stochastically generated using a probabilistic ignition model and mechanistic fire-spread model. The ignition model consisted...

  8. EXPERIMENTAL ANALYSIS AND ISHIKAWA DIAGRAM FOR BURN ON EFFECT ON MANGANESE SILICON ALLOY MEDIUM CARBON STEEL SHAFT

    Directory of Open Access Journals (Sweden)

    AsmamawTegegne

    2013-12-01

    Full Text Available Burn on/metal penetration is one of the surface defects of metal castings in general and steel castings in particular. A research on the effect of burn on the six ton medium carbon steel shaft for making a roller of cold rolled steel sheet produced at one of the metals industry was carried out. The shaft was cast using sand casting by pouring through riser/feeding head step by step (with time interval of pouring. As it was required to use foam casting method for better surface finish and dimensional accuracy of the cast, the pattern was prepared from polystyrene and embedded by silica sand. Physical observations, photographic analysis, visual inspection, measurement of depth of penetration and fish bone diagram were used as method of results analysis. The shaft produced has strongly affected by sand sintering (burn on/metal penetration. Many reasons may be the case for these defects, however analysis results showed that the use of poorly designed gating system led to turbulence flow, uncontrollable high temperature fused the silica sand and liquid polystyrene penetrated the poorly reclaimed and rammed sand mold as a result of which eroded sand has penetrated the liquid metal deeply and reacted with it, consequently after solidification and finishing the required 240mm diameter of the shaft has reduced un evenly to 133mm minimum and 229mm maximum mm that end in the rejection of the shaft from the product since it is below the required standard for the designed application. In addition, it was not possible to remove the adhered sand by grinding. Thus burn on is included in mechanical type burn on.

  9. Impacts of Frequent Burning on Live Tree Carbon Biomass and Demography in Post-Harvest Regrowth Forest

    Directory of Open Access Journals (Sweden)

    Luke Collins

    2014-04-01

    Full Text Available The management of forest ecosystems to increase carbon storage is a global concern. Fire frequency has the potential to shift considerably in the future. These shifts may alter demographic processes and growth of tree species, and consequently carbon storage in forests. Examination of the sensitivity of forest carbon to the potential upper and lower extremes of fire frequency will provide crucial insight into the magnitude of possible change in carbon stocks associated with shifts in fire frequency. This study examines how tree biomass and demography of a eucalypt forest regenerating after harvest is affected by two experimentally manipulated extremes in fire frequency (i.e., ~3 year fire intervals vs. unburnt sustained over a 23 year period. The rate of post-harvest biomass recovery of overstorey tree species, which constituted ~90% of total living tree biomass, was lower within frequently burnt plots than unburnt plots, resulting in approximately 20% lower biomass in frequently burnt plots by the end of the study. Significant differences in carbon biomass between the two extremes in frequency were only evident after >15–20 years of sustained treatment. Reduced growth rates and survivorship of smaller trees on the frequently burnt plots compared to unburnt plots appeared to be driving these patterns. The biomass of understorey trees, which constituted ~10% of total living tree biomass, was not affected by frequent burning. These findings suggest that future shifts toward more frequent fire will potentially result in considerable reductions in carbon sequestration across temperate forest ecosystems in Australia.

  10. Anthropogenic, biomass burning, and volcanic emissions of black carbon, organic carbon, and SO2 from 1980 to 2010 for hindcast model experiments

    Directory of Open Access Journals (Sweden)

    D. Streets

    2012-09-01

    Full Text Available Two historical emission inventories of black carbon (BC, primary organic carbon (OC, and SO2 emissions from land-based anthropogenic sources, ocean-going vessels, air traffic, biomass burning, and volcanoes are presented and discussed for the period 1980–2010. These gridded inventories are provided to the internationally coordinated AeroCom Phase II multi-model hindcast experiments. The horizontal resolution is 0.5°×0.5° and 1.0°×1.0°, while the temporal resolution varies from daily for volcanoes to monthly for biomass burning and aircraft emissions, and annual averages for land-based and ship emissions. One inventory is based on inter-annually varying activity rates of land-based anthropogenic emissions and shows strong variability within a decade, while the other one is derived from interpolation between decadal endpoints and thus exhibits linear trends within a decade. Both datasets capture the major trends of decreasing anthropogenic emissions over the USA and Western Europe since 1980, a sharp decrease around 1990 over Eastern Europe and the former USSR, and a steep increase after 2000 over East and South Asia. The inventory differences for the combined anthropogenic and biomass burning emissions in the year 2005 are 34% for BC, 46% for OC, and 13% for SO2. They vary strongly depending on species, year and region, from about 10% to 40% in most cases, but in some cases the inventories differ by 100% or more. Differences in emissions from wild-land fires are caused only by different choices of the emission factors for years after 1996 which vary by a factor of about 1 to 2 for OC depending on region, and by a combination of emission factors and the amount of dry mass burned for years up to 1996. Volcanic SO2 emissions, which are only provided in one inventory, include emissions from explosive, effusive, and quiescent degassing events for 1167 volcanoes.

  11. Towards multi-tracer data-assimilation: biomass burning and carbon isotope exchange in SiBCASA

    Directory of Open Access Journals (Sweden)

    I. R. van der Velde

    2014-01-01

    Full Text Available We present an enhanced version of the SiBCASA photosynthetic/biogeochemical model for a future integration with a multi-tracer data-assimilation system. We extended the model with (a biomass burning emissions from the SiBCASA carbon pools using remotely sensed burned area from Global Fire Emissions Database (GFED version 3.1, (b a new set of 13C pools that cycle consistently through the biosphere, and (c, a modified isotopic discrimination scheme to estimate variations in 13C exchange as a~response to stomatal conductance. Previous studies suggest that the observed variations of atmospheric 13C/12C are driven by processes specifically in the terrestrial biosphere rather than in the oceans. Therefore, we quantify in this study the terrestrial exchange of CO2 and 13CO2 as a function of environmental changes in humidity and biomass burning. Based on an assessment of observed respiration signatures we conclude that SiBCASA does well in simulating global to regional plant discrimination. The global mean discrimination value is 15.2‰, and ranges between 4 and 20‰ depending on the regional plant phenology. The biomass burning emissions (annually and seasonally compare favorably to other published values. However, the observed short-term changes in discrimination and the respiration 13C signature are more difficult to capture. We see a too weak drought response in SiBCASA and too slow return of anomalies in respiration. We demonstrate possible ways to improve this, and discuss the implications for our current capacity to interpret atmospheric 13C observations.

  12. The application of FORMOSAT-2 high-temporal- and high-spatial resolution imagery for monitoring open straw burning and carbon emission detection

    Directory of Open Access Journals (Sweden)

    C.-C. Liu

    2013-03-01

    Full Text Available Rice is produced in more than 95 countries worldwide and is a staple food for over half of the world's population. Rice is also a major food crop of Taiwan. There are numerous rice crops planted on the western plains of Taiwan, and, after the harvest season, the left-over straw is often burned on-site. The air pollutants from the burning emissions include CO2, CO, CH4 and other suspended particles, most of these being the greenhouse gases which cause global climate change. In this study FORMOSAT-2 satellite images and ground-truth data from 2008 and 2009 are used to conduct supervised classification and calculate the extent of the straw burning areas. It was found that 10% of the paddies in the study area were burned after harvest during this 2-yr period. On this pro rata basis, we calculated the overall carbon emissions from the burning of the straw. The findings showed that these few farmers produced up to 34 000 tons of carbon emissions in 2008, and 40 000 tons in 2009. The study results indicate that remotely sensed images can be used to efficiently evaluate the important characteristics for carbon emission detection. It also provides quantitative results that are relevant to tracking sources of transport pollution, postharvest burning, and Asian dust in Taiwan.

  13. Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions

    OpenAIRE

    Saleh, R.; Hennigan, C. J.; McMeeking, G. R; W. K. Chuang; E. S. Robinson; Coe, H.; Donahue, N. M.; Robinson, A. L.

    2013-01-01

    Experiments were conducted to investigate light absorption of organic aerosol (OA) in fresh and photo-chemically aged biomass-burning emissions. The experiments considered residential hardwood fuel (oak) and fuels commonly consumed in wild-land and prescribed fires in the United States (pocosin pine and gallberry). Photo-chemical aging was performed in an environmental chamber. We constrained the effective light-absorption properties of the OA using conservative limiting assumptions, and foun...

  14. Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions

    OpenAIRE

    Saleh, R.; Hennigan, C. J.; McMeeking, G. R; W. K. Chuang; E. S. Robinson; Coe, H.; Donahue, N. M.; Robinson, A. L.

    2013-01-01

    Experiments were conducted to investigate light absorption of organic aerosol (OA) in fresh and photo-chemically aged biomass-burning emissions. The experiments considered residential hardwood fuel (oak) and fuels commonly consumed in wild-land and prescribed fires in the United States (pocosin pine and gallberry). Photo-chemical aging was performed in an environmental chamber. We constrained the light-absorption properties of the OA using conservative limiting assumptions, and found t...

  15. Energy, water and carbon dioxide fluxes measurements over a burned forest site near Yakutsk, Eastern Siberia

    Science.gov (United States)

    Iwahana, G.; Lopez, L.; Hirano, T.; Machimura, T.; Kobayashi, Y.; Fukuda, M.

    2002-12-01

    Micrometeorological measurements were made over a site which had been burned previous year by wild fire. Study area is located on the right bank of Lena Liver, 25km northwest of Yakutsk, Eastern Siberia. Wild fires burned over this area in places during late summer of 2001. The observation site was formally a mature larch stand with a mean crown height of about 18m. The fire front had passed this site in the middle of September 2001 and surface litter and moss layer with mean depth of approximately 10cm was thoroughly burned. Loosing main roots after the fire, almost all of trees in the area with diameter of 100m were fallen by winds and remained trees were cut down by the first day of the measurements. The observation period was from 25th July till 3rd September. The result of all energy balance components and CO2 flux measurements will be shown as a preliminary report. A quick vegetation recovery caused daytime absorption of CO2 Offsetting night time emission. The trend of CO2 and water vapor fluxes associated well with rain events indicates some vegetation activities. Impacts of the wild fire on radiation environment and active layer thermal regime of the active layer at this observation site are discussed.

  16. Increased losses of organic carbon and destabilising of tropical peatlands following deforestation, drainage and burning. (Invited)

    Science.gov (United States)

    Moore, S.; Gauci, V.; Evans, C.; Page, S. E.

    2013-12-01

    Tropical peatlands contain one of the largest pools of terrestrial organic carbon, amounting to about 89,000 teragrams. Approximately 65% of this carbon store is in Indonesia, where extensive anthropogenic degradation in the form of deforestation, drainage and associated fire is converting it into a globally significant source of atmospheric carbon dioxide. Unlike boreal and temperate forests and higher-latitude wetlands, however, the loss of fluvial organic carbon from tropical peats has yet to be fully quantified. Here, we present the first data from intact and degraded peat swamp forest (PSF) catchments in Central Kalimantan, Borneo, that indicate a doubling of fluvial organic carbon losses from tropical peatlands following deforestation and drainage. Through carbon-14 dating of dissolved organic carbon (DO14C), we find that leaching of DOC from intact PSF is derived mainly from recent primary production. In contrast, DOC from disturbed PSF consists mostly of much older carbon from deep within the peat column. When we include this fluvial carbon loss, which is often ignored in peatland carbon budgets, we find that it increases the estimate of total carbon lost from the disturbed peatlands in our study by 22%. We further estimate that since 1990, peatland disturbance has resulted in a 32% increase in fluvial organic carbon flux from Southeast Asia - an increase that equates to more than half of the entire annual fluvial organic carbon flux from all European peatlands. Finally, we monitored fluvial organic carbon fluxes following large-scale peatland fires in 2009/10 within the study sub-catchments and found fluvial carbon fluxes to be 30-70% larger in the fire-affected catchments when compared to fluxes during the same interval in the previous year (pre-fire). This is in marked contrast to the intact catchment (control/no fire) where there were no differences observed in fluxes 'pre to post fire years'. Our sub-catchment findings were also found to be

  17. Reduction of carbon monoxide emissions in burning processes of gaseous fuel mixtures

    International Nuclear Information System (INIS)

    The carbon monoxide produced in the combustion of gaseous fuel mixtures of low hydrocarbon-air content represents a transition component of high risk for living organisms. The limit of admissible concentration of carbon monoxide in the atmosphere is 50 ppm. The paper presents a method of reduction of monoxide carbon present in the combustion emissions which can be can achieved by means of the chemical reaction CO+OH -> H + CO2. The hydroxyl radical can be obtained either by thermic decomposition or by hydrogen injection. (author). 3 figs., 4 refs

  18. Determination of wood burning and fossil fuel contribution of black carbon at Delhi, India using aerosol light absorption technique.

    Science.gov (United States)

    Tiwari, S; Pipal, A S; Srivastava, A K; Bisht, D S; Pandithurai, G

    2015-02-01

    A comprehensive measurement program of effective black carbon (eBC), fine particle (PM2.5), and carbon monoxide (CO) was undertaken during 1 December 2011 to 31 March 2012 (winter period) in Delhi, India. The mean mass concentrations of eBC, PM2.5, and CO were recorded as 12.1 ± 8.7 μg/m(3), 182.75 ± 114.5 μg/m(3), and 3.41 ± 1.6 ppm, respectively, during the study period. Also, the absorption Angstrom exponent (AAE) was estimated from eBC and varied from 0.38 to 1.29 with a mean value of 1.09 ± 0.11. The frequency of occurrence of AAE was ~17 % less than unity whereas ~83 % greater than unity was observed during the winter period in Delhi. The mass concentrations of eBC were found to be higher by ~34 % of the average value of eBC (12.1 μg/m(3)) during the study period. Sources of eBC were estimated, and they were ~94 % from fossil fuel (eBCff) combustion whereas only 6 % was from wood burning (eBCwb). The ratio between eBCff and eBCwb was 15, which indicates a higher impact from fossil fuels compared to biomass burning. When comparing eBCff during day and night, a factor of three higher concentrations was observed in nighttime than daytime, and it is due to combustion of fossil fuel (diesel vehicle emission) and shallow boundary layer conditions. The contribution of eBCwb in eBC was higher between 1800 and 2100 hours due to burning of wood/biomass. A significant correlation between eBC and PM2.5 (r = 0.78) and eBC and CO (r = 0.46) indicates the similarity in location sources. The mass concentration of eBC was highest (23.4 μg/m(3)) during the month of December when the mean visibility (VIS) was lowest (1.31 km). Regression analysis among wind speed (WS), VIS, soot particles, and CO was studied, and significant negative relationships were seen between VIS and eBC (-0.65), eBCff (-0.66), eBCwb (-0.34), and CO (-0.65); however, between WS and eBC (-0.68), eBCff (-0.67), eBCwb (-0.28), and CO (-0.53). The regression analysis indicated

  19. Only small changes in soil organic carbon and charcoal concentrations found one year after experimental slash-and-burn in a temperate deciduous forest

    Directory of Open Access Journals (Sweden)

    E. Eckmeier

    2007-02-01

    Full Text Available Anthropogenic fires affected the temperate deciduous forests of Central Europe over millennia. Biomass burning releases carbon to the atmosphere and produces charcoal, which potentially contributes to the stable soil carbon pools and is an important archive of environmental history. The fate of charcoal in soils of temperate deciduous forests, i.e. the processes of charcoal incorporation and transportation, and the effects on soil organic matter are still not clear. In a long-term experimental burning site, we investigated the effects of slash-and-burn and determined soil organic carbon, charcoal carbon and nitrogen concentrations and the soil lightness of colour (L* in the topmost soil material (0–1, 1–2.5 and 2.5–5 cm depths before, immediately after the fire and one year after burning. The main results are that (i only few charcoal particles from the forest floor were incorporated into the soil matrix by soil mixing animals. In 0–1 cm and during one year, the charcoal C concentrations increased only by 0.4 g kg−1 and the proportion of charcoal C to SOC concentrations increased from 2.8 to 3.4%; (ii the SOC concentrations did not show any significant differences; (iii soil lightness significantly decreased in the topmost soil layer and correlated with the concentrations of charcoal C (r=-0.87** and SOC (r=−0.94** in samples 0–5 cm. We concluded that the soil colour depends on the proportion of aromatic charcoal carbon in total organic matter and that Holocene burning could have influenced soil charcoal concentrations and soil colour.

  20. Carbon Detonation and Shock-Triggered Helium Burning in Neutron Star Superbursts

    CERN Document Server

    Weinberg, Nevin N

    2007-01-01

    The strong degeneracy of the 12C ignition layer on an accreting neutron star results in a hydrodynamic thermonuclear runaway, in which the nuclear heating time becomes shorter than the local dynamical time. We model the resulting combustion wave during these superbursts as an upward propagating detonation. We solve the reactive fluid flow and show that the detonation propagates through the deepest layers of fuel and drives a shock wave that steepens as it travels upward into lower density material. The shock is sufficiently strong upon reaching the freshly accreted H/He layer that it triggers unstable 4He burning if the superburst occurs during the latter half of the regular Type I bursting cycle; this is likely the origin of the bright Type I precursor bursts observed at the onset of superbursts. The cooling of the outermost shock-heated layers produces a bright, ~0.1s, flash that precedes the Type I burst by a few seconds; this may be the origin of the spike seen at the burst onset in 4U 1820-30 and 4U 1636...

  1. Assessing land-use and carbon stock in slash-and-burn ecosystems in tropical mountain of Laos based on time-series satellite images

    OpenAIRE

    Inoue, Yoshio; Kiyono, Yoshiyuki; Asai, Hidetoshi; Ochiai, Yukihito; Qi, Jiaguo; Olioso, Albert; Shiraiwa, Tatsuhiko; HORIE,TAKESHI; Saito, Kazuki; Dounagsavanh, Linkham

    2010-01-01

    In the tropical mountains of Southeast Asia, slash-and-burn (S/B) agriculture is a widely practiced and important food production system. The ecosystem carbon stock in this land-use is linked not only to the carbon exchange with the atmosphere but also with food and resource security. The objective of this study was to provide quantitative information on the land-use and ecosystem carbon stock in the region as well as to infer the impacts of alternative land-use and ecosystem management scen...

  2. Brown carbon aerosols from burning of boreal peatlands: microphysical properties, emission factors, and implications for direct radiative forcing

    Science.gov (United States)

    Chakrabarty, Rajan K.; Gyawali, Madhu; Yatavelli, Reddy L. N.; Pandey, Apoorva; Watts, Adam C.; Knue, Joseph; Chen, Lung-Wen A.; Pattison, Robert R.; Tsibart, Anna; Samburova, Vera; Moosmüller, Hans

    2016-03-01

    The surface air warming over the Arctic has been almost twice as much as the global average in recent decades. In this region, unprecedented amounts of smoldering peat fires have been identified as a major emission source of climate-warming agents. While much is known about greenhouse gas emissions from these fires, there is a knowledge gap on the nature of particulate emissions and their potential role in atmospheric warming. Here, we show that aerosols emitted from burning of Alaskan and Siberian peatlands are predominantly brown carbon (BrC) - a class of visible light-absorbing organic carbon (OC) - with a negligible amount of black carbon content. The mean fuel-based emission factors for OC aerosols ranged from 3.8 to 16.6 g kg-1. Their mass absorption efficiencies were in the range of 0.2-0.8 m2 g-1 at 405 nm (violet) and dropped sharply to 0.03-0.07 m2 g-1 at 532 nm (green), characterized by a mean Ångström exponent of ≈ 9. Electron microscopy images of the particles revealed their morphologies to be either single sphere or agglomerated "tar balls". The shortwave top-of-atmosphere aerosol radiative forcing per unit optical depth under clear-sky conditions was estimated as a function of surface albedo. Only over bright surfaces with albedo greater than 0.6, such as snow cover and low-level clouds, the emitted aerosols could result in a net warming (positive forcing) of the atmosphere.

  3. Bury or burn North America MSW? LCAs provide answers for climate impacts & carbon neutral power potential.

    Science.gov (United States)

    Morris, Jeffrey

    2010-10-15

    This study uses life cycle assessment (LCA) to compare climate impacts of landfill (LF) and waste-to-energy (WTE) for disposal of municipal solid waste (MSW). To avoid possibly arbitrary assumptions about landfill gas (LFG) capture rates, the study develops a crossover function for LFG capture that indicates the capture rate at which LF and WTE breakeven for climate impacts. Above the crossover rate LF is better for the climate; below WTE is superior. Base case and sensitivity analyses show how this crossover rate is affected by waste composition, electricity conversion efficiency, heat capture, scrap metal recovery, greenhouse gas (GHG) intensity of displaced power, and LCA time horizon. In general, crossover rates are in the 50% to 70% range. Notable exceptions include much higher crossover when WTE has high heat recovery, and much lower crossover for low carbon displaced power. The study also compares GHG emissions for electricity generated by WTE, captured LF methane, coal and natural gas, and concludes that none are carbon neutral. Further, the study tentatively suggests that MSW is a particularly carbon intensive fuel due to GHGs avoidable when readily recyclable materials in MSW are used in manufacturing new products rather than used to generate electricity. PMID:20866062

  4. Pyrogenic carbon from tropical savanna burning: production and stable isotope composition

    Directory of Open Access Journals (Sweden)

    G. Saiz

    2014-10-01

    C4 grasses ranging from 35 to 99% of total biomass. Residues from each fire were partitioned into PyC and further into recalcitrant (HyPyC components, with each of these also partitioned into proximal (> 125 μm and distal (13C compositions of PyC and HyPyC were generally lower by 1–3‰ relative to the original biomass, with marked depletion up to 7 ‰ for grasslands dominated by C4 biomass. δ13C values of CO2 produced by combustion was computed by mass balance and ranged from ~0.4 to 1.3‰. The depletion of 13C in PyC and HyPyC relative to the original biomass has significant implications for the interpretation of δ13C values of savanna soil organic carbon and of ancient PyC preserved in the geologic record, and for global 13C isotopic disequilibria calculations.

  5. Diurnal variations of organic molecular tracers and stable carbon isotopic composition in atmospheric aerosols over Mt. Tai in the North China Plain: an influence of biomass burning

    Directory of Open Access Journals (Sweden)

    P. Q. Fu

    2012-09-01

    Full Text Available Organic tracer compounds, as well as organic carbon (OC, elemental carbon (EC, water-soluble organic carbon (WSOC, and stable carbon isotope ratios (δ13C of total carbon (TC have been investigated in aerosol samples collected during early and late periods of the Mount Tai eXperiment 2006 (MTX2006 field campaign in the North China Plain. Total solvent-extractable fractions were investigated by gas chromatography/mass spectrometry. More than 130 organic compounds were detected in the aerosol samples. They were grouped into twelve organic compound classes, including biomass burning tracers, biogenic primary sugars, biogenic secondary organic aerosol (SOA tracers, and anthropogenic tracers such as phthalates, hopanes and polycyclic aromatic hydrocarbons (PAHs. In early June when the field burning activities of wheat straws in the North China Plain were very active, the total identified organics (2090 ± 1170 ng m−3 were double those in late June (926 ± 574 ng m−3. All the compound classes were more abundant in early June than in late June, except phthalate esters, which were higher in late June. Levoglucosan (88–1210 ng m−3, mean 403 ng m−3 was found as the most abundant single compound in early June, while diisobutyl phthalate was the predominant species in late June. During the biomass-burning period in early June, the diurnal trends of most of the primary and secondary organic aerosol tracers were characterized by the concentration peaks observed at mid-night or in early morning, while in late June most of the organic species peaked in late afternoon. This suggests that smoke plumes from biomass burning can uplift the aerosol particulate matter to a certain altitude, which could be further transported to and encountered the summit of Mt. Tai during nighttime. On the basis of the tracer-based method for the estimation of biomass-burning OC, fungal-spore OC and biogenic secondary

  6. Scavenging of biomass burning refractory black carbon and ice nuclei in a Western Pacific extratropical storm

    Directory of Open Access Journals (Sweden)

    J. L. Stith

    2011-01-01

    Full Text Available In situ airborne sampling of refractory black carbon (rBC particles and Ice Nuclei (IN was conducted in and near an extratropical cyclonic storm in the Western Pacific Ocean during the Pacific Dust Experiment, PACDEX, in the spring of 2007. Airmass origins were from Eastern Asia. Cloud hydrometeors were evaporated by a counterflow virtual impactor and the residue was sampled by a single particle soot photometer (SP2 instrument and a continuous flow diffusion chamber ice nucleus detector. Clouds associated primarily with the warm sector of the storm were sampled at various locations and altitudes. In storm midlevels at temperatures where heterogeneous freezing is expected to be significant (here −24 to −29 °C, IN measurements from ice particle residues generally agreed well with simultaneous measurements of total ice concentrations provided that the measurements were made at ambient temperatures similar to those in the CFDC chamber, suggesting heterogeneous freezing as the dominant ice formation process in the mid levels of these warm sector clouds. Lower in the storm, at warmer temperatures (−22 to −6.4 °C, ice particle concentrations were similar to IN concentrations at CFDC chamber temperatures representative of colder temperatures. This is consistent with ice particles forming at storm mid-levels by heterogeneous freezing on IN, followed by sedimentation to lower altitudes. Homogeneous freezing did not appear to contribute significantly to midlevel ice concentrations and rime-splintering was also unlikely due to the absence of significant supercooled liquid water in the warm sector clouds. IN number concentrations were typically about a~factor of five to ten lower than simultaneous measurements of rBC concentrations in cloud.

  7. Emissions of Black Carbon, Organic, and Inorganic Aerosols From Biomass Burning in North America and Asia in 2008

    Science.gov (United States)

    Kondo, Y.; Matsui, H.; Moteki, N.; Sahu, L.; Takegawa, N.; Kajino, M.; Zhao, Y.; Cubison, M. J.; Jimenez, J. L.; Vay, S.; Diskin, G. S.; Anderson, B.; Wisthaler, A.; Mikoviny, T.; Fuelberg, H. E.; Blake, D. R.; Huey, G.; Weinheimer, A. J.; Knapp, D. J.; Brune, W. H.

    2011-01-01

    Reliable assessment of the impact of aerosols emitted from boreal forest fires on the Arctic climate necessitates improved understanding of emissions and the microphysical properties of carbonaceous (black carbon (BC) and organic aerosols (OA)) and inorganic aerosols. The size distributions of BC were measured by an SP2 based on the laser-induced incandescence technique on board the DC-8 aircraft during the NASA ARCTAS campaign. Aircraft sampling was made in fresh plumes strongly impacted by wildfires in North America (Canada and California) in summer 2008 and in those transported from Asia (Siberia in Russia and Kazakhstan) in spring 2008. We extracted biomass burning plumes using particle and tracer (CO, CH3CN, and CH2Cl2) data. OA constituted the dominant fraction of aerosols mass in the submicron range. The large majority of the emitted particles did not contain BC. We related the combustion phase of the fire as represented by the modified combustion efficiency (MCE) to the emission ratios between BC and other species. In particular, we derived the average emission ratios of BC/CO = 2.3 +/- 2.2 and 8.5 +/- 5.4 ng/cu m/ppbv for BB in North America and Asia, respectively. The difference in the BC/CO emission ratios is likely due to the difference in MCE. The count median diameters and geometric standard deviations of the lognormal size distribution of BC in the BB plumes were 136-141 nm and 1.32-1.36, respectively, and depended little on MCE. These BC particles were thickly coated, with shell/core ratios of 1.3-1.6. These parameters can be used directly for improving model estimates of the impact of BB in the Arctic.

  8. Emission characteristics of black carbon in anthropogenic and biomass burning plumes over California during ARCTAS-CARB 2008

    Science.gov (United States)

    Sahu, L. K.; Kondo, Y.; Moteki, N.; Takegawa, N.; Zhao, Y.; Cubison, M. J.; Jimenez, J. L.; Vay, S.; Diskin, G. S.; Wisthaler, A.; Mikoviny, T.; Huey, L. G.; Weinheimer, A. J.; Knapp, D. J.

    2012-08-01

    The impact of aerosols on regional air quality and climate necessitates improved understanding of their emission and microphysical properties. The size distributions of black carbon (BC) and light scattering particles (LSP) were measured with a single particle soot photometer on board the NASA DC-8 aircraft during the ARCTAS mission 2008. Air sampling was made in the air plumes of both urban and forest fire emissions over California during the CARB (California Air Resources Board) phase of the mission. A total of eleven plumes were identified using SO2 and CH3CN tracers for fossil fuel (FF) combustion and biomass burning (BB), respectively. The enhancements of BC and LSP in BB plumes were significantly higher compared to those in FF plumes. The average mass concentration of BC in BB plumes was more than twice that in FF plumes. Except for the BC/CO ratio, distinct emission ratios of BC/CO2, BC/CH3CN, CH3CN/CO, and CO/CO2 were observed in the plumes from the two sources. Similarly, the microphysical properties of BC and LSP also showed distinct behaviors. The BC count median diameter (CMD) of 115 ± 5 nm in FF plumes was smaller compared to 141 ± 9 nm in the BB plumes. BC aerosols were thickly coated in BB plumes, the average shell/core ratios were 1.47 and 1.24 in BB and FF plumes, respectively. In the total mass of submicron aerosols, organic aerosols constituted about 67% in the FF plumes and 84% in BB plumes. The contribution of sulfate was also significant in the FF plumes.

  9. Assessing land-use and carbon stock in slash-and-burn ecosystems in tropical mountain of Laos based on time-series satellite images

    Science.gov (United States)

    Inoue, Yoshio; Kiyono, Yoshiyuki; Asai, Hidetoshi; Ochiai, Yukihito; Qi, Jiaguo; Olioso, Albert; Shiraiwa, Tatsuhiko; Horie, Takeshi; Saito, Kazuki; Dounagsavanh, Linkham

    2010-08-01

    In the tropical mountains of Southeast Asia, slash-and-burn (S/B) agriculture is a widely practiced and important food production system. The ecosystem carbon stock in this land-use is linked not only to the carbon exchange with the atmosphere but also with food and resource security. The objective of this study was to provide quantitative information on the land-use and ecosystem carbon stock in the region as well as to infer the impacts of alternative land-use and ecosystem management scenarios on the carbon sequestration potential at a regional scale. The study area was selected in a typical slash-and-burn region in the northern part of Laos. The chrono-sequential changes of land-use such as the relative areas of community age and cropping (C) + fallow (F) patterns were derived from the analysis of time-series satellite images. The chrono-sequential analysis showed that a consistent increase of S/B area during the past three decades and a rapid increase after 1990. Approximately 37% of the whole area was with the community age of 1-5 years, whereas 10% for 6-10 years in 2004. The ecosystem carbon stock at a regional scale was estimated by synthesizing the land-use patterns and semi-empirical carbon stock model derived from in situ measurements where the community age was used as a clue to the linkage. The ecosystem carbon stock in the region was strongly affected by the land-use patterns; the temporal average of carbon stock in 1C + 10F cycles, for example, was greater by 33 MgC ha -1 compared to that in 1C + 2F land-use pattern. The amount of carbon lost from the regional ecosystems during 1990-2004 periods was estimated to be 42 MgC ha -1. The study approach proved to be useful especially in such regions with low data-availability and accessibility. This study revealed the dynamic change of land-use and ecosystem carbon stock in the tropical mountain of Laos as affected by land-use. Results suggest the significant potential of carbon sequestration through

  10. Burn Rehabilitation

    Directory of Open Access Journals (Sweden)

    Koray Aydemir

    2011-07-01

    Full Text Available Burn injuries are important in terms of causing serious disability and threatening life. With the establishment of modern burn treatment units and advances in acute care management contributed to a reduced mortality rate over the last decades. As a result of improved outcome, more attention has to be given to a comprehensive burn rehabilitation program. Burn rehabilitation is a process that starts from day of admission and continues for months or sometimes years after the initial event. The term ‘burn rehabilitation’ incorporates the physical, physiological and social aspects of care. Burns can leave a patient with severely debilitating and deforming contractures, which can lead to significant disability when left untreated. Burn rehabilitation aims to prevent the possible complications, minimalize joint contractures and deformities, increase range of motion, control hypertrophic scarring, achieve the best possible functional capacity and to regain the patients vocational and recreational activities. (Journal of the Turkish Society Intensive Care 2011; 9 Suppl: 70-7

  11. Effects of erosion in the fate of soil organic carbon and soil aggregation in a burned Mediterranean hill-slope

    Science.gov (United States)

    Campo, Julian; Cammeraat, Erik; Gimeno-García, Eugenia; Andreu, Vicente

    2016-04-01

    The Intergovernmental Panel on Climate Change indicated a higher degree of confidence that meteorological conditions associated to climate change will be propitious to increasing extreme events manifested, among others, in bigger and more frequent wildfires (IPCC, 2014). Wildfires contribute to shaping the landscape, and also the geomorphological and hydrological processes that operate on soil are affected (Bento-Gonçalves et al., 2012). Whereas, it is well documented that wildfires produce significant changes on erosion processes, the associated fate of soil organic carbon (SOC) has received less attention. This research assesses this gap by studying the loss, redistribution, and stabilization of SOC in a Mediterranean forest hill-slope burned the 28-08-2014, with high severity fire, at the Natural Park of Sierra de Espadán, Spain (39°50'45.11"N, 0°22'20.52"W). To this end, soil was sampled (19-9-2014) in the foot's slope (depositional), middle part (transport) and top (eroding) at two depths (146 drops). Significant differences (ANOVA, pBS) and soil depths (topsoil>subsoil). However, no significant differences were observed among eroding (58.8+20.8 gC kg-1), transport (67.3+34.4 gC kg-1), and depositional zones (62.0+31.3 gC kg-1), which is not in agreement with other SOC redistribution studies (Wang et al., 2014). Significant differences (Kruskal-Wallis, pBS) but not between soil depths or hill-slope positions. In the first post-fire erosive rains occurred in the area (29-11-14), closest pluviometer (Sot de Ferrer: 4.5 km) registered a total daily rain up to 64.2 l m-2. In this event a total of 12.7 kg of sediment were collected (contributing area ≈0.25 ha), with a content of 252.6 gC kg-1 the total SOC transported or stored in the depositional zone can reach up to 3.2 kg. In the second erosive event (23-3-15: 103.2 l m-2), total sediment in the fences was 143.6 kg, with content of 112.2 gC kg-1, made a total SOC eroded of up to 16.1 kg. It is hypothesized

  12. Effects of erosion in the fate of soil organic carbon and soil aggregation in a burned Mediterranean hill-slope

    Science.gov (United States)

    Campo, Julian; Cammeraat, Erik; Gimeno-García, Eugenia; Andreu, Vicente

    2016-04-01

    The Intergovernmental Panel on Climate Change indicated a higher degree of confidence that meteorological conditions associated to climate change will be propitious to increasing extreme events manifested, among others, in bigger and more frequent wildfires (IPCC, 2014). Wildfires contribute to shaping the landscape, and also the geomorphological and hydrological processes that operate on soil are affected (Bento-Gonçalves et al., 2012). Whereas, it is well documented that wildfires produce significant changes on erosion processes, the associated fate of soil organic carbon (SOC) has received less attention. This research assesses this gap by studying the loss, redistribution, and stabilization of SOC in a Mediterranean forest hill-slope burned the 28-08-2014, with high severity fire, at the Natural Park of Sierra de Espadán, Spain (39°50'45.11"N, 0°22'20.52"W). To this end, soil was sampled (19-9-2014) in the foot's slope (depositional), middle part (transport) and top (eroding) at two depths (collected from four sediment fences constructed at the foot's slope, and together with soil samples, analysed with regard to SOC content and aggregate stability (AS). The main objective is to increase the understanding on the fate of SOC in Mediterranean burned areas experiencing soil erosion, transport and deposition, with special attention to the role of aggregation and disaggregation in redistribution processes. Immediately after the fire, SOC content was high (≈50 gC kg-1) as well as the AS (water drop test>146 drops). Significant differences (ANOVA, pBS) and soil depths (topsoil>subsoil). However, no significant differences were observed among eroding (58.8+20.8 gC kg-1), transport (67.3+34.4 gC kg-1), and depositional zones (62.0+31.3 gC kg-1), which is not in agreement with other SOC redistribution studies (Wang et al., 2014). Significant differences (Kruskal-Wallis, pBS) but not between soil depths or hill-slope positions. In the first post-fire erosive rains

  13. Influence of biomass burning and anthropogenic emissions on ozone, carbon monoxide and black carbon at the Mt. Cimone GAW-WMO global station (Italy, 2165 m a.s.l.)

    OpenAIRE

    Cristofanelli, P; Fierli, F.; Marinoni, A.; Calzolari, F; Duchi, R.; Burkhart, J.; A. Stohl; M. Maione; Arduini, J.; Bonasoni, P.

    2013-01-01

    This work investigates the variability of ozone (O3), carbon monoxide (CO) and equivalent black carbon (BC) at the Italian Climate Observatory "O. Vittori" (ICO-OV), part of the Mt. Cimone global GAW-WMO station (Italy). For this purpose, ICO-OV observations carried out in the period January 2007–June 2009, have been analyzed and correlated with the outputs of the FLEXPART Lagrangian dispersion model to specifically evaluate the influence of biomass burning (BB) and ant...

  14. Impacts of Frequent Burning on Live Tree Carbon Biomass and Demography in Post-Harvest Regrowth Forest

    OpenAIRE

    Luke Collins; Trent Penman; Fabiano de Aquino Ximenes; Doug Binns; Alan York; Ross Bradstock

    2014-01-01

    The management of forest ecosystems to increase carbon storage is a global concern. Fire frequency has the potential to shift considerably in the future. These shifts may alter demographic processes and growth of tree species, and consequently carbon storage in forests. Examination of the sensitivity of forest carbon to the potential upper and lower extremes of fire frequency will provide crucial insight into the magnitude of possible change in carbon stocks associated with shifts in fire fre...

  15. Comparison of the carbon-sequestering abilities of pineapple leaf residue chars produced by controlled combustion and by field burning.

    Science.gov (United States)

    Leng, L Y; Husni, M H A; Samsuri, A W

    2011-11-01

    This study was undertaken to compare the chemical properties and yields of pineapple leaf residue (PLR) char produced by field burning (CF) with that produced by a partial combustion of air-dried PLR at 340 °C for 3 h in a furnace (CL). Higher total C, lignin content, and yield from CL as well as the presence of aromatic compounds in the Fourier Transform Infrared spectra of the char produced from CL suggest that the CL process was better in sequestering C than was the CF process. Although the C/N ratio of char produced from CL was low indicating a high N content of the char, the C in the char produced from CL was dominated by lignin suggesting that the decomposition of char produced from CL would be slow. To sequester C by char application, the PLR should be combusted in a controlled process rather than by burning in the field. PMID:21958525

  16. Comparison of the carbon-sequestering abilities of pineapple leaf residue chars produced by controlled combustion and by field burning.

    Science.gov (United States)

    Leng, L Y; Husni, M H A; Samsuri, A W

    2011-11-01

    This study was undertaken to compare the chemical properties and yields of pineapple leaf residue (PLR) char produced by field burning (CF) with that produced by a partial combustion of air-dried PLR at 340 °C for 3 h in a furnace (CL). Higher total C, lignin content, and yield from CL as well as the presence of aromatic compounds in the Fourier Transform Infrared spectra of the char produced from CL suggest that the CL process was better in sequestering C than was the CF process. Although the C/N ratio of char produced from CL was low indicating a high N content of the char, the C in the char produced from CL was dominated by lignin suggesting that the decomposition of char produced from CL would be slow. To sequester C by char application, the PLR should be combusted in a controlled process rather than by burning in the field.

  17. Characterization of polycyclic aromatic hydrocarbon emissions in the particulate phase from burning incenses with various atomic hydrogen/carbon ratios

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Tzu-Ting, E-mail: d89844001@ntu.edu.tw [Department of Environmental Engineering and Health, Yuanpei University, No. 306, Yuanpei St., Hsin Chu, 300, Taiwan (China); Lin, Shaw-Tao [Department of Applied Chemistry, Providence University, 200 Chung-Chi Rd., Salu Dist., Taichung City 43301, Taiwan (China); Lin, Tser-Sheng [Department of Safety, Health, and Environmental Engineering, National United University, 2 Lien Da, Maioli, 360, Taiwan (China); Hong, Wei-Lun [Department of Environmental Engineering and Health, Yuanpei University, No. 306, Yuanpei St., Hsin Chu, 300, Taiwan (China)

    2012-01-01

    Polycyclic aromatic hydrocarbons in the particulate phase generated from burning various incense was investigated by a gas chromatography/mass spectrometry. Among the used incenses, the atomic H/C ratio ranged from 0.51 to 1.69, yielding the emission factor ranges for total particulate mass and PAHs of 4.19-82.16 mg/g and 1.20-9.50 {mu}g/g, respectively. The atomic H/C ratio of the incense was the key factor affecting particulate mass and the PAHs emission factors. Both the maximum emission factor and the slowest burning rate appear at the H/C ratio of 1.57. The concentrations of the four-ring PAHs predominated and the major species among the 16 PAHs were fluoranthene, phenanthrene, pyrene, and chrysene for most incense types. The benzo[a]pyrene, benzo[a]anthracene, benzo[b]fluoranthene, and dibenzo[a,h]anthracene accounted for 87.08-93.47% of the total toxic equivalency emission factor. - Highlights: Black-Right-Pointing-Pointer The atomic H/C ratio of incense was the key factor affecting PAHs emission factors. Black-Right-Pointing-Pointer Burning incense with lower atomic H/C ratio minimized the production of total PAHs. Black-Right-Pointing-Pointer The BaP, BaA, BbF, and DBA accounted for 87.08-93.47% of the TEQ emission factor. Black-Right-Pointing-Pointer Special PAH ratios were regarded as characteristic ratios for burning incense.

  18. Effects of the 2006 El Nino on Tropospheric Ozone and Carbon Monoxide: Implications for Dynamics and Biomass Burning

    Science.gov (United States)

    Chandra, S.; Ziemke, J. R.; Duncan, B. N.; Diehl, t. L.

    2008-01-01

    We have studied the effects of the 2006 El Nino on tropospheric O3 and CO at tropical and sub-tropical latitudes measured from the OMI and MLS instruments on the Aura satellite. The 2006 El Nino-induced drought allowed forest fires set to clear land to burn out of control during October and November in the Indonesian region. The effects of these fires are clearly seen in the enhancement of GO concentration measured from the MLS instrument. We have used a global model of atmospheric chemistry and transport (GMI CTM) to quantify the relative irrrportance of biomass burning and large scale transport: in producing observed changes in tropospheric O3 and CO . The model results show that during October and November both biomass burning and meteorological changes contributed almost equally to the observed increase in tropospheric O3 in the Indonesian region. The biomass component was 4-6 DU but it was limited to the Indonesian region where the fires were most intense, The dynamical component was 4-8 DU but it covered a much larger area in the Indian Ocean extending from South East Asia in the north to western Australia in the south. By December 2006, the effect of biomass taming was reduced to zero and the obsemed changes in tropospheric O3 were mostly due to dynamical effects. The model results show an increase of 2-3% in the global burden of tropospheric ozone. In comparison, the global burdean of CO increased by 8-12%.

  19. Burning Mouth Syndrome

    Science.gov (United States)

    ... OralHealth > Topics > Burning Mouth Syndrome > Burning Mouth Syndrome Burning Mouth Syndrome Main Content Key Points Symptoms Diagnosis Primary and Secondary BMS Treatment Helpful Tips Key Points Burning mouth syndrome is burning pain in the mouth that may ...

  20. Fine particles and carbon monoxide from wood burning in 17th-19th century Danish kitchens: Measurements at two reconstructed farm houses at the Lejre Historical-Archaeological Experimental Center

    DEFF Research Database (Denmark)

    Ryhl-Svendsen, Morten; Clausen, Geo; Chowdhury, Z.;

    2010-01-01

    Carbon monoxide (CO) and particulate matter (PM2.5) were measured in two reconstructed Danish farmhouses (17-19th century) during two weeks of summer. During the first week intensive measurements were performed while test cooking fires were burned, during the second week the houses were monitored...

  1. Uplifting of carbon monoxide from biomass burning and anthropogenic sources to the free troposphere in East Asia

    Directory of Open Access Journals (Sweden)

    K. Ding

    2014-11-01

    Full Text Available East Asia has experienced rapid development with increasing CO emission in the past decades. Therefore, uplifting CO from the boundary layer to the free troposphere in East Asia can have great implications on regional air quality. It can also influence global climate due to the longer lifetime of CO at higher altitudes. In this study, three cases of high CO episodes in East Asia from 2003 to 2005 are examined with spaceborne Measurements Of Pollution In The Troposphere (MOPITT data, in combination with aircraft measurements from the Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC program. High CO abundances of 300–550 ppbv were observed in MOZAIC data in the free troposphere during these episodes. These are among the highest CO abundances documented at these altitudes. Correspondingly, elevated CO was shown in MOPITT daytime data in the middle to upper troposphere in the 2003 case, mostly in the lower to middle troposphere in the 2004 case, and in the upper troposphere in the 2005 case. Through analyses of the simulations from a chemical transport model GEOS-Chem and a trajectory dispersion model FLEXPART, we found different CO signatures in the elevated CO and distinct transport pathways and mechanisms for these cases. In the 2003 case, CO from large forest fires near Lake Baikal dominated the elevated CO, which had been rapidly transported upward by a~frontal system from the fire plumes. In the 2004 case, anthropogenic CO from the North China Plain experienced frontal lifting and mostly reached ~ 700 hPa near the East China Sea, while CO from biomass burning from Indochina experienced orographic lifting, leeside-trough induced convection, and frontal lifting through two separate transport pathways, leading to two distinct CO enhancements around 700 hPa and 300 hPa. In the 2005 case, high CO of ~ 300 ppbv, observed in the MOZAIC data around 350 hPa, originated from the anthropogenic source over the vicinity of the

  2. Sulfone-carbonate ternary electrolyte with further increased capacity retention and burn resistance for high voltage lithium ion batteries

    Science.gov (United States)

    Xue, Leigang; Lee, Seung-Yul; Zhao, Zuofeng; Angell, C. Austen

    2015-11-01

    Safety and high energy density are the two focus issues for current lithium ion batteries. For safety, it has been demonstrated that sulfone electrolytes are much less flammable than the prevailing all-carbonate type, and they are also promising for high voltage batteries due to the high oxidization resistance. However, the high melting points and viscosities greatly restricted their application. Based on our previous work on use of fluidity-enhancing cosolvents to make binary sulfone-carbonate electrolytes, we report here a three-component system that is more conductive and should be even less flammable while additionally having better low temperature stability. The conductivity-viscosity relations have been determined for this electrolyte and are comparable to those of the "standard" carbonate electrolyte. The additional component also produces much improved capacity retention for the LiNi0.5Mn1.5O4 cathode. As with carbonate electrolytes, increase of temperature to 55 °C leads to rapid capacity decrease during cycling, but the capacity loss is due to the salt, not the solvent. The high discharge capacity observed at 25 °C when LiBF4 replaces LiPF6, is fully retained at 55 °C.

  3. Evaluation of the carbon content of aerosols from the burn- ing of biomass in the Brazilian Amazon using thermal, op- tical and thermal-optical analysis methods

    Energy Technology Data Exchange (ETDEWEB)

    Soto-Garcia, Lydia L.; Andreae, Meinrat O.; Andreae, Tracey W.; taxo, Paulo Ar-; Maenhaut, Willy; Kirchstetter, Thomas; Novakov, T.; Chow, Judith C.; Mayol-Bracero, Olga L.

    2011-06-03

    Aerosol samples were collected at a pasture site in the Amazon Basin as part of the project LBA-SMOCC-2002 (Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke Aerosols, Clouds, Rainfall and Climate: Aerosols from Biomass Burning Perturb Global and Regional Climate). Sampling was conducted during the late dry season, when the aerosol composition was dominated by biomass burning emissions, especially in the submicron fraction. A 13-stage Dekati low-pressure impactor (DLPI) was used to collect particles with nominal aerodynamic diameters (D{sub p}) ranging from 0.03 to 0.10 m. Gravimetric analyses of the DLPI substrates and filters were performed to obtain aerosol mass concentrations. The concentrations of total, apparent elemental, and organic carbon (TC, EC{sub a}, and OC) were determined using thermal and thermal-optical analysis (TOA) methods. A light transmission method (LTM) was used to determine the concentration of equivalent black carbon (BC{sub e}) or the absorbing fraction at 880 nm for the size-resolved samples. During the dry period, due to the pervasive presence of fires in the region upwind of the sampling site, concentrations of fine aerosols (D{sub p} < 2.5 {mu}m: average 59.8 {mu}g m{sup -3}) were higher than coarse aerosols (D{sub p} > 2.5 {mu}m: 4.1 {mu}g m{sup -3}). Carbonaceous matter, estimated as the sum of the particulate organic matter (i.e., OC x 1.8) plus BC{sub e}, comprised more than 90% to the total aerosol mass. Concentrations of EC{sub a} (estimated by thermal analysis with a correction for charring) and BCe (estimated by LTM) averaged 5.2 {+-} 1.3 and 3.1 {+-} 0.8 {mu}g m{sup -3}, respectively. The determination of EC was improved by extracting water-soluble organic material from the samples, which reduced the average light absorption {angstrom} exponent of particles in the size range of 0.1 to 1.0 {mu}m from > 2.0 to approximately 1.2. The size-resolved BC{sub e} measured by the LTM showed a clear maximum between 0.4 and

  4. Technology for the Recovery of Fuel and Adsorbent Carbons from Coal Burning Utility Ash Ponds and Landfills

    Energy Technology Data Exchange (ETDEWEB)

    J.G. Groppo; T.L. Robl

    2005-09-30

    Several sampling techniques were evaluated to recover representative core samples from the ash ponds at Western Kentucky Energy's Coleman Station. The most successful was a combination of continuous-flight augers and specially designed soft-sediment sampling tubes driven by a Hammerhead drill mounted on an amphibious ARGO vehicle. A total of 51 core samples were recovered and analyzed in 3 ft sections and it was determined that there are 1,354,974 tons of ash in Pond C. Of the over 1.35M tons of ash present, 14% or 190K tons can be considered as coarse (+100 mesh). Pond C contains approximately 88K tons of carbon, nearly half of which is coarse and potentially recoverable with spiral concentration while the fine carbon (-100 mesh) is recoverable with froth flotation. There are 1.27M tons of carbon-free ash, 12% of which is coarse and potentially usable as block sand. Spiral concentration testing on bulk samples showed that product grade of 30 to 38% C (4200 to 5500 Btu/lb) was obtainable. When this product was cleaned again in an additional stage of spiral concentration, the product grade was improved to 7200 to 8200 Btu/lb with an accompanying 13 to 29% decrease in yield. Release analysis of hydraulically classified pond ash showed that froth flotation could provide froth products with as high a grade as 9000 Btu/lb with a yield of 5%. Increasing yield to 10% reduced froth grade to 7000 Btu/lb. Batch flotation provided froth grades as high as 6500 Btu/lb with yields of 7% with 1.5 lb/ton SPP and 1 lb/ton frother. Column flotation test results were similar to those achieved in batch flotation in terms of both grade and yield, however, carbon recoveries were lower (<70%). High airflow rate was required to achieve >50% carbon recovery and using wash water improved froth grade. Bottom ash samples were recovered from each of the units at Coleman Station. Characterization confirmed that sufficient quantity and quality of material is generated to produce a

  5. Uplifting of carbon monoxide from biomass burning and anthropogenic sources to the free troposphere in East Asia

    Science.gov (United States)

    Ding, Ke; Liu, Jane; Ding, Aijun; Liu, Qiang; Zhao, Tianliang; Shi, Jiancheng; Han, Yong; Wang, Hengmao; Jiang, Fei

    2016-04-01

    East Asia has experienced rapid development with increasing carbon monoxide (CO) emission in the past decades. Therefore, uplifting CO from the boundary layer to the free troposphere in East Asia can have great implications on regional air quality around the world. It can also influence global climate due to the longer lifetime of CO at higher altitudes. In this study, three cases of high CO episodes in the East China Sea and the Sea of Japan from 2003 to 2005 are examined with spaceborne Measurements of Pollution in the Troposphere (MOPITT) data, in combination with aircraft measurements from the Measurement of Ozone and Water Vapor by Airbus In-Service Aircraft (MOZAIC) program. Through analyses of the simulations from a chemical transport model GEOS-Chem and a trajectory dispersion model FLEXPART, we found different CO signatures in the elevated CO and distinct transport pathways and mechanisms for these cases.

  6. Bioprocesses for removal of carbon dioxide and nitrogen oxide by microalgae for the utilization of gas generated during coal burning

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Michele Greque de; Costa, Jorge Alberto Vieira [Fundacao Universidade Federal do Rio Grande, Rio Grande (Brazil)

    2008-07-01

    The aim of this work was to study the removal of CO{sub 2} and NO by microalgae and to evaluate the kinetic characteristics of the cultures. Spirulina sp. showed {mu}{sub max} and X{sub max} (0.11 d{sup -1}, 1.11 g L{sup -1} d{sup -1}) when treated with CO{sub 2} and NaNO{sub 3}. The maximum CO{sub 2} removal was 22.97% for S. obliquus treated with KNO{sub 3} and atmospheric CO{sub 2}. The S. obliquus showed maximum NO removal (21.30%) when treated with NO and CO{sub 2}. Coupling the cultivation of these microalgae with the removal of CO{sub 2} and NO has the potential not only to reduce the costs of culture media but also to offset carbon and nitrogen emissions. 19 refs., 3 figs., 2 tabs.

  7. Century-long Record of Black Carbon in an Ice Core from the Eastern Pamirs: Estimated Contributions from Biomass Burning

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Mo; Xu, B.; Kaspari, Susan D.; Gleixner, Gerd; Schwab, Valerie; Zhao, Huabiao; Wang, Hailong; Yao, Ping

    2015-08-01

    We analyzed refractory black carbon (rBC) in an ice core spanning 1875-2000 AD from Mt. Muztagh Ata, the Eastern Pamirs, using a Single Particle Soot Photometer (SP2). Additionally a pre-existing levoglucosan record from the same ice core was used to differentiate rBC that originated from open fires, energy-related combustion of biomass, and fossil fuel combustion. Mean rBC concentrations increased four-fold since the mid-1970s and reached maximum values at the end of 1980s. The observed decrease of the rBC concentrations during the 1990s was likely driven by the economic recession of former USSR countries in Central Asia. Levoglucosan concentrations showed a similar temporal trend to rBC concentrations, exhibiting a large increase around 1980 AD followed by a decrease in the 1990s that was likely due to a decrease in energy-related biomass combustion. The time evolution of levoglucosan/rBC ratios indicated stronger emissions from open fires during the 1940s-1950s, while the increase in rBC during the 1980s-1990s was caused from an increase in energy-related combustion of biomass and fossil fuels.

  8. Century-long record of black carbon in an ice core from the Eastern Pamirs: Estimated contributions from biomass burning

    Science.gov (United States)

    Wang, Mo; Xu, Baiqing; Kaspari, Susan D.; Gleixner, Gerd; Schwab, Valérie F.; Zhao, Huabiao; Wang, Hailong; Yao, Ping

    2015-08-01

    We analyzed refractory black carbon (rBC) in an ice core spanning 1875-2000 AD from Mt. Muztagh Ata, the Eastern Pamirs, using a Single Particle Soot Photometer (SP2). Additionally a pre-existing levoglucosan record from the same ice core was used to differentiate rBC that originated from open fires, energy-related combustion of biomass, and fossil fuel combustion. Mean rBC concentrations increased four-fold since the mid-1970s and reached maximum values at end of the 1980s. The observed decrease of the rBC concentrations during the 1990s was likely driven by the economic recession of former USSR countries in Central Asia. Levoglucosan concentrations showed a similar temporal trend to rBC concentrations, exhibiting a large increase around 1980 AD followed by a decrease in the 1990s that was likely due to a decrease in energy-related biomass combustion. The time evolution of levoglucosan/rBC ratios indicated stronger emissions from open fires during the 1940s-1950s, while the increase in rBC during the 1980s-1990s was caused from an increase in energy-related combustion of biomass and fossil fuels.

  9. Uncertainty assessment of source attribution of PM(2.5) and its water-soluble organic carbon content using different biomass burning tracers in positive matrix factorization analysis--a case study in Beijing, China.

    Science.gov (United States)

    Tao, Jun; Zhang, Leiming; Zhang, Renjian; Wu, Yunfei; Zhang, Zhisheng; Zhang, Xiaoling; Tang, Yixi; Cao, Junji; Zhang, Yuanhang

    2016-02-01

    Daily PM2.5 samples were collected at an urban site in Beijing during four one-month periods in 2009-2010, with each period in a different season. Samples were subject to chemical analysis for various chemical components including major water-soluble ions, organic carbon (OC) and water-soluble organic carbon (WSOC), element carbon (EC), trace elements, anhydrosugar levoglucosan (LG), and mannosan (MN). Three sets of source profiles of PM2.5 were first identified through positive matrix factorization (PMF) analysis using single or combined biomass tracers - non-sea salt potassium (nss-K(+)), LG, and a combination of nss-K(+) and LG. The six major source factors of PM2.5 included secondary inorganic aerosol, industrial pollution, soil dust, biomass burning, traffic emission, and coal burning, which were estimated to contribute 31±37%, 39±28%, 14±14%, 7±7%, 5±6%, and 4±8%, respectively, to PM2.5 mass if using the nss-K(+) source profiles, 22±19%, 29±17%, 20±20%, 13±13%, 12±10%, and 4±6%, respectively, if using the LG source profiles, and 21±17%, 31±18%, 19±19%, 11±12%, 14±11%, and 4±6%, respectively, if using the combined nss-K(+) and LG source profiles. The uncertainties in the estimation of biomass burning contributions to WSOC due to the different choices of biomass burning tracers were around 3% annually and up to 24% seasonally in terms of absolute percentage contributions, or on a factor of 1.7 annually and up to a factor of 3.3 seasonally in terms of the actual concentrations. The uncertainty from the major source (e.g. industrial pollution) was on a factor of 1.9 annually and up to a factor of 2.5 seasonally in the estimated WSOC concentrations. PMID:26595400

  10. Burns in diabetic patients

    OpenAIRE

    Maghsoudi, Hemmat; Aghamohammadzadeh, Naser; Khalili, Nasim

    2008-01-01

    CONTEXT AND AIMS: Diabetic burn patients comprise a significant population in burn centers. The purpose of this study was to determine the demographic characteristics of diabetic burn patients. MATERIALS AND METHODS: Prospective data were collected on 94 diabetic burn patients between March 20, 2000 and March 20, 2006. Of 3062 burns patients, 94 (3.1%) had diabetes; these patients were compared with 2968 nondiabetic patients with burns. Statistical analysis was performed using the statistical...

