WorldWideScience

Sample records for carbon 1s photoelectron

  1. Chemical Insights from Carbon 1s Photoelectron Spectroscopy and Theoretical Modeling

    International Nuclear Information System (INIS)

    Oltedal, Velaug M

    2007-05-01

    Inner-shell ionization energies provide local probes of the charge distribution in molecules and of the ability of a molecule to accept charge at specific sites. As such, core-ionization energies are related to and may provide insight into other chemical properties that depend on the same ability. X-ray photoelectron spectroscopy (XPS) is the preferred tool for exploring core-ionization energies. In the present work, synchrotron radiation was used to acquire photoelectron spectra of several carbon-containing molecules in the gas phase. Carbon 1s ionization energies are of special interest because of the vital role of organic molecules in life processes. A prerequisite for obtaining accurate ionization energies is access to reliable methods for calibration of the energies. This work has been concerned with establishing procedures for very accurate calibration of C1s ionization energies

  2. Carbon 1s photoelectron spectroscopy of halomethanes. Effects of electronegativity, hardness, charge distribution, and relaxation

    International Nuclear Information System (INIS)

    Saethre, L.J.; Borve, K.J.; Thomas, T.D.; Bozek, J.D.; Huttula, M.; Kukk, E.

    2004-01-01

    Full text: The concept of electronegativity - the ability of an atom (or functional group) to attract electrons to itself - plays an important role in chemistry. A related concept is the hardness, which has been defined to be half the derivative of electronegativity with respect to charge. It is inversely related to polarizibility. A number of quantitative definitions of electronegativity have been given and a number of tables of electronegativity and hardness have been presented. In spite of this extensive activity the quantitative nature of both of these remains elusive. Inner-shell ionization energies reflect both the charge distribution in a molecule (and, hence, the electronegativity of its component atoms) and the polarizibility of the molecule (and, hence, the hardness of the component atoms). It is not surprising, therefore, that the core-ionization energies of a central atom correlate with the electronegativities of the substituents attached to the atom. It has been our goal to use these correlations to obtain a better insight into the nature of electronegativity and to develop a method for assigning group electronegativities on the basis of core-ionization energies. Carbon 1s ionization energies have been measured for 12 halomethanes. These together with earlier measurements provide 27 compounds for investigating the relationship between core-ionization energies and the electronegativity and hardness of the halogens. The ionization energies correlate nearly linearly with the sum of the electronegativities of the halogens attached to the central carbon. Both electronegativity and hardness play important roles in determining the ionization energy, and it is found that the linear relationship between ionization energy and electronegativity arises from an interplay of the electronegativity and hardness of the halogens and the length and ionicity of the carbon-halogen bond

  3. Quantum mechanics/molecular mechanics modeling of photoelectron spectra: the carbon 1s core-electron binding energies of ethanol-water solutions.

    Science.gov (United States)

    Löytynoja, T; Niskanen, J; Jänkälä, K; Vahtras, O; Rinkevicius, Z; Ågren, H

    2014-11-20

    Using ethanol-water solutions as illustration, we demonstrate the capability of the hybrid quantum mechanics/molecular mechanics (QM/MM) paradigm to simulate core photoelectron spectroscopy: the binding energies and the chemical shifts. An integrated approach with QM/MM binding energy calculations coupled to preceding molecular dynamics sampling is adopted to generate binding energies averaged over the solute-solvent configurations available at a particular temperature and pressure and thus allowing for a statistical assessment with confidence levels for the final binding energies. The results are analyzed in terms of the contributions in the molecular mechanics model-electrostatic, polarization, and van der Waals-with atom or bond granulation of the corresponding MM charge and polarizability force-fields. The role of extramolecular charge transfer screening of the core-hole and explicit hydrogen bonding is studied by extending the QM core to cover the first solvation shell. The results are compared to those obtained from pure electrostatic and polarizable continuum models. Particularly, the dependence of the carbon 1s binding energies with respect to the ethanol concentration is studied. Our results indicate that QM/MM can be used as an all-encompassing model to study photoelectron binding energies and chemical shifts in solvent environments.

  4. Molecular frame photoelectron angular distribution for oxygen 1s photoemission from CO2 molecules

    International Nuclear Information System (INIS)

    Saito, N; Ueda, K; De Fanis, A

    2005-01-01

    We have measured photoelectron angular distributions in the molecular frame (MF-PADs) for O 1s photoemission from CO 2 , using photoelectron-O + -CO + coincidence momentum imaging. Results for the molecular axis at 0, 45 and 90 0 to the electric vector of the light are reported. The major features of the MF-PADs are fairly well reproduced by calculations employing a relaxed-core Hartree-Fock approach. Weak asymmetric features are seen through a plane perpendicular to the molecular axis and attributed to symmetry lowering by anti-symmetric stretching motion. (letter to the editor)

  5. Investigation of valence inter-multiplet Auger transitions in Ne following 1s photoelectron recapture

    International Nuclear Information System (INIS)

    De Fanis, A; Pruemper, G; Hergenhahn, U; Kukk, E; Tanaka, T; Kitajima, M; Tanaka, H; Fritzsche, S; Kabachnik, N M; Ueda, K

    2005-01-01

    We employ a novel technique in which highly excited Rydberg states of Ne + 2p 4n p are populated via PCI-induced recapture of the near-threshold 1s photoelectron (De Fanis et al 2004 Phys. Rev. A 70 040702) to investigate valence inter-multiplet Auger transitions. The following series of the transitions have been observed: Ne + 2p 4 ( 1 D)np 2 L → Ne 2+ 2p 4 3 P J , Ne + 2p 4 ( 1 S)np 2 P →Ne 2+ 2p 4 3 P J and Ne + 2p 4 ( 1 S)np 2 P →Ne 2+ 2p 4 1 D. Their energy positions, quantum defects and the anisotropy parameters of the Auger electron emission have been determined. Experimental results are in good agreement with multi-configuration Dirac-Fock calculations carried out as a part of this study. The importance of interference effects for decays via naturally overlapping fine-structure components of the intermediate state is discussed

  6. Application of high-resolution photoelectron spectroscopy: Vibrational resolved C 1s and O 1s spectra of CO adsorbed on Ni(100)

    Energy Technology Data Exchange (ETDEWEB)

    Foehlisch, A.; Nilsson, A.; Martensson, N. [Uppsala Univ. (Sweden)] [and others

    1997-04-01

    There are various effects which determine the line shape of a core-level electron spectrum. These are due to the finite life-time of the core hole, inelastic scattering of the outgoing photoelectron, electronic shake-up and shake-off processes and vibrational excitations. For free atoms and molecules the different contributions to the observed line shapes can often be well separated. For solids, surfaces and adsorbates the line shapes are in general much broader and it has in the past been assumed that no separation of the various contributions can be made. In the present report the authors will show that this is indeed not the case. Surprisingly, the vibrational fine structure of CO adsorbed on Ni(100) can be resolved in the C 1s and O 1s electron spectra. This was achieved by the combination of highly monochromatized soft X-rays from B18.0 with a high resolution Scienta 200 mm photoelectron spectrometer. X-ray photoelectron spectroscopy (XPS) with tunable excitation energy yields as a core level spectroscopy atomic and site-specific information. The presented measurements allow for a determination of internuclear distances and potential energy curves in corehole ionized adsorbed molecules. The authors analysis of the c(2x2) phase CO/Ni(100) on {open_quotes}top{close_quotes} yielded a vibrational splitting of 217 +/- 2 meV for C 1s ionization. For O 1s ionization a splitting of 173 +/- 8 meV was found.

  7. X-ray photoelectron spectroscopy characterization of high dose carbon-implanted steel and titanium alloys

    Science.gov (United States)

    Viviente, J. L.; García, A.; Alonso, F.; Braceras, I.; Oñate, J. I.

    1999-04-01

    A study has been made of the depth dependence of the atomic fraction and chemical bonding states of AISI 440C martensitic stainless steel and Ti-6Al-4V alloy implanted with 75 keV C + at very high doses (above 10 18 ions cm -2), by means of X-ray photoelectron spectroscopy combined with an Ar + sputtering. A Gaussian-like carbon distribution was observed on both materials at the lowest implanted dose. More trapezoidal carbon depth-profiles were found with increasing implanted doses, and a pure carbon layer was observed only on the titanium alloy implanted at the highest dose. The implanted carbon was combined with both base metal and carbon itself to form metallic carbides and graphitic carbon. Furthermore, carbon-enriched carbides were also found by curve fitting the C 1s spectra. The titanium alloy showed a higher carbidic contribution than the steel implanted at the same C + doses. A critical carbon concentrations of about 33 at.% and 23 at.% were measured for the formation of C-C bonds in Ti-6Al-4V and steel samples, respectively. The carbon atoms were bound with metal to form carbidic compounds until these critical concentrations were reached; when this C concentration was exceeded the proportion of C-C bonds increased and resulted in the growth of carbonaceous layers.

  8. Carbon-13 spin lattice relaxation and photoelectron spectroscopy of some aromatic sulphides and sulphones

    International Nuclear Information System (INIS)

    Mellink, W.A.

    1978-01-01

    Carbon-13 NMR spectroscopy and photoelectron spectroscopy have been used to study the electronic structure of symmetric dithienothiophenes and corresponding sulphones. The physical data obtained from both spectroscopic techniques have been interpreted with the aid of quantum mechanical calculations. (Auth.)

  9. X-ray photoelectron spectrometry and binding energies of Be 1s and O 1s core levels in clinobarylite, BaBe2Si2O7, from Khibiny massif, Kola peninsula

    International Nuclear Information System (INIS)

    Atuchin, V.V.; Kesler, V.G.; Sapozhnikov, V.K.; Yakovenchuk, V.N.

    2008-01-01

    The electronic structure of BaBe 2 Si 2 O 7 , clinobarylite, has been investigated by means of X-ray photoelectron spectroscopy (XPS). The valence band of the crystal is mainly formed by Ba 5p, Ba 3s and O 2s states. At higher binding energies the emission lines related to the Si 2p, Be 1s, Si 2s, O 1s and numerous Ba-related states were analyzed in the photoemission spectrum. The Si KLL Auger line has been measured under excitation by the bremsstrahlung X-rays from the Al anode. Chemical bonding effects for Be 1s core level have been considered by comparison with electronic parameters measured for other beryllium containing oxides

  10. The Buried Carbon/Solid Electrolyte Interphase in Li-ion Batteries Studied by Hard X-ray Photoelectron Spectroscopy

    International Nuclear Information System (INIS)

    Ciosek Högström, Katarzyna; Malmgren, Sara; Hahlin, Maria; Gorgoi, Mihaela; Nyholm, Leif; Rensmo, Håkan; Edström, Kristina

    2014-01-01

    In cycled Li-ion batteries, the carbon negative electrode is buried under a thin passivating layer referred to as the solid electrolyte interphase (SEI). In the present study, the increased depth sensitivity of hard X-ray photoelectron spectroscopy (HAXPES) as compared to conventional X-ray photoelectron spectroscopy (XPS) is used to study electrochemical changes at such a buried carbon/SEI. Samples from graphite/LiFePO 4 cells cycled to specific potentials during the first four charge/discharge cycles were studied. The results show dynamic changes in the SEI during cycling. Reversible, state of charge (SOC) dependent changes in the SEI thickness as well as amounts of lithium oxide, lithium fluoride, lithium and carbon active material were discussed. Moreover, the results indicate lithium enrichment close to the carbon active material surface, which could not be explained by intercalation of lithium into carbon with LiC 6 structure or by SEI formation at the surface. Potential dependent shifts in the binding energy of the carbon active material C1s feature showed the importance of internal energy calibration with an SEI feature rather than carbon active material

  11. Role of nuclear dynamics in the asymmetric molecular-frame photoelectron angular distributions for C 1s photoejection from CO2

    International Nuclear Information System (INIS)

    Miyabe, S.; Haxton, D. J.; Rescigno, T. N.; McCurdy, C. W.

    2011-01-01

    We report the results of semiclassical calculations of the asymmetric molecular-frame photoelectron angular distributions for C 1s ionization of CO 2 measured with respect to the CO + and O + ions produced by subsequent Auger decay, and show how the decay event can be used to probe ultrafast molecular dynamics of the transient cation. The fixed-nuclei photoionization amplitudes were constructed using variationally obtained electron-molecular-ion scattering wave functions. The amplitudes are then used in a semiclassical manner to investigate their dependence on the nuclear dynamics of the cation. The method introduced here can be used to study other core-level ionization events.

  12. X-ray photoelectron spectroscopy study of the functionalization of carbon metal-containing nanotubes with phosphorus atoms

    International Nuclear Information System (INIS)

    Shabanova, I.N.; Terebova, N.S.

    2013-01-01

    Highlights: •Carbon metal-containing nanotubes (Me–Cu, Ni, Fe) were functionalized with chemical groups containing different concentrations of phosphorous. •The C1s and Me3s spectra were measured by the X-ray photoelectron spectroscopy method. •The values of the atomic magnetic moment of the carbon metal-containing nanotubes were determined. -- Abstract: In the present paper, carbon metal-containing (Me: Cu, Ni, Fe) nanotubes functionalized with phosphorus atoms (ammonium polyphosphate) were studied by X-ray photoelectron spectroscopy (XPS) on an X-ray electron magnetic spectrometer. It is found that the functionalization leads to the change of the metal atomic magnetic moment, i.e. the value of the atomic magnetic moment in the functionalized carbon metal-containing (Cu, Ni, Fe) nanotubes increases and is higher than that in pristine nanotubes. It is shown that the covalent bond of Me and P atoms is formed. This leads to an increase in the activity of the nanostructure surface which is necessary for the modification of materials

  13. Photo-induced surface functionalization of carbon surfaces: The role of photoelectron ejection

    International Nuclear Information System (INIS)

    Colavita, Paula E.; Sun Bin; Tse, K.-Y.; Hamers, Robert J.

    2008-01-01

    Carbon-based materials are attractive for a wide range of applications, from biomaterials to fuel cells; however, their effective use often requires controlling the surface chemistry to incorporate recognition moieties or reactive centers. The high stability of carbon also makes it a challenging material to functionalize; recently, the use of ultraviolet light (254 nm) to initiate functionalization of carbon surfaces has emerged as a way to obtain carbon/organic interfaces with tailored properties. The authors have investigated the mechanism of covalent grafting of amorphous carbon surfaces with functional organic molecules using the photochemical reaction of terminal alkenes. Measurements comparing the reactivity of different n-alkenes bearing different terminal groups at the terminus opposite the olefin showed pronounced differences in reactivity. They characterized the rate and final coverage of the resulting organic layers using x-ray photoelectron spectroscopy and infrared reflection-absorption spectroscopy. Ultraviolet photoelectron spectroscopy and photocurrent measurements suggested that the reaction involves photoelectron emission from the carbon surface into the liquid phase. Density functional calculations show a strong correlation between the electron affinity of the alkenes and the observed reactivity. The specific terminal group opposite to the olefin was found to play an important role in the stabilization of excess negative charges on the molecule, thus explaining the strong dependence of reactivity on the particular terminal group. These findings suggest that the reaction involves injection of photoelectrons into the alkene acceptor levels, leading to the formation of radical anions in the liquid phase. Finally, the authors demonstrate that the grafting of marginally reactive alkenes can be enhanced by seeding the surface with a small amount of good electron accepting groups. These results provide fundamental new insights into the role of

  14. X-ray photoelectron spectroscopy of graphitic carbon nanomaterials doped with heteroatoms

    Directory of Open Access Journals (Sweden)

    Toma Susi

    2015-01-01

    Full Text Available X-ray photoelectron spectroscopy (XPS is one of the best tools for studying the chemical modification of surfaces, and in particular the distribution and bonding of heteroatom dopants in carbon nanomaterials such as graphene and carbon nanotubes. Although these materials have superb intrinsic properties, these often need to be modified in a controlled way for specific applications. Towards this aim, the most studied dopants are neighbors to carbon in the periodic table, nitrogen and boron, with phosphorus starting to emerge as an interesting new alternative. Hundreds of studies have used XPS for analyzing the concentration and bonding of dopants in various materials. Although the majority of works has concentrated on nitrogen, important work is still ongoing to identify its precise atomic bonding configurations. In general, care should be taken in the preparation of a suitable sample, consideration of the intrinsic photoemission response of the material in question, and the appropriate spectral analysis. If this is not the case, incorrect conclusions can easily be drawn, especially in the assignment of measured binding energies into specific atomic configurations. Starting from the characteristics of pristine materials, this review provides a practical guide for interpreting X-ray photoelectron spectra of doped graphitic carbon nanomaterials, and a reference for their binding energies that are vital for compositional analysis via XPS.

  15. LETTER TO THE EDITOR: Observation of photo-double ionization of carbon monoxide below the adiabatic double-ionization potential by threshold-photoelectron - photoelectron coincidence spectroscopy

    Science.gov (United States)

    Thompson, David B.; Dawber, Grant; Gulley, Nicola; MacDonald, Michael A.; King, George C.

    1997-03-01

    The production of 0953-4075/30/5/004/img8 and 0953-4075/30/5/004/img9 ion pairs in carbon monoxide at photon energies below the adiabatic double-ionization threshold of 41.25 eV has been probed in a threshold-photoelectron - photoelectron coincidence (TPEPECO) experiment using tunable VUV radiation and a sensitive electron spectrometer. The TPEPECO spectra provide evidence of 0953-4075/30/5/004/img10 production that does not involve creation and dissociation of a molecular dication, but instead results from complete dissociation of a molecular cation followed by autoionization of the atomic oxygen fragment. Furthermore, an electron - electron coincidence signal has been detected at photon energies as low as 36.5 eV, well below the previously measured onset for 0953-4075/30/5/004/img10 production.

  16. Photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Shirley, D.A.

    1976-01-01

    Research activities in photoelectron spectroscopy at Lawrence Radiation Laboratory during 1976 are described. Topics covered include: the orientation of CO on Pt(III) and Ni(III) surfaces from angle-resolved photoemission; photoemission from CO on Pt(III) in the range 40 eV less than or equal to dirac constant ω less than or equal to 150 eV; photoemission studies of electron states at clean surfaces using synchrotron radiation; angle and energy dependent photoemission studies of plasmon loss structure in Al and In; d-orbital directed photoemission from copper; interpretation of angle-resolved x-ray photoemission from valence bands; atomic cross-section effects in soft x-ray photoemission from Ag, Au, and Pt valence bands; x-ray photoelectron spectroscopic studies of the electronic structure of transition metal difluorides; x-ray photoemission investigation of the density of states of B'-NiAl; the electronic structure of SrTiO 3 and some simple related oxides; fluorescence lifetime measurements of np 5 (n+1)S' states in krypton and xenon; Zeeman beats in the resonance fluorescence of the 3P 1 , states in krypton and xenon; lifetime measurements of rare-gas dimers; configuration interaction effects in the atomic photoelectron spectra of Ba, Sm, Eu, and Yb; glow discharge lamps as electron sources for electron impact excitation; electron impact excitation of electron correlation states in Ca, Sr, and Ba; photoelectron spectroscopy of atomic and molecular bismuth; relativistic effects in the uv photoelectron spectra of group VI diatomic molecules; and relative gas-phase acidities and basicities from a proton potential model

  17. Photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Price, W.C.

    1974-01-01

    A survey is given of the development of x-ray and ultraviolet photoelectron spectroscopy. Applications of photoelectron spectroscopy to studies of atomic electronic configurations are discussed, including photoelectron spectra of hydrides isoelectronic with the inert gases; photoelectron spectra of the halogen derivatives of methane; photoelectron spectra of multiple bonded diatomic molecules; spectra and structure of some multiple bonded polyatomic molecules; spectra and structure of triatomic molecules; and methods of orbital assignment of bands in photoelectron spectra. Physical aspects are considered, including intensities; selection rules; dependence of cross section on photoelectron energy; autoionization; angular distribution of photoelectrons; electron-molecule interactions; and transient species. (26 figures, 54 references) (U.S.)

  18. Derivation of Hamaker Dispersion Energy of Amorphous Carbon Surfaces in Contact with Liquids Using Photoelectron Energy-Loss Spectra

    Science.gov (United States)

    Godet, Christian; David, Denis

    2017-12-01

    Hamaker interaction energies and cutoff distances have been calculated for disordered carbon films, in contact with purely dispersive (diiodomethane) or polar (water) liquids, using their experimental dielectric functions ɛ ( q, ω) obtained over a broad energy range. In contrast with previous works, a q-averaged q is derived from photoelectron energy-loss spectroscopy (XPS-PEELS) where the energy loss function (ELF) q is a weighted average over allowed transferred wave vector values, q, given by the physics of bulk plasmon excitation. For microcrystalline diamond and amorphous carbon films with a wide range of (sp3/sp2 + sp3) hybridization, non-retarded Hamaker energies, A 132 ( L < 1 nm), were calculated in several configurations, and distance and wavenumber cutoff values were then calculated based on A 132 and the dispersive work of adhesion obtained from contact angles. A geometric average approximation, H 0 CVL = ( H 0 CVC H 0 LVL )1/2, holds for the cutoff separation distances obtained for carbon-vacuum-liquid (CVL), carbon-vacuum-carbon (CVC) and liquid-vacuum-liquid (LVL) equilibrium configurations. The linear dependence found for A CVL, A CLC and A CLV values as a function of A CVC, for each liquid, allows predictive relationships for Hamaker energies (in any configuration) using experimental determination of the dispersive component of the surface tension, {γ}_{CV}^d , and a guess value of the cutoff distance H 0 CVC of the solid. [Figure not available: see fulltext.

  19. Study of surface cleaning methods and pyrolysis temperatures on nanostructured carbon films using x-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kerber, Pranita; Porter, Lisa M.; McCullough, Lynne A.; Kowalewski, Tomasz; Engelhard, Mark; Baer, Donald [Department of Materials Science and Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213 (United States); Chemistry Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213 (United States); Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2012-11-15

    Nanostructured carbon (ns-C) films fabricated by stabilization and pyrolysis of diblock copolymers are of interest for a variety of electrical/electronic applications due to their chemical inertness, high-temperature insensitivity, very high surface area, and tunable electrical resistivity over a wide range [Kulkarni et al., Synth. Met. 159, 177 (2009)]. Because of their high porosity and associated high specific surface area, controlled surface cleaning studies are important for fabricating electronic devices from these films. In this study, quantification of surface composition and surface cleaning studies on ns-C films synthesized by carbonization of diblock copolymers of polyacrylonitrile-b-poly(n-butyl acrylate) at two different temperatures were carried out. X-ray photoelectron spectroscopy was used for elemental analysis and to determine the efficacy of various surface cleaning methods for ns-C films and to examine the polymer residues in the films. The in-situ surface cleaning methods included HF vapor treatment, vacuum annealing, and exposure to UV-ozone. Quantitative analysis of high-resolution XPS scans showed 11 at. % nitrogen was present in the films pyrolyzed at 600 Degree-Sign C, suggesting incomplete denitrogenation of the copolymer films. The nitrogen atomic concentration decreased significantly for films pyrolyzed at 900 Degree-Sign C confirming extensive denitrogenation at that temperature. Furthermore, quantitative analysis of nitrogen subpeaks indicated higher loss of nitrogen atoms residing at the edge of graphitic clusters relative to that of nitrogen atoms within the graphitic clusters, suggesting higher graphitization with increasing pyrolysis temperature. Of the surface cleaning methods investigated, in-situ annealing of the films at 300 Degree-Sign C for 40 min was found to be the most efficacious in removing adventitious carbon and oxygen impurities from the surface.

  20. Photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Bosch, A.

    1982-01-01

    In this work examples of the various aspects of photoelectron spectroscopy are given. The investigation was started with the development of an angle-resolved spectrometer so that the first chapters deal with angle-resolved ultra-violet photoelectron spectroscopy. To indicate the possibilities and pitfalls of the technique, in chapter II the theory is briefly reviewed. In chapter III the instrument is described. The system is based on the cylindrical mirror deflection analyzer, which is modified and improved for angle-resolved photoelectron spectroscopy. In combination with a position sensitive detector, a spectrometer is developed with which simultaneously several angle-resolved spectra can be recorded. In chapter IV, the results are reported of angle-integrated UPS experiments on dilute alloys. Using the improved energy resolution of the instrument the author was able to study the impurity states more accurately and shows that the photoemission technique has become an important tool in the study of impurities and the interactions involved. XPS and Auger results obtained from dilute alloys are presented in chapter V. It is shown that these systems are especially suited for the study of correlation effects and can provide interesting problems related to the satellite structure and the interaction of the impurity with the host. In chapter VI, the valence bands of ternary alloys are studied with UPS and compared to recent band structure calculation. The core level shifts are analyzed in a simple, thermodynamic scheme. (Auth.)

  1. The influence of biosurfactant adsorption on the physicochemical behaviour of carbon steel surfaces using contact angle measurements and X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Shubina, V., E-mail: varvara.shubina2014@gmail.com [LUNAM Université, IFSTTAR, MAST, SMC, F-44340 Bouguenais (France); Gaillet, L. [LUNAM Université, IFSTTAR, MAST, SMC, F-44340 Bouguenais (France); Ababou-Girard, S. [Institut de Physique de Rennes, Département Matériaux et Nanosciences, UMR 6251 CNRS, Université Rennes 1, 35000 Rennes-Cedex (France); Gaudefroy, V. [LUNAM Université, IFSTTAR, MAST, SMC, F-44340 Bouguenais (France); Chaussadent, T.; Farças, F. [Université Paris-Est, IFSTTAR, MAST, CPDM, F-77447 Marne-la-Vallée (France); Meylheuc, T. [INRA, UMR1319 Micalis, F-78352 Jouy-en-Josas (France); AgroParisTech, UMR Micalis, F-78352 Jouy-en-Josas (France); Dagbert, C. [2 Chemin de la Grand’côte, 36270 Éguzon-Chantôme (France); Creus, J. [LaSIE, UMR7356, Université de La Rochelle, Pôle Sciences et Technologie, Bâtiment Marie Curie, Avenue Michel Crépeau, 17000 La Rochelle (France)

    2015-10-01

    Highlights: • Surface modifications to carbon steel surfaces due to the adsorption of a biosurfactant derived from Pseudomonas fluorescens bacteria cells were investigated using contact angle measurements (CAM) and X-ray photoelectron spectroscopy (XPS). • CAM allowed to establish an increase of electron-donating properties of steel surface due to the biosurfactant adsorption. • XPS demonstrated that biosurfactant molecules change the stoichiometry of mixted-oxide layer and the new outer layer mostly composed of magnetite. • Thickness and density of adsorbed biosurfactants layers were highlighted using a semiquantitative approach for 3 different concentrations of biomolecules. - Abstract: We investigated modifications to carbon steel surfaces due to the adsorption of a biosurfactant derived from Pseudomonas fluorescens bacteria cells using contact angle measurements (CAM) and X-ray photoelectron spectroscopy (XPS). After conditioning carbon steel in solutions with three different concentrations of biosurfactant molecules: 0.05, 0.3 and 1 g L{sup −1}, the average thickness of the biosurfactant layer on the carbon steel specimens was 7.9 ± 0.3, 12.1 ± 0.5 and 16.4 ± 0.7 Å, respectively. The biosurfactants changed the composition of both the Fe{sup 2+} and Fe{sup 3+} mixed-oxide layer and the outer layer, mostly composed of Fe{sup 3+} associated with magnetite. Contact angle measurements indicate decreased hydrophobic properties after the carbon steel was modified by biosurfactant. It was shown that the carbon steel surface free energy depends on the biosurfactant concentration, due to an acquisition of strong electron-donating properties.

  2. The influence of biosurfactant adsorption on the physicochemical behaviour of carbon steel surfaces using contact angle measurements and X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Shubina, V.; Gaillet, L.; Ababou-Girard, S.; Gaudefroy, V.; Chaussadent, T.; Farças, F.; Meylheuc, T.; Dagbert, C.; Creus, J.

    2015-01-01

    Highlights: • Surface modifications to carbon steel surfaces due to the adsorption of a biosurfactant derived from Pseudomonas fluorescens bacteria cells were investigated using contact angle measurements (CAM) and X-ray photoelectron spectroscopy (XPS). • CAM allowed to establish an increase of electron-donating properties of steel surface due to the biosurfactant adsorption. • XPS demonstrated that biosurfactant molecules change the stoichiometry of mixted-oxide layer and the new outer layer mostly composed of magnetite. • Thickness and density of adsorbed biosurfactants layers were highlighted using a semiquantitative approach for 3 different concentrations of biomolecules. - Abstract: We investigated modifications to carbon steel surfaces due to the adsorption of a biosurfactant derived from Pseudomonas fluorescens bacteria cells using contact angle measurements (CAM) and X-ray photoelectron spectroscopy (XPS). After conditioning carbon steel in solutions with three different concentrations of biosurfactant molecules: 0.05, 0.3 and 1 g L −1 , the average thickness of the biosurfactant layer on the carbon steel specimens was 7.9 ± 0.3, 12.1 ± 0.5 and 16.4 ± 0.7 Å, respectively. The biosurfactants changed the composition of both the Fe 2+ and Fe 3+ mixed-oxide layer and the outer layer, mostly composed of Fe 3+ associated with magnetite. Contact angle measurements indicate decreased hydrophobic properties after the carbon steel was modified by biosurfactant. It was shown that the carbon steel surface free energy depends on the biosurfactant concentration, due to an acquisition of strong electron-donating properties

  3. Impact of water vapour and carbon dioxide on surface composition of C{sub 3}A polymorphs studied by X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dubina, E.; Plank, J. [Technische Universität München, Lehrstuhl für Bauchemie, Lichtenbergstr. 4, 85747 Garching bei München (Germany); Black, L., E-mail: l.black@leeds.ac.uk [Institute for Resilient Infrastructure, School of Civil Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2015-07-15

    The surface specific analytical method, X-ray photoelectron spectroscopy (XPS), has been used to study the effects of water vapour and CO{sub 2} on the cubic and orthorhombic polymorphs of C{sub 3}A. Significant differences between the two polymorphs were observed in the XPS spectra. Upon exposure to water vapour, both polymorphs produced C{sub 4}AH{sub 13} on their surfaces. Additionally, the sodium-doped o-C{sub 3}A developed NaOH and traces of C{sub 3}AH{sub 6} on its surface. Subsequent carbonation yielded mono carboaluminate on both polymorphs. Large amounts of Na{sub 2}CO{sub 3} also formed on the surface of o-C{sub 3}A as a result of carbonation of NaOH. Furthermore, the extent of carbonation was much more pronounced for o-C{sub 3}A{sub o} than for c-C{sub 3}A.

  4. Near threshold behavior of photoelectron satellite intensities

    International Nuclear Information System (INIS)

    Shirley, D.A.; Becker, U.; Heimann, P.A.; Langer, B.

    1987-09-01

    The historical background and understanding of photoelectron satellite peaks is reviewed, using He(n), Ne(1s), Ne(2p), Ar(1s), and Ar(3s) as case studies. Threshold studies are emphasized. The classification of electron correlation effects as either ''intrinsic'' or ''dynamic'' is recommended. 30 refs., 7 figs

  5. Polarization Effects in Attosecond Photoelectron Spectroscopy

    DEFF Research Database (Denmark)

    Baggesen, Jan Conrad; Madsen, Lars Bojer

    2010-01-01

    following the field instead. We show that polarization effects may lead to an apparent temporal shift that needs to be properly accounted for in the analysis. The effect may be isolated and studied by angle-resolved photoelectron spectroscopy from oriented polar molecules. We also show that polarization...... effects will lead to an apparent temporal shift of 50 as between photoelectrons from a 2p and 1s state in atomic hydrogen....

  6. Nondipole effects in attosecond photoelectron streaking

    DEFF Research Database (Denmark)

    Spiewanowski, Maciek; Madsen, Lars Bojer

    2012-01-01

    The influence of nondipole terms on the time delay in photoionization by an extreme-ultraviolet attosecond pulse in the presence of a near-infrared femtosecond laser pulse from 1s, 2s, and 2p states in hydrogen is investigated. In this attosecond photoelectron streaking process, the relative...

  7. Photoelectron spectroscopic and microspectroscopic probes of ferroelectrics

    Science.gov (United States)

    Tǎnase, Liviu C.; Abramiuc, Laura E.; Teodorescu, Cristian M.

    2017-12-01

    This contribution is a review of recent aspects connected with photoelectron spectroscopy of free ferroelectric surfaces, metals interfaced with these surfaces, graphene-like layers together with some exemplifications concerning molecular adsorption, dissociations and desorptions occurring from ferroelectrics. Standard photoelectron spectroscopy is used nowadays in correlation with other characterization techniques, such as piezoresponse force microscopy, high resolution transmission electron spectroscopy, and ferroelectric hysteresis cycles. In this work we will concentrate mainly on photoelectron spectroscopy and spectro-microscopy characterization of ferroelectric thin films, starting from atomically clean ferroelectric surfaces of lead zirco-titanate, then going towards heterostructures using this material in combination with graphene-like carbon layers or with metals. Concepts involving charge accumulation and depolarization near surface will be revisited by taking into account the newest findings in this area.

  8. Photoelectronic properties of semiconductors

    CERN Document Server

    Bube, Richard H

    1992-01-01

    The interaction between light and electrons in semiconductors forms the basis for many interesting and practically significant properties. This book examines the fundamental physics underlying this rich complexity of photoelectronic properties of semiconductors, and will familiarise the reader with the relatively simple models that are useful in describing these fundamentals. The basic physics is also illustrated with typical recent examples of experimental data and observations. Following introductory material on the basic concepts, the book moves on to consider a wide range of phenomena, including photoconductivity, recombination effects, photoelectronic methods of defect analysis, photoeffects at grain boundaries, amorphous semiconductors, photovoltaic effects and photoeffects in quantum wells and superlattices. The author is Professor of Materials Science and Electrical Engineering at Stanford University, and has taught this material for many years. He is an experienced author, his earlier books having fo...

  9. Photoelectronic characterization of heterointerfaces.

    Energy Technology Data Exchange (ETDEWEB)

    Brumbach, Michael Todd

    2012-02-01

    In many devices such as solar cells, light emitting diodes, transistors, etc., the performance relies on the electronic structure at interfaces between materials within the device. The objective of this work was to perform robust characterization of hybrid (organic/inorganic) interfaces by tailoring the interfacial region for photoelectron spectroscopy. Self-assembled monolayers (SAM) were utilized to induce dipoles of various magnitudes at the interface. Additionally, SAMs of molecules with varying dipolar characteristics were mixed into spatially organized structures to systematically vary the apparent work function. Polymer thin films were characterized by depositing films of varying thicknesses on numerous substrates with and without interfacial modifications. Hard X-ray photoelectron spectroscopy (HAXPES) was performed to evaluate a buried interface between indium tin oxide (ITO), treated under various conditions, and poly(3-hexylthiophene) (P3HT). Conducting polymer films were found to be sufficiently conducting such that no significant charge redistribution in the polymer films was observed. Consequently, a further departure from uniform substrates was taken whereby electrically disconnected regions of the substrate presented ideally insulating interfacial contacts. In order to accomplish this novel strategy, interdigitated electrodes were used as the substrate. Conducting fingers of one half of the electrodes were electrically grounded while the other set of electrodes were electronically floating. This allowed for the evaluation of substrate charging on photoelectron spectra (SCOPES) in the presence of overlying semiconducting thin films. Such an experiment has never before been reported. This concept was developed out of the previous experiments on interfacial modification and thin film depositions and presents new opportunities for understanding chemical and electronic changes in a multitude of materials and interfaces.

  10. High resolution photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Arko, A.J.

    1988-01-01

    Photoelectron Spectroscopy (PES) covers a very broad range of measurements, disciplines, and interests. As the next generation light source, the FEL will result in improvements over the undulator that are larger than the undulater improvements over bending magnets. The combination of high flux and high inherent resolution will result in several orders of magnitude gain in signal to noise over measurements using synchrotron-based undulators. The latter still require monochromators. Their resolution is invariably strongly energy-dependent so that in the regions of interest for many experiments (h upsilon > 100 eV) they will not have a resolving power much over 1000. In order to study some of the interesting phenomena in actinides (heavy fermions e.g.) one would need resolving powers of 10 4 to 10 5 . These values are only reachable with the FEL

  11. X-ray photoelectron spectroscopy study on Fe and Co catalysts during the first stages of ethanol chemical vapor deposition for single-walled carbon nanotube growth

    NARCIS (Netherlands)

    Oida, S.; McFeely, F.R.; Bol, A.A.

    2011-01-01

    Optimized chemical vapor deposition processes for single-walled carbon nanotube (SWCNT) can lead to the growth of dense, vertically aligned, mm-long forests of SWCNTs. Precise control of the growth process is however still difficult, mainly because of poor understanding of the interplay between

  12. Carbon 1s photoemission line analysis of C-based adsorbate on (111)In{sub 2}O{sub 3} surface: The influence of reducing and oxidizing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Brinzari, V., E-mail: vbrinzari@mail.ru [State University of Moldova, Chisinau, str. Mateevich 60A, MD-2009, Republic of Moldova (Moldova, Republic of); Cho, B.K. [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Korotcenkov, G., E-mail: ghkoro@yahoo.com [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of)

    2016-12-30

    Highlights: • C 1s PE line of (111)In{sub 2}O{sub 3} layer after cleaning and gas probing in HV was studied. • C 1s line fine structure is formed by various residual C-based adsorbates. • Some C 1s line features were interpreted as CO adsorption and dissociation. • Redox properties of surface determine either adsorption or dissociation of CO. • Dissociation of CO on oxidized surface is responsible for acceptor-like effect. - Abstract: Synchrotron radiation photoemission study of C 1s line of (111) In{sub 2}O{sub 3} surface was carried out under HV (high vacuum) doses of oxygen, carbon monoxide and water. Gas interaction with the surface was activated by heating of In{sub 2}O{sub 3} monocrystalline film at temperatures of 160 or 250 °C. The study of complex structure of C 1 s line and evolution of its fine components allowed to establish their nature and to propose possible surface adsorbed species and reactions, including a direct chemisorption and dissociation of CO molecules. Reduction or oxidation of the surface determines whether the first (chemisorption) or the second (dissociation) process takes place. The latter is responsible for additional formation of ionosorbed oxygen. Both processes have not been previously reported for In{sub 2}O{sub 3} and for conductive metal oxides.

  13. X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Attekum, P.M.T.M. van.

    1979-01-01

    The methods and results of X-ray photoelectron spectroscopy in the study of plasmons, alloys and gold compounds are discussed. After a comprehensive introduction, seven papers by the author, previously published elsewhere, are reprinted and these cover a wide range of the uses of X-ray photoelectron spectroscopy. (W.D.L.)

  14. Photoelectron emission from thin overlayers

    International Nuclear Information System (INIS)

    Jablonski, A.

    2012-01-01

    Highlights: ► Weak influence of the support on photoemission from an overlayer. ► Accurate description of photoelectron intensity from overlayer by analytical theory. ► Method for overlayer thickness measurements based on analytical formalism. ► Influence of photoelectron elastic scattering on calculated thickness. -- Abstract: Photoelectron signal intensities calculated for a thin overlayer from theoretical models taking elastic photoelectron collisions into account are shown to be very weakly dependent on the substrate material. This result has been obtained for photoelectrons analyzed in XPS spectrometers equipped with typical X-ray sources, i.e. sources of Mg Kα and Al Kα radiation. Low sensitivity to the substrate material is due to the fact that trajectories of photoelectrons emitted in the overlayer and entering the substrate have a low probability to reach the analyzer without energy loss. On the other hand, the signal intensity of photoelectrons emitted in the overlayer is found to be distinctly affected by elastic photoelectron scattering. Consequently, a theoretical model that can accurately describe the photoelectron intensity from an overlayer deposited on any material (e.g. on a substrate of the same material as the overlayer) can be a useful basis for a universal and convenient method for determination of the overlayer thickness. It is shown that the formalism derived from the kinetic Boltzmann equation within the so-called transport approximation satisfies these requirements. This formalism is postulated for use in overlayer-thickness measurements to avoid time-consuming Monte Carlo simulations of photoelectron transport, and also to circumvent problems with determining the effective attenuation lengths for overlayer/substrate systems.

  15. Many-electron effects in photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Martin, R.L.

    1976-06-01

    The deviations from Koopmans' one-electron model of photoionization which lead to satellite structure in the photoelectron spectrum are examined within the formalism of configuration interaction (CI). The mechanisms which contribute to satellite intensity may be classified as continuum state configuration interaction, final ionic state configuration interaction, and initial state configuration interaction. The discussion centers around the last two mechanisms, these being the prime contributors to the satellite intensity well above threshold. Specific examples of theoretical ''spectra'' are presented for the F(1s) region of HF and the 1s region of neon. The agreement between theory and experiment is found to be excellent. In these two instances, initial state configuration interaction contributions increase the satellite intensity and are of nearly equal importance to the final ionic state mixing

  16. Energy- and angled-resolved photoelectron spectroscopy of negative ions

    International Nuclear Information System (INIS)

    Pegg, D.J.; Thompson, J.S.; Compton, R.N.; Alton, G.D.

    1988-01-01

    Energy- and angle-resolved photoelectron detachment spectroscopy is currently being used to investigate the structure of negative ions and their interaction with radiation. Measurements of the electron affinity of the Ca atom and the partial cross sections for photodetachment of the metastable negative ion, He - (1s2s2p 4 P), are reported. 5 refs., 5 figs

  17. Photoelectron Diffraction Imaging for C2H2 and C2H4 Chemisorbed on Si(100) Reveals a New Bonding Configuration

    International Nuclear Information System (INIS)

    Xu, S. H.; Keeffe, M.; Yang, Y.; Chen, C.; Yu, M.; Lapeyre, G. J.; Rotenberg, E.; Denlinger, J.; Yates, J. T. Jr.

    2000-01-01

    A new adsorption site for adsorbed acetylene on Si(100) is observed by photoelectron imaging based on the holographic principle. The diffraction effects in the carbon 1s angle-resolved photoemission are inverted (including the small-cone method) to obtain an image of the atom's neighboring carbon. The chemisorbed acetylene molecule is bonded to four silicon surface atoms. In contrast to the C 2 H 2 case, the image for adsorbed C 2 H 4 shows it bonded to two Si surface atoms. (c) 2000 The American Physical Society

  18. Photoelectron spectroscopy principles and applications

    CERN Document Server

    Hüfner, Stefan

    1995-01-01

    Photoelectron Spectroscopy presents an up-to-date introduction to the field by treating comprehensively the electronic structures of atoms, molecules, solids and surfaces Brief descriptions are given of inverse photoemission, spin-polarized photoemission and photoelectron diffraction Experimental aspects are considered throughout the book, and the results are carefully interpreted by theory A wealth of measured data is presented in the form of tables for easy use by experimentalists

  19. Photoelectron spectra and electronic structure of some spiroborate complexes

    Energy Technology Data Exchange (ETDEWEB)

    Vovna, V.I.; Tikhonov, S.A.; Lvov, I.B., E-mail: lvov.ib@dvfu.ru; Osmushko, I.S.; Svistunova, I.V.; Shcheka, O.L.

    2014-12-15

    Highlights: • The electronic structure of three spiroborate complexes—boron 1,2-dioxyphenylene β-diketonates has been investigated. • UV and X-ray photoelectron spectra have been interpreted. • DFT calculations have been used for interpretation of spectral bands. • The binding energy of nonequivalent carbon and oxygen atoms were measured. • The structure of X-ray photoelectron spectra of the valence electrons is in good agreement with the energies and composition of Kohn–Sham orbitals. - Abstract: The electronic structure of the valence and core levels of three spiroborate complexes – boron 1,2-dioxyphenylene β-diketonates – has been investigated by methods of UV and X-ray photoelectron spectroscopy and quantum chemical density functional theory. The ionization energy of π- and n-orbitals of the dioxyphenylene fragment and β-diketonate ligand were measured from UV photoelectron spectra. This made it possible to determine the effect of substitution of one or two methyl groups by the phenyl in diketone on the electronic structure of complexes. The binding energy of nonequivalent carbon and oxygen atoms were measured from X-ray photoelectron spectra. The results of calculations of the energy of the valence orbitals of complexes allowed us to refer bands observed in the spectra of the valence electrons to the 2s-type levels of carbon and oxygen.

  20. ac impedance, X-ray photoelectron spectroscopy and density functional theory studies of 3,5-bis(n-pyridyl)-1,2,4-oxadiazoles as efficient corrosion inhibitors for carbon steel surface in hydrochloric acid solution

    Energy Technology Data Exchange (ETDEWEB)

    Outirite, Moha; Lagrenee, Michel; Lebrini, Mounim [Unite de Catalyse et de Chimie du Solide, UMR-CNRS 8181, ENSCL, B.P. 90108, F-59652 Villeneuve d' Ascq Cedex (France); Traisnel, Michel; Jama, Charafeddine [Laboratoire des Procedes d' Elaboration des Revetements Fonctionnels, PERF UMR-CNRS 8008, ENSCL, B.P. 90108, F-59652 Villeneuve d' Ascq Cedex (France); Vezin, Herve [Laboratoire de Chimie Organique et Macromoleculaire, UMR-CNRS 8009, USTL Bat C4, F-59655 Villeneuve d' Ascq Cedex (France); Bentiss, Fouad, E-mail: fbentiss@enscl.f [Laboratoire de Chimie de Coordination et d' Analytique, Faculte des Sciences, Universite Chouaib Doukkali, B.P. 20, M-24000 El Jadida (Morocco)

    2010-02-01

    The corrosion inhibition properties of a new class of oxadiazole derivatives, namely 3,5-bis(n-pyridyl)-1,2,4-oxadiazoles (n-DPOX) for C38 carbon steel corrosion in 1 M HCl medium were analysed by electrochemical impedance spectroscopy (EIS). An adequate structural model of the interface was used and the values of the corresponding parameters were calculated and discussed. The experimental results showed that these compounds are excellent inhibitors for the C38 steel corrosion in acid solution and that the protection efficiency increased with increasing the inhibitors concentration. Electrochemical impedance data demonstrate that the addition of the n-DPOX derivatives in the corrosive solution decreases the charge capacitance and simultaneously increases the function of the charge/discharge of the interface, facilitating the formation of an adsorbed layer over the steel surface. Adsorption of these inhibitors on the steel surface obeys to the Langmuir adsorption isotherm. X-ray photoelectron spectroscopy (XPS) and the thermodynamic data of adsorption showed that inhibition of steel corrosion in normal hydrochloric solution by n-DPOX is due to the formation of a chemisorbed film on the steel surface. Quantum chemical calculations using the Density Functional Theory (DFT) and the Quantitative Structure Activity Relationship (QSAR) approach were performed on n-DPOX derivatives to determine the relationship between molecular structure and their inhibition efficiencies. The results of the quantum chemical calculations and experimental inhibition efficiency were subjected to correlation analysis and indicate that their inhibition effect is closely related to E{sub HOMO}, E{sub LUMO}, and dipole moment (mu).

  1. Lineshape of Ne 1s photoionization satellite [1s2s]({sup 3}S)3s and its valence Auger decay spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Yarzhemsky, V.G.; Amusia, M.Ya.; Chernysheva, L.V

    2002-12-15

    Lineshape of Ne1s photoionization satellite [1s2s]({sup 3}S)3s({sup 2}S) and lineshapes of corresponding low-energy Auger spectra are calculated using the Many-Body Perturbation Theory. The results obtained reproduce the experimentally observed asymmetrical lineshape of photoelectron satellite and its intensity.

  2. X-Ray and UV Photoelectron Spectroscopy | Materials Science | NREL

    Science.gov (United States)

    backsheet material, showing excellent quantitative agreement between measured and predicted peak area ratios XPS spectra of carbon 1s from polyethylene terephthalate backsheet material, showing excellent

  3. Photoelectron photoion molecular beam spectroscopy

    International Nuclear Information System (INIS)

    Trevor, D.J.

    1980-12-01

    The use of supersonic molecular beams in photoionization mass spectroscopy and photoelectron spectroscopy to assist in the understanding of photoexcitation in the vacuum ultraviolet is described. Rotational relaxation and condensation due to supersonic expansion were shown to offer new possibilities for molecular photoionization studies. Molecular beam photoionization mass spectroscopy has been extended above 21 eV photon energy by the use of Stanford Synchrotron Radiation Laboratory (SSRL) facilities. Design considerations are discussed that have advanced the state-of-the-art in high resolution vuv photoelectron spectroscopy. To extend gas-phase studies to 160 eV photon energy, a windowless vuv-xuv beam line design is proposed

  4. Photoelectron antibunching and absorber theory

    International Nuclear Information System (INIS)

    Pegg, D.T.

    1980-01-01

    The recently detected photoelectron antibunching effect is considered to be evidence for the quantised electromagnetic field, i.e. for the existence of photons. Direct-action quantum absorber theory, on the other hand, has been developed on the basis that the quantised field is illusory, with quantisation being required only for atoms. In this paper it is shown that photoelectron antibunching is readily explicable in terms of absorber theory and in fact is directly attributable to the quantum nature of the emitting and detecting atoms alone. The physical nature of the reduction of the wavepacket associated with the detection process is briefly discussed in terms of absorber theory. (author)

  5. Photoelectron spectroscopy an introduction to ultraviolet photoelectron spectroscopy in the gas phase

    CERN Document Server

    Eland, J H D

    2013-01-01

    Photoelectron Spectroscopy: An Introduction to Ultraviolet Photoelectronspectroscopy in the Gas Phase, Second Edition Photoelectron Spectroscopy: An Introduction to Ultraviolet PhotoelectronSpectroscopy in the Gas Phase, Second Edition aims to give practical approach on the subject of photoelectron spectroscopy, as well as provide knowledge on the interpretation of the photoelectron spectrum. The book covers topics such as the principles and literature of photoelectron microscopy; the main features and analysis of photoelectron spectra; ionization techniques; and energies from the photoelectron spectra. Also covered in the book are topics suc as photoelectron band structure and the applications of photoelectron spectroscopy in chemistry. The text is recommended for students and practitioners of chemistry who would like to be familiarized with the concepts of photoelectron spectroscopy and its importance in the field.

  6. Theory of photoelectron counting statistics

    International Nuclear Information System (INIS)

    Blake, J.

    1980-01-01

    The purpose of the present essay is to provide a detailed analysis of those theoretical aspects of photoelectron counting which are capable of experimental verification. Most of our interest is in the physical phenomena themselves, while part is in the mathematical techniques. Many of the mathematical methods used in the analysis of the photoelectron counting problem are generally unfamiliar to physicists interested in the subject. For this reason we have developed the essay in such a fashion that, although primary interest is focused on the physical phenomena, we have also taken pains to carry out enough of the analysis so that the reader can follow the main details. We have chosen to present a consistently quantum mechanical version of the subject, in that we follow the Glauber theory throughout. (orig./WL)

  7. Liquid microjet for photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Winter, Bernd

    2009-01-01

    Photoelectron spectroscopy from highly volatile liquids, especially from water and aqueous solutions, has recently become possible due to the development of the vacuum liquid microjet in combination of high-brilliance synchrotron radiation. The present status of this rapidly growing field is reported here, with an emphasize on the method's sensitivity for detecting local electronic structure, and for monitoring ultrafast dynamical processes in aqueous solution exploiting core-level resonant excitation.

  8. Liquid microjet for photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Winter, Bernd [Helmholtz-Zentrum Berlin fuer Materialien und Energie, and BESSY, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany)], E-mail: bernd.winter@bessy.de

    2009-03-21

    Photoelectron spectroscopy from highly volatile liquids, especially from water and aqueous solutions, has recently become possible due to the development of the vacuum liquid microjet in combination of high-brilliance synchrotron radiation. The present status of this rapidly growing field is reported here, with an emphasize on the method's sensitivity for detecting local electronic structure, and for monitoring ultrafast dynamical processes in aqueous solution exploiting core-level resonant excitation.

  9. Determination of the bonding of alkyl monolayers to the Si(111) surface using chemical-shift, scanned-energy photoelectron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Terry, J.; Linford, M.R.; Wigren, C.; Cao, R.; Pianetta, P.; Chidsey, C.E. [Stanford University, Stanford, California 94309 (United States)

    1997-08-01

    The bonding of alkyl monolayers to Si(111) surfaces has been studied by conventional x-ray photoelectron spectroscopy (XPS) and chemical-shift, scanned-energy photoelectron diffraction (PED) using synchrotron radiation. Two very different wet-chemical methods have been used to prepare the alkyl monolayers: (i) olefin insertion into the H{endash}Si bond on the H{endash}Si(111) surface, and (ii) replacement of Cl on the Cl{endash}Si(111) surface by an alkyl group from an alkyllithium reagent. In both cases, XPS has revealed a C 1s signal chemically shifted to lower binding energy, which we have assigned to carbon bonded to silicon. PED has shown that both preparative methods result in carbon bonded in an atop site with the expected C{endash}Si bond length of 1.85{plus_minus}0.05{Angstrom}. Chemical-shift, scanned-energy photoelectron diffraction is a particularly valuable probe of local structure at surfaces that contain the same element in multiple, chemically distinct environments. {copyright} {ital 1997 American Institute of Physics.}

  10. Determination of the bonding of alkyl monolayers to the Si(111) surface using chemical-shift, scanned-energy photoelectron diffraction

    International Nuclear Information System (INIS)

    Terry, J.; Linford, M.R.; Wigren, C.; Cao, R.; Pianetta, P.; Chidsey, C.E.

    1997-01-01

    The bonding of alkyl monolayers to Si(111) surfaces has been studied by conventional x-ray photoelectron spectroscopy (XPS) and chemical-shift, scanned-energy photoelectron diffraction (PED) using synchrotron radiation. Two very different wet-chemical methods have been used to prepare the alkyl monolayers: (i) olefin insertion into the H endash Si bond on the H endash Si(111) surface, and (ii) replacement of Cl on the Cl endash Si(111) surface by an alkyl group from an alkyllithium reagent. In both cases, XPS has revealed a C 1s signal chemically shifted to lower binding energy, which we have assigned to carbon bonded to silicon. PED has shown that both preparative methods result in carbon bonded in an atop site with the expected C endash Si bond length of 1.85±0.05 Angstrom. Chemical-shift, scanned-energy photoelectron diffraction is a particularly valuable probe of local structure at surfaces that contain the same element in multiple, chemically distinct environments. copyright 1997 American Institute of Physics

  11. Photoelectron spectroscopy of molecular beams

    International Nuclear Information System (INIS)

    Berkowitz, J.

    1974-01-01

    The history of physical science is replete with examples of phenomena initially discovered and investigated by physicists, which have subsequently become tools of the chemist. It is demonstrated in this paper that the field of photoelectron spectroscopy may develop in a reverse fashion. After a brief introduction to the subject, the properties characterized as physical ones, are discussed. These are intensities and angular distributions, from which one can infer transition probabilities and phase shifts. Three separate experiments are described which involve accurate intensity measurements and it is shown how an interpretation of the results by appropriate theory has given new insight into the photoionization process. (B.R.H.)

  12. Surface study of stainless steel electrode deposition from soil electrokinetic (EK) treatment using X-ray photoelectron spectroscopy (XPS)

    International Nuclear Information System (INIS)

    Embong, Zaidi; Johar, Saffuwan; Tajudin, Saiful Azhar Ahmad; Sahdan, Mohd Zainizan

    2015-01-01

    Electrokinetic (EK) remediation relies upon application of a low-intensity direct current through the soil between stainless steel electrodes that are divided into a cathode array and an anode array. This mobilizes charged species, causing ions and water to move toward the electrodes. Metal ions and positively charged organic compounds move toward the cathode. Anions such as chloride, fluoride, nitrate, and negatively charged organic compounds move toward the anode. Here, this remediation techniques lead to a formation of a deposition at the both cathode and anode surface that mainly contributed byanion and cation from the remediated soil. In this research, Renggam-Jerangau soil species (HaplicAcrisol + RhodicFerralsol) with a surveymeter reading of 38.0 ± 3.9 μR/hr has been investigation in order to study the mobility of the anion and cation under the influence electric field. Prior to the EK treatment, the elemental composition of the soil and the stainless steel electrode are measured using XRF analyses. Next, the soil sample is remediated at a constant electric potential of 30 V within an hour of treatment period. A surface study for the deposition layer of the cathode and anode using X-ray Photoelectron spectroscopy (XPS) revealed that a narrow photoelectron signal from oxygen O 1s, carbon, C 1s silica, Si 2p, aluminium, Al 2p and chromium, Cr 2p exhibited on the electrode surface and indicate that a different in photoelectron intensity for each element on both electrode surface. In this paper, the mechanism of Si 2+ and Al 2+ cation mobility under the influence of voltage potential between the cathode and anode will be discussed in detail

  13. Surface study of stainless steel electrode deposition from soil electrokinetic (EK) treatment using X-ray photoelectron spectroscopy (XPS)

    Energy Technology Data Exchange (ETDEWEB)

    Embong, Zaidi, E-mail: zaidi@uthm.edu.my [Faculty of Science, Technology and Human Development, Universiti Tun Hussien Onn Malaysia (UTHM) 86400, Parit Raja, Batu, Johor (Malaysia); Research Centre for Soft Soils (RECESS), Office for Research, Innovation, Commercialization and Consultancy Management (ORICC), Universiti Tun Hussien Onn Malaysia UTHM 86400, Parit Raja, Batu, Johor (Malaysia); Johar, Saffuwan [Faculty of Science, Technology and Human Development, Universiti Tun Hussien Onn Malaysia (UTHM) 86400, Parit Raja, Batu, Johor (Malaysia); Tajudin, Saiful Azhar Ahmad [Research Centre for Soft Soils (RECESS), Office for Research, Innovation, Commercialization and Consultancy Management (ORICC), Universiti Tun Hussien Onn Malaysia UTHM 86400, Parit Raja, Batu, Johor (Malaysia); Sahdan, Mohd Zainizan [Microelectronics and Nanotechnology Centre (MiNT-SRC), Office for Research, Innovation, Commercialization and Consultancy Management (ORICC), Universiti Tun Hussien Onn Malaysia UTHM 86400, Parit Raja, Batu, Johor (Malaysia)

    2015-04-29

    Electrokinetic (EK) remediation relies upon application of a low-intensity direct current through the soil between stainless steel electrodes that are divided into a cathode array and an anode array. This mobilizes charged species, causing ions and water to move toward the electrodes. Metal ions and positively charged organic compounds move toward the cathode. Anions such as chloride, fluoride, nitrate, and negatively charged organic compounds move toward the anode. Here, this remediation techniques lead to a formation of a deposition at the both cathode and anode surface that mainly contributed byanion and cation from the remediated soil. In this research, Renggam-Jerangau soil species (HaplicAcrisol + RhodicFerralsol) with a surveymeter reading of 38.0 ± 3.9 μR/hr has been investigation in order to study the mobility of the anion and cation under the influence electric field. Prior to the EK treatment, the elemental composition of the soil and the stainless steel electrode are measured using XRF analyses. Next, the soil sample is remediated at a constant electric potential of 30 V within an hour of treatment period. A surface study for the deposition layer of the cathode and anode using X-ray Photoelectron spectroscopy (XPS) revealed that a narrow photoelectron signal from oxygen O 1s, carbon, C 1s silica, Si 2p, aluminium, Al 2p and chromium, Cr 2p exhibited on the electrode surface and indicate that a different in photoelectron intensity for each element on both electrode surface. In this paper, the mechanism of Si{sup 2+} and Al{sup 2+} cation mobility under the influence of voltage potential between the cathode and anode will be discussed in detail.

  14. Femtosecond photoelectron point projection microscope

    International Nuclear Information System (INIS)

    Quinonez, Erik; Handali, Jonathan; Barwick, Brett

    2013-01-01

    By utilizing a nanometer ultrafast electron source in a point projection microscope we demonstrate that images of nanoparticles with spatial resolutions of the order of 100 nanometers can be obtained. The duration of the emission process of the photoemitted electrons used to make images is shown to be of the order of 100 fs using an autocorrelation technique. The compact geometry of this photoelectron point projection microscope does not preclude its use as a simple ultrafast electron microscope, and we use simple analytic models to estimate temporal resolutions that can be expected when using it as a pump-probe ultrafast electron microscope. These models show a significant increase in temporal resolution when comparing to ultrafast electron microscopes based on conventional designs. We also model the microscopes spectroscopic abilities to capture ultrafast phenomena such as the photon induced near field effect

  15. Photoelectron Spectroscopy of Substituted Phenylnitrenes

    Science.gov (United States)

    Wijeratne, Neloni R.; Da Fonte, Maria; Wenthold, Paul G.

    2009-06-01

    Nitrenes are unusual molecular structures with unfilled electronic valences that are isoelectronic with carbenes. Although, both can be generated by either thermal or photochemical decomposition of appropriate precursors they usually exhibit different reactivities. In this work, we carry out spectroscopic studies of substituted phenylnitrene to determine how the introduction of substituents will affect the reactivity and its thermochemical properties. All studies were carried out by using the newly constructed time-of-flight negative ion photoelectron spectrometer (NIPES) at Purdue University. The 355 nm photoelectron spectra of the o-, m-, and p-chlorophenyl nitrene anions are fairly similar to that measured for phenylnitrene anion. All spectra show low energy triplet state and a high energy singlet state. The singlet state for the meta isomer is well-resolved, with a well defined origin and observable vibrational structure. Whereas the singlet states for the ortho and para isomers have lower energy onsets and no resolved structure. The isomeric dependence suggests that the geometry differences result from the resonance interaction between the nitrogen and the substituent. Quinoidal resonance structures are possible for the open-shell singlet states of the o- and p-chlorinated phenyl nitrenes. The advantages of this type of electronic structures for the open-shell singlet states is that the unpaired electrons can be more localized on separate atoms in the molecules, minimizing the repulsion between. Because the meta position is not in resonance with the nitrenes, substitution at that position should not affect the structure of the open-shell singlet state. The measured electron affinities (EA) of the triplet phenylnitrenes are in excellent agreement with the values predicted by electronic structure calculations. The largest EA, 1.82 eV is found for the meta isomer, with para being the smallest, 1.70 eV.

  16. Photoionization and ionic dissociation of the C3 H3 NS molecule induced by soft X-ray near the C1s edge.

    Science.gov (United States)

    Lago, A F; Januário, R D; Cavasso Filho, R L; Simon, M; Dávalos, J Z

    2017-10-01

    Time of flight mass spectrometry, electron-ion coincidence, and ion yield spectroscopy were employed to investigate for the first time the thiazole (C 3 H 3 NS) molecule in the gas phase excited by synchrotron radiation in the soft X-ray domain. Total ion yield (TIY) and photoelectron-photoion coincidence (PEPICO) spectra were recorded as a function of the photon energy in the vicinity of the carbon K edge (C1s). The C1s resonant transitions as well as the core ionization thresholds have been determined from the profile of TIY spectrum, and the features were discussed. The corresponding partial ion yields were determined from the PEPICO spectra for the cation species produced upon the molecular photodissociation. Additional ab initio calculations have also been performed from where relevant structural and electronic configuration parameters were obtained for this molecule. Copyright © 2017 John Wiley & Sons, Ltd.

  17. UV lamp for photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Cardoso, M.J.B.; Landers, R.; Sundaram, V.S.

    1983-01-01

    An UV lamp and a differential pumping system which enables to couple the lamp to an ultra-high vacuum chamber (10 -9 torr) without using windows, are described. The differential between the pressure inside the discharge chamber and the one in de UHV region, which is of 10 8 -10 9 , is achieved with two pumping states separated by pyrex capillaries having an internal diameter of 0.6 mm. In the first stage, a mechanical pump (10 -3 torr) is used; in the second stage, a diffusor pump with a cryogenic trap (N 2 liq - 10 -7 torr) is employed. The lamp produces, when used with high purity He, narrow lines almost clear at 21.2 eV and 40.8 eV, depending on the discharge chamber pressure, thus eliminating the need of a monochromator. As a high voltage source (3 KV), a commercial unit with a good current control was used, ensuring UV beam stability - an essential characteristic for this lamp if it is employed for photoelectron excitation of crystalline samples. (C.L.B.) [pt

  18. Photoelectron and photodissociation studies of free atoms and molecules, using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Medhurst, L.J.

    1991-11-01

    High resolution synchrotron radiation and Zero-Kinetic-Energy Photoelectron spectroscopy were used to study two-electron transitions in atomic systems at their ionization thresholds. Using this same technique the core-ionized mainline and satellite states of N{sub 2} and CO were studied with vibrational resolution. Vibrationally resolved synchrotron radiation was used to study the dissociation of N{sub 2}, C{sub 2}H{sub 4}, and CH{sub 3}Cl near the N 1s and C 1s thresholds. The photoelectron satellites of the argon 3s, krypton 4s and xenon 4d subshells were studied with zero kinetic energy photoelectron spectroscopy at their ionization thresholds. In all of these cases, satellites with lower binding energies are enhanced at their thresholds while those closer to the double ionization threshold are suppressed relative to their intensities at high incident light energies.

  19. Photoelectron and photodissociation studies of free atoms and molecules, using synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Medhurst, Laura Jane [Univ. of California, Berkeley, CA (United States)

    1991-11-01

    High resolution synchrotron radiation and Zero-Kinetic-Energy Photoelectron spectroscopy were used to study two-electron transitions in atomic systems at their ionization thresholds. Using this same technique the core-ionized mainline and satellite states of N2 and CO were studied with vibrational resolution. Vibrationally resolved synchrotron radiation was used to study the dissociation of N2, C2H4, and CH3Cl near the N 1s and C 1s thresholds. The photoelectron satellites of the argon 3s, krypton 4s and xenon 4d subshells were studied with zero kinetic energy photoelectron spectroscopy at their ionization thresholds. In all of these cases, satellites with lower binding energies are enhanced at their thresholds while those closer to the double ionization threshold are suppressed relative to their intensities at high incident light energies.

  20. Photoelectron and photodissociation studies of free atoms and molecules, using synchrotron radiation

    International Nuclear Information System (INIS)

    Medhurst, L.J.

    1991-11-01

    High resolution synchrotron radiation and Zero-Kinetic-Energy Photoelectron spectroscopy were used to study two-electron transitions in atomic systems at their ionization thresholds. Using this same technique the core-ionized mainline and satellite states of N 2 and CO were studied with vibrational resolution. Vibrationally resolved synchrotron radiation was used to study the dissociation of N 2 , C 2 H 4 , and CH 3 Cl near the N 1s and C 1s thresholds. The photoelectron satellites of the argon 3s, krypton 4s and xenon 4d subshells were studied with zero kinetic energy photoelectron spectroscopy at their ionization thresholds. In all of these cases, satellites with lower binding energies are enhanced at their thresholds while those closer to the double ionization threshold are suppressed relative to their intensities at high incident light energies

  1. Occupied and unoccupied electronic structures of an L-cysteine film studied by core-absorption and resonant photoelectron spectroscopies

    Science.gov (United States)

    Kamada, M.; Hideshima, T.; Azuma, J.; Yamamoto, I.; Imamura, M.; Takahashi, K.

    2016-04-01

    Unoccupied and occupied electronic structures of an L-cysteine film have been studied by absorption and resonant photoelectron spectroscopies. Core absorptions at S-L, C-K, N-K, and O-K levels indicate that the lower unoccupied states are predominantly composed of oxygen-2p, carbon-2p, and sulfur-4s+3d orbitals, while higher unoccupied states may be attributed dominantly to nitrogen-np (n ≥ 3), oxygen-np (n ≥ 3), and sulfur-ns+md (n ≥ 4, m ≥ 3) orbitals. Resonant photoelectron spectra at S-L23 and O-K levels indicate that the highest occupied state is originated from sulfur-3sp orbitals, while oxygen-2sp orbitals contribute to the deeper valence states. The delocalization lifetimes of the oxygen-1s and sulfur-2p excited states are estimated from a core-hole clock method to be about 9 ± 1 and 125 ± 25 fs, respectively.

  2. Occupied and unoccupied electronic structures of an L-cysteine film studied by core-absorption and resonant photoelectron spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, M., E-mail: kamada@cc.saga-u.ac.jp; Hideshima, T.; Azuma, J.; Yamamoto, I.; Imamura, M.; Takahashi, K. [Synchrotron Light Application Center, Saga University, Honjo 1, Saga 840-8502 (Japan)

    2016-04-15

    Unoccupied and occupied electronic structures of an L-cysteine film have been studied by absorption and resonant photoelectron spectroscopies. Core absorptions at S-L, C-K, N-K, and O-K levels indicate that the lower unoccupied states are predominantly composed of oxygen-2p, carbon-2p, and sulfur-4s+3d orbitals, while higher unoccupied states may be attributed dominantly to nitrogen-np (n ≥ 3), oxygen-np (n ≥ 3), and sulfur-ns+md (n ≥ 4,  m ≥ 3) orbitals. Resonant photoelectron spectra at S-L{sub 23} and O-K levels indicate that the highest occupied state is originated from sulfur-3sp orbitals, while oxygen-2sp orbitals contribute to the deeper valence states. The delocalization lifetimes of the oxygen-1s and sulfur-2p excited states are estimated from a core-hole clock method to be about 9 ± 1 and 125 ± 25 fs, respectively.

  3. Coincident photoelectron spectroscopy on superconductors

    International Nuclear Information System (INIS)

    Voss, Stefan

    2011-01-01

    Aim of the performed experiments of this thesis was to attempt to detect Cooper pairs as carriers of the superconducting current directly by means of the photoelectric effect. The method of the coincident photoelectron spectroscopy aims thereby at the detection of two coherently emitted electrons by the interaction with a photon. Because electrostatic analyzers typically cover only a very small spatial angle, which goes along with very low coincidence rates, in connection with this thesis a time-of-flight projection system has been developed, which maps nearly the whole spatial angle on a position-resolving detector. The pulsed light source in form of special synchrotron radiation necessary for the measurement has been adjusted so weak, that only single photons could arrive at the sample. Spectroscoped were beside test measurements on silver layers both a lead monocrystal as representative of the classical BCS superconductors and monocrystalline Bi 2 Sr 2 CaCu 2 O 8 from the family of the high-temperature superconductors. With excitation energies up to 40 eV could be shown that sufficiently smooth and clean surfaces in the superconducting phase exhibit within the resolving power of about 0.5 eV no recognizable differences in comparison to the normally conducting phase. Beside these studies furthermore the simple photoemission at the different samples and especially in the case of the lead crystal is treated, because here no comparable results are known. Thereby the whole momentum space is discussed and the Fermi surface established as three-dimensional model, by means of which the measurement results are discussed. in the theoretical descriptions different models for the Cooper-pair production are presented, whereby to the momentum exchange with the crystal a special role is attributed, because this can only occur in direct excitations via discrete lattice vectors.

  4. Projection methods for the analysis of molecular-frame photoelectron angular distributions

    International Nuclear Information System (INIS)

    Lucchese, R.R.; Montuoro, R.; Grum-Grzhimailo, A.N.; Liu, X.-J.; Pruemper, G.; Morishita, Y.; Saito, N.; Ueda, K.

    2007-01-01

    The analysis of the molecular-frame photoelectron angular distributions (MFPADs) is discussed within the dipole approximation. The general expressions are reviewed and strategies for extracting the maximum amount of information from different types of experimental measurements are considered. The analysis of the N 1s photoionization of NO is given to illustrate the method

  5. Photoelectron angular distribution from free SiO2 nanoparticles as a probe of elastic electron scattering.

    Science.gov (United States)

    Antonsson, E; Langer, B; Halfpap, I; Gottwald, J; Rühl, E

    2017-06-28

    In order to gain quantitative information on the surface composition of nanoparticles from X-ray photoelectron spectroscopy, a detailed understanding of photoelectron transport phenomena in these samples is needed. Theoretical results on the elastic and inelastic scattering have been reported, but a rigorous experimental verification is lacking. We report in this work on the photoelectron angular distribution from free SiO 2 nanoparticles (d = 122 ± 9 nm) after ionization by soft X-rays above the Si 2p and O 1s absorption edges, which gives insight into the relative importance of elastic and inelastic scattering channels in the sample particles. The photoelectron angular anisotropy is found to be lower for photoemission from SiO 2 nanoparticles than that expected from the theoretical values for the isolated Si and O atoms in the photoelectron kinetic energy range 20-380 eV. The reduced angular anisotropy is explained by elastic scattering of the outgoing photoelectrons from neighboring atoms, smearing out the atomic distribution. Photoelectron angular distributions yield detailed information on photoelectron elastic scattering processes allowing for a quantification of the number of elastic scattering events the photoelectrons have undergone prior to leaving the sample. The interpretation of the experimental photoelectron angular distributions is complemented by Monte Carlo simulations, which take inelastic and elastic photoelectron scattering into account using theoretical values for the scattering cross sections. The results of the simulations reproduce the experimental photoelectron angular distributions and provide further support for the assignment that elastic and inelastic electron scattering processes need to be considered.

  6. Coherent Control of Photoelectron Wavepacket Angular Interferograms

    OpenAIRE

    Hockett, Paul; Wollenhaupt, Matthias; Baumert, Thomas

    2015-01-01

    Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the cohere...

  7. Photoelectron studies of machined brass surfaces

    Science.gov (United States)

    Potts, A. W.; Merrison, J. P.; Tournas, A. D.; Yacoot, A.

    UV photoelectron spectroscopy has been used to determine the surface composition of machined brass. The results show a considerable change between the photoelectron surface composition and the bulk composition of the same sample determined by energy-dispersive X-ray fluorescence. On the surface the lead composition is increased by ˜900 G. This is consistent with the important part that lead is believed to play in improving the machinability of this alloy.

  8. X-ray photoelectron spectroscopy study of β-BaB2O4 optical surface

    International Nuclear Information System (INIS)

    Atuchin, V.V.; Kesler, V.G.; Kokh, A.E.; Pokrovsky, L.D.

    2004-01-01

    An X-ray photoelectron spectroscopy (XPS) study has been performed for (0 0 1) BaB 2 O 4 . The crystal surface has been polished mechanically and cleaned by chemical etching. In XPS observation, depth profiling has been produced by sputtering with Ar + 3 keV ions. Photoelectron binding energies of original element core levels and valence band have been measured as a function of sputtering time. The persistence of binding energies of barium and boron core levels and valence band structure has been found. For O 1 s core level the formation of new spectral components with lower binding energies has been revealed

  9. Structures of cycloserine and 2-oxazolidinone probed by X-ray photoelectron spectroscopy: theory and experiment.

    Science.gov (United States)

    Ahmed, Marawan; Wang, Feng; Acres, Robert G; Prince, Kevin C

    2014-05-22

    The electronic structures and properties of 2-oxazolidinone and the related compound cycloserine (CS) have been investigated using theoretical calculations and core and valence photoelectron spectroscopy. Isomerization of the central oxazolidine heterocycle and the addition of an amino group yield cycloserine. Theory correctly predicts the C, N, and O 1s core spectra, and additionally, we report theoretical natural bond orbital (NBO) charges. The valence ionization energies are also in agreement with theory and previous measurements. Although the lowest binding energy part of the spectra of the two compounds shows superficial similarities, further analysis of the charge densities of the frontier orbitals indicates substantial reorganization of the wave functions as a result of isomerization. The highest occupied molecular orbital (HOMO) of CS shows leading carbonyl π character with contributions from other heavy (non-H) atoms in the molecule, while the HOMO of 2-oxazolidinone (OX2) has leading nitrogen, carbon, and oxygen pπ characters. The present study further theoretically predicts bond resonance effects of the compounds, evidence for which is provided by our experimental measurements and published crystallographic data.

  10. Photoelectron spectroscopy of supersonic molecular beams

    International Nuclear Information System (INIS)

    Pollard, J.E.

    1982-05-01

    A new technique for performing high resolution molecular photoelectron spectroscopy is described, beginning with its conceptual development, through the construction of a prototypal apparatus, to the initial applications on a particularly favorable molecular system. The distinguishing features of this technique are: (1) the introduction of the sample in the form of a collimated supersonic molecular beam; and (2) the use of an electrostatic deflection energy analyzer which is carefully optimized in terms of sensitivity and resolution. This combination makes it possible to obtain photoelectron spectra at a new level of detail for many small molecules. Three experiments are described which rely on the capability to perform rotationally-resolved photoelectron spectroscopy on the hydrogen molecule and its isotopes. The first is a measurement of the ionic vibrational and rotational spectroscopic constants and the vibrationally-selected photoionization cross sections. The second is a determination of the photoelectron asymmetry parameter, β, for selected rotational transitions. The third is an investigation of the rotational relaxation in a free jet expansion, using photoelectron spectroscopy as a probe of the rotational state population distributions. In the closing chapter an assessment is made of the successes and limitations of the technique, and an indication is given of areas for further improvement in future spectrometers

  11. Raman and photoelectron spectroscopic investigation of high-purity niobium materials: Oxides, hydrides, and hydrocarbons

    Science.gov (United States)

    Singh, Nageshwar; Deo, M. N.; Nand, Mangla; Jha, S. N.; Roy, S. B.

    2016-09-01

    We present investigations of the presence of oxides, hydrides, and hydrocarbons in high-purity (residual resistivity ratio, ˜300) niobium (Nb) materials used in fabrication of superconducting radio frequency (SRF) cavities for particle accelerators. Raman spectroscopy of Nb materials (as-received from the vendor as well as after surface chemical- and thermal processing) revealed numerous peaks, which evidently show the presence of oxides (550 cm-1), hydrides (1277 and 1385 cm-1: ˜80 K temperature), and groups of hydrocarbons (1096, 2330, 2710, 2830, 2868, and 3080 cm-1). The present work provides direct spectroscopic evidence of hydrides in the electropolished Nb materials typically used in SRF cavities. Raman spectroscopy thus can provide vital information about the near-surface chemical species in niobium materials and will help in identifying the cause for the performance degradation of SRF cavities. Furthermore, photoelectron spectroscopy was performed on the Nb samples to complement the Raman spectroscopy study. This study reveals the presence of C and O in the Nb samples. Core level spectra of Nb (doublet 3d5/2 and 3d3/2) show peaks near 206.6 and 209.4 eV, which can be attributed to the Nb5+ oxidation state. The core level spectra of C 1 s of the samples are dominated by graphitic carbon (binding energy, 284.6 eV), while the spectra of O 1 s are asymmetrically peaked near binding energy of ˜529 eV, and that indicates the presence of metal-oxide Nb2O5. The valence-band spectra of the Nb samples are dominated by a broad peak similar to O 2p states, but after sputtering (for 10 min) a peak appears at ˜1 eV, which is a feature of the elemental Nb atom.

  12. Coherent control of photoelectron wavepacket angular interferograms

    International Nuclear Information System (INIS)

    Hockett, P; Wollenhaupt, M; Baumert, T

    2015-01-01

    Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process, where the final (time-integrated) observable coherently samples all instantaneous states of the light–matter interaction. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the coherent control over the resultant photoelectron interferogram is thus explored in detail. Based on this understanding, the use of coherent control with polarization-shaped pulses as a methodology for a highly multiplexed coherent quantum metrology is also investigated, and defined in terms of the information content of the observable. (paper)

  13. Coherent control of photoelectron wavepacket angular interferograms

    Science.gov (United States)

    Hockett, P.; Wollenhaupt, M.; Baumert, T.

    2015-11-01

    Coherent control over photoelectron wavepackets, via the use of polarization-shaped laser pulses, can be understood as a time and polarization-multiplexed process, where the final (time-integrated) observable coherently samples all instantaneous states of the light-matter interaction. In this work, we investigate this multiplexing via computation of the observable photoelectron angular interferograms resulting from multi-photon atomic ionization with polarization-shaped laser pulses. We consider the polarization sensitivity of both the instantaneous and cumulative continuum wavefunction; the nature of the coherent control over the resultant photoelectron interferogram is thus explored in detail. Based on this understanding, the use of coherent control with polarization-shaped pulses as a methodology for a highly multiplexed coherent quantum metrology is also investigated, and defined in terms of the information content of the observable.

  14. Performance of the SRRC scanning photoelectron microscope

    Science.gov (United States)

    Hong, I.-H.; Lee, T.-H.; Yin, G.-C.; Wei, D.-H.; Juang, J.-M.; Dann, T.-E.; Klauser, R.; Chuang, T. J.; Chen, C. T.; Tsang, K.-L.

    2001-07-01

    A scanning photoelectron microscope has been constructed at SRRC. This SPEM system consists primarily of a Fresnel zone plate (ZP) with an order-selection aperture, a flexure scanning stage, a hemispherical electron analyzer, and sample/ZP insertion system. The flexure stage is used to scan the sample. A hemispherical analyzer with Omni V lens and a 16-channel multichannel detector (MCD) is used to collect photoelectrons. A set of 16 photoelectron images at different kinetic energies can be simultaneously acquired in one single scan. The data acquisition system is designed to collect up to 32 images concurrently, including 16 MCD signals, total electron yield and transmitted photon flux. The design and some initial test results of this SPEM station are presented and discussed.

  15. Performance of the SRRC scanning photoelectron microscope

    International Nuclear Information System (INIS)

    Hong, I.-H.; Lee, T.-H.; Yin, G.-C.; Wei, D.-H.; Juang, J.-M.; Dann, T.-E.; Klauser, R.; Chuang, T.J.; Chen, C.T.; Tsang, K.-L.

    2001-01-01

    A scanning photoelectron microscope has been constructed at SRRC. This SPEM system consists primarily of a Fresnel zone plate (ZP) with an order-selection aperture, a flexure scanning stage, a hemispherical electron analyzer, and sample/ZP insertion system. The flexure stage is used to scan the sample. A hemispherical analyzer with Omni V lens and a 16-channel multichannel detector (MCD) is used to collect photoelectrons. A set of 16 photoelectron images at different kinetic energies can be simultaneously acquired in one single scan. The data acquisition system is designed to collect up to 32 images concurrently, including 16 MCD signals, total electron yield and transmitted photon flux. The design and some initial test results of this SPEM station are presented and discussed

  16. Performance of the SRRC scanning photoelectron microscope

    CERN Document Server

    Hong, I H; Yin, G C; Wei, D H; Juang, J M; Dann, T E; Klauser, R; Chuang, T J; Chen, C T; Tsang, K L

    2001-01-01

    A scanning photoelectron microscope has been constructed at SRRC. This SPEM system consists primarily of a Fresnel zone plate (ZP) with an order-selection aperture, a flexure scanning stage, a hemispherical electron analyzer, and sample/ZP insertion system. The flexure stage is used to scan the sample. A hemispherical analyzer with Omni V lens and a 16-channel multichannel detector (MCD) is used to collect photoelectrons. A set of 16 photoelectron images at different kinetic energies can be simultaneously acquired in one single scan. The data acquisition system is designed to collect up to 32 images concurrently, including 16 MCD signals, total electron yield and transmitted photon flux. The design and some initial test results of this SPEM station are presented and discussed.

  17. Calculated characteristics of multichannel photoelectron multipliers

    International Nuclear Information System (INIS)

    Vasil'chenko, V.G.; Dajkovskij, A.G.; Milova, N.V.; Rakhmatov, V.E.; Rykalin, V.I.

    1990-01-01

    Structural features and main calculated characteristics of some modifications of position-sensitive two-coordinate multichannel photoelectron multipliers (PEM) with plate-type multiplying systems are described. The presented PEM structures are free from direct optical and ion feedbacks, provide coordinate resolution ≅ 1 mm with efficiency of photoelectron detection ≅ 90%. Capabilities for using silicon field-effect photocathodes, providing electron extraction into vacuum, as well as prospects of using multichannel multiplying systems for readout of the data from solid detectors are considered

  18. Polarity of wurtzite crystals by photoelectron diffraction

    Czech Academy of Sciences Publication Activity Database

    Bartoš, Igor; Romanyuk, Olexandr

    2014-01-01

    Roč. 315, OCT (2014), s. 506-509 ISSN 0169-4332 Grant - others:AVČR(CZ) M100101201 Institutional support: RVO:68378271 Keywords : wurtzite semiconductors * surface polarity * X-ray photoelectron diffraction * XPD Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.711, year: 2014 http://www.sciencedirect.com/science/article/pii/S016943321400066X

  19. a near ambient pressure UV photoelectron spectroscopy

    Indian Academy of Sciences (India)

    Manoj Kumar Ghosalya

    2018-03-02

    Mar 2, 2018 ... UV photoelectron spectroscopy (NAP-UPS) investigations. MANOJ KUMAR ... gations led to various models of Ag-O2 interaction to explain its role in the .... charge lamp (for He I and He II excitations) are available as photon ...

  20. Photoelectron spectroscopy of heavy atoms and molecules

    International Nuclear Information System (INIS)

    White, M.G.

    1979-07-01

    The importance of relativistic interactions in the photoionization of heavy atoms and molecules has been investigated by the technique of photoelectron spectroscopy. In particular, experiments are reported which illustrate the effects of the spin-orbit interaction in the neutral ground state, final ionic states and continuum states of the photoionization target

  1. Photoelectron spectroscopy of phosphites and phosphates

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyay, S.; Findley, G.L.; McGlynn, S.P.

    1981-01-01

    The ultraviolet photoelectron spectra (UPS) of trimethyl and triethyl phosphite, trimethyl and triethyl phosphate and four substituted phosphates are presented. Assignments are based on analogies to the UPS of phosphorus trichloride and phosphoryl trichloride and are substantiated by CNDO/2 computations. The mechanisms of P-O (axial) bond formation is discussed.

  2. Conformational effects in photoelectron circular dichroism

    Science.gov (United States)

    Turchini, S.

    2017-12-01

    Photoelectron circular dichroism (PECD) is a novel type of spectroscopy, which presents surprising sensitivity to conformational effects in chiral systems. While classical photoelectron spectroscopy mainly responds to conformational effects in terms of energy level shifts, PECD provides a rich and detailed response to tiny changes in electronic and structural properties by means of the intensity dispersion of the circular dichroism as a function of photoelectron kinetic energy. In this work, the basics of PECD will be outlined, emphasizing the role of interference from the l,l+/- 1 outgoing partial wave of the photoelectron in the PECD transition matrix element, which is responsible for the extreme sensitivity to conformational effects. Examples using molecular systems and interfaces will shed light on the powerful application of PECD to classical conformational effects such as group substitution, isomerism, conformer population and clustering. Moreover, the PECD results will be reported in challenging new fields where conformations play a key role, such as vibrational effects, transient chirality and time- resolved experiments. To date, PECD has mostly been based on synchrotron radiation facilities, but it also has a future as a table-top lab experiment by means of multiphoton ionization. An important application of PECD as an analytical tool will be reported. The aim of this review is to illustrate that in PECD, the presence of conformational effects is essential for understanding a wide range of effects from a new perspective, making it different from classical spectroscopy.

  3. Threshold photoelectron spectroscopy of acetaldehyde and acrolein

    International Nuclear Information System (INIS)

    Yencha, Andrew J.; Siggel-King, Michele R.F.; King, George C.; Malins, Andrew E.R.; Eypper, Marie

    2013-01-01

    Highlights: •High-resolution threshold photoelectron spectrum of acetaldehyde. •High-resolution threshold photoelectron spectrum of acrolein. •High-resolution total photoion yield spectrum of acetaldehyde. •High-resolution total photoion yield spectrum of acrolein. •Determination of vertical ionization potentials in acetaldehyde and acrolein. -- Abstract: High-resolution (6 meV and 12 meV) threshold photoelectron (TPE) spectra of acetaldehyde and acrolein (2-propenal) have been recorded over the valence binding energy region 10–20 eV, employing synchrotron radiation and a penetrating-field electron spectrometer. These TPE spectra are presented here for the first time. All of the band structures observed in the TPE spectra replicate those found in their conventional HeI photoelectron (PE) spectra. However, the relative band intensities are found to be dramatically different in the two types of spectra that are attributed to the different dominant operative formation mechanisms. In addition, some band shapes and their vertical ionization potentials are found to differ in the two types of spectra that are associated with the autoionization of Rydberg states in the two molecules

  4. Photoelectron Spectroscopy in Advanced Placement Chemistry

    Science.gov (United States)

    Benigna, James

    2014-01-01

    Photoelectron spectroscopy (PES) is a new addition to the Advanced Placement (AP) Chemistry curriculum. This article explains the rationale for its inclusion, an overview of how the PES instrument records data, how the data can be analyzed, and how to include PES data in the course. Sample assessment items and analysis are included, as well as…

  5. Photoelectron spectroscopy and the dipole approximation

    Energy Technology Data Exchange (ETDEWEB)

    Hemmers, O.; Hansen, D.L.; Wang, H. [Univ. of Nevada, Las Vegas, NV (United States)] [and others

    1997-04-01

    Photoelectron spectroscopy is a powerful technique because it directly probes, via the measurement of photoelectron kinetic energies, orbital and band structure in valence and core levels in a wide variety of samples. The technique becomes even more powerful when it is performed in an angle-resolved mode, where photoelectrons are distinguished not only by their kinetic energy, but by their direction of emission as well. Determining the probability of electron ejection as a function of angle probes the different quantum-mechanical channels available to a photoemission process, because it is sensitive to phase differences among the channels. As a result, angle-resolved photoemission has been used successfully for many years to provide stringent tests of the understanding of basic physical processes underlying gas-phase and solid-state interactions with radiation. One mainstay in the application of angle-resolved photoelectron spectroscopy is the well-known electric-dipole approximation for photon interactions. In this simplification, all higher-order terms, such as those due to electric-quadrupole and magnetic-dipole interactions, are neglected. As the photon energy increases, however, effects beyond the dipole approximation become important. To best determine the range of validity of the dipole approximation, photoemission measurements on a simple atomic system, neon, where extra-atomic effects cannot play a role, were performed at BL 8.0. The measurements show that deviations from {open_quotes}dipole{close_quotes} expectations in angle-resolved valence photoemission are observable for photon energies down to at least 0.25 keV, and are quite significant at energies around 1 keV. From these results, it is clear that non-dipole angular-distribution effects may need to be considered in any application of angle-resolved photoelectron spectroscopy that uses x-ray photons of energies as low as a few hundred eV.

  6. Classical ultraviolet photoelectron spectroscopy of polymers

    International Nuclear Information System (INIS)

    Salaneck, W.R.

    2009-01-01

    Although X-ray photoelectron spectroscopy of polymers was well established by Clark and coworkers in the 1970s, ultraviolet photoelectron spectroscopy of polymer films, was developed later. Previous to the 1970s, the first attempts to use ultraviolet light on polymer films took the form of appearance potential (valence band edge) measurements. Only some years later could the full valence band region of thin polymer films, including insulating polymers, semiconducting polymers and electrically conducting polymers. The development of what might be termed 'classical ultraviolet photoelectron spectroscopy' of polymer films may be loosely based upon a variety of issues, including adapting thin polymer film technology to ultra high vacuum studies, the widespread use of helium resonance lamps for studies of solid surfaces, the combined advent of practical and sufficient theoretical-computational methods. The advent of, and the use of, easily available synchrotron radiation for multi-photon spectroscopies, nominally in the area of the near UV, is not included in the term 'classical'. At the same time, electrically conducting polymers were discovered, leading to applications of the corresponding semiconducting polymers, which added technologically driven emphasis to this development of ultraviolet photoelectron spectroscopy for polymer materials. This paper traces a limited number of highlights in the evolution of ultraviolet photoelectron spectroscopy of polymers, from the 1970s through to 2008. Also, since this issue is dedicated to Prof. Kazuhiko Seki, who has been a friend and competitor for over two decades, the author relies on some of Prof. Seki's earlier research, unpublished, on who-did-what-first. Prof. Seki's own contributions to the field, however, are discussed in other articles in this issue.

  7. Development of laser Raman and x-ray photoelectron spectroscopic parameters as an additional thermal maturity indicator to the conodont alteration index

    International Nuclear Information System (INIS)

    Marshall, C.P.; Wilson, M.A.

    1999-01-01

    Full text: Laser Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) was applied in an attempt to quantify and elucidate the chemical transformations of the conodont alteration index (CAI) in artificially matured conodonts. Coniform elements of the genus Drepanodus from the Ordovician Emanuel Formation and pectiniform elements of the genus Polygnathus from the Devonian Napier Formation, both from the Canning Basin were used in this investigation. Samples where specifically chosen to study the effects of genus, element morphology, geological age, lithology and depositional environment upon the CAI. The first order Raman spectra (900-1800 cm-1) of both sets of conodonts show three bands. These are assigned to apatite at 965 cm-1, D band (defects present in the structural units and disorder) at 1345 cm-1 and the G band (carbon-carbon in plane stretching vibration or structural ordered carbon) at 1600 cm-1. The Raman spectra recorded for both sample sets, CAI range of 1-7 are characteristic of poorly/ highly disordered carbon within the conodont organic matter. Further more, the D band becomes progressively narrower and more intense the higher the thermal treatment. The G band becomes narrower until CAI 4 and after that has no systematic change apart from the intensity decreasing with temperature. The most noteworthy spectral characteristic in relation to thermal maturity is the clearly defined linear trend of decreasing D band line-width with increasing rank. The carbon 1s photoelectron regions acquired from both sample sets contain three peaks. These peaks are assigned to carbon bonded to sp3 and sp2 hybridized carbon (284.7 eV), alcohol (287.2 eV) and carboxyl (288.3 eV) functional groups. With increasing thermal treatment all the carbon constituents show a linear decrease in abundance. The poorly/ highly disordered carbon shows no progressive ordering with increasing thermal treatment. This is also in agreement with the XPS results, in which the aliphatic

  8. Projection methods for the analysis of molecular-frame photoelectron angular distributions

    International Nuclear Information System (INIS)

    Grum-Grzhimailo, A.N.; Lucchese, R.R.; Liu, X.-J.; Pruemper, G.; Morishita, Y.; Saito, N.; Ueda, K.

    2007-01-01

    A projection method is developed for extracting the nondipole contribution from the molecular frame photoelectron angular distributions of linear molecules. A corresponding convenient parametric form for the angular distributions is derived. The analysis was performed for the N 1s photoionization of the NO molecule a few eV above the ionization threshold. No detectable nondipole contribution was found for the photon energy of 412 eV

  9. X-ray photoelectron spectra of γ-irradiated perfluorobenzene

    International Nuclear Information System (INIS)

    Sunder, S.; Sagert, N.H.; Wood, D.D.; Miller, N.H.

    1990-01-01

    The effect of γ-radiolysis on perfluorobenzene (PFB) was investigated using low-temperature X-ray photoelectron spectroscopy (XPS). PFB was irradiated in fluorine-passivated nickel cells using Co 60 γ-rays in an Atomic Energy of Canada Limited Gammacell at a dose rate of about 2.6 Gy·s -1 and for a total dose of about 50 kGy. The γ-radiolysis of PFB not only results in cross-linkage but also in the formation of saturated carbon centers in the PFB, as indicated by the presence of CF 2 and CF 3 groups. The relative abundance of CF, CF 2 and CF 3 groups, in the irradiated PFB, was estimated to be about 86, 9 and 5%, respectively

  10. Ultraviolet photoelectron spectroscopy of transient species

    International Nuclear Information System (INIS)

    Leeuw, D.M. de.

    1979-01-01

    Transient species are studied in the isolation of the gas phase using ultraviolet photoelectron spectroscopy (PES). A description of the equipment used and a discussion of some theoretical topics, which play a role in the interpretation of PE spectra, are given. Koopmans' theorem, Hartree-Fock-Slater (HFS) calculations and the sum rule are discussed. A versatile ultraviolet PE spectrometer, designed specifically for this purpose, has been built and the construction and performance of this instrument are described. (Auth.)

  11. Anion photoelectron spectroscopy of radicals and clusters

    Energy Technology Data Exchange (ETDEWEB)

    Travis, Taylor R. [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    Anion photoelectron spectroscopy is used to study free radicals and clusters. The low-lying 2Σ and 2π states of C2nH (n = 1--4) have been studied. The anion photoelectron spectra yielded electron affinities, term values, and vibrational frequencies for these combustion and astrophysically relevant species. Photoelectron angular distributions allowed the author to correctly assign the electronic symmetry of the ground and first excited states and to assess the degree of vibronic coupling in C2H and C4H. Other radicals studied include NCN and I3. The author was able to observe the low-lying singlet and triplet states of NCN for the first time. Measurement of the electron affinity of I3 revealed that it has a bound ground state and attachment of an argon atom to this moiety enabled him to resolve the symmetric stretching progression.

  12. Polarization and dipole effects in hard X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Novak, M. [Universite Libre de Bruxelles, Service de Metrologie Nucleaire (CP 165/84), 50 av. F. D. Roosevelt, B-1050 Brussels (Belgium); Pauly, N., E-mail: nipauly@ulb.ac.be [Universite Libre de Bruxelles, Service de Metrologie Nucleaire (CP 165/84), 50 av. F. D. Roosevelt, B-1050 Brussels (Belgium); Dubus, A. [Universite Libre de Bruxelles, Service de Metrologie Nucleaire (CP 165/84), 50 av. F. D. Roosevelt, B-1050 Brussels (Belgium)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer X-rays are unpolarized or linearly polarized. Black-Right-Pointing-Pointer A difference of polarization implies a variation in path travelled by the photoelectrons. Black-Right-Pointing-Pointer We show the influence of the polarization on the partial intensity distributions. Black-Right-Pointing-Pointer We also point out the influence of the dipole approximation. Black-Right-Pointing-Pointer We use Monte Carlo simulations. - Abstract: Hard X-ray photoelectron spectroscopy (HXPS) using X-rays in the 1.5-15 keV energy range generated by synchrotron sources becomes an increasingly important analysis technique due to its potential for bulk sensitive measurements. However, besides their high energy, another characteristic of photons generated by synchrotron sources is their linear polarization while X-rays from Al K{alpha} or Mg K{alpha} for instance are unpolarized. This difference implies a possible variation in total path travelled by the photoelectrons generated by the X-rays inside the medium and consequently a modification of the resulting spectrum shape. We show the influence of the polarization on the partial intensity distributions, namely the number of electrons escaping after n inelastic scattering events, for photoelectron with energies of 0.5, 1, 2, 3, 4 and 5 keV and originating from Si 1s{sub 1/2}, Cu 1s{sub 1/2}, Cu 2p{sub 3/2}, Au 4d{sub 3/2} and Au 4f{sub 7/2} subshells. Moreover, we point out the influence of the dipole approximation leading to an underestimation of the partial intensity distributions due to the neglect of the forward-backward asymmetry of the angular photoelectron distribution.

  13. X-ray Photoelectron Spectroscopy Database (Version 4.1)

    Science.gov (United States)

    SRD 20 X-ray Photoelectron Spectroscopy Database (Version 4.1) (Web, free access)   The NIST XPS Database gives access to energies of many photoelectron and Auger-electron spectral lines. The database contains over 22,000 line positions, chemical shifts, doublet splittings, and energy separations of photoelectron and Auger-electron lines.

  14. The threshold photoelectron spectrum of mercury

    International Nuclear Information System (INIS)

    Rojas, H; Dawber, G; Gulley, N; King, G C; Bowring, N; Ward, R

    2013-01-01

    The threshold photoelectron spectrum of mercury has been recorded over the energy range (10–40 eV) which covers the region from the lowest state of the singly charged ion, 5d 10 6s( 2 S 1/2 ), to the double charged ionic state, 5d 9 ( 2 D 3/2 )6s( 1 D 2 ). Synchrotron radiation has been used in conjunction with the penetrating-field threshold-electron technique to obtain the spectrum with high resolution. The spectrum shows many more features than observed in previous photoemission measurements with many of these assigned to satellite states converging to the double ionization limit. (paper)

  15. Photoelectron holography with improved image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Tomohiro, E-mail: matusita@spring8.or.j [Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun Hyogo 679-5198 (Japan); Matsui, Fumihiko; Daimon, Hiroshi [Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Hayashi, Kouichi [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2010-05-15

    Electron holography is a type of atomic structural analysis, and it has unique features such as element selectivity and the ability to analyze the structure around an impurity in a crystal. In this paper, we introduce the measurement system, electron holograms, a theory for the recording process of an electron hologram, and a theory for the reconstruction algorithm. We describe photoelectron holograms, Auger electron holograms, and the inverse mode of an electron hologram. The reconstruction algorithm, scattering pattern extraction algorithm (SPEA), the SPEA with maximum entropy method (SPEA-MEM), and SPEA-MEM with translational operation are also described.

  16. Photoelectron holography with improved image reconstruction

    International Nuclear Information System (INIS)

    Matsushita, Tomohiro; Matsui, Fumihiko; Daimon, Hiroshi; Hayashi, Kouichi

    2010-01-01

    Electron holography is a type of atomic structural analysis, and it has unique features such as element selectivity and the ability to analyze the structure around an impurity in a crystal. In this paper, we introduce the measurement system, electron holograms, a theory for the recording process of an electron hologram, and a theory for the reconstruction algorithm. We describe photoelectron holograms, Auger electron holograms, and the inverse mode of an electron hologram. The reconstruction algorithm, scattering pattern extraction algorithm (SPEA), the SPEA with maximum entropy method (SPEA-MEM), and SPEA-MEM with translational operation are also described.

  17. X-ray photoelectron spectroscopy study of {beta}-BaB{sub 2}O{sub 4} optical surface

    Energy Technology Data Exchange (ETDEWEB)

    Atuchin, V.V.; Kesler, V.G.; Kokh, A.E.; Pokrovsky, L.D

    2004-02-29

    An X-ray photoelectron spectroscopy (XPS) study has been performed for (0 0 1) BaB{sub 2}O{sub 4}. The crystal surface has been polished mechanically and cleaned by chemical etching. In XPS observation, depth profiling has been produced by sputtering with Ar{sup +} 3 keV ions. Photoelectron binding energies of original element core levels and valence band have been measured as a function of sputtering time. The persistence of binding energies of barium and boron core levels and valence band structure has been found. For O 1 s core level the formation of new spectral components with lower binding energies has been revealed.

  18. Uniqueness plots: A simple graphical tool for identifying poor peak fits in X-ray photoelectron spectroscopy

    Science.gov (United States)

    Singh, Bhupinder; Diwan, Anubhav; Jain, Varun; Herrera-Gomez, Alberto; Terry, Jeff; Linford, Matthew R.

    2016-11-01

    Peak fitting is an essential part of X-ray photoelectron spectroscopy (XPS) narrow scan analysis, and the Literature contains both good and bad examples of peak fitting. A common cause of poor peak fitting is the inclusion of too many fit parameters, often without a sound chemical and/or physical basis for them, and/or the failure to reasonably constrain them. Under these conditions, fit parameters are often correlated, and therefore lacking in statistical meaning. Here we introduce the uniqueness plot as a simple graphical tool for identifying bad peak fits in XPS, i.e., fit parameter correlation. These plots are widely used in spectroscopic ellipsometry. We illustrate uniqueness plots with two data sets: a C 1s narrow scan from ozone-treated carbon nanotube forests and an Si 2p narrow scan from an air-oxidized silicon wafer. For each fit, we consider different numbers of parameters and constraints on them. As expected, the uniqueness plots are parabolic when fewer fit parameters and/or more constraints are applied. However, they fan out and eventually become horizontal lines as more unconstrained parameters are included in the fits. Uniqueness plots are generated by plotting the chi squared (χ2) value for a fit vs. a systematically varied value of a parameter in the fit. The Abbe criterion is also considered as a figure of merit for uniqueness plots in the Supporting Information. We recommend that uniqueness plots be used by XPS practitioners for identifying inappropriate peak fits.

  19. Photoelectron spectroscopy bulk and surface electronic structures

    CERN Document Server

    Suga, Shigemasa

    2014-01-01

    Photoelectron spectroscopy is now becoming more and more required to investigate electronic structures of various solid materials in the bulk, on surfaces as well as at buried interfaces. The energy resolution was much improved in the last decade down to 1 meV in the low photon energy region. Now this technique is available from a few eV up to 10 keV by use of lasers, electron cyclotron resonance lamps in addition to synchrotron radiation and X-ray tubes. High resolution angle resolved photoelectron spectroscopy (ARPES) is now widely applied to band mapping of materials. It attracts a wide attention from both fundamental science and material engineering. Studies of the dynamics of excited states are feasible by time of flight spectroscopy with fully utilizing the pulse structures of synchrotron radiation as well as lasers including the free electron lasers (FEL). Spin resolved studies also made dramatic progress by using higher efficiency spin detectors and two dimensional spin detectors. Polarization depend...

  20. Graphene Membranes for Atmospheric Pressure Photoelectron Spectroscopy.

    Science.gov (United States)

    Weatherup, Robert S; Eren, Baran; Hao, Yibo; Bluhm, Hendrik; Salmeron, Miquel B

    2016-05-05

    Atmospheric pressure X-ray photoelectron spectroscopy (XPS) is demonstrated using single-layer graphene membranes as photoelectron-transparent barriers that sustain pressure differences in excess of 6 orders of magnitude. The graphene serves as a support for catalyst nanoparticles under atmospheric pressure reaction conditions (up to 1.5 bar), where XPS allows the oxidation state of Cu nanoparticles and gas phase species to be simultaneously probed. We thereby observe that the Cu(2+) oxidation state is stable in O2 (1 bar) but is spontaneously reduced under vacuum. We further demonstrate the detection of various gas-phase species (Ar, CO, CO2, N2, O2) in the pressure range 10-1500 mbar including species with low photoionization cross sections (He, H2). Pressure-dependent changes in the apparent binding energies of gas-phase species are observed, attributable to changes in work function of the metal-coated grids supporting the graphene. We expect atmospheric pressure XPS based on this graphene membrane approach to be a valuable tool for studying nanoparticle catalysis.

  1. Photoelectron spectroscopy of supersonic molecular beams

    International Nuclear Information System (INIS)

    Pollard, J.E.; Trevor, D.J.; Lee, Y.T.; Shirley, D.A.

    1981-01-01

    A high-resolution photoelectron spectrometer which uses molecular beam sampling is described. Photons from a rare-gas resonance lamp or UV laser are crossed with the beam from a differentially pumped supersonic nozzle source. The resulting photoelectrons are collected by an electrostatic analyzer of a unique design consisting of a 90 0 spherical sector preanalyzer, a system of lenses, and a 180 0 hemispherical deflector. A multichannel detection system based on dual microchannel plates with a resistive anode position encoder provides an increase in counting efficiency by a factor of 12 over the equivalent single channel detector. The apparatus has demonstrated an instrumental resolution of better than 10 meV FWHM, limited largely by the photon source linewidth. A quadrupole mass spectrometer is used to characterize the composition of the molecular beam. Extensive differential pumping is provided to protect the critical surfaces of the analyzer and mass spectrometer from contamination. Because of the near elimination of Doppler and rotational broadenings, the practical resolution is the highest yet obtained in molecular PES

  2. Inner-shell photoelectron angular distributions from fixed-in-space OCS molecules: comparison between experiment and theory

    Energy Technology Data Exchange (ETDEWEB)

    Golovin, A V [Photon Factory, Institute of Materials Structure Science, Tsukuba 305-0801 (Japan); Institute of Physics, St Petersburg State University, 198504 St Petersburg (Russian Federation); Adachi, J [Photon Factory, Institute of Materials Structure Science, Tsukuba 305-0801 (Japan); Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Motoki, S [Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, (Japan); Takahashi, M [Institute for Molecular Science, Okazaki 444-8585 (Japan); Yagishita, A [Photon Factory, Institute of Materials Structure Science, Tsukuba 305-0801 (Japan); Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2005-10-28

    Photoelectron angular distributions (PADs) for O 1s, C 1s and S 2p{sub 1/2}, 2p{sub 3/2} ionization of OCS molecules have been measured in shape resonance regions. These PAD results are compared with the results for O 1s and C 1s ionization of CO molecules, and multi-scattering X{alpha} (MSX{alpha}) calculations. The mechanism of the PAD formation both for parallel and perpendicular transitions differs very significantly in these molecules and a step from a two-centre potential (CO) to a three-centre potential (OCS) plays a principal role in electron scattering and the formation of the resulting PAD. For parallel transitions, it is found that for the S 2p and O 1s ionization the photoelectrons are emitted preferentially in a hemisphere directed to the ionized S and O atom, respectively. In OCS O 1s ionization, the S-C fragment plays the role of a strong 'scatterer' for photoelectrons, and in the shape resonance region most intensities of the PADs are concentrated on the region directed to the O atom. The MSX{alpha} calculations for perpendicular transitions reproduce the experimental data, but not so well as in the case of parallel transitions. The results of PAD, calculated with different l{sub max} on different atomic centres, reveal the important role of the d (l = 2) partial wave for the S atom in the partial wave decompositions of photoelectron wavefunctions.

  3. Interlaminar and ductile characteristics of carbon fibers-reinforced plastics produced by nanoscaled electroless nickel plating on carbon fiber surfaces.

    Science.gov (United States)

    Park, Soo-Jin; Jang, Yu-Sin; Rhee, Kyong-Yop

    2002-01-15

    In this work, a new method based on nanoscaled Ni-P alloy coating on carbon fiber surfaces is proposed for the improvement of interfacial properties between fibers and epoxy matrix in a composite system. Fiber surfaces and the mechanical interfacial properties of composites were characterized by atomic absorption spectrophotometer (AAS), scanning electron microscopy (SEM), X-ray photoelectron spectrometry (XPS), interlaminar shear strength (ILSS), and impact strength. Experimental results showed that the O(1s)/C(1s) ratio or Ni and P amounts had been increased as the electroless nickel plating proceeded; the ILSS had also been slightly improved. The impact properties were significantly improved in the presence of Ni-P alloy on carbon fiber surfaces, increasing the ductility of the composites. This was probably due to the effect of substituted Ni-P alloy, leading to an increase of the resistance to the deformation and the crack initiation of the epoxy system.

  4. Alkyl-terminated Si(111) surfaces: A high-resolution, core level photoelectron spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Terry, J.; Linford, M.R.; Wigren, C.; Cao, R.; Pianetta, P.; Chidsey, C.E. [Stanford University, Stanford, California 94309 (United States)

    1999-01-01

    The bonding of alkyl monolayers to Si(111) surfaces has been studied with high-resolution core level photoelectron spectroscopy (PES). Two very different wet-chemical methods have been used to prepare the alkyl monolayers: (i) Olefin insertion into the H{endash}Si bond of the H{endash}Si(111) surface, and (ii) replacement of Cl on the Cl{endash}Si(111) surface by an alkyl group from an alkyllithium reagent. In both cases, PES has revealed a C 1s component shifted to lower binding energy and a Si 2p component shifted to higher binding energy. Both components are attributed to the presence of a C{endash}Si bond at the interface. Along with photoelectron diffraction data [Appl. Phys. Lett. {bold 71}, 1056, (1997)], these data are used to show that these two synthetic methods can be used to functionalize the Si(111) surface. {copyright} {ital 1999 American Institute of Physics.}

  5. Angle resolved x-ray photoelectron spectroscopy (ARXPS) analysis of lanthanum oxide for micro-flexography printing

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, S., E-mail: suhaimihas@uthm.edu.my; Yusof, M. S., E-mail: mdsalleh@uthm.edu.my; Maksud, M. I., E-mail: midris1973@gmail.com [Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor (Malaysia); Embong, Z., E-mail: zaidi@uthm.edu.my [Faculty of Science, Technology and Human Development, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor (Malaysia)

    2016-01-22

    Micro-flexography printing was developed in patterning technique from micron to nano scale range to be used for graphic, electronic and bio-medical device on variable substrates. In this work, lanthanum oxide (La{sub 2}O{sub 3}) has been used as a rare earth metal candidate as depositing agent. This metal deposit was embedded on Carbon (C) and Silica (Si) wafer substrate using Magnetron Sputtering technique. The choose of Lanthanum as a target is due to its wide application in producing electronic devices such as thin film battery and printed circuit board. The La{sub 2}O{sub 3} deposited on the surface of Si wafer substrate was then analyzed using Angle Resolve X-Ray Photoelectron Spectroscopy (ARXPS). The position for each synthetic component in the narrow scan of Lanthanum (La) 3d and O 1s are referred to the electron binding energy (eV). The La 3d narrow scan revealed that the oxide species of this particular metal is mainly contributed by La{sub 2}O{sub 3} and La(OH){sub 3}. The information of oxygen species, O{sup 2-} component from O 1s narrow scan indicated that there are four types of species which are contributed from the bulk (O{sup 2−}), two chemisorb component (La{sub 2}O{sub 3}) and La(OH){sub 3} and physisorp component (OH). Here, it is proposed that from the adhesive and surface chemical properties of La, it is suitable as an alternative medium for micro-flexography printing technique in printing multiple fine solid lines at nano scale. Hence, this paper will describe the capability of this particular metal as rare earth metal for use in of micro-flexography printing practice. The review of other parameters contributing to print fine lines will also be described later.

  6. X-ray photoelectron spectroscopy study of pyrolytically coated graphite platforms submitted to simulated electrothermal atomic absorption spectrometry conditions

    International Nuclear Information System (INIS)

    Ruiz, Frine; Benzo, Zully; Quintal, Manuelita; Garaboto, Angel; Albornoz, Alberto; Brito, Joaquin L.

    2006-01-01

    The present work is part of an ongoing project aiming to a better understanding of the mechanisms of atomization on graphite furnace platforms used for electrothermal atomic absorption spectrometry (ETAAS). It reports the study of unused pyrolytic graphite coated platforms of commercial origin, as well as platforms thermally or thermo-chemically treated under simulated ETAAS analysis conditions. X-ray photoelectron spectroscopy (XPS) was employed to study the elements present at the surfaces of the platforms. New, unused platforms showed the presence of molybdenum, of unknown origin, in concentrations up to 1 at.%. Species in two different oxidations states (Mo 6+ and Mo 2+ ) were detected by analyzing the Mo 3d spectral region with high resolution XPS. The analysis of the C 1s region demonstrated the presence of several signals, one of these at 283.3 eV related to the presence of Mo carbide. The O 1s region showed also various peaks, including a signal that can be attributed to the presence of MoO 3 . Some carbon and oxygen signals were consistent with the presence of C=O and C-O- (probably C-OH) groups on the platforms surfaces. Upon thermal treatment up to 2900 deg. C, the intensity of the Mo signal decreased, but peaks due to Mo oxides (Mo 6+ and Mo 5+ ) and carbide (Mo 2+ ) were still apparent. Thermo-chemical treatment with 3 vol.% HCl solutions and heating up to 2900 deg. C resulted in further diminution of the Mo signal, with complete disappearance of Mo carbide species. Depth profiling of unused platforms by Ar + ion etching at increasing time periods demonstrated that, upon removal of several layers of carbonaceous material, the Mo signal disappears suggesting that this contamination is present only at the surface of the pyrolytic graphite platform

  7. Angle resolved x-ray photoelectron spectroscopy (ARXPS) analysis of lanthanum oxide for micro-flexography printing

    Science.gov (United States)

    Hassan, S.; Yusof, M. S.; Embong, Z.; Maksud, M. I.

    2016-01-01

    Micro-flexography printing was developed in patterning technique from micron to nano scale range to be used for graphic, electronic and bio-medical device on variable substrates. In this work, lanthanum oxide (La2O3) has been used as a rare earth metal candidate as depositing agent. This metal deposit was embedded on Carbon (C) and Silica (Si) wafer substrate using Magnetron Sputtering technique. The choose of Lanthanum as a target is due to its wide application in producing electronic devices such as thin film battery and printed circuit board. The La2O3 deposited on the surface of Si wafer substrate was then analyzed using Angle Resolve X-Ray Photoelectron Spectroscopy (ARXPS). The position for each synthetic component in the narrow scan of Lanthanum (La) 3d and O 1s are referred to the electron binding energy (eV). The La 3d narrow scan revealed that the oxide species of this particular metal is mainly contributed by La2O3 and La(OH)3. The information of oxygen species, O2- component from O 1s narrow scan indicated that there are four types of species which are contributed from the bulk (O2-), two chemisorb component (La2O3) and La(OH)3 and physisorp component (OH). Here, it is proposed that from the adhesive and surface chemical properties of La, it is suitable as an alternative medium for micro-flexography printing technique in printing multiple fine solid lines at nano scale. Hence, this paper will describe the capability of this particular metal as rare earth metal for use in of micro-flexography printing practice. The review of other parameters contributing to print fine lines will also be described later.

  8. Atomic photoelectron-spectroscopy studies using synchrotron radiation

    International Nuclear Information System (INIS)

    Kobrin, P.H.

    1983-02-01

    Photoelectron spectroscopy combined with tunable synchrotron radiation has been used to study the photoionization process in several atomic systems. The time structure of the synchrotron radiation source at the Stanford Synchrotron Radiation Laboratory (SSRL) was used to record time-of-flight (TOF) photoelectron spectra of gaseous Cd, Hg, Ne, Ar, Ba, and Mn. The use of two TOF analyzers made possible the measurement of photoelectron angular distributions as well as branching ratios and partial cross sections

  9. Angle-resolved photoelectron spectroscopy of cyclopropane

    Science.gov (United States)

    Keller, P. R.; Taylor, J. W.; Carlson, Thomas A.; Whitley, T. A.; Grimm, F. A.

    1985-10-01

    The angular distribution parameter, β, determined for the valence orbitals (IP < 18 eV) of cyclopropane in the 10-30 eV photon energy range using dispersed polarized synchrotron radiation. The energy dependence of β for photoelectron energies between, 2 and 10 eV above threshold was found to be similar to those found previously for other σ orbitals. The effects of Jahn-Teller splitting on β for the 3e' orbital were found to be small but definitely present. The overall shape and magnitude of the β( hv) curve are, however, sufficiently for the different Jahn-Teller components that, for purposes of orbital assignments using β( hv) curves the shape and magnitude of the curves can be considered associated only with the initial state. Resonance photoionization features at a photon ener of ≈ 18 eV were observed in the 3e' and 3a' 1 orbitals and tentatively assigned to autoionization.

  10. Study of niobium oxidation by photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Durand, C.

    1985-01-01

    The chemical composition of thin oxide layers, grown on clean niobium, in low oxygen pressure, was studied by a surface analysis method: X-ray Photoelectron Spectroscopy. The purpose of this study was to find the best conditions for the building of Nb/Nb oxide/Pb Josephson junctions, and particularly to minimise the interface thickness during the formation of the insulator film (Nb 2 O 5 ) on the metal (Nb). This interface is essentially formed by the monoxide (NbO) and dioxide (NbO 2 ). Nb 3d XPS core level peak positions and area ratios (obtained by the signal decomposition) of the components of the total peak, were used to determine the presence of the different oxidation states II, IV and V, their relative abundance, oxide thicknesses and their depth distribution. All this information was extracted by a special numerical procedure [fr

  11. Imaging photoelectrons formed in strong laser fields

    International Nuclear Information System (INIS)

    Helm, H.; Dyer, M.J.; Saeed, M.; Huestis, D.L.

    1993-01-01

    An instrument capable of characterizing the angular correlation and energy distribution of products from photoionization of single atoms or molecules will be described. An external electric field is used to project individual charged particles generated in multiphoton ionization from the focal volume onto two-dimensional detectors. Digital images are recorded for each laser shot and summed. These images provide a direct view of the angular nodal plants of the photoelectrons and they can be analyzed to represent the spatial and energy distributions in the form of a polar plot, f(E,Θ). We discuss the application of this instrument to short pulse photoionization of rare gases and molecular hydrogen at visible and UV wavelengths at intensities ranging from 10 13 to 10 15 W/cm 2

  12. Photoelectron spectroscopy of surfaces under humid conditions

    International Nuclear Information System (INIS)

    Bluhm, Hendrik

    2010-01-01

    The interaction of water with surfaces plays a major role in many processes in the environment, atmosphere and technology. Weathering of rocks, adhesion between surfaces, and ionic conductance along surfaces are among many phenomena that are governed by the adsorption of molecularly thin water layers under ambient humidities. The properties of these thin water films, in particular their thickness, structure and hydrogen-bonding to the substrate as well as within the water film are up to now not very well understood. Ambient pressure photoelectron spectroscopy (APXPS) is a promising technique for the investigation of the properties of thin water films. In this article we will discuss the basics of APXPS as well as the particular challenges that are posed by investigations in water vapor at Torr pressures. We will also show examples of the application of APXPS to the study of water films on metals and oxides.

  13. A Photoelectron Spectroscopic Study of Di-t-butylphosphazene

    DEFF Research Database (Denmark)

    Elbel, S.; Ellis, A.; Niecke, E.

    1985-01-01

    Gaseous trans-ButPNBut, generated by mild gas-phase thermolysis of its more stable [2 + 1] cyclodimer, has been characterized by field-ionization mass spectrometry and U.V. photoelectron spectroscopy. The photoelectron spectrum has been assigned based on SCC-Xα model calculations for representat......Gaseous trans-ButPNBut, generated by mild gas-phase thermolysis of its more stable [2 + 1] cyclodimer, has been characterized by field-ionization mass spectrometry and U.V. photoelectron spectroscopy. The photoelectron spectrum has been assigned based on SCC-Xα model calculations...

  14. Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Bradforth, S.E.

    1992-11-01

    The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound [yields] bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN[sup [minus

  15. Communication: Remarkable electrophilicity of the oxalic acid monomer: An anion photoelectron spectroscopy and theoretical study

    International Nuclear Information System (INIS)

    Buonaugurio, Angela; Graham, Jacob; Buytendyk, Allyson; Bowen, Kit H.; Ryder, Matthew R.; Gutowski, Maciej; Keolopile, Zibo G.; Haranczyk, Maciej

    2014-01-01

    Our experimental and computational results demonstrate an unusual electrophilicity of oxalic acid, the simplest dicarboxylic acid. The monomer is characterized by an adiabatic electron affinity and electron vertical detachment energy of 0.72 and 1.08 eV (±0.05 eV), respectively. The electrophilicity results primarily from the bonding carbon-carbon interaction in the singly occupied molecular orbital of the anion, but it is further enhanced by intramolecular hydrogen bonds. The well-resolved structure in the photoelectron spectrum is reproduced theoretically, based on Franck-Condon factors for the vibronic anion → neutral transitions

  16. Gluon fragmentation in T(1S) decays

    International Nuclear Information System (INIS)

    Bienlein, J.K.

    1983-05-01

    In T(1S) decays most observables (sphericity, charged multiplicity, photonic energy fraction, inclusive spectra) can be understood assuming that gluons fragment like quarks. New results from LENA use the (axis-independent) Fox-Wolfram moments for the photonic energy deposition. Continuum reactions show 'standard' Field-Feynman fragmentation. T(1S) decays show a significant difference in the photonic energy topology. It is more isotropic than with the Field-Feynman fragmentation scheme. Gluon fragmentation into isoscalar mesons (a la Peterson and Walsh) is excluded. But if one forces the leading particle to be isoscalar, one gets good agreement with the data. (orig.)

  17. Scaling laws for photoelectron holography in the midinfrared wavelength regime

    NARCIS (Netherlands)

    Huismans, Y.; Gijsbertsen, A.; Smolkowska, A S; Jungmann, J H; Rouz??e, A.; Logman, P. S W M; L??pine, F.; Cauchy, C.; Zamith, S; Marchenko, T; Bakker, Joost M.; Berden, G.; Redlich, B; Van Der Meer, A. F G; Ivanov, M Yu; Yan, T. M.; Bauer, D.; Smirnova, O; Vrakking, M. J J

    2012-01-01

    Midinfrared strong-field laser ionization offers the promise of measuring holograms of atoms and molecules, which contain both spatial and temporal information of the ion and the photoelectron with subfemtosecond temporal and angstrom spatial resolution. We report on the scaling of photoelectron

  18. Scaling Laws for Photoelectron Holography in the Midinfrared Wavelength Regime

    NARCIS (Netherlands)

    Huismans, Y.; Gijsbertsen, A.; Smolkowska, A. S.; Jungmann, J. H.; Rouzee, A.; Logman, Pswm; Lepine, F.; Cauchy, C.; Zamith, S.; Marchenko, T.; Bakker, J. M.; G. Berden,; Redlich, B.; van der Meer, A. F. G.; Ivanov, M. Y.; Yan, T. M.; Bauer, D.; Smirnova, O.; Vrakking, M. J. J.

    2012-01-01

    Midinfrared strong-field laser ionization offers the promise of measuring holograms of atoms and molecules, which contain both spatial and temporal information of the ion and the photoelectron with subfemtosecond temporal and angstrom spatial resolution. We report on the scaling of photoelectron

  19. Surface cleaning and preparation in AlGaN/GaN-based HEMT processing as assessed by X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Gonzalez-Posada, Fernando; Bardwell, Jennifer A.; Moisa, Simona; Haffouz, Soufien; Tang, Haipeng; Brana, Alejandro F.; Munoz, Elias

    2007-01-01

    The chemical composition of the AlGaN/GaN surface during typical process steps in transistor fabrication was studied using X-ray photoelectron spectroscopy (XPS). The steps studied included organic solvent cleaning, 1:1 HCl:H 2 O dip, buffered oxide etch dip, oxygen plasma descum and rapid thermal annealing (RTA). The surface composition was calculated after correction for the interference of the Ga Auger lines in the N 1s portion of the spectra. The buffered oxide etched (BOE) surface showed a greater tendency for Al (compared to Ga) to be oxidized in the surface, under a layer of adventitious carbon. Three different treatments were found to yield a combination of low C and O levels in the surface. Both plasma cleaning and RTA were highly effective at reducing the carbon contamination of the surface, but did increase the oxygen levels. The RTA treated surface was found to have low levels of oxygen incorporation to a depth of 2-6 nm

  20. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, I.; Huppert, M.; Wörner, H. J., E-mail: hwoerner@ethz.ch [Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich (Switzerland); Brown, M. A. [Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich (Switzerland); Bokhoven, J. A. van [Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich (Switzerland); Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232 Villigen (Switzerland)

    2015-12-15

    A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectra for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup.

  1. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases

    International Nuclear Information System (INIS)

    Jordan, I.; Huppert, M.; Wörner, H. J.; Brown, M. A.; Bokhoven, J. A. van

    2015-01-01

    A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectra for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup

  2. Photoelectron spectrometer for attosecond spectroscopy of liquids and gases

    Science.gov (United States)

    Jordan, I.; Huppert, M.; Brown, M. A.; van Bokhoven, J. A.; Wörner, H. J.

    2015-12-01

    A new apparatus for attosecond time-resolved photoelectron spectroscopy of liquids and gases is described. It combines a liquid microjet source with a magnetic-bottle photoelectron spectrometer and an actively stabilized attosecond beamline. The photoelectron spectrometer permits venting and pumping of the interaction chamber without affecting the low pressure in the flight tube. This pressure separation has been realized through a sliding skimmer plate, which effectively seals the flight tube in its closed position and functions as a differential pumping stage in its open position. A high-harmonic photon spectrometer, attached to the photoelectron spectrometer, exit port is used to acquire photon spectra for calibration purposes. Attosecond pulse trains have been used to record photoelectron spectra of noble gases, water in the gas and liquid states as well as solvated species. RABBIT scans demonstrate the attosecond resolution of this setup.

  3. Laser photoelectron spectrometry of Sc- and Y-

    International Nuclear Information System (INIS)

    Feigerle, C.S.; Herman, Z.; Lineberger, W.C.

    1981-01-01

    The photoelectron spectra of Sc - and Y - have been obtained in a crossed ion- and laser-beam experiment. Analysis of the Sc - spectrum yields two bound terms of 3d4s 2 4p configuration ( 1 D 0 and 3 D 0 ), with EA(Sc) = 0.189 +- 0.020 eV and an excited-state binding energy of 0.042 +- 0.020 eV. Similarly, the (4d5s 2 5p) 1 D 0 ground state of Y - is bound by 0.308 +- 0.012 eV and a (4d5s 2 5p) 3 D 0 excited term is bound by 0.165 +- 0.025 eV. With the determination of the bound electronic configuration of Sc - as 3d4s 2 4p, the order of filling of electron shells of the first transition series negative ions is found to be 4s 2 ep, 3d4s 2 4p, the order of filling of electron shells of the first transition series negative ions is found to be 4s 2 4p, 3d4s 2 4p, followed by 3dsup(k) 4s 2 (k = 3, 4, ..., 10). (orig.)

  4. Photoelectron spectroscopy of the 6-azauracil anion.

    Science.gov (United States)

    Chen, Jing; Buonaugurio, Angela; Dolgounitcheva, Olga; Zakrzewski, V G; Bowen, Kit H; Ortiz, J V

    2013-02-14

    We report the photoelectron spectrum of the 6-azauracil anion. The spectrum is dominated by a broad band exhibiting a maximum at an electron binding energy (EBE) of 1.2 eV. This spectral pattern is indicative of a valence anion. Our calculations were carried out using ab initio electron propagator and other many-body methods. Comparison of the anion and corresponding neutral of 6-azauracil with those of uracil shows that substituting a nitrogen atom for C-H at the C6 position of uracil gives rise to significant changes in the electronic structure of 6-azauracil versus that of uracil. The adiabatic electron affinity (AEA) of the canonical 6-azauracil tautomer is substantially larger than that of canonical uracil. Among the five tautomeric, 6-azauracil anions studied computationally, the canonical structure was found to be the most stable. The vertical detachment energies (VDE) of the canonical, valence-bound anion of 6-azauracil and its closest "very-rare" tautomer have been calculated. Electron propagator calculations on the canonical anion yield a VDE value that is in close agreement with the experimentally determined VDE value of 1.2 eV. The AEA value of 6-azauracil, assessed at the CCSD(T) level of theory to be 0.5 eV, corresponds with the EBE value of the onset of the experimental spectrum.

  5. Practical scaling law for photoelectron angular distributions

    International Nuclear Information System (INIS)

    Guo Dongsheng; Zhang Jingtao; Xu Zhizhan; Li Xiaofeng; Fu Panming; Freeman, R.R.

    2003-01-01

    A practical scaling law that predicts photoelectron angular distributions (PADs) is derived using angular distribution formulas which explicitly contain spontaneous emission. The scaling law is used to analyze recent PAD measurements in above-threshold ionization, and to predict results of future experiments. Our theoretical and numerical studies show that, in the non-relativistic regime and long-wavelength approximation, the shapes of PADs are determined by only three dimensionless numbers: (1) u p ≡U p /(ℎ/2π)ω, the ponderomotive number (ponderomotive energy in units of laser photon energy); (2) ε b ≡E b /(ℎ/2π)ω, the binding number (atomic binding energy in units of the laser photon energy); (3) j, the absorbed-photon number. The scaling law is shown to be useful in predictions of results from strong-field Kapitza-Dirac effect measurements; specifically, the application of this scaling law to recently reported Kapitza-Dirac diffraction is discussed. Possible experimental tests to verify the scaling law are suggested

  6. Self-organized carbon-rich stripe formation from competitive carbon and aluminium segregation at Fe0.85Al0.15(1 1 0) surfaces

    Science.gov (United States)

    Dai, Zongbei; Borghetti, Patrizia; Mouchaal, Younes; Chenot, Stéphane; David, Pascal; Jupille, Jacques; Cabailh, Gregory; Lazzari, Rémi

    2018-06-01

    By combining Scanning Tunnelling Microscopy, Low Energy Electron Diffraction and X-ray Photoelectron Spectroscopy, it was found that the surface of A2 random alloy Fe0.85Al0.15(1 1 0) is significantly influenced by the segregation of aluminium but also of carbon bulk impurities. Below ∼ 900 K, carbon segregates in the form of self-organized protruding stripes separated by ∼ 5 nm that run along the [ 0 0 1 ] B bulk direction and cover up to 34% of the surface. Their C 1s spectroscopic signature that is dominated by graphitic carbon peaks around 900 K. Above this temperature, the surface carbon concentration decays by redissolution in the bulk, whereas an intense aluminium segregation is observed giving rise to a hexagonal superstructure. The present findings is interpreted by a competitive segregation between the two elements.

  7. Effect of oxide charge trapping on x-ray photoelectron spectroscopy of HfO2/SiO2/Si structures

    International Nuclear Information System (INIS)

    Abe, Yasuhiro; Miyata, Noriyuki; Suzuki, Haruhiko; Kitamura, Koji; Igarashi, Satoru; Nohira, Hiroshi; Ikenaga, Eiji

    2009-01-01

    We examined the effects of interfacial SiO 2 layers and a surface metal layer on the photoelectron spectra of HfO 2 /SiO 2 /Si structures by hard X-ray photoemission spectroscopy with synchrotron radiation as well as conventional X-ray photoelectron spectroscopy (XPS). The Hf 4f and Hf 3d photoelectron peaks broadened and shifted toward a higher binding energy with increasing thickness of the interfacial SiO 2 layer, even though photoelectrons may have been emitted from the HfO 2 layer with the same chemical composition. Thinning the interfacial Si oxide layer to approximately one monolayer and depositing a metal layer on the HfO 2 surface suppressed these phenomena. The O 1s photoelectron spectra revealed marked differences between the metal- and nonmetal-deposited HfO 2 /SiO 2 /Si structures; HfO 2 and SiO 2 components in the O 1s photoelectron spectra for the metal-deposited structures were observed at reasonably separated binding energies, but those for the nonmetal-deposited structures were not separated clearly. From this behavior concerning the effects of interfacial SiO 2 and surface metal layers, we concluded that the Hf 4f, Hf 3d, and O 1s spectra measured from the HfO 2 /SiO 2 /Si structures did not reflect actual chemical bonding states. We consider that potential variations in the HfO 2 film owing to charge trapping strongly affect the measured photoelectron spectra. On the basis of angle-resolved XPS measurements, we propose that positive charges are trapped at the HfO 2 surface and negative charges are trapped inside the HfO 2 layer. (author)

  8. Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions

    Energy Technology Data Exchange (ETDEWEB)

    Bradforth, Stephen Edmund [Univ. of California, Berkeley, CA (United States)

    1992-11-01

    The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound {yields} bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN-, NCO- and NCS-. Transition state photoelectron spectra are presented for the following systems Br + HI, Cl + HI, F + HI, F + CH30H,F + C2H5OH,F + OH and F + H2. A time dependent framework for the simulation and interpretation of the bound → free transition state photoelectron spectra is subsequently developed and applied to the hydrogen transfer reactions Br + HI, F + OH → O(3P, 1D) + HF and F + H2. The theoretical approach for the simulations is a fully quantum-mechanical wave packet propagation on a collinear model reaction potential surface. The connection between the wavepacket time evolution and the photoelectron spectrum is given by the time autocorrelation function. For the benchmark F + H2 system, comparisons with three-dimensional quantum calculations are made.

  9. Bimolecular reaction dynamics from photoelectron spectroscopy of negative ions

    International Nuclear Information System (INIS)

    Bradforth, S.E.

    1992-11-01

    The transition state region of a neutral bimolecular reaction may be experimentally investigated by photoelectron spectroscopy of an appropriate negative ion. The photoelectron spectrum provides information on the spectroscopy and dynamics of the short lived transition state and may be used to develop model potential energy surfaces that are semi-quantitative in this important region. The principles of bound → bound negative ion photoelectron spectroscopy are illustrated by way of an example: a full analysis of the photoelectron bands of CN - , NCO - and NCS - . Transition state photoelectron spectra are presented for the following systems Br + HI, Cl + HI, F + HI, F + CH 3 0H,F + C 2 H 5 OH,F + OH and F + H 2 . A time dependent framework for the simulation and interpretation of the bound → free transition state photoelectron spectra is subsequently developed and applied to the hydrogen transfer reactions Br + HI, F + OH → O( 3 P, 1 D) + HF and F + H 2 . The theoretical approach for the simulations is a fully quantum-mechanical wave packet propagation on a collinear model reaction potential surface. The connection between the wavepacket time evolution and the photoelectron spectrum is given by the time autocorrelation function. For the benchmark F + H 2 system, comparisons with three-dimensional quantum calculations are made

  10. Synchrotron radiation photoelectron spectroscopy study of dextran-coated Fe3O4 magnetic nanoparticles

    International Nuclear Information System (INIS)

    Li Shaoxia; Meng Qiang; Wang Bing; Feng Weiyue; Wang Zhuo; Kui Rexi; Qian Haijie; Wang Jia'o

    2009-01-01

    Dextran-coated Fe 3 O 4 nanoparticles were prepared by untrasonification of Fe 3 O 4 nanoparticles with dextran at 85 degree C in sodium citrate medium. The surface chemical component, structure and bond of uncoated and dextran-coated nanoparticles were measured by synchrotron radiation XPS(X-ray photoelectron spectroscopy). Qualitative and quantitative analysis of C1s and O1s of Fe 3 O 4 and dextran-Fe 3 O 4 showed that the Fe 3 O 4 nanoparticles were successively coated by sodium citrate via Fe-O-C bond, and dextrans, which can be linked with their carboxylate moiety via hydrogen bond. Sodium citrate could enhance the disperse stability of reaction system and hydrophilicity of dextran-Fe 3 O 4 . (authors)

  11. Negative-Ion source for mass selective photodetachment photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Kaesmaier, R.; Baemann, C.; Drechsler, G.; Boesl, U.

    1995-01-01

    We have designed and constructed a negative ion source for mass spectrometry and mass selective photodetachement photoelectron spectroscopy. The characteristics of the source are high anion densities and a large variety of accessible systems. Thus, mass spectra and photoelectron spectra of large unvolatile moelcules (biomolecules), of metal-organic compounds and of molecule water clusters, especially mentioned in this article, have been measured. Combining mass spectrometry, photoelectron spectroscopy (PES) and high resolution ZEKE (zero kinetic energy)-PES (1) should make the apparatus to an ideal diagnostic tool for structural assignment

  12. Increased photoelectron transmission in High-pressure photoelectron spectrometers using “swift acceleration”

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Mårten O.M.; Karlsson, Patrik G. [VG Scienta AB, Box 15120, 750 15 Uppsala (Sweden); Eriksson, Susanna K. [Department of Chemistry-Ångström, Uppsala University, Box 523, 751 20 Uppsala (Sweden); Hahlin, Maria; Siegbahn, Hans; Rensmo, Håkan [Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala (Sweden); Kahk, Juhan M.; Villar-Garcia, Ignacio J.; Payne, David J. [Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ (United Kingdom); Åhlund, John, E-mail: john.ahlund@vgscienta.com [VG Scienta AB, Box 15120, 750 15 Uppsala (Sweden)

    2015-06-11

    A new operation mode of a HPXPS (high-pressure X-ray photoelectron spectroscopy) analyzer is evaluated on a HPXPS system fitted with an Al Kα X-ray source. A variety of metal foil samples (gold, silver and copper) were measured in different sample gas environments (N{sub 2} and H{sub 2}O), and a front aperture diameter of 0.8 mm. The new design concept is based upon “swiftly” accelerating the photoelectrons to kinetic energies of several keV after they pass the analyzer front aperture. Compared to the standard mode, in which the front section between the two first apertures is field-free, this gives a wider angular collection and a lower tendency for electron losses in collisions with gas molecules within the analyzer. With the swift-acceleration mode we attain, depending on the experimental conditions, up to about 3 times higher peak intensities in vacuum and about 10 to 20 times higher peak intensities in the 6–9 mbar regime, depending on kinetic energy. These experimental findings agree well with simulated transmission functions for the analyzer. The new mode of operation enables faster data acquisition than the standard mode of operation, particularly valuable in a home laboratory environment. Further demonstrations of performance are highlighted by measurements of the valence band structure in dye-sensitized solar cell photoelectrodes under a 2 mbar H{sub 2}O atmosphere, a molecularly modified surface of interest in photoelectrochemical devices.

  13. X-ray photoelectron spectroscopy study of CO2 reaction with polycrystalline uranium surface

    International Nuclear Information System (INIS)

    Liu Kezhao; Yu Yong; Zhou Juesheng; Wu Sheng; Wang Xiaolin; Fu Yibei

    1999-10-01

    The adsorption of CO 2 on 'clean' depleted polycrystalline uranium metal surface has been studied by X-ray photoelectron spectroscopy (XPS) at 300 K. The 'clean' surface were prepared by Ar + ion sputtering under ultra-high vacuum (UHV) condition with a base pressure 6.7 x 10 -8 Pa. The result s shows that adsorption of CO 2 on 'clean' uranium metal took place in total dissociation, and leads to the formation of uranium dioxide, uranium carbides and free carbon. The total dissociation of CO 2 produced carbon, oxygen species, CO 2 2- and CO 3 2- species. The diffusion tendency of carbon was much stronger than that of oxygen, and led to form a carbide in oxide-metal interface while the oxygen remained on their surface as an oxide

  14. Assessment of the Quality of Newly Formed Bone around Titanium Alloy Implants by Using X-Ray Photoelectron Spectroscopy

    Directory of Open Access Journals (Sweden)

    Hiroshi Nakada

    2012-01-01

    Full Text Available The aim of this study was to evaluate differences in bones quality between newly formed bone and cortical bone formed around titanium alloy implants by using X-ray photoelectron spectroscopy. As a result of narrow scan measurement at 4 weeks, the newly formed bone of C1s, P2p, O1s, and Ca2p were observed at a different peak range and strength compared with a cortical bone. At 8 weeks, the peak range and strength of newly formed bone were similar to those of cortical bone at C1s, P2p, and Ca2p, but not O1s. The results from this analysis indicate that the peaks and quantities of each element of newly formed bone were similar to those of cortical bone at 8 weeks, suggestive of a strong physicochemical resemblance.

  15. The Electron-Phonon Interaction as Studied by Photoelectron Spectroscopy

    International Nuclear Information System (INIS)

    Lynch, D.W.

    2004-01-01

    With recent advances in energy and angle resolution, the effects of electron-phonon interactions are manifest in many valence-band photoelectron spectra (PES) for states near the Fermi level in metals

  16. Spin analysis of photoelectrons by using synchrotron radiation

    International Nuclear Information System (INIS)

    Yagishita, Akira

    1983-03-01

    This report is the proceedings of a workshop on ''Spin analysis of photoelectrons by using synchrotron radiation'' held at National Laboratory for High Energy Physics on October 21, 1982. The purpose of this workshop was to examine the feasibility of the experiment on the spin analysis of photoelectrons at the photon factory which has started the operation in 1982. The workshop covered the following subjects on the spin analysis of photoelectrons and on the detectors for spin polarization; the experiment and the theory on the spin analysis of photoelectrons emitted from gas and solid, the detectors for measuring the spin polarization of electron beam, the test experiment on a Mott detector, and further problems. The proceedings contain five papers related to the above subjects. (Asami, T.)

  17. X-ray photoelectron spectroscopy of HUPA organic substances: natural and synthetic humic compounds

    International Nuclear Information System (INIS)

    Barre, N.; Mercier-Bion, F.; Reiller, P.

    2004-01-01

    X-ray photoelectron spectroscopy (XPS) results on the characterisation of the HUPA organic materials, i.e. natural humic substances ''GOHY 573'' (fulvic acid FA and humic acid HA) extracted from the Gorleben ground waters, and synthetic humic acids ''M1'' and ''M42'' obtained from a standard melanoidin preparation from FZ Rossendorf, are presented in this paper. XPS investigations were focused on the determination of the chemical environment of the major elements as carbon, nitrogen, oxygen and sulphur, and on the identification of trace metals trapped by these organic compounds. (orig.)

  18. Valence photoelectron spectrum of KBr: Effects of electron correlation

    International Nuclear Information System (INIS)

    Calo, A.; Huttula, M.; Patanen, M.; Aksela, H.; Aksela, S.

    2008-01-01

    The valence photoelectron spectrum has been measured for molecular KBr. Experimental energies of the main and satellite structures have been compared with the results of ab initio calculations based on molecular orbital theory including configuration and multiconfiguration interaction approaches. Comparison between the experimental KBr spectrum and previously reported Kr valence photoelectron spectrum has also been performed in order to find out if electron correlation is of the same importance in the valence ionized state of KBr as in the corresponding state of Kr

  19. Photoelectron Imaging Spectroscopy as a Window to Unexpected Molecules

    Science.gov (United States)

    Blackstone, Christopher C.

    2017-06-01

    Targeting an anion with the formula CH_{3}O_{3} for exploration with photoelectron imaging spectroscopy, we determine its identity to be dihydroxymethanolate, an anion largely absent in the literature, and the conjugate base of the hypothetical species orthoformic acid. Comparing the observed photoelectron spectrum to CCSD-EOM-IP and CCSD-EOM-SF calculations completed in QChem and Franck-Condon overlap simulations in PESCAL, we are able to determine with confidence the connectivity of the atoms in this molecule.

  20. Uniqueness plots: A simple graphical tool for identifying poor peak fits in X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Singh, Bhupinder; Diwan, Anubhav; Jain, Varun; Herrera-Gomez, Alberto; Terry, Jeff; Linford, Matthew R.

    2016-01-01

    Highlights: • Uniqueness plots are introduced as a new tool for identifying poor XPS peak fits. • Uniqueness plots are demonstrated on real XPS data sets. • A horizontal line in a uniqueness plot indicates a poor fit, i.e., fit parameter correlation. • A parabolic shape in a uniqueness plot indicates that a fit may be appropriate. - Abstract: Peak fitting is an essential part of X-ray photoelectron spectroscopy (XPS) narrow scan analysis, and the Literature contains both good and bad examples of peak fitting. A common cause of poor peak fitting is the inclusion of too many fit parameters, often without a sound chemical and/or physical basis for them, and/or the failure to reasonably constrain them. Under these conditions, fit parameters are often correlated, and therefore lacking in statistical meaning. Here we introduce the uniqueness plot as a simple graphical tool for identifying bad peak fits in XPS, i.e., fit parameter correlation. These plots are widely used in spectroscopic ellipsometry. We illustrate uniqueness plots with two data sets: a C 1s narrow scan from ozone-treated carbon nanotube forests and an Si 2p narrow scan from an air-oxidized silicon wafer. For each fit, we consider different numbers of parameters and constraints on them. As expected, the uniqueness plots are parabolic when fewer fit parameters and/or more constraints are applied. However, they fan out and eventually become horizontal lines as more unconstrained parameters are included in the fits. Uniqueness plots are generated by plotting the chi squared (χ 2 ) value for a fit vs. a systematically varied value of a parameter in the fit. The Abbe criterion is also considered as a figure of merit for uniqueness plots in the Supporting Information. We recommend that uniqueness plots be used by XPS practitioners for identifying inappropriate peak fits.

  1. Uniqueness plots: A simple graphical tool for identifying poor peak fits in X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Bhupinder; Diwan, Anubhav; Jain, Varun [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84606 (United States); Herrera-Gomez, Alberto [CINVESTAV-Unidad Queretaro, Queretaro, 76230 (Mexico); Terry, Jeff [Department of Physics, Illinois Institute of Technology, Chicago, IL, 60616 (United States); Linford, Matthew R., E-mail: mrlinford@chem.byu.edu [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84606 (United States)

    2016-11-30

    Highlights: • Uniqueness plots are introduced as a new tool for identifying poor XPS peak fits. • Uniqueness plots are demonstrated on real XPS data sets. • A horizontal line in a uniqueness plot indicates a poor fit, i.e., fit parameter correlation. • A parabolic shape in a uniqueness plot indicates that a fit may be appropriate. - Abstract: Peak fitting is an essential part of X-ray photoelectron spectroscopy (XPS) narrow scan analysis, and the Literature contains both good and bad examples of peak fitting. A common cause of poor peak fitting is the inclusion of too many fit parameters, often without a sound chemical and/or physical basis for them, and/or the failure to reasonably constrain them. Under these conditions, fit parameters are often correlated, and therefore lacking in statistical meaning. Here we introduce the uniqueness plot as a simple graphical tool for identifying bad peak fits in XPS, i.e., fit parameter correlation. These plots are widely used in spectroscopic ellipsometry. We illustrate uniqueness plots with two data sets: a C 1s narrow scan from ozone-treated carbon nanotube forests and an Si 2p narrow scan from an air-oxidized silicon wafer. For each fit, we consider different numbers of parameters and constraints on them. As expected, the uniqueness plots are parabolic when fewer fit parameters and/or more constraints are applied. However, they fan out and eventually become horizontal lines as more unconstrained parameters are included in the fits. Uniqueness plots are generated by plotting the chi squared (χ{sup 2}) value for a fit vs. a systematically varied value of a parameter in the fit. The Abbe criterion is also considered as a figure of merit for uniqueness plots in the Supporting Information. We recommend that uniqueness plots be used by XPS practitioners for identifying inappropriate peak fits.

  2. Full k-space visualization of photoelectron diffraction

    International Nuclear Information System (INIS)

    Denlinger, J.D.; Rotenberg, E.; Kevan, S.D.; Tonner, B.P.

    1997-01-01

    The development of photoelectron holography has promoted the need for larger photoelectron diffraction data sets in order to improve the quality of real-space reconstructed images (by suppressing transformational artifacts and distortions). The two main experimental and theoretical approaches to holography, the transform of angular distribution patterns for a coarse selection of energies or the transform of energy-scanned profiles for several directions, represent two limits to k-space sampling. The high brightness of third-generation soft x-ray synchrotron sources provides the opportunity to rapidly measure large high-density x-ray photoelectron diffraction (XPD) data sets with approximately uniform k-space sampling. In this abstract, the authors present such a photoelectron data set acquired for Cu 3p emission from Cu(001). Cu(001) is one of the most well-studied systems for understanding photoelectron diffraction structure and for testing photoelectron holography methods. Cu(001) was chosen for this study in part due to the relatively inert and unreconstructed clean surface, and it served to calibrate and fine-tune the operation of a new synchrotron beamline, electron spectrometer and sample goniometer. In addition to Cu, similar open-quotes volumeclose quotes XPD data sets have been acquired for bulk and surface core-level emission from W(110), from reconstructed Si(100) and Si(111) surfaces, and from the adsorbate system of c(2x2) Mn/Ni(100)

  3. Tracking ultrafast relaxation dynamics of furan by femtosecond photoelectron imaging

    International Nuclear Information System (INIS)

    Liu, Yuzhu; Knopp, Gregor; Qin, Chaochao; Gerber, Thomas

    2015-01-01

    Graphical abstract: - Highlights: • Relaxation dynamics of furan are tracked by femtosecond photoelectron imaging. • The mechanism for ultrafast formation of α-carbene and β-carbene is proposed. • Ultrafast internal conversion from S 2 to S 1 is observed. • The transient characteristics of the fragment ions are obtained. • Single-color multi-photon ionization dynamics at 800 nm are also studied. - Abstract: Ultrafast internal conversion dynamics of furan has been studied by femtosecond photoelectron imaging (PEI) coupled with photofragmentation (PF) spectroscopy. Photoelectron imaging of single-color multi-photon ionization and two-color pump–probe ionization are obtained and analyzed. Photoelectron bands are assigned to the related states. The time evolution of the photoelectron signal by pump–probe ionization can be well described by a biexponential decay: two rapid relaxation pathways with time constants of ∼15 fs and 85 (±11) fs. The rapid relaxation is ascribed to the ultrafast internal conversion (IC) from the S 2 state to the vibrationally hot S 1 state. The second relaxation process is attributed to the redistributions and depopulation of secondarily populated high vibronic S 1 state and the formation of α-carbene and β-carbene by H immigration. Additionally, the transient characteristics of the fragment ions are also measured and discussed as a complementary understanding

  4. Tracking ultrafast relaxation dynamics of furan by femtosecond photoelectron imaging

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuzhu, E-mail: yuzhu.liu@gmail.com [School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Knopp, Gregor [Paul Scherrer Institute, Villigen 5232 (Switzerland); Qin, Chaochao [Department of Physics, Henan Normal University, Xinxiang 453007 (China); Gerber, Thomas [Paul Scherrer Institute, Villigen 5232 (Switzerland)

    2015-01-13

    Graphical abstract: - Highlights: • Relaxation dynamics of furan are tracked by femtosecond photoelectron imaging. • The mechanism for ultrafast formation of α-carbene and β-carbene is proposed. • Ultrafast internal conversion from S{sub 2} to S{sub 1} is observed. • The transient characteristics of the fragment ions are obtained. • Single-color multi-photon ionization dynamics at 800 nm are also studied. - Abstract: Ultrafast internal conversion dynamics of furan has been studied by femtosecond photoelectron imaging (PEI) coupled with photofragmentation (PF) spectroscopy. Photoelectron imaging of single-color multi-photon ionization and two-color pump–probe ionization are obtained and analyzed. Photoelectron bands are assigned to the related states. The time evolution of the photoelectron signal by pump–probe ionization can be well described by a biexponential decay: two rapid relaxation pathways with time constants of ∼15 fs and 85 (±11) fs. The rapid relaxation is ascribed to the ultrafast internal conversion (IC) from the S{sub 2} state to the vibrationally hot S{sub 1} state. The second relaxation process is attributed to the redistributions and depopulation of secondarily populated high vibronic S{sub 1} state and the formation of α-carbene and β-carbene by H immigration. Additionally, the transient characteristics of the fragment ions are also measured and discussed as a complementary understanding.

  5. Photoelectron wave function in photoionization: plane wave or Coulomb wave?

    Science.gov (United States)

    Gozem, Samer; Gunina, Anastasia O; Ichino, Takatoshi; Osborn, David L; Stanton, John F; Krylov, Anna I

    2015-11-19

    The calculation of absolute total cross sections requires accurate wave functions of the photoelectron and of the initial and final states of the system. The essential information contained in the latter two can be condensed into a Dyson orbital. We employ correlated Dyson orbitals and test approximate treatments of the photoelectron wave function, that is, plane and Coulomb waves, by comparing computed and experimental photoionization and photodetachment spectra. We find that in anions, a plane wave treatment of the photoelectron provides a good description of photodetachment spectra. For photoionization of neutral atoms or molecules with one heavy atom, the photoelectron wave function must be treated as a Coulomb wave to account for the interaction of the photoelectron with the +1 charge of the ionized core. For larger molecules, the best agreement with experiment is often achieved by using a Coulomb wave with a partial (effective) charge smaller than unity. This likely derives from the fact that the effective charge at the centroid of the Dyson orbital, which serves as the origin of the spherical wave expansion, is smaller than the total charge of a polyatomic cation. The results suggest that accurate molecular photoionization cross sections can be computed with a modified central potential model that accounts for the nonspherical charge distribution of the core by adjusting the charge in the center of the expansion.

  6. Analysis of Ti/Mo film by X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Mou Fangming; Tu Bing; Yao Bing; Liu Jinhua; Long Xinggui

    2002-01-01

    Chemical elements and their electronic binding energy on surface of Ti film and bulk are analyzed by X-ray photoelectron spectroscopy (XPS) and Ar + etching. The results show that the surface of specimens is contaminated by carbon and oxygen. Mo on surface of Ti film is from substrate. The XPS spectra of Ti 2p of the etched specimens are fitted on. The results show that Ti chemical states on surface of Ti film are TiO 2 with a content of approaching to 100% and a little Ti. Some TiO 2 will be reduced to low chemical states with the increasing of etching time. The chemical states of Mo on surface of Ti film are MoO 3 and Mo. The content of Mo increases as etching time increasing. Chemical state of carbon on the surface of film is graphite and carbide with binding energy of 288.2-288.9 eV

  7. Reference binding energies of transition metal carbides by core-level x-ray photoelectron spectroscopy free from Ar+ etching artefacts

    Science.gov (United States)

    Greczynski, G.; Primetzhofer, D.; Hultman, L.

    2018-04-01

    We report x-ray photoelectron spectroscopy (XPS) core level binding energies (BE's) for the widely-applicable groups IVb-VIb transition metal carbides (TMCs) TiC, VC, CrC, ZrC, NbC, MoC, HfC, TaC, and WC. Thin film samples are grown in the same deposition system, by dc magnetron co-sputtering from graphite and respective elemental metal targets in Ar atmosphere. To remove surface contaminations resulting from exposure to air during sample transfer from the growth chamber into the XPS system, layers are either (i) Ar+ ion-etched or (ii) UHV-annealed in situ prior to XPS analyses. High resolution XPS spectra reveal that even gentle etching affects the shape of core level signals, as well as BE values, which are systematically offset by 0.2-0.5 eV towards lower BE. These destructive effects of Ar+ ion etch become more pronounced with increasing the metal atom mass due to an increasing carbon-to-metal sputter yield ratio. Systematic analysis reveals that for each row in the periodic table (3d, 4d, and 5d) C 1s BE increases from left to right indicative of a decreased charge transfer from TM to C atoms, hence bond weakening. Moreover, C 1s BE decreases linearly with increasing carbide/metal melting point ratio. Spectra reported here, acquired from a consistent set of samples in the same instrument, should serve as a reference for true deconvolution of complex XPS cases, including multinary carbides, nitrides, and carbonitrides.

  8. X-ray photoelectron spectroscopic study of catalyst based zinc oxide thin films

    International Nuclear Information System (INIS)

    Shinde, S.S.; Rajpure, K.Y.

    2011-01-01

    Research highlights: → The two step approach for quantitative XPS analysis of ZnO films has been reported. → Surface composition and chemical states of F and In/ZnO catalysts have been studied. → The chemical shifts and Auger parameter have been investigated. - Abstract: X-ray photoelectron spectroscopy (XPS) is a powerful tool for surface and interface analysis, providing an elemental composition of surfaces and the local chemical environment of adsorbed species. The surface composition and chemical states of the F/ZnO and In/ZnO catalysts deposited using spray technique have been studied by high resolution and high sensitivity X-ray photoelectron spectroscopy. A hybrid multiline method is proposed for quantitative XPS analysis that combines the first principles approach with the experimental determination of overall response function. The chemical shifts of XPS core lines for Zn (2P 3/2 , F 1s and In 3d) and Auger parameter for zinc (β Zn = 2012.6, 2011.48 eV for F/ZnO and In/ZnO, respectively) have been calculated. The results have been used to determine the bond iconicity (0.55).

  9. Quantitative spectromicroscopy from inelastically scattered photoelectrons in the hard X-ray range

    Energy Technology Data Exchange (ETDEWEB)

    Renault, O., E-mail: olivier.renault@cea.fr; Zborowski, C.; Risterucci, P. [Univ. Grenoble Alpes, F-38000 Grenoble, France and CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Wiemann, C.; Schneider, C. M. [Peter Grünberg Institute (PGI-6) and JARA-FIT, Research Center Jülich, D-52425 Jülich (Germany); Grenet, G. [Institut des Nanotechnologies de Lyon, Ecole Centrale, 69134 Ecully Cedex (France); Tougaard, S. [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M (Denmark)

    2016-07-04

    We demonstrate quantitative, highly bulk-sensitive x-ray photoelectron emission microscopy by analysis of inelastically scattered photoelectrons in the hard X-ray range, enabling elemental depth distribution analysis in deeply buried layers. We show results on patterned structures used in electrical testing of high electron mobility power transistor devices with an epitaxial Al{sub 0.25}Ga{sub 0.75}N channel and a Ti/Al metal contact. From the image series taken over an energy range of up to 120 eV in the Ti 1s loss feature region and over a typical 100 μm field of view, one can accurately retrieve, using background analysis together with an optimized scattering cross-section, the Ti depth distribution from 14 nm up to 25 nm below the surface. The method paves the way to multi-elemental, bulk-sensitive 3D imaging and investigation of phenomena at deeply buried interfaces and microscopic scales by photoemission.

  10. Probing deeper by hard x-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Risterucci, P.; Renault, O., E-mail: olivier.renault@cea.fr; Martinez, E.; Delaye, V. [CEA, LETI, MINATEC Campus, 38054 Grenoble Cedex 09 (France); Detlefs, B. [CEA, LETI, MINATEC Campus, 38054 Grenoble Cedex 09 (France); European Synchrotron Radiation Facility, 6 rue Jules Horowitz, F-38043 Grenoble (France); Zegenhagen, J. [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, F-38043 Grenoble (France); Gaumer, C. [STMicroelectronics, 850 rue Jean Monnet, 38926 Crolles (France); Grenet, G. [Institut des Nanotechnologies de Lyon (INL), UMR CNRS 5270, Ecole Centrale de Lyon, 36, avenue Guy de Collongue 69 134 Ecully Cedex (France); Tougaard, S. [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M (Denmark)

    2014-02-03

    We report an hard x-ray photoelectron spectroscopy method combining high excitation energy (15 keV) and improved modelling of the core-level energy loss features. It provides depth distribution of deeply buried layers with very high sensitivity. We show that a conventional approach relying on intensities of the core-level peaks is unreliable due to intense plasmon losses. We reliably determine the depth distribution of 1 ML La in a high-κ/metal gate stack capped with 50 nm a-Si. The method extends the sensitivity of photoelectron spectroscopy to depths beyond 50 nm.

  11. Interatomic scattering in energy dependent photoelectron spectra of Ar clusters

    Energy Technology Data Exchange (ETDEWEB)

    Patanen, M.; Benkoula, S.; Nicolas, C.; Goel, A. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France); Antonsson, E. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France); Physikalische und Theoretische Chemie Institut für Chemie und Biochemie, Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin (Germany); Neville, J. J. [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France); Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick E3B 6E2 (Canada); Miron, C., E-mail: Catalin.Miron@synchrotron-soleil.fr [Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex (France); Extreme Light Infrastructure - Nuclear Physics (ELI-NP), ‘Horia Hulubei’ National Institute for Physics and Nuclear Engineering, 30 Reactorului Street, RO-077125 Măgurele, Jud. Ilfov (Romania)

    2015-09-28

    Soft X-ray photoelectron spectra of Ar 2p levels of atomic argon and argon clusters are recorded over an extended range of photon energies. The Ar 2p intensity ratios between atomic argon and clusters’ surface and bulk components reveal oscillations similar to photoelectron extended X-ray absorption fine structure signal (PEXAFS). We demonstrate here that this technique allows us to analyze separately the PEXAFS signals from surface and bulk sites of free-standing, neutral clusters, revealing a bond contraction at the surface.

  12. Tautomerism in 5-aminotetrazole investigated by core-level photoelectron spectroscopy and {Delta}SCF calculations

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, R.M., E-mail: ruipinto@fct.unl.pt [CFA, Centro de Fisica Atomica, Departamento de Fisica, Faculdade de Ciencias e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Dias, A.A. [CFA, Centro de Fisica Atomica, Departamento de Fisica, Faculdade de Ciencias e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Coreno, M. [CNR-IMIP, Montelibretti, Rome I-00016 (Italy); Simone, M. de [CNR-IOM, Laboratorio TASC, 34149 Trieste (Italy); Giuliano, B.M. [Departamento de Quimica da Universidade de Coimbra, 3004-535 Coimbra (Portugal); Santos, J.P.; Costa, M.L. [CFA, Centro de Fisica Atomica, Departamento de Fisica, Faculdade de Ciencias e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer High-resolution XPS of 5-aminotetrazole reveals different tautomers. Black-Right-Pointing-Pointer 5ATZ exists mainly in the 2H-form. Black-Right-Pointing-Pointer Results obtained with DSCF are in good agreement with the observed binding energies. - Abstract: The C 1s and N 1s photoelectron spectra of gas-phase 5-aminotetrazole (5ATZ) were recorded using synchrotron radiation, with the aim of evaluating 1H/2H tautomer population ratios. The core-electron binding energies (CEBEs) were estimated from computational results, using the delta self-consistent-field ({Delta}SCF) approach. Simulated spectra were generated using these CEBEs and the results from GAUSSIAN-n (Gn, n = 1, 2 and 3) and Complete Basis Set (CBS-4M and CBS-Q) methods. Results reveal the almost exclusive predominance of the 2H-tautomer, with a 1H/2H ratio of ca. 0.12/0.88, taken from a gross analysis of the XPS C 1s spectrum, recorded at 365 K.

  13. X-ray photoelectron spectroscopy study on Ba1-xEuxTiO3

    International Nuclear Information System (INIS)

    Lu, D.-Y.; Sugano, Mikio; Sun Xiuyun; Su Wenhui

    2005-01-01

    X-ray photoelectron spectroscopy is employed to study inner-shell core-level binding energies Eu 4d, Ti 2p and O 1s, Ba 3d for new single-phase Ba 1-x Eu x TiO 3 (0.1 ≤ x ≤ 0.4) samples prepared by solid state reaction at 4.0 GPa and 1090 deg. C. The peak positions of binding energies determined by linear background subtraction and Gaussian fit are presented. XPS analysis indicates that the mixed-valent Eu 3+ /Eu 2+ ions at A-site and Ti 4+ /Ti 3+ ions at B-site coexisted in the Ba 1-x Eu x TiO 3 powder surface, and the amount of Eu 2+ ions is equal to Eu 3+ ions

  14. Unitary bases for x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Patterson, C.W.; Harter, W.G.; Schneider, W.D.

    1979-01-01

    A Gelfand basis is used to derive the coefficients of fractional parentage (CFP's) used to calculate intensities for x-ray photoelectron spectroscopy of atoms. Using associated Gelfand bases, we show that it is easy to derive the Racah CFP relations between particles and holes

  15. Photoelectron diffraction and holography: Present status and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Fadley, C.S. [California Univ., Davis, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States); Thevuthasan, S. [California Univ., Davis, CA (United States). Dept. of Physics; Kaduwela, A.P. [Lawrence Berkeley Lab., CA (United States)] [and others

    1993-07-01

    Photoelectron diffraction and photoelectron holography, a newly developed variant of it, can provide a rich range of information concerning surface structure. These methods are sensitive to atomic type, chemical state, and spin state. The theoretical prediction of diffraction patterns is also well developed at both the single scattering and multiple scattering levels, and quantitative fits of experiment to theory can lead to structures with accuracies in the {plus_minus}0.03 {Angstrom} range. Direct structural information can also be derived from forward scattering in scanned-angle measurements at higher energies, path length differences contained in scanned-energy data at lower energies, and holographic inversions of data sets spanning some region in angle and energy space. Diffraction can also affect average photoelectron emission depths. Circular dichroism in core-level emission can be fruitfully interpreted in terms of photoelectron diffraction theory, as can measurements with spin-resolved core-spectra, and studies of surface magnetic structures and phase transitions should be possible with these methods. Synchrotron radiation is a key element of fully utilizing these techniques.

  16. Graphene defect formation by extreme ultraviolet generated photoelectrons

    NARCIS (Netherlands)

    Gao, An; Lee, Christopher James; Bijkerk, Frederik

    2014-01-01

    We have studied the effect of photoelectrons on defect formation in graphene during extreme ultraviolet (EUV) irradiation. Assuming the major role of these low energy electrons, we have mimicked the process by using low energy primary electrons. Graphene is irradiated by an electron beam with energy

  17. Photoelectron spectroscopic studies of some transition metals and alloys

    International Nuclear Information System (INIS)

    McLachlan, A.D.

    1974-01-01

    Photoelectron spectra of polycrystalline samples of Cu, Ag and Au at photon energies of 21.22, 40.81 eV and 1487 eV were measured. The corrected 40.81 eV results were compared to theoretical band structure calculations and monochromatized x-ray photoelectron results. Correlation of hitherto unresolved peaks in the 40.81 eV spectra was observed. Comparison of the relative intensities of the spectral d bands and the theoretical calculations revealed discrepancies which were assigned to matrix element modulation effects in the photoelectron emission process. Experimental measurements and theories of the electronic structure of disordered alloy systems were reviewed. The 21.22 eV and 40.81 eV photoelectron spectra of some AgPd and AgAu alloys were measured. The spectra were compared with previous x-ray photon results, and with theoretical calculations based on the Coherent Potential Approximation (CPA) model of disordered alloy systems. The present results were found to give more clearly defined spectral details, with differences in the comparison reflecting the simplifying assumptions of the CPA calculation. (author)

  18. Characterization of Ge-nanocrystal films with photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Bostedt, C.; Buuren, T. van; Willey, T.M.; Nelson, A.J.; Franco, N.; Moeller, T.; Terminello, L.J.

    2003-01-01

    The Ge 3d core-levels of germanium nanocrystal films have been investigated by means of photoelectron spectroscopy. The experiments indicate bulk-like coordinated atoms in the nanocrystals and suggest structured disorder on the nanoparticle surface. The results underline the importance of the surface on the overall electronic structure of this class of nanostructured materials

  19. X-ray and photoelectron spectroscopy of light rare earths

    International Nuclear Information System (INIS)

    Fuggle, J.C.

    1983-01-01

    Core level photoelectron spectroscopy, X-ray absorption spectroscopy, bremsstrahlung isochromat spectroscopy and valence band studies are discussed. Particular emphasis is placed on cerium. Correlation effects, multiplet structure, screening effects and the dynamics of the processes involved are illustrated with selected examples. (Auth.)

  20. Bonding in inorganic compounds: a study by x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Avanzino, S.C.

    1978-10-01

    Core electron binding energies were measured for a variety of inorganic and organometallic compounds using gas-phase X-ray photoelectron spectroscopy (XPS). The atomic charge distributions in these molecules are deduced from the binding energies, often leading to a better understanding of the bonding in these compounds. The XPS spectra of fifteen volatile tin compounds were recorded. The data suggest that the metal d orbitals are not significantly involved in the bonding. The oxygen ls XPS spectra of gaseous CH 3 Mn(CO) 5 , [π-C 5 H 5 Fe(CO) 2 ] 2 , and Co 4 (CO) 12 can be readily resolved into separate peaks due to bridging and terminal carbonyl groups. The C ls spectrum of Fe(CO) 5 consists of a single symmetric peak. The carbonyl ligand core binding energies of transition-metal carbonyl complexes are sensitive to differences in the metal-to-CO ligand bonding. Both C ls and O ls carbonyl binding energies correlate well with average C-O stretching force constants or average C-O stretching frequencies. The metal and carbonyl binding energies in a series of pentacarbonylmanganese complexes LMn(CO) 5 are a good measure of the relative electronegativities of the ligands L. High-quality X-ray photoelectron spectra have been obtained for compounds dissolved in glycerin solutions, and aqueous solutions were converted into glycerin solutions which gave good XRSspectra of the solutes. The technique appears promising as a future analytical application of X-ray photoelectron spectroscopy. The shifts in the binding energies of oxygen, chlorine, and carbon atoms in some isoelectronic isostructural compounds can be explained in terms of simple trends in atomic charges

  1. Surface modification of pyrolyzed carbon fibres by cyclic voltammetry and their characterization with XPS and dye adsorption

    International Nuclear Information System (INIS)

    Georgiou, P.; Walton, J.; Simitzis, J.

    2010-01-01

    Commercial carbon fibres were pyrolyzed up to 1000 deg. C and were then electrochemically treated by cyclic voltammetry in aqueous electrolyte solutions of H 2 SO 4 , in two potential sweep ranges: a narrow region, N, and a wide region, W, avoiding and including water decomposition, respectively. The anodic and cathodic peaks were correlated with oxide formation and their partial reduction, respectively. The nature of oxygen containing groups on the fibre surfaces was determined by XPS. Wide scan spectra and high energy resolution spectra were recorded through the C 1s, O 1s, N 1s and S 2p photoelectron regions. The ability of the fibres to adsorb methylene blue and alizarin yellow dyes from their aqueous solutions indicates the presence of electron acceptor or donor groups on the fibres, respectively. The carbon fibres were classified into two categories. The first includes electrochemically untreated and treated in the N region, and the second those treated in the W region. The high oxygen concentration and effective dye adsorption on the carbon fibres in the second category indicates that their surfaces were effectively modified. The adsorption of dyes on carbon fibres constitutes a complementary method to XPS for an indirect estimation of oxygen and other groups present on the carbon fibre surfaces.

  2. High resolution X-ray photoelectron spectroscopy of styrene oxide adsorption and reaction on Ag(1 1 1)

    Science.gov (United States)

    Piao, H.; Enever, M. C. N.; Adib, K.; Hrbek, J.; Barteau, M. A.

    2004-11-01

    Synchrotron-based X-ray photoelectron spectroscopy (XPS) has been used to investigate the adsorption and reaction of styrene oxide on Ag(1 1 1). When adsorption is carried out at 250 K or above, ring opening of styrene oxide forms a stable surface oxametallacycle intermediate which eventually reacts at 485 K to regenerate styrene oxide. High resolution XPS is capable of distinguishing the oxametallacycle from molecularly adsorbed and condensed styrene oxide on the basis of different C1s peak separations. The observed separations are well accounted for by the results of DFT calculations.

  3. Carbonization

    Energy Technology Data Exchange (ETDEWEB)

    Hennebutte, H G; Goutal, E

    1921-07-04

    Materials such as coal, peat, or schist are subjected to a rising temperature in successive stages in apparatus in which the distillation products are withdrawn at each stage. For example in a three-stage process, the acid products of the first or low-temperature stage are fixed in a suitable reagent, the basic products from a second or higher-temperature stage are absorbed in an acid reagent, hydrocarbons being retained by solvents, while the third are subjected to a pyrogenation process carried out in a closed vessel. Wherein the material is subjected in stages to a rising temperature, the gasified products being withdrawn at each stage, and are prevented as far as possible from mixing with the carbonized products.

  4. Evaluation of residual iron in carbon nanotubes purified by acid treatments

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, E.R., E-mail: eliltonedwards@hotmail.com [Sao Paulo State University - UNESP, Av. Dr. Ariberto Pereira da Cunha, 333, CEP: 12.516-410 CP:20, Guaratingueta, SP (Brazil); Antunes, E.F. [National Institute for Space Research - INPE, Av. dos Astronautas, 1758, CEP: 12.254-97, Sao Jose dos Campos-SP (Brazil); Aeronautical Institute of Technology - ITA, Praca Marechal Eduardo Gomes, 50, CEP: 12.228-900, Sao Jose dos Campos-SP (Brazil); Botelho, E.C. [Sao Paulo State University - UNESP, Av. Dr. Ariberto Pereira da Cunha, 333, CEP: 12.516-410 CP:20, Guaratingueta, SP (Brazil); Baldan, M.R.; Corat, E.J. [National Institute for Space Research - INPE, Av. dos Astronautas, 1758, CEP: 12.254-97, Sao Jose dos Campos-SP (Brazil)

    2011-11-01

    A detailed analysis by X-ray photoelectron spectroscopy was carried out on multi-walled carbon nanotube (MWCNT) surfaces after non-oxidative and oxidative purification treatments in liquid-phase. The MWCNT were produced by pyrolysis of camphor and ferrocene, that provides a high yield but with high iron contamination ({approx}15% wt). The elimination and/or oxidation of iron nanoparticles were monitored by Fe2p and O1s core level. Oxygen-based functional groups attachment was also investigated by C1s fitting. The effectiveness of each treatment in iron removal was evaluated by thermogravimetric analysis (TGA) and atomic absorption spectroscopy (AAS). The integrity of the MWCNT structure was verified by Raman spectroscopy (RS) and transmission electron microscopy (TEM). A purity degree higher than 98% was achieved only with non-oxidative treatments using sonification process.

  5. Molecular photoionisation using synchrotron radiation. Photoelectron photoion coincidence and circular dichroism

    International Nuclear Information System (INIS)

    Garcia-Macias, Gustavo Adolfo

    2002-01-01

    The first ionisation potential of the CF 3 radical has been determined in this work from the appearance potential of the CF 3 + fragment, formed in the photofragmentation of CF 3 Br. In obtaining this value special care has been taken in removing the contributions from second order light and internal energy of the fragmenting parent ion. The resulting ionisation potential was found to be in very good agreement with a number of recent theoretical calculations. The valence photoelectron spectra of three monoterpenes such as limonene, carvone and camphor have been recorded along with their mass spectra taken in coincidence with energy selected photoelectrons, providing information about state selected parent ion fragmentation channels. A new photoelectron spectrometer based on the Alien box design has been studied by ray-tracing simulations. It will include a two dimensional position sensitive detector system consisting in two micro channel plates in a chevron stack and a delay-line anode to encode the impact position. It is currently under construction and it is expected to be commissioned by summer 2002. Continuum molecular scattering calculations have been performed in the optically active carvone. We have looked for circular dichroism in the angular distributions of core and valence photoelectron spectra. The values have been found to be of at least four orders of magnitude bigger than the normal circular dichroism in absorption. Experimental results have been obtained for the circular dichroism in the valence and inner shells of camphor and carvone as a function of photon energy. The experiments were performed in the BESSY II and SACO storage rings in Berlin and Orsay respectively. The core results on camphor show a definite difference between the partial cross-sections of the carbonyl carbon Is orbital when switching the helicity of either the light or the enantiomer. The core results on carvone have yet to be properly analysed and are noisier but the circular

  6. The PhotoElectron Boundary as observed by MAVEN instruments

    Science.gov (United States)

    Garnier, P.; Steckiewicz, M.; Mazelle, C. X.; Xu, S.; Mitchell, D. L.; Holmberg, M.; Halekas, J. S.; Andersson, L.; Brain, D.; Connerney, J. E. P.; Espley, J. R.; Lillis, R. J.; Luhmann, J. G.; Savaud, J. A.; Jakosky, B. M.

    2017-12-01

    Photoelectron peaks in the 20-30 eV energy range are commonly observed in planetary atmospheres (Earth, Mars, Titan...), produced by the intense photoionization from solar 30.4 nm photons. At Mars, these photoelectrons result from the ionization of CO2 and O atmospheric neutrals, and are known to escape the planet down its tail, making them tracers for the atmospheric escape (Frahm et al., 2006). Furthermore, their presence or absence allows us to define the so-called PhotoElectron Boundary (PEB), that separates the sunlit photoelectron-dominated ionosphere from the solar wind controlled environment, as initially observed by the Mars Global Surveyor (MGS) MAG/ER instrument (Mitchell et al. (2000, 2001). We provide here a detailed statistical analysis of the location and properties of the PEB based on the Mars Atmosphere and Volatile Evolution (MAVEN) mission electron and magnetic field data. Our dataset includes 1696 dayside PEB crossings obtained from September 2014 until May 2016 (the observations of escaping photoelectrons in the wake being not included). The PEB appears as mostly sensitive to the solar wind dynamic and crustal magnetic fields pressures, for which a quantitative dependance is derived and compared with two other important boundaries : the bow shock and magnetic pileup boundary. The PEB altitude is highly variable, leading to a variable wake cross section for escape (up to +- 50%), which is important for deriving global escape rates from in situ photoelectron escape rates. The PEB is not always sharp, and is, despite a strong variability, characterized on average by : a magnetic field topology typical for the edge of the Magnetic Pile Up Region above it, more field aligned fluxes above than below, and a clear change of the altitude dependence of both electron fluxes and total density (that appears different from the ionopause). The PEB thus appears as a transition region between two plasma and field configurations which is determined by the

  7. Fine structure of the 1s5f and 1s5g levels of He I

    International Nuclear Information System (INIS)

    Kriescher, Y.; Hilt, O.; Oppen, G. v.

    1994-01-01

    The fine structure of the 1s 5f and 1s 5g levels of He I was measured using microwave spectroscopy. The helium atoms were excited by ion impact, and the eleven allowed 1s 5f 2S+1 F J -1s 5g 2S'+1 G J , transitions near ν∼15 GHz were induced and detected by measuring the 1s 4d-1s 2p or 1s 3d-1s 2p spectral-line intensities of the impact radiation as a function of the microwave frequency. The measured transition frequencies are in accord with theoretical values and, except for one transition frequency, with earlier experimental data. The existing discrepancy between these earlier data and theory could be solved. (orig.)

  8. Photoelectron-spectroscopic and reactivity investigation of thin Pd-Sn films prepared by magnetron sputtering

    International Nuclear Information System (INIS)

    Skala, T.; Veltruska, K.; Sedlacek, L.; Masek, K.; Matolinova, I.; Matolin, V.

    2007-01-01

    We have studied Pd-Sn layers with different composition prepared by magnetron sputtering. Layers were sputtered onto Al 2 O 3 and SiO 2 substrates and studied by X-ray photoelectron spectroscopy (XPS). Spectra confirmed that after vacuum annealing residual oxygen and carbon have been removed and bimetallic bonds have been created. The shift of Pd 3d 5/2 core level to higher binding energy followed by the peak narrowing in dependence on the composition was observed, accompanied by the shift of the Pd 4d in the valence band region, induced by hybridization of Pd-d and Sn-s,p states. Experiments carried out on a gas-flow reactor indicate increasing temperature of the CO oxidation with tin ratio in the alloy

  9. X-ray photoelectron spectroscopy study of radiofrequency-sputtered refractory compound steel interfaces

    Science.gov (United States)

    Wheeler, D. R.; Brainard, W. A.

    1978-01-01

    Radiofrequency sputtering was used to deposit Mo2C, Mo2B5, and MoSi2 coatings on 440C steel substrates. Both sputter etched and preoxidized substrates were used, and the films were deposited with and without a substrate bias of -300 V. The composition of the coatings was measured as a function of depth by X-ray photoelectron spectroscopy combined with argon ion etching. In the interfacial region there was evidence that bias produced a graded interface in Mo2B5 but not in Mo2C. Oxides of iron and of all film constituents except carbon were presented in all cases but the iron oxide concentration was higher and the layer thicker on the preoxidized substrates. The film and iron oxides were mixed in the MoSi2 and Mo2C films but layered in the Mo2B5 film. The presence of mixed oxides correlates with enhanced film adhesion.

  10. Holographic atom imaging from experimental photoelectron angular distribution patterns

    International Nuclear Information System (INIS)

    Terminello, L.J.; Lapiano-Smith, D.A.; Barton, J.J.; Shirley, D.A.

    1993-11-01

    One of the most challenging areas of materials research is the imaging of technologically relevant materials with microscopic and atomic-scale resolution. As part of the development of these methods, near-surface atoms in single crystals were imaged using core-level photoelectron holograms. The angle-dependent electron diffraction patterns that constitute an electron hologram were two-dimensionally transformed to create a three dimensional, real-space image of the neighboring scattering atoms. They have made use of a multiple-wavenumber, phased-summing method to improve the atom imaging capabilities of experimental photoelectron holography using the Cu(001) and Pt(111) prototype systems. These studies are performed to evaluate the potential of holographic atom imaging methods as structural probes of unknown materials

  11. Nanoscale photoelectron ionisation detector based on lanthanum hexaboride

    International Nuclear Information System (INIS)

    Zimmer, C.M.; Kunze, U.; Schubert, J.; Hamann, S.; Doll, T.

    2011-01-01

    A nanoscale ioniser is presented exceeding the limitation of conventional photoionisation detectors. It employs accelerated photoelectrons that allow obtaining molecule specificity by the tuning of ionisation energies. The material lanthanum hexaboride (LaB 6 ) is used as air stable photo cathode. Thin films of that material deposited by pulsed laser deposition (PLD) show quantum efficiency (QE) in the range of 10 -5 which is comparable to laser photo stimulation results. A careful treatment of the material yields reasonable low work functions even after surface reoxidation which opens up the possibility of using ultraviolet light emitting diodes (UV LEDs) in replacement of discharge lamps. Schematic diagram of a photoelectron ionisation detector (PeID) operating by an electron emitter based on the photoelectric effect of lanthanum hexaboride. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Photoelectron spectroscopy via electronic spectroscopy of molecular ions

    International Nuclear Information System (INIS)

    Khan, Z.H.

    1990-01-01

    In this work, a new aspect of the correlation between optical and photoelectron spectra is discussed on the basis of which the first ionization potentials of condensed-ring aromatics can be estimated from certain features in the electronic spectra of their positive ions. Furthermore, it is noticed that the first IP's are very sensitive to molecular size as the latter's inclusion in the regression formulas improves the results considerably. Once the first ionization potential for a molecule is determined, its higher IP's may be computed if the lower-energy electronic bands for its cation are known. This procedure is especially useful for such systems whose uv photoelectron spectra are unknown. (author). 11 refs, 10 figs, 1 tab

  13. Angle-resolved photoelectron spectroscopy of formaldehyde and methanol

    Science.gov (United States)

    Keller, P. R.; Taylor, J. W.; Grimm, F. A.; Carlson, Thomas A.

    1984-10-01

    Angle-resolved photoelectron spectroscopy was employed to obtain the angular distribution parameter, β, for the valence orbitals (IP < 21.1 eV) of formaldehyde and methanol over the 10-30 eV photon energy range using dispersed polarized synchrotron radiation as the excitation source. It was found that the energy dependence of β in the photoelectron energy range between 2 and 10 eV can be related to the molecular-orbital type from which ionization occurs. This generalized energy behavior is discussed with regard to earlier energy-dependence studies on molecules of different orbital character. Evidence is presented for the presence of resonance photoionization phenomena in formaldehyde in agreement with theoretical cross-section calculations.

  14. Recent trends in spin-resolved photoelectron spectroscopy

    Science.gov (United States)

    Okuda, Taichi

    2017-12-01

    Since the discovery of the Rashba effect on crystal surfaces and also the discovery of topological insulators, spin- and angle-resolved photoelectron spectroscopy (SARPES) has become more and more important, as the technique can measure directly the electronic band structure of materials with spin resolution. In the same way that the discovery of high-Tc superconductors promoted the development of high-resolution angle-resolved photoelectron spectroscopy, the discovery of this new class of materials has stimulated the development of new SARPES apparatus with new functions and higher resolution, such as spin vector analysis, ten times higher energy and angular resolution than conventional SARPES, multichannel spin detection, and so on. In addition, the utilization of vacuum ultra violet lasers also opens a pathway to the realization of novel SARPES measurements. In this review, such recent trends in SARPES techniques and measurements will be overviewed.

  15. High-order multiphoton ionization photoelectron spectroscopy of NO

    International Nuclear Information System (INIS)

    Carman, H.S. Jr.; Compton, R.N.

    1987-01-01

    Photoelectron energy angular distributions of NO following three different high-order multiphoton ionization (MPI) schemes have been measured. The 3 + 3 resonantly enhanced multiphoton ionization (REMPI) via the A 2 Σ + (v=O) level yielded a distribution of electron energies corresponding to all accessible vibrational levels (v + =O-6) of the nascent ion. Angular distributions of electrons corresponding to v + =O and v + =3 were significantly different. The 3 + 2 REMPI via the A 2 Σ + (v=1) level produced only one low-energy electron peak (v + =1). Nonresonant MPI at 532 nm yielded a distribution of electron energies corresponding to both four- and five-photon ionization. Prominent peaks in the five-photon photoelectron spectrum (PES) suggest contributions from near-resonant states at the three-photon level. 4 refs., 3 figs

  16. Effect of plasma instability on F region photoelectron distributions

    International Nuclear Information System (INIS)

    Bloomberg, H.W.

    1975-01-01

    Ionospheric suprathermal photoelectrons have relatively large cross sections for selected energies. In particular, electrons with energies of about 2.5 eV strongly excite nitrogen vibrational modes, while metastable states of oxygen are excited at about 5 eV. Thus an energy distribution based on chemical kinetic considerations give rise to a maximum at around 4 eV in the F region below 250 km. However, rocket experiments have shown that the expected peaks in the flux spectrum are relatively weak. This discrepancy is explained by the development of a linear instability leading to a wave-particle interaction. The linear mode is driven by the photoelectrons near the 4-eV maximum in the presence of a magnetic field. The effect is shown to be ineffective at sufficiently low altitudes, where collisionless theory fails. (auth)

  17. Effect of plasma instability on F region photoelectron distributions

    International Nuclear Information System (INIS)

    Bloomberg, H.W.

    1975-01-01

    Ionospheric suprathermal photoelectrons have relatively large cross sections for selected energies. In particular, electrons with energies of about 2.5 eV strongly excite nitrogen vibrational modes, while metastable states of oxygen are excited at about 5 eV. Thus an energy distribution based on chemical kinetic considerations gives rise to a maximum at around 4 eV in the F region below 250 km. However, rocket experiments have shown that the expected peaks in the flux spectrum are relatively weak. This discrepancy is explained by the development of a linear instability leading to a wave-particle interaction. the linear mode is driven by the photoelectrons near the 4-eV maximum in the presence of a magnetic field. The effect is shown to be ineffective at sufficiently low altitudes, where collisionless theory fails

  18. Effect of collisions on photoelectron sheath in a gas

    Science.gov (United States)

    Sodha, Mahendra Singh; Mishra, S. K.

    2016-02-01

    This paper presents a study of the effect of the collision of electrons with atoms/molecules on the structure of a photoelectron sheath. Considering the half Fermi-Dirac distribution of photo-emitted electrons, an expression for the electron density in the sheath has been derived in terms of the electric potential and the structure of the sheath has been investigated by incorporating Poisson's equation in the analysis. The method of successive approximations has been used to solve Poisson's equation with the solution for the electric potential in the case of vacuum, obtained earlier [Sodha and Mishra, Phys. Plasmas 21, 093704 (2014)], being used as the zeroth order solution for the present analysis. The inclusion of collisions influences the photoelectron sheath structure significantly; a reduction in the sheath width with increasing collisions is obtained.

  19. Angular distribution and atomic effects in condensed phase photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Davis, R.F.

    1981-11-01

    A general concept of condensed phase photoelectron spectroscopy is that angular distribution and atomic effects in the photoemission intensity are determined by different mechanisms, the former being determined largely by ordering phenomena such as crystal momentum conservation and photoelectron diffraction while the latter are manifested in the total (angle-integrated) cross section. In this work, the physics of the photoemission process is investigated in several very different experiments to elucidate the mechanisms of, and correlation between, atomic and angular distribution effects. Theoretical models are discussed and the connection betweeen the two effects is clearly established. The remainder of this thesis, which describes experiments utilizing both angle-resolved and angle-integrated photoemission in conjunction with synchrotron radiation in the energy range 6 eV less than or equal to h ν less than or equal to 360 eV and laboratory sources, is divided into three parts

  20. High resolution photoelectron spectroscopy of clusters of Group V elements

    International Nuclear Information System (INIS)

    Wang, Lai-sheng; Niu, B.; Lee, Y.T.; Shirley, D.A.

    1989-07-01

    High resolution HeI (580 angstrom) photoelectron spectra of As 2 , As 4 , and P 4 were obtained with a newly-built high temperature molecular beam source. Vibrational structure was resolved in the photoelectron spectra of the three cluster species. The Jahn-Teller effect is discussed for the 2 E and 2 T 2 states of P 4 + and As 4 + . As a result of the Jahn-Teller effect, the 2 E state splits into two bands, and the 2 T 2 state splits into three bands, in combination with the spin-orbit effect. It was observed that the ν 2 normal vibrational mode was involved in the vibronic interaction of the 2 E state, while both the ν 2 and ν 3 modes were active in the 2 T 2 state. 26 refs., 5 figs., 3 tabs

  1. Molecular photoelectron holography with circularly polarized laser pulses.

    Science.gov (United States)

    Yang, Weifeng; Sheng, Zhihao; Feng, Xingpan; Wu, Miaoli; Chen, Zhangjin; Song, Xiaohong

    2014-02-10

    We investigate the photoelectron momentum distribution of molecular-ion H2+driven by ultrashort intense circularly polarized laser pulses. Both numerical solutions of the time-dependent Schrödinger equation (TDSE) and a quasiclassical model indicate that the photoelectron holography (PH) with circularly polarized pulses can occur in molecule. It is demonstrated that the interference between the direct electron wave and rescattered electron wave from one core to its neighboring core induces the PH. Moreover, the results of the TDSE predict that there is a tilt angle between the interference pattern of the PH and the direction perpendicular to the molecular axis. Furthermore, the tilt angle is sensitively dependent on the wavelength of the driven circularly polarized pulse, which is confirmed by the quasiclassical calculations. The PH induced by circularly polarized laser pulses provides a tool to resolve the electron dynamics and explore the spatial information of molecular structures.

  2. Operation of a Langmuir Probe in a Photoelectron Plasma

    International Nuclear Information System (INIS)

    Dove, Adrienne; Robertson, Scott; Horanyi, Mihaly; Poppe, Andrew; Wang Xu

    2011-01-01

    Dust transport on the lunar surface is likely facilitated by the variable electric fields that are generated by changing plasma conditions. We have developed an experimental apparatus to study lunar photoelectric phenomena and gain a better understanding of the conditions controlling dust transport. As an initial step, Langmuir probe measurements are used to characterize the photoelectron plasma produced above a Zr surface, and these techniques will be extended to CeO 2 and lunar simulant surfaces.

  3. Total reflection X-ray photoelectron spectroscopy: A review

    International Nuclear Information System (INIS)

    Kawai, Jun

    2010-01-01

    Total reflection X-ray photoelectron spectroscopy (TRXPS) is reviewed and all the published papers on TRXPS until the end of 2009 are included. Special emphasis is on the historical development. Applications are also described for each report. The background reduction is the most important effect of total reflection, but interference effect, relation to inelastic mean free path, change of probing depth are also discussed.

  4. Asymmetric photoelectron angular distributions from interfering photoionization processes

    International Nuclear Information System (INIS)

    Yin, Y.; Chen, C.; Elliott, D.S.; Smith, A.V.

    1992-01-01

    We have measured asymmetric photoelectron angular distributions for atomic rubidium. Ionization is induced by a one-photon interaction with 280 nm light and by a two-photon interaction with 560 nm light. Interference between the even- and odd-parity free-electron wave functions allows us to control the direction of maximum electron flux by varying the relative phase of the two laser fields

  5. Recent applications of hard x-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Weiland, Conan; Woicik, Joseph C., E-mail: Joseph.Woicik@NIST.gov [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Rumaiz, Abdul K. [National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973 (United States); Pianetta, Piero [SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2016-05-15

    Recent applications of hard x-ray photoelectron spectroscopy (HAXPES) demonstrate its many capabilities in addition to several of its limitations. Examples are given, including measurement of buried interfaces and materials under in situ or in operando conditions, as well as measurements under x-ray standing-wave and resonant excitation. Physical considerations that differentiate HAXPES from photoemission measurements utilizing soft x-ray and ultraviolet photon sources are also presented.

  6. Characterizing edge and stacking structures of exfoliated graphene by photoelectron diffraction

    International Nuclear Information System (INIS)

    Matsui, Fumihiko; Ishii, Ryo; Matsuda, Hiroyuki; Morita, Makoto; Kitagawa, Satoshi; Koh, Shinji; Daimon, Hiroshi; Matsushita, Tomohiro

    2013-01-01

    The two-dimensional C 1s photoelectron intensity angular distributions (PIADs) and spectra of exfoliated graphene flakes and crystalline graphite were measured using a focused soft X-ray beam. Suitable graphene samples were selected by thickness characterization using Raman spectromicroscopy after transferring mechanically exfoliated graphene flakes onto a 90-nm-thick SiO 2 film. In every PIAD, a Kagomé interference pattern was observed, particularly clearly in the monolayer graphene PIAD. Its origin is the overlap of the diffraction rings formed by an in-plane C-C bond honeycomb lattice. Thus, the crystal orientation of each sample can be determined. In the case of bilayer graphene, PIAD was threefold-symmetric, while those of monolayer graphene and crystalline graphite were sixfold-symmetric. This is due to the stacking structure of bilayer graphene. From comparisons with the multiple scattering PIAD simulation results, the way of layer stacking as well as the termination types in the edge regions of bilayer graphene flakes were determined. Furthermore, two different C 1s core levels corresponding to the top and bottom layers of bilayer graphene were identified. A chemical shift to a higher binding energy by 0.25 eV for the bottom layer was attributed to interfacial interactions. (author)

  7. Investigations into the electronic structure of the high-Tc superconductors by means of photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Dauth, B.H.

    1989-08-01

    The electronic structure of various polycrystalline samples including the new YBaCuO- and BiCaSrCuO- high T c superconductors (HTSC) and related systems is investigated by photoelectron spectroscopy. Additional characterization is performed by conductivity measurements. In particular, the binding energy of the Cu-2p 3/2 - and the O-1s-levels of various HTSC is determined. For the first time the controversial 531 eV oxygen line was shown to be an intrinsic electronic structure effect. Sintered CuO-samples are obtained for the first time. The electronic structure of the sintered CuO turns out to be drastically different with respect to pressed CuO powder. For the first time a crossover resonance from a O-1s- into a Cu-3d-level was observed with synchrotron radiation. This is additional evidence for the strong hybridization between the Cu-3d and the O-2p states. Photoemission spectroscopy shows that the holes in the HTSC's are located at the oxygen p-band. Fe and Al overlayers on the HTSC-samples induce a drastic change in the electronic properties of the interface: apparently oxygen is removed from the HTSC to the overlayer. (orig./BHO)

  8. Time-resolved photoelectron spectrometry of a dephasing process in pyrazine

    International Nuclear Information System (INIS)

    Pavlov, R.L.; Pavlov, L.I.; Delchev, Ya.I.; Pavlova, S.I.

    2001-01-01

    The first femtosecond time-resolved photoelectron imaging (PEI) is presented. The method is characterized by photoionization of NO and further applied to ultrafast dephasing in pyrazine. Intermediate case behaviour in radiationless transition is clearly observed in time-resolved photoelectron kinetic energy distribution. Femtosecond PEI is with much improved efficiency than conventional photoelectron spectroscopies. It is anticipated that the unifield approach of time-resolved photoelectron and photoion imaging opens the possibility of observing photon-induced dynamics in real time

  9. Study of radicals, clusters and transition state species by anion photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, Don Wesley [Univ. of California, Berkeley, CA (United States)

    1994-08-01

    Free radicals, elemental and van der Waals clusters and transition state species for bimolecular chemical reactions are investigated using anion photoelectron spectroscopy. Several low-lying electronic states of ozone have been identified via photoelectron spectroscopy of O3-. A characterization of these states is important to models for atmospheric ozone reaction kinetics. The fluoroformyloxyl radical, FCO2, has been investigated, providing vibrational frequencies and energies for two electronic states. The technique has also been employed to make the first direct observation and characterization of the NNO2 molecule. Several electronic states are observed for this species which is believed to play a role as a reactive intermediate in the N + NO2 reaction. The experimental results for all three of these radicals are supplemented by ab initio investigations of their molecular properties. The clusters investigations include studies of elemental carbon clusters (C2- - C11-), and van der Waals clusters (X-(CO2)n, X = I, Br, Cl; n {le} 13 and I- (N2O)n=1--11). Primarily linear clusters are observed for the smaller carbon clusters, while the spectra of the larger clusters contain contribution from cyclic anion photodetachment. Very interesting ion-solvent interactions are observed in the X-(CO2)n clusters. The transition state regions for several bimolecular chemical reactions have also been investigated by photodetachment of a negative ion precursor possessing a geometry similar to that of the transition state species. These spectra show features which are assigned to motions of the unstable neutral complex existing between reactants and products.

  10. Study of radicals, clusters and transition state species by anion photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Arnold, D.W.

    1994-08-01

    Free radicals, elemental and van der Waals clusters and transition state species for bimolecular chemical reactions are investigated using anion photoelectron spectroscopy. Several low-lying electronic states of ozone have been identified via photoelectron spectroscopy of O 3 - . A characterization of these states is important to models for atmospheric ozone reaction kinetics. The fluoroformyloxyl radical, FCO 2 , has been investigated, providing vibrational frequencies and energies for two electronic states. The technique has also been employed to make the first direct observation and characterization of the NNO 2 molecule. Several electronic states are observed for this species which is believed to play a role as a reactive intermediate in the N + NO 2 reaction. The experimental results for all three of these radicals are supplemented by ab initio investigations of their molecular properties. The clusters investigations include studies of elemental carbon clusters (C 2 - - C 11 - ), and van der Waals clusters (X - (CO 2 ) n , X = I, Br, Cl; n ≤ 13 and I - (N 2 O) n=1--11 ). Primarily linear clusters are observed for the smaller carbon clusters, while the spectra of the larger clusters contain contribution from cyclic anion photodetachment. Very interesting ion-solvent interactions are observed in the X - (CO 2 )n clusters. The transition state regions for several bimolecular chemical reactions have also been investigated by photodetachment of a negative ion precursor possessing a geometry similar to that of the transition state species. These spectra show features which are assigned to motions of the unstable neutral complex existing between reactants and products

  11. Imaging photoelectron photoion coincidence spectroscopy with velocity focusing electron optics

    International Nuclear Information System (INIS)

    Bodi, Andras; Johnson, Melanie; Gerber, Thomas; Gengeliczki, Zsolt; Sztaray, Balint; Baer, Tomas

    2009-01-01

    An imaging photoelectron photoion coincidence spectrometer at the vacuum ultraviolet (VUV) beamline of the Swiss Light Source is presented and a few initial measurements are reported. Monochromatic synchrotron VUV radiation ionizes the cooled or thermal gas-phase sample. Photoelectrons are velocity focused, with better than 1 meV resolution for threshold electrons, and also act as start signal for the ion time-of-flight analysis. The ions are accelerated in a relatively low, 40-80 V cm -1 field, which enables the direct measurement of rate constants in the 10 3 -10 7 s -1 range. All electron and ion events are recorded in a triggerless multiple-start/multiple-stop setup, which makes it possible to carry out coincidence experiments at >100 kHz event frequencies. As examples, the threshold photoelectron spectrum of the argon dimer and the breakdown diagrams for hydrogen atom loss in room temperature methane and the chlorine atom loss in cold chlorobenzene are shown and discussed.

  12. Surface characterization of IM7/5260 composites by x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Ohno, Satomi; Lee, Moon-Hwan; Lin, Kuen Y.; Ohuchi, Fumio S.

    2001-01-01

    Surfaces of high-performance carbon fiber/bismeleimide (BMI) composites (IM7/5260) have been characterized by x-ray photoelectron spectroscopy. An experimental technique to separately examine the chemical natures of the carbon fibers and BMI resin in the composite form was developed. This technique uses a flood gun to establish differential charging conditions on the BMI resin. The binding energies from the BMI resin were shifted by an amount of voltage applied to the flood gun, whereas those from the carbon fibers were uniquely determined due to their electrically conducting nature. By adding external bias voltage to the sample, the binding energies for conducting fibers were further shifted from those of the BMI resin, thereby separating the IM7 phase completely from the BMI phase in the binding energy scale, allowing independent measurement of the chemical changes associated with those peaks. Using this technique, the effects of thermal aging and surface plasma treatment on the IM7/5260 composite were studied

  13. Accurate quasiparticle calculation of x-ray photoelectron spectra of solids.

    Science.gov (United States)

    Aoki, Tsubasa; Ohno, Kaoru

    2018-05-31

    It has been highly desired to provide an accurate and reliable method to calculate core electron binding energies (CEBEs) of crystals and to understand the final state screening effect on a core hole in high resolution x-ray photoelectron spectroscopy (XPS), because the ΔSCF method cannot be simply used for bulk systems. We propose to use the quasiparticle calculation based on many-body perturbation theory for this problem. In this study, CEBEs of band-gapped crystals, silicon, diamond, β-SiC, BN, and AlP, are investigated by means of the GW approximation (GWA) using the full ω integration and compared with the preexisting XPS data. The screening effect on a deep core hole is also investigated in detail by evaluating the relaxation energy (RE) from the core and valence contributions separately. Calculated results show that not only the valence electrons but also the core electrons have an important contribution to the RE, and the GWA have a tendency to underestimate CEBEs due to the excess RE. This underestimation can be improved by introducing the self-screening correction to the GWA. The resulting C1s, B1s, N1s, Si2p, and Al2p CEBEs are in excellent agreement with the experiments within 1 eV absolute error range. The present self-screening corrected GW approach has the capability to achieve the highly accurate prediction of CEBEs without any empirical parameter for band-gapped crystals, and provide a more reliable theoretical approach than the conventional ΔSCF-DFT method.

  14. Accurate quasiparticle calculation of x-ray photoelectron spectra of solids

    Science.gov (United States)

    Aoki, Tsubasa; Ohno, Kaoru

    2018-05-01

    It has been highly desired to provide an accurate and reliable method to calculate core electron binding energies (CEBEs) of crystals and to understand the final state screening effect on a core hole in high resolution x-ray photoelectron spectroscopy (XPS), because the ΔSCF method cannot be simply used for bulk systems. We propose to use the quasiparticle calculation based on many-body perturbation theory for this problem. In this study, CEBEs of band-gapped crystals, silicon, diamond, β-SiC, BN, and AlP, are investigated by means of the GW approximation (GWA) using the full ω integration and compared with the preexisting XPS data. The screening effect on a deep core hole is also investigated in detail by evaluating the relaxation energy (RE) from the core and valence contributions separately. Calculated results show that not only the valence electrons but also the core electrons have an important contribution to the RE, and the GWA have a tendency to underestimate CEBEs due to the excess RE. This underestimation can be improved by introducing the self-screening correction to the GWA. The resulting C1s, B1s, N1s, Si2p, and Al2p CEBEs are in excellent agreement with the experiments within 1 eV absolute error range. The present self-screening corrected GW approach has the capability to achieve the highly accurate prediction of CEBEs without any empirical parameter for band-gapped crystals, and provide a more reliable theoretical approach than the conventional ΔSCF-DFT method.

  15. Study of strontium- and magnesium-doped lanthanum gallate solid electrolyte surface by X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Datta, Pradyot; Majewski, Peter; Aldinger, Fritz

    2008-01-01

    The chemical states of the surface of the oxygen ion conducting solid electrolyte La 0.9 Sr 0.1 Ga 0.85 Mg 0.15 O 3-δ (LSGM 1015) as prepared by solid-state synthesis was analyzed by X-ray photoelectron spectroscopy. It was found that adventitious carbon did not interact with any of the constituent elements of LSGM 1015. Ga and La were found to exist in trivalent states. But, due to ionic bombardment presence of Mg could not be detected in the electrolyte surface

  16. Threshold photoelectron spectroscopy and photoionization total ion yield spectroscopy of simple organic acids, aldehydes, ketones and amines

    International Nuclear Information System (INIS)

    Yencha, Andrew J; Malins, Andrew E R; Siggel-King, Michele R F; Eypper, Marie; King, George C

    2009-01-01

    We have initiated a research program to investigate the ionization behavior of some simple organic molecules containing the carboxyl group (R 2 C=O), where R could be H, OH, NH 2 , or CH 3 or other aliphatic or aromatic carbon groups, using threshold photoelectron spectroscopy and photoionization total ion yield spectroscopy. We report here on the simplest organic acid, formic acid, and two simple aldehydes: acetaldehyde and the simplest unsaturated aldehyde, 2-propenal (acrolein). The objective of this study was to characterize the valence cationic states of these molecules with vibrational structural resolution.

  17. On the wide-energy-range tuning of x-ray photoemission electron microscope optics for the observation of the photoelectrons excited by several keV x-rays

    International Nuclear Information System (INIS)

    Yasufuku, H.; Yoshikawa, H.; Kimura, M.; Vlaicu, A.M.; Kato, M.; Kudo, M.; Fujikata, J.; Fukushima, S.

    2006-01-01

    We have newly developed an x-ray photoemission electron microscope (XPEEM) which uses both soft x-rays and hard x-rays at the undulator beam line BL15XU in the synchrotron radiation (SR) facility SPring-8 to observe various practical materials. In combination with an energy analyzer and high brilliant x-ray source, the detection of high kinetic energy inner-shell photoelectrons is essential for revealing the chemical properties of specimen subsurfaces or buried interfaces, owing to long inelastic mean free path of the high kinetic energy photoelectrons. The most significant result in our design is the new combined electric and magnetic field objective lens in which the magnetic field penetrates up to the sample surface. This allows the measurement with high spatial resolution of both low intensity images of inner-shell photoelectrons with high kinetic energy and high intensity images of secondary electrons. By using the sample bias scan method, we can easily change the focus condition of the objective lens in order to allow the energy filtered imaging with photoelectrons having the kinetic energy in a wide range (1-10 000 eV). By the combination of high brilliant SR x-rays, the new objective lens, and sample bias method, our XPEEM can successfully obtain the microarea x-ray photoelectron spectra and energy filtered XPEEM images of inner-shell photoelectrons, such as Si 1s, without any surface cleaning procedure. The energy filtered XPEEM image using photoelectrons from deep inner shells, Si 1s, was obtained for the first time

  18. Time-resolved photoelectron spectroscopy using synchrotron radiation time structure

    International Nuclear Information System (INIS)

    Bergeard, N.; Silly, M.G.; Chauvet, C.; Guzzo, M.; Ricaud, J.P.; Izquierdo, M.; Sirotti, F.; Krizmancic, D.; Guzzo, M.; Stebel, L.; Pittana, P.; Sergo, R.; Cautero, G.; Dufour, G.; Rochet, F.

    2011-01-01

    Synchrotron radiation time structure is becoming a common tool for studying dynamic properties of materials. The main limitation is often the wide time domain the user would like to access with pump-probe experiments. In order to perform photoelectron spectroscopy experiments over time scales from milliseconds to picoseconds it is mandatory to measure the time at which each measured photoelectron was created. For this reason the usual CCD camera based two-dimensional detection of electron energy analyzers has been replaced by a new delay-line detector adapted to the time structure of the SOLEIL synchrotron radiation source. The new two-dimensional delay-line detector has a time resolution of 5 ns and was installed on a Scienta SES 2002 electron energy analyzer. The first application has been to characterize the time of flight of the photo emitted electrons as a function of their kinetic energy and the selected pass energy. By repeating the experiment as a function of the available pass energy and of the kinetic energy, a complete characterization of the analyzer behaviour in the time domain has been obtained. Even for kinetic energies as low as 10 eV at 2 eV pass energy, the time spread of the detected electrons is lower than 140 ns. These results and the time structure of the SOLEIL filling modes assure the possibility of performing pump-probe photoelectron spectroscopy experiments with the time resolution given by the SOLEIL pulse width, the best performance of the beamline and of the experimental station. (authors)

  19. Polarization of photoelectrons produced from atoms by synchrotron radiation

    International Nuclear Information System (INIS)

    Hughes, V.W.; Lu, D.C.; Huang, K.N.

    1981-01-01

    The polarization of photoelectrons from stoms has proved to be an important tool for studying correlation effects in atoms, as well as relativistic effects such as the spin-orbit interaction. Extensive experimental and theoretical studies have been made of the Fano effect, which is the production of polarized electrons by photoionization of unpolarized atoms by circularly polarized light. The experiments have dealt mostly with alkali atoms and with photon energies slightly above the ionization thresholds. Measurements that could be made to utilize polarized radiation are discussed

  20. Stability and performance studies of the PITZ photoelectron gun

    International Nuclear Information System (INIS)

    Isaev, Igor

    2018-02-01

    The invention of free electron lasers (FELs) opened new opportunities for the investigation of natural phenomena. However, the operation of a FEL requires high energy, high peak current electron beams with very small transverse emittance which causes extreme requirements for the corresponding electron sources. Besides the high beam quality, the electron sources must have very high operational stability and reliability. One of the electron source types which satisfy FEL requirements is a photoelectron gun. Photoelectron guns combine photoemissive electron generation and direct acceleration in a Radio Frequency (RF) cavity. The Photo Injector Test facility at DESY, Zeuthen site (PITZ), was established as a test stand of the electron source for FELs like FLASH and the European XFEL in Hamburg. The studies of the beam emittance at PITZ showed that the gun is able to produce electron beams with emittance even smaller than it is required by XFEL specifications. But the experiments on the emittance revealed discrepancies between expected gun behavior and observation, such as the difference in optimal parameters for the smallest emittance value, asymmetry of the transverse beam profile and the phase spaces. The work performed at PITZ includes preparation of several RF guns for their subsequent operation at FLASH and the European XFEL. RF conditioning of a gun cavity is one of the major steps of the preparation of a high brightness electron source required for modern FELs. A thorough procedure is applied to increase the peak and average RF power in the gun cavity, including an increase of the repetition rate and RF pulse length combined with a gun solenoid current sweep. The main goals of this thesis are: (1) an attempt of deep understanding of physical processes taking place during operation of a photoelectron gun (conditioning process, parameters adjustments); (2) definition of operational problems sources and explanation of the experimentally obtained results in the gun

  1. Recent developments in photoelectron dynamics using synchrotron radiation

    International Nuclear Information System (INIS)

    Carlson, T.A.; Krause, M.O.; Taylor, J.W.; Keller, P.R.; Piancastelli, M.N.; Grimm, F.A.; Whitley, T.A.

    1982-01-01

    Through a collaborative effort of members of the Oak Ridge National Laboratory and Universities of Wisconsin and Tennessee, a comprehensive study of atoms and molecules using angle-resolved photoelectron spectroscopy and synchrotron radiation is underway at the Synchrotron Radiation Center, Stoughton, Wisconsin. Over 50 molecules and atoms have been investigated. These results, coupled with theory, aim at a better understanding of the dynamics of photoionization and of the wave functions that control these processes. In particular, attention is given to the following topics: metal atomic vapors, generalization of molecular orbital types, autoionization, shape resonances, core shell effects, satellite structure, and the Cooper minimum

  2. Time-resolved photoelectron spectroscopy of nitrobenzene and its aldehydes

    Science.gov (United States)

    Schalk, Oliver; Townsend, Dave; Wolf, Thomas J. A.; Holland, David M. P.; Boguslavskiy, Andrey E.; Szöri, Milan; Stolow, Albert

    2018-01-01

    We report the first femtosecond time-resolved photoelectron spectroscopy study of 2-, 3- and 4-nitrobenzaldehyde (NBA) and nitrobenzene (NBE) in the gas phase upon excitation at 200 nm. In 3- and 4-NBA, the dynamics follow fast intersystem crossing within 1-2 picoseconds. In 2-NBA and NBE, the dynamics are faster (∼ 0.5 ps). 2-NBA undergoes hydrogen transfer similar to solution phase dynamics. NBE either releases NO2 in the excited state or converts internally back to the ground state. We discuss why these channels are suppressed in the other nitrobenzaldehydes.

  3. Electronic structure and photoelectron spectra of boron beta-diketonates

    International Nuclear Information System (INIS)

    Borisenko, A.V.; Vovna, V.I.

    1990-01-01

    Photoelectron spectra and data of semiempirical (MNDO, CNDO/2, CNDO/S, INDO) and nonempirical (with STO-3G basis) methods of calculation were obtained to analyse the electronic structure of boron-containing diketonate cycle and the influence of substitution effect (aromatic substituents in particular) on it. The sequence and the character of upper occupied MO were determined; the nature of bond of the fragment X 2 B + and AA was established; charges of six-membered ion and influence of substituents on their values were determined. 13 refs.; 5 figs.; 4 tabs

  4. Geometry Optimization of DC/RF Photoelectron Gun

    CERN Document Server

    Chen Ping; Yu, David

    2005-01-01

    Pre-acceleration of photoelectrons in a pulsed, high voltage, short, dc gap and its subsequent injection into an rf gun is a promising method to improve electron beam emittance in rf accelerators. Simulation work has been performed in order to optimize the geometric shapes of a dc/rf gun and improve electron beam properties. Variations were made on cathode and anode shapes, dc gap distance, and inlet shape of the rf cavity. Simulations showed that significant improvement on the normalized emittance (< 1 mm-mrad), compared to a dc gun with flat cathode, could be obtained after the geometric shapes of the gun were optimized.

  5. Single-photoelectron noise reduction in scintillation detectors

    International Nuclear Information System (INIS)

    Marvin, T.P.

    1995-10-01

    The 1994--95 search at SLAC for mulicharged particles used four 21 x 21 x 130-cm 3 Bicron 408 scintillation counters to detect a signal at the single-photoelectron level. The competing noise requiring minimization was due to a combination of PM tube (8-inch Thorne EMI 9353KA) afterpulsing and ambient radiation-induced scintillator luminescence. A very slow decay (> 30 μs) component was observed and received particular attention. Efforts to reduce the SPE noise included photomultiplier tube base modifications, detector shielding and cooling, signal amplification, and veto procedures

  6. A photoelectron and TPEPICO investigation of the acetone radical cation.

    Science.gov (United States)

    Rennie, Emma E; Boulanger, Anne-Marie; Mayer, Paul M; Holland, David M P; Shaw, David A; Cooper, Louise; Shpinkova, Larisa G

    2006-07-20

    The valence shell photoelectron spectrum, threshold photoelectron spectrum, and threshold photoelectron photoion coincidence (TPEPICO) mass spectra of acetone have been measured using synchrotron radiation. New vibrational progressions have been observed and assigned in the X 2B2 state photoelectron bands of acetone-h6 and acetone-d6, and the influence of resonant autoionization on the threshold electron yield has been investigated. The dissociation thresholds for fragment ions up to 31 eV have been measured and compared to previous values. In addition, kinetic modeling of the threshold region for CH3* and CH4 loss leads to new values of 78 +/- 2 kJ mol(-1) and 75 +/- 2 kJ mol(-1), respectively, for the 0 K activation energies for these two processes. The result for the methyl loss channel is in reasonable agreement with, but slightly lower than, that of 83 +/- 1 kJ mol(-1) derived in a recent TPEPICO study by Fogleman et al. The modeling accounts for both low-energy dissociation channels at two different ion residence times in the mass spectrometer. Moreover, the effects of the ro-vibrational population distribution, the electron transmission efficiency, and the monochromator band-pass are included. The present activation energies yield a Delta(f)H298 for CH3CO+ of 655 +/- 3 kJ mol(-1), which is 4 kJ mol(-1) lower than that reported by Fogleman et al. The present Delta(f)H298 for CH3CO+ can be combined with the Delta(f)H298 for CH2CO (-47.5 +/- 1.6 kJ mol(-1)) and H+ (1530 kJ mol(-1)) to yield a 298 K proton affinity for ketene of 828 +/- 4 kJ mol(-1), in good agreement with the value (825 kJ mol(-1)) calculated at the G2 level of theory. The measured activation energy for CH4 loss leads to a Delta(f)H298 (CH2CO+*) of 873 +/- 3 kJ mol(-1).

  7. Stability and performance studies of the PITZ photoelectron gun

    Energy Technology Data Exchange (ETDEWEB)

    Isaev, Igor

    2018-02-15

    The invention of free electron lasers (FELs) opened new opportunities for the investigation of natural phenomena. However, the operation of a FEL requires high energy, high peak current electron beams with very small transverse emittance which causes extreme requirements for the corresponding electron sources. Besides the high beam quality, the electron sources must have very high operational stability and reliability. One of the electron source types which satisfy FEL requirements is a photoelectron gun. Photoelectron guns combine photoemissive electron generation and direct acceleration in a Radio Frequency (RF) cavity. The Photo Injector Test facility at DESY, Zeuthen site (PITZ), was established as a test stand of the electron source for FELs like FLASH and the European XFEL in Hamburg. The studies of the beam emittance at PITZ showed that the gun is able to produce electron beams with emittance even smaller than it is required by XFEL specifications. But the experiments on the emittance revealed discrepancies between expected gun behavior and observation, such as the difference in optimal parameters for the smallest emittance value, asymmetry of the transverse beam profile and the phase spaces. The work performed at PITZ includes preparation of several RF guns for their subsequent operation at FLASH and the European XFEL. RF conditioning of a gun cavity is one of the major steps of the preparation of a high brightness electron source required for modern FELs. A thorough procedure is applied to increase the peak and average RF power in the gun cavity, including an increase of the repetition rate and RF pulse length combined with a gun solenoid current sweep. The main goals of this thesis are: (1) an attempt of deep understanding of physical processes taking place during operation of a photoelectron gun (conditioning process, parameters adjustments); (2) definition of operational problems sources and explanation of the experimentally obtained results in the gun

  8. Secondary-electron cascade in attosecond photoelectron spectroscopy from metals

    DEFF Research Database (Denmark)

    Baggesen, Jan Conrad; Madsen, Lars Bojer

    2009-01-01

    an analytical model based on an approximate solution to Boltzmann's transport equation to account for the amount and energy distribution of these secondary electrons. Our theory is in good agreement with the electron spectrum found in a recent attosecond streaking experiment. To suppress the background and gain......Attosecond spectroscopy is currently restricted to photon energies around 100 eV. We show that under these conditions, electron-electron scatterings, as the photoelectrons leave the metal, give rise to a tail of secondary electrons with lower energies and hence a significant background. We develop...

  9. Precise analysis of the metal package photomultiplier single photoelectron spectra

    International Nuclear Information System (INIS)

    Chirikov-Zorin, I.E.; Fedorko, I.; Sykora, I.; Tokar, S.; Menzione, A.

    2000-01-01

    A deconvolution method based on a sophisticated photomultiplier response function was used to analyse the compact metal package photomultiplier spectra taken in single photoelectron mode. The spectra taken by Hamamtsu R5600 and R5900 photomultipliers have been analysed. The detailed analysis shows that the method appropriately describes the process of charge multiplication in these photomultipliers in a wide range of working regimes and the deconvoluted parameters are established with about 1% accuracy. The method can be used for a detailed analysis of photomultiplier noise and for calibration purposes

  10. Automation of an X-ray photoelectron spectrometer

    International Nuclear Information System (INIS)

    Ashury, M.R.

    2003-02-01

    The Institute of Solid State Physics of the Vienna University of Technology is established with an X-ray Photoelectron Spectrometer Kratos XSAM 800. In its original state the instrument enables measurements of photoelectron spectra in a semiautomatical mode. After mounting of the specimen an eventual surface cleaning by argon ion sputtering is possible. Next steps are setting of x-ray tube high voltage and current, start energy and energy range of spectrum and time of measurement. Data are obtained by an x-t plotter and evaluations are performed from the registration charts. If necessary, measured spectra have to be digitized by means of a scanner. In the Introduction of this thesis the principle of X-ray photoelectron spectrometry is treated including a number of practical examples. It shows that an automation allows an extension of the performance of the instrument. Details are remote controlled experiments, wider energy ranges with improved energy resolution. Furthermore, the digitized data treatment enables background subtration, determination of line positions and integrated signal strengths, and is the detection of lowlevel of lines (the peak with lowamplitude) possible. A further advantage is the computer assisted documentation and comparison of results from different specimens. After this description of the essential requirements different possible solutions of an automation are discussed. Thus, it is decided to develop a completely new hardware for a perfect control of the spectrometer. A further decision is to be made on the most efficient kind of micro processor. From the considerations follows a completely new control board with a transputer as multi tasking processor. The complete control unit consists of a digital system, an analog system and a power unit. The digital system controls settings and spectra accumulation and includes the transputer board, the pc-link card, the i/o-card and the step scanning control board. The analog system controls the

  11. Accuracy of single photoelectron time spread measurement of fast photomultipliers

    International Nuclear Information System (INIS)

    Leskovar, B.

    1975-01-01

    The accuracy of time spread measurements of fast photomultipliers was investigated, using single photoelectrons. The effect of the finite light pulse width on the measurement accuracy was determined and discussed. Experimental data were obtained on a special measuring system for light pulse widths ranging from 200 psec to 10 nsec, using fast photomultipliers 8850 and C31024 with optimized operating conditions for minimum transit time spread. A modified exponential function expression and curve-fitting parameters are given, which fit closely the experimentally obtained data over a wide dynamic range of light pulse widths. (U.S.)

  12. Electron optics development for photo-electron spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Wannberg, Bjoern [VG Scienta AB, P.O. Box 15120, SE-750 15 Uppsala (Sweden); BW Particle Optics AB, P.O. Box 55, SE-822 22 Alfta (Sweden)], E-mail: bjorn@particleoptics.se

    2009-03-21

    The demand for simultaneous observation of photo-electron distributions in several dimensions has made the hemispherical deflection analyzer (HDA) and the time-of-flight (TOF) analyzer the dominating spectrometer types. Some common limiting factors for resolution and sensitivity are considered. Recent developments of the HDA and its lens system which increase the energy range and angular acceptance are described. The properties of a recently developed angle-resolving TOF system (AR-TOF) are also described. The possibility to avoid integration losses in energy or angular resolution by applying non-linear mappings of the primary data is discussed.

  13. Electron optics development for photo-electron spectrometers

    International Nuclear Information System (INIS)

    Wannberg, Bjoern

    2009-01-01

    The demand for simultaneous observation of photo-electron distributions in several dimensions has made the hemispherical deflection analyzer (HDA) and the time-of-flight (TOF) analyzer the dominating spectrometer types. Some common limiting factors for resolution and sensitivity are considered. Recent developments of the HDA and its lens system which increase the energy range and angular acceptance are described. The properties of a recently developed angle-resolving TOF system (AR-TOF) are also described. The possibility to avoid integration losses in energy or angular resolution by applying non-linear mappings of the primary data is discussed.

  14. GaN polarity determination by photoelectron diffraction

    Czech Academy of Sciences Publication Activity Database

    Romanyuk, Olexandr; Jiříček, Petr; Paskova, T.; Bieloshapka, Igor; Bartoš, Igor

    2013-01-01

    Roč. 103, č. 9 (2013), "091601-1"-"091601-4" ISSN 0003-6951 R&D Projects: GA ČR(CZ) GBP108/12/G108 Grant - others:AV ČR(CZ) M100101201 Institutional support: RVO:68378271 Keywords : GaN * photoelectron diffraction * wurtzite * surface polarity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.515, year: 2013 http://apl.aip.org/resource/1/applab/v103/i9/p091601_s1?isAuthorized=no

  15. Monochromatization of synchrotron radiation for studies in photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Murty, P.S.

    1981-01-01

    Synchrotron radiation provides a tunable photon source which bridges the wavelength gap between HeI and AlKsub(α) radiation sources in photoelectron spectroscopy. The essential component for using synchrotron radiation is a monochromator. Some design features of the monochromators fabricated at Stanford, U.S.A., and Orsay, France, are described. The Stanford monochromator is a silicon crystal monochromator yielding 8 keV X-ray beam and is used with SPEAR storage ring facility, while the Orsay monochromator is a grazing incidence grating monochromator used for UPS studies. (M.G.B.)

  16. Alternative mannosylation method for nanomaterials: application to oxidized debris-free multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Sousa, Marcelo de; Martinez, Diego Stéfani Teodoro; Alves, Oswaldo Luiz

    2016-01-01

    Mannosylation is a method commonly used to deliver nanomaterials to specific organs and tissues via cellular macrophage uptake. In this work, for the first time, we proposed a method that involves the binding of d-mannose to ethylenediamine to form mannosylated ethylenediamine, which is then coupled to oxidized and purified multiwalled carbon nanotubes. The advantage of this approach is that mannosylated ethylenediamine precipitates in methanol, which greatly facilitates the separation of this product in the synthesis process. Carbon nanotubes were oxidized using concentrated H_2SO_4 and HNO_3 by conventional reflux method. However, during this oxidation process, carbon nanotubes generated carboxylated carbonaceous fragments (oxidation debris). These by-products were removed from the oxidized carbon nanotubes to ensure that the functionalization would occur only on the carbon nanotube surface. The coupling of mannosylated ethylenediamine to debris-free carbon nanotubes was accomplished using n-(3-dimethylaminopropyl)-n-ethylcarbodiimide and n-hydroxysuccinimide. Deconvoluted N1s spectra obtained from X-ray photoelectron spectroscopy gave binding energies of 399.8 and 401.7 eV, which we attributed to the amide and amine groups, respectively, of carbon nanotubes functionalized with mannosylated ethylenediamine. Deconvoluted O1s spectra showed a binding energy of 532.4 eV, which we suggest is caused by an overlap in the binding energies of the aliphatic CO groups of d-mannose and the O=C group of the amide bond. The functionalization degree was approximately 3.4 %, according to the thermogravimetric analysis. Scanning electron microscopy demonstrated that an extended carbon nanotube morphology was preserved following the oxidation, purification, and functionalization steps.

  17. Alternative mannosylation method for nanomaterials: application to oxidized debris-free multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Marcelo de, E-mail: marcelosousap2@yahoo.com.br [University of Campinas (Unicamp), Solid State Chemistry Laboratory (LQES) and NanoBioss Laboratory, Institute of Chemistry (Brazil); Martinez, Diego Stéfani Teodoro, E-mail: diego.martinez@lnnano.cnpem.br [Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Nanotechnology National Laboratory (LNNano) (Brazil); Alves, Oswaldo Luiz, E-mail: oalves@iqm.unicamp.br [University of Campinas (Unicamp), Solid State Chemistry Laboratory (LQES) and NanoBioss Laboratory, Institute of Chemistry (Brazil)

    2016-06-15

    Mannosylation is a method commonly used to deliver nanomaterials to specific organs and tissues via cellular macrophage uptake. In this work, for the first time, we proposed a method that involves the binding of d-mannose to ethylenediamine to form mannosylated ethylenediamine, which is then coupled to oxidized and purified multiwalled carbon nanotubes. The advantage of this approach is that mannosylated ethylenediamine precipitates in methanol, which greatly facilitates the separation of this product in the synthesis process. Carbon nanotubes were oxidized using concentrated H{sub 2}SO{sub 4} and HNO{sub 3} by conventional reflux method. However, during this oxidation process, carbon nanotubes generated carboxylated carbonaceous fragments (oxidation debris). These by-products were removed from the oxidized carbon nanotubes to ensure that the functionalization would occur only on the carbon nanotube surface. The coupling of mannosylated ethylenediamine to debris-free carbon nanotubes was accomplished using n-(3-dimethylaminopropyl)-n-ethylcarbodiimide and n-hydroxysuccinimide. Deconvoluted N1s spectra obtained from X-ray photoelectron spectroscopy gave binding energies of 399.8 and 401.7 eV, which we attributed to the amide and amine groups, respectively, of carbon nanotubes functionalized with mannosylated ethylenediamine. Deconvoluted O1s spectra showed a binding energy of 532.4 eV, which we suggest is caused by an overlap in the binding energies of the aliphatic CO groups of d-mannose and the O=C group of the amide bond. The functionalization degree was approximately 3.4 %, according to the thermogravimetric analysis. Scanning electron microscopy demonstrated that an extended carbon nanotube morphology was preserved following the oxidation, purification, and functionalization steps.

  18. Analysis of the laser photoelectron spectrum of CH-2

    International Nuclear Information System (INIS)

    Bunker, P.R.; Sears, T.J.

    1985-01-01

    We have simulated the photoelectron spectrum of CH - 2 using the model described previously [Sears and Bunker, J. Chem. Phys. 79, 5265 (1983)]. The optimization of the fit of the simulated spectrum to the recently observed spectrum of Lineberger and co-workers [J. Chem. Phys. 81, 1048 (1984) and preceding paper] has enabled us to determine the rotation-bending energy levels of triplet CH 2 over an energy range of more than 1 eV. It has also enabled us to determine that the rotational temperature of the CH - 2 in the experiment is 220 K and that, for v 2 = 1, the vibrational temperature is 680 K. For CH - 2 we determine that a/sub e/ = 103 0 and that ν 2 = 1230 cm -1 . The singlet--triplet splitting in methylene is determined to be 3150 +- 30 cm -1 (0.3905 +- 0.004 eV, 9.01 +- 0.09 kcal/mol) from the photoelectron spectrum, in excellent agreement with the more accurate value previously obtained from LMR spectroscopy [McKellar et al., J. Chem. Phys. 79, 5251 (1983)] of 3165 +- 20 cm -1 (0.3924 +- 0.0025 eV, 9.05 +- 0.06 kcal/mol), and the electron affinity of triplet CH 2 is determined to be 0.652 +- 0.006 eV

  19. Interpretation of intensities in electron-momentum and photoelectron spectroscopies

    International Nuclear Information System (INIS)

    McCarthy, I.E.

    1984-06-01

    Relative intensities for the photoelectron reaction on atoms and molecules are not related to structure calculations in the same way as those for the noncoplanar symmetric (e,2e) reaction. The photoelectron dipole matrix element is dependent on recoil momentum only through its unique relationship to the photon energy and is much harder to calculate for chemically-interesting momenta. Relative intensities for binary (e,2e) reactions are independent of total energy at high enough energies and strongly dependent on symmetry and recoil momentum, for which an intensity profile can be measured for values starting at zero. In comparing with structure calculations, binary (e,2e) intensities for low recoil momentum may be compared directly with pole strengths in calculations of the one-electron Green's function or corresponding configuration-interaction calculations. In the case of states within a single symmetry manifold the relative intensities will be independent of recoil momentum up to some maximum, usually at least a few atomic units

  20. Photoelectron diffraction of magnetic ultrathin films: Fe/Cu(001)

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, J.G. (Lawrence Livermore National Lab., CA (USA)); Wagner, M.K. (Wisconsin Univ., Madison, WI (USA). Dept. of Chemistry); Guo, X.Q.; Tong, S.Y. (Wisconsin Univ., Milwaukee, WI (USA). Dept. of Physics)

    1991-01-03

    The preliminary results of an ongoing investigation of Fe/Cu(001) are presented here. Energy dependent photoelectron diffraction, including the spin-dependent variant using the multiplet split Fe3s state, is being used to investigate the nanoscale structures formed by near-monolayer deposits of Fe onto Cu(001). Core-level photoemission from the Fe3p and Fe3s states has been generated using synchrotron radiation as the tunable excitation source. Tentatively, a comparison of the experimental Fe3p cross section measurements with multiple scattering calculations indicates that the Fe is in a fourfold hollow site with a spacing of 3.6{Angstrom} between it and the atom directly beneath it, in the third layer. This is consistent with an FCC structure. The possibility of utilizing spin-dependent photoelectron diffraction to investigate magnetic ultrathin films will be demonstrated, using our preliminary spectra of the multiplet-split Fe3s os near-monolayer Fe/Cu(001). 18 refs., 10 figs.

  1. Photoelectron spectroscopy and Auger electron spectroscopy of solids and surfaces

    International Nuclear Information System (INIS)

    Kowalczyk, S.P.

    1976-01-01

    The use of photoelectron spectroscopy, primarily x-ray photoelectron spectroscopy, to obtain information on the electronic structure of a wide variety of solids (especially the bulk electronic structure of solids) is covered. Both valence band and core-level spectra, as well as a few cases of photon excited Auger electron spectroscopy, are employed in the investigations to derive information on N(E). The effect of several modulations inherent in the measured I(E)'s, such as final state band structure, cross section, and relaxation, is discussed. Examples of many-electron interactions in PES are given. Some experimental aspects of PES and AES studies are given with emphasis on sample preparation techniques. Multiple splitting of core levels is examined using the Mn levels in MnF 2 as a detailed case study. Core level splittings in transition metals, rare earth metals, transition metal halides and several alloys are also reported. The application of PES to the study of the chemical bond in some crystalline semiconductors and insulators, A/sup N/B/sup 8-N/ and A/sup N/B/sup 10-N/ compounds is treated, and a spectroscopic scale of ionicity for these compounds is developed from the measured ''s-band'' splitting in the valence band density of states

  2. Photoelectron Emission Studies in CsBr at 257 nm

    International Nuclear Information System (INIS)

    Maldonado, Juan R.; Liu, Zhi; Sun, Yun; Pianetta, Piero A.; Pease, Fabian W.

    2006-01-01

    CsBr/Cr photocathodes were found [1,2] to meet the requirements of a multi-electron beam lithography system operating with a light energy of 4.8 eV (257nm). The fact that photoemission was observed with a light energy below the reported 7.3 eV band gap for CsBr was not understood. This paper presents experimental results on the presence of intra-band gap absorption sites (IBAS) in CsBr thin film photo electron emitters, and presents a model based on IBAS to explain the observed photoelectron emission behavior at energies below band gap. A fluorescence band centered at 330 nm with a FWHM of about 0.34 eV was observed in CsBr/Cr samples under 257 nm laser illumination which can be attributed to IBAS and agrees well with previously obtained synchrotron photoelectron spectra[1] from the valence band of CsBr films

  3. Using photoelectron diffraction to determine complex molecular adsorption structures

    International Nuclear Information System (INIS)

    Woodruff, D P

    2010-01-01

    Backscattering photoelectron diffraction, particularly in the energy-scan mode, is now an established technique for determining in a quantitative fashion the local structure of adsorbates on surfaces, and has been used successfully for ∼100 adsorbate phases. The elemental and chemical-state specificity afforded by the characteristic core level photoelectron binding energies means that it has particular advantages for molecular adsorbates, as the local geometry of inequivalent atoms in the molecule can be determined in a largely independent fashion. On the other hand, polyatomic molecules present a general problem for all methods of surface structure determination in that a mismatch of intramolecular distances with interatomic distances on the substrate surface means that the atoms in the adsorbed molecule are generally in low-symmetry sites. The quantities measured experimentally then represent an incoherent sum of the properties of each structural domain that is inequivalent with respect to the substrate point group symmetry. This typically leads to greater ambiguity or precision in the structural solutions. The basic principles of the method are described and illustrated with a simple example involving molecule/substrate bonding through only one constituent atom (TiO 2 -(110)/H 2 O). This example demonstrates the importance of obtaining quantitative local structural information. Further examples illustrate both the successes and the problems of this approach when applied to somewhat more complex molecular adsorbates.

  4. Practical chemical analysis of Pt and Pd based heterogeneous catalysts with hard X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, H., E-mail: YOSHIKAWA.Hideki@nims.go.jp [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Matolínová, I.; Matolín, V. [Charles University in Prague, Faculty of Mathematics and Physics, V Holešovičkách 2, 18000 Prague 8 (Czech Republic)

    2013-10-15

    Highlights: •Hard X-ray photoelectron spectroscopy (HAXPES) enables interface analysis of catalyst. •HAXPES enables overall analysis of porous film of Pt-doped CeO{sub 2} and related catalyst. •HAXPES enables analysis of trace elements for Pd and Pt{sub 3}Ni nanoparticle catalysts. -- Abstract: Interfacial properties including configuration, porosity, chemical states, and atomic diffusion greatly affect the performance of supported heterogeneous catalysts. Hard X-ray photoelectron spectroscopy (HAXPES) can be used to analyze the interfaces of heterogeneous catalysts because of its large information depth of more than 20 nm. We use HAXPES to examine Pt-doped CeO{sub 2} and related thin film catalysts evaporated on Si, carbon, and carbon nanotube substrates, because Pt-doped CeO{sub 2} has great potential as a noble metal-based heterogeneous catalyst for fuel cells. The HAXPES measurements clarify that the dopant material, substrate material, and surface pretreatment of substrate are important parameters that affect the interfacial properties of Pt-doped CeO{sub 2} and related thin film catalysts. Another advantage of HAXPES measurement of heterogeneous catalysts is that it can be used for chemical analysis of trace elements by detecting photoelectrons from deep core levels, which have large photoionization cross-sections in the hard X-ray region. We use HAXPES for chemical analysis of trace elements in Pd nanoparticle catalysts immobilized on sulfur-terminated substrates and Pt{sub 3}Ni nanoparticle catalysts enveloped by dendrimer molecules.

  5. Study of fine films nature on the surface of copper band by photoelectron spectroscopy method

    International Nuclear Information System (INIS)

    Reznichenko, K.N.; Fedorov, V.N.; Shevakin, Yu.F.

    1983-01-01

    The composition of surface films formed on the copper band of industrial production under atmospheric conditions, its changes in thickness and determination of chemical state of the above films are studied. It has been found by the methods of X-ray photoelectronic and Auger-spectroscopy that defect formations on the surface of the copper band of industrial production represent copper oxides in the form of fine films, their change in colour from blue to dark blue probably is determined by different thickness of these defects. The said films on copper have practically identical chemical composition characterized by the presence of unequally valent copper, oxygen in various states (adsorbed and in the form of oxides), carbon and iron. By means of chemical shifts of the line Cu 2psub(3/2) and Ol s the presence in the external part of the film of CuO copper oxide is established and nearer to the interface surface film-metal-of Cu 2 O cuprous oxide which indicates a two-layer surface film structure. The presence of adsorbed carbon and iron in the film composition is a result of surface contamination

  6. Charge transfer effects in electrocatalytic Ni-C revealed by x-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Haslam, G. E.; Chin, X.-Y.; Burstein, G. T. [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke St., Cambridge CB2 3QZ (United Kingdom); Sato, K.; Mizokawa, T. [Department of Complexity Science and Engineering, University of Tokyo, 5-1-5 Kashiwanoha, Chiba 277-8651 (Japan)

    2012-06-04

    Binary Ni-C thin-film alloys, which have been shown to be passive against corrosion in hot sulphuric acid solution whilst also being electrocatalytically active, were investigated by XPS to determine the oxidation state of the metal and carbon components. The Ni component produces a Ni 2p spectrum similar to that of metallic nickel (i.e., no oxidation occurs) but with a 0.3 eV shift to higher binding energy (BE) due to electron donation to the carbon matrix. The C 1s peak shows a shift to lower BE by accepting electrons from the Ni nanocrystals. A cluster-model analysis of the observed Ni 2p spectrum is consistent with the electron transfer from the nickel to the carbon.

  7. High-energy double photoeffect and photoionization with excitation from 2 {sup 1}S and 2 {sup 3}S states of helium-like ions

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M.Ya. [The Racah Institute of Physics, Hebrew University, 91904 Jerusalem (Israel); A F Ioffe Physical-Technical Institute, 194921 St Petersburg (Russian Federation); Mikhailov, A.I.; Mikhailov, I.A. [St Petersburg Nuclear Physics Institute, Gatchina, 188350 St Petersburg (Russian Federation)

    1999-10-28

    Double ionization and ionization with excitation of helium-like ions with Z>>1 from 2 {sup 1}S and 2 {sup 3}S states on the absorption of a high-frequency photon have been considered. The analytical calculation is performed in the non-relativistic photon energy range in the lowest order of perturbation theory in the inter-electron interaction. Coulomb wavefunctions and the Coulomb Green function are used as a zeroth-order approximation. Differential and total cross sections of the processes are expressed via the corresponding values for the single photoionization. The photoelectron energy spectrum is obtained in the marginal energy range (i.e. for p{sub 1}>>p{sub 2}, p{sub 1} and p{sub 2} momenta of photoelectrons) for the double-ionization process. Simple relations between the cross sections of double ionization and ionization with excitation are derived. (author)

  8. Photoelectron spectroscopy of liquid water and aqueous solution: Electron effective attenuation lengths and emission-angle anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Ottosson, Niklas [Department of Physics, Uppsala University, SE-75121 Uppsala (Sweden); Faubel, Manfred [Max-Planck-Institut fuer Dynamik und Selbstorganisation, Bunsenstrasse 10, D-37073 Goettingen (Germany); Bradforth, Stephen E. [Department of Chemistry, University of Southern California, Los Angeles, CA 90089 (United States); Jungwirth, Pavel [Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, and Center for Biomolecules and Complex Molecular Systems, Flemingovo nam. 2, 16610 Prague 6 (Czech Republic); Winter, Bernd, E-mail: winter@bessy.d [Helmholtz-Zentrum Berlin fuer Materialien und Energie, and BESSY, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany); Max-Born-Institut, Max-Born-Strasse 2A, D-12489 Berlin (Germany)

    2010-03-15

    Photoelectron (PE) spectroscopy measurements from liquid water and from a 4 m NaI aqueous solution are performed using a liquid microjet in combination with soft X-ray synchrotron radiation. From the oxygen 1s PE signal intensity from liquid water, measured as a function of photon energy (up to 1500 eV), we quantitatively determine relative electron inelastic effective attenuation lengths (EAL) for (photo)electron kinetic energies in the 70-900 eV range. In order to determine the absolute electron escape depths a calibration point is needed, which is not directly accessible by experiment. This information can instead be indirectly derived by comparing PE experiments and molecular dynamics (MD) simulations of an aqueous solution interface where density profiles of water, anions, and cations are distinctively different. We have chosen sodium iodide in water because iodide has a considerable propensity for the solution surface, whereas the sodium cation is repelled from the surface. By measuring the intensities of photoelectrons emitted from different orbitals of different symmetries from each aqueous ion we also evaluate whether gas-phase ionization cross sections and asymmetry parameters can describe the photoemission from ions at and near the aqueous solution/vapor interface. We show that gas-phase data reproduce surprisingly well the experimental observations for hydrated ions as long as the photon energy is sufficiently far above the ionization threshold. Electrons detected at the higher photon energies originate predominantly from deeper layers, suggesting that bulk-solution electron elastic scattering is relatively weak.

  9. Silica-supported silicotungstic acid: A study by X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Berry, Frank J.; Derrick, Glyn R. [Department of Chemistry and Analytical Sciences, Robert Hooke Building, Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom); Marco, Jose F. [Instituto de Quimica -Fisica ' Rocasolano' , Consejo Superior de Investigaciones Cientificas, Serrano 119, 28006 Madrid (Spain); Mortimer, Michael [Department of Chemistry and Analytical Sciences, Robert Hooke Building, Open University, Walton Hall, Milton Keynes, MK7 6AA (United Kingdom)], E-mail: m.mortimer@open.ac.uk

    2009-04-15

    W 4f and O 1s X-ray photoelectron spectra for silicotungstic acid, H{sub 4}SiW{sub 12}O{sub 40}, in pure and silica-supported form are reported. W 4f XP spectra for the supported acid are analysed in terms of contributions from two W(VI) spin-orbit doublets arising from tungsten atoms in terminal W=O bonds some of which directly interact with the silica surface. At low loading (3.2 wt.%) significant changes in the relative contributions and binding energies of the two spin-orbit doublets are taken as evidence of a strong interaction of individual [SiW{sub 12}O{sub 40}]{sup 4-} anions with highly active sites on the silica surface. It is suggested that selective ordering of silanol groups can occur on the silica surface in order to accommodate the adsorption of individual [SiW{sub 12}O{sub 40}]{sup 4-} anions.

  10. Search for axion production in Υ(1S) decays

    International Nuclear Information System (INIS)

    Fairfield, K.H.

    1988-06-01

    We present a search for axion production in radiative Υ(1S) decays using the Crystal Ball detector. We find no evidence for a signal and give a new upper limit, Br[Υ(1S)→a/degree/γ] < 4 /times/ 10/sup /minus/5/, for m/sub a/ < 2m/sub e/. Results from previous axion searches in both the Υ and J//psi/ systems are discussed and compared to theoretical predictions

  11. Curvature of super Diff(S1)/S1

    International Nuclear Information System (INIS)

    Oh, P.; Ramond, P.

    1987-01-01

    Motivated by the work of Bowick and Rajeev, we calculate the curvature of the infinite-dimensional flag manifolds Diff(S 1 )/S 1 and Super Diff(S 1 )/S 1 using standard finite-dimensional coset space techniques. We regularize the infinite by ζ-function regularization and recover the conformal and superconformal anomalies respectively for a specific choice of the torsion. (orig.)

  12. Ultrafast photoelectron spectroscopy of small molecule organic films

    Science.gov (United States)

    Read, Kendall Laine

    As research in the field of ultrafast optics has produced shorter and shorter pulses, at an ever-widening range of frequencies, ultrafast spectroscopy has grown correspondingly. In particular, ultrafast photoelectron spectroscopy allows direct observation of electrons in transient or excited states, regardless of the eventual relaxation mechanisms. High-harmonic conversion of 800nm, femtosecond, Ti:sapphire laser pulses allows excite/probe spectroscopy down into atomic core level states. To this end, an ultrafast, X-UV photoelectron spectroscopic system is described, including design considerations for the high-harmonic generation line, the time of flight detector, and the subsequent data collection electronics. Using a similar experimental setup, I have performed several ultrafast, photoelectron excited state decay studies at the IBM, T. J. Watson Research Center. All of the observed materials were electroluminescent thin film organics, which have applications as the emitter layer in organic light emitting devices. The specific materials discussed are: Alq, BAlq, DPVBi, and Alq doped with DCM or DMQA. Alq:DCM is also known to lase at low photoexcitation thresholds. A detailed understanding of the involved relaxation mechanisms is beneficial to both applications. Using 3.14 eV excite, and 26.7 eV probe, 90 fs laser pulses, we have observed the lowest unoccupied molecular orbital (LUMO) decay rate over the first 200 picoseconds. During this time, diffusion is insignificant, and all dynamics occur in the absence of electron transport. With excitation intensities in the range of 100μJ/cm2, we have modeled the Alq, BAlq, and DPVBi decays via bimolecular singlet-singlet annihilation. At similar excitations, we have modeled the Alq:DCM decay via Förster transfer, stimulated emission, and excimeric formation. Furthermore, the Alq:DCM occupied to unoccupied molecular orbital energy gap was seen to shrink as a function of excite-to-probe delay, in accordance with the

  13. Attosecond photoelectron spectroscopy of electron transport in solids

    International Nuclear Information System (INIS)

    Magerl, Elisabeth

    2011-01-01

    Time-resolved photoelectron spectroscopy of condensed matter systems in the attosecond regime promises new insights into excitation mechanisms and transient dynamics of electrons in solids. This timescale became accessible directly only recently with the development of the attosecond streak camera and of laser systems providing few-cycle, phase-controlled laser pulses in the near-infrared, which are used to generate isolated, sub-femtosecond extreme-ultraviolet pulses with a well-defined timing with respect to the near-infrared pulse. Employing these pulses, the attosecond streak camera offers time resolutions as short as a few 10 attoseconds. In the framework of this thesis, a new, versatile experimental apparatus combining attosecond pulse generation in gases with state of the art surface science techniques is designed, constructed, and commissioned. Employing this novel infrastructure and the technique of the attosecond transient recorder, we investigate transport phenomena occurring after photoexcitation of electrons in tungsten and rhenium single crystals and show that attosecond streaking is a unique method for resolving extremely fast electronic phenomena in solids. It is demonstrated that electrons originating from different energy levels, i.e. from the conduction band and the 4f core level, are emitted from the crystal surface at different times. The origin of this time delay, which is below 150 attoseconds for all studied systems, is investigated by a systematic variation of several experimental parameters, in particular the photon energy of the employed attosecond pulses. These experimental studies are complemented by theoretical studies of the group velocity of highly-excited electrons based on ab initio calculations. While the streaking technique applied on single crystals can provide only information about the relative time delay between two types of photoelectrons, the absolute transport time remains inaccessible. We introduce a scheme of a reference

  14. Attosecond photoelectron spectroscopy of electron transport in solids

    Energy Technology Data Exchange (ETDEWEB)

    Magerl, Elisabeth

    2011-03-31

    Time-resolved photoelectron spectroscopy of condensed matter systems in the attosecond regime promises new insights into excitation mechanisms and transient dynamics of electrons in solids. This timescale became accessible directly only recently with the development of the attosecond streak camera and of laser systems providing few-cycle, phase-controlled laser pulses in the near-infrared, which are used to generate isolated, sub-femtosecond extreme-ultraviolet pulses with a well-defined timing with respect to the near-infrared pulse. Employing these pulses, the attosecond streak camera offers time resolutions as short as a few 10 attoseconds. In the framework of this thesis, a new, versatile experimental apparatus combining attosecond pulse generation in gases with state of the art surface science techniques is designed, constructed, and commissioned. Employing this novel infrastructure and the technique of the attosecond transient recorder, we investigate transport phenomena occurring after photoexcitation of electrons in tungsten and rhenium single crystals and show that attosecond streaking is a unique method for resolving extremely fast electronic phenomena in solids. It is demonstrated that electrons originating from different energy levels, i.e. from the conduction band and the 4f core level, are emitted from the crystal surface at different times. The origin of this time delay, which is below 150 attoseconds for all studied systems, is investigated by a systematic variation of several experimental parameters, in particular the photon energy of the employed attosecond pulses. These experimental studies are complemented by theoretical studies of the group velocity of highly-excited electrons based on ab initio calculations. While the streaking technique applied on single crystals can provide only information about the relative time delay between two types of photoelectrons, the absolute transport time remains inaccessible. We introduce a scheme of a reference

  15. Molecular treatment of the ion-pair formation reaction in H(1s) + H(1s) collisions

    Energy Technology Data Exchange (ETDEWEB)

    Borondo, F.; Martin, F.; Yaez, M.

    1987-01-01

    All the available theoretical calculations of the cross section for the ion-pair formation reaction H(1s)+H(1s)..-->..H/sup +/H/sup -/(1s/sup 2/) have been performed using methods that are only valid at high collision energies. They get good agreement with the experiments for impact energies greater than 25 keV, but fail completely at smaller energies. In this work we report the cross section for this reaction at impact energies less than 10 keV, calculated in the framework of the impact-parameter approximation and using the molecular method with a common translation factor.

  16. Molecular treatment of the ion-pair formation reaction in H(1s) + H(1s) collisions

    International Nuclear Information System (INIS)

    Borondo, F.; Martin, F.; Yaez, M.

    1987-01-01

    All the available theoretical calculations of the cross section for the ion-pair formation reaction H(1s)+H(1s)→H + H - (1s 2 ) have been performed using methods that are only valid at high collision energies. They get good agreement with the experiments for impact energies greater than 25 keV, but fail completely at smaller energies. In this work we report the cross section for this reaction at impact energies less than 10 keV, calculated in the framework of the impact-parameter approximation and using the molecular method with a common translation factor

  17. On the inversion problem of the plasma line intensity measurements in terms of photoelectron fluxes

    International Nuclear Information System (INIS)

    Lejeune, G.

    1979-01-01

    Assuming that the unidimensional distribution function of the photoelectron flux can be determined from plasma line intensity measurement, it is shown that the photoelectron flux distribution is not uniquely determined if additional hypotheses are not made. The limitations of the inversion procedure are shown: in particular, plasma line measurements cannot allow the determination of more than the first two Legendre components of the photoelectron flux. Experimental procedures for this determination are finally reviewed. (author)

  18. In situ photoelectron spectroscopy of LaMnO3 and La0.6Sr0.4MnO3 thin films grown by laser molecular beam expitaxy

    International Nuclear Information System (INIS)

    Oshima, M.; Kobayashi, D.; Horiba, K.; Ohguchi, H.; Kumigashira, H.; Ono, K.; Nakagawa, N.; Lippmaa, M.; Kawasaki, M.; Koinuma, H.

    2004-01-01

    We have constructed a high-resolution photoelectron spectroscopy system combined with a laser molecular beam epitaxy (laser-MBE) chamber and have characterized composition-controlled La 1-x Sr x MnO 3 (LSMO) thin films. The importance of atomically flat surfaces by in situ photoelectron spectroscopy for revealing the intrinsic electronic structures has been demonstrated by comparing O1s, O2s and valence band spectra from the laser-MBE-grown LaMnO 3 and LSMO films with those from the scraped samples. Even for the laser-MBE-grown LSMO films, core levels and band structure exhibit strong dependence on surface morphology. For atomically flat LSMO films, we have also elucidated the hole-doping features into Mn3d e g band by substituting La with Sr by resonant photoelectron spectra

  19. In-situ observation of oxidation of Ti(0001) surface by real-time photoelectron spectroscopy using synchrotron radiation

    CERN Document Server

    Takakuwa, Y; Yoshigoe, A; Teraoka, Y; Mizuno, Y; Tonda, H; Homma, T

    2003-01-01

    Temperature dependence of the initial oxidation kinetics of Ti(0001) surface was investigated by low energy electron diffraction (LEED) and real-time photoelectron spectroscopy using synchrotron radiation of surface- and bulk-sensitive photon energies. LEED observation revealed that oxide layers grow epitaxially with different surface structures depending on temperature: 1x1 at 200degC and sq root 3 x sq root 3 at 400degC. From the oxygen uptake curve measured by O 1s photo-electron intensity, it was clarified that oxygen diffusion through the epitaxially grown oxide layer is significantly enhanced with raising temperature, making the oxide layer thicker than 70A at 400degC. The chemical shift components observed for Ti 2p showed that TiO sub 2 becomes predominant at the subsurface with O sub 2 dose, while the stoichiometry of oxide near the interface is maintained as TiO and Ti sub 2 O sub 3 , for both cases at 200degC and 400degC. Thus it is concluded that the epitaxial growth of a very thin oxide on the Ti...

  20. Measurement of the Photoelectron Detection Efficiency of the HPD Anode

    CERN Document Server

    Carson, L; Soler, P

    2009-01-01

    This paper reports on measurements carried out on the Hybrid Photon Detectors (HPDs) of the LHCb RICH detectors. The purpose of these tests is to determine the photoelectron detection efficiency $\\eta$ of the HPD anode. Knowledge of $\\eta$ is required for an accurate simulation of the RICH detectors. It is found that this efficiency is $(93.3\\pm0.7)\\%$ for a 50 ns digital readout window, and $(87.9\\pm1.4)\\%$ for a 25 ns digital readout window. The 25 ns result exceeds the LHCb-RICH requirement of 85\\%, and is in agreement both with direct $\\eta$ measurements using preseries HPDs, and with indirect measurements from testbeams using preseries and production HPDs.

  1. Theory of photoelectron spectroscopy for organic molecules and their crystals

    Energy Technology Data Exchange (ETDEWEB)

    Fujikawa, Takashi, E-mail: tfujikawa@faculty.chiba-u.jp; Niki, Kaori; Sakuma, Hiroto

    2015-10-01

    Highlights: • Some specific features in photoemission theory from organic solids are reviewed. • Extrinsic and intrinsic effects are discussed. • Photoemission from extended levels is compared with that from core levels. • First principle many-body theories are discussed on the basis of nonequilibrium Green's functions. - Abstract: In this short review we discuss recent progress in photoemission theory for organic molecules and their crystals. We discuss some important features in Keldysh Green's function theory for the photoemission. We briefly discuss many-body aspects in photoemission from core and extended levels. In particular phonon effects are investigated in more detail since organic solids are typically soft where electron–phonon interaction is important. Debye–Waller factor suppresses the interference effects of photoelectron waves which makes ARPES analyses useless, particularly in high energy region.

  2. Negative ion photoelectron spectroscopy of SeO-

    International Nuclear Information System (INIS)

    Coe, J.V.; Snodgrass, J.T.; Freidhoff, C.B.; McHugh, K.M.; Bowen, K.H.

    1985-01-01

    Negative ion photoelectron spectroscopy (NIPES) involves a kinetic energy analysis of electrons which are photodetached when a mass selected beam of negative ions is crossed with a fixed frequency laser beam. The photodetachment spectra of SeO - displays transitions from the X 2 PI state of SeO - to both the X 3 Σ - and a 1 Δ states of SeO. The singlet-triplet splitting of SeO is readily observable since selection rules regarding spin do not apply in the bound to free state process of photodetachment. The electron affinity of SeO and the negative ion potential parameters of SeO - have been determined

  3. Selectivity in Ketenimine Cycloadditions. Photoelectron Hel Spectra of Ketenimines

    Science.gov (United States)

    Bernardi, Fernando; Bottoni, Andrea; Ballaglia, Arturo; Distefano, Giuseppe; Dondoni, Alessandro

    1980-05-01

    The first few bands in the photoelectron (Hel) spectra of ketenimines R1R2C-C=NR3(R1,R2=H, CH3, C5H6, CH2=CH; R3=alkyl or aryl group) are assigned to the corresponding molecular orbitals. The assignment is based on SCF-MO calculations made at three different levels (CNDO/2, ab-initio STO-3C and 4-31G) coupled with perturbational molecular orbital analyses. The π-orbitals of the unsaturated substituents are found to interact with one of the two perpendicular π-electron systems of the>C=C=N- residue, the critical factor being the position of attack of the substituent. The relevance of these results on the site selectivity observed in cycloaddition reactions of these species is discussed.

  4. DESIGN OF A DC/RF PHOTOELECTRON GUN

    International Nuclear Information System (INIS)

    YU, D.; NEWSHAM, Y.; SMIRONOV, A.; YU, J.; SMEDLEY, J.; SRINIVASAN RAU, T.; LEWELLEN, J.; ZHOLENTS, A.

    2003-01-01

    An integrated dc/rf photoelectron gun produces a low-emittance beam by first rapidly accelerating electrons at a high gradient during a short (∼1 ns), high-voltage pulse, and then injecting the electrons into an rf cavity for subsequent acceleration. Simulations show that significant improvement of the emittance appears when a high field (∼ 0.5-1 GV/m) is applied to the cathode surface. An adjustable dc gap ((le) 1 mm) which can be integrated with an rf cavity is designed for initial testing at the Injector Test Stand at Argonne National Laboratory using an existing 70-kV pulse generator. Plans for additional experiments of an integrated dc/rf gun with a 250-kV pulse generator are being made

  5. Photoelectron emission from metal surfaces by ultrashort laser pulses

    International Nuclear Information System (INIS)

    Faraggi, M. N.; Gravielle, M. S.; Silkin, V. M.

    2006-01-01

    Electron emission from metal surfaces produced by short laser pulses is studied within the framework of the distorted-wave formulation. The proposed approach, named surface-Volkov (SV) approximation, makes use of the band-structure based (BSB) model and the Volkov phase to describe the interaction of the emitted electron with the surface and the external electric field, respectively. The BSB model provides a realistic representation of the surface, based on a model potential that includes the main features of the surface band structure. The SV method is applied to evaluate the photoelectron emission from the valence band of Al(111). Angular and energy distributions are investigated for different parameters of the laser pulse, keeping in all cases the carrier frequency larger than the plasmon one

  6. Slow photoelectron imaging spectroscopy of CCO- and CCS-.

    Science.gov (United States)

    Garand, Etienne; Yacovitch, Tara I; Neumark, Daniel M

    2008-08-21

    High-resolution photodetachment spectra of CCO(-) and CCS(-) using slow photoelectron velocity-map imaging spectroscopy are reported. Well-resolved transitions to the neutral X (3)Sigma(-), a (1)Delta, b (1)Sigma(+), and A (3)Pi states are seen for both species. The electron affinities of CCO and CCS are determined to be 2.3107+/-0.0006 and 2.7475+/-0.0006 eV, respectively, and precise term energies for the a (1)Delta, b (1)Sigma(+), and A (3)Pi excited states are also determined. The two low-lying singlet states of CCS are observed for the first time, as are several vibronic transitions within the four bands. Analysis of hot bands finds the spin-orbit orbit splitting in the X (2)Pi ground state of CCO(-) and CCS(-) to be 61 and 195 cm(-1), respectively.

  7. Photoelectron imaging, probe of the dynamics: from atoms... to clusters

    International Nuclear Information System (INIS)

    Lepine, F.

    2003-06-01

    This thesis concerns the study of the deexcitation of clusters and atoms by photoelectron imaging. The first part is dedicated to thermionic emission of a finite size system. A 3-dimensional imaging setup allows us to measure the time evolution of the kinetic energy spectrum of electrons emitted from different clusters (W n - , C n - , C 60 ). Then we have a direct access to the fundamental quantities which characterize this statistical emission: the temperature of the finite heat bath and the decay rate. The second part concerns the ionization of atomic Rydberg states placed in a static electric field. We performed the first experiment of photoionization microscopy which allows us to obtain a picture which is the macroscopic projection of the electronic wave function. Then we have access to the detail of the photoionization and particularly to the quantum properties of the electron usually confined at the atomic scale. (author)

  8. Study of transition metal oxides by photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Rao, C.N.R.; Sarma, D.D.; Vasudevan, S.; Hegde, M.S.

    1979-01-01

    Systematics in the X-ray photoelectron spectra (X.p.e.s.) of Ti, V, Cr, Mn and Nb oxides with the metal ion in different oxidation states as well as of related series of mono-, sesqui- and di-oxides of the first row of transition metals have been investigated in detail. Core level binding energies, spin-orbit splittings and exchange splittings are found to exhibit interesting variations with the oxidation state of the metal or the nuclear charge. The 3d binding energies of the monoxides show a proportionality to Goodenough's (R - RC). Other aspects of interest in the study are the satellite structure and final state effects in the X.p.e.s. of the oxides, and identification of different valence states in oxides of the general formulae Mn02n-1 and M304. The nature of changes in the 3d bands of oxides undergoing metal-insulator transitions is also indicated. (author)

  9. Theory of photoelectron spectroscopy for organic molecules and their crystals

    International Nuclear Information System (INIS)

    Fujikawa, Takashi; Niki, Kaori; Sakuma, Hiroto

    2015-01-01

    Highlights: • Some specific features in photoemission theory from organic solids are reviewed. • Extrinsic and intrinsic effects are discussed. • Photoemission from extended levels is compared with that from core levels. • First principle many-body theories are discussed on the basis of nonequilibrium Green's functions. - Abstract: In this short review we discuss recent progress in photoemission theory for organic molecules and their crystals. We discuss some important features in Keldysh Green's function theory for the photoemission. We briefly discuss many-body aspects in photoemission from core and extended levels. In particular phonon effects are investigated in more detail since organic solids are typically soft where electron–phonon interaction is important. Debye–Waller factor suppresses the interference effects of photoelectron waves which makes ARPES analyses useless, particularly in high energy region.

  10. High temperature and high resolution uv photoelectron spectroscopy using supersonic molecular beams

    International Nuclear Information System (INIS)

    Wang, Lai-Sheng; Reutt-Robey, J.E.; Niu, B.; Lee, Y.T.; Shirley, D.A.

    1989-07-01

    A high temperature molecular beam source with electron bombardment heating has been built for high resolution photoelectron spectroscopic studies of high temperature species and clusters. This source has the advantages of: producing an intense, continuous, seeded molecular beam, eliminating the interference of the heating mechanism from the photoelectron measurement. Coupling the source with our hemispherical electron energy analyzer, we can obtain very high resolution HeIα (584 angstrom) photoelectron spectra of high temperature species. Vibrationally-resolved photoelectron spectra of PbSe, As 2 , As 4 , and ZnCl 2 are shown to demonstrate the performance of the new source. 25 refs., 8 figs., 1 tab

  11. Introduction to x-ray photoelectron spectroscopy (XPS)

    International Nuclear Information System (INIS)

    Liesegang, J.; Pigram, P.J.

    1999-01-01

    Full text: XPS is one of several important surface analytical tools. Developed in Sweden in the 1960s, it was originally named by Kai Siegbahn as Electron Spectroscopy for Chemical Analysis or ESCA; and although it is the best method for non-invasively determining the elemental composition of the first 10 nm of any surface, modern XPS systems are capable of much more than elemental chemical analysis. High resolution photoelectron energy analysis (c. 0.2 eV) now permits easy identification of chemical state as well as concentration; angular variation of detection and depth profiling allow quantitative analysis as a function of depth below a sample surface; energy loss mechanisms may be studied; Auger peaks can be measured in an XPS system; and developments in the area of photoelectron imaging allow high resolution (c. 7 μm) mapping of the distribution of elements and their chemical states to be determined spatially on non-homogeneous surfaces. The workshop sessions will outline the link between the physics and chemistry of surfaces and the process of photoemission. The presentation will illustrate the features and capabilities of a newly acquired Kratos (UK) Axis Ultra XPS and Imaging System recently installed in the Centre for Materials and Surface Science at La Trobe University, and its capabilities regarding the foregoing issues. The first part of the presentation will outline the basics of XPS and the second part will illustrