WorldWideScience

Sample records for carbon bonds clean

  1. Cogeneration and Carbon bonds: clean development; Cogeneracion y bonos de carbono: desarrollo limpio

    Energy Technology Data Exchange (ETDEWEB)

    Navarro Perez, Nidia [Facultad de Contaduria y Administracion, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)

    2004-06-15

    The growing preoccupation for the environment in our country and its interest to ratify the Kyoto Protocol with respect to the contamination of the atmosphere, offers great opportunities for the cogeneration so that it fortifies the scientific and technological research and gives a good international image about the sustainable development and care of the environment, so that companies that invest in clean technology will be able to assign a monetary value to their environmental patrimony, this through the so called Green Bonds or Carbon Bonds, this opens a new dimension to finance projects by means of these bonds that can be negotiated at an international level; by means of the Clean of Energy Production the investment can be stimulated and revenues for projects that contribute to the sustainable development of the country and the power efficiency. At the moment the country has at least 13 projects in different analysis stages to enter the carbon bond market, which are presented as co-generation projects of energy, in addition to the formation of the Mexican Committee for Projects of Reduction and Capture of Gas Discharges of Greenhouse Effect. [Spanish] La creciente preocupacion por el medio ambiente en nuestro pais y su interes por ratificar el Protocolo de Kyoto en lo referente a la contaminacion de la atmosfera, ofrece grandes oportunidades para la cogeneracion de manera que fortalezca la investigacion cientifica y tecnologica y dar una buena imagen internacional en torno a temas de desarrollo sustentable y cuidado del medio ambiente, de manera que empresas que invierten en tecnologia limpia podran asignar un valor monetario a su patrimonio ambiental, esto a traves de los llamados Bonos Verdes o Bonos de Carbono, esto abre una dimension nueva para financiar proyectos por medio de estos bonos que pueden negociarse a nivel internacional; por medio de la Produccion Limpia de energia se puede estimular inversion y ganancias para proyectos que contribuyan al

  2. Carbon nanotubes – becoming clean

    Directory of Open Access Journals (Sweden)

    Nicole Grobert

    2007-01-01

    Full Text Available Carbon nanotubes (CNTs are now well into their teenage years. Early on, theoretical predictions and experimental data showed that CNTs possess chemical and mechanical properties that exceed those of many other materials. This has triggered intense research into CNTs. A variety of production methods for CNTs have been developed; chemical modification, functionalization, filling, and doping have been achieved; and manipulation, separation, and characterization of individual CNTs is now possible. Today, products containing CNTs range from tennis rackets and golf clubs to vehicle fenders, X-ray tubes, and Li ion batteries. Breakthroughs for CNT-based technologies are anticipated in the areas of nanoelectronics, biotechnology, and materials science. In this article, I review the current situation in CNT production and highlight the importance of clean CNT material for the success of future applications.

  3. Physical cleaning of high carbon fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Gray, McMahan L.; Champagne, Kenneth J.; Soong, Yee; Killmeyer, Richard P. [National Energy Technology Laboratory, US Department of Energy, P.O. Box 10940, Cochran Mills Roads, 15236 Pittsburgh, PA (United States); Maroto-Valer, M. Mercedes; Andresen, John M. [The Energy Institute, The Pennsylvania State University, 405 Academic Activities Building, 16802-2308 University Park, PA (United States); Ciocco, Michael V.; Zandhuis, Paul H. [Parson Project Services Inc, National Energy Technology Laboratory, P.O. Box 618, 15129 Library, Pittsburgh, PA (United States)

    2002-04-20

    An industrial fly ash sample was cleaned by three different processes, which were triboelectrostatic separation, ultrasonic column agglomeration, and column flotation. The unburned carbon concentrates were collected at purities ranging up to 62% at recoveries of 62%. In addition, optical microscopy studies were conducted on the final carbon concentrates to determine the carbon forms (inertinite, isotropic coke and anisotropic coke) collected from these various physical-cleaning processes. The effects of the various cleaning processes on the production of different carbon forms from high carbon fly ashes will be discussed.

  4. Chemical cleaning agents and bonding to glass-fiber posts

    Directory of Open Access Journals (Sweden)

    Ana Paula Rodrigues Gonçalves

    2013-02-01

    Full Text Available The influence of chemical cleaning agents on the bond strength between resin cement and glass-fiber posts was investigated. The treatments included 10% hydrofluoric acid, 35% phosphoric acid, 50% hydrogen peroxide, acetone, dichloromethane, ethanol, isopropanol, and tetrahydrofuran. Flat glass-fiber epoxy substrates were exposed to the cleaners for 60 s. Resin cement cylinders were formed on the surfaces and tested in shear. All treatments provided increased bond strength compared to untreated control specimens. All failures were interfacial. Although all agents improved the bond strength, dichloromethane and isopropanol were particularly effective.

  5. Chemical cleaning agents and bonding to glass-fiber posts.

    Science.gov (United States)

    Gonçalves, Ana Paula Rodrigues; Ogliari, Aline de Oliveira; Jardim, Patrícia dos Santos; Moraes, Rafael Ratto de

    2013-01-01

    The influence of chemical cleaning agents on the bond strength between resin cement and glass-fiber posts was investigated. The treatments included 10% hydrofluoric acid, 35% phosphoric acid, 50% hydrogen peroxide, acetone, dichloromethane, ethanol, isopropanol, and tetrahydrofuran. Flat glass-fiber epoxy substrates were exposed to the cleaners for 60 s. Resin cement cylinders were formed on the surfaces and tested in shear. All treatments provided increased bond strength compared to untreated control specimens. All failures were interfacial. Although all agents improved the bond strength, dichloromethane and isopropanol were particularly effective.

  6. Hydrogen bond and halogen bond inside the carbon nanotube

    Science.gov (United States)

    Wang, Weizhou; Wang, Donglai; Zhang, Yu; Ji, Baoming; Tian, Anmin

    2011-02-01

    The hydrogen bond and halogen bond inside the open-ended single-walled carbon nanotubes have been investigated theoretically employing the newly developed density functional M06 with the suitable basis set and the natural bond orbital analysis. Comparing with the hydrogen or halogen bond in the gas phase, we find that the strength of the hydrogen or halogen bond inside the carbon nanotube will become weaker if there is a larger intramolecular electron-density transfer from the electron-rich region of the hydrogen or halogen atom donor to the antibonding orbital of the X-H or X-Hal bond involved in the formation of the hydrogen or halogen bond and will become stronger if there is a larger intermolecular electron-density transfer from the electron-rich region of the hydrogen or halogen atom acceptor to the antibonding orbital of the X-H or X-Hal bond. According to the analysis of the molecular electrostatic potential of the carbon nanotube, the driving force for the electron-density transfer is found to be the negative electric field formed in the carbon nanotube inner phase. Our results also show that the X-H bond involved in the formation of the hydrogen bond and the X-Hal bond involved in the formation of the halogen bond are all elongated when encapsulating the hydrogen bond and halogen bond within the carbon nanotube, so the carbon nanotube confinement may change the blue-shifting hydrogen bond and the blue-shifting halogen bond into the red-shifting hydrogen bond and the red-shifting halogen bond. The possibility to replace the all electron nanotube-confined calculation by the simple polarizable continuum model is also evaluated.

  7. Reactive Bonding Film for Bonding Carbon Foam Through Metal Extrusion

    CERN Document Server

    Chertok, Maxwell; Irving, Michael; Neher, Christian; Tripathi, Mani; Wang, Ruby; Zheng, Gayle

    2016-01-01

    Future tracking detectors, such as those under development for the High Luminosity LHC, will require mechanical structures employing novel materials to reduce mass while providing excellent strength, thermal conductivity, and radiation tolerance. Adhesion methods for such materials are under study at present. This paper demonstrates the use of reactive bonding film as an adhesion method for bonding carbon foam.

  8. Carbon Nanotube Bonding Strength Enhancement Using Metal "Wicking" Process

    Science.gov (United States)

    Lamb, James L.; Dickie, Matthew R.; Kowalczyk, Robert S.; Liao, Anna; Bronikowski, Michael J.

    2012-01-01

    Carbon nanotubes grown from a surface typically have poor bonding strength at the interface. A process has been developed for adding a metal coat to the surface of carbon nano tubes (CNTs) through a wicking process, which could lead to an enhanced bonding strength at the interface. This process involves merging CNTs with indium as a bump-bonding enhancement. Classical capillary theory would not normally allow materials that do not wet carbon or graphite to be drawn into the spacings by capillary action because the contact angle is greater than 90 degrees. However, capillary action can be induced through JPL's ability to fabricate oriented CNT bundles to desired spacings, and through the use of deposition techniques and temperature to control the size and mobility of the liquid metal streams and associated reservoirs. A reflow and plasma cleaning process has also been developed and demonstrated to remove indium oxide, and to obtain smooth coatings on the CNT bundles.

  9. Clean Energy Manufacturing Analysis Center. 2015 Research Highlights -- Carbon Fiber

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sujit [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-03-01

    CEMAC has conducted four major studies on the manufacturing of clean energy technologies. Three of these focused on the end product: solar photovoltaic modules, wind turbines, and automotive lithium-ion batteries. The fourth area focused on a key material for manufacturing clean energy technologies, carbon fiber.

  10. Effect of cleaning methods on bond strength of self-etching adhesive to dentin

    Directory of Open Access Journals (Sweden)

    Juliana Delatorre Bronzato

    2016-01-01

    Full Text Available Aim: The aim of this study was to investigate the influence of cleaning methods to remove zinc oxide-eugenol-based root canal sealer (Endomethasone on the bond strength of the self-etching adhesive to dentin. Materials and Methods: Twenty crowns of bovine incisors were cut to expose the pulp chamber. A zinc oxide- and eugenol-based sealer was placed for 10 min in contact with the pulp chamber dentin. Specimens were divided into four groups according to the cleaning method of dentin used: G1, no root canal sealer (control; G2, 0.9% sodium chlorite (NaCl; G3, ethanol; and G4, followed by diamond drill. After cleaning, the teeth were restored with composite resin and Clearfil SE Bond. All specimens were sectioned to produce rectangular sticks and dentin/resin interface was submitted to microtensile bond testing. The mean bond strengths were analyzed using ANOVA/Tukey (α = 0.05. Results: G3 and G4 showed bond strengths similar to the G1 (P > 0.05. A significant decrease in the bond strength in the G2 was observed (P < 0.05. G1, G3, and G4, the predominant failure mode was the mixed type. The prevalence of adhesive failure mode was verified in the G2. Conclusion: The cleaning methods affected the bond strength of the self-etching adhesive to dentin differently.

  11. Sulfur(IV)-mediated carbon-carbon bond formation

    OpenAIRE

    Dean, William Michael

    2016-01-01

    This thesis details the development of methods for and application of the synthesis of carbon carbon bonds using organic sulfur(IV) chemistry. More specifically, the formation of C(sp2) C(sp3) and C(sp3) C(sp3) bonds is explored in detail. The necessity for this research stems from a correlation between a high proportion of sp3 centres in drug candidates, and their success in clinical trials. By facilitating the synthesis of drug candidates with higher fractions of sp3 hybridised carbon atoms...

  12. Two-Step Plasma Process for Cleaning Indium Bonding Bumps

    Science.gov (United States)

    Greer, Harold F.; Vasquez, Richard P.; Jones, Todd J.; Hoenk, Michael E.; Dickie, Matthew R.; Nikzad, Shouleh

    2009-01-01

    A two-step plasma process has been developed as a means of removing surface oxide layers from indium bumps used in flip-chip hybridization (bump bonding) of integrated circuits. The two-step plasma process makes it possible to remove surface indium oxide, without incurring the adverse effects of the acid etching process.

  13. Carbon Smackdown: Visualizing Clean Energy (LBNL Summer Lecture Series)

    Energy Technology Data Exchange (ETDEWEB)

    Meza, Juan [LBNL, Computational Research Division

    2010-08-09

    The final Carbon Smackdown match took place Aug. 9, 2010. Juan Meza of the Computational Research Division revealed how scientists use computer visualizations to accelerate climate research and discuss the development of next-generation clean energy technologies such as wind turbines and solar cells.

  14. Investigation of the impact of cleaning on the adhesive bond and the process implications

    Energy Technology Data Exchange (ETDEWEB)

    EMERSON,JOHN A.; GUESS,TOMMY R.; ADKINS,CAROL L. JONES; CURRO,JOHN G.; REEDY JR.,EARL DAVID; LOPEZ,EDWIN P.; LEMKE,PAUL A.

    2000-05-01

    While surface cleaning is the most common process step in DOE manufacturing operations, the link between a successful adhesive bond and the surface clean performed before adhesion is not well understood. An innovative approach that combines computer modeling expertise, fracture mechanics understanding, and cleaning experience to address how to achieve a good adhesive bond is discussed here to develop a capability that would result in reduced cleaning development time and testing, improved bonds, improved manufacturability, and even an understanding that leads to improved aging. A simulation modeling technique, polymer reference interaction site model applied near wall (Wall PRISM), provided the capability to include contaminants on the surface. Calculations determined an approximately 8% reduction in the work of adhesion for 1% by weight of ethanol contamination on the structure of a silicone adhesive near a surface. The demonstration of repeatable coatings and quantitative analysis of the surface for deposition of controlled amounts of contamination (hexadecane and mineral oil) was based on three deposition methods. The effect of the cleaning process used on interfacial toughness was determined. The measured interfacial toughness of samples with a Brulin cleaned sandblasted aluminum surface was found to be {approximately} 15% greater than that with a TCE cleaned aluminum surface. The sensitivity of measured fracture toughness to various test conditions determined that both interfacial toughness and interface corner toughness depended strongly on surface roughness. The work of adhesion value for silicone/silicone interface was determined by a contact mechanics technique known as the JKR method. Correlation with fracture data has allowed a better understanding between interfacial fracture parameters and surface energy.

  15. Fundamental aspects of recoupled pair bonds. I. Recoupled pair bonds in carbon and sulfur monofluoride

    Energy Technology Data Exchange (ETDEWEB)

    Dunning, Thom H., E-mail: thdjr@uw.edu; Xu, Lu T.; Takeshita, Tyler Y. [Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801 (United States)

    2015-01-21

    The number of singly occupied orbitals in the ground-state atomic configuration of an element defines its nominal valence. For carbon and sulfur, with two singly occupied orbitals in their {sup 3}P ground states, the nominal valence is two. However, in both cases, it is possible to form more bonds than indicated by the nominal valence—up to four bonds for carbon and six bonds for sulfur. In carbon, the electrons in the 2s lone pair can participate in bonding, and in sulfur the electrons in both the 3p and 3s lone pairs can participate. Carbon 2s and sulfur 3p recoupled pair bonds are the basis for the tetravalence of carbon and sulfur, and 3s recoupled pair bonds enable sulfur to be hexavalent. In this paper, we report generalized valence bond as well as more accurate calculations on the a{sup 4}Σ{sup −} states of CF and SF, which are archetypal examples of molecules that possess recoupled pair bonds. These calculations provide insights into the fundamental nature of recoupled pair bonds and illustrate the key differences between recoupled pair bonds formed with the 2s lone pair of carbon, as a representative of the early p-block elements, and recoupled pair bonds formed with the 3p lone pair of sulfur, as a representative of the late p-block elements.

  16. Scanning gate microscopy of ultra clean carbon nanotube quantum dots

    OpenAIRE

    Xue, Jiamin; Dhall, Rohan; Cronin, Stephen B.; LeRoy, Brian J.

    2015-01-01

    We perform scanning gate microscopy on individual suspended carbon nanotube quantum dots. The size and position of the quantum dots can be visually identified from the concentric high conductance rings. For the ultra clean devices used in this study, two new effects are clearly identified. Electrostatic screening creates non-overlapping multiple sets of Coulomb rings from a single quantum dot. In double quantum dots, by changing the tip voltage, the interactions between the quantum dots can b...

  17. Aerobic dehydrogenative α-diarylation of benzyl ketones with aromatics through carbon-carbon bond cleavage.

    Science.gov (United States)

    More, Nagnath Yadav; Jeganmohan, Masilamani

    2014-02-01

    Substituted benzyl ketones reacted with aromatics in the presence of K2S2O8 in CF3COOH at room temperature, yielding α-diaryl benzyl ketones through a carbon-carbon bond cleavage. In the reaction, two new carbon-carbon bonds were formed and one carbon-carbon bond was cleaved. It is very interesting that two different nucleophiles such as benzyl ketones and aromatics were coupled together without metal, which is unusual in organic synthesis.

  18. Carbon nanotube based gecko inspired self-cleaning adhesives

    Science.gov (United States)

    Sethi, Sunny; Ge, Liehui; Ajayan, Pulickel; Ali, Dhinojwala

    2008-03-01

    Wall climbing organisms like geckos have unique ability to attach to different surfaces without use of any viscoelastic material. The hairy structure found in gecko feet allows them to obtain intimate contact over a large area thus allowing then to adhere using van der Waals interactions. Not only high adhesion, the geometry of the hairs makes gecko feet self cleaning, thus allowing them to walk continuously without worrying about loosing adhesive strength. Such properties if mimicked synthetically could form basis of a new class of materials, which, unlike conventional adhesives would show two contradictory properties, self cleaning and high adhesion. Such materials would form essential component of applications like wall climbing robot. We tried to synthesize such material using micropatterened vertically aligned carbon nanotubes. When dealing with large areas, probability of defects in the structure increase, forming patterns instead of using uniform film of carbon nanotubes helps to inhibit crack propagation, thus gives much higher adhesive strength than a uniform film. When carbon nanotube patterns with optimized aspect ratio are used, both high adhesion and self cleaning properties are observed.

  19. Advanced Thermal Protection Systems (ATPS), Aerospace Grade Carbon Bonded Carbon Fiber Material Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Carbon bonded carbon fiber (CBCF) insulating material is the basis for several highly successful NASA developed thermal protection systems (TPS). Among the...

  20. Advanced Thermal Protection Systems (ATPS), Aerospace Grade Carbon Bonded Carbon Fiber Material Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Carbon bonded carbon fiber (CBCF) insulating material is the basis for several highly successful NASA developed thermal protection systems (TPS). Included among...

  1. Gecko-inspired carbon nanotube-based self-cleaning adhesives.

    Science.gov (United States)

    Sethi, Sunny; Ge, Liehui; Ci, Lijie; Ajayan, P M; Dhinojwala, Ali

    2008-03-01

    The design of reversible adhesives requires both stickiness and the ability to remain clean from dust and other contaminants. Inspired by gecko feet, we demonstrate the self-cleaning ability of carbon nanotube-based flexible gecko tapes.

  2. Method for in-situ cleaning of carbon contaminated surfaces

    Science.gov (United States)

    Klebanoff, Leonard E.; Grunow, Philip; Graham, Jr., Samuel

    2006-12-12

    Activated gaseous species generated adjacent a carbon contaminated surface affords in-situ cleaning. A device for removing carbon contamination from a surface of the substrate includes (a) a housing defining a vacuum chamber in which the substrate is located; (b) a source of gaseous species; and (c) a source of electrons that are emitted to activate the gaseous species into activated gaseous species. The source of electrons preferably includes (i) a filament made of a material that generates thermionic electron emissions; (ii) a source of energy that is connected to the filament; and (iii) an electrode to which the emitted electrons are attracted. The device is particularly suited for photolithography systems with optic surfaces, e.g., mirrors, that are otherwise inaccessible unless the system is dismantled. A method of removing carbon contaminants from a substrate surface that is housed within a vacuum chamber is also disclosed. The method employs activated gaseous species that react with the carbon contaminants to form carbon containing gaseous byproducts.

  3. Greening coal : clean coal and carbon capture and storage projects

    Energy Technology Data Exchange (ETDEWEB)

    Sundararajan, B.

    2008-09-15

    Clean coal technology and carbon capture and storage (CCS) programs used in Canada were discussed. EPCOR's Genesee 3 project uses supercritical combustion methods and has committed $90 towards the implementation of clean air technologies. The company is also constructing new waste water systems and is expanding its environmental remediation programs. The company has recently constructed a 450 MW supercritical coal-fired unit in Edmonton. The plant uses supercritical boiler technology and high efficiency steam turbines that result in significant reductions in carbon dioxide (CO{sub 2}) emissions. The Alberta Saline Aquifer Project (ASAP) is an industry-supported carbon dioxide (CO{sub 2}) sequestration project developed to identify locations for the long-term sequestration of CO{sub 2} in saline aquifers. ASAP is expected to play a major role in advancing the knowledge of CCS technology in Canada. The Integrated CO{sub 2} Network (ICO{sub 2}N) is supported by a consortium of Canadian companies dedicated to meeting Canada's climate change commitments through the widespread implementation of CCS and the creation of infrastructure needed to implement CCS technologies. The Wabamun Lake area was selected by the Alberta Geological Survey as a potential site for CCS due to its proximity to several industrial sources of CO{sub 2}. A new CCS demonstration conducted at SaskPower's Boundary Dam Power Station in Estevan, Saskatchewan. The project aims to capture 500,000 tonnes of CO{sub 2} annually by integrating carbon capture technology with a coal-fired generation unit. 3 figs.

  4. 2nd clean coal & carbon capture - securing the future. Conference documentation and delegate information

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The presentations covered: policies and the regulatory environment - creating opportunities for clean coal technologies; mastering the economics of clean coal - gaining finance and investment for key projects; international initiatives in clean coal technologies; power plant developments; broader uses for coal; and carbon capture and storage.

  5. Room temperature ferromagnetism in Teflon due to carbon dangling bonds.

    Science.gov (United States)

    Ma, Y W; Lu, Y H; Yi, J B; Feng, Y P; Herng, T S; Liu, X; Gao, D Q; Xue, D S; Xue, J M; Ouyang, J Y; Ding, J

    2012-03-06

    The ferromagnetism in many carbon nanostructures is attributed to carbon dangling bonds or vacancies. This provides opportunities to develop new functional materials, such as molecular and polymeric ferromagnets and organic spintronic materials, without magnetic elements (for example, 3d and 4f metals). Here we report the observation of room temperature ferromagnetism in Teflon tape (polytetrafluoroethylene) subjected to simple mechanical stretching, cutting or heating. First-principles calculations indicate that the room temperature ferromagnetism originates from carbon dangling bonds and strong ferromagnetic coupling between them. Room temperature ferromagnetism has also been successfully realized in another polymer, polyethylene, through cutting and stretching. Our findings suggest that ferromagnetism due to networks of carbon dangling bonds can arise in polymers and carbon-based molecular materials.

  6. Clean Hydrogen Production. Carbon Dioxide Free Alternatives. Project Phisico2

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Fierro, J. L.; Gonzalez, C.; Serrano, D.; Penelas, G.; Romero, M.; Marcos, M. J.; Rodriguez, C.

    2006-07-01

    The main goal of the PHISICO2 project, funded and promoted by Comunidad de Madrid, is the evaluation and optimisation of three different processes for the clean hydrogen production without carbon dioxide emission. Solar energy and associated Technologies are proposed to be jointly employed with the aim of improving the process efficiency and reducing the production costs. As a transition to the non-fossil fuel hydrogen economy, the thermocatalytic CO2-free production of hydrogen from natural gas will be considered. One of the most promising alternatives of this process is to develop a cheap and stable carbon-based catalyst able to efficiently decompose methane into a CO2-free hydrogen stream and solid carbon. Thus, not only pure hydrogen can be obtained through but also carbon with specific properties and commercial value can be produced. Another option to be explored is the splitting of water by means of solar light by means of two different approaches: (i) photodissociation promoted by semiconductor catalysts and (ii) thermochemical cycles in which a specific mixed oxide is first thermally reduced by sunlight and then reoxidized by steam in a second step with the parallel production of hydrogen. Indeed, option (i) implies necessarily the development of semiconductors with appropriate band-gap able to decompose water into hydrogen and oxygen in an efficient manner. Another critical issue will be the development of a strategy/concept that allows efficient separation of hydrogen and oxygen within the cell. In option (ii), the development of stable ferrites which act as the redox element of the cycle is also an important challenge. Finally, a 5 kW prototype solar engine water splitting, based on the mentioned thermochemical cycle, will developed and tested using concentrated solar light as an energy source. Moreover, thermodynamic and kinetic studies, reactor design, process optimisation, economical studies and comparison with conventional hydrogen production systems

  7. Clean, premium-quality chars: Demineralized and carbon enriched. [Quarterly] technical report, March 1, 1993--May 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G.V.; Malhotra, V.M.; Wiltowski, T.; Myszka, E. [Southern Illinois Univ., Carbondale, IL (United States)

    1993-09-01

    The overall objective of this two-year project is to evaluate methods of preparing demineralized and carbon enriched chars from Illinois Basin coals. There are two processing steps: physical cleaning of the coal and devolatilization under different environments to form chars. Two differents techniques were used, in-situ Diffuse Reflectance FTIR measurements and BTU measurements. Experiments were performed with coals IBC-101, 102, and 104 as received and after cleaning. DR-FTIR spectrums helped to explain the possible existing chemical bonds in the coal structure as well as their changes during drying and mild pyrolysis. Drying coal causes hydrogen bonds between water and coal to be broken. Liquids produced above 500{degrees}C are much higher in aromatic content, thus, effectively reducing the concentration of aliphatic groups in the overall liquid yield. BTU values of coals after methane treatment are higher than after helium treatment.

  8. Clean, premium-quality chars: Demineralized and carbon enriched. Technical report, December 1, 1992--February 28, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G.V.; Malhotra, V.M.; Wiltowski, T.; Myszka, E. [Southern Illinois Univ., Carbondale, IL (United States); Banerjee, D. [Institute of Gas Technology, Chicago, IL (United States)

    1993-05-01

    The overall objective of this two-year project is to evaluate methods of preparing demineralized and carbon enriched chars from Illinois Basin coals. There are two processing steps: physical cleaning of the coal and devolatilization under different environments to form chars. Two different techniques were used: BET surface area analyzer and in-situ Diffuse Reflectance FTIR. Experiments were performed with coals IBC-101, 102, and 104 as received and after cleaning. It was found that the cleaning not only removes the minerals but has changed also the porous structure of the coals. DR-FTIR spectrums helped to explain the possible existing chemical bonds in the coal structure as well as their changes during drying and mild pyrolysis.

  9. Application of Sol Self-Clean Bonded Al2O3-SiC-C Castable for Iron Runner

    Institute of Scientific and Technical Information of China (English)

    XU Guotao; ZHANG Honglei; CHEN Huasheng; WANG Yue; LI Huaiyuan; XIONG Yafei

    2006-01-01

    The properties and microstructure of sol self-clean bonded Al2O3-SiC-C castable in iron runner were studied, and the relation between the amount of sol selfclean binder and the properties of castable were discussed. It is believed that the addition of sol self-clean binder can improve the compressive strength, but has little effect on the bulk density and the apparent porosity,which enable the castable to be applicable in different conditions.

  10. The Influence of Carbon Nanotube and Roll Bonding Parameters on the Bond Strength of Al Sheets

    Science.gov (United States)

    Samadzadeh, Mahmoud; Toroghinejad, Mohammad Reza

    2014-05-01

    This study investigates the bond strength of aluminum sheets subjected to the roll bonding process in the presence of multiwall carbon nanotubes (MWCNTs). The effects of MWCNTs dispersion, thickness reduction, weight fraction of MWCNTs at the interface, and rolling temperature on the bond strength of the commercial pure aluminum sheets are studied. The peeling test is used to evaluate the bond strength of aluminum sheets. Optical microscopy and scanning electron microscopy are also used to evaluate the surface conditions of the peeled surfaces. Results indicate that, compared to the spread method, using the solution dispersion method to disperse MWCNTs reduces aluminum sheet's bond strength. Also, the presence of MWCNTs reduces the sheet's bond strength compared to aluminum sheets at a constant thickness reduction. However, bond strength is increased with higher thickness reductions in the presence or absence of MWCNTs. It is also shown that increasing the entry temperature improves bond strength, but that bond strength enhancement is lower in aluminum-MWCNTs sheets than in aluminum-aluminum sheets.

  11. Merging allylic carbon-hydrogen and selective carbon-carbon bond activation

    Science.gov (United States)

    Masarwa, Ahmad; Didier, Dorian; Zabrodski, Tamar; Schinkel, Marvin; Ackermann, Lutz; Marek, Ilan

    2014-01-01

    Since the nineteenth century, many synthetic organic chemists have focused on developing new strategies to regio-, diastereo- and enantioselectively build carbon-carbon and carbon-heteroatom bonds in a predictable and efficient manner. Ideal syntheses should use the least number of synthetic steps, with few or no functional group transformations and by-products, and maximum atom efficiency. One potentially attractive method for the synthesis of molecular skeletons that are difficult to prepare would be through the selective activation of C-H and C-C bonds, instead of the conventional construction of new C-C bonds. Here we present an approach that exploits the multifold reactivity of easily accessible substrates with a single organometallic species to furnish complex molecular scaffolds through the merging of otherwise difficult transformations: allylic C-H and selective C-C bond activations. The resulting bifunctional nucleophilic species, all of which have an all-carbon quaternary stereogenic centre, can then be selectively derivatized by the addition of two different electrophiles to obtain more complex molecular architecture from these easily available starting materials.

  12. Fusion bonding of carbon fabric reinforced polyphenylene sulphide

    OpenAIRE

    Degrieck J.; Van Paepegem W.; De Baere I.

    2011-01-01

    In recent years, there is a growing interest in joining techniques for thermoplastic composites as an alternative to adhesive bonding. In this manuscript, a fusion bonding process called hot-tool welding is investigated for this purpose and the used material is a carbon fabric reinforced polyphenylene sulphide. The quality of the welds is experimentally assessed using a short three-point bending setup, which has an interesting distribution of interlaminar shear stresses. It can be conc...

  13. Study on effective laser cleaning method to remove carbon layer from a gold surface

    Science.gov (United States)

    Singh, Amol; Choubey, A. K.; Modi, Mohammed H.; Upadhyaya, B. N.; Lodha, G. S.

    2013-03-01

    Hydrocarbon cracking and carbon contamination is a common problem in soft x-ray Synchrotron Radiation (SR) beamlines. Carbon contamination on optics is known to absorb and scatter radiation close to the C K-edge (284 eV) spectral region. The purpose of this work is to study and develop a laser cleaning method that can effectively remove the carbon contaminations without damaging the underneath gold-coated optics. The laser cleaning process is a non-contact, accurate, efficient and safe. Nd:YAG laser of 100 ns pulse duration is used for carbon cleaning. The effect of laser pulse duration, laser fluence, number of laser passes, angle of incidence and spot overlapping on the cleaning performance is studied. Cleaning effect and subsequent film quality after laser irradiation is analyzed using x-ray photoelectron spectroscopy (XPS) and soft x-ray reflectivity (SXR) techniques.

  14. Making End-Bonded Contacts to Carbon Nanotubes

    Science.gov (United States)

    Tang, Jianshi; Cao, Qing; Tulevski, George; Han, Shu-Jen

    As a promising candidate for post-Si era, the implementation of carbon nanotube (CNT)-based CMOS technology requires both high-quality channel and electrical contacts that can be scaled down to sub-10 nm. In the efforts of making scalable contacts to CNT, we have recently demonstrated low-resistance end-bonded carbide contacts, formed by the reaction of Mo with CNT through high-temperature annealing (>800 oC). Such end-bonded contact scheme leads to a size-independent contact resistance of about 30 kilo-ohms, which overcomes the scaling limit of conventional side contacts. In this talk, we will present another strategy to make end-bonded contacts to CNTs through thermal annealing at much lower temperatures (400-600 oC). The contact metals are carefully chosen to have a high carbon solubility, so that the carbon atoms could dissolve into the contacts to inherently form end-bonded contacts. Experimental results, including Raman, SEM, and electrical measurements, with different annealing temperatures will be presented. The length-dependent contact resistance for this new end-bonded contact will be evaluated and compared with that of conventional side contact and also end-bonded carbide contact.

  15. Making a robust carbon-cobalt(III) bond

    DEFF Research Database (Denmark)

    Larsen, Erik; Madsen, Anders Østergaard; Kofod, Pauli

    2009-01-01

    The coordination ion with a well-characterized carbon-cobalt(III) bond, the (1,4,7-triazacyclononane)(1,6-diamino-3-thia-4-hexanido)cobalt(III) dication, [Co(tacn)(C-aeaps)](2+) (aeaps, for aminoethylaminopropylsulfide), has been reacted with iodomethane, and the S-methyl thionium derivative has ...

  16. Novel fluoro-carbon functional monomer for dental bonding.

    Science.gov (United States)

    Yoshihara, K; Yoshida, Y; Hayakawa, S; Nagaoka, N; Kamenoue, S; Okihara, T; Ogawa, T; Nakamura, M; Osaka, A; Van Meerbeek, B

    2014-02-01

    Among several functional monomers, 10-methacryloxydecyl dihydrogen phosphate (10-MDP) bonded most effectively to hydroxyapatite (HAp). However, more hydrolysis-resistant functional monomers are needed to improve bond durability. Here, we investigated the adhesive potential of the novel fluoro-carbon functional monomer 6-methacryloxy-2,2,3,3,4,4,5,5-octafluorohexyl dihydrogen phosphate (MF8P; Kuraray Noritake Dental Inc., Tokyo, Japan) by studying its molecular interaction with powder HAp using solid-state nuclear magnetic resonance ((1)H MAS NMR) and with dentin using x-ray diffraction (XRD) and by characterizing its interface ultrastructure at dentin using transmission electron microscopy (TEM). We further determined the dissolution rate of the MF8P_Ca salt, the hydrophobicity of MF8P, and the bond strength of an experimental MF8P-based adhesive to dentin. NMR confirmed chemical adsorption of MF8P onto HAp. XRD and TEM revealed MF8P_Ca salt formation and nano-layering at dentin. The MF8P_Ca salt was as stable as that of 10-MDP; MF8P was as hydrophobic as 10-MDP; a significantly higher bond strength was recorded for MF8P than for 10-MDP. In conclusion, MF8P chemically bonded to HAp. Despite its shorter size, MF8P possesses characteristics similar to those of 10-MDP, most likely to be associated with the strong chemical bond between fluorine and carbon. Since favorable bond strength to dentin was recorded, MF8P can be considered a good candidate functional monomer for bonding.

  17. Oxygen reduction on teflon-bonded carbon electrode

    Institute of Scientific and Technical Information of China (English)

    周德璧; 黄可龙; 张世民

    2004-01-01

    Oxygen reduction on Teflon-bonded carbon gas diffusion electrode without catalyst in 6 mol/L KOH solution was investigated with acimpedance spectroscopy and other electrochemical techniques. The kinetic parameters were measured with an exchange current density of J0= 3.44 × 10-9 and a Tafel slope of 46 mV/dec in low overpotential range (-0.05 --0.14 V vs SCE), which are comparable with those reported on carbon supported platinum electrode. The reaction mechanism of OR and the active effect of carbon black were examined.

  18. Extraordinarily Long 2-Electron - 4-Center (2e-/4c) 2.9-Å Carbon-Carbon Bonds - What is a Chemical Bond?

    OpenAIRE

    Miller, Joel S.

    2014-01-01

    Carbon-carbon (CC) bonding is a key essence of organic and biochemistry. The length of a CC bond, i.e. 1.54 Å found in the diamond allotrope of carbon and ethane, is among the essential information learned by all chemistry students. This is the length of a single bond () between sp3-hybridized carbons and is the longest of all common CC bonds. Our studies of the [TCNE]22- (TCNE = tetracyanoethylene) dimers reveal that 2.89 ± 0.05 Å 2 electron/4 center (2e-/4c) CC bonds are present. Struc...

  19. Plasma Cleaning

    Science.gov (United States)

    Hintze, Paul E.

    2016-01-01

    NASA's Kennedy Space Center has developed two solvent-free precision cleaning techniques: plasma cleaning and supercritical carbon dioxide (SCCO2), that has equal performance, cost parity, and no environmental liability, as compared to existing solvent cleaning methods.

  20. Carbon-carbon bond activation of cyclobutenones enabled by the addition of chiral organocatalyst to ketone.

    Science.gov (United States)

    Li, Bao-Sheng; Wang, Yuhuang; Jin, Zhichao; Zheng, Pengcheng; Ganguly, Rakesh; Chi, Yonggui Robin

    2015-02-05

    The activation of carbon-carbon (C-C) bonds is an effective strategy in building functional molecules. The C-C bond activation is typically accomplished via metal catalysis, with which high levels of enantioselectivity are difficult to achieve due to high reactivity of metal catalysts and the metal-bound intermediates. It remains largely unexplored to use organocatalysis for C-C bond activation. Here we describe an organocatalytic activation of C-C bonds through the addition of an NHC to a ketone moiety that initiates a C-C single bond cleavage as a key step to generate an NHC-bound intermediate for chemo- and stereo-selective reactions. This reaction constitutes an asymmetric functionalization of cyclobutenones using organocatalysts via a C-C bond activation process. Structurally diverse and multicyclic compounds could be obtained with high optical purities via an atom and redox economic process.

  1. Effect of Carbon Containing Materials on Pure Carbon Reaction-bonded SiC

    Institute of Scientific and Technical Information of China (English)

    JI Xiaoli; WEI Lei; SUN Feng

    2008-01-01

    Petroleum coke, graphite, gas carbon and lower sulfur carbon black were used to prepare reaction-bonded silicon carbide. The influences of different carbon containing materials on properties of carbonaceous precursors, sintering process, and microstructure of the prepared SiC were researched. The results show that:(1)With the density of carbon containing materials increasing, the porosity of carbonaceous precursors decreases and the infiltrating process of liquid silicon is more difficult.(2)The reaction between carbon containing materials and liquid silicon, the volume effect is more obvious with the density of carbon containing materials increasing.(3)As the carbon containing materials density decreasing, residual carbon in reaction bonded SiC also decreases.

  2. Institute a modest carbon tax to reduce carbon emissions, finance clean energy technology development, cut taxes, and reduce the deficit

    Energy Technology Data Exchange (ETDEWEB)

    Muro, Mark; Rothwell, Jonathan

    2012-11-15

    The nation should institute a modest carbon tax in order to help clean up the economy and stabilize the nation’s finances. Specifically, Congress and the president should implement a $20 per ton, steadily increasing carbon excise fee that would discourage carbon dioxide emissions while shifting taxation onto pollution, financing energy efficiency (EE) and clean technology development, and providing opportunities to cut taxes or reduce the deficit. The net effect of these policies would be to curb harmful carbon emissions, improve the nation’s balance sheet, and stimulate job-creation and economic renewal.

  3. Carbon-carbon bond cleavage in activation of the prodrug nabumetone.

    Science.gov (United States)

    Varfaj, Fatbardha; Zulkifli, Siti N A; Park, Hyoung-Goo; Challinor, Victoria L; De Voss, James J; Ortiz de Montellano, Paul R

    2014-05-01

    Carbon-carbon bond cleavage reactions are catalyzed by, among others, lanosterol 14-demethylase (CYP51), cholesterol side-chain cleavage enzyme (CYP11), sterol 17β-lyase (CYP17), and aromatase (CYP19). Because of the high substrate specificities of these enzymes and the complex nature of their substrates, these reactions have been difficult to characterize. A CYP1A2-catalyzed carbon-carbon bond cleavage reaction is required for conversion of the prodrug nabumetone to its active form, 6-methoxy-2-naphthylacetic acid (6-MNA). Despite worldwide use of nabumetone as an anti-inflammatory agent, the mechanism of its carbon-carbon bond cleavage reaction remains obscure. With the help of authentic synthetic standards, we report here that the reaction involves 3-hydroxylation, carbon-carbon cleavage to the aldehyde, and oxidation of the aldehyde to the acid, all catalyzed by CYP1A2 or, less effectively, by other P450 enzymes. The data indicate that the carbon-carbon bond cleavage is mediated by the ferric peroxo anion rather than the ferryl species in the P450 catalytic cycle. CYP1A2 also catalyzes O-demethylation and alcohol to ketone transformations of nabumetone and its analogs.

  4. Fusion bonding of carbon fabric reinforced polyphenylene sulphide

    Science.gov (United States)

    de Baere, I.; van Paepegem, W.; Degrieck, J.

    2010-06-01

    In recent years, there is a growing interest in joining techniques for thermoplastic composites as an alternative to adhesive bonding. In this manuscript, a fusion bonding process called hot-tool welding is investigated for this purpose and the used material is a carbon fabric reinforced polyphenylene sulphide. The quality of the welds is experimentally assessed using a short three-point bending setup, which has an interesting distribution of interlaminar shear stresses. It can be concluded that although the hot-tool welding process shows high short-beam strengths, it has some drawbacks. Therefore, a design of an infrared welding setup is presented.

  5. Fusion bonding of carbon fabric reinforced polyphenylene sulphide

    Directory of Open Access Journals (Sweden)

    Degrieck J.

    2010-06-01

    Full Text Available In recent years, there is a growing interest in joining techniques for thermoplastic composites as an alternative to adhesive bonding. In this manuscript, a fusion bonding process called hot-tool welding is investigated for this purpose and the used material is a carbon fabric reinforced polyphenylene sulphide. The quality of the welds is experimentally assessed using a short three-point bending setup, which has an interesting distribution of interlaminar shear stresses. It can be concluded that although the hot-tool welding process shows high short-beam strengths, it has some drawbacks. Therefore, a design of an infrared welding setup is presented.

  6. Laser cleaning of diagnostic mirrors from tokamak-like carbon contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Maffini, A., E-mail: alessandro.maffini@polimi.it [Dipartimento di Energia, Politecnico di Milano, Milan (Italy); Uccello, A. [Dipartimento di Energia, Politecnico di Milano, Milan (Italy); Dellasega, D. [Dipartimento di Energia, Politecnico di Milano, Milan (Italy); Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, Milan (Italy); Russo, V. [Dipartimento di Energia, Politecnico di Milano, Milan (Italy); Perissinotto, S. [Center for Nano Science and Technology @ Polimi, Istituto Italiano di Tecnologia, Milan (Italy); Passoni, M. [Dipartimento di Energia, Politecnico di Milano, Milan (Italy); Istituto di Fisica del Plasma, Consiglio Nazionale delle Ricerche, EURATOM-ENEA-CNR Association, Milan (Italy)

    2015-08-15

    This paper presents a laboratory-scale experimental investigation of laser cleaning of diagnostic First Mirrors (FMs). Redeposition of contaminants sputtered from tokamak first wall onto FMs surface could dramatically decrease their reflectivity in an unacceptable way for the functioning of the plasma diagnostic systems. Laser cleaning is a promising solution to tackle this issue. In this work, pulsed laser deposition was exploited to produce rhodium films functional as FMs and to deposit onto them carbon contaminants with tailored features, resembling those found in tokamaks. The same laser system was also used to perform laser cleaning experiments by means of a sample handling procedure that allows to clean some cm{sup 2} in few minutes. The cleaning effectiveness was evaluated in terms of specular reflectivity recovery and mirror surface integrity. The effect of different laser wavelengths (λ = 1064, 266 nm) on the cleaning process is also addressed.

  7. An analytical bond-order potential for carbon.

    Science.gov (United States)

    Zhou, X W; Ward, D K; Foster, M E

    2015-09-01

    Carbon is the most widely studied material today because it exhibits special properties not seen in any other materials when in nano dimensions such as nanotube and graphene. Reduction of material defects created during synthesis has become critical to realize the full potential of carbon structures. Molecular dynamics (MD) simulations, in principle, allow defect formation mechanisms to be studied with high fidelity, and can, therefore, help guide experiments for defect reduction. Such MD simulations must satisfy a set of stringent requirements. First, they must employ an interatomic potential formalism that is transferable to a variety of carbon structures. Second, the potential needs to be appropriately parameterized to capture the property trends of important carbon structures, in particular, diamond, graphite, graphene, and nanotubes. Most importantly, the potential must predict the crystalline growth of the correct phases during direct MD simulations of synthesis to achieve a predictive simulation of defect formation. Because an unlimited number of structures not included in the potential parameterization are encountered, the literature carbon potentials are often not sufficient for growth simulations. We have developed an analytical bond order potential for carbon, and have made it available through the public MD simulation package LAMMPS. We demonstrate that our potential reasonably captures the property trends of important carbon phases. Stringent MD simulations convincingly show that our potential accounts not only for the crystalline growth of graphene, graphite, and carbon nanotubes but also for the transformation of graphite to diamond at high pressure.

  8. Polarographic behaviour of pesticides with carbon-halogen bonds

    Energy Technology Data Exchange (ETDEWEB)

    Jehring, H.; La Chevallerie-Haaf, U. de; Meyer, A.; Henze, G.

    1989-01-01

    The dp-polarographic behaviour of different pesticides with carbon-halogen bonds was investigated in dimethylsulfoxide and methanol-water as solvents; the peak-potentials are demonstrated graphically. From peak-height the pesticides are detectable up to 100 ng.ml/sup -1/. The investigations are of interest for the development of multistage-combined procedures by h.p.l.c. with amperometric detection.

  9. SmI(2)-mediated carbon-carbon bond fragmentation in alpha-aminomethyl malonates.

    Science.gov (United States)

    Xu, Qiongfeng; Cheng, Bin; Ye, Xinshan; Zhai, Hongbin

    2009-09-17

    A new and efficient samarium diiodide-promoted carbon-carbon bond fragmentation reaction of alpha-aminomethyl malonates, taking place normally at room temperature and generating the corresponding deaminomethylation products in 74-94% yields, is reported. The presence of the amino group is necessary for the success of the current transformation.

  10. Carbon-carbon bond cleavage in activation of the prodrug nabumetone

    DEFF Research Database (Denmark)

    Varfaj, Fatbardha; Zulkifli, Siti N A; Park, Hyoung-Goo;

    2014-01-01

    Carbon-carbon bond cleavage reactions are catalyzed by, among others, lanosterol 14-demethylase (CYP51), cholesterol side-chain cleavage enzyme (CYP11), sterol 17β-lyase (CYP17), and aromatase (CYP19). Because of the high substrate specificities of these enzymes and the complex nature of their su...

  11. Carbon-Carbon Bond Cleavage Reaction: Synthesis of Multisubstituted Pyrazolo[1,5-a]pyrimidines.

    Science.gov (United States)

    Saikia, Pallabi; Gogoi, Sanjib; Boruah, Romesh C

    2015-07-02

    A new carbon-carbon bond cleavage reaction was developed for the efficient synthesis of multisubstituted pyrazolo[1,5-a]pyrimidines. This base induced reaction of 1,3,5-trisubstituted pentane-1,5-diones and substituted pyrazoles afforded good yields of the pyrazolo[1,5-a]pyrimidines.

  12. Clean, premium-quality chars: Demineralized and carbon enriched

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G.V.

    1992-01-03

    The goal of this project is to develop a bench-scale procedure to produce clean, desulfurized, premium-quality chars from the Illinois basin coals. This goal is achieved by utilizing the effective capabilty of smectites in combination with methane to manipulate the char yields. The major objectives are: to determine the optimum water- ground particle size for the maximum reduction of pyrite and minerals by the selective-bitumen agglomeration process; to evaluate the type of smectite and its interlamellar cation which enhances the premium-quality char yields; to find the mode of dispersion of smectites in clean coal which retards the agglomeration of char during mild gasification; to probe the conditions that maximize the desulfurized clean-char yields under a combination of methane+oxygen or helium+oxygen; to characterize and accomplish a material balance of chars, liquids, and gases produced during mild gasification; to identify the conditions which reject dehydrated smectites from char by the gravitational separation technique; and to determine the optimum seeding of chars with polymerized maltene for flammability and transportation.

  13. Bond strength of individual carbon nanotubes grown directly on carbon fibers

    Science.gov (United States)

    Kim, Kyoung Ju; Lee, Geunsung; Kim, Sung-Dae; Kim, Seong-Il; Youk, Ji Ho; Lee, Jinyong; Kim, Young-Woon; Yu, Woong-Ryeol

    2016-10-01

    The performance of carbon nanotube (CNT)-based devices strongly depends on the adhesion of CNTs to the substrate on which they were directly grown. We report on the bond strength of CNTs grown on a carbon fiber (T700SC Toray), measured via in situ pulling of individual CNTs inside a transmission electron microscope. The bond strength of an individual CNT, obtained from the measured pulling force and CNT cross-section, was very high (˜200 MPa), 8-10 times higher than that of an adhesion model assuming only van der Waals interactions (25 MPa), presumably due to carbon-carbon interactions between the CNT (its bottom atoms) and the carbon substrate.

  14. Radical carbon-carbon bond formations enabled by visible light active photocatalysts.

    Science.gov (United States)

    Wallentin, Carl-Johan; Nguyen, John D; Stephenson, Corey R J

    2012-01-01

    This mini-review highlights the Stephenson group's contribution to the field of photoredox catalysis with emphasis on carbon-carbon bond formation. The realization of photoredox mediated reductive dehalogenation initiated investigations toward both intra- and intermolecular coupling reactions. These reactions commenced via visible light-mediated reduction of activated halogens to give carbon-centered radicals that were subsequently involved in carbon-carbon bond forming transformations. The developed protocols using Ru and Ir based polypyridyl complexes as photoredox catalysts were further tuned to efficiently catalyze overall redox neutral atom transfer radical addition reactions. Most recently, a simplistic flow reactor technique has been utilized to affect a broad scope of photocatalytic transformations with significant enhancement in reaction efficiency.

  15. Bond strength of individual carbon nanotubes grown directly on carbon fibers.

    Science.gov (United States)

    Kim, Kyoung Ju; Lee, Geunsung; Kim, Sung-Dae; Kim, Seong-Il; Youk, Ji Ho; Lee, Jinyong; Kim, Young-Woon; Yu, Woong-Ryeol

    2016-10-07

    The performance of carbon nanotube (CNT)-based devices strongly depends on the adhesion of CNTs to the substrate on which they were directly grown. We report on the bond strength of CNTs grown on a carbon fiber (T700SC Toray), measured via in situ pulling of individual CNTs inside a transmission electron microscope. The bond strength of an individual CNT, obtained from the measured pulling force and CNT cross-section, was very high (∼200 MPa), 8-10 times higher than that of an adhesion model assuming only van der Waals interactions (25 MPa), presumably due to carbon-carbon interactions between the CNT (its bottom atoms) and the carbon substrate.

  16. An algorithm for predicting proton nuclear magnetic resonance deshielding over a carbon-carbon double bond.

    Science.gov (United States)

    Martin, N H; Allen, N W; Brown, J D; Ingrassia, S T; Minga, E K

    2000-02-01

    Hydrogen nuclei located over a carbon-carbon double bond in a strong magnetic field experience NMR shielding effects that result from the magnetic anisotropy of the nearby double bond and various other intramolecular shielding effects. We have used GIAO, a subroutine in Gaussian 98, to calculate isotropic shielding values and to predict the proton NMR shielding increment for a simple model system: methane held in various orientations, positions, and distances over ethene. The average proton NMR shielding increments of several orientations of methane have been plotted versus the Cartesian coordinates of the methane protons relative to the center of ethene. A single empirical equation for predicting the NMR shielding experienced by protons over a carbon-carbon double bond has been developed from these data. The predictive capability of this equation has been validated by comparing the shielding increments for several alkenes calculated using our equation to the experimentally observed shielding increments. This equation predicts the NMR shielding effects more accurately than previous models that were based on fewer geometries of methane over ethene. In fact, deshielding is predicted by this equation for protons over the center and within about 3 A of a carbon-carbon double bond. This result is in sharp contrast to predictions made by the long-held McConnell "shielding cone" model found in nearly every textbook on NMR, but is consistent with experimental observations. The algorithm for predicting the (de)shielding increment for a proton over an alkene can be used in a spreadsheet on a PC or incorporated into software that estimates chemical shifts using additive substituent constants or a database of structures. In either application its use can substantially improve the accuracy of the estimated chemical shift of a proton in the vicinity of a carbon-carbon double bond, and thus assist in spectral assignments and in correct structure determination.

  17. Effect of Rare Earths on Corrosion Resisting Properties of Carbon-Manganese Clean Steels

    Institute of Scientific and Technical Information of China (English)

    郭锋; 林勤; 孙学义

    2004-01-01

    Electrochemistry experiments were made on carbon-manganese clean steel with rare earths Ce and La respectively to observe corrosion parameters such as corrosion current icorr, and characteristic potential of pitting Eb. The results indicate that the rare earths have effect on corrosion resisting properties of carbon-manganese clean steel, and the optimum contents of La is about 0.011% (mass fraction) and Ce about 0.014% (mass fraction) respectively. The change of corrosion resistance is related to the action of rare earths on microstructure and effect on surface state of samples in the process of polarization.

  18. Waste reduction using carbon dioxide: A solvent substitute for precision cleaning applications

    Energy Technology Data Exchange (ETDEWEB)

    Phelphs, M.R.; Hogan, M.O.; Snowden-Swan, L.J. [and others

    1995-05-01

    The U.S. Department of Energy`s (DOE) Industrial Waste Program (IWP) has been sponsoring the research, development, and commercialization of supercritical fluid cleaning technology for replacement of traditional solvent cleaning processes. Los Alamos National Laboratory and Pacific Northwest Laboratory have been working through this collaborative effort to test the efficacy of carbon dioxide (CO{sub 2}) cleaning. Tests were performed on a variety of substrates at various solvent conditions for a large number of common contaminants to characterize cleaning performance. Cleaning efficiencies with respect to system dynamics were also studied. Results of these tests show that supercritical and near-critical carbon dioxide is not only an effective solvent for precision cleaning applications of parts such as gyroscopes, bearing assemblies, and machine tools but is also feasible for bulk cleaning operations for a variety of industrial needs. It has been tested and shown to be effective for a range of substrates including laser optics components, computer disk drives, and cloth rags. Metals, including stainless steel, beryllium, gold, silver, copper and others; ceramics; and elastomeric seals such as Teflon, silicone, and epoxy potting compounds are highly compatible with SuperCritical CO{sub 2} (SCCO{sub 2}). Many contaminants, including silicones, Krytox, hydrocarbons, esters, fluorocarbons, gyroscope damping and fill fluids, and machining oils and lubricating oils, will dissolve in SCCO{sub 2}. In general, nonpolar, hydrophobic contaminants such as oils dissolve well, while hydrophilic contaminants such as inorganic salts do not. The parts and contaminants mentioned here are not the only applications for SCCO, cleaning, as the full range of possibilities is still being defined by developers and users of the technology. The many advantages of SCCO{sub 2} indicate that it is a technology that should carry industrial cleaning operations into the future.

  19. Carbon-to-metal bonds: Electrochemical reduction of 2-butenenitrile

    Science.gov (United States)

    Deniau, Guy; Azoulay, Laurent; Jégou, Pascale; Le Chevallier, Gilles; Palacin, Serge

    2006-02-01

    2-Butenenitrile belongs to the large family of electron deficient vinylic monomers that usually form 100 to 500 nm thick grafted polymer films by electroreduction. However, 2-butenenitrile exhibits a slightly acidic hydrogen atom on its CH 3 group that inhibits the anionic polymerization usually observed with 'classical' organic monomers such as its isomer methacrylonitrile. 2-Butenenitrile thus gives nanometer thick grafted film by electroreduction, essentially composed of a mixture of monomers, dimers and trimers and in the same way, allows an easy observation by XPS of the chemical signature of the grafting, i.e. the carbon-to-nickel bond, observed at 283.6 eV.

  20. Method and device for secure, high-density tritium bonded with carbon

    Energy Technology Data Exchange (ETDEWEB)

    Wertsching, Alan Kevin; Trantor, Troy Joseph; Ebner, Matthias Anthony; Norby, Brad Curtis

    2016-04-05

    A method and device for producing secure, high-density tritium bonded with carbon. A substrate comprising carbon is provided. A precursor is intercalated between carbon in the substrate. The precursor intercalated in the substrate is irradiated until at least a portion of the precursor, preferably a majority of the precursor, is transmutated into tritium and bonds with carbon of the substrate forming bonded tritium. The resulting bonded tritium, tritium bonded with carbon, produces electrons via beta decay. The substrate is preferably a substrate from the list of substrates consisting of highly-ordered pyrolytic graphite, carbon fibers, carbon nanotunes, buckministerfullerenes, and combinations thereof. The precursor is preferably boron-10, more preferably lithium-6. Preferably, thermal neutrons are used to irradiate the precursor. The resulting bonded tritium is preferably used to generate electricity either directly or indirectly.

  1. Preservation of atomically clean silicon surfaces in air by contact bonding

    DEFF Research Database (Denmark)

    Grey, Francois; Ljungberg, Karin

    1997-01-01

    When two hydrogen-passivated silicon surfaces are placed in contact under cleanroom conditions, a weak bond is formed. Cleaving this bond under ultrahigh vacuum (UHV) conditions, and observing the surfaces with low energy electron diffraction and scanning tunneling microscopy, we find that the or......When two hydrogen-passivated silicon surfaces are placed in contact under cleanroom conditions, a weak bond is formed. Cleaving this bond under ultrahigh vacuum (UHV) conditions, and observing the surfaces with low energy electron diffraction and scanning tunneling microscopy, we find...... reconstruction from oxidation in air, Contact bonding opens the way to novel applications of reconstructed semiconductor surfaces, by preserving their atomic structure intact outside of a UHV chamber. (C) 1997 American Institute of Physics....

  2. Bonding effectiveness of self-adhesive and conventional-type adhesive resin cements to CAD/CAM resin blocks. Part 2: Effect of ultrasonic and acid cleaning.

    Science.gov (United States)

    Kawaguchi, Asuka; Matsumoto, Mariko; Higashi, Mami; Miura, Jiro; Minamino, Takuya; Kabetani, Tomoshige; Takeshige, Fumio; Mine, Atsushi; Yatani, Hirofumi

    2016-01-01

    The present study assessed the effect of ultrasonic and acid cleaning on resin cement bonding to CAD/CAM resin blocks. One of two resin cements, PANAVIA V5 (PV5) or PANAVIA SA CEMENT HANDMIX (PSA), were bonded to one of 24 CAD/CAM blocks (KATANA AVENCIA BLOCK). Each cement group was divided into four subgroups: no cleaning (Ctl), ultrasonic cleaning (Uc), acid cleaning (Ac) and Uc+Ac. Micro-tensile bond strengths (µTBSs) were measured immediately and 1, 3, and 6 months after water storage. Block surfaces after each treatment were analyzed by scanning electron microscopy. Analysis of variance revealed a statistically significant effect for the parameters 'surface treatment' (pbonding durability with non-contaminated CAD/CAM resin blocks.

  3. Carbon dioxide nucleation as a novel cleaning method for ultrafiltration membranes

    KAUST Repository

    Al Ghamdi, Mohanned

    2016-12-08

    The use of low-pressure membranes, mainly ultrafiltration (UF), has emerged in the last decade and began to show acceptance as a novel pretreatment process for seawater reverse osmosis (SWRO) desalination. This is mainly due to the superior water quality provided by these membranes, in addition to reduction in chemicals consumption compared to conventional methods. However, membrane fouling remains the main drawback of this technology. Therefore, frequent cleaning of these membranes is required to maintain water flux and its quality. Usually, after a series of backwash using UF permeate chemical cleaning is required under some conditions to fully recover the operating flux. Frequent chemical cleaning will probably decrease the life time of the membrane, increase costs, and will have some effects on the environment. The new cleaning method proposed in this study consists of using a solution saturated with carbon dioxide (CO2) to clean UF membranes. Under the drop in pressure, this solution will become in a supersaturated state and bubbles will start to nucleate on the surface of the membrane and its pores from this solution resulting in the removal of the fouling material deposited on the membrane. Different compositions of fouling solutions including the use of organic compounds such as sodium alginate and colloidal 5 silica with different concentrations were studied using synthetic seawater with different concentrations. This cleaning method was then compared to the backwash using Milli-Q water and showed an improved performance compared to it. An operational modification to this cleaning technique was then investigated which includs a series of sudden pressure drop during the backwash process. This enhanced technique showed an even better performance in cleaning the membrane, especially at severe fouling conditions. In most cases, the membrane permeability was fully recovered even at harsh conditions where conventional backwash failed to maintain a stable

  4. Olefin metathesis for effective polymer healing via dynamic exchange of strong carbon-carbon bonds

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Zhibin; Lu, Yixuan

    2015-09-15

    A method of preparing a malleable and/or self-healing polymeric or composite material is provided. The method includes providing a polymeric or composite material comprising at least one alkene-containing polymer, combining the polymer with at least one homogeneous or heterogeneous transition metal olefin metathesis catalyst to form a polymeric or composite material, and performing an olefin metathesis reaction on the polymer so as to form reversible carbon-carbon double bonds in the polymer. Also provided is a method of healing a fractured surface of a polymeric material. The method includes bringing a fractured surface of a first polymeric material into contact with a second polymeric material, and performing an olefin metathesis reaction in the presence of a transition metal olefin metathesis catalyst such that the first polymeric material forms reversible carbon-carbon double bonds with the second polymeric material. Compositions comprising malleable and/or self-healing polymeric or composite material are also provided.

  5. Clean, premium-quality chars: Demineralized and carbon enriched. Final technical report, 1 September, 1992--31 August, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G.V.; Malhotra, V.M.; Wiltowski, T. [Southern Illinois Univ., Carbondale, IL (United States)

    1993-12-31

    The overall objective of this two-year project was to evaluate methods of preparing demineralized and carbon enriched chars from Illinois Basin coals. The two processing steps, physical cleaning and devolatilization under different environments, led to the following results. Cleaning coal incompletely removes mineral matter which decreases catalytic activity and increases micropore structure. Water forms hydrogen bonds to oxygen functional groups in coal, and during drying, coals undergo structural changes which affect mild gasification. When methane reacts wit coal, devolatilization and carbon deposition occur, the rates of which depend on temperature and amount of ash. Thermal decomposition of IBC-101 coal starts at 300 C, which is much lower than previously believed, but maximum yields of liquids occur at 500 C for IBC-101 coal and at 550 C for IBC-102 coal. Aliphatic-to-aromatic ratios increase with increasing pyrolysis temperatures to 300 C and then decrease; therefore, liquids formed during gasification of 550 C or higher contain mainly aromatic compounds. Btu values of chars are higher after methane treatment than after helium treatment.

  6. Cleaning of carbon materials from flat surfaces and castellation gaps by an atmospheric pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Stancu, C. [National Institute for Laser, Plasma and Radiation Physics, Atomistilor Str. 409, PO Box Mg36, Magurele-Bucharest, 077125 (Romania); Alegre, D. [Laboratorio Nacional de Fusión, As. Euratom/Ciemat, Avda. Complutense 22, 28040, Madrid (Spain); Ionita, E.R.; Mitu, B. [National Institute for Laser, Plasma and Radiation Physics, Atomistilor Str. 409, PO Box Mg36, Magurele-Bucharest, 077125 (Romania); Grisolia, C. [CEA, IRFM, F-13108, Saint-Paul-lez-Durance (France); Tabares, F.L. [Laboratorio Nacional de Fusión, As. Euratom/Ciemat, Avda. Complutense 22, 28040, Madrid (Spain); Dinescu, G., E-mail: dinescug@infim.ro [National Institute for Laser, Plasma and Radiation Physics, Atomistilor Str. 409, PO Box Mg36, Magurele-Bucharest, 077125 (Romania)

    2016-02-15

    Highlights: • Atmospheric plasma jets operated with nitrogen, oxygen and their mixtures are used for cleaning surfaces of carbon residues • Efficient plasma jet cleaning of carbon deposits from flat surfaces and inside gaps of castellated surfaces is demonstrated • Plasma jet cleaning is more effective at the gaps entrance and on their bottom - Abstract: A study of the removal of carbon layers from flat and castellated surfaces by a plasma jet source operated in open atmosphere is presented. Amorphous hydrogenated carbon films deposited on silicon substrates, on aluminium made castellated surfaces, and graphitic carbon plates were used. The erosion effects of plasmas generated either in pure argon, nitrogen or in their mixtures with hydrogen, ammonia, oxygen are compared. Highest erosion was obtained with nitrogen and nitrogen/oxygen plasmas. Plasmas in argon and containing hydrogen, and ammonia have shown a low erosion rate. A large removal rate by pure nitrogen plasma jet of 3.2 mg/min was found by scanning graphitic carbon flat surfaces for optimum process parameters. Adding small quantities of oxygen led to a removal rate enhancement by a factor of 3. Finally, the integral removal rate of amorphous hydrogenated carbon deposited in gaps 23 mm deep and 0.5 mm wide was of the order of 0.35 mg/min. The layer elimination was more efficient at the top and at the bottom of the gaps, precisely where the thickest codeposits develop in a nuclear fusion device.

  7. Secondary Electron Interference from Trigonal Warping in Clean Carbon Nanotubes

    Science.gov (United States)

    Dirnaichner, A.; del Valle, M.; Götz, K. J. G.; Schupp, F. J.; Paradiso, N.; Grifoni, M.; Strunk, Ch.; Hüttel, A. K.

    2016-10-01

    We investigate Fabry-Perot interference in an ultraclean carbon nanotube resonator. The conductance shows a clear superstructure superimposed onto conventional Fabry-Perot oscillations. A sliding average over the fast oscillations reveals a characteristic slow modulation of the conductance as a function of the gate voltage. We identify the origin of this secondary interference in intervalley and intravalley backscattering processes which involve wave vectors of different magnitude, reflecting the trigonal warping of the Dirac cones. As a consequence, the analysis of the secondary interference pattern allows us to estimate the chiral angle of the carbon nanotube.

  8. Governing the Clean Development Mechanism: global rhetoric versus local realities in carbon sequestration projects

    OpenAIRE

    2009-01-01

    Global agreements have proliferated in the past ten years. One of these is the Kyoto Protocol, which contains provisions for emissions reductions by trading carbon through the Clean Development Mechanism (CDM). The CDM is a market-based instrument that allows companies in Annex I countries to offset their greenhouse gas emissions through energy and tree offset projects in the global South. I set out to examine the governance challenges posed by the institutional design of carbon sequestration...

  9. Functionalized olefin cross-coupling to construct carbon-carbon bonds

    Science.gov (United States)

    Lo, Julian C.; Gui, Jinghan; Yabe, Yuki; Pan, Chung-Mao; Baran, Phil S.

    2014-12-01

    Carbon-carbon (C-C) bonds form the backbone of many important molecules, including polymers, dyes and pharmaceutical agents. The development of new methods to create these essential connections in a rapid and practical fashion has been the focus of numerous organic chemists. This endeavour relies heavily on the ability to form C-C bonds in the presence of sensitive functional groups and congested structural environments. Here we report a chemical transformation that allows the facile construction of highly substituted and uniquely functionalized C-C bonds. Using a simple iron catalyst, an inexpensive silane and a benign solvent under ambient atmosphere, heteroatom-substituted olefins are easily reacted with electron-deficient olefins to create molecular architectures that were previously difficult or impossible to access. More than 60 examples are presented with a wide array of substrates, demonstrating the chemoselectivity and mildness of this simple reaction.

  10. Exposed Dentin: Influence of Cleaning Procedures and Simulated Pulpal Pressure on Bond Strength of a Universal Adhesive System

    Science.gov (United States)

    2017-01-01

    Purpose To compare various pre-treatments serving as cleaning procedures of dentin on the bond strength of resin composite promoted by a universal adhesive system applied either in the absence or presence of simulated pulpal pressure. Materials and Methods Prior to application of the adhesive system (Scotchbond Universal) and resin composite (Filtek Z250), ground dentin surfaces were given one of five pre-treatments either without or with simulated pulpal pressure: 1) no pre-treatment, adhesive system in “self-etch” mode, 2) phosphoric acid etching, adhesive system in “total-etch” mode, 3) polishing with pumice on prophylaxis cup, 4) air abrasion with AIR-FLOW PLUS powder, 5) air abrasion with AIR-FLOW PERIO powder; n = 20/group of pre-treatment. After storage (37°C, 100% humidity, 24 h), micro shear bond strength was measured and data analyzed with parametric ANOVA including Bonferroni-Holm correction for multiple testing followed by Student’s t tests (significance level: α = 0.05). Results The ANOVA found type of pre-treatment and simulated pulpal pressure to have no significant effect on dentin bond strength. The explorative post-hoc tests showed a negative effect of simulated pulpal pressure for phosphoric acid etching (adhesive system in “total-etch” mode; p = 0.020), but not for the other four pre-treatments (all p = 1.000). Conclusion Air abrasion with powders containing either erythritol and chlorhexidine (AIR-FLOW PLUS) or glycine (AIR-FLOW PERIO) yielded dentin bond strengths similar to no pre-treatment, phosphoric acid etching, or polishing with pumice. Simulated pulpal pressure reduced the bond strength only when the self-etch adhesive system was used in total-etch mode. PMID:28081572

  11. Cleaning of carbon layer from the gold films using a pulsed Nd:YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Amol [X-ray Optics Section, Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Choubey, Ambar [Solid State Laser Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Modi, Mohammed H., E-mail: modimh@rrcat.gov.in [X-ray Optics Section, Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Upadhyaya, B.N.; Oak, S.M. [Solid State Laser Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Lodha, G.S.; Deb, S.K. [X-ray Optics Section, Indus Synchrotrons Utilization Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2013-10-15

    Hydrocarbon cracking and carbon contamination of optical elements in soft X-ray spectrometers and synchrotron radiation beamlines is a severe problem. Carbon contamination seriously affects the optics performance. In the present work, an Nd:YAG laser providing 2 mJ of pulse energy and 100 ns of pulse duration has been used for carbon cleaning experiments. The laser cleaning is a non-contact, accurate, efficient and safe process. A surface area of 48 cm{sup 2} having ∼20 nm thick carbon layer on gold surface has been removed with six number of laser passes and with 80% laser spot overlapping without any change in surface roughness of the underneath gold film. Effect of laser beam on gold film after carbon removal has been analyzed using X-ray photoelectron spectroscopy, soft X-ray reflectivity techniques. Atomic force microscopy was used to analyze surface morphology before and after laser cleaning process. Power spectral density function was calculated over large frequency range of 10{sup −1} to 10{sup −4} nm{sup −1} to understand topographic data.

  12. Cleaning of carbon layer from the gold films using a pulsed Nd:YAG laser

    Science.gov (United States)

    Singh, Amol; Choubey, Ambar; Modi, Mohammed H.; Upadhyaya, B. N.; Oak, S. M.; Lodha, G. S.; Deb, S. K.

    2013-10-01

    Hydrocarbon cracking and carbon contamination of optical elements in soft X-ray spectrometers and synchrotron radiation beamlines is a severe problem. Carbon contamination seriously affects the optics performance. In the present work, an Nd:YAG laser providing 2 mJ of pulse energy and 100 ns of pulse duration has been used for carbon cleaning experiments. The laser cleaning is a non-contact, accurate, efficient and safe process. A surface area of 48 cm2 having ∼20 nm thick carbon layer on gold surface has been removed with six number of laser passes and with 80% laser spot overlapping without any change in surface roughness of the underneath gold film. Effect of laser beam on gold film after carbon removal has been analyzed using X-ray photoelectron spectroscopy, soft X-ray reflectivity techniques. Atomic force microscopy was used to analyze surface morphology before and after laser cleaning process. Power spectral density function was calculated over large frequency range of 10-1 to 10-4 nm-1 to understand topographic data.

  13. Low carbon Finland 2050. VTT clean energy technology strategies for society

    Energy Technology Data Exchange (ETDEWEB)

    Koljonen, T.; Simila, L.; Sipila, K. [and others

    2012-11-15

    The Low Carbon Finland 2050 project by VTT Technical Research Centre of Finland aims to assess the technological opportunities and challenges involved in reducing Finland's greenhouse gas emissions. A target for reduction is set as at least 80% from the 1990 level by 2050 as part of an international effort, which requires strong RD and D in clean energy technologies. Key findings of the project are presented in this publication, which aims to stimulate enlightening and multidisciplinary discussions on low-carbon futures for Finland. The project gathered together VTT's technology experts in clean energy production, smart energy infrastructures, transport, buildings, and industrial systems as well as experts in energy system modelling and foresight. VTT's leading edge 'Low Carbon and Smart Energy' enables new solutions with a demonstration that is the first of its kind in Finland, and the introduction of new energy technology onto national and global markets. (orig.)

  14. Bump Bonding Using Metal-Coated Carbon Nanotubes

    Science.gov (United States)

    Lamb, James L.; Dickie, Matthew R.; Kowalczyk, Robert S.; Liao, Anna; Bronikowski, Michael J.

    2012-01-01

    Bump bonding hybridization techniques use arrays of indium bumps to electrically and mechanically join two chips together. Surface-tension issues limit bump sizes to roughly as wide as they are high. Pitches are limited to 50 microns with bumps only 8-14 microns high on each wafer. A new process uses oriented carbon nanotubes (CNTs) with a metal (indium) in a wicking process using capillary actions to increase the aspect ratio and pitch density of the connections for bump bonding hybridizations. It merges the properties of the CNTs and the metal bumps, providing enhanced material performance parameters. By merging the bumps with narrow and long CNTs oriented in the vertical direction, higher aspect ratios can be obtained if the metal can be made to wick. Possible aspect ratios increase from 1:1 to 20:1 for most applications, and to 100:1 for some applications. Possible pitch density increases of a factor of 10 are possible. Standard capillary theory would not normally allow indium or most other metals to be drawn into the oriented CNTs, because they are non-wetting. However, capillary action can be induced through the ability to fabricate oriented CNT bundles to desired spacings, and the use of deposition techniques and temperature to control the size and mobility of the liquid metal streams and associated reservoirs. This hybridization of two technologies (indium bumps and CNTs) may also provide for some additional benefits such as improved thermal management and possible current density increases.

  15. Biotic and abiotic carbon to sulfur bond cleavage. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Frost, J.W.

    1994-05-01

    The microbial desulfurization of organosulfur compounds occurs by unprecedented and largely unexplored biochemical processes. A study of such biotic desulfurizations can be expected to give rise to new and useful chemistry and enzymology. The potential value of understanding and harnessing these processes is seen in relation to the need for methods for the removal of organically bound sulfur from coal and the degradation of organic sulfur-containing pollutants. This research effort has been directed towards an examination of desulfurization ability in well characterized microorganisms, the isolation of bacteria with desulfurization ability from natural sources, the characterization and mechanistic evaluation of the observed biocatalytic processes, the development of biomimetic synthetic organic chemistry based on biotic desulfurization mechanisms and the design and preparation of improved coal model compounds for use in microbial selection processes. A systematic approach to studying biodesulfurizations was undertaken in which organosulfur compounds have been broken down into classes based on the oxidation state of the sulfur atom and the structure of the rest of the organic material. Microbes have been evaluated in terms of ability to degrade organosulfur compounds with sulfur in its sulfonic acid oxidation state. These compounds are likely intermediates in coal desulfurization and are present in the environment as persistent pollutants in the form of detergents. It is known that oxygen bonded to sulfur lowers the carbon-sulfur bond energy, providing a thermodynamic basis for starting with this class of compounds.

  16. Amount of aliphatic double carbon-carbon bonds in the kerogen of the Baltic shale kuckersite

    Energy Technology Data Exchange (ETDEWEB)

    Cheshko, I.D.; Kutuev, R.Kh.; Yakovlev, V.I.; Sendyurev, M.V.; Proskuryakov, V.A.

    1980-01-01

    In conclusion, among the questions of the chemical structure of the kerogen of combustible shales, one of the most important is that of the presence of multiple carbon-carbon bonds in the organic matter of these combustible minerals. In spite of a series of studies that have been performed this question has long remained open because of the contradictory opinions expressed. In the present paper, in order to evaluate the quantitative content of aliphatic bonds C-C in kerogen the authors analyze the results obtained by previous researchers in the study of the ozonization and chlorination of kuckersite, figures from balance experiments on chlorination, and the results of the use of ESR spectroscopy for these purposes and certain literature information on the halogenation of kuckersite kerogen. The presence in the kerogen of the Baltic combustible shale kuckersite of from 6 to 8 aliphatic double carbon-carbon bonds per 100 C atoms has been shown by the methods of chlorination, ozonization, and ESR spectroscopy, and this agrees with the figures calculated from certain results on the bromination of kuckersite. 18 refs.

  17. Fundamental reactivity of the Metal-Carbon bond in cyclometalated PNC-complexes

    NARCIS (Netherlands)

    L.S. Jongbloed

    2016-01-01

    The activation of C-H bonds by transition metals and the reactivity of the corresponding metal-carbon bond are interesting research topics form different point of views. Catalytic C-H bond functionalization has emerged as a highly active research area for the development of green construction of Car

  18. Instantaneous carbon-carbon bond formation using a microchannel reactor with a catalytic membrane.

    Science.gov (United States)

    Uozumi, Yasuhiro; Yamada, Yoichi M A; Beppu, Tomohiko; Fukuyama, Naoshi; Ueno, Masaharu; Kitamori, Takehiko

    2006-12-20

    Instantaneous catalytic carbon-carbon bond forming reactions were achieved in a microchannel reactor having a polymeric palladium complex membrane. The catalytic membrane was constructed inside the microchannel via self-assembling complexation at the interface between the organic and aqueous phases flowing laminarly, where non-cross-linked polymer-bound phosphine and ammonium tetrachloropalladate dissolved, respectively. A palladium-catalyzed coupling reaction of aryl halides and arylboronic acids was performed using the microchannel reactor to give quantitative yields of biaryls within 4 s of retention time in the defined channel region.

  19. Meeting China's electricity needs through clean energy sources: A 2030 low-carbon energy roadmap

    Science.gov (United States)

    Hu, Zheng

    China is undergoing rapid economic development that generates significant increase in energy demand, primarily for electricity. Energy supply in China is heavily relying on coal, which leads to high carbon emissions. This dissertation explores opportunities for meeting China's growing power demand through clean energy sources. The utilization of China's clean energy sources as well as demand-side management is still at the initial phase. Therefore, development of clean energy sources would require substantial government support in order to be competitive in the market. One of the widely used means to consider clean energy in power sector supplying is Integrated Resource Strategic Planning, which aims to minimize the long term electricity costs while screening various power supply options for the power supply and demand analysis. The IRSP tool tackles the energy problem from the perspective of power sector regulators, and provides different policy scenarios to quantify the impacts of combined incentives. Through three scenario studies, Business as Usual, High Renewable, and Renewable and Demand Side Management, this dissertation identifies the optimized scenario for China to achieve the clean energy target of 2030. The scenarios are assessed through energy, economics, environment, and equity dimensions.

  20. A dense and strong bonding collagen film for carbon/carbon composites

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Sheng; Li, Hejun, E-mail: lihejun@nwpu.edu.cn; Li, Kezhi; Lu, Jinhua; Zhang, Leilei

    2015-08-30

    Graphical abstract: - Highlights: • Significantly enhancement of biocompatibility on C/C composites by preparing a collagen film. • The dense and continuous collagen film had a strong bonding strength with C/C composites after dehydrathermal treatment (DHT) crosslink. • Numerous oxygen-containing functional groups formed on the surface of C/C composites without matrix damage. - Abstract: A strong bonding collagen film was successfully prepared on carbon/carbon (C/C) composites. The surface conditions of the modified C/C composites were detected by contact angle measurements, scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and Raman spectra. The roughness, optical morphology, bonding strength and biocompatibility of collagen films at different pH values were detected by confocal laser scanning microscope (CLSM), universal test machine and cytology tests in vitro. After a 4-h modification in 30% H{sub 2}O{sub 2} solution at 100 °C, the contact angle on the surface of C/C composites was decreased from 92.3° to 65.3°. Large quantities of hydroxyl, carboxyl and carbonyl functional groups were formed on the surface of the modified C/C composites. Then a dense and continuous collagen film was prepared on the modified C/C substrate. Bonding strength between collagen film and C/C substrate was reached to 8 MPa level when the pH value of this collagen film was 2.5 after the preparing process. With 2-day dehydrathermal treatment (DHT) crosslinking at 105 °C, the bonding strength was increased to 12 MPa level. At last, the results of in vitro cytological test showed that this collagen film made a great improvement on the biocompatibility on C/C composites.

  1. Metal-activated histidine carbon donor hydrogen bonds contribute to metalloprotein folding and function.

    Science.gov (United States)

    Schmiedekamp, Ann; Nanda, Vikas

    2009-07-01

    Carbon donor hydrogen bonds are typically weak interactions that contribute less than 2 kcal/mol, and provide only modest stabilization in proteins. One exception is the class of hydrogen bonds donated by heterocyclic side chain carbons. Histidine is capable of particularly strong interactions through the Cepsilon(1) and Cdelta(2) carbons when the imidazole is protonated or bound to metal. Given the frequent occurrence of metal-bound histidines in metalloproteins, we characterized the energies of these interactions through DFT calculations on model compounds. Imidazole-water hydrogen bonding could vary from -11.0 to -17.0 kcal/mol, depending on the metal identity and oxidation state. A geometric search of metalloprotein structures in the PDB identified a number of candidate His C-H...O hydrogen bonds which may be important for folding or function. DFT calculations on model complexes of superoxide reductase show a carbon donor hydrogen bond positioning a water molecule above the active site.

  2. Development and characterization of carbon-bonded carbon fiber insulation for radioisotope space power systems

    Energy Technology Data Exchange (ETDEWEB)

    Wei, G.C.; Robbins, J.M.

    1985-06-01

    The General-Purpose Heat Source (GPHS), an improved radioisotope heat source, employs a unique thermal insulation material, carbon-bonded carbon fiber (CBCF), to protect the fuel capsule and to help achieve the highest possible specific power. The CBCF insulation is made from chopped rayon fiber about 10 ..mu..m in diameter and 250 ..mu..m long, which is carbonized and bonded with phenolic resin particles. The CBCF shapes, both tubes and plates, are formed in a multiple molding facility by vacuum molding a water slurry of the carbonized chopped-rayon fiber (54 wt %) and phenolic resin (46 wt %). The molded shapes are subsequently dried and cured. Final carbonization of the resin is at 1600/sup 0/C. Machining to close tolerances (+-0.08 mm) is accomplished by conventional tooling and fixturing. The resulting material is an excellent lightweight insulation with a nominal density of 0.2 Mg/m/sup 3/ and a thermal conductivity of 0.24 W(m.K) in vacuum at 2000/sup 0/C. Several attributes that make CBCF superior to other known high-temperature insulation materials for the GPHS application have been identified. It has the excellent attributes of light weight, low thermal conductivity, chemical compatibility, and high-temperature capabilities. The mechanical strength of CBCF insulation is satisfactory for the GPHS application; it has passed vibration tests simulating launch conditions. The basic fabrication technique was refined to eliminate undesirable large pores and cracks often present in materials fabricated by earlier techniques. Also, processing was scaled up to incease the fabrication rate by a factor of 10. The specific properties of the CBCF were tailored by adjusting material and processing variables to obtain the desired results. We report here how work on CBCF characterization and development conducted at ORNL from 1978 through 1980 has contributed to the GPHS program to meet the requirements of both the Galileo and Ulysees Missions.

  3. Development of bond-length alternation in very large carbon rings: LDA pseudopotential results

    Science.gov (United States)

    Bylaska, Eric J.; Weare, John H.; Kawai, Ryoichi

    1998-09-01

    Carbon rings Cn and infinite chains C∞ are investigated by molecular-orbital and band-structure calculations within the local-density approximation. Carbon rings C4N (N=20). For the infinite carbon chain uniform Brillouin-zone sampling with an even number of points Ns gives bond alternation. An odd number of sampling points gives no bond alternation for less than Ns=41. In the large Ns limit even and odd sampling lead to an upper and lower bound of 0.070a0 and 0.065a0 for bond alternation and 0.021-0.090 millihartrees/atom for condensation energy.

  4. Building carbon-carbon bonds using a biocatalytic methanol condensation cycle.

    Science.gov (United States)

    Bogorad, Igor W; Chen, Chang-Ting; Theisen, Matthew K; Wu, Tung-Yun; Schlenz, Alicia R; Lam, Albert T; Liao, James C

    2014-11-11

    Methanol is an important intermediate in the utilization of natural gas for synthesizing other feedstock chemicals. Typically, chemical approaches for building C-C bonds from methanol require high temperature and pressure. Biological conversion of methanol to longer carbon chain compounds is feasible; however, the natural biological pathways for methanol utilization involve carbon dioxide loss or ATP expenditure. Here we demonstrated a biocatalytic pathway, termed the methanol condensation cycle (MCC), by combining the nonoxidative glycolysis with the ribulose monophosphate pathway to convert methanol to higher-chain alcohols or other acetyl-CoA derivatives using enzymatic reactions in a carbon-conserved and ATP-independent system. We investigated the robustness of MCC and identified operational regions. We confirmed that the pathway forms a catalytic cycle through (13)C-carbon labeling. With a cell-free system, we demonstrated the conversion of methanol to ethanol or n-butanol. The high carbon efficiency and low operating temperature are attractive for transforming natural gas-derived methanol to longer-chain liquid fuels and other chemical derivatives.

  5. Immediate dentin sealing of onlay preparations: thickness of pre-cured Dentin Bonding Agent and effect of surface cleaning.

    Science.gov (United States)

    Stavridakis, Minos M; Krejci, Ivo; Magne, Pascal

    2005-01-01

    This study evaluated the thickness of Dentin Bonding Agent (DBA) used for "immediate dentin sealing" of onlay preparations prior to final impression making for indirect restorations. In addition, the amount of DBA that is removed when the adhesive surface is cleaned with polishing or air abrasion prior to final cementation was evaluated. For this purpose, a standardized onlay preparation was prepared in 12 extracted molars, and either OptiBond FL (Kerr) or Syntac Classic (Vivadent) was applied to half of the teeth and cured in the absence of oxygen (air blocking). Each tooth was bisected in a bucco-lingual direction into two sections, and the thickness of the DBA was measured under SEM on gold sputtered epoxy resin replicas at 11 positions. The DBA layer of each half tooth was treated with either air abrasion or polishing. The thickness of the DBAs was then re-measured on the replicas at the same positions. The results were statistically analyzed with non-parametric statistics (Mann-Whitney U test and Kruskal-Wallis test) at a confidence level of 95% (p=0.05). The film thickness of the DBA was not uniform across the adhesive interface (121.13 +/- 107.64 microm), and a great range of values was recorded (0 to 500 microm). Statistically significant differences (pOptiBond FL or Syntac Classic) and position (1 to 11) dependent. Syntac Classic presented a higher thickness of DBA (142.34 +/- 125.10 microm) than OptiBond FL (87.99 +/- 73.76 microm). The higher film thickness of both DBAs was at the deepest part of the isthmus (the most concave part of the preparation), while the lowest was at the line angles of the dentinal crest (the most convex part of the preparation). OptiBond FL presented a more uniform thickness around the dentinal crest of preparation; Syntac Classic pooled at the lower parts of the preparation. The amount of DBA that was removed with air abrasion or polishing was not uniform (11.94 +/- 16.46 microm), and a great range of values was recorded (0 to

  6. Biosynthesis of pyranonaphthoquinone polyketides reveals diverse strategies for enzymatic carbon-carbon bond formation.

    Science.gov (United States)

    Metsä-Ketelä, Mikko; Oja, Terhi; Taguchi, Takaaki; Okamoto, Susumu; Ichinose, Koji

    2013-08-01

    Pyranonaphthoquinones synthesized by Streptomyces bacteria via type II polyketide pathways are aromatic compounds build around a common three-ring structure, which is composed of pyran, quinone and benzene rings. Over the years, actinorhodin in particular has served as a model compound for studying the biosynthesis of aromatic polyketides, while some of the other metabolites such as granaticin, medermycin, frenolicin and alnumycin A have enabled comparative studies that complement our understanding how these complex biological systems function and have evolved. In addition, despite the similarity of the aglycone units, pyranonaphthoquinones in effect display remarkable diversity in tailoring reactions, which include numerous enzymatic carbon-carbon bond forming reactions. This review focuses on the current status of molecular genetic, biochemical and structural investigations on this intriguing family of natural products.

  7. Bonding strength in carbon steel sandwich panels under condition of diffusion-rolling with small reduction

    Institute of Scientific and Technical Information of China (English)

    LIU Jing; HAN Jing-tao; FU Ding-mei

    2005-01-01

    One of the key problems by diffusion-rolling bonding with small reduction for carbon steel plates is the bonding assistant coat. A bonding assistant coat used below 850 ℃ was developed. It contained copper as basic element and zinc as main alloy element. Other small elements and rare metals were added to decrease the melting point and to obtain a better clouding and high plasticity. Based on the theory of brazing and transient liquid diffusion welding, two carbon steel plates were rolled with small reduction by using self-made bonding assistant coat. Temperature, pressure and holding time are the main technology parameters for controlling the process of diffusion-rolling. The results show that the bonding strength is the greatest when the bonding temperature is 830 ℃, holding time is 3 min and the reduction rate is 9%.

  8. Micro-shear bond strength and surface micromorphology of a feldspathic ceramic treated with different cleaning methods after hydrofluoric acid etching

    Directory of Open Access Journals (Sweden)

    Henrique Caballero STEINHAUSER

    2014-04-01

    Full Text Available Objective: The aim of this study was to evaluate the effect of feldspathic ceramic surface cleaning on micro-shear bond strength and ceramic surface morphology. Material and Methods: Forty discs of feldspathic ceramic were prepared and etched with 10% hydrofluoric acid for 2 minutes. The discs were randomly distributed into five groups (n=8: C: no treatment, S: water spray + air drying for 1 minute, US: immersion in ultrasonic bath for 5 minutes, F: etching with 37% phosphoric acid for 1 minute, followed by 1-minute rinse, F+US: etching with 37% phosphoric acid for 1 minute, 1-minute rinse and ultrasonic bath for 5 minutes. Composite cylinders were bonded to the discs following application of silane and hydrophobic adhesive for micro-shear bond strength testing in a universal testing machine at 0.5 mm/min crosshead speed until failure. Stereomicroscopy was used to classify failure type. Surface micromorphology of each treatment type was evaluated by scanning electron microscopy at 500 and 2,500 times magnification. Results: One-way ANOVA test showed no significant difference between treatments (p=0.3197 and the most common failure types were cohesive resin cohesion followed by adhesive failure. Micro-shear bond strength of the feldspathic ceramic substrate to the adhesive system was not influenced by the different surface cleaning techniques. Absence of or less residue was observed after etching with hydrofluoric acid for the groups US and F+US. Conclusions: Combining ceramic cleaning techniques with hydrofluoric acid etching did not affect ceramic bond strength, whereas, when cleaning was associated with ultrasound, less residue was observed.

  9. Metal-Metal Bonds and Metal Carbon Bonds in the Chemistry of Molybdenum and Tungsten Alkoxides.

    Science.gov (United States)

    1983-02-07

    diketones , 0-keto- esters, 0-ketoamines and Schiff bases. Insertion reactions also occur with unsaturated molecules such as CO CS and ArNCO. 02P 2 The...isopropoxy and neopentoxy compounds are oligomers [MoO 2(OR)21 n of, as yet, unknown struc- 2_no, syt unkow stuc 34 tures. A clean synthesis of the latter...to green solutions containing the triangulo Mo 30(OR)to compounds (see Figure 5). A clean, direct synthesis of these compounds is by the addition of

  10. Engineering de novo disulfide bond in bacterial α-type carbonic anhydrase for thermostable carbon sequestration

    Science.gov (United States)

    Jo, Byung Hoon; Park, Tae Yoon; Park, Hyun June; Yeon, Young Joo; Yoo, Young Je; Cha, Hyung Joon

    2016-07-01

    Exploiting carbonic anhydrase (CA), an enzyme that rapidly catalyzes carbon dioxide hydration, is an attractive biomimetic route for carbon sequestration due to its environmental compatibility and potential economic viability. However, the industrial applications of CA are strongly hampered by the unstable nature of enzymes. In this work, we introduced in silico designed, de novo disulfide bond in a bacterial α-type CA to enhance thermostability. Three variants were selected and expressed in Escherichia coli with an additional disulfide bridge. One of the variants showed great enhancement in terms of both kinetic and thermodynamic stabilities. This improvement could be attributed to the loss of conformational entropy of the unfolded state, showing increased rigidity. The variant showed an upward-shifted optimal temperature and appeared to be thermoactivated, which compensated for the lowered activity at 25 °C. Collectively, the variant constructed by the rapid and effective de novo disulfide engineering can be used as an efficient biocatalyst for carbon sequestration under high temperature conditions.

  11. Enantioselective epoxidation and carbon-carbon bond cleavage catalyzed by Coprinus cinereus peroxidase and myeloperoxidase.

    Science.gov (United States)

    Tuynman, A; Spelberg, J L; Kooter, I M; Schoemaker, H E; Wever, R

    2000-02-01

    We demonstrate that myeloperoxidase (MPO) and Coprinus cinereus peroxidase (CiP) catalyze the enantioselective epoxidation of styrene and a number of substituted derivatives with a reasonable enantiomeric excess (up to 80%) and in a moderate yield. Three major differences with respect to the chloroperoxidase from Caldariomyces fumago (CPO) are observed in the reactivity of MPO and CiP toward styrene derivatives. First, in contrast to CPO, MPO and CiP produced the (S)-isomers of the epoxides in enantiomeric excess. Second, for MPO and CiP the H(2)O(2) had to be added very slowly (10 eq in 16 h) to prevent accumulation of catalytically inactive enzyme intermediates. Under these conditions, CPO hardly showed any epoxidizing activity; only with a high influx of H(2)O(2) (300 eq in 1.6 h) was epoxidation observed. Third, both MPO and CiP formed significant amounts of (substituted) benzaldehydes as side products as a consequence of C-alpha-C-beta bond cleavage of the styrene derivatives, whereas for CPO and cytochrome c peroxidase this activity is not observed. C-alpha-C-beta cleavage was the most prominent reaction catalyzed by CiP, whereas with MPO the relative amount of epoxide formed was higher. This is the first report of peroxidases catalyzing both epoxidation reactions and carbon-carbon bond cleavage. The results are discussed in terms of mechanisms involving ferryl oxygen transfer and electron transfer, respectively.

  12. Nuclear magnetic resonance and molecular modeling study of exocyclic carbon-carbon double bond polarization in benzylidene barbiturates

    Science.gov (United States)

    Figueroa-Villar, J. Daniel; Vieira, Andreia A.

    2013-02-01

    Benzylidene barbiturates are important materials for the synthesis of heterocyclic compounds with potential for the development of new drugs. The reactivity of benzylidene barbiturates is mainly controlled by their exocyclic carbon-carbon double bond. In this work, the exocyclic double bond polarization was estimated experimentally by NMR and correlated with the Hammett σ values of the aromatic ring substituents and the molecular modeling calculated atomic charge difference. It is demonstrated that carbon chemical shift differences and NBO charge differences can be used to predict their reactivity.

  13. Bonding preference of carbon, nitrogen, and oxygen in niobium-based rock-salt structures.

    Science.gov (United States)

    Miura, Akira; Takei, Takahiro; Kumada, Nobuhiro; Wada, Satoshi; Magome, Eisuke; Moriyoshi, Chikako; Kuroiwa, Yoshihiro

    2013-09-03

    Carbon, nitrogen, and oxygen are essential components in solid-state materials. However, understanding their preference on the bonding to metals has not been straightforward. Here, niobium carbide, nitride, and oxide with simple rock-salt-based structures were analyzed by first-principles calculations and synchrotron X-ray diffraction. We found that an increase in the atomic number from carbon to oxygen formed fewer and shorter bonds to metals with better hybridization of atomic orbitals. This can provide a simple guiding principle for understanding the bonding and designing carbides, nitrides, oxides, and mixed-anion compounds.

  14. CORROSION TESTING OF CARBON STEEL IN OXALIC ACID CHEMICAL CLEANING SOLUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B.; Mickalonis, J.; Subramanian, K.; Ketusky, E.

    2011-10-14

    Radioactive liquid waste has been stored in underground carbon steel tanks for nearly 60 years at the Savannah River Site. The site is currently in the process of removing the waste from these tanks in order to place it into vitrified, stable state for longer term storage. The last stage in the removal sequence is a chemical cleaning step that breaks up and dissolves metal oxide solids that cannot be easily pumped out of the tank. Oxalic acid has been selected for this purpose because it is an effective chelating agent for the solids and is not as corrosive as other acids. Electrochemical and immersion studies were conducted to investigate the corrosion behavior of carbon steel in simulated chemical cleaning environments. The effects of temperature, agitation, and the presence of sludge solids in the oxalic acid on the corrosion rate and the likelihood of hydrogen evolution were determined. The testing showed that the corrosion rates decreased significantly in the presence of the sludge solids. Corrosion rates increased with agitation, however, the changes were less noticeable.

  15. Surveying approaches to the formation of carbon-carbon bonds between a pyran and an adjacent ring

    OpenAIRE

    Frein, Jeffrey D.; Rovis, Tomislav

    2006-01-01

    We have examined several methods for the stereoselective formation of carbon-carbon bonds between contiguous rings where a stereogenic center is already present. The approaches investigated were a [1,3] oxygen to carbon rearrangement of cyclic vinyl acetals, an intermolecular enolsilane addition into an in situ generated oxocarbenium ion, an intramolecular conjugate addition of tethered alkoxy enones, and epimerization of several α-pyranyl cycloalkanones. These routes have been found to be co...

  16. Elongated Silicon-Carbon Bonds at Graphene Edges.

    Science.gov (United States)

    Chen, Qu; Robertson, Alex W; He, Kuang; Gong, Chuncheng; Yoon, Euijoon; Kirkland, Angus I; Lee, Gun-Do; Warner, Jamie H

    2016-01-26

    We study the bond lengths of silicon (Si) atoms attached to both armchair and zigzag edges using aberration corrected transmission electron microscopy with monochromation of the electron beam. An in situ heating holder is used to perform imaging of samples at 800 °C in order to reduce chemical etching effects that cause rapid structure changes of graphene edges at room temperature under the electron beam. We provide detailed bond length measurements for Si atoms both attached to edges and also as near edge substitutional dopants. Edge reconstruction is also involved with the addition of Si dopants. Si atoms bonded to the edge of graphene are compared to substitutional dopants in the bulk lattice and reveal reduced out-of-plane distortion and bond elongation. An extended linear array of Si atoms at the edge is found to be energy-favorable due to inter-Si interactions. These results provide detailed structural information about the Si-C bonds in graphene, which may have importance in future catalytic and electronic applications.

  17. New cleaning strategies based on carbon nanomaterials applied to the deteriorated marble surfaces: A comparative study with enzyme based treatments

    Energy Technology Data Exchange (ETDEWEB)

    Valentini, Federica, E-mail: federica.valentini@uniroma2.it [Dipartimento di Scienze e Tecnologie Chimiche, Universita degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Diamanti, Alessia; Carbone, M. [Dipartimento di Scienze e Tecnologie Chimiche, Universita degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Bauer, E.M. [Istituto di Struttura della Materia del Consiglio Nazionale delle Ricerche (ISM-CNR), RM 1, Via Salaria km 29.3, 00015 Monterotondo (Italy); Palleschi, Giuseppe [Dipartimento di Scienze e Tecnologie Chimiche, Universita degli Studi di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy)

    2012-06-01

    Pentelic marbles from Basilica Neptuni in Rome-Italy (27-25 B.C.) show the signs of deterioration phenomena, which can be identified as black crust as well as black and grey patina. The present study has the twofold objective of assessing the entity of the deterioration and proposing new cleaning strategies based on nanotechnologies. The former is achieved by performing optical microscopy, differential interference contrast (DIC), stereomicroscopy, scanning electron microscopy/energy dispersive X-ray analysis (SEM/EDX) and infrared Fourier transform spectroscopy (FT-IR) analysis. The second objective of this study, involves different treatments based on a new cleaning strategy with carbon nanomaterials and bio-cleaning (used here for comparison) performed with enzymes, as glucose oxidase (GOD) and lipase. Nanomicelles assembled with functionalised carbon nano-fibres (CNF-COOH) and dispersed in Tween 20 medium show the highest cleaning performances in terms of removal of the black crust, compared with the pristine single-wall carbon nanotubes (SWCNTs) and the enzyme-based cleaning treatments. In particular, in these last two cases, the GOD-based biocleaning is efficient in removing the grey and dark patina, but works slow on the black crust. Finally, the lipase based cleaning approach is efficient in the black patina removal, though at the working temperature of 38 Degree-Sign C.

  18. Hydrogen bonded complexes of cyanuric acid with pyridine and guanidinium carbonate

    Indian Academy of Sciences (India)

    K Sivashankar

    2000-12-01

    Hydrogen bonded complexes of cyanuric acid (CA) with pyridine, [C3N3H3O3:C5H5N], 1, and guanidinium carbonate [C3H2N3][C(NH2)3], 2, have been prepared at room temperature and characterized by single-crystal X-ray diffraction. Structure of 1 shows pyridine molecules substituting the inter-tape hydrogen bond in CA by N-H…N and C-H…O hydrogen bonds. The structure reveals CA-pyridine hydrogen-bonded single helices held together by dimeric N-H…O hydrogen bonding between CA molecules. In 2, the CA tapes, resembling a sine wave interact with the guanidinium cations through N-H…O and N-H…N hydrogen bonds forming guanidinium cyanurate sheets.

  19. Carbon Dioxide Snow Jet Cleaning Technology%干冰微粒喷射清洗技术

    Institute of Scientific and Technical Information of China (English)

    郭新贺; 王磊; 景玉鹏

    2012-01-01

    简要介绍了随着工艺节点的缩小,传统RCA清洗方法在硅片清洗工艺中的局限性和弊端,进而提出了以CO2为介质的新型干冰微粒喷射清洗方法.从CO2的物理特性出发,论述了CO2流经喷枪后形成干冰微粒的机理,并简要分析了干冰微粒喷射技术对颗粒污染物和有机污染物的清洗机理.在此基础上,介绍了自主研发的一台基于干冰微粒喷射技术的半导体清洗设备,对该设备的结构和各部分的作用作了简要介绍,论述了使用该设备对硅片进行清洗的工艺流程.通过对比实验发现,采用压强为8 MPa、纯度为5N的CO2作为气源,喷嘴前压强设置为11 MPa,使用该设备可以达到很好的清洗效果.%With the drastic shrink of the semiconductor technology node, the limitations and shortcomings of traditional RCA cleaning methods are introduced briefly, and then the carbon dioxide snow jet cleaning as a novel cleaning technology for cleaning process is discussed. Based on the special physical properties of carbon dioxide, the mechanisms of dry ice micro-particle formation as the carbon dioxide passes through an orifice are discussed, and the carbon dioxide snow jet cleaning mechanisms for the particle and organic pollutants are analyzed briefly. Then the self-made semiconductor cleaning equipment based on the carbon dioxide snow jet cleaning was introduced, and the structure of the equipment and the function of each part were discussed. Besides that, the process flow of cleaning the silicon wafer with the equipment was presented. The contrast experiment shows that the equipment has a very good effect of silicon wafer cleaning when the gas pressure of the carbon dioxide source is 8 Mpa, carbon dioxide with the purity of 5N is used as the gas source, and the pressure parameter before the orifice is set to 11 Mpa.

  20. Synthesis of chemically bonded graphene/carbon nanotube composites and their application in large volumetric capacitance supercapacitors.

    Science.gov (United States)

    Jung, Naeyoung; Kwon, Soongeun; Lee, Dongwook; Yoon, Dong-Myung; Park, Young Min; Benayad, Anass; Choi, Jae-Young; Park, Jong Se

    2013-12-17

    Chemically bonded graphene/carbon nanotube composites as flexible supercapacitor electrode materials are synthesized by amide bonding. Carbon nanotubes attached along the edges and onto the surface of graphene act as spacers to increase the electrolyte-accessible surface area. Our lamellar structure electrodes demonstrate the largest volumetric capacitance (165 F cm(-3) ) ever shown by carbon-based electrodes.

  1. Removal of carbon and nanoparticles from lithographic materials by plasma assisted cleaning by metastable atom neutralization (PACMAN)

    Science.gov (United States)

    Lytle, W. M.; Lofgren, R. E.; Surla, V.; Neumann, M. J.; Ruzic, D. N.

    2010-04-01

    System cleanliness is a major issue facing the lithographic community as the prospects of integrating EUV lithography into integrated circuit manufacturing progress. Mask cleanliness, especially of particles in the sub-micron range, remains an issue for the implementation of EUV lithography since traditional mask cleaning processes are limited in their ability to remove nanometer scale contaminants. The result is lower wafer throughput due to errors in pattern transfer to the wafer from the particulate defects on the mask. Additionally, carbon contamination and growth on the collector optics due to energetic photon interactions degrade the mirror and shortens its functional life. Plasma cleaning of surfaces has been used for a variety of applications in the past, and now is being extended to cleaning surfaces for EUV, specifically the mask and collector optics, through a process developed in the Center for Plasma-Material Interactions (CPMI) called Plasma Assisted Cleaning by Metastable Atom Neutralization (PACMAN). This process uses energetic neutral atoms (metastables) in addition to a high-density plasma (Te ~ 3 eV and ne ~ 1017 m-3) to remove particles. The PACMAN process is a completely dry process and is carried out in a vacuum which makes it compatible with other EUV related processing steps. Experiments carried out on cleaning polystyrene latex (PSL) nanoparticles (30 nm to 500 nm) on silicon wafers, chrome coated mask blanks, and EUV mask blanks result in 100 % particle removal with a helium plasma and helium metastables. Removal rates greater than 20 nm/min have been achieved for PSL material. Similar removal rates have been achieved for the PACMAN cleaning of carbon from silicon wafers (simulating collector optic material) with 100% removal with helium plasma and helium metastables. The PACMAN cleaning technique has not caused any damage to the substrate type being cleaned either through roughening or surface sputtering. Current results of cleaning

  2. Socioeconomic Factors Affecting Farmers’ Awareness of Clean Development Mechanism Projects: Case of Smallholder Forest Carbon Projects

    Directory of Open Access Journals (Sweden)

    Oscar I. Ayuya

    2011-05-01

    Full Text Available The objective of the study was to identify the socio-economic and institutional factors which influence the level of awareness of Clean Development Mechanism (CDM projects and in so doing to highlight the policy implications for the stakeholders when designing clean development mechanism projects among smallholder farmers. Findings shows that 23% of the farmers were correctly aware of the project and the results of the ordered logit model indicate that age, gender, education level, group membership, existence of tree farming and contact with extension services was found to influence awareness level of smallholder forest Carbon projects. To assist the community to adapt to climate change and produce sufficiently on a sustainable basis and achieve the desired food security under climate change challenges, the study recommends policies to increase awareness of such agro-environmental initiatives and that of extension providers should distinguish their clientele anchored on vital demographic characteristics such as age and gender. If the probability of younger farmers to be aware this initiative is higher, extension communications should be directed to such age group, particularly during initial stages project information dissemination.

  3. Going Clean - The Economics of China's Low-carbon Development

    Energy Technology Data Exchange (ETDEWEB)

    Hallding, Karl; Thai, Helen; Han, Guoyi; Olsson, Marie; Kartha, Sivan (Stockholm Environment Inst. (Sweden)); Eklund, Klas (SEB, Stockholm (Sweden)); SU Ming (Peking Univ. (China)); Cao Jing (Tsinghua Univ. (China)); Luderer (Potsdam Inst. for Climate Impact (Germany))

    2009-11-15

    -scale abatement. Carbon pricing mechanisms can also assist clean technology objectives, as anticipation of higher carbon prices sets an incentive to develop low-carbon technology and products, and can thus steer investments in this direction. In addition, we propose a new international finance mechanism - the Inter-country Joint Mitigation Plan - as a broader and more efficient way of financing technology transfers. There needs to be a substantial, stable and predictable source of international finance, accompanied by market reform and regulatory mechanisms that can recognise, support and deepen domestic mitigation and adaptation efforts. International assistance will fuel and accelerate China's shift to a knowledge-based economy. China faces a monumental challenge and a historic opportunity. The transition to a low-carbon society will require large investments but also bring about substantial benefits, not only to China but to the entire world

  4. Feasibility study of fusion bonding for carbon fabric reinforced Polyphenylene Sulphide by hot-tool welding

    OpenAIRE

    De Baere, Ives; Van Paepegem, Wim; Degrieck, Joris

    2012-01-01

    In recent years, there is a growing interest in joining techniques for thermoplastic composites as an alternative to adhesive bonding. In this article, a fusion bonding process called hot-tool welding is investigated for this purpose and the used material is a carbon fabric reinforced polyphenylene sulphide. The welds are first observed through a microscope, after which the quality is experimentally assessed using a short three-point bending setup. A comparison is made between the welded spec...

  5. An international partnership approach to clean energy technology innovation: Carbon capture and storage

    Science.gov (United States)

    Yang, Xiaoliang

    Is a global research partnership effective in developing, deploying, and diffusing clean energy technologies? Drawing on and extending innovation system studies, this doctoral dissertation elaborates an analytical model for a global technology learning system; examines the rationales, mechanisms, and effectiveness of the United States-- China Clean Energy Research Center Advanced Coal Technology Consortium (CERC-ACTC); and analyzes government's role in developing and implementing carbon capture and storage technologies in the United States (U.S.) and China. Studies have shown that successful technology innovation leads to economic prosperity and national competence, and prove that technology innovation does not happen in isolation but rather within interactive systems among stakeholders. However, the innovation process itself remains unclear, particularly with regard to interactive learning among and between major institutional actors, including technology developers, regulators, and financial organizations. This study seeks to advance scholarship on the interactive learning from the angle of global interactive learning. This dissertation research project seeks, as well, to inform policy-makers of how to strengthen international collaboration in clean energy technology development. The U.S.--China CERC-ACTC announced by Presidents Obama and Hu in 2009, provided a unique opportunity to close this scholarly gap. ACTC aimed to "advance the coal technology needed to safely, effectively, and efficiently utilize coal resources including the ability to capture, store, and utilize the emissions from coal use in both nations " through the joint research and development by U.S. and Chinese scientists and engineers. This dissertation project included one-year field research in the two countries, with in-depth interviews of key stakeholders, a survey of Consortium participants, analysis of available data, and site visits to collaborative research projects from 2013-2014. This

  6. Effects of welding fumes on nuclear air cleaning system carbon adsorber banks

    Energy Technology Data Exchange (ETDEWEB)

    Roberson, P.W. [Duke Power Company, Huntersville, NC (United States)

    1997-08-01

    Standard Technical Specifications for nuclear air cleaning systems include requirements for surveillance tests following fire, painting, or chemical release in areas communicating with the affected system. To conservatively implement this requirement, many plants categorize welding as a chemical release process, and institute controls to ensure that welding fumes do not interact with carbon adsorbers in a filter system. After reviewing research data that indicated welding had a minimal impact on adsorber iodine removal efficiency, further testing was performed with the goal of establishing a welding threshold. It was anticipated that some quantity of weld electrodes could be determined that had a corresponding detrimental impact on iodine removal efficiency for the exposed adsorber. This value could be used to determine a conservative sampling schedule that would allow the station to perform laboratory testing to ensure system degradation did not occur without a full battery of surveillance tests. A series of tests was designed to demonstrate carbon efficiency versus cumulative welding fume exposure. Three series of tests were performed, one for each of three different types of commonly used weld electrodes. Carbon sampling was performed at baseline conditions, and every five pounds of electrode thereafter. Two different laboratory tests were performed for each sample; one in accordance with ASTM 3803/1989 at 95% relative humidity and 30 degrees C, and another using the less rigorous conditions of 70% relative humidity and 80 degrees C. Review of the test data for all three types of electrodes failed to show a significant correlation between carbon efficiency degradation and welding fume exposure. Accordingly, welding is no longer categorized as a `chemical release process` at McGuire Nuclear Station, and limits on welding fume interaction with ventilation systems have been eliminated. 4 refs., 3 figs., 1 tab.

  7. Acid-base bifunctional catalysis of silica-alumina-supported organic amines for carbon-carbon bond-forming reactions.

    Science.gov (United States)

    Motokura, Ken; Tomita, Mitsuru; Tada, Mizuki; Iwasawa, Yasuhiro

    2008-01-01

    Acid-base bifunctional heterogeneous catalysts were prepared by the reaction of an acidic silica-alumina (SA) surface with silane-coupling reagents possessing amino functional groups. The obtained SA-supported amines (SA-NR2) were characterized by solid-state 13C and 29Si NMR spectroscopy, FT-IR spectroscopy, and elemental analysis. The solid-state NMR spectra revealed that the amines were immobilized by acid-base interactions at the SA surface. The interactions between the surface acidic sites and the immobilized basic amines were weaker than the interactions between the SA and free amines. The catalytic performances of the SA-NR2 catalysts for various carbon-carbon bond-forming reactions, such as cyano-ethoxycarbonylation, the Michael reaction, and the nitro-aldol reaction, were investigated and compared with those of homogeneous and other heterogeneous catalysts. The SA-NR2 catalysts showed much higher catalytic activities for the carbon-carbon bond-forming reactions than heterogeneous amine catalysts using other supports, such as SiO2 and Al2O3. On the other hand, homogeneous amines hardly promoted these reactions under similar reaction conditions, and the catalytic behavior of SA-NR2 was also different from that of MgO, which was employed as a typical heterogeneous base. An acid-base dual-activation mechanism for the carbon-carbon bond-forming reactions is proposed.

  8. Comparison of H2 and He carbon cleaning mechanisms in extreme ultraviolet induced and surface wave discharge plasmas

    CERN Document Server

    Dolgov, A; Rachimova, T; Kovalev, A; Vasilyeva, A; Lee, C J; Krivtsun, V M; Yakushev, O; Bijkerk, F

    2013-01-01

    Cleaning of contamination of optical surfaces by amorphous carbon (a-C) is highly relevant for extreme ultraviolet (EUV) lithography. We have studied the mechanisms for a-C removal from a Si surface. By comparing a-C removal in a surface wave discharge (SWD) plasma and an EUV-induced plasma, the cleaning mechanisms for hydrogen and helium gas environments were determined. The C-atom removal per incident ion was estimated for different sample bias voltages and ion fluxes. It was found that H2 plasmas generally had higher cleaning rates than He plasmas: up to seven times higher for more negatively biased samples in EUV induced plasma. Moreover, for H2, EUV induced plasma was found to be 2-3 times more efficient at removing carbon than the SWD plasma. It was observed carbon removal during exposure to He is due to physical sputtering by He+ ions. In H2, on the other hand, the increase in carbon removal rates is due to chemical sputtering. This is a new C cleaning mechanism for EUV-induced plasma, which we call "E...

  9. Strength and bonding nature of superhard Z-carbon from first-principle study

    Directory of Open Access Journals (Sweden)

    Jiaqian Qin

    2012-06-01

    Full Text Available Z-carbon is a candidate structure proposed recently for the cold-compressed phase of carbon. We have studied the mechanical properties of Z-carbon by performing the first-principles density functional calculations. The single-crystal elastic constants calculations show that Z-carbon is mechanically stable. The predicted bulk and shear moduli of Z-carbon are comparable to diamond and cubic BN, suggesting that Z-carbon can be a superhard material. We also obtained the ideal tensile and shear strengths for Z-carbon through deformation from the elastic regime to structural instability. The failure modes under tensile deformation were explored carefully based on the calculated charge density distribution and bonding evolution.

  10. Assembly of macrocycles by zirconocene-mediated, reversible carbon-carbon bond formation.

    Science.gov (United States)

    Gessner, Viktoria H; Tannaci, John F; Miller, Adam D; Tilley, T Don

    2011-06-21

    Macrocyclic compounds have attracted considerable attention in numerous applications, including host-guest chemistry, chemical sensing, catalysis, and materials science. A major obstacle, however, is the limited number of convenient, versatile, and high-yielding synthetic routes to functionalized macrocycles. Macrocyclic compounds have been typically synthesized by ring-closing or condensation reactions, but many of these procedures produce mixtures of oligomers and cyclic compounds. As a result, macrocycle syntheses are often associated with difficult separations and low yields. Some successful approaches that circumvent these problems are based on "self-assembly" processes utilizing reversible bond-forming reactions, but for many applications, it is essential that the resulting macrocycle be built with a strong covalent bond network. In this Account, we describe how zirconocene-mediated reductive couplings of alkynes can provide reversible carbon-carbon bond-forming reactions well-suited for this purpose. Zirconocene coupling of alkenes and alkynes has been used extensively as a source of novel, versatile pathways to functionalized organic compounds. Here, we describe the development of zirconocene-mediated reductive couplings as a highly efficient method for the preparation of macrocycles and cages with diverse compositions, sizes, and shapes. This methodology is based on the reversible, regioselective coupling of alkynes with bulky substituents. In particular, silyl substituents provide regioselective, reversible couplings that place them into the α-positions of the resulting zirconacyclopentadiene rings. According to density functional theory (DFT) calculations and kinetic studies, the mechanism of this coupling involves a stepwise process, whereby an insertion of the second alkyne influences regiochemistry through both steric and electronic factors. Zirconocene coupling of diynes that incorporate silyl substituents generates predictable macrocyclic products

  11. STUDY OF LOT-TO-LOT REPRODUCIBILITIES OF BOND ELUT CERTIFY AND CLEAN SCREEN DAU MIXED-MODE SOLID-PHASE EXTRACTION COLUMNS IN THE EXTRACTION OF DRUGS FROM WHOLE-BLOOD

    NARCIS (Netherlands)

    CHEN, XH; FRANKE, JP; WIJSBEEK, J; DEZEEUW, RA

    1993-01-01

    The lot-to-lot reproducibilities of Bond Elut Certify and Clean Screen DAU columns are described. The recoveries of five test drugs obtained from twelve lots of Bond Elut Certify columns ranged from 84 to 104% with standard deviations of less than 9%. The recoveries of five test drugs obtained from

  12. Highly Efficient Oxidative Cleavage of Carbon-Carbon Double Bond over meso-Tetraphenyl Cobalt Porphyrin Catalyst in the Presence of Molecular Oxygen

    Institute of Scientific and Technical Information of China (English)

    周贤太; 纪红兵

    2012-01-01

    Highly efficient and selective carbon-carbon double bond aerobic cleavage of olefins catalyzed by metallopor- phyrins was investigated, and carbonyl compounds and epoxide were produced as the main products. CoTPP (co- balt meso-tetraphenyl porphyrin) showed excellent activity for the oxidative cleavage of carbon-carbon double bond by using styrene as model compound, in which the TOF (turnover frequency) and selectivity toward benzaldehyde was obtained with 2×10^4h-1 and 86%,respectively.

  13. Phase Evolution in Boride-Based Cermets and Reaction Bonding onto Plain Low Carbon Steel Substrate

    Science.gov (United States)

    Palanisamy, B.; Upadhyaya, A.

    2012-04-01

    Reaction sinter bonding is a process that aims to bond two materials for improvement in properties through reactive sintering technique. The process has been effectively used to sinter hard materials like borides in situ which not only possess excellent oxidation resistance, good corrosion resistance but also resistant to abrasive wear. Sinter bonding is a unique surface modification process achieved through powder metallurgy and is competent with other techniques like boronizing sintering and sinter-brazing since it eliminates the additional operations of heat treatment and assembly and removes the inherent setbacks with these processes. This study focuses on identifying the phase evolution mechanism using characterization tools like x-ray diffractometry and energy dispersive spectroscopy and study of sinter bonding of the boron containing precursors (Mo-Cr-Fe-Ni-FeB-MoB) onto plain carbon steel. A microstructure containing Fe-based matrix dispersed with complex borides develops with temperature in the tape cast sheets. A fivefold increase in hardness between plain carbon steel in wrought condition and sinter bonded steel was observed. The multilayer consisted of a reaction zone adjacent to the interface and was investigated with the composition profile and hardness measurements. A model of sinter bonding between the cermet and the steel has also been proposed.

  14. Effect of high heating and cooling rate on interface of diffusion bonded gray cast iron to medium carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Kurt, B. [Firat University, Technical Education Faculty, Metal Department, 23119 Elazig (Turkey); Orhan, N. [Firat University, Technical Education Faculty, Metal Department, 23119 Elazig (Turkey)]. E-mail: norhan@firat.edu.tr; Hascalik, A. [Firat University, Technical Education Faculty, Department of Manufacturing, Elazig (Turkey)

    2007-07-01

    In the present study, a gray cast iron and a medium carbon steel couple were diffusion bonded at the temperatures of 850, 900, 950 and 1000 deg. C under a pressure of 8 MPa for 30 min, and the effects of temperature and high heating and cooling rate on interface formations and microstructure were investigated. After diffusion bonding, scanning electron microscopy, shear test measurements and microhardness measurement of interface region were made. The microstructure at the inside of medium carbon steel of bonded couple consisted of martensite. As a result, from the microstructural observations, a good bonding along the interface of the bonded couples and the interface is free from voids and microcracks.

  15. Japanese challenge to create a low carbon society - 'Clean coal technologies, now and future'

    Energy Technology Data Exchange (ETDEWEB)

    Nakagaki, Yoshihiko; Yoshida, Minoru; Noguchi, Yoshikazu

    2010-09-15

    Under the increase of world energy demand, especially in major developing countries, energy demand will not be satisfied without coal. It is true that 30% of carbon dioxide emission is from coal-fired power stations, and there is no other effective solution than abating these emissions. The key is Clean Coal Technologies (CCT), to make power stations to low carbon. It is necessary to develop and transfer these CCTs together with developed and developing countries. Japan, who has excellent CCTs, should play an important role to develop higher innovative technologies and is challenging to make a low carbon society in the world.

  16. Final Report: Wireless Instrument for Automated Measurement of Clean Cookstove Usage and Black Carbon Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lukac, Martin [Cirrus Sense LLC, Los Angeles, CA (United States); Ramanathan, Nithya [Cirrus Sense LLC, Los Angeles, CA (United States); Graham, Eric [Cirrus Sense LLC, Los Angeles, CA (United States)

    2013-09-10

    Black carbon (BC) emissions from traditional cooking fires and other sources are significant anthropogenic drivers of radiative forcing. Clean cookstoves present a more energy-efficient and cleaner-burning vehicle for cooking than traditional wood-burning stoves, yet many existing cookstoves reduce emissions by only modest amounts. Further research into cookstove use, fuel types, and verification of emissions is needed as adoption rates for such stoves remain low. Accelerated innovation requires techniques for measuring and verifying such cookstove performance. The overarching goal of the proposed program was to develop a low-cost, wireless instrument to provide a high-resolution profile of the cookstove BC emissions and usage in the field. We proposed transferring the complexity of analysis away from the sampling hardware at the measurement site and to software at a centrally located server to easily analyze data from thousands of sampling instruments. We were able to build a low-cost field-based instrument that produces repeatable, low-cost estimates of cookstove usage, fuel estimates, and emission values with low variability. Emission values from our instrument were consistent with published ranges of emissions for similar stove and fuel types.

  17. Carbon-Carbon Bond Formation in a Weak Ligand Field: Leveraging Open Shell First Row Transition Metal Catalysts.

    Science.gov (United States)

    Chirik, Paul James

    2017-01-12

    Unique features of Earth abundant transition metal catalysts are reviewed in the context of catalytic carbon-carbon bond forming reactions. Aryl-substituted bis(imino)pyridine iron and cobalt dihalide compounds, when activated with alkyl aluminum reagents, form highly active catalysts for the polymerization of ethylene. Open shell iron and cobalt alkyl complexes have been synthesized that serve as single component olefin polymerization catalysts. Reduced bis(imino)pyridine iron- and cobalt dinitrogen compounds have also been discovered that promote the unique [2+2] cycloaddition of unactivated terminal alkenes. Electronic structure studies support open shell intermediates, a deviation from traditional strong field organometallic compounds that promote catalytic C-C bond formation.

  18. Correlation between carbon-carbon bond length and the ease of retro Diels-Alder reaction

    Indian Academy of Sciences (India)

    Sambasivarao Kotha; Shaibal Banerjee; Mobin Shaikh

    2014-09-01

    The bond length between C8-C9 in (1′R,4′S,4a′R,8a′S)-6′,7′-dimethyl-1′,4′,4a′,8a′-tetrahydrospiro [cyclopropane-1,9′-[1,4]methanonaphthalene]-5′,8′-dione is 1.571 (2) Å and between C7-C12 is 1.567 (2) Å which are longer than the corresponding bond length for saturated bicyclic systems (1.531-1.535Å). This paper reports the correlation between bond length and the ease of retro Diels−Alder reaction.

  19. Textile Dry Cleaning Using Carbon Dioxide: Process, Apparatus and Mechanical Action

    NARCIS (Netherlands)

    Sutanto, S.

    2014-01-01

    Fabrics that are sensitive to water, may wrinkle or shrink when washed in regular washing machines and are usually cleaned by professional dry cleaners. Dry cleaning is a process of removing soils from substrate, in this case textile, using a non-aqueous solvent. The most common solvent in conventio

  20. Is a Clean Development Mechanism project economically justified? Case study of an International Carbon Sequestration Project in Iran.

    Science.gov (United States)

    Katircioglu, Salih; Dalir, Sara; Olya, Hossein G

    2016-01-01

    The present study evaluates a carbon sequestration project for the three plant species in arid and semiarid regions of Iran. Results show that Haloxylon performed appropriately in the carbon sequestration process during the 6 years of the International Carbon Sequestration Project (ICSP). In addition to a high degree of carbon dioxide sequestration, Haloxylon shows high compatibility with severe environmental conditions and low maintenance costs. Financial and economic analysis demonstrated that the ICSP was justified from an economic perspective. The financial assessment showed that net present value (NPV) (US$1,098,022.70), internal rate of return (IRR) (21.53%), and payback period (6 years) were in an acceptable range. The results of the economic analysis suggested an NPV of US$4,407,805.15 and an IRR of 50.63%. Therefore, results of this study suggest that there are sufficient incentives for investors to participate in such kind of Clean Development Mechanism (CDM) projects.

  1. Electron emission degradation of nano-structured sp2-bonded amorphous carbon films

    Institute of Scientific and Technical Information of China (English)

    Lu Zhan-Ling; Wang Chang-Qing; Jia Yu; Zhang Bing-Lin; Yao Ning

    2007-01-01

    The initial field electron emission degradation behaviour of original nano-structured sp2-bonded amorphous carbon films has been observed.which can be attributed to the increase of the work function of the film in the field emission process analysed using a Fowler-Nordheim plot.The possible re.on for the change of work function is suggested to be the desorption of hydrogen from the original hydrogen termination film surface due to field emission current-induced local heating.For the explanation of the emission degradation behaviour of the nano-structured sp2-bonded amorphous carbon film,a cluster model with a series of graphite(0001) basal surfaces has been presented,and the theoretical calculations have been performed to investigate work functions of graphite(0001) surfaces with different hydrogen atom and ion chemisorption sites by using first principles method based on density functional theory-local density approximation.

  2. Carbon–carbon bond cleavage for Cu-mediated aromatic trifluoromethylations and pentafluoroethylations

    Directory of Open Access Journals (Sweden)

    Tsuyuka Sugiishi

    2015-12-01

    Full Text Available This short review highlights the copper-mediated fluoroalkylation using perfluoroalkylated carboxylic acid derivatives. Carbon–carbon bond cleavage of perfluoroalkylated carboxylic acid derivatives takes place in fluoroalkylation reactions at high temperature (150–200 °C or under basic conditions to generate fluoroalkyl anion sources for the formation of fluoroalkylcopper species. The fluoroalkylation reactions, which proceed through decarboxylation or tetrahedral intermediates, are useful protocols for the synthesis of fluoroalkylated aromatics.

  3. Effects of cleaning agents on bond strength to dentin Efeitos de agentes de limpeza na resistência adesiva à dentina

    Directory of Open Access Journals (Sweden)

    Celso Rosin

    2005-06-01

    Full Text Available The cleaning of cavity walls aims to improve adhesive restorative procedures and longevity of restorations. This study has compared the effect of three cleaning agents - sodium bicarbonate jet (Profi II, Dabi Atlante, São Paulo, Brazil; pumice paste plus a biologic detergent (Tergestesim, Probem, São Paulo, Brazil; air water spray - on the bond strength between dentin and two different adhesive systems: Clearfil SE Bond (Kuraray, Kioto, Japan and Scotchbond Multi-Purpose Plus (3M-ESPE, São Paulo, Brazil. Six groups (n:10 of dental fragments obtained from young adult extracted teeth were prepared, and each one received one of the listed surface cleaning techniques. After the adhesive application, a cone-shaped test body was built with AP-X (Kuraray, Kioto, Japan or Z100 (3M-ESPE, São Paulo, Brazil composite resins, using a Teflon matrix. The specimens were tested for tensile bond strength after one-week storage in distilled water at 37°C. Two pairs of fractured specimens of each group were randomly chosen and processed for scanning electron microscopy (SEM analysis. ANOVA test of the bond strength values showed no statistical differences among the cleaning agents and neither between their interactions with the bonding systems. Upon SEM analysis, most surfaces showed mixed fractures of adhesive and cohesive failures in bonding resin to dentin. Based on statistical and SEM analysis, it was concluded that the cleaning agents studied did not interfere with the bond strength of the adhesive systems used to dentin.A limpeza das paredes cavitárias é um passo importante na clínica odontológica e visa otimizar os procedimentos adesivos e a longevidade das restaurações. O presente estudo comparou o efeito de três agentes de limpeza cavitária - jato abrasivo de bicarbonato de sódio/ar/água (Profi II, Dabi Atlante, São Paulo, Brasil; pasta de pedra-pomes e água, somada a um detergente biológico (Tergestesim, Probem, São Paulo, Brasil; e

  4. Graded Density Carbon Bonded Carbon Fiber (CBCF) Preforms for Lightweight Ablative Thermal Protection Systems (TPS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — FMI has developed graded density CBCF preforms for graded density phenolic impregnated carbon ablator (PICA) material to meet NASA's future exploration mission...

  5. Graded Density Carbon Bonded Carbon Fiber (CBCF) Preforms for Lightweight Ablative Thermal Protection Systems (TPS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — FMI currently manufactures Phenolic Impregnated Carbon Ablator (PICA) material for Thermal Protection Systems (TPS) systems, such as the Stardust Sample Return...

  6. High-performance supercapacitor electrode from cellulose-derived, inter-bonded carbon nanofibers

    Science.gov (United States)

    Cai, Jie; Niu, Haitao; Wang, Hongxia; Shao, Hao; Fang, Jian; He, Jingren; Xiong, Hanguo; Ma, Chengjie; Lin, Tong

    2016-08-01

    Carbon nanofibers with inter-bonded fibrous structure show high supercapacitor performance when being used as electrode materials. Their preparation is highly desirable from cellulose through a pyrolysis technique, because cellulose is an abundant, low cost natural material and its carbonization does not emit toxic substance. However, interconnected carbon nanofibers prepared from electrospun cellulose nanofibers and their capacitive behaviors have not been reported in the research literature. Here we report a facile one-step strategy to prepare inter-bonded carbon nanofibers from partially hydrolyzed cellulose acetate nanofibers, for making high-performance supercapacitors as electrode materials. The inter-fiber connection shows considerable improvement in electrode electrochemical performances. The supercapacitor electrode has a specific capacitance of ∼241.4 F g-1 at 1 A g-1 current density. It maintains high cycling stability (negligible 0.1% capacitance reduction after 10,000 cycles) with a maximum power density of ∼84.1 kW kg-1. They may find applications in the development of efficient supercapacitor electrodes for energy storage applications.

  7. K{sub 6} carbon: A metallic carbon allotrope in sp{sup 3} bonding networks

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Chun-Yao; Wang, Xin-Quan; Wang, Jian-Tao, E-mail: wjt@aphy.iphy.ac.cn [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-02-07

    We identify by first-principles calculations a new cubic carbon phase in I4{sub 1}32 (O{sup 8}) symmetry, named K{sub 6} carbon, which has a six atom primitive cell comprising sp{sup 3} hybridized C{sub 3} triangle rings. The structural stability is verified by phonon mode analysis. The calculated elastic constants show that the K{sub 6} carbon is a high ductile material with a density even lower than graphite. Electronic band and density of states calculations reveal that it is a metallic carbon allotrope with a high electronic density of states of ∼0.10 states/eV per atom at the Fermi level. These results broaden our understanding of the structural and electronic properties of carbon allotropes.

  8. K6 carbon: A metallic carbon allotrope in sp3 bonding networks

    Science.gov (United States)

    Niu, Chun-Yao; Wang, Xin-Quan; Wang, Jian-Tao

    2014-02-01

    We identify by first-principles calculations a new cubic carbon phase in I4132 (O8) symmetry, named K6 carbon, which has a six atom primitive cell comprising sp3 hybridized C3 triangle rings. The structural stability is verified by phonon mode analysis. The calculated elastic constants show that the K6 carbon is a high ductile material with a density even lower than graphite. Electronic band and density of states calculations reveal that it is a metallic carbon allotrope with a high electronic density of states of ˜0.10 states/eV per atom at the Fermi level. These results broaden our understanding of the structural and electronic properties of carbon allotropes.

  9. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    Science.gov (United States)

    Cortright, Randy D.; Dumesic, James A.

    2011-01-18

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  10. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    Science.gov (United States)

    Cortright, Randy D [Madison, WI; Dumesic, James A [Verona, WI

    2012-04-10

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  11. Clean Energy for Tomorrow: Towards Zero Emission and Carbon Free Future: A Review

    Directory of Open Access Journals (Sweden)

    Wan Ramli Wan Daud

    2011-01-01

    Full Text Available Fuel cell technology using hydrogen energy is an advanced green energy technology for the future use. This is green, sustainable, clean and very environmental friendly. Green house gases emission from industrial activities has been proven beyond doubt as the main cause of global warming and climate changes. The finite world energy supply that consists nearly 90% of fossil fuel which is depleted; an energy crisis because of widening fossil fuel production and demand gaps. Many nations responded to anticipate energy crisis by diversifying their fuel resources to include renewable and alternative energy and developing green energy technology for the future. Despite political announcements on renewable energy, fossil fuels will continue to dominate energy resources for some time to come and carbon emission will increase but global nuclear energy expansion is uncertain because of international tensions and general public fears of another Chernobyl or Fogoshima disasters or a nuclear terrorist attack. Biofuels are plagued by the conflict between crops for fuel and crops for food and there is a shift of interest towards crop biomass wastes. The further expansion of hydrogen energy is constrained by costs and safety in hydrogen transport and storage. Fuel cell research and development has shifted from older AFC, PAFC and MCFC whose entry into the market were stalled by intractable operational and durability problems, to more promising PEMFC, DMFC and SOFC. A new type of fuel cell, the microbial fuel cell (MFC is also gaining some attention because of sustainable way of simultaneously reducing BOD and COD of wastewater and provide power; combined wastewater treatment and power (CWTP. The main thrust in PEMFC research and development is cost reduction of membrane and electrocatalyst by substitution of cheap and more efficient organic-inorganic nanocomposite membranes and nanoinorganic electrocatalyst as well as lower electrocatalyst loading and cost

  12. Clean Restructuring: Design Elements for Low Carbon Wholesale Markets and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-05-01

    Countries around the world are in various stages of power system reform and restructuring to more effectively meet development goals and decarbonization commitments. Changes in social dynamics, technology, business models, and environmental goals are increasing pressure for countries to consider improvements to their power systems. This brochure overviews the 21st Century Power Partnerships thought leadership report that explores the clean restructuring pathway in depth, envisions an end state, and articulates three main areas of consideration for decision makers embarking on a clean restructuring process. The report also details case studies from Germany, Denmark, and Mexico.

  13. Transition through co-optation: Harnessing carbon democracy for clean energy

    Science.gov (United States)

    Meng, Kathryn-Louise

    This dissertation explores barriers to a clean energy transition in the United States. Clean energy is demonstrably viable, yet the pace of clean energy adoption in the U.S. is slow, particularly given the immediate threat of global climate change. The purpose of this dissertation is to examine the factors inhibiting a domestic energy transition and to propose pragmatic approaches to catalyzing a transition. The first article examines the current political-economic and socio-technical energy landscape in the U.S. Fossil fuels are central to the functioning of the American economy. Given this centrality, constellations of power have been constructed around the reliable and affordable access of fossil fuels. The fossil fuel energy regime is comprised of: political-economic networks with vested interests in continued fossil fuel reliance, and fixed infrastructure that is minimally compatible with distributed generation. A transition to clean energy threatens the profitability of fossil fuel regime actors. Harnessing structural critiques from political ecology and process and function-oriented socio-technical systems frameworks, I present a multi-level approach to identifying pragmatic means to catalyzing an energy transition. High-level solutions confront the existing structure, mid-level solutions harness synergy with the existing structure, and low-level solutions lie outside of the energy system or foster the TIS. This is exemplified using a case study of solar development in Massachusetts. Article two presents a case study of the clean energy technological innovation system (TIS) in Massachusetts. I examine the actors and institutions that support cleantech development. Further, I scrutinize the actors and institutions that help sustain the TIS support system. The concept of a catalyst is presented; a catalyst is an actor that serves to propel TIS functions. Catalysts are critical to facilitating anchoring. Strategic corporate partners are identified as powerful

  14. Covalent organic polymer functionalization of activated carbon surfaces through acyl chloride for environmental clean-up

    DEFF Research Database (Denmark)

    Mines, Paul D.; Thirion, Damien; Uthuppu, Basil;

    2017-01-01

    Nanoporous networks of covalent organic polymers (COPs) are successfully grafted on the surfaces of activated carbons, through a series of surface modification techniques, including acyl chloride formation by thionyl chloride. Hybrid composites of activated carbon functionalized with COPs exhibit...

  15. Two-dimensional gold nanostructures with high activity for selective oxidation of carbon-hydrogen bonds

    Science.gov (United States)

    Wang, Liang; Zhu, Yihan; Wang, Jian-Qiang; Liu, Fudong; Huang, Jianfeng; Meng, Xiangju; Basset, Jean-Marie; Han, Yu; Xiao, Feng-Shou

    2015-04-01

    Efficient synthesis of stable two-dimensional (2D) noble metal catalysts is a challenging topic. Here we report the facile synthesis of 2D gold nanosheets via a wet chemistry method, by using layered double hydroxide as the template. Detailed characterization with electron microscopy and X-ray photoelectron spectroscopy demonstrates that the nanosheets are negatively charged and [001] oriented with thicknesses varying from single to a few atomic layers. X-ray absorption spectroscopy reveals unusually low gold-gold coordination numbers. These gold nanosheets exhibit high catalytic activity and stability in the solvent-free selective oxidation of carbon-hydrogen bonds with molecular oxygen.

  16. Chirality effect on Lithiation of narrow carbon nanotubes; bond order MD and DFT studies

    Science.gov (United States)

    Malehmir, M.; Khoshnevisan, B.; Tavangar, Z.

    2016-10-01

    Bond order force field molecular dynamic simulation and also a complimentary density functional theory method are employed for lithiation of narrow carbon nanotubes (CNTs). Since interior region of the narrow tubes (diameters CNTs has minor effects on endo-litiation’s distribution, the main factor in the total lithium storage capacity is the diameter. In addition, to obtain more applicable results this study is extended also for a bundle of the CNTs and it is seen that the adsorption energy and also the storage capacity enhance about 1.5 times.

  17. Cleaning of Livefront Electrical Switchgear Using Carbon Dioxide Pellets at Navy Installations

    Science.gov (United States)

    1998-05-01

    revoluciones automätico centrifugo - Bloque presofundido en aluminio - Cilindro en fundiciön perlitica - Filtro de aire en seco (en bafio de aceite con...gate. Pedestrians - minimum of 15 ft. From the switch and 5 ft. from the service truck. 3. Housekeeping Pad cleaning Vegetation 4. Outage required

  18. Effects of carbon fiber surface characteristics on interfacial bonding of epoxy resin composite subjected to hygrothermal treatments

    Science.gov (United States)

    Li, Min; Liu, Hongxin; Gu, Yizhuo; Li, Yanxia; Zhang, Zuoguang

    2014-01-01

    The changes of interfacial bonding of three types of carbon fibers/epoxy resin composite as well as their corresponding desized carbon fiber composites subjecting to hygrothermal conditions were investigated by means of single fiber fragmentation test. The interfacial fracture energy was obtained to evaluate the interfacial bonding before and after boiling water aging. The surface characteristics of the studied carbon fiber were characterized using X-ray photoelectron spectroscopy. The effects of activated carbon atoms and silicon element at carbon fiber surface on the interfacial hygrothermal resistance were further discussed. The results show that the three carbon fiber composites with the same resin matrix possess different hygrothermal resistances of interface and the interfacial fracture energy after water aging can not recovery to the level of raw dry sample (irreversible changes) for the carbon fiber composites containing silicon. Furthermore, the activated carbon atoms have little impact on the interfacial hygrothermal resistance. The irreversible variations of interfacial bonding and the differences among different carbon fiber composites are attributed to the silicon element on the carbon fiber bodies, which might result in hydrolyzation in boiling water treatment and degrade interfacial hygrothermal resistance.

  19. Clean Power Plan Toolbox

    Science.gov (United States)

    These are resources to help states as they develop state implementation plans under section 111(d) of the Clean Air Act to meet EPA's carbon pollution standards for existing power plants. Supplements www2.epa.gov/carbon-pollution-standards.

  20. Black Carbon and Kerosene Lighting: An Opportunity for Rapid Action on Climate Change and Clean Energy for Development

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, Arne [Humboldt State Univ., MN (United States). Schatz Energy Research Center; Bond, Tami C. [Univ. of Illinois at Urbana-Champaign, IL (United States). Dept. of Civil and Environmental Engineering; Lam, Nicholoas L. [Univ. of California, Berkeley, CA (United States). Dept. of Environmental Health Sciences; Hultman, Nathan [The Brookings Institution, Washington, DC (United States)

    2013-04-15

    Replacing inefficient kerosene lighting with electric lighting or other clean alternatives can rapidly achieve development and energy access goals, save money and reduce climate warming. Many of the 250 million households that lack reliable access to electricity rely on inefficient and dangerous simple wick lamps and other kerosene-fueled light sources, using 4 to 25 billion liters of kerosene annually to meet basic lighting needs. Kerosene costs can be a significant household expense and subsidies are expensive. New information on kerosene lamp emissions reveals that their climate impacts are substantial. Eliminating current annual black carbon emissions would provide a climate benefit equivalent to 5 gigatons of carbon dioxide reductions over the next 20 years. Robust and low-cost technologies for supplanting simple wick and other kerosene-fueled lamps exist and are easily distributed and scalable. Improving household lighting offers a low-cost opportunity to improve development, cool the climate and reduce costs.

  1. Remarkably efficient synthesis of 2H-indazole 1-oxides and 2H-indazoles via tandem carbon-carbon followed by nitrogen-nitrogen bond formation.

    Science.gov (United States)

    Bouillon, Isabelle; Zajícek, Jaroslav; Pudelová, Nadĕzda; Krchnák, Viktor

    2008-11-21

    Base-catalyzed tandem carbon-carbon followed by nitrogen-nitrogen bond formations quantitatively converted N-alkyl-2-nitro-N-(2-oxo-2-aryl-ethyl)-benzenesulfonamides to 2H-indazoles 1-oxides under mild conditions. Triphenylphosphine or mesyl chloride/triethylamine-mediated deoxygenation afforded 2H-indazoles.

  2. Bonding titanium on multi-walled carbon nanotubes for hydrogen storage: An electrochemical approach

    Energy Technology Data Exchange (ETDEWEB)

    Brieno-Enriquez, K.M.; Ledesma-Garcia, J. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S.C., Parque Tecnologico Queretaro-Sanfandila, Pedro Escobedo, Qro, C.P. 76703 (Mexico); Perez-Bueno, J.J., E-mail: jperez@cideteq.mx [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S.C., Parque Tecnologico Queretaro-Sanfandila, Pedro Escobedo, Qro, C.P. 76703 (Mexico); Godinez, Luis A. [Centro de Investigacion y Desarrollo Tecnologico en Electroquimica, S.C., Parque Tecnologico Queretaro-Sanfandila, Pedro Escobedo, Qro, C.P. 76703 (Mexico); Terrones, H. [Instituto Potosino de Investigacion Cientifica y Tecnologica, Division de Materiales Avanzados, Camino a la Presa San Jose 2055, Col. Lomas 4o Seccion C.P. 78216, San Luis Potosi (Mexico); Angeles-Chavez, C. [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas 152, A.P. 14-805, 07730 Mexico D.F. (Mexico)

    2009-06-15

    This work explores the use of some procedures, involving electrochemistry, in order to bond atomic Ti on the outer surface of multi-walled carbon nanotubes (MWNTs). It is assumed that each titanium atom has the potential of host up to four hydrogen molecules and relinquish them by heated. As a way to spread and stick nanotubes on an electrode, a tested route was drying a solution with nanotubes on a glassy carbon flat electrode. The MWNTs were treated by anodic polarization in organic media. Dichloromethane was selected as the medium and titanium tetrachloride as the precursor for attaching atomic Ti onto the nanotubes. The hydrogen adsorption, estimated from voltamperometry was five times higher on Ti-MWNTs that on bare nanotubes. The use of anodic polarization during the preparation of Ti-MWNTs may represent great significance in procedure, which was manifest during the voltamperometric evaluation of samples.

  3. Bioturbation delays attenuation of DDT by clean sediment cap but promotes sequestration by thin-layered activated carbon.

    Science.gov (United States)

    Lin, Diana; Cho, Yeo-Myoung; Werner, David; Luthy, Richard G

    2014-01-21

    The effects of bioturbation on the performance of attenuation by sediment deposition and activated carbon to reduce risks from DDT-contaminated sediment were assessed for DDT sediment-water flux, biouptake, and passive sampler (PE) uptake in microcosm experiments with a freshwater worm, Lumbriculus variegatus. A thin-layer of clean sediment (0.5 cm) did not reduce the DDT flux when bioturbation was present, while a thin (0.3 cm) AC cap was still capable of reducing the DDT flux by 94%. Bioturbation promoted AC sequestration by reducing the 28-day DDT biouptake (66%) and DDT uptake into PE (>99%) compared to controls. Bioturbation further promoted AC-sediment contact by mixing AC particles into underlying sediment layers, reducing PE uptake (55%) in sediment compared to the AC cap without bioturbation. To account for the observed effects from bioturbation, a mass transfer model together with a biodynamic model were developed to simulate DDT flux and biouptake, respectively, and models confirmed experimental results. Both experimental measurements and modeling predictions imply that thin-layer activated carbon placement on sediment is effective in reducing the risks from contaminated sediments in the presence of bioturbation, while natural attenuation process by clean sediment deposition may be delayed by bioturbation.

  4. Transient liquid phase bonding of carbon steel tubes using a Cu interlayer: Characterization and comparison with amorphous Fe–B–Si interlayer bonds

    Energy Technology Data Exchange (ETDEWEB)

    Di Luozzo, Nicolas, E-mail: nicolasdiluozzo@gmail.com [Laboratorio de Sólidos Amorfos, INTECIN, Facultad de Ingeniería, Universidad de Buenos Aires – CONICET, Paseo Colón 850, C1063ACV Buenos Aires (Argentina); Laboratoire des Matériaux et du Génie Physique (CNRS UMR 5628), Grenoble Institute of Technology, MINATEC, Grenoble Cedex 1 (France); Boudard, Michel; Doisneau, Béatrice [Laboratoire des Matériaux et du Génie Physique (CNRS UMR 5628), Grenoble Institute of Technology, MINATEC, Grenoble Cedex 1 (France); Fontana, Marcelo; Arcondo, Bibiana [Laboratorio de Sólidos Amorfos, INTECIN, Facultad de Ingeniería, Universidad de Buenos Aires – CONICET, Paseo Colón 850, C1063ACV Buenos Aires (Argentina)

    2014-12-05

    Highlights: • Cu and Fe–B–Si foils were used as interlayers to bond steel tubes by TLPB process. • The microstructure and mechanical properties were characterized. • In Cu bonded samples, the solidification process was not systematically completed. • When using Cu foils, evidences of epitaxial solidification were observed. • Tensile tests show that Cu and Fe–B–Si bonded samples failed away from the joint. - Abstract: In the present work the transient liquid phase bonding process was performed to join seamless carbon steel tubes using commercially pure Cu interlayers. The structural and mechanical characteristics of the resulting bonds are compared with those achieved using amorphous Fe–B–Si interlayers, under the same process parameters: a holding temperature of 1300 °C, a holding time of 7 min and an applied pressure of 5 MPa. The joined tubes microstructures were characterized by direct observations – scanning electron microscopy – and diffraction techniques – electron backscatter diffraction. Chemical analysis was performed using electron probe microanalysis. Whereas the amorphous Fe-B-Si interlayer leads to a completion of the bonding process over the whole bonding area, the bond performed using a Cu interlayer achieved the completion of the bonding process only partially. As the Cu is a cementite promoter, the amount of cementite coexisting with ferrite grains is higher in the joint region (JR) – corresponding to the higher concentration of Cu – as compared with the heat affected zone (HAZ) and the base metal (BM). An opposite effect is observed when using Fe-B-Si interlayers due to the fact that the cementite is unable to form in Si enriched zones – the microstructure at the JR presents only ferrite grains. Tensile tests show that the joined tubes using Cu or Fe–B–Si interlayers failed away from the bond, at the HAZ, attaining almost the same ultimate tensile strength of the BM, in the as-received condition. Hardness

  5. Experiment-Based Sensitivity Analysis of Scaled Carbon-Fiber-Reinforced Elastomeric Isolators in Bonded Applications

    Directory of Open Access Journals (Sweden)

    Farshad Hedayati Dezfuli

    2016-01-01

    Full Text Available Fiber-reinforced elastomeric isolators (FREIs are a new type of elastomeric base isolation systems. Producing FREIs in the form of long laminated pads and cutting them to the required size significantly reduces the time and cost of the manufacturing process. Due to the lack of adequate information on the performance of FREIs in bonded applications, the goal of this study is to assess the performance sensitivity of 1/4-scale carbon-FREIs based on the experimental tests. The scaled carbon-FREIs are manufactured using a fast cold-vulcanization process. The effect of several factors including the vertical pressure, the lateral cyclic rate, the number of rubber layers, and the thickness of carbon fiber-reinforced layers are explored on the cyclic behavior of rubber bearings. Results show that the effect of vertical pressure on the lateral response of base isolators is negligible. However, decreasing the cyclic loading rate increases the lateral flexibility and the damping capacity. Additionally, carbon fiber-reinforced layers can be considered as a minor source of energy dissipation.

  6. Microstructure and chemical bond evolution of diamond-like carbon films machined by femtosecond laser

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jing; Wang, Chunhui [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Liu, Yongsheng, E-mail: yongshengliu@nwpu.edu.cn [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Cheng, Laifei [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Li, Weinan [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 10068 (China); Zhang, Qing [Science and Technology on Thermostructure Composite Materials Laboratory, Northwestern Polytechnical University, Xi’an 710072 (China); Yang, Xiaojun [State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 10068 (China)

    2015-06-15

    Highlights: • The machining depth was essentially proportional to the laser power. • The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. And the number of nanoparticles increased with the processing power as well. • It revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. • It showed that a great decrease of sp{sup 3}/sp{sup 2} after laser treatment. - Abstract: Femtosecond laser is of great interest for machining high melting point and hardness materials such as diamond-like carbon, SiC ceramic, et al. In present work, the microstructural and chemical bond evolution of diamond-like carbon films were investigated using electron microscopy and spectroscopy techniques after machined by diverse femtosecond laser power in air. The results showed the machining depth was essentially proportional to the laser power. The well patterned microgrooves and ripple structures with nanoparticles were formed distinctly in the channels. Considering the D and G Raman band parameters on the laser irradiation, it revealed a conversion from amorphous carbon to nanocrystalline graphite after laser treated with increasing laser power. X-ray photoelectron spectroscopy analysis showed a great decrease of sp{sup 3}/sp{sup 2} after laser treatment.

  7. Photocatalytic properties of TiO2 bonded active carbon composites prepared by SOL-GEL

    Institute of Scientific and Technical Information of China (English)

    李佑稷; 李效东; 李君文; 尹静

    2004-01-01

    Photocatalyst of TiO2 bonded active carbon (TiO2/AC), was prepared via sol-gel method from a mixture of TiO2 sol with active carbon. Post heat treatment was performed at 250 ℃ for 2 h in air and then kept at 400 ℃ to 600 ℃ under a flow of nitrogen for 2 h. The TiO2/AC composites obtained were characterized by SEM, XRD, UV-vis and BET. The photocatalytic activities of the TiO2/AC composites were studied in comparison with TiO2, AC,P-25 and a mixture of TiO2 and AC, respectively. The Ramnant rate of Rhodamine B absorbed by the active carbon is found to be almost 70% and the remnant rates of the Rhodamine B decolorized by TiO2 and the mixture of TiO2 and the active carbon are 30% and 25%, respectively. However, nearly complete removal of Rhodamine B is observed for a TiO2/AC composite after 200 min under UV irradiation, which will take the P-25 commercial product 5 h. Therefore, the TiO2/AC composite is much more effective in decolorization of aqueous Rhodamine B. In addition, the composite can be easily separated from solutions.

  8. Carbon-tuned bonding method significantly enhanced the hydrogen storage of BN-Li complexes.

    Science.gov (United States)

    Deng, Qing-ming; Zhao, Lina; Luo, You-hua; Zhang, Meng; Zhao, Li-xia; Zhao, Yuliang

    2011-11-01

    Through first-principles calculations, we found doping carbon atoms onto BN monolayers (BNC) could significantly strengthen the Li bond on this material. Unlike the weak bond strength between Li atoms and the pristine BN layer, it is observed that Li atoms are strongly hybridized and donate their electrons to the doped substrate, which is responsible for the enhanced binding energy. Li adsorbed on the BNC layer can serve as a high-capacity hydrogen storage medium, without forming clusters, which can be recycled at room temperature. Eight polarized H(2) molecules are attached to two Li atoms with an optimal binding energy of 0.16-0.28 eV/H(2), which results from the electrostatic interaction of the polarized charge of hydrogen molecules with the electric field induced by positive Li atoms. This practical carbon-tuned BN-Li complex can work as a very high-capacity hydrogen storage medium with a gravimetric density of hydrogen of 12.2 wt%, which is much higher than the gravimetric goal of 5.5 wt % hydrogen set by the U.S. Department of Energy for 2015.

  9. Use of magnetic carbon composites from renewable resource materials for oil spill clean up and recovery

    Energy Technology Data Exchange (ETDEWEB)

    Viswanathan, Tito

    2015-10-27

    A method of separating a liquid hydrocarbon material from a body of water, includes: (a) mixing magnetic carbon-metal nanocomposites with a liquid hydrocarbon material dispersed in a body of water to allow the magnetic carbon-metal nanocomposites each to be adhered by the liquid hydrocarbon material to form a mixture; (b) applying a magnetic force to the mixture to attract the magnetic carbon-metal nanocomposites each adhered by the liquid hydrocarbon material; and (c) removing the body of water from the magnetic carbon-metal nanocomposites each adhered by the liquid hydrocarbon material while maintaining the applied magnetic force. The magnetic carbon-metal nanocomposites is formed by subjecting one or more metal lignosulfonates or metal salts to microwave radiation, in presence of lignin/derivatives either in presence of alkali or a microwave absorbing material, for a period of time effective to allow the carbon-metal nanocomposites to be formed.

  10. Electrolytic treatment of mercury-loaded activated carbon from a gas cleaning system

    Science.gov (United States)

    Sobral; Santos; Barbosa

    2000-10-16

    This study aimed at extracting the adsorbed mercury from the mercury-loaded activated carbon so as to recycling both, the elemental mercury and the carbon, after being reactivated. The process used in this study was the electro-oxidation of the mercury in a reaction system where the loaded carbon is acting as an anode, during the electrolysis of brine, the electrolyte of the cell.

  11. Conversion of carbon dioxide to valuable petrochemicals:An approach to clean development mechanism

    Institute of Scientific and Technical Information of China (English)

    Farnaz Tahriri Zangeneh; Saeed Sahebdelfar; Maryam Takht Ravanchi

    2011-01-01

    The increase of atmospheric carbon dioxide and the global warming due to its greenhouse effect resulted in worldwide concerns. On the other hand, carbon dioxide might be considered as a valuable and renewable carbon source. One approach to reduce carbon dioxide emissions could be its capture and recycle via transformation into chemicals using the technologies in C1 chemistry. Despite its great interest, there are difficulties in CO2 separation on the one hand, and thermodynamic stability of carbon dioxide molecule rendering its chemical activity low on the other hand. Carbon dioxide has been already used in petrochemical industries for production of limited chemicals such as urea.The utilization of carbon dioxide does not necessarily involve development of new processes, and in certain processes such as methanol synthesis and methane steam reforming, addition of CO2 into the feed results in its utilization and increases carbon efficiency. In other cases,modifications in catalyst and/or processes, or even new catalysts and processes, are necessary. In either case, catalysis plays a crucial role in carbon dioxide conversion and effective catalysts are required for commercial realization of the related processes. Technologies for CO2 utilization are emerging after many years of research and development efforts.

  12. On the formation and bonding of a surface carbonate on Ni(100)

    Science.gov (United States)

    Behm, R. J.; Brundle, C. R.

    1991-09-01

    The formation, stability, adsorption geometry and electronic structure of a surface carbonate on Ni(100) have been investigated by photoemission (XPS, UPS) and temperature-programmed reaction (TPR). The core level binding energies of 531.2 eV for 0(1s) and 289.0 eV for C(1s) are comparable to those of bulk carbonates. The He(II) spectrum of the carbonate valence levels is not well defined because of the coexisting adsorbed and oxidic oxygen. The angular dependence of the carbonate core level intensities is characteristic of the carbonate being present as an overlayer species rather than a thicker surface phase. The XPS data and isotope labelled TPR experiments indicate the oxygen atoms of the carbonate to be electronically and chemically equivalent, and on this basis we favor a structure in which the carbonate is attached to the metal via all three oxygen atoms. This is supported by comparision with the core level binding energies of HCOO ab and chemisorbed CO 2,ad, which are similarly attached to the surface. From the core level angular behavior, the close similarity of core level binding energies and available vibrational spectroscopic data, a (nearly) planar geometry of the CO 3,ad on Ni(100) is concluded, which is comparable to the planar bulk carbonate anion and the planar carbonate species on Ag(110). The activation barrier for decomposition is estimated from the observed maximum in TPR at 420 K to be 25 ± 2 kcal/mol. CO 2 does not accumulate on the clean or O ad-precovered Ni(100) surface at 130 K. The stabilized, chemisorbed CO 2,ad species often observed on other metal surfaces therefore does not play a critical role for carbonate formation on Ni(100). Also a mechanism involving the disproportionation of a CO 2… CO 2,ad- dimer anion can be ruled out from TPR data. The evidence of the experiments discussed in this paper suggests that the carbonate is predominantly formed by reaction of CO 2,ad with a less stable, defect (disordered) O ad species rather

  13. Molecular dynamics simulation of the formation of sp3 hybridized bonds in hydrogenated diamondlike carbon deposition processes.

    Science.gov (United States)

    Murakami, Yasuo; Horiguchi, Seishi; Hamaguchi, Satoshi

    2010-04-01

    The formation process of sp3 hybridized carbon networks (i.e., diamondlike structures) in hydrogenated diamondlike carbon (DLC) films has been studied with the use of molecular-dynamics simulations. The processes simulated in this study are injections of hydrocarbon (CH3 and CH) beams into amorphous carbon (a-C) substrates. It has been shown that diamondlike sp3 structures are formed predominantly at a subsurface level when the beam energy is relatively high, as in the "subplantation" process for hydrogen-free DLC deposition. However, for hydrogenated DLC deposition, the presence of abundant hydrogen at subsurface levels, together with thermal spikes caused by energetic ion injections, substantially enhances the formation of carbon-to-carbon sp3 bonds. Therefore, the sp3 bond formation process for hydrogenated DLC films essentially differs from that for hydrogen-free DLC films.

  14. Terrestrial carbon disturbance from mountaintop mining increases lifecycle emissions for clean coal.

    Science.gov (United States)

    Fox, James F; Campbell, J Elliott

    2010-03-15

    The Southern Appalachian forest region of the U.S.--a region responsible for 23% of U.S. coal production--has 24 billion metric tons of high quality coal remaining of which mountaintop coal mining (MCM) will be the primary extraction method. Here we consider greenhouse gas emissions associated with MCM terrestrial disturbance in the life-cycle of coal energy production. We estimate disturbed forest carbon, including terrestrial soil and nonsoil carbon using published U.S. Environmental Protection Agency data of the forest floor removed and U.S. Department of Agriculture--Forest Service inventory data. We estimate the amount of previously buried geogenic organic carbon brought to the soil surface during MCM using published measurements of total organic carbon and carbon isotope data for reclaimed soils, soil organic matter and coal fragments. Contrary to conventional wisdom, the life-cycle emissions of coal production for MCM methods were found to be quite significant when considering the potential terrestrial source. Including terrestrial disturbance in coal life-cycle assessment indicates that indirect emissions are at least 7 and 70% of power plant emissions for conventional and CO(2) capture and sequestration power plants, respectively. To further constrain these estimates, we suggest that the fate of soil carbon and geogenic carbon at MCM sites be explored more widely.

  15. Frequent side chain methyl carbon-oxygen hydrogen bonding in proteins revealed by computational and stereochemical analysis of neutron structures.

    Science.gov (United States)

    Yesselman, Joseph D; Horowitz, Scott; Brooks, Charles L; Trievel, Raymond C

    2015-03-01

    The propensity of backbone Cα atoms to engage in carbon-oxygen (CH · · · O) hydrogen bonding is well-appreciated in protein structure, but side chain CH · · · O hydrogen bonding remains largely uncharacterized. The extent to which side chain methyl groups in proteins participate in CH · · · O hydrogen bonding is examined through a survey of neutron crystal structures, quantum chemistry calculations, and molecular dynamics simulations. Using these approaches, methyl groups were observed to form stabilizing CH · · · O hydrogen bonds within protein structure that are maintained through protein dynamics and participate in correlated motion. Collectively, these findings illustrate that side chain methyl CH · · · O hydrogen bonding contributes to the energetics of protein structure and folding.

  16. Unique chemical properties of metal-carbon bonds in metal-carboranyl and metal-carboryne complexes

    Institute of Scientific and Technical Information of China (English)

    QIU ZaoZao; XIE ZuoWei

    2009-01-01

    The metal-carbon bonds in metal-carboranyl and metal-carboryne complexes behave very differently from those in classical organometallic complexes. The unique electronic and steric properties of icosahedral carboranyl moiety make the M-C bond in metal-carboranyl complexes inert toward unsaturated molecules, and on the other hand, the sterically demanding carborane cage can induce unexpected C-C coupling reactions. The M-C bonds in metal-carboryne complexes are, however, active toward various kinds of unsaturated molecules and the reactivity patterns are dependent upon the electronic configurations of the metal ions. This account provides an overview of our recent work in this area.

  17. Unique chemical properties of metal-carbon bonds in metal-carboranyl and metal-carboryne complexes

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The metal-carbon bonds in metal-carboranyl and metal-carboryne complexes behave very differently from those in classical organometallic complexes. The unique electronic and steric properties of ico-sahedral carboranyl moiety make the M-C bond in metal-carboranyl complexes inert toward unsaturated molecules, and on the other hand, the sterically demanding carborane cage can induce unexpected C-C coupling reactions. The M-C bonds in metal-carboryne complexes are, however, active toward various kinds of unsaturated molecules and the reactivity patterns are dependent upon the electronic configurations of the metal ions. This account provides an overview of our recent work in this area.

  18. Hydrogen bonds, interfacial stiffness moduli, and the interlaminar shear strength of carbon fiber-epoxy matrix composites

    Directory of Open Access Journals (Sweden)

    John H. Cantrell

    2015-03-01

    Full Text Available The chemical treatment of carbon fibers used in carbon fiber-epoxy matrix composites greatly affects the fraction of hydrogen bonds (H-bonds formed at the fiber-matrix interface. The H-bonds are major contributors to the fiber-matrix interfacial shear strength and play a direct role in the interlaminar shear strength (ILSS of the composite. The H-bond contributions τ to the ILSS and magnitudes KN of the fiber-matrix interfacial stiffness moduli of seven carbon fiber-epoxy matrix composites, subjected to different fiber surface treatments, are calculated from the Morse potential for the interactions of hydroxyl and carboxyl acid groups formed on the carbon fiber surfaces with epoxy receptors. The τ calculations range from 7.7 MPa to 18.4 MPa in magnitude, depending on fiber treatment. The KN calculations fall in the range (2.01 – 4.67 ×1017 N m−3. The average ratio KN/|τ| is calculated to be (2.59 ± 0.043 × 1010 m−1 for the seven composites, suggesting a nearly linear connection between ILSS and H-bonding at the fiber-matrix interfaces. The linear connection indicates that τ may be assessable nondestructively from measurements of KN via a technique such as angle beam ultrasonic spectroscopy.

  19. Hydrogen bonds, interfacial stiffness moduli, and the interlaminar shear strength of carbon fiber-epoxy matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, John H., E-mail: john.h.cantrell@nasa.gov [Research Directorate, NASA Langley Research Center, Hampton, Virginia 23681 (United States)

    2015-03-15

    The chemical treatment of carbon fibers used in carbon fiber-epoxy matrix composites greatly affects the fraction of hydrogen bonds (H-bonds) formed at the fiber-matrix interface. The H-bonds are major contributors to the fiber-matrix interfacial shear strength and play a direct role in the interlaminar shear strength (ILSS) of the composite. The H-bond contributions τ to the ILSS and magnitudes K{sub N} of the fiber-matrix interfacial stiffness moduli of seven carbon fiber-epoxy matrix composites, subjected to different fiber surface treatments, are calculated from the Morse potential for the interactions of hydroxyl and carboxyl acid groups formed on the carbon fiber surfaces with epoxy receptors. The τ calculations range from 7.7 MPa to 18.4 MPa in magnitude, depending on fiber treatment. The K{sub N} calculations fall in the range (2.01 – 4.67) ×10{sup 17} N m{sup −3}. The average ratio K{sub N}/|τ| is calculated to be (2.59 ± 0.043) × 10{sup 10} m{sup −1} for the seven composites, suggesting a nearly linear connection between ILSS and H-bonding at the fiber-matrix interfaces. The linear connection indicates that τ may be assessable nondestructively from measurements of K{sub N} via a technique such as angle beam ultrasonic spectroscopy.

  20. Clean, premium-quality chars: Demineralized and carbon enriched. Final technical report, September 1, 1991--August 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G.V.; Malhotra, V.M.; Wiltowski, T. [Southern Illinois Univ., Carbondale, IL (United States)

    1992-12-31

    The overall objective of this two-year project is to evaluate methods of preparing demineralized and carbon enriched chars from Minois Basin coal. There are two processing steps: physical cleaning of the coal and devolatilization of coal under different environments (He, H{sub 2}, He/O{sub 2}, CH{sub 4}, and CH{sub 4}/O{sub 2}) to form chars. Also, as-received and clean coal samples were mixed with hectorite, Ca-montmorillonite, and kaolinite to evaluate the potential effects of these clays on chars yield and agglomeration during devolatilization processes. Three different techniques were used: thermogravimetric analysis, differential thermogravimetric analysis, differential scanning calorimetry (DSC), and in-situ diffuse reflectance FTIR (ISDR-FTIR). Thermogravimetric measurements showed that reactive gases (except He) dissolve in the softened coal. Also, these gases convert some of the coal mineral matter into catalyst by chemical reduction and oxidation. Coal reactivity increases by adding clays because they may be catalyst for methane activation, may prevent coal agglomeration, and may modify the geometric structure of the coal surface. DSC measurements show that clean coal devolatilizes at a lower temperature than as-received sample and preoxidation lowers the devolatilization temperature. Additionally, kaolinite addition increase yields of chars from IBC-102 coal in He. In-situ diffuse reflectance FTIR experiments show that thermal decomposition of coal either increases -CH{sub 3}, content in char or alters the physical structure of -CH{sub 3}. Also, phenol groups of the coal play an important role in cross-linkage the coal structure when coal is thermally treated.

  1. Supercritical carbon dioxide (SC-CO2 as a clean technology for palm kernel oil extraction

    Directory of Open Access Journals (Sweden)

    Norhuda I

    2009-04-01

    Kyoto Protocol. Keywords: By-product, Solvent extraction, Kyoto protocol, Supercritical Carbon Dioxide, Palm Kernel Oil Received: 13 July 2008 / Received in revised form: 17 February 2009, Accepted: 28 February 2009, Published online: 12 March 2009

  2. Gold-Catalyzed Ring Expansion of Alkynyl Heterocycles through 1,2-Migration of an Endocyclic Carbon-Heteroatom Bond.

    Science.gov (United States)

    Chen, Ming; Sun, Ning; Xu, Wei; Zhao, Jidong; Wang, Gaonan; Liu, Yuanhong

    2015-12-14

    A mild and efficient gold-catalyzed oxidative ring-expansion of a series of alkynyl heterocycles using pyridine-N-oxide as the oxidant has been developed, which affords highly valuable six- or seven-membered heterocycles with wide functional group toleration. The reaction consists of a regioselective oxidation and a chemoselective migration of an endocyclic carbon-heteroatom bond (favored over C-H migration) with the order of migratory aptitude for carbon-heteroatom bonds being C-S>C-N>C-O. In the absence of an oxidant, polycyclic products are readily constructed through a ring-expansion/Nazarov cyclization reaction sequence.

  3. Relationship between ionoluminescence emission and bond distance (M-O) in carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Calvo del Castillo, H. [Universidad Autonoma de Madrid, Fac. Ciencias, Dpto. Qca. Agricola, Geologia y Geoquimica, 28049, Cantoblanco, Madrid (Spain); Sil, J.L. Ruvalcaba [Universidad Nacional Autonoma de Mexico, Instituto de Fisica, 04510 Ciudad Universitaria, Mexico, DF (Mexico)]. E-mail: sil@fisica.unam.mx; Alvarez, M.A. [Universidad de Sevilla, Dpto. Qca. Agricola y Cristalografia, Fac. de Quimica, Sevilla (Spain); Beneitez, P. [Universidad Autonoma de Madrid, Fac. Ciencias, Dpto. Qca.-Fisica Aplicada, 28049, Cantoblanco, Madrid (Spain); Millan, M.A. [Universidad Autonoma de Madrid, Fac. Ciencias, Dpto. Qca. Agricola, Geologia y Geoquimica, 28049, Cantoblanco, Madrid (Spain); Calderon, T. [Universidad Autonoma de Madrid, Fac. Ciencias, Dpto. Qca. Agricola, Geologia y Geoquimica, 28049, Cantoblanco, Madrid (Spain)

    2006-08-15

    Ionoluminescence emission spectra induced by 2 MeV protons are reported for a range of carbonates. A major feature in these spectra, are the Mn{sup 2+} luminescence centres that appear within all the samples. The emission wavelengths for the Mn{sup 2+} are linearly correlated to the metal-oxygen bonding length, both in rhombohedral and orthorhombic lattices for the minerals studied. The Mn{sup 2+} band, is in each case related to the corresponding energy level diagram of the mineral's crystal lattice, as this ion perturbs the crystal field term, which for emission in rhombohedral calcite has a value of 1000 cm{sup -1}, and for orthorhombic sites in aragonite is 1200 cm{sup -1}.

  4. Ultrafast cooling by covalently bonded graphene-carbon nanotube hybrid immersed in water

    Science.gov (United States)

    Chen, Jie; Walther, Jens H.; Koumoutsakos, Petros

    2016-11-01

    The increasing power density and the decreasing dimensions of transistors present severe thermal challenges to the design of modern microprocessors. Furthermore, new technologies such as three-dimensional chip-stack architectures require novel cooling solutions for their thermal management. Here, we demonstrate, through transient heat-dissipation simulations, that a covalently bonded graphene-carbon nanotube (G-CNT) hybrid immersed in water is a promising solution for the ultrafast cooling of such high-temperature and high heat-flux surfaces. The G-CNT hybrid offers a unique platform to integrate the superior axial heat transfer capability of individual CNTs via their parallel arrangement. The immersion of the G-CNT in water enables an additional heat dissipation path via the solid-liquid interaction, allowing for the sustainable cooling of the hot surface under a constant power input of up to 10 000 W cm-2.

  5. Rapid uplift of the Altiplano revealed through 13C-18O bonds in paleosol carbonates.

    Science.gov (United States)

    Ghosh, Prosenjit; Garzione, Carmala N; Eiler, John M

    2006-01-27

    The elevation of Earth's surface is among the most difficult environmental variables to reconstruct from the geological record. Here we describe an approach to paleoaltimetry based on independent and simultaneous determinations of soil temperatures and the oxygen isotope compositions of soil waters, constrained by measurements of abundances of 13C-18O bonds in soil carbonates. We use this approach to show that the Altiplano plateau in the Bolivian Andes rose at an average rate of 1.03 +/- 0.12 millimeters per year between approximately 10.3 and approximately 6.7 million years ago. This rate is consistent with the removal of dense lower crust and/or lithospheric mantle as the cause of elevation gain.

  6. Carbon Bonds and the saving of energy; Bonos de carbono y el ahorro de energia

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez Ramirez, Alejandro [NovaEnergia (Mexico)

    2005-07-01

    This document deals with the development of the carbon bond project, the energy saving and the entry into force of the Kyoto Protocol at a world-wide level. In this project Mexico opts for a development model in which the economic growth brakes ties with the discharge of greenhouse effect gases and in which the progress does not mean more damages to our planet. [Spanish] Este documento trata sobre el desarrollo del proyecto de bonos de carbono, ahorro de energia y la entrada en vigor del Protocolo de Kyoto a nivel mundial, en el cual Mexico opta por un modelo de desarrollo en el que el crecimiento economico esta desvinculado de la emision de gases de efecto invernadero y en donde el progreso no signifique mas danos a nuestro planeta.

  7. Copolymerization of Carbon–carbon Double-bond Monomer (Styrene with Cyclic Monomer (Tetrahydrofuran

    Directory of Open Access Journals (Sweden)

    Sari Fouad

    2012-12-01

    Full Text Available We reported in this work that the cationic copolymerization in one step takes place between carbon–carbon double-bond monomer styrene with cyclic monomer tetrahydrofuran. The comonomers studied belong to different families: vinylic and cyclic ether. The reaction is initiated with maghnite-H+ an acid exchanged montmorillonite as acid solid ecocatalyst. Maghnite-H+ is already used as catalyst for polymerization of many vinylic and heterocyclic monomers. The oxonium ion of tetrahydrofuran and carbonium ion of styrene propagated the reaction of copolymerization. The acetic anhydride is essential for the maintenance of the ring opening of tetrahydrofuran and the entry in copolymerization. The temperature was kept constant at 40°C in oil bath heating for 6 hours. A typical reaction product was analyzed by 1H-NMR, 13C-NMR and IR and the formation of the copolymer was confirmed. The reaction was proved by matched with analysis. The maghnite-H+ allowed us to obtain extremely pure copolymer in good yield by following a simples operational conditions. Copyright © 2012 by BCREC UNDIP. All rights reservedReceived: 29th October 2012; Revised: 29th November 2012; Accepted: 29th November 2012[How to Cite: S. Fouad, M.I. Ferrahi, M. Belbachir. (2012. Copolymerization of Carbon–carbon Double-bond Monomer (Styrene with Cyclic Monomer (Tetrahydrofuran. Bulletin of Chemical Reaction Engineering & Catalysis, 7(2: 165-171. (doi:10.9767/bcrec.7.2.4074.165-171][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.7.2.4074.165-171 ] | View in 

  8. Use of magnetic carbon composites from renewable resource materials for oil spill clean up and recovery

    Science.gov (United States)

    Viswanathan, Tito

    2014-02-11

    A method for separating a liquid hydrocarbon material from a body of water. In one embodiment, the method includes the steps of mixing a plurality of magnetic carbon-metal nanocomposites with a liquid hydrocarbon material dispersed in a body of water to allow the plurality of magnetic carbon-metal nanocomposites each to be adhered by an amount of the liquid hydrocarbon material to form a mixture, applying a magnetic force to the mixture to attract the plurality of magnetic carbon-metal nanocomposites each adhered by an amount of the liquid hydrocarbon material, and removing said plurality of magnetic carbon-metal nanocomposites each adhered by an amount of the liquid hydrocarbon material from said body of water while maintaining the applied magnetic force, wherein the plurality of magnetic carbon-metal nanocomposites is formed by subjecting one or more metal lignosulfonates or metal salts to microwave radiation, in presence of lignin/derivatives either in presence of alkali or a microwave absorbing material.

  9. Opportunities for A Low Carbon Future——China's Clean Revolution Ⅱ

    Institute of Scientific and Technical Information of China (English)

    Audrey GUO

    2009-01-01

    @@ Despite economic downturn,China's domestic markets continue to scale up low carbon technology.A new report that was released in Beijing in August by the Climate Group shows that in an incredibly short time China has taken the lcad in the race to develop and commercialize a range of low carbon technologies.On the back of ambitious government policies and a new breed of entrepreneurs,Chinese businesses are amongst the top producers of electric vehicles,wind turbines,solar panels and energy efficient appliances.

  10. Mediatorless solar energy conversion by covalently bonded thylakoid monolayer on the glassy carbon electrode.

    Science.gov (United States)

    Lee, Jinhwan; Im, Jaekyun; Kim, Sunghyun

    2016-04-01

    Light reactions of photosynthesis that take place in thylakoid membranes found in plants or cyanobacteria are among the most effective ways of utilizing light. Unlike most researches that use photosystem I or photosystem II as conversion units for converting light to electricity, we have developed a simple method in which the thylakoid monolayer was covalently immobilized on the glassy carbon electrode surface. The activity of isolated thylakoid membrane was confirmed by measuring evolving oxygen under illumination. Glassy carbon surfaces were first modified with partial or full monolayers of carboxyphenyl groups by reductive C-C coupling using 4-aminobenzoic acid and aniline and then thylakoid membrane was bioconjugated through the peptide bond between amine residues of thylakoid and carboxyl groups on the surface. Surface properties of modified surfaces were characterized by cyclic voltammetry, contact angle measurements, and electrochemical impedance spectroscopy. Photocurrent of 230 nA cm(-2) was observed when the thylakoid monolayer was formed on the mixed monolayer of 4-carboxylpheny and benzene at applied potential of 0.4V vs. Ag/AgCl. A small photocurrent resulted when the 4-carboxyphenyl full monolayer was used. This work shows the possibility of solar energy conversion by directly employing the whole thylakoid membrane through simple surface modification.

  11. Methods of making non-covalently bonded carbon-titania nanocomposite thin films and applications of the same

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Yu Teng; Vijayan, Baiju K.; Gray, Kimberly A.; Hersam, Mark C.

    2016-07-19

    In one aspect, a method of making non-covalently bonded carbon-titania nanocomposite thin films includes: forming a carbon-based ink; forming a titania (TiO.sub.2) solution; blade-coating a mechanical mixture of the carbon-based ink and the titania solution onto a substrate; and annealing the blade-coated substrate at a first temperature for a first period of time to obtain the carbon-based titania nanocomposite thin films. In certain embodiments, the carbon-based titania nanocomposite thin films may include solvent-exfoliated graphene titania (SEG-TiO.sub.2) nanocomposite thin films, or single walled carbon nanotube titania (SWCNT-TiO.sub.2) nanocomposite thin films.

  12. C₂H₅OH· · ·HX (X=OH, SH, F) interactions: Is there a carbon bond?

    Indian Academy of Sciences (India)

    AMAR BAHADUR G C; RAJENDRA PARAJULI

    2016-08-01

    Computational study of ethanol complexes with H₂O, H₂S and HF molecules has been carried out using a MP2 level of theory. Carbon bonding and hydrogen bonding interactions have been analyzed in this study for all the complexes. The interaction between the carbon atom of CH₂ group of ethanol and electron-rich centre of other molecules such as the O atom of water has been found. In addition to C· · ·X interaction, CH· · ·X interaction has also been observed for all the complexes. Ab initio calculations and Atoms in Molecules (AIM) theoretical calculations confirm this. The hydrogen bonding interactions with the OH group of ethanol have also been analyzed.

  13. Morphological analysis of glass, carbon and glass/carbon fiber posts and bonding to self or dual-cured resin luting agents

    Directory of Open Access Journals (Sweden)

    Aloísio Oro Spazzin

    2009-10-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the morphology of glass (GF, carbon (CF and glass/carbon (G/CF fiber posts and their bond strength to self or dual-cured resin luting agents. MATERIAL AND METHODS: Morphological analysis of each post type was conducted under scanning electron microscopy (SEM. Bond strength was evaluated by microtensile test after bisecting the posts and re-bonding the two halves with the luting agents. Data were subjected to two-way ANOVA and Tukey's test (α=0.05. Failure modes were evaluated under optical microscopy and SEM. RESULTS: GF presented wider fibers and higher amount of matrix than CF, and G/CF presented carbon fibers surrounded by glass fibers, and both involved by matrix. For CF and GF, the dual-cured material presented significantly higher (p0.05, but higher than that of G/CF (p0.05 were detected, irrespective of the post type. For GF and G/CF, all failures were considered mixed, while a predominance of adhesive failures was detected for CF. CONCLUSION: The bonding between fiber posts and luting agents was affected by the type of fibers and polymerization mode of the cement. When no surface treatment of the post is performed, the bonding between glass fiber post and dual-cured agent seems to be more reliable.

  14. Wire bonding in microelectronics

    CERN Document Server

    Harman, George G

    2010-01-01

    Wire Bonding in Microelectronics, Third Edition, has been thoroughly revised to help you meet the challenges of today's small-scale and fine-pitch microelectronics. This authoritative guide covers every aspect of designing, manufacturing, and evaluating wire bonds engineered with cutting-edge techniques. In addition to gaining a full grasp of bonding technology, you'll learn how to create reliable bonds at exceedingly high yields, test wire bonds, solve common bonding problems, implement molecular cleaning methods, and much more. Coverage includes: Ultrasonic bonding systems and technologies, including high-frequency systems Bonding wire metallurgy and characteristics, including copper wire Wire bond testing Gold-aluminum intermetallic compounds and other interface reactions Gold and nickel-based bond pad plating materials and problems Cleaning to improve bondability and reliability Mechanical problems in wire bonding High-yield, fine-pitch, specialized-looping, soft-substrate, and extreme-temperature wire bo...

  15. PRECISION CLEANING OF SEMICONDUCTOR SURFACES USING CARBON DIOXIDE-BASED FLUIDS

    Energy Technology Data Exchange (ETDEWEB)

    J. RUBIN; L. SIVILS; A. BUSNAINA

    1999-07-01

    The Los Alamos National Laboratory, on behalf of the Hewlett-Packard Company, is conducting tests of a closed-loop CO{sub 2}-based supercritical fluid process, known as Supercritical CO{sub 2} Resist Remover (SCORR). We have shown that this treatment process is effective in removing hard-baked, ion-implanted photoresists, and appears to be fully compatible with metallization systems. We are now performing experiments on production wafers to assess not only photoresist removal, but also residual surface contamination due to particulate and trace metals. Dense-phase (liquid or supercritical) CO{sub 2}, since it is non-polar, acts like an organic solvent and therefore has an inherently high volubility for organic compounds such as oils and greases. Also, dense CO{sub 2} has a low-viscosity and a low dielectric constant. Finally, CO{sub 2} in the liquid and supercritical fluid states can solubilize metal completing agents and surfactants. This combination of properties has interesting implications for the removal not only of organic films, but also trace metals and inorganic particulate. In this paper we discuss the possibility of using CO{sub 2} as a precision-cleaning solvent, with particular emphasis on semiconductor surfaces.

  16. Purification, molecular cloning, and expression of 2-hydroxyphytanoyl- CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon-carbon bond cleavage during à-oxidation of 3- methyl-branched fatty acids

    CERN Document Server

    Foulon, V; Croes, K; Waelkens, E

    1999-01-01

    Purification, molecular cloning, and expression of 2-hydroxyphytanoyl- CoA lyase, a peroxisomal thiamine pyrophosphate-dependent enzyme that catalyzes the carbon-carbon bond cleavage during à-oxidation of 3- methyl-branched fatty acids

  17. ELECTROCHEMICAL STUDIES ON THE CORROSION OF CARBON STEEL IN OXALIC ACID CLEANING SOLUTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Wiersma, B; John Mickalonis, J

    2007-10-08

    The Savannah River Site (SRS) will disperse or dissolve precipitated metal oxides as part of radioactive waste tank closure operations. Previously SRS has utilized oxalic acid to accomplish this task. Since the waste tanks are constructed of carbon steel, a significant amount of corrosion may occur. Although the total amount of corrosion may be insignificant for a short contact time, a significant amount of hydrogen may be generated due to the corrosion reaction. Linear polarization resistance and anodic/cathodic polarization tests were performed to investigate the corrosion behavior during the process. The effect of process variables such as temperature, agitation, aeration, sample orientation, light as well as surface finish on the corrosion behavior were evaluated. The results of the tests provided insight into the corrosion mechanism for the iron-oxalic acid system.

  18. Carbon nanomaterials in clean and contaminated soils: environmental implications and applications

    Science.gov (United States)

    Riding, M. J.; Martin, F. L.; Jones, K. C.; Semple, K. T.

    2015-01-01

    The exceptional sorptive ability of carbon nanomaterials (CNMs) for hydrophobic organic contaminants (HOCs) is driven by their characteristically large reactive surface areas and highly hydrophobic nature. Given these properties, it is possible for CNMs to impact on the persistence, mobility and bioavailability of contaminants within soils, either favourably through sorption and sequestration, hence reducing their bioavailability, or unfavourably through increasing contaminant dispersal. This review considers the complex and dynamic nature of both soil and CNM physicochemical properties to determine their fate and behaviour, together with their interaction with contaminants and the soil microflora. It is argued that assessment of CNMs within soil should be conducted on a case-by-case basis and further work to assess the long-term stability and toxicity of sorbed contaminants, as well as the toxicity of CNMs themselves, is required before their sorptive abilities can be applied to remedy environmental issues.

  19. Electrochemical reduction of carbon fluorine bond in 4-fluorobenzonitrile Mechanistic analysis employing Marcus Hush quadratic activation-driving force relation

    Science.gov (United States)

    Muthukrishnan, A.; Sangaranarayanan, M. V.

    2007-10-01

    The reduction of carbon-fluorine bond in 4-fluorobenzonitrile in acetonitrile as the solvent, is analyzed using convolution potential sweep voltammetry and the dependence of the transfer coefficient on potential is investigated within the framework of Marcus-Hush quadratic activation-driving force theory. The validity of stepwise mechanism is inferred from solvent reorganization energy estimates as well as bond length calculations using B3LYP/6-31g(d) method. A novel method of estimating the standard reduction potential of the 4-fluorobenzonitrile in acetonitrile is proposed.

  20. Activation of the carbon-fluorine bonds in coordination compounds; Activacion de enlaces carbon-fluor en compuestos de coordinacion

    Energy Technology Data Exchange (ETDEWEB)

    Torrens, H. [Universidad Nacional Autonoma de Mexico, Facultad de Quimica, 04510 Mexico D.F. (Mexico)

    2000-07-01

    Activation of the carbon-fluorine bond is of upmost importance in several chemical processes. In search of synthetic alternatives to promote C-F bond cleavage in arylic systems, several square planar palladium and platinum compounds bearing fluorothiolates and fluorophosphines have been studied. In this paper molecular structures are shown for the following compounds trans-((SC{sub 6}F{sub 5})(P(C{sub 6}F{sub 5}){sub 2}(C{sub 6}H{sub 5}))(Pd({mu}-SC{sub 6}F{sub 5}){sub 2} Pd(SC{sub 6}F{sub 5})(P(C{sub 6}F{sub 5}){sub 2} (C{sub 6}H{sub 5})), cis ((SC{sub 6}F{sub 5}) P(C{sub 6}F{sub 5}){sub 2} (C{sub 6}H{sub 5}) Pt({mu}-SC{sub 6}F{sub 5}){sub 2} Pt(SC{sub 6}F{sub 5}) P(C{sub 6}F{sub 5}){sub 2} (C{sub 6}H{sub 5})), trans Pd ({mu}-SC{sub 6}F{sub 5}){sub 2} Pt(SC{sub 6}F{sub 5})(P(C{sub 6}F{sub 5})(C{sub 6}H{sub 5}){sub 2})), Pt (SC{sub 6}F{sub 5}){sub 2} (C{sub 6}F{sub 5}SC{sub 6}F{sub 4} P(C{sub 6}H{sub 5}){sub 2}))((SC{sub 6}F{sub 5}){sub 2} Pt ({mu}-(SC{sub 6}F{sub 5}){sub 2} Pt(SC{sub 6}F{sub 5}){sub 2}){sup 2-} , (SC{sub 6}HF{sub 4}){sub 2} Pt({mu}-SC{sub 6}HF{sub 4}){sub 2} Pt(SC{sub 6}HF{sub 4}){sub 2}){sup 2-} and ((SC{sub 6}F{sub 4}CF{sub 3}-4){sub 2} Pt (SC{sub 6}F{sub 4}CF{sub 3}-4){sub 2}){sup 2-} . (Author)

  1. A comparison of atmospheric composition using the Carbon Bond and Regional Atmospheric Chemistry Mechanisms

    Directory of Open Access Journals (Sweden)

    G. Sarwar

    2013-03-01

    Full Text Available We incorporate the recently developed Regional Atmospheric Chemistry Mechanism (version 2, RACM2 into the Community Multiscale Air Quality modeling system for comparison with the existing 2005 Carbon Bond mechanism with updated toluene chemistry (CB05TU. Compared to CB05TU, RACM2 enhances the domain-wide monthly mean hydroxyl radical concentrations by 46% and nitric acid by 26%. However, it reduces hydrogen peroxide by 2%, peroxyacetic acid by 94%, methyl hydrogen peroxide by 19%, peroxyacetyl nitrate by 40%, and organic nitrate by 41%. RACM2 predictions generally agree better with the observed data than the CB05TU predictions. RACM2 enhances ozone for all ambient levels leading to higher bias at low (70 ppbv concentrations. The RACM2 ozone predictions are also supported by increased ozone production efficiency that agrees better with observations. Compared to CB05TU, RACM2 enhances the domain-wide monthly mean sulfate by 10%, nitrate by 6%, ammonium by 10%, anthropogenic secondary organic aerosols by 42%, biogenic secondary organic aerosols by 5%, and in-cloud secondary organic aerosols by 7%. Increased inorganic and organic aerosols with RACM2 agree better with observed data. While RACM2 enhances ozone and secondary aerosols by relatively large margins, control strategies developed for ozone or fine particles using the two mechanisms do not differ appreciably.

  2. A comparison of atmospheric composition using the Carbon Bond and Regional Atmospheric Chemistry Mechanisms

    Directory of Open Access Journals (Sweden)

    G. Sarwar

    2013-10-01

    Full Text Available We incorporate the recently developed Regional Atmospheric Chemistry Mechanism (version 2, RACM2 into the Community Multiscale Air Quality modeling system for comparison with the existing 2005 Carbon Bond mechanism with updated toluene chemistry (CB05TU. Compared to CB05TU, RACM2 enhances the domain-wide monthly mean hydroxyl radical concentrations by 46% and nitric acid by 26%. However, it reduces hydrogen peroxide by 2%, peroxyacetic acid by 94%, methyl hydrogen peroxide by 19%, peroxyacetyl nitrate by 40%, and organic nitrate by 41%. RACM2 enhances ozone compared to CB05TU at all ambient levels. Although it exhibited greater overestimates at lower observed concentrations, it displayed an improved performance at higher observed concentrations. The RACM2 ozone predictions are also supported by increased ozone production efficiency that agrees better with observations. Compared to CB05TU, RACM2 enhances the domain-wide monthly mean sulfate by 10%, nitrate by 6%, ammonium by 10%, anthropogenic secondary organic aerosols by 42%, biogenic secondary organic aerosols by 5%, and in-cloud secondary organic aerosols by 7%. Increased inorganic and organic aerosols with RACM2 agree better with observed data. Any air pollution control strategies developed using the two mechanisms do not differ appreciably.

  3. Catalytic performance and molecular dynamic simulation of immobilized CC bond hydrolase based on carbon nanotube matrix.

    Science.gov (United States)

    Zhou, Hao; Qu, Yuanyuan; Kong, Chunlei; Li, Duanxing; Shen, E; Ma, Qiao; Zhang, Xuwang; Wang, Jingwei; Zhou, Jiti

    2014-04-01

    Carbon nanotube (CNT) has been proved to be a kind of novel support for enzyme immobilization. In this study, we tried to find the relationship between conformation and catalytic performance of immobilized enzyme. Two CC bond hydrolases BphD and MfphA were immobilized on CNTs (SWCNT and MWCNT) via physical adsorption and covalent attachment. Among the conjugates, the immobilized BphD on chemically functionalized SWCNT (BphD-CSWCNT) retained the highest catalytic efficiency (kcat/Km value) compared to free BphD (92.9%). On the other hand, when MfphA bound to pristine SWCNT (MfphA-SWCNT), it was completely inactive. Time-resolved fluorescence spectrum indicated the formation of static ground complexes during the immobilization processes. Circular dichroism (CD) showed that the secondary structures of immobilized enzymes changed in varying degrees. In order to investigate the inhibition mechanism of MfphA by SWCNT, molecular dynamics simulation was employed to analyze the adsorption process, binding sites and time evolution of substrate tunnels. The results showed that the preferred binding sites (Trp201 and Met81) of MfphA for SWCNT blocked the main substrate access tunnel, thus making the enzyme inactive. The "tunnel-block" should be a novel possible inhibition mechanism for enzyme-nanotube conjugate.

  4. Study of the damaging mechanisms of a carbon - carbon composite bonded to copper under thermomechanical loading; Etude des mecanismes d'endommagement d'un assemblage cuivre / composite carbone - carbone sous chargement thermomecanique

    Energy Technology Data Exchange (ETDEWEB)

    Moncel, L

    1999-06-15

    The purpose of this work is to understand and to identify the damaging mechanisms of Carbon-Carbon composite bonded to copper under thermomechanical loading. The study of the composite allowed the development of non-linear models. These ones have been introduced in the finite elements analysis code named CASTEM 2000. They have been validated according to a correlation between simulation and mechanical tests on multi-material samples. These tests have also permitted us to better understand the behaviour of the bonding between composite and copper (damaging and fracture modes for different temperatures) under shear and tensile loadings. The damaging mechanisms of the bond under thermomechanical loading have been studied and identified according to microscopic observations on mock-ups which have sustained thermal cycling tests: some cracks appear in the composite, near the bond between the composite and the copper. The correlation between numerical and experimental results have been improved because of the reliability of the composite modelization, the use of residual stresses and the results of the bond mechanical characterisation. (author)

  5. Carbon nanotube-based nanocarriers: the importance of keeping it clean.

    Science.gov (United States)

    Delogu, Lucia G; Stanford, Stephanie M; Santelli, Eugenio; Magrini, Andrea; Bergamaschi, Antonio; Motamedchaboki, Khatereh; Rosato, Nicola; Mustelin, Tomas; Bottini, Nunzio; Bottini, Massimo

    2010-08-01

    Nanotechnology-introduced materials have promising applications as nanocarriers for drugs, peptides, proteins and nucleic acids. Several studies showed that the geometry (shape and size) and chemical properties of nanoparticles affect the kinetics and pathways of cellular uptake and their intracellular trafficking and signaling. Accurate physico-chemical characterization of nanoparticles customarily precedes their use in cell biology and in vivo experiments. However, a fact that is easily overlooked is that nanomaterials decorated with organic matter or resuspended in aqueous buffers can be theoretically contaminated by fungal and bacterial microorganisms. While investigating the effects of extensively characterized PEGylated carbon nanotubes (PNTs) on T lymphocyte activation, we demonstrated bacterial contamination of PNTs, which correlated with low reproducibility and artifacts in cell signaling assays. Contamination and artifacts were easily eliminated by preparing the materials in sterile conditions. We propose that simple sterile preparation procedures should be adopted and sterility evaluation of nanoparticles should be customarily performed, prior to assessing nanoparticle intracellular internalization, trafficking and their effects on cells and entire organisms.

  6. The Economic Merits of Flexible Carbon Capture and Sequestration as a Compliance Strategy with the Clean Power Plan.

    Science.gov (United States)

    Craig, Michael T; Jaramillo, Paulina; Zhai, Haibo; Klima, Kelly

    2017-02-07

    Carbon capture and sequestration (CCS) may be a key technology for achieving large CO2 emission reductions. Relative to "normal" CCS, "flexible" CCS retrofits include solvent storage that allows the generator to temporarily reduce the CCS parasitic load and increase the generator's net efficiency, capacity, and ramp rate. Due to this flexibility, flexible CCS generators provide system benefits that normal CCS generators do not, which could make flexible CCS an economic CO2 emission reduction strategy. Here, we estimate the system-level cost effectiveness of reducing CO2 emissions with flexible CCS compared to redispatching (i.e., substituting gas- for coal-fired electricity generation), wind, and normal CCS under the Clean Power Plan (CPP) and a hypothetical more stringent CO2 emission reduction target ("stronger CPP"). Using a unit commitment and economic dispatch model, we find flexible CCS achieves more cost-effective emission reductions than normal CCS under both reduction targets, indicating that policies that promote CCS should encourage flexible CCS. However, flexible CCS is less cost effective than wind under both reduction targets and less and more cost effective than redispatching under the CPP and stronger CPP, respectively. Thus, CCS will likely be a minor CPP compliance strategy but may play a larger role under a stronger emission reduction target.

  7. Entropic origin of cobalt-carbon bond cleavage catalysis in adenosylcobalamin-dependent ethanolamine ammonia-lyase.

    Science.gov (United States)

    Wang, Miao; Warncke, Kurt

    2013-10-09

    Adenosylcobalamin-dependent enzymes accelerate the cleavage of the cobalt-carbon (Co-C) bond of the bound coenzyme by >10(10)-fold. The cleavage-generated 5'-deoxyadenosyl radical initiates the catalytic cycle by abstracting a hydrogen atom from substrate. Kinetic coupling of the Co-C bond cleavage and hydrogen-atom-transfer steps at ambient temperatures has interfered with past experimental attempts to directly address the factors that govern Co-C bond cleavage catalysis. Here, we use time-resolved, full-spectrum electron paramagnetic resonance spectroscopy, with temperature-step reaction initiation, starting from the enzyme-coenzyme-substrate ternary complex and (2)H-labeled substrate, to study radical pair generation in ethanolamine ammonia-lyase from Salmonella typhimurium at 234-248 K in a dimethylsulfoxide/water cryosolvent system. The monoexponential kinetics of formation of the (2)H- and (1)H-substituted substrate radicals are the same, indicating that Co-C bond cleavage rate-limits radical pair formation. Analysis of the kinetics by using a linear, three-state model allows extraction of the microscopic rate constant for Co-C bond cleavage. Eyring analysis reveals that the activation enthalpy for Co-C bond cleavage is 32 ± 1 kcal/mol, which is the same as for the cleavage reaction in solution. The origin of Co-C bond cleavage catalysis in the enzyme is, therefore, the large, favorable activation entropy of 61 ± 6 cal/(mol·K) (relative to 7 ± 1 cal/(mol·K) in solution). This represents a paradigm shift from traditional, enthalpy-based mechanisms that have been proposed for Co-C bond-breaking in B12 enzymes. The catalysis is proposed to arise from an increase in protein configurational entropy along the reaction coordinate.

  8. 清洗方式对低碳铀切屑样品中碳量测定的影响%Effect of Method for Cleaning Low Carbon Uranium Scraps Sample on Determination of Its Carbon Content

    Institute of Scientific and Technical Information of China (English)

    纪新华; 李英秋; 王林; 吴梅

    2012-01-01

    The influence of methods for cleaning low carbon uranium scraps sample on the determination of their carbon contents was studied with emphasis on the effect of cleaning solvents,including distilled water, some organic reagents,and nitric acid. The experimental results show that better cleaning results can be achieved by sequential treatment of low carbon uranium scraps sample with distilled water, hot nitric acid (volume ratio I'D, acetone, and ethyl ether. Different cleaning consequences were observed with various cleaning methods, and possible reasons were discussed.%开展了清洗方式对低碳铀切屑样品中碳量测定的影响研究,重点探讨了蒸馏水、有机试剂、硝酸溶液对低碳铀切屑样品的清洗效果.结果表明:采用蒸馏水-硝酸溶液(体积比1 ∶ 1)加热煮沸浸洗-丙酮乙醚处理,对低碳铀切屑样品表面的碳沾污清除效果好.

  9. Carbon-deuterium bonds as non-perturbative infrared probes of protein dynamics, electrostatics, heterogeneity, and folding.

    Science.gov (United States)

    Zimmermann, Jörg; Romesberg, Floyd E

    2014-01-01

    Vibrational spectroscopy is uniquely able to characterize protein dynamics and microenvironmental heterogeneity because it possesses an inherently high temporal resolution and employs probes of ultimately high structural resolution-the bonds themselves. The use of carbon-deuterium (C-D) bonds as vibrational labels circumvents the spectral congestion that otherwise precludes the use of vibrational spectroscopy to proteins and makes the observation of single vibrations within a protein possible while being wholly non-perturbative. Thus, C-D probes can be used to site-specifically characterize conformational heterogeneity and thermodynamic stability. C-D probes are also uniquely useful in characterizing the electrostatic microenvironment experienced by a specific residue side chain or backbone due to its effect on the C-D absorption frequency. In this chapter we describe the experimental procedures required to use C-D bonds and FT IR spectroscopy to characterize protein dynamics, structural and electrostatic heterogeneity, ligand binding, and folding.

  10. Chiral nonracemic late-transition-metal organometallics with a metal-bonded stereogenic carbon atom: development of new tools for asymmetric organic synthesis.

    Science.gov (United States)

    Malinakova, Helena C

    2004-06-07

    Transition-metal-catalyzed cross-coupling reactions and the Heck reaction have evolved into powerful tools for the construction of carbon-carbon bonds. In most cases, the reactive organometallic intermediates feature a carbon-transition-metal sigma bond between a sp(2)-hybridized carbon atom and the transition metal (Csp(2)--TM). New, and potentially more powerful approach to transition-metal-catalyzed asymmetric organic synthesis would arise if catalytic chiral nonracemic organometallic intermediates with a stereogenic sp(3)-hybridized carbon atoms directly bonded to the transition metal (C*sp(3)--TM bond) could be formed from racemic or achiral organic substrates, and subsequently participate in the formation of a new carbon-carbon bond (C*sp(3)-C) with retention of the stereochemical information. To date, only a few catalytic processes that are based on this concept, have been developed. In this account, both "classical" and recent studies on preparation and reactivity of stable chiral nonracemic organometallics with a metal-bonded stereogenic carbon, which provide the foundation for the future design of new synthetic transformations exploiting the outlined concept, are discussed, along with examples of relevant catalytic processes.

  11. Effects of Boron Bearing Additives on Oxidation and Corrosion Resistance of Doloma—based carbon bonded Refractories

    Institute of Scientific and Technical Information of China (English)

    YEFangbao; ZHONGXiangchong; 等

    1998-01-01

    Oxidation of the added graphite and the bonding carbon is an imortant degradation mode of doloma-carbon refractories in service,In this work,the behavior and effects of various boron bearing materials(CaB6,ZrB2,Bc and colemanite)as an-tioxidants have been investigated and compared to the effect of Al-Mg alloy,For CaO-MgO-C mate-rials,the effect of boron bearingadditives is better than Al-Mg alloy,The borate melt formed at high temperature would retard or prevent carbon oxidation,thus contributing to improved oxidation resistance,Preliminary investigations on the effect of boron bearing additives and Al-Mg alloy on corrosion resistance of doloma-carbon materials have indicated that simultaneous addition of the two types of additives would lead to pronounced improvement of slag corrosion resistance.

  12. Optimal energy options under Clean Development Mechanism: Renewable energy projects for sustainable development and carbon emission reduction

    Science.gov (United States)

    Gilau, Asmerom M.

    This dissertation addresses two distinct objectives; designing cost-effective renewable energy powered projects including seawater reverse osmosis (SWRO), aquaculture, and ice-making plant, and analyzing the cost-effectiveness of these projects in achieving low abatement costs and promoting sustainable developments under the Clean Development Mechanism. The results of SWRO analysis show that a wind powered system is the least expensive and a PV powered system the most expensive, with finished water costs of about 0.50 /m3 and 1.00 /m3, respectively. By international standards, these costs are competitive. The results of renewable energy powered commercial tilapia production indicate that a wind-diesel system has high potential for intensive tilapia production as well as carbon dioxide emission reductions. The study also investigates aeration failures in renewable energy powered tilapia production systems. With respect to the ice-making plant, unlike previous studies which consider nighttime operation only, we have found that a nighttime PV powered ice-making system is more expensive (1/kWh) than daytime ice-making system (0.70/kWh). Our optimal energy options analysis at project scale which includes SWRO, ice-making plant and household energy consumption for about 100 households shows that compared to diesel only energy option, PV-D, W-D, and PV-W-D hybrids are very cost-effective energy options. Moreover, energy options with high levels of renewable energy including 100% renewables have the lowest net present cost and they are already cost-effective without CDM. On the other hand, while the removal of about 87% carbon dioxide emissions could be achieved at negative cost, initial investment could increase by a factor of 40, which is one of the primary barriers hindering wider renewable energy applications in developing countries. Thus in order to increase developing countries' participation in the carbon market, CDM policy should shift from a purely market oriented

  13. Effect of applied dc bias voltage on composition, chemical bonding and mechanical properties of carbon nitride films prepared by PECVD

    Institute of Scientific and Technical Information of China (English)

    LI Hong-xuan; XU Tao; HAO Jun-ying; CHEN Jian-min; ZHOU Hui-di; XUE Qun-ji; LIU Hui-wen

    2004-01-01

    Carbon nitride films were deposited on Si (100) substrates using plasma-enhanced chemical vapor deposition (PECVD) technique from CH4 and N2 at different applied dc bias voltage. The microstructure, composition and chemical bonding of the resulting films were characterized by Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The mechanical properties such as hardness and elastic modulus of the films were evaluated using nano-indentation. As the results, the Raman spectra, showing the G and D bands, indicate the amorphous structure of the films. XPS and FTIR measurements demonstrate the existence of various carbon-nitride bonds in the films and the hydrogenation of carbon nitride phase. The composition ratio of N to C, the nano-hardness and the elastic modulus of the carbon nitride films increase with increasing dc bias voltage and reach the maximums at a dc bias voltage of 300 V, then they decrease with further increase of the dc bias voltage. Moreover, the XRD analyses indicate that the carbon nitride film contains some polycrystalline C3N4 phase embedded in the amorphous matrix at optimized deposition condition of dc bias voltage of 300 V.

  14. Regioselective carbon–carbon bond formation of 5,5,5-trifluoro-1-phenylpent-3-en-1-yne

    Directory of Open Access Journals (Sweden)

    Motoki Naka

    2013-10-01

    Full Text Available The regioselective carbon–carbon bond formation was studied using 5,5,5-trifluoro-1-phenylpent-3-en-1-yne as a model substrate, and predominant acceptance of electrophiles β to a CF3 group as well as a deuterium trap experiment of the lithiated species led to the conclusion that the obtained regioselectivity is kinetically determined for the reactions with electrophiles, under equilibration of the possible two anionic species.

  15. Reinventing Design Principles for Developing Low-Viscosity Carbon Dioxide-Binding Organic Liquids for Flue Gas Clean Up

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-01-11

    Anthropogenic carbon dioxide (CO2) emission from point sources, such as coal fired-power plants, account for the majority of the green houses gasses in the atmosphere. Capture, storage and utilization are required to mitigate adverse environmental effects. Aqueous amine-based CO2 capture solvents are currently considered the industry standard, but deployment to market is limited by their high regeneration energy demand. In that context, energy efficient and less-viscous water-lean transformational solvent systems known as CO2 Binding Organic Liquids (CO2BOLs) are being developed in our group to advance this technology to commercialization. Herein, we present a logical design approach based on fundamental concepts of organic chemistry and computer simulations aimed at lowering solvent viscosity. Conceptually, viscosity reduction would be achieved by systemmatic methods such as introduction of steric hindrance on the anion to minimize the intermolecular cation-anion interactions, fine tuning the electronics, hydrogen bonding orientation and strength, and charge solvation. Conventional standard trial-and-error approaches while effective, are time consuming and economically expensive. Herein, we rethink the metrics and design principles of low-viscosity CO2 capture solvents using a combined synthesis and computational modeling approach. We critically study the impacts of modyfying factors such as as orientation of hydrogen bonding, introduction of higher degrees of freedom and cation or anion charge solvation and assess if or how each factor impacts viscosity of CO2BOL CO2 capture solvents. Ultimately, we found that hydrogen bond orientation and strength is predominantly influencing the viscosity in CO2BOL solvents. With this knowledge, a new 1-MEIPADM-2-BOL CO2BOL variant was synthesized and tested, resulting in a solvent that is approximately 60% less viscous at 25 mol

  16. Accrued Interest on Bonds: An Explanation Based on Brokers' Preference for "Clean" Price Data with a Critique of Intermediate Accounting Textbook Explanations

    Science.gov (United States)

    Vicknair, David

    2012-01-01

    By convention U.S. bond markets announce the actual price of a bond as the sum the quoted price plus accrued interest. The economic meaning of accrued interest and its role in this price announcing convention is generally misunderstood by accounting textbook authors who mistakenly provide accrued interest with both an economic and administrative…

  17. Calculation of activation energies for hydrogen-atom abstractions by radicals containing carbon triple bonds

    Science.gov (United States)

    Brown, R. L.; Laufer, A. H.

    1981-01-01

    Activation energies are calculated by the bond-energy-bond-order (BEBO) and the bond-strength-bond-length (BSBL) methods for the reactions of C2H radicals with H2, CH4, and C2H6 and for the reactions of CN radicals with H2 and CH4. The BSBL technique accurately predicts the activation energies for these reactions while the BEBO method yields energies averaging 9 kcal higher than those observed. A possible reason for the disagreement is considered.

  18. Synthesis and reactivity of compounds containing ruthenium-carbon, -nitrogen, and -oxygen bonds

    Energy Technology Data Exchange (ETDEWEB)

    Hartwig, J.F.

    1990-12-01

    The products and mechanisms of the thermal reactions of several complexes of the general structure (PMe{sub 3}){sub 4}Ru(X)(Y) and (DMPM){sub 2}Ru(X)(Y) where X and Y are hydride, aryl, and benzyl groups, have been investigated. The mechanism of decomposition depends critically on the structure of the complex and the medium in which the thermolysis is carried out. The alkyl hydride complexes are do not react with alkane solvent, but undergo C-H activation processes with aromatic solvents by several different mechanisms. Thermolysis of (PMe{sub 3}){sub 4}Ru(Ph)(Me) or (PMe{sub 3}){sub 4}Ru(Ph){sub 2} leads to the ruthenium benzyne complex (PMe{sub 3}){sub 4}Ru({eta}{sup 2}-C{sub 6}H{sub 4}) (1) by a mechanism which involves reversible dissociation of phosphine. In many ways its chemistry is analogous to that of early rather than late organo transition metal complexes. The synthesis, structure, variable temperature NMR spectroscopy and reactivity of ruthenium complexes containing aryloxide or arylamide ligands are reported. These complexes undergo cleavage of a P-C bond in coordinated trimethylphosphine, insertion of CO and CO{sub 2} and hydrogenolysis. Mechanistic studies on these reactions are described. The generation of a series of reactive ruthenium complexes of the general formula (PMe{sub 3}){sub 4}Ru(R)(enolate) is reported. Most of these enolates have been shown to bind to the ruthenium center through the oxygen atom. Two of the enolate complexes 8 and 9 exist in equilibrium between the O- and C-bound forms. The reactions of these compounds are reported, including reactions to form oxygen-containing metallacycles. The structure and reactivity of these ruthenium metallacycles is reported, including their thermal chemistry and reactivity toward protic acids, electrophiles, carbon monoxide, hydrogen and trimethylsilane. 243 refs., 10 tabs.

  19. Discovery and synthetic applications of novel silicon-carbon bond cleavage reactions based on the coordination number change of organosilicon compounds

    OpenAIRE

    Tamao, Kohei

    2008-01-01

    Some synthetically useful transformations of organosilicon compounds have been developed since the mid 1970s, based on the new concept that the silicon-carbon bonds are activated toward electrophilic cleavage via the formation of penta- and hexa-coordinate species. This review mainly consists of the following aspects: (1) a general concept for the activation of the silicon-carbon bond via penta- and hexa-coordinate species, (2) synthetic application of hexa-coordinate organopentafluorosilicat...

  20. Atomic scale fabrication of dangling bond structures on hydrogen passivated Si(0 0 1) wafers processed and nanopackaged in a clean room environment

    Energy Technology Data Exchange (ETDEWEB)

    Kolmer, Marek; Godlewski, Szymon; Zuzak, Rafal; Wojtaszek, Mateusz [Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Reymonta Str. 4, PL 30-059 Krakow (Poland); Rauer, Caroline; Thuaire, Aurélie; Hartmann, Jean-Michel; Moriceau, Hubert [CEA, LETI, Minatec Campus, 17, Avenue des Martyrs, 38 054 Grenoble Cedex 9 (France); Joachim, Christian [Nanosciences Group and MANA Satellite, CEMES-CNRS, 29 rue Jeanne Marvig, F-31055 Toulouse (France); Szymonski, Marek, E-mail: marek.szymonski@uj.edu.pl [Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Reymonta Str. 4, PL 30-059 Krakow (Poland)

    2014-01-01

    Specific surfaces allowing the ultra-high vacuum (UHV) creation of electronic interconnects and atomic nanostructures are required for the successful development of novel nanoscale electronic devices. Atomically flat and reconstructed Si(0 0 1):H surfaces are serious candidates for that role. In this work such Si:H surfaces were prepared in a cleanroom environment on 200 mm silicon wafers with a hydrogen bake and were subsequently bonded together to ensure the surface protection, and allow their transportation and storage for several months in air. Given the nature of the bonding, which was hydrophobic with weak van der Waals forces, we were then able to de-bond them in UHV. We show that the quality of the de-bonded Si:H surface enables the “at will” construction of sophisticated and complex dangling bond (DB) nanostructures by atomically precise scanning tunneling microscope (STM) tip induced desorption of hydrogen atoms. The DB structures created on slightly doped Si:H samples were characterized by scanning tunneling microscopy and spectroscopy (STM/STS) performed at 4 K. Our results demonstrate that DB nanostructures fabricated on UHV de-bonded Si(0 0 1):H wafers could be directly incorporated in future electronics as interconnects and parts of nanoscale logic circuits.

  1. Atomic scale fabrication of dangling bond structures on hydrogen passivated Si(0 0 1) wafers processed and nanopackaged in a clean room environment

    Science.gov (United States)

    Kolmer, Marek; Godlewski, Szymon; Zuzak, Rafal; Wojtaszek, Mateusz; Rauer, Caroline; Thuaire, Aurélie; Hartmann, Jean-Michel; Moriceau, Hubert; Joachim, Christian; Szymonski, Marek

    2014-01-01

    Specific surfaces allowing the ultra-high vacuum (UHV) creation of electronic interconnects and atomic nanostructures are required for the successful development of novel nanoscale electronic devices. Atomically flat and reconstructed Si(0 0 1):H surfaces are serious candidates for that role. In this work such Si:H surfaces were prepared in a cleanroom environment on 200 mm silicon wafers with a hydrogen bake and were subsequently bonded together to ensure the surface protection, and allow their transportation and storage for several months in air. Given the nature of the bonding, which was hydrophobic with weak van der Waals forces, we were then able to de-bond them in UHV. We show that the quality of the de-bonded Si:H surface enables the "at will" construction of sophisticated and complex dangling bond (DB) nanostructures by atomically precise scanning tunneling microscope (STM) tip induced desorption of hydrogen atoms. The DB structures created on slightly doped Si:H samples were characterized by scanning tunneling microscopy and spectroscopy (STM/STS) performed at 4 K. Our results demonstrate that DB nanostructures fabricated on UHV de-bonded Si(0 0 1):H wafers could be directly incorporated in future electronics as interconnects and parts of nanoscale logic circuits.

  2. A Study of Bond of Structural Timber and Carbon Fiber Reinforced Polymer Plate

    Directory of Open Access Journals (Sweden)

    Yongtaeg LEE

    2015-11-01

    Full Text Available The increase of well-being culture of problem related to environmental depletion of resource is not the growing interest in timber the natural material of construction markets. Also, the perception for historic preservation has been increased in respond to heightened interest. However, it is fairly difficult for architectural properties to maintain their durability because it was made by timber construction. Preventing traditional structure from damage and structural performance reduction is paramount in maintenance problem. A number of studies of reinforced method have been conducted in order to solve such a problem. In this paper, external bonded reinforcement and near-surface mounted was used as a way to reinforce timber structure’s durability. Bond strength for specimens with different bond length was investigated. As a result showed, maximum bond strength in bond length 300 mm from all method, was found to be not increased of bond strength over the certain bond length.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9702

  3. Bond dissociation mechanism of ethanol during carbon nanotube synthesis via alcohol catalytic CVD technique: Ab initio molecular dynamics simulation

    Science.gov (United States)

    Oguri, Tomoya; Shimamura, Kohei; Shibuta, Yasushi; Shimojo, Fuyuki; Yamaguchi, Shu

    2014-03-01

    Dissociation of ethanol on a nickel cluster is investigated by ab initio molecular dynamics simulation to reveal the bond dissociation mechanism of carbon source molecules during carbon nanotube synthesis. C-C bonds in only CHxCO fragments are dissociated on the nickel cluster, whereas there is no preferential structure among the fragments for C-O bond dissociation. The dissociation preference is uncorrelated with the bond dissociation energy of corresponding bonds in freestanding molecules but is correlated with the energy difference between fragment molecules before and after dissociation on the nickel surface. Moreover, carbon-chain formation occurs after C-C bond dissociation in a continuous simulation. What determines the chirality of CNTs? What happens at the dissociation stage of carbon source molecules? Regarding the former question, many researchers have pointed out the good epitaxial relationship between a graphite network and a close-packed facet (i.e., fcc(1 1 1) or hcp(0 0 0 1)) of transition metals [17-19]. Therefore, the correlation between the chirality of CNTs and the angle of the step edge on metal (or metal carbide) surfaces has been closely investigated [20-22]. In association with this geometric matching, the epitaxial growth of graphene on Cu(1 1 1) and Ni(1 1 1) surfaces has recently been achieved via CCVD technique [23-25], which is a promising technique for the synthesis of large-area and monolayer graphene.Regarding the latter question, it is empirically known that the yield and quality of CNT products strongly depend on the choice of carbon source molecules and additives. For example, it is well known that the use of ethanol as carbon source molecules yields a large amount of SWNTs without amorphous carbons (called the alcohol CCVD (ACCVD) technique) compared with the CCVD process using hydrocarbons [4]. Moreover, the addition of a small amount of water dramatically enhances the activity and lifetime of the catalytic metal (called the

  4. Multiplug filtration clean-up with multiwalled carbon nanotubes in the analysis of pesticide residues using LC-ESI-MS/MS.

    Science.gov (United States)

    Zhao, Pengyue; Fan, Sufang; Yu, Chuanshan; Zhang, Junyan; Pan, Canping

    2013-10-01

    A novel design for a rapid clean-up method was developed for the analysis of pesticide residues in fruit and vegetables followed by LC-ESI-MS/MS. The acetonitrile-based sample extraction technique was used to obtain the extracts, and further clean-up was carried out by applying the streamlined procedure on a multiplug filtration clean-up column coupled with a syringe. The sorbent used for clean-up in this research is multiwalled carbon nanotubes, which was mixed with anhydrous magnesium sulfate to remove water from the extracts. This method was validated on 40 representative pesticides and apple, cabbage, and potato sample matrices spiked at two concentration levels of 10 and 100 μg/kg. It exhibited recoveries between 71 and 117% for most pesticides with RSDs 0.995 for most studied pesticides between concentration levels of 10-500 μg/L. The LOQs for 40 pesticides ranged from 2 to 50 μg/kg. The developed method was successfully applied to the determination of pesticide residues in market fruit and vegetable samples.

  5. Asynchronous through-bond homonuclear isotropic mixing: application to carbon–carbon transfer in perdeuterated proteins under MAS

    Energy Technology Data Exchange (ETDEWEB)

    Kulminskaya, Natalia; Vasa, Suresh Kumar; Giller, Karin; Becker, Stefan; Linser, Rasmus, E-mail: rali@nmr.mpibpc.mpg.de [Max Planck Institute for Biophysical Chemistry, Department of NMR-based Structural Biology (Germany)

    2015-11-15

    Multiple-bond carbon–carbon homonuclear mixing is a hurdle in extensively deuterated proteins and under fast MAS due to the absence of an effective proton dipolar-coupling network. Such conditions are now commonly employed in solid-state NMR spectroscopy. Here, we introduce an isotropic homonuclear {sup 13}C–{sup 13}C through-bond mixing sequence, MOCCA, for the solid state. Even though applied under MAS, this scheme performs without rotor synchronization and thus does not pose the usual hurdles in terms of power dissipation for fast spinning. We compare its performance with existing homonuclear {sup 13}C–{sup 13}C mixing schemes using a perdeuterated and partially proton-backexchanged protein. Based on the analysis of side chain carbon–carbon correlations, we show that particularly MOCCA with standard 180-degree pulses and delays leading to non-rotor-synchronized spacing performs exceptionally well. This method provides high magnetization transfer efficiency for multiple-bond transfer in the aliphatic region compared with other tested mixing sequences. In addition, we show that this sequence can also be tailor-made for recoupling within a selected spectral region using band-selective pulses.

  6. Mineral-Based Bonding of Carbon FRP to Strengthen Concrete Structures

    DEFF Research Database (Denmark)

    Täljsten, Björn; Blanksvärd, T.

    2007-01-01

    The advantages of fiber-reinforced polymer (FRP) -strengthening have been shown time and again during the last decade. Several thousand structures retrofitted with FRPs exist worldwide. There are various reasons why the retrofit is needed, but it is not uncommon for the demands on the structure...... therefore be strengthened before it can be used. Different methods to retrofit with FRPs also exist, such as bonding of plates or sheets, with their use of epoxy as the bonding agent being the commonality. Epoxy provides very good bond to concrete and is durable and resistant to most environments...

  7. Adsorption, desorption, and film formation of quinacridone and its thermal cracking product indigo on clean and carbon-covered silicon dioxide surfaces

    Science.gov (United States)

    Scherwitzl, Boris; Lassnig, Roman; Truger, Magdalena; Resel, Roland; Leising, Günther; Winkler, Adolf

    2016-09-01

    The evaporation of quinacridone from a stainless steel Knudsen cell leads to the partial decomposition of this molecule in the cell, due to its comparably high sublimation temperature. At least one additional type of molecules, namely indigo, could be detected in the effusion flux. Thermal desorption spectroscopy and atomic force microscopy have been used to study the co-deposition of these molecules on sputter-cleaned and carbon-covered silicon dioxide surfaces. Desorption of indigo appears at temperatures of about 400 K, while quinacridone desorbs at around 510 K. For quinacridone, a desorption energy of 2.1 eV and a frequency factor for desorption of 1 × 1019 s-1 were calculated, which in this magnitude is typical for large organic molecules. A fraction of the adsorbed quinacridone molecules (˜5%) decomposes during heating, nearly independent of the adsorbed amount, resulting in a surface composed of small carbon islands. The sticking coefficients of indigo and quinacridone were found to be close to unity on a carbon covered SiO2 surface but significantly smaller on a sputter-cleaned substrate. The reason for the latter can be attributed to insufficient energy dissipation for unfavorably oriented impinging molecules. However, due to adsorption via a hot-precursor state, the sticking probability is increased on the surface covered with carbon islands, which act as accommodation centers.

  8. Optimized composition for bonding assistant coat in carbon steel sandwich panels

    Institute of Scientific and Technical Information of China (English)

    Jing Liu; Jingtao Han

    2007-01-01

    On the basis of the alloying theory of bonding assistant coat (BAC),taking into account of the interaction of alloy elements,the regressive equation,which relates the wetting ability of bonding assistant coat with the contents of Mn,Ni,Si,Sn,and B,was established by using quadratic regression orthogonal design of five factors.The influence of elements and their interaction on the wetting ability was analyzed.The ranges of alloy elements were optimized.The melting point of bonding assistant coat was measured by using differential thermal analysis.The results show that the interactions of Ni and Mn,Ni,and Sn can increase the wetting ability obviously and the melting point of bonding assistant coat has been decreased.

  9. Cryogenic optical measurements of 12-segment-bonded carbon-fiber-reinforced silicon carbide composite mirror with support mechanism

    Science.gov (United States)

    Kaneda, Hidehiro; Nakagawa, Takao; Onaka, Takashi; Enya, Keigo; Makiuti, Sin'itirou; Takaki, Junji; Haruna, Masaki; Kume, Masami; Ozaki, Tsuyoshi

    2008-03-01

    A 720 mm diameter 12-segment-bonded carbon-fiber-reinforced silicon carbide (C/SiC) composite mirror has been fabricated and tested at cryogenic temperatures. Interferometric measurements show significant cryogenic deformation of the C/SiC composite mirror, which is well reproduced by a model analysis with measured properties of the bonded segments. It is concluded that the deformation is due mostly to variation in coefficients of thermal expansion among segments. In parallel, a 4-degree-of-freedom ball-bearing support mechanism has been developed for cryogenic applications. The C/SiC composite mirror was mounted on an aluminum base plate with the support mechanism and tested again. Cryogenic deformation of the mirror attributed to thermal contraction of the aluminum base plate via the support mechanism is highly reduced by the support, confirming that the newly developed support mechanism is promising for its future application to large-aperture cooled space telescopes.

  10. Clean data

    CERN Document Server

    Squire, Megan

    2015-01-01

    If you are a data scientist of any level, beginners included, and interested in cleaning up your data, this is the book for you! Experience with Python or PHP is assumed, but no previous knowledge of data cleaning is needed.

  11. Laser Surface Preparation and Bonding of Aerospace Structural Composites

    Science.gov (United States)

    Belcher, M. A.; Wohl, C. J.; Hopkins, J. W.; Connell, J. W.

    2010-01-01

    Adhesive bonds are critical to the integrity of built-up structures. Disbonds can often be detected but the strength of adhesion between surfaces in contact is not obtainable without destructive testing. Typically the number one problem in a bonded structure is surface contamination, and by extension, surface preparation. Standard surface preparation techniques, including grit blasting, manual abrasion, and peel ply, are not ideal because of variations in their application. Etching of carbon fiber reinforced plastic (CFRP) panels using a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser appears to be a highly precise and promising way to both clean a composite surface prior to bonding and provide a bond-promoting patterned surface akin to peel ply without the inherent drawbacks from the same (i.e., debris and curvature). CFRP surfaces prepared using laser patterns conducive to adhesive bonding were compared to typical prebonding surface treatments through optical microscopy, contact angle goniometry, and post-bonding mechanical testing.

  12. Modernization perspectives of the Sao Paulo State sugarcane sector through the clean development mechanism and potential carbon credits generation

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Suani Teixeira; Lora, Beatriz Acquaro [Brazilian Reference Center on Biomass (CENBIO/USP), SP (Brazil)], Emails: suani@iee.usp.br, blora@iee.usp.br

    2009-07-01

    The world-wide necessity of greenhouse gases mitigation and the intergovernmental mobilization to reach the objectives established by the United Nations Framework on Climate Change (UNFCCC) has opened space for the renewable energy increase in the world's energy matrix. In Brazil, the solid sugarcane industry currently develops business in the scope of the clean development mechanism (CDM) under the Kyoto's Protocol, by means of 18 biomass-based projects, with renewable energy generation through bagasse cogeneration at 20 Sao Paulo State's sugarcane production units. The projects activity's consists of increasing the efficiency in the bagasse cogeneration facilities, qualifying the units to sell surplus electricity to the national grid, avoiding the dispatch of the same amount of energy produced by fossil-fuelled thermal plants to that grid. The reduced emissions are measured in carbon equivalent and can be converted into negotiable credits. The objective of this study was to build a 'state of art' scenario, calculating the potential emissions reduction through CDM projects for the sugarcane sector of Sao Paulo State, in which we consider the adherence of all the production units of the State to the CDM projects. The technological parameters used to elaborate the scenario were provided by the Sao Paulo State Government Bioenergy Special Commission and the baseline factor used of 0,268 tCO{sub 2}e/MWh was the adopted by the CDM projects in operation in the State. The sugarcane database for the calculations was the production ranking provided by UNICA for the 2006/2007 season. In the most conservative scenario (40 bar bagasse) 131 units could generate 607 MWm of surplus power avoiding the emission of 1.404.593 tCO{sub 2}e/year. For the 92 bar (bagasse and straw) scenario, the units could generate 3.055 MWm of surplus power avoiding 12.199.443 tCO{sub 2}e/year. (author)

  13. Carbon kinetic isotope effects at natural abundances during iron-catalyzed photolytic cleavage of Csbnd C bonds in aqueous phase α,ω-dicarboxylic acids

    Science.gov (United States)

    Irei, Satoshi

    2016-09-01

    Carbon kinetic isotope effects (KIEs) at natural abundances during photolysis of Fe3+-oxalato, malonato, and succinato complexes in aqueous solution were studied to identify the Csbnd C bond cleaving mechanism of Fe3+-oxalato complexes under sunlight irradiation. Observed overall KIEs were 5.9‰, 11.5‰, and 8.4‰, respectively. This variation is inconsistent with secondary carbon KIEs for the Fesbnd O bond cleavage, but consistent with primary carbon KIEs for sequential cleavage of Fesbnd O and Csbnd C bonds. Position-specific probability of 13C content estimated KIEs of 5.9‰, 17.2‰, and 17‰ for 12Csbnd 13C bond cleavage, respectively, indicating the different KIEs for carboxyl-carboxyl and methyl-carboxyl cleavage.

  14. Adhesive force measurement between HOPG and zinc oxide as an indicator for interfacial bonding of carbon fiber composites.

    Science.gov (United States)

    Patterson, Brendan A; Galan, Ulises; Sodano, Henry A

    2015-07-22

    Vertically aligned zinc oxide (ZnO) nanowires have recently been utilized as an interphase to increase the interfacial strength of carbon fiber composites. It was shown that the interaction between the carbon fiber and the ZnO nanowires was a critical parameter in adhesion; however, fiber based testing techniques are dominated by local defects and cannot be used to effectively study the bonding interaction directly. Here, the strength of the interface between ZnO and graphitic carbon is directly measured with atomic force microscopy (AFM) using oxygen plasma treated highly oriented pyrolytic graphite (HOPG) and an AFM tip coated with ZnO nanoparticles. X-ray photoelectron spectroscopy analysis is used to compare the surface chemistry of HOPG and carbon fiber and to quantify the presence of various oxygen functional groups. An indirect measurement of the interfacial strength is then performed through single fiber fragmentation testing (SFF) on functionalized carbon fibers coated with ZnO nanowires to validate the AFM measurements. The SFF and AFM methods showed the same correlation, demonstrating the capacity of the AFM method to study the interfacial properties in composite materials. Additionally, the chemical interactions between oxygen functional groups and the ionic structure of ZnO suggest that intermolecular forces at the interface are responsible for the strong interface.

  15. Dangling bond energetics in carbon nitride and phosphorus carbide thin films with fullerene-like and amorphous structure

    OpenAIRE

    Kostov Gueorguiev, Gueorgui; Broitman, E; Furlan, Andrej; Stafström, Sven; Hultman, Lars

    2009-01-01

    The energy cost for dangling bond formation in Fullerene-like Carbon Nitride (FL-CNx) and Phosphorus carbide (FL-CPx) as well as their amorphous counterparts: a-CNx, a-CPx, and a-C has been calculated within the framework of Density Functional Theory and compared with surface water adsorption measurements. The highest energy cost is found in the FL-CNx ( about 1.37 eV) followed by FL-CPx compounds (0.62-1.04 eV). (C) 2009 Elsevier B. V. All rights reserved. Original Publication:Gueorgui K...

  16. Intrinsic carrier mobility of a single-layer graphene covalently bonded with single-walled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dian; Shao, Zhi-Gang [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, Guangdong 510006 (China); Hao, Qing [Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, Arizona 85721 (United States); Zhao, Hongbo, E-mail: zhaohb@scnu.edu.cn [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, Guangdong 510006 (China); Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, Arizona 85721 (United States)

    2014-06-21

    We report intrinsic carrier mobility calculations of a two-dimensional nanostructure that consists of porous single layer graphene covalently bonded with single-walled carbon nanotubes on both sides. We used first-principles calculation and found that the deformation potential of such system is about 25% of that of graphene, and the carrier mobility is about 5 × 10{sup 4} cm{sup 2} V{sup −1} s{sup −1} for both electrons and holes, about one order of magnitude lower than that of graphene. This nanostructure and its three-dimensional stacking could serve as novel organic electronic materials.

  17. Metabolic Engineering to Develop a Pathway for the Selective Cleavage of Carbon-Nitrogen Bonds

    Energy Technology Data Exchange (ETDEWEB)

    John J. Kilbane II

    2005-10-01

    The objective of the project is to develop a biochemical pathway for the selective cleavage of C-N bonds in molecules found in petroleum. Specifically a novel biochemical pathway will be developed for the selective cleavage of C-N bonds in carbazole. The cleavage of the first C-N bond in carbazole is accomplished by the enzyme carbazole dioxygenase, that catalyzes the conversion of carbazole to 2-aminobiphenyl-2,3-diol. The genes encoding carbazole dioxygenase were cloned from Sphingomonas sp. GTIN11 and from Pseudomonas resinovorans CA10. The selective cleavage of the second C-N bond has been challenging, and efforts to overcome that challenge have been the focus of recent research in this project. Enrichment culture experiments succeeded in isolating bacterial cultures that can metabolize 2-aminobiphenyl, but no enzyme capable of selectively cleaving the C-N bond in 2-aminobiphenyl has been identified. Aniline is very similar to the structure of 2-aminobiphenyl and aniline dioxygenase catalyzes the conversion of aniline to catechol and ammonia. For the remainder of the project the emphasis of research will be to simultaneously express the genes for carbazole dioxygenase and for aniline dioxygenase in the same bacterial host and then to select for derivative cultures capable of using carbazole as the sole source of nitrogen.

  18. Supersonic Retropulsion Surface Preparation of Carbon Fiber Reinforced Epoxy Composites for Adhesive Bonding

    Science.gov (United States)

    Palmieri, Frank L.; Belcher, Marcus A.; Wohl, Christopher J.; Blohowiak, Kay Y.; Connell, John W.

    2013-01-01

    Surface preparation is widely recognized as a key step to producing robust and predictable bonds in a precise and reproducible manner. Standard surface preparation techniques, including grit blasting, manual abrasion, and peel ply, can lack precision and reproducibility, which can lead to variation in surface properties and subsequent bonding performance. The use of a laser to ablate composite surface resin can provide an efficient, precise, and reproducible means of preparing composite surfaces for adhesive bonding. Advantages include elimination of physical waste (i.e., grit media and sacrificial peel ply layers that ultimately require disposal), reduction in process variability due to increased precision (e.g. increased reproducibility), and automation of surface preparation, all of which improve reliability and process control. This paper describes a Nd:YAG laser surface preparation technique for composite substrates and the mechanical performance and failure modes of bonded laminates thus prepared. Additionally, bonded specimens were aged in a hot, wet environment for approximately one year and subsequently mechanically tested. The results of a one year hygrothermal aging study will be presented.

  19. The study on the influence of surface cleanness and water soluble salt on corrosion protection of epoxy resin coated carbon steel

    Energy Technology Data Exchange (ETDEWEB)

    Shon, Younng Shon [Pukyong National University, Busan (Korea, Republic of)

    2014-10-15

    The corrosion resistance of epoxy-coated carbon steel was evaluated. The carbon steel surface was subjected to different treatment methods such as steel grit blasting and power tool treatment as well as contamination of water soluble salt. To study the effect of the surface treatments and contamination, the topology of the treated surface was observed by confocal microscopy and a pull-off adhesion test was conducted. The corrosion resistance of the epoxy-coated carbon steel was further examined by electrochemical impedance spectroscopy (EIS) combined with immersion test of 3.5 wt% of NaCl solution. Consequently, the surface contamination by sodium chloride with 16 mg/m{sup 2}, 48 mg/m{sup 2} and 96 mg/m{sup 2} didn't affect the adhesion strength for current epoxy coated carbon steel and blister and rust were not observed on the surface of epoxy coating contaminated by various concentration of sodium chloride after 20 weeks of immersion in 3.5 wt% NaCl aqueous solutions. In addition, the results of EIS test showed that the epoxy-coated carbon steel treated with steel grit blasting and power tool showed similar corrosion protection performance and surface cleanness such as Sa 3 and Sa 2.5 didn't affect the corrosion protectiveness of epoxy coated carbon steel.

  20. Carbon-carbon bond cleavage of 1,2-hydroxy ethers b7 vanadium(V) dipicolinate complexes

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Susan K [Los Alamos National Laboratory; Gordon, John C [Los Alamos National Laboratory; Thorn, David L [Los Alamos National Laboratory; Scott, Brian L [Los Alamos National Laboratory; Baker, R Tom [Los Alamos National Laboratory

    2009-01-01

    The development of alternatives to current petroleum-based fuels and chemicals is becoming increasingly important due to concerns over climate change, growing world energy demand, and energy security issues. Using non-food derived biomass to produce renewable feedstocks for chemicals and fuels is a particularly attractive possibility. However, the majority of biomass is in the form of lignocellulose, which is often not fully utilized due to difficulties associated with breaking down both lignin and cellulose. Recently, a number of methods have been reported to transform cellulose directly into more valuable materials such as glucose, sorbitol, 5-(chloromethyl)furfural, and ethylene glycol. Less progress has been made with selective transformations of lignin, which is typically treated in paper and forest industries by kraft pulping (sodium hydroxide/sodium sulfide) or incineration. Our group has begun investigating aerobic oxidative C-C bond cleavage catalyzed by dipicolinate vanadium complexes, with the idea that a selective C-C cleavage reaction of this type could be used to produce valuable chemicals or intermediates from cellulose or lignin. Lignin is a randomized polymer containing methoxylated phenoxy propanol units. A number of different linkages occur naturally; one of the most prevalent is the {beta}-O-4 linkage shown in Figure 1, containing a C-C bond with 1,2-hydroxy ether substituents. While the oxidative C-C bond cleavage of 1,2-diols has been reported for a number of metals, including vanadium, iron, manganese, ruthenium, and polyoxometalate complexes, C-C bond cleavage of 1,2-hydroxy ethers is much less common. We report herein vanadium-mediated cleavage of C-C bonds between alcohol and ether functionalities in several lignin model complexes. In order to explore the scope and potential of vanadium complexes to effect oxidative C-C bond cleavage in 1,2-hydroxy ethers, we examined the reactivity of the lignin model complexes pinacol monomethyl ether (A

  1. Enhanced dispersion stability and mobility of carboxyl-functionalized carbon nanotubes in aqueous solutions through strong hydrogen bonds

    Energy Technology Data Exchange (ETDEWEB)

    Bahk, Yeon Kyoung; He, Xu; Gitsis, Emmanouil; Kuo, Yu-Ying [ETH Zurich, Institute of Environmental Engineering (Switzerland); Kim, Nayoung [EMPA, Building Energy Materials and Components (Switzerland); Wang, Jing, E-mail: jing.wang@ifu.baug.ethz.ch [ETH Zurich, Institute of Environmental Engineering (Switzerland)

    2015-10-15

    Dispersion of carbon nanotubes has been heavily studied due to its importance for their technical applications, toxic effects, and environmental impacts. Common electrolytes, such as sodium chloride and potassium chloride, promote agglomeration of nanoparticles in aqueous solutions. On the contrary, we discovered that acetic electrolytes enhanced the dispersion of multi-walled carbon nanotubes (MWCNTs) with carboxyl functional group through the strong hydrogen bond, which was confirmed by UV–Vis spectrometry, dispersion observations and aerosolization-quantification method. When concentrations of acetate electrolytes such as ammonium acetate (CH{sub 3}CO{sub 2}NH{sub 4}) and sodium acetate (CH{sub 3}CO{sub 2}Na) were lower than 0.03 mol per liter, MWCNT suspensions showed better dispersion and had higher mobility in porous media. The effects by the acetic environment are also applicable to other nanoparticles with the carboxyl functional group, which was demonstrated with polystyrene latex particles as an example.

  2. Bond-length alternation and charge transfer in a linear carbon chain encapsulated within a single-walled carbon nanotube

    Science.gov (United States)

    Rusznyák, Á.; Zólyomi, V.; Kürti, J.; Yang, S.; Kertesz, M.

    2005-10-01

    The physical properties of a linear carbon chain encapsulated within single-walled carbon nanotubes are investigated with density-functional theory using periodic boundary conditions. The dominant feature of an isolated carbon chain is the Peierls dimerization and the opening of a Peierls gap. The two weakly interacting subsystems (infinite carbon chain and nanotube) establish a common Fermi level, resulting in charge transfer (CT) which leads to a metallic combined system with a high density of states at the Fermi level. The rigid band model provides useful insights. Unusual physics arises from the effects of CT and chain-tube orbital hybridization which both tend to suppress the Peierls dimerization. Implications for the observed Raman spectrum of the chain-nanotube system are discussed.

  3. METABOLIC ENGINEERING TO DEVELOP A PATHWAY FOR THE SELECTIVE CLEAVAGE OF CARBON-NITROGEN BONDS

    Energy Technology Data Exchange (ETDEWEB)

    John J. Kilbane II

    2004-10-01

    The objective of the project is to develop biochemical pathways for the selective cleavage of C-N bonds in molecules found in petroleum. The initial phase of the project was focused on the isolation or development of an enzyme capable of cleaving the C-N bond in aromatic amides, specifically 2-aminobiphenyl. The objective of the second phase of the research will be to construct a biochemical pathway for the selective removal of nitrogen from carbazole by combining the carA genes from Sphingomonas sp. GTIN11 with the gene(s) encoding an appropriate deaminase. The objective of the final phase of the project will be to develop derivative C-N bond cleaving enzymes that have broader substrate ranges and to demonstrate the use of such strains to selectively remove nitrogen from petroleum. During the first year of the project (October, 2002-September, 2003) enrichment culture experiments resulted in the isolation of microbial cultures that utilize aromatic amides as sole nitrogen sources, several amidase genes were cloned and were included in directed evolution experiments to obtain derivatives that can cleave C-N bonds in aromatic amides, and the carA genes from Sphingomonas sp. GTIN11, and Pseudomonas resinovorans CA10 were cloned in vectors capable of replicating in Escherichia coli. During the second year of the project (October, 2003-September, 2004) enrichment culture experiments succeeded in isolating a mixed bacterial culture that can utilize 2-aminobiphenyl as a sole nitrogen source, directed evolution experiments were focused on the aniline dioxygenase enzyme that is capable of deaminating aniline, and expression vectors were constructed to enable the expression of genes encoding C-N bond cleaving enzymes in Rhodococcus hosts. The construction of a new metabolic pathway to selectively remove nitrogen from carbazole and other molecules typically found in petroleum should lead to the development of a process to improve oil refinery efficiency by reducing the

  4. Strong bonding strength between HA and (NH4)2S2O8-treated carbon/carbon composite by hydrothermal treatment and induction heating.

    Science.gov (United States)

    Xiong, Xin-bo; Zeng, Xie-rong; Zou, Chun-li; Zhou, Ji-Zhao

    2009-06-01

    Carbon/carbon composite with hydroxyapatite (HA) coating is an attractive material in the dental and orthopedic fields, but the reported bonding strength between them was very poor. In this study, a compact crystalline HA coating on (NH(4))(2)S(2)O(8)-treated C/C substrate about 10 microm in width was obtained by hydrothermal treatment and induction heating. The microstructure, composition and morphologies of the as-prepared coatings were identified by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. A strong shear strength averaging 74.2 MPa between C/C substrate and HA was achieved and adhesion failures were observed more frequently than cohesion failures. The coating adhesion measured using a scratch test was 23 N and the reasons for this are discussed.

  5. Ring-opening of cyclic ethers with carbon–carbon bond formation by Grignard reagents

    DEFF Research Database (Denmark)

    Christensen, Stig Holden; Holm, Torkil; Madsen, Robert

    2014-01-01

    The ring-opening of cyclic ethers with concomitant C–C bond formation was studied with a number of Grignard reagents. The transformation was performed in a sealed vial by heating to ∼160 °C in an aluminum block or at 180 °C in a microwave oven. Good yields of the product alcohols were obtained wi...

  6. METABOLIC ENGINEERING TO DEVELOP A PATHWAY FOR THE SELECTIVE CLEAVAGE OF CARBON-NITROGEN BONDS

    Energy Technology Data Exchange (ETDEWEB)

    John J. Kilbane III

    2003-12-01

    The objective of the project is to develop biochemical pathways for the selective cleavage of C-N bonds in molecules found in petroleum. The initial phase of the project will focus on the isolation or development of an enzyme capable of cleaving the C-N bond in aromatic amides, specifically 2-aminobiphenyl. The objective of the second phase of the research will be to construct a biochemical pathway for the selective removal of nitrogen from carbazole by combining the carA genes from Sphingomonas sp. GTIN11 with the gene(s) encoding an appropriate amidase. The objective of the final phase of the project will be to develop derivative CN bond cleaving enzymes that have broader substrate ranges and to demonstrate the use of such strains to selectively remove nitrogen from petroleum. The project is on schedule and no major difficulties have been encountered. During the first year of the project (October, 2002-September, 2003) enrichment culture experiments have resulted in the isolation of promising cultures that may be capable of cleaving C-N bonds in aromatic amides, several amidase genes have been cloned and are currently undergoing directed evolution to obtain derivatives that can cleave C-N bonds in aromatic amides, and the carA genes from Sphingomonas sp. GTIN11, and Pseudomonas resinovorans CA10 were cloned in vectors capable of replicating in Escherichia coli. Future research will address expression of these genes in Rhodococcus erythropolis. Enrichment culture experiments and directed evolution experiments continue to be a main focus of research activity and further work is required to obtain an appropriate amidase that will selectively cleave C-N bonds in aromatic substrates. Once an appropriate amidase gene is obtained it must be combined with genes encoding an enzyme capable of converting carbazole to 2'aminobiphenyl-2,3-diol: specifically carA genes. The carA genes from two sources have been cloned and are ready for construction of C-N bond cleavage

  7. Cleaning without chlorinated solvents

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, L.M.; Simandl, R.F.

    1994-12-31

    Because of health and environmental concerns, many regulations have been passed in recent years regarding the use of chlorinated solvents. The Oak Ridge Y-12 Plant has had an active program to find alternatives for these solvents used in cleaning applications for the past 7 years. During this time frame, the quantity of solvents purchased has been reduced by 92%. The program has been a twofold effort. Vapor degreasers used in batch cleaning-operations have been replaced by ultrasonic cleaning with aqueous detergent, and other organic solvents have been identified for use in hand-wiping or specialty operations. In order to qualify these alternatives for use, experimentation was conducted on cleaning ability as well as effects on subsequent operations such as welding, painting and bonding. Cleaning ability was determined using techniques such as X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy (FTIR) which are capable of examining monolayer levels of contamination on a surface. Solvents have been identified for removal of rust preventative oils, lapping oils, machining coolants, lubricants, greases, and mold releases. Solvents have also been evaluated for cleaning urethane foam spray guns, swelling of urethanes and swelling of epoxies.

  8. Mechanism and Stereoselectivity in an Asymmetric N-Heterocyclic Carbene-Catalyzed Carbon-Carbon Bond Activation Reaction.

    Science.gov (United States)

    Pareek, Monika; Sunoj, Raghavan B

    2016-11-18

    The mechanism and origin of stereoinduction in a chiral N-heterocyclic carbene (NHC) catalyzed C-C bond activation of cyclobutenone has been established using B3LYP-D3 density functional theory computations. The activation of cyclobutenone as an NHC-bound vinyl enolate and subsequent reaction with the electrophilic sulfonyl imine leads to the lactam product. The most preferred stereocontrolling transition state exhibits a number of noncovalent interactions rendering additional stabilization. The computed enantio- and diastereoselectivities are in good agreement with the previous experimental observations.

  9. Mercury Detoxification by Bacteria: Simulations of Transcription Activation and Mercury-Carbon Bond Cleavage

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hao-Bo [ORNL; Parks, Jerry M [ORNL; Johs, Alexander [ORNL; Smith, Jeremy C [ORNL

    2011-01-01

    In this chapter, we summarize recent work from our laboratory and provide new perspective on two important aspects of bacterial mercury resistance: the molecular mechanism of transcriptional regulation by MerR, and the enzymatic cleavage of the Hg-C bond in methylmercury by the organomercurial lyase, MerB. Molecular dynamics (MD) simulations of MerR reveal an opening-and-closing dynamics, which may be involved in initiating transcription of mercury resistance genes upon Hg(II) binding. Density functional theory (DFT) calculations on an active-site model of the enzyme reveal how MerB catalyzes the Hg-C bond cleavage using cysteine coordination and acid-base chemistry. These studies provide insight into the detailed mechanisms of microbial gene regulation and defense against mercury toxicity.

  10. Nickel-catalyzed Csp2-Csp3 bond formation by carbon-fluorine activation.

    Science.gov (United States)

    Sun, Alex D; Leung, Kaylyn; Restivo, Anita D; LaBerge, Nicole A; Takasaki, Harumi; Love, Jennifer A

    2014-03-10

    We report herein a general catalytic method for Csp(2)-Csp(3) bond formation through C-F activation. The process uses an inexpensive nickel complex with either diorganozinc or alkylzinc halide reagents, including those with β-hydrogen atoms. A variety of fluorine substitution patterns and functional groups can be readily incorporated. Sequential reactions involving different precatalysts and coupling partners permit the synthesis of densely functionalized fluorinated building blocks.

  11. Quantitative Evaluation of Contamination on Dental Zirconia Ceramic by Silicone Disclosing Agents after Different Cleaning Procedures

    Directory of Open Access Journals (Sweden)

    Sebastian Wille

    2015-05-01

    Full Text Available The aim of this study was to evaluate the effectiveness of cleaning procedures for air-abraded zirconia after contamination with two silicone disclosing agents. Air-abraded zirconia ceramic specimens (IPS e.max ZirCAD were contaminated with either GC Fit Checker white or GC Fit Checker II. Untreated zirconia specimens were used as control. Afterwards the surfaces were cleaned either with waterspray or ultrasonically in 99% isopropanol or using a newly developed cleaning paste (Ivoclean. After cleaning X-ray photoelectron spectroscopy (XPS was performed and the relative peak intensities of Zr, C and Si were used for a qualitative comparison of the residuals. There was no significant difference between the two different silicone disclosing agents. An additional cleaning step with isopropanol led to a significantly lower amount of residuals on the surface, but an additional cleaning process with Ivoclean did not reduce the amount of carbon residuals in comparison to the isopropanol cleaning. Just the silicone amount on the surface was reduced. None of the investigated cleaning processes removed all residuals from the contaminated surface. Standard cleaning processes do not remove all residuals of the silicone disclosing agent from the surface. This may lead to a failure of the resin-ceramic bonding.

  12. Mechanistic information on the reductive elimination from cationic trimethylplatinum(IV) complexes to form carbon-carbon bonds.

    Science.gov (United States)

    Procelewska, Joanna; Zahl, Achim; Liehr, Günter; van Eldik, Rudi; Smythe, Nicole A; Williams, B Scott; Goldberg, Karen I

    2005-10-31

    Cationic complexes of the type fac-[(L(2))Pt(IV)Me(3)(pyr-X)][OTf] (pyr-X = 4-substituted pyridines; L(2) = diphosphine, viz., dppe = bis(diphenylphosphino)ethane and dppbz = o-bis(diphenylphosphino)benzene; OTf = trifluoromethanesulfonate) undergo C-C reductive elimination reactions to form [L(2)Pt(II)Me(pyr-X)][OTf] and ethane. Detailed studies indicate that these reactions proceed by a two-step pathway, viz., initial reversible dissociation of the pyridine ligand from the cationic complex to generate a five-coordinate Pt(IV) intermediate, followed by irreversible concerted C-C bond formation. The reaction is inhibited by pyridine. The highly positive values for DeltaS()(obs) = +180 +/- 30 J K(-1) mol(-1), DeltaH(obs) = 160 +/- 10 kJ mol(-1), and DeltaV()(obs) = +16 +/- 1 cm(3) mol(-1) can be accounted for in terms of significant bond cleavage and/or partial reduction from Pt(IV) to Pt(II) in going from the ground to the transition state. These cationic complexes have provided the first opportunity to carry out detailed studies of C-C reductive elimination from cationic Pt(IV) complexes in a variety of solvents. The absence of a significant solvent effect for this reaction provides strong evidence that the C-C reductive coupling occurs from an unsaturated five-coordinate Pt(IV) intermediate rather than from a six-coordinate Pt(IV) solvento species.

  13. Bond length and electric current oscillation of long linear carbon chains: Density functional theory, MpB model, and quantum spin transport studies

    Energy Technology Data Exchange (ETDEWEB)

    Oeiras, R. Y.; Silva, E. Z. da [Institute of Physics “Gleb Wataghin”, University of Campinas-Unicamp, 13083-859 Campinas, SP (Brazil)

    2014-04-07

    Carbon linear atomic chains attached to graphene have experimentally been produced. Motivated by these results, we study the nature of the carbon bonds in these nanowires and how it affects their electrical properties. In the present study we investigate chains with different numbers of atoms and we observe that nanowires with odd number of atoms present a distinct behavior than the ones with even numbers. Using graphene nanoribbons as leads, we identify differences in the quantum transport of the chains with the consequence that even and odd numbered chains have low and high electrical conduction, respectively. We also noted a dependence of current with the wire size. We study this unexpected behavior using a combination of first principles calculations and simple models based on chemical bond theory. From our studies, the electrons of carbon nanowires present a quasi-free electron behavior and this explains qualitatively the high electrical conduction and the bond lengths with unexpected values for the case of odd nanowires. Our study also allows the understanding of the electric conduction dependence with the number of atoms and their parity in the chain. In the case of odd number chains a proposed π-bond (MpB) model describes unsaturated carbons that introduce a mobile π-bond that changes dramatically the structure and transport properties of these wires. Our results indicate that the nature of bonds plays the main role in the oscillation of quantum electrical conduction for chains with even and odd number of atoms and also that nanowires bonded to graphene nanoribbons behave as a quasi-free electron system, suggesting that this behavior is general and it could also remain if the chains are bonded to other materials.

  14. Bond length and electric current oscillation of long linear carbon chains: Density functional theory, MpB model, and quantum spin transport studies

    Science.gov (United States)

    Oeiras, R. Y.; da Silva, E. Z.

    2014-04-01

    Carbon linear atomic chains attached to graphene have experimentally been produced. Motivated by these results, we study the nature of the carbon bonds in these nanowires and how it affects their electrical properties. In the present study we investigate chains with different numbers of atoms and we observe that nanowires with odd number of atoms present a distinct behavior than the ones with even numbers. Using graphene nanoribbons as leads, we identify differences in the quantum transport of the chains with the consequence that even and odd numbered chains have low and high electrical conduction, respectively. We also noted a dependence of current with the wire size. We study this unexpected behavior using a combination of first principles calculations and simple models based on chemical bond theory. From our studies, the electrons of carbon nanowires present a quasi-free electron behavior and this explains qualitatively the high electrical conduction and the bond lengths with unexpected values for the case of odd nanowires. Our study also allows the understanding of the electric conduction dependence with the number of atoms and their parity in the chain. In the case of odd number chains a proposed π-bond (MpB) model describes unsaturated carbons that introduce a mobile π-bond that changes dramatically the structure and transport properties of these wires. Our results indicate that the nature of bonds plays the main role in the oscillation of quantum electrical conduction for chains with even and odd number of atoms and also that nanowires bonded to graphene nanoribbons behave as a quasi-free electron system, suggesting that this behavior is general and it could also remain if the chains are bonded to other materials.

  15. Clean coal technologies market potential

    Energy Technology Data Exchange (ETDEWEB)

    Drazga, B. (ed.)

    2007-01-30

    Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

  16. Clean, premium-quality chars: Demineralized and carbon enriched. Quarterly report, September 1, 1991--Novemer 30, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G.V.

    1992-01-03

    The goal of this project is to develop a bench-scale procedure to produce clean, desulfurized, premium-quality chars from the Illinois basin coals. This goal is achieved by utilizing the effective capabilty of smectites in combination with methane to manipulate the char yields. The major objectives are: to determine the optimum water- ground particle size for the maximum reduction of pyrite and minerals by the selective-bitumen agglomeration process; to evaluate the type of smectite and its interlamellar cation which enhances the premium-quality char yields; to find the mode of dispersion of smectites in clean coal which retards the agglomeration of char during mild gasification; to probe the conditions that maximize the desulfurized clean-char yields under a combination of methane+oxygen or helium+oxygen; to characterize and accomplish a material balance of chars, liquids, and gases produced during mild gasification; to identify the conditions which reject dehydrated smectites from char by the gravitational separation technique; and to determine the optimum seeding of chars with polymerized maltene for flammability and transportation.

  17. The first chiral diene-based metal-organic frameworks for highly enantioselective carbon-carbon bond formation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sawano, Takahiro; Ji, Pengfei; McIsaac, Alexandra R.; Lin, Zekai; Abney, Carter W.; Lin, Wenbin [UC

    2016-02-01

    We have designed the first chiral diene-based metal–organic framework (MOF), E₂-MOF, and postsynthetically metalated E₂-MOF with Rh(I) complexes to afford highly active and enantioselective single-site solid catalysts for C–C bond formation reactions. Treatment of E₂-MOF with [RhCl(C₂H₄)₂]₂ led to a highly enantioselective catalyst for 1,4-additions of arylboronic acids to α,β-unsaturated ketones, whereas treatment of E₂-MOF with Rh(acac)(C₂H₄)₂ afforded a highly efficient catalyst for the asymmetric 1,2-additions of arylboronic acids to aldimines. Interestingly, E₂-MOF·Rh(acac) showed higher activity and enantioselectivity than the homogeneous control catalyst, likely due to the formation of a true single-site catalyst in the MOF. E₂-MOF·Rh(acac) was also successfully recycled and reused at least seven times without loss of yield and enantioselectivity.

  18. Ultrafast studies of organometallic photochemistry: The mechanism of carbon-hydrogen bond activation in solution

    Energy Technology Data Exchange (ETDEWEB)

    Bromberg, S.E.

    1998-05-01

    When certain organometallic compounds are photoexcited in room temperature alkane solution, they are able to break or activate the C-H bonds of the solvent. Understanding this potentially practical reaction requires a detailed knowledge of the entire reaction mechanism. Because of the dynamic nature of chemical reactions, time-resolved spectroscopy is commonly employed to follow the important events that take place as reactants are converted to products. For the organometallic reactions examined here, the electronic/structural characteristics of the chemical systems along with the time scales for the key steps in the reaction make ultrafast UV/Vis and IR spectroscopy along with nanosecond Step-Scan FTIR spectroscopy the ideal techniques to use for this study. An initial study of the photophysics of (non-activating) model metal carbonyls centering on the photodissociation of M(CO){sub 6} (M = Cr, W, Mo) was carried out in alkane solutions using ultrafast IR spectroscopy. Next, picosecond UV/vis studies of the C-H bond activation reaction of Cp{sup *}M(CO){sub 2} (M = Rh, Ir), conducted in room temperature alkane solution, are described in an effort to investigate the origin of the low quantum yield for bond cleavage ({approximately}1%). To monitor the chemistry that takes place in the reaction after CO is lost, a system with higher quantum yield is required. The reaction of Tp{sup *}Rh(CO){sub 2} (Tp{sup *} = HB-Pz{sub 3}{sup *}, Pz{sup *} = 3,5-dimethylpyrazolyl) in alkanes has a quantum yield of {approximately}30%, making time resolved spectroscopic measurements possible. From ultrafast IR experiments, two subsequently formed intermediates were observed. The nature of these intermediates are discussed and the first comprehensive reaction mechanism for a photochemical C-H activating organometallic complex is presented.

  19. Point-Defect Mediated Bonding of Pt Clusters on (5,5) Carbon Nanotubes

    DEFF Research Database (Denmark)

    Wang, J. G.; Lv, Y. A.; Li, X. N.;

    2009-01-01

    The adhesion of various sizes of Pt clusters on the metallic (5,5) carbon nanotubes (CNTs) with and without the point defect has been investigated by means of density functional theory (DFT). The calculations show that the binding energies of Pt-n (n = 1-6) clusters on the defect free CNTs are more......). The stronger orbital hybridization between the Pt atom and the carbon atom shows larger charge transfers on the defective CNTs than on the defect free CNTs, which allows the strong interaction between Pt clusters and CNTs. On the basis of DFT calculations, CNTs with point defect can be used as the catalyst...

  20. Laser treatment of carbon fibre reinforced thermoplastic matrix for adhesive bonding

    Science.gov (United States)

    Genna, S.; Leone, C.; Ucciardello, N.; Giuliani, M.

    2016-05-01

    In the present study, laser surface treatment of CFRP made of PPS thermoplastic matrix by means of a 30 W Q-Switched Yb:YAG fiber laser, is investigated with the aim to improve adhesive bonding. The process parameters pulse power, scanning speed, hatch distance and scanning strategy, were varied to the aim to study the influence of the process condition on the first top resin layer removal and fibre damage. The operating window was experimentally determined. The effectiveness of laser treatment was verified by single lap shear test.

  1. Covalently Bonded Graphene-Carbon Nanotube Hybrid for High-Performance Thermal Interfaces

    DEFF Research Database (Denmark)

    Chen, Jie; Walther, Jens H.; Koumoutsakos, Petros

    2015-01-01

    The remarkable thermal properties of graphene and carbon nanotubes (CNTs) have been the subject of intensive investigations for the thermal management of integrated circuits. However, the small contact area of CNTs and the large anisotropic heat conduction of graphene have hindered their applicat...

  2. Characterization of sp(2)- and sp(3)-bonded carbon in wood charcoal

    NARCIS (Netherlands)

    Ishimaru, Kengo; Hata, Toshimitsu; Bronsveld, Paul; Nishizawa, Takashi; Imamura, Yuji

    2007-01-01

    Japanese cedar (Cryptomeria japonica) preheated at 700 degrees C was subsequently heated to 1800 degrees C and characterized by electron microscopy, X-ray diffraction, and micro-Raman spectroscopy. The degree of disorder of carbon crystallites and the amount of amorphous phase decreased considerably

  3. Transversal thermal transport in single-walled carbon nanotube bundles: Influence of axial stretching and intertube bonding

    Science.gov (United States)

    Gharib-Zahedi, Mohammad Reza; Tafazzoli, Mohsen; Böhm, Michael C.; Alaghemandi, Mohammad

    2013-11-01

    Using reverse nonequilibrium molecular dynamics simulations the influence of intermolecular bridges on the thermal conductivity (λ) in carbon nanotube (CNT) bundles has been investigated. The chosen cross linkers (CH2, O, CO) strengthen the transversal energy transport relative to the one in CNT bundles without bridges. The results showed that λ does not increase linearly with the linker density. The efficiency of the heat transport is determined by the number of linkers in the direction of the heat flux, the type of the linker, and their spatial ordering. The influence of a forced axial stress on the transversal λ has been also studied. The observed λ reduction with increasing axial stretching in a neat CNT bundle can be (over)compensated by cross linkers. The present computational data emphasize the contribution of phonons to the transversal heat transport in CNT bundles with intertube bonds.

  4. METALLOPROTEINS. A tethered niacin-derived pincer complex with a nickel-carbon bond in lactate racemase.

    Science.gov (United States)

    Desguin, Benoît; Zhang, Tuo; Soumillion, Patrice; Hols, Pascal; Hu, Jian; Hausinger, Robert P

    2015-07-03

    Lactic acid racemization is involved in lactate metabolism and cell wall assembly of many microorganisms. Lactate racemase (Lar) requires nickel, but the nickel-binding site and the role of three accessory proteins required for its activation remain enigmatic. We combined mass spectrometry and x-ray crystallography to show that Lar from Lactobacillus plantarum possesses an organometallic nickel-containing prosthetic group. A nicotinic acid mononucleotide derivative is tethered to Lys(184) and forms a tridentate pincer complex that coordinates nickel through one metal-carbon and two metal-sulfur bonds, with His(200) as another ligand. Although similar complexes have been previously synthesized, there was no prior evidence for the existence of pincer cofactors in enzymes. The wide distribution of the accessory proteins without Lar suggests that it may play a role in other enzymes.

  5. Non-covalent bonding interaction of surfactants with functionalized carbon nanotubes in proton exchange membranes for fuel cell applications.

    Science.gov (United States)

    Sayeed, M Abu; Kim, Young Ho; Park, Younjin; Gopalan, A I; Lee, Kwang-Pill; Choi, Sang-June

    2013-11-01

    Dispersion of functionalized multiwalled carbon nanotubes (MWCNTs) in proton exchange membranes (PEMs) was conducted via non-covalent bonding between benzene rings of various surfactants and functionalized MWCNTs. In the solution casting method, dispersion of functionalized MWCNTs in PEMs such as Nafion membranes is a critical issue. In this study, 1 wt.% pristine MWCNTs (p-MWCNTs) and oxidized MWCNTs (ox-MWCNTs) were reinforced in Nafion membranes by adding 0.1-0.5 wt.% of a surfactant such as benzalkonium chloride (BKC) as a cationic surfactant with a benzene ring, Tween-80 as a nonanionic surfactant without a benzene ring, sodium dodecylsulfonate (SDS) as an anionic surfactant without a benzene ring, or sodium dodecylben-zenesulfonate (SDBS) as an anionic surfactant with a benzene ring and their effects on the dispersion of nanocomposites were then observed. Among these surfactants, those with benzene rings such as BKC and SDBS produced enhanced dispersion via non-covalent bonding interaction between CNTs and surfactants. Specifically, the surfactants were adsorbed onto the surface of functionalized MWCNTs, where they prevented re-aggregation of MWCNTs in the nanocomposites. Furthermore, the prepared CNTs reinforced nanocomposite membranes showed reduced methanol uptake values while the ion exchange capacity values were maintained. The enhanced properties, including thermal property of the CNTs reinforced PEMs with surfactants, could be applicable to fuel cell applications.

  6. Bonding characteristics of the Al2O3-metal composite coating fabricated onto carbon steel by combustion synthesis

    Institute of Scientific and Technical Information of China (English)

    Xiao-feng Xue; Ze-hua Wang; Ze-hua Zhou; Shao-qun Jiang; Jiang-bo Cheng; Chang-hao Wang; Jia Shao

    2014-01-01

    The fabrication of an alumina-metal composite coating onto a carbon steel substrate by using a self-propagating high-temperature synthesis technique was demonstrated. The effects of the type and thickness of the pre-coated layer on the binding structure and surface qual-ity of the coating were systematically investigated. The macrostructure, phase composition, and bonding interface between the coating and the substrate were investigated by scanning electronic microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectrome-try (EDS). The diffraction patterns indicated that the coating essentially consisted ofα-Al2O3, Fe(Cr), and FeO⋅Al2O3. With an increase in the thickness of the pre-coated working layer, the coating became more smooth and compact. The transition layer played an important role in enhancing the binding between the coating and the substrate. When the pre-coated working layer was 10 mm and the pre-coated transition layer was 1 mm, a compact structure and metallurgical bonding with the substrate were obtained. Thermal shock test results indicated that the ceramic coating exhibited good thermal shock resistance when the sample was rapidly quenched from 800°C to room temperature by plung-ing into water.

  7. Durable ultrathin silicon nitride/carbon bilayer overcoats for magnetic heads: The role of enhanced interfacial bonding

    Energy Technology Data Exchange (ETDEWEB)

    Yeo, Reuben J.; Dwivedi, Neeraj; Bhatia, Charanjit S., E-mail: elebcs@nus.edu.sg [Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore 117583 (Singapore); Zhang, Lu [Institute of Microelectronics (IME), A*STAR (Agency for Science, Technology, and Research), 11 Science Park Road, Singapore Science Park II, Singapore, Singapore 117685 (Singapore); Zhang, Zheng; Tripathy, S. [Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology, and Research), 3 Research Link, Singapore, Singapore 117602 (Singapore); Lim, Christina Y. H. [Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore 117575 (Singapore)

    2015-01-28

    Pole tip recession (PTR) is one of the major issues faced in magnetic tape storage technology, which causes an increase in the magnetic spacing and hence signal loss during data readback. Despite efforts to reduce the magnetic spacing, PTR, and surface wear on the heads by using protective overcoats, most of them either employ complex fabrication processes and approaches do not provide adequate protection to the head or are too thick (∼10–20 nm), especially for future high density tape storage. In this work, we discuss an approach to reduce the PTR and surface wear at the head by developing an ultrathin ∼7 nm bilayer overcoat of silicon/silicon nitride (Si/SiN{sub x}) and carbon (C), which is totally fabricated by a cost-effective and industrial-friendly magnetron sputtering process. When compared with a monolithic C overcoat of similar thickness, the electrically insulating Si/SiN{sub x}/C bilayer overcoat was found to provide better wear protection for commercial tape heads, as demonstrated by Auger electron spectroscopic analyses after wear tests with commercial tape media. Although the microstructures of carbon in the monolithic and bilayer overcoats were similar, the improved wear durability of the bilayer overcoat was attributed to the creation of extensive interfacial bonding of Si and N with the C overcoat and the alumina-titanium carbide composite head substrate, as predicted by time-of-flight secondary ion mass spectrometry and confirmed by in-depth X-ray photoelectron spectroscopy analyses. This study highlights the pivotal role of enhanced interfaces and interfacial bonding in developing ultrathin yet wear-durable overcoats for tape heads.

  8. Mechanism and Thermodynamics of Reductive Cleavage of Carbon-Halogen Bonds in the Polybrominated Aliphatic Electrophiles.

    Science.gov (United States)

    Rosokha, Sergiy V; Lukacs, Emoke; Ritzert, Jeremy T; Wasilewski, Adam

    2016-03-17

    Quantum-mechanical computations revealed that, despite the presence of electron-withdrawing and/or π-acceptor substituents, the lowest unoccupied molecular orbitals (LUMO) of the polybromosubstituted aliphatic molecules R-Br (R-Br = C3Br2F6, CBr3NO2, CBr3CN, CBr3CONH2, CBr3CO2H, CHBr3, CFBr3, CBr4, CBr3COCBr3) are delocalized mostly over their bromine-containing fragments. The singly occupied molecular orbitals in the corresponding vertically excited anion radicals (R-Br(•-))* are characterized by essentially the same shapes and show nodes in the middle of the C-Br bonds. An injection of an electron into the antibonding LUMO results in the barrierless dissociation of the anion-radical species and the concerted reductive cleavages of C-Br bonds leading to the formation of the loosely bonded {R(•)···Br(-)} associates. The interaction energies between the fragments of these ion-radical pairs vary from ∼10 to 20 kcal mol(-1) in the gas phase and from 1 to 3 kcal mol(-1) in acetonitrile. In accord with the concerted mechanism of reductive cleavage, all R-Br molecules showed completely irreversible reduction waves in the voltammograms in the whole range of the scan rates employed (from 0.05 to 5 V s(-1)). Also, the transfer coefficients α, established from the width of these waves and dependence of reduction peak potentials Ep on the scan rates, were significantly lower than 0.5. The standard reduction potentials of the R-Br electrophiles, E(o)R-Br/R·+X(-), and the corresponding R(•) radicals, E(o)R(•)/R(-), were calculated in acetonitrile using the appropriate thermodynamic cycles. In agreement with these calculations, which indicated that the R(•) radicals resulting from the reductive cleavage of the R-Br molecules are stronger oxidants than their parents, the reduction peaks' currents in cyclic voltammograms were consistent with the two-electron transfer processes.

  9. Silicon-carbon bond inversions driven by 60-keV electrons in graphene.

    Science.gov (United States)

    Susi, Toma; Kotakoski, Jani; Kepaptsoglou, Demie; Mangler, Clemens; Lovejoy, Tracy C; Krivanek, Ondrej L; Zan, Recep; Bangert, Ursel; Ayala, Paola; Meyer, Jannik C; Ramasse, Quentin

    2014-09-12

    We demonstrate that 60-keV electron irradiation drives the diffusion of threefold-coordinated Si dopants in graphene by one lattice site at a time. First principles simulations reveal that each step is caused by an electron impact on a C atom next to the dopant. Although the atomic motion happens below our experimental time resolution, stochastic analysis of 38 such lattice jumps reveals a probability for their occurrence in a good agreement with the simulations. Conversions from three- to fourfold coordinated dopant structures and the subsequent reverse process are significantly less likely than the direct bond inversion. Our results thus provide a model of nondestructive and atomically precise structural modification and detection for two-dimensional materials.

  10. Reversible CO2 Capture by Conjugated Ionic Liquids through Dynamic Covalent Carbon-Oxygen Bonds.

    Science.gov (United States)

    Pan, Mingguang; Cao, Ningning; Lin, Wenjun; Luo, Xiaoyan; Chen, Kaihong; Che, Siying; Li, Haoran; Wang, Congmin

    2016-09-08

    The strong chemisorption of CO2 is always accompanied by a high absorption enthalpy, and traditional methods to reduce the absorption enthalpy lead to decreased CO2 capacities. Through the introduction of a large π-conjugated structure into the anion, a dual-tuning approach for the improvement of CO2 capture by anion-functionalized ionic liquids (ILs) resulted in a high capacity of up to 0.96 molCO2  mol-1IL and excellent reversibility. The increased capacity and improved desorption were supported by quantum chemical calculations, spectroscopic investigations, and thermogravimetric analysis. The increased capacity may be a result of the strengthened dynamic covalent bonds in these π-electron-conjugated structures through anion aggregation upon the uptake of CO2 , and the improved desorption originates from the charge dispersion of interaction sites through the large π-electron delocalization. These results provide important insights into effective strategies for CO2 capture.

  11. Broadening the Appeal of Marginal Abatement Cost Curves: Capturing Both Carbon Mitigation and Development Benefits of Clean Energy Technologies; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Cowlin, S.; Cochran, J.; Cox, S.; Davison, C.; van der Gaast, Y.

    2012-08-01

    Low emission development strategies (LEDS) articulate policies and implementation plans that enable countries to advance sustainable, climate-resilient development and private sector growth while significantly reducing the greenhouse gas (GHG) emissions traditionally associated with economic growth. In creating a LEDS, policy makers often have access to information on abatement potential and costs for clean energy technologies, but there is a scarcity of economy-wide approaches for evaluating and presenting information on other dimensions of importance to development, such as human welfare, poverty alleviation, and energy security. To address this shortcoming, this paper proposes a new tool for communicating development benefits to policy makers as part of a LEDS process. The purpose of this tool is two-fold: 1. Communicate development benefits associated with each clean energy-related intervention; 2. Facilitate decision-making on which combination of interventions best contributes to development goals. To pilot this tool, the authors created a visual using data on developmental impacts identified through the Technology Needs Assessment (TNA) project in Montenegro. The visual will then be revised to reflect new data established through the TNA that provides information on cost, GHG mitigation, as well as the range and magnitude of developmental impacts.

  12. Helium Plasma Damage of Low-k Carbon Doped Silica Film: the Effect of Si Dangling Bonds on the Dielectric Constant

    Institute of Scientific and Technical Information of China (English)

    LI Hailing; WANG Qing; BA Dechun

    2014-01-01

    The low-k carbon doped silica film has been modified by radio frequency helium plasma at 5 Pa pressure and 80 W power with subsequent XPS,FTIR and optical emission spectroscopy analysis.XPS data indicate that helium ions have broken Si-C bonds,leading to Si-C scission with C(1s) lost seriously.The Si(2p),O(1s),peak obviously shifted to higher binding energies,indicating an increasingly oxidized Si(2p).FTIR data also show that the silanol formation increased with longer exposure time up to a week.Contrarily,the CH3 stretch,Si-C stretching bond and the ratio of the Si-O-Si cage and Si-O-Si network peak sharply decreased upon exposure to helium plasma.The OES result indicates that monovalent helium ions in plasma play a key role in damaging carbon doped silica film.So it can be concluded that the monovalent helium ions besides VUV photons can break the weak Si-C bonds to create Si dangling bonds and free methyl radicals,and the latter easily reacts with O2 from the atmosphere to generate CO2 and H2O.The bonds change is due to the Si dangling bonds combining with H2O,thereby,increasing the dielectric constant k value.

  13. Effect of SiO2 on the Preparation and Properties of Pure Carbon Reaction Bonded Silicon Carbide Ceramics

    Institute of Scientific and Technical Information of China (English)

    WU Qi-de; GUO Bing-jian; YAN Yong-gao; ZHAO Xiu-jian; HONG Xiao-lin

    2004-01-01

    Effect of SiO2 content and sintering process on the composition and properties of Pure CarbonReaction Bonded Silicon Carbide (PCRBSC) ceramics prepared with C - SiO2 green body by infiltrating siliconwas presented. The infiltrating mechanism of C - SiO2 preform was also explored. The experimental results indicatethat the shaping pressure increases with the addition of SiO2 to the preform, and the pore size of the body turnedfiner and distributed in a narrower range, which is beneficial to decreasing the residual silicon content in the sin-tered materials and to avoiding shock off, thus increasing the conversion rate of SiC. SiO2 was deoxidized by car-bon at a high temperature and the gaseous SiO and CO produced are the main reason to the crack of the body atan elevated temperature. If the green body is deposited at 1800℃ in vacuum before infiltration crack will not beproduced in the preform and fully dense RBSC can be obtained. The ultimate material has the following properties:a density of3.05-3.12g/cm3 ,a strength of 580±32MPa and a hardness of (HRA)91-92.3.

  14. PhnY and PhnZ comprise a new oxidative pathway for enzymatic cleavage of a carbon-phosphorus bond

    DEFF Research Database (Denmark)

    McSorley, Fern R.; Wyatt, Peter W.; Martinez, Ascuncion;

    2012-01-01

    The sequential activities of PhnY, an α-ketoglutarate/Fe(II)-dependent dioxygenase, and PhnZ, a Fe(II)-dependent enzyme of the histidine-aspartate motif hydrolase family, cleave the carbon-phosphorus bond of the organophosphonate natural product 2-aminoethylphosphonic acid. PhnY adds a hydroxyl g...

  15. Effects of vertically aligned carbon nanotubes on shear performance of laminated nanocomposite bonded joints

    Directory of Open Access Journals (Sweden)

    Davood Askari and Mehrdad N Ghasemi-Nejhad

    2012-01-01

    Full Text Available The main objective is to improve the most commonly addressed weakness of the laminated composites (i.e. delamination due to poor interlaminar strength using carbon nanotubes (CNTs as reinforcement between the laminae and in the transverse direction. In this work, a chemical vapor deposition technique has been used to grow dense vertically aligned arrays of CNTs over the surface of chemically treated two-dimensionally woven cloth and fiber tows. The nanoforest-like fabrics can be used to fabricate three-dimensionally reinforced laminated nanocomposites. The presence of CNTs aligned normal to the layers and in-between the layers of laminated composites is expected to considerably enhance the properties of the laminates. To demonstrate the effectiveness of our approach, composite single lap-joint specimens were fabricated for interlaminar shear strength testing. It was observed that the single lap-joints with through-the-thickness CNT reinforcement can carry considerably higher shear stresses and strains. Close examination of the test specimens showed that the failure of samples with CNT nanoforests was completely cohesive, while the samples without CNT reinforcement failed adhesively. This concludes that the adhesion of adjacent carbon fabric layers can be considerably improved owing to the presence of vertically aligned arrays of CNT nanoforests.

  16. Genesis Solar Wind Sample 61422: Experiment in Variation of Sequence of Cleaning Solvent for Removing Carbon-Bearing Contamination

    Science.gov (United States)

    Allton, J. H.; Kuhlman, K. R.; Allums, K. K.; Gonzalez, C. P.; Jurewicz, A. J. G.; Burnett, D. S.; Woolum, D. S.

    2015-01-01

    The recovered Genesis collector fragments are heavily contaminated with crash-derived particulate debris. However, megasonic treatment with ultra-pure-water (UPW; resistivity (is) greater than18 meg-ohm-cm) removes essentially all particulate contamination greater than 5 microns in size [e.g.1] and is thus of considerable importance. Optical imaging of Si sample 60336 revealed the presence of a large C-rich particle after UPW treatment that was not present prior to UPW. Such handling contamination is occasionally observed, but such contaminants are normally easily removed by UPW cleaning. The 60336 particle was exceptional in that, surprisingly, it was not removed by additional UPW or by hot xylene or by aqua regia treatment. It was eventually removed by treatment with NH3-H2O2. Our best interpretation of the origin of the 60336 particle was that it was adhesive from the Post-It notes used to stabilize samples for transport from Utah after the hard landing. It is possible that the insoluble nature of the 60336 particle comes from interaction of the Post-It adhesive with UPW. An occasional bit of Post-It adhesive is not a major concern, but C particulate contamination also occurs from the heat shield of the Sample Return Capsule (SRC) and this is mixed with inorganic contamination from the SRC and the Utah landing site. If UPW exposure also produced an insoluble residue from SRC C, this would be a major problem in chemical treatments to produce clean surfaces for analysis. This paper reports experiments to test whether particulate contamination was removed more easily if UPW treatment was not used.

  17. Reinventing Design Principles for Developing Low-Viscosity Carbon Dioxide-Binding Organic Liquids for Flue Gas Clean Up.

    Science.gov (United States)

    Malhotra, Deepika; Koech, Phillip K; Heldebrant, David J; Cantu, David C; Zheng, Feng; Glezakou, Vassiliki-Alexandra; Rousseau, Roger

    2017-02-08

    Anthropogenic CO2 emissions from point sources (e.g., coal fired-power plants) account for the majority of the greenhouse gases in the atmosphere. Water-lean solvent systems such as CO2 -binding organic liquids (CO2 BOLs) are being developed to reduce the energy requirement for CO2 capture. Many water-lean solvents such as CO2 BOLs are currently limited by the high viscosities of concentrated electrolyte solvents, thus many of these solvents have yet to move toward commercialization. Conventional standard trial-and-error approaches for viscosity reduction, while effective, are time consuming and economically expensive. We rethink the metrics and design principles of low-viscosity CO2 -capture solvents using a combined synthesis and computational modeling approach. We critically study the effects of viscosity reducing factors such as orientation of hydrogen bonding, introduction of higher degrees of freedom, and cation or anion charge solvation, and assess whether or how each factor affects viscosity of CO2 BOL CO2 capture solvents. Ultimately, we found that hydrogen bond orientation and strength is the predominant factor influencing the viscosity in CO2 BOL solvents. With this knowledge, a new CO2 BOL variant, 1-MEIPADM-2-BOL, was synthesized and tested, resulting in a solvent that is approximately 60 % less viscous at 25 mol % CO2 loading than our base compound 1-IPADM-2-BOL. The insights gained from the current study redefine the fundamental concepts and understanding of what influences viscosity in concentrated organic CO2 -capture solvents.

  18. Clean, premium-quality chars: Demineralized and carbon enriched. Quarterly report, December 1, 1991--February 29, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Smith, G.V. [Southern Illinois Univ., Carbondale, IL (United States)

    1992-08-01

    The interaction of methane, methane/oxygen, helium, and hydrogen with IBC-102 coal samples ({le} 2mg) has been investigated in a thermogravimetric reactor at 20{degrees}C--650{degrees}C. The results show that the reactive gases are converting some of the mineral matter of the coal into catalysts through chemical reactions (reduction or oxidation). Also, these gases (except He) dissolve in the softened coal. Added clays (kaolinite and Ca-montmorillonite) increase the reactivity of the coal. This higher reactivity may be attributed to the fact that clays may serve as catalysts for methane activation, may prevent the coal agglomeration, and/or may increase the number of active sites for the reaction by modification of the geometric structure of the coal surface. Differential Scanning Calorimetry (DSC) experiments show that clean coal (no mineral matter) devolatilizes at a lower temperature than raw coal. Also, the preoxidation at 150{degrees}C for 50 minutes results in a 13{degrees} lowering of the devolatilization temperature. ISDR-FTIR experiments suggest that phenol groups of the coal play an important role in the cross-linkage of the coal structure when thermally treated.

  19. Size-selected black carbon mass distributions and mixing state in polluted and clean environments of northern India

    Science.gov (United States)

    Raatikainen, Tomi; Brus, David; Hooda, Rakesh K.; Hyvärinen, Antti-Pekka; Asmi, Eija; Sharma, Ved P.; Arola, Antti; Lihavainen, Heikki

    2017-01-01

    We have measured black carbon properties by using a size-selected single-particle soot photometer (SP2). The measurements were conducted in northern India at two sites: Gual Pahari is located at the Indo-Gangetic Plain (IGP) and Mukteshwar at the Himalayan foothills. Northern India is known as one of the absorbing aerosol hot spots, but detailed information about absorbing aerosol mixing state is still largely missing. Previous equivalent black carbon (eBC) mass concentration measurements are available for this region, and these are consistent with our observations showing that refractory black carbon (rBC) concentrations are about 10 times higher in Gual Pahari than those at Mukteshwar. Also, the number fraction of rBC-containing particles is higher in Gual Pahari, but individual rBC-containing particles and their size distributions are fairly similar. These findings indicate that particles at both sites have similar local and regional emission sources, but aerosols are also transported from the main source regions (IGP) to the less polluted regions (Himalayan foothills). Detailed examination of the rBC-containing particle properties revealed that they are most likely irregular particles such as fractal aggregates, but the exact structure remains unknown.

  20. Carbon-Oxygen Bond Cleavage by Bis(imino)pyridine Iron Compounds : Catalyst Deactivation Pathways and Observation of Acyl C-O Bond Cleavage in Esters

    NARCIS (Netherlands)

    Trovitch, Ryan J.; Lobkovsky, Emil; Bouwkamp, Marco W.; Chirik, Paul J.

    2008-01-01

    Investigations into the substrate scope of bis(imino)pyridine iron-catalyzed hydrogenation and [2 pi + 2 pi]. diene cyclization reactions identified C-O bond cleavage as a principal deactivation pathway. Addition of diallyl or allyl ethyl ether to the bis(imino)pyridine iron dinitrogen complex, ((iP

  1. Hot and Dry Cleaning of Biomass-Gasified Gas Using Activated Carbons with Simultaneous Removal of Tar, Particles, and Sulfur Compounds

    Directory of Open Access Journals (Sweden)

    Kinya Sakanishi

    2012-05-01

    Full Text Available This study proposes a gas-cleaning process for the simultaneous removal of sulfur compounds, tar, and particles from biomass-gasified gas using Fe-supported activated carbon and a water-gas shift reaction. On a laboratory scale, the simultaneous removal of H2S and COS was performed under a mixture of gases (H2/CO/CO2/CH4/C2H4/N2/H2S/COS/steam. The reactions such as COS + H2 → H2S + CO and COS + H2O → H2S + CO2 and the water-gas shift reaction were promoted on the Fe-supported activated carbon. The adsorption capacity with steam was higher than that without steam. On a bench scale, the removal of impurities from a gas derived from biomass gasification was investigated using two activated filters packed with Fe-supported activated carbon. H2S and COS, three- and four-ring polycyclic aromatic hydrocarbons (PAHs, and particles were removed and a water-gas shift reaction was promoted through the first filter at 320–350 °C. The concentrations of H2S and COS decreased to less than 0.1 ppmv. Particles and the one- and two-ring PAHs, except for benzene, were then removed through the second filter at 60–170 °C. The concentration of tar and particles decreased from 2428 to 102 mg Nm−3 and from 2244 to 181 mg Nm−3, respectively.

  2. Half-sandwich rhodium poly-chalcogenide complexes and a carbon insertion into Te-Te bond

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Treatment of CptRh(PMe3)Cl2(1) (Cpt = 5(- tBu2C5H3) with [Et4N]2Se6 in DMF solution leads to the formation of cyclo-tetraselenido half-sandwich rhodium complexes CptRh(PMe3)(Se4) (2). The elimination of 2 with excess of nBu3P results in cyclo-diselenido rhodium complex CptRh(PMe3)(Se2) (3). 1 reacts with [nBu4N]2Te5 in DMF solution to yield cyclo-ditellurido rhodium complex CptRh (PMe3)(Te2) (4) in which carbon atom from CH2Cl2 can be inserted into Te-Te bond to form CptRh(PMe3)(TeCH2Te) (5). The new complexes 2-5 have been characterized by their IR, EI-MS, and 1H, 13C, 31P, 103Rh NMR spectra as well as elemental analysis.

  3. Effects of Sigma Anti-bonding Molecule Calcium Carbonate on bone turnover and calcium balance in ovariectomized rats.

    Science.gov (United States)

    Choi, So-Young; Park, Dongsun; Yang, Goeun; Lee, Sun Hee; Bae, Dae Kwon; Hwang, Seock-Yeon; Lee, Paul K; Kim, Yun-Bae; Kim, Ill-Hwa; Kang, Hyun-Gu

    2011-12-01

    This study was conducted to evaluate the effect of Sigma Anti-bonding Molecule Calcium Carbonate (SAC) as therapy for ovariectomy-induced osteoporosis in rats. Three weeks after surgery, fifteen ovariectomized Sprague-Dawley rats were divided randomly into 3 groups: sham-operated group (sham), ovariectomized group (OVX) and SAC-treatment group (OVX+SAC). The OVX+SAC group was given drinking water containing 0.0012% SAC for 12 weeks. Bone breaking force and mineralization as well as blood parameters related to the bone metabolism were analyzed. In OVX animals, blood concentration of 17β-estradiol decreased significantly, while osteocalcin and type I collagen C-terminal telopeptides (CTx) increased. Breaking force, bone mineral density (BMD), calcium and phosphorus in femurs, as well as uterine and vaginal weights, decreased significantly following OVX. However, SAC treatment (0.0012% in drinking water) not only remarkably restored the decreased 17β-estradiol and increased osteocalcin and CTx concentrations, but also recovered decreased femoral breaking force, BMD, calcium and phosphorus, although it did not reversed reproductive organ weights. It is suggested that SAC effectively improve bone density by preventing bone turnover mediated osteocalcin, CTx and minerals, and that it could be a potential candidate for therapy or prevention of postmenopausal osteoporosis.

  4. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications.

    Science.gov (United States)

    Furukawa, Hiroyasu; Yaghi, Omar M

    2009-07-01

    Dihydrogen, methane, and carbon dioxide isotherm measurements were performed at 1-85 bar and 77-298 K on the evacuated forms of seven porous covalent organic frameworks (COFs). The uptake behavior and capacity of the COFs is best described by classifying them into three groups based on their structural dimensions and corresponding pore sizes. Group 1 consists of 2D structures with 1D small pores (9 A for each of COF-1 and COF-6), group 2 includes 2D structures with large 1D pores (27, 16, and 32 A for COF-5, COF-8, and COF-10, respectively), and group 3 is comprised of 3D structures with 3D medium-sized pores (12 A for each of COF-102 and COF-103). Group 3 COFs outperform group 1 and 2 COFs, and rival the best metal-organic frameworks and other porous materials in their uptake capacities. This is exemplified by the excess gas uptake of COF-102 at 35 bar (72 mg g(-1) at 77 K for hydrogen, 187 mg g(-1) at 298 K for methane, and 1180 mg g(-1) at 298 K for carbon dioxide), which is similar to the performance of COF-103 but higher than those observed for COF-1, COF-5, COF-6, COF-8, and COF-10 (hydrogen at 77 K, 15 mg g(-1) for COF-1, 36 mg g(-1) for COF-5, 23 mg g(-1) for COF-6, 35 mg g(-1) for COF-8, and 39 mg g(-1) for COF-10; methane at 298 K, 40 mg g(-1) for COF-1, 89 mg g(-1) for COF-5, 65 mg g(-1) for COF-6, 87 mg g(-1) for COF-8, and 80 mg g(-1) for COF-10; carbon dioxide at 298 K, 210 mg g(-1) for COF-1, 779 mg g(-1) for COF-5, 298 mg g(-1) for COF-6, 598 mg g(-1) for COF-8, and 759 mg g(-1) for COF-10). These findings place COFs among the most porous and the best adsorbents for hydrogen, methane, and carbon dioxide.

  5. Progress in the Formation of Carbon-Hetero Bond Based on 2(5H)-Furanones%基于2(5H)-呋喃酮的碳-杂成键反应研究进展

    Institute of Scientific and Technical Information of China (English)

    谭越河; 李建晓; 洪文坤; 汪朝阳

    2011-01-01

    2(5H)-呋喃酮结构单元广泛存在于天然产物中,同时许多2(5H)-呋喃酮类化合物也是重要的有机合成中间体.因此,基于常见2(5H)-呋喃酮(1)的有机合成研究近年来引起了人们的关注.根据在有机合成反应中成键方式的不同,综述了在2(5H)-呋喃酮(1)环上形成C-O,C-N,C-S,C-P,C-Se,C-Si等碳-杂键的反应研究进展.%Recently, the organic synthesis based on 2(5H)-furanones (1) has attracted much attention owing to the unique carbon skeleton of 2(5H)-furanone which is widely present in a variety of natural products and their utility as valuable synthetic intermediates.Classified as different bond kinds, the progress in the formation reactions of carbon-oxygen bond, carbon-nitrogen bond, carbon-sulfur bond, carbon-phosphorus bond, carbon-selenium bond and carbon-silicon bond on 2(5H)-furanone ring is reviewed.

  6. Asymmetric Desymmetrization via Metal-Free C-F Bond Activation: Synthesis of 3,5-Diaryl-5-fluoromethyloxazolidin-2-ones with Quaternary Carbon Centers.

    Science.gov (United States)

    Tanaka, Junki; Suzuki, Satoru; Tokunaga, Etsuko; Haufe, Günter; Shibata, Norio

    2016-08-01

    We disclose the first asymmetric activation of a non-activated aliphatic C-F bond in which a conceptually new desymmetrization of 1,3-difluorides by silicon-induced selective C-F bond scission is a key step. The combination of a cinchona alkaloid based chiral ammonium bifluoride catalyst and N,O-bis(trimethylsilyl)acetoamide (BSA) as the silicon reagent enabled the efficient catalytic cycle of asymmetric Csp3 -F bond cleavage under mild conditions with high enantioselectivities. The ortho effect of the aryl group at the prostereogenic center is remarkable. This concept was applied for the asymmetric synthesis of promising agrochemical compounds, 3,5-diaryl-5-fluoromethyloxazolidin-2-ones bearing a quaternary carbon center.

  7. Gas-Liquid Supersonic Cleaning and Cleaning Verification Spray System

    Science.gov (United States)

    Parrish, Lewis M.

    2009-01-01

    NASA Kennedy Space Center (KSC) recently entered into a nonexclusive license agreement with Applied Cryogenic Solutions (ACS), Inc. (Galveston, TX) to commercialize its Gas-Liquid Supersonic Cleaning and Cleaning Verification Spray System technology. This technology, developed by KSC, is a critical component of processes being developed and commercialized by ACS to replace current mechanical and chemical cleaning and descaling methods used by numerous industries. Pilot trials on heat exchanger tubing components have shown that the ACS technology provides for: Superior cleaning in a much shorter period of time. Lower energy and labor requirements for cleaning and de-scaling uper.ninih. Significant reductions in waste volumes by not using water, acidic or basic solutions, organic solvents, or nonvolatile solid abrasives as components in the cleaning process. Improved energy efficiency in post-cleaning heat exchanger operations. The ACS process consists of a spray head containing supersonic converging/diverging nozzles, a source of liquid gas; a novel, proprietary pumping system that permits pumping liquid nitrogen, liquid air, or supercritical carbon dioxide to pressures in the range of 20,000 to 60,000 psi; and various hoses, fittings, valves, and gauges. The size and number of nozzles can be varied so the system can be built in configurations ranging from small hand-held spray heads to large multinozzle cleaners. The system also can be used to verify if a part has been adequately cleaned.

  8. Unique properties of C,C'-linked nido-biscarborane tetraanions. Synthesis, structure and bonding of ruthenium monocarbollide via unprecedented cage carbon extrusion.

    Science.gov (United States)

    Zhao, Da; Zhang, Jiji; Lin, Zhenyang; Xie, Zuowei

    2016-08-21

    Four reaction pathways have been found in the reaction of a C,C'-linked nido-biscarborane tetraanionic salt with [Ru(p-cymene)Cl2]2, leading to the isolation and structural characterization of redox, triple cage B-H oxidative addition, cage expansion and cage carbon extrusion products. Among these, the unprecedented cage carbon extrusion results in the formation of a new 6π-electron carboranyl ligand [C2B10H10](2-). The bonding interactions between this ligand and the Ru(ii) center have also been discussed on the basis of DFT calculations.

  9. Clean catch urine sample

    Science.gov (United States)

    ... specimen; Urine collection - clean catch; UTI - clean catch; Urinary tract infection - clean catch; Cystitis - clean catch ... LE, Norrby SR. Approach to the patient with urinary tract infection. In: Goldman L, Schafer AI, eds. Goldman-Cecil ...

  10. Carbon K-edge X-ray absorption spectroscopy and time-dependent density functional theory examination of metal-carbon bonding in metallocene dichlorides.

    Science.gov (United States)

    Minasian, Stefan G; Keith, Jason M; Batista, Enrique R; Boland, Kevin S; Kozimor, Stosh A; Martin, Richard L; Shuh, David K; Tyliszczak, Tolek; Vernon, Louis J

    2013-10-01

    Metal-carbon covalence in (C5H5)2MCl2 (M = Ti, Zr, Hf) has been evaluated using carbon K-edge X-ray absorption spectroscopy (XAS) as well as ground-state and time-dependent hybrid density functional theory (DFT and TDDFT). Differences in orbital mixing were determined experimentally using transmission XAS of thin crystalline material with a scanning transmission X-ray microscope (STXM). Moving down the periodic table (Ti to Hf) has a marked effect on the experimental transition intensities associated with the low-lying antibonding 1a1* and 1b2* orbitals. The peak intensities, which are directly related to the M-(C5H5) orbital mixing coefficients, increase from 0.08(1) and 0.26(3) for (C5H5)2TiCl2 to 0.31(3) and 0.75(8) for (C5H5)2ZrCl2, and finally to 0.54(5) and 0.83(8) for (C5H5)2HfCl2. The experimental trend toward increased peak intensity for transitions associated with 1a1* and 1b2* orbitals agrees with the calculated TDDFT oscillator strengths [0.10 and 0.21, (C5H5)2TiCl2; 0.21 and 0.73, (C5H5)2ZrCl2; 0.35 and 0.69, (C5H5)2HfCl2] and with the amount of C 2p character obtained from the Mulliken populations for the antibonding 1a1* and 1b2* orbitals [8.2 and 23.4%, (C5H5)2TiCl2; 15.3 and 39.7%, (C5H5)2ZrCl2; 20.1 and 50.9%, (C5H5)2HfCl2]. The excellent agreement between experiment, theory, and recent Cl K-edge XAS and DFT measurements shows that C 2p orbital mixing is enhanced for the diffuse Hf (5d) and Zr (4d) atomic orbitals in relation to the more localized Ti (3d) orbitals. These results provide insight into how changes in M-Cl orbital mixing within the metallocene wedge are correlated with periodic trends in covalent bonding between the metal and the cyclopentadienide ancillary ligands.

  11. Synthesis, structure, and reactivity of iridium perfluorocarbene complexes: regio- and stereo-specific addition of HCl across a metal carbon double bond.

    Science.gov (United States)

    Yuan, Jian; Bourgeois, Cheryl J; Rheingold, Arnold L; Hughes, Russell P

    2015-12-07

    Reductive activation of an α-fluorine in the perfluoroalkyl complexes Cp*(L)(i)Ir-CF2RF using Mg/graphite leads to perfluorocarbene complexes Cp*(L)Ir[double bond, length as m-dash]CFRF (L = CO, PMe3; RF = CF3, C2F5, C6F5). New complexes E-Cp*(PMe3)Ir[double bond, length as m-dash]CFC2F5 and E-Cp*(CO)Ir[double bond, length as m-dash]CFC6F5 have been characterized by single crystal X-ray diffraction studies, and a comparison of metric parameters with previously reported analogues is reported. Experimental NMR and computational DFT (B3LYP/LACV3P**++) studies agree that for Ir[double bond, length as m-dash]CFRF complexes (RF = CF3, CF2CF3) the thermodynamic preference for the E or Z isomer depends on the steric requirements of ligand L; when L = CO the Z-isomer (F cis to Cp*) is preferred and for L = PMe3 the E-isomer is preferred. When reduction of the precursors is carried out in the dark the reaction is completely selective to produce E- or Z-isomers. Exposure of solutions of these compounds to ambient light results in slow conversion to a photostationary non-equilibrium mixture of E and Z isomers. In the dark, these E/Z mixtures convert thermally to their preferred E or Z equilibrium geometries in an even slower reaction. A study of the temperature dependent kinetics of this dark transformation allows ΔG(‡)298 for rotation about the Ir[double bond, length as m-dash]CFCF3 double bond to be experimentally determined as 25 kcal mol(-1); a DFT/B3LYP/LACV3P**++ calculation of this rotation barrier is in excellent agreement (27 kcal mol(-1)) with the experimental value. Reaction of HCl with toluene solutions of Cp*(L)Ir[double bond, length as m-dash]CFRF (L = CO, PMe3) or Cp*(CO)Ir[double bond, length as m-dash]C(CF3)2 at low temperature resulted in regiospecific addition of HCl across the metal carbon double bond, ultimately yielding Cp*(L)Ir(CHFRF)Cl and Cp*(CO)Ir[CH(CF3)2]Cl. Reaction of HCl with single E or Z diastereomers of Cp*(L)Ir[double bond, length as m

  12. Micro-image analysis in the diffusion-bonded zone of Fe3Al/Q235 carbon steel dissimilar materials

    Indian Academy of Sciences (India)

    Wang Juan; Li Yajiang; Wu Huiqiang; Ren Jiangwei

    2002-10-01

    The chemical composition of the second phase precipitation in the vacuum diffusion-bonded zone of Fe3Al intermetallic compound and Q235 carbon steel was analysed by means of electron probe microanalyser (EPMA). The relative content of the second phase precipitation and grain size was evaluated through a micro-image analyser. The percentage of Fe and Al content in the diffusion zone was measured by EPMA. The results indicated that the relative content of the second phase precipitation rich in carbon and chromium at the Fe3Al/Q235 interface was much higher. With the transition from Fe3Al intermetallic compound to Q235 carbon steel across Fe3Al/Q235 interface, the grain diameter decreased from 250 m to 112 m, Al atom content decreased from 27% to 15%, while Fe atom content increased from 76% to 96%.

  13. Probing the Carbon-phosphorus Bond Coupling in Low-temperature Phosphine PH3—Methane CH4 Interstellar Ice Analogues

    Science.gov (United States)

    Turner, Andrew M.; Abplanalp, Matthew J.; Kaiser, Ralf I.

    2016-03-01

    Phosphine, which has now been confirmed around the carbon-rich star IRC+10216, provides the first example of a phosphorus-containing single bond in interstellar or circumstellar media. While four compounds containing both phosphorus and carbon have been discovered, none contain a carbon-phosphorus single bond. Here, we show that this moiety is plausible from the reaction of phosphine with methane in electron-irradiated interstellar ice analogues. Fractional sublimation allows for detection of individual products at distinct temperatures using reflectron time-of-flight mass spectrometry (ReTOF) coupled with vacuum ultraviolet photoionization. This method produced phosphanes and methylphosphanes as large as P8H10 and CH3P8H9, which demonstrates that a phosphorus-carbon bond can readily form and that methylphosphanes sublime at 12-17 K higher temperatures than the non-organic phosphanes. Also, irradiated ices of phosphine with deuterated-methane untangle the reaction pathways through which these methylphosphanes were formed and identified radical recombination to be preferred over carbene/phosphinidene insertion reactions. In addition, these ReTOF results confirm that CH3PH2 and CH6P2 can form via insertion of carbene and phosphinidene and that the methylenediphosphine (PH2CH2PH2) isomer forms in the ices, although methylphosphine (CH3P2H3) is likely the more abundant isomer and that phosphanes and organophosphanes preferentially fragment via the loss of a phosphino group when photoionized. While the formation of methylphosphine is overall endoergic, the intermediates produced by interactions with energetic electrons proceed toward methylphosphine favorably and barrierlessly and provide plausible mechanisms toward hitherto unidentified interstellar compounds.

  14. Study of double bond equivalents and the numbers of carbon and oxygen atom distribution of dissolved organic matter with negative-mode FT-ICR MS.

    Science.gov (United States)

    Bae, EunJung; Yeo, In Joon; Jeong, Byungkwan; Shin, Yongsik; Shin, Kyung-Hoon; Kim, Sunghwan

    2011-06-01

    A strong linear relationship was observed between the average double bond equivalence (DBE) and the ratio of carbon to oxygen atoms in oxygenated compounds of dissolved organic matter (DOM). Data were acquired by a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS), equipped with a negative-mode electrospray ionization source. The slope and y-intercepts extracted from the linear relationship can be used to compare DOM samples originating from different locations. Significant differences in these parameters were observed between inland riverine and offshore coastal DOM samples. Offshore coastal DOM molecules underwent a change of one DBE for each removal or addition of two oxygen atoms. This suggested the existence of multiple carboxyl groups, each of which contains a double bond and two oxygen atoms. Inland riverine samples exhibited a change of ~1.5 DBE following the addition or removal of two oxygen atoms. This extra change in DBE was attributed to cyclic structures or unsaturated chemical bonds. The DBE value with maximum relative abundance and the minimum DBE value for each class of oxygenated compounds showed that approximately two oxygen atoms contributed to a unity change in DBE. The qualitative analyses given here are in a good agreement with results obtained from analyses using orthogonal analytical techniques. This study demonstrates that DBE and the carbon number distribution, observed by high resolution mass spectrometry, can be valuable in elucidating and comparing structural features of oxygenated molecules of DOM.

  15. The potential utility of predicted one bond carbon-proton coupling constants in the structure elucidation of small organic molecules by NMR spectroscopy.

    Science.gov (United States)

    Venkata, Chandrasekhar; Forster, Mark J; Howe, Peter W A; Steinbeck, Christoph

    2014-01-01

    NMR spectroscopy is the most popular technique used for structure elucidation of small organic molecules in solution, but incorrect structures are regularly reported. One-bond proton-carbon J-couplings provide additional information about chemical structure because they are determined by different features of molecular structure than are proton and carbon chemical shifts. However, these couplings are not routinely used to validate proposed structures because few software tools exist to predict them. This study assesses the accuracy of Density Functional Theory for predicting them using 396 published experimental observations from a diverse range of small organic molecules. With the B3LYP functional and the TZVP basis set, Density Functional Theory calculations using the open-source software package NWChem can predict one-bond CH J-couplings with good accuracy for most classes of small organic molecule. The root-mean-square deviation after correction is 1.5 Hz for most sp3 CH pairs and 1.9 Hz for sp2 pairs; larger errors are observed for sp3 pairs with multiple electronegative substituents and for sp pairs. These results suggest that prediction of one-bond CH J-couplings by Density Functional Theory is sufficiently accurate for structure validation. This will be of particular use in strained ring systems and heterocycles which have characteristic couplings and which pose challenges for structure elucidation.

  16. Alternative Solvents and Technologies for Precision Cleaning of Aerospace Components

    Science.gov (United States)

    Grandelli, Heather; Maloney, Phillip; DeVor, Robert; Hintze, Paul

    2014-01-01

    Precision cleaning solvents for aerospace components and oxygen fuel systems, including currently used Vertrel-MCA, have a negative environmental legacy, high global warming potential, and have polluted cleaning sites. Thus, alternative solvents and technologies are being investigated with the aim of achieving precision contamination levels of less than 1 mg/sq ft. The technologies being evaluated are ultrasonic bath cleaning, plasma cleaning and supercritical carbon dioxide cleaning.

  17. Laser Surface Preparation for Adhesive Bonding of Aerospace Structural Composites

    Science.gov (United States)

    Belcher, M. A.; Wohl, C. J.; Hopkins, J. W.; Connell, J. W.

    2010-01-01

    Adhesive bonds are critical to the integrity of built-up structures. Disbonds can often be detected but the strength of adhesion between surfaces in contact is not obtainable without destructive testing. Typically the number one problem in a bonded structure is surface contamination, and by extension, surface preparation. Standard surface preparation techniques, including grit blasting, manual abrasion, and peel ply, are not ideal because of variations in their application. Etching of carbon fiber reinforced plastic (CFRP) panels using a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser appears to be a highly precise and promising way to both clean a composite surface prior to bonding and provide a bond-promoting patterned surface akin to peel ply without the inherent drawbacks from the same (i.e., debris and curvature). CFRP surfaces prepared using laser patterns conducive to adhesive bonding were compared to typical pre-bonding surface treatments through optical microscopy, contact angle goniometry, and post-bonding mechanical testing.

  18. Nutrient, organic carbon, and chloride concentrations and loads in selected Long Island Sound tributaries—Four decades of change following the passage of the Federal Clean Water Act

    Science.gov (United States)

    Mullaney, John R.

    2016-03-10

    Trends in long-term water-quality and streamflow data from 14 water-quality monitoring sites in Connecticut were evaluated for water years 1974–2013 and 2001–13, coinciding with implementation of the Clean Water Act of 1972 and the Connecticut Nitrogen Credit Exchange program, as part of an assessment of nutrient and chloride concentrations and loads discharged to Long Island Sound. In this study, conducted by the U.S. Geological Survey in cooperation with the Connecticut Department of Energy and Environmental Protection, data were evaluated using a recently developed methodology of weighted regressions with time, streamflow, and season. Trends in streamflow were evaluated using a locally weighted scatterplot smoothing method. Annual mean streamflow increased at 12 of the 14 sites averaging 8 percent during the entire study period, primarily in the summer months, and increased by an average of 9 percent in water years 2001–13, primarily during summer and fall months. Downward trends in flow-normalized nutrient concentrations and loads were observed during both periods for most sites for total nitrogen, total Kjeldahl nitrogen, nitrite plus nitrate nitrogen, total phosphorus, and total organic carbon. Average flow-normalized loads of total nitrogen decreased by 23.9 percent for the entire period and 10.9 percent for the period of water years 2001‒13. Major factors contributing to decreases in flow-normalized loads and concentrations of these nutrients include improvements in wastewater treatment practices, declining atmospheric wet deposition of nitrogen, and changes in land management and land use.

  19. Chemical bonding structural analysis of nitrogen-doped ultrananocrystalline diamond/hydrogenated amorphous carbon composite films prepared by coaxial arc plasma deposition

    Science.gov (United States)

    Gima, Hiroki; Zkria, Abdelrahman; Katamune, Yūki; Ohtani, Ryota; Koizumi, Satoshi; Yoshitake, Tsuyoshi

    2017-01-01

    Nitrogen-doped ultra-nanocrystalline diamond/hydrogenated amorphous carbon composite films prepared in hydrogen and nitrogen mixed-gas atmospheres by coaxial arc plasma deposition with graphite targets were studied electrically and chemical-bonding-structurally. The electrical conductivity was increased by nitrogen doping, accompanied by the production of n-type conduction. From X-ray photoemission, near-edge X-ray absorption fine-structure, hydrogen forward-scattering, and Fourier transform infrared spectral results, it is expected that hydrogen atoms that terminate diamond grain boundaries will be partially replaced by nitrogen atoms and, consequently, π C–N and C=N bonds that easily generate free electrons will be formed at grain boundaries.

  20. Clean Restructuring: Design Elements for Low-Carbon Wholesale Markets and Beyond. A 21st Century Power Partnership Thought Leadership Report

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Monisha [National Renewable Energy Lab. (NREL), Golden, CO (United States); Valenzuela, Jose Maria [World Wildlife Fund, Mexico DF (Mexico); Mora, Hector Alejandro Beltran [Energy Regulatory Commission of Mexico, Mexico DF (United States); Moller Porst, Kim [Danish Energy Agency, Copenhagen (Denmark); Hasselager, Anders [Danish Energy Agency, Copenhagen (Denmark); Friis-Jensen, Sandra [Danish Energy Agency, Copenhagen (Denmark); Vingaard, Mette [Danish Energy Agency, Copenhagen (Denmark); Wigand, Fabian [Ecofys, London (England); Tiedemann, Silvana [Ecofys, London (England); Bird, Lori [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zinaman, Owen [National Renewable Energy Lab. (NREL), Golden, CO (United States); Logan, Jeffrey [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-05-01

    Countries around the world are in various stages of reforming and restructuring their power systems to better meet development needs and decarbonization commitments. Changes in technology, business models, societal needs, and environmental goals are increasing pressure on countries to consider improvements to their power systems. This report addresses key issues associated with clean restructuring--the transition from traditional, vertically integrated utilities to competitive wholesale markets that rely increasingly on variable renewable electricity sources, demand response, and other clean energy options. The report also includes case studies from Mexico, Denmark, and Germany to provide real-world examples of clean restructuring from different perspectives.

  1. Actinide metals with multiple bonds to carbon: synthesis, characterization, and reactivity of U(IV) and Th(IV) bis(iminophosphorano)methandiide pincer carbene complexes.

    Science.gov (United States)

    Ma, Guibin; Ferguson, Michael J; McDonald, Robert; Cavell, Ronald G

    2011-07-18

    Treatment of ThCl(4)(DME)(2) or UCl(4) with 1 equiv of dilithiumbis(iminophosphorano) methandiide, [Li(2)C(Ph(2)P═NSiMe(3))(2)] (1), afforded the chloro actinide carbene complexes [Cl(2)M(C(Ph(2)P═NSiMe(3))(2))] (2 (M = Th) and 3 (M = U)) in situ. Stable PCP metal-carbene complexes [Cp(2)Th(C(Ph(2)P═NSiMe(3))(2))] (4), [Cp(2)U(C(Ph(2)P═NSiMe(3))(2))] (5), [TpTh(C(Ph(2)P═NSiMe(3))(2))Cl] (6), and [TpU(C(Ph(2)P═NSiMe(3))(2))Cl] (7) were generated from 2 or 3 by further reaction with 2 equiv of thallium(I) cyclopentadienide (CpTl) in THF to yield 4 or 5 or with 1 equiv of potassium hydrotris(pyrazol-1-yl) borate (TpK) also in THF to give 6 or 7, respectively. The derivative complexes were isolated, and their crystal structures were determined by X-ray diffraction. All of these U (or Th)-carbene complexes (4-7) possess a very short M (Th or U)═carbene bond with evidence for multiple bond character. Gaussian 03 DFT calculations indicate that the M═C double bond is constructed by interaction of the 5f and 6d orbitals of the actinide metal with carbene 2p orbitals of both π and σ character. Complex 3 reacted with acetonitrile or benzonitrile to cyclo-add C≡N to the U═carbon double bond, thereby forming a new C-C bond in a new chelated quadridentate ligand in the bridged dimetallic complexes (9 and 10). A single carbon-U bond is retained. The newly coordinated uranium complex dimerizes with one equivalent of unconverted 3 using two chlorides and the newly formed imine derived from the nitrile as three connecting bridges. In addition, a new crystal structure of [CpUCl(3)(THF)(2)] (8) was determined by X-ray diffraction.

  2. Facile Formation and Dissociation Behaviour of C–C Bond Resulted from the Nucleophilic Attack of Carbanions on a Carbonyl Carbon in [Pt(hfac)2

    OpenAIRE

    2000-01-01

    [Pt(hfac)2] (hfac:hexafluoroacetylacetonate) reacts with MeNH2 in CH2Cl2/MeOH to give an –NHMe adduct complex on one of the carbonyl carbons, (MeNH3)[Pt(hfac)(hfac–NHMe)] 1 which is a tetrahedral intermediate of a Schiff base complex,[Pt(CF3COCHC(NMe)CF3)2] 2. Complex 1 activates H2O,MeOH, MeNO2 or acetone in solution to form the correspondingconjugate base adducts. The C–C bond in–CH2NO2 adduct 6, easily cleaves and generates nitromethane in solution.

  3. Tensile property improvement of TWIP-cored three-layer steel sheets fabricated by hot-roll-bonding with low-carbon steel or interstitial-free steel

    OpenAIRE

    Park, Jaeyeong; Kim, Jung-Su; Kang, Minju; Sohn, Seok Su; Cho, Won Tae; Kim, Hyoung Seop; Lee, Sunghak

    2017-01-01

    TWIP-cored three-layer steel sheets were newly fabricated by hot rolling of TWIP steel sheet surrounded by low-carbon (LC) or interstitial-free (IF) steel sheets. TWIP/LC or TWIP/IF interfaces were well bonded without pores or voids, while a few pearlites were thinly formed along the interfaces. The strengths and elongation of the TWIP-cored sheets increased as the volume fraction of TWIP-cored region increased, and were also well matched with the ones calculated by a rule of mixtures based o...

  4. Regioselective electrochemical reduction of 2,4-dichlorobiphenyl - Distinct standard reduction potentials for carbon-chlorine bonds using convolution potential sweep voltammetry

    Science.gov (United States)

    Muthukrishnan, A.; Sangaranarayanan, M. V.; Boyarskiy, V. P.; Boyarskaya, I. A.

    2010-04-01

    The reductive cleavage of carbon-chlorine bonds in 2,4-dichlorobiphenyl (PCB-7) is investigated using the convolution potential sweep voltammetry and quantum chemical calculations. The potential dependence of the logarithmic rate constant is non-linear which indicates the validity of Marcus-Hush theory of quadratic activation-driving force relationship. The ortho-chlorine of the 2,4-dichlorobiphenyl gets reduced first as inferred from the quantum chemical calculations and bulk electrolysis. The standard reduction potentials pertaining to the ortho-chlorine of 2,4-dichlorobiphenyl and that corresponding to para chlorine of the 4-chlorobiphenyl have been estimated.

  5. SEMICONDUCTOR TECHNOLOGY A new cleaning process for the metallic contaminants on a post-CMP wafer's surface

    Science.gov (United States)

    Baohong, Gao; Yuling, Liu; Chenwei, Wang; Yadong, Zhu; Shengli, Wang; Qiang, Zhou; Baimei, Tan

    2010-10-01

    This paper presents a new cleaning process using boron-doped diamond (BDD) film anode electrochemical oxidation for metallic contaminants on polished silicon wafer surfaces. The BDD film anode electrochemical oxidation can efficiently prepare pyrophosphate peroxide, pyrophosphate peroxide can oxidize organic contaminants, and pyrophosphate peroxide is deoxidized into pyrophosphate. Pyrophosphate, a good complexing agent, can form a metal complex, which is a structure consisting of a copper ion, bonded to a surrounding array of two pyrophosphate anions. Three polished wafers were immersed in the 0.01 mol/L CuSO4 solution for 2 h in order to make comparative experiments. The first one was cleaned by pyrophosphate peroxide, the second by RCA (Radio Corporation of America) cleaning, and the third by deionized (DI) water. The XPS measurement result shows that the metallic contaminants on wafers cleaned by the RCA method and by pyrophosphate peroxide is less than the XPS detection limits of 1 ppm. And the wafer's surface cleaned by pyrophosphate peroxide is more efficient in removing organic carbon residues than RCA cleaning. Therefore, BDD film anode electrochemical oxidation can be used for microelectronics cleaning, and it can effectively remove organic contaminants and metallic contaminants in one step. It also achieves energy saving and environmental protection.

  6. Kinetic solvent effects on hydrogen abstraction reactions from carbon by the cumyloxyl radical. The role of hydrogen bonding.

    Science.gov (United States)

    Bietti, Massimo; Salamone, Michela

    2010-08-20

    A kinetic study of the H-atom abstraction reactions from 1,4-cyclohexadiene and triethylamine by the cumyloxyl radical has been carried out in different solvents. Negligible effects are observed with 1,4-cyclohexadiene, whereas with triethylamine a significant decrease in rate constant (k(H)) is observed on going from benzene to MeOH. A good correlation between log k(H) and the solvent hydrogen bond donor parameter alpha is observed, indicative of an H-bonding interaction between the amine lone pair and the solvent.

  7. MICROWAVE-ASSISTED CHEMISTRY: SYNTHESIS OF AMINES AND HETEROCYCLES VIA CARBON-NITROGEN BOND FORMATION IN AQUEOUS MEDIA

    Science.gov (United States)

    Improved C-N bond formation under MW influence is demonstrated by a) solventless three-component coupling reaction to generate propargyl amines that uses only Cu (I); b) aqueous N-alkylation of amines by alkyl halides that proceeds expeditiously in the presence of NaOH to deliver...

  8. Effects of carbonyl bond, metal cluster dissociation, and evaporation rates on predictions of nanotube production in high-pressure carbon monoxide

    Science.gov (United States)

    Scott, Carl D.; Smalley, Richard E.

    2003-01-01

    The high-pressure carbon monoxide (HiPco) process for producing single-wall carbon nanotubes (SWNTs) uses iron pentacarbonyl as the source of iron for catalyzing the Boudouard reaction. Attempts using nickel tetracarbonyl led to no production of SWNTs. This paper discusses simulations at a constant condition of 1300 K and 30 atm in which the chemical rate equations are solved for different reaction schemes. A lumped cluster model is developed to limit the number of species in the models, yet it includes fairly large clusters. Reaction rate coefficients in these schemes are based on bond energies of iron and nickel species and on estimates of chemical rates for formation of SWNTs. SWNT growth is measured by the conformation of CO2. It is shown that the production of CO2 is significantly greater for FeCO because of its lower bond energy as compared with that of NiCO. It is also shown that the dissociation and evaporation rates of atoms from small metal clusters have a significant effect on CO2 production. A high rate of evaporation leads to a smaller number of metal clusters available to catalyze the Boudouard reaction. This suggests that if CO reacts with metal clusters and removes atoms from them by forming MeCO, this has the effect of enhancing the evaporation rate and reducing SWNT production. The study also investigates some other reactions in the model that have a less dramatic influence.

  9. 叔丁醇钾促进的形成碳—碳及碳—杂键的偶联反应的研究进展%Recent Progress in the Research of the t-BuOK-Mediated Coupling Reactions to Form Carbon-Carbon and Carbon-Heteroatom Bonds

    Institute of Scientific and Technical Information of China (English)

    王良贵; 严国兵; 张鑫燕

    2012-01-01

    Potassium tert-butoxide has wide application as a strong base and weak nucleophilie in organic chemistry. In this paper, the newest development of the t-BuOK-mediated coupling reactions is reviewed. The main focuses are the formation of carbon-carbon, carbon-ziitrogen and carbon-oxygen bonds. The formation mechanisms of these bonds are discussed in details.%叔丁醇钾由于其碱性强而亲核性相对较弱在有机合成中得到广泛应用.综述了近年来叔丁醇钾促进的交叉偶联反应的研究进展,主要包括碳-碳、碳-氮及碳-氧键的形成及其反应机理的探讨.

  10. Surface characterization in composite and titanium bonding: Carbon fiber surface treatments for improved adhesion to thermoplastic polymers

    Science.gov (United States)

    Devilbiss, T. A.; Wightman, J. P.

    1987-01-01

    The effect of anodization in NaOH, H2SO4, and amine salts on the surface chemistry of carbon fibers was examined by X-ray photoelectron spectroscopy (XPS). The surfaces of carbon fibers after anodization in NaOH and H2SO4 were examined by scanning transmission electron microscopy (STEM), angular dependent XPS, UV absorption spectroscopy of the anodization bath, secondary ion mass spectrometry, and polar/dispersive surface energy analysis. Hercules AS-4, Dexter Hysol XAS, and Union Carbide T-300 fibers were examined by STEM, angular dependent XPS, and breaking strength measurement before and after commercial surface treatment. Oxygen and nitrogen were added to the fiber surfaces by anodization in amine salts. Analysis of the plasmon peak in the carbon 1s signal indicated that H2SO4 anodization affected the morphological structure of the carbon fiber surface. The work of adhesion of carbon fibers to thermoplastic resins was calculated using the geometric mean relationship. A correlation was observed between the dispersive component of the work of adhesion and the interfacial adhesion.

  11. A computational study on structure, stability and bonding in Noble Gas bound metal Nitrates, Sulfates and Carbonates (Metal = Cu, Ag, Au)

    Indian Academy of Sciences (India)

    MANAS GHARA; SUDIP PAN; JYOTIRMOY DEB; ANAND KUMAR; UTPAL SARKAR; PRATIM KUMAR CHATTARAJ

    2016-10-01

    A density functional theory based study is performed to investigate the noble gas (Ng = Ar-Rn) binding ability of nitrates, sulfates and carbonates of noble metal (M). Their ability to bind Ng atoms is assessed through bond dissociation energy and thermochemical parameters like dissociation enthalpy and dissociation free energy change corresponding to the dissociation of Ng bound compound producing Ngand the respective salt. The zero-point energy corrected dissociation energy values per Ng atom for the dissociation process producing Ng atom(s) and the corresponding salts range within 6.0–13.1 kcal/mol in NgCuNO₃, 3.1–9.8 kcal/mol in NgAgNO₃, 6.0–13.2 kcal/mol in NgCuSO₄, 3.2–10.1 kcal/mol in NgAgSO₄, 5.1–11.7 kcal/mol in Ng₂Cu₂SO₄, 2.5–8.6 kcal/mol in Ng₂Ag₂SO₂, 8.1–19.9 kcal/mol in Ng₂Au2SO₂, 5.7–12.4 kcal/mol in NgCuCO₃, 2.3–8.0 kcal/mol in Ng₂Ag₂CO₃ and 7.3–18.2 kcal/mol in Ng₂Au₂CO₃, with a gradual increase in moving from Ar to Rn. For a given type of system, the stability of Ng bound analogues follows the order as Au > Cu > Ag. All dissociation processes are endothermic in nature whereas they become endergonic as well in most of the cases of Kr-Rn bound analogues at 298 K. Natural population analysis along with the computation of Wiberg bond indices, and electron density analyses provide insights into the nature of the Ng-M bonds. The Ng-M bonds can be represented as partial covalent bonds as supported by the different electron density descriptors.

  12. ASRM process development in aqueous cleaning

    Science.gov (United States)

    Swisher, Bill

    1992-12-01

    Viewgraphs are included on process development in aqueous cleaning which is taking place at the Aerojet Advanced Solid Rocket Motor (ASRM) Division under a NASA Marshall Space and Flight Center contract for design, development, test, and evaluation of the ASRM including new production facilities. The ASRM will utilize aqueous cleaning in several manufacturing process steps to clean case segments, nozzle metal components, and igniter closures. ASRM manufacturing process development is underway, including agent selection, agent characterization, subscale process optimization, bonding verification, and scale-up validation. Process parameters are currently being tested for optimization utilizing a Taguci Matrix, including agent concentration, cleaning solution temperature, agitation and immersion time, rinse water amount and temperature, and use/non-use of drying air. Based on results of process development testing to date, several observations are offered: aqueous cleaning appears effective for steels and SermeTel-coated metals in ASRM processing; aqueous cleaning agents may stain and/or attack bare aluminum metals to various extents; aqueous cleaning appears unsuitable for thermal sprayed aluminum-coated steel; aqueous cleaning appears to adequately remove a wide range of contaminants from flat metal surfaces, but supplementary assistance may be needed to remove clumps of tenacious contaminants embedded in holes, etc.; and hot rinse water appears to be beneficial to aid in drying of bare steel and retarding oxidation rate.

  13. Protecting integrated circuits from excessive charge accumulation during plasma cleaning of multichip modules

    Energy Technology Data Exchange (ETDEWEB)

    Rodenbeck, Christopher T; Girardi, Michael

    2015-04-21

    Internal nodes of a constituent integrated circuit (IC) package of a multichip module (MCM) are protected from excessive charge during plasma cleaning of the MCM. The protected nodes are coupled to an internal common node of the IC package by respectively associated discharge paths. The common node is connected to a bond pad of the IC package. During MCM assembly, and before plasma cleaning, this bond pad receives a wire bond to a ground bond pad on the MCM substrate.

  14. Amino-Functionalized Multiwalled Carbon Nanotubes Lead to Successful Ring-Opening Polymerization of Poly(ε-caprolactone): Enhanced Interfacial Bonding and Optimized Mechanical Properties.

    Science.gov (United States)

    Roumeli, Eleftheria; Papageorgiou, Dimitrios G; Tsanaktsis, Vasilios; Terzopoulou, Zoe; Chrissafis, Konstantinos; Avgeropoulos, Apostolos; Bikiaris, Dimitrios N

    2015-06-01

    In this work, the synthesis, structural characteristics, interfacial bonding, and mechanical properties of poly(ε-caprolactone) (PCL) nanocomposites with small amounts (0.5, 1.0, and 2.5 wt %) of amino-functionalized multiwalled carbon nanotubes (f-MWCNTs) prepared by ring-opening polymerization (ROP) are reported. This method allows the creation of a covalent-bonding zone on the surface of nanotubes, which leads to efficient debundling and therefore satisfactory dispersion and effective load transfer in the nanocomposites. The high covalent grafting extent combined with the higher crystallinity provide the basis for a significant enhancement of the mechanical properties, which was detected in the composites with up to 1 wt % f-MWCNTs. Increasing filler concentration encourages intrinsic aggregation forces, which allow only minor grafting efficiency and poorer dispersion and hence inferior mechanical performance. f-MWCNTs also cause a significant improvement on the polymerization reaction of PCL. Indeed, the in situ polymerization kinetics studies reveal a significant decrease in the reaction temperature, by a factor of 30-40 °C, combined with accelerated the reaction kinetics during initiation and propagation and a drastically reduced effective activation energy.

  15. Surface chemistry in the process of coating mesoporous SiO2 onto carbon nanotubes driven by the formation of Si-O-C bonds.

    Science.gov (United States)

    Paula, Amauri J; Stéfani, Diego; Souza Filho, Antonio G; Kim, Yoong Ahm; Endo, Morinobu; Alves, Oswaldo L

    2011-03-07

    The deposition of mesoporous silica (SiO(2)) on carbon nanotubes (CNTs) has opened up a wide range of assembling possibilities by exploiting the sidewall of CNTs and organosilane chemistry. The resulting systems may be suitable for applications in catalysis, energy conversion, environmental chemistry, and nanomedicine. However, to promote the condensation of silicon monomers on the nanotube without producing segregated particles, (OR)(4-x)SiO(x)(x-) units must undergo nucleophilic substitution by groups localized on the CNT sidewall during the transesterification reaction. In order to achieve this preferential attachment, we have deposited silica on oxidized carbon nanotubes (single-walled and multiwalled) in a sol-gel process that also involved the use of a soft template (cetyltrimethylammonium bromide, CTAB). In contrast to the simple approach normally used to describe the attachment of inorganic compounds on CNTs, SiO(2) nucleation on the tube is a result of nucleophilic attack mainly by hydroxyl radicals, localized in a very complex surface chemical environment, where various oxygenated groups are covalently bonded to the sidewall and carboxylated carbonaceous fragments (CCFs) are adsorbed on the tubes. Si-O-C covalent bond formation in the SiO(2)-CNT hybrids was observed even after removal of the CCFs with sodium hydroxide. By adding CTAB, and increasing the temperature, time, and initial amount of the catalyst (NH(4)OH) in the synthesis, the SiO(2) coating morphology could be changed from one of nanoparticles to mesoporous shells. Concomitantly, pore ordering was achieved by increasing the amount of CTAB. Furthermore, preferential attachment on the sidewall results mostly in CNTs with uncapped ends, having sites (carboxylic acids) that can be used for further localized reactions.

  16. Silvering substrates after CO2 snow cleaning

    Science.gov (United States)

    Zito, Richard R.

    2005-09-01

    There have been some questions in the astronomical community concerning the quality of silver coatings deposited on substrates that have been cleaned with carbon dioxide snow. These questions center around the possible existence of carbonate ions left behind on the substrate by CO2. Such carbonate ions could react with deposited silver to produce insoluble silver carbonate, thereby reducing film adhesion and reflectivity. Carbonate ions could be produced from CO2 via the following mechanism. First, during CO2 snow cleaning, a small amount of moisture can condense on a surface. This is especially true if the jet of CO2 is allowed to dwell on one spot. CO2 gas can dissolve in this moisture, producing carbonic acid, which can undergo two acid dissociations to form carbonate ions. In reality, it is highly unlikely that charged carbonate ions will remain stable on a substrate for very long. As condensed water evaporates, Le Chatelier's principle will shift the equilibrium of the chain of reactions that produced carbonate back to CO2 gas. Furthermore, the hydration of CO2 reaction of CO2 with H20) is an extremely slow process, and the total dehydrogenation of carbonic acid is not favored. Living tissues that must carry out the equilibration of carbonic acid and CO2 use the enzyme carbonic anhydrase to speed up the reaction by a factor of one million. But no such enzymatic action is present on a clean mirror substrate. In short, the worst case analysis presented below shows that the ratio of silver atoms to carbonate radicals must be at least 500 million to one. The results of chemical tests presented here support this view. Furthermore, film lift-off tests, also presented in this report, show that silver film adhesion to fused silica substrates is actually enhanced by CO2 snow cleaning.

  17. FTIR Study of New Chemical Bond Formation in N-doped Carbon under Swift Pb ion Irradiation

    Institute of Scientific and Technical Information of China (English)

    ZhaoZhiming; SongYin; WangZhiguang; JinYunfan; A.Benyagoub; M.Toulemonde

    2003-01-01

    Since Liu and Cohen predicted that the bulk modulus of carbon nitride films with the structure of β-C3N4 are comparable or even surpass those of diamond, intensive experimental efforts have been done to synthesize this new material. Various kinds of synthesized methods have been applied to fabricate carbon nitride films, whereas samples with sufficient amounts of crystallized C3N4 structure or with mechanical properties comparable to the predicted values have not been reported. From the basic of ion-solid interaction, Wang, et al. have proposed a novel method, "low energy ion implantation + swift heavy ion irradiation", for synthesizing compound in atom mixed materials. This method has been used in the present work.

  18. Diffusivity of Al and Fe near the diffusion bonding interface of Fe3Al with low carbon steel

    Indian Academy of Sciences (India)

    Li Yajiang; Wang Juan; Yin Yansheng; Ma Haijun

    2005-02-01

    The distribution of elements near the Fe3Al/Q235 diffusion bonding interface was computed by the diffusion equation as well as measured by means of EPMA. The results indicated close agreement between the two for iron and aluminium. Diffusion coefficient in the interface transition zone is larger than that in the Fe3Al and Q235 steel at the same temperature, which is favourable to elemental diffusion. The diffusion distance near the Fe3Al/Q235 interface increased with increasing heating temperature, , and the holding time, . The relation between the width of the interface transition zone, , and the holding time, , conformed to parabolic growth law: 2 = 4.8 × 104 exp(– 133/RT) ( – 0). The width of the interface transition zone does not increase significantly for holding times beyond 60 min.

  19. Influence of carbon chemical bonding on the tribological behavior of sputtered nanocomposite TiBC/a-C coatings

    Energy Technology Data Exchange (ETDEWEB)

    Abad, M.D. [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla), Avda. Americo Vespucio 49, 41092-Sevilla (Spain); Sanchez-Lopez, J.C., E-mail: jcslopez@icmse.csic.e [Instituto de Ciencia de Materiales de Sevilla (CSIC-Univ. Sevilla), Avda. Americo Vespucio 49, 41092-Sevilla (Spain); Brizuela, M.; Garcia-Luis, A. [Fundacion Inasmet-Tecnalia, Mikeletegui Pasealekua 2, 20009 Donostia-San Sebastian (Spain); Shtansky, D.V. [State Tecnological University ' Moscow Institute of Steel and Alloys' , Leninsky pr. 4, 119049-Moscow (Russian Federation)

    2010-07-30

    The tribological performance of nanocomposite coatings containing Ti-B-C phases and amorphous carbon (a-C) are studied. The coatings are deposited by a sputtering process from a sintered TiB{sub 2}:TiC target and graphite, using pulsed direct current and radio frequency sources. By varying the sputtering power ratio, the amorphous carbon content of the coatings can be tuned, as observed by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The crystalline component consists of very disordered crystals with a mixture of TiB{sub 2}/TiC or TiB{sub x}C{sub y} phases. A slight increase in crystalline order is detected with the incorporation of carbon in the coatings that is attributed to the formation of a ternary TiB{sub x}C{sub y} phase. An estimation of the carbon present in the form of carbide (TiB{sub x}C{sub y} or TiC) and amorphous (a-C) is performed using fitting analysis of the C 1s XPS peak. The film hardness (22 to 31 GPa) correlates with the fraction of the TiB{sub x}C{sub y} phase that exists in the coatings. The tribological properties were measured by a pin-on-disk tribometer in ambient conditions, using 6 mm tungsten carbide balls at 1 N. The friction coefficients and the wear rates show similar behavior, exhibiting an optimum when the fraction of C atoms in the amorphous phase is near 50%. This composition enables significant improvement of the friction coefficients and wear rates ({mu} {approx} 0.1; k < 1 x 10{sup -6} mm{sup 3}/Nm), while maintaining a good value of hardness (24.6 GPa). Establishing the correlation between the lubricant properties and the fraction of a-C is very useful for purposes of tailoring the protective character of these nanocomposite coatings to engineering applications.

  20. Modeling the conformational preference of the carbon-bonded covalent adduct formed upon exposure of 2'-deoxyguanosine to ochratoxin A.

    Science.gov (United States)

    Sharma, Purshotam; Manderville, Richard A; Wetmore, Stacey D

    2013-05-20

    The conformational flexibility of the C8-linked guanine adduct formed from attachment of ochratoxin A (OTA) was analyzed using a systematic computational approach and models ranging from the nucleobase to the adducted DNA helix. A focus was placed on the influence of the C8-modification of 2'-deoxyguanosine (dG) on the preferred relative arrangement of the nucleobase and the C8-substituent and, more importantly, the anti/syn conformational preference with respect to the glycosidic bond. Although OTA is twisted with respect to the base in the nucleobase model, addition of the deoxyribose sugar induces a further twist and restricts rotation about the C-C linkage due to close contacts between OTA and the sugar. The nucleoside model preferentially adpots a syn orientation (by 10-20 kJ mol(-1) depending on the OTA conformation) due to the presence of an O5'-H···N3 interaction. However, when this hydrogen bond is eliminated, which better mimics the DNA environment, a small (simulations and free energy analysis predict that both syn- and anti-conformations of OTB-dG are equally stable in helices when paired opposite cytosine. These results indicate that the adduct will likely adopt a syn conformation in an isolated nucleoside and nucleotide, while a mixture of syn and anti conformations will be observed in DNA duplexes. Since the syn conformation could stabilize base mismatches upon DNA replication or Z-DNA structures with varied biological outcomes, future computational and experimental work should elucidate the consequences of the conformational preference of this potentially harmful DNA lesion.

  1. The importance of oxygen-containing defects on carbon nanotubes for the detection of polar and non-polar vapours through hydrogen bond formation

    Energy Technology Data Exchange (ETDEWEB)

    Watts, Paul C P; Mureau, Natacha; Tang, Zhenni; Miyajima, Yoji; Carey, J David; Silva, S Ravi P [Nano-Electronics Centre, Advanced Technology Institute, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2007-05-02

    We report the electrical responses of water vapour and O{sub 2} adsorption onto macroscopic multi-walled carbon nanotube (MWCNT) ropes, and compare the results with mats of acid-treated MWCNTs on SiO{sub 2} substrates in order to investigate the importance of oxygen-containing defects on CNTs. In the outgassed state both carbon nanotube (CNT) materials exhibit rapid changes in electrical resistance when exposed to dry air, humid air or water vapour at standard temperature and pressure (STP). The measured electrical responses are highly reversible at STP when cycled between humid air, vacuum and dry air. We report a decrease in resistance for the CNT materials in dry air, attributed to O{sub 2} p-type doping of the CNTs, whereas there is an increase in resistance when exposed to a humid environment. This latter effect is attributed to the formation of hydrogen bonding from the polar water molecules with the oxygen-containing defects on the CNTs. Our observations indicate that the increase in electrical resistance upon water absorption affects a reduction of the electron-withdrawing power of the oxygen-containing defect groups, thus leading to a reduced hole carrier concentration in the p-type nanotubes.

  2. Bond Issues.

    Science.gov (United States)

    Pollack, Rachel H.

    2000-01-01

    Notes trends toward increased borrowing by colleges and universities and offers guidelines for institutions that are considering issuing bonds to raise money for capital projects. Discussion covers advantages of using bond financing, how use of bonds impacts on traditional fund raising, other cautions and concerns, and some troubling aspects of…

  3. Clean Energy—The Ultimate Solution

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Major economies in the world have raised various proposals to reduce carbon emissions by applying clean energies in a bid to tackle climate change. As a major consumer of coal, China is facing mounting pressure, and experts are wrangling about which clean energy should come first on the government agenda. To get a closer look at the current situation in China, Beijing Review reporter Liu Yunyun sat down with Zhou Dadi, Director General Emeritus of the Energy Research Institute of the National Development and Reform Commission, who shared his insights on clean energy. Edited excerpts follow:

  4. Chemical Bonding and Structural Information of Black CarbonReference Materials and Individual Carbonaceous AtmosphericAerosols

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Rebecca J.; Tivanski, Alexei V.; Marten, Bryan D.; Gilles, Mary K.

    2007-04-25

    The carbon-to-oxygen ratios and graphitic nature of a rangeof black carbon standard reference materials (BC SRMs), high molecularmass humic-like substances (HULIS) and atmospheric particles are examinedusing scanning transmission X-ray microscopy (STXM) coupled with nearedge X-ray absorption fine structure (NEXAFS) spectroscopy. UsingSTXM/NEXAFS, individual particles with diameter>100 nm are studied,thus the diversity of atmospheric particles collected during a variety offield missions is assessed. Applying a semi-quantitative peak fittingmethod to the NEXAFS spectra enables a comparison of BC SRMs and HULIS toparticles originating from anthropogenic combustion and biomass burns,thus allowing determination of the suitability of these materials forrepresenting atmospheric particles. Anthropogenic combustion and biomassburn particles can be distinguished from one another using both chemicalbonding and structural ordering information. While anthropogeniccombustion particles are characterized by a high proportion ofaromatic-C, the presence of benzoquinone and are highly structurallyordered, biomass burn particles exhibit lower structural ordering, asmaller proportion of aromatic-C and contain a much higher proportion ofoxygenated functional groups.

  5. 活性炭和植物吸收对室内空气甲醛净化的影响%Effect of the Activated Carbon and Plants Uptake on the Formaldehyde Cleaning in Indoor Air

    Institute of Scientific and Technical Information of China (English)

    廖秋实; 李苑; 杨宇婷; 张艳北; 史春玲; 秦红梅; 文静; 江长胜

    2011-01-01

    The indoor air pollution in urban resident is very serious, formaldehyde has become one of the most important indoor air pollutants in China. In this study, ivy (Scinda psusaureu), green dill (Hedera nepalensis van. Sinensis) and activated carbon were selected as the research objects, and the author used the closed chamber technique to study the absorption capacity of plants and chemicals on formaldehyde. The results showed that green dill, ivy and activated carbon were all good for indoor formaldehyde purification. 1 day later, the purifying efficiency decreased in the order as follows: ivy+activated carbon (formaldehyde cleaning rate was 38.27%)>ivy (34.31%)>green dill+activated carbon (32.20%)>green dill (5.61%)>activated carbon (3.73%). 10 days later, the purifying efficiency decreased in the order as follows: ivy+activated carbon (69.91%)>green dill+activated carbon (64.28%)>ivy (60.44%)>activated carbon (57.50%) >green dill (24.99%). Combining the plants and activated carbon had the better efficiency of formaldehyde cleaning rate than using plants or activated carbon singly, and long time had better effect than short time.%城市住宅的室内空气污染十分严重,甲醛已经成为中国目前室内空气中的首要污染物.以绿萝、常春藤与活性炭为研究对象,采用密闭箱法进行净化甲醛能力的研究.结果表明,绿萝、常春藤与活性炭均对室内空气中甲醛具有良好的净化作用,24 h后的甲醛净化能力大小依次为:常春藤+活性炭(甲醛去除率38.27%)>常春藤(34.31%)>绿萝+活性炭(32.20%)>绿萝(5.61%)>活性炭(3.73%);10天后的净化效果排序为:常春藤+活性炭(69.91%)>绿萝+活性炭(64.28%)>常春藤(60.44%)>活性炭(57.50%)>绿萝(24.99%).植物与活性炭联合作用对甲醛净化效果比单一用植物或活性炭效果好,而且长期作用比短期作用效果好.

  6. Neutron structure of human carbonic anhydrase II in complex with methazolamide: mapping the solvent and hydrogen-bonding patterns of an effective clinical drug

    Directory of Open Access Journals (Sweden)

    Mayank Aggarwal

    2016-09-01

    Full Text Available Carbonic anhydrases (CAs; EC 4.2.1.1 catalyze the interconversion of CO2 and HCO3−, and their inhibitors have long been used as diuretics and as a therapeutic treatment for many disorders such as glaucoma and epilepsy. Acetazolamide (AZM and methazolamide (MZM, a methyl derivative of AZM are two of the classical CA inhibitory drugs that have been used clinically for decades. The jointly refined X-ray/neutron structure of MZM in complex with human CA isoform II (hCA II has been determined to a resolution of 2.2 Å with an Rcryst of ∼16.0%. Presented in this article, along with only the second neutron structure of a clinical drug-bound hCA, is an in-depth structural comparison and analyses of differences in hydrogen-bonding network, water-molecule orientation and solvent displacement that take place upon the binding of AZM and MZM in the active site of hCA II. Even though MZM is slightly more hydrophobic and displaces more waters than AZM, the overall binding affinity (Ki for both of the drugs against hCA II is similar (∼10 nM. The plausible reasons behind this finding have also been discussed using molecular dynamics and X-ray crystal structures of hCA II–MZM determined at cryotemperature and room temperature. This study not only allows a direct comparison of the hydrogen bonding, protonation states and solvent orientation/displacement of AZM and MZM, but also shows the significant effect that the methyl derivative has on the solvent organization in the hCA II active site.

  7. Evidence for a Proton Transfer Network and a Required Persulfide-Bond-Forming Cysteine Residue in Ni-Containing Carbon Monoxide Dehydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Eun Jin Kim; Jian Feng; Matthew R. Bramlett; Paul A. Lindahl

    2004-05-18

    OAK-B135 Carbon monoxide dehydrogenase from Moorella thermoacetica catalyzes the reversible oxidation of CO to CO2 at a nickel-iron-sulfur active-site called the C-cluster. Mutants of a proposed proton transfer pathway and of a cysteine residue recently found to form a persulfide bond with the C-cluster were characterized. Four semi-conserved histidine residues were individually mutated to alanine. His116 and His122 were essential to catalysis, while His113 and His119 attenuated catalysis but were not essential. Significant activity was ''rescued'' by a double mutant where His116 was replaced by Ala and His was also introduced at position 115. Activity was also rescued in double mutants where His122 was replaced by Ala and His was simultaneously introduced at either position 121 or 123. Activity was also ''rescued'' by replacing His with Cys at position 116. Mutation of conserved Lys587 near the C-cluster attenuated activity but did not eliminate it. Activity was virtually abolished in a double mutant where Lys587 and His113 were both changed to Ala. Mutations of conserved Asn284 also attenuated activity. These effects suggest the presence of a network of amino acid residues responsible for proton transfer rather than a single linear pathway. The Ser mutant of the persulfide-forming Cys316 was essentially inactive and displayed no EPR signals originating from the C-cluster. Electronic absorption and metal analysis suggests that the C-cluster is absent in this mutant. The persulfide bond appears to be essential for either the assembly or stability of the C-cluster, and/or for eliciting the redox chemistry of the C-cluster required for catalytic activity.

  8. Airing 'clean air' in Clean India Mission.

    Science.gov (United States)

    Banerjee, T; Kumar, M; Mall, R K; Singh, R S

    2016-12-30

    The submission explores the possibility of a policy revision for considering clean air quality in recently launched nationwide campaign, Clean India Mission (CIM). Despite of several efforts for improving availability of clean household energy and sanitation facilities, situation remain still depressing as almost half of global population lacks access to clean energy and proper sanitation. Globally, at least 2.5 billion people do not have access to basic sanitation facilities. There are also evidences of 7 million premature deaths by air pollution in year 2012. The situation is even more disastrous for India especially in rural areas. Although, India has reasonably progressed in developing sanitary facilities and disseminating clean fuel to its urban households, the situation in rural areas is still miserable and needs to be reviewed. Several policy interventions and campaigns were made to improve the scenario but outcomes were remarkably poor. Indian census revealed a mere 31% sanitation coverage (in 2011) compared to 22% in 2001 while 60% of population (700 million) still use solid biofuels and traditional cook stoves for household cooking. Further, last decade (2001-2011) witnessed the progress decelerating down with rural households without sanitation facilities increased by 8.3 million while minimum progress has been made in conversion of conventional to modern fuels. To revamp the sanitation coverage, an overambitious nationwide campaign CIM was initiated in 2014 and present submission explores the possibility of including 'clean air' considerations within it. The article draws evidence from literatures on scenarios of rural sanitation, energy practises, pollution induced mortality and climatic impacts of air pollution. This subsequently hypothesised with possible modification in available technologies, dissemination modes, financing and implementation for integration of CIM with 'clean air' so that access to both sanitation and clean household energy may be

  9. Electromagnetically Clean Solar Arrays

    Science.gov (United States)

    Stem, Theodore G.; Kenniston, Anthony E.

    2008-01-01

    The term 'electromagnetically clean solar array' ('EMCSA') refers to a panel that contains a planar array of solar photovoltaic cells and that, in comparison with a functionally equivalent solar-array panel of a type heretofore used on spacecraft, (1) exhibits less electromagnetic interferences to and from other nearby electrical and electronic equipment and (2) can be manufactured at lower cost. The reduction of electromagnetic interferences is effected through a combination of (1) electrically conductive, electrically grounded shielding and (2) reduction of areas of current loops (in order to reduce magnetic moments). The reduction of cost is effected by designing the array to be fabricated as a more nearly unitary structure, using fewer components and fewer process steps. Although EMCSAs were conceived primarily for use on spacecraft they are also potentially advantageous for terrestrial applications in which there are requirements to limit electromagnetic interference. In a conventional solar panel of the type meant to be supplanted by an EMCSA panel, the wiring is normally located on the back side, separated from the cells, thereby giving rise to current loops having significant areas and, consequently, significant magnetic moments. Current-loop geometries are chosen in an effort to balance opposing magnetic moments to limit far-0field magnetic interactions, but the relatively large distances separating current loops makes full cancellation of magnetic fields problematic. The panel is assembled from bare photovoltaic cells by means of multiple sensitive process steps that contribute significantly to cost, especially if electomagnetic cleanliness is desired. The steps include applying a cover glass and electrical-interconnect-cell (CIC) sub-assemble, connecting the CIC subassemblies into strings of series-connected cells, laying down and adhesively bonding the strings onto a panel structure that has been made in a separate multi-step process, and mounting the

  10. In-process oxidation protection in fluxless brazing or diffusion bonding of aluminum alloys

    Science.gov (United States)

    Okelly, K. P.; Featherston, A. B.

    1974-01-01

    Aluminum is cleaned of its oxide coating and is sealed immediately with polymeric material which makes it suitable for fluxless brazing or diffusion bonding. Time involved between cleaning and brazing is no longer critical factor.

  11. Preperation for a Clean Surface

    Directory of Open Access Journals (Sweden)

    Aurimas Ralys

    2012-12-01

    Full Text Available The article reviews techniques for preparing clean surfaces used in the manufacturing process, considers the types of clean surfaces and their role in modern production and provides the classification methods of arranging such surfaces. The paper also discusses the principles of methods for solvent cleaning, aqueous cleaning, ultrasonic cleaning, precision cleaning and mechanical cleaning. The study focuses on the possibility of adjusting a clean surface using a water flow, including cavitation.Article in Lithuanian

  12. Preperation for a Clean Surface

    Directory of Open Access Journals (Sweden)

    Aurimas Ralys

    2013-02-01

    Full Text Available The article reviews techniques for preparing clean surfaces used in the manufacturing process, considers the types of clean surfaces and their role in modern production and provides the classification methods of arranging such surfaces. The paper also discusses the principles of methods for solvent cleaning, aqueous cleaning, ultrasonic cleaning, precision cleaning and mechanical cleaning. The study focuses on the possibility of adjusting a clean surface using a water flow, including cavitation.Article in Lithuanian

  13. Molecular docking, TG/DTA, molecular structure, harmonic vibrational frequencies, natural bond orbital and TD-DFT analysis of diphenyl carbonate by DFT approach

    Science.gov (United States)

    Xavier, S.; Periandy, S.; Carthigayan, K.; Sebastian, S.

    2016-12-01

    Vibrational spectral analysis of Diphenyl Carbonate (DPC) is carried out by using FT-IR and FT-Raman spectroscopic techniques. It is found that all vibrational modes are in the expected region. Gaussian computational calculations were performed using B3LYP method with 6-311++G (d, p) basis set. The computed geometric parameters are in good agreement with XRD data. The observation shows that the structure of the carbonate group is unsymmetrical by ∼5° due to the attachment of the two phenyl rings. The stability of the molecule arising from hyperconjugative interaction and charge delocalization are analyzed by Natural Bond Orbital (NBO) study and the results show the lone pair transition has higher stabilization energy compared to all other. The 1H and 13C NMR chemical shifts are calculated using the Gauge-Including Atomic Orbital (GIAO) method with B3LYP/6-311++G (d, p) method. The chemical shifts computed theoretically go very closer to the experimental results. A study on the electronic and optical properties; absorption wavelengths, excitation energy, dipole moment and frontier molecular orbital energies and Molecular electrostatic potential (MEP) exhibit the high reactivity nature of the molecule. The non-linear optical property of the DPC molecule predicted theoretically found to be good candidate for NLO material. TG/DTA analysis was made and decomposition of the molecule with respect to the temperature was studied. DPC having the anthelmintic activity is docked in the Hemoglobin of Fasciola hepatica protein. The DPC has been screened to antimicrobial activity and found to exhibit antibacterial effects.

  14. Parental Bonding

    Directory of Open Access Journals (Sweden)

    T. Paul de Cock

    2014-08-01

    Full Text Available Estimating the early parent–child bonding relationship can be valuable in research and practice. Retrospective dimensional measures of parental bonding provide a means for assessing the experience of the early parent–child relationship. However, combinations of dimensional scores may provide information that is not readily captured with a dimensional approach. This study was designed to assess the presence of homogeneous groups in the population with similar profiles on parental bonding dimensions. Using a short version of the Parental Bonding Instrument (PBI, three parental bonding dimensions (care, authoritarianism, and overprotection were used to assess the presence of unobserved groups in the population using latent profile analysis. The class solutions were regressed on 23 covariates (demographics, parental psychopathology, loss events, and childhood contextual factors to assess the validity of the class solution. The results indicated four distinct profiles of parental bonding for fathers as well as mothers. Parental bonding profiles were significantly associated with a broad range of covariates. This person-centered approach to parental bonding has broad utility in future research which takes into account the effect of parent–child bonding, especially with regard to “affectionless control” style parenting.

  15. Tensile property improvement of TWIP-cored three-layer steel sheets fabricated by hot-roll-bonding with low-carbon steel or interstitial-free steel

    Science.gov (United States)

    Park, Jaeyeong; Kim, Jung-Su; Kang, Minju; Sohn, Seok Su; Cho, Won Tae; Kim, Hyoung Seop; Lee, Sunghak

    2017-01-01

    TWIP-cored three-layer steel sheets were newly fabricated by hot rolling of TWIP steel sheet surrounded by low-carbon (LC) or interstitial-free (IF) steel sheets. TWIP/LC or TWIP/IF interfaces were well bonded without pores or voids, while a few pearlites were thinly formed along the interfaces. The strengths and elongation of the TWIP-cored sheets increased as the volume fraction of TWIP-cored region increased, and were also well matched with the ones calculated by a rule of mixtures based on volume fraction or force fraction. According to digital image correlation and electron back-scatter diffraction analyses, very high strain hardening effect in the initial deformation stage and active twin formation in the interfacial region beneficially affected the overall homogeneous deformation in the TWIP-cored sheets without any yield point phenomenon occurring in the LC sheet and serrations occurring in the TWIP sheet, respectively. These TWIP-cored sheets can cover a wide range of yield strength, tensile strength, and ductility levels, e.g., 320~498 MPa, 545~878 MPa, and 48~54%, respectively, by controlling the volume fraction of TWIP-cored region, and thus present new applications to multi-functional automotive steel sheets requiring excellent properties.

  16. Tensile property improvement of TWIP-cored three-layer steel sheets fabricated by hot-roll-bonding with low-carbon steel or interstitial-free steel

    Science.gov (United States)

    Park, Jaeyeong; Kim, Jung-Su; Kang, Minju; Sohn, Seok Su; Cho, Won Tae; Kim, Hyoung Seop; Lee, Sunghak

    2017-01-01

    TWIP-cored three-layer steel sheets were newly fabricated by hot rolling of TWIP steel sheet surrounded by low-carbon (LC) or interstitial-free (IF) steel sheets. TWIP/LC or TWIP/IF interfaces were well bonded without pores or voids, while a few pearlites were thinly formed along the interfaces. The strengths and elongation of the TWIP-cored sheets increased as the volume fraction of TWIP-cored region increased, and were also well matched with the ones calculated by a rule of mixtures based on volume fraction or force fraction. According to digital image correlation and electron back-scatter diffraction analyses, very high strain hardening effect in the initial deformation stage and active twin formation in the interfacial region beneficially affected the overall homogeneous deformation in the TWIP-cored sheets without any yield point phenomenon occurring in the LC sheet and serrations occurring in the TWIP sheet, respectively. These TWIP-cored sheets can cover a wide range of yield strength, tensile strength, and ductility levels, e.g., 320~498 MPa, 545~878 MPa, and 48~54%, respectively, by controlling the volume fraction of TWIP-cored region, and thus present new applications to multi-functional automotive steel sheets requiring excellent properties. PMID:28067318

  17. Flexural strengthening of reinforced concrete beams with carbon fibers reinforced polymer (CFRP sheet bonded to a transition layer of high performance cement-based composite

    Directory of Open Access Journals (Sweden)

    V. J. Ferrari

    Full Text Available Resistance to corrosion, high tensile strength, low weight, easiness and rapidity of application, are characteristics that have contributed to the spread of the strengthening technique characterized by bonding of carbon fibers reinforced polymer (CFRP. This research aimed to develop an innovate strengthening method for RC beams, based on a high performance cement-based composite of steel fibers (macro + microfibers to be applied as a transition layer. The purpose of this transition layer is better control the cracking of concrete and detain or even avoid premature debonding of strengthening. A preliminary study in short beams molded with steel fibers and strengthened with CFRP sheet, was carried out where was verified that the conception of the transition layer is valid. Tests were developed to get a cement-based composite with adequate characteristics to constitute the layer transition. Results showed the possibility to develop a high performance material with a pseudo strain-hardening behavior, high strength and fracture toughness. The application of the strengthening on the transition layer surface had significantly to improve the performance levels of the strengthened beam. It summary, it was proven the efficiency of the new strengthening technique, and much information can be used as criteria of projects for repaired and strengthened structures.

  18. Facile Isolation of Adsorbent-Free Long and Highly-Pure Chirality-Selected Semiconducting Single-Walled Carbon Nanotubes Using A Hydrogen-bonding Supramolecular Polymer

    Science.gov (United States)

    Toshimitsu, Fumiyuki; Nakashima, Naotoshi

    2015-12-01

    The ideal form of semiconducting-single-walled carbon nanotubes (sem-SWNTs) for science and technology is long, defect-free, chirality pure and chemically pure isolated narrow diameter tubes. While various techniques to solubilize and purify sem-SWNTs have been developed, many of them targeted only the chiral- or chemically-purity while sacrificing the sem-SWNT intrinsic structural identities by applying strong ultra-sonication and/or chemical modifications. Toward the ultimate purification of the sem-SWNTs, here we report a mild-conditioned extraction of the sem-SWNTs using removable supramolecular hydrogen-bonding polymers (HBPs) that are composed of dicarboxylic- or diaminopyridyl-fluorenes with ~70%-(8,6)SWNT selective extraction. Replacing conventional strong sonication techniques by a simple shaking using HPBs was found to provide long sem-SWNTs (>2.0 μm) with a very high D/G ratio, which was determined by atomic force microscopy observations. The HBPs were readily removed from the nanotube surfaces by an outer stimulus, such as a change in the solvent polarities, to provide chemically pure (8,6)-enriched sem-SWNTs. We also describe molecular mechanics calculations to propose possible structures for the HBP-wrapped sem-SWNTs, furthermore, the mechanism of the chiral selectivity for the sorted sem-SWNTs is well explained by the relationship between the molecular surface area and mass of the HBP/SWNT composites.

  19. Bonding Analysis on the Crystallization of Magnesium Carbonate Hydrates%基于水合碳酸镁结晶过程的化学键分析

    Institute of Scientific and Technical Information of China (English)

    闫小星; 李云飞; 薛冬峰; 晏成林; 王雷

    2007-01-01

    基于晶体学结构,将化学键理论定量地应用到水合碳酸镁Mg5(CO3)4(OH)2·4H2O和MgOgO3·3H2O的结晶行为研究中,以此指导和控制实际晶体的生长行为.根据所选晶面的化学键数目和强度,可以计算出该晶面的垂直生长速率,从而方便地预测出Mg5(CO3)4(OH)2·4H2O和MMgO3·3H2O晶体的理想形貌.Mg5(CO3)4(OH)2·4H2O晶体表现出六方片状的结晶习性,MgCO3·3H2O则具有六方柱的理想形貌.在实验中,六方片状的Mg5(CO3)4(OH)2-114心O和MgO3·3H2O六方柱可以通过简单的液相反应获得,证明我们的理论计算与实验结果完全相符.目前研究结果表明,单晶生长可以通过热力学意义上调整组成原子或离子的成键方式获得本质上的改进,这一过程为我们从动力学角度优化实验策略提供了更广阔的空间.%The chemical bonding theory is used to investigate the fundamental crystallization behaviours of magnesium carbonate hydrate crystals Mg5(CO3)4OH)2·4H2O and MgCO3·3H2O in terms of crystallographic structure, with the aim to guide and control the practical crystal growth. The ideal morphology of Mg5(CO3)4(OH)2·4H2O and MgCO3·3H2O crystals has readily been predicted, by calculating the vertical growth rate of selected planes in terms of the bond number and bond strength. Theoretically,Mg5 (CO3)4(OH)2·4H2O crystal exhibits hexagonal plate-shaped characteristics, while MgCO3·3H2O crystal possesses a hexagonal prism morphology. Experimentally, the hexagonal Mg5(CO3)4(OH)2·4H2O micro-platelets and MgCO3 ·3H2O micro-prisms with reproducible shape can be obtained by a simple liquid phase reaction. Theoretical results are in a good agreement with our experimental observations. Single crystal growth can be improved by tuning the bonding modification of constituent atoms or ions, such a process can leave us a great space to kinetically maximize our experimental strategies.

  20. Cleaning and surface properties

    CERN Document Server

    Taborelli, M

    2007-01-01

    Principles of precision cleaning for ultra high vacuum applications are reviewed together with the techniques for the evaluation of surface cleanliness. Methods to verify the effectiveness of cleaning procedures are discussed. Examples are presented to illustrate the influence of packaging and storage on the recontamination of the surface after cleaning. Finally, the effect of contamination on some relevant surface properties, like secondary electron emission and wettability is presented.

  1. Clean Energy Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    For the past several years, the IEA and others have been calling for a clean energy revolution to achieve global energy security, economic growth and climate change goals. This report analyses for the first time progress in global clean energy technology deployment against the pathways that are needed to achieve these goals. It provides an overview of technology deployment status, key policy developments and public spending on RDD&D of clean energy technologies.

  2. First-principles analysis of the C-N bond scission of methylamine on Mo-based model catalysts

    Science.gov (United States)

    Lv, Cun-Qin; Li, Jun; Tao, Shu-Xia; Ling, Kai-Cheng; Wang, Gui-Chang

    2010-01-01

    The C-N bond breaking of methylamine on clean, carbon (nitrogen, oxygen)-modified Mo(100) [denoted as Mo(100) and Mo(100)-C(N,O), respectively], Mo2C(100), MoN(100), and Pt(100) surfaces has been investigated by the first-principles density functional theory (DFT) calculations. The results show that the reaction barriers of the C-N bond breaking in CH3NH2 on Mo(100)-C(N,O) are higher than that on clean Mo(100). The calculated energy barrier can be correlated linearly with the density of Mo 4d states at the Fermi level after the adsorption of CH3NH2 for those surfaces. Moreover, the DFT results show that the subsurface atom, e.g., carbon, can reduce the reaction barrier. In addition, We noticed that the activation energies for the C-N bond breaking on Mo2C(100) and MoN(100) are similar to that on Pt(100), suggesting that the catalytic properties of the transition metal carbides and nitrides for C-N bond scission of CH3NH2 might be very similar to the expensive Pt-group metals.

  3. Interface nanochemistry effects on stainless steel diffusion bonding

    Science.gov (United States)

    Cox, M. J.; Carpenter, R. W.; Kim, M. J.

    2002-02-01

    The diffusion-bonding behavior of single-phase austenitic stainless steel depends strongly on the chemistry of the surfaces to be bounded. We found that very smooth (0.5 nm root-mean-square (RMS) roughness), mechanically polished and lapped substrates would bond completely in ultrahigh vacuum (UHV) in 1 hour at 1000 °C under 3.5 MPa uniaxial pressure, if the native oxide on the substrates was removed by ion-beam cleaning, as shown by in-situ Auger analysis. No voids were observed in these bonded interfaces by transmission electron microscopy (TEM), and the strength was equal to that of the unbounded bare material. No bond formed between the substrates if in-situ ion cleaning was not used. The rougher cleaned substrates partially bonded, indicating that roughness, as well as native oxides, reduced the bonding kinetics.

  4. Mechanical cleaning of graphene

    NARCIS (Netherlands)

    Goossens, A.M.; Calado, V.E.; Barreiro, A.; Watanabe, K.; Taniguchi, T.; Vandersypen, L.M.K.

    2012-01-01

    Contamination of graphene due to residues from nanofabrication often introduces background doping and reduces electron mobility. For samples of high electronic quality, post-lithography cleaning treatments are therefore needed. We report that mechanical cleaning based on contact mode atomic force mi

  5. Cleaning practices and cleaning products in nurseries and schools: to what extent can they impact indoor air quality?

    Science.gov (United States)

    Wei, W; Boumier, J; Wyart, G; Ramalho, O; Mandin, C

    2016-08-01

    In the framework of a nationwide survey on indoor air quality conducted from September 2009 to June 2011 in 310 nurseries, kindergartens, and elementary schools in all regions of France, cleaning practices and products were described through an extensive questionnaire completed on-site by expert building inspectors. The questionnaire included the cleaning frequencies and periods, cleaning techniques, whether windows were open during cleaning, and the commercial names of the products used. Analysis of the questionnaire responses showed that cleaning was generally performed daily for furniture and floors. It was performed mostly in the evening with wet mopping and with one or more windows open. Five hundred eighty-four different cleaning products were listed, among which 218 safety data sheets (SDSs) were available and analyzed. One hundred fifty-two chemical substances were identified in the SDSs. The typical substances in cleaning products included alcohols, chlorides, terpenes, aldehydes, and ethers; more than half of them are irritants. Two endocrine disruptors, 2-phenylphenol and Galaxolide, were identified in two cleaning products used every day to clean the floors, in seven kindergartens and in a nursery respectively. Eleven reactive substances containing C=C double bonds, mostly terpenes, were identified in a wide variety of cleaning products.

  6. Polarized and depolarized Raman spectra of liquid carbon disulfide in the pressure range 0-10 kbar. I. Vibration frequencies, C-S bond length, and Fermi resonance

    Science.gov (United States)

    Ikawa, S.; Whalley, Edward

    1986-09-01

    The effect of pressure on the polarized and depolarized Raman spectra of liquid carbon disulphide, i.e., the peak frequencies, bandwidths, and relative intensities of both the allowed ν1 and 2ν2 bands and the interaction-induced ν2 and ν3 bands, have been measured at 22 °C up to 10 kbar. This paper discusses the effect of pressure on the frequencies and on the relative isotropic intensity of the ν1 and 2ν2 bands. The frequency of the ν1 band increases linearly with pressure, within the experimental uncertainty, at the rate 0.16±0.01 cm-1 kbar-1, and the frequencies of the ν2, ν3, and 2ν2 bands decrease nonlinearly. The frequency shifts are described by second-order perturbation theory with the molecular anharmonicity and the intermolecular interaction as perturbations. The leading terms of the shifts consist of the same derivative of the interaction potential, multiplied by different anharmonicity constants, and the shifts of the ν1 and 2ν2 bands suggests that the C-S bond length decreases at the rate 2×10-4 Å kbar-1. The relative isotropic intensity of the 2ν2 and ν1 bands increases with pressure at the rate 0.050 kbar-1, whereas the anisotropic 2ν2 intensity relative to the isotropic ν1 intensity is independent of pressure to the experimental precision of ˜0.005. The effect of pressure on the second derivative of the isotropic and anisotropic parts of the polarizability with respect to the bend coordinate was estimated as 1.1×10-43 C m2 V-1 kbar-1 and ˜0, respectively, from these values.

  7. Bond Boom

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The Ministry of Finance recently kick-started a pilot program allowing local governments of Shanghai and Shenzhen,and Zhejiang and Guangdong provinces to issue bonds for the first time.How will the new policy affect fiscal capacities of local governments and the broader economy? What else should the country do to build a healthy bond market? Economists and experts discussed these issues in an interview with the Shanghai Securities Journal.Edited excerpts follow.

  8. Bond Boom

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The Ministry of Finance recently kick-started a pilot program allowing local governments of Shanghai and Shenzhen, and Zhejiang and Guangdong provinces to issue bonds for the first time. How will the new policy affect fiscal capacities of local governments and the broader economy? What else should the country do to build a healthy bond market? Economists and experts discussed these issues in an interview with the ShanghaiSecuritiesJournal. Edited excerpts follow:

  9. CO2 (dry ice) cleaning system

    Science.gov (United States)

    Barnett, Donald M.

    1995-03-01

    Tomco Equipment Company has participated in the dry ice (solid carbon dioxide, CO2) cleaning industry for over ten years as a pioneer in the manufacturer of high density, dry ice cleaning pellet production equipment. For over four years Tomco high density pelletizers have been available to the dry ice cleaning industry. Approximately one year ago Tomco introduced the DI-250, a new dry ice blast unit making Tomco a single source supplier for sublimable media, particle blast, cleaning systems. This new blast unit is an all pneumatic, single discharge hose device. It meters the insertion of 1/8 inch diameter (or smaller), high density, dry ice pellets into a high pressure, propellant gas stream. The dry ice and propellant streams are controlled and mixed from the blast cabinet. From there the mixture is transported to the nozzle where the pellets are accelerated to an appropriate blasting velocity. When directed to impact upon a target area, these dry ice pellets have sufficient energy to effectively remove most surface coatings through dry, abrasive contact. The meta-stable, dry ice pellets used for CO2 cleaning, while labeled 'high density,' are less dense than alternate, abrasive, particle blast media. In addition, after contacting the target surface, they return to their equilibrium condition: a superheated gas state. Most currently used grit blasting media are silicon dioxide based, which possess a sharp tetrahedral molecular structure. Silicon dioxide crystal structures will always produce smaller sharp-edged replicas of the original crystal upon fracture. Larger, softer dry ice pellets do not share the same sharp-edged crystalline structures as their non-sublimable counterparts when broken. In fact, upon contact with the target surface, dry ice pellets will plastically deform and break apart. As such, dry ice cleaning is less harmful to sensitive substrates, workers and the environment than chemical or abrasive cleaning systems. Dry ice cleaning system

  10. Your First Stop for Clean Energy Policy Support (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-06-01

    The Clean Energy Solutions Center, an initiative of the Clean Energy Ministerial and UN-Energy, helps governments design and adopt policies and programs that support the deployment of transformational low-carbon technologies. The Solutions Center serves as a first-stop clearinghouse of clean energy policy reports, data, and tools and provides expert assistance and peer-to-peer learning forums. This factsheet highlights key Solutions Center offerings, including 'ask an expert' assistance on clean energy policy matters, training and peer learning, and technical resources for policy makers worldwide.

  11. A Commercial IOTV Cleaning Study

    Science.gov (United States)

    2010-04-12

    quite clean and had a refreshing scent . The medium soiled garments (30%) also looked reasonably clean after one wash. The heavily soiled garments...and Solvair® Cleaning in cleaning soiled Improved Outer Tactical Vests (IOTV). Computer-controlled Wet Cleaning coupled with the use of LANADOL...to clean soiled IOTVs. Soldier Product Support Integration Directorate, ILSC U.S. Army Soldier Systems Center 15 Kansas Street, Natick, MA 01760

  12. Air Cleaning Technologies

    Science.gov (United States)

    2005-01-01

    Executive Summary Objective This health technology policy assessment will answer the following questions: When should in-room air cleaners be used? How effective are in-room air cleaners? Are in-room air cleaners that use combined HEPA and UVGI air cleaning technology more effective than those that use HEPA filtration alone? What is the Plasmacluster ion air purifier in the pandemic influenza preparation plan? The experience of severe acute respiratory syndrome (SARS) locally, nationally, and internationally underscored the importance of administrative, environmental, and personal protective infection control measures in health care facilities. In the aftermath of the SARS crisis, there was a need for a clearer understanding of Ontario’s capacity to manage suspected or confirmed cases of airborne infectious diseases. In so doing, the Walker Commission thought that more attention should be paid to the potential use of new technologies such as in-room air cleaning units. It recommended that the Medical Advisory Secretariat of the Ontario Ministry of Health and Long-Term Care evaluate the appropriate use and effectiveness of such new technologies. Accordingly, the Ontario Health Technology Advisory Committee asked the Medical Advisory Secretariat to review the literature on the effectiveness and utility of in-room air cleaners that use high-efficiency particle air (HEPA) filters and ultraviolet germicidal irradiation (UVGI) air cleaning technology. Additionally, the Ontario Health Technology Advisory Committee prioritized a request from the ministry’s Emergency Management Unit to investigate the possible role of the Plasmacluster ion air purifier manufactured by Sharp Electronics Corporation, in the pandemic influenza preparation plan. Clinical Need Airborne transmission of infectious diseases depends in part on the concentration of breathable infectious pathogens (germs) in room air. Infection control is achieved by a combination of administrative, engineering

  13. The study on relation of clean grade rats deontal caries occurrence and carbonated drinks%碳酸饮料与清洁级大鼠龋齿发生相关性的实验研究

    Institute of Scientific and Technical Information of China (English)

    胡霞

    2016-01-01

    Objective The experimental study on compare the relation of different acidic drinks with rast dental caries.Methods 40 clean grade BABL/c rats were divided into deionized water group(groupA),Coca-Cola group (groupB),orange juice group(groupC)and Sprite group(groupD),10 rats each group,deionized watere group as control group,the other as the experimental group,using the classic Keyes score method to evaluate the occurrence of dental caries.Results Deionized water has the cariogenic effect on the enamel in the experimental group,carbonated drinks has acid effect on rat teeth,and can lead to dental caries.Conclusion Carbonated drinks have acid effect on enamel,and can lead to dental caries.%目的 比较不同的酸性饮料对清洁级大鼠龋齿发生率的影响.方法 将40只清洁级BABL/c鼠分为去离子水组(A组)、可口可乐组(B组)、鲜橙多组(C组)和雪碧组(D组),每组10只,去离子水组为对照组,其余为试验组,采用Keyes经典评分方法进行龋齿发生的评估.结果 除去离子水外其余实验饮料均对实验鼠的牙齿均有酸蚀作用,并可以导致龋齿.结论 碳酸饮料对牙釉质具有酸蚀作用,可以导致龋齿.

  14. Facile, green and clean one-step synthesis of carbon dots from wool: Application as a sensor for glyphosate detection based on the inner filter effect.

    Science.gov (United States)

    Wang, Long; Bi, Yidan; Hou, Juan; Li, Huiyu; Xu, Yuan; Wang, Bo; Ding, Hong; Ding, Lan

    2016-11-01

    In this work, we reported a green route for the fabrication of fluorescent carbon dots (CDs). Wool, a kind of nontoxic and natural raw material, was chosen as the precursor to prepare CDs via a one-step microwave-assisted pyrolysis process. Compared with previously reported methods for preparation of CDs based on biomass materials, this method was simple, facile and free of any additives, such as acids, bases, or salts, which avoid the complicated post-treatment process to purify the CDs. The CDs have a high quantum yield (16.3%) and their fluorescence could be quenched by silver nanoparticles (AgNPs) based on inner filter effect (IFE). The presence of glyphosate could induce the aggregation of AgNPs and thus result in the fluorescence recovery of the quenched CDs. Based on this phenomenon, we constructed a fluorescence system (CDs/AgNPs) for determination of glyphosate. Under the optimized conditions, the fluorescence intensity of the CDs/AgNPs system was proportional to the concentration of glyphosate in the range of 0.025-2.5μgmL(-1), with a detection limit of 12ngmL(-1). Furthermore, the established method has been successfully used for glyphosate detection in the cereal samples with satisfactory results.

  15. Clean Water Act

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Clean Water Act (CWA) establishes the basic structure for regulating discharges of pollutants into U.S. waters and regulating quality standards for surface...

  16. Effective Cleaning Radius Studies

    Energy Technology Data Exchange (ETDEWEB)

    Churnetski, B.V.

    2001-10-15

    This report discusses results of testing done in the Savannah River Laboratory half tank and full tank mockup facilities using kaolin clay slurries and the relationship between cleaning radius and pump and slurry characteristics.

  17. Towards sustainable and safe apparel cleaning methods: A review.

    Science.gov (United States)

    Troynikov, Olga; Watson, Christopher; Jadhav, Amit; Nawaz, Nazia; Kettlewell, Roy

    2016-11-01

    Perchloroethylene (PERC) is a compound commonly used as a solvent in dry cleaning, despite its severe health and environmental impacts. In recent times chemicals such as hydrocarbons, GreenEarth(®), acetal and liquid carbon dioxide have emerged as less damaging substitutes for PERC, and an even more sustainable water-based wet cleaning process has been developed. We employed a systematic review approach to provide a comprehensive overview of the existing research evidence in the area of sustainable and safe apparel cleaning methods and care. Our review describes traditional professional dry cleaning methods, as well as those that utilise solvents other than PERC, and their ecological attributes. In addition, the new professional wet cleaning process is discussed. Finally, we address the health hazards of the various solvents used in dry cleaning and state-of-the-art solvent residue trace analysis techniques.

  18. ENHANCED CHEMICAL CLEANING: A NEW PROCESS FOR CHEMICALLY CLEANING SAVANNAH RIVER WASTE TANKS

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, E; Neil Davis, N; Renee Spires, R

    2008-01-17

    The Savannah River Site (SRS) has 49 high level waste (HLW) tanks that must be emptied, cleaned, and closed as required by the Federal Facilities Agreement. The current method of chemical cleaning uses several hundred thousand gallons per tank of 8 weight percent (wt%) oxalic acid to partially dissolve and suspend residual waste and corrosion products such that the waste can be pumped out of the tank. This adds a significant quantity of sodium oxalate to the tanks and, if multiple tanks are cleaned, renders the waste incompatible with the downstream processing. Tank space is also insufficient to store this stream given the large number of tanks to be cleaned. Therefore, a search for a new cleaning process was initiated utilizing the TRIZ literature search approach, and Chemical Oxidation Reduction Decontamination--Ultraviolet (CORD-UV), a mature technology currently used for decontamination and cleaning of commercial nuclear reactor primary cooling water loops, was identified. CORD-UV utilizes oxalic acid for sludge dissolution, but then decomposes the oxalic acid to carbon dioxide and water by UV treatment outside the system being treated. This allows reprecipitation and subsequent deposition of the sludge into a selected container without adding significant volume to that container, and without adding any new chemicals that would impact downstream treatment processes. Bench top and demonstration loop measurements on SRS tank sludge stimulant demonstrated the feasibility of applying CORD-UV for enhanced chemical cleaning of SRS HLW tanks.

  19. Strength and leak testing of plasma activated bonded interfaces

    DEFF Research Database (Denmark)

    Visser, M.M.; Weichel, Steen; Reus, Roger De

    2002-01-01

    Bond strength and hermeticity of plasma activated bonded (PAB) Si-Si interfaces are reported. Bonding of 100 mm Si(1 0 0) wafers was performed. An average bond strength of 9.0+/-3.9 MPa was achieved without performing any annealing steps. Cavities bonded in vacuum were found to be hermetic based...... on detection of changes in membrane deflections. The detection limit for leak was 8E-13 mbar l/s. For comparison, strength and leak tests were also performed with regular fusion bonded wafers annealed at 1100 degreesC. The PAB was found to withstand post-processing steps such as RCA cleaning, 24 h in de......-ionised water (DIW), 24 h in 2.5% HF, 24 h in acetone and 60 s in a resist developer. By analysing the thin silicon oxide present on the surfaces to be bonded with optical methods, the influence of pre-cleaning and activation process parameters was investigated....

  20. Silicon-Carbon Bond Formation via Nickel-Catalyzed Cross-Coupling of Silicon Nucleophiles with Unactivated Secondary and Tertiary Alkyl Electrophiles

    OpenAIRE

    Chu, Crystal K.; Liang, Yufan; Fu, Gregory C.

    2016-01-01

    A wide array of cross-coupling methods for the formation of C–C bonds from unactivated alkyl electrophiles have been described in recent years. In contrast, progress in the development of methods for the construction of C–heteroatom bonds has lagged; for example, there have been no reports of metal-catalyzed cross-couplings of unactivated secondary or tertiary alkyl halides with silicon nucleophiles to form C–Si bonds. In this study, we address this challenge, establishing that a simple, comm...

  1. Activation of a Carbon-Oxygen Bond of Benzofuran by Precoordination of Manganese to the Carbocyclic Ring: A Model for Hydrodeoxygenation.

    Science.gov (United States)

    Zhang; Watson; Dullaghan; Gorun; Sweigart

    1999-08-01

    Stable unsaturated heterocycles such as benzofuran are difficult to remove from petroleum by conventional catalytic hydrotreating. However, in a model system, coordination of Mn(CO)(3)(+) to the aromatic ring of benzofuran activates the C-O bond towards insertion of [Pt(PPh(3))(2)] [Eq. (1)]. The insertion is preceded by precoordination to the furan C=C bond; thus, the 2,3-dihydro analogue of 1, which lacks this double bond, does not undergo insertion of the Pt moiety.

  2. Time-resolved spectroscopic characterization of a novel photodecarboxylation reaction mediated by homolysis of a carbon α-bond in flurbiprofen.

    Science.gov (United States)

    Su, Tao; Ma, Jiani; Wong, Naikei; Phillips, David Lee

    2013-07-18

    Flurbiprofen (Fp), a nonsteroidal anti-inflammatory drug (NSAID) currently in use for arthritis pain relief and in clinical trials for metastatic prostate cancer, can induce photosensitization and phototoxicity upon exposure to sunlight. The mechanisms responsible for Fp phototoxicity are poorly understood and deserve investigation. In this study, the photodecarboxylation reaction of Fp, which has been assumed to underpin its photoinduced side effects, was explored by femtosecond transient absorption (fs-TA), nanosecond transient absorption (ns-TA), and nanosecond time-resolved resonance Raman (ns-TR(3)) spectroscopic techniques in pure acetonitrile (MeCN) solvent. Density functional theory (DFT) calculations were also performed to facilitate the assignments of transient species. The resonance Raman and DFT calculation results reveal that the neutral form of Fp was the predominant species present in MeCN. Analysis of the ultraviolet/visible absorption spectrum and results from TD-DFT calculations indicate that the second excited singlet (S2) can be excited by 266 nm light. Due to its intrinsic instability, S2 rapidly underwent internal conversion (IC) to decay to the lowest lying excited singlet (S1), which was observed in the fs-TA spectra at very early delay times. Intriguingly, three distinct pathways for S1 decay seem to coexist. Specifically, other than fluorescence emission back to the ground state and transformation to the lowest triplet state T1 through intersystem crossing (ISC), the homolysis of the carbon α-bond decarboxylation reaction proceeded simultaneously to give rise to two radical species, one being carboxyl and another being the residual, denoted as FpR. The coexistence of the triplet Fp (T1) and FpR species was verified by means of TR(3) spectra along with ns-TA spectra. As a consequence of its apparent high reactivity, the FpR intermediate was observed to undergo oxidation under oxygen-saturated conditions to yield another radical species

  3. Wind power projects in the CDM: Methodologies and tools for baselines, carbon financing and substainability analysis[CDM=Clean Development Mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Ringius, L.; Grohnheit, P.E.; Nielsen, L.H.; Olivier, A.L.; Painuly, J.; Villavicencio, A.

    2002-12-01

    The report is intended to be a guidance document for project developers, investors, lenders, and CDM host countries involved in wind power projects in the CDM. The report explores in particular those issues that are important in CDM project assessment and development - that is, baseline development, carbon financing, and environmental sustainability. It does not deal in detail with those issues that are routinely covered in a standard wind power project assessment. The report tests, compares, and recommends methodologies for and approaches to baseline development. To present the application and implications of the various methodologies and approaches in a concrete context, Africa's largest wind farm-namely the 60 MW wind farm located in Zafarana, Egypt- is examined as a hypothetical CDM wind power project The report shows that for the present case example there is a difference of about 25% between the lowest (0.5496 tCO2/MWh) and the highest emission rate (0.6868 tCO{sub 2}/MWh) estimated in accordance with these three standardized approaches to baseline development according to the Marrakesh Accord. This difference in emission factors comes about partly as a result of including hydroelectric power in the baseline scenario. Hydroelectric resources constitute around 21% of the generation capacity in Egypt, and, if excluding hydropower, the difference between the lowest and the highest baseline is reduced to 18%. Furthermore, since the two variations of the 'historical' baseline option examined result in the highest and the lowest baselines, by disregarding this baseline option altogether the difference between the lowest and the highest is reduced to 16%. The ES3-model, which the Systems Analysis Department at Risoe National Laboratory has developed, makes it possible for this report to explore the project-specific approach to baseline development in some detail. Based on quite disaggregated data on the Egyptian electricity system, including the wind

  4. Clean Development Mechanism and Construction of Carbon Trading Market in China%清洁发展机制与中国碳排放交易市场的构建

    Institute of Scientific and Technical Information of China (English)

    羊志洪; 鞠美庭; 周怡圃; 王琦

    2011-01-01

    清洁发展机制是《京都议定书》创设的实现全球碳减排目标的三大灵活机制之一,为我国的可持续发展作出了重大贡献,但其在我国运行中存在的问题也对我国参与国际碳市场和构建国内碳市场带来了风险与障碍.针对于此,本文对中国清洁发展机制项目的类型、数量、注册、签发等情况进行对比,发现我国虽然项目众多,但发展极不平衡.在此基础上,分析了中国清洁发展机制存在的主要问题,包括法律保障机制缺失,项目减排潜力发挥不充分,缺乏对转让技术的科学评估等.然后,通过介绍国际碳排放交易市场发展的不确定性和在2012年“后京都时期”的发展趋势,揭示了中国在这一过程中所承担的项目投资减少、成本增加等市场风险以及“碳泄漏”等环境风险.针对上述问题和风险,本文提出以现有清洁发展机制经验为基础构建中国国内碳排放交易市场的基本思路,即建立以排放交易法律体系为基础,以自愿碳交易市场构建为起点,以完善的监督管理体系为保障的中国碳排放交易机制.%The clean development mechanism (CDM) is one of the three "flexibility" mechanisms defined in the Kyoto Protocol. The CDM has made an important contribution to the sustainable development in China; however, there are still many problems during the operation of CDM in China and this situation puts participation of China in the international carbon trading market and construction of domestic carbon trading market at risk. In light of this, this paper compares the types, amount, registration and issue of CDM projects in China, and then finds that the CDM projects are in large quantity, but the development of different types of projects is uneven. On this basis, we analyze the main problems of CDM in China, including the lack of legal system, insufficient potential of emission reduction and lack of scientific assessment of transferred

  5. Clean Elements in Abelian Rings

    Indian Academy of Sciences (India)

    Angelina Y M Chin

    2009-04-01

    Let be a ring with identity. An element in is said to be clean if it is the sum of a unit and an idempotent. is said to be clean if all of its elements are clean. If every idempotent in is central, then is said to be abelian. In this paper we obtain some conditions equivalent to being clean in an abelian ring.

  6. Binding S0.6 Se0.4 in 1D Carbon Nanofiber with CS Bonding for High-Performance Flexible Li-S Batteries and Na-S Batteries.

    Science.gov (United States)

    Yao, Yu; Zeng, Linchao; Hu, Shuhe; Jiang, Yu; Yuan, Beibei; Yu, Yan

    2017-03-29

    A one-step synthesis procedure is developed to prepare flexible S0.6 Se0.4 @carbon nanofibers (CNFs) electrode by coheating S0.6 Se0.4 powder with electrospun polyacrylonitrile nanofiber papers at 600 °C. The obtained S0.6 Se0.4 @CNFs film can be used as cathode material for high-performance Li-S batteries and room temperature (RT) Na-S batteries directly. The superior lithium/sodium storage performance derives from its rational structure design, such as the chemical bonding between Se and S, the chemical bonding between S0.6 Se0.4 and CNFs matrix, and the 3D CNFs network. This easy one-step synthesis procedure provides a feasible route to prepare electrode materials for high-performance Li-S and RT Na-S batteries.

  7. Clean Coal Program Research Activities

    Energy Technology Data Exchange (ETDEWEB)

    Larry Baxter; Eric Eddings; Thomas Fletcher; Kerry Kelly; JoAnn Lighty; Ronald Pugmire; Adel Sarofim; Geoffrey Silcox; Phillip Smith; Jeremy Thornock; Jost Wendt; Kevin Whitty

    2009-03-31

    Although remarkable progress has been made in developing technologies for the clean and efficient utilization of coal, the biggest challenge in the utilization of coal is still the protection of the environment. Specifically, electric utilities face increasingly stringent restriction on the emissions of NO{sub x} and SO{sub x}, new mercury emission standards, and mounting pressure for the mitigation of CO{sub 2} emissions, an environmental challenge that is greater than any they have previously faced. The Utah Clean Coal Program addressed issues related to innovations for existing power plants including retrofit technologies for carbon capture and sequestration (CCS) or green field plants with CCS. The Program focused on the following areas: simulation, mercury control, oxycoal combustion, gasification, sequestration, chemical looping combustion, materials investigations and student research experiences. The goal of this program was to begin to integrate the experimental and simulation activities and to partner with NETL researchers to integrate the Program's results with those at NETL, using simulation as the vehicle for integration and innovation. The investigators also committed to training students in coal utilization technology tuned to the environmental constraints that we face in the future; to this end the Program supported approximately 12 graduate students toward the completion of their graduate degree in addition to numerous undergraduate students. With the increased importance of coal for energy independence, training of graduate and undergraduate students in the development of new technologies is critical.

  8. Crystal Structures of Two Bacterial 3-Hydroxy-3-methylglutaryl-CoA Lyases Suggest a Common Catalytic Mechanism among a Family of TIM Barrel Metalloenzymes Cleaving Carbon-Carbon Bonds

    Energy Technology Data Exchange (ETDEWEB)

    Forouhar,F.; Hussain, M.; Farid, R.; Benach, J.; Abashidze, M.; Edstrom, W.; Vorobiev, S.; Montelione, G.; Hunt, J.; et al.

    2006-01-01

    The enzyme 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) lyase catalyzes the terminal steps in ketone body generation and leucine degradation. Mutations in this enzyme cause a human autosomal recessive disorder called primary metabolic aciduria, which typically kills victims because of an inability to tolerate hypoglycemia. Here we present crystal structures of the HMG-CoA lyases from Bacillus subtilis and Brucella melitensis at 2.7 and 2.3 {angstrom} resolution, respectively. These enzymes share greater than 45% sequence identity with the human orthologue. Although the enzyme has the anticipated triose-phosphate isomerase (TIM) barrel fold, the catalytic center contains a divalent cation-binding site formed by a cluster of invariant residues that cap the core of the barrel, contrary to the predictions of homology models. Surprisingly, the residues forming this cation-binding site and most of their interaction partners are shared with three other TIM barrel enzymes that catalyze diverse carbon-carbon bond cleavage reactions believed to proceed through enolate intermediates (4-hydroxy-2-ketovalerate aldolase, 2-isopropylmalate synthase, and transcarboxylase 5S). We propose the name 'DRE-TIM metallolyases' for this newly identified enzyme family likely to employ a common catalytic reaction mechanism involving an invariant Asp-Arg-Glu (DRE) triplet. The Asp ligates the divalent cation, while the Arg probably stabilizes charge accumulation in the enolate intermediate, and the Glu maintains the precise structural alignment of the Asp and Arg. We propose a detailed model for the catalytic reaction mechanism of HMG-CoA lyase based on the examination of previously reported product complexes of other DRE-TIM metallolyases and induced fit substrate docking studies conducted using the crystal structure of human HMG-CoA lyase (reported in the accompanying paper by Fu, et al. (2006) J. Biol. Chem. 281, 7526-7532). Our model is consistent with extensive mutagenesis

  9. Unit for cleaning drilling muds

    Energy Technology Data Exchange (ETDEWEB)

    Dorosh, M.M.; Dera, Ya.I.; Fesenko, M.M.; Makedonov, N.I.; Surkov, V.T.

    1983-01-01

    A design is proposed for a unit for cleaning drilling muds which includes a settling tank with input sleeve and a sleeve of the purified mud and hydrocyclones. In order to improve the effectiveness of the degree of purification, the unit is equipped with an ejector and sludge filter arranged under the settling tank in the form of a grid installed in the upper part of the settling tank and connected to the sleeve of purified mud, while the inlet sleeve is arranged tangentially. The proposed unit can operate during drilling with the use of muds on water and carbon bases. As a result of its use, the degree of purification of the drilling mud reaches 30-35%; there is an increase in mechanical drilling rate, the service life of the sand-separator and the silt separators and decrease in wear of the pump equipment.

  10. Northwest Region Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Sjoding, David

    2013-09-30

    The main objective of the Northwest Clean Energy Application Center (NW CEAC) is to promote and support implementation of clean energy technologies. These technologies include combined heat and power (CHP), district energy, waste heat recovery with a primary focus on waste heat to power, and other related clean energy systems such as stationary fuel cell CHP systems. The northwest states include AK, ID, MT, OR, and WA. The key aim/outcome of the Center is to promote and support implementation of clean energy projects. Implemented projects result in a number of benefits including increased energy efficiency, renewable energy development (when using opportunity fuels), reduced carbon emissions, improved facility economics helping to preserve jobs, and reduced criteria pollutants calculated on an output-based emissions basis. Specific objectives performed by the NW CEAC fall within the following five broad promotion and support categories: 1) Center management and planning including database support; 2) Education and Outreach including plan development, website, target market workshops, and education/outreach materials development 3) Identification and provision of screening assessments & feasibility studies as funded by the facility or occasionally further support of Potential High Impact Projects; 4) Project implementation assistance/trouble shooting; and 5) Development of a supportive clean energy policy and initiative/financing framework.

  11. New chamber walls conditioning and cleaning strategies to improve the stability of plasma processes

    Science.gov (United States)

    Cunge, G.; Pelissier, B.; Joubert, O.; Ramos, R.; Maurice, C.

    2005-08-01

    One major challenge in plasma etching processes for integrated circuit fabrication is to achieve a good wafer-to-wafer repeatability. This requires a perfect control of the plasma chamber wall conditions. For silicon etching processes, which deposit SiOyClz layers on the chamber walls, this is achieved by cleaning the interior surfaces of the plasma chamber with an SF6-based plasma after each wafer is etched. However, x-ray photoelectron spectroscopy analysis of the reactor wall surfaces shows that the inner parts of the Al2O3 chamber are strongly fluorinated (formation of Al-F bonds) during the SF6 plasma. At the same time the AlFx layer is sputtered from some parts of the chamber (mostly from the roof, which is bombarded by high energy ions), and AlF redeposition is observed on other parts of the reactor body. Hence, the cleaning process of the reactor leaves AlF residues on the chamber wall on its own. This leads to several issues including flake off of AlxFy particles on the wafer and process drifts (due both to the progressive growth of AlF material on the SiO2 windows and to the release of F atoms from the chamber walls during the etching process). This indicates that a strategy other than dry-cleaning the Al2O3 chamber walls in fluorine-based plasmas should be found. In this paper we have investigated two different strategies. The first one consists of replacing Al2O3 covering the chamber walls by another material for the chamber walls inner coating. In particular, we have investigated the surface modification of several types of organic polymers (Teflon, Parylene and carbon-rich polymers), when exposed to SF6-based plasmas. We show that these materials can be reset to their original condition after exposure to a dry-cleaning process because carbon containing polymers are slowly etched away by the SF6/O2 plasma. This suggests that the replacement of the conventional Al2O3 chamber wall material by a carbon-coated liner should be possible. Alternatively, we

  12. Palladium-catalyzed Suzuki-Miyaura coupling of amides by carbon-nitrogen cleavage: general strategy for amide N-C bond activation.

    Science.gov (United States)

    Meng, Guangrong; Szostak, Michal

    2016-06-15

    The first palladium-catalyzed Suzuki-Miyaura cross-coupling of amides with boronic acids for the synthesis of ketones by sterically-controlled N-C bond activation is reported. The transformation is characterized by operational simplicity using bench-stable, commercial reagents and catalysts, and a broad substrate scope, including substrates with electron-donating and withdrawing groups on both coupling partners, steric-hindrance, heterocycles, halides, esters and ketones. The scope and limitations are presented in the synthesis of >60 functionalized ketones. Mechanistic studies provide insight into the catalytic cycle of the cross-coupling, including the first experimental evidence for Pd insertion into the amide N-C bond. The synthetic utility is showcased by a gram-scale cross-coupling and cross-coupling at room temperature. Most importantly, this process provides a blueprint for the development of a plethora of metal catalyzed reactions of typically inert amide bonds via acyl-metal intermediates. A unified strategy for amide bond activation to enable metal insertion into N-C amide bond is outlined ().

  13. Thermodynamic and kinetic studies of the equilibration reaction between the sulfur and carbon bonded forms of a cobalt(III) complex with the ligands 1,4,7-triazycyclononane and 1,4-diaza-7-thiacyclodecane

    DEFF Research Database (Denmark)

    Song, Y.S.; Becker, J.; Kofod, Pauli

    1996-01-01

    -sulfur complex to form the alkyl complex gave 100% loss of deuterium. It is concluded that the labile methylene proton is bound to the carbon atom which in the alkyl complex is bound to cobalt(III). From the kinetic data it is estd. that the carbanion reacts with water 270 times faster than it is captured......The new cyclic thioether 1,4-diaza-7-thiacyclodecane, dathicd, has been synthesized and used for the prepn. of the sulfur- and carbon-bonded cobalt(III) complexes: [Co(tacn)(S-dathicd)]Cl3.5H2O and [Co(tacn)(C-dathicd)](ClO4)2 (tacn, 1,4,7-triazacyclononane; C-dathicd, 1,4-diamino-7-thiacyclodecan...

  14. Cleanly: trashducation urban system

    DEFF Research Database (Denmark)

    Reif, Inbal; Alt, Florian; Ramos, Juan David Hincapie

    Half the world's population is expected to live in urban areas by 2020. The high human density and changes in peoples' consumption habits result in an ever-increasing amount of trash that must be handled by governing bodies. Problems created by inefficient or dysfunctional cleaning services...

  15. Clean Cities Tools

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-12-19

    The U.S. Department of Energy's Clean Cities offers a large collection of Web-based tools on the Alternative Fuels Data Center. These calculators, interactive maps, and data searches can assist fleets, fuels providers, and other transportation decision makers in their efforts to reduce petroleum use.

  16. Neutrino Detection With CLEAN

    CERN Document Server

    McKinsey, D N

    2005-01-01

    This article describes CLEAN, an approach to the detection of low-energy solar neutrinos and neutrinos released from supernovae. The CLEAN concept is based on the detection of elastic scattering events (neutrino-electron scattering and neutrino-nuclear scattering) in liquified noble gases such as liquid helium, liquid neon, and liquid xenon, all of which scintillate brightly in the ultraviolet. Key to the CLEAN technique is the use of a thin film of wavelength-shifting fluor to convert the ultraviolet scintillation light to the visible. This allows the same liquid to be used as both a passive shielding medium and an active self-shielding detector, allowing lower intrinsic radioactive backgrounds at low energies. Liquid neon is a particularly promising medium for CLEAN. Because liquid neon has a high scintillation yield, has no long-lived radioactive isotopes, and can be easily purified by use of cold traps, it is an ideal medium for the detection of rare nuclear events. In addition, neon is inexpensive, dense...

  17. WINDOW-CLEANING

    CERN Multimedia

    Environmental Section / ST-TFM

    2001-01-01

    The two-month window-cleaning session on the Meyrin, Prévessin and LEP sites will soon begin. The cleaning contractors will work from Monday to Saturday, every week from 4.00 a.m. to 8.00 p.m. The work will be organised so as to disturb users as little as possible. In any event, a work notice will be left in each office 24 hours beforehand. To prevent any damage to documents or items which could occur despite the precautions taken, please clear completely the window-sills and the area immediately around them. If, however, for valid reasons, the work cannot be done on the scheduled day, please inform the Environmental Section by telephoning: 73753 / 74233 / 72242 If you are going to be absent during this two-month period, we should be grateful if you would clear the above mentioned areas before your departure. REMINDER To allow more thorough cleaning of the entrance doors to buildings and also facilitate the weekly work of the cleaning contractors, we ask you to make use of the notice boards at the...

  18. Stereochemistry of enzymatic water addition to C=C bonds.

    Science.gov (United States)

    Chen, Bi-Shuang; Otten, Linda G; Hanefeld, Ulf

    2015-01-01

    Water addition to carbon-carbon double bonds using hydratases is attracting great interest in biochemistry. Most of the known hydratases are involved in primary metabolism and to a lesser extent in secondary metabolism. New hydratases have recently been added to the toolbox, both from natural sources or artificial metalloenzymes. In order to comprehensively understand how the hydratases are able to catalyse the water addition to carbon-carbon double bonds, this review will highlight the mechanistic and stereochemical studies of the enzymatic water addition to carbon-carbon double bonds, focusing on the syn/anti-addition and stereochemistry of the reaction.

  19. On double bonds in fullerenes

    Directory of Open Access Journals (Sweden)

    Stepenshchikov D. G.

    2016-03-01

    Full Text Available Various distributions of double carbon bonds in the fullerenes have been considered in the paper from the point that they are absent in the pentagonal rings. The appropriate classification of the fullerenes has been built. The results may be used when modeling the fullerenes of a given topology and calculating their physical-chemical properties

  20. Clean Energy Manufacturing Analysis Center (CEMAC) 2015 Research Highlights

    Energy Technology Data Exchange (ETDEWEB)

    Woodhouse, Michael; Mone, Christopher; Chung, Donald; Elgqvist, Emma; Das, Sujit; Mann, Margaret; Gossett, Scott

    2016-03-01

    CEMAC has conducted four major studies on the manufacturing of clean energy technologies. Three of these focused on the end product: solar photovoltaic modules, wind turbines, and automotive lithium-ion batteries. The fourth area focused on a key material for manufacturing clean energy technologies, carbon fiber. This booklet summarizes key findings of CEMAC work to date, describes CEMAC's research methodology, and describes work to come.

  1. Clean Energy Solutions Center Services

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  2. Simultaneous imaging/reflectivity measurements to assess diagnostic mirror cleaning.

    Science.gov (United States)

    Skinner, C H; Gentile, C A; Doerner, R

    2012-10-01

    Practical methods to clean ITER's diagnostic mirrors and restore reflectivity will be critical to ITER's plasma operations. We describe a technique to assess the efficacy of mirror cleaning techniques and detect any damage to the mirror surface. The method combines microscopic imaging and reflectivity measurements in the red, green, and blue spectral regions and at selected wavelengths. The method has been applied to laser cleaning of single crystal molybdenum mirrors coated with either carbon or beryllium films 150-420 nm thick. It is suitable for hazardous materials such as beryllium as the mirrors remain sealed in a vacuum chamber.

  3. Sustainable development with clean coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    This paper discusses the opportunities available with clean coal technologies. Applications include new power plants, retrofitting and repowering of existing power plants, steelmaking, cement making, paper manufacturing, cogeneration facilities, and district heating plants. An appendix describes the clean coal technologies. These include coal preparation (physical cleaning, low-rank upgrading, bituminous coal preparation); combustion technologies (fluidized-bed combustion and NOx control); post-combustion cleaning (particulate control, sulfur dioxide control, nitrogen oxide control); and conversion with the integrated gasification combined cycle.

  4. Multi-stage cleaning plant

    Energy Technology Data Exchange (ETDEWEB)

    Kullendorff, A.; Wikner, J.

    1980-12-09

    A cleaning plant positioned within an annular fluidized bed combustion chamber is divided into a plurality of separate cleaning stages, wherein a first stage is located adjacent the fluidized bed and additional stages are arranged within the first stage. Each stage comprises a plurality of separate cleaning devices which act in parallel, while cleaning devices of different stages act in series to remove debris from the combustion gases that exit from the fluidized bed combustion chamber.

  5. Cleaning of Free Machining Brass

    Energy Technology Data Exchange (ETDEWEB)

    Shen, T

    2005-12-29

    We have investigated four brightening treatments proposed by two cleaning vendors for cleaning free machining brass. The experimental results showed that none of the proposed brightening treatments passed the swipe test. Thus, we maintain the recommendation of not using the brightening process in the cleaning of free machining brass for NIF application.

  6. Self-cleaning geopolymer concrete - A review

    Science.gov (United States)

    Norsaffirah Zailan, Siti; Mahmed, Norsuria; Bakri Abdullah, Mohd Mustafa Al; Sandu, Andrei Victor

    2016-06-01

    Concrete is the most widely used construction materials for building technology. However, cement production releases high amounts of carbon dioxide (CO2) to the atmosphere that leads to increasing the global warming. Thus, an alternative, environmental friendly construction material such as geopolymer concrete has been developed. Geopolymer concrete applies greener alternative binder, which is an innovative construction material that replaces the Portland cement. This technology introduced nano-particles such as nanoclay into the cement paste in order to improve their mechanical properties. The concrete materials also have been developed to be functioned as self-cleaning construction materials. The self-cleaning properties of the concrete are induced by introducing the photocatalytic materials such as titania (TiO2) and zinc oxide (ZnO). Self-cleaning concrete that contains those photocatalysts will be energized by ultraviolet (UV) radiation and accelerates the decomposition of organic particulates. Thus, the cleanliness of the building surfaces can be maintained and the air surrounding air pollution can be reduced. This paper briefly reviews about self-cleaning concrete.

  7. A Clean Market

    Institute of Scientific and Technical Information of China (English)

    MAGGIECHEN

    2004-01-01

    If you have US$1 million, do you invest in car production or cleaning car emissions? More cars than ever are hitting the roads and demand is rising.Cleaner cars are being called for, as the government strives to reduce car emission. So there is an obvious market both for cars and for new emission control technologies.Theoretically, you should make money by investing in either of them in China today.

  8. CLEAN: CLustering Enrichment ANalysis

    Directory of Open Access Journals (Sweden)

    Medvedovic Mario

    2009-07-01

    Full Text Available Abstract Background Integration of biological knowledge encoded in various lists of functionally related genes has become one of the most important aspects of analyzing genome-wide functional genomics data. In the context of cluster analysis, functional coherence of clusters established through such analyses have been used to identify biologically meaningful clusters, compare clustering algorithms and identify biological pathways associated with the biological process under investigation. Results We developed a computational framework for analytically and visually integrating knowledge-based functional categories with the cluster analysis of genomics data. The framework is based on the simple, conceptually appealing, and biologically interpretable gene-specific functional coherence score (CLEAN score. The score is derived by correlating the clustering structure as a whole with functional categories of interest. We directly demonstrate that integrating biological knowledge in this way improves the reproducibility of conclusions derived from cluster analysis. The CLEAN score differentiates between the levels of functional coherence for genes within the same cluster based on their membership in enriched functional categories. We show that this aspect results in higher reproducibility across independent datasets and produces more informative genes for distinguishing different sample types than the scores based on the traditional cluster-wide analysis. We also demonstrate the utility of the CLEAN framework in comparing clusterings produced by different algorithms. CLEAN was implemented as an add-on R package and can be downloaded at http://Clusteranalysis.org. The package integrates routines for calculating gene specific functional coherence scores and the open source interactive Java-based viewer Functional TreeView (FTreeView. Conclusion Our results indicate that using the gene-specific functional coherence score improves the reproducibility of the

  9. Clean Power on Tap

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    China adopts the most advanced nuclear power technologies to meet long-term energy needs Nuclear power has taken center stage in China’s nationwide cam-paign to develop new and clean energy sources. In the latest effort, Chinese state-owned nuclear power giants invested over 40 billion yuan ($5.86 billion) as an initial funding injection to build a new plant under the

  10. Clean steels for fusion

    Energy Technology Data Exchange (ETDEWEB)

    Gelles, D.S.

    1995-03-01

    Fusion energy production has an inherent advantage over fission: a fuel supply with reduced long term radioactivity. One of the leading candidate materials for structural applications in a fusion reactor is a tungsten stabilized 9% chromium Martensitic steel. This alloy class is being considered because it offers the opportunity to maintain that advantage in the reactor structure as well as provide good high temperature strength and radiation induced swelling and embrittlement resistance. However, calculations indicate that to obtain acceptable radioactivity levels within 500 years after service, clean steel will be required because the niobium impurity levels must be kept below about 2 appm and nickel, molybdenum, nitrogen, copper, and aluminum must be intentionally restricted. International efforts are addressing the problems of clean steel production. Recently, a 5,000 kg heat was vacuum induction melted in Japan using high purity commercial raw materials giving niobium levels less than 0.7 appm. This paper reviews the need for reduced long term radioactivity, defines the advantageous properties of the tungsten stabilized Martensitic steel class, and describes the international efforts to produce acceptable clean steels.

  11. Saltstone Clean Cap Formulation

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C

    2005-04-22

    The current operation strategy for using Saltstone Vault 4 to receive 0.2 Ci/gallon salt solution waste involves pouring a clean grout layer over the radioactive grout prior to initiating pour into another cell. This will minimize the radiating surface area and reduce the dose rate at the vault and surrounding area. The Clean Cap will be used to shield about four feet of Saltstone poured into a Z-Area vault cell prior to moving to another cell. The minimum thickness of the Clean Cap layer will be determined by the cesium concentration and resulting dose levels and it is expected to be about one foot thick based on current calculations for 0.1 Ci Saltstone that is produced in the Saltstone process by stabilization of 0.2 Ci salt solution. This report documents experiments performed to identify a formulation for the Clean Cap. Thermal transient calculations, adiabatic temperature rise measurements, pour height, time between pour calculations and shielding calculations were beyond the scope and time limitations of this study. However, data required for shielding calculations (composition and specific gravity) are provided for shielding calculations. The approach used to design a Clean Cap formulation was to produce a slurry from the reference premix (10/45/45 weight percent cement/slag/fly ash) and domestic water that resembled as closely as possible the properties of the Saltstone slurry. In addition, options were investigated that may offer advantages such as less bleed water and less heat generation. The options with less bleed water required addition of dispersants. The options with lower heat contained more fly ash and less slag. A mix containing 10/45/45 weight percent cement/slag/fly ash with a water to premix ratio of 0.60 is recommended for the Clean Cap. Although this mix may generate more than 3 volume percent standing water (bleed water), it has rheological, mixing and flow properties that are similar to previously processed Saltstone. The recommended

  12. Porcelain laminate veneer restorations bonded with a three-liquid silane bonding agent and a dual-activated luting composite.

    Science.gov (United States)

    Matsumura, Hideo; Aida, Yukiko; Ishikawa, Yumi; Tanoue, Naomi

    2006-12-01

    This clinical report describes the fabrication and bonding of porcelain laminate veneer restorations in a patient with anterior open spaces. Laminate veneer restorations made of feldspathic porcelain were etched with 5% hydrofluoric acid, rinsed under tap water, ultrasonically cleaned with methanol, and primed with a chemically activated three-liquid silane bonding agent (Clearfil Porcelain Bond). The enamel surfaces were etched with 40% phosphoric acid, rinsed with water, and primed with a two-liquid bonding agent (Clearfil New Bond) that contained a hydrophobic phosphate (10-methacryloyloxydecyl dihydrogen phosphate; MDP). The restorations were bonded with a dual-activated luting composite (Clapearl DC). The veneers have been functioning satisfactorily for an observation period of one year. Combined use of the Clearfil bonding agents and Clapearl DC luting composite is an alternative to conventional materials for seating porcelain laminate veneer restorations, although the system is inapplicable to dentin bonding.

  13. Falling behind - Canada's lost clean energy jobs

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-05-15

    With the depletion of conventional resources and the increasing concerns about the environment, emphasis has been put on developing clean energy. Clean energy is expected to become one of the main industrial sectors within the next decade, thus creating numerous jobs. While significant investments have been made by several countries to shift to clean energy, Canada is investing in highly polluting resources such as the tar sands. It is shown that if Canada were to match U.S. efforts in terms of clean energy on a per person basis, they would need to invest 11 billion additional dollars and this would result in the creation of 66,000 clean energy jobs. This paper showed that Canada is falling behind in terms of clean energy and the authors recommend that the Canadian government match U.S. investments and design policies in support of clean energy and put a price on carbon so as to favor the development of the clean energy sector and its consequent job creation.

  14. Laser cleaning of ITER's diagnostic mirrors

    Science.gov (United States)

    Skinner, C. H.; Gentile, C. A.; Doerner, R.

    2012-10-01

    Practical methods to clean ITER's diagnostic mirrors and restore reflectivity will be critical to ITER's plasma operations. We report on laser cleaning of single crystal molybdenum mirrors coated with either carbon or beryllium films 150 - 420 nm thick. A 1.06 μm Nd laser system provided 220 ns pulses at 8 kHz with typical power densities of 1-2 J/cm^2. The laser beam was fiber optically coupled to a scanner suitable for tokamak applications. The efficacy of mirror cleaning was assessed with a new technique that combines microscopic imaging and reflectivity measurements [1]. The method is suitable for hazardous materials such as beryllium as the mirrors remain sealed in a vacuum chamber. Excellent restoration of reflectivity for the carbon coated Mo mirrors was observed after laser scanning under vacuum conditions. For the beryllium coated mirrors restoration of reflectivity has so far been incomplete and modeling indicates that a shorter duration laser pulse is needed. No damage of the molybdenum mirror substrates was observed.[4pt][1] C.H. Skinner et al., Rev. Sci. Instrum. at press.

  15. Cleaning By Blasting With Pellets Of Dry Ice

    Science.gov (United States)

    Fody, Jody

    1993-01-01

    Dry process strips protective surface coats from parts to be cleaned, without manual scrubbing. Does not involve use of flammable or toxic solvents. Used to remove coats from variety of materials, including plastics, ceramics, ferrous and nonferrous metals, and composites. Adds no chemical-pollution problem to problem of disposal of residue of coating material. Process consists of blasting solid carbon dioxide (dry ice) pellets at surface to be cleaned. Pellets sublime on impact and pass into atmosphere as carbon dioxide gas. Size, harness, velocity, and quantity of pellets adjusted to suit coating material and substrate.

  16. Clean Energy Works Oregon Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Andria [City of Portland; Cyr, Shirley [Clean Energy Works

    2013-12-31

    In April 2010, the City of Portland received a $20 million award from the U.S. Department of Energy, as part of the Energy Efficiency and Conservation Block Grant program. This award was appropriated under the American Recovery and Reinvestment Act (ARRA), passed by President Obama in 2009. DOE’s program became known as the Better Buildings Neighborhood Program (BBNP). The BBNP grant objectives directed the City of Portland Bureau of Planning and Sustainability (BPS) as the primary grantee to expand the BPS-led pilot program, Clean Energy Works Portland, into Clean Energy Works Oregon (CEWO), with the mission to deliver thousands of home energy retrofits, create jobs, save energy and reduce carbon dioxide emissions.The Final Technical Report explores the successes and lessons learned from the first 3 years of program implementation.

  17. Effect of cleaning and storage on quartz substrate adhesion and surface energy

    Science.gov (United States)

    Balachandran, Dave; John, Arun

    2014-04-01

    The force of adhesion of 50 nm diameter diamond-like carbon sphere probes to three quartz substrates was measured using an atomic force microscope. The force of adhesion was measured prior to cleaning, within 10 minutes after cleaning, after storage in an N2-purged cabinet, and after storage in an N2-purged vacuum oven. The evaluated cleaning recipes were SC1-like, SPM-like, and HF-based, each followed by ultra-pure deionized water (UPW) rinse and spin drying. The measurements were conducted in a Class 100 clean room at approximately 50% relative humidity. In addition, contact angle measurements were made on three additional quartz substrates using UPW before cleaning, after cleaning, and throughout N2 storage. The adhesion force increased after cleaning as compared to the pre-cleaned state, continued to increase until reaching a maximum after 5 days of N2 storage, and then decreased after 26 days for all three substrates. One substrate was then stored in a vacuum oven for 3 days, and the adhesion force decreased to 46% of the pre-cleaned state. The contact angle was reduced from over 30° before cleaning to 0° immediately after cleaning. During subsequent N2 storage, the contact angle increased to 5° or greater after 18 hours for the substrate cleaned with the HF-based recipe and after 15 days for the substrates cleaned by the SC1-like and SPM-like recipes.

  18. Clean electricity from photovoltaics

    CERN Document Server

    Green, Martin A

    2015-01-01

    The second edition of Clean Electricity from Photovoltaics , first published in 2001, provides an updated account of the underlying science, technology and market prospects for photovoltaics. All areas have advanced considerably in the decade since the first edition was published, which include: multi-crystalline silicon cell efficiencies having made impressive advances, thin-film CdTe cells having established a decisive market presence, and organic photovoltaics holding out the prospect of economical large-scale power production. Contents: The Past and Present (M D Archer); Limits to Photovol

  19. Flue Gas Cleaning

    DEFF Research Database (Denmark)

    Fehrmann, Rasmus

    2014-01-01

    and sulfuric acid in the atmosphere causing precipitation of acid rain resulting in death of forests and destruction of buildings and monuments in addition to human health problems. The most common state-of-the-art methods applied today industrially for cleaning of flue gases will be addressed, including wet......-time. But the problems may also be attacked by new materials like supported ionic liquid phase (SILP) gas absorbers where the pollutants may be selectively absorbed, desorbed and finally converted to useful mineral acids of commercial grade – really a green waste-to-value approach that we persue instead...

  20. The Value of Clean Air

    Science.gov (United States)

    Shindell, D. T.

    2014-12-01

    How can society place a value on clean air? I present a multi-impact economic valuation framework called the Social Cost of Atmospheric Release (SCAR) that extends the Social Cost of Carbon (SCC) used previously for carbon dioxide (CO2) to a broader range of pollutants and impacts. Values consistently incorporate health impacts of air quality along with climate damages. The latter include damages associated with aerosol-induced hydrologic cycle changes that lead to net climate benefits when reducing cooling aerosols. Evaluating a 1% reduction in current global emissions, benefits with a high discount rate are greatest for reductions of co-emitted products of incomplete combustion (PIC), followed by sulfur dioxide (SO2), nitrogen oxides (NOx) and then CO2, ammonia and methane. With a low discount rate, benefits are greatest for CO2 reductions, though the sum of SO2, PIC and methane is substantially larger. These results suggest that efforts to mitigate atmosphere-related environmental damages should target a broad set of emissions including CO2, methane and aerosol/ozone precursors. Illustrative calculations indicate environmental damages are 410-1100 billion yr-1 for current US electricity generation ( 19-46¢ per kWh for coal, 4-24¢ for gas) and 3.80 (-1.80/+2.10) per gallon of gasoline ($4.80 (-3.10/+3.50) per gallon for diesel). These results suggest that total atmosphere-related environmental damages plus generation costs are much greater for coal-fired power than other types of electricity generation, and that damages associated with gasoline vehicles substantially exceed those for electric vehicles.

  1. FINAL TECHNICAL REPORT for grant DE-FG02-93ER14353 "Carbon-Hydrogen Bond Functionalization Catalyzed by Transition Metal Systems"

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Alan S

    2012-05-21

    Alkanes are our most abundant organic resource but are highly resistant to selective chemical transformations. Alkenes (olefins) by contrast are the single most versatile class of molecules for selective transformations, and are intermediates in virtually every petrochemical process as well as a vast range of commodity and fine chemical processes. Over the course of this project we have developed the most efficient catalysts to date for the selective conversion of alkanes to give olefins, and have applied these catalysts to other dehydrogenation reactions. We have also developed some of the first efficient catalysts for carbonylation of alkanes and arenes to give aldehydes. The development of these catalysts has been accompanied by elucidation of the mechanism of their operation and the factors controlling the kinetics and thermodynamics of C-H bond activation and other individual steps of the catalytic cycles. This fundamental understanding will allow the further improvement of these catalysts, as well as the development of the next generation of catalysts for the functionalization of alkanes and other molecules containing C-H bonds.

  2. On the Importance of Noncovalent Carbon-Bonding Interactions in the Stabilization of a 1D Co(II) Polymeric Chain as a Precursor of a Novel 2D Coordination Polymer.

    Science.gov (United States)

    Pal, Pampi; Konar, Saugata; Lama, Prem; Das, Kinsuk; Bauzá, Antonio; Frontera, Antonio; Mukhopadhyay, Subrata

    2016-07-14

    A new cobalt(II) coordination polymer 2 with μ1,5 dicyanamide (dca) and a bidentate ligand 3,5-dimethyl-1-(2'-pyridyl)pyrazole (pypz) is prepared in a stepwise manner using the newly synthesized one-dimensional linear Co(II) coordination polymer 1 as a precursor. The structural and thermal characterizations elucidate that the more stable complex 2 shows a two-dimensional layer structural feature. Here, Co(II) atoms with μ1,5 dicyanamido bridges are linked by the ligand pypz forming a macrocyclic chain that runs along the crystallographic 'c' axis having 'sql' (Shubnikov notation) net topology with a 4-connected uninodal node having point symbol {4(4).6(2)}. The remarkable noncovalent carbon-bonding contacts detected in the X-ray structure of compound 1 are analyzed and characterized by density functional theory calculations and the analysis of electron charge density (atoms in molecules).

  3. 胶接碳纤维复合材料层合板拉伸性能及有限元模拟%TENSILE PERFORMANCE AND FEA OF BONDED CARBON FIBER COMPOSITE LAMINATES

    Institute of Scientific and Technical Information of China (English)

    张明星

    2012-01-01

    使用自动铺带工艺制得胶接的碳纤维复合材料层压板试验件,通过轴向拉伸测试,测得了整个试验件的载荷-位移曲线和检测点附近的应变-载荷曲线.试验结果表明,在拉伸载荷作用下试件发生层间剪切破坏,由于胶层的剪切强度高于层合板的层间剪切强度,破坏并没有发生在胶接面内,而是发生在胶层以外的层合板的层间.建立了相应的有限元模型,模拟结果和试验结果的一致说明了有限元模型的合理性.%Bonded carbon fiber composite laminates samples were produced with automated tape-laying process. Load-displacement curves of whole composite samples under axial tensile load were obtained, and strain-load curves were available through the strain flowers around monitoring points. The results shows that coupon was damaged with interlaminate shearing fracture under the tensile load, and the damage mainly locates in the interlaminate layer rather than in the bonded area because shear strength of bonded layer is higher than that of interlaminate of composite. One finite element analysis model is established and verified with the high agreement between simulated and experimental results.

  4. International Clean Energy Coalition

    Energy Technology Data Exchange (ETDEWEB)

    Erin Skootsky; Matt Gardner; Bevan Flansburgh

    2010-09-28

    In 2003, the National Association of Regulatory Utility Commissioners (NARUC) and National Energy Technology Laboratories (NETL) collaboratively established the International Clean Energy Coalition (ICEC). The coalition consisting of energy policy-makers, technologists, and financial institutions was designed to assist developing countries in forming and supporting local approaches to greenhouse gas mitigation within the energy sector. ICEC's work focused on capacity building and clean energy deployment in countries that rely heavily on fossil-based electric generation. Under ICEC, the coalition formed a steering committee consisting of NARUC members and held a series of meetings to develop and manage the workplan and define successful outcomes for the projects. ICEC identified India as a target country for their work and completed a country assessment that helped ICEC build a framework for discussion with Indian energy decisionmakers including two follow-on in-country workshops. As of the conclusion of the project in 2010, ICEC had also conducted outreach activities conducted during United Nations Framework Convention on Climate Change (UNFCCC) Ninth Conference of Parties (COP 9) and COP 10. The broad goal of this project was to develop a coalition of decision-makers, technologists, and financial institutions to assist developing countries in implementing affordable, effective and resource appropriate technology and policy strategies to mitigate greenhouse gas emissions. Project goals were met through international forums, a country assessment, and in-country workshops. This project focused on countries that rely heavily on fossil-based electric generation.

  5. Combined wet and dry cleaning of SiGe(001)

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Wook; Kaufman-Osborn, Tobin; Kim, Hyonwoong [Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093 (United States); Siddiqui, Shariq; Sahu, Bhagawan [TD Research, GLOBALFOUNDRIES USA, Inc., 257 Fuller Road, Albany, New York 12203 (United States); Yoshida, Naomi; Brandt, Adam [Applied Materials, Inc., Santa Clara, California 95054 (United States); Kummel, Andrew C., E-mail: akummel@ucsd.edu [Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093 (United States)

    2015-07-15

    Combined wet and dry cleaning via hydrofluoric acid (HF) and atomic hydrogen on Si{sub 0.6}Ge{sub 0.4}(001) surface was studied at the atomic level using ultrahigh vacuum scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and x-ray photoelectron spectroscopy to understand the chemical transformations of the surface. Aqueous HF removes native oxide, but residual carbon and oxygen are still observed on Si{sub 0.6}Ge{sub 0.4}(001) due to hydrocarbon contamination from post HF exposure to ambient. The oxygen contamination can be eliminated by shielding the sample from ambient via covering the sample in the HF cleaning solution until the sample is introduced to the vacuum chamber or by transferring the sample in an inert environment; however, both processes still leave carbon contaminant. Dry in-situ atomic hydrogen cleaning above 330 °C removes the carbon contamination on the surface consistent with a thermally activated atomic hydrogen reaction with surface hydrocarbon. A postdeposition anneal at 550 °C induces formation of an atomically flat and ordered SiGe surface observed by STM. STS verifies that the wet and dry cleaned surface has an unpinned Fermi level with no states between the conduction and valence band edge comparable to sputter cleaned SiGe surfaces.

  6. The effect of cerium-based conversion treatment on the cathodic delamination and corrosion protection performance of carbon steel-fusion-bonded epoxy coating systems

    Science.gov (United States)

    Ramezanzadeh, B.; Rostami, M.

    2017-01-01

    The effect of surface pre-treatment of pipe surface by green cerium compound and phosphoric acid solution on the fusion-bonded epoxy (FBE) coating performance was studied. The composition and surface morphology of the steel samples treated by acid and Ce solutions were characterized by X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), equipped with energy dispersive spectroscopy (EDS). Also, the surface free energy was evaluated on these samples through contact angle measurements. In addition, the effect of Ce and acid washing procedures on the adhesion properties and corrosion protection performance of the FBE was examined by pull-off, salt spray and electrochemical impedance spectroscopy (EIS) tests. Results showed that compared to acid washing, the chemical treatment by Ce solution noticeably increased the surface free energy of steel, improved the adhesion properties of FBE, decreased the cathodic delamination rate of FBE, and enhanced the coating corrosion resistance compared to the acid washed samples.

  7. Transforming Global Markets for Clean Energy Products

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This paper looks at three clean energy product categories: equipment energy efficiency; low-carbon transport, including high-efficiency vehicles and electric/plug-in hybrid electric vehicles (EV/PHEVs); and solar photovoltaic (PV) power. Each section identifies ways to enhance global co-operation among major economies through case studies and examples, and ends with specific suggestions for greater international collaboration on market transformation efforts. An annex with more detailed case studies on energy-efficient electric motors, televisions, external power supplies and compact fluorescent lights is included in the paper.

  8. Kinetic solvent effects on hydrogen abstraction reactions from carbon by the cumyloxyl radical. The importance of solvent hydrogen-bond interactions with the substrate and the abstracting radical.

    Science.gov (United States)

    Salamone, Michela; Giammarioli, Ilaria; Bietti, Massimo

    2011-06-03

    A kinetic study of the hydrogen atom abstraction reactions from propanal (PA) and 2,2-dimethylpropanal (DMPA) by the cumyloxyl radical (CumO•) has been carried out in different solvents (benzene, PhCl, MeCN, t-BuOH, MeOH, and TFE). The corresponding reactions of the benzyloxyl radical (BnO•) have been studied in MeCN. The reaction of CumO• with 1,4-cyclohexadiene (CHD) also has been investigated in TFE solution. With CHD a 3-fold increase in rate constant (k(H)) has been observed on going from benzene, PhCl, and MeCN to TFE. This represents the first observation of a sizable kinetic solvent effect for hydrogen atom abstraction reactions from hydrocarbons by alkoxyl radicals and indicates that strong HBD solvents influence the hydrogen abstraction reactivity of CumO•. With PA and DMPA a significant decrease in k(H) has been observed on going from benzene and PhCl to MeOH and TFE, indicative of hydrogen-bond interactions between the carbonyl lone pair and the solvent in the transition state. The similar k(H) values observed for the reactions of the aldehydes in MeOH and TFE point toward differential hydrogen bond interactions of the latter solvent with the substrate and the radical in the transition state. The small reactivity ratios observed for the reactions of CumO• and BnO• with PA and DMPA (k(H)(BnO•)/k(H)(CumO•) = 1.2 and 1.6, respectively) indicate that with these substrates alkoxyl radical sterics play a minor role.

  9. Cleavage of carbon-nitrogen bond in 1,3,5-tri-tert-butyl-1,3,5-triazacyclohexane by copper(I) bromide

    Science.gov (United States)

    Khatua, Suman; Majumdar, Amit

    2016-09-01

    Reactions of CuCl, CuCl2 and CuBr2 with 1,3,5-tri-tert-butyl-1,3,5-triazacyclohexane (tBu3tach) resulted in the formation of [(tBu3tach-H)+(CuCl2)] (1), [(tBu3tach)(CuCl2)] (2) and [(tBu3tach-H)+(CuBr2)] (3) respectively. Interestingly, CuBr was found to mediate the cleavage of the C-N bonds of tBu3tach in a vast range of solvents, namely, chloroform, dichloromethane, tetrahydrofuran, acetonitrile and methanol to yield [Cu4Br4(tBuNCH2)4] (4) and stands as an example of C-N bond cleavage of 1,3,5-triazacyclohexane rings by copper salts. Compounds 1 and 3 contains amidinium cations and are unstable in solution towards the release of copper. The release of copper from 3 in solution was confirmed by the isolation of the compound, [CuBr(MeCN)] (5). Formation of the amidinium cations [(tBu3tach-H)+] in 1 and 3 may be avoided by the use of PPh3 to yield [(tBu3tach)Cu(PPh3)](PF6) (6), while the coordinated N-tert-butylmethanimine (tBuNCH2) in 4 could be replaced by PPh3 to yield [Cu4Br4(PPh3)4] (7). Complexes 1-7 are characterized by a combination of single crystal X-ray structure determination and/or elemental analysis, NMR, IR, and UV-Vis spectroscopy, and Mass spectrometry.

  10. Surface Modification by Atmospheric Pressure Plasma for Improved Bonding

    Science.gov (United States)

    Williams, Thomas Scott

    An atmospheric pressure plasma source operating at temperatures below 150?C and fed with 1.0-3.0 volume% oxygen in helium was used to activate the surfaces of the native oxide on silicon, carbon-fiber reinforced epoxy composite, stainless steel type 410, and aluminum alloy 2024. Helium and oxygen were passed through the plasma source, whereby ionization occurred and ˜10 16 cm-3 oxygen atoms, ˜1015 cm -3 ozone molecules and ˜1016 cm-3 metastable oxygen molecules (O21Deltag) were generated. The plasma afterglow was directed onto the substrate material located 4 mm downstream. Surface properties of the plasma treated materials have been investigated using water contact angle (WCA), atomic force microscopy (AFM), infrared spectroscopy (IR), and x-ray photoelectron spectroscopy (XPS). The work presented herein establishes atmospheric-pressure plasma as a surface preparation technique that is well suited for surface activation and enhanced adhesive bond strength in a variety of materials. Atmospheric plasma activation presents an environmentally friendly alternative to wet chemical and abrasive methods of surface preparation. Attenuated total internal reflection infrared spectroscopy was used to study the aging mechanism of the native oxide on silicon. During storage at ambient conditions, the water contact angle of a clean surface increased from composite, stainless steel type 410, and aluminum alloy 2024 was demonstrated with the atmospheric pressure helium-oxygen plasma. All surfaces studied were converted from a hydrophobic state with a water contact angle of 65° to 80° into a hydrophilic state with a water contact angle between 20° and 40° within 5 seconds of plasma exposure. X-ray photoelectron spectroscopy confirmed that the carbon atoms on the carbon-fiber/epoxy composite were oxidized, yielding 17 atom% carboxylic acid groups, 10% ketones or aldehydes and 9% alcohols. Analysis of stainless steel and aluminum by XPS illustrate oxidation of the metal

  11. SURFACE MODIFICATION AND DISPERSION OF NANODIAMOND IN CLEAN OIL

    Institute of Scientific and Technical Information of China (English)

    Yongwei Zhu; Xiangyang Xu; Baichun Wang; Zhijing Feng

    2004-01-01

    The effect of different kinds of surfactants on the size distribution of nanodiamond particles in clean oil was studied. Results show that the dispersing stability of nanodiamond modified with surfactants YS-1 and SB-18 simultaneously is much better than those modified with either of them because of synergism of the surfactants. And the particle size distribution in the system can be improved remarkably after the adoption of hyperdispersants such as SA-E and SA-F. Anchoring groups of those hyperdispersants can be bonded with the particle surface by chemical and/or hydrogen bonding and their soluble chains are well compatible with the dispersion media. As a result, the particles are uniformly distributed in the system owing to the steric stabilization. A very stable clean-oil based nanodiamond suspension with an average particle size of around 53.2 nm was prepared.

  12. Cross Shear Roll Bonding

    DEFF Research Database (Denmark)

    Bay, Niels; Bjerregaard, Henrik; Petersen, Søren. B;

    1994-01-01

    The present paper describes an investigation of roll bonding an AlZn alloy to mild steel. Application of cross shear roll bonding, where the two equal sized rolls run with different peripheral speed, is shown to give better bond strength than conventional roll bonding. Improvements of up to 20......-23% in bond strength are found and full bond strength is obtained at a reduction of 50% whereas 65% is required in case of conventional roll bonding. Pseudo cross shear roll bonding, where the cross shear effect is obtained by running two equal sized rolls with different speed, gives the same results....

  13. Ultrasound cleaning of microfilters

    DEFF Research Database (Denmark)

    Hald, Jens; Bjørnø, Irina; Jensen, Leif Bjørnø

    1999-01-01

    The aim of the present work is to develop, design, and manufacture a high-power ultrasound transducer module to be used for preventing the blocking of plastic-based microfilters by organic materials, and possibly to prolong the lifetime of the filters in industry using the cavitation on the surface...... suitable for cleaning of microfilters without damaging the filter structure. The filter surface was studied using an optical microscope before and after the experiment. When high-power ultrasound (max. 75 W/cm2) was applied to the surface of some microfilters, no visible damage was found, while others...... filters were damaged. The results of the laboratory experiments formed background for the final design of an ultrasound transducer module for use by foodstuff filtration plants. [This work was financed by the EU Project WAMBIO PL96-3257 (FAIR Programme).]...

  14. Quick and clean cloning.

    Science.gov (United States)

    Thieme, Frank; Marillonnet, Sylvestre

    2014-01-01

    Identification of unknown sequences that flank known sequences of interest requires PCR amplification of DNA fragments that contain the junction between the known and unknown flanking sequences. Since amplified products often contain a mixture of specific and nonspecific products, the quick and clean (QC) cloning procedure was developed to clone specific products only. QC cloning is a ligation-independent cloning procedure that relies on the exonuclease activity of T4 DNA polymerase to generate single-stranded extensions at the ends of the vector and insert. A specific feature of QC cloning is the use of vectors that contain a sequence called catching sequence that allows cloning specific products only. QC cloning is performed by a one-pot incubation of insert and vector in the presence of T4 DNA polymerase at room temperature for 10 min followed by direct transformation of the incubation mix in chemo-competent Escherichia coli cells.

  15. Flue gas cleaning chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Gutberlet, H. [VEBA Kraftwerke Ruhr AG, Gelsenkirchen (Germany)

    1996-12-01

    The introduction of modern flue gas cleaning technology into fossil-fueled power stations has repeatedly confronted the power station chemists with new and interesting problems over the last 15 - 20 years. Both flue gas desulphurization by lime washing and catalytic removal of nitrogen oxides are based on simple basic chemical reactions. Owing to the use of readily available starting materials, the production of safe, useful end products and, last but not least, the possibility of implementing all this on an industrial scale by means of efficient process engineering, limestone desulphurization and catalytic removal of nitrogen oxides dominate the world market and, little by little, are becoming still more widespread. The origin and thus the quality of fuels and starting materials, the firing method, the mode of operation and engineering peculiarities in each plant interact in a complex manner. Simple cause/effect relationships are frequently incapable of explaining phenomena; thinking in complex interrelationships is needed. (EG)

  16. Fixation of carbon dioxide by macrocyclic lanthanide(III) complexes under neutral conditions producing self-assembled trimeric carbonato-bridged compounds with μ3-η2:η2:η2 bonding.

    Science.gov (United States)

    Bag, Pradip; Dutta, Supriya; Biswas, Papu; Maji, Swarup Kumar; Flörke, Ulrich; Nag, Kamalaksha

    2012-03-28

    A series of mononuclear lanthanide(III) complexes [Ln(LH(2))(H(2)O)(3)Cl](ClO(4))(2) (Ln = La, Nd, Sm, Eu, Gd, Tb, Lu) of the tetraiminodiphenolate macrocyclic ligand (LH(2)) in 95 : 5 (v/v) methanol-water solution fix atmospheric carbon dioxide to produce the carbonato-bridged trinuclear complexes [{Ln(LH(2))(H(2)O)Cl}(3)(μ(3)-CO(3))](ClO(4))(4)·nH(2)O. Under similar conditions, the mononuclear Y(III) complex forms the dimeric compound [{Y(LH(2))(H(2)O)Cl}(μ(2)-CO(3)){Y(LH(2))(H(2)O)(2)}](ClO(4))(3)·4H(2)O. These complexes have been characterized by their IR and NMR ((1)H, (13)C) spectra. The X-ray crystal structures have been determined for the trinuclear carbonato-bridged compounds of Nd(III), Gd(III) and Tb(III) and the dinuclear compound of Y(III). In all cases, each of the metal centers are 8-coordinate involving two imine nitrogens and two phenolate oxygens of the macrocyclic ligand (LH(2)) whose two other imines are protonated and intramolecularly hydrogen-bonded with the phenolate oxygens. The oxygen atoms of the carbonate anion in the trinuclear complexes are bonded to the metal ions in tris-bidentate μ(3)-η(2):η(2):η(2) fashion, while they are in bis-bidentate μ(2)-η(2):η(2) mode in the Y(III) complex. The magnetic properties of the Gd(III) complex have been studied over the temperature range 2 to 300 K and the magnetic susceptibility data indicate a very weak antiferromagnetic exchange interaction (J = -0.042 cm(-1)) between the Gd(III) centers (S = 7/2) in the metal triangle through the carbonate bridge. The luminescence spectral behaviors of the complexes of Sm(III), Eu(III), and Tb(III) have been studied. The ligand LH(2) acts as a sensitizer for the metal ions in an acetonitrile-toluene glassy matrix (at 77 K) and luminescence intensities of the complexes decrease in the order Eu(3+) > Sm(3+) > Tb(3+).

  17. Feasibility of zeolitic imidazolate framework membranes for clean energy applications

    NARCIS (Netherlands)

    Thornton, A. W.; Dubbeldam, D.; Liu, M. S.; Ladewig, B. P.; Hill, A. J.; Hill, M. R.

    2012-01-01

    Gas separation technologies for carbon-free hydrogen and clean gaseous fuel production must efficiently perform the following separations: (1) H2/CO2 (and H2/N2) for pre-combustion coal gasification, (2) CO2/N2 for post-combustion of coal, (3) CO2/CH4 for natural gas sweetening and biofuel purificat

  18. Proceedings of the fifteenth DOE nuclear air cleaning conference

    Energy Technology Data Exchange (ETDEWEB)

    First, M.W. (ed.)

    1979-02-01

    Papers presented are grouped under the following topics: air cleaning; waste volume reduction and preparation for storage; tritium, carbon-14, ozone; containment of accidental releases; adsorbents and absorbents; and off-gas treatment. A separate abstract was prepared for each paper.

  19. 低碳经济视角下煤炭工业清洁利用分析及政策建议%Analysis and policy recommendation on coal industry clean-using from the perspective of low-carbon economy

    Institute of Scientific and Technical Information of China (English)

    赵剑峰

    2011-01-01

    煤炭清洁利用生命周期各阶段现状分析表明:我国煤炭传统利用方式效率较低,燃煤发电产生的CO2排放量占全国CO2排放总量的比例从1978年的17.2%增加到2006年的39.8%,电力行业已成为CO2的主要排放源,构建低碳电力工业体系刻不容缓.煤化工技术分析表明:我国应科学适度地发展煤制烯烃技术;煤制油可以进行科学研究,但应该严格限制.煤炭法规及政策回顾表明:我国煤炭法律法规滞后,亟待修改与完善;煤炭政策缺乏相应的激励约束机制,低碳条文与规定缺失.提出:启动"煤炭清洁-低碳利用10 a计划",成立区域煤炭低碳经济部门及低碳技术标准部门,建立煤炭-低碳领域的自主技术创新体系和机制,建立低碳技术发展基金,进行煤炭碳税制度研究试点等低碳经济下促进我国煤炭清洁利用的政策建议.%The status quo of coal clean-using in life cycle was analyzed, the results indicate that coal conventional using mode is low efficiency;the CO2 emissions of coal-fired power generation as a share of overall carbon dioxide emissions increases from 17.2% in 1978 to 39.8% in 2006, electric power industry has become the main source of CO2 emissions,constructing low-carbon power industry system is urgenfiy needed.Coal chemical technology analysis shows that China should scientific moderately developing coal to olefin technology;coal-to-liquids can make scientific exploration, but should be strictly restricted.Coal regulations and policy review show that coal laws lag behind, modification and perfection are needed; coal policy shortage of corresponding incentive and restraint mechanisms,lack of low carbon provisions and regulations.Finally, puts forward some policy recommendations on promoting coal clean-using under the low-carbon economy: suggestions on start-up “coal clean and low-carbon using ten years plan”, constitute regional coal low-carbon economic sectors and low-carbon

  20. Yeast and carbon nanotube based biocatalyst developed by synergetic effects of covalent bonding and hydrophobic interaction for performance enhancement of membraneless microbial fuel cell.

    Science.gov (United States)

    Christwardana, Marcelinus; Kwon, Yongchai

    2017-02-01

    Membraneless microbial fuel cell (MFC) employing new microbial catalyst formed as yeast cultivated from Saccharomyces cerevisiae and carbon nanotube (yeast/CNT) is suggested. To analyze its catalytic activity and performance and stability of MFC, several characterizations are performed. According to the characterizations, the catalyst shows excellent catalytic activities by facile transfer of electrons via reactions of NAD, FAD, cytochrome c and cytochrome a3, while it induces high maximum power density (MPD) (344mW·m(-2)). It implies that adoption of yeast induces increases in catalytic activity and MFC performance. Furthermore, MPD is maintained to 86% of initial value even after eight days, showing excellent MFC stability.

  1. Rational Design of Emissive NIR-Absorbing Chromophores: Rh(III) Porphyrin-Aza-BODIPY Conjugates with Orthogonal Metal-Carbon Bonds.

    Science.gov (United States)

    Zhou, Jinfeng; Gai, Lizhi; Zhou, Zhikuan; Yang, Wu; Mack, John; Xu, Kejing; Zhao, Jianzhang; Zhao, Yue; Qiu, Hailin; Chan, Kin Shing; Shen, Zhen

    2016-09-01

    The facile synthesis of Group 9 Rh(III) porphyrin-aza-BODIPY conjugates that are linked through an orthogonal Rh-C(aryl) bond is reported. The conjugates combine the advantages of the near-IR (NIR) absorption and intense fluorescence of aza-BODIPY dyes with the long-lived triplet states of transition metal rhodium porphyrins. Only one emission peak centered at about 720 nm is observed, irrespective of the excitation wavelength, demonstrating that the conjugates act as unique molecules rather than as dyads. The generation of a locally excited (LE) state with intramolecular charge-transfer (ICT) character has been demonstrated by solvatochromic effects in the photophysical properties, singlet oxygen quantum yields in polar solvents, and by the results of density functional theory (DFT) calculations. In nonpolar solvents, the Rh(III) conjugates exhibit strong aza-BODIPY-centered fluorescence at around 720 nm (ΦF =17-34 %), and negligible singlet oxygen generation. In polar solvents, enhancements of the singlet-oxygen quantum yield (ΦΔ =19-27 %, λex =690 nm) have been observed. Nanosecond pulsed time-resolved absorption spectroscopy confirms that relatively long-lived triplet excited states are formed. The synthetic methodology outlined herein provides a useful strategy for the assembly of functional materials that are highly desirable for a wide range of applications in material science and biomedical fields.

  2. Catalyst design for clean and efficient fuels

    DEFF Research Database (Denmark)

    Šaric, Manuel

    cobalt promoted MoS2 catalyst. Reactivity of a series of model molecules, found in oil prior to desulfurization, is studied on cobalt promoted MoS2. Such an approach has the potential to explain the underlying processes involved in the removal of sulfur at each specific site of the catalyst. The goal...... will yield unwanted coproducts, causing the need for additional separation techniques to extract pure dimethyl carbonate after synthesis. This in return increases the production cost of dimethyl carbonate. This thesis is another step in the collective effort to make today’s fuels and chemicals...... environmentally friendlier and creating new, efficient and clean technologies for chemical and fuel production....

  3. Programmed Cleaning and Environmental Sanitation.

    Science.gov (United States)

    Gardner, John C., Ed.

    Maintenance of sanitation in buildings, plants, offices, and institutions; the selection of cleaning materials for these purposes; and the organization and supervision of the cleaning program are becoming increasingly complex and needful of a higher cost of handling. This book describes these problems and gives helpful information and guidance for…

  4. Enhanced Chemical Cleaning: A New Process for Chemically Cleaning Savannah River Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Ketusky, Edward; Spires, Renee; Davis, Neil

    2009-02-11

    At the Savannah River Site (SRS) there are 49 High Level Waste (HLW) tanks that eventually must be emptied, cleaned, and closed. The current method of chemically cleaning SRS HLW tanks, commonly referred to as Bulk Oxalic Acid Cleaning (BOAC), requires about a half million liters (130,000 gallons) of 8 weight percent (wt%) oxalic acid to clean a single tank. During the cleaning, the oxalic acid acts as the solvent to digest sludge solids and insoluble salt solids, such that they can be suspended and pumped out of the tank. Because of the volume and concentration of acid used, a significant quantity of oxalate is added to the HLW process. This added oxalate significantly impacts downstream processing. In addition to the oxalate, the volume of liquid added competes for the limited available tank space. A search, therefore, was initiated for a new cleaning process. Using TRIZ (Teoriya Resheniya Izobretatelskikh Zadatch or roughly translated as the Theory of Inventive Problem Solving), Chemical Oxidation Reduction Decontamination with Ultraviolet Light (CORD-UV{reg_sign}), a mature technology used in the commercial nuclear power industry was identified as an alternate technology. Similar to BOAC, CORD-UV{reg_sign} also uses oxalic acid as the solvent to dissolve the metal (hydr)oxide solids. CORD-UV{reg_sign} is different, however, since it uses photo-oxidation (via peroxide/UV or ozone/UV to form hydroxyl radicals) to decompose the spent oxalate into carbon dioxide and water. Since the oxalate is decomposed and off-gassed, CORD-UV{reg_sign} would not have the negative downstream oxalate process impacts of BOAC. With the oxalate destruction occurring physically outside the HLW tank, re-precipitation and transfer of the solids, as well as regeneration of the cleaning solution can be performed without adding additional solids, or a significant volume of liquid to the process. With a draft of the pre-conceptual Enhanced Chemical Cleaning (ECC) flowsheet, taking full

  5. A Note on Clean Rings

    Institute of Scientific and Technical Information of China (English)

    Zhou Wang; Jianlong Chen

    2007-01-01

    Let R be a ring and g(x) a polynomial in C[x],where C=C(R) denotes the center of R.Camillo and Sim6n called the ring g(x)-clean if every element of R can be written as the sum of a unit and a root of g(x).In this paper,we prove that for a,b (E) C,the ring R is clean and b - a is invertible in R if and only if R is g1(x)-clean,where gl(x) = (x - a)(x - b).This implies that in some sense the notion of g(x)-clean rings in the Nicholson-Zhou Theorem and in the Camillo-Sim6n Theorem is indeed equivalent to the notion of clean rings.

  6. Separations Technology for Clean Water and Energy

    Energy Technology Data Exchange (ETDEWEB)

    Jarvinen, Gordon D [Los Alamos National Laboratory

    2012-06-22

    Providing clean water and energy for about nine billion people on the earth by midcentury is a daunting challenge. Major investments in efficiency of energy and water use and deployment of all economical energy sources will be needed. Separations technology has an important role to play in producing both clean energy and water. Some examples are carbon dioxide capture and sequestration from fossil energy power plants and advanced nuclear fuel cycle scemes. Membrane separations systems are under development to improve the economics of carbon capture that would be required at a huge scale. For nuclear fuel cycles, only the PUREX liquid-liquid extraction process has been deployed on a large scale to recover uranium and plutonium from used fuel. Most current R and D on separations technology for used nuclear fuel focuses on ehhancements to a PUREX-type plant to recover the minor actinides (neptunium, americiu, and curium) and more efficiently disposition the fission products. Are there more efficient routes to recycle the actinides on the horizon? Some new approaches and barriers to development will be briefly reviewed.

  7. Going clean : new technology makes coal greener

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, H.

    2007-09-15

    As a widely distributed and reliable resource, coal has played an important role in industrial development. At a cost of less than US $2.00 per GJ, coal will remain a valuable resource as the demand for energy increases. The science of clean coal technology is proven and applications are being formed, particularly in carbon dioxide sequestration. Examples of clean coal technology include oxy-fuel combustion, amine scrubbing and coal gasification. All these approaches produce energy while emitting CO{sub 2} gas that is relatively pure and can be easily captured for storage, thereby preventing emissions to the atmosphere. The Canadian Clean Power Coalition has determined that coal gasification has considerable potential in Canada, particularly since Alberta sits above some of the largest coal and oil reserves in the world. Gasification involves heating up a coal feedstock at high temperatures and pressure, in the presence of water in the form of steam. Synthesis gas and hydrogen are produced in the process. The produced CO{sub 2} is concentrated in a way that makes it relatively easy to capture and sequester in the earth or used to enhance the recovery of oil from depleted oil wells. In addition to coal, there are numerous other carbon-based materials that can be gasified, including bitumens, bitumen residuals or petroleum coke. Studies have shown that Alberta's sub-bituminous coal is an ideal candidate for gasification. There are industries in Alberta that need hydrogen for feedstock, and the Western Canada Sedimentary Basin provides a vast storage for pure CO{sub 2}. It was concluded that gasification is the only current technology that will have the ability to significantly reduce the amount of greenhouse gases released into the atmosphere from fossil fuels. The greatest challenge is the capital cost of building the coal gasification facilities. 4 figs.

  8. Determination of Chemical Bond of Tetrahedral Amorphous Carbon Films by Ellipsometry Approach%椭偏法表征四面体非晶碳薄膜的化学键结构

    Institute of Scientific and Technical Information of China (English)

    李晓伟; 周毅; 孙丽丽; 汪爱英

    2012-01-01

    Tetrahedral amorphous carbon (ta-C) films under different substrate negative bias are prepared by a home developed filtered cathodic vacuum arc (FCVA) technology with double bend shape. The film thickness is measured by a combined spectrophotometry and spectroscopic ellipsometry (SE) approach; the chemical bonds including sp2C and sp3C are gained by the fitted ellipsometry method. Furthermore,the accuracy of ellipsometry results is evaluated by comparing with those of X-ray photoelectron spectroscopy (XPS) and Raman spectra. The results indicate that the minimum thickness of ta-C film of 33. 9 nm is obtained when the bias voltage is -100 V; with the increase of bias voltage,the optical gaps and the content of sp3C atomic bond decrease,while the sp2C content increases correspondingly. By comparison with the results of XPS and Raman spectra,it is found that when the optical constants of sp2C model are represented by the glassy carbon and the fitting wavelength ranges are chosen from 250 to 1700 nm,the best fitting result of atomic bonds of ta-C films can be deduced by the ellipsometry method. Therefore,it could be said that the elliposometry method is a quite promising method to characterize the atomic bonds of ta-C films including sp2C and sp3C,as a new nondestructive,fast,quantitative and easy way.%采用自主研制的双弯曲磁过滤阴极真空电弧(FCVA)技术,在不同衬底负偏压下制备了四面体非晶碳(ta-C)薄膜.通过分光光度计和椭偏(SE)联用技术精确测量了薄膜厚度,重点采用椭偏法对不同偏压下制备的ta-C薄膜sp3C键和sp2C键结构进行了拟合表征,并与X射线光电子能谱(XPS)和拉曼光谱的实验结果相对比,分析了非晶碳结构的椭偏拟合新方法可靠性.结果表明,在-100 V偏压时薄膜厚度最小,为33.9 nm;随着偏压的增加,薄膜中的sp2C含量增加,sp3C含量减小,光学带隙下降.对比结果发现,椭偏法作为一种无损、简易、快速的表征

  9. Tracking Clean Energy Progress

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Global demand for energy shows no signs of slowing; carbon dioxide emissions keep surging to new records; and political uprisings, natural disasters and volatile energy markets put the security of energy supplies to the test. More than ever, the need for a fundamental shift to a cleaner and more reliable energy system is clear. What technologies can make that transition happen? How do they work? And how much will it all cost?.

  10. Clean Metal Casting

    Energy Technology Data Exchange (ETDEWEB)

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  11. Clean tracks for ATLAS

    CERN Multimedia

    2006-01-01

    First cosmic ray tracks in the integrated ATLAS barrel SCT and TRT tracking detectors. A snap-shot of a cosmic ray event seen in the different layers of both the SCT and TRT detectors. The ATLAS Inner Detector Integration Team celebrated a major success recently, when clean tracks of cosmic rays were detected in the completed semiconductor tracker (SCT) and transition radiation tracker (TRT) barrels. These tracking tests come just months after the successful insertion of the SCT into the TRT (See Bulletin 09/2006). The cosmic ray test is important for the experiment because, after 15 years of hard work, it is the last test performed on the fully assembled barrel before lowering it into the ATLAS cavern. The two trackers work together to provide millions of channels so that particles' tracks can be identified and measured with great accuracy. According to the team, the preliminary results were very encouraging. After first checks of noise levels in the final detectors, a critical goal was to study their re...

  12. Laser cleaning of 19th century Congo rattan mats

    Science.gov (United States)

    Carmona, N.; Oujja, M.; Roemich, H.; Castillejo, M.

    2011-09-01

    There is a growing interest by art conservators for laser cleaning of organic materials, such as wooden artworks, paper and textiles, since traditional cleaning with solvents can be a source of further decay and mechanical cleaning may be too abrasive for sensitive fibers. In this work we present a successful laser cleaning approach for 19th century rattan mats from the Brooklyn Museum collection of African Art, now part of the study collection at the Conservation Center in New York. Tests were carried out using the fundamental (1064 nm) and second harmonic (532 nm) wavelength of a Q-switched Nd:YAG laser to measure threshold values both for surface damage and color changes for different types of rattan samples. The irradiated substrates were investigated by optical microscopy, scanning electron microscopy and by UV-vis spectroscopy in order to determine the efficiency of laser cleaning and to assess possible deterioration effects that may have occurred as a result of laser irradiation. The study showed that by using the laser emission at 532 nm, a wavelength for which photon energy is below the bond dissociation level of the main cellulosic compounds and the water absorption is negligible, it is possible to select a range of laser fluences to remove the black dust layer without damaging the rattan material.

  13. Laser cleaning of 19th century Congo rattan mats

    Energy Technology Data Exchange (ETDEWEB)

    Carmona, N., E-mail: carmona@fis.ucm.es [Materials Physics Department, Complutense University at Madrid, Avda. Complutense sn, 28040 Madrid (Spain); Oujja, M. [Instituto de Quimica Fisica ' Rocasolano' , C/Serrano 119, 28006 Madrid (Spain); Roemich, H. [Conservation Center, Institute of Fine Arts, New York University, 14 East 78th Street, 10075 New York (United States); Castillejo, M. [Instituto de Quimica Fisica ' Rocasolano' , C/Serrano 119, 28006 Madrid (Spain)

    2011-09-15

    There is a growing interest by art conservators for laser cleaning of organic materials, such as wooden artworks, paper and textiles, since traditional cleaning with solvents can be a source of further decay and mechanical cleaning may be too abrasive for sensitive fibers. In this work we present a successful laser cleaning approach for 19th century rattan mats from the Brooklyn Museum collection of African Art, now part of the study collection at the Conservation Center in New York. Tests were carried out using the fundamental (1064 nm) and second harmonic (532 nm) wavelength of a Q-switched Nd:YAG laser to measure threshold values both for surface damage and color changes for different types of rattan samples. The irradiated substrates were investigated by optical microscopy, scanning electron microscopy and by UV-vis spectroscopy in order to determine the efficiency of laser cleaning and to assess possible deterioration effects that may have occurred as a result of laser irradiation. The study showed that by using the laser emission at 532 nm, a wavelength for which photon energy is below the bond dissociation level of the main cellulosic compounds and the water absorption is negligible, it is possible to select a range of laser fluences to remove the black dust layer without damaging the rattan material.

  14. Robust self-cleaning surfaces that function when exposed to either air or oil

    OpenAIRE

    Lu, Y.

    2015-01-01

    Superhydrophobic self-cleaning surfaces are based on the surface micro/nanomorphologies; however, such surfaces are mechanically weak and stop functioning when exposed to oil. We have created an ethanolic suspension of perfluorosilane-coated titanium dioxide nanoparticles that forms a paint that can be sprayed, dipped, or extruded onto both hard and soft materials to create a self-cleaning surface that functions even upon emersion in oil. Commercial adhesives were used to bond the paint to va...

  15. Precision Cleaning - Path to Premier

    Science.gov (United States)

    Mackler, Scott E.

    2008-01-01

    ITT Space Systems Division s new Precision Cleaning facility provides critical cleaning and packaging of aerospace flight hardware and optical payloads to meet customer performance requirements. The Precision Cleaning Path to Premier Project was a 2007 capital project and is a key element in the approved Premier Resource Management - Integrated Supply Chain Footprint Optimization Project. Formerly precision cleaning was located offsite in a leased building. A new facility equipped with modern precision cleaning equipment including advanced process analytical technology and improved capabilities was designed and built after outsourcing solutions were investigated and found lacking in ability to meet quality specifications and schedule needs. SSD cleans parts that can range in size from a single threaded fastener all the way up to large composite structures. Materials that can be processed include optics, composites, metals and various high performance coatings. We are required to provide verification to our customers that we have met their particulate and molecular cleanliness requirements and we have that analytical capability in this new facility. The new facility footprint is approximately half the size of the former leased operation and provides double the amount of throughput. Process improvements and new cleaning equipment are projected to increase 1st pass yield from 78% to 98% avoiding $300K+/yr in rework costs. Cost avoidance of $350K/yr will result from elimination of rent, IT services, transportation, and decreased utility costs. Savings due to reduced staff expected to net $4-500K/yr.

  16. Task-Specific Ionic Liquids Catalyzed Carbon-Heteroatom Bond Formation Reactions%功能化离子液体催化碳-杂键形成反应

    Institute of Scientific and Technical Information of China (English)

    李满; 杨磊; 韩峰; 陈静; 夏春谷

    2013-01-01

    离子液体独特的溶剂性能使它在合成和催化领域得到了广泛的应用.然而,离子液体的经济问题和可能的环境友好性问题使得人们逐渐把目光投向了离子液体自身的催化性能.人们通过对离子液体结构的修饰设计出了各种具有特定催化性能的功能化离子液体.近年来功能化离子液体在催化碳-杂键形成反应方面有了相当多的应用.本文以形成的碳-杂原子键类型为主线,综述了功能化离子液体在催化碳-杂键形成反应方面的最新研究进展,涉及到了酸性离子液体、碱性离子液体、金属有机功能化离子液体、酸碱双功能离子液体、手性离子液体等多种类型的功能化离子液体.%Ionic liquids have emerged as excellent solvents for synthesis and catalysis in the past decades due to their special properties.However,their relatively high cost and potential risks to human health and environment make their function as catalysts rather than solvents more popular.Incorporating specific functional group(s) into one or both ions of ionic liquids to make them catalytic is highly important.Numerous so-called task-specific or functionalized ionic liquids are designed and successfully applied in catalyzing various reactions.In this review,we present the latest achievements in the carbon-heteroatom bond formation reactions catalyzed by task-specific ionic liquids.The contents are arranged according to the specific types of carbon-heteroatom bond formation reactions.As for the type of task-specific ionic liquids,this review focuses on acidic ionic liquids,basic ionic liquids,organometallic ionic liquids,acid-base bifunctional ionic liquids and chiral ionic liquids.

  17. CLEAN Technique for Polarimetric ISAR

    Directory of Open Access Journals (Sweden)

    M. Martorella

    2008-01-01

    Full Text Available Inverse synthetic aperture radar (ISAR images are often used for classifying and recognising targets. To reduce the amount of data processed by the classifier, scattering centres are extracted from the ISAR image and used for classifying and recognising targets. This paper addresses the problem of estimating the position and the scattering vector of target scattering centres from polarimetric ISAR images. The proposed technique is obtained by extending the CLEAN technique, which was introduced in radar imaging for extracting scattering centres from single-polarisation ISAR images. The effectiveness of the proposed algorithm, namely, the Polarimetric CLEAN (Pol-CLEAN is tested on simulated and real data.

  18. Improvement of interfacial bonding in carbon nanotube reinforced Fe–50Co composites by Ni–P coating: Effect on magnetic and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Mani, Mahesh Kumar, E-mail: metlymahesh@gmail.com [Wolfson Centre for Magnetics, Cardiff School of Engineering, Cardiff University (United Kingdom); Viola, Giuseppe; Reece, Mike J. [School of Engineering and Materials Science, Queen Mary University of London (United Kingdom); Nanoforce Technology Limited, London (United Kingdom); Hall, Jeremy P. [Wolfson Centre for Magnetics, Cardiff School of Engineering, Cardiff University (United Kingdom); Evans, Sam L. [Institute of Mechanical and Manufacturing Engineering, Cardiff University (United Kingdom)

    2014-10-15

    Graphical abstract: - Highlights: • Drying of Ni–P coated CNTs in ethanol under atm. conditions promotes GO formation. • Ball milling helps to disperse CNTs uniformly in matrix than ultrasonication. • Increase in vol% of coated CNTs higher than 1.5% reduces mechanical properties. • Addition of coated CNTs improves both ductility and strength unlike bare CNTs. • Spark plasma sintering helped to preserve the structural quality of CNTs. - Abstract: Fe–50Co matrix composites containing 1.5 and 3 vol% of electroless Ni–P plated carbon nanotubes (CNTs) were densified using spark plasma sintering. The powder mixtures for the composites were prepared by two different routes: (a) ultrasonication only; and (b) ultrasonication followed by dry ball milling. Drying of the Ni–P plated CNTs under atmospheric conditions in the presence of ethanol promoted the nucleation and growth of graphene oxide on the coating. The ball milling route was found to be the most efficient method to disperse the coated nanotubes uniformly in the matrix. The addition of coated CNTs, which formed Taenite phase with the matrix alloy, made the composites to exhibit: (a) higher ductility, higher flexural strength, lower coercivity (H{sub c}) and lower saturation induction (B{sub sat}) compared to the monolithic material; and (b) higher ductility, higher flexural strength, higher H{sub c} and lower B{sub sat} in relation to the material with similar amount of bare CNTs.

  19. Catalytic hot gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Simell, P. [VTT Energy, Espoo (Finland)

    1996-12-31

    Gasification gas that contains particulates can be purified from tars and ammonia by using nickel monolith catalysts. Temperatures over 900 deg C are required at 20 bar pressure to avoid deactivation by H{sub 2}S and carbon. Dolomites and limestones are effective tar decomposing catalysts only when calcined. Tar decomposition in gasification conditions can take place by steam or dry (CO{sub 2}) reforming reactions. These reactions follow apparent first order kinetics with respect to hydrocarbons in gasification conditions. (author) (16 refs.)

  20. Amide-directed photoredox-catalysed C-C bond formation at unactivated sp3 C-H bonds

    Science.gov (United States)

    Chu, John C. K.; Rovis, Tomislav

    2016-11-01

    Carbon-carbon (C-C) bond formation is paramount in the synthesis of biologically relevant molecules, modern synthetic materials and commodity chemicals such as fuels and lubricants. Traditionally, the presence of a functional group is required at the site of C-C bond formation. Strategies that allow C-C bond formation at inert carbon-hydrogen (C-H) bonds enable access to molecules that would otherwise be inaccessible and the development of more efficient syntheses of complex molecules. Here we report a method for the formation of C-C bonds by directed cleavage of traditionally non-reactive C-H bonds and their subsequent coupling with readily available alkenes. Our methodology allows for amide-directed selective C-C bond formation at unactivated sp3 C-H bonds in molecules that contain many such bonds that are seemingly indistinguishable. Selectivity arises through a relayed photoredox-catalysed oxidation of a nitrogen-hydrogen bond. We anticipate that our findings will serve as a starting point for functionalization at inert C-H bonds through a strategy involving hydrogen-atom transfer.

  1. Alternative, Green Processes for the Precision Cleaning of Aerospace Hardware

    Science.gov (United States)

    Maloney, Phillip R.; Grandelli, Heather Eilenfield; Devor, Robert; Hintze, Paul E.; Loftin, Kathleen B.; Tomlin, Douglas J.

    2014-01-01

    Precision cleaning is necessary to ensure the proper functioning of aerospace hardware, particularly those systems that come in contact with liquid oxygen or hypergolic fuels. Components that have not been cleaned to the appropriate levels may experience problems ranging from impaired performance to catastrophic failure. Traditionally, this has been achieved using various halogenated solvents. However, as information on the toxicological and/or environmental impacts of each came to light, they were subsequently regulated out of use. The solvent currently used in Kennedy Space Center (KSC) precision cleaning operations is Vertrel MCA. Environmental sampling at KSC indicates that continued use of this or similar solvents may lead to high remediation costs that must be borne by the Program for years to come. In response to this problem, the Green Solvents Project seeks to develop state-of-the-art, green technologies designed to meet KSCs precision cleaning needs.Initially, 23 solvents were identified as potential replacements for the current Vertrel MCA-based process. Highly halogenated solvents were deliberately omitted since historical precedents indicate that as the long-term consequences of these solvents become known, they will eventually be regulated out of practical use, often with significant financial burdens for the user. Three solvent-less cleaning processes (plasma, supercritical carbon dioxide, and carbon dioxide snow) were also chosen since they produce essentially no waste stream. Next, experimental and analytical procedures were developed to compare the relative effectiveness of these solvents and technologies to the current KSC standard of Vertrel MCA. Individually numbered Swagelok fittings were used to represent the hardware in the cleaning process. First, the fittings were cleaned using Vertrel MCA in order to determine their true cleaned mass. Next, the fittings were dipped into stock solutions of five commonly encountered contaminants and were

  2. Hansen Cleaning Solvent Research Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Environmental regulation will force current baseline  precision cleaning solvent (AK-225) to be phased out starting 2015. We plan to develop  a new...

  3. Clean coal - a national urgency

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.M.; Sahai, R. [Indian Bureau of Mines, Nagpur (India). Technical Consultancy Division

    2000-07-01

    India is the third largest producer and consumer of coal in the world. Coal generally has a high ash content, thereby requiring that it be cleaned for proper use. Technological advances now make it possible to reduce pollution considerably, even as energy use increases. However, to reduce environmental impacts, technologies for cleaning coal before combustion need to be developed. The paper focuses on the need for clean coal production and the benefits associated with it. Although the country is rich in coal reserves, the generally inferior quality of coal will lead to its depletion if it is not used cleanly. Increasing the proportion of prepared coal from the current level of less than 5% (i.e. 10-11 million tonnes per annum) of all coal consumed will lead to a massive saving. This can be achieved if new washeries are set up, preferably near the coalfields. 2 figs.

  4. Tracking Clean Energy Progress 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    Tracking Clean Energy Progress 2013 (TCEP 2013) examines progress in the development and deployment of key clean energy technologies. Each technology and sector is tracked against interim 2020 targets in the IEA Energy Technology Perspectives 2012 2°C scenario, which lays out pathways to a sustainable energy system in 2050. Stark message emerge: progress has not been fast enough; large market failures are preventing clean energy solutions from being taken up; considerable energy efficiency remains untapped; policies need to better address the energy system as a whole; and energy-related research, development and demonstration need to accelerate. Alongside these grim conclusions there is positive news. In 2012, hybrid-electric vehicle sales passed the 1 million mark. Solar photovoltaic systems were being installed at a record pace. The costs of most clean energy technologies fell more rapidly than anticipated.

  5. Efficient methods of piping cleaning

    Directory of Open Access Journals (Sweden)

    Orlov Vladimir Aleksandrovich

    2014-01-01

    Full Text Available The article contains the analysis of the efficient methods of piping cleaning of water supply and sanitation systems. Special attention is paid to the ice cleaning method, in course of which biological foil and various mineral and organic deposits are removed due to the ice crust buildup on the inner surface of water supply and drainage pipes. These impurities are responsible for the deterioration of the organoleptic properties of the transported drinking water or narrowing cross-section of drainage pipes. The co-authors emphasize that the use of ice compared to other methods of pipe cleaning has a number of advantages due to the relative simplicity and cheapness of the process, economical efficiency and lack of environmental risk. The equipment for performing ice cleaning is presented, its technological options, terms of cleansing operations, as well as the volumes of disposed pollution per unit length of the water supply and drainage pipelines. It is noted that ice cleaning requires careful planning in the process of cooking ice and in the process of its supply in the pipe. There are specific requirements to its quality. In particular, when you clean drinking water system the ice applied should be hygienically clean and meet sanitary requirements.In pilot projects, in particular, quantitative and qualitative analysis of sediments adsorbed by ice is conducted, as well as temperature and the duration of the process. The degree of pollution of the pipeline was estimated by the volume of the remote sediment on 1 km of pipeline. Cleaning pipelines using ice can be considered one of the methods of trenchless technologies, being a significant alternative to traditional methods of cleaning the pipes. The method can be applied in urban pipeline systems of drinking water supply for the diameters of 100—600 mm, and also to diversion collectors. In the world today 450 km of pipelines are subject to ice cleaning method.Ice cleaning method is simple

  6. Carbon Fibers: Reexamination of the Critical Low-Temperature (200-300C) Stabilization of Polyacrylonitrile,

    Science.gov (United States)

    CARBON FIBERS , SYNTHESIS(CHEMISTRY)), (*ACRYLONITRILE POLYMERS, CARBON FIBERS ), SHEETS, CARBON, FILMS, OXIDATION, THERMAL ANALYSIS, CHEMICAL BONDS, INFRARED SPECTRA, MOLECULAR STRUCTURE, HEAT TREATMENT

  7. 2012 Clean Energy: Project Summaries

    OpenAIRE

    Asian Development Bank

    2013-01-01

    This report summarizes the investments in clean energy made by the operations departments of the Asian Development Bank (ADB) in 2012, condensing information from project databases and formal reports in an easy-to-reference format. This report was prepared by ADB’s Clean Energy Program which provides the cohesive agenda that encompasses and guides ADB’s lending and non-lending assistance, initiatives, and plan of action for sustainable growth in Asia and the Pacific.

  8. Clean Energy Solutions Center (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Reategui, S.

    2012-07-01

    The Clean Energy Ministerial launched the Clean Energy Solutions Center in April, 2011 for major economy countries, led by Australia and U.S. with other CEM partners. Partnership with UN-Energy is extending scope to support all developing countries: 1. Enhance resources on policies relating to energy access, small to medium enterprises (SMEs), and financing programs; 2. Offer expert policy assistance to all countries; 3. Expand peer to peer learning, training, and deployment and policy data for developing countries.

  9. Efficient methods of piping cleaning

    OpenAIRE

    Orlov Vladimir Aleksandrovich; Nechitaeva Valentina Anatol'evna; Bogomolova Irina Olegovna; Shaykhetdinova Yuliya Aleksandrovna; Daminova Yuliya Farikhovna

    2014-01-01

    The article contains the analysis of the efficient methods of piping cleaning of water supply and sanitation systems. Special attention is paid to the ice cleaning method, in course of which biological foil and various mineral and organic deposits are removed due to the ice crust buildup on the inner surface of water supply and drainage pipes. These impurities are responsible for the deterioration of the organoleptic properties of the transported drinking water or narrowing cross-section of d...

  10. Steam generator chemical cleaning at the Palo Verde Nuclear Generating Station

    Energy Technology Data Exchange (ETDEWEB)

    Jevec, J.M. [Babcock and Wilcox, Alliance, OH (United States). R and D Division; Knollmeyer, P.M. [B and W Nuclear Technologies, Lynchburg, VA (United States); Paramithas, P. [Palo Verde Nuclear Generating Station, Tonopah, AZ (United States)

    1995-09-01

    The secondary side of the Palo Verde Units 2 and 3 steam generators were chemically cleaned in 1994. The primary purpose of the chemical cleaning was to remove deposits bridging between adjacent tubes and also to remove bulk tube and tubesheet deposits. A secondary objective was to remove deposits from the flow distribution plate-to-tube crevice. The chemical cleaning consisted of a magnetite dissolution step, a separate step aimed at removing deposits in the flow distribution plate crevices, and a final step to remove residual copper and passivate the carbon steel surfaces of the steam generator. Corrosion monitoring was employed during the cleaning to ensure that the cleaning resulted in corrosion to steam generator materials of construction that was below the predetermined chemical cleaning corrosion allowances. The process application, removal efficiency, and corrosion results are presented in this paper.

  11. Clean Energy Application Center

    Energy Technology Data Exchange (ETDEWEB)

    Freihaut, Jim

    2013-09-30

    The Mid Atlantic Clean Energy Application Center (MACEAC), managed by The Penn State College of Engineering, serves the six states in the Mid-Atlantic region (Pennsylvania, New Jersey, Delaware, Maryland, Virginia and West Virginia) plus the District of Columbia. The goals of the Mid-Atlantic CEAC are to promote the adoption of Combined Heat and Power (CHP), Waste Heat Recovery (WHR) and District Energy Systems (DES) in the Mid Atlantic area through education and technical support to more than 1,200 regional industry and government representatives in the region. The successful promotion of these technologies by the MACEAC was accomplished through the following efforts; (1)The MACEAC developed a series of technology transfer networks with State energy and environmental offices, Association of Energy Engineers local chapters, local community development organizations, utilities and, Penn State Department of Architectural Engineering alumni and their firms to effectively educate local practitioners about the energy utilization, environmental and economic advantages of CHP, WHR and DES; (2) Completed assessments of the regional technical and market potential for CHP, WHR and DE technologies application in the context of state specific energy prices, state energy and efficiency portfolio development. The studies were completed for Pennsylvania, New Jersey and Maryland and included a set of incentive adoption probability models used as a to guide during implementation discussions with State energy policy makers; (3) Using the technical and market assessments and adoption incentive models, the Mid Atlantic CEAC developed regional strategic action plans for the promotion of CHP Application technology for Pennsylvania, New Jersey and Maryland; (4) The CHP market assessment and incentive adoption model information was discussed, on a continuing basis, with relevant state agencies, policy makers and Public Utility Commission organizations resulting in CHP favorable incentive

  12. A noncontacting scanning photoelectron emission technique for bonding surface cleanliness inspection

    Science.gov (United States)

    Gause, Raymond L.

    1989-01-01

    Molecular contamination of bonding surfaces can drastically affect the bond strength that can be achieved and therefore the structural integrity and reliability of the bonded part. The presence of thin contaminant films on bonding surfaces can result from inadequate or incomplete cleaning methods, from oxide growth during the time between cleaning (such as grit blasting) and bonding, or from failure to properly protect cleaned surfaces from oils, greases, fingerprints, release agents, or deposition of facility airborne molecules generated by adjacent manufacturing or processing operations. Required cleanliness levels for desired bond performance can be determined by testing to correlate bond strength with contaminant type and quantity, thereby establishing the degree of contamination that can be tolerated based on the strength that is needed. Once the maximum acceptable contaminant level is defined, a method is needed to quantitatively measure the contaminant level on the bonding surface prior to bonding to verify that the surface meets the established cleanliness requirement. A photoelectron emission technique for the nondestructive inspection of various bonding surfaces, both metallic and nonmetallic, to provide quantitative data on residual contaminant levels is described. The technique can be used to scan surfaces at speeds of at least 30 ft/min using a servo system to maintain required sensor to surface spacing. The fundamental operation of the photoelectron emission sensor system is explained and the automated scanning system and computer data acquisition hardware and software are described.

  13. Bonding with Your Baby

    Science.gov (United States)

    ... in infant massage in your area. Breastfeeding and bottle-feeding are both natural times for bonding. Infants respond ... activities include: participating together in labor and delivery feeding ( breast or bottle ); sometimes dad forms a special bond with baby ...

  14. Ultraclean Si/Si interface formation by surface preparation and direct bonding in ultrahigh vacuum

    DEFF Research Database (Denmark)

    Hermansson, Karin; Grey, Francois; Bengtsson, Stefan;

    1998-01-01

    Silicon surfaces have been cleaned and bonded in ultrahigh vacuum, at a pressure in the 10(-10) Torr range. The bonded interfaces show extremely low contamination levels as measured by secondary ion mass spectroscopy. Nevertheless, a potential barrier could be detected at the interface by spreading...

  15. Azobenzene-functionalized carbon nanotubes as high-energy density solar thermal fuels.

    Science.gov (United States)

    Kolpak, Alexie M; Grossman, Jeffrey C

    2011-08-10

    Solar thermal fuels, which reversibly store solar energy in molecular bonds, are a tantalizing prospect for clean, renewable, and transportable energy conversion/storage. However, large-scale adoption requires enhanced energy storage capacity and thermal stability. Here we present a novel solar thermal fuel, composed of azobenzene-functionalized carbon nanotubes, with the volumetric energy density of Li-ion batteries. Our work also demonstrates that the inclusion of nanoscale templates is an effective strategy for design of highly cyclable, thermally stable, and energy-dense solar thermal fuels.

  16. Carbon Emission Option Pricing Calculation and Clean Development Mechanism Strategy of Jiangsu:Based on the Pricing Analysis of B-S Model%江苏碳排放期权价格测算及清洁发展机制对策--基于B-S模型的定价分析

    Institute of Scientific and Technical Information of China (English)

    吕晓玥; 简迎辉; 许长新

    2014-01-01

    It is a tendency to develop low-carbon economy and lift the ability of carbon trade and clean development. Through potential analysis of CDM project progress, economy foundation and resource endowment to developing the carbon trade market of Jiangsu companies, we can find that this district possesses huge space for energy conservation and emissions reduction. Besides, we have introduced real option theory to study of the carbon trading mechanism of empirical research, by using the B-S pricing model and European carbon option trade market data, constructed a carbon option pricing model, then based on the similarity economy comparison between European Union and Jiangsu province, obtained the discounted carbon trading market price of Jiangsu area. at last, around technology, management and policies levels to putting forward some relevant suggestions and measures on CDM mechanism provided beneficial basis and references to Jiangsu companies in stepwise development of carbon trading market under CDM mechanism.%发展低碳经济,提升碳交易与清洁发展能力已是大势所趋。文章通过对CDM项目进展、经济基础与资源禀赋等方面对江苏省内企业发展碳交易市场进行潜力分析后发现,该地区存在巨大的节能减排空间。实证研究中将实物期权理论引入碳交易机制,借助B-S模型及欧盟碳交易市场相关数据构造出碳排放期权定价模型,根据欧盟与江苏经济发展的相似性折扣给出江苏地区碳交易的市场定价,同时,围绕技术、管理及政策三个层面提出该地区CDM机制的新型思路建议,旨在为江苏企业在清洁发展机制下逐步开发完善碳交易市场提供有利依据与参考。

  17. Mechanisms of single bubble cleaning.

    Science.gov (United States)

    Reuter, Fabian; Mettin, Robert

    2016-03-01

    The dynamics of collapsing bubbles close to a flat solid is investigated with respect to its potential for removal of surface attached particles. Individual bubbles are created by nanosecond Nd:YAG laser pulses focused into water close to glass plates contaminated with melamine resin micro-particles. The bubble dynamics is analysed by means of synchronous high-speed recordings. Due to the close solid boundary, the bubble collapses with the well-known liquid jet phenomenon. Subsequent microscopic inspection of the substrates reveals circular areas clean of particles after a single bubble generation and collapse event. The detailed bubble dynamics, as well as the cleaned area size, is characterised by the non-dimensional bubble stand-off γ=d/Rmax, with d: laser focus distance to the solid boundary, and Rmax: maximum bubble radius before collapse. We observe a maximum of clean area at γ≈0.7, a roughly linear decay of the cleaned circle radius for increasing γ, and no cleaning for γ>3.5. As the main mechanism for particle removal, rapid flows at the boundary are identified. Three different cleaning regimes are discussed in relation to γ: (I) For large stand-off, 1.8substrate and remove particles without significant contact of the gas phase. (II) For small distances, γsubstrate are driven by the jet impact with its subsequent radial spreading, and by the liquid following the motion of the collapsing and rebounding bubble wall. Both flows remove particles. Their relative timing, which depends sensitively on the exact γ, appears to determine the extension of the area with forces large enough to cause particle detachment. (III) At intermediate stand-off, 1.1substrate, but acts with cleaning mechanisms similar to an effective small γ collapse: particles are removed by the jet flow and the flow induced by the bubble wall oscillation. Furthermore, the observations reveal that the extent of direct bubble gas phase contact to the solid is partially smaller than the

  18. Critical resources in clean energy technologies and waste flows

    DEFF Research Database (Denmark)

    Habib, Komal

    A broader implementation of clean energy technologies in future is a widely motivated scenario for meeting the climate change goals as well as to reduce our dependency on the non‐renewable fossil fuels. However, the transition from the current fossil‐based society to a future low‐carbon society...... constraints for the emerging clean energy technologies in future, along with an insight into the resource criticality assessment methodologies, detailed material flow analysis (MFA) of critical resources, and recovery of critical resources from the waste streams. The key findings of this PhD study were......:  The demand of neodymium and dysprosium, driven by the clean energy technologies is estimated to be 10 times higher by 2050 compared to the present primary supply (mining). This implies that either a highly accelerated rate of mining is required to meet the future demand or a radical change in current...

  19. Acrylic mechanical bond tests

    Energy Technology Data Exchange (ETDEWEB)

    Wouters, J.M.; Doe, P.J.

    1991-02-01

    The tensile strength of bonded acrylic is tested as a function of bond joint thickness. 0.125 in. thick bond joints were found to posses the maximum strength while the acceptable range of joints varied from 0.063 in. to almost 0.25 in. Such joints are used in the Sudbury Neutrino Observatory.

  20. Bond percolation in films

    Science.gov (United States)

    Korneta, W.; Pytel, Z.

    1988-04-01

    Bond percolation in films with simple cubic structure is considered. It is assumed that the probability of a bond being present between nearest-neighbor sites depends on the distances to surfaces. Based on the relation between the Potts model and the bond percolation model, and using the mean-field approximation, the phase diagram and profiles of the percolation probability have been obtained.

  1. Megasonic cleaning: effect of dissolved gas properties on cleaning

    Science.gov (United States)

    Shende, Hrishi; Singh, Sherjang; Baugh, James; Dietze, Uwe; Dress, Peter

    2013-06-01

    Current and future lithography techniques require complex imaging improvement strategies. These imaging improvement strategies require printing of sub-resolution assist-features (SRAF) on photomasks. The size of SRAF's has proven to be the main limiting factor in using high power Megasonic cleaning process on photomasks. These features, due to high aspect ratio are more prone to damage at low Megasonic frequencies and at high Megasonic powers. Additionally the non-uniformity of energy dissipated during Megasonic cleaning is a concern for exceeding the damage threshold of the SRAFs. If the cavitation events during Megasonic cleaning are controlled in way to dissipate uniform energy, better process control can be achieved to clean without damage. The amount and type of gas dissolved in the cleaning liquid defines the cavitation behavior. Some of the gases possess favourable solubility and adiabatic properties for stable and controlled cavitation behaviour. This paper particularly discusses the effects of dissolved Ar gas on Megasonic characteristics. The effect of Ar Gas is characterized by measuring acoustic energy and Sonoluminscense. The phenomenon is further verified with pattern damage studies.

  2. Chemical bond fundamental aspects of chemical bonding

    CERN Document Server

    Frenking, Gernot

    2014-01-01

    This is the perfect complement to ""Chemical Bonding - Across the Periodic Table"" by the same editors, who are two of the top scientists working on this topic, each with extensive experience and important connections within the community. The resulting book is a unique overview of the different approaches used for describing a chemical bond, including molecular-orbital based, valence-bond based, ELF, AIM and density-functional based methods. It takes into account the many developments that have taken place in the field over the past few decades due to the rapid advances in quantum chemica

  3. Are Breast Surgical Operations Clean or Clean Contaminated?

    Science.gov (United States)

    Kataria, Kamal; Bagdia, Amit; Srivastava, Anurag

    2015-12-01

    The breast surgeries are classically taught as clean surgical procedures. The infection rates following breast surgery ranges from 3 to 15 %, which is much higher than infection rates after clean surgery (ranging from 1.5 to 3 %). This high infection rate following breast surgery can be explained by opening of the ductal system to outside world through nipple similar to the gastrointestinal and genitourinary system. We conducted a systematic review of infection following breast surgeries. We searched various randomized controlled trials, meta-analysis, and Cochrane Reviews over PubMed and Medline via the Internet. These evidences were found to support the thesis, "Breast surgeries need to be reclassified as clean-contaminated". We recommend the use of prophylactic antibiotics in breast surgery.

  4. Benefit Analysis of Carbon Emission Reduction and Development Order of Clean Energy in China%我国清洁能源碳减排效益分析及发展顺序

    Institute of Scientific and Technical Information of China (English)

    刘兰菊

    2012-01-01

    The development of low-carbon energy is one of effective measures to address global climate change and achieve power low-carbon development. Eventually, it has to achieve the application of power generation technology in the specific projects. It is the key to evaluate CO2 emission reduction benefit of renewable energy power generation technologies and the economic feasibility of each technology. This paper analyzes carbon emission reduction cost-benefit of five main low-carbon power generation technologies to replace coal-fired power in China. And then> the carbon emission reduction potential of low-carbon energy generation technologies in 2020 is estimated. The results show that the generation cost of hydroelectric power generation and the corresponding carbon emissions cost is lowest; the second is nuclear power; while photovoltaic power generation is the highest; therefore, it should give priority to development of hydropower and exploit nuclear power on a big scale; at the same time, it actively develops wind power and other low-carbon energy.%发展低碳能源是应对全球气候变化、实现电力低碳化发展的有效途径,最终要以发电技术在具体工程项目中应用来实现,衡量各技术的经济可行性、评价可再生能源发电技术CO2的减排效益是关键.分析了当前我国主要5种低碳发电技术置换火电的碳减排成本及产生的碳减排效益,并对2020年低碳能源发电技术的碳减排潜力进行了测算.结果表明,水电发电成本及相应的碳减排成本最低,核电其次,光伏发电最高,应优先发展水电、大力开发核电,同时积极发展风电等其他低碳能源.

  5. Cleaning properties of dry adhesives

    Institute of Scientific and Technical Information of China (English)

    J.; P.; DíAZ; TéLLEZ; D.; SAMEOTO; C.; MENON

    2010-01-01

    In this paper we present a study into the cleaning properties of synthetic dry adhesives. We have manufactured the adhesive micro-fibres through a low-cost, high yield fabrication method using Sylgard 184 Polydimethylsiloxane (PDMS) as the structural material. We deliberately contaminated the adhesive samples with different sized particles in the micro and macro scales and tested different cleaning methods for their efficacy with respect to each particle size. We investigated different cleaning methods, which included the use of wax moulding, vibration and pressure sensitive adhesives. For adhesion testing we used a custom system with a linear stage and a force sensor indenting a hemispherical probe into the adhesive surface and measuring the pull-off force. To characterize the cleaning efficacy we visually inspected each sample in a microscope and weighed the samples with a microgram-accuracy analytical balance. Results showed that the moulding method induced adhesion recovery in a greater percentage than the other cleaning methods and even helped with the recovery of collapsed posts in some cases. On the other hand pressure sensitive adhesives seem to have the upper hand with regards to certain particle sizes that can potentially pose problems with the moulding method.

  6. Effectiveness of granite cleaning procedures in cultural heritage: A review.

    Science.gov (United States)

    Pozo-Antonio, J S; Rivas, T; López, A J; Fiorucci, M P; Ramil, A

    2016-11-15

    Most of the Cultural Heritage built in NW Iberian Peninsula is made of granite which exposition to the environment leads to the formation of deposits and coatings, mainly two types: biological colonization and sulphated black crusts. Nowadays, another form of alteration derives from graffiti paints when these are applied as an act of vandalism. A deep revision needs to be addressed considering the severity of these deterioration forms on granite and the different cleaning effectiveness achieved by cleaning procedures used to remove them. The scientific literature about these topics on granite is scarcer than on sedimentary carbonate stones and marbles, but the importance of the granite in NW Iberian Peninsula Cultural Heritage claims this review centred on biological colonization, sulphated black crusts and graffiti on granite and their effectiveness of the common cleaning procedures. Furthermore, this paper carried out a review of the knowledge about those three alteration forms on granite, as well as bringing together all the major studies in the field of the granite cleaning with traditional procedures (chemical and mechanical) and with the recent developed technique based on the laser ablation. Findings concerning the effectiveness evaluation of these cleaning procedures, considering the coating extraction ability and the damage induced on the granite surface, are described. Finally, some futures research lines are pointed out.

  7. C-H Bond Activation of Bisimines by Palladium (Ⅱ) and Platinum (Ⅱ).Synthesis,Characterization of Bis (imino) aryl-palladium (Ⅱ) Pincer Complexes and Their Application in Carbon-Carbon Cross Coupling Reactions%C-H Bond Activation of Bisimines by Palladium (Ⅱ) and Platinum (Ⅱ).Synthesis, Characterization of Bis (imino) aryl-palladium (Ⅱ) Pincer Complexes and Their Application in Carbon-Carbon Cross Coupling Reactions

    Institute of Scientific and Technical Information of China (English)

    CHEN Rong; CHEN Ying; LIU Fang; LI Ping; HU Zhao-xia; WANG Hong-xing

    2013-01-01

    Abstract:The reactions of a variety of 4,6-dimethyl-1,3-bis (imino) benzenes 2a-g derived from 4,6-dimethylisophthalaldehyde and anilines or benzylamine with palladium (Ⅱ) acetate in anhydrous acetic acid under nitrogen were investigated.Experiment results demonstrate that cyclopalladations in such condition are applicable not only to the present system under study but also to the 5-substituted bis(imino)benzenes 6,7.The molecular structure of 3 b was further confirmed by X-Ray single-crystal diffraction.3b Crystallizes in orthorhombic,space groupP2 (1) 2 (1) 2 (1) with a =0.734 53 (8),b =1.683 8 (3),c =1.691 7(2) nm,α =β =γ =90°.Treatment of 2b with K2PtCl4 in anhydrous acetic acid affords the corresponding NCN-platinum pincer.Carbon-carbon cross coupling reactions catalyzed with 3b were investigated.These palladium complexes have been proved to be high effective catalysts for Suzuki coupling reaction.

  8. Decontamination of Genesis Array Materials by UV Ozone Cleaning

    Science.gov (United States)

    Calaway, Michael J.; Burnett, D. S.; Rodriquez, M. C.; Sestak, S.; Allton, J. H.; Stansbery, E. K.

    2007-01-01

    Shortly after the NASA Genesis Mission sample return capsule returned to earth on September 8, 2004, the science team discovered that all nine ultra-pure semiconductor materials were contaminated with a thin molecular organic film approximately 0 to 100 angstroms thick. The organic contaminate layer, possibly a silicone, situated on the surface of the materials is speculated to have formed by condensation of organic matter from spacecraft off-gassing at the Lagrange 1 halo orbit during times of solar exposure. While the valuable solar wind atoms are safely secured directly below this organic contamination and/or native oxide layer in approximately the first 1000 angstroms of the ultra-pure material substrate, some analytical techniques that precisely measure solar wind elemental abundances require the removal of this organic contaminate. In 2005, Genesis science team laboratories began to develop various methods for removing the organic thin film without removing the precious material substrate that contained the solar wind atoms. Stephen Sestak and colleagues at Open University first experimented with ultraviolet radiation ozone (UV/O3) cleaning of several non-flight and flown Genesis silicon wafer fragments under a pure flowing oxygen environment. The UV/O3 technique was able to successfully remove organic contamination without etching into the bulk material substrate. At NASA Johnson Space Center Genesis Curation Laboratory, we have installed an UV/O3 cleaning devise in an ambient air environment to further experimentally test the removal of the organic contamination on Genesis wafer materials. Preliminary results from XPS analysis show that the UV/O3 cleaning instrument is a good non-destructive method for removing carbon contamination from flown Genesis array samples. However, spectroscopic ellipsometry results show little change in the thickness of the surface film. All experiments to date have shown UV/O3 cleaning method to be the best non-destructive method

  9. Structure and bonding of second-row hydrides

    OpenAIRE

    Blinder, S. M.

    2014-01-01

    The atomic orbitals, hybridization and chemical bonding of the most common hydrides of boron, carbon, nitrogen and oxygen are described. This can be very instructive for beginning students in chemistry and chemical physics.

  10. Laser cleaning of tungsten ribbon

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Aniruddha, E-mail: nontee65@rediffmail.com [Advanced Fuel Fabrication Facility, Bhabha Atomic Research Centre, Tarapur, Maharashtra, 401504 (India); Sonar, V.R.; Das, D.K.; Bhatt, R.B.; Behere, P.G.; Afzal, Mohd.; Kumar, Arun [Advanced Fuel Fabrication Facility, Bhabha Atomic Research Centre, Tarapur, Maharashtra, 401504 (India); Nilaya, J.P.; Biswas, D.J. [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Trombay, 400085 (India)

    2014-07-01

    Removal of a thin oxide layer from a tungsten ribbon was achieved using the fundamental, second and third harmonic radiation from a Q- switched Nd-YAG laser. It was found that beyond the threshold, oxide removal was achieved at all wavelengths for a wide range of fluence values. The removal mechanism of the oxide layer was found to be critically dependent on both wavelength and fluence of the incident radiation and has been identified as ejection or sublimation. The un-cleaned and cleaned surfaces were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDS) and atomic force microscopy (AFM). Laser cleaned tungsten ribbons were used in a thermal ionization mass spectrometer (TIMS) to determine isotopic composition of Neodymium atoms.

  11. Hyperbolic Divergence Cleaning for SPH

    CERN Document Server

    Tricco, Terrence S

    2012-01-01

    We present SPH formulations of Dedner et al's hyperbolic/parabolic divergence cleaning scheme for magnetic and velocity fields. Our implementation preserves the conservation properties of SPH which is important for stability. This is achieved by deriving an energy term for the Psi field, and imposing energy conservation on the cleaning subsystem of equations. This necessitates use of conjugate operators for divB and gradPsi in the numerical equations. For both the magnetic and velocity fields, the average divergence error in the system is reduced by an order of magnitude with our cleaning algorithm. Divergence errors in SPMHD are maintained to < 1%, even for realistic 3D applications with a corresponding gain in numerical stability. Density errors for an oscillating elliptic water drop using weakly compressible SPH are reduced by a factor of two.

  12. Clean Coal Diesel Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Robert Wilson

    2006-10-31

    A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

  13. Preparation of phosphines through C–P bond formation

    Directory of Open Access Journals (Sweden)

    Iris Wauters

    2014-05-01

    Full Text Available Phosphines are an important class of ligands in the field of metal-catalysis. This has spurred the development of new routes toward functionalized phosphines. Some of the most important C–P bond formation strategies were reviewed and organized according to the hybridization of carbon in the newly formed C–P bond.

  14. Influence of surface preparation on fusion bonding of thermoplastic composites

    NARCIS (Netherlands)

    Sacchetti, F.; Grouve, W.J.B.; Warnet, L.L.; Fernandez Villegas, I.

    2015-01-01

    Carbon fibre-reinforced thermoplastic composites laminates (CFRP) meant for fusion bonding have been moulded using different release media. The potential contamination of the laminate surface by the release media and its effect on the mechanical performance of fusion bonded joints was studied. The p

  15. Rapid bonding of Pyrex glass microchips.

    Science.gov (United States)

    Akiyama, Yoshitake; Morishima, Keisuke; Kogi, Atsuna; Kikutani, Yoshikuni; Tokeshi, Manabu; Kitamori, Takehiko

    2007-03-01

    A newly developed vacuum hot press system has been specially designed for the thermal bonding of glass substrates in the fabrication process of Pyrex glass microchemical chips. This system includes a vacuum chamber equipped with a high-pressure piston cylinder and carbon plate heaters. A temperature of up to 900 degrees C and a force of as much as 9800 N could be applied to the substrates in a vacuum atmosphere. The Pyrex substrates bonded with this system under different temperatures, pressures, and heating times were evaluated by tensile strength tests, by measurements of thickness, and by observations of the cross-sectional shapes of the microchannels. The optimal bonding conditions of the Pyrex glass substrates were 570 degrees C for 10 min under 4.7 N/mm(2) of applied pressure. Whereas more than 16 h is required for thermal bonding with a conventional furnace, the new system could complete the whole bonding processes within just 79 min, including heating and cooling periods. Such improvements should considerably enhance the production rate of Pyrex glass microchemical chips. Whereas flat and dust-free surfaces are required for conventional thermal bonding, especially without long and repeated heating periods, our hot press system could press a fine dust into glass substrates so that even the areas around the dust were bonded. Using this capability, we were able to successfully integrate Pt/Ti thin film electrodes into a Pyrex glass microchip.

  16. Structural and Biochemical Characterization of a Copper-Binding Mutant of the Organomercurial Lyase MerB: Insight into the Key Role of the Active Site Aspartic Acid in Hg-Carbon Bond Cleavage and Metal Binding Specificity.

    Science.gov (United States)

    Wahba, Haytham M; Lecoq, Lauriane; Stevenson, Michael; Mansour, Ahmed; Cappadocia, Laurent; Lafrance-Vanasse, Julien; Wilkinson, Kevin J; Sygusch, Jurgen; Wilcox, Dean E; Omichinski, James G

    2016-02-23

    In bacterial resistance to mercury, the organomercurial lyase (MerB) plays a key role in the detoxification pathway through its ability to cleave Hg-carbon bonds. Two cysteines (C96 and C159; Escherichia coli MerB numbering) and an aspartic acid (D99) have been identified as the key catalytic residues, and these three residues are conserved in all but four known MerB variants, where the aspartic acid is replaced with a serine. To understand the role of the active site serine, we characterized the structure and metal binding properties of an E. coli MerB mutant with a serine substituted for D99 (MerB D99S) as well as one of the native MerB variants containing a serine residue in the active site (Bacillus megaterium MerB2). Surprisingly, the MerB D99S protein copurified with a bound metal that was determined to be Cu(II) from UV-vis absorption, inductively coupled plasma mass spectrometry, nuclear magnetic resonance, and electron paramagnetic resonance studies. X-ray structural studies revealed that the Cu(II) is bound to the active site cysteine residues of MerB D99S, but that it is displaced following the addition of either an organomercurial substrate or an ionic mercury product. In contrast, the B. megaterium MerB2 protein does not copurify with copper, but the structure of the B. megaterium MerB2-Hg complex is highly similar to the structure of the MerB D99S-Hg complexes. These results demonstrate that the active site aspartic acid is crucial for both the enzymatic activity and metal binding specificity of MerB proteins and suggest a possible functional relationship between MerB and its only known structural homologue, the copper-binding protein NosL.

  17. Laser paper cleaning: the method of cleaning historical books

    Science.gov (United States)

    Zekou, Evangelini; Tsilikas, Ioannis; Chatzitheodoridis, Elias; Serafetinides, Alexander A.

    2016-01-01

    Conservation of cultural heritage treasures is the most important issue for transferring knowledge to the public through the next generation of students, academics, and researchers. Although this century is authenticating e-books and information by means of electronic text, still historical manuscripts as content as well as objects are the main original recourses of keeping a record of this transformation. The current work focuses on cleaning paper samples by the application of pulsed light, which is interventional. Experiments carried out using paper samples that are artificially colonized with Ulocladium chartarum. Paper is treated by Nd:YAG laser light. The available wavelength is 1064 nm, at various fluences, repetition rates and number of pulses. Two types of paper are stained with fungi colonies, which grow on substrates of clean paper, as well as on paper with ink text. The first type of paper is Whatman No.1056, which is closer to pure cellulose. The second type of paper is a page of a cultural heritage book published in 1926. Cleaning is performed using laser irradiation, thus defining the damage threshold of each sample. The treatment on paper Watman showed a yellowing, especially on areas with high concentration of fungi. The second sample was more durable to the exposure, performing the best results at higher fluences. Eventually, the paper samples are characterized, with optical microscopy and SEM/EDX analyses, prior to and after cleaning.

  18. Sociology: Clean-energy conservatism

    Science.gov (United States)

    McCright, Aaron M.

    2017-03-01

    US conservatives receive a steady stream of anti-environmental messaging from Republican politicians. However, clean-energy conservatives sending strong counter-messages on energy issues could mobilize moderate conservatives to break away from the dominant right-wing defence of fossil fuels.

  19. Laser cleaning on Roman coins

    Science.gov (United States)

    Drakaki, E.; Karydas, A. G.; Klinkenberg, B.; Kokkoris, M.; Serafetinides, A. A.; Stavrou, E.; Vlastou, R.; Zarkadas, C.

    Ancient metal objects react with moisture and environmental chemicals to form various corrosion products. Because of the unique character and high value of such objects, any cleaning procedure should guarantee minimum destructiveness. The most common treatment used is mechanical stripping, in which it is difficult to avoid surface damage when employed. Lasers are currently being tested for a wide range of conservation applications. Since they are highly controllable and can be selectively applied, lasers can be used to achieve more effective and safer cleaning of archaeological artifacts and protect their surface details. The basic criterion that motivated us to use lasers to clean Roman coins was the requirement of pulsed emission, in order to minimize heat-induced damages. In fact, the laser interaction with the coins has to be short enough, to produce a fast removal of the encrustation, avoiding heat conduction into the substrate. The cleaning effects of three lasers operating at different wavelengths, namely a TEA CO2 laser emitting at 10.6 μm, an Er:YAG laser at 2.94 μm, and a 2ω-Nd:YAG laser at 532 nm have been compared on corroded Romans coins and various atomic and nuclear techniques have also been applied to evaluate the efficiency of the applied procedure.

  20. Cleaning Validation of Fermentation Tanks

    DEFF Research Database (Denmark)

    Salo, Satu; Friis, Alan; Wirtanen, Gun

    2008-01-01

    Reliable test methods for checking cleanliness are needed to evaluate and validate the cleaning process of fermentation tanks. Pilot scale tanks were used to test the applicability of various methods for this purpose. The methods found to be suitable for validation of the clenlinees were visula o...

  1. Clean coal initiatives in Indiana

    Science.gov (United States)

    Bowen, B.H.; Irwin, M.W.; Sparrow, F.T.; Mastalerz, Maria; Yu, Z.; Kramer, R.A.

    2007-01-01

    Purpose - Indiana is listed among the top ten coal states in the USA and annually mines about 35 million short tons (million tons) of coal from the vast reserves of the US Midwest Illinois Coal Basin. The implementation and commercialization of clean coal technologies is important to the economy of the state and has a significant role in the state's energy plan for increasing the use of the state's natural resources. Coal is a substantial Indiana energy resource and also has stable and relatively low costs, compared with the increasing costs of other major fuels. This indigenous energy source enables the promotion of energy independence. The purpose of this paper is to outline the significance of clean coal projects for achieving this objective. Design/methodology/approach - The paper outlines the clean coal initiatives being taken in Indiana and the research carried out at the Indiana Center for Coal Technology Research. Findings - Clean coal power generation and coal for transportation fuels (coal-to-liquids - CTL) are two major topics being investigated in Indiana. Coking coal, data compilation of the bituminous coal qualities within the Indiana coal beds, reducing dependence on coal imports, and provision of an emissions free environment are important topics to state legislators. Originality/value - Lessons learnt from these projects will be of value to other states and countries.

  2. Wanted: Clean Coal Burning Technology

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    China is intent on developing clean coal burning technology, an objective it can achieve through installing desulfurization facilities at coal-burning power plants that will control SO2 emissions and environmental pollution. According to kuo Yi, deputy director general of the Department of Science and Technology of the State Environmental Protection Agency, China is a major coal-buming country:

  3. Pollute first, clean up later?

    NARCIS (Netherlands)

    Azadi, Hossein; Verheijke, Gijs; Witlox, Frank

    2011-01-01

    There is a growing concern with regard to sustainability in emerging economies like China. The Chinese growth is characterized by a strategy which is known as "pollute first, clean up later". Here we show that based on this strategy, the pollution alarm can often be postponed by a tremendous economi

  4. Partnership for a Clean Future

    Institute of Scientific and Technical Information of China (English)

    WANG HAIRONG

    2010-01-01

    @@ Having lived in China for almost three decades,Sabina Brady is a de facto China hand.Currently,she is the cxecutive director of the U.S.-China Energy Cooperation Program (ECP),a nonprofit organization that engages in market development and promotion of clean energy within the framework of China-U.S.bilateral government commitments on the environrnent and energy.

  5. Teaming up for Clean Energy

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    On October 22, the China Institute of Strategy and Management and the U.S. Brookings Institution jointly held the China-U.S. Strategic Forum on Clean Energy Cooperation. At the opening session of the forum, Zheng Bijian, Chairman of the China Institute of Strategy and Management, gave a keynote speech. Edited excerpts follow:

  6. Cleaning the Diesel Engine Emissions

    DEFF Research Database (Denmark)

    Christensen, Thomas Budde

    This paper examines how technologies for cleaning of diesel emission from road vehicles can be supported by facilitating a technology push in the Danish automotive emission control industry. The European commission is at present preparing legislation for the euro 5 emission standard (to be enforc...

  7. An in vitro Comparative Evaluation of Micro Tensile Bond Strength of Two metal bonding Resin Cements bonded to Cobalt Chromium alloy

    Science.gov (United States)

    Musani, Smita; Musani, Iqbal; Dugal, Ramandeep; Habbu, Nitin; Madanshetty, Pallavi; Virani, Danish

    2013-01-01

    Background: The purpose of this study was to evaluate and compare the micro tensile bond strength of two metal bonding resin cements to sandblasted cobalt chromium alloy. Materials & Methods: Eight, Cobalt chromium alloy blocks of dimensions 10x5x5 mm were cast, finished and polished. One of the faces of each alloy block measuring 5x5mm was sandblasted with 50 μm grit alumina particles. The alloy blocks were then cleaned in an ultrasonic cleaner for 1 min and then air dried with an air stream. The Sandblasted surfaces of the two alloy blocks were bonded together with 2 different metal bonding resin systems (Panavia F Kuraray and DTK Kleber – Bredent). The samples were divided into 2 groups (n=4). Group 1- Two Co-Cr blocks were luted with Panavia cement. Group 2- Two Co-Cr blocks were luted with DTK Kleber-Bredent cement. The bonded samples were cut with a diamond saw to prepare Microtensile bars of approximately 1mm x 1mm x 6mm. Thirty bars from each group were randomly separated into 2 subgroups (n=15) and left for 3hrs (baseline) as per manufacturer's instructions while the other group was aged for 24hrs in 370C water, prior to loading to failure under tension at a cross head speed of 1mm/min. Failure modes were determined by means of stereomicroscopy (sm). Statistical analysis was performed through one way – ANOVA. Results: Significant variation in micro-tensile bond strength was observed between the two metal bonding resin systems. Conclusion: DTK showed higher mean bond strength values than Panavia F cement both at baseline and after aging. How to cite this article: Musani S, Musani I, Dugal R, Habbu N, Madanshetty P, Virani D. An in vitro Comparative Evaluation of Micro Tensile Bond Strength of Two metal bonding Resin Cements bonded to Cobalt Chromium alloy. J Int Oral Health 2013;5(5):73-8. PMID:24324308

  8. Equilibrium CO bond lengths

    Science.gov (United States)

    Demaison, Jean; Császár, Attila G.

    2012-09-01

    Based on a sample of 38 molecules, 47 accurate equilibrium CO bond lengths have been collected and analyzed. These ultimate experimental (reEX), semiexperimental (reSE), and Born-Oppenheimer (reBO) equilibrium structures are compared to reBO estimates from two lower-level techniques of electronic structure theory, MP2(FC)/cc-pVQZ and B3LYP/6-311+G(3df,2pd). A linear relationship is found between the best equilibrium bond lengths and their MP2 or B3LYP estimates. These (and similar) linear relationships permit to estimate the CO bond length with an accuracy of 0.002 Å within the full range of 1.10-1.43 Å, corresponding to single, double, and triple CO bonds, for a large number of molecules. The variation of the CO bond length is qualitatively explained using the Atoms in Molecules method. In particular, a nice correlation is found between the CO bond length and the bond critical point density and it appears that the CO bond is at the same time covalent and ionic. Conditions which permit the computation of an accurate ab initio Born-Oppenheimer equilibrium structure are discussed. In particular, the core-core and core-valence correlation is investigated and it is shown to roughly increase with the bond length.

  9. Copper wire bonding

    CERN Document Server

    Chauhan, Preeti S; Zhong, ZhaoWei; Pecht, Michael G

    2014-01-01

    This critical volume provides an in-depth presentation of copper wire bonding technologies, processes and equipment, along with the economic benefits and risks.  Due to the increasing cost of materials used to make electronic components, the electronics industry has been rapidly moving from high cost gold to significantly lower cost copper as a wire bonding material.  However, copper wire bonding has several process and reliability concerns due to its material properties.  Copper Wire Bonding book lays out the challenges involved in replacing gold with copper as a wire bond material, and includes the bonding process changes—bond force, electric flame off, current and ultrasonic energy optimization, and bonding tools and equipment changes for first and second bond formation.  In addition, the bond–pad metallurgies and the use of bare and palladium-coated copper wires on aluminum are presented, and gold, nickel and palladium surface finishes are discussed.  The book also discusses best practices and re...

  10. Benchmarks of Global Clean Energy Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Sandor, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chung, Donald [National Renewable Energy Lab. (NREL), Golden, CO (United States); Keyser, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mann, Margaret [National Renewable Energy Lab. (NREL), Golden, CO (United States); Engel-Cox, Jill [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-01-01

    The Clean Energy Manufacturing Analysis Center (CEMAC), sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), provides objective analysis and up-to-date data on global supply chains and manufacturing of clean energy technologies. Benchmarks of Global Clean Energy Manufacturing sheds light on several fundamental questions about the global clean technology manufacturing enterprise: How does clean energy technology manufacturing impact national economies? What are the economic opportunities across the manufacturing supply chain? What are the global dynamics of clean energy technology manufacturing?

  11. Clean Energy Infrastructure Educational Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Hallinan, Kevin; Menart, James; Gilbert, Robert

    2012-08-31

    The Clean Energy Infrastructure Educational Initiative represents a collaborative effort by the University of Dayton, Wright State University and Sinclair Community College. This effort above all aimed to establish energy related programs at each of the universities while also providing outreach to the local, state-wide, and national communities. At the University of Dayton, the grant has aimed at: solidfying a newly created Master's program in Renewable and Clean Energy; helping to establish and staff a regional sustainability organization for SW Ohio. As well, as the prime grantee, the University of Dayton was responsible for insuring curricular sharing between WSU and the University of Dayton. Finally, the grant, through its support of graduate students, and through cooperation with the largest utilities in SW Ohio enabled a region-wide evaluation of over 10,000 commercial building buildings in order to identify the priority buildings in the region for energy reduction. In each, the grant has achieved success. The main focus of Wright State was to continue the development of graduate education in renewable and clean energy. Wright State has done this in a number of ways. First and foremost this was done by continuing the development of the new Renewable and Clean Energy Master's Degree program at Wright State . Development tasks included: continuing development of courses for the Renewable and Clean Energy Master's Degree, increasing the student enrollment, and increasing renewable and clean energy research work. The grant has enabled development and/or improvement of 7 courses. Collectively, the University of Dayton and WSU offer perhaps the most comprehensive list of courses in the renewable and clean energy area in the country. Because of this development, enrollment at WSU has increased from 4 students to 23. Secondly, the grant has helped to support student research aimed in the renewable and clean energy program. The grant helped to solidify

  12. Review on Characterization and Mechanical Performance of Self-cleaning Concrete

    Directory of Open Access Journals (Sweden)

    Zailan Siti Norsaffirah

    2017-01-01

    Full Text Available Self-cleaning concrete is an effective alternative to provide cleaner environment which contribute to sustainability and towards a green environment. It is in accordance with the requirements of environmental issues on huge energy consumption and air pollution from carbon dioxide (CO2 emissions. Photocatalyst in self-cleaning concrete accelerates the decomposition of organic particulates, hence pollution could be reduced through photocatalytic degradation of gaseous pollutants. Mechanical performances of self-cleaning concrete were improved by adding photocatalytic materials. Self cleaning abilities were evaluated in the photocatalytic activity test under UV light and photocatalytic degradation of gaseous pollutant was measured by depollution test. This review aims to give an overview about the characteristics of photocatalytic materials and mechanical performances of self-cleaning concrete.

  13. Laser cleaning of particulates from paper: Comparison between sized ground wood cellulose and pure cellulose

    Science.gov (United States)

    Arif, S.; Kautek, W.

    2013-07-01

    Visible laser cleaning of charcoal particulates from yellow acid mechanical ground wood cellulose paper was compared with that from bleached sulphite softwood cellulose paper. About one order of magnitude of fluence range is available for a cleaning dynamics between the cleaning threshold and the destruction threshold for two laser pulses. Wood cellulose paper exhibited a higher destruction threshold of the original paper than that of the contaminated specimen because of heat transfer from the hot or evaporating charcoal particulates. In contrast, the contaminated bleached cellulose paper exhibited a higher destruction threshold due to shading by the particulates. The graphite particles are not only detached thermo-mechanically, but also by evaporation or combustion. A cleaning effect was found also outside the illuminated areas due to lateral blasting. Infrared measurements revealed dehydration/dehydrogenation reactions and cross-links by ether bonds together with structural changes of the cellulose chain arrangement and the degree of crystallinity.

  14. Comparison of Gold Bonding with Mercury Bonding

    NARCIS (Netherlands)

    Kraka, Elfi; Filatov, Michael; Cremer, Dieter

    2009-01-01

    Nine AuX molecules (X = H, O, S, Se, Te, F, Cl, Br, I), their isoelectronic HgX(+) analogues, and the corresponding neutral HgX diatomics have been investigated using NESC (Normalized Elimination of the Small Component) and B3LYP theory to determine relativistic effects for bond dissociation energie

  15. VISION: Illuminating the Pathways to a Clean Energy Economy - JISEA 2016 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    This report demonstrates JISEA's successes over the past year and previews our coming work. The 2016 Annual Report highlights JISEA accomplishments in low-carbon electricity system research, international collaboration, clean energy manufacturing analysis, 21st century innovation strategy, and more. As we look to the coming year, JISEA will continue to navigate complex issues, present unique perspectives, and envision a clean energy economy.

  16. Metallic carbon materials

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, M.L.; Crespi, V.H.; Louie, S.G.S.; Zettl, A.K.

    1999-11-30

    Novel metallic forms of planar carbon are described, as well as methods of designing and making them. Nonhexagonal arrangements of carbon are introduced into a graphite carbon network essentially without destroying the planar structure. Specifically a form of carbon comprising primarily pentagons and heptagons, and having a large density of states at the Fermi level is described. Other arrangements of pentagons and heptagons that include some hexagons, and structures incorporating squares and octagons are additionally disclosed. Reducing the bond angle symmetry associated with a hexagonal arrangement of carbons increases the likelihood that the carbon material will have a metallic electron structure.

  17. The dissociative bond.

    Science.gov (United States)

    Gordon, Nirit

    2013-01-01

    Dissociation leaves a psychic void and a lingering sense of psychic absence. How do 2 people bond while they are both suffering from dissociation? The author explores the notion of a dissociative bond that occurs in the aftermath of trauma--a bond that holds at its core an understanding and shared detachment from the self. Such a bond is confined to unspoken terms that are established in the relational unconscious. The author proposes understanding the dissociative bond as a transitional space that may not lead to full integration of dissociated knowledge yet offers some healing. This is exemplified by R. Prince's (2009) clinical case study. A relational perspective is adopted, focusing on the intersubjective aspects of a dyadic relationship. In the dissociative bond, recognition of the need to experience mutual dissociation can accommodate a psychic state that yearns for relationship when the psyche cannot fully confront past wounds. Such a bond speaks to the need to reestablish a sense of human relatedness and connection when both parties in the relationship suffer from disconnection. This bond is bound to a silence that becomes both a means of protection against the horror of traumatic memory and a way to convey unspoken gestures toward the other.

  18. The samurai bond market

    OpenAIRE

    1997-01-01

    Issuance in the samurai bond market has more than tripled over the past several years. Some observers have attributed this growth to a systematic underestimation of credit risk in the market. A detailed review of credit quality, ratings differences, and initial issue pricing in the samurai bond market, however, turns up little evidence to support this concern.

  19. Clean Cities Now Vol. 17, No. 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-05-24

    Biannual newsletter for the U.S. Department of Energy's Clean Cities initiative. The newsletter includes feature stories on advanced vehicle deployment, idle reduction, and articles on Clean Cities coalition successes across the country.

  20. Clean Cities Now Vol. 16.1

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-05-01

    Biannual newsletter for the U.S. Department of Energy's Clean Cities initiative. The newsletter includes feature stories on advanced vehicle deployment, idle reduction, and articles on Clean Cities coalition successes across the country.

  1. Failure of dissimilar material bonded joints

    Science.gov (United States)

    Konstantakopoulou, M.; Deligianni, A.; Kotsikos, G.

    2016-03-01

    Joining of materials in structural design has always been a challenge for engineers. Bolting and riveting has been used for many years, until the emergence of fusion welding which revolutionised construction in areas such as shipbuilding, automotive, infrastructure and consumer goods. Extensive research in the past 50 years has resulted in better understanding of the process and minimised the occurrence of failures associated with fusion welding such as, residual stress cracking, stress corrosion and corrosion fatigue cracking, localised reduction in mechanical properties due to microstructural changes (heat affected zone) etc. Bonding has been a technique that has been proposed as an alternative because it eliminates several of the problems associated with fusion welding. But, despite some applications it has not seen wide use. There is however a renewed interest in adhesively bonded joints, as designers look for ever more efficient structures which inevitably leads to the use and consequently joining of combinations of lightweight materials, often with fundamentally different mechanical and physical properties. This chapter provides a review of adhesively bonded joints and reports on improvements to bonded joint strength through the introduction of carbon nanotubes at the bond interface. Results from various workers in the field are reported as well as the findings of the authors in this area of research. It is obvious that there are several challenges that need to be addressed to further enhance the strength of bonded joints and worldwide research is currently underway to address those shortcomings and build confidence in the implementation of these new techniques.

  2. Ceramic susceptor for induction bonding of metals, ceramics, and plastics

    Science.gov (United States)

    Fox, Robert L.; Buckley, John D.

    1991-01-01

    A thin (.005) flexible ceramic susceptor (carbon) was discovered. It was developed to join ceramics, plastics, metals, and combinations of these materials using a unique induction heating process. Bonding times for laboratory specimens comparing state of the art technology to induction bonding were cut by a factor of 10 to 100 times. This novel type of carbon susceptor allows for applying heat directly and only to the bondline without heating the entire structure, supports, and fixtures of a bonding assembly. The ceramic (carbon film) susceptor produces molten adhesive or matrix material at the bond interface. This molten material flows through the perforated susceptor producing a fusion between the two parts to be joined, which in many instances has proven to be stronger than the parent material. Bonding can be accomplished in 2 minutes on areas submitted to the inductive heating. Because a carbon susceptor is used in bonding carbon fiber reinforced plastics and ceramics, there is no radar signature or return making it an ideal process for joining advanced aerospace composite structures.

  3. Clean production, circulation economy and low carbon economy: in the perspective of government behavior and Market Boundary%清洁生产、循环经济与低碳经济:政府行为博弈市场边界

    Institute of Scientific and Technical Information of China (English)

    李宇

    2011-01-01

    Clean production, circulation economy and low carbon economy are the three important bodies of institutional innovation which integrate environmental protection and economic activity pushed by government mainly, the government behavior directly affects promotion trajectory and development model with the resources & environment factors into the economic activity internal. This paper expounds the development process and prominent characteristics of clean production, circulation economy and low carbon economy from macroscopic history level, analyzes the promote mode and different regulation means which manifests the government appeal, summarize the basic direction of institutional innovation under the government regulation mode framework. As to the preliminary policy system, the author brings out the policy recommendations as weakening the pipe-end treatment, strengthening the end regulation, clearing the ambit of legislation covering the government itself and development of voluntary agreement.%清洁生产、循环经济和低碳经济是改革开放以来政府主导下的将环境保护同经济活动相融合的三大重要制度创新载体。政府行为直接影响了资源环境要素纳入经济活动内部的推进轨迹和发展模式。从宏观历史层面阐述政府层面推动清洁生产、循环经济与低碳经济的发展过程和突出特征,分析体现政府诉求的推动模式和差异性的规制手段,研究表明,政府规制模式框架下制度创新的基本方向。应弱化末端治理,强化末端规制,覆盖政府自身的立法范围以及发展自愿协议。

  4. The pnicogen bond: its relation to hydrogen, halogen, and other noncovalent bonds.

    Science.gov (United States)

    Scheiner, Steve

    2013-02-19

    S. The π systems of carbon chains can donate electron density in pnicogen bonds. Indeed, the strength of A···π pnicogen bonds exceeds that of H-bonds even when using strong proton donors such as water with the same π system. H-bonds typically have a high propensity for a linear AH···D arrangement, but pnicogen bonds show an even greater degree of anisotropy. Distortions of pnicogen bonds away from their preferred geometry cause a more rapid loss of stability than in H-bonds. Although often observed in dimers in the gas phase, pnicogen bonds also serve as the glue in larger aggregates, and researchers have found them in a number of diffraction studies of crystals.

  5. The MiniCLEAN Experiment

    Science.gov (United States)

    Wang, Jui-Jen (Ryan); Gold, Michael; Miniclean Collaboration

    2017-01-01

    The MiniCLEAN (Cryogenic Low-Energy Astrophysics with Noble liquid) dark matter experiment will exploit a single-phase liquid argon detector instrumented with 92 photomultiplier tubes placed in the cryogen with 4- π coverage of a 500 kg (150 kg) target (fiducial) mass. The detector design strategy emphasizes scalability to target masses of order 10 tons or more. It is designed also for a liquid neon target that allows for an independent verification of signal and background and a test of the expected dependence of the WIMP-nucleus interaction rate. For MiniCLEAN, PMT stability and calibration are essential. The Light-Emitting Diode (LED) based light injection system provide single photon for the calibration which can be performed in near real-time, providing a continuous monitor on the condition of the detector. This talk will summarize the status of detector and upcoming commissioning at SNOLAB in Sudbury, Canada.

  6. Clean Energy Solutions Center Services (Arabic Translation)

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    This is an Arabic translation of the Clean Energy Solutions Center fact sheet. The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  7. 7 CFR 29.6007 - Clean.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Clean. 29.6007 Section 29.6007 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6007 Clean. Tobacco is described as clean when it contains only...

  8. Clean Energy Manufacturing Analysis Center (CEMAC)

    Energy Technology Data Exchange (ETDEWEB)

    2015-12-01

    The U.S. Department of Energy's Clean Energy Manufacturing Analysis Center (CEMAC) provides objective analysis and up-to-date data on global supply chains and manufacturing of clean energy technologies. Policymakers and industry leaders seek CEMAC insights to inform choices to promote economic growth and the transition to a clean energy economy.

  9. Air cleaning using regenerative silica gel wheel

    DEFF Research Database (Denmark)

    Fang, Lei

    2011-01-01

    This paper discussed the necessity of indoor air cleaning and the state of the art information on gas-phase air cleaning technology. The performance and problems of oxidation and sorption air cleaning technology were summarized and analysed based on the literature studies. Eventually, based on an...

  10. Clean Energy Solutions Center Services (Chinese Translation)

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    This is a Mandarin translation of the Clean Energy Solutions Center fact sheet. The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  11. Clean Energy Solutions Center Services (Vietnamese Translation)

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    This is a Vietnamese translation of the Clean Energy Solutions Center fact sheet. The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  12. Clean Cities Now, Vol. 18, No. 2

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-01-19

    This is version 18.2 of Clean Cities Now, the official biannual newsletter of the Clean Cities program. Clean Cities is an initiative designed to reduce petroleum consumption in the transportation sector by advancing the use of alternative and renewable fuels, fuel economy improvements, idle-reduction measures, and new technologies, as they emerge.

  13. Clean Energy Solutions Center Services (Portuguese Translation)

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    This is a Portuguese translation of the Clean Energy Solutions Center Services fact sheet. The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  14. Clean Energy Solutions Center Services (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-04-01

    The Clean Energy Solutions Center (Solutions Center) helps governments, advisors and analysts create policies and programs that advance the deployment of clean energy technologies. The Solutions Center partners with international organizations to provide online training, expert assistance, and technical resources on clean energy policy.

  15. Clean Energy Solutions Center Services (French Translation)

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-01

    This is a French translation of the Clean Energy Solutions Center fact sheet. The Solutions Center offers no-cost expert policy assistance, webinars and training forums, clean energy policy reports, data, and tools provided in partnership with more than 35 leading international and regional clean energy organizations.

  16. 48 CFR 36.512 - Cleaning up.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Cleaning up. 36.512... CONTRACTING CONSTRUCTION AND ARCHITECT-ENGINEER CONTRACTS Contract Clauses 36.512 Cleaning up. The contracting officer shall insert the clause at 52.236-12, Cleaning Up, in solicitations and contracts when a...

  17. 7 CFR 51.606 - Clean.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Clean. 51.606 Section 51.606 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Consumer Standards for Celery Stalks Definitions § 51.606 Clean. Clean means that the stalk is...

  18. 7 CFR 51.1553 - Fairly clean.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Fairly clean. 51.1553 Section 51.1553 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Grades of Potatoes 1 Definitions § 51.1553 Fairly clean. Fairly clean means that at least...

  19. 7 CFR 51.1581 - Fairly clean.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Fairly clean. 51.1581 Section 51.1581 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Consumer Standards for Potatoes Definitions § 51.1581 Fairly clean. Fairly clean means that from...

  20. 7 CFR 51.1316 - Clean.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Clean. 51.1316 Section 51.1316 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Standards for Winter Pears 1 Definitions § 51.1316 Clean. Clean means free from excessive dirt, dust,...