  11. Burning Mouth Syndrome and "Burning Mouth Syndrome".

    Science.gov (United States)

    Rifkind, Jacob Bernard

    2016-03-01

    Burning mouth syndrome is distressing to both the patient and practitioner unable to determine the cause of the patient's symptoms. Burning mouth syndrome is a diagnosis of exclusion, which is used only after nutritional deficiencies, mucosal disease, fungal infections, hormonal disturbances and contact stomatitis have been ruled out. This article will explore the many causes and treatment of patients who present with a chief complaint of "my mouth burns," including symptomatic treatment for those with burning mouth syndrome. PMID:27209717

  12. Burn Injuries: Burn Depth, Physiopathology and Type of Burns

    OpenAIRE

    Kemalettin Koltka

    2011-01-01

    A significant burn injury is a serious and mortal event. The most important threat to life is hypovolemic shock with complex pathophysiologic mechanisms. Burn depth is classified as first, second, or third degree. Local inflammatory response results a vasodilatation and an increase in vascular permeability. A burn injury is a three dimensional ischemic wound. Zone of coagulation is the zone with maximum damage. Zone of stasis consists of damaged but viable tissues, the tissue is salvageable. ...

  13. Crude oil burning mechanisms

    DEFF Research Database (Denmark)

    van Gelderen, Laurens; Malmquist, Linus Mattias Valdemar; Jomaas, Grunde

    2015-01-01

    In order to improve predictions for the burning efficiency and the residue composition of in-situ burning of crude oil, the burning mechanism of crude oil was studied in relation to the composition of its hydrocarbon mixture, before, during and after the burning. The surface temperature, flame he...

  14. Contributions of biomass/biofuel burning to organic aerosols and particulate matter in Tanzania, East Africa, based on analyses of ionic species, organic and elemental carbon, levoglucosan and mannosan

    Directory of Open Access Journals (Sweden)

    S. L. Mkoma

    2013-10-01

    Full Text Available Atmospheric aerosol samples of PM2.5 and PM10 were collected at a rural site in Tanzania, East Africa, in 2011 during wet and dry seasons and were analysed for carbonaceous components, levoglucosan, mannosan and water-soluble inorganic ions. The contributions of biomass/biofuel burning to the organic carbon (OC and particulate matter (PM mass were estimated to be 46–52% and 87–13%, respectively. The mean mass concentrations of PM2.5 and PM10 were 28 ± 6 μg m−3 and 47 ± 8 μg m−3 in wet season, and 39 ± 10 μg m−3 and 61 ± 19 μg m−3 in dry season, respectively. Total carbon (TC accounted for 16–19% of the PM2.5 mass and 13–15% of the PM10 mass. On average, 86 to 89% of TC in PM2.5 and 87 to 90% of TC in PM10 was OC, of which 67–72% and 63% was found to be water-soluble organic carbon (WSOC in PM2.5 and PM10, respectively. We found that concentrations of levoglucosan and mannosan (specific organic tracers of pyrolysis of cellulose well correlated with non-sea-salt potassium (nss-K+ (r2 = 0.56–0.75, OC (r2 = 0.75–0.96 and WSOC (r2 = 0.52–0.78. The K+ / OC ratios varied from 0.06 to 0.36 in PM2.5 and from 0.03 to 0.36 in PM10 with slightly higher ratios in dry season. Mean percent ratios of levoglucosan and mannosan to OC were found to be 3–4% for PM2.5 and PM10 in both seasons. We found lower levoglucosan / K+ ratios and higher K+ / EC (elemental carbon ratios in the biomass-burning aerosols from Tanzania than those reported from other regions. This feature is consistent with the high levels of potassium reported in the soils of Morogoro, Tanzania, suggesting an importance of direct emission of potassium by soil resuspension although K+ is present mostly in fine particles. It is also likely that biomass burning of vegetation of Tanzania emits high levels of potassium that may be enriched in plant tissues. The present study demonstrates that emissions from mixed biomass- and biofuel-burning activities largely

  15. Burn Injuries: Burn Depth, Physiopathology and Type of Burns

    Directory of Open Access Journals (Sweden)

    Kemalettin Koltka

    2011-07-01

    Full Text Available A significant burn injury is a serious and mortal event. The most important threat to life is hypovolemic shock with complex pathophysiologic mechanisms. Burn depth is classified as first, second, or third degree. Local inflammatory response results a vasodilatation and an increase in vascular permeability. A burn injury is a three dimensional ischemic wound. Zone of coagulation is the zone with maximum damage. Zone of stasis consists of damaged but viable tissues, the tissue is salvageable. In zone of hyperemia tissue perfusion is increased. At the beginning, cardiac output falls and systemic vascular resistance increases; cardiac performance improves as hypovolemia is corrected with fluid resuscitation. While cardiac output increases systemic vascular resistance falls below normal values and a hypermetabolic state develops. Pulmonary vascular resistance increases immediately after thermal injury and this is more prolonged. To avoid secondary pulmonary complications, the smallest resuscitation volume of fluids that maintains adequate tissue perfusion should be given. Changes parallel to the cardiovascular response develop in other organ systems. The reasons of burn injury can be thermal, electrical, chemical or radiation. It is important to know the exact mechanism of burn injury because of different therapies for a specific cause. In this review information about burn depth, local and systemic responses to burn injury and major causes of burn injury are presented. (Journal of the Turkish Society Intensive Care 2011; 9 Suppl:1-6

  16. Emergency in Burn; Burn in Emergency

    Directory of Open Access Journals (Sweden)

    Yalcin Bayram

    2012-06-01

    Full Text Available Physicians who first meet with burned patients are often emergency service employees. When the patient was admitted to emergency service, especially in patients with major burn injury, is a matter should be dealt with strongly. Before sending the patients to a burn center, some interventions could became life saving which should be done as a first line treatment. Herein, review of the literature related to emergency burn treatment was performed and presented to all physicians as a summary guide. In addition, some questions such as how should be physician, who first meet with the burned patient, evaluated the patient, what should be physician paid attention, which principles should be employed for fluid replacement, how should be approached to burn wound are tried to be addressed. [TAF Prev Med Bull 2012; 11(3.000: 365-368

  17. Optimization of burn referrals

    DEFF Research Database (Denmark)

    Reiband, Hanna K; Lundin, Kira; Alsbjørn, Bjarne;

    2014-01-01

    INTRODUCTION: Correct estimation of the severity of burns is important to obtain the right treatment of the patient and to avoid over- and undertriage. In this study we aimed to assess how often the guidelines for referral of burn injured patients are met at the national burn centre (NBC), Denmark....... METHODS: We included burn patients referred to the NBC in a three-months period. Patient records were systematically analyzed and compared with the national guidelines for referral of burn injured patients. RESULTS: A total of 97 burn injured patients were transferred for treatment at the NBC and the most...... common reason for referral was partial thickness burn exceeding 3% estimated area of burn (55% of the patients) while facial burns (32%) and inhalational injury (25%) were other common reasons. We found that 29 (30%) of the referrals were considered potentially unnecessary according to the guidelines...

  18. Treating and Preventing Burns

    Science.gov (United States)

    ... Issues Listen Español Text Size Email Print Share Treating and Preventing Burns Page Content Article Body Burns ... home, out of children’s reach, and away from heat or ignition sources. Lower the temperature of your ...

  19. Burns and Fire Safety

    Science.gov (United States)

    ... Tap water burns most often occur in the bathroom and tend to be more severe and cover a larger portion of the body than other scald burns. 9 10 11 A survey found that only 8 percent of adults felt ...

  20. Pediatric Burn Resuscitation.

    Science.gov (United States)

    Palmieri, Tina L

    2016-10-01

    Children have unique physiologic, physical, psychological, and social needs compared with adults. Although adhering to the basic tenets of burn resuscitation, resuscitation of the burned child should be modified based on the child's age, physiology, and response to injury. This article outlines the unique characteristics of burned children and describes the fundamental principles of pediatric burn resuscitation in terms of airway, circulatory, neurologic, and cutaneous injury management. PMID:27600126

  1. First Aid: Burns

    Science.gov (United States)

    ... Story" 5 Things to Know About Zika & Pregnancy First Aid: Burns KidsHealth > For Parents > First Aid: Burns Print A A A Text Size Scald ... THIS TOPIC Kitchen: Household Safety Checklist Fireworks Safety First Aid: Sunburn Firesetting Fire Safety Burns Household Safety: Preventing ...

  2. Revised (Mixed-Effects) Estimation for Forest Burning Emissions of Gases and Smoke, Fire/Emission Factor Typology, and Potential Remote Sensing Classification of Types for Ozone and Black-Carbon Simulation

    Science.gov (United States)

    Chatfield, Robert B.; Segal Rozenhaimer, M.

    2014-01-01

    We summarize recent progress (a) in correcting biomass burning emissions factors deduced from airborne sampling of forest fire plumes, (b) in understanding the variability in reactivity of the fresh plumes sampled in ARCTAS (2008), DC3 (2012), and SEAC4RS (2013) airborne missions, and (c) in a consequent search for remotely sensed quantities that help classify forest-fire plumes. Particle properties, chemical speciation, and smoke radiative properties are related and mutually informative, as pictures below suggest (slopes of lines of same color are similar). (a) Mixed-effects (random-effects) statistical modeling provides estimates of both emission factors and a reasonable description of carbon-burned simultaneously. Different fire plumes will have very different contributions to volatile organic carbon reactivity; this may help explain differences of free NOx(both gas- and particle-phase), and also of ozone production, that have been noted for forest-fire plumes in California. Our evaluations check or correct emission factors based on sequential measurements (e.g., the Normalized Ratio Enhancement and similar methods). We stress the dangers of methods relying on emission-ratios to CO. (b) This work confirms and extends many reports of great situational variability in emissions factors. VOCs vary in OH reactivity and NOx-binding. Reasons for variability are not only fuel composition, fuel condition, etc., but are confused somewhat by rapid transformation and mixing of emissions. We use "unmixing" (distinct from mixed-effects) statistics and compare briefly to approaches like neural nets. We focus on one particularly intense fire the notorious Yosemite Rim Fire of 2013. In some samples, NOx activity was not so suppressed by binding into nitrates as in other fires. While our fire-typing is evolving and subject to debate, the carbon-burned delta(CO2+CO) estimates that arise from mixed effects models, free of confusion by background-CO2 variation, should provide a

  3. [The pain from burns].

    Science.gov (United States)

    Latarjet, J

    2002-03-01

    The painful events associated with the treatment of a severe burn can, because of their long-lasting and repetitive characteristics, be one of the most excruciating experiences in clinical practice. Moreover, burn pain has been shown to be detrimental to burn patients. Although nociception and peripheral hyperalgesia are considered the major causes of burn pain, the study of more hypothetical mechanisms like central hyperalgesia and neuropathic pain may lead to a better understanding of burn pain symptoms and to new therapeutic approaches. Continuous pain and intermittent pain due to therapeutic procedures are two distinct components of burn pain. They have to be evaluated and managed separately. Although continuous pain is by far less severe than intermittent pain, the treatment is, in both cases, essentially pharmacological relying basically on opioids. Because of wide intra- and inter-individual variations, protocols will have to leave large possibilities of adaptation for each case, systematic pain evaluation being mandatory to achieve the best risk/benefit ratio. Surprisingly, the dose of medication decreases only slowly with time, a burn often remaining painful for long periods after healing. Non pharmacological treatments are often useful and sometimes indispensable adjuncts; but their rationale and their feasibility depends entirely on previous optimal pharmacological control of burn pain. Several recent studies show that burn pain management is inadequate in most burn centres.

  4. Influence of biomass burning and anthropogenic emissions on ozone, carbon monoxide and black carbon at the Mt. Cimone GAW-WMO global station (Italy, 2165 m a.s.l.

    Directory of Open Access Journals (Sweden)

    P. Cristofanelli

    2013-01-01

    Full Text Available This work investigates the variability of ozone (O3, carbon monoxide (CO and equivalent black carbon (BC at the Italian Climate Observatory "O. Vittori" (ICO-OV, part of the Mt. Cimone global GAW-WMO station (Italy. For this purpose, ICO-OV observations carried out in the period January 2007–June 2009, have been analyzed and correlated with the outputs of the FLEXPART Lagrangian dispersion model to specifically evaluate the influence of biomass burning (BB and anthropogenic emissions younger than 20 days. During the investigation period, the average O3, CO and BC at ICO-OV were 54 ± 3 ppb, 122 ± 7 ppb and 213 ± 34 ng m−3 (mean ± expanded uncertainty with p < 95%, with clear seasonal cycles characterized by summer maxima and winter minima for O3 and BC and spring maximum and summer minimum for CO.

    According to FLEXPART outputs, BB impact is maximized during the warm months from July to September but appeared to have a significant contribution to the observed tracers only during specific transport events. We characterised in detail five "representative" events with respect to transport scales (i.e. global, regional and local, source regions and O3, CO and BC variations. For these events, very large variability of enhancement ratios O3/CO (from −0.22 to 0.71 and BC/CO (from 2.69 to 29.83 ng m−3 ppb−1 were observed.

    CO contributions related with anthropogenic emissions (COant contributed to 17.4% of the mean CO value observed at ICO-OV, with the warm months appearing particularly affected by transport events of air-masses rich in anthropogenic pollution. The proportion of tracer variability that is described by FLEXPART COant peaked to 37% (in May–September for CO, 19% (in May–September for O3 and 32% (in January–April for BC. During May–September, the analysis of the correlation

  5. Influence of biomass burning and anthropogenic emissions on ozone, carbon monoxide and black carbon concentrations at the Mt. Cimone GAW-WMO global station (Italy, 2165 m a.s.l.

    Directory of Open Access Journals (Sweden)

    P. Cristofanelli

    2012-08-01

    Full Text Available This work investigates the variability of ozone (O3, carbon monoxide (CO and equivalent black carbon (BC concentrations at the Italian Climate Observatory "O. Vittori" (ICO-OV, part of the Mt. Cimone global GAW-WMO station (Italy. For this purpose, ICO-OV observations carried out in the period January 2007–June 2009, have been analysed and correlated with the output of the FLEXPART Lagrangian dispersion model to specifically evaluate the influence of biomass burning (BB and anthropogenic emissions younger than 20 days. During the investigation period, the average O3, CO and BC concentrations at ICO-OV were 54 ± 3 ppbv, 122 ± 7 ppbv and 213 ± 34 ng m−3 (mean ± expanded uncertainty with p<95%, with clear seasonal cycles characterized by summer maxima and winter minima for O3 and BC and spring maximum and summer minimum for CO.

    According to FLEXPART output, BB impact is maximized during the warm months from July to September but appeared to have a significant contribution to the observed tracer concentrations only during specific transport events. We characterised in detail five major events with respect to transport scales (i.e. global, regional and local, source regions and O3, CO and BC variations. For these events, very large variability of enhancement ratios O3/CO (from −0.22 to 0.71 and BC/CO (from 2.69 to 29.83 ng m−3 ppbv−1 were observed.

    CO related with anthropogenic emissions (COant contributed to 17.4% of the mean CO value observed at ICO-OV, with the warm months appearing particularly affected by transport events of air-masses rich in anthropogenic pollution. The proportion of tracer variability that is described by FLEXPART COant peaked to 37% (in May–September for CO, 19% (in May–September for O3 and 32% (in January–April for BC. During May–September, the analysis of

  6. Burns and epilepsy.

    Science.gov (United States)

    Berrocal, M

    1997-01-01

    This is a report of the first descriptive analytic study of a group of 183 burn patients, treated in the Burn Unit at the University Hospital of Cartagena, Colombia during the period since January 1985 until December 1990. There is presented experience with the selected group of 24 patients in whom the diagnosis of burn was associated with epilepsy. There is also analysed and described the gravity of the scars sequels, neurological disorders, the complication of the burn and an impact of this problem on the patient, his (her) family and the community. It is very important to report that there was found Neurocisticercosis in 66.6% of the group of burn patients with epilepsy, and it is probably the first risk factor of burn in this group.

  7. Burns and epilepsy.

    Science.gov (United States)

    Berrocal, M

    1997-01-01

    This is a report of the first descriptive analytic study of a group of 183 burn patients, treated in the Burn Unit at the University Hospital of Cartagena, Colombia during the period since January 1985 until December 1990. There is presented experience with the selected group of 24 patients in whom the diagnosis of burn was associated with epilepsy. There is also analysed and described the gravity of the scars sequels, neurological disorders, the complication of the burn and an impact of this problem on the patient, his (her) family and the community. It is very important to report that there was found Neurocisticercosis in 66.6% of the group of burn patients with epilepsy, and it is probably the first risk factor of burn in this group. PMID:9212488

  8. Perineal Burns in Children

    OpenAIRE

    Ameh AEmmanuel

    2004-01-01

    Perineal burns are not common in childhood but when they occur, they can produce severe complications. Conservative management by open wound care and topical agents is effective in most cases. However, in deep burns and when control of infection proves problematic, diverting colostomy may be necessary to control infection and achieve wound healing and graft take. Burns wound excision and skin grafting may be required in such cases. Contractures of various forms may develop and require plastic...

  9. Temporal trends in atmospheric PM₂.₅, PM₁₀, elemental carbon, organic carbon, water-soluble organic carbon, and optical properties: impact of biomass burning emissions in the Indo-Gangetic Plain.

    Science.gov (United States)

    Ram, Kirpa; Sarin, M M; Tripathi, S N

    2012-01-17

    The first simultaneous measurements and analytical data on atmospheric concentrations of PM(2.5), PM(10), inorganic constituents, carbonaceous species, and their optical properties (aerosol optical depth, AOD; absorption coefficient, b(abs); mass absorption efficiency, σ(abs); and single scattering albedo, SSA) from an urban site (Kanpur) in the Indo-Gangetic Plain are reported here. Significantly high aerosol mass concentration (>100 μg m(-3)) and AOD (> 0.3) are seen as a characteristic feature throughout the sampling period, from October 2008 to April 2009. The temporal variability in the mass fractions of carbonaceous species (EC, OC, and WSOC) is pronounced during October-January when emissions from biomass burning are dominant and OC is a major constituent (∼30%) of PM(2.5) mass. The WSOC/OC ratio varies from 0.21 to 0.65, suggesting significant contribution from secondary organic aerosols (SOAs). The mass fraction of SO(4)(2-) in PM(2.5) (Av: 12.5%) exceeds that of NO(3)(-) and NH(4)(+). Aerosol absorption coefficient (@ 678 nm) decreases from 90 Mm(-1) (in December) to 20 Mm(-1) (in April), and a linear regression analysis of the data for b(abs) and EC (n = 54) provides a measure of the mass absorption efficiency of EC (9.6 m(2) g(-1)). In contrast, scattering coefficient (@ 678 nm) increases from 98 Mm(-1) (in January) to 1056 Mm(-1) (in April) and an average mass scattering efficiency of 3.0 ± 0.9 m(2) g(-1) is obtained for PM(10) samples. The highest b(scat) was associated with the dust storm event (April 17, 2009) over northern Iraq, eastern Syria, and southern Turkey; thus, resulting in high SSA (0.93 ± 0.02) during March-April compared to 0.82 ± 0.04 in October-February. These results have implications to large temporal variability in the atmospheric radiative forcing due to aerosols over northern India. PMID:22192056

  10. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): emissions of trace gases and light-absorbing carbon from wood and dung cooking fires, garbage and crop residue burning, brick kilns, and other sources

    Science.gov (United States)

    Stockwell, Chelsea E.; Christian, Ted J.; Goetz, J. Douglas; Jayarathne, Thilina; Bhave, Prakash V.; Praveen, Puppala S.; Adhikari, Sagar; Maharjan, Rashmi; DeCarlo, Peter F.; Stone, Elizabeth A.; Saikawa, Eri; Blake, Donald R.; Simpson, Isobel J.; Yokelson, Robert J.; Panday, Arnico K.

    2016-09-01

    The Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) campaign took place in and around the Kathmandu Valley and in the Indo-Gangetic Plain (IGP) of southern Nepal during April 2015. The source characterization phase targeted numerous important but undersampled (and often inefficient) combustion sources that are widespread in the developing world such as cooking with a variety of stoves and solid fuels, brick kilns, open burning of municipal solid waste (a.k.a. trash or garbage burning), crop residue burning, generators, irrigation pumps, and motorcycles. NAMaSTE produced the first, or rare, measurements of aerosol optical properties, aerosol mass, and detailed trace gas chemistry for the emissions from many of the sources. This paper reports the trace gas and aerosol measurements obtained by Fourier transform infrared (FTIR) spectroscopy, whole-air sampling (WAS), and photoacoustic extinctiometers (PAX; 405 and 870 nm) based on field work with a moveable lab sampling authentic sources. The primary aerosol optical properties reported include emission factors (EFs) for scattering and absorption coefficients (EF Bscat, EF Babs, in m2 kg-1 fuel burned), single scattering albedos (SSAs), and absorption Ångström exponents (AAEs). From these data we estimate black and brown carbon (BC, BrC) emission factors (g kg-1 fuel burned). The trace gas measurements provide EFs (g kg-1) for CO2, CO, CH4, selected non-methane hydrocarbons up to C10, a large suite of oxygenated organic compounds, NH3, HCN, NOx, SO2, HCl, HF, etc. (up to ˜ 80 gases in all). The emissions varied significantly by source, and light absorption by both BrC and BC was important for many sources. The AAE for dung-fuel cooking fires (4.63 ± 0.68) was significantly higher than for wood-fuel cooking fires (3.01 ± 0.10). Dung-fuel cooking fires also emitted high levels of NH3 (3.00 ± 1.33 g kg-1), organic acids (7.66 ± 6.90 g kg-1), and HCN (2.01 ± 1.25 g kg-1), where the latter could

  11. Understanding the Crystallinity Indices Behavior of Burned Bones and Teeth by ATR-IR and XRD in the Presence of Bioapatite Mixed with Other Phosphate and Carbonate Phases

    Directory of Open Access Journals (Sweden)

    Giampaolo Piga

    2016-01-01

    Full Text Available We have critically investigated the ATR-IR spectroscopy data behavior of burned human teeth as opposed to the generally observed behavior in human bones that were subjected to heat treatment, whether deliberate or accidental. It is shown that the deterioration of the crystallinity index (CI behavior sometimes observed in bones subjected to high temperature appears to be of higher frequency in the case of bioapatite from teeth. This occurs because the formation of the β-tricalcium phosphate (β-TCP phase, otherwise known as whitlockite, clearly ascertained by the X-ray diffraction (XRD patterns collected on the same powdered specimens investigated by ATR-IR. These results point to the need of combining more than one physicochemical technique even if apparently well suitable, in order to verify whether the assumed conditions assessed by spectroscopy are fully maintained in the specimens after temperature and/or mechanical processing.

  12. Pain in burn patients.

    Science.gov (United States)

    Latarjet, J; Choinère, M

    1995-08-01

    While severe pain is a constant component of the burn injury, inadequate pain management has been shown to be detrimental to burn patients. Pain-generating mechanisms in burns include nociception, primary and secondary hyperalgesia and neuropathy. The clinical studies of burn pain characteristics reveal very clear-cut differences between continuous pain and pain due to therapeutic procedures which have to be treated separately. Some of the main features of burn pain are: (1) its long-lasting course, often exceeding healing time, (2) the repetition of highly nociceptive procedures which can lead to severe psychological disturbances if pain control is inappropriate. Pharmaco-therapy with opioids is the mainstay for analgesia in burned patients, but non-pharmacological techniques may be useful adjuncts. Routine pain evaluation is mandatory for efficient and safe analgesia. Special attention must be given to pain in burned children which remains too often underestimated and undertreated. More educational efforts from physicians and nursing staff are necessary to improve pain management in burned patients.

  13. Critical issues in burn care.

    Science.gov (United States)

    Holmes, James H

    2008-01-01

    Burn care, especially for serious burn injuries, represents a considerable challenge for the healthcare system. The American Burn Association has established a number of strategies for the management of burn patients and dedicates its efforts and resources to promoting and supporting burn-related research, education, care, rehabilitation, and prevention, often in collaboration with other organizations. The American Burn Association has recommended that patients with serious burns be referred to a designated burn center, ie, a hospital outfitted with specialized personnel and equipment dedicated to burn care. Burn centers have been operational for over 50 years, but the complexity and costs of providing specialized burn care have given rise to a number of critical administrative and political issues. These include logistical limitations imposed by the uneven national distribution of burn centers and a potential shortage of burn beds, both during everyday conditions and in the event of a mass disaster. Burn surgeon shortages have also been identified, stemming, in part, from a lack of specialized burn care training opportunities. There is currently a lack of quality outcome data to support evidence-based recommendations for burn care, and burn care centers are compromised by problems obtaining reimbursement for the care of uninsured and publicly insured out-of-state burn patients. Initiatives are underway to maintain efficient burn care facilities that are fully funded, easily accessible, and most importantly, provide optimal, evidence-based care on a daily basis, and are well-equipped to handle a surge of patients during a disaster situation.

  14. Burning mouth syndrome

    Directory of Open Access Journals (Sweden)

    K A Kamala

    2016-01-01

    Full Text Available Burning mouth syndrome (BMS is multifactorial in origin which is typically characterized by burning and painful sensation in an oral cavity demonstrating clinically normal mucosa. Although the cause of BMS is not known, a complex association of biological and psychological factors has been identified, suggesting the existence of a multifactorial etiology. As the symptom of oral burning is seen in various pathological conditions, it is essential for a clinician to be aware of how to differentiate between symptom of oral burning and BMS. An interdisciplinary and systematic approach is required for better patient management. The purpose of this study was to provide the practitioner with an understanding of the local, systemic, and psychosocial factors which may be responsible for oral burning associated with BMS, and review of treatment modalities, therefore providing a foundation for diagnosis and treatment of BMS.

  15. Hand chemical burns.

    Science.gov (United States)

    Robinson, Elliot P; Chhabra, A Bobby

    2015-03-01

    There is a vast and ever-expanding variety of potentially harmful chemicals in the military, industrial, and domestic landscape. Chemical burns make up a small proportion of all skin burns, yet they can cause substantial morbidity and mortality. Additionally, the hand and upper extremity are the most frequently involved parts of the body in chemical burns, and therefore these injuries may lead to severe temporary or permanent loss of function. Despite this fact, discussion of the care of these injuries is sparse in the hand surgery literature. Although most chemical burns require only first response and wound care, some require the attention of a specialist for surgical debridement and, occasionally, skin coverage and reconstruction. Exposure to certain chemicals carries the risk of substantial systemic toxicity and even mortality. Understanding the difference between thermal and chemical burns, as well as special considerations for specific compounds, will improve patient treatment outcomes.

  16. Geographic patterns of carbon dioxide emissions from fossil-fuel burning, hydraulic cement production, and gas flaring on a one degree by one degree grid cell basis: 1950 to 1990

    Energy Technology Data Exchange (ETDEWEB)

    Brenkert, A.L. [ed.] [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Andres, R.J. [Univ. of Alaska, Fairbanks, AK (United States). Inst. of Northern Engineering; Marland, G. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.; Fung, I. [Univ. of Victoria, British Columbia (Canada)]|[National Aeronautics and Space Administration, New York, NY (United States). Goddard Inst. for Space Studies; Matthews, E. [Columbia Univ., New York, NY (United States)]|[National Aeronautics and Space Administration, New York, NY (United States). Goddard Inst. for Space Studies

    1997-03-01

    Data sets of one degree latitude by one degree longitude carbon dioxide (CO{sub 2}) emissions in units of thousand metric tons of carbon (C) per year from anthropogenic sources have been produced for 1950, 1960, 1970, 1980 and 1990. Detailed geographic information on CO{sub 2} emissions can be critical in understanding the pattern of the atmospheric and biospheric response to these emissions. Global, regional and national annual estimates for 1950 through 1992 were published previously. Those national, annual CO{sub 2} emission estimates were based on statistics on fossil-fuel burning, cement manufacturing and gas flaring in oil fields as well as energy production, consumption and trade data, using the methods of Marland and Rotty. The national annual estimates were combined with gridded one-degree data on political units and 1984 human populations to create the new gridded CO{sub 2} emission data sets. The same population distribution was used for each of the years as proxy for the emission distribution within each country. The implied assumption for that procedure was that per capita energy use and fuel mix is uniform over a political unit. The consequence of this first-order procedure is that the spatial changes observed over time are solely due to changes in national energy consumption and nation-based fuel mix. Increases in emissions over time are apparent for most areas.

  17. New field-based agricultural biomass burning trace gas, PM2.5, and black carbon emission ratios and factors measured in situ at crop residue fires in Eastern China

    Science.gov (United States)

    Zhang, Tianran; Wooster, Martin J.; Green, David C.; Main, Bruce

    2015-11-01

    Despite policy attempts to limit or prevent agricultural burning, its use to remove crop residues either immediately after harvest (e.g. field burning of wheat stubble) or after subsequent crop processing (e.g. "bonfires" of rice straw and rapeseed residues) appears to remain widespread across parts of China. Emission factors for these types of small but highly numerous fire are therefore required to fully assess their impact on atmospheric composition and air pollution. Here we describe the design and deployment of a new smoke measurement system for the close-range sampling of key gases and particles within smoke from crop residue fires, using it to assess instantaneous mixing ratios of CO and CO2 and mass concentrations of black carbon (BC) and PM2.5 from wheat stubble, rice straw, and rapeseed residue fires. Using data of our new smoke sampling system, we find a strong linear correlation between the PM2.5 mass and BC, with very high PM2.5 to BC emission ratios found in the smouldering phase (up to 80.7 mg m-3.(mg m-3)-1) compared to the flaming phase (2.0 mg m-3.(mg m-3)-1). We conclude that the contribution of BC to PM2.5 mass was as high as 50% in the flaming phase of some burns, whilst during smouldering it sometimes decreased to little over one percent. A linear mixing model is used to quantify the relative contribution of each combustion phase to the overall measured smoke composition, and we find that flaming combustion dominated the total emission of most species assessed. Using time series of trace gas concentrations from different fire cases, we calculated 'fire integrated' trace gas emission factors (EFs) for wheat, rice and rapeseed residue burns as 1739 ± 19 g kg-1, 1761 ± 30 g kg-1and 1704 ± 27 g kg-1 respectively for CO2, and 60 ± 12 g kg-1, 47 ± 19 g kg-1 and 82 ± 17 g kg-1 respectively for CO. Where comparisons were possible, our EFs agreed well with those derived via a simultaneously-deployed open path Fourier transform infrared (OP

  18. Biomass Burning Observation Project Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Kleinman, KI [Brookhaven National Laboratory; Sedlacek, AJ [Brookhaven National Laboratory

    2013-09-01

    Aerosols from biomass burning perturb Earth’s climate through the direct radiative effect (both scattering and absorption) and through influences on cloud formation and precipitation and the semi-direct effect. Despite much effort, quantities important to determining radiative forcing such as the mass absorption coefficients (MAC) of light-absorbing carbon, secondary organic aerosol (SOA) formation rates, and cloud condensation nuclei (CCN) activity remain in doubt. Field campaigns in northern temperate latitudes have been overwhelmingly devoted to other aerosol sources in spite of biomass burning producing about one-third of the fine particles (PM2.5) in the U.S.

  19. 发电机集电环及碳刷烧损事故原因分析及现场处理%Cause Analysis of Generator Collector Ring and Carbon Brush Burning

    Institute of Scientific and Technical Information of China (English)

    郭颀; 郭志敏

    2014-01-01

    内蒙古某电厂330 MW汽轮发电机发生烧损事故,造成发电机集电环、碳刷烧损,大轴损伤。分析事故原因是由于绝缘套筒存在质量缺陷,脱开的玻璃丝布被高速转动的转子风扇打碎后带入滑环与碳刷间,最终引发了事故。经过现场修复发电机大轴、集电环、碳刷后,发电机运行至今状况良好。同时建议有同类型发电机的发电厂,应加固发电机集电环绝缘套筒的外露部分,防止运行中绝缘套筒的玻璃丝布甩出,造成发电机事故。%One 330 MW steam turbine generator of a power plant was damaged in Inner Mongolia, not only caused generator slip ring and carbon brush burning, but also the generator shaft damaged. Analysis the cause of the failure was due to the insulating sleeve quality defects, tripping out of glass cloth by high speed rotating rotor fan was broken and went into the slip ring and carbon brush, eventually led to the fault. Through the scene processing, repaired the generator shaft, collector ring and carbon brush. At present, the generator is running in good condition. Through the fault handling, it is suggested that there are power plants of the same kind of generator, reinforce the generator slip ring insulation sleeve.

  20. Effect of chromium on the kinetics of anode carbon burning from Fe-Cr-Csub(sat). [from 1723-1873k

    Energy Technology Data Exchange (ETDEWEB)

    Plyshevskij, A.A.; Shakirov, M.M. (Sibirskij Metallurgicheskij Inst., Novokuznetsk (USSR))

    1981-01-01

    Kinetics of carbon anode oxidation out of alloys Fe-Cr-Ssub(sat) under slag (52% Al/sub 2/O/sub 3/+41% CaO+7% MgO) are studied by the method of stationary polarization curves within the temperature range from 1723-1873 K. It is shown that exchange current Isub(o) practically does not change with the growth of Cr concentration in the alloy up to 10%. Further Cr content decreases the isub(o) value. isub(o) value of the activation energy, calculated according to the temperature dependence constitutes 220+-20 kJ/mol for all alloys, though there exists a weak tendency to its increase with the Cr concentration growth. Obtained data are explained by the carbon bond increase with melting at Cr introduction.

  1. Prescribed burning plan : Stillwater NWR : de Braga Burn Unit 67

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This 1991 Annual Prescribed Burning Plan for Stillwater NWR calls for all 67 acres of the de Braga burn unit to be burned. The objective of this burn is to remove...

  2. New Fashioned Book Burning.

    Science.gov (United States)

    Gardner, Robert

    1997-01-01

    Reports on results of a teacher's experiment in book burning as a lesson accompanying the teaching of Ray Bradbury's "Fahrenheit 451." Discusses student reactions and the purpose of or justification for the experimental lesson. (TB)

  3. A Burning Question

    Institute of Scientific and Technical Information of China (English)

    LAN XINZHEN

    2010-01-01

    @@ As heaping piles of garbage grow in cities and communities across China,a divide has formed over two possible solutions to this smelly problem: Should excessive mounds of trash be burned,or should it be buried?

  4. Crude oil burning mechanisms

    DEFF Research Database (Denmark)

    van Gelderen, Laurens; Malmquist, L.M.V.; Jomaas, Grunde

    2015-01-01

    In order to improve predictions for the burning efficiency and the residue composition of in-situ burning of crude oil, the burning mechanism of crude oil was studied in relation to the composition of its hydrocarbon mixture, before, during and after the burning. The surface temperature, flame...... height, mass loss rate and residues of three hydrocarbon liquids (n-octane, dodecane and hexadecane), two crude oils (DUC and REBCO) and one hydrocarbon liquid mixture of the aforementioned hydrocarbon liquids were studied using the Crude Oil Flammability Apparatus. The experimental results were compared...... on the highest achievable oil slick temperature. Based on this mechanism, predictions can then be made depending on the hydrocarbon composition of the fuel and the measured surface temperature....

  5. Management of burn wounds.

    Science.gov (United States)

    Schiestl, Clemens; Meuli, Martin; Trop, Marija; Neuhaus, Kathrin

    2013-10-01

    Small and moderate scalds in toddlers are still the most frequent thermal injuries the pediatric surgeons have to face today. Over the last years, surgical treatment of these patients has changed in many aspects. Due to new dressing materials and new surgical treatment strategies that are particularly suitable for children, today, far better functional and aesthetic long-term results are possible. While small and moderate thermal injuries can be treated in most European pediatric surgical departments, the severely burned child must be transferred to a specialized, ideally pediatric, burn center, where a well-trained multidisciplinary team under the leadership of a (ideally pediatric) burn surgeon cares for these highly demanding patients. In future, tissue engineered full thickness skin analogues will most likely play an important role, in pediatric burn as well as postburn reconstructive surgery.

  6. Burning mouth syndrome

    OpenAIRE

    Sudha Jimson; Rajesh, E.; R Jayasri Krupaa; M. Kasthuri

    2016-01-01

    Burning mouth syndrome is a debilitating medical condition affecting nearly 1.3 million of Americans. Its common features include a burning painful sensation in the mouth, often associated with dysgeusia and xerostomia, despite normal salivation. Classically, symptoms are better in the morning, worsen during the day and typically subside at night. Its etiology is largely multifactorial, and associated medical conditions may include gastrointestinal, urogenital, psychiatric, neurologic and met...

  7. Advances in burn treatment

    OpenAIRE

    Lahoda, LU; Vogt, PM

    2006-01-01

    The German-speaking burn specialist, organized in the DAV (Deutsche Arbeitsgemeinschaft für Verbrennungsmedizin) held their yearly meeting in 2004 in Rottach-Egern, Bavaria. Participants from Switzerland, Germany and Austria found a high standing, very well organized and thorough program summoned by the host, Dr. Guido Graf Henckel von Donnersmarck, Munich. The topics consisted of reconstructive surgery, skin substitutes and replacement, advances in burn medicine over the last 10 years and bu...

  8. PBXN-110 Burn Rate Estimate

    Energy Technology Data Exchange (ETDEWEB)

    Glascoe, E

    2008-08-11

    It is estimated that PBXN-110 will burn laminarly with a burn function of B = (0.6-1.3)*P{sup 1.0} (B is the burn rate in mm/s and P is pressure in MPa). This paper provides a brief discussion of how this burn behavior was estimated.

  9. Influence of biomass burning and anthropogenic emissions on ozone, carbon monoxide and black carbon concentrations at the Mt. Cimone GAW-WMO global station (Italy, 2165 m a.s.l.)

    OpenAIRE

    Cristofanelli, P; Fierli, F.; Marinoni, A.; Duchi, R.; Burkhart, J.; A. Stohl; M. Maione; Arduini, J.; Bonasoni, P.

    2012-01-01

    This work investigates the variability of ozone (O3), carbon monoxide (CO) and equivalent black carbon (BC) concentrations at the Italian Climate Observatory "O. Vittori" (ICO-OV), part of the Mt. Cimone global GAW-WMO station (Italy). For this purpose, ICO-OV observations carried out in the period January 2007–June 2009, have been analysed and correlated with the output of the FLEXPART Lagrangian dispersion model to specifically evaluate the influence of biomass...

  10. Open Questions in Stellar Helium Burning Addressed With Real Photons

    OpenAIRE

    Gai, Moshe

    2003-01-01

    The outcome of helium burning is the formation of the two elements, carbon and oxygen. The ratio of carbon to oxygen at the end of helium burning is crucial for understanding the final fate of a progenitor star and the nucleosynthesis of heavy elements in Type II supernova, with oxygen rich star predicted to collapse to a black hole, and a carbon rich star to a neutron star. Type Ia supernovae (SNeIa) are used as standard candles for measuring cosmological distances with the use of an empiric...

  11. Biomass burning contribution to Beijing aerosol

    Directory of Open Access Journals (Sweden)

    Y. Cheng

    2013-08-01

    Full Text Available Biomass burning, the largest global source of elemental carbon (EC and primary organic carbon (OC, is strongly associated with many subjects of great scientific concern, such as secondary organic aerosol and brown carbon which exert important effects on the environment and on climate in particular. This study investigated the relationships between levoglucosan and other biomass burning tracers (i.e., water soluble potassium and mannosan based on both ambient samples collected in Beijing and source samples. Compared with North America and Europe, Beijing was characterized by high ambient levoglucosan concentrations and low winter to summer ratios of levoglucosan, indicating significant impact of biomass burning activities throughout the year in Beijing. Comparison of levoglucosan and water soluble potassium (K+ levels suggested that it was acceptable to use K+ as a biomass burning tracer during summer in Beijing, while the contribution of fireworks to K+ could be significant during winter. Moreover, the levoglucosan to K+ ratio was found to be lower during the typical summer period (0.21 ± 0.16 compared with the typical winter period (0.51 ± 0.15. Levoglucosan correlated strongly with mannosan (R2 = 0.97 throughout the winter and the levoglucosan to mannosan ratio averaged 9.49 ± 1.63, whereas levoglucosan and mannosan exhibited relatively weak correlation (R2 = 0.73 during the typical summer period when the levoglucosan to mannosan ratio averaged 12.65 ± 3.38. Results from positive matrix factorization (PMF model analysis showed that about 50% of the OC and EC in Beijing were associated with biomass burning processes. In addition, a new source identification method was developed based on the comparison of the levoglucosan to K+ ratio and the levoglucosan to mannosan ratio among different types of biomass. Using this method, the major source of biomass burning aerosol in Beijing was suggested to be the combustion of crop residuals, while the

  12. Macro-Particle Charcoal C Content following Prescribed Burning in a Mixed-Conifer Forest, Sierra Nevada, California

    OpenAIRE

    Wiechmann, Morgan L.; Hurteau, Matthew D; Kaye, Jason P.; Jessica R. Miesel

    2015-01-01

    Fire suppression and changing climate have resulted in increased large wildfire frequency and severity in the western United States, causing carbon cycle impacts. Forest thinning and prescribed burning reduce high-severity fire risk, but require removal of biomass and emissions of carbon from burning. During each fire a fraction of the burning vegetation and soil organic matter is converted into charcoal, a relatively stable carbon form. We sought to quantify the effects of pre-fire fuel load...

  13. Psychiatric aspects of burn

    Directory of Open Access Journals (Sweden)

    Dalal P

    2010-10-01

    Full Text Available Burn injuries and their subsequent treatment cause one of the most excruciating forms of pain imaginable. The psychological aspects of burn injury have been researched in different parts of the world, producing different outcomes. Studies have shown that greater levels of acute pain are associated with negative long-term psychological effects such as acute stress disorder, depression, suicidal ideation, and post-traumatic stress disorder for as long as 2 years after the initial burn injury. The concept of allostatic load is presented as a potential explanation for the relationship between acute pain and subsequent psychological outcomes. A biopsychosocial model is also presented as a means of obtaining better inpatient pain management and helping to mediate this relationship.

  14. Burning mouth syndrome

    Directory of Open Access Journals (Sweden)

    Sudha Jimson

    2015-01-01

    Full Text Available Burning mouth syndrome (BMS is a complex disorder that is characterized by warm or burning sensation in the oral mucosa without changes on physical examination. It occurs more commonly in middle-aged and elderly women and often affects the tip of the tongue, lateral borders, lips, hard and soft palate. This condition is probably of multi-factorial origin, often idiopathic, and its etiopathogensis is unknown. BMS can be classified into two clinical forms namely primary and secondary BMS. As a result, a multidisciplinary approach is required for better control of the symptoms. In addition, psychotherapy and behavioral feedback may also help eliminate the BMS symptoms.

  15. Electrothermal Ring Burn

    OpenAIRE

    Yakup Çil; Hamza Yıldız; Özlem Karabudak Abuaf

    2012-01-01

    Low-voltage fountainheads such as car, tractor or motorcycle batteries are predisposed to produce large currents. Any metal object that comes into contact with these batteries may result in short-circuit. This may result in rapid and excessive heating of metal object and an electrothermal burn. Herein we presented a motorcycle driver who was 28-year-old man with electrothermal ring burn which was caused by metal chain that was used as a ring. (Turk J Dermatol 2012; 6: 106-7)

  16. Electrothermal Ring Burn

    Directory of Open Access Journals (Sweden)

    Yakup Çil

    2012-09-01

    Full Text Available Low-voltage fountainheads such as car, tractor or motorcycle batteries are predisposed to produce large currents. Any metal object that comes into contact with these batteries may result in short-circuit. This may result in rapid and excessive heating of metal object and an electrothermal burn. Herein we presented a motorcycle driver who was 28-year-old man with electrothermal ring burn which was caused by metal chain that was used as a ring. (Turk J Dermatol 2012; 6: 106-7

  17. Burn mouse models

    DEFF Research Database (Denmark)

    Calum, Henrik; Høiby, Niels; Moser, Claus

    2014-01-01

    Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third-degree b......Severe thermal injury induces immunosuppression, involving all parts of the immune system, especially when large fractions of the total body surface area are affected. An animal model was established to characterize the burn-induced immunosuppression. In our novel mouse model a 6 % third...

  18. Burn Safety Awareness on Playgrounds: Thermal Burns from Playground Equipment

    Science.gov (United States)

    ... Safety Awareness on Playgrounds Thermal Burns from Playground Equipment The U.S. Consumer Product Safety Commission CPSC wants ... of the risk of thermal burns from playground equipment. You may remember the metal slides of your ...

  19. Management of acute burns and burn shock resuscitation.

    Science.gov (United States)

    Faldmo, L; Kravitz, M

    1993-05-01

    Initial management of minor and moderate, uncomplicated burn injury focuses on wound management and patient comfort. Initial management of patients with major burn injury requires airway support, fluid resuscitation for burn shock, treatment for associated trauma and preexisting medical conditions, management of adynamic ileus, and initial wound treatment. Fluid resuscitation, based on assessment of the extent and depth of burn injury, requires administration of intravenous fluids using resuscitation formula guidelines for the initial 24 hours after injury. Inhalation injury complicates flame burns and increases morbidity and mortality. Electrical injury places patients at risk for cardiac arrest, metabolic acidosis, and myoglobinuria. Circumferential full-thickness burns to extremities compromise circulation and require escharotomy or fasciotomy. Circumferential torso burns compromise air exchange and cardiac return. Loss of skin function places patients at risk for hypothermia, fluid and electrolyte imbalances, and systemic sepsis. The first 24 hours after burn injury require aggressive medical management to assure survival and minimize complications. PMID:8489882

  20. Wood would burn

    International Nuclear Information System (INIS)

    Absract: In view of the world-wide problem of energy sustainability and greenhouse gas production (carbon dioxide), it is timely to review the issues involved in generating heat and power from all fuels and especially new (to the UK) solid fuels, including high moisture fuels such as wood, SRF, oil shale, tar sands and brown coal, which will become major international fuels as oil and gas become depleted. The combustion properties of some of these materials are significantly different from traditional coal, oil and gas fuels, however the technology proposed herein is also applicable to these conventional fuels. This paper presents some innovative combustion system options and the associated technical factors that must be considered for their implementation. For clarity of understanding, the novel concepts will be largely presented in terms of a currently developing solid fuel market; biomass wood chips. One of the most important characteristics of many solid fuels to be used in the future (including oil shale and brown coal) is their high moisture content of up to 60%. This could be removed by utilising low grade waste heat that is widely available in industry to dry the fuel and thus reduce transport costs. Burning such dried wood for power generation also increases the energy available from combustion and thus acts as a thermal transformer by upgrading the low grade heat to heat available at combustion temperatures. The alternative approach presented here is to recover the latent heat by condensing the extrinsic moisture and the water formed during combustion. For atmospheric combustion, the temperature of the condensed combustion products is below the dew point at about 55-65 oC and is only suitable for recovery in an efficient district heating system. However, in order to generate power from the latent heat, the condensation temperature must be increased to the level where the heat can be used in the thermodynamic power cycle. This can be achieved by increasing

  1. Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0 – Part 2: Analysis of the biomass burning contribution and the modern carbon fraction

    Directory of Open Access Journals (Sweden)

    J. L. Jimenez

    2009-12-01

    Full Text Available Submicron aerosol was analyzed during the MILAGRO field campaign in March 2006 at the T0 urban supersite in Mexico City with a High-Resolution Aerosol Mass Spectrometer (AMS and complementary instrumentation. Positive Matrix Factorization (PMF of high resolution AMS spectra identified a biomass burning OA (BBOA component, which includes several large plumes that appear to be from forest fires within the region. Here, we show that the AMS BBOA concentration at T0 correlates with fire counts in the vicinity of Mexico City and that most of the BBOA variability is captured when the FLEXPART model is used for the dispersion of fire emissions as estimated from satellite fire counts. The resulting FLEXPART fire impact index correlates well with the observed BBOA, CH3CN, levoglucosan, and potassium, indicating that wildfires in the region surrounding Mexico City are the dominant source of BBOA at T0 during MILAGRO. The impact of distant BB sources such as the Yucatan is small during this period. All fire tracers are correlated, with BBOA and levoglucosan showing little background, acetonitrile having a well-known tropospheric background of ~100–150 ppt, and PM2.5 potassium having a background of ~160 ng m−3 (two-thirds of its average concentration, which does not appear to be related to BB sources. We define two high fire periods based on satellite fire counts and predicted fire impacts. We then compare these periods with a low fire period when the impact of regional fires is about a factor of 5 smaller. Fire tracers are very elevated in the high fire periods whereas tracers of urban pollution do not change between these periods. Dust is also elevated during the high BB period but this appears to be coincidental due to the drier conditions and not driven by direct dust emission from the fires. The AMS oxygenated OA factor (OOA, mostly secondary OA or SOA does not show an increase during the fire periods or a

  2. An assessment of burn care professionals' attitudes to major burn.

    LENUS (Irish Health Repository)

    Murphy, A D

    2008-06-01

    The resuscitation of severe burn remains a controversial area within the burn care profession. There is ongoing debate as to what percentage burn is associated with a sufficient quality of life to support initial resuscitation efforts. We conducted a survey of delegates at the 39th Annual Meeting of the British Burns Association (2005), regarding attitudes towards resuscitation following major burns. Respondents were asked the maximum percentage total body surface area (TBSA) burn beyond which they would not wish to be resuscitated. They were also asked what maximum TBSA they perceived to be commensurate with an acceptable quality of life (QOL). One hundred and forty three of 300 delegates responded to the questionnaire. Thirty three percent of respondents would not wish to be resuscitated with 50-75% TBSA burns or greater. A further 35% would not wish to have life-sustaining intervention with 75-95% TBSA burns or greater. The remaining 32% indicated that they would not want resuscitation with TBSA burns>95%. Regardless of TBSA affected, 16% would not wish resuscitation if they had full thickness facial burns, a further 10% did not want resuscitation if both their hands and faces were affected. Our survey demonstrates the diversity of personal preference amongst burn care professionals. This would suggest that a unifying philosophy regarding the resuscitation of extensive burns will remain elusive.

  3. PLASTIC SURGERY AND BURNS

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    Objective Endotoxin as the inciting agentof cytokines and other mediators, whose highlevel expression correlates with the septicshock and MOF, has been the one of leadingcauses of death in ICU. Methods For treatingsepsis and MOF caused by endotoxin, the anti-lipid A of LPS antibody was used. 19 burned

  4. Back Bay Wilderness burning support

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This document is a memorandum concerning prescribed burns between members of the Bureau of Sport Fisheries and Wildlife. It states that burning should be supported...

  5. Systemic Responses to Burn Injury

    OpenAIRE

    ÇAKIR, Barış; YEĞEN, Berrak Ç.

    2004-01-01

    The major causes of death in burn patients include multiple organ failure and infection. It is important for the clinician to understand the pathophysiology of burn injury and the effects it will have on the pharmacokinetics of a drug. The local and systemic inflammatory response to thermal injury is extremely complex, resulting in both local burn tissue damage and deleterious systemic effects on all other organ systems distant from the burn area itself. Thermal injury initiates systemic infl...

  6. Friction Burns: Epidemiology and Prevention

    OpenAIRE

    Agrawal, A; Raibagkar, S.C.; Vora, H.J.

    2008-01-01

    This epidemiological study deals with 60 patients with friction burns between January 2004 and January 2006. The age group most affected was that between 21 and 30 years, with male predominance. Road traffic accidents were the commonest cause of friction burns (56 patients), and the lower limb was the most frequently affected part of the body. Patient management was performed according to the degree of the burn injury. It is suggested that most friction burn injuries are neglected on admissio...

  7. Post-fire vegetation phenology in Siberian burn scars

    OpenAIRE

    BALZTER, Heiko; Cuevas-Gonzalez, Maria; Gerard, France; Riano, David

    2008-01-01

    Boreal forests comprise one third of global forested area and are the largest terrestrial carbon store. Forest fires are the regions most dynamic disturbance factor, occurring mainly in Siberia, Russian Far East, Canada and Alaska, and these fires represent a globally important release of terrestrial carbon to the atmosphere, via the burning of vegetation and organic soils. Currently the boreal region is believed to be a net carbon sink,but climate change predictions indicate significant b...

  8. 40 CFR 49.10411 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.

    Science.gov (United States)

    2010-07-01

    ..., agricultural burning, and forestry and silvicultural burning. 49.10411 Section 49.10411 Protection of... for general open burning, agricultural burning, and forestry and silvicultural burning. (a) Beginning... obtain approval of a permit under § 49.134 Rule for forestry and silvicultural burning permits....

  9. Burn epidemiology and cost of medication in paediatric burn patients.

    Science.gov (United States)

    Koç, Zeliha; Sağlam, Zeynep

    2012-09-01

    Burns are common injuries that cause problems to societies throughout the world. In order to reduce the cost of burn treatment in children, it is extremely important to determine the burn epidemiology and the cost of medicines used in burn treatment. The present study used a retrospective design, with data collected from medical records of 140 paediatric patients admitted to a burn centre between 1 January 2009 and 31 December 2009. Medical records were examined to determine burn epidemiology, medication administered, dosage, and duration of use. Descriptive statistical analysis was completed for all variables; chi-square was used to examine the relationship between certain variables. It was found that 62.7% of paediatric burns occur in the kitchen, with 70.7% involving boiling water; 55.7% of cases resulted in third-degree burns, 19.3% required grafting, and mean duration of hospital stay was 27.5 ± 1.2 days. Medication costs varied between $1.38 US dollars (USD) and $14,159.09, total drug cost was $46,148.03 and average cost per patient was $329.63. In this study, the medication cost for burn patients was found to be relatively high, with antibiotics comprising the vast majority of medication expenditure. Most paediatric burns are preventable, so it is vital to educate families about potential household hazards that can be addressed to reduce the risk of a burn. Programmes are also recommended to reduce costs and the inappropriate prescribing of medication.

  10. Carbonaceous aerosols from different tropical biomass burning sources

    Science.gov (United States)

    Cachier, Hélène; Brémond, Marie-Pierre; Buat-Ménard, Patrick

    1989-08-01

    FOLLOWING a repetitive pattern, biomass burning affects the intertropical belt on a continental scale during the dry season1. The importance of these anthropogenic activities with regard to carbonaceous-component emissions into the global atmosphere is now well recognized2-4. It has been suggested that large injections of black carbon aerosols from the Tropics are of potential importance for the radiative and chemical balance of the troposphere5-10. Studies on carbonaceous aerosols have indicated that, on an annual basis, the intensity of the emissions from tropical biomass burning could compare with that of emissions from fossil-fuel burning in industrial countries7,8. Also, results from combustion chamber experiments have determined the important range of the emission factor for both the organic and the black carbon components of the aerosol1-16. Following on from our earlier studies on total atmospheric particulate carbon (Ct) and isotopic composition (δ13C) (ref. 2), we now present new data on the black carbon content (Cb) of atmospheric particles sampled during the biomass-burning season in the wooden savannah of the Ivory Coast. The Cb/Ct ratio is generally lower than expected and highly variable. This variability indicates that there are drastic changes in source apportionment, which from our isotope studies may be ascribed to the variety of vegetation fuel and also to the mode of combustion. Therefore the Cb/Ct ratio can potentially discriminate biomass-burning emissions from different tropical ecosystems.

  11. Burn Teams and Burn Centers: The Importance of a Comprehensive Team Approach to Burn Care

    OpenAIRE

    Al-Mousawi, Ahmed M.; Mecott-Rivera, Gabriel A.; Jeschke, Marc G.; Herndon, David N

    2009-01-01

    Advances in burn care have been colossal, but while extra work is needed, it is clear that the organized effort of burn teams can continue making improvements in survival rates and quality of life possible for patients. Burn patients are unique, representing the most severe model of trauma,33 and hence this necessitates treatment in the best facilities available for that endeavor. Burn centers have developed to meet these intricate needs but can only function productively and most efficiently...

  12. [Chemical and electrical burns].

    Science.gov (United States)

    Sanchez, Raymond

    2002-12-15

    Chemical burns are less frequent in routine practice, but could be very serious owing to the complexity and severity of their actions. Influx of casualty after a civil disaster (industrial explosion) or military (war or terrorism) is possible. The action of these agents could be prolonged and deep. In addition to the skin, respiratory lesions and general intoxication could be observed. The urgent local treatment rely essentially on prolonged washing. Prevention and adequate emergency care could limit the serious consequences of these accidents. Accidents (thermal burns or electrisations) due to high or low voltage electricity are frequent. The severity is linked with the affected skin but especially with internal lesions, muscular, neurological or cardiac lesions. All cases of electrisation need hospital care. Locally, the lesions are often deep with difficult surgical repairs and often require amputation. Aesthetic and functional sequela are therefore frequent. Secondary complications could appear several months after the accident: cataract, dysesthesia and hypotonia. PMID:12621941

  13. Burns and beauty nails

    Science.gov (United States)

    Bélanger, Richard E; Marcotte, Marie-Eve; Bégin, François

    2013-01-01

    A case involving a five-month-old girl brought to the emergency department with burns over her abdomen is described. The child was reported to have spilled two small bottles of beauty nail adhesive on her clothes while her mother was preparing dinner. After undressing the infant, the mother discovered several lesions on the child’s abdomen and quickly sought medical attention. Given the unusual circumstances of the presentation, the child was hospitalized for both treatment and supervision. The beauty nail adhesive contained cyanoacrylate. In addition to its well-appreciated adhesive capacity, cyanoacrylate, in the presence of cotton or other tissues, is known to produce an exothermic reaction that may cause burns. Cyanoacrylate-based products, due to their possible adverse effects, should be kept away from children as advised. Odd injuries should always raise concerns about the possibility of inflicted injury. PMID:24421671

  14. [Hydrofluoric acid burns].

    Science.gov (United States)

    Holla, Robin; Gorter, Ramon R; Tenhagen, Mark; Vloemans, A F P M Jos; Breederveld, Roelf S

    2016-01-01

    Hydrofluoric acid is increasingly used as a rust remover and detergent. Dermal contact with hydrofluoric acid results in a chemical burn characterized by severe pain and deep tissue necrosis. It may cause electrolyte imbalances with lethal consequences. It is important to identify high-risk patients. 'High risk' is defined as a total affected body area > 3% or exposure to hydrofluoric acid in a concentration > 50%. We present the cases of three male patients (26, 31, and 39 years old) with hydrofluoric acid burns of varying severity and describe the subsequent treatments. The application of calcium gluconate 2.5% gel to the skin is the cornerstone of the treatment, reducing pain as well as improving wound healing. Nails should be thoroughly inspected and possibly removed if the nail is involved, to ensure proper healing. In high-risk patients, plasma calcium levels should be evaluated and cardiac monitoring is indicated.

  15. The Burning Saints

    DEFF Research Database (Denmark)

    Xygalatas, Dimitris

    The Anastenaria are Orthodox Christians in Northern Greece who observe a unique annual ritual cycle focused on two festivals, dedicated to Saint Constantine and Saint Helen. The festivals involve processions, music, dancing, animal sacrifices, and culminate in an electrifying fire-walking ritual....... Carrying the sacred icons of the saints, participants dance over hot coals as the saint moves them. The Burning Saints presents an analysis of these rituals and the psychology behind them. Based on long-term fieldwork, The Burning Saints traces the historical development and sociocultural context of the...... Greek fire-walking rituals. As a cognitive ethnography, the book aims to identify the social, psychological and neurobiological factors which may be involved and to explore the role of emotional and physiological arousal in the performance of such ritual. A study of participation, experience and meaning...

  16. Burns and beauty nails

    OpenAIRE

    Richard E. Bélanger; Marcotte, Marie-Eve; Bégin, François

    2013-01-01

    A case involving a five-month-old girl brought to the emergency department with burns over her abdomen is described. The child was reported to have spilled two small bottles of beauty nail adhesive on her clothes while her mother was preparing dinner. After undressing the infant, the mother discovered several lesions on the child’s abdomen and quickly sought medical attention. Given the unusual circumstances of the presentation, the child was hospitalized for both treatment and supervision. T...

  17. Impact of biomass burning on the atmosphere

    International Nuclear Information System (INIS)

    Fire has played an important part in biogeochemical cycling throughout most of the history of our planet. Ice core studies have been very beneficial in paleoclimate studies and constraining the budgets of biogeochemical cycles through the past 160,000 years of the Vostok ice core. Although to date there has been no way of determining cause and effect, concentration of greenhouse gases directly correlates with temperature in ice core analyses. Recent ice core studies on Greenland have shown that significant climate change can be very rapid on the order of a decade. This chapter addresses the coupled evolution of our planet's atmospheric composition and biomass burning. Special attention is paid to the chemical and climatic impacts of biomass burning on the atmosphere throughout the last century, specifically looking at the cycles of carbon, nitrogen, and sulfur. Information from ice core measurements may be useful in understanding the history of fire and its historic affect on the composition of the atmosphere and climate

  18. Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes

    Directory of Open Access Journals (Sweden)

    K. A. Pratt

    2011-12-01

    Full Text Available Biomass burning represents a major global source of aerosols impacting direct radiative forcing and cloud properties. Thus, the goal of a number of current studies involves developing a better understanding of how the chemical composition and mixing state of biomass burning aerosols evolve during atmospheric aging processes. During the Ice in Clouds Experiment-Layer Clouds (ICE-L in the fall of 2007, smoke plumes from two small Wyoming Bureau of Land Management prescribed burns were measured by on-line aerosol instrumentation aboard a C-130 aircraft, providing a detailed chemical characterization of the particles. After ~2–4 min of aging, submicron smoke particles, produced primarily from sagebrush combustion, consisted predominantly of organics by mass, but were comprised primarily of internal mixtures of organic carbon, elemental carbon, potassium chloride, and potassium sulfate. Significantly, the fresh biomass burning particles contained minor mass fractions of nitrate and sulfate, suggesting that hygroscopic material is incorporated very near or at the point of emission. The mass fractions of ammonium, sulfate, and nitrate increased with aging up to ~81–88 min and resulted in acidic particles. Decreasing black carbon mass concentrations occurred due to dilution of the plume. Increases in the fraction of oxygenated organic carbon and the presence of dicarboxylic acids, in particular, were observed with aging. Cloud condensation nuclei measurements suggested all particles >100 nm were active at 0.5% water supersaturation in the smoke plumes, confirming the relatively high hygroscopicity of the freshly emitted particles. For immersion/condensation freezing, ice nuclei measurements at −32 °C suggested activation of ~0.03–0.07% of the particles with diameters greater than 500 nm.

  19. Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes

    Directory of Open Access Journals (Sweden)

    K. A. Pratt

    2011-06-01

    Full Text Available Biomass burning represents a major global source of aerosols impacting direct radiative forcing and cloud properties. Thus, the goal of a number of current studies involves developing a better understanding of how the chemical composition and mixing state of biomass burning aerosols evolve during atmospheric aging processes. During the Ice in Cloud Experiment – Layer Clouds (ICE-L in fall of 2007, smoke plumes from two small Wyoming Bureau of Land Management prescribed burns were measured by on-line aerosol instrumentation aboard a C-130 aircraft, providing a detailed chemical characterization of the particles. After ~2–4 min of aging, submicron smoke particles, produced primarily from sagebrush combustion, consisted predominantly of organics by mass, but were comprised primarily of internal mixtures of organic carbon, elemental carbon, potassium chloride, and potassium sulfate. Significantly, 100 % of the fresh biomass burning particles contained minor mass fractions of nitrate and sulfate, suggesting that hygroscopic material is incorporated very near or at the point of emission. The mass fractions of ammonium, sulfate, and nitrate increased with aging up to ~81–88 min and resulted in acidic particles, with both nitric acid and sulfuric acid present. Decreasing black carbon mass concentrations occurred due to dilution of the plume. Increases in the fraction of oxygenated organic carbon and the presence of dicarboxylic acids, in particular, were observed with aging. Cloud condensation nuclei measurements suggested all particles >100 nm were active at 0.5 % water supersaturation in the smoke plumes, confirming the relatively high hygroscopicity of the freshly emitted particles. For immersion/condensation freezing, ice nuclei measurements at −32 °C suggested activation of ~0.03–0.07 % of the particles with diameters greater than 500 nm.

  20. Seasonal characteristics of biomass burning contribution to Beijing aerosol

    Institute of Scientific and Technical Information of China (English)

    ZHENG; Xiaoyan; LIU; Xiande; ZHAO; Fenghua; DUAN; Fengkui

    2005-01-01

    110 atmospheric aerosol samples collected from November 1997 to October 1998 at two monitoring sites (Ming Tomb and Temple Heaven) in Beijing were analyzed for the concentration of organic carbon (OC) and water-soluble potassium (K+). Four biomass burning episodes, namely spring farming, summer harvesting, autumn harvesting and leaf falling were identified using the tracer of K+. Biomass burning contribution to the urban aerosol OC concentration in Beijing was estimated by regression analysis of OC and K+ concentration data. The slopes of regression analysis are similar at the two monitoring sites, presenting regional characteristics. Severe air pollution event occurred during autumn harvesting period in 1998 with substantial secondary OC formed, in which biomass burning was one of the major emission sources. Biomass burning is a prominent source of aerosol OC in Beijing and is featured by its seasonality and periodicity. It may contribute as much as 30 to 60 percent of the total OC in typical cases.

  1. The hair color-highlighting burn: a unique burn injury.

    Science.gov (United States)

    Peters, W

    2000-01-01

    A unique, preventable, 2.8 x 3.7-cm, full-thickness scalp burn resulted after a woman underwent a professional color-highlighting procedure at a hair salon. The burn appeared to result from scalp contact with aluminum foil that had been overheated by a hair dryer during the procedure. The wound required debridement and skin grafting and 3 subsequent serial excisions to eliminate the resulting area of burn scar alopecia. The preventive aspects of this injury are discussed.

  2. Acoustic emission strand burning technique for motor burning rate prediction

    Science.gov (United States)

    Christensen, W. N.

    1978-01-01

    An acoustic emission (AE) method is being used to measure the burning rate of solid propellant strands. This method has a precision of 0.5% and excellent burning rate correlation with both subscale and large rocket motors. The AE procedure burns the sample under water and measures the burning rate from the acoustic output. The acoustic signal provides a continuous readout during testing, which allows complete data analysis rather than the start-stop clockwires used by the conventional method. The AE method helps eliminate such problems as inhibiting the sample, pressure increase and temperature rise, during testing.

  3. A review of biomass burning emissions, part II: Intensive physical properties of biomass burning particles

    Directory of Open Access Journals (Sweden)

    J. S. Reid

    2004-09-01

    Full Text Available The last decade has seen tremendous advances in atmospheric aerosol particle research that is often performed in the context of climate and global change science. Biomass burning, one of the largest sources of accumulation mode particles globally, has been closely studied for its radiative, geochemical, and dynamic impacts. These studies have taken many forms including laboratory burns, in situ experiments, remote sensing, and modeling. While the differing perspectives of these studies have ultimately improved our qualitative understanding of biomass burning issues, the varied nature of the work make inter-comparisons and resolutions of some specific issues difficult. In short, the literature base has become a milieu of small pieces of the biomass-burning puzzle. This manuscript, the second part of four, examines the properties of biomass-burning particle emissions. Here we review and discuss the literature concerning the measurement of smoke particle size, chemistry, thermodynamic properties, and emission factors. Where appropriate, critiques of measurement techniques are presented. We show that very large differences in measured particle properties have appeared in the literature, in particular with regards to particle carbon budgets. We investigate emissions uncertainties using scale analyses, which shows that while emission factors for grass and brush are relatively well known, very large uncertainties still exist in emission factors of boreal, temperate and some tropical forests. Based on an uncertainty analysis of the community data set of biomass burning measurements, we present simplified models for particle size and emission factors. We close this review paper with a discussion of the community experimental data, point to lapses in the data set, and prioritize future research topics.

  4. A review of biomass burning emissions part II: intensive physical properties of biomass burning particles

    Directory of Open Access Journals (Sweden)

    J. S. Reid

    2005-01-01

    Full Text Available The last decade has seen tremendous advances in atmospheric aerosol particle research that is often performed in the context of climate and global change science. Biomass burning, one of the largest sources of accumulation mode particles globally, has been closely studied for its radiative, geochemical, and dynamic impacts. These studies have taken many forms including laboratory burns, in situ experiments, remote sensing, and modeling. While the differing perspectives of these studies have ultimately improved our qualitative understanding of biomass-burning issues, the varied nature of the work make inter-comparisons and resolutions of some specific issues difficult. In short, the literature base has become a milieu of small pieces of the biomass-burning puzzle. This manuscript, the second part of four, examines the properties of biomass-burning particle emissions. Here we review and discuss the literature concerning the measurement of smoke particle size, chemistry, thermodynamic properties, and emission factors. Where appropriate, critiques of measurement techniques are presented. We show that very large differences in measured particle properties have appeared in the literature, in particular with regards to particle carbon budgets. We investigate emissions uncertainties using scale analyses, which shows that while emission factors for grass and brush are relatively well known, very large uncertainties still exist in emission factors of boreal, temperate and some tropical forests. Based on an uncertainty analysis of the community data set of biomass burning measurements, we present simplified models for particle size and emission factors. We close this review paper with a discussion of the community experimental data, point to lapses in the data set, and prioritize future research topics.

  5. [The organization of burn care].

    Science.gov (United States)

    Latarjet, Jacques

    2002-12-15

    In 2002, the organisation of burn care is confronted to a great deficiency in burn epidemiological datas. The main mechanisms of hospitalized burns are somehow wellknown in industrialized countries: about 60% scalds and 30% flame burns; as well as the place of occurrence (60% at home, and 20% at work), and the risk groups (3 times more important for the age group 0-4 years old). The incidence of burns needing medical care (all levels) (250/100,000 inh/yr) or hospitalization (15-20/100,000 inh/yr) is much more uncertain. The statistics of Diagnosis Related Groups (DRG), for hospitalized patients will allow in France very shortly to know more about the most rational ways of dispatching and treating them. They already show that only 30% of hospitalized burned patients are treated in specialized facilities.

  6. Tokamak burn control

    International Nuclear Information System (INIS)

    Research of the fusion plasma thermal instability and its control is reviewed. General models of the thermonuclear plasma are developed. Techniques of stability analysis commonly employed in burn control research are discussed. Methods for controlling the plasma against the thermal instability are reviewed. Emphasis is placed on applications to tokamak confinement concepts. Additional research which extends the results of previous research is suggested. Issues specific to the development of control strategies for mid-term engineering test reactors are identified and addressed. 100 refs., 24 figs., 10 tabs

  7. Complicated Burn Resuscitation.

    Science.gov (United States)

    Harrington, David T

    2016-10-01

    More than 4 decades after the creation of the Brooke and Parkland formulas, burn practitioners still argue about which formula is the best. So it is no surprise that there is no consensus about how to resuscitate a thermally injured patient with a significant comorbidity such as heart failure or cirrhosis or how to resuscitate a patient after an electrical or inhalation injury or a patient whose resuscitation is complicated by renal failure. All of these scenarios share a common theme in that the standard rule book does not apply. All will require highly individualized resuscitations. PMID:27600129

  8. Mexico city aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) - Part 2: Analysis of the biomass burning contribution and the non-fossil carbon fraction

    Energy Technology Data Exchange (ETDEWEB)

    Aiken, A.C.; Wang, J.; de Foy, B.; Wiedinmyer, C.; DeCarlo, P. F.; Ulbrich, I. M.; Wehrli, M. N.; Szidat, S.; Prevot, A. S. H.; Noda, J.; Wacker, L.; Volkamer, R.; Fortner, E.; Laskin, A.; Shutthanandan, V.; Zheng, J.; Zhang, R.; Paredes-Miranda, G.; Arnott, W. P.; Molina, L. T.; Sosa, G.; Querol, X.; Jimenez, J. L.

    2010-06-16

    Submicron aerosol was analyzed during the MILAGRO field campaign in March 2006 at the T0 urban supersite in Mexico City with a High-Resolution Aerosol Mass Spectrometer (AMS) and complementary instrumentation. Positive Matrix Factorization (PMF) of high resolution AMS spectra identified a biomass burning organic aerosol (BBOA) component, which includes several large plumes that appear to be from forest fires within the region. Here, we show that the AMS BBOA concentration at T0 correlates with fire counts in the vicinity of Mexico City and that most of the BBOA variability is captured when the FLEXPART model is used for the dispersion of fire emissions as estimated from satellite fire counts. The resulting FLEXPART fire impact factor (FIF) correlates well with the observed BBOA, acetonitrile (CH3CN), levoglucosan, and potassium, indicating that wildfires in the region surrounding Mexico City are the dominant source of BBOA at T0 during MILAGRO. The impact of distant BB sources such as the Yucatan is small during this period. All fire tracers are correlated, with BBOA and levoglucosan showing little background, acetonitrile having a well-known tropospheric background of {approx}100-150 pptv, and PM2.5 potassium having a background of {approx}160 ng m3 (two-thirds of its average concentration), which does not appear to be related to BB sources. We define two high fire periods based on satellite fire counts and FLEXPART-predicted FIFs. We then compare these periods with a low fire period when the impact of regional fires is about a factor of 5 smaller. Fire tracers are very elevated in the high fire periods whereas tracers of urban pollution do not change between these periods. Dust is also elevated during the high BB period but this appears to be coincidental due to the drier conditions and not driven by direct dust emission from the fires. The AMS oxygenated organic aerosol (OA) factor (OOA, mostly secondary OA or SOA) does not show an increase during the fire

  9. Genital burns and vaginal delivery.

    Science.gov (United States)

    Pant, R; Manandhar, V; Wittgenstein, F; Fortney, J A; Fukushima, C

    1995-07-01

    Obstetric complications may result from burn scarring in the genital area. Women in developing countries typically squat around cooking fires, and burns are common. This recent case in Nepal describes obstructed labor in a young woman whose genital area had extensive scarring from a cooking fire injury. Proper antenatal assessment by health care providers can reduce the risk to mothers and infants of the consequences of a birth canal damaged or obstructed by burn scarring.

  10. Prognosis and treatment of burns.

    OpenAIRE

    Mann, R; Heimbach, D

    1996-01-01

    Survival rates for burn patients in general have improved markedly over the past several decades. The development of topical antibiotic therapy for burn wounds, the institution of the practice of early excision and grafting, and major advances in intensive care management have all contributed to this success. In this review we address these 3 important advances in the modern treatment of burn injuries and provide a brief historical overview of these accomplishments and others, emphasizing spe...

  11. Topical agents in burn care

    OpenAIRE

    Momčilović Dragan

    2002-01-01

    Introduction Understanding of fluid shifts and recognition of the importance of early and appropriate fluid replacement therapy have significantly reduced mortality in the early post burn period. After the bum patient successfully passes the resuscitation period, the burn wound represents the greatest threat to survival. History Since the dawn of civilization, man has been trying to find an agent which would help burn wounds heal, and at the same time, not harm general condition of the injure...

  12. Animal Models in Burn Research

    OpenAIRE

    Abdullahi, A.; Amini-Nik, S.; Jeschke, M.G

    2014-01-01

    Burn injury is a severe form of trauma affecting more than two million people in North America each year. Burn trauma is not a single pathophysiological event but a devastating injury that causes structural and functional deficits in numerous organ systems. Due to its complexity and the involvement of multiple organs, in vitro experiments cannot capture this complexity nor address the pathophysiology. In the past two decades, a number of burn animal models have been developed to replicate the...

  13. [Epidemiology of burns in France].

    Science.gov (United States)

    Latarjet, Jacques; Ravat, François

    2012-01-01

    As with most traumas, the epidemiology of the "burn" health-event has long been neglected by public health doctors and rarely considered by burns specialists. There were therefore few verified data and many approximations and preconceived ideas. The gathering of information recently undertaken in France enables the reliability of the data to be improved and the diagnostic and demographic elements relating to hospitalised patients with burns to be established.

  14. Vitamin C in Burn Resuscitation.

    Science.gov (United States)

    Rizzo, Julie A; Rowan, Matthew P; Driscoll, Ian R; Chung, Kevin K; Friedman, Bruce C

    2016-10-01

    The inflammatory state after burn injury is characterized by an increase in capillary permeability that results in protein and fluid leakage into the interstitial space, increasing resuscitative requirements. Although the mechanisms underlying increased capillary permeability are complex, damage from reactive oxygen species plays a major role and has been successfully attenuated with antioxidant therapy in several disease processes. However, the utility of antioxidants in burn treatment remains unclear. Vitamin C is a promising antioxidant candidate that has been examined in burn resuscitation studies and shows efficacy in reducing the fluid requirements in the acute phase after burn injury. PMID:27600125

  15. Nutrition Support in Burn Patients

    Directory of Open Access Journals (Sweden)

    Cem Aydoğan

    2012-08-01

    Full Text Available Severe burn trauma causes serious metabolic derangements. Increased metabolic rate which is apart of a pathophysiologic characteristic of burn trauma results in protein-energy malnutrition. This situation causes impaired wound healing, muscle and fat tissue’s breakdown, growth retardation in children and infections. Nutrition support is vital in the treatment strategies of burn victims to prevent high mortal and disabling complications in this devastating trauma. Our aim in this study is to review management of nutrition in burn victims. (Journal of the Turkish Society Intensive Care 2012; 10: 74-83

  16. PSI Effects on Plasma Burn-through in JET

    CERN Document Server

    Kim, Hyun-Tae; Fundamenski, W; contributors, EFDA-JET

    2013-01-01

    Plasma Surface Interaction(PSI) effects on plasma burn-through are compared for the carbon wall and the ITER-Like Wall(ILW) at JET. For the carbon wall, the radiation barrier and C2+ influx have a significant linear correlation whereas the radiation barrier in the ILW does not have such a linear correlation with Be 1+ influx. The JET data are explained by the simulation results of the DYON code. The radiation barrier in the carbon wall JET is dominated by the carbon radiation, but the radiation barrier in the ILW is mainly from the deuterium radiation rather than the beryllium radiation.

  17. Sodium and sulfur release and recapture during black liquor burning

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, W.J.; Iisa, K.; Wag, K.; Reis, V.V.; Boonsongsup, L.; Forssen, M.; Hupa, M.

    1995-08-01

    The objective of this study was to provide data on sulfur and sodium volatilization during black liquor burning, and on SO2 capture by solid sodium carbonate and sodium chloride. This data was interpreted and modeled into rate equations suitable for use in computational models for recovery boilers.

  18. How to manage burns in primary care.

    OpenAIRE

    Waitzman, A. A.; Neligan, P. C.

    1993-01-01

    Burns are common injuries; more than 200,000 occur in Canada annually. Nearly all burn injuries can be managed on on outpatient basis. Appropriate treatment depends on burn depth, extent, and location. Special types of burns, such as chemical, tar, and electrical injuries, need specific management strategies. Prevention through education is important to reduce the incidence of burns.

  19. Oral Rehydration Therapy in Burn Patients

    Science.gov (United States)

    2014-04-24

    Burn Any Degree Involving 20-29 Percent of Body Surface; Burn Any Degree Involving 30-39 Percent of Body Surface; Burn Any Degree Involving 40-49 Percent of Body Surface; Burn Any Degree Involving 50-59 Percent of Body Surface; Burn Any Degree Involving 60-65 Percent of Body Surface

  20. Bad advice; bad burn: a new problem in burn prevention.

    Science.gov (United States)

    Deans, L; Slater, H; Goldfarb, I W

    1990-01-01

    Deep partial-thickness burns had been inflicted on the perineal area of an infant who was recently treated in our Burn Center. The burns were a result of advice to the patient's mother by a pediatrician. The doctor told her to use a hair dryer to prevent diaper rash. We surveyed pediatricians, well-baby clinics, and pediatric nurse practitioners in our area and found that approximately half of them advised the use of hair dryers to treat or prevent diaper rash. We tested four widely available hand-held hair dryers to determine potential for inflicting burn injury. All of the dryers are capable of delivering air heated to at least 53 degrees C after 2 minutes of use. We believe that warnings against the use of hair dryers for perineal hygiene should be included in burn prevention programs.

  1. Wanted: Clean Coal Burning Technology

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    China is intent on developing clean coal burning technology, an objective it can achieve through installing desulfurization facilities at coal-burning power plants that will control SO2 emissions and environmental pollution. According to kuo Yi, deputy director general of the Department of Science and Technology of the State Environmental Protection Agency, China is a major coal-buming country:

  2. Fuel burning and climate

    International Nuclear Information System (INIS)

    Emission of soot particles and other air pollution indoors constitutes a considerable health hazard for a major part of the population in many developing countries, one of them being China. In these countries problems relating to poverty are the most important risk factors, undernourishment being the dominating reason. Number four on the list of the most serious health hazards is indoor air pollution caused by burning of coal and biomass in the households. Very high levels of soot particles occur indoors because of incomplete combustion in old-fashioned stoves and by use of low quality fuel such as sticks and twigs and straw and other waste from agriculture. This leads to an increase in a series of acute and chronic respiratory diseases, including lung cancer. It has been pointed out in recent years that emissions due to incomplete combustion of coal and biomass can contribute considerably to climate changes

  3. The biology of burn injury.

    Science.gov (United States)

    Evers, Lars H; Bhavsar, Dhaval; Mailänder, Peter

    2010-09-01

    Burn injury is a complex traumatic event with various local and systemic effects, affecting several organ systems beyond the skin. The pathophysiology of the burn patient shows the full spectrum of the complexity of inflammatory response reactions. In the acute phase, inflammation mechanism may have negative effects because of capillary leak, the propagation of inhalation injury and the development of multiple organ failure. Attempts to mediate these processes remain a central subject of burn care research. Conversely, inflammation is a necessary prologue and component in the later-stage processes of wound healing. In this review, we are attempting to present the current science of burn wound pathophysiology and wound healing. We also describe the evolution of innovative strategies for burn management.

  4. Fires and Burns Involving Home Medical Oxygen

    Science.gov (United States)

    ... nfpa.org Fires and Burns Involving Home Medical Oxygen The air is normally 21% oxygen. Oxygen is not flammable, but fire needs it to burn. ¾ When more oxygen is present, any fire that starts will burn ...

  5. Emissions of oxygenated volatile organic compounds from open crop burning in Yangtze River Delta region, China

    Science.gov (United States)

    Tanimoto, H.; Kudo, S.; Pan, X.; Inomata, S.; Saito, S.; Kanaya, Y.; Wang, Z.

    2013-12-01

    Measurements of volatile organic compounds (VOCs) were made by gas chromatography/flame ionization detection/mass spectrometry (GC/FID/MS) and proton transfer reaction-mass spectrometry (PTR-MS) at Rudong, a rural area of Central East China in June 2010. During the campaign we identified several plumes originated from open biomass burning by the simultaneous enhancements of carbon monoxide and acetonitrile. Based on positive matrix factorization (PMF) analysis, the contribution of biomass burning was in the range from 60 to 80% for the plumes. We found that oxygenated VOCs were predominant for these events. The emission ratios of OVOCs to CO for open crop burnings derived in this work were found to be high. Combined with the updated CO emissions of 12.7 Tg per year from crop burning, we estimated OVOC emissions from crop burning can be about 1.2 Tg per year, accounting for substantial amount of VOCs emitted from crop burning.

  6. Impact of biomass burning on the atmosphere. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Dignon, J.

    1994-04-01

    Fire has played an important part in biogeochemical cycling throughout much of the history of our plant. This report addresses the coupled evolution of our planet`s atmospheric composition and biomass burning. Special attention is paid to the chemical and climatic impacts of biomass burning on the atmosphere throughout the last century, specifically looking at the cycles of carbon, nitrogen, and sulfur. Information from ice core measurements may be useful in understanding the history of fire and its historic affect on the composition of the atmosphere and climate.

  7. Topical agents in burn care

    Directory of Open Access Journals (Sweden)

    Momčilović Dragan

    2002-01-01

    Full Text Available Introduction Understanding of fluid shifts and recognition of the importance of early and appropriate fluid replacement therapy have significantly reduced mortality in the early post burn period. After the bum patient successfully passes the resuscitation period, the burn wound represents the greatest threat to survival. History Since the dawn of civilization, man has been trying to find an agent which would help burn wounds heal, and at the same time, not harm general condition of the injured. It was not until the XX century, after the discovery of antibiotics, when this condition was fulfilled. In 1968, combining silver and sulfadiazine, fox made silver-sulfadiazine, which is a 1% hydro-soluble cream and a superior agent in topical treatment of burns today. Current topical agents None of the topical antimicrobial agents available today, alone or combined, have the characteristics of ideal prophylactic agents, but they eliminate colonization of burn wound, and invasive infections are infrequent. With an excellent spectrum of activity, low toxicity, and ease of application with minimal pain, silver-sulfadiazine is still the most frequently used topical agent. Conclusion The incidence of invasive infections and overall mortality have been significantly reduced after introduction of topical burn wound antimicrobial agents into practice. In most burn patients the drug of choice for prophylaxis is silver sulfadiazine. Other agents may be useful in certain clinical situations.

  8. Sedation and Analgesia in Burn

    Directory of Open Access Journals (Sweden)

    Özkan Akıncı

    2011-07-01

    Full Text Available Burn injury is one of the most serious injuries that mankind may face. In addition to serious inflammation, excessive fluid loss, presence of hemodynamic instability due to intercurrent factors such as debridements, infections and organ failure, very different levels and intensities of pain, psychological problems such as traumatic stress disorder, depression, delirium at different levels that occur in patient with severe burn are the factors which make it difficult to provide the patient comfort. In addition to a mild to moderate level of baseline permanent pain in burn patients, which is due to tissue damage, there is procedural pain as well, which occurs by treatments such as grafting and dressings, that are severe, short-term burst style 'breakthrough' pain. Movement and tactile stimuli are also seen in burn injury as an effect to sensitize the peripheral and central nervous system. Even though many burn centers have established protocols to struggle with the pain, studies show that pain relief still inadequate in burn patients. Therefore, the treatment of burn pain and the prevention of possible emergence of future psychiatric problems suc as post-traumatic stress disorder, the sedative and anxiolytic agents should be used as a recommendation according to the needs and hemodynamic status of individual patient. (Journal of the Turkish Society Intensive Care 2011; 9 Suppl: 26-30

  9. Rehabilitation of the burn patient

    Directory of Open Access Journals (Sweden)

    Procter Fiona

    2010-10-01

    Full Text Available Rehabilitation is an essential and integral part of burn treatment. It is not something which takes place following healing of skin grafts or discharge from hospital; instead it is a process that starts from day one of admission and continues for months and sometimes years after the initial event. Burns rehabilitation is not something which is completed by one or two individuals but should be a team approach, incorporating the patient and when appropriate, their family. The term ′Burns Rehabilitation′ incorporates the physical, psychological and social aspects of care and it is common for burn patients to experience difficulties in one or all of these areas following a burn injury. Burns can leave a patient with severely debilitating and deforming contractures, which can lead to significant disability when left untreated. The aims of burn rehabilitation are to minimise the adverse effects caused by the injury in terms of maintaining range of movement, minimising contracture development and impact of scarring, maximising functional ability, maximising psychological wellbeing, maximising social integration

  10. Burns treatment in ancient times.

    Science.gov (United States)

    Pećanac, Marija; Janjić, Zlata; Komarcević, Aleksandar; Pajić, Milos; Dobanovacki, Dusanka; Misković, Sanja Skeledzija

    2013-01-01

    Discovery of fire at the dawn of prehistoric time brought not only the benefits to human beings offering the light and heat, but also misfortune due to burns; and that was the beginning of burns treatment. Egyptian doctors made medicines from plants, animal products and minerals, which they combined with magic and religious procedures. The earliest records described burns dressings with milk from mothers of male babies. Goddess Isis was called upon to help. Some remedies and procedures proved so successful that their application continued for centuries. The Edwin Smith papyrus (1500 BC) mentioned the treatment of burns with honey and grease. Ebers Papyrus (1500 BC) contains descriptions of application of mud, excrement, oil and plant extracts. They also used honey, Aloe and tannic acid to heal burns. Ancient Egyptians did not know about microorganisms but they knew that honey, moldy bread and copper salts could prevent infections from dirt in burns healing. Thyme, opium and belladona were used for pain relief. In the 4th century BC, Hippocrates recorded that Greek and Roman doctors used rendered pig fat, resin and bitumen to treat burns. Mixture of honey and bran, or lotion of wine and myrrh were used by Celsus. Honey was also known in Ayurveda (Indian medicine) time. Ayurvedic records Characa and Sushruta included honey in their dressing aids to purify sores and promote the healing. Burn treatment in Chinese medicine was traditional. It was a compilation of philosophy, knowledge and herbal medicine. The successful treatment of burns started in recent time and it has been made possible by better knowledge of the pathophysiology of thermal injuries and their consequences, medical technology advances and improved surgical techniques. PMID:23888738

  11. Burns treatment in ancient times.

    Science.gov (United States)

    Pećanac, Marija; Janjić, Zlata; Komarcević, Aleksandar; Pajić, Milos; Dobanovacki, Dusanka; Misković, Sanja Skeledzija

    2013-01-01

    Discovery of fire at the dawn of prehistoric time brought not only the benefits to human beings offering the light and heat, but also misfortune due to burns; and that was the beginning of burns treatment. Egyptian doctors made medicines from plants, animal products and minerals, which they combined with magic and religious procedures. The earliest records described burns dressings with milk from mothers of male babies. Goddess Isis was called upon to help. Some remedies and procedures proved so successful that their application continued for centuries. The Edwin Smith papyrus (1500 BC) mentioned the treatment of burns with honey and grease. Ebers Papyrus (1500 BC) contains descriptions of application of mud, excrement, oil and plant extracts. They also used honey, Aloe and tannic acid to heal burns. Ancient Egyptians did not know about microorganisms but they knew that honey, moldy bread and copper salts could prevent infections from dirt in burns healing. Thyme, opium and belladona were used for pain relief. In the 4th century BC, Hippocrates recorded that Greek and Roman doctors used rendered pig fat, resin and bitumen to treat burns. Mixture of honey and bran, or lotion of wine and myrrh were used by Celsus. Honey was also known in Ayurveda (Indian medicine) time. Ayurvedic records Characa and Sushruta included honey in their dressing aids to purify sores and promote the healing. Burn treatment in Chinese medicine was traditional. It was a compilation of philosophy, knowledge and herbal medicine. The successful treatment of burns started in recent time and it has been made possible by better knowledge of the pathophysiology of thermal injuries and their consequences, medical technology advances and improved surgical techniques.

  12. Hair bleaching and skin burning.

    Science.gov (United States)

    Forster, K; Lingitz, R; Prattes, G; Schneider, G; Sutter, S; Schintler, M; Trop, M

    2012-12-31

    Hairdressing-related burns are preventable and therefore each case is one too many. We report a unique case of a 16-yr-old girl who suffered full-thickness chemical and thermal burns to the nape of her neck and superficial burns to the occiput after her hair had been dyed blond and placed under a dryer to accelerate the highlighting procedure. The wound on the nape of the neck required surgical debridement and skin grafting. The grafted area resulted in subsequent scar formation.

  13. [Reconstruction of facial burn sequelae].

    Science.gov (United States)

    Foyatier, J L; Comparin, J P; Boulos, J P; Bichet, J C; Jacquin, F

    2001-06-01

    The deep burns of the face can lead to horrible scars functionally and aesthetically. Treatment of these scars need several surgical interventions frequently and during many years. In our region we deal with this type of wounds as team work, multidisciplinary approach carrying out many process starting by emergency treatment of acute burns till the social rehabilitation. The expansion technique was great help in improving the shape of scars, by using the expanding skin as full thickness grafts. Reconstruction of the anatomical units and application of aesthetic techniques (like rhinoplasty, lifting, tattooing and autologous fat injections) participate equally in improving the quality of results. Many examples of treatments of burns scars are shown.

  14. Protocolized Resuscitation of Burn Patients.

    Science.gov (United States)

    Cancio, Leopoldo C; Salinas, Jose; Kramer, George C

    2016-10-01

    Fluid resuscitation of burn patients is commonly initiated using modified Brooke or Parkland formula. The fluid infusion rate is titrated up or down hourly to maintain adequate urine output and other endpoints. Over-resuscitation leads to morbid complications. Adherence to paper-based protocols, flow sheets, and clinical practice guidelines is associated with decreased fluid resuscitation volumes and complications. Computerized tools assist providers. Although completely autonomous closed-loop control of resuscitation has been demonstrated in animal models of burn shock, the major advantages of open-loop and decision-support systems are identifying trends, enhancing situational awareness, and encouraging burn team communication. PMID:27600131

  15. Open questions in stellar helium burning studied with photons

    International Nuclear Information System (INIS)

    The outcome of helium burning is the formation of the two elements, carbon and oxygen. The ratio of carbon to oxygen at the end of helium burning is crucial for understanding the final fate of a progenitor star and the nucleosynthesis of heavy elements in Type II supernova. While an oxygen rich star is predicted to end up as a black hole, a carbon rich star leads to a neutron star. Type Ia supernovae (SNIa) are used as standard candles for measuring cosmological distances with the use of an empirical light curve-luminosity stretching factor. It is essential to understand helium burning that creates the carbon/oxygen white dwarf and thus the initial stage of SNIa. Since the triple alpha-particle capture reaction, 8Be(α, γ)12C, the first burning stage in helium burning, is well understood, one must extract the cross section of the 12C(α, γ)16O reaction at the Gamow peak (300 keV) with high accuracy of approximately 10% or better. This goal has not been achieved, despite repeated strong statements that appeared in the literature. Constraints from the beta-delayed alpha-particle emission of 16N were shown to not sufficiently restrict the p-wave cross section factor; e.g. low values can not be ruled out. Measurements at low energies, are thus mandatory for measuring the elusive cross section factor for the 12O(α, γ)16O reaction. We are constructing a Time Projection Chamber (TPC) for use with high intensity photon beams extracted from the HIγS-TUNL facility at Duke University to study the 16O(γ, α)12C reaction, and thus the direct reaction at low energies, as low as 0.7 MeV. This work is in progress. (author)

  16. Levoglucosan indicates high levels of biomass burning aerosols over oceans from the Arctic to Antarctic

    Science.gov (United States)

    Hu, Q.; Xie, Z.; Wang, X.; Kang, H.; Zhang, P.

    2015-12-01

    Biomass burning discharges numerous kinds of gases and aerosols, such as carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), black carbon (BC), alcohols, organic acids and persistent organic pollutants (POPs), and is known to affect air quality, global carbon cycle, and climate. However, the extent to which biomass burning gases/aerosols are present on a global scale, especially in the marine atmosphere, is poorly understood. Here we measure levoglucosan, a superior molecular tracer of biomass burning aerosols because of its single source, in marine air from the Arctic Ocean through the North and South Pacific Ocean to coastal Antarctica during burning season. Levoglucosan was found to be present in all regions at ng/m3 levels. As a whole, levoglucosan concentrations in the Southern Hemisphere were comparable to those in the Northern Hemisphere. Marine air in the mid-latitudes (30°-60° N and S) has the highest levoglucosan loading due to the emission from adjacent lands. Air over the Arctic Ocean which affected by biomass burning in the east Siberia has intermediate loading. Equatorial latitudes is the main source of biomass burning emissions, however, levoglucosan is in relatively low level. Large amount of precipitation and high hydroxyl radical concentration in this region cause more deposition and degradation of levoglucosan during transport. Previous studies were debatable on the influence of biomass burning on the Antarctic because of uncertain source of BC. Here via levoglucosan, it is proved that although far away from emission sources, the Antarctic is still affected by biomass burning aerosols which may be derived from South America. Biomass burning has a significant impact on mercury (Hg) and water-soluble organic carbon (WSOC) in marine aerosols from pole to pole, with more contribution to WSOC in the Northern Hemisphere than in the Southern Hemisphere.

  17. 40 CFR 49.11021 - Permits for general open burning, agricultural burning, and forestry and silvicultural burning.

    Science.gov (United States)

    2010-07-01

    ..., agricultural burning, and forestry and silvicultural burning. 49.11021 Section 49.11021 Protection of... Reservation, Oregon § 49.11021 Permits for general open burning, agricultural burning, and forestry and..., 2007, a person must apply for and obtain approval of a permit under § 49.134 Rule for forestry...

  18. Characterization of gas and particle emissions from laboratory burns of peat

    Science.gov (United States)

    Black, Robert R.; Aurell, Johanna; Holder, Amara; George, Ingrid J.; Gullett, Brian K.; Hays, Michael D.; Geron, Chris D.; Tabor, Dennis

    2016-05-01

    Peat cores collected from two locations in eastern North Carolina (NC, USA) were burned in a laboratory facility to characterize emissions during simulated field combustion. Particle and gas samples were analyzed to quantify emission factors for particulate matter (PM2.5), organic carbon (OC), elemental carbon, light absorbing carbon, absorption Angstrom exponent, metals, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated dibenzodioxins/dibenzofurans (PCDDs/PCDFs). CO from the smoldering burns, up to 7 h in duration, contributed approximately 16% of the total carbon emitted. Emission factors for black carbon (BC) and light absorbing carbon (UVPM) were considerably lower than those found for forest litter burns. Emission factors for PCDDs/PCDFs were near published values for forest fuels, at 1-4 ng toxic equivalents (TEQ)/kg carbon burned (Cb). Total PAH concentrations of ≥12 mg/kg were higher than published data from biomass burns, but roughly the same in terms of toxicity. Application of these emission factors to the noteworthy 2008 "Evans Road" fire in NC indicates that PM2.5 and PCDD/PCDF emissions from this fire may have been 4-6% of the annual US inventory and 5% of the annual OC amount.

  19. Phoenix Society for Burn Survivors

    Science.gov (United States)

    ... Learn More For First Responders & Medical Professionals Phoenix Society is the leader in connecting the burn recovery ... It can be a... Continue Reading The Phoenix Society, Inc. 1835 RW Berends Dr. SW Grand Rapids, ...

  20. Hair dryer burns in children.

    Science.gov (United States)

    Prescott, P R

    1990-11-01

    Three children with burn injuries caused by home hair dryers are described. In one patient the injury was believed to be accidental, and in the other two cases the injuries were deliberately caused by a caretaker. The lack of prior experience with hair dryer burns initially led to suspicion of other causes. The characteristics of each case aided in the final determination of accidental vs nonaccidental injury. These cases prompted testing of home hair dryers to determine their heat output. At the highest heat settings, the dryers rapidly generated temperatures in excess of 110 degrees C. After the dryers were turned off, the protective grills maintained sufficient temperatures to cause full-thickness burns for up to 2 minutes. These cases and the results of testing demonstrate that hair dryers must be added to the list of known causes of accidental and nonaccidental burns in children.

  1. Burns, hypertrophic scar and galactorrhea

    Directory of Open Access Journals (Sweden)

    Hamid Karimi

    2013-07-01

    Full Text Available An 18-year old woman was admitted to Motahari Burn Center suffering from 30% burns. Treatment modalities were carried out for the patient and she was discharged after 20 days. Three to four months later she developed hypertrophic scar on her chest and upper limbs .At the same time she developed galactorrhea in both breasts and had a disturbed menstrual cycle four months post-burn. On investigation, we found hyperprolactinemia and no other reasons for the high level of prolactin were detected. She received treatment for both the hypertrophic scar and the severe itching she was experiencing. After seven months, her prolactin level had decreased but had not returned to the normal level. It seems that refractory hypertrophic scar is related to the high level of prolactin in burns patients.

  2. Wound Care in Burn Patients

    OpenAIRE

    Orhan Çizmeci; Samet Vasfi Kuvat

    2011-01-01

    Wound care in one of the most important prognostic factors in burn victims. Open wound carries risks for infection due to hypothermia, protein and fluid losses. In addition, unhealed wounds are the major risk factors for acute-subacute or chronic complications in burn patients. Although no exact algorithm exists for open wound treatment, early escarectomy or debridement together with grafting is the best option. Ointments together with topical epithelizing agents without dressings are generea...

  3. Erosive burning of solid propellants

    Science.gov (United States)

    King, Merrill K.

    1993-01-01

    Presented here is a review of the experimental and modeling work concerning erosive burning of solid propellants (augmentation of burning rate by flow of product gases across a burning surface). A brief introduction describes the motor design problems caused by this phenomenon, particularly for low port/throat area ratio motors and nozzleless motors. Various experimental techniques for measuring crossflow sensitivity of solid propellant burning rates are described, with the conclusion that accurate simulation of the flow, including upstream flow development, in actual motors is important since the degree of erosive burning depends not only on local mean crossflow velocity and propellant nature, but also upon this upstream development. In the modeling area, a brief review of simplified models and correlating equations is presented, followed by a description of more complex numerical analysis models. Both composite and double-base propellant models are reviewed. A second generation composite model is shown to give good agreement with data obtained in a series of tests in which composite propellant composition and heterogeneity (particle size distribution) were systematically varied. Finally, the use of numerical models for the development of erosive burning correlations is described, and a brief discussion of scaling is presented.

  4. DIFFERENTIATING PERIMORTEM AND POSTMORTEM BURNING

    Directory of Open Access Journals (Sweden)

    Brahmaji Master

    2015-01-01

    Full Text Available One of the most challenging cases in forensic medicine is ascertaining the cause of death of burnt bodies under suspicious circumstances. The key questions that arise at the time of investigation include: 1  Was the person alive or dead prior to fire accident?  Did the victim die because of burn?  If death was not related to burns, could burns play a role in causing death?  Were the burns sustained accidentally, did the person commit suicide or was the person murdered?  Are the circumstances suggesting an attempt to conceal crime?  How was the fire started?  How was the victim identified?  In case of mass fatalities, who died first? Postmortem burning of corpses is supposed to be one of the ways to hide a crime. Differentiating the actual cause of death in burn patients is therefore important. Medical examiners usually focus on the defining the changes that occur in tissues while forensic anthropologists deal with the changes related to the bone with or without any the influence of other tissues. Under the circumstances of fire, differentiating the perimortem trauma from that of postmortem cause of bone fractures is vital in determining the cause and motive of death

  5. Burn treatment in the elderly.

    Science.gov (United States)

    Keck, M; Lumenta, D B; Andel, H; Kamolz, L P; Frey, M

    2009-12-01

    The population of elderly patients is expected to rise continuously over the next decades due to global demographic changes. The elderly seem to be most vulnerable to burns and their management remains undoubtedly a challenge. A clear age margin for elderly patients is not yet defined, but most studies adhere to the inclusion of patients 65 years and above, but the general condition and social situation must be taken into account. The understanding of the physiological basis of aging and its related pathophysiological changes has only marginally influenced treatment and decision making in elderly burn patients. When looking at treatment regimens currently applied in elderly burn patients, the discussion of standards in intensive care as well as surgical strategies is ongoing. However, trends towards a moderate, non-aggressive resuscitation approach and careful inclusion of key parameters like physiological age, pre-burn functional status and premorbid conditions, seem to be useful guidelines for interdisciplinary treatment decisions. Once ordered for surgical treatment, the amount of body surface area operated in one session should be adapted to the general status of the patient. Even if older burn victims have a reported higher mortality rate than younger patients, improved therapeutic options have contributed to a reduced mortality rate even in the elderly over the last decades. As a result of improved outcome, more attention has to be given to a comprehensive rehabilitation program. This review will give an overview of the current literature and will draw attention to specific topics related to this important subpopulation of burn patients.

  6. Fuel characteristics and emissions from biomass burning and land-use change in Nigeria.

    Science.gov (United States)

    Isichei, A O; Muoghalu, J I; Akeredolu, F A; Afolabi, O A

    1995-01-01

    Nigeria is one of the 13 low-latitude countries that have significant biomass burning activities. Biomass burning occurs in moist savanna, dry forests, and forest plantations. Fires in the forest zone are associated with slash-and-burn agriculture; the areal extent of burning is estimated to be 80% of the natural savanna. In forest plantations, close to 100% of litter is burned. Current estimates of emissions from land-use change are based on a 1976 national study and extrapolations from it. The following non-carbon dioxide (CO2) trace gas emissions were calculated from savanna burning: methane (CH4), 145 gigagrams (Gg); carbon monoxide (CO), 3831 Gg; nitrous oxide (N2O), 2 Gg; and nitrogen oxides (NOx), 49 Gg. Deforestation rates in forests and woodlands are 300 × 10(3) ha (kilohectare, or kha) and 200 × kha per year, respectively. Trace gas emissions from deforestation were estimated to be 300 Gg CH4, 2.4 Gg N2O, and 24 Gg NOx. CO2 emissions from burning, decay of biomass, and long-term emissions from soil totaled 125 561 Gg. These estimates should be viewed as preliminary, because greenhouse gas emission inventories from burning, deforestation, and land-use change require two components: fuel load and emission factors. Fuel load is dependent on the areal extent of various land uses, and the biomass stocking and some of these data in Nigeria are highly uncertain. PMID:24197951

  7. Effect of fasting on the metabolic response of liver to experimental burn injury.

    Directory of Open Access Journals (Sweden)

    Mehmet A Orman

    Full Text Available Liver metabolism is altered after systemic injuries such as burns and trauma. These changes have been elucidated in rat models of experimental burn injury where the liver was isolated and perfused ex vivo. Because these studies were performed in fasted animals to deplete glycogen stores, thus simplifying quantification of gluconeogenesis, these observations reflect the combined impact of fasting and injury on liver metabolism. Herein we asked whether the metabolic response to experimental burn injury is different in fed vs. fasted animals. Rats were subjected to a cutaneous burn covering 20% of the total body surface area, or to similar procedures without administering the burn, hence a sham-burn. Half of the animals in the burn and sham-burn groups were fasted starting on postburn day 3, and the others allowed to continue ad libitum. On postburn day 4, livers were isolated and perfused for 1 hour in physiological medium supplemented with 10% hematocrit red blood cells. The uptake/release rates of major carbon and nitrogen sources, oxygen, and carbon dioxide were measured during the perfusion and the data fed into a mass balance model to estimate intracellular fluxes. The data show that in fed animals, injury increased glucose output mainly from glycogen breakdown and minimally impacted amino acid metabolism. In fasted animals, injury did not increase glucose output but increased urea production and the uptake of several amino acids, namely glutamine, arginine, glycine, and methionine. Furthermore, sham-burn animals responded to fasting by triggering gluconeogenesis from lactate; however, in burned animals the preferred gluconeogenic substrate was amino acids. Taken together, these results suggest that the fed state prevents the burn-induced increase in hepatic amino acid utilization for gluconeogenesis. The role of glycogen stores and means to increase and/or maintain internal sources of glucose to prevent increased hepatic amino acid

  8. Burn Patient Expectations from Nurses

    Directory of Open Access Journals (Sweden)

    Sibel Yilmaz sahin

    2014-02-01

    Full Text Available AIM: Burn is a kind of painful trauma that requires a long period of treatment and also changes patients body image. For this reason, nursing care of burn patients is very important. In this study in order to provide qualified care to the burned patients, patient and #8217;s expectations from nurses were aimed to be established. METHODS: Patients and #8217; expectations were evaluated on 101 patients with burn in Ministry of Health Ankara Numune Education and Research Hospital Burn Service and Gulhane Military Medical Academy Education and Research Hospital Burn Center. A questionnaire which was developed by the researchers was used for collecting data. The questions on the questionnaire were classified into four groups to evaluate the patients and #8217; expectations about communication, information, care and discharge. Data was evaluated by using SPSS 12 package software. RESULTS: In this study, 48.5% of patients were at 18-28 age group, 79.2% were male and 51.5% of patients were employed. Almost all of patients expect nurses to give them confidence (98% and to give them information about latest developments with the disease. Patients prior expectation from nurses about care was to do their treatments regularly (100% and to take the necessary precautions in order to prevent infection (100%. 97% of patient expect nurses to give them information about the drugs, materials and equipment that they are going to use while discharge. CONCLUSION: As a result we found that burn patient expectations from nurses about communication, information, care and discharge were high. [TAF Prev Med Bull 2014; 13(1.000: 37-46

  9. A review of biomass burning emissions part III: intensive optical properties of biomass burning particles

    Directory of Open Access Journals (Sweden)

    J. S. Reid

    2005-01-01

    Full Text Available Because of its wide coverage over much of the globe, biomass burning has been widely studied in the context of direct radiative forcing. Such study is warranted as smoke particles scatter and at times absorb solar radiation efficiently. Further, as much of what is known about smoke transport and impacts is based on remote sensing measurements, the optical properties of smoke particles have far reaching effects into numerous aspects of biomass burning studies. Global estimates of direct forcing have been widely varying, ranging from near zero to −1 W m-2. A significant part of this difference can be traced to varying assumptions on the optical properties of smoke. This manuscript is the third part of four examining biomass-burning emissions. Here we review and discuss the literature concerning measurement and modeling of optical properties of biomass-burning particles. These include available data from published sensitivity studies, field campaigns, and inversions from the Aerosol Robotic Network (AERONET of Sun photometer sites. As a whole, optical properties reported in the literature are varied, reflecting both the dynamic nature of fires, variations in smoke aging processes and differences in measurement technique. We find that forward modeling or ''internal closure'' studies ultimately are of little help in resolving outstanding measurement issues due to the high degree of degeneracy in solutions when using ''reasonable'' input parameters. This is particularly notable with respect to index of refraction and the treatment of black carbon. Consequently, previous claims of column closure may in fact be more ambiguous. Differences between in situ and retrieved ωo values have implications for estimates of mass scattering and mass absorption efficiencies. In this manuscript we review and discuss this community dataset. Strengths and lapses are pointed out, future research topics are prioritized, and best estimates and uncertainties of key

  10. A review of biomass burning emissions part III: intensive optical properties of biomass burning particles

    Directory of Open Access Journals (Sweden)

    J. S. Reid

    2004-09-01

    Full Text Available Because of its wide coverage over much of the globe, biomass burning has been widely studied in the context of direct radiative forcing. Such study is warranted as smoke particles scatter and at times absorb solar radiation efficiently. Further, as much of what is known about smoke transport and impacts is based on remote sensing measurements, the optical properties of smoke particles have far reaching effects into numerous aspects of biomass burning studies. Global estimates of direct forcing have been widely varying, ranging from near zero to −1 Wm−2. A significant part of this difference can be traced to varying assumptions on the optical properties of smoke. This manuscript is the third part of four examining biomass-burning emissions. Here we review and discuss the literature concerning measurement and modeling of optical properties of biomass-burning particles. These include available data from published sensitivity studies, field campaigns, and inversions from the Aerosol Robotic Network (AERONET of Sun photometer sites. As a whole, optical properties reported in the literature are varied, reflecting both the dynamic nature of fires, variations in smoke aging processes and differences in measurement technique. We find that forward modeling or "internal closure" studies ultimately are of little help in resolving outstanding measurement issues due to the high degree of degeneracy in solutions when using "reasonable" input parameters. This is particularly notable with respect to index of refraction and the treatment of black carbon. Consequently, previous claims of column closure may in fact be more ambiguous. Differences between in situ and retrieved ωo values have implications for estimates of mass scattering and mass absorption efficiencies. In this manuscript we review and discuss this community dataset. Strengths and lapses are pointed out, future research topics are prioritized, and best estimates and

  11. Impact of biomass burning on the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Dignon, J.

    1993-03-01

    Fire has played an important part in biogeochemical cycling throughout most of the history of our planet. Ice core studies have been very beneficial in paleoclimate studies and constraining the budgets of biogeochemical cycles through the past 160,000 years of the Vostok ice core. Although to date there has been no way of determining cause and effect, concentration of greenhouse gases directly correlates with temperature in ice core analyses. Recent ice core studies on Greenland have shown that significant climate change can be very rapid on the order of a decade. This chapter addresses the coupled evolution of our planet`s atmospheric composition and biomass burning. Special attention is paid to the chemical and climatic impacts of biomass burning on the atmosphere throughout the last century, specifically looking at the cycles of carbon, nitrogen, and sulfur. Information from ice core measurements may be useful in understanding the history of fire and its historic affect on the composition of the atmosphere and climate.

  12. Burning mouth syndrome: Current concepts.

    Science.gov (United States)

    Nasri-Heir, Cibele; Zagury, Julyana Gomes; Thomas, Davis; Ananthan, Sowmya

    2015-01-01

    Burning mouth syndrome (BMS) is a chronic pain condition. It has been described by the International Headache Society as "an intra-oral burning or dysesthetic sensation, recurring daily for more than 2 h/day for more than 3 months, without clinically evident causative lesions." BMS is frequently seen in women in the peri-menopausal and menopausal age group in an average female/male ratio of 7:1. The site most commonly affected is the anterior two-thirds of the tongue. The patient may also report taste alterations and oral dryness along with the burning. The etiopathogenesis is complex and is not well-comprehended. The more accepted theories point toward a neuropathic etiology, but the gustatory system has also been implicated in this condition. BMS is frequently mismanaged, partly because it is not well-known among healthcare providers. Diagnosis of BMS is made after other local and systemic causes of burning have been ruled out as then; the oral burning is the disease itself. The management of BMS still remains a challenge. Benzodiazepines have been used in clinical practice as the first-line medication in the pharmacological management of BMS. Nonpharmacological management includes cognitive behavioral therapy and complementary and alternative medicine (CAM). The aim of this review is to familiarize healthcare providers with the diagnosis, pathogenesis, and general characteristics of primary BMS while updating them with the current treatment options to better manage this group of patients. PMID:26929531

  13. Epidemiology of severe burn injuries in a Tertiary Burn Centre in Tehran, Iran

    OpenAIRE

    Mohammadi-Barzelighi, H.; Alaghehbandan, R.; Motevallian, A.; Alinejad, F.; Soleimanzadeh-Moghadam, S.; Sattari, M.; A R Lari

    2011-01-01

    The aim of the study was to examine the epidemiological characteristics of hospitalized burn patients in a tertiary burn centre in Tehran, Iran. A hospital-based cross-sectional study of all hospitalized patients with burn injuries was conducted in Motahari Burn and Reconstruction Center in Tehran from August to December 2010. Medical records of all hospitalized burn patients were reviewed and pertinent information was captured. A total of 135 patients with severe burns requiring hospitalizat...

  14. Waste: energy to burn

    International Nuclear Information System (INIS)

    Incinerated, transformed into fuel or a gas, waste is a versatile source of energy. It is as once a problem and a resource that is increasingly the focus of green policies. According to the 2009 World Waste Survey, between 3.4 and 4 billion tons of waste are produced each year worldwide. Leading the pack is China, with 300 million tons produced in 2005, followed closely by the United States, with 238 million tons. But the United States wins the per capita count with 760 kg of waste produced per year per inhabitant; Australia comes in second. In Europe, 500 kg of waste is produced per capita per year for a total of 2 billion tons generated annually, and a growth rate of 10% in ten years' time. Between 2/3 and 3/4 of these waste materials are sorted, and a portion of them is recycled. The rest is either carted away to a dumping ground, or incinerated. But this waste is primarily domestic, and still contains energy, energy that can be recovered. The added bonus is two-fold: an additional source of energy is created by transforming waste, called waste-to- wheel or waste-to-energy (WTE), and the decomposition of organic waste does not give off GHGs. Two ways are known today to transform wastes into energy: the thermal process, where heat is extracted from the waste (and sometimes converted into electricity), and the non-thermal process, which comprises collecting energy in a chemical form (biogas, biofuel). Both technologies depend on the type of waste to be treated: plastic materials, household refuse, fermentable elements, sludge residue from sewage treatment plants, agricultural waste, forestry industry waste, etc. The thermal process is by far the most widely employed. 74% of waste is incinerated in Japan, and around 30 to 55% in most European countries. The second process does not burn waste and is better suited to wet and organic matter, i.e., to waste that contains quantities of biomass: fermentable waste, sludge, agricultural waste and the gas given off at

  15. [Ergotherapy of severely burned patients].

    Science.gov (United States)

    Nickerl, U; Resag, I

    1995-04-01

    Occupational therapy for severely burned patients includes individual exercise programmes, activities of daily living (ADL), assessment of the need for technical aids, splinting and pressure bandages, as well as psychological and social support. There are different focal points in the three stages of treatment. In the burn-care unit (first stage), if necessary, the patient is provided with splints. At this time the first contact is made. In the burn-care ward (second stage), the occupational therapy is focused on individual exercise programmes, dynamic splinting, ADL, and preparation for discharge from hospital. In the outpatient department (third stage), the aims of occupational therapy are: providing the patients with pressure bandages, checking of splints, assessment of the need for technical aids and special support if the patients have difficulties at home and work. PMID:7761866

  16. Ozone photochemistry in boreal biomass burning plumes

    Science.gov (United States)

    Parrington, M.; Palmer, P. I.; Lewis, A. C.; Lee, J. D.; Rickard, A. R.; Di Carlo, P.; Taylor, J. W.; Hopkins, J. R.; Punjabi, S.; Oram, D. E.; Forster, G.; Aruffo, E.; Moller, S. J.; Bauguitte, S. J.-B.; Allan, J. D.; Coe, H.; Leigh, R. J.

    2013-08-01

    We present an analysis of ozone (O3) photochemistry observed by aircraft measurements of boreal biomass burning plumes over eastern Canada in the summer of 2011. Measurements of O3 and a number of key chemical species associated with O3 photochemistry, including non-methane hydrocarbons (NMHCs), nitrogen oxides (NOx) and total nitrogen containing species (NOy), were made from the UK FAAM BAe-146 research aircraft as part of the "quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites" (BORTAS) experiment between 12 July and 3 August 2011. The location and timing of the aircraft measurements put BORTAS into a unique position to sample biomass burning plumes from the same source region in Northwestern Ontario with a range of ages. We found that O3 mixing ratios measured in biomass burning plumes were indistinguishable from non-plume measurements, but evaluating them in relationship to measurements of carbon monoxide (CO), total alkyl nitrates (ΣAN) and the surrogate species NOz (= NOy-NOx) revealed that the potential for O3 production increased with plume age. We used NMHC ratios to estimate photochemical ages of the observed biomass burning plumes between 0 and 10 days. The BORTAS measurements provided a wide dynamic range of O3 production in the sampled biomass burning plumes with ΔO3/ΔCO enhancement ratios increasing from 0.020 ± 0.008 ppbv ppbv-1 in plumes with photochemical ages less than 2 days to 0.55 ± 0.29 ppbv ppbv-1 in plumes with photochemical ages greater than 5 days. We found that the main contributing factor to the variability in the ΔO3/ΔCO enhancement ratio was ΔCO in plumes with photochemical ages less than 4 days, and that was a transition to ΔO3 becoming the main contributing factor in plumes with ages greater than 4 days. In comparing O3 mixing ratios with components of the NOy budget, we observed that plumes with ages between 2 and 4 days were characterised by high aerosol

  17. BACTERIOLOGICAL STUDY OF BURNS INFECTION

    Directory of Open Access Journals (Sweden)

    Shareen

    2015-10-01

    Full Text Available A burn is a wound in which there is coagulative necrosis of the tissue, majority of which are caused by heat. Burn injury is a major public health problem in many areas of the world. Burns predispose to infection by damaging the protective barrier function of the skin, thus facilitating the entry of pa thogenic microorganisms and by inducing systemic immunosuppression . (1 OBJECTIVE : The present study was therefore undertaken to isolate and identify the aerobic bacterial flora in burn patients and its antibiotic susceptibility pattern. MATERIAL & METHODS : A total of 100 patients admitted with different degree of burns were studied. Wound swabs were taken with aseptic precautions by dry sterile cotton swab sticks. These swabs were transported to the microbiology laboratory and the isolates were identified based on standard microbiological methods. Antibiotic susceptibility testing was done by Kirby Bauer’s disc diffusion method. RESULT : A total of 127 bacterial pathogens were isolated from 100 patients. Of these, 69% were monomicrobial in nature and 28% wer e polymicrobial. The most frequent cause of infection was found to be Staphylococcus aureus (39.4%, followed by Pseudomonas aeruginosa (14.2%, Klebsiella pneumonia (13.4%, E.coli (8.7% and Acinetobacter species (7.9%.Out of the total Staphylococcus au reus isolates, 19 were Methicillin sensitive and 31 were Methicillin resistant (MRSA. All the MRSA strains were 100% sensitive to Vancomycin and Linezolid. The Pseudomonas aeruginosa isolates were most sensitive to Amikacin (9 4.4%, Fluroquinolones (61.1% . CONCLUSION : Staphylococcus aureus and Pseudomonas aeruginosa were major causes of infection in burn wounds. Therefore it is necessary to implement urgent measures for restriction of nosocomial infections, sensible limitation on the use of antimicrobial agents, strict disinfection and hygiene.

  18. Future Therapies in Burn Resuscitation.

    Science.gov (United States)

    Hodgman, Erica I; Subramanian, Madhu; Arnoldo, Brett D; Phelan, Herb A; Wolf, Steven E

    2016-10-01

    Since the 1940s, the resuscitation of burn patients has evolved with dramatic improvements in mortality. The most significant achievement remains the creation and adoption of formulae to calculate estimated fluid requirements to guide resuscitation. Modalities to attenuate the hypermetabolic phase of injury include pharmacologic agents, early enteral nutrition, and the aggressive approach of early excision of large injuries. Recent investigations into the genomic response to severe burns and the application of computer-based decision support tools will likely guide future resuscitation, with the goal of further reducing mortality and morbidity, and improving functional and quality of life outcomes. PMID:27600132

  19. Demographics of pediatric burns in Vellore, India.

    Science.gov (United States)

    Light, Timothy D; Latenser, Barbara A; Heinle, Jackie A; Stolpen, Margaret S; Quinn, Keely A; Ravindran, Vinitha; Chacko, Jacob

    2009-01-01

    The American Burn Association, Children's Burn Foundation, and Christian Medical College in Vellore, India have partnered together to improve pediatric burn care in Southern India. We report the demographics and outcomes of burns in this center, and create a benchmark to measure the effect of the partnership. A comparison to the National Burn Repository is made to allow for generalization and assessment to other burn centers, and to control for known confounders such as burn size, age, and mechanism. Charts from the pediatric burn center in Vellore, India were retrospectively reviewed and compared with data in the American Burn Association National Burn Registry (NBR) for patients younger than 16 years. One hundred nineteen pediatric patients with burns were admitted from January 2004 through April 2007. Average age was 3.8 years; average total body surface area burn was 24%: 64% scald, 30% flame, 6% electric. Annual death rate was 10%, with average fatal total body surface area burn was 40%. Average lengths of stay for survivors was 15 days. Delay of presentation was common (45% of all patients). Thirty-five of 119 patients received operations (29%). Flame burn patients were older (6.1 years vs 2.6 years), larger (30 vs 21%), had a higher fatality rate (19.4 vs 7.7%), and more of them were female (55 vs 47%) compared with scald burn patients. Electric burn patients were oldest (8.3 years) and all male. When compared with data in the NBR, average burn size was larger in Vellore (24 vs 9%). The mortality rate was higher in Vellore (10.1 vs 0.5%). The average mortal burn size in Vellore was smaller (40 vs 51%). Electric burns were more common in Vellore (6.0 vs 1.6%). Contact burns were almost nonexistent in Vellore (0.9 vs 13.1%). The differences in pediatric burn care from developing health care systems to burn centers in the US are manifold. Nonpresentation of smaller cases, and incomplete data in the NBR explain many of the differences. However, burns at this

  20. Fluorescence Measurement of Burned Skin Tissues

    Science.gov (United States)

    de Pedro, Hector Michael; Chang, Chuan-I.; Nguyen, Hue; Malko, Anton; Zarnani, Faranak; Glosser, Robert; Maas, D.; Idris, A.

    2011-03-01

    Early removal of affected tissues from burn patients can significantly increase the success of their recovery, since burns continue to spread and damage surrounding tissues after hours of injury. The rationale behind this procedure is that burns trigger the body's immune system to overreact, causing additional damage. Therefore it is important to locate and identify the burn (area and thickness) so that it can be removed as quickly as possible. Our project explores the use of autofluorescence as a tool to identify the burned tissues from healthy ones. Here we present that our fluorescence results show differences between burned and normal skin in both its spectra and lifetime.

  1. Global burned area and biomass burning emissions from small fires

    NARCIS (Netherlands)

    Randerson, J.T; Chen, Y.; Werf, van der G.R.; Rogers, B.M.; Morton, D.C.

    2012-01-01

    [1] In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires ofte

  2. Acute changes in oxygen consumption and body temperature after burn injury.

    OpenAIRE

    Childs, C.; Little, R. A.

    1994-01-01

    This study describes the pattern of oxygen consumption (VO2), rectal temperature (Tr), and acral skin temperature (Tac) in sleeping and resting (awake) burned children nursed in a thermoneutral environment. Measurements of respiratory gas exchange (VO2 and carbon dioxide production (VCO2)) were made using an open circuit, flow through system of indirect calorimetry. Tr and Tac were monitored continuously. Sixteen patients were studied during the first 18 hours after being burned. Three phases...

  3. Origin, variability and age of biomass burning plumes intercepted during BORTAS-B

    OpenAIRE

    D. P. Finch; Palmer, P.I.; M. Parrington

    2014-01-01

    We use the GEOS-Chem atmospheric chemistry transport model to interpret aircraft measurements of carbon monoxide (CO) in biomass burning outflow taken during the 2011 BORTAS-B campaign over eastern Canada. The model has some skill reproducing the observed variability (r = 0.45) but has a negative bias for observations below 100 ppb and a positive bias above 300 ppb. We find that observed CO variations are largely due to NW North American biomass burning, as...

  4. High-Resolution Mapping of Biomass Burning Emissions in Three Tropical Regions.

    Science.gov (United States)

    Shi, Yusheng; Matsunaga, Tsuneo; Yamaguchi, Yasushi

    2015-09-15

    Biomass burning in tropical regions plays a significant role in atmospheric pollution and climate change. This study quantified a comprehensive monthly biomass burning emissions inventory with 1 km high spatial resolution, which included the burning of vegetation, human waste, and fuelwood for 2010 in three tropical regions. The estimations were based on the available burned area product MCD64A1 and statistical data. The total emissions of all gases and aerosols were 17382 Tg of CO2, 719 Tg of CO, 30 Tg of CH4, 29 Tg of NOx, 114 Tg of NMOC (nonmethane organic compounds), 7 Tg of SO2, 10 Tg of NH3, 79 Tg of PM2.5 (particulate matter), 45 Tg of OC (organic carbon), and 6 Tg of BC (black carbon). Taking CO as an example, vegetation burning accounted for 74% (530 Tg) of the total CO emissions, followed by fuelwood combustion and human waste burning. Africa was the biggest emitter (440 Tg), larger than Central and South America (113 Tg) and South and Southeast Asia (166 Tg). We also noticed that the dominant fire types in vegetation burning of these three regions were woody savanna/shrubland, savanna/grassland, and forest, respectively. Although there were some slight overestimations, our results are supported by comparisons with previously published data. PMID:26287650

  5. Fuel characteristics and trace gases produced through biomass burning

    OpenAIRE

    BAMBANG HERO SAHARJO; SHIGETO SUDO; SEIICHIRO YONEMURA; HARUO TSURUTA

    2010-01-01

    Saharjo BH, Sudo S, Yonemura S, Tsuruta H (2010) Fuel characteristics and trace gases produced through biomass burning. Biodiversitas 11: 40-45. Indonesian 1997/1998 forest fires resulted in forest destruction totally 10 million ha with cost damaged about US$ 10 billion, where more than 1 Gt CO2 has been released during the fire episode and elevating Indonesia to one of the largest polluters of carbon in the world where 22% of world’s carbon dioxide produced. It has been found that 80-90% of ...

  6. Epidemiology of U.K. military burns.

    Science.gov (United States)

    Foster, Mark Anthony; Moledina, Jamil; Jeffery, Steve L A

    2011-01-01

    The authors review the etiology of U.K. military burns in light of increasing hybrid warfare. Analysis of the nature of these injured personnel will provide commanders with the evidence to plan for on-going and future operations. Case notes of all U.K. Armed Forces burn injured patients who were evacuated to the Royal Centre for Defence Medicine were reviewed. Demographics, burn severity, pattern, and mortality details were included. There were 134 U.K. military personnel with burns requiring return to the United Kingdom during 2001-2007. The median age was 27 (20-62) years. Overall, 60% of burns seen were "accidental." Burning waste, misuse or disrespect of fuel, and scalds were the most prevalent noncombat burns. Areas commonly burned were the face, legs, and hands. During 2006-2007 in the two major conflicts, more than 59% (n = 36) of the burned patients evacuated to the United Kingdom were injured during combat. Burns sustained in combat represent 5.8% of all combat casualties and were commonly associated with other injuries. Improvised explosive device, minestrike, and rocket-propelled grenade were common causes. The mean TBSA affected for both groups was 5% (1-70). The majority of combat burn injuries have been small in size. Greater provision of flame retardant equipment and clothing may reduce the extent and number of combat burns in the future. The numbers of noncombat burns are being reduced by good military discipline. PMID:21422938

  7. A five-century sedimentary geochronology of biomass burning in Nicaragua and Central America

    International Nuclear Information System (INIS)

    In spite of the extensive use of fire as an agricultural agent in Central America today, little is known of its history of biomass burning or agriculture. As an indicator of the burning practices on the adjacent land, a sedimentary record of carbonized particles sheds light on the trends in frequency and areal extent of biomass burning. This research focuses on a sediment core recovered from an anoxic site in the Pacific Ocean adjacent to the Central American Isthmus and reports a five-century record of charcoal deposition. The research illustrates that biomass burning has been an important ecological factor in the Pacific watershed of Central America at least during the past five centuries. Fluxes of charcoal have generally decreased toward the present suggesting a reduction in the charcoal source function. Perhaps, five centuries ago, the frequency of biomass burning was greater than it is today, larger areas were burned, or biomass per unit area of burned grassland was greater. The major type of biomass burned throughout this five-century period has been grass, as opposed to woods, indicating that any major deforestation of the Pacific watershed of Central America occurred prior to the Conquest

  8. Burning mouth syndrome and menopause

    Directory of Open Access Journals (Sweden)

    Parveen Dahiya

    2013-01-01

    Full Text Available Menopause is a physiological process typically occurring in the fifth decade of life. One of the most annoying oral symptoms in this age group is the burning mouth syndrome (BMS, which may be defined as an intraoral burning sensation occurring in the absence of identifiable oral lesion or laboratory findings. Pain in burning mouth syndrome may be described as burning, tender, tingling, hot, scalding, and numb sensation in the oral mucosa. Multiple oral sites may be involved, but the anterior two-third part and the tip of tongue are most commonly affected site. There is no definite etiology for BMS other than the precipitating causative factors, and it is still considered idiopathic. Various treatment options like use of benzodiazepine, anti-depressants, analgesics, capsaicin, alpha lipoic acids, and cognitive behavioral therapy are found to be effective, but definite treatment is still unknown. The present article discusses some of the recent concepts of etiopathogenesis of BMS as well as the role of pharmacotherapeutic management in this disorder.

  9. Burning mouth syndrome: Present perspective

    Directory of Open Access Journals (Sweden)

    Ramesh Parajuli

    2015-07-01

    Full Text Available Introduction: Burning mouth syndrome is characterized by chronic oral pain or burning sensation affecting the oral mucosa in the absence of obvious visible mucosal lesions. Patient presenting with the burning mouth sensation or pain is frequently encountered in clinical practice which poses a challenge to the treating clinician. Its exact etiology remains unknown which probably has multifactorial origin. It often affects middle or old age women and it may be accompanied by xerostomia and altered taste. Objective: To review the current concepts regarding etiopathogenesis, diagnosis and management of this disorder. Methods and methodology: A literature review was conducted on PubMed/Medline and Google scholar about the burning mouth syndrome and the representative articles were selected and reviewed. Conclusion: There is no universal consensus regarding diagnosis, etiology and treatment of BMS. BMS is a diagnosis of exclusion which probably has multifactorial origin. Various pharmacological and non pharmacological treatments are available but it is difficult to achieve curative treatment so reassurance is of great importance while treating the patients. Combination of cognitive behavioral therapy, alpha lipoic acid and/or clonazepam has shown promising results.

  10. Antibiotics and the burn patient.

    Science.gov (United States)

    Ravat, François; Le-Floch, Ronan; Vinsonneau, Christophe; Ainaud, Pierre; Bertin-Maghit, Marc; Carsin, Hervé; Perro, Gérard

    2011-02-01

    Infection is a major problem in burn care and especially when it is due to bacteria with hospital-acquired multi-resistance to antibiotics. Moreover, when these bacteria are Gram-negative organisms, the most effective molecules are 20 years old and there is little hope of any new product available even in the distant future. Therefore, it is obvious that currently available antibiotics should not be misused. With this aim in mind, the following review was conducted by a group of experts from the French Society for Burn Injuries (SFETB). It examined key points addressing the management of antibiotics for burn patients: when to use or not, time of onset, bactericidia, combination, adaptation, de-escalation, treatment duration and regimen based on pharmacokinetic and pharmacodynamic characteristics of these compounds. The authors also considered antibioprophylaxis and some other key points such as: infection diagnosis criteria, bacterial inoculae and local treatment. French guidelines for the use of antibiotics in burn patients have been designed up from this work. PMID:20510518

  11. Identification and estimation of the biomass burning contribution to Beijing aerosol using levoglucosan as a molecular marker

    International Nuclear Information System (INIS)

    Two series of size-selective aerosol samples, PM2.5 and PM10, were collected in Beijing from July 2002 to July 2003. The samples were analyzed for levoglucosan and related saccharidic compounds, organic and elemental carbon, and ionic species. Levoglucosan and related saccharidic compounds were mostly present in the fine size fraction. The contribution from biomass burning to the carbonaceous aerosol in Beijing was estimated; biomass burning was responsible for 18-38% of the PM2.5 organic carbon and for 14-32% of the PM10 organic carbon. The biomass burning marker levoglucosan was present all year round in Beijing. High levoglucosan concentrations in October and November were attributed to corn field burning and burning of fallen leaves, while the high level observed on 7 May 2003 was tracked back to a boreal forest fire more than 1000 km away in northeastern China. The biomass burning contribution to the Beijing aerosol is made up of two parts, a background component, which is due to biofuel burning all year round in the neighboring countryside households, and a superimposed component from seasonal crop burning events and wild fires. (authors)

  12. A review of hydrofluoric acid burn management.

    Science.gov (United States)

    McKee, Daniel; Thoma, Achilleas; Bailey, Kristy; Fish, Joel

    2014-01-01

    Hydrofluoric acid (HF) causes a unique chemical burn. Much of the current treatment knowledge of HF burns is derived from case reports, small case series, animal studies and anecdotal evidence. The management can be challenging because clinical presentation and severity of these burns vary widely. Plastic surgeons managing burn patients must have a basic understanding of the pathophysiology, the range of severity in presentation and the current treatment options available for HF burns. The present article reviews the current understanding of the pathophysiology and systemic effects associated with severe HF burns. Furthermore, it distinguishes between minor and life-threatening HF burns and describes several of the basic techniques that are available to treat patients with HF burns.

  13. A review of hydrofluoric acid burn management.

    Science.gov (United States)

    McKee, Daniel; Thoma, Achilleas; Bailey, Kristy; Fish, Joel

    2014-01-01

    Hydrofluoric acid (HF) causes a unique chemical burn. Much of the current treatment knowledge of HF burns is derived from case reports, small case series, animal studies and anecdotal evidence. The management can be challenging because clinical presentation and severity of these burns vary widely. Plastic surgeons managing burn patients must have a basic understanding of the pathophysiology, the range of severity in presentation and the current treatment options available for HF burns. The present article reviews the current understanding of the pathophysiology and systemic effects associated with severe HF burns. Furthermore, it distinguishes between minor and life-threatening HF burns and describes several of the basic techniques that are available to treat patients with HF burns. PMID:25114621

  14. Seasonal Variations of Biomass Burning Tracers in Alaskan Aerosols

    Science.gov (United States)

    Haque, M. M.; Kawamura, K.; Kim, Y.

    2015-12-01

    Biomass burning (BB) is a large source of atmospheric trace gases and aerosols. During the burning, several organic and inorganic gases and particles are emitted into the atmosphere. Here, we present seasonal variations of specific BB tracers such as levoglucosan, mannosan and galactosan, which are produced by pyrolysis of cellulose and hemicelluloses. We collected TSP aerosol samples (n= 32) from Fairbanks, Alaska in June 2008 to June 2009. Levoglucosan was detected as the dominant anhydrosugar followed by its isomers, mannosan and galactosan. The result of levoglucosan showed clear seasonal trends with winter maximum (ave.145 ng m-3) and spring minimum (12.3 ng m-3). The analyses of air mass back trajectories and fire spots demonstrated that anhydrosugars may be associated from residential heating and cooking in local region and Siberia in winter time. Levoglucosan showed significant positive correlation with EC (r= 0.67, p= 0.001) and OC (r= 0.51, p= 0.002) but there was no correlation with nss-K+ (r= -0.16, p= 0.37). The emission of K+ from biomass burning depends on burning condition and types of material burned. There are two possible reasons, which can be explained for the lack of correlation between levoglucosan and K+. First, specific burning materials may be used for residential heating, which can't produce K+. Secondly, K+ could be deposit on the surface of chimney breast and it can't emit into the atmosphere. Anhydrosugars contributed 4.4% to water-soluble organic carbon (WSOC) and 2.4% to organic carbon (OC). Their highest values of WSOC (8.1%) and OC (4.9%) in wintertime indicate that contribution of BB to Alaskan aerosols is important in winter period. The current study presents for the first time one-year observation on BB tracers in the subarctic region, which provide useful information to better understand the effect of biomass burning on subarctic atmosphere. It will also be helpful for further long-term climate studies in this region.

  15. Airborne characterization of smoke marker ratios from prescribed burning

    Directory of Open Access Journals (Sweden)

    A. P. Sullivan

    2014-05-01

    Full Text Available A Particle-into-Liquid Sampler – Total Organic Carbon and fraction collector system was flown aboard aTwin Otter aircraft sampling prescribed burning emissions in South Carolina in November2011 to obtain smoke marker measurements. The fraction collector provided 2 min time-integrated off-line samples for carbohydrate (i.e., smoke markers levoglucosan, mannosan, galactosan analysis by high-performance anion-exchange chromatography with pulsed amperometric detection. Each fire location appeared to have aunique Δ levoglucosan / Δ water-soluble organic carbon (WSOC ratio (RF01/RF02/RF03/RF05 = 0.163 ± 0.007 μg C μg C−1, RF08 = 0.115 ± 0.011 μg C μg C−1, RF09A = 0.072 ± 0.028 μg C μg C−1, RF09B = 0.042 ± 0.008 μg C μg C−1. These ratios were comparable to those obtained from controlled laboratory burns and suggested that the emissions sampled during RF01/RF02/RF03/RF05 were dominated by the burning of grasses, RF08 by leaves, RF09A by needles, and RF09B by marsh grasses. These findings were further supported by the Δ galactosan / Δ levoglucosan ratios (RF01/RF02/RF03/RF05 = 0.067 ± 0.004 μg μg−1, RF08 = 0.085 ± 0.009 μg μg−1, RF09A = 0.101 ± 0.029 μg μg−1 obtained as well as by the ground-based fuel and filter sample analyses during RF01/RF02/RF03/RF05. Differences between Δ potassium / Δ levoglucosan ratios obtained for these prescribed fires vs. laboratory-scale measurements suggest that some laboratory burns may not accurately represent potassium emissions from prescribed burns. The Δ levoglucosan / Δ WSOC ratio had no clear dependence on smoke age or fire dynamics suggesting that this ratio is more dependent on the type of fuel being burned. Levoglucosan was stable over a timescale of at least 1.5 h and could be useful to help estimate the air quality impacts of biomass burning.

  16. 30 CFR 816.87 - Coal mine waste: Burning and burned waste utilization.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste utilization. 816.87 Section 816.87 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT...-SURFACE MINING ACTIVITIES § 816.87 Coal mine waste: Burning and burned waste utilization. (a) Coal...

  17. 30 CFR 817.87 - Coal mine waste: Burning and burned waste utilization.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal mine waste: Burning and burned waste utilization. 817.87 Section 817.87 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT...-UNDERGROUND MINING ACTIVITIES § 817.87 Coal mine waste: Burning and burned waste utilization. (a) Coal...

  18. Use of previously burned skin as random cutaneous local flaps in pediatric burn reconstruction

    NARCIS (Netherlands)

    Barret, JP; Herndon, DN; McCauley, RL

    2002-01-01

    Reconstruction after post-burn scarring remains a challenge. It is especially true in the severely burned patient, who normally presents with a paucity of donor sites Healed skin from areas that had been burned and skin from grafted areas (termed as previously burned skin) have been occasionally use

  19. A review of hydrofluoric acid burn management

    OpenAIRE

    McKee, Daniel; Thoma, Achilleas; Bailey, Kristy; Fish, Joel

    2014-01-01

    The clinical presentation and severity of hydrofluoric acid burns vary considerably, making management particularly challenging. Given that current knowledge of HF burns is derived from small case series, case reports, animal studies and anecdotal evidence, this narrative review discusses the current understanding of the effects associated with severe hydrofluoric acid burns, describing the mechanism of injury, systemic toxicity and treatment options.

  20. Early Enteral Nutrition for Burn Injury

    OpenAIRE

    Mandell, Samuel P.; Gibran, Nicole S.

    2014-01-01

    Significance: Nutrition has been recognized as a critical component of acute burn care and ultimate wound healing. Debate remains over the appropriate timing of enteral nutrition and the benefit of supplemental trace elements, antioxidants, and immunonutrition for critically ill burn patients. Pharmacotherapy to blunt the metabolic response to burn injury plays a critical role in effective nutritional support.

  1. Titanium tetrachloride burns to the eye.

    OpenAIRE

    Chitkara, D K; McNeela, B. J.

    1992-01-01

    We present eight cases of chemical burns of the eyes from titanium tetrachloride, an acidic corrosive liquid. However it causes severe chemical burns which have a protracted course and features more akin to severe alkali burns. Injuries related to titanium tetrachloride should be treated seriously and accordingly appropriate management is suggested.

  2. Mexico City Aerosol Analysis during MILAGRO using High Resolution Aerosol Mass Spectrometry at the Urban Supersite (T0). Part 2: Analysis of the Biomass Burning Contribution and the Modern Carbon Fraction

    Energy Technology Data Exchange (ETDEWEB)

    Aiken, Allison; de Foy, B.; Wiedinmyer, Christine; DeCarlo, Peter; Ulbrich, Ingrid M.; Wehrli, M. N.; Szidat, S.; Prevot, A. S. H.; Noda, J.; Wacker, L.; Volkamer, Rainer M.; Fortner, Edward; Wang, J. X.; Laskin, Alexander; Shutthanandan, V.; Zheng, J.; Zhang, Renyi; Paredes-Miranda, Guadalupe L.; Arnott, W. P.; Molina, Luis; Sosa, G.; Querol, X.; Jimenez, J. L.

    2010-06-16

    Submicron aerosol was analyzed during the MILAGRO field campaign in March 2006 at the T0 urban supersite in Mexico City with a High-Resolution Aerosol Mass Spectrometer (AMS) and complementary instrumentation. Positive Matrix Factorization (PMF) of high resolution AMS spectra identified a biomass burning OA (BBOA) component, which includes several large plumes that appear to be from forest fires within the region. Here, we show that the AMS BBOA concentration at T0 correlates with fire counts in the vicinity of Mexico City and that most of the BBOA variability is captured when the FLEXPART model is used for the dispersion of fire emissions as estimated from satellite fire counts. The resulting FLEXPART fire impact index correlates well with the observed BBOA, CH3CN, levoglucosan, and potassium, indicating that wildfires in the region surrounding Mexico City are the dominant source of BBOA at T0 during MILAGRO. The impact of distant BB sources such as the Yucatan is very small during this period. All fire tracers are correlated, with BBOA and levoglucosan showing little background, acetonitrile having a well-known tropospheric background of ~100-150 ppt, and PM2.5 potassium having a background of ~160 ng m-3 (two-thirds of its average concentration), which does not appear to be related to BB sources.

  3. Indoor air pollution by different heating systems: coal burning, open fireplace and central heating.

    Science.gov (United States)

    Moriske, H J; Drews, M; Ebert, G; Menk, G; Scheller, C; Schöndube, M; Konieczny, L

    1996-11-01

    Investigations of indoor air pollution by different heating systems in private homes are described. Sixteen homes, 7 with coal burning, 1 with open fireplace (wood burning) and 8 with central heating have been investigated. We measured the concentrations of carbon monoxide, carbon dioxide and sedimented dust in indoor air, of total suspended particulates, heavy metals and of polycyclic aromatic hydrocarbons in indoor and outdoor air. Measurements were taken during winter (heating period) and during summer (non-heating period). Generally, we found higher indoor air pollution in homes with coal burning and open fireplace than in homes with central heating. Especially, the concentrations of carbon monoxide, sedimented dust and of some heavy metals were higher. In one case, we found also high indoor air pollution in a home with central heating. This apartment is on the ground floor of a block of flats, and the central heating system in the basement showed a malfunctioning of the exhaust system.

  4. Laminar burning velocities and flame instabilities of butanol isomers-air mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Xiaolei; Huang, Zuohua; Wu, Si; Li, Qianqian [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2010-12-15

    Laminar burning velocities and flame instabilities of the butanol-air premixed flames and its isomers are investigated using the spherically expanding flame with central ignition at initial temperature of 428 K and initial pressures of 0.10 MPa, 0.25 MPa, 0.50 MPa and 0.75 MPa. Laminar burning velocities and sensitivity factor of n-butanol-air mixtures are computed using a newly developed kinetic mechanism. Unstretched laminar burning velocity, adiabatic temperature, Lewis number, Markstein length, critical flame radius and Peclet number are obtained over a wide range of equivalence ratios. Effect of molecular structure on laminar burning velocity of the isomers of butanol is analyzed from the aspect of C-H bond dissociation energy. Study indicates that although adiabatic flame temperatures of the isomers of butanol are the same, laminar burning velocities give an obvious difference among the isomers of butanol. This indicates that molecular structure has a large influence on laminar burning velocities of the isomers of butanol. Branching (-CH3) will decrease laminar burning velocity. Hydroxyl functional group (-OH) attaching to the terminal carbon atoms gives higher laminar burning velocity compared to that attaching to the inner carbon atoms. Calculated dissociation bond energies show that terminal C-H bonds have larger bond energies than that of inner C-H bonds. n-Butanol, no branching and with hydroxyl functional group (-OH) attaching to the terminal carbon atom, gives the largest laminar burning velocity. tert-Butanol, with highly branching and hydroxyl functional group (-OH) attaching to the inner carbon atom, gives the lowest laminar burning velocity. Laminar burning velocities of iso-butanol and sec-butanol are between those of n-butanol and tert-butanol. The instant of transition to cellularity is experimentally determined for the isomers of butanol and subsequently interpreted on the basis of hydrodynamic and diffusion-thermal instabilities. Little effect

  5. New type of sauna-related burn: conductive contact burn.

    Science.gov (United States)

    Shin, Seung Jun; Yoo, Heon; Park, Myong Chul

    2013-01-01

    A 70-year-old woman visited a Korean-style hot dry sauna room. The patient had a medical history of hypertension and hyperlipidemia. During the sauna, the patient slept for 30 minutes. During the sleep, the right medial thigh was covered with a fully wet towel. The patient sustained a second-degree burn on the right medial thigh area with multiple bullas. On physical examination, erythema, heating sensation, and swelling around the bullas were noted. The patient was admitted and received intravenous antibiotics for 7 days. A dressing with Silmazine 1% cream (sulfadiazine) was applied twice a day for prevention of local infection. The patient was discharged on day 14 without complication. In this case, the mechanism of the burn was different. Hot air has much thermal energy but is not conducted to the skin directly. A wet towel will have a relatively higher thermal capacity or heat capacity than a dry or damp towel, and the sodden water might be a medium for the conduction of thermal energy. Owing to the global popularity of sauna bathing, it is important to recognize all sources of sauna-related burns.

  6. Uncertainty analysis of moderate- versus coarse-scale satellite fire products for quantifying agricultural burning: Implications for Air Quality in European Russia, Belarus, and Lithuania

    Science.gov (United States)

    McCarty, J. L.; Krylov, A.; Prishchepov, A. V.; Banach, D. M.; Potapov, P.; Tyukavina, A.; Rukhovitch, D.; Koroleva, P.; Turubanova, S.; Romanenkov, V.

    2015-12-01

    Cropland and pasture burning are common agricultural management practices that negatively impact air quality at a local and regional scale, including contributing to short-lived climate pollutants (SLCPs). This research focuses on both cropland and pasture burning in European Russia, Lithuania, and Belarus. Burned area and fire detections were derived from 500 m and 1 km Moderate Resolution Imaging Spectroradiometer (MODIS), 30 m Landsat 7 Enhanced Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager (OLI) data. Carbon, particulate matter, volatile organic carbon (VOCs), and harmful air pollutants (HAPs) emissions were then calculated using MODIS and Landsat-based estimates of fire and land-cover and land-use. Agricultural burning in Belarus, Lithuania, and European Russia showed a strong and consistent seasonal geographic pattern from 2002 to 2012, with the majority of fire detections occurring in March - June and smaller peak in July and August. Over this 11-year period, there was a decrease in both cropland and pasture burning throughout this region. For Smolensk Oblast, a Russian administrative region with comparable agro-environmental conditions to Belarus and Lithuania, a detailed analysis of Landsat-based burned area estimations for croplands and pastures and field data collected in summer 2014 showed that the agricultural burning area can be up to 10 times higher than the 1 km MODIS active fire estimates. In general, European Russia is the main source of agricultural burning emissions compared to Lithuania and Belarus. On average, all cropland burning in European Russia as detected by the MCD45A1 MODIS Burned Area Product emitted 17.66 Gg of PM10 while annual burning of pasture in Smolensk Oblast, Russia as detected by Landsat burn scars emitted 494.85 Gg of PM10, a 96% difference. This highlights that quantifying the contribution of pasture burning and burned area versus cropland burning in agricultural regions is important for accurately

  7. Helium burning and neutron sources in the stars

    Science.gov (United States)

    Aliotta, M.; Junker, M.; Prati, P.; Straniero, O.; Strieder, F.

    2016-04-01

    Helium burning represents an important stage of stellar evolution as it contributes to the synthesis of key elements such as carbon, through the triple- α process, and oxygen, through the 12C( α, γ)16O reaction. It is the ratio of carbon to oxygen at the end of the helium burning stage that governs the following phases of stellar evolution leading to different scenarios depending on the initial stellar mass. In addition, helium burning in Asymptotic Giant Branch stars, provides the two main sources of neutrons, namely the 13C( α, n)16O and the 22Ne( α, n)25Mg, for the synthesis of about half of all elements heavier than iron through the s-process. Given the importance of these reactions, much experimental work has been devoted to the study of their reaction rates over the last few decades. However, large uncertainties still remain at the energies of astrophysical interest which greatly limit the accuracy of stellar models predictions. Here, we review the current status on the latest experimental efforts and show how measurements of these important reaction cross sections can be significantly improved at next-generation deep underground laboratories.

  8. The colors of biomass burning aerosols in the atmosphere

    Science.gov (United States)

    Liu, Chao; Chung, Chul Eddy; Zhang, Feng; Yin, Yan

    2016-06-01

    Biomass burning aerosols mainly consist of black carbon (BC) and organic aerosols (OAs), and some of OAs are brown carbon (BrC). This study simulates the colors of BrC, BC and their mixture with scattering OAs in the ambient atmosphere by using a combination of light scattering simulations, a two-stream radiative transfer model and a RGB (Red, Green, Blue) color model. We find that both BCs and tar balls (a class of BrC) appear brownish at small particle sizes and blackish at large sizes. This is because the aerosol absorption Ångström exponent (AAE) largely controls the color and larger particles give smaller AAE values. At realistic size distributions, BCs look more blackish than tar balls, but still exhibit some brown color. However, when the absorptance of aerosol layer at green wavelength becomes larger than approximately 0.8, all biomass burning aerosols look blackish. The colors for mixture of purely scattering and absorptive carbonaceous aerosol layers in the atmosphere are also investigated. We suggest that the brownishness of biomass burning aerosols indicates the amount of BC/BrC as well as the ratio of BC to BrC.

  9. Helium burning and neutron sources in the stars

    Energy Technology Data Exchange (ETDEWEB)

    Aliotta, M. [University of Edinburgh, SUPA, School of Physics and Astronomy, Edinburgh (United Kingdom); Junker, M. [Laboratori Nazionali del Gran Sasso (LNGS), Assergi (Italy); Prati, P. [Universita degli Studi di Genova (Italy); INFN, Genova (Italy); Straniero, O. [Osservatorio Astronomico di Collurania, Teramo (Italy); Strieder, F. [South Dakota School of Mines and Technology, Rapid City, SD (United States)

    2016-04-15

    Helium burning represents an important stage of stellar evolution as it contributes to the synthesis of key elements such as carbon, through the triple- α process, and oxygen, through the {sup 12}C(α, γ){sup 16}O reaction. It is the ratio of carbon to oxygen at the end of the helium burning stage that governs the following phases of stellar evolution leading to different scenarios depending on the initial stellar mass. In addition, helium burning in Asymptotic Giant Branch stars, provides the two main sources of neutrons, namely the {sup 13}C(α, n){sup 16}O and the {sup 22}Ne(α, n){sup 25}Mg, for the synthesis of about half of all elements heavier than iron through the s-process. Given the importance of these reactions, much experimental work has been devoted to the study of their reaction rates over the last few decades. However, large uncertainties still remain at the energies of astrophysical interest which greatly limit the accuracy of stellar models predictions. Here, we review the current status on the latest experimental efforts and show how measurements of these important reaction cross sections can be significantly improved at next-generation deep underground laboratories. (orig.)

  10. Classification Methods of Skin Burn Images

    Directory of Open Access Journals (Sweden)

    Sivakumar

    2013-03-01

    Full Text Available In this paper,methodsto automatically detect and categorize the severity of skin burn imagesusingvariousclassification techniquesare compared andpresented. A database comprisingofskin burn imagesbelonging to patients of diverseethnicity, genderand age areconsidered. First the images arepreprocessed andthen classifiedutilizingthe pattern recognitiontechniques:TemplateMatching(TM,Knearestneighbor classifier (kNN and Support Vector Machine (SVM.The classifier istrained fordifferentskin burn grades using pre-labeled images and optimizedfor the features chosen. This algorithmdeveloped,works as an automatic skin burn wound analyzerandaids in the diagnosisof burn victims

  11. Epidemiology of paediatric burns in Iran

    OpenAIRE

    Karimi, H.; Montevalian, A.; Motabar, A.R.; Safari, R.; Parvas, M.S.; Vasigh, M.

    2012-01-01

    We surveyed the epidemiology of the patients in a tertiary burn care centre (the Motahari Burn Hospital) in Tehran in the 4-yr period 2005-2009. Scalding was the major cause of burn injury for patients under the age of 6, while there were many more flame and electrical burns in late childhood. Males were mainly affected (male to female ratio, 1.7:1). Most burns occurred in the summer, probably due to older children’s increased outdoor activities during school vacations. Most of the injuries t...

  12. Hydrofluoric acid burns of the eye.

    Science.gov (United States)

    McCulley, J P; Whiting, D W; Petitt, M G; Lauber, S E

    1983-06-01

    A case of hydrofluoric acid (HF) burns of the eye is reported and a review is presented of our investigation into the mechanism of HF toxicity in ocular tissues. A number of therapeutic procedures that have been successful in the treatment of HF skin burns were studied in the rabbit for use in the eye. Immediate single irrigation with water, normal saline or isotonic magnesium chloride solution is the most effective therapy for ocular HF burns. Extrapolation of other skin burn treatments to use in the eye is unacceptable due to the toxicity of these agents in normal eyes and the additive damage caused in burned eyes. PMID:6886845

  13. Burn Resuscitation in the Austere Environment.

    Science.gov (United States)

    Peck, Michael; Jeng, James; Moghazy, Amr

    2016-10-01

    Intravenous (IV) cannulation and sterile IV salt solutions may not be options in resource-limited settings (RLSs). This article presents recipes for fluid resuscitation in the aftermath of burns occurring in RLSs. Burns of 20% total body surface area (TBSA) can be resuscitated, and burns up to 40% TBSA can most likely be resuscitated, using oral resuscitation solutions (ORSs) with salt supplementation. Without IV therapy, fluid resuscitation for larger burns may only be possible with ORSs. Published global experience is limited, and the magnitude of burn injuries that successfully respond to World Health Organization ORSs is not well-described. PMID:27600127

  14. Pediatric burn rehabilitation: Philosophy and strategies

    Directory of Open Access Journals (Sweden)

    Shohei Ohgi

    2013-09-01

    Full Text Available Burn injuries are a huge public health issue for children throughout the world, with the majority occurring in developing countries. Burn injuries can leave a pediatric patient with severely debilitating and deforming contractures, which can lead to significant disability when left untreated. Rehabilitation is an essential and integral part of pediatric burn treatment. The aim of this article was to review the literature on pediatric burn rehabilitation from the Medline, CINAHL, and Web of Science databases. An attempt has been made to present the basic aspects of burn rehabilitation, provide practical information, and discuss the goals and conceptualization of rehabilitation as well as the development of rehabilitation philosophy and strategies.

  15. Management of post burn hand deformities

    Directory of Open Access Journals (Sweden)

    Sabapathy S

    2010-10-01

    Full Text Available The hand is ranked among the three most frequent sites of burns scar contracture deformity. One of the major determinants of the quality of life in burns survivors is the functionality of the hands. Burns deformities, although largely preventable, nevertheless do occur when appropriate treatment is not provided in the acute situation or when they are part of a major burns. Reconstructive procedures can greatly improve the function of the hands. Appropriate choice of procedures and timing of surgery followed by supervised physiotherapy can be a boon for a burns survivor.

  16. Global biomass burning: Atmospheric, climatic, and biospheric implications

    International Nuclear Information System (INIS)

    As a significant source of atmospheric gases, biomass burning must be addressed as a major environmental problem. Biomass burning includes burning forests and savanna grasslands for land clearing and conversion, burning agricultural stubble and waste after harvesting, and burning biomass fuels. The editor discusses the history of biomass burning and provides an overview of the individual chapters

  17. Southeast U.S. burns

    Science.gov (United States)

    Maggs, William Ward

    Human beings were responsible for most of 12,000 forest fires in the southeastern United States that burned for 10 days in late October and early November 1987. 910 km2, mostly hardwood forest, were destroyed in the fires, with arson and carelessness as the primary causes, according to the U.S. Department of Agriculture Forest Service.Measured in monetary terms, the toll was more than $40 million in resource and property damage. While the amount of forest burned did not rival the 3390 km2 lost to fires in the western United States last summer, the human impact was severe in the southeast and all along the East Coast. Favorable winds blew smoke from the southern and central Appalachians as far north as New England and as far east as Delaware, and cool fall air close to the ground prevented the smoke from rising, thickening the air in many northeastern cities on November 8 and 9.

  18. Fluconazole Pharmacokinetics in Burn Patients

    Science.gov (United States)

    Boucher, Bradley A.; King, Stephen R.; Wandschneider, Heidi L.; Hickerson, William L.; Hanes, Scott D.; Herring, Vanessa L.; Canada, Todd W.; Hess, Mary M.

    1998-01-01

    The pharmacokinetics of fluconazole in nine adult patients with severe (30 to 95% total body surface area) burns were studied. There was no significant difference in half-life (t1/2), clearance (CL), or volume of distribution (V) over time in five patients on days 3 and 8 of the study (P > 0.05). Combined parameter estimates (means ± standard deviations) for all nine patients for the two study periods were as follows: t1/2, 24.4 ± 5.8 h; CL, 0.36 ± 0.09 ml/min/kg; and V, 0.72 ± 0.12 liters/kg. These estimates of t1/2 and CL in burn patients were approximately 13% shorter and 30% more rapid, respectively, than the most extreme estimates reported for other populations. PMID:9559811

  19. Modeling the impacts of biomass burning on air quality in and around Mexico City

    Directory of Open Access Journals (Sweden)

    W. Lei

    2012-09-01

    Full Text Available The local and regional impacts of open fires and trash burning on ground-level ozone (O3 and fine carbonaceous aerosols in the Mexico City Metropolitan Area (MCMA and surrounding region during two high fire periods in March 2006 have been evaluated using WRF-CHEM model. The model captured reasonably well the measurement-derived magnitude and temporal variation of the biomass burning organic aerosol (BBOA, and the simulated impacts of open fires on organic aerosol (OA were consistent with many observation-based estimates. We did not detect significant effects of open fires and trash burning on surface O3 concentrations in the MCMA and surrounding region. In contrast, they had important influences on OA and elemental carbon (EC, contributing about 60, 22, 33, and 22% to primary OA (POA, secondary OA (SOA, total OA (TOA, and EC, respectively, on both the local and regional scales. Although the emissions of trash burning are substantially lower than those from open fires, trash burning made slightly smaller but comparable contributions to OA as open fires did, and exerted an even higher influence on EC. SOA formation due to the open fires and trash burning enhanced the OA concentration by about 10 and 5% in the MCMA, respectively. On the annual basis and taking the biofuel use emissions into consideration, we estimated that biomass burning contributed about 60, 30, and 25%, respectively, to the loadings of POA, SOA and EC in both the MCMA and its surrounding region, with about 35, 18, and 15% from open fires and trash burning. The estimates of biomass burning impacts in this study may contain considerable uncertainties due to the uncertainties in their emission estimates, extrapolations and the nature of spot comparison. More observation and modeling studies are needed to accurately assess the impacts of biomass burning on tropospheric chemistry, regional and global air quality, and climate change.

  20. Polarized Reflectance Measurement of Burned Skin Tissues

    Science.gov (United States)

    de Pedro, Hector Michael; Chang, Chuan-I.; Zarnani, Faranak; Glosser, Robert; Maas, D.; Idris, A.

    2011-10-01

    In the US, there are over 400,000 burn victims with 3,500 deaths in 2010. Recent evidence suggests that early removal of burn tissues can significantly increase the success of their recovery, since burns continue to spread and damage surrounding tissues after hours of injury. The rationale behind this procedure is that burns trigger the body's immune system to overreact, causing additional damage. Therefore, it is important to distinguish burn areas so that it can be removed. The problem with this is that it is difficult to recognize the margins of the burn area. In our project, we use polarized reflectance as a tool to identify the burned tissues from unburned ones.

  1. [Current treatment strategies for paediatric burns].

    Science.gov (United States)

    Küntscher, M V; Hartmann, B

    2006-06-01

    Paediatric burns occupy the third place in the severe accident statistics in Germany after traffic injuries and drowning. The paper reviews current treatment concepts of pre-hospital management, fluid resuscitation and surgical therapy in paediatric burned patients. Specific features in the approximation of the total body surface area burn and indications for transfer of paediatric burn victims to specialized units are discussed. The therapy of severe paediatric burns requires an interdisciplinary team consisting of especially skilled plastic or paediatric surgeons,anaesthetists, psychiatrists or psychologists, specifically trained nurses, physiotherapists and social workers. The rehabilitation process starts basically with admission to the burn unit. A tight cooperation between therapists and the relatives of the paediatric burn victim is needed for psychological recovery and reintegration into society.'The adaptation to the suffered trauma resulting in life-long disability and disfigurement is the main task of psychotherapy.

  2. Septicemia: The Principal Killer of Burns Patients

    Directory of Open Access Journals (Sweden)

    B. R. Sharma

    2005-01-01

    Full Text Available Burn injury is a major problem in many areas of the world and it has been estimated that 75% of all deaths following burns are related to infection. Burns impair the skin’s normal barrier function thus allowing microbial colonization of the burn wounds and even with the use of topical antimicrobial agents, contamination is almost unavoidable. It is therefore essential for every burn institution to determine its specific pattern of burn wound microbial colonization, time related changes in predominant flora and antimicrobial resistance profiles. This would allow early management of septic episodes with proper empirical systemic antibiotics before the results of microbiologic culture becomes available, thus improving the overall infection-related morbidity and mortality. We attempted to examine the factors affecting risk of infection; strategies for infection control and prevention in burn victims.

  3. [Burns care following a nuclear incident].

    Science.gov (United States)

    Bargues, L; Donat, N; Jault, P; Leclerc, T

    2010-09-30

    Radiation injuries are usually caused by radioactive isotopes in industry. Detonations of nuclear reactors, the use of military nuclear weapons, and terrorist attacks represent a risk of mass burn casualties. Ionizing radiation creates thermal burns, acute radiation syndrome with pancytopenia, and a delayed cutaneous syndrome. After a latency period, skin symptoms appear and the depth of tissue damages increase with dose exposure. The usual burn resuscitation protocols have to be applied. Care of these victims also requires assessment of the level of radiation, plus decontamination by an experienced team. In nuclear disasters, the priority is to optimize the available resources and reserve treatment to patients with the highest probability of survival. After localized nuclear injury, assessment of burn depth and surgical techniques of skin coverage are the main difficulties in a burn centre. Training in medical facilities and burn centres is necessary in the preparation for management of the different types of burn injuries. PMID:21991218

  4. Candidemia in major burns patients.

    Science.gov (United States)

    Renau Escrig, Ana I; Salavert, Miguel; Vivó, Carmen; Cantón, Emilia; Pérez Del Caz, M Dolores; Pemán, Javier

    2016-06-01

    Major burn patients have characteristics that make them especially susceptible to candidemia, but few studies focused on this have been published. The objectives were to evaluate the epidemiological, microbiological and clinical aspects of candidemia in major burn patients, determining factors associated with a poorer prognosis and mortality. We conducted a retrospective observational study of candidemia between 1996 and 2012 in major burn patients admitted to the La Fe University Hospital, Valencia, Spain. The study included 36 episodes of candidemia in the same number of patients, 55.6% men, mean age 37.33 years and low associated comorbidity. The incidence of candidemia varied between 0.26 and 6.09 episodes/1000 days stay in the different years studied. Candida albicans was the most common species (61.1%) followed by Candida parapsilosis (27.8%). Candidemia by C. krusei, C. glabrata or C. tropicalis were all identified after 2004. Central vascular catheter (CVC) was established as a potential source of candidemia in 36.1%, followed by skin and soft tissues of thermal injury (22.2%) and urinary tract (8.3%). Fluconazole was used in 19 patients (52.7%) and its in vitro resistance rate was 13.9%. The overall mortality was 47.2%, and mortality related to candidemia was 30.6%. Factors associated with increased mortality were those related to severe infection and shock. CVC was the most usual focus of candidemia. Fluconazole was the most common antifungal drug administered. The management of candidemia in major burn patients is still a challenge. PMID:26931414

  5. In Situ Chemical Characterization of Aged Biomass-Burning Aerosols Impacting Cold Wave Clouds

    OpenAIRE

    Pratt, Kerri A.; Heymsfield, Andrew J.; Twohy, Cynthia H.; Murphy, Shane M.; DeMott, Paul J.; Hudson , James G.; R. Subramanian; Wang, Zhien; Seinfeld, John H.; Prather, Kimberly A.

    2010-01-01

    During the Ice in Clouds Experiment–Layer Clouds (ICE-L), aged biomass-burning particles were identified within two orographic wave cloud regions over Wyoming using single-particle mass spectrometry and electron microscopy. Using a suite of instrumentation, particle chemistry was characterized in tandem with cloud microphysics. The aged biomass-burning particles comprised ~30%–40% by number of the 0.1–1.0-μm clear-air particles and were composed of potassium, organic carbon, elemental carbon,...

  6. Wound Care in Burn Patients

    Directory of Open Access Journals (Sweden)

    Orhan Çizmeci

    2011-07-01

    Full Text Available Wound care in one of the most important prognostic factors in burn victims. Open wound carries risks for infection due to hypothermia, protein and fluid losses. In addition, unhealed wounds are the major risk factors for acute-subacute or chronic complications in burn patients. Although no exact algorithm exists for open wound treatment, early escarectomy or debridement together with grafting is the best option. Ointments together with topical epithelizing agents without dressings are genereally adequate for first-degree burns. However, topical antibacterial agents are usually required for second to third-degree wounds. Standart treatment for the open wound without epithelization is autologous skin grafting. In cases where more than 50% of the skin surface in affected, autologus donor skin may not be enough. For these cases, epidermal cell culture in vitro may be used. Mesenchymal stem cell applications which have immunosupressive effects should be utilized in cases where cells need to be prepared as allografts. (Journal of the Turkish Society intensive Care 2011; 9 Suppl: 51-4

  7. [Treatment of burns in infants].

    Science.gov (United States)

    Foyatier, J L; Latarjet, J; Comparin, J P; Zaragori, M; Robert, A; Braye, F; Weill, E; Masson, C L

    1995-10-01

    Because of the potential severity of their residual deformities, burn injuries in infants justify an early management in specialized centres when they cover more than 5% of body surface and in every case when hands, face, or external genitalia are concerned. Cooling with cold water is the first aid treatment to be performed as early as possible after the injury. The treatment in specialized centres must be both general and surgical. General treatment includes fluid and electrolyte therapy, temperature control, appropriate nutrition and pain suppression. Pain suppression is a major part of the treatment and morphine must be largely used. Surgical treatment starts as soon as the patient arrives in the centre and is eventually performed under general anesthesia: all the burned areas are covered with occlusive dressings. Infections are prevented by systematic cultures and adjusted antibiotic therapy. A vigorous rehabilitation program must be instituted as soon as possible: massages, compressive clothes, splints, physical therapy, plastic surgery. Primary prevention by sustained parental education is important in order to reduce the frequency of burn injuries in infants.

  8. Carbonaceous aerosols from prescribed burning of a boreal forest ecosystem

    International Nuclear Information System (INIS)

    The identity and ambient mass concentrations of radiatively important carbonaceous aerosols were measured for a boreal forest prescribed burn conducted in northern Ontario, CAN in August 1989. Nonsize-segregated airborne particles were collected for smoldering-fire and full-fire conditions using a helicopter sampling platform. Total carbon (TC), organic carbon (OC) and elemental carbon (EC) were measured. Smoke plume mass concentrations of the OC and EC particles were greatest for full-fire conditions and had ranges of 1.560 to 2.160 mg/m-1 (OC) and 0.120 to 0.160 mg/m-3 (EC) with OC:EC ratios of 10 to 18, respectively. Smoldering fire conditions showed smoke plume OC and EC levels of 0.570--1.030 mg/m-3 (OC) and 0.006--0.050 mg/m-3 (EC) and much higher ratios of OC:EC (21 to 95). These aerosol data indicate the formation of EC particles is greatest during full-fire combustion of boreal forest material relative to smoldering combustion. However, EC particles comprise a minor fraction of the particulate carbon smoke aerosols for both full-fire and smoldering conditions; the major component of carbonaceous smoke aerosols emitted during the prescribed burn is OC. Overall, the OC and EC in-plume smoke aerosol data show nonuniform production of these particles during various stages of the prescribed burn, and major differences in the type of carbonaceous aerosol that is generated (OC versus EC)

  9. Airborne measurements of carbonaceous aerosols in southern Africa during the dry, biomass burning season

    Energy Technology Data Exchange (ETDEWEB)

    Kirchstetter, Thomas W.; Novakov, T.; Hobbs, Peter V.; Magi, Brian

    2002-06-17

    Particulate matter collected aboard the University of Washington's Convair-580 research aircraft over southern Africa during the dry, biomass burning season was analyzed for total carbon, organic carbon, and black carbon contents using thermal and optical methods. Samples were collected in smoke plumes of burning savanna and in regional haze. A known artifact, produced by the adsorption of organic gases on the quartz filter substrates used to collect the particulate matter samples, comprised a significant portion of the total carbon collected. Consequently, conclusions derived from the data are greatly dependent on whether or not organic carbon concentrations are corrected for this artifact. For example, the estimated aerosol co-albedo (1 - single scattering albedo), which is a measure of aerosol absorption, of the biomass smoke samples is 60 percent larger using corrected organic carbon concentrations. Thus, the corrected data imply that the biomass smoke is 60 percent more absorbing than do the uncorrected data. The black carbon to (corrected) organic carbon mass ratio (BC/OC) of smoke plume samples (0.18/2610.06) is lower than that of samples collected in the regional haze (0.25/2610.08). The difference may be due to mixing of biomass smoke with background air characterized by a higher BC/OC ratio. A simple source apportionment indicates that biomass smoke contributes about three-quarters of the aerosol burden in the regional haze, while other sources (e.g., fossil fuel burning) contribute the remainder.

  10. Chemical characterisation of fine particles from biomass burning

    Energy Technology Data Exchange (ETDEWEB)

    Saarnio, K.

    2013-10-15

    Biomass burning has lately started to attract attention because there is a need to decrease the carbon dioxide (CO{sub 2}) emissions from the combustion of fossil fuels. Biomass is considered as CO{sub 2} neutral fuel. However, the burning of biomass is one of the major sources of fine particles both at the local and global scale. In addition to the use of biomass as a fuel for heat energy production, biomass burning emissions can be caused, e.g. by slash-and-burn agriculture and wild open-land fires. Indeed, the emissions from biomass burning are crucially important for the assessment of the potential impacts on global climate and local air quality and hence on human health. The chemical composition of fine particles has a notable influence on these impacts. The overall object of this thesis was to gain knowledge on the chemistry of fine particles that originate from biomass burning as well as on the contribution of biomass burning emissions to the ambient fine particle concentrations. For this purpose novel analytical methods were developed and tested in this thesis. Moreover, the thesis is based on ambient aerosol measurements that were carried out in six European countries at 12 measurement sites during 2002-2011. Additionally, wood combustion experiments were conducted in a laboratory. The measurements included a wide range of techniques: filter and impactor samplings, offline chemical analyses (chromatographic and mass spectrometric techniques, thermal-optical method), and online measurements of particles' physical properties and chemical composition (incl. particle number and mass concentrations and size distributions, concentrations of carbonaceous components, water-soluble ions, and tracer compounds). This thesis presents main results of different studies aimed towards chemical characterisation of fine particle emissions from biomass burning. It was found that wood combustion had a significant influence on atmospheric fine particle concentrations in

  11. Characteristics of atmospheric ice nucleating particles associated with biomass burning in the US: Prescribed burns and wildfires

    Science.gov (United States)

    McCluskey, Christina S.

    addition to LRT of mineral dust. The chemical compositions of INP were probed directly via TEM imaging. Single particle analyses of residual INP showed that they comprised various C-containing particle types, but with a higher abundance of mineral and metal oxide containing INP in emissions from flaming phase combustion. Fractal soot was found as an INP type comprising up to 60% of collected INP in young smoke emissions from the Georgia prescribed burns. In a series of laboratory combustion experiments, the use of a new instrumental set up, pairing the CFDC with a single particle soot photometer, revealed up to a 60% decrease in active INP after the removal of refractory black carbon from smoke aerosol emitted from a highly flaming burn of wiregrass, supporting that soot particles serve as INP in fire emissions. The presence of soil minerals was clearly evident in TEM images of samples taken during the wildfires in addition to tarballs, carbon balls most commonly associated with aged smoke plumes. These results demonstrate that the ice nucleating particles observed in the wildfires were influenced by other factors not represented in the smoke emitted from the laboratory or prescribed burns. Finally, an INP parameterization was developed based on the temperature dependent relationship between nINP and n500nm, following methods used by previous studies. This parameterization is likely only representative of the Hewlett and High Park wildfires due to the apparent impact of non-biomass-burning aerosol. However, all wildfires are typically associated with vigorous localized convection and arid soils, required for the lofting of the soils and dusts similar to these wildfires. It will be useful to compare future wildfires in various regions to the proposed parameterization. (Abstract shortened by UMI.)

  12. American Burn Association consensus conference to define sepsis and infection in burns.

    Science.gov (United States)

    Greenhalgh, David G; Saffle, Jeffrey R; Holmes, James H; Gamelli, Richard L; Palmieri, Tina L; Horton, Jureta W; Tompkins, Ronald G; Traber, Daniel L; Mozingo, David W; Deitch, Edwin A; Goodwin, Cleon W; Herndon, David N; Gallagher, James J; Sanford, Art P; Jeng, James C; Ahrenholz, David H; Neely, Alice N; O'Mara, Michael S; Wolf, Steven E; Purdue, Gary F; Garner, Warren L; Yowler, Charles J; Latenser, Barbara A

    2007-01-01

    Because of their extensive wounds, burn patients are chronically exposed to inflammatory mediators. Thus, burn patients, by definition, already have "systemic inflammatory response syndrome." Current definitions for sepsis and infection have many criteria (fever, tachycardia, tachypnea, leukocytosis) that are routinely found in patients with extensive burns, making these current definitions less applicable to the burn population. Experts in burn care and research, all members of the American Burn Association, were asked to review the literature and prepare a potential definition on one topic related to sepsis or infection in burn patients. On January 20, 2007, the participants met in Tucson, Arizona to develop consensus for these definitions. After review of the definitions, a summary of the proceedings was prepared. The goal of the consensus conference was to develop and publish standardized definitions for sepsis and infection-related diagnoses in the burn population. Standardized definitions will improve the capability of performing more meaningful multicenter trials among burn centers.

  13. Coal and cremation at the Tschudi burn, Chan Chan, Northern Peru

    Science.gov (United States)

    Brooks, W.E.; Galvez, Mora C.; Jackson, J.C.; McGeehin, J.P.; Hood, D.G.

    2008-01-01

    Analyses of a 20-30 cm thick, completely combusted ash at the 25 ?? 70 m Tschudi burn at Chan Chan, northern Peru??, contain 52-55 wt% SiO2, 180-210 ppm zirconium and are consistent with coal ash. Soil geochemistry across the burn showed elevated calcium and phosphorus content, possible evidence for reported human cremation. A calcined, 5 g, 4.5 cm skull fragment recovered from the burn was confirmed as human by protein radioimmunoassay (pRIA). X-ray diffraction showed that the bone had been heated to 520??C. The burn took place c. ad 1312-1438 based on interpretation of a 14C date on carbonized plant tinder. ?? 2008 University of Oxford.

  14. Burns

    Science.gov (United States)

    ... and Answers page . Share Print E-mail House Image Highlight Header Learn More Highlight Body Other NIGMS Fact Sheets Related Links Up to top This page last reviewed on April 06, 2016 Social Media Links Bookmark & Share Free Subscriptions Twitter Facebook YouTube ...

  15. Burns

    Science.gov (United States)

    ... RD, eds. Conn's Current Therapy 2016 . Philadelphia, PA: Elsevier; 2016:chap 21. Christiani DC. Physical and chemical ... eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2016:chap 94. Mazzeo AS, Price LA, ...

  16. Seasonal, interannual, and long-term variabilities in biomass burning activity over South Asia.

    Science.gov (United States)

    Bhardwaj, P; Naja, M; Kumar, R; Chandola, H C

    2016-03-01

    The seasonal, interannual, and long-term variations in biomass burning activity and related emissions are not well studied over South Asia. In this regard, active fire location retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS), the retrievals of aerosol optical depth (AOD) from MODIS Terra, and tropospheric column NO2 from Ozone Monitoring Instrument (OMI) are used to understand the effects of biomass burning on the tropospheric pollution loadings over South Asia during 2003-2013. Biomass burning emission estimates from Global Fire Emission Database (GFED) and Global Fire Assimilation System (GFAS) are also used to quantify uncertainties and regional discrepancies in the emissions of carbon monoxide (CO), nitrogen oxide (NOx), and black carbon (BC) due to biomass burning in South Asia. In the Asian continent, the frequency of fire activity is highest over Southeast Asia, followed by South Asia and East Asia. The biomass burning activity in South Asia shows a distinct seasonal cycle that peaks during February-May with some differences among four (north, central, northeast, and south) regions in India. The annual biomass burning activity in north, central, and south regions shows an increasing tendency, particularly after 2008, while a decrease is seen in northeast region during 2003-2013. The increase in fire counts over the north and central regions contributes 24 % of the net enhancement in fire counts over South Asia. MODIS AOD and OMI tropospheric column NO2 retrievals are classified into high and low fire activity periods and show that biomass burning leads to significant enhancement in tropospheric pollution loading over both the cropland and forest regions. The enhancement is much higher (110-176 %) over the forest region compared to the cropland (34-62 %) region. Further efforts are required to understand the implications of biomass burning on the regional air quality and climate of South Asia. PMID:26503008

  17. Epidemiological data, outcome, and costs of burn patients in Kermanshah

    OpenAIRE

    Karami Matin, B.; Karami Matin, R.; Ahmadi Joybari, T.; Ghahvehei, N.; M Haghi; M. Ahmadi; S. Rezaei

    2012-01-01

    Burn injuries in both developed and developing countries cause long-term disability, mortality, and socio-economic costs that are imposed on patients, families, and societies. This study was carried out to investigate the epidemiology, outcome, and cost of hospitalization of 388 burn patients admitted to the Imam Khomeini Hospital Burn Center in Kermanshah, Iran, between 21 March 2011 and 20 March 2012. The data about demographics, cause of burns, degree of burns, outcome of burns, burned bod...

  18. Source profiles of particulate organic matters emitted from cereal straw burnings

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yuan-xun; SHAO Min; ZHANG Yuan-hang; ZENG Li-min; HE Ling-yan; ZHU Bin; WEI Yong-jie; ZHU Xian-lei

    2007-01-01

    Cereal straw is one of the most abundant biomass burned in China but its contribution to fine particulates is not adequately understood.In this study, three main kinds of cereal straws were collected from five grain producing areas in China. Fine particulate matters (PM2.5) from the cereal straws subjected to control burnings, both under smoldering and flaming status, were sampled by using a custom made dilution chamber and sampling system in the laboratory. Element carbon (EC) and organic carbon (OC) was analyzed.141 compounds of organic matters were measured by gas chromatography-mass spectrum (GC-MS). Source profiles of particulate organic matters emitted from cereal straw burnings were obtained. The results indicated that organic matters contribute a large fraction in fine particulate matters. Levoglucosan had the highest contributions with averagely 4.5% in mass of fine particulates and can be considered as the tracer of biomass burnings. Methyloxylated phenols from lignin degradation also had high concentrations in PM2.5,and contained approximately equal amounts of guaiacyl and syringyl compounds. β-Sitostrol also made up relatively a large fraction of PM2.5 compared with the other sterols (0.18%-0.63% of the total fine particle mass). Normal aikanes, PAHs, fatty acids, as well as normal alkanols had relatively lower concentrations compared with the compounds mentioned above. Carbon preference index (CPI) of normal alkanes and alkanoic acids showed characteristics of biogenic fuel burnings. Burning status significantly influenced the formations of EC and PAHs. The differences between the emission profiles of straw and wood combustions were displayed by the fingerprint compounds, which may be used to identify the contributions between wood and straw burnings in source apportionment researches.

  19. [Abnormality in bone metabolism after burn].

    Science.gov (United States)

    Gong, X; Xie, W G

    2016-08-20

    Burn causes bone metabolic abnormality in most cases, including the changes in osteoblasts and osteoclasts, bone mass loss, and bone absorption, which results in decreased bone mineral density. These changes are sustainable for many years after burn and even cause growth retardation in burned children. The mechanisms of bone metabolic abnormality after burn include the increasing glucocorticoids due to stress response, a variety of cytokines and inflammatory medium due to inflammatory response, vitamin D deficiency, hypoparathyroidism, and bone loss due to long-term lying in bed. This article reviews the pathogenesis and regularity of bone metabolic abnormality after burn, the relationship between bone metabolic abnormality and burn area/depth, and the treatment of bone metabolic abnormality, etc. and discusses the research directions in the future. PMID:27562160

  20. How to manage a minor burn.

    Science.gov (United States)

    Rowley-Conwy, Gabrielle

    2016-07-20

    Rationale and key points This article outlines the technique for dressing a minor burn. The nurse should be aware of national burn care referral guidance, and have the knowledge and skills to establish the severity and extent of a burn. The nurse should also be able to determine whether referral to a regional specialist centre is required. » The extent and severity of a burn determines its ongoing management. » The burn wound requires regular evaluation, since its appearance and management needs can change over time. » Competence in general wound care is essential for nurses undertaking this procedure. Reflective activity 'How to' articles can help update your practice and ensure it remains evidence based. Apply this article to your practice. Reflect on and write a short account of: » The classification of burn depth and guidelines for specialist referral. » How you think this article will change your practice. Subscribers can update their reflective accounts at rcni.com/portfolio. PMID:27440365

  1. Crusted Scabies in the Burned Patient

    DEFF Research Database (Denmark)

    Berg, Jais Oliver; Alsbjørn, Bjarne

    2011-01-01

    The objectives of this study were 1) to describe a case of crusted scabies (CS) in a burned patient, which was primarily undiagnosed and led to a nosocomial outbreak in the burn unit; 2) to analyze and discuss the difficulties in diagnosing and treating this subset of patients with burn injury......; and 3) to design a treatment strategy for future patients. Case analysis and literature review were performed. The index patient had undiagnosed crusted scabies (sive Scabies norvegica) with the ensuing mite hyperinfestation when admitted to the department with minor acute dermal burns. Conservative...... report of a burned patient with CS in the English language literature. CS is also highly contagious and may lead to a nosocomial outbreak. Furthermore, CS seems to have a detrimental impact on the burned patient's course of treatment. A scabicide treatment is necessary to guarantee successful treatment...

  2. Acute pain management in burn patients

    DEFF Research Database (Denmark)

    Gamst-Jensen, Hejdi; Vedel, Pernille Nygaard; Lindberg-Larsen, Viktoria Oline;

    2014-01-01

    OBJECTIVE: Burn patients suffer excruciating pain due to their injuries and procedures related to surgery, wound care, and mobilization. Acute Stress Disorder, Post-Traumatic Stress Disorder, chronic pain and depression are highly prevalent among survivors of severe burns. Evidence-based pain...... management addresses and alleviates these complications. The aim of our study was to compare clinical guidelines for pain management in burn patients in selected European and non-European countries. We included pediatric guidelines due to the high rate of children in burn units. METHOD: The study had...... patients. The most highly recommended guidelines provided clear and accurate recommendations for the nursing and medical staff on pain management in burn patients. We recommend the use of a validated appraisal tool such as the AGREE instrument to provide more consistent and evidence-based care to burn...

  3. Helium Burning Reaction Rate Uncertainties and Consequences for Supernovae

    Science.gov (United States)

    Tur, C.; Heger, A.; Austin, S. M.

    2007-10-01

    The triple alpha and ^12C(,)^16O reaction rates determine the carbon to oxygen ratio at the completion of core helium burning in stars, which, in turn, influences the later stellar burning stages. We explored the dependence of massive star evolution and nucleosynthesis yields on the experimental uncertainties in the triple alpha rate (10 to 12%) and the ^12C(,)^16O rate (25 to 35%) using full stellar models followed to core collapse and including supernova explosion. The production factors of medium-weight elements obtained by using the Lodders (2003) solar abundances for the initial star composition, rather than the abundances of Anders & Grevesse (1989), provide a less stringent constraint on the ^12C(,)^16O rate. Variations within the current uncertainties in both reaction rates, however, induce significant changes in the central carbon abundance at core carbon ignition and in the mass of the supernova remnant. An experiment is being carried out by an NSCL/WMU collaboration to improve the accuracy of the triple alpha reaction rate.

  4. Global analysis of the persistence of the spectral signal associated with burned areas

    Science.gov (United States)

    Melchiorre, A.; Boschetti, L.

    2015-12-01

    Systematic global burned area maps at coarse spatial resolution (350 m - 1 km) have been produced in the past two decades from several Earth Observation (EO) systems (including MODIS, Spot-VGT, AVHRR, MERIS), and have been extensively used in a variety of applications related to emissions estimation, fire ecology, and vegetation monitoring (Mouillot et al. 2014). There is however a strong need for moderate to high resolution (10-30 m) global burned area maps, in order to improve emission estimations, in particular on heterogeneous landscapes and for local scale air quality applications, for fire management and environmental restoration, and in support of carbon accounting (Hyer and Reid 2009; Mouillot et al. 2014; Randerson et al. 2012). Fires causes a non-permanent land cover change: the ash and charcoal left by the fire can be visible for a period ranging from a few weeks in savannas and grasslands ecosystems, to over a year in forest ecosystems (Roy et al. 2010). This poses a major challenge for designing a global burned area mapping system from moderate resolution (10-30 m) EO data, due to the low revisit time frequency of the satellites (Boschetti et al. 2015). As a consequence, a quantitative assessment of the permanence of the spectral signature of burned areas at global scale is a necessary step to assess the feasibility of global burned area mapping with moderate resolution sensors. This study presents a global analysis of the post-fire reflectance of burned areas, using the MODIS MCD45A1 global burned area product to identify the location and timing of burning, and the MO(Y)D09 global surface reflectance product to retrieve the time series of reflectance values after the fire. The result is a spatially explicit map of persistence of burned area signal, which is then summarized by landcover type, and by fire zone using the subcontinental regions defined by Giglio et al. (2006).

  5. Charring temperatures are driven by the fuel types burned in a peatland wildfire

    Directory of Open Access Journals (Sweden)

    Victoria A. Hudspith

    2014-12-01

    Full Text Available Peatlands represent a globally important carbon store; however, the human exploitation of this ecosystem is increasing both the frequency and severity of fires on drained peatlands. Yet, the interactions between the hydrological conditions (ecotopes, the fuel types being burned, the burn severity, and the charring temperatures (pyrolysis intensity remain poorly understood. Here we present a post-burn assessment of a fire on a lowland raised bog in Co. Offaly, Ireland (All Saints Bog. Three burn severities were identified in the field (light, moderate, and deeply burned, and surface charcoals were taken from 17 sites across all burn severities. Charcoals were classified into two fuel type categories (either ground or aboveground fuel and the reflectance of each charcoal particle was measured under oil using reflectance microscopy. Charcoal reflectance shows a positive relationship with charring temperature and as such can be used as a temperature proxy to reconstruct minimum charring temperatures after a fire event. Resulting median reflectance values for ground fuels are 1.09 ± 0.32%Romedian, corresponding to estimated minimum charring temperatures of 447°C ± 49°C. In contrast, the median charring temperatures of aboveground fuels were found to be considerably higher, 646°C ± 73°C (3.58 ± 0.77%Romedian. A mixed-effects modelling approach was used to demonstrate that the interaction effects of burn severity, as well as ecotope classes, on the charcoal reflectance is small compared to the main effect of fuel type. Our findings reveal that the different fuel types on raised bogs are capable of charring at different temperatures within the same fire, and that the pyrolysis intensity of the fire on All Saints Bog was primarily driven by the fuel types burning, with only a weak association to the burn severity or ecotope classes.

  6. Global combustion: the connection between fossil fuel and biomass burning emissions (1997-2010).

    Science.gov (United States)

    Balch, Jennifer K; Nagy, R Chelsea; Archibald, Sally; Bowman, David M J S; Moritz, Max A; Roos, Christopher I; Scott, Andrew C; Williamson, Grant J

    2016-06-01

    Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to energy acquisition and livelihoods. Using global data on both fossil fuel and biomass burning emissions, we tested this relationship over a 14 year period (1997-2010). The global average annual carbon emissions from biomass burning during this time were 2.2 Pg C per year (±0.3 s.d.), approximately one-third of fossil fuel emissions over the same period (7.3 Pg C, ±0.8 s.d.). There was a significant inverse relationship between average annual fossil fuel and biomass burning emissions. Fossil fuel emissions explained 8% of the variation in biomass burning emissions at a global scale, but this varied substantially by land cover. For example, fossil fuel burning explained 31% of the variation in biomass burning in woody savannas, but was a non-significant predictor for evergreen needleleaf forests. In the land covers most dominated by human use, croplands and urban areas, fossil fuel emissions were more than 30- and 500-fold greater than biomass burning emissions. This relationship suggests that combustion practices may be shifting from open landscape burning to contained combustion for industrial purposes, and highlights the need to take into account how humans appropriate combustion in global modelling of contemporary fire. Industrialized combustion is not only an important driver of atmospheric change, but also an important driver of landscape change through companion declines in human-started fires.This article is part of the themed issue 'The interaction of fire and mankind'. PMID:27216509

  7. Neuroendocrine Stress Response after Burn Trauma

    OpenAIRE

    Lindahl, Andreas

    2013-01-01

    Some aspects of the stress response during acute intensive care for severe burns are described and quantified by measuring hormonal and neuroendocrine patterns and relating these to organ function in the short term. This includes an assessment of whether there are markers for the severity of stress that are better than conventional descriptors of the severity of a burn in predicting failing organ function. P-CgA after a major burn injury is an independent and better predictor of organ dysfunc...

  8. Infection control in severely burned patients

    OpenAIRE

    Coban, Yusuf Kenan

    2012-01-01

    In the last two decades, much progress has been made in the control of burn wound infection and nasocomial infections (NI) in severely burned patients. The continiually changing epidemiology is partially related to greater understanding of and improved techniques for burn patient management as well as effective hospital infection control measures. With the advent of antimicrobial chemotherapeutic agents, infection of the wound site is now not as common as, for example, urinary and blood strea...

  9. Epidemiology and Statistical Modeling in Burn Injuries

    OpenAIRE

    Sadeghi Bazargani, Homayoun

    2010-01-01

    An important issue in assessing the epidemiology of injuries, including burns, is the investigation of appropriate methodologies and statistical modeling techniques to study injuries in an efficient and trustworthy manner. The overall aim of this thesis is to analyze epidemiological patterns and assess the appropriateness of supervised statistical models to investigate burn risks and patterns. This thesis contains four papers: the first two concern descriptive epidemiology of burns in Arda...

  10. Fluid management in major burn injuries

    Directory of Open Access Journals (Sweden)

    Haberal Mehmet

    2010-10-01

    Full Text Available It is a widely accepted fact that severe fluid loss is the greatest problem faced following major burn injuries. Therefore, effective fluid resuscitation is one of the cornerstones of modern burn treatment. The aim of this article is to review the current approaches available for modern trends in fluid management for major burn patients. As these current approaches are based on various experiences all over the world, the knowledge is essential to improve the status of this patient group.

  11. Catalytic combustion in small wood burning appliances

    Energy Technology Data Exchange (ETDEWEB)

    Oravainen, H. [VTT Energy, Jyvaeskylae (Finland)

    1996-12-31

    There is over a million hand fired small heating appliances in Finland where about 5,4 million cubic meters of wood fuel is used. Combustion in such heating appliances is a batch-type process. In early stages of combustion when volatiles are burned, the formation of carbon monoxide (CO) and other combustible gases are difficult to avoid when using fuels that have high volatile matter content. Harmful emissions are formed mostly after each fuel adding but also during char burnout period. When the CO-content in flue gases is, say over 0.5 %, also other harmful emissions will be formed. Methane (CH{sub 4}) and other hydrocarbons are released and the amount of polycyclic aromatic hydrocarbons (PAH)-compounds can be remarkable. Some PAH-compounds are very carcinogenic. It has been estimated that in Finland even more than 90 % of hydrocarbon and PAH emissions are due to small scale wood combustion. Emissions from transportation is excluded from these figures. That is why wood combustion has a net effect on greenhouse gas phenomena. For example carbon monoxide emissions from small scale wood combustion are two fold compared to that of energy production in power plants. Methane emission is of the same order as emission from transportation and seven fold compared with those of energy production. Emissions from small heating appliances can be reduced by developing the combustion techniques, but also by using other means, for example catalytic converters. In certain stages of the batch combustion, temperature is not high enough, gas mixing is not good enough and residence time is too short for complete combustion. When placed to a suitable place inside a heating appliance, a catalytic converter can oxidize unburned gases in the flue gas into compounds that are not harmful to the environment. (3 refs.)

  12. Managing burn patients in a fire disaster: Experience from a burn unit in Bangladesh

    Directory of Open Access Journals (Sweden)

    Mashreky S

    2010-10-01

    Full Text Available Although burn disaster is not a frequent event, with urbanisation and industrialisation, burn disaster is becoming an emerging problem in Bangladesh. On 3 June 2010, a fire disaster killed 124 people in Neemtali, Dhaka, Bangladesh. This paper narrates the management of burn patients of this disaster in the burn unit of Dhaka Medical College Hospital. The burn unit managed 192 burn victims of the disaster. Forty-two victims were admitted and 150 of them received primary care at the emergency room and were sent back home. Ten patients among 42 in-patients died. The in-patient mortality was 23.8%. Burn unit in Dhaka Medical College Hospital is the only burn management centre in Bangladesh. Proper planning and coordinated effort by all sectors and persons concerned were the key elements in this successful management.

  13. [Burning oral sensation: when is really BMS?].

    Science.gov (United States)

    Spadari, Fracesco; Garagiola, Umberto; Dzsida, Eszter; Azzi, Lorenzo; Kálmán, Fanni Sára

    2015-12-01

    The aims and purposes of this systematic review of the international literature are to discuss and clarify some considerations on Burning Mouth Syndrome (BMS). Over the last 40 years, many researchers have addressed this disease clinically or experimentally. Thus, the etiology and pathogenesis of BMS remain unclear. We analyzed the etiopathogenesis of Burning Mouth Syndrome and of the burning oral sensation and currently, we could not find a consensus on the diagnosis and classification of BMS. Further studies are required to better understand the pathogenesis of BMS, and a "Gold Standard" classification is required because not every burning sensation in the mouth is BMS. PMID:26863819

  14. Spectral Hole Burning via Kerr Nonlinearity

    Science.gov (United States)

    Khan, Anwar Ali; Abdul Jabar, M. S.; Jalaluddin, M.; Bacha, Bakht Amin; Iftikhar, Ahmad

    2015-10-01

    Spectral hole burning is investigated in an optical medium in the presence of Doppler broadening and Kerr nonlinearity. The Kerr nonlinearity generates coherent hole burning in the absorption spectrum. The higher order Kerr nonlinearity enhances the typical lamb dip of the hole. Normal dispersion in the hole burning region while Steep anomalous dispersion between the two hole burning regions also enhances with higher order Kerr effect. A large phase shift creates large delay or advancement in the pulse propagation while no distortion is observed in the pulse. These results provide significant steps to improve optical memory, telecom devices, preservation of information and image quality. Supported by Higher Education Commission (HEC) of Pakistan

  15. ISBI Practice Guidelines for Burn Care.

    Science.gov (United States)

    Isbi Practice Guidelines Committee

    2016-08-01

    Practice guidelines (PGs) are recommendations for diagnosis and treatment of diseases and injuries, and are designed to define optimal evaluation and management. The first PGs for burn care addressed the issues encountered in developed countries, lacking consideration for circumstances in resource-limited settings (RLS). Thus, the mission of the 2014-2016 committee established by the International Society for Burn Injury (ISBI) was to create PGs for burn care to improve the care of burn patients in both RLS and resource-abundant settings. An important component of this effort is to communicate a consensus opinion on recommendations for burn care for different aspects of burn management. An additional goal is to reduce costs by outlining effective and efficient recommendations for management of medical problems specific to burn care. These recommendations are supported by the best research evidence, as well as by expert opinion. Although our vision was the creation of clinical guidelines that could be applicable in RLS, the ISBI PGs for Burn Care have been written to address the needs of burn specialists everywhere in the world. PMID:27542292

  16. Burn healing plants in Iranian Traditional Medicine

    Directory of Open Access Journals (Sweden)

    Sh. Fahimi

    2015-11-01

    Full Text Available Burns are known as one of the most common forms of injury with devastating consequences. Despite the discovery of several antiseptics, burn wound healing has still remained a challenge to modern medicine. Herbal products seem to possess moderate efficacy with no or less toxicity and are less expensive compared to synthetic drugs. Burn is a well-known disorder in Iranian Traditional Medicine (ITM. Iranian physicians have divided burns into various types based on the cause and recommended treatment for each type. According to ITM references, herbal therapy was the major treatment prescribed by Iranian physicians for burns. In the present study, seven ancient Iranian medical texts were screened for the herbs with burn healing effects along with their applied dosage forms. The medicinal herbs were listed and scored based on the frequency of their repetition. Moreover, the best scientific name that was suitable for each plant as well as surveying modern studies about their biological effects has been carried out. In our investigation eighteen plants with seven topical application categories have been obtained as the most frequent herbs for burn healing in ITM. Modern studies have revealed that these plants have shown some biological activities such as anti-inflammatory, antimicrobial and antioxidant effects which might establish the relationship between the mentioned activities and burn wound healing property. This list can provide a suitable resource for future researches in the field of burn treatment.

  17. Aeromonas hydrophila in a burn patient.

    Science.gov (United States)

    Yasti, Ahmet Cinar; Otan, Emrah; Doganay, Mutlu; Kama, Nuri A

    2009-01-01

    Infectious consequences are still a major problem and leading cause of mortality in burn patients. Among others, aeromonads need special concern because they mimic pseudomonal infections; however, they have a more rapid progression with considerable mortality if undiagnosed promptly. Here, we present a major burn case extinguished with tap water pooled in a tank. With the possibility of aeromonal infection in mind, the patient underwent aggressive debridement with proper antibiotic medication, which resulted in a successful patient management. Aeromonads should always be kept in mind in burn cases that contacted with tanked water or soil after the burn. PMID:19692919

  18. Burn site groundwater interim measures work plan.

    Energy Technology Data Exchange (ETDEWEB)

    Witt, Jonathan L. (North Wind, Inc., Idaho Falls, ID); Hall, Kevin A. (North Wind, Inc., Idaho Falls, ID)

    2005-05-01

    This Work Plan identifies and outlines interim measures to address nitrate contamination in groundwater at the Burn Site, Sandia National Laboratories/New Mexico. The New Mexico Environment Department has required implementation of interim measures for nitrate-contaminated groundwater at the Burn Site. The purpose of interim measures is to prevent human or environmental exposure to nitrate-contaminated groundwater originating from the Burn Site. This Work Plan details a summary of current information about the Burn Site, interim measures activities for stabilization, and project management responsibilities to accomplish this purpose.

  19. Understanding the stagnation and burn of implosions on NIF

    Science.gov (United States)

    Kilkenny, J. D.; Caggiano, J. A.; Hatarik, R.; Knauer, J. P.; Sayre, D. B.; Spears, B. K.; Weber, S. V.; Yeamans, C. B.; Cerjan, C. J.; Divol, L.; Eckart, M. J.; Glebov, V. Yu; Herrmann, H. W.; Le Pape, S.; Munro, D. H.; Grim, G. P.; Jones, O. S.; Berzak-Hopkins, L.; Gatu-Johnson, M.; Mackinnon, A. J.; Meezan, N. B.; Casey, D. T.; Frenje, J. A.; Mcnaney, J. M.; Petrasso, R.; Rinderknecht, H.; Stoeffl, W.; Zylstra, A. B.

    2016-03-01

    An improved the set of nuclear diagnostics on NIF measures the properties of the stagnation plasma of implosions, including the drift velocity, areal density (ρr) anisotropy and carbon ρr of the compressed core. Two types of deuterium-tritium (DT) gas filled targets are imploded by shaped x-ray pulses, producing stagnated and burning DT cores of radial convergence (Cr) ∼ 5 or ∼20. Comparison with two-dimensional modeling with inner and outer surface mix shows good agreement with nuclear measurements.

  20. Preparation of very pure active carbon

    International Nuclear Information System (INIS)

    The preparation of very pure active carbon is described. Starting from polyvinylidene chloride active carbon is prepared by carbonization in a nitrogen atmosphere, grinding, sieving and activation of the powder fraction with CO2 at 9500 to approximately 50% burn-off. The concentrations of trace and major elements are reduced to the ppb and ppm level, respectively. In the present set-up 100 g of carbon grains and approximately 50 g of active carbon powder can be produced weekly

  1. Electrical burns of the abdomen

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar Srivastava

    2013-01-01

    Full Text Available A 35-year-old male farmer came in contact with 11,000 volts high tension electric wire and sustained full thickness burn wounds over scapula, upper limb and anterior abdominal wall along with perforation of the intestine. Patient was initially managed conservatively in general surgery ward and was referred to us after 3 days with necrosis of the burned skin and muscles over the shoulder and abdomen. Patient was initially managed conservatively and then thorough debridement of the necrotic skin over the left shoulder and upper arm was done and the area was split skin grafted. Patient developed enterocutaneous fistula, which healed over a period of 8 weeks. The granulating wound over the abdomen was also skin grafted and patient was discharged after 18 days. About 4 months, after the discharge patient presented with ventral hernia. Repair of ventral hernia by synthetic mesh application and reconstruction of the abdominal wall with a free tensor fascia lata flap was done over the mesh, but the flap failed. Then after debridement two random pattern transposition skin flaps, one from the right upper and another from the left lower abdomen were transposed over the abdominal wound and donor area was skin grafted. Patient was discharged after 17 days.

  2. Deciding Where to Burn: Stakeholder Priorities for Prescribed Burning of a Fire-Dependent Ecosystem

    Directory of Open Access Journals (Sweden)

    Aaron Moody

    2011-03-01

    Full Text Available Multiagency partnerships increasingly work cooperatively to plan and implement fire management. The stakeholders that comprise such partnerships differ in their perceptions of the benefits and risks of fire use or nonuse. These differences inform how different stakeholders prioritize sites for burning, constrain prescribed burning, and how they rationalize these priorities and constraints. Using a survey of individuals involved in the planning and implementation of prescribed fire in the Onslow Bight region of North Carolina, we examined how the constraints and priorities for burning in the longleaf pine (Pinus palustris ecosystem differed among three stakeholder groups: prescribed burn practitioners from agencies, practitioners from private companies, and nonpractitioners. Stakeholder groups did not differ in their perceptions of constraints to burning, and development near potentially burned sites was the most important constraint identified. The top criteria used by stakeholders to decide where to burn were the time since a site was last burned, and a site's ecosystem health, with preference given to recently burned sites in good health. Differences among stakeholder groups almost always pertained to perceptions of the nonecological impacts of burning. Prescribed burning priorities of the two groups of practitioners, and particularly practitioners from private companies, tended to be most influenced by nonecological impacts, especially through deprioritization of sites that have not been burned recently or are in the wildland-urban interface (WUI. Our results highlight the difficulty of burning these sites, despite widespread laws in the southeast U.S. that limit liability of prescribed burn practitioners. To avoid ecosystem degradation on sites that are challenging to burn, particularly those in the WUI, conservation partnerships can facilitate demonstration projects involving public and private burn practitioners on those sites. In summary

  3. Medical management of paediatric burn injuries: best practice.

    Science.gov (United States)

    Kim, Leo K P; Martin, Hugh C O; Holland, Andrew J A

    2012-04-01

    Burns commonly occur in children and their first aid remains inadequate despite burn prevention programmes. While scald injuries predominate, contact and flame burns remain common. Although typically less severe injuries overall than those in adults, hypertrophic scarring complicating both the burn wound and even donor sites occur more frequently in children. The heterogeneous nature of burn wounds, coupled with the difficulties associated with the early clinical assessment of burn depth, has stimulated the application of novel technologies to predict burn wound outcome. This review explores current best practice in the management of paediatric burns, with a focus on prevention, optimal first aid, resuscitation, burn wound prediction and wound management strategies.

  4. How Disabling Are Pediatric Burns? Functional Independence in Dutch Pediatric Patients with Burns

    Science.gov (United States)

    Disseldorp, Laurien M.; Niemeijer, Anuschka S.; Van Baar, Margriet E.; Reinders-Messelink, Heleen A.; Mouton, Leonora J.; Nieuwenhuis, Marianne K.

    2013-01-01

    Although the attention for functional outcomes after burn injury has grown over the past decades, little is known about functional independence in performing activities of daily living in children after burn injury. Therefore, in this prospective cohort study functional independence was measured by burn care professionals with the WeeFIM[R]…

  5. National programme for prevention of burn injuries

    Directory of Open Access Journals (Sweden)

    Gupta J

    2010-10-01

    Full Text Available The estimated annual burn incidence in India is approximately 6-7 million per year. The high incidence is attributed to illiteracy, poverty and low level safety consciousness in the population. The situation becomes further grim due to the absence of organized burn care at primary and secondary health care level. But the silver lining is that 90% of burn injuries are preventable. An initiative at national level is need of the hour to reduce incidence so as to galvanize the available resources for more effective and standardized treatment delivery. The National Programme for Prevention of Burn Injuries is the endeavor in this line. The goal of National programme for prevention of burn injuries (NPPBI would be to ensure prevention and capacity building of infrastructure and manpower at all levels of health care delivery system in order to reduce incidence, provide timely and adequate treatment to burn patients to reduce mortality, complications and provide effective rehabilitation to the survivors. Another objective of the programme will be to establish a central burn registry. The programme will be launched in the current Five Year Plan in Medical colleges and their adjoining district hospitals in few states. Subsequently, in the next five year plan it will be rolled out in all the medical colleges and districts hospitals of the country so that burn care is provided as close to the site of accident as possible and patients need not to travel to big cities for burn care. The programme would essentially have three components i.e. Preventive programme, Burn injury management programme and Burn injury rehabilitation programme.

  6. Spatio-Temporal Trends of Fire in Slash and Burn Agriculture Landscape: A Case Study from Nagaland, India

    OpenAIRE

    Padalia, H.; Mondal, P. P.

    2014-01-01

    Increasing incidences of fire from land conversion and residue burning in tropics is the major concern in global warming. Spatial and temporal monitoring of trends of fire incidences is, therefore, significant in order to determine contribution of carbon emissions from slash and burn agriculture. In this study, we analyzed time-series Terra / Aqua MODIS satellite hotspot products from 2001 to 2013 to derive intra- and inter-annual trends in fire incidences in Nagaland state, located ...

  7. Treating burns caused by hydrofluoric acid.

    Science.gov (United States)

    Summers, Anthony

    2011-06-01

    Hydrofluoric acid is an ingredient of many common household and industrial solutions. Even seemingly minor burns caused by this acid can have catastrophic effects if they are treated inappropriately or late. This article describes the signs and symptoms, the pathophysiology and the emergency management of hydrofluoric acid burns.

  8. Burns: an update on current pharmacotherapy

    Science.gov (United States)

    Rojas, Yesinia; Finnerty, Celeste C.; Radhakrishnan, Ravi S.; Herndon, David N.

    2013-01-01

    Introduction The world-wide occurrence of burn injuries remains high despite efforts to reduce injury incidence through public awareness campaigns and improvements in living conditions. In 2004, almost 11 million people experienced burns severe enough to warrant medical treatment. Advances over the past several decades in aggressive resuscitation, nutrition, excision, and grafting have reduced morbidity and mortality. Incorporation of pharmacotherapeutics into treatment regimens may further reduce complications of severe burn injuries. Areas covered Severe burn injuries, as well as other forms of stress and trauma, trigger a hypermetabolic response that, if left untreated, impedes recovery. In the past two decades, use of anabolic agents, beta adrenergic receptor antagonists, and anti-hyperglycemic agents has successfully counteracted post-burn morbidities including catabolism, the catecholamine-mediated response, and insulin resistance. Here we review the most up-to-date information on currently used pharmacotherapies in the treatment of these sequelae of severe burns and the insights that have expanded our understanding of the pathophysiology of severe burns. Expert opinion Existing drugs offer promising advances in the care of burn injuries. Continued gains in our understanding of the molecular mechanisms driving the hypermetabolic response will enable the application of additional existing drugs to be broadened to further attenuate the hypermetabolic response. PMID:23121414

  9. Burn Injury Arise From Flying Balloon Toys

    Directory of Open Access Journals (Sweden)

    Yalcin Kulahci

    2007-08-01

    Full Text Available Many of peoples are faced minor or major burn injuries in their life. Even the most widespread burn cause is flame injuries, too different burn cause pointed out in literature like Acetylen burns. The cases which imply in literature, mostly causes from explosion of high pressure acetylene tube, metal oxygene patch flame or carbide lamp using from cave explorers. An interesting acetylene burn cause in Turkey was publised by the authors. This cases was to come into being from flying toy balloons flame. 80 person was injured from flying toy ballons flame in a meeting in 2002. Although this potential risks of acetylene, helium have not any of some risk. But helium was provided from other countries and have more price. The injuries which caused from acetylene burns like 1st -2nd degree burns. Consequently that was known helium is more avaliable for using in toy sector, and never cause burn injuries like this. [TAF Prev Med Bull. 2007; 6(4: 291-296

  10. Burn Injury Arise From Flying Balloon Toys

    Directory of Open Access Journals (Sweden)

    Yalcin Kulahci

    2007-08-01

    Full Text Available Many of peoples are faced minor or major burn injuries in their life. Even the most widespread burn cause is flame injuries, too different burn cause pointed out in literature like Acetylen burns. The cases which imply in literature, mostly causes from explosion of high pressure acetylene tube, metal oxygene patch flame or carbide lamp using from cave explorers. An interesting acetylene burn cause in Turkey was publised by the authors. This cases was to come into being from flying toy balloons flame. 80 person was injured from flying toy ballons flame in a meeting in 2002. Although this potential risks of acetylene, helium have not any of some risk. But helium was provided from other countries and have more price. The injuries which caused from acetylene burns like 1st -2nd degree burns. Consequently that was known helium is more avaliable for using in toy sector, and never cause burn injuries like this. [TAF Prev Med Bull 2007; 6(4.000: 291-296

  11. How Does the Freezer Burn Our Food?

    Science.gov (United States)

    Schmidt, Shelly J.; Lee, Joo Won

    2009-01-01

    Freezer burn is a common problem that significantly affects the color, texture, and flavor of frozen foods. Food science students should be able to clearly explain the causes and consequences of freezer burn. However, it is difficult to find a modern, detailed, accurate, yet concise, explanation of the mechanism and factors influencing the rate of…

  12. Skin Dendritic Cells in Burn Patients

    OpenAIRE

    D’Arpa, N.; D’Amelio, L.; Accardo-Palumbo, A.; Pileri, D.; Mogavero, R.; Amato, G.; Napoli, B.; Alessandro, G.; Lombardo, C.; F. Conte

    2009-01-01

    The body's immunological response to burn injury has been a subject of great inquiry in recent years. Burn injury disturbs the immune system, resulting in a progressive suppression of the immune response that is thought to contribute to the development of sepsis. Dendritic cells (DCs) are potent antigen-presenting cells that possess the ability to stimulate naïve T cells.

  13. BURN WOUND HEALING ACTIVITY OF Euphorbia hirta

    OpenAIRE

    Jaiprakash, B.; Chandramohan,; Reddy, D. Narishma

    2006-01-01

    The Ethanolic extract of whole plant of Euphorbia hirta was screened for burn wound healing activity in rats as 2% W/W cream. The study was carried out based on the assessment of percentage reduction in original wound. It showed significant burn wound healing activity.

  14. A ring burn--electric or contact?

    Science.gov (United States)

    Attalla, M F; el-Ekiabi, S; Al-Baker, A

    1990-02-01

    A circumferential band of deep burn affecting the ring finger sustained by a car electrician is presented. Although it was caused by short circuiting the car battery by a metal spanner and the ring he was wearing, the injury was purely a contact burn. PMID:2322399

  15. 'Sabbath' electric plate burn: a ritual hazard.

    Science.gov (United States)

    Benmeir, P; Sagi, A; Rosenberg, L; Picard, E; Ben Yakar, Y

    1989-02-01

    This report describes the burns caused by an electric hot plate which is used by orthodox Jews for keeping food and liquids warm during the Sabbath (Saturday). An illustrative case is presented and the preventable aspects of this particular burn are discussed.

  16. Pathophysiologic Response to Burns in the Elderly

    Directory of Open Access Journals (Sweden)

    Marc G. Jeschke

    2015-10-01

    Full Text Available Over the last decades advancements have improved survival and outcomes of severely burned patients except one population, elderly. The Lethal Dose 50 (LD50 burn size in elderly has remained the same over the past three decades, and so has morbidity and mortality, despite the increased demand for elderly burn care. The objective of this study is to gain insights on why elderly burn patients have had such a poor outcome when compared to adult burn patients. The significance of this project is that to this date, burn care providers recognize the extreme poor outcome of elderly, but the reason remains unclear. In this prospective translational trial, we have determined clinical, metabolic, inflammatory, immune, and skin healing aspects. We found that elderly have a profound increased mortality, more premorbid conditions, and stay at the hospital for longer, p  0.05, but a significant increased incidence of multi organ failure, p < 0.05. These clinical outcomes were associated with a delayed hypermetabolic response, increased hyperglycemic and hyperlipidemic responses, inversed inflammatory response, immune-compromisation and substantial delay in wound healing predominantly due to alteration in characteristics of progenitor cells, p < 0.05. In summary, elderly have substantially different responses to burns when compared to adults associated with increased morbidity and mortality. This study indicates that these responses are complex and not linear, requiring a multi-modal approach to improve the outcome of severely burned elderly.

  17. Pathophysiologic Response to Burns in the Elderly.

    Science.gov (United States)

    Jeschke, Marc G; Patsouris, David; Stanojcic, Mile; Abdullahi, Abdikarim; Rehou, Sarah; Pinto, Ruxandra; Chen, Peter; Burnett, Marjorie; Amini-Nik, Saeid

    2015-10-01

    Over the last decades advancements have improved survival and outcomes of severely burned patients except one population, elderly. The Lethal Dose 50 (LD50) burn size in elderly has remained the same over the past three decades, and so has morbidity and mortality, despite the increased demand for elderly burn care. The objective of this study is to gain insights on why elderly burn patients have had such a poor outcome when compared to adult burn patients. The significance of this project is that to this date, burn care providers recognize the extreme poor outcome of elderly, but the reason remains unclear. In this prospective translational trial, we have determined clinical, metabolic, inflammatory, immune, and skin healing aspects. We found that elderly have a profound increased mortality, more premorbid conditions, and stay at the hospital for longer, p 0.05, but a significant increased incidence of multi organ failure, p response, increased hyperglycemic and hyperlipidemic responses, inversed inflammatory response, immune-compromisation and substantial delay in wound healing predominantly due to alteration in characteristics of progenitor cells, p responses to burns when compared to adults associated with increased morbidity and mortality. This study indicates that these responses are complex and not linear, requiring a multi-modal approach to improve the outcome of severely burned elderly.

  18. Bubble bath burns: an unusual case.

    Science.gov (United States)

    Nizamoglu, Metin; Tan, Alethea; El-Muttardi, Naguib

    2016-01-01

    We present an unusual case of flash burn injury in an adolescent following accidental combination of foaming bath bubbles and tea light candle flame. There has not been any reported similar case described before. This serves as a learning point for public prevention and clinicians managing burn injuries. PMID:27583271

  19. Epidemiology of major burns at the Lebanese Burn Center in Geitawi, Lebanon

    OpenAIRE

    Ghanimé, G.; Rizkallah, N.; Said, J.M.

    2013-01-01

    Burn care is one of the few areas in medicine considered both medically and surgically challenging, with burn injuries affecting people of all ages and both sexes. Between May 1992 and March 2012, 1,524 patients were admitted to the Lebanese Burn Center in Geitawi, with an average length of stay (LOS) of 36.5 days. The most frequently encountered injuries were thermal burns, generally resulting from domestic accidents. Of our patients, 47% were from rural areas and burned body surface (BBS) w...

  20. Impacts of prescribed burning on soil greenhouse gas fluxes in a suburban native forest of south-eastern Queensland, Australia

    Science.gov (United States)

    Zhao, Y.; Wang, Y. Z.; Xu, Z. H.; Fu, L.

    2015-11-01

    Prescribed burning is a forest management practice that is widely used in Australia to reduce the risk of damaging wildfires. Prescribed burning can affect both carbon (C) and nitrogen (N) cycling in the forest and thereby influence the soil-atmosphere exchange of major greenhouse gases, i.e. carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). To quantify the impact of a prescribed burning (conducted on 27 May 2014) on greenhouse gas exchange and the potential controlling mechanisms, we carried out a series of field measurements before (August 2013) and after (August 2014 and November 2014) the fire. Gas exchange rates were determined in four replicate plots which were burned during the combustion and in another four adjacent unburned plots located in green islands, using a set of static chambers. Surface soil properties including temperature, pH, moisture, soil C and N pools were also determined either by in situ measurement or by analysing surface 10 cm soil samples. All of the chamber measurements indicated a net sink of atmospheric CH4, with mean CH4 uptake ranging from 1.15 to 1.99 mg m-2 d-1. Prescribed burning significantly enhanced CH4 uptake as indicated by the significant higher CH4 uptake rates in the burned plots measured in August 2014. In the following 3 months, the CH4 uptake rate was recovered to the pre-burning level. Mean CO2 emission from the forest soils ranged from 2721.76 to 7113.49 mg m-2 d-1. The effect of prescribed burning on CO2 emission was limited within the first 3 months, as no significant difference was observed between the burned and the adjacent unburned plots in both August and November 2014. The CO2 emissions showed more seasonal variations, rather than the effects of prescribed burning. The N2O emission in the plots was quite low, and no significant impact of prescribed burning was observed. The changes in understory plants and litter layers, surface soil temperature, C and N substrate availability and microbial

  1. The Ocular Surface Chemical Burns

    Directory of Open Access Journals (Sweden)

    Medi Eslani

    2014-01-01

    Full Text Available Ocular chemical burns are common and serious ocular emergencies that require immediate and intensive evaluation and care. The victims of such incidents are usually young, and therefore loss of vision and disfigurement could dramatically affect their lives. The clinical course can be divided into immediate, acute, early, and late reparative phases. The degree of limbal, corneal, and conjunctival involvement at the time of injury is critically associated with prognosis. The treatment starts with simple but vision saving steps and is continued with complicated surgical procedures later in the course of the disease. The goal of treatment is to restore the normal ocular surface anatomy and function. Limbal stem cell transplantation, amniotic membrane transplantation, and ultimately keratoprosthesis may be indicated depending on the patients’ needs.

  2. Clinker Burning Kinetics and Mechanism

    DEFF Research Database (Denmark)

    Telschow, Samira

    dimensions, rotation velocity, temperature, gas composition, heat transfer phenomena, etc. These conditions can only be partly simulated in ordinary lab-scale experiments. Thus, the objectives of this project have been to establish test equipment to simulate the industrial clinker burning process......The industrial cement process is subject to several changes in order to reduce the high energy consumption and thereby increase the profitability of cement production. These changes also affect the core of the entire cement producing process: the clinker formation in the rotary kiln. Thus, in order...... to maintain or even improve clinker quality (and output), we need a better understanding of the development of clinker properties inside the kiln to react upon the impact of process changes. Clinker formation in industrial rotary kilns is very complex due to a vast number of interacting parameters: kiln...

  3. Numerical study of external burning flowfields

    Science.gov (United States)

    Bittner, Robert D.; Mcclinton, Charles R.

    1991-01-01

    This paper demonstrates the successful application of CFD to modeling an external burning flowfield. The study used the 2D, 3D, and PNS versions of the SPARK code. Various grids, boundary conditions, and ignition methodologies have been employed. Flameholding was achieved through the use of a subsonic outflow condition and a hot block located behind the step to ignite the fuel. Since the resulting burning produces a large subsonic region downstream of the cowl, this entire surface can be pressurized to the level of the back pressure. An evaluation of interactions between the ramjet exhaust and the external burning products demonstrate the complexity of this design issue. Ths code is now capable of evaluating the external burning effectiveness for flight vehicles using simple injector schemes, and the methodology can be readily applied to other external burning designs.

  4. Modern trends in fluid therapy for burns.

    Science.gov (United States)

    Tricklebank, Stephen

    2009-09-01

    The majority of burn centres use the crystalloid-based Parkland formula to guide fluid therapy, but patients actually receive far more fluid than the formula predicts. Resuscitation with large volumes of crystalloid has numerous adverse consequences, including worsening of burn oedema, conversion of superficial into deep burns, and compartment syndromes. Resuscitation fluids influence the inflammatory response to burns in different ways and it may be possible, therefore to affect this response using the appropriate fluid, at the appropriate time. Starches are effective volume expanders and early use of newer formulations may limit resuscitation requirements and burn oedema by reducing inflammation and capillary leak. Advanced endpoint monitoring may guide clinicians in when to 'turn off' aggressive fluid therapy and therefore avoid the problems of over-resuscitation.

  5. Kitchen Cooking Burns a Real Danger for Kids

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_160530.html Kitchen Cooking Burns a Real Danger for Kids Establish a ' ... this burn accident was not an isolated case. Cooking burns are common among American children, but can ...

  6. Coping with severe burns in the early stage after burn injury.

    Science.gov (United States)

    Bras, Marijana; Loncar, Zoran; Brajković, Lovorka; Gregurek, Rudolf; Micković, Vlatko

    2007-03-01

    This study examined the relationship between coping strategies, anxiety and depression levels and burn injury characteristics in the early phase of the treatment in burn-injured patients. Seventy patients with severe burns were interviewed within two weeks of their burn trauma. Coping strategies were measured by the coping with burns questionnaire (CBQ). Anxiety and depression levels were assessed with the Beck Depression Inventory and the Beck Anxiety Inventory. There were no statistically significant gender differences in various coping strategies. Avoidance was associated with higher levels of anxiety, depression and hopelessness. The percentage of total body surface area (TBSA) and localization of burns were not associated with coping patterns. Implications for the assessment and management of burn injured patients were discussed.

  7. MORBIDITY AND SURVIVAL PROBABILITY IN BURN PATIENTS IN MODERN BURN CARE

    Science.gov (United States)

    Jeschke, Marc G.; Pinto, Ruxandra; Kraft, Robert; Nathens, Avery B.; Finnerty, Celeste C.; Gamelli, Richard L.; Gibran, Nicole S.; Klein, Matthew B.; Arnoldo, Brett D.; Tompkins, Ronald G.; Herndon, David N.

    2014-01-01

    Objective Characterizing burn sizes that are associated with an increased risk of mortality and morbidity is critical because it would allow identifying patients who might derive the greatest benefit from individualized, experimental, or innovative therapies. Although scores have been established to predict mortality, few data addressing other outcomes exist. The objective of this study was to determine burn sizes that are associated with increased mortality and morbidity after burn. Design and Patients Burn patients were prospectively enrolled as part of the multicenter prospective cohort study, Inflammation and the Host Response to Injury Glue Grant, with the following inclusion criteria: 0–99 years of age, admission within 96 hours after injury, and >20% total body surface area burns requiring at least one surgical intervention. Setting Six major burn centers in North America. Measurements and Main Results Burn size cutoff values were determined for mortality, burn wound infection (at least two infections), sepsis (as defined by ABA sepsis criteria), pneumonia, acute respiratory distress syndrome, and multiple organ failure (DENVER2 score >3) for both children (<16 years) and adults (16–65 years). Five-hundred seventy-three patients were enrolled, of which 226 patients were children. Twenty-three patients were older than 65 years and were excluded from the cutoff analysis. In children, the cutoff burn size for mortality, sepsis, infection, and multiple organ failure was approximately 60% total body surface area burned. In adults, the cutoff for these outcomes was lower, at approximately 40% total body surface area burned. Conclusions In the modern burn care setting, adults with over 40% total body surface area burned and children with over 60% total body surface area burned are at high risk for morbidity and mortality, even in highly specialized centers. PMID:25559438

  8. [Quantification of crop residue burned areas based on burning indices using Landsat 8 image].

    Science.gov (United States)

    Ma, Jian-hang; Song, Kai-shar; Wen, Zhi-dan; Shao, Tian-tian; Li, Bo-nan; Qi, Cai

    2015-11-01

    Crop residue burning leads to atmospheric pollution and is an enormous waste of crop residue resource. Crop residue burning can be monitored timely in large regions as the fire points can be recognized through remotely sensed image via thermal infrared bands. However, the area, the detailed distribution pattern and especially the severity of the burning areas cannot be derived only by the thermal remote sensing approach. The burning index, which was calculated with two or more spectral bands at where the burned and unburned areas have distinct spectral characteristics, is widely used in the forest fire investigation. However its potential application for crop residue burning evaluation has not been explored. With two Landsat 8 images that cover a part of the Songnen Plain, three burning indices, i.e., the normalized burned ratio (NBR), the normalized burned ratio incorporating the thermal band (NBRT), and the burned area index (BAI), were used to classify the crop residue burned and unburned areas. The overall classification accuracies were 91.9%, 92.3%, and 87.8%, respectively. The correlation analysis between the indices and the crop residue coverage indicated that the NBR and NBRT were positively correlated with the crop residue coverage (R2 = 0.73 and 0.64, respectively) with linear regression models, while the BAI was exponentially correlated with the crop residue coverage (R2 = 0.68). The results indicated that the use of burning indices in crop residue burning monitoring could quantify crop residue burning severity and provide valuable data for evaluating atmospheric pollution.

  9. [Quantification of crop residue burned areas based on burning indices using Landsat 8 image].

    Science.gov (United States)

    Ma, Jian-hang; Song, Kai-shar; Wen, Zhi-dan; Shao, Tian-tian; Li, Bo-nan; Qi, Cai

    2015-11-01

    Crop residue burning leads to atmospheric pollution and is an enormous waste of crop residue resource. Crop residue burning can be monitored timely in large regions as the fire points can be recognized through remotely sensed image via thermal infrared bands. However, the area, the detailed distribution pattern and especially the severity of the burning areas cannot be derived only by the thermal remote sensing approach. The burning index, which was calculated with two or more spectral bands at where the burned and unburned areas have distinct spectral characteristics, is widely used in the forest fire investigation. However its potential application for crop residue burning evaluation has not been explored. With two Landsat 8 images that cover a part of the Songnen Plain, three burning indices, i.e., the normalized burned ratio (NBR), the normalized burned ratio incorporating the thermal band (NBRT), and the burned area index (BAI), were used to classify the crop residue burned and unburned areas. The overall classification accuracies were 91.9%, 92.3%, and 87.8%, respectively. The correlation analysis between the indices and the crop residue coverage indicated that the NBR and NBRT were positively correlated with the crop residue coverage (R2 = 0.73 and 0.64, respectively) with linear regression models, while the BAI was exponentially correlated with the crop residue coverage (R2 = 0.68). The results indicated that the use of burning indices in crop residue burning monitoring could quantify crop residue burning severity and provide valuable data for evaluating atmospheric pollution. PMID:26915202

  10. Threshold age and burn size associated with poor outcomes in the elderly after burn injury.

    Science.gov (United States)

    Jeschke, Marc G; Pinto, Ruxandra; Costford, Sheila R; Amini-Nik, Saeid

    2016-03-01

    Elderly burn care represents a vast challenge. The elderly are one of the most susceptible populations to burn injuries, but also one of the fastest growing demographics, indicating a substantial increase in patient numbers in the near future. Despite the need and importance of elderly burn care, survival of elderly burn patients is poor. Additionally, little is known about the responses of elderly patients after burn. One central question that has not been answered is what age defines an elderly patient. The current study was conducted to determine whether there is a cut-off age for elderly burn patients that is correlated with an increased risk for mortality and to determine the burn size in modern burn care that is associated with increased mortality. To answer these questions, we applied appropriate statistical analyses to the Ross Tilley Burn Centre and the Inflammatory and Host Response to Injury databases. We could not find a clear cut-off age that differentiates or predicts between survival and death. Risk of death increased linearly with increasing age. Additionally, we found that the LD50 decreases from 45% total body surface area (TBSA) to 25% TBSA from the age of 55 years to the age of 70 years, indicating that even small burns lead to poor outcome in the elderly. We therefore concluded that age is not an ideal to predictor of burn outcome, but we strongly suggest that burn care providers be aware that if an elderly patient sustains even a 25% TBSA burn, the risk of mortality is 50% despite the implementation of modern protocolized burn care.

  11. Calcium and ER Stress Mediate Hepatic Apoptosis after Burn Injury

    OpenAIRE

    Jeschke, Marc G.; Gauglitz, Gerd G.; Song, Juquan; Kulp, Gabriela A; Finnerty, Celeste C.; Cox, Robert A.; Barral, José M.; Herndon, David N; Boehning, Darren

    2009-01-01

    A hallmark of the disease state following severe burn injury is decreased liver function, which results in gross metabolic derangements that compromise patient survival. The underlying mechanisms leading to hepatocyte dysfunction post-burn are essentially unknown. The aim of the present study was to determine the underlying mechanisms leading to hepatocyte dysfunction and apoptosis post-burn. Rats were randomized to either control (no burn) or burn (60% total body surface area burn) and sacri...

  12. Burn wound: How it differs from other wounds?

    OpenAIRE

    Tiwari, V K

    2012-01-01

    Management of burn injury has always been the domain of burn specialists. Since ancient time, local and systemic remedies have been advised for burn wound dressing and burn scar prevention. Management of burn wound inflicted by the different physical and chemical agents require different regimes which are poles apart from the regimes used for any of the other traumatic wounds. In extensive burn, because of increased capillary permeability, there is extensive loss of plasma leading to shock wh...

  13. Role of Antioxidants in the Treatment of Burn Lesions

    OpenAIRE

    Al-Jawad, F.H.; Sahib, A.S.; Al-Kaisy, A.A.

    2008-01-01

    Burns are a major health problem worldwide, with high mortality and morbidity in addition to causing changes in the quality of life of burn patients. Utilizing antioxidant therapeutic strategies depending on new mechanisms involved in the pathogenesis of burns-related "oxidative stress" may be considered a promising step in burns management. This study involved 180 burn patients of varying age and either sex and with varying burns percentages. The patients were subdivided into six groups (A, ...

  14. Reactive burn models and ignition & growth concept

    Directory of Open Access Journals (Sweden)

    Shaw M.S.

    2011-01-01

    Full Text Available Plastic-bonded explosives are heterogeneous materials. Experimentally, shock initiation is sensitive to small amounts of porosity, due to the formation of hot spots (small localized regions of high temperature. This leads to the Ignition & Growth concept, introduced by LeeTarver in 1980, as the basis for reactive burn models. A homo- genized burn rate needs to account for three meso-scale physical effects: (i the density of active hot spots or burn centers; (ii the growth of the burn fronts triggered by the burn centers; (iii a geometric factor that accounts for the overlap of deflagration wavelets from adjacent burn centers. These effects can be combined and the burn model defined by specifying the reaction progress variable λ = g(s as a function of a dimensionless reaction length s(t = rbc/ℓbc, rather than by specifying an explicit burn rate. The length scale ℓbc(Ps = [Nbc(Ps]−1/3 is the average distance between burn centers, where Nbc is the number density of burn centers activated by the lead shock. The reaction length rbc(t = ∫t0 D(P(t′dt′ is the distance the burn front propagates from a single burn center, where D(P is the deflagration speed as a function of the local pressure and t is the time since the shock arrival. A key implementation issue is how to determine the lead shock strength in conjunction with a shock capturing scheme. We have developed a robust algorithm for this purpose based on the Hugoniot jump condition for the energy. The algorithm utilizes the time dependence of density, pressure and energy within each cell. The method is independent of the numerical dissipation used for shock capturing. It is local and can be used in one or more space dimensions. The burn model has a small number of parameters which can be calibrated to fit velocity gauge data from shock initiation experiments.

  15. Lean-burn engines UHC emission reduction

    International Nuclear Information System (INIS)

    The effect of adding hydrogen to methane as a fuel for spark ignited engines has been extensively investigated. Both the possibility of adding a limited amount of hydrogen as well as equal amounts of hydrogen and carbon dioxide to natural gas has been investigated. A 10 vol% addition of hydrogen to the natural gas caused a reduction in UHC of approximately 40%, and an increase in efficiency of approximately three percentage points at the test engine. It is unknown if the gain is representative for large engines. Similar results for UHC reduction and efficiency were obtained for combined hydrogen and carbon dioxide addition. The carbon dioxide was added by exhaust gas recirculation. However, the price of hydrogen, makes this idea uneconomical even when carbon dioxide is readily available through recirculation of engine exhaust. Adiabatic prereforming may be used to convert natural gas into methane, hydrogen and carbon dioxide in order to generate hydrogen and at the same time increase the methane number. The process has been found to be competitive with adding of hydrogen but it is still not economical. The effect of NO/NO2 on methane oxidation has been studied both theoretically and experimentally. A detailed kinetic modelling study of the UHC conversion dependency of exhaust gas parameters is reported and the project has contributed to the theoretical understanding of the oxidation chemistry. Both NO and NH3 addition to the engine inlet was used to increase the NOx level, and the general trend was a decrease in UHC as the NOx level increased, both in cylinger, manifold and rector. From the data it is concluded that NO and NH3 addition have identical effects. The results show a 15-35% decrease in manifold UHC. However, the increased emissions of NOx and CO associated with this process must be realised. Field tests show a 28% UHC reduction without an increase in CO emission. The UHC oxidation in the exhaust reactor has been tested at increased NOx levels and the

  16. Re-burning of ash in grate boilers; Omfoerbraenning av askor i rosterpannor

    Energy Technology Data Exchange (ETDEWEB)

    Bergqvist, Kristina; Myringer, Aase; Nordgren, Daniel; Rydberg, Stina [Vattenfall Utveckling AB, Aelvkarleby (Sweden)

    2005-03-01

    High contents of unburnt carbon in ashes that are dumped or recycled, is questionable from both an economical and an environmental point of view. The content of unburnt carbon in bottom and fly ash from grate boilers varies greatly between different plants but can sometimes exceed 50 %. Re-burning of ash that is separated before a final dust separation, is a relatively cheep and simple method for reducing the content of unburnt carbon in ash, which both reduces the fuel cost and the deposit cost, i.e. the cost of landfilling or recycling. As from 2005 it is prohibited to deposit ash with a too high content of unburnt organic material; the content is limited to 18 weight % of unburnt carbon. The study was carried out in two phases. The aim of the first phase was to map the different techniques used for re-burning ash that are used in grate boilers today. The mapping was done through telephone interviews and comprises technical descriptions of the systems, gathering of operational know-how, installations costs and the effect of the systems on the amount of ash generated at the plants and the content of unburnt carbon in the ash. In order to accomplish a deeper technical and economical evaluation of ash re-burning systems, the second phase involved field studies at two plants. In addition screening tests were done to investigate the connection between the content of unburnt carbon and particle size. The potential of reducing the amount of circulated inorganic material by sieving the ash before bringing it back to the furnace could thereby be determined. 13 plants that utilize re-burning of ash were identified, of which two plants re-burn the bottom ash that floats up to the surface in the wet ash removal system. The remaining 11 plants re-burn fly ash. At three plants the fly ash is first separated in a mesh sieve or similar equipment and only the coarser fly ash is re-burnt. As the amount of bottom ash that surfaces in the wet ash-removal is relatively small

  17. Characterization of residual coke during burning

    Energy Technology Data Exchange (ETDEWEB)

    Pieck, C.L.; Jablonski, E.L.; Parera, J.M. (Inst. de Investigaciones in Catalisis y Petroquimica, Santiago del Estero 2654, 3000 Santa Fe (Argentina)); Frety, R. (Conventionne a l' Univ. Claude Bernard, Lyon I (France))

    1992-04-01

    In this paper coke remaining from the partial burning of coke deposited during the commercial re-forming of naphtha on a Pt-Re/Al[sub 2]O[sub 3] catalyst is studied. Burning temperatures are 623-923 K, and the remaining coke is characterized by temperature-programmed oxidation, X-ray diffraction, electron diffraction, IR, [sup 13]C CP-MAS NMR, electron spectroscopy for chemical analysis, electron paramagnetic resonance, and chemical analysis. After coke is burned at 673 K, the residual coke shows the minimum value in the H/C ratio and the maximum in the thickness of the aromatic layers, degree of organization, C==O concentration, binding energy of C 1s, peak width, and g value. This agrees with the model of coke burning: at low temperatures, the burning is selective; the more hydrogenated and amorphous carbonaceous species are burnt first. At high temperatures, the burning is nonselective and all species are simultaneously burnt. Coke is partially oxidized during burning, and intermediate species with C==O and C--OH groups are formed.

  18. Factors affecting mortality in patients with burns

    Directory of Open Access Journals (Sweden)

    Halil Erbiş

    2015-09-01

    Full Text Available Objective: The increase in life quality and expectancy causes an increase in the elderly population. Improvements in burn treatment resulted in decreased mortality in children and young adults but in elderly patients burns are still an important trauma that should be handed differently than other age groups. The aim of this study was to evaluate the factors effecting mortality in patients with burns over 45 years old. Methods: Fifty-eight patients over 45 years of age, who were treated in our burns unit in the last 3 years were included in our study. Their age, burn percentage and depth, coexisting diseases and mortality rates were examined retrospectively. Results: The average age of surviving patients was 57.4 years while it was 70 years for nonsurviving patients (p=0.002. The width of burn area was 21.1 % in surviving and 50 % in nonsurviving patients (p<0.01. The effect of additional coexistent diseases on mortality was significant (p=0.001. The most common reasons of mortality were sepsis and congestive heart failure. Conclusion: We found out that the age, percentage of burns and coexistent diseases had a negative effect on success of treatment and mortality. Mortality rates will decrease in these cases with careful follow-up and a multidisciplinary approach. J Clin Exp Invest 2015; 6 (3: 240-243

  19. Burning characteristics of microcellular combustible objects

    Institute of Scientific and Technical Information of China (English)

    Wei-tao YANG; Yu-xiang LI; San-jiu YING

    2014-01-01

    Microcellular combustible objects for application of combustible case, caseless ammunition or combustible detonator-holding tubes are fabricated through one-step foaming process, in which supercritical CO2 is used as foaming agent. The formulations consist of inert polymer binder and ultra fine RDX. For the inner porous structures of microcellular combustible objects, the cell sizes present a unimodal or bimodal distribution by adjusting the foaming conditions. Closed bomb test is to investigate the influence of both porous structure style and RDX content on burning behavior. The sample with bimodal distribution of cell sizes burns faster than that with unimodal distribution, and the concentration of RDX can influence the burning characteristics in a positive manner. In addition, the translation of laminar burning to convective burning is determined by burning rate versus pressure curves of samples at two different loading densities, and the resulting transition pressure is 30 MPa. Moreover, the samples with bigger sample size present higher burning rate, resulting in providing deeper convective depth. Dynamic vivacity of samples is also studied. The results show that the vivacity increases with RDX content and varies with inner structure.

  20. Burning characteristics of microcellular combustible objects

    Directory of Open Access Journals (Sweden)

    Wei-tao Yang

    2014-06-01

    Full Text Available Microcellular combustible objects for application of combustible case, caseless ammunition or combustible detonator-holding tubes are fabricated through one-step foaming process, in which supercritical CO2 is used as foaming agent. The formulations consist of inert polymer binder and ultra fine RDX. For the inner porous structures of microcellular combustible objects, the cell sizes present a unimodal or bimodal distribution by adjusting the foaming conditions. Closed bomb test is to investigate the influence of both porous structure style and RDX content on burning behavior. The sample with bimodal distribution of cell sizes burns faster than that with unimodal distribution, and the concentration of RDX can influence the burning characteristics in a positive manner. In addition, the translation of laminar burning to convective burning is determined by burning rate versus pressure curves of samples at two different loading densities, and the resulting transition pressure is 30 MPa. Moreover, the samples with bigger sample size present higher burning rate, resulting in providing deeper convective depth. Dynamic vivacity of samples is also studied. The results show that the vivacity increases with RDX content and varies with inner structure.

  1. Infections in critically ill burn patients.

    Science.gov (United States)

    Hidalgo, F; Mas, D; Rubio, M; Garcia-Hierro, P

    2016-04-01

    Severe burn patients are one subset of critically patients in which the burn injury increases the risk of infection, systemic inflammatory response and sepsis. The infections are usually related to devices and to the burn wound. Most infections, as in other critically ill patients, are preceded by colonization of the digestive tract and the preventative measures include selective digestive decontamination and hygienic measures. Early excision of deep burn wound and appropriate use of topical antimicrobials and dressings are considered of paramount importance in the treatment of burns. Severe burn patients usually have some level of systemic inflammation. The difficulty to differentiate inflammation from sepsis is relevant since therapy differs between patients with and those without sepsis. The delay in prescribing antimicrobials increases morbidity and mortality. Moreover, the widespread use of antibiotics for all such patients is likely to increase antibiotic resistance, and costs. Unfortunately the clinical usefulness of biomarkers for differential diagnosis between inflammation and sepsis has not been yet properly evaluated. Severe burn injury induces physiological response that significantly alters drug pharmacokinetics and pharmacodynamics. These alterations impact antimicrobials distribution and excretion. Nevertheless the current available literature shows that there is a paucity of information to support routine dose recommendations.

  2. In-situ burning of heavy oils and Orimulsion : mid-scale burns

    Energy Technology Data Exchange (ETDEWEB)

    Fingas, M.F.; Fieldhouse, B.; Brown, C.E.; Gamble, L. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Div]|[Environment Canada, Ottawa, ON (Canada). River Road Environmental Technology Centre; Cooper, D. [SAIC Canada, Ottawa, ON (Canada)

    2004-07-01

    In-situ burning is considered to be a viable means to clean oil spills on water. In-situ burning, when performed under the right conditions, can reduce the volume of spilled oil and eliminate the need to collect, store, transport and dispose of the recovered oil. This paper presented the results of bench-scale in-situ burning tests in which Bunker C, Orimulsion and weathered bitumen were burned outdoors during the winter in burn pans of approximately 1 square metre. Each test was conducted on salt water which caused the separation of the bitumen from the water in the Orimulsion. Small amounts of diesel fuel was used to ignite the heavy oils. Quantitative removal of the fuels was achieved in all cases, but re-ignition was required for the Orimulsion. Maximum efficiency was in the order of 70 per cent. The residue was mostly asphaltenes and resins which cooled to a solid, glass like material that could be readily removed. The study showed that the type of oil burned influences the behaviour of the burns. Bunker C burned quite well and Orimulsion burned efficiently, but re-ignition was necessary. It was concluded that there is potential for burning heavy oils of several types in-situ. 6 refs., 7 tabs., 18 figs.

  3. Childhood burns in south eastern Nigeria

    Directory of Open Access Journals (Sweden)

    Okoro Philemon

    2009-01-01

    Full Text Available Background: Burns injuries are recognized as a major health problem worldwide. In children and, particularly, in our environment where poverty, ignorance and disease are still high, they constitute significant morbidity and mortality. Previous studies on this topic in parts of Nigeria either lumped adults and children together or were retrospective. We, therefore, prospectively studied the current trends in burns in children. Patients and Methods: This prospective study of burns spanned over a period of 18 months (June 2006-December 2007 at the Paediatric Surgery Units of the Imo State University Teaching Hospital, Orlu, and the Federal Medical Centre, Owerri, Imo State. Data were collected and analysed for age, sex, cause/type of burn, place of burn, presence or absence of adult/s, initial prehospital intervention, interval between injury and presentation, surface area and depth of burn and treatment and outcome. Results: Fifty-three patients were studied, 31 (58.4% were male and 22 (41.6% were female (M:F = 1.4:1. Patients mostly affected were aged 2 years and below. The most common cause of burns was hot water in 31 (58.5% patients. The vast majority of these injuries happened in a domestic environment (92.5% and in the presence of competent adult/s (88.7%. Outcome of treatment was good: there were two (3.8% deaths and 46 (86% patients had complete recovery. Conclusion: Burns is still a major health problem among children in south eastern Nigeria. Fortunately, outcome of appropriate treatment is good. However, we think that poor safety consciousness among parents is a major predisposing factor. Public enlightenment on measures to ensure safe home environment may be necessary to avoid or limit childhood burns.

  4. Ultrasound assessed thickness of burn scars in association with laser Doppler imaging determined depth of burns in paediatric patients.

    Science.gov (United States)

    Wang, Xue-Qing; Mill, Julie; Kravchuk, Olena; Kimble, Roy M

    2010-12-01

    This study describes the ultrasound assessment of burn scars in paediatric patients and the association of these scar thickness with laser Doppler imaging (LDI) determined burn depth. A total of 60 ultrasound scar assessments were conducted on 33 scars from 21 paediatric burn patients at 3, 6 and 9 months after-burn. The mean of peak scar thickness was 0.39±0.032 cm, with the thickest at 6 months (0.40±0.036 cm). There were 17 scald burn scars (0.34±0.045 cm), 4 contact burn scars (0.61±0.092 cm), and 10 flame burn scars (0.42±0.058 cm). Each group of scars followed normal distributions. Twenty-three scars had original burns successfully scanned by LDI and various depths of burns were presented by different colours according to blood perfusion units (PU), with dark blue burns, with the thinnest scars for green coloured burns and the thickest for dark blue coloured burns. Within light blue burns, grafted burns healed with significantly thinner scars than non-grafted burns. This study indicates that LDI can be used for predicting the risk of hypertrophic scarring and for guiding burn care. To our knowledge, this is the first study to correlate the thickness of burns scars by ultrasound scan with burn depth determined by LDI.

  5. Hypnosis for the treatment of burn pain.

    Science.gov (United States)

    Patterson, D R; Everett, J J; Burns, G L; Marvin, J A

    1992-10-01

    The clinical utility of hypnosis for controlling pain during burn wound debridement was investigated. Thirty hospitalized burn patients and their nurses submitted visual analog scales (VAS) for pain during 2 consecutive daily wound debridements. On the 1st day, patients and nurses submitted baseline VAS ratings. Before the next day's would debridement, Ss received hypnosis, attention and information, or no treatment. Only hypnotized Ss reported significant pain reductions relative to pretreatment baseline. This result was corroborated by nurse VAS ratings. Findings indicate that hypnosis is a viable adjunct treatment for burn pain. Theoretical and practical implications and future research directions are discussed. PMID:1383302

  6. [Major Burn Trauma Management and Nursing Care].

    Science.gov (United States)

    Lo, Shu-Fen

    2015-08-01

    Major burn injury is one of the most serious and often life-threatening forms of trauma. Burn patients not only suffer from the physical, psychological, social and spiritual impacts of their injury but also experience considerable changes in health-related quality of life. This paper presents a review of the literature on the implications of previous research and clinical care guidelines related to major burn injuries in order to help clinical practice nurses use evidence-based care guidelines to respond to initial injury assessments, better manage the complex systemic response to these injuries, and provide specialist wound care, emotional support, and rehabilitation services. PMID:26242439

  7. The Application of Erosive Burning to Propellant Charge Interior Ballistics

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-lin

    2009-01-01

    Erosive burning is a common burning phenomenon of the gunpowder with inner holes. The actual combustion law of the gunpowder with inner holes can be changed by erosive burning. Pressure difference between the inner and the outer of hole caused by loading density variation of the propellant charge makes erosive burning occur at inner holes during in-bore burning. The effect of erosive burning on burning speed of the propellant is studied by using the effects of flow rate, heat transfer and erosion of the combustion gas in inner holes on burning rate. The mathematic model of erosive burning of the propellant is established. The effects of the factors such as loading density, inner hole size and grain length on erosive burning and interior ballistic performance are analyzed .The method to improve the bore pressure for small charge mass and small firing range by erosive burning is proposed.

  8. Sediment availability on burned hillslopes

    Science.gov (United States)

    Nyman, Petter; Sheridan, Gary J.; Moody, John A.; Smith, Hugh G.; Noske, Philip J.; Lane, Patrick N. J.

    2013-12-01

    describes the inherent resistance of soil to erosion. Hillslope erosion models typically consider erodibility to be constant with depth. This may not be the case after wildfire because erodibility is partly determined by the availability of noncohesive soil and ash at the surface. This study quantifies erodibility of burned soils using methods that explicitly capture variations in soil properties with depth. Flume experiments on intact cores from three sites in western United States showed that erodibility of fire-affected soil was highest at the soil surface and declined exponentially within the top 20 mm of the soil profile, with root density and soil depth accounting for 62% of the variation. Variation in erodibility with depth resulted in transient sediment flux during erosion experiments on bounded field plots. Material that contributed to transient flux was conceptualized as a layer of noncohesive material of variable depth (dnc). This depth was related to shear strength measurements and sampled spatially to obtain the probability distribution of noncohesive material as a function of depth below the surface. After wildfire in southeast Australia, the initial dnc ranged from 7.5 to 9.1 mm, which equated to 97-117 Mg ha-1 of noncohesive material. The depth decreased exponentially with time since wildfire to 0.4 mm (or < 5 Mg ha-1) after 3 years of recovery. The results are organized into a framework for modeling fire effects on erodibility as a function of the production and depletion of the noncohesive layer overlying a cohesive layer.

  9. Simulation of burning tokamak plasmas

    International Nuclear Information System (INIS)

    To simulate dynamical behaviour of tokamak fusion reactors, a zero-dimensional time-dependent particle and power balance code has been developed. The zero-dimensional plasma model is based on particle and power balance equations that have been integrated over the plasma volume using prescribed profiles for plasma parameters. Therefore, the zero-dimensional model describes the global dynamics of a fusion reactor. The zero-dimensional model has been applied to study reactor start-up, and plasma responses to changes in the plasma confinement, fuelling rate, and impurity concentration, as well as to study burn control via fuelling modulation. Predictions from the zero-dimensional code have been compared with experimental data and with transport calculations of a higher dimensionality. In all cases, a good agreement was found. The advantage of the zero-dimensional code, as compared to higher-dimensional transport codes, is the possibility to quickly scan the interdependencies between reactor parameters. (88 refs., 58 figs., 6 tabs.)

  10. The ALMR actinide burning system

    International Nuclear Information System (INIS)

    The advanced liquid-metal reactor (ALMR) actinide burning system is being developed under the sponsorship of the US Department of Energy to bring its unique capabilities to fruition for deployment in the early 21st century. The system consists of four major parts: the reactor plant, the metal fuel and its recycle, the processing of light water reactor (LWR) spent fuel to extract the actinides, and the development of a residual waste package. This paper addresses the status and outlook for each of these four major elements. The ALMR is being developed by an industrial group under the leadership of General Electric (GE) in a cost-sharing arrangement with the US Department of Energy. This effort is nearing completion of the advanced conceptual design phase and will enter the preliminary design phase in 1994. The innovative modular reactor design stresses simplicity, economics, reliability, and availability. The design has evolved from GE's PRISM design initiative and has progressed to the final stages of a prelicensing review by the US Nuclear Regulatory Commission (NRC); a safety evaluation report is expected by the end of 1993. All the major issues identified during this review process have been technically resolved. The next design phases will focus on implementation of the basic safety philosophy of passive shutdown to a safe, stable condition, even without scram, and passive decay heat removal. Economic projections to date show that it will be competitive with non- nuclear and advanced LWR nuclear alternatives

  11. Burned Microporous Alumina-Graphite Brick

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ 1 Scope This standard specifies the definition,classifica-tion,technical requirements,test methods,inspection rules,marking,packing,transportation and quality certificate of burned microporous alumina-graphite brick.

  12. Radioactivity released from burning gas lantern mantles.

    Science.gov (United States)

    Luetzelschwab, J W; Googins, S W

    1984-04-01

    Gas lantern mantles contain thorium to produce incandescence when lantern fuel is burned on the mantle. Although only thorium is initially present on the mantle, the thorium daughters build up, some over a period of weeks and some over a period of years, and significant quantities of these daughters are present when the mantle is used. Some of these daughters are released when the lantern fuel is burned on the mantle. The amounts of radioactivity released during burning is studied by measuring the gamma radiation emitted by the daughters. Results of this study show that some of the radium (224Ra and 228Ra) and more than half the 212Pb and 212Bi is released during the first hour of a burn. The actual amounts release depend on the age of the mantle.

  13. Nutrition and Metabolic Support in Burn

    Directory of Open Access Journals (Sweden)

    Perihan Ergin Özcan

    2011-07-01

    Full Text Available Burn injury results in a dramatic increase of the basal metabolic rate. Severe burn injury nearly doubles resting energy expenditure and hypermetabolism associated with burn results in a loss of body fat stores and a loss of visceral and structural protein mass. The clinical effects of these changes include immunosuppression, delayed wound healing, and generalized muscle weakness. Post burn, the metabolic and catabolic responses are prolonged in severity and time course, lasting weeks to months in contrast to the days and weeks observed in other injuries. Nutrition support provides the substrates and nutrients to prevent the complications of deficiencies as well as supporting wound healing, and recovery from hormonal and metabolic abnormalities after thermal injury. (Journal of the Turkish Society Intensive Care 2011; 9 Suppl: 21-5

  14. Protect the Ones You Love: Burns Safety

    Science.gov (United States)

    ... Recreational Safety Child Abuse and Neglect Prevention Youth Violence Prevention ... keep our children safe and secure and help them live to their full potential. Knowing how to prevent leading causes of child injury, like burns, is a step ...

  15. On burning a lump of coal

    Science.gov (United States)

    Alonso-Serrano, Ana; Visser, Matt

    2016-06-01

    Burning something, (e.g. the proverbial lump of coal, or an encyclopaedia for that matter), in a blackbody furnace leads to an approximately Planck emission spectrum with an average entropy/information transfer of approximately 3.9 ± 2.5 bits per emitted photon. This quantitative and qualitative result depends only on the underlying unitarity of the quantum physics of burning, combined with the statistical mechanics of blackbody radiation. The fact that the utterly standard and unitarity preserving process of burning something (in fact, burning anything) nevertheless has an associated entropy/information budget, and the quantitative size of that entropy/information budget, is a severely under-appreciated feature of standard quantum statistical physics.

  16. Erosive Burning Study Utilizing Ultrasonic Measurement Techniques

    Science.gov (United States)

    Furfaro, James A.

    2003-01-01

    A 6-segment subscale motor was developed to generate a range of internal environments from which multiple propellants could be characterized for erosive burning. The motor test bed was designed to provide a high Mach number, high mass flux environment. Propellant regression rates were monitored for each segment utilizing ultrasonic measurement techniques. These data were obtained for three propellants RSRM, ETM- 03, and Castor@ IVA, which span two propellant types, PBAN (polybutadiene acrylonitrile) and HTPB (hydroxyl terminated polybutadiene). The characterization of these propellants indicates a remarkably similar erosive burning response to the induced flow environment. Propellant burnrates for each type had a conventional response with respect to pressure up to a bulk flow velocity threshold. Each propellant, however, had a unique threshold at which it would experience an increase in observed propellant burn rate. Above the observed threshold each propellant again demonstrated a similar enhanced burn rate response corresponding to the local flow environment.

  17. Inflammatory pain in experimental burns in man

    DEFF Research Database (Denmark)

    Pedersen, J L

    2000-01-01

    demonstrated in animal models. Most often clinical pain is due to tissue damage leading to acute inflammation and hyperalgesia, but only few human pain models have examined pain responses in injured tissues. Therefore, models with controlled and reversible tissue trauma are needed. The human burn model...... is induced immediately by the burns and lasts about 24 h dependent on the intensity of the heat stimulus. The burns heal without sequela. A study of the reproducibility of pain assessments in the burn model has shown that measures based on repeated measurements were significantly more reproducible than......Human experimental pain models are important tools in pain research. The primary aims of pain research in normal man is 1) to provide insight in pain mechanisms, 2) to provide a rational basis for clinical trials of pain relieving interventions, and 3) to confirm the anti-nociceptive effects...

  18. On burning a lump of coal

    CERN Document Server

    Alonso-Serrano, Ana

    2015-01-01

    Burning something, (e.g. the proverbial lump of coal, or an encyclopaedia for that matter), in a blackbody furnace leads to an approximately Planck emission spectrum with an average entropy/information transfer of approximately $3.9 \\pm 2.5$ bits per emitted photon. This quantitative and qualitative result depends only on the underlying unitarity of the quantum physics of burning, combined with the statistical mechanics of blackbody radiation. The fact that the utterly standard and unitarity preserving process of burning something (in fact, burning anything) nevertheless *has* an associated entropy/information budget, and the quantitative *size* of that entropy/information budget, is a severely under-appreciated feature of standard quantum statistical physics.

  19. Predictors of insulin resistance in pediatric burn injury survivors 24 to 36 months post-burn

    Science.gov (United States)

    Chondronikola, Maria; Meyer, Walter J.; Sidossis, Labros S.; Ojeda, Sylvia; Huddleston, Joanna; Stevens, Pamela; Børsheim, Elisabet; Suman, Oscar E.; Finnerty, Celeste C.; Herndon, David N.

    2014-01-01

    Background Burn injury is a dramatic event with acute and chronic consequences including insulin resistance. However, factors associated with insulin resistance have not been previously investigated. Purpose To identify factors associated with long-term insulin resistance in pediatric burn injury survivors. Methods The study sample consisted of 61 pediatric burn injury survivors 24 to 36 months after the burn injury, who underwent an oral glucose tolerance test. To assess insulin resistance, we calculated the area under the curve for glucose and insulin. The diagnostic criteria of the American Diabetes Association were used to define individuals with impaired glucose metabolism. Additional data collected include body composition, anthropometric measurements, burn characteristics and demographic information. The data were analyzed using multivariate linear regression analysis. Results Approximately 12% of the patients met the criteria for impaired glucose metabolism. After adjusting for possible confounders, burn size, age and percent body fat were associated with the area under the curve for glucose (p<0.05 for all). Time post-burn and lean mass were inversely associated with the area under the curve for glucose (p<0.05 for both). Similarly, older age predicted higher insulin area under the curve. Conclusion A significant proportion of pediatric injury survivors suffer from glucose abnormalities 24–36 months post-burn. Burn size, time post-burn, age, lean mass and adiposity are significant predictors of insulin resistance in pediatric burn injury survivors. Clinical evaluation and screening for abnormal glucose metabolism should be emphasized in patients with large burns, older age and survivors with high body fat. PMID:24918945

  20. Influence of early post-burn enteral nutrition on clinical outcomes of patients with extensive burns

    OpenAIRE

    Lu, Guozhong; Huang, Jiren; Yu, Junjie; Zhu, Yugang; Cai, Liangliang; Gu, Zaiqiu; Su, Qinghe

    2011-01-01

    Sepsis commonly occurs in severe post-burn patients, often resulting in death. We aimed to evaluate the influence of early enteral feeding on outcomes in patients with extensive burns, including infection incidence, healing and mortality. We retrospectively reviewed 60 patients with extensive burns, 35 who had received early enteral nutrition and 25 who had received parenteral nutrition. Average healing time, infection incidence and mortality were clinically observed. Hemoglobin and serum alb...

  1. Characteristics of burn deaths from 2003 to 2009 in a burn center: A retrospective study

    Directory of Open Access Journals (Sweden)

    Jian Chen

    2013-09-01

    Full Text Available Mortality remains one of the most important end-point quality control parameters to evaluate a burn care system. We retrospectively reviewed the characteristics and multiple organ dysfunction syndrome (MODS patterns of burn deaths in our center from January 2003 to December 2009. The mortality rate during this time period was 2.3%. Fifty-six patients died, including 49 males and 7 females. The mean survival time was 28.45 ± 24.60 days. The burn percentage was (76.70 ± 26.86 % total burn surface area (TBSA, with (27.74 ± 24.95 % deep-partial thickness burns and (46.88 ± 33.84 % full-thickness burns. Inhalation injury was diagnosed in 36 (64.29% patients. Patients who had undergone an operation, particularly in the first week post-burn, had a significantly longer survival time. An average of 5.50 ± 1.35 malfunctioning organs per patient and a mean sequential organ failure assessment (SOFA score of 13.91 ± 3.65 were observed. The most frequently malfunctioning organs were involved in the respiratory, hematologic, circulatory, and central nervous systems. Most of the organ damage occurred during the first week post-burn, followed by 4 weeks later, with relatively less organ damage observed in the third week. Among patients with a TBSA over 50%, non-survivors had larger burn sizes (particularly larger full-thickness burns and a higher incidence of inhalation injury compared with survivors; non-survivors were also more likely to have microorganism-positive blood and sputum cultures. In conclusion, burn deaths are related to a higher burn percentage, inhalation injury, MODS, and infection. Early operation may help improve survival duration.

  2. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics

    DEFF Research Database (Denmark)

    Chazdon, Robin L.; Broadbent, Eben N.; Rozendaal, Danaë M. A.;

    2016-01-01

    Regrowth of tropical secondary forests following complete or nearly complete removal of forest vegetation actively stores carbon in aboveground biomass, partially counterbalancing carbon emissions from deforestation, forest degradation, burning of fossil fuels, and other anthropogenic sources. We...

  3. Stability of Rocket Flight during Burning

    Directory of Open Access Journals (Sweden)

    T. N. Srivastava

    1967-10-01

    Full Text Available Stability of the rocket motion during burning is discussed taking into consideration gravity, aerodynamic forces and torques. Conditions for stabilizing the rocket motion are investigated. Analysis for initial and final phases of burning is given separately. Stability regions of the projected motions on two dimensional co-ordinate planes are obtained and thereby stability region of the actual motion is derived. Stability diagrams illustrate statically and dynamically stable and unstable regions.

  4. Increased mortality in hypernatremic burned patients

    OpenAIRE

    de Lange, Thomas; Mailänder, Peter; Stollwerck, Peter. L.; Stang, Felix H.; Siemers, Frank; Namdar, Thomas

    2010-01-01

    Introduction: In-hospital hypernatremia develops usually iatrogenically from inadequate or inappropriate fluid prescription. In severely burned patient an extensive initial fluid resuscitation is necessary for burn shock survival. After recovering of cellular integrity the circulating volume has to be normalized. Hereby extensive water and electrolyte shifts can provoke hypernatremia. Purpose: Is a hypernatremic state associated with increased mortality? Method: Retrospective study for the in...

  5. Increased mortality in hypernatremic burned patients

    OpenAIRE

    Namdar, T; Siemers, F; Stollwerck, PL; Stang, FH; Mailänder, P; de Lange, T

    2010-01-01

    Introduction: In-hospital hypernatremia develops usually iatrogenically from inadequate or inappropriate fluid prescription. In severely burned patient an extensive initial fluid resuscitation is necessary for burn shock survival. After recovering of cellular integrity the circulating volume has to be normalized. Hereby extensive water and electrolyte shifts can provoke hypernatremia.Purpose: Is a hypernatremic state associated with increased mortality?Method: Retrospective study for the i...

  6. The Local Treatment of Burns With Antibiotics

    OpenAIRE

    Napoli, B.; D’Arpa, N.; Masellis, A.; Masellis, M.

    2005-01-01

    After presenting an analysis of the principal antiseptics used for the local treatment of burns, highlighting their toxicity and the limitations of their antibacterial effectiveness, we describe the therapeutic protocol used in our burns centre (where antibacterial treatment consists exclusively of antibiotics for both local and systemic use). We review the data regarding actual and predicted mortality, and mortality due to septicaemia during the years 2000-2003.

  7. Violates stem wood burning sustainable development?

    DEFF Research Database (Denmark)

    Czeskleba-Dupont, Rolf

    2008-01-01

    friendly effects of substituting wood burning for fossil fuels. With reference to Bent Sørensen's classical work on 'Renewable Energy' the assumption of CO2-neutrality regarding incineration is problematised when applied to plants with long rotation periods as trees. Registered CO2-emissions from wood...... burning are characterised together with particle and PAH emissions. The positive treatment of wood stove-technology in the Danish strategy for sustainable development (draft 2007) is critically evaluated and approaches to better regulation are identified....

  8. Parents’ experience confronting child burning situation

    OpenAIRE

    Valdira Vieira de Oliveira; Ariadne da Silva Fonseca; Maísa Tavares de Souza Leite; Luciana Soares dos Santos; Adélia Dayane Guimarães Fonseca; Conceição Vieira da Silva Ohara

    2016-01-01

    Objective: to understand experiences of parents in a child burning situation during the hospitalization process. Methods: phenomenological research in view of Martin Heidegger, held with seven assisting parents at a pediatrics unit of a general hospital in Montes Claros. The information was obtained by phenomenological interview, containing the question guide: “What does it mean to you being with a son who is suffering with burns?”. Results: during the experience, parents revealed anguish, fe...

  9. Van burn-out naar bevlogenheid

    OpenAIRE

    Hoekx, Laura

    2015-01-01

    Het fenomeen burn-out is tegenwoordig niet meer uit de media weg te denken. Steeds meer mensen gaan ten onder aan werkstress en geraken opgebrand. Dat heeft niet alleen voor de persoon in kwestie negatieve gevolgen, zowel mentaal als lichamelijk, maar ook voor de organisatie. Een minder bekend en relatief nieuw begrip is bevlogenheid of engagement, de tegenhanger van burn-out. Bevlogen mensen zijn energiek, voelen zich betrokken bij de organisatie en kunnen lang en onvermoeibaar doorgaan met ...

  10. Transdermal fluid loss in severely burned patients

    Directory of Open Access Journals (Sweden)

    Lange, Thomas

    2010-01-01

    Full Text Available Introduction: The skin protects against fluid and electrolyte loss. Burn injury does affect skin integrity and protection against fluid loss is lost. Thus, a systemic dehydration can be provoked by underestimation of fluid loss through burn wounds. Purpose: We wanted to quantify transdermal fluid loss in burn wounds. Method: Retrospective study. 40 patients admitted to a specialized burn unit were analyzed and separated in two groups without (Group A or with (Group B hypernatremia. Means of daily infusion-diuresis-ratio (IDR and the relationship to totally burned surface area (TBSA were analyzed. Results: In Group A 25 patients with a mean age of 47±18 years, a mean TBSA of 23±11%, and a mean abbreviated burned severity index (ABSI score of 6.9±2.1 were summarized. In Group B 15 patients with a mean age of 47±22 years, a mean TBSA of 30±13%, and a mean ABSI score of 8.1±1.7 were included. Statistical analysis of the period from day 3 to day 6 showed a significant higher daily IDR-amount in Group A (Group A vs. Group B: 786±1029 ml vs. –181±1021 ml; p<0.001 and for daily IDR-TBSA-ratio (Group A vs. Group B: 40±41 ml/% vs. –4±36 ml/%; p<0.001. Conclusions: There is a systemic relevant transdermal fluid loss in burn wounds after severe burn injury. Serum sodium concentration can be used to calculate need of fluid resuscitation for fluid maintenance. There is a need of an established fluid removal strategy to avoid water and electrolyte imbalances.

  11. Disseminated intravascular coagulation in burn injury.

    Science.gov (United States)

    Lippi, Giuseppe; Ippolito, Luigi; Cervellin, Gianfranco

    2010-06-01

    Disseminated intravascular coagulation (DIC) is a complex and multifaceted disorder characterized by the activation of coagulation and fibrinolytic pathways, consumption of coagulation factors, and depletion of coagulation regulatory proteins. The introduction into the circulation of cellular debris characterized by strong thromboplastic activity due to tissue factor exposition or release (in or from burned tissues), which can thereby activate extrinsic pathway of coagulation system and trigger massive thrombin generation when present in sufficient concentration, represents the most plausible biological explanation to support the development of intravascular coagulation in patients with burn injury. Severe burns left untreated might also lead to an immunological and inflammatory response (activation of the complement cascade), which can amplify fibrinolysis and blood clotting. Overall, the real prevalence of DIC in patients with burns is as yet unclear. Postmortem, retrospective, and even longitudinal investigations are in fact biased by several factors, such as the objective difficulty to establish whether DIC might have occurred as a primary complication of burns or rather as a consequence of other superimposed pathologies (e.g., sepsis, multiple organ failure), the different diagnostic criteria for assessing DIC, and the heterogeneity of the patient samples studied. Nevertheless, the current scientific evidence is consistent with the hypothesis that biochemical changes suggestive for DIC (hypercoagulability, hypo- and hyperfibrinolysis) are commonplace in patients with burn trauma, and their severity increases exponentially with the severity of injury. Overt DIC seems to occur especially in critically ill burn patients or in those with severe burns (up to third degree) and large involvement of body surface area, in whom an appropriate therapy might be effective to prevent the otherwise fulminant course. Although early prophylaxis with antithrombin concentrates

  12. [Treatment of pain in children burns].

    Science.gov (United States)

    Latarjet, J; Pommier, C; Robert, A; Comparin, J P; Foyatier, J L

    1997-03-01

    Burn injury is considered by children as one of the most painful traumas (just after bone factures). Burn pain in children can and must be controlled as well as for adult patients, with almost identical techniques. Continuous pain from injury and intermittent pain caused by therapeutic procedures must be evaluated and treated separately. Due to very high levels of nociception, satisfactory management of procedural pain requires the use of opioid therapy. Non pharmacological methods are meaningless if pharmacological treatment is not optimal.

  13. Epidemiology and screening of intentional burns in children in a Dutch burn centre.

    Science.gov (United States)

    Bousema, Sara; Stas, Helene G; van de Merwe, Marjolijn H; Oen, Irma M M H; Baartmans, Martin G A; van Baar, Margriet E

    2016-09-01

    International estimates of the incidence of non-accidental burns (NAB) in children admitted to burn centres vary from 1% to 25%. Hardly any data about Dutch figures exist. The aim of this study was to evaluate the incidence, treatment and outcome of burns due to suspected child abuse in paediatric burns. We described the process of care and outcome, including the accuracy of the SPUTOVAMO screening tool and examined child, burn and treatment characteristics related to suspicions of child abuse or neglect. A retrospective study was conducted in children aged 0-17 years with a primary admission after burn injuries to the burn centre Rotterdam in the period 2009-2013. Data on patient, injury and treatment characteristics were collected, using the Dutch Burn Repository R3. In addition, medical records were reviewed. In 498 paediatric admissions, suspected child abuse or neglect was present in 43 children (9%). 442 screening questionnaires (89%) were completed. In 52 out of 442 questionnaires (12%) the completed SPUTOVAMO had one or more positive signs. Significant independent predictors for suspected child abuse were burns in the genital area or buttocks (OR=3.29; CI: 143-7.55) and a low socio-economic status (OR=2.52; 95%CI: 1.30-4.90). The incidence of suspected child abuse indicating generation of additional support in our population is comparable to studies with a similar design in other countries. PMID:27211360

  14. Early Sequential Excision of Chemical Burns - our Experience in Riyadh Burns Unit

    OpenAIRE

    Bhat, F.A.

    2006-01-01

    This paper reports on the treatment of chemical burns in a burns unit in Saudi Arabia in the 10-yr period 1993 to 2003. In 1993, in line with new approaches, the protocol for treating deep chemical burns in the first 48 h was modified to employ sequential excision followed by a second-look approach after 24 h, at which stage autografts/homografts were effected, depending upon the extent of the burn and having ascertained that the wound was bleeding and that there was no necrotic tissue. Resul...

  15. Epidemiology and screening of intentional burns in children in a Dutch burn centre.

    Science.gov (United States)

    Bousema, Sara; Stas, Helene G; van de Merwe, Marjolijn H; Oen, Irma M M H; Baartmans, Martin G A; van Baar, Margriet E

    2016-09-01

    International estimates of the incidence of non-accidental burns (NAB) in children admitted to burn centres vary from 1% to 25%. Hardly any data about Dutch figures exist. The aim of this study was to evaluate the incidence, treatment and outcome of burns due to suspected child abuse in paediatric burns. We described the process of care and outcome, including the accuracy of the SPUTOVAMO screening tool and examined child, burn and treatment characteristics related to suspicions of child abuse or neglect. A retrospective study was conducted in children aged 0-17 years with a primary admission after burn injuries to the burn centre Rotterdam in the period 2009-2013. Data on patient, injury and treatment characteristics were collected, using the Dutch Burn Repository R3. In addition, medical records were reviewed. In 498 paediatric admissions, suspected child abuse or neglect was present in 43 children (9%). 442 screening questionnaires (89%) were completed. In 52 out of 442 questionnaires (12%) the completed SPUTOVAMO had one or more positive signs. Significant independent predictors for suspected child abuse were burns in the genital area or buttocks (OR=3.29; CI: 143-7.55) and a low socio-economic status (OR=2.52; 95%CI: 1.30-4.90). The incidence of suspected child abuse indicating generation of additional support in our population is comparable to studies with a similar design in other countries.

  16. [The Nutrition Care of Severe Burn Patients].

    Science.gov (United States)

    Hsieh, Yu-Hsiu

    2016-02-01

    In addition to recent advances in burn patient care techniques such as maintaining warm circumambient temperature, the early excision of wounds, and the use of closed dressing, providing nutrition support through early feeding has proven instrumental in greatly increasing the survival rate of burn patients. Severe burns complicated by many factors initiate tremendous physiological stress that leads to postburn hypermetabolism that includes enhanced tissue catabolism, the loss of muscle mass, and decreases in the body's reservoirs of protein and energy. These problems have become the focus of burn therapy. Treating severe burns aims not only to enhance survival rates but also to restore normal bodily functions as completely as possible. Recent research evaluating the application of anabolic agents and immune-enhance formula for severe burns therapy has generated significant controversy. Inadequate caloric intake is one of the main differences among the related studies, with the effect of many special nutrients such as bran acid amides not taken into consideration. Therefore, considering the sufficiency of caloric and protein intake is critical in assessing effectiveness. Only after patients receive adequate calories and protein may the effect of special nutrients such as glutamine and supplements be evaluated effectively. PMID:26813059

  17. Instrumented tube burns: theoretical and experimental observations

    Energy Technology Data Exchange (ETDEWEB)

    Yarrington, Cole Davis [Los Alamos National Laboratory; Obrey, Stephen J [Los Alamos National Laboratory; Foley, Timothy J [Los Alamos National Laboratory; Son, Steven F [Los Alamos National Laboratory

    2009-01-01

    The advent of widely available nanoscale energetic composites has resulted in a flurry of novel applications. One of these applications is the use of nanomaterials in energetic compositions. In compositions that exhibit high sensitivity to stimulus, these materials are often termed metastable intermolecular composites (MIC). More generally, these compositions are simply called nanoenergetics. Researchers have used many different experimental techniques to analyze the various properties of nanoenergetic systems. Among these various techniques, the confined tube burn is a simple experiment that is capable of obtaining much data related to the combustion of these materials. The purpose of this report is to review the current state of the confined tube burn experiment, including the drawbacks of the technique and possible remedies. As this report is intended to focus on the specific experimental technique, data from many different energetic materials, and experimental configurations will be presented. The qualitative and quantitative data that can be gathered using confined tube burn experiments include burning rates, total impulse, pressure rise rate, and burning rate differences between different detector types. All of these measurements lend insight into the combustion properties and mechanisms of specific nanoenergetics. Finally, certain data indicates a more complicated flow scenario which may need to be considered when developing burn tube models.

  18. Community energy plan : village of Burns Lake

    International Nuclear Information System (INIS)

    Climate change has a significant impact on the lives of Canadians and their economies. In northern British Columbia, the ability to grow, process and transport food will likely change. The rising cost of fuel and other natural resources will create a need for more resilient communities. This report presented a community energy plan for Burns Lake in order to provide the first steps toward building on an already resilient community. The report answered questions about Burns Lake's energy consumption and greenhouse gas (GHG) emissions as well as the community's views on energy issues. The report provided background information on the Village of Burns Lake and discussed climate change in Burns Lake, energy use, and greenhouse gas emissions. The report also described community engagement by way of a questionnaire on fuel prices, homes and public opinion in Burns Lake. A strategy was also outlined. It was concluded that the village of Burns Lake is well positioned to face challenges regarding future energy use. The community is looking to the municipality for support and leadership, in order to deliver through active opportunities to reduce greenhouse gas emissions. 6 figs., 4 appendices.

  19. [Invasive yeast infections in severely burned patients].

    Science.gov (United States)

    Renau, Ana Isabel; García-Vidal, Carolina; Salavert, Miguel

    2016-01-01

    Currently, there are few studies on candidaemia in the severely burned patient. These patients share the same risk factors for invasive fungal infections as other critically ill patients, but have certain characteristics that make them particularly susceptible. These include the loss of skin barrier due to extensive burns, fungal colonisation of the latter, and the use of hydrotherapy or other topical therapies (occasionally with antimicrobials). In addition, the increased survival rate achieved in recent decades in critically burned patients due to the advances in treatment has led to the increase of invasive Candida infections. This explains the growing interest in making an earlier and more accurate diagnosis, as well as more effective treatments to reduce morbidity and mortality of candidaemia in severe burned patients. A review is presented on all aspects of the burned patient, including the predisposition and risk factors for invasive candidiasis, pathogenesis of candidaemia, underlying immunodeficiency, local epidemiology and antifungal susceptibility, evolution and prognostic factors, as well as other non-Candida yeast infections. Finally, we include specific data on our local experience in the management of candidaemia in severe burned patients, which may serve to quantify the problem, place it in context, and offer a realistic perspective. PMID:27395025

  20. 49 CFR 195.226 - Welding: Arc burns.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Welding: Arc burns. 195.226 Section 195.226 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.226 Welding: Arc burns. (a) Each arc burn must be repaired. (b) An arc burn...

  1. Wintertime organic aerosols in Christchurch and Auckland, New Zealand: contributions of residential wood and coal burning and petroleum utilization

    Energy Technology Data Exchange (ETDEWEB)

    Haobo Wang; Kimitaka Kawamura; David Shooter [Hokkaido University, Sapporo (Japan). Institute of Low-Temperature Science

    2006-09-01

    Wintertime PM10 samples from two New Zealand cities (Christchurch and Auckland) have been characterized using gas chromatography - mass spectrometry for biomass burning tracers, hopanes, n-alkanes, fatty acids, n-alkanols and sugars. The aerosol samples of Christchurch, which were heavily influenced by residential wood and coal burning, showed substantially higher ambient concentrations for most of the organic compounds than those of Auckland, where major sources of aerosols were vehicular emissions and sea-salt. Mass ratios between the biomass burning tracers studied were found to be significantly different (e.g., {beta}-sitosterol to nssK{sup +} ratios were more than three times higher in Christchurch than in Auckland), although levoglucosan to nssK{sup +} ratios were similar at the both sites. We also estimated, for the first time using stereochemical configurations of hopanes, that 60% of fossil fuel emissions came from petroleum utilization with the remaining 40% being from coal burning in Christchurch. In contrast, contribution of coal burning was negligible in Auckland. Moreover, contributions of most biomass burning tracers to organic carbon (OC) were significantly higher in Christchurch than in Auckland. On the other hand, saccharides (excluding levoglucosan) and hopanes accounted for larger fractions of OC in Auckland. This study demonstrates that intensive wood and coal burning can significantly affect organic aerosol composition in an urban environment. 46 refs., 4 figs., 1 tab.

  2. The Correlation Between the Burning Features, the Burning Agent and Motivation in Burn Victims Attending Shahid Motahari Hospital in Tehran During 2009: letter to Editor

    Directory of Open Access Journals (Sweden)

    Kamran Aghakhani M.D.

    2011-06-01

    Full Text Available Burning is one of the commonest causes of death. Due to the high rate of death among burn victims epidemiological investigation of burning, burning agents and the relevant motivations can be of great preventive value.1 In this cross-sectional study all the hospitalized patients in Shahid Motahari Burn Hospital at Tehran city in the year 2009 were included in the study. The collected data were analyzed by SPSS (ver. 17 software. Out of the 1548 hospitalized patients for burn, 1134 (73.3% left hospital in good conditions, 47 (3% left in relatively good conditions, 289 (18.7% died and 78 (5% persons left the Hospital satisfactorily on their own volition. About two-thirds of the patients were men. The mean age of the burn victims was 27.9±18.3 years, 16% of them being 5 years old or younger. The highest percentage of burn area was 30% of the total body surface which was seen in 20 to 30-year old patients. 58.7% of burns had been caused by fire. 94% of the burns had happened accidentally, 5% by suicidal and 1% by homicidal acts. The highest percentage of burn was observed in patients in whom the burn agent was fire. Six (4% persons had first degree, 820 (53% persons had second degree and 722 (46.6% had third degree burns. In patients who had committed suicide third degree burns were higher than second degree burns (7.7% vs. 2%. 24.4% of women and 16.6% of men died due to the burns. The rate of death in patients less than 50 years of age was 18% but the figure increased to 24% in those above 50. A burn area less than or more than 10% was, respectively correlated with 2.1% and 22.1% of deaths. 34.8% of the patients with third degree burns and 4.6% of those with second and first degree burns died. 58.3% of the suicidal patient died due to the severity of the burns relative to 16.7% due to other causes. 89 (5.7% patients had respiratory tract burns and the death rate was 58.4% among these patients while the death rate was 16.2% in patients without

  3. Mesoscale experiments help to evaluate in-situ burning of oil spills

    International Nuclear Information System (INIS)

    Burning of spilled oil has distinct advantages over other cleanup countermeasures. It offers the potential to convert rapidly large quantities of oil into its primary combustion products, carbon dioxide and water, with a small percentage of other unburned and residue by-products. Disadvantages include the dispersal of the combustion products into the air. Mesoscale and laboratory experiments have been conducted to measure the burning characteristics of crude oil fires. Measurements on crude oil pool fires from 0.4 m to 17.2 m in effective diameter were made to obtain data on the rate of burning, heat release rate, composition of the combustion products, and downwind dispersion of the products. The smaller experiments were performed in laboratories at the National Institute of Standards and Technology and the Fire Research Institute in Japan; and the larger ones at the US Coast Guard Fire Safety and Test Detachment in Mobile, Alabama. From these experiments, the value for surface regression rate of a burning crude oil spill was found to be 0.055 mm/s. A major concern for public safety is the content and extent of the smoke plume from the fires. Smoke yield, the fraction of the oil mass burned that is emitted as particulate, was found to be 13 percent. A large-eddy simulation calculation method for smoke plume trajectory and smoke particulate deposition developed by NIST showed that the smoke particulate deposition from a 114 m2 burn would occur in striations over a long, slender area 3.2 km wide and 258 km downwind of the burn

  4. Biomass Burning, Land-Cover Change, and the Hydrological Cycle in Northern Sub-Saharan Africa

    Science.gov (United States)

    Ichoku, Charles; Ellison, Luke T.; Willmot, K. Elena; Matsui, Toshihisa; Dezfuli, Amin K.; Gatebe, Charles K.; Wang, Jun; Wilcox, Eric M.; Lee, Jejung; Adegoke, Jimmy; Okonkwo, Churchill; Bolten, John; Policelli, Frederick S.; Habib, Shahid

    2016-01-01

    The Northern Sub-Saharan African (NSSA) region, which accounts for 20%-25%of the global carbon emissions from biomass burning, also suffers from frequent drought episodes and other disruptions to the hydrological cycle whose adverse societal impacts have been widely reported during the last several decades. This paper presents a conceptual framework of the NSSA regional climate system components that may be linked to biomass burning, as well as detailed analyses of a variety of satellite data for 2001-2014 in conjunction with relevant model-assimilated variables. Satellite fire detections in NSSA show that the vast majority (greater than 75%) occurs in the savanna and woody savanna land-cover types. Starting in the 2006-2007 burning season through the end of the analyzed data in 2014, peak burning activity showed a net decrease of 2-7% /yr in different parts of NSSA, especially in the savanna regions. However, fire distribution shows appreciable coincidence with land-cover change. Although there is variable mutual exchange of different land cover types, during 2003-2013, cropland increased at an estimated rate of 0.28% /yr of the total NSSA land area, with most of it (0.18% /yr) coming from savanna.During the last decade, conversion to croplands increased in some areas classified as forests and wetlands, posing a threat to these vital and vulnerable ecosystems. Seasonal peak burning is anti-correlated with annual water-cycle indicators such as precipitation, soil moisture, vegetation greenness, and evapotranspiration, except in humid West Africa (5 deg-10 deg latitude),where this anti-correlation occurs exclusively in the dry season and burning virtually stops when monthly mean precipitation reaches 4 mm/d. These results provide observational evidence of changes in land-cover and hydrological variables that are consistent with feedbacks from biomass burning in NSSA, and encourage more synergistic modeling and observational studies that can elaborate this feedback

  5. Biomass burning, land-cover change, and the hydrological cycle in Northern sub-Saharan Africa

    Science.gov (United States)

    Ichoku, Charles; Ellison, Luke T.; Willmot, K. Elena; Matsui, Toshihisa; Dezfuli, Amin K.; Gatebe, Charles K.; Wang, Jun; Wilcox, Eric M.; Lee, Jejung; Adegoke, Jimmy; Okonkwo, Churchill; Bolten, John; Policelli, Frederick S.; Habib, Shahid

    2016-09-01

    The Northern Sub-Saharan African (NSSA) region, which accounts for 20%-25% of the global carbon emissions from biomass burning, also suffers from frequent drought episodes and other disruptions to the hydrological cycle whose adverse societal impacts have been widely reported during the last several decades. This paper presents a conceptual framework of the NSSA regional climate system components that may be linked to biomass burning, as well as detailed analyses of a variety of satellite data for 2001-2014 in conjunction with relevant model-assimilated variables. Satellite fire detections in NSSA show that the vast majority (>75%) occurs in the savanna and woody savanna land-cover types. Starting in the 2006-2007 burning season through the end of the analyzed data in 2014, peak burning activity showed a net decrease of 2-7%/yr in different parts of NSSA, especially in the savanna regions. However, fire distribution shows appreciable coincidence with land-cover change. Although there is variable mutual exchange of different land cover types, during 2003-2013, cropland increased at an estimated rate of 0.28%/yr of the total NSSA land area, with most of it (0.18%/yr) coming from savanna. During the last decade, conversion to croplands increased in some areas classified as forests and wetlands, posing a threat to these vital and vulnerable ecosystems. Seasonal peak burning is anti-correlated with annual water-cycle indicators such as precipitation, soil moisture, vegetation greenness, and evapotranspiration, except in humid West Africa (5°-10° latitude), where this anti-correlation occurs exclusively in the dry season and burning virtually stops when monthly mean precipitation reaches 4 mm d-1. These results provide observational evidence of changes in land-cover and hydrological variables that are consistent with feedbacks from biomass burning in NSSA, and encourage more synergistic modeling and observational studies that can elaborate this feedback mechanism.

  6. Burned gas and unburned mixture composition prediction in biodiesel-fuelled compression igniton engine

    International Nuclear Information System (INIS)

    A prediction of burned gas and unburned mixture composition from a variety of methyl ester based bio diesel combustion in compression ignition engine, in comparison with conventional diesel fuel is presented. A free-energy minimisation scheme was used to determine mixture composition. Firstly, effects of bio diesel type were studied without exhaust gas recirculation (EGR). The combustion of the higher hydrogen-to-carbon molar ratio (H/C) bio diesel resulted in lower carbon dioxide and oxygen emissions but higher water vapour in the exhaust gases, compared to those of lower H/C ratios. At the same results also show that relative air-to-fuel ratio, that bio diesel combustion gases contain a higher amount of water vapour and a higher level of carbon dioxide compared to those of diesel. Secondly, influences of EGR (burned gas fraction) addition to bio diesel-fuelled engine on unburned mixture were simulated. For both diesel and bio diesel, the increased burned gas fraction addition to the fresh charge increased carbon dioxide and water vapour emissions while lowering oxygen content, especially for the bio diesel case. The prediction was compared with experimental results from literatures; good agreement was found. This can be considered to be a means for explaining some phenomenon occurring in bio diesel-fuelled engines. (author)

  7. Randomized controlled trial of the absorbency of four dressings and their effects on the evaporation of burn wounds

    Institute of Scientific and Technical Information of China (English)

    CHEN Jiong; HAN Chun-mao; SU Guo-liang; TANG Zhi-jian; SU Shi-jie; LIN Xiao-wei

    2007-01-01

    Background Wound dressings are divided into traditional and new types. The new dressings are thought to accelerate wound healing. The purpose of this study was to supplement the scanty data on the absorbency of the new dressings and their effects on evaporation from the burn surface.Methods The water absorption rate of four dressings (carbon fiber dressing, hydrogel dressing, silver nanoparticle dressing, and vaseline gauze) were measured by the immersion-weight gain method. A total of 120 inpatients with 10%superficial partial-thickness burn wounds were randomly assigned to four groups, each with 30 participants. Carbon fiber dressing, hydrogel dressing, and silver nanoparticle dressing were used in groups A, B, and C as the primary dressing,and traditional vaseline gauze was used in group D as the control. Multi-spot evaporation from normal skin and naked wound, and from wounds covered with each of the four dressings was measured post-burn on days 1, 3, 5, and 7 by an EP-I evaporimeter under conditions of 21 ℃ -22 ℃ ambient temperature and 74%-78% humidity.Results The absorption rates of the four dressings were 988% with carbon fiber dressing, 96% with silver nanoparticle,41% with vaseline gauze, and 6% with hydrogel. Evaporation from the naked burn wounds was about 1/3 higher than from normal skin (P<0.01). Compared with wounds without applied dressing, evaporation from dressed wounds decreased and was time-dependent (P<0.01). The evaporation of wounds with carbon fiber dressing was the lowest ((13.40±2.82)ml·h-1·m-2,P<0.01) on day 1 post-burn,compared with the other groups.Conclusion All four dressings have water retention capacity while carbon fiber dressing has the highest absorption rate and shows the best containment and evaporation from the burn wound.

  8. What could have caused pre-industrial biomass burning emissions to exceed current rates?

    Directory of Open Access Journals (Sweden)

    G. R. van der Werf

    2013-01-01

    Full Text Available Recent studies based on trace gas mixing ratios in ice cores and charcoal data indicate that biomass burning emissions over the past millennium exceeded contemporary emissions by up to a factor of 4 for certain time periods. This is surprising because various sources of biomass burning are linked with population density, which has increased over the past centuries. We have analysed how emissions from several landscape biomass burning sources could have fluctuated to yield emissions that are in correspondence with recent results based on ice core mixing ratios of carbon monoxide (CO and its isotopic signature measured at South Pole station (SPO. Based on estimates of contemporary landscape fire emissions and the TM5 chemical transport model driven by present-day atmospheric transport and OH concentrations, we found that CO mixing ratios at SPO are more sensitive to emissions from South America and Australia than from Africa, and are relatively insensitive to emissions from the Northern Hemisphere. We then explored how various landscape biomass burning sources may have varied over the past centuries and what the resulting emissions and corresponding CO mixing ratio at SPO would be, using population density variations to reconstruct sources driven by humans (e.g., fuelwood burning and a new model to relate savanna emissions to changes in fire return times. We found that to match the observed ice core CO data, all savannas in the Southern Hemisphere had to burn annually, or bi-annually in combination with deforestation and slash and burn agriculture exceeding current levels, despite much lower population densities and lack of machinery to aid the deforestation process. While possible, these scenarios are unlikely and in conflict with current literature. However, we do show the large potential for increased emissions from savannas in a pre-industrial world. This is mainly because in the past, fuel beds were probably less fragmented compared to the

  9. What could have caused pre-industrial biomass burning emissions to exceed current rates?

    Directory of Open Access Journals (Sweden)

    G. R. van der Werf

    2012-08-01

    Full Text Available Recent studies based on trace gas mixing ratios in ice cores and charcoal data indicate that biomass burning emissions over the past millennium exceeded contemporary emissions by up to a factor of 4 for certain time periods. This is surprising because various sources of biomass burning are linked with population density, which has increased over the past centuries. Here we have analyzed how emissions from several biomass burning sources could have fluctuated to yield emissions that are in correspondence with recent results based on ice core mixing ratios of carbon monoxide (CO and its isotopic signature measured at South Pole station (SPO. Based on estimates of contemporary fire emissions and the TM5 chemical transport model, we found that CO mixing ratios at SPO are more sensitive to emissions from South America and Australia than from Africa, and are relatively insensitive to emissions from the Northern Hemisphere. We then explored how various biomass burning sources may have varied over the past centuries and what the resulting emissions and corresponding CO mixing ratio at SPO would be, using population density variations to reconstruct sources driven by humans (e.g. fuelwood burning and a new model to relate savanna emissions to changes in fire return times. We found that to match the observed ice core CO data all savannas in the Southern Hemisphere had to burn annually, or bi-annually in combination with deforestation and slash and burn agriculture matching current levels despite much lower population densities and lack of machinery to aid the deforestation process. While possible, these scenarios are unlikely and in conflict with current literature. However, we do show the large potential for increased emissions from savannas in a pre-industrial world. This is mainly because in the past, fuel beds were probably less fragmented compared to the current situation; we show that the majority of savannas have not burned in the past 10 yr, even

  10. What could have caused pre-industrial biomass burning emissions to exceed current rates?

    Science.gov (United States)

    van der Werf, G. R.; Peters, W.; van Leeuwen, T. T.; Giglio, L.

    2013-01-01

    Recent studies based on trace gas mixing ratios in ice cores and charcoal data indicate that biomass burning emissions over the past millennium exceeded contemporary emissions by up to a factor of 4 for certain time periods. This is surprising because various sources of biomass burning are linked with population density, which has increased over the past centuries. We have analysed how emissions from several landscape biomass burning sources could have fluctuated to yield emissions that are in correspondence with recent results based on ice core mixing ratios of carbon monoxide (CO) and its isotopic signature measured at South Pole station (SPO). Based on estimates of contemporary landscape fire emissions and the TM5 chemical transport model driven by present-day atmospheric transport and OH concentrations, we found that CO mixing ratios at SPO are more sensitive to emissions from South America and Australia than from Africa, and are relatively insensitive to emissions from the Northern Hemisphere. We then explored how various landscape biomass burning sources may have varied over the past centuries and what the resulting emissions and corresponding CO mixing ratio at SPO would be, using population density variations to reconstruct sources driven by humans (e.g., fuelwood burning) and a new model to relate savanna emissions to changes in fire return times. We found that to match the observed ice core CO data, all savannas in the Southern Hemisphere had to burn annually, or bi-annually in combination with deforestation and slash and burn agriculture exceeding current levels, despite much lower population densities and lack of machinery to aid the deforestation process. While possible, these scenarios are unlikely and in conflict with current literature. However, we do show the large potential for increased emissions from savannas in a pre-industrial world. This is mainly because in the past, fuel beds were probably less fragmented compared to the current situation

  11. Orion Burn Management, Nominal and Response to Failures

    Science.gov (United States)

    Odegard, Ryan; Goodman, John L.; Barrett, Charles P.; Pohlkamp, Kara; Robinson, Shane

    2016-01-01

    An approach for managing Orion on-orbit burn execution is described for nominal and failure response scenarios. The burn management strategy for Orion takes into account per-burn variations in targeting, timing, and execution; crew and ground operator intervention and overrides; defined burn failure triggers and responses; and corresponding on-board software sequencing functionality. Burn-to- burn variations are managed through the identification of specific parameters that may be updated for each progressive burn. Failure triggers and automatic responses during the burn timeframe are defined to provide safety for the crew in the case of vehicle failures, along with override capabilities to ensure operational control of the vehicle. On-board sequencing software provides the timeline coordination for performing the required activities related to targeting, burn execution, and responding to burn failures.

  12. Skin Burns Degree Determined by Computer Image Processing Method

    Science.gov (United States)

    Li, Hong-yan

    In this paper a new method determining the degree of skin burns in quantities is put forward. Firstly, with Photoshop9.0 software, we analyzed the statistical character of skin burns images' histogram, and then turned the images of burned skins from RGB color space to HSV space, to analyze the transformed color histogram. Lastly through Photoshop9.0 software we get the percentage of the skin burns area. We made the mean of images' histogram,the standard deviation of color maps,and the percentage of burned areas as indicators of evaluating burns,then distributed indicators the weighted values,at last get the burned scores by summing the products of every indicator of the burns and the weighted values. From the classification of burned scores, the degree of burns can be evaluated.

  13. Impacts of prescribed burning on soil greenhouse gas fluxes in a suburban native forest of south-eastern Queensland, Australia

    Directory of Open Access Journals (Sweden)

    Y. Zhao

    2015-07-01

    Full Text Available Prescribed burning is a forest management practice that is widely used in Australia to reduce the risk of damaging wildfires. It can affect both carbon (C and nitrogen (N cycling in the forest and thereby influence the soil–atmosphere exchange of major greenhouse gases, i.e. carbon dioxide (CO2, methane (CH4 and nitrous oxide (N2O. To quantify the impact of a prescribed burning (conducted on 27 May 2014 on greenhouse gas exchange and the potential controlling mechanisms, we carried out a series of field measurements before (August 2013 and after (August 2014 and November 2014 the fire. Gas exchange rates were determined at 4 replicate sites which were burned during the combustion and another 4 adjacent unburned sites located in green islands, using a set of static chambers. Surface soil properties including temperature, pH, moisture, soil C and N pools were also determined either by in situ measurement or by analysing surface 10 cm soil samples. All of the chamber measurements indicated a net sink of atmospheric CH4, with mean CH4 uptake ranging from 1.15 to 1.99 mg m−2 day−1. The burning significantly enhanced CH4 uptake as indicated by the significant higher CH4 uptake rates at the burned sites measured in August 2014. While within the next 3 months the CH4 uptake rate was recovered to pre-burning levels. Mean CO2 emission from forest soils ranged from 2721.76 to 7113.49 mg m−2 day−1. The effect of prescribed burning on CO2 emission was limited within the first 3 months, as no significant difference was observed between the burned and the adjacent unburned sites in both August and November 2014. The temporal dynamics of the CO2 emission presented more seasonal variations, rather than burning effects. The N2O emission at the studied sites was quite low, and no significant impact of burning was observed. The changes in understory plants and litter layers, surface soil temperature, C and N substrate availability and microbial activities

  14. Ceruloplasmin and Hypoferremia: Studies in Burn and Non-Burn Trauma Patients

    Directory of Open Access Journals (Sweden)

    Michael A. Dubick

    2015-03-01

    Full Text Available Objective: Normal iron handling appears to be disrupted in critically ill patients leading to hypoferremia that may contribute to systemic inflammation. Ceruloplasmin (Cp, an acute phase reactant protein that can convert ferrous iron to its less reactive ferric form facilitating binding to ferritin, has ferroxidase activity that is important to iron handling. Genetic absence of Cp decreases iron export resulting in iron accumulation in many organs. The objective of this study was to characterize iron metabolism and Cp activity in burn and non-burn trauma patients to determine if changes in Cp activity are a potential contributor to the observed hypoferremia. Material and Methods: Under Brooke Army Medical Center Institutional Review Board approved protocols, serum or plasma was collected from burn and non-burn trauma patients on admission to the ICU and at times up to 14 days and measured for indices of iron status, Cp protein and oxidase activity and cytokines. Results: Burn patients showed evidence of anemia and normal or elevated ferritin levels. Plasma Cp oxidase activity in burn and trauma patients were markedly lower than controls on admission and increased to control levels by day 3, particularly in burn patients. Plasma cytokines were elevated throughout the 14 days study along with evidence of an oxidative stress. No significant differences in soluble transferrin receptor were noted among groups on admission, but levels in burn patients were lower than controls for the first 5 days after injury. Conclusion: This study further established the hypoferremia and inflammation associated with burns and trauma. To our knowledge, this is the first study to show an early decrease in Cp oxidase activity in burn and non-burn trauma patients. The results support the hypothesis that transient loss of Cp activity contributes to hypoferremia and inflammation. Further studies are warranted to determine if decreased Cp activity increases the risk of

  15. Modulation of inflammatory and catabolic responses in severely burned children by early burn wound excision in the first 24 hours

    NARCIS (Netherlands)

    Barret, JP; Herndon, DN

    2003-01-01

    Hypothesis: Early burn wound excision modulates the hypermetabolic response in severe pediatric burn injuries. Design: Before-after trial. Setting: A 30-bed burn referral center in a private, university-affiliated hospital. Methods: We studied 35 severely burned children who were divided into 2 grou

  16. Burn size determines the inflammatory and hypermetabolic response

    OpenAIRE

    Jeschke, Marc G.; Mlcak, Ronald P.; Finnerty, Celeste C.; Norbury, William B.; Gauglitz, Gerd G.; Kulp, Gabriela A; Herndon, David N

    2007-01-01

    Background Increased burn size leads to increased mortality of burned patients. Whether mortality is due to inflammation, hypermetabolism or other pathophysiologic contributing factors is not entirely determined. The purpose of the present study was to determine in a large prospective clinical trial whether different burn sizes are associated with differences in inflammation, body composition, protein synthesis, or organ function. Methods Pediatric burned patients were divided into four burn ...

  17. Epidemiology of outpatient burns in Iran: an update

    OpenAIRE

    Karimi, H.; Motevalian, S.A.; M. Momeni

    2014-01-01

    Burn injury remains a serious and devastating issue faced by developing countries. It is also true, however, that the developed world still tackles many of the challenges caused by burns. In order to reduce this problem through preventive programs, the characteristics of this type of injury must be studied and well documented in each setting. Our study aims to show the epidemiology, demographic distribution and clinical outcomes of burns patients referred to Motahari Burn Hospital, the burn c...

  18. Aetiology and Outcome of Elderly Burn Patients in Tabriz, Iran

    OpenAIRE

    H. Maghsoudi; Ghaffari, A

    2009-01-01

    Background. Geriatric patients, usually defined as being 65 years of age or over, now make up about 10% of the major burn population. Main aim. To conduct a prospective study of elderly burn patients, analysing the predictive value of age, gender, total body surface area (TBSA) burned, inhalation trauma, pre-morbid conditions, and mortality. Methods. A 10-year prospective study of burn victims hospitalized in a major burn centre in Iran was conducted to analyse the association between age, pe...

  19. Biomass Burning and Polonium-210 in the Atmosphere: a Review

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Fernando P. [Instituto Superior Tecnico/Campus Tecnologico e Nuclear/(IST/CTN), Universidade de Lisboa, Estrada Nacional 10 - ao km 139,7 - 2695-066 Bobadela LRS (Portugal)

    2014-07-01

    Naturally-occurring radionuclides, such as those of uranium series, are part of the lithosphere and hydrosphere and plants do accumulate them up to a certain extent being the activity concentrations in plants generally low, less than 10 Bq/kg (dry weight). Forest and vegetation fires, as well as biomass burning for energy production, release large amounts of carbon, particulate materials, and gaseous compounds into the atmosphere including the naturally-occurring radionuclides present in plants. Near forest fires, and at local and regional scales, surface aerosol sampling followed by radionuclide analysis showed enhanced radionuclide concentrations, especially those of {sup 210}Po. In surface air with smoke from wild fires {sup 210}Po concentration attained 70 mBq/m{sup 3}, more than 2000 times above {sup 210}Po background in surface air, and aerosols displayed {sup 210}Po/{sup 210}Pb concentration ratios up to 12, i.e., about 20 times higher than the average concentration ratio in surface air. Taking into account the amount of plant biomass burned every year, the total activity of {sup 210}Po released into the atmosphere from this source is able to disrupt the usual {sup 210}Po/{sup 210}Pb concentration ratios in atmosphere and atmospheric depositions. A review of atmospheric polonium sources is presented. (authors)

  20. Pulsations in Hydrogen Burning Low Mass Helium White Dwarfs

    CERN Document Server

    Steinfadt, Justin D R; Arras, Phil

    2010-01-01

    Helium core white dwarfs (WDs) with mass M < 0.20 M_sun undergo several Gyrs of stable hydrogen burning as they evolve. We show that in a certain range of WD and hydrogen envelope masses, these WDs may exhibit g-mode pulsations similar to their passively cooling, more massive carbon/oxygen core counterparts, the ZZ Cetis. Our models with stably burning hydrogen envelopes on helium cores yield g-mode periods and period spacings longer than the canonical ZZ Cetis by nearly a factor of two. We show that core composition and structure can be probed using seismology since the g-mode eigenfunctions predominantly reside in the helium core. Though we have not carried out a fully nonadiabatic stability analysis, the scaling of the thermal time in the convective zone with surface gravity highlights several low mass helium WDs that should be observed in search of pulsations: NLTT 11748, SDSS J0822+2753, and the companion to PSR J1012+5307. Seismological studies of these He core WDs may prove especially fruitful, as t...

  1. Biomass Burning and Polonium-210 in the Atmosphere: a Review

    International Nuclear Information System (INIS)

    Naturally-occurring radionuclides, such as those of uranium series, are part of the lithosphere and hydrosphere and plants do accumulate them up to a certain extent being the activity concentrations in plants generally low, less than 10 Bq/kg (dry weight). Forest and vegetation fires, as well as biomass burning for energy production, release large amounts of carbon, particulate materials, and gaseous compounds into the atmosphere including the naturally-occurring radionuclides present in plants. Near forest fires, and at local and regional scales, surface aerosol sampling followed by radionuclide analysis showed enhanced radionuclide concentrations, especially those of 210Po. In surface air with smoke from wild fires 210Po concentration attained 70 mBq/m3, more than 2000 times above 210Po background in surface air, and aerosols displayed 210Po/210Pb concentration ratios up to 12, i.e., about 20 times higher than the average concentration ratio in surface air. Taking into account the amount of plant biomass burned every year, the total activity of 210Po released into the atmosphere from this source is able to disrupt the usual 210Po/210Pb concentration ratios in atmosphere and atmospheric depositions. A review of atmospheric polonium sources is presented. (authors)

  2. Profile of self-inflicted burn patients treated at a tertiary burn center in Istanbul.

    Science.gov (United States)

    Uygur, Fatih; Sever, Celalettin; Oksüz, Sinan; Duman, Haluk

    2009-01-01

    The factors and demographic features of self-inflicted burns in Eastern and Western cultures differ from each other. In this retrospective study, the authors' aim is to identify the epidemiologic features of self-inflicted burn patients treated at their Tertiary Burn Centre. The Burn Centre provides health care to a large population from Istanbul, which is located at the crossroads between Asia and Europe. The demographic data and information of 32 patients who were admitted to the GATA HEH Burn Center in Istanbul for attempted suicide were retrospectively reviewed over a 7-year period (2001-2008). Twenty-eight of the 32 patients were men, whereas the remaining four patients were women. The average age was 25.9 years. Seventeen patients had a previous history of self-harming and 22 patients were unemployed. History of a psychiatric illness was found in 20 patients. Mean total body burn surface area was 70%. The mortality rate was 43.4%. This study demonstrates that suicide attempts by burning differ from Eastern and Western cultures by factors and demographic features. It has been concluded that the solution to preventing self-inflicted burns calls for the joint efforts of physicians, psychologists, and sociologists. Furthermore, it is necessary to reinstate prevention programs and revise strategies for prevention based on the country and its culture.

  3. The evolution of the epidemic of charcoal-burning suicide in Taiwan: a spatial and temporal analysis.

    Directory of Open Access Journals (Sweden)

    Shu-Sen Chang

    2010-01-01

    Full Text Available BACKGROUND: An epidemic of carbon monoxide poisoning suicide by burning barbecue charcoal has occurred in East Asia in the last decade. We investigated the spatial and temporal evolution of the epidemic to assess its impact on the epidemiology of suicide in Taiwan. METHODS AND FINDINGS: Age-standardised rates of suicide and undetermined death by charcoal burning were mapped across townships (median population aged 15 y or over = 27,000 in Taiwan for the periods 1999-2001, 2002-2004, and 2005-2007. Smoothed standardised mortality ratios of charcoal-burning and non-charcoal-burning suicide and undetermined death across townships were estimated using Bayesian hierarchical models. Trends in overall and method-specific rates were compared between urban and rural areas for the period 1991-2007. The epidemic of charcoal-burning suicide in Taiwan emerged more prominently in urban than rural areas, without a single point of origin, and rates of charcoal-burning suicide remained highest in the metropolitan regions throughout the epidemic. The rural excess in overall suicide rates prior to 1998 diminished as rates of charcoal-burning suicide increased to a greater extent in urban than rural areas. CONCLUSIONS: The charcoal-burning epidemic has altered the geography of suicide in Taiwan. The observed pattern and its changes in the past decade suggest that widespread media coverage of this suicide method and easy access to barbecue charcoal may have contributed to the epidemic. Prevention strategies targeted at these factors, such as introducing and enforcing guidelines on media reporting and restricting access to charcoal, may help tackle the increase of charcoal-burning suicides. Please see later in the article for the Editors' Summary.

  4. Ventilator associated pneumonia in major paediatric burns.

    Science.gov (United States)

    Rogers, Alan David; Deal, Cailin; Argent, Andrew Charles; Hudson, Donald Anthony; Rode, Heinz

    2014-09-01

    More than three-quarters of deaths related to major burns are a consequence of infection, which is frequently ventilator associated pneumonia (VAP). A retrospective study was performed, over a five-year period, of ventilated children with major burns. 92 patients were included in the study; their mean age was 3.5 years and their mean total body surface area burn was 30%. 62% of the patients sustained flame burns, and 31% scalds. The mean ICU stay was 10.6 days (range 2-61 days) and the mean ventilation time was 8.4 days (range 2-45 days). There were 59 documented episodes of pneumonia in 52 patients with a rate of 30 infections per 1000 ventilator days. Length of ventilation and the presence of inhalational injury correlate with the incidence of VAP. 17.4% of the patients died (n=16); half of these deaths may be attributed directly to pneumonia. Streptococcus pneumonia, Pseudomonas aeruginosa, Acinetobacter baumanii and Staphylococcus aureus were the most prominent aetiological organisms. Broncho-alveolar lavage was found to be more specific and sensitive at identifying the organism than other methods. This study highlights the importance of implementing strictly enforced strategies for the prevention, detection and management of pneumonia in the presence of major burns. PMID:24468505

  5. Medical response to the radioinduced burns

    International Nuclear Information System (INIS)

    For over two years the Hospital for Burns in Buenos Aires has been studying the burns caused by radiation, in accordance to an agreement with the Nuclear Regulatory Authority (ARN) of Argentina. The analysis of each case showed the importance of the differential diagnosis from conventional injuries, of this early diagnosis depends the possibility of treatment from the 0 (zero) hour (time at which the accident took place) and achieve the wound healing with the best possible treatment, weather it is medical or surgical in nature. The Hospital's medical staff has developed the necessary skills to recognize this type of burns from an early stage. Most patients arrive to the consultation on their own accord due to the general practitioners inability to correctly diagnose the wounds appeared after radiotherapy has been applied. In this article, we present the general guidelines that the doctors of the Hospital for Burns follow in the presence of radio inducted injuries, objectifying the ethiopathogenic differences of the various burns. (author)

  6. Burning characteristics of chemically isolated biomass ingredients

    Energy Technology Data Exchange (ETDEWEB)

    Haykiri-Acma, H.; Yaman, S.; Kucukbayrak, S. [Istanbul Technical University, Chemical and Metallurgical Engineering Faculty, Chemical Engineering Department, 34469 Maslak, Istanbul (Turkey)

    2011-01-15

    This study was performed to investigate the burning characteristics of isolated fractions of a biomass species. So, woody shells of hazelnut were chemically treated to obtain the fractions of extractives-free bulk, lignin, and holocellulose. Physical characterization of these fractions were determined by SEM technique, and the burning runs were carried out from ambient to 900 C applying thermal analysis techniques of TGA, DTG, DTA, and DSC. The non-isothermal model of Borchardt-Daniels was used to DSC data to find the kinetic parameters. Burning properties of each fraction were compared to those of the raw material to describe their effects on burning, and to interpret the synergistic interactions between the fractions in the raw material. It was found that each of the fractions has its own characteristic physical and thermal features. Some of the characteristic points on the thermograms of the fractions could be followed definitely on those of the raw material, while some of them seriously shifted to other temperatures or disappeared as a result of the co-existence of the ingredients. Also, it is concluded that the presence of hemicellulosics and celluloses makes the burning of lignin easier in the raw material compared to the isolated lignin. The activation energies can be arranged in the order of holocellulose < extractives-free biomass < raw material < lignin. (author)

  7. Ventilator associated pneumonia in major paediatric burns.

    Science.gov (United States)

    Rogers, Alan David; Deal, Cailin; Argent, Andrew Charles; Hudson, Donald Anthony; Rode, Heinz

    2014-09-01

    More than three-quarters of deaths related to major burns are a consequence of infection, which is frequently ventilator associated pneumonia (VAP). A retrospective study was performed, over a five-year period, of ventilated children with major burns. 92 patients were included in the study; their mean age was 3.5 years and their mean total body surface area burn was 30%. 62% of the patients sustained flame burns, and 31% scalds. The mean ICU stay was 10.6 days (range 2-61 days) and the mean ventilation time was 8.4 days (range 2-45 days). There were 59 documented episodes of pneumonia in 52 patients with a rate of 30 infections per 1000 ventilator days. Length of ventilation and the presence of inhalational injury correlate with the incidence of VAP. 17.4% of the patients died (n=16); half of these deaths may be attributed directly to pneumonia. Streptococcus pneumonia, Pseudomonas aeruginosa, Acinetobacter baumanii and Staphylococcus aureus were the most prominent aetiological organisms. Broncho-alveolar lavage was found to be more specific and sensitive at identifying the organism than other methods. This study highlights the importance of implementing strictly enforced strategies for the prevention, detection and management of pneumonia in the presence of major burns.

  8. Increased mortality in hypernatremic burned patients

    Directory of Open Access Journals (Sweden)

    Lange, Thomas

    2010-01-01

    Full Text Available Introduction: In-hospital hypernatremia develops usually iatrogenically from inadequate or inappropriate fluid prescription. In severely burned patient an extensive initial fluid resuscitation is necessary for burn shock survival. After recovering of cellular integrity the circulating volume has to be normalized. Hereby extensive water and electrolyte shifts can provoke hypernatremia. Purpose: Is a hypernatremic state associated with increased mortality? Method: Retrospective study for the incidence of hypernatremia and survival in 40 patients with a totally burned surface area (TBSA >10%. Age, sex, TBSA, ABSI-Score and fluid resuscitation within the first 24 hours were analyzed. Patients were separated in two groups without (Group A or with (Group B hypernatremia. Results: Hypernatremia occurred on day 5±1.4. No significant difference for age, sex, TBSA, ABSI-Score and fluid resuscitation within the first 24 hours were calculated. In Group A all patients survived, while 3 of the hypernatremic patient in Group B died during ICU-stay (Odds-ratio = 1.25; 95% CI 0.971–1.61; p=0.046. Conclusion: Burned patients with an in-hospital acquired hypernatremia have an increased mortality risk. In case of a hypernatremic state early intervention is obligatory. There is a need of a fluid removal strategy in severely burned patient to avoid water imbalance.

  9. The epidemiology of geriatric burns in Iran: A national burn registry-based study.

    Science.gov (United States)

    Emami, Seyed-Abolhassan; Motevalian, Seyed Abbas; Momeni, Mahnoush; Karimi, Hamid

    2016-08-01

    Defining the epidemiology and outcome of geriatric burn patients is critical for specialized burn centers, health-care workers, and governments. Better resource use and effective guidelines are some of the advantages of studies focusing on this aspect. The outcome of these patients serves as an objective criterion for quality control, research, and preventive programs. We used data from the burn registry program in our country. For 2 years, >28,700 burn patients were recorded, 1721 of whom were admitted. Among them, 187 patients were ≥55 years old. Sixty-nine percent of patients were male and 31% female, with a male to female ratio of 2.22:1. The mean±standard deviation (SD) of age was 63.4±8.1. The cause of burns was flame (58.2%) and scalds (20.3%). Most of the burns were sustained at home. The mean duration of hospital stay was 19.5 days (range 3-59 days). The mean (SD) of the total body surface area (TBSA) was 20.3% (8.4%). The median hospital stay (length of stay (LOS)) was 11 days (SD=14). The increase in TBSA was related to a longer LOS (pBurn wound infection developed in 44.3% of patients. The presence of inhalation injury was significantly related to mortality (ppatients, 9% recovered completely, 74.9% recovered partially (requiring further treatment), 1% underwent amputation, and 12.8% died. The lack of insurance coverage did not affect the survival of our geriatric burn patients. However, being alone or single, ignition of clothing, cause of burn, comorbid illnesses, complications following the burn, TBSA, age, and sepsis were positively correlated with mortality. The mean cost of treatment for each patient was about $7450.

  10. Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980-2010 period

    NARCIS (Netherlands)

    Granier, C.; Bessagnet, B.; Bond, T.; D'Angiola, A.; Gon, H.D. van der; Frost, G.J.; Heil, A.; Kaiser, J.W.; Kinne, S.; Klimont, Z.; Kloster, S.; Lamarque, J.-F.; Liousse, C.; Masui, T.; Meleux, F.; Mieville, A.; Ohara, T.; Raut, J.-C.; Riahi, K.; Schultz, M.G.; Smith, S.J.; Thompson, A.; Aardenne, J. van; Werf, G.R. van der; Vuuren, D.P. van

    2011-01-01

    Several different inventories of global and regional anthropogenic and biomass burning emissions are assessed for the 1980-2010 period. The species considered in this study are carbon monoxide, nitrogen oxides, sulfur dioxide and black carbon. The inventories considered include the ACCMIP historical

  11. Evolution of anthtropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980-2010 period

    NARCIS (Netherlands)

    Granier, C.; Bessagnet, B.; Bond, T.; D'Angiola, A.; van der Gon, H.D.; Frost, G.J.; Heil, A.; Kaiser, J.W.; Kinne, S.; Klimont, Z.; Kloster, S.; Lamarque, J.F.; Liousse, C.; Masui, T.; Meleux, F.; Mieville, A.; Ohara, T.; Raut, J.C.; Riahi, K.; Schultz, M.G.; Smith, S.J.; Thompson, A.; Van Aardenne, J.; van der Werf, G.R.; van Vuuren, D.P.

    2011-01-01

    Several different inventories of global and regional anthropogenic and biomass burning emissions are assessed for the 1980–2010 period. The species considered in this study are carbon monoxide, nitrogen oxides, sulfur dioxide and black carbon. The inventories considered include the ACCMIP historical

  12. Synthesis and characterization of the natural and burned hydrotalcite

    International Nuclear Information System (INIS)

    The synthesis and the structural and surface properties of the natural and burned hydrotalcite using salts of AlCl3 and MgCl2.6H2O its were studied. Its were used those analysis of BET, IR, XRD, TGA and SEM to characterize these materials. The obtained product was identified as the natural or carbonated hydrotalcite of chemical formula Mg6Al2(OH)16CO3.4H2O. The hydrotalcite was roasted at 500 C during 5 h and the was obtained roasted hydrotalcite (HTC) that is a material of high selectivity toward the anions that it can be efficiently used as adsorbent material in studies of adsorption for the treatment of anionic radioactive waste present in watery solution. (Author)

  13. Simulation of triton burn-up in JET plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Loughlin, M.J.; Balet, B.; Jarvis, O.N.; Stubberfield, P.M. [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    This paper presents the first triton burn-up calculations for JET plasmas using the transport code TRANSP. Four hot ion H-mode deuterium plasmas are studied. For these discharges, the 2.5 MeV emission rises rapidly and then collapses abruptly. This phenomenon is not fully understood but in each case the collapse phase is associated with a large impurity influx known as the ``carbon bloom``. The peak 14 MeV emission occurs at this time, somewhat later than that of the 2.5 MeV neutron peak. The present results give a clear indication that there are no significant departures from classical slowing down and spatial diffusion for tritons in JET plasmas. (authors). 7 refs., 3 figs., 1 tab.

  14. The structure of l2C and stellar helium burning

    International Nuclear Information System (INIS)

    The rate of stellar formation of carbon at high temperatures (T > 3 GK) may increase beyond that which is expected from the Hoyle state at 7.654 MeV due to contributions from higher lying states in 12C. The long sought for second 2+ state predicted at 9 - 10 MeV excitation energy in 12C was predicted to significantly increase the production of 12C. An Optical Readout Time Projection Chamber (O-TPC) operating with the gas mixture of CO2 (80%) + N2(20%) at 100 torr with gamma beams from the HIγS facility of TUNL at Duke was used to study the formation of carbon (and oxygen) during helium burning. Preliminary measurements were carried out at beam energies: E = 9.51, 9.61, 9.72, 10.00, 10.54, 10.84 and 11.14 MeV. Extra attention was paid for separating the carbon dissociation events, 12C(γ,3α), from the oxygen dissociation events, 16O(γ, α)12C. Complete angular distributions were measured giving credence to a newly identified 2+ state just below 10.0 MeV.

  15. A clarion to recommit and reaffirm burn rehabilitation.

    Science.gov (United States)

    Richard, Reginald L; Hedman, Travis L; Quick, Charles D; Barillo, David J; Cancio, Leopoldo C; Renz, Evan M; Chapman, Ted T; Dewey, William S; Dougherty, Mary E; Esselman, Peter C; Forbes-Duchart, Lisa; Franzen, Beth J; Hunter, Hope; Kowalske, Karen; Moore, Merilyn L; Nakamura, Dana Y; Nedelec, Bernedette; Niszczak, Jon; Parry, Ingrid; Serghiou, Michael; Ward, R Scott; Holcomb, John B; Wolf, Steven E

    2008-01-01

    Burn rehabilitation has been a part of burn care and treatment for many years. Yet, despite of its longevity, the rehabilitation outcome of patients with severe burns is less than optimal and appears to have leveled off. Patient survival from burn injury is at an all-time high. Burn rehabilitation must progress to the point where physical outcomes parallel survival statistics in terms of improved patient well-being. This position article is a treatise on burn rehabilitation and the state of burn rehabilitation patient outcomes. It describes burn rehabilitation interventions in brief and why a need is felt to bring this issue to the forefront. The article discusses areas for change and the challenges facing burn rehabilitation. Finally, the relegation and acceptance of this responsibility are addressed. PMID:18388581

  16. BURN SIZE AND SURVIVAL PROBABILITY IN PEDIATRIC PATIENTS IN MODERN BURN CARE

    Science.gov (United States)

    Kraft, Robert; Herndon, David N; Al-Mousawi, Ahmed M; Williams, Felicia N; Finnerty, Celeste C; Jeschke, Marc G

    2012-01-01

    Background Patient survival following severe burn injury is largely determined by burn size. Modern developments in burn care have tremendously improved survival and outcomes. However, no large analysis on outcomes in pediatric burn patients with current treatment regimen exists. This study was designed to identify the burn size presently associated with significant increases in morbidity and mortality in pediatric burn patients. Methods Single center prospective observational cohort study utilizing the clinical data of severely burned pediatric patients admitted between 1998 and 2009. This study included 952 severely burned pediatric patients with burns over at least 30% of their total body surface area (TBSA). Patients were stratified by burn size in 10% increments, ranging from 30 to 100%, with a secondary assignment made according to the outcome of a receiver operating characteristic (ROC) analysis. Statistical analysis was performed using Student’s t-test, χ2 test, logistic regression and ROC analysis, as appropriate, with significance set at p<0.05. Findings All groups were comparable in age (age in years: 30–39: 6.1±5.1, 40–49: 7.1±5.2, 50–59: 7.6±5.1, 60–69: 7.2±5.1, 70–79: 8.3±5.9, 80–89: 8.4±5.6, 90–100: 9.6±5.4), and gender distribution (male: 30–39: 68%, 40–49: 64%, 50–59: 65%, 60–69: 59%, 70–79: 71%, 80–89: 62%, 90–100: 82%). Mortality (30–39: 3%, 40–49: 3%, 50–59: 7%, 60–69: 16%, 70–79: 22%, 80–89: 35%, 90–100: 55%), multi-organ failure (30–39: 6%, 40–49: 6%, 50–59: 12%, 60–69: 27%, 70–79: 29%, 80–89: 44%, 90–100: 45%), and sepsis (30–39: 2%, 40–49: 5%, 50–59: 6%, 60–69: 15%, 70–79: 13%, 80–89: 22%, 90–100: 26%), increased significantly (p<0.001) among the groups and at a threshold of 62% TBSA. Comparison of patients with burns larger than 62% with those smaller showed significant differences in inflammatory (Cytokines), acute phase (CRP) and hypermetabolic responses (REE

  17. Burn wound: How it differs from other wounds?

    Directory of Open Access Journals (Sweden)

    V K Tiwari

    2012-01-01

    Full Text Available Management of burn injury has always been the domain of burn specialists. Since ancient time, local and systemic remedies have been advised for burn wound dressing and burn scar prevention. Management of burn wound inflicted by the different physical and chemical agents require different regimes which are poles apart from the regimes used for any of the other traumatic wounds. In extensive burn, because of increased capillary permeability, there is extensive loss of plasma leading to shock while whole blood loss is the cause of shock in other acute wounds. Even though the burn wounds are sterile in the beginning in comparison to most of other wounds, yet, the death in extensive burns is mainly because of wound infection and septicemia, because of the immunocompromised status of the burn patients. Eschar and blister are specific for burn wounds requiring a specific treatment protocol. Antimicrobial creams and other dressing agents used for traumatic wounds are ineffective in deep burns with eschar. The subeschar plane harbours the micro-organisms and many of these agents are not able to penetrate the eschar. Even after complete epithelisation of burn wound, remodelling phase is prolonged. It may take years for scar maturation in burns. This article emphasizes on how the pathophysiology, healing and management of a burn wound is different from that of other wounds.

  18. Understorey fire frequency and the fate of burned forests in southern Amazonia

    OpenAIRE

    D. C. Morton; Le Page, Y.; DeFries, R.; G. J. Collatz; Hurtt, G. C.

    2013-01-01

    Recent drought events underscore the vulnerability of Amazon forests to understorey fires. The long-term impact of fires on biodiversity and forest carbon stocks depends on the frequency of fire damages and deforestation rates of burned forests. Here, we characterized the spatial and temporal dynamics of understorey fires (1999–2010) and deforestation (2001–2010) in southern Amazonia using new satellite-based estimates of annual fire activity (greater than 50 ha) and deforestation (greater th...

  19. More frequent burning increases vulnerability of Alaskan boreal black spruce forests

    Science.gov (United States)

    Hoy, Elizabeth E.; Turetsky, Merritt R.; Kasischke, Eric S.

    2016-09-01

    Much recent research has investigated the effects of burning on mature black spruce (Picea mariana) forests in interior Alaska, however little research has focused on how frequent reburning affects soil organic layer (SOL) vulnerability in these ecosystems. We compared organic soil layer characteristics in black spruce stands that burned after two fire-free intervals (FFI), including an intermediate-interval (37–52 years) and a more typical long-interval (70–120 years). We found that depth of burn varied significantly between intermediate-interval and long-interval sites, and as there was less material available to burn in intermediate-interval stands, percent depth reduction was greater in these stands (78.9% ± 2.6%) than in long-interval stands (62.9% ± 1.5%). As a result, less residual organic soil carbon remained post-fire in intermediate-interval than long-interval stands. Post-fire organic soil carbon stocks averaged 0.51 ± 0.08 kg C m‑2 in the intermediate-interval sites, which is less than estimates of soil carbon stock for long-interval fire events (ranging from 2.07 to 5.74 kg C m‑2). In addition to altering soil carbon storage, a depletion of the SOL during more frequent fire events will likely delay the recovery of permafrost and could trigger a change in the possible successional trajectory of a site, from black spruce dominated to deciduous or even shrub dominated ecosystems in the future.

  20. Origin, variability and age of biomass burning plumes intercepted during BORTAS-B

    OpenAIRE

    D. P. Finch; Palmer, P.I.; M. Parrington

    2014-01-01

    We use the GEOS-Chem atmospheric chemistry transport model to interpret aircraft measurements of carbon monoxide (CO) in biomass burning outflow taken during the 2011 BORTAS-B campaign over eastern Canada. The model has some skill reproducing the observed variability, with a Spearman's rank correlation rs = 0.65, but has a positive negative bias for observations 300 ppb. We find that observed CO variations are largely due to fires over Ontario, as expected, with smaller an...

  1. An overview of burning mouth syndrome.

    Science.gov (United States)

    Salerno, Carmen; Di Stasio, Dario; Petruzzi, Massimo; Lauritano, Dorina; Gentile, Enrica; Guida, Agostino; Maio, Claudio; Tammaro, Mariasofia; Serpico, Rosario; Lucchese, Alberta

    2016-01-01

    Burning mouth syndrome (BMS) is characterised by the presence of a burning sensation in the oral mucosa in the absence of any clinically apparent mucosal sign. It occurs more commonly in older women and often affects the tongue tip and lateral borders, lips, and hard and soft palates. Besides the burning sensation, patients with BMS may complain of unremitting oral mucosal pain, dysgeusia, and xerostomia. The exact pathophysiology of primary BMS remains unknown. A major challenge for the clinician is the treatment of BMS: identifying possible causative factors is the first step, but BMS is often idiopathic. Drug therapy, in addition to behavioural therapy and psychotherapy, may help to eliminate the symptoms. Considering the growing incidence of BMS in older people, further research is required to determine the true efficacy of current management strategies for patients with this disorder. PMID:26709657

  2. [Ischemic cholangiopathy induced by extended burns].

    Science.gov (United States)

    Cohen, Laurence; Angot, Emilie; Goria, Odile; Koning, Edith; François, Arnaud; Sabourin, Jean-Christophe

    2013-04-01

    Ischemic cholangiopathy is a recently described entity occurring mainly after hepatic grafts. Very few cases after intensive care unit (ICU) for extended burn injury were reported. We report the case of a 73-year-old woman consulting in an hepatology unit, for a jaundice appearing during a hospitalisation in an intensive care unit and increasing from her leaving from ICU, where she was treated for an extended burn injury. She had no pre-existing biological features of biliary disease. Biological tests were normal. Magnetic resonance imaging acquisitions of biliary tracts pointed out severe stenosing lesions of diffuse cholangiopathy concerning intrahepatic biliary tract, mainly peri-hilar. Biopsie from the liver confirmed the diagnosis, showing a biliary cirrhosis with bile infarcts. This case is the fourth case of ischemic cholangiopathy after extended burn injury, concerning a patient without a prior history of hepatic or biliary illness and appearing after hospitalisation in intensive care unit.

  3. Burning plasmas in ITER for energy source

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Nobuyuki [Atomic Energy Commission, Tokyo (Japan)

    2002-10-01

    Fusion research and development has two aspects. One is an academic research on science and technology, i.e., discovery and understanding of unexpected phenomena and, development of innovative technology, respectively. The other is energy source development to realize fusion as a viable energy future. Fusion research has been made remarkable progress in the past several decades, and ITER will soon realize burning plasma that is essential for both academic research and energy development. With ITER, scientific research on unknown phenomena such as self-organization of the plasma in burning state will become possible and it contributes to create a variety of academic outcome. Fusion researchers will have a responsibility to generate actual energy, and electricity generation immediately after the success of burning plasma control experiment in ITER is the next important step that has to be discussed seriously. (author)

  4. Severe metabolic acidosis following assault chemical burn

    Directory of Open Access Journals (Sweden)

    Sophie De Roock

    2012-01-01

    Full Text Available Assault chemical burns are uncommon in northern Europe. Besides local toxicity, systemic manifestations are possible after strong acid exposure. A 40-year-old woman was admitted 1 h after a criminal assault with sulfuric acid. The total burned surface area was 35%, third degree. Injury was due to sulfuric acid (measured pH 0.9 obtained from a car battery. Immediate complications were obstructive dyspnea and metabolic acidosis. The admission arterial pH was 6.92, with total bicarbonate 8.6 mEq/l and base deficit 23.4 mEq/l. The correction of metabolic acidosis was achieved after several hours by the administration of bicarbonate and lactate buffers. The patient developed several burns-related complications (sepsis and acute renal failure. Cutaneous projections of strong acids may cause severe metabolic acidosis, particularly when copious irrigation and clothes removal cannot be immediately performed at the scene.

  5. Soil heating and impact of prescribed burning

    Science.gov (United States)

    Stoof, Cathelijne

    2016-04-01

    Prescribed burning is highly uncommon in the Netherlands, where wildfire awareness is increasing but its risk management does not yet include fuel management strategies. A major exception is on two military bases, that need to burn their fields in winter and spring to prevent wildfires during summer shooting practice. Research on these very frequent burns has so far been limited to effects on biodiversity, yet site managers and policy makers have questions regarding the soil temperatures reached during these burns because of potential impact on soil properties and soil dwelling fauna. In March 2015, I therefore measured soil and litter temperatures under heath and grass vegetation during a prescribed burn on military terrain in the Netherlands. Soil and litter moisture were sampled pre- and post-fire, ash was collected, and fireline intensity was estimated from flame length. While standing vegetation was dry (0.13 g water/g biomass for grass and 0.6 g/g for heather), soil and litter were moist (0.21 cm3/cm3 and 1.6 g/g, respectively). Soil heating was therefore very limited, with maximum soil temperature at the soil-litter interface remaining being as low as 6.5 to 11.5°C, and litter temperatures reaching a maximum of 77.5°C at the top of the litter layer. As a result, any changes in physical properties like soil organic matter content and bulk density were not significant. These results are a first step towards a database of soil heating in relation to fuel load and fire intensity in this temperate country, which is not only valuable to increase understanding of the relationships between fire intensity and severity, but also instrumental in the policy debate regarding the sustainability of prescribed burns.

  6. Addition agents effects on hydrocarbon fuels burning

    Science.gov (United States)

    Larionov, V. M.; Mitrofanov, G. A.; Sakhovskii, A. V.

    2016-01-01

    Literature review on addition agents effects on hydrocarbon fuels burning has been conducted. The impact results in flame pattern and burning velocity change, energy efficiency increase, environmentally harmful NOx and CO emission reduction and damping of self-oscillations in flow. An assumption about water molecules dissociation phenomenon existing in a number of practical applications and being neglected in most explanations for physical- chemical processes taking place in case of injection of water/steam into combustion zone has been noted. The hypothesis about necessity of water dissociation account has been proposed. It can be useful for low temperature combustion process control and NOx emission reduction.

  7. Control of a burning tokamak plasma

    Energy Technology Data Exchange (ETDEWEB)

    Burmeister, R.E.; Mandrekas, J.; Stacey, W.M.

    1993-03-01

    This report is a review of the literature relevant to the control of the thermonuclear burn in a tokamak plasma. Some basic tokamak phenomena are reviewed, and then control by modulation of auxiliary heating and fueling is discussed. Other possible control methods such as magnetic ripple, plasma compression, and impurity injection as well as more recent proposed methods such as divertor biasing and L- to H-mode transition are also reviewed. The applications of modern control theory to the tokamak burn control problem are presented. The control results are summarized and areas of further research are identified.

  8. [Plastic reconstructive surgery for burn injuries].

    Science.gov (United States)

    Niederbichler, A D; Vogt, P M

    2009-06-01

    The stage-adjusted therapy of thermal injuries is based on pathophysiologic mechanisms as well as functional and aesthetic requirements. Plastic reconstructive surgical approaches are highly important in the prevention of the frequent grave sequelae of thermal trauma and to achieve optimal functional rehabilitation and favourable outcome. In reconstructive surgery of burns operative goals are subdivided into acute, secondary reconstructive, functional and aesthetic indications. The achievement of early wound closure to preserve functional skin and soft tissue components is an essential part of acute reconstructive procedures. Functional reconstructive and aesthetic procedures supplement the conservative treatment modalities of the secondary phase of burn care with physical therapy, ergotherapy and psychological support. PMID:19543874

  9. Effect of Topical Platelet-Rich Plasma on Burn Healing After Partial-Thickness Burn Injury.

    Science.gov (United States)

    Ozcelik, Umit; Ekici, Yahya; Bircan, Huseyin Yuce; Aydogan, Cem; Turkoglu, Suna; Ozen, Ozlem; Moray, Gokhan; Haberal, Mehmet

    2016-06-05

    BACKGROUND To investigate the effects of platelet-rich plasma on tissue maturation and burn healing in an experimental partial-thickness burn injury model. MATERIAL AND METHODS Thirty Wistar albino rats were divided into 3 groups of 10 rats each. Group 1 (platelet-rich plasma group) was exposed to burn injury and topical platelet-rich plasma was applied. Group 2 (control group) was exposed to burn injury only. Group 3 (blood donor group) was used as blood donors for platelet-rich plasma. The rats were killed on the seventh day after burn injury. Tissue hydroxyproline levels were measured and histopathologic changes were examined. RESULTS Hydroxyproline levels were significantly higher in the platelet-rich plasma group than in the control group (P=.03). Histopathologically, there was significantly less inflammatory cell infiltration (P=.005) and there were no statistically significant differences between groups in fibroblast development, collagen production, vessel proliferations, or epithelization. CONCLUSIONS Platelet-rich plasma seems to partially improve burn healing in this experimental burn injury model. As an initial conclusion, it appears that platelet-rich plasma can be used in humans, although further studies should be performed with this type of treatment.

  10. Study of Bacterial Infections among Burn Patients Hospitalized in Isfahan Burn Center

    Directory of Open Access Journals (Sweden)

    J. Faghri

    2007-10-01

    Full Text Available Introduction & Objective: Burn patients are at risk of acquiring infection because of destroy skin barrier, suppression of immunity, prolonged hospitalization, and invasive therapeutic and diagnostic procedure, risk of acquiring infection is high among burned patients. The aim of this study was to assess the incidence rate of bacterial etiology and infections among burn patients in the burn center of Isfahan. Materials & Methods: The study was conducted descriptive – cross sectional during a period of one year, (from august 2004 until September 2005. A total of 106 patients presenting with no signs and symptoms of infection within the first 48 hours of admission were included. CDC definition for nosocomial infections was applied. Each patient’s clinical examinations and records investigated daily. Swab culture, blood culture (during fever time, tissue culture from biopsy specimen of burn wound and urine culture obtained. The data were analyzed and interpreted using SPSS 10 Software, using Chi – square and Kappa Coefficient. P.value < 0.05 was significant. Results: One-hundred and six patients met the inclusion criteria, 91 (85/8% acquired at least one type of infection, including, urinary tract 28 (26/4%, blood stream 30 (28/3%, and burn wound 91(85/8%. Pseudomonas aeroginosa was the most common causative agent isolated from blood culture and swab culture, 27/42% and 54/4% respectively. Also, E.coli was the major casautive agent of urinary tract infections (6.4% isolated from urine culture of these burn patients.Conclusion: The results indicated that, biopsy from burn wounds and study of histopathologic specimen day by other day depends on blood and urine culture conditions overall can be effective for early detection of burn wounds infections.

  11. Molecular characterization of urban organic aerosol in tropical India: contributions of biomass/biofuel burning, plastic burning, and fossil fuel combustion

    Directory of Open Access Journals (Sweden)

    P. Q. Fu

    2009-10-01

    Full Text Available Organic molecular composition of PM10 samples, collected at Chennai in tropical India, was studied using capillary gas chromatography/mass spectrometry. Twelve organic compound classes were detected in the aerosols, including aliphatic lipids, sugar compounds, lignin products, terpenoid biomarkers, sterols, aromatic acids, phthalates, hopanes, and polycyclic aromatic hydrocarbons (PAHs. At daytime, phthalates was found to be the most abundant compound class; while at nighttime, fatty acids was the dominant one. Concentrations of total quantified organics were higher in summer (611–3268 ng m−3, average 1586 ng m−3 than in winter (362–2381 ng m−3, 1136 ng m−3, accounting for 11.5±1.93% and 9.35±1.77% of organic carbon mass in summer and winter, respectively. Di-(2-ethylhexyl phthalate, C16 fatty acid, and levoglucosan were identified as the most abundant single compounds. The nighttime maxima of most organics in the aerosols indicate a land/sea breeze effect in tropical India, although some other factors such as local emissions and long-range transport may also influence the composition of organic aerosols. The abundances of anhydrosugars (e.g., levoglucosan, lignin and resin products, hopanes and PAHs in the Chennai aerosols suggest that biomass burning and fossil fuel combustion are significant sources of organic aerosols in tropical India. Interestingly, terephthalic acid was maximized at nighttime, which is different from those of phthalic and isophthalic acids. A positive correlation was found between the concentration of 1,3,5-triphenylbenzene (a tracer for plastic burning and terephthalic acid, suggesting that field burning of municipal solid wastes including plastics is a significant source of terephthalic acid. This study demonstrates that, in addition to biomass burning and fossil fuel combustion, the open-burning of plastics also contributes to the organic

  12. Influence of fuel mass load, oxygen supply and burning rate on emission factor and size distribution of carbonaceous particulate matter from indoor corn straw burning

    Institute of Scientific and Technical Information of China (English)

    Guofeng Shen; Miao Xue; Siye Wei; Yuanchen Chen; Bin Wang; Rong Wang; Huizhong Shen

    2013-01-01

    The uncertainty in emission estimation is strongly associated with the variation in emission factor (EF),which could be influenced bya variety of factors such as fuel properties,stove type,fire management and even methods used in measurements.The impacts of thesefactors are complicated and often interact with each other.Controlled burning experiments were conducted to investigate the influencesof fuel mass load,air supply and burning rate on the emissions and size distributions of carbonaceous particulate matter (PM) fromindoor corn straw bunting in a cooking stove.The results showed that the EFs of PM (EFpM),organic carbon (EFoc) and elementalcarbon (EFEc) were independent of the fuel mass load.The differences among them under different burning rates or air supply amountswere also found to be insignificant (P > 0.05) in the tested circumstances.PM from the indoor corn straw burning was dominated byfine PM with diameter less than 2.1 μm,contributing 86.4% ± 3.9% of the total.The size distribution of PM was influenced by theburning rate and air supply conditions.On average,EFPM,EFoc and EFEC for corn straw burned in a residential cooking stove were(3.84 ± 1.02),(0.846 ± 0.895) and (0.391 ± 0.350) g/kg,respectively.EFPM,EFoc and EFEc were found to be positively correlatedwith each other (P < 0.05),but they were not significantly correlated with the EF of co-emitted CO,suggesting that special attentionshould be paid to the use of CO as a surrogate for other incomplete combustion pollutants.

  13. Diversity of the soil biota in burned areas of southern taiga forests (Tver oblast)

    Science.gov (United States)

    Gongalsky, K. B.; Zaitsev, A. S.; Korobushkin, D. I.; Saifutdinov, R. A.; Yazrikova, T. E.; Benediktova, A. I.; Gorbunova, A. Yu.; Gorshkova, I. A.; Butenko, K. O.; Kosina, N. V.; Lapygina, E. V.; Kuznetsova, D. M.; Rakhleeva, A. A.; Shakhab, S. V.

    2016-03-01

    Relations between soil biota diversity and its contribution to the performance of some ecosystem functions were assessed based on the results obtained in undisturbed and burned spruce forests near the Central Forest Nature Biosphere Reserve (Tver oblast). In August 2014, in two 4-year-old burned areas, abiotic parameters of the soils, indicators of the state of the microbial communities, the number, taxonomic diversity, and the abundance of the main groups of soil invertebrates (testate amoebae, nematodes, enchytraeids, mites, collembolans, and the mesofauna as a whole) were determined. In the soils of the burned areas, higher CO2, CH4, and N2O emissions were observed. The number of bacterial cells remained similar, and the total length of active mycelium was not significantly different. All this implies a certain intensification of biogenic processes promoting the mobilization of carbon and nitrogen after fire. The number of most of the groups of soil animals was lower (not always significantly) in the burned area than that in the soils of the undisturbed forests. The changes in the taxonomic diversity were specific for each taxon studied. Overall, the diversity of invertebrates was related to the litter thickness. However, the high taxonomic diversity of soil fauna did not always correspond to the active functioning of the ecosystem. Thus, for some taxa, a quite close correlation was found, for instance, between the total number of species (of testate amoebae in particular) and the berry crop, as well as between the soil mesofauna population and the dead wood stock. The total diversity of the investigated taxa included in the detrital trophic web was the most reliable indicator of the carbon stock in the burned areas.

  14. Combustion studies of coal derived solid fuels by thermogravimetric analysis. III. Correlation between burnout temperature and carbon combustion efficiency

    Science.gov (United States)

    Rostam-Abadi, M.; DeBarr, J.A.; Chen, W.T.

    1990-01-01

    Burning profiles of 35-53 ??m size fractions of an Illinois coal and three partially devolatilized coals prepared from the original coal were obtained using a thermogravimetric analyzer. The burning profile burnout temperatures were higher for lower volatile fuels and correlated well with carbon combustion efficiencies of the fuels when burned in a laboratory-scale laminar flow reactor. Fuels with higher burnout temperatures had lower carbon combustion efficiencies under various time-temperature conditions in the laboratory-scale reactor. ?? 1990.

  15. Healing the Burn: Advances in Burn Treatment Technology Aim to Save Lives, Lessen Pain and Scarring.

    Science.gov (United States)

    Allen, Summer E

    2016-01-01

    When brothers Jamie and Glen Selby, aged 5 and 7, arrived at the Shriners Burns Institute in Denver, Colorado, in July 1983, more than 97% of their skin had been destroyed by a fire they had accidentally started while playing in an abandoned house. The boys were so badly burned that their outlook was grim-a 6-year-old friend who was also in the fire died from his injuries?but Jamie and Glen were lucky. Not only did they survive, but they were also some of the first patients to benefit from a new burn treatment nicknamed test-tube skin. PMID:27414631

  16. Burn injuries in eastern Zambia: impact of multidisciplinary teaching teams.

    Science.gov (United States)

    Edwards, Dianna; Heard, Jason; Latenser, Barbara A; Quinn, Keely Y; van Bruggen, Jaap; Jovic, Goran

    2011-01-01

    The American Burn Association/Children's Burn Foundation (ABA/CBF) sponsors teams who offer burn education to healthcare providers in Zambia, a sub-Saharan country. The goals of this study are 1) to acquire burn-patient demographics for the Eastern Province, Zambia and 2) to assess the early impact of the ABA/CBF-sponsored burn teams. This is a retrospective chart review of burn patients admitted in one mission hospital in Katete, Zambia, July 2002 to June 2009. July 2002 to December 2006 = data before ABA/CBF burn teams and January 2007 to June 2009 = burn care data during/after burn outreach. There were 510 burn patients hospitalized, male:female ratio 1.2:1. Average age = 15.6 years, with 44% younger than 5 years. Average TBSA burned = 11% and mean fatal TBSA = 25%. Average hospital length of stay = 16.9 days survivors and 11.6 days nonsurvivors. Most common mechanisms of burn injuries: flame (52%) and scald (41%). Ninety-two patients (18%) died and 23 (4.5%) left against medical advice. There were 191 (37.4%) patients who underwent 410 surgical procedures (range 1-13/patient). There were 138 (33.7%) sloughectomies, 118 (28.7%) skin grafts, 39 (9.5%) amputations, and 115 (28.1%) other procedures. Changes noted in the 2007 to 2009 time period: more patients had burn diagrams (48.6 vs 27.6%, P set for a sub-Saharan region in Africa. There has been a statistically significant improvement in documentation of burn size as well as administration of analgesics, validating the efficacy of the ABA/CBF-sponsored burn teams. Continued contact with burn teams may lead to increased use of resuscitation fluids, topical antimicrobials, and more patients undergoing operative intervention, translating into improved burn patient outcomes. PMID:21131848

  17. "Burn catatonia": a case report and literature review.

    Science.gov (United States)

    Quinn, Davin Kenneth

    2014-01-01

    Thermal injuries have been recognized to cause significant neuropsychiatric symptoms and disability in their sufferers since the middle of the 20th century, when Drs. Stanley Cobb and Erich Lindemann of the Massachusetts General Hospital (Boston, MA) studied survivors of the Cocoanut Grove nightclub fire in Boston. Although "burn encephalopathy" or burn-induced delirium is a common occurrence in the acute phase, catatonia in burn patients is not often reported. This report describes a case of malignant catatonia occurring in a 51-year-old male patient acutely suffering from burns acquired in a chemical explosion, effectively treated with reinstitution of a selective serotonin reuptake inhibitor. The literature on burn encephalopathy and catatonia in burns is reviewed. Few examples of burn catatonia exist. Burn encephalopathy is common, and may occur in patients with low TBSA burns such as described in the case above. Descriptions of burn encephalopathy are numerous, but have not included catatonia as a possible etiology. Catatonia in burn patients as an etiology of burn encephalopathy is likely underrecognized. Clinicians should be aware of the possibility of catatonia when a patient's confusional state after a burn does not respond to usual care.

  18. The contributions of biomass burning to primary and secondary organics: A case study in Pearl River Delta (PRD), China.

    Science.gov (United States)

    Wang, BaoLin; Liu, Ying; Shao, Min; Lu, SiHua; Wang, Ming; Yuan, Bin; Gong, ZhaoHeng; He, LingYan; Zeng, LiMin; Hu, Min; Zhang, YuanHang

    2016-11-01

    Synchronized online measurements of gas- and particle- phase organics including non-methane hydrocarbons (NMHCs), oxygenated volatile organic compounds (OVOCs) and submicron organic matters (OM) were conducted in November 2010 at Heshan, Guangdong provincial supersite, China. Several biomass burning events were identified by using acetonitrile as a tracer, and enhancement ratios (EnRs) of organics to carbon monoxide (CO) obtained from this work generally agree with those from rice straw burning in previous studies. The influences of biomass burning on NMHCs, OVOCs and OM were explored by comparing biomass burning impacted plumes (BB plumes) and non-biomass burning plumes (non-BB plumes). A photochemical age-based parameterization method was used to characterize primary emission and chemical behavior of those three organic groups. The emission ratios (EmRs) of NMHCs, OVOCs and OM to CO increased by 27-71%, 34-55% and 67% in BB plumes, respectively, in comparison with non-BB plumes. The estimated formation rate of secondary organic aerosol (SOA) in BB plumes was found to be 24% faster than non-BB plumes. By applying the above emission ratios to the whole PRD, the annual emissions of VOCs and OM from open burning of crop residues would be 56.4 and 3.8Gg in 2010 in PRD, respectively.

  19. The contributions of biomass burning to primary and secondary organics: A case study in Pearl River Delta (PRD), China.

    Science.gov (United States)

    Wang, BaoLin; Liu, Ying; Shao, Min; Lu, SiHua; Wang, Ming; Yuan, Bin; Gong, ZhaoHeng; He, LingYan; Zeng, LiMin; Hu, Min; Zhang, YuanHang

    2016-11-01

    Synchronized online measurements of gas- and particle- phase organics including non-methane hydrocarbons (NMHCs), oxygenated volatile organic compounds (OVOCs) and submicron organic matters (OM) were conducted in November 2010 at Heshan, Guangdong provincial supersite, China. Several biomass burning events were identified by using acetonitrile as a tracer, and enhancement ratios (EnRs) of organics to carbon monoxide (CO) obtained from this work generally agree with those from rice straw burning in previous studies. The influences of biomass burning on NMHCs, OVOCs and OM were explored by comparing biomass burning impacted plumes (BB plumes) and non-biomass burning plumes (non-BB plumes). A photochemical age-based parameterization method was used to characterize primary emission and chemical behavior of those three organic groups. The emission ratios (EmRs) of NMHCs, OVOCs and OM to CO increased by 27-71%, 34-55% and 67% in BB plumes, respectively, in comparison with non-BB plumes. The estimated formation rate of secondary organic aerosol (SOA) in BB plumes was found to be 24% faster than non-BB plumes. By applying the above emission ratios to the whole PRD, the annual emissions of VOCs and OM from open burning of crop residues would be 56.4 and 3.8Gg in 2010 in PRD, respectively. PMID:27371770

  20. Burning mouth syndrome: a review and update.

    Science.gov (United States)

    Silvestre, Francisco J; Silvestre-Rangil, Javier; López-Jornet, Pía

    2015-05-16

    Burning mouth syndrome (BMS) is mainly found in middle aged or elderly women and is characterized by intense burning or itching sensation of the tongue or other regions of the oral mucosa. It can be accompanied by xerostomia and dysgeusia. The syndrome generally manifests spontaneously, and the discomfort is typically of a continuous nature but increases in intensity during the evening and at night. Although BMS classically has been attributed to a range of factors, in recent years evidence has been obtained relating it peripheral (sensory C and/or trigeminal nerve fibers) or central neuropathic disturbances (involving the nigrostriatal dopaminergic system). The differential diagnosis requires the exclusion of oral mucosal lesions or blood test alterations that can produce burning mouth sensation. Patient management is based on the avoidance of causes of oral irritation and the provision of psychological support. Drug treatment for burning sensation in primary BMS of peripheral origin can consist of topical clonazepam, while central type BMS appears to improve with the use of antidepressants such as duloxetine, antiseizure drugs such as gabapentin, or amisulpride. PMID:25952601

  1. [Phage therapy for bacterial infection of burn].

    Science.gov (United States)

    Peng, Y Z; Huang, G T

    2016-09-20

    With the long-term and widespread use of antibiotics, drug resistance of bacteria has become a major problem in the treatment of burn infection. For treating multidrug resistant bacteria, phage therapy has become the focus of attention. Development of phage therapy to fill the blank of this field in China is extremely urgent. PMID:27647065

  2. Protect the Ones You Love From Burns

    Centers for Disease Control (CDC) Podcasts

    2008-12-10

    This podcast, developed as part of the Protect the Ones You Love initiative, discusses steps parents can take to help protect their children from burns, one of the leading causes of child injury.  Created: 12/10/2008 by National Center for Injury Prevention and Control (NCIPC).   Date Released: 12/10/2008.

  3. Analysis of antibiotic consumption in burn patients.

    Science.gov (United States)

    Soleymanzadeh-Moghadam, Somayeh; Azimi, Leila; Amani, Laleh; Rastegar Lari, Aida; Alinejad, Faranak; Rastegar Lari, Abdolaziz

    2015-01-01

    Infection control is very important in burn care units, because burn wound infection is one of the main causes of morbidity and mortality among burn patients. Thus, the appropriate prescription of antibiotics can be helpful, but unreasonable prescription can have detrimental consequences, including greater expenses to patients and community alike. The aim of this study was to determine the effect of antibiotic therapy on the emergence of antibiotic-resistant bacteria. 525 strains of Pseudomonas aeruginosa, Acinetobacter baumannii and Staphylococcus aureus were isolated from 335 hospitalized burn patients. Antibiotic susceptibility tests were performed after identification the strains. The records of patients were audited to find the antibiotic used. The results indicated that P. aeruginosa is the most prevalent Gram-negative bacteria. Further, it showed a relation between abuse of antibiotics and emergence of antibiotic resistance. Control of resistance to antibiotics by appropriate prescription practices not only facilitates prevention of infection caused by multi-drug resistant (MDR) microorganisms, but it can also decrease the cost of treatment. PMID:26124986

  4. Reclaiming body image: the hidden burn.

    Science.gov (United States)

    Willis-Helmich, J J

    1992-01-01

    At the age of 4, I incurred a major burn injury that left 45% of my body with permanent scars. Normal clothing covers most of the scars. I was able to reclaim a positive body image through a gradual process of verbal and "body" disclosure. As an adult, I joined a burn survivors' self-help group; as a result of talking with other burn survivors, my self expectations increased. Later, I joined a facilitated group in which nudity and personal growth were the norm. In this group, I was the only person who had experienced a major physical trauma. I replaced my strongly held beliefs that others could not accept my unclothed, burn-injured body with the belief that some persons can, and I came to a personal understanding of why others could not. Fun, exercise, and relaxation led to a reclamation of positive feelings about my unclothed body and allowed my femininity and the character of my body image to emerge and become integrated. PMID:1572860

  5. CHARACTERIZATION OF EMISSIONS FROM BURNING INCENSE

    Science.gov (United States)

    The primary objective of this study was to improve the characterization of particulate matter emissions from burning incense. Emissions of particulate matter were measured for 23 different types of incense using a cyclone/filter method. Emission rates for PM2.5 (particulate matte...

  6. Electric field effects on droplet burning

    Science.gov (United States)

    Patyal, Advitya; Kyritsis, Dimitrios; Matalon, Moshe

    2015-11-01

    The effects of an externally applied electric field are studied on the burning characteristics of a spherically symmetric fuel drop including the structure, mass burning rate and extinction characteristics of the diffusion flame. A reduced three-step chemical kinetic mechanism that reflects the chemi-ionization process for general hydrocarbon fuels has been proposed to capture the production and destruction of ions inside the flame zone. Due to the imposed symmetry, the effect of the ionic wind is simply to modify the pressure field. Our study thus focuses exclusively on the effects of Ohmic heating and kinetic effects on the burning process. Two distinguished limits of weak and strong field are identified, highlighting the relative strength of the internal charge barrier compared to the externally applied field, and numerically simulated. For both limits, significantly different charged species distributions are observed. An increase in the mass burning rate is noticed with increasing field in either limit with negligible change in the flame temperature. Increasing external voltages pushes the flame away from the droplet and causes a strengthening of the flame with a reduction in the extinction Damkhöler number.

  7. Pain insensitivity syndrome misinterpreted as inflicted burns.

    Science.gov (United States)

    van den Bosch, Gerbrich E; Baartmans, Martin G A; Vos, Paul; Dokter, Jan; White, Tonya; Tibboel, Dick

    2014-05-01

    We present a case study of a 10-year-old child with severe burns that were misinterpreted as inflicted burns. Because of multiple injuries since early life, the family was under suspicion of child abuse and therefore under supervision of the Child Care Board for 2 years before the boy was burned. Because the boy incurred the burns without feeling pain, we conducted a thorough medical examination and laboratory testing, evaluated detection and pain thresholds, and used MRI to study brain morphology and brain activation patterns during pain between this patient and 3 healthy age- and gender-matched controls. We found elevated detection and pain thresholds and lower brain activation during pain in the patient compared with the healthy controls and reference values. The patient received the diagnosis of hereditary sensory and autonomic neuropathy type IV on the basis of clinical findings and the laboratory testing, complemented with the altered pain and detection thresholds and MRI findings. Hereditary sensory and autonomic neuropathy IV is a very rare congenital pain insensitivity syndrome characterized by the absence of pain and temperature sensation combined with oral mutilation due to unawareness, fractures, and anhidrosis caused by abnormalities in the peripheral nerves. Health care workers should be aware of the potential presence of this disease to prevent false accusations of child abuse. PMID:24733875

  8. Peculiar Features of Burning Alternative Motor Fuels

    Directory of Open Access Journals (Sweden)

    M. Assad

    2006-01-01

    Full Text Available Some peculiar features of air-hydrogen mixture combustion process in a modeling combustion chamber are given in the paper. Dependences of burning duration of various fuel types on initial pressure have been obtained. The paper considers dynamics of changes in pressure and ignition rate of some fuel types in the combustion chamber.

  9. Long standing intra oral acid burn

    NARCIS (Netherlands)

    V.V. Kumar; S. Ebenezer; F. Lobbezoo

    2015-01-01

    Oral burn due to ingestion of corrosive substances can bring about debilitating consequences. It often brings mortality, and the survivors can have severe impairment of functions, especially in relation to the stomatognathic and gastrointestinal systems. This article presents a long-standing case (2

  10. Analysis of antibiotic consumption in burn patients

    Directory of Open Access Journals (Sweden)

    Soleymanzadeh-Moghadam, Somayeh

    2015-06-01

    Full Text Available Infection control is very important in burn care units, because burn wound infection is one of the main causes of morbidity and mortality among burn patients. Thus, the appropriate prescription of antibiotics can be helpful, but unreasonable prescription can have detrimental consequences, including greater expenses to patients and community alike. The aim of this study was to determine the effect of antibiotic therapy on the emergence of antibiotic-resistant bacteria. 525 strains of and were isolated from 335 hospitalized burn patients. Antibiotic susceptibility tests were performed after identification the strains. The records of patients were audited to find the antibiotic used.The results indicated that is the most prevalent Gram-negative bacteria. Further, it showed a relation between abuse of antibiotics and emergence of antibiotic resistance. Control of resistance to antibiotics by appropriate prescription practices not only facilitates prevention of infection caused by multi-drug resistant (MDR microorganisms, but it can also decrease the cost of treatment.

  11. Reactive burn models and ignition & growth concept

    Energy Technology Data Exchange (ETDEWEB)

    Menikoff, Ralph S [Los Alamos National Laboratory; Shaw, Milton S [Los Alamos National Laboratory

    2010-01-01

    Plastic-bonded explosives are heterogeneous materials. Experimentally, shock initiation is sensitive to small amounts of porosity, due to the formation of hot spots (small localized regions of high temperature). This leads to the Ignition and Growth concept, introduced by Lee and Tarver in 1980, as the basis for reactive burn models. A homogeneized burn rate needs to account for three mesoscale physical effects (i) the density of burnt hot spots, which depends on the lead shock strength; (ii) the growth of the burn fronts triggered by hot spots, which depends on the local deflagration speed; (iii) a geometric factor that accounts for the overlap of deflagration wavelets from adjacent hot spots. These effects can be combined and the burn model defined by specifying the reaction progress variable {lambda}(t) as a function of a dimensionless reaction length {tau}{sub hs}(t)/{ell}{sub hs}, rather than by xpecifying an explicit burn rate. The length scale {ell}{sub hs} is the average distance between hot spots, which is proportional to [N{sub hs}(P{sub s})]{sup -1/3}, where N{sub hs} is the number density of hot spots activated by the lead shock. The reaction length {tau}{sub hs}(t) = {line_integral}{sub 0}{sup t} D(P(t'))dt' is the distance the burn front propagates from a single hot spot, where D is the deflagration speed and t is the time since the shock arrival. A key implementation issue is how to determine the lead shock strength in conjunction with a shock capturing scheme. They have developed a robust algorithm for this purpose based on the Hugoniot jump condition for the energy. The algorithm utilizes the time dependence of density, pressure and energy within each cell. The method is independent of the numerical dissipation used for shock capturing. It is local and can be used in one or more space dimensions. The burn model has a small number of parameters which can be calibrated to fit velocity gauge data from shock initiation experiments.

  12. PCDD AND PCDF EMISSIONS FROM SIMULATED SUGARCANE FIELD BURNING

    Science.gov (United States)

    The emissions from simulated sugarcane field burns were sampled and analyzed for polychlorinated dibenzodioxins and dibenzofurans (PCDDs and PCDFs). Sugarcane leaves from Hawaii and Florida were burned in a manner simulating the natural physical dimensions and biomass density fou...

  13. Burn Prevention for Families with Children with Special Needs

    Medline Plus

    Full Text Available ... Safety Tips Get Involved Giving Donate Safety Tips Age ... this video to learn what you need to know about burn prevention if you have a child with special needs. Read our burn prevention tips | ...

  14. Characterization of burn injuries using terahertz time-domain spectroscopy

    Science.gov (United States)

    Arbab, M. Hassan; Dickey, Trevor C.; Winebrenner, Dale P.; Chen, Antao; Mourad, Pierre D.

    2011-03-01

    The accuracy rates of the clinical assessment techniques used in grading burn injuries remain significantly low for partial thickness burns. In this paper, we present experimental results from terahertz characterization of 2nd and 3rd degree burn wounds induced on a rat model. Reflection measurements were obtained from the surface of both burned and normal skin using pulsed terahertz spectroscopy. Signal processing techniques are described for interpretation of the acquired terahertz waveform and differentiation of burn wounds. Furthermore, the progression of burn injuries is shown by comparison between acute characterization and 72-hours survival studies. While the water content of healthy and desiccated skin has been considered as a source of terahertz signal contrast, it is demonstrated that other biological effects such as formation of post-burn interstitial edema as well as the density of the discrete scattering structures in the skin (such as hair follicles, sweat glands, etc.) play a significant role in the terahertz response of the burn wounds.

  15. Toddlers at High Risk of Chemical Eye Burns

    Science.gov (United States)

    ... fullstory_160258.html Toddlers at High Risk of Chemical Eye Burns: Study Access to household cleaning products to blame, ... and 2 years have relatively high rates of chemical eye burns, with everyday cleaners a common cause, researchers say. ...

  16. Etiology of Burn Injuries Among 0-6 Aged Children in One University Hospital Burn Unit, Bursa, Turkey

    Directory of Open Access Journals (Sweden)

    Neriman Akansel

    2013-01-01

    Full Text Available Background; Children whose verbal communications are not fully developed are the ones at risk for burn injuries. Causes of burn injuries vary among different age groups and scald injuries are the common cause of burn injuries among children. The majority of burns result from contact with thermal agents such as flame, hot surfaces, or hot liquids.Aim: The aim of this study was to determine etiologic factors of the burn injured children Methods: Data were collected for burn injured children treated in Uludag University Medical Hospital Burn Unit between January 2001 – December 2008. Patients’ demographic variables, etiology of burn injury, TBSA(total body surface area, degree of the burn injury, duration of hospitalization was detected from medical records of the hospitalized patients.Results: The mean age of the children was 2.5±1.5 (median=2. Although 4.6 % of burned patients were under one year of age, most of the children (67.8% were between 1-3 years. All of the patients were burned as a result of accident and house environment was the place where the burn incident occurred. Burn injuries occurredmostly during summer (29.9% and spring (28.7%. Scald injuries (75.3% were mostly seen burn injury types all among other burn injuries.Conclusions: Lack of supervision and observation are usually the most common causes of burn injuries in children. Statistical differences were found among age groups according to their burn etiology (p<0.05. An effect of TBSA on patient survival was statistically significant (p<0.000 and also statistically significant results were seen among age groups according to their TBSA’s (p<0.005.

  17. Burn Pre-Approval Area, Geographic NAD83, LOSCO (2000) [burn_preapproval_area_LOSCO_2000

    Data.gov (United States)

    Louisiana Geographic Information Center — This is a region dataset delineating the areas of offshore Louisiana having Regional Response Team VI (RRT 6) pre-approval for the use of in-situ burning, according...

  18. Ultrasonic pulse-echo determination of burn depth in partial-thickness burns

    International Nuclear Information System (INIS)

    A number of possible techniques for measuring burn depth were considered, and it was concluded that high-frequency ultrasound offers the best possibility for investigation of burn injury. A conventional ultrasonic pulse-echo system was assembled and modified so that small distances in tissue (less than or equal to 1 mm) can be resolved. Typical transducers used during the course of measurements on human and porcine skin are described. Ultimate success of the ultrasonic technique is dependent on the validity of the assumption that the acoustic impedance of necrotic burn tissue is sufficiently different from that of viable tissue to allow for ultrasonic reflections at the interface between burned and viable tissue. In general, this assumption seems to have been valid in animal and human experiments carried out to date

  19. Solar burn reactivation induced by methotrexate.

    Science.gov (United States)

    DeVore, Kelli J

    2010-04-01

    Solar burn reactivation, a rare and idiosyncratic drug reaction, has been reported with the use of a variety of drugs. This reaction is believed to be the result of exposure to ultraviolet light during the subsiding phase of an acute inflammatory reaction. It affects areas of the body that have been previously sunburned. We describe a 16-year-old girl who was receiving treatment for acute lymphoblastic leukemia and experienced a second-degree solar burn reactivation reaction to methotrexate. The patient had a mild sunburn on her face and shoulders the day she went to the oncology clinic for her interim maintenance chemotherapy with vincristine 1.5 mg/m(2)/dose and methotrexate 100 mg/m(2)/dose. Three days later, she returned to the clinic with a 2-day history of fever (solar burn reactivation reaction. She was admitted to the children's hospital and treated with sodium bicarbonate, acetaminophen with codeine, ondansetron, and silvadene cream. On hospital day 3, the patient's methotrexate level decreased to less than 0.1 mM. The sunburn continued to heal, and after a 14-day hospital stay, complicated by a streptococcal infection, grade 3 mucositis, bacteremia, and mild gastritis and duodenitis, the patient recovered and was discharged. Use of the Naranjo adverse drug reaction probability scale indicated a probable relationship (score of 6) between the patient's solar burn reactivation and methotrexate. Although methotrexate-induced solar burn reactivation is rare, clinicians should be aware of this potential adverse reaction and consider delaying administration of methotrexate by 5-7 days if a patient reports ultraviolet-related erythema in the past 2-4 days or presents with a notable sunburn. PMID:20334462

  20. Methoxyphenols in smoke from biomass burning

    Energy Technology Data Exchange (ETDEWEB)

    Kjaellstrand, J.

    2000-07-01

    Wood and other forest plant materials were burned in laboratory experiments with the ambition to simulate the natural burning course in a fireplace or a forest fire. Smoke samples were taken and analysed with respect to methoxyphenols, using gas chromatography and mass spectrometry. Different kinds of bio pellets, intended for residential heating were studied in the same way. The aim of a first study was to establish analytical data to facilitate further research. Thirty-six specific methoxyphenols were identified, and gas chromatographic retention and mass spectrometric data were determined for these. In a subsequent study, the methoxyphenol emissions from the burning of wood and other forest plant materials were investigated. Proportions and concentrations of specific methoxyphenols were determined. Methoxyphenols and anhydrosugars, formed from the decomposition of lignin and cellulose respectively, were the most prominent semi-volatile compounds in the biomass smoke. The methoxyphenol compositions reflected the lignin structures of different plant materials. Softwood smoke contained almost only 2-methoxyphenols, while hardwood smoke contained both 2-methoxyphenols and 2,6-dimethoxyphenols. The methoxyphenols in smoke from pellets, made of sawdust, bark and lignin, reflected the source of biomass. Although smoke from incompletely burned wood contains mainly methoxyphenols and anhydrosugars, there is also a smaller amount of well-known hazardous compounds present. The methoxyphenols are antioxidants. They appear mainly condensed on particles and are presumed to be inhaled together with other smoke components. As antioxidants, phenols interrupt free radical chain reactions and possibly counteract the effect of hazardous smoke components. Health hazards of small-scale wood burning should be re-evaluated considering antioxidant effects of the methoxyphenols.

  1. Current Treatment Options in Challenging Oral Diseases: Burning Mouth Syndrome

    Directory of Open Access Journals (Sweden)

    Bilgen Erdoğan

    2012-12-01

    Full Text Available Burning mouth syndrome is a chronic condition characterized by burning pain without any signs of an oral mucosal pathology, that usually affects postmenopausal women. Burning sensation is often accompanied by dysgeusia and xerostomia. The pathogenesis of the disease is unknown and an effective treatment option for most of the patients has not been defined yet. The aim of this review is to present current pharmacological and physicological treatments of burning mouth syndrome.

  2. Current Treatment Options in Challenging Oral Diseases: Burning Mouth Syndrome

    OpenAIRE

    Bilgen Erdoğan; Murat Yılmaz

    2012-01-01

    Burning mouth syndrome is a chronic condition characterized by burning pain without any signs of an oral mucosal pathology, that usually affects postmenopausal women. Burning sensation is often accompanied by dysgeusia and xerostomia. The pathogenesis of the disease is unknown and an effective treatment option for most of the patients has not been defined yet. The aim of this review is to present current pharmacological and physicological treatments of burning mouth syndrome.

  3. Cytokine expression profile over time in burned mice

    OpenAIRE

    Finnerty, Celeste C.; Przkora, Rene; Herndon, David N; Jeschke, Marc G.

    2008-01-01

    The persistent inflammatory response induced by a severe burn increases patient susceptibility to infections and sepsis, potentially leading to multi-organ failure and death. In order to use murine models to develop interventions that modulate the post-burn inflammatory response, the response in mice and the similarities to the human response must first be determined. Here we present the temporal serum cytokine expression profiles in burned in comparison to sham mice and human burn patients. ...

  4. CASE REPORT Playing Football Burns More Than Just Calories

    OpenAIRE

    Wain, Richard A. J.; Shah, Syed H. A.

    2010-01-01

    Objective: To highlight the case of a sports-related alkali burn due to a common household chemical and emphasize the importance of a detailed medical history in chemical burns patients. Methods: A single-patient case study is presented along with references from existing literature. Results: Alkaline burn injuries associated with sports have previously been described in the literature; however, this case demonstrates an unusual presentation of a chemical burn with a readily available househo...

  5. Continental cement trial burn strategy follow-up

    Energy Technology Data Exchange (ETDEWEB)

    Woodford, J. [Gossman Consulting, Inc., Springboro, OH (United States); Winders, H. [Continental Cement Company, Hannibal, MO (United States); Constans, D.L. [Gossman Consulting, Inc., Peachtree City, GA (United States)

    1997-12-31

    The Continental Trial Burn strategy, presented at the 1995 BIF Conference, included the use of {open_quotes}data-in-lieu-of{close_quotes} from previous compliance testing conducted at the facility. Since the submission of the Trial Burn Plan and the 1995 presentation, Continental Cement has completed their two campaign trial burn. This paper will update the implementation of the Continental Trial Burn strategy. 1 fig., 1 tab.

  6. Music therapy for children with severe burn injury

    OpenAIRE

    Edwards, Jane

    1998-01-01

    peer-reviewed Music therapy for children with severe burns is a developing field of practice and research interest in pediatric music therapy. The following article presents an overview of the nature of severe burn injury and provides a rationale for the use of music therapy in the Burn Unit. The application of song writing techniques to address needs of children receiving care for severe burns in a hospital setting is presented.

  7. Modalities for the Assessment of Burn Wound Depth

    OpenAIRE

    Devgan, Lara; Bhat, Satyanarayan; Aylward, S.; Spence, Robert J.

    2006-01-01

    Objective: Burn wound depth is a significant determinant of patient treatment and morbidity. While superficial partial-thickness burns generally heal by re-epithelialization with minimal scarring, deeper wounds can form hypertrophic or contracted scars, often requiring surgical excision and grafting to prevent a suboptimal result. In addition, without timely intervention, more superficial burn wounds can convert to deeper wounds. As such, the rapid and accurate assessment of burn wound depth ...

  8. Epidemiologic Characteristics of Occupational Burns in Yazd, Iran

    OpenAIRE

    Seyyed Jalil Mirmohammadi; Amir Houshang Mehrparvar; Kazem Kazemeini; Mehrdad Mostaghaci

    2013-01-01

    Objective: Occupational burns are among the important causes of work-related fatalities and absenteeism. Epidemiologic assessment of these injuries is important to define high-risk jobs. We designed this study to evaluate the epidemiology of occupational burns in Yazd, an industrial province in Iran. Methods: This is a prospective study on work-related burns in a 1-year period (2008-2009). A questionnaire was completed for them about the characteristics of the burn injury. Results: Th...

  9. [Prevention and treatment strategy for burn wound sepsis in children].

    Science.gov (United States)

    Niu, Xihua; Li, Xiaoling

    2016-02-01

    Wound sepsis is one of the main causes of death in patients with severe burn and trauma. The high incidence of burn wound sepsis in children is attributed to their imperfect immune system function, poor resistance against infection, and the weakened skin barrier function after burn. The key to reduce the mortality of pediatric patients with burn wound sepsis is to enhance the understanding of its etiology, epidemiology, pathogenesis, and diagnostic criteria, in order to improve its early diagnosis and treatment. PMID:26902271

  10. Bacteremia in burned patients admitted to Sina Hospital, Tabriz, Iran

    OpenAIRE

    Parviz Saleh; Hamid Noshad

    2014-01-01

    Introduction: One of the most important causes of mortality and morbidity in burn wards is infection, and it is the major reason of death in burn injuries. There are several reasons that make burn victims predisposed to infection. The current study aimed to investigate the role of different factors that have an effect on bacteremia occurrence in burn patients and factors which are relevant to mortality in these patients. Methods: This descriptive-analytic study conducted in a 1...

  11. An unusual burn caused by hot argy wormwood leaf water

    Directory of Open Access Journals (Sweden)

    Feng Guo

    2011-09-01

    Full Text Available An unusual burn case caused by hot wormwood leaf water was discussed. A 29-year-old woman sustained a 7% second-degree burn on both buttocks and left thigh. This case report highlights a rare cause of a chemical burn that may become more common with increasing use of this Chinese traditional medicine. The prevention measures of this burn injury were also presented.

  12. Management of chemical burns of the canine cornea

    OpenAIRE

    Christmas, Richard

    1991-01-01

    Significant clinical signs and general principles of treatment for chemical burns of the canine cornea are presented using three typical case studies for illustration. Alkali burns are more common in dogs than acid burns. The sources of alkali in this study were soap, cement, and mortar dust. Common signs of chemical burns are ocular pain, corneal ulceration, tear film inadequacy, corneal edema, and marked corneal neovascularity. Successful treatment requires thorough ocular lavage, treatment...

  13. Burning of olive tree branches: a major organic aerosol source in the Mediterranean

    Directory of Open Access Journals (Sweden)

    E. Kostenidou

    2013-03-01

    Full Text Available Aerosol produced during the burning of olive tree branches was characterized with both direct source-sampling (using a mobile smog chamber and with ambient measurements during the burning season. The fresh particles were composed of 80% organic matter, 8–10% black carbon (BC, 5% potassium, 3–4% sulfate, 2–3% nitrate and 0.8% chloride. Almost half of the fresh olive tree branches burning organic aerosol (otBB-OA consisted of alkane groups. Their mode diameter was close to 70 nm. The oxygen to carbon (O:C ratio of the fresh otBB-OA was 0.29 ± 0.04. The mass fraction of levoglucosan in PM1 was 0.034–0.043, relatively low in comparison with most fuel types. This may lead to an underestimation of the otBB-OA contribution if levoglucosan is being used as a wood burning tracer. Chemical aging was observed during smog chamber experiments, as f44 and O:C ratio increased, due to reactions with OH radicals and O3. The otBB-OA AMS mass spectrum differs from the other published biomass burning spectra, with a main difference at m/z 60, used as levoglucosan tracer. In addition to particles, volatile organic compounds (VOCs such as methanol, acetonitrile, acrolein, benzene, toluene and xylenes are also emitted. Positive matrix factorization (PMF was applied to the ambient organic aerosol data and 3 factors could be identified: OOA (oxygenated organic aerosol, 55%, HOA (hydrocarbon-like organic aerosol, 11.3% and otBB-OA 33.7%. The fresh chamber otBB-OA AMS spectrum is close to the PMF otBB-OA spectrum and resembles the ambient mass spectrum during olive tree branches burning periods. We estimated an otBB-OA emission factor of 3.5 ± 0.2 g kg−1. Assuming that half of the olive tree branches pruned is burned in Greece 2280 ± 140 tons of otBB-OA are emitted every year. This activity is one of the most important fine aerosol sources during the winter months in the Mediterranean countries.

  14. The leading causes of death after burn injury in a single pediatric burn center

    OpenAIRE

    Williams, Felicia N.; Herndon, David N; Hawkins, Hal K.; Lee, Jong O; Cox, Robert A.; Kulp, Gabriela A; Finnerty, Celeste C.; Chinkes, David L.; Jeschke, Marc G.

    2009-01-01

    Introduction Severe thermal injury is characterized by profound morbidity and mortality. Advances in burn and critical care, including early excision and grafting, aggressive resuscitation and advances in antimicrobial therapy have made substantial contributions to decrease morbidity and mortality. Despite these advances, death still occurs. Our aim was to determine the predominant causes of death in burned pediatric patients in order to develop new treatment avenues and future trajectories a...

  15. Human amplification of drought-induced biomass burning in Indonesia since 1960

    Science.gov (United States)

    Field, R. D.; van der Werf, G. R.; Shen, S. S.

    2009-05-01

    Much of the interannual variability in global atmospheric carbon dioxide concentrations has been attributed to variability of emissions from biomass burning. Under drought conditions, agricultural burning in Indonesia escapes control, and is a disproportionate contributor to these emissions, as seen in the 1997/98 haze disaster. Yet our understanding of the frequency, severity and underlying causes of severe biomass burning in Indonesia is limited because of the absence of satellite data that are useful for fire monitoring before the mid- 1990s. Here we present a continuous monthly record of severe burning events from 1960 to 2006 using the visibility reported at airports in the region. We find that these fires cause what are possibly the world's worst air quality conditions and that they occur only during years when precipitation falls below a well defined threshold. Historically, large fire events have occurred in Sumatra at least since the 1960s. By contrast, the first large fires are recorded in Kalimantan (Indonesian Borneo) in the 1980s, despite earlier severe droughts. We attribute this difference to different patterns of changes in land use and population density. Fires in Indonesia have often been linked with El Niño, but we find that the Indian Ocean Dipole pattern is as important a contributing factor.

  16. Understorey fire frequency and the fate of burned forests in southern Amazonia.

    Science.gov (United States)

    Morton, D C; Le Page, Y; DeFries, R; Collatz, G J; Hurtt, G C

    2013-06-01

    Recent drought events underscore the vulnerability of Amazon forests to understorey fires. The long-term impact of fires on biodiversity and forest carbon stocks depends on the frequency of fire damages and deforestation rates of burned forests. Here, we characterized the spatial and temporal dynamics of understorey fires (1999-2010) and deforestation (2001-2010) in southern Amazonia using new satellite-based estimates of annual fire activity (greater than 50 ha) and deforestation (greater than 10 ha). Understorey forest fires burned more than 85 500 km(2) between 1999 and 2010 (2.8% of all forests). Forests that burned more than once accounted for 16 per cent of all understorey fires. Repeated fire activity was concentrated in Mato Grosso and eastern Pará, whereas single fires were widespread across the arc of deforestation. Routine fire activity in Mato Grosso coincided with annual periods of low night-time relative humidity, suggesting a strong climate control on both single and repeated fires. Understorey fires occurred in regions with active deforestation, yet the interannual variability of fire and deforestation were uncorrelated, and only 2.6 per cent of forests that burned between 1999 and 2008 were deforested for agricultural use by 2010. Evidence from the past decade suggests that future projections of frontier landscapes in Amazonia should separately consider economic drivers to project future deforestation and climate to project fire risk. PMID:23610169

  17. Abdominal fat reducing outcome of exercise training: fat burning or hydrocarbon source redistribution?

    Science.gov (United States)

    Kuo, Chia-Hua; Harris, M Brennan

    2016-07-01

    Fat burning, defined by fatty acid oxidation into carbon dioxide, is the most described hypothesis to explain the actual abdominal fat reducing outcome of exercise training. This hypothesis is strengthened by evidence of increased whole-body lipolysis during exercise. As a result, aerobic training is widely recommended for obesity management. This intuition raises several paradoxes: first, both aerobic and resistance exercise training do not actually elevate 24 h fat oxidation, according to data from chamber-based indirect calorimetry. Second, anaerobic high-intensity intermittent training produces greater abdominal fat reduction than continuous aerobic training at similar amounts of energy expenditure. Third, significant body fat reduction in athletes occurs when oxygen supply decreases to inhibit fat burning during altitude-induced hypoxia exposure at the same training volume. Lack of oxygen increases post-meal blood distribution to human skeletal muscle, suggesting that shifting the postprandial hydrocarbons towards skeletal muscle away from adipose tissue might be more important than fat burning in decreasing abdominal fat. Creating a negative energy balance in fat cells due to competition of skeletal muscle for circulating hydrocarbon sources may be a better model to explain the abdominal fat reducing outcome of exercise than the fat-burning model. PMID:27152424

  18. Top-down aerosol emission estimates for biomass burning between 2001 and 2010

    Science.gov (United States)

    Huneeus, Nicolas; Boucher, Olivier; Chevallier, Frederic

    2013-04-01

    The emissions of black carbon (BC) and particulate organic matter (POM) from biomass burning are estimated at the global scale by assimilating daily total and fine mode aerosol optical depths (AOD) at 550 nm from the Moderate Resolution Imaging Spectroradiometer (MODIS) into a global aerosol model of intermediate complexity. Monthly emissions are fitted homogenously for each species over a set of predefined regions. Biomass burning regions were defined based on the Global Fire Database (GFED) regions. The performance is evaluated by comparing the AOD after assimilation against the MODIS observations and against AERONET data. The system has been applied to the year 2010 and shows effectiveness in forcing the model towards the observations, for both total and fine mode AOD. Significant improvements for the root mean square error and correlation coefficient against both the assimilated and independent datasets are observed. In addition the sensitivity and robustness of the inversion system to the choice of the first guess emission inventory have been investigated by using different combinations of inventories for industrial, fossil fuel and biomass burning sources. The study will be extended to the entire period 2001-2010. The performance of the inversion will be assessed and the estimated emissions will be presented and compared with different top-down and bottom-up estimates. The uncertainty of the estimated emissions will be evaluated and discussed. Special attention will be given to the seasonality of biomass burning aerosol emissions in the regions of Central South America, Southern South America, North Africa and Southern Hemisphere Africa.

  19. Inferring Absorbing Organic Carbon Content from AERONET Data

    Science.gov (United States)

    Arola, A.; Schuster, G.; Myhre, G.; Kazadzis, S.; Dey, S.; Tripathi, S. N.

    2011-01-01

    Black carbon, light-absorbing organic carbon (often called brown carbon) and mineral dust are the major light-absorbing aerosols. Currently the sources and formation of brown carbon aerosol in particular are not well understood. In this study we estimated globally the amount of light absorbing organic carbon and black carbon from AERONET measurements. We find that the columnar absorbing organic carbon (brown carbon) levels in biomass burning regions of South-America and Africa are relatively high (about 15-20 magnesium per square meters during biomass burning season), while the concentrations are significantly lower in urban areas in US and Europe. However, we estimated significant absorbing organic carbon amounts from the data of megacities of newly industrialized countries, particularly in India and China, showing also clear seasonality with peak values up to 30-35 magnesium per square meters during the coldest season, likely caused by the coal and biofuel burning used for heating. We also compared our retrievals with the modeled organic carbon by global Oslo CTM for several sites. Model values are higher in biomass burning regions than AERONET-based retrievals, while opposite is true in urban areas in India and China.

  20. Epidermal-dermal crosstalk during burn wound scar maturation

    NARCIS (Netherlands)

    T.E. Hakvoort (Eveline)

    1999-01-01

    textabstractBurn injuries arc among the worst traumas which can happen to man. The larger a burn injury, the more severe the consequences and the highcr the chance of an adverse outcome or even death. In The Netherlands each year 40,000 people visit a general practitioner for treatment of a burn wou

  1. Interaction mechanisms of organic contaminants with burned straw ash charcoal

    Institute of Scientific and Technical Information of China (English)

    Wenhai Huang; Baoliang Chen

    2010-01-01

    Black carbons (e.g.,charcoal) have a great impact on the transport of organic contaminants in soil and water because of its strong affinity and ubiquity in the environment.To further elucidate their interaction mechanism,sorption of polar (p-nitrotoluene,m-dinitrobenzene and nitrobenzene) and nonpolar (naphthalene) aromatic contaminants to burned straw ash charcoal under different de-ashed treatments were investigated.The sorption isotherms fitted well with Freundlich equation,and the Freundlich N values were all around 0.31-0.38,being independent of the sorbate properties and sorbent types.After sequential removal of ashes by acid treatments (HCl and HCl-HF),both adsorption and partition were enhanced due to the enrichment of charcoal component.The separated contribution of adsorption and partition to total sorption were quantified.The effective carbon content in ash charcoal functioned as adsorption sites,partition phases,and hybrid regions with adsorption and partition were conceptualized and calculated.The hybrid regions increased obviously after de-ashed treatment.The linear relationships of Freundlich N values with the charring-temperature of charcoal or biochar (the charred byproduct in biomass pyrolysis) were observed based on the current study and the cited publications which included 15 different temperatures (100-850℃),10 kinds of precursors of charcoal/biochar,and 10 organic sorbates.

  2. Interaction mechanisms of organic contaminants with burned straw ash charcoal.

    Science.gov (United States)

    Huang, Wenhai; Chen, Baoliang

    2010-01-01

    Black carbons (e.g., charcoal) have a great impact on the transport of organic contaminants in soil and water because of its strong affinity and ubiquity in the environment. To further elucidate their interaction mechanism, sorption of polar (p-nitrotoluene, m-dinitrobenzene and nitrobenzene) and nonpolar (naphthalene) aromatic contaminants to burned straw ash charcoal under different de-ashed treatments were investigated. The sorption isotherms fitted well with Freundlich equation, and the Freundlich N values were all around 0.31-0.38, being independent of the sorbate properties and sorbent types. After sequential removal of ashes by acid treatments (HCl and HCl-HF), both adsorption and partition were enhanced due to the enrichment of charcoal component. The separated contribution of adsorption and partition to total sorption were quantified. The effective carbon content in ash charcoal functioned as adsorption sites, partition phases, and hybrid regions with adsorption and partition were conceptualized and calculated. The hybrid regions increased obviously after de-ashed treatment. The linear relationships of Freundlich N values with the charring-temperature of charcoal or biochar (the charred byproduct in biomass pyrolysis) were observed based on the current study and the cited publications which included 15 different temperatures (100-850 degrees C), 10 kinds of precursors of charcoal/biochar, and 10 organic sorbates. PMID:21235190

  3. New treatment strategies to reduce burn wound progression

    Directory of Open Access Journals (Sweden)

    Schmauss, Daniel

    2014-01-01

    Full Text Available [english] Background: After a burn injury certain superficial partial-thickness burn wounds spontaneously progress into deep partial-thickness or full-thickness burn wounds. This poorly understood phenomenon is called burn wound progression. The aim of this study was to investigate whether treatment strategies using warm water (preservation of microcirculation on the one side and erythropoietin (EPO (molecule with anti-inflammatory, anti-apoptotic, vasodilatory and neoangiogenic properties can prevent, delay and/or reduce secondary burn wound progression in a rat model.Methods: We used a burn comb model in 63 rats, creating eight rectangular contact burns (2x1 cm each intercalated by unburned zones (2x0.5 cm prone to burn wound progression. In a first experimental set we treated burn wounds with locally applied warm (37°C or cold (17°C water for 20 minutes.In a second experimental set, animals were treated systemically with EPO at two different dosages of 500 and 2,500 IU/kg bodyweight (bw and initiated at 2 different time-points (45 minutes vs. 6 hours after burn injury. Evaluation of microcirculatory perfusion, interspace necrosis and burn depth was performed using respectively laser Doppler flowmetry, planimetry and histology. For statistical analysis the two-way ANOVA-test followed by an adequate post-hoc test (Bonferroni were used. Results: In untreated control animals a conversion from superficial to full-thickness burns was observed within 24 hours. Warm and cold water treatment significantly delayed burn depth progression, nevertheless after 4 days, burn depth was similar in all three groups. Warm water significantly reduced interspace necrosis compared to untreated controls and cold water with a significantly improved perfusion in the warm water group. Surface extension and particularly burn depth progression were significantly decreased by EPO only if administered at a dosage of bw and initiated 45 minutes after burn injury. EPO

  4. Nutrition in the severely burned child.

    Science.gov (United States)

    Solomon, J R

    1981-01-01

    Adequate nutrition in the severely burned child often determines the morbidity and mortality and its supervision demands a high priority in the management of the burn injury. A disciplined, detailed programme is required, but this is often neglected. The hypermetabolism experienced in the severe burn may require a calorie intake up to 2 1/2 times normal, and in the growing child, with extra requirements, a negative balance can easily eventuate if careful management is not instituted. A daily metabolic plan provides firstly, the basic calories and protein per kilogram depending on age as for a normal child and, secondly additional requirements depending on the surface area of the burn. With such a programme the weakness of treating all children, whatever their age, on the same formula related only to surface area burn, is overcome. Parenteral nutrition is commenced as soon as the shock phase has been controlled and is continued until enteral intake by gastric tube is sufficient to cover the requirements. Such tube feeding requires the selection of an isotonic liquid diet so as so limit the possibility of diarrhoea. Isocal (Mead Johnson) has been found generally acceptable. Gradually as the patient recovers, oral intake is introduced and the child returns home on a normal nutritional diet, expectantly without weight loss and even with some weight gain, which befits any normal child under treatment for some months. Preburn nutrition, disease and infection, hyperthermia, hypothermia, evaporative water loss, active exercise, psychological well being, social state, early skin cover and limitation of stress are important aspects affecting metabolism and require careful supervision and management. The limitation of metabolism is as important as increasing the caloric intake and this is exemplified at the time of operation, which should be as nonstressful as possible. Every two weeks an adjusted assessment is made of the burned area still to be grafted and the caloric

  5. Determination of the broadband optical properties of biomass burning aerosol

    Science.gov (United States)

    Bluvshtein, Nir; Flores, J. Michel; Segev, Lior; Lin, Peng; Laskin, Alexander; Rudich, Yinon

    2016-04-01

    The direct and semi-direct effects of atmospheric aerosol on the Earth's energy balance are still the two of the largest uncertainties in our understanding of anthropogenic radiative forcing. In this study we developed a new approach for determining high sensitivity broadband UV-Vis spectrum (300-650 nm) of extinction, scattering and absorption coefficients, single scattering albedo and the complex refractive index for continuous, spectral and time dependent, monitoring of polydisperse aerosols population. This new approach was applied in a study of biomass burning aerosol. Extinction, scattering and absorption coefficients (αext, αsca, αabs, respectively) were continually monitored using photoacoustic spectrometer coupled to a cavity ring down spectrometer (PA-CRD-AS) at 404 nm, a dual-channel Broadband cavity-enhanced spectrometer (BBCES) at 315-345 nm and 390-420 nm and a three channel integrating nephelometer (IN) centered at 457, 525 and 637 nm. During the biomass burning event, the measured aerosol number concentration increased by more than an order of magnitude relative to other week nights and the mode of the aerosols size distribution increased from 40-50 nm to 110nm diameter. αext and αsca increased by a factor of about 5.5 and 4.5, respectively. The αabs increased by a factor over 20, indicating a significant change in the aerosol overall chemical composition. The imaginary part of the complex RI at 404nm increased from its background level at about 0.02 to a peak of about 0.08 and the SSA decreased from 0.9 to about 0.6. Significant change of the absorption spectral dependence indicates formation of visible-light absorbing compounds. The mass absorption cross section of the water soluble organic aerosol (MACWSOA) reached up to about 12% of the corresponding value for black carbon (BC) at 450 nm and up to 30% at 300 nm. These results demonstrate the importance of biomass burning in understanding global and regional radiative forcing.

  6. Influence of fire frequency on carbon consumption in Alaskan blackspruce forests

    Science.gov (United States)

    Hoy, E.; Kasischke, E. S.

    2014-12-01

    Increasing temperatures and drier conditions within the boreal forests of Alaska have resulted in increases in burned area and fire frequency, which alter carbon storage and emissions. In particular, analyses of satellite remote sensing data showed that >20% of the area impacted by fires in interior Alaska occurred in areas that had previously burned since 1950 (e.g., short to intermediate interval fires). Field studies showed that in immature black spruce forests ~ 35 to 55 years old organic layers experienced deep burning regardless of topographic position or seasonality of burning, factors that control depth of burning in mature black spruce forests. Here, refinements were made to a carbon consumption model to account for variations in fuel loads and fraction of carbon consumed associated with fire frequency based on quantifying burned area in recently burned sites using satellite imagery. An immature black spruce (Picea mariana) fuel type (including stands of ~0-50 years) was developed which contains new ground-layer carbon consumption values in order to more accurately account for differences between various age classes of black spruce forest. Both versions of the model were used to assess carbon consumption during 100 fire events (over 4.4 x 10^6 ha of burned area) from two recent ultra-large fire years (2004 and 2005). Using the improved model to better attribute fuel type and consumption resulted in higher ground-layer carbon consumption (4.9% in 2004 and 6.8% in 2005) than previously estimated. These adjustments in ground-layer burning resulted in total carbon consumption within 2004 and 2005 of 63.5 and 42.0 Tg of carbon, respectively. Results from this research could be incorporated into larger scale modeling efforts to better assess changes in the climate-fire-vegetation dynamics in interior Alaskan boreal forests, and to understand the impacts of these changes on carbon consumption and emissions.

  7. Importance of proper initial treatment of moderate and major burns

    Directory of Open Access Journals (Sweden)

    Vulović Dejan

    2008-01-01

    Full Text Available Background/Aim. Burns are common injuries with frequency depending on human factors, development of protection, industry and traffic, eventual wars. Organized treatment of major burn injuries has tremendous medical, social and economic importance. The aim of this study was to analyze initial treatment of major and moderate burns, to compare it with the current recommendations and to signify the importance of organized management of burns. Methods. In a prospective study 547 adult patients with major burns were analyzed, covering a period of eight years, with the emphasis on the initial hospital admission and emergency care for burns greater than 10% of total body surface area (TBSA. Results. In the different groups of major burns, the percentage of hospital admission was: 81.5 in burns greater than 10% TBSA, 37.7 in burns of the functional areas, 54.5 in the III degree burns, 81.6 in electrical burns, 55.9 in chemical burns, 61.9 in inhalation injury, 41.0 in burns in patients with the greater risk and 100 in burns with a concomitant trauma. In the group of 145 patients with burns greater than 10% TBSA, intravenous fluids were given in 87 patients, analgesics in 45, corticosteroids in 29, antibiotics in 23 and oxygen administration in 14. In the same group, wound irrigation was done in 14.4%, removing of the clothing and shoes in 29.6%, elevation of the legs in 8.9% and prevention of hypothermia in 7.6% of the victims. There were no initial estimations of burn extent (percentage of a burn, notes about the patient and injury and tetanus immunizations. Conclusion. Based on these findings, it is concluded that there should be much more initial hospital admissions of major burns, and also, necessary steps in the emergency care of burns greater than 10% TBSA should be taken more frequently. On the other side, unnecessary or wrong steps should be avoided in the initial burn treatment.

  8. Pain Part 8: Burning Mouth Syndrome.

    Science.gov (United States)

    Beneng, Kiran; Renton, Tara

    2016-04-01

    Burning mouth syndrome (BMS) is a rare but impactful condition affecting mainly post-menopausal women resulting in constant pain and significant difficulty with eating, drinking and daily function. The aetiology of BMS remains an enigma. Recent evidence suggests it likely to be neuropathic in origin, the cause of which remains unknown. There is no cure for this condition and the unfortunate patients remain managed on a variety of neuropathic pain medication, salivary substitutes and other non-medical interventions that help the patient 'get through the day'. Some simple strategies can assist both clinician and patient to manage this debilitating condition. CPD/Clinical Relevance: The dental team will recognize patients presenting with burning mouth syndrome. They are difficult patients to manage and are often referred to secondary care and, ultimately, depend on their general medical practitioners for pain management. PMID:27439272

  9. Explosive helium burning at constant pressures

    Science.gov (United States)

    Hashimoto, M.-A.; Hanawa, T.; Sugimoto, D.

    The results of numerical calculations of nucleosynthesis under adiabatic conditions, i.e., when the only heat exchange with the external regions takes place through neutrinos, are reported. Attention is focused on explosive burning associated with shell flashes, assuming that nuclear energy is deposited in a mass element, followed by expansion and density decrease. Consideration is given to three cases, the shell flash near the surface of a degenerate star, to nuclear burning concentrated in a small region of a star, and to the heat energy being deposited in intermediate layers. A reaction network of 181 nuclear species was constructed and the thermodynamic evolution was calculated assuming constant pressure and adiabatic conditions. The final products of the reactions of H-1 to Cu-62 were projected to by O-16, Mg-24, Si-28, S-32, Ca-40, Ti-44, Cr-48, and Fe-52.

  10. An idiosyncratic history of burn scars.

    Science.gov (United States)

    Petro, Jane A

    2015-03-01

    The history of burn scars can best be found in military medical history. The care of wounded soldiers documented in the Illiad reflected the trauma of the weapons of war, arrow, spear, sword, and ax. The introduction of gunpowder in the 14th century, increasingly sophisticated explosives, and in modern times, petroleum-driven vehicles, including airplanes, created a new subset of wounds requiring attention and post-survival scars challenging the quality of survival. This article selects from among a myriad of examples of modern military treatments as they relate to those survivors. Larrey, with Napolean's Grand Army, Sir Harold Gilles during and following World War I, and the Boston area preparation and response to the Cocoanut Grove Fire in 1942 are the principle topics examined. Recent modern interventions, related to the survival of horrific blast and burn injuries, with modern wound care and scar manipulation techniques provide context to the current ability to modify healing and scars. PMID:25922950

  11. Modeling Deep Burn TRISO particle nuclear fuel

    Science.gov (United States)

    Besmann, T. M.; Stoller, R. E.; Samolyuk, G.; Schuck, P. C.; Golubov, S. I.; Rudin, S. P.; Wills, J. M.; Coe, J. D.; Wirth, B. D.; Kim, S.; Morgan, D. D.; Szlufarska, I.

    2012-11-01

    Under the DOE Deep Burn program TRISO fuel is being investigated as a fuel form for consuming plutonium and minor actinides, and for greater efficiency in uranium utilization. The result will thus be to drive TRISO particulate fuel to very high burn-ups. In the current effort the various phenomena in the TRISO particle are being modeled using a variety of techniques. The chemical behavior is being treated utilizing thermochemical analysis to identify phase formation/transformation and chemical activities in the particle, including kernel migration. Density functional theory is being used to understand fission product diffusion within the plutonia oxide kernel, the fission product's attack on the SiC coating layer, as well as fission product diffusion through an alternative coating layer, ZrC. Finally, a multiscale approach is being used to understand thermal transport, including the effect of radiation damage induced defects, in a model SiC material.

  12. Biomass Burning Emissions from Fire Remote Sensing

    Science.gov (United States)

    Ichoku, Charles

    2010-01-01

    Knowledge of the emission source strengths of different (particulate and gaseous) atmospheric constituents is one of the principal ingredients upon which the modeling and forecasting of their distribution and impacts depend. Biomass burning emissions are complex and difficult to quantify. However, satellite remote sensing is providing us tremendous opportunities to measure the fire radiative energy (FRE) release rate or power (FRP), which has a direct relationship with the rates of biomass consumption and emissions of major smoke constituents. In this presentation, we will show how the satellite measurement of FRP is facilitating the quantitative characterization of biomass burning and smoke emission rates, and the implications of this unique capability for improving our understanding of smoke impacts on air quality, weather, and climate. We will also discuss some of the challenges and uncertainties associated with satellite measurement of FRP and how they are being addressed.

  13. Pascal Chabot, Global Burn-out

    OpenAIRE

    Rollot, Jérémie

    2013-01-01

    « La philosophie est une réflexion pour qui toute matière étrangère est bonne et nous dirions volontiers pour qui toute bonne matière doit être étrangère » écrivait G. Canguilhem. L’ouvrage de Pascal Chabot, par conséquent, porte son regard philosophique sur cet objet étrange et étranger à la philosophie : le burn-out. L’enjeu est de comprendre ce phénomène et de le situer « dans une époque excessive » (p. 12). En effet, le burn-out dépasse le cadre de la pathologie de l’individu, il est path...

  14. Cytokine expression profile over time in burned mice

    Science.gov (United States)

    Finnerty, Celeste C; Przkora, Rene; Herndon, David N; Jeschke, Marc G

    2009-01-01

    The persistent inflammatory response induced by a severe burn increases patient susceptibility to infections and sepsis, potentially leading to multi-organ failure and death. In order to use murine models to develop interventions that modulate the post-burn inflammatory response, the response in mice and the similarities to the human response must first be determined. Here we present the temporal serum cytokine expression profiles in burned in comparison to sham mice and human burn patients. Male C57BL/6 mice were randomized to control (n=47) or subjected to a 35% TBSA scald burn (n=89). Mice were sacrificed 3, 6, 9, 12, 24, 48 hours and 7, 10, and 14 days post-burn; cytokines were measured by multi-plex array. Following the burn injury, IL-6, IL-1β, KC, G-CSF, TNF, IL-17, MIP-1α, RANTES, and GM-CSF were increased, p<0.05. IL-2, IL-3, and IL-5 were decreased, p<0.05. IL-10, IFN-γ, and IL-12p70 were expressed in a biphasic manner, p<0.05. This temporal cytokine expression pattern elucidates the pathogenesis of the inflammatory response in burned mice. Expression of 11 cytokines were similar in mice and children, returning to lowest levels by post-burn day 14, confirming the utility of the burned mouse model for development of therapeutic interventions to attenuate the post-burn inflammatory response. PMID:19019696

  15. Do burns increase the severity of terror injuries?

    Science.gov (United States)

    Peleg, Kobi; Liran, Alon; Tessone, Ariel; Givon, Adi; Orenstein, Arie; Haik, Josef

    2008-01-01

    The use of explosives and suicide bombings has become more frequent since October 2000. This change in the nature of terror attacks has marked a new era in the Israeli-Palestinian conflict. We previously reported that the incidence of thermal injuries has since risen. However, the rise in the incidence of burns among victims of terror was proportionate to the rise in the incidence of burns among all trauma victims. This paper presents data from the Israeli National Trauma Registry during the years 1997--2003, to compare the severity of injuries and outcome (mortality rates) in terror victims with and without burn injuries. We also compare the severity of injuries and outcome (mortality rates) for patients with terror-attack related burns to non terror-attack related burns during the same period. Data was obtained from the Israeli National Trauma Registry for all patients admitted to 8 to 10 hospitals in Israel between 1997 and 2003. We analyzed and compared demographic and clinical characteristics of 219 terror-related burn patients (terror/burn), 2228 terror patients with no associated burns (Terror/no-burn) and 6546 non terror related burn patients (burn/no-terror). Severity of injuries was measured using the injury severity score, and burn severity by total body surface percentage indices. Admission rates to Intensive Care Units (ICU) and total length of hospitalization were also used to measure severity of injuries. In-hospital mortality rates were used to indicate outcome. Of burn/terror patients, 87.2% suffered other accompanying injuries, compared with 10.4% of burn/no-terror patients. Of burn/terror patients, 49.8% were admitted to ICU compared with only 11.9% of burn/no-terror patients and 23.8% of no-burn/terror patients. Mean length of hospital stay was 18.5 days for the terror/burn group compared with 11.1 days for the burn/no-terror group and 9.5 days for the terror/no-burn group. Burn/terror patients had a significantly higher injury severity score

  16. Early diagnostics and treatment with acute burn sepsis

    Institute of Scientific and Technical Information of China (English)

    Ahmedov A.A.; Shakirov B.M.; Karabaev H.K

    2015-01-01

    Objective: To determine the value of the procalcitonin test used for early diagnosis of sepsis and to study the course and treatment of burn sepsis in patients with severe burns. Methods: Eighty patients in the Burn Department of Republican Scientific Centre of Emergency Medical Care, aged 17-75 years with burn injuries covering 30%-85% of the body surface, were enrolled in the study. Procalcitonin is marker of sepsis, procalcitonin > 2 ng/mL, sensitivity -89%, specific feature -94%. Results: The result showed that among septic patients with severe burns, rational use of intensive therapy for burn sepsis and septic shock in combination with parentrial ozonotherapy resulted in decreases of syndrome of poly organ insufficiency and lethal outcomes from 70%accordingly. The result allows the conclusion that the treatment examined leads to a significant increase in survival coefficient. Conclusions: This in turn confirms the efficacy of early necrectomy and auto dermoplasty of deep burn wounds in victims with sepsis.

  17. An overview of acute burn management in the Emergency Centre

    Directory of Open Access Journals (Sweden)

    Adaira Landry

    2013-03-01

    Full Text Available Despite the frequency and severity of burns in Low Income Countries, including many in Africa, there is a paucity of research and funding for these populations to aid in prevention, treatment and recovery of burn patients. The objectives of this paper are four-fold. First, by addressing the pathophysiology of burns the reader may strengthen understanding of the clinical progression of burns. Second, through describing proper assessment of burn patients one will learn how to decide if patients can be discharged, admitted or transferred to burn centre. Third, the inclusion of treatments solidifies the steps necessary to manage a patient in a hospital setting. Lastly, the overall goal of the paper, is to raise awareness that more research, publication and funding is required to create a better understanding of burns in Africa and why they continue to be devastating social and economic burdens.

  18. Burns - Multiple Languages: MedlinePlus

    Science.gov (United States)

    ... Chinese - Simplified (简体中文) Chinese - Traditional (繁體中文) French (français) Hindi (हिन्दी) Japanese (日本語) Korean (한국어) Russian (Русский) ... brûlures - français (French) Bilingual PDF Health Information Translations Hindi (हिन्दी) Burn Care हिन्दी (Hindi) Bilingual ...

  19. Extracorporeal blood purification in burns: a review.

    Science.gov (United States)

    Linden, Katharina; Stewart, Ian J; Kreyer, Stefan F X; Scaravilli, Vittorio; Cannon, Jeremy W; Cancio, Leopoldo C; Batchinsky, Andriy I; Chung, Kevin K

    2014-09-01

    A prolonged and fulminant inflammatory state, with high levels of pro- and anti-inflammatory mediators, is seen after extensive thermal injury. Blood purification techniques including plasma exchange, continuous venovenous hemofiltration, and adsorbing membranes have the potential to modulate this response, thereby improving outcomes. This article describes the scientific rationale behind blood purification in burns and offers a review of literature regarding its potential application in this patient cohort.

  20. Best available control measures for prescribed burning

    International Nuclear Information System (INIS)

    Section 190 of the Clean Air Act (CAA) as amended in 1990 requires the US Environmental Protection Agency (EPA) to issue guidance on Best Available Control Measures (BACM) of PM10 (particulate matter with a nominal aerodynamic diameter less than or equal to 10 micrometers) from urban fugitive dust, residential wood combustion, and prescribed silvicultural and agricultural burning (prescribed burning). The purpose of this guidance is to assist states (especially, but not exclusively, those with PM10 nonattainment areas which have been classified as serious) in developing a control measure for these three source categories. This guidance is to be issued no later than May 15, 1992 as required under the CAA. The guidance will be issued in the form of a policy guidance generic to all three BACM and in the form of Technical Information Documents (TIDs) for each of the three source categories. The policy guidance will provide the analytical approach for determining BACM and the TID will provide the technical information. The purpose of this paper is to present some insight from the forthcoming TID on what BACM might entail for prescribed burning in a serious PM10 nonattainment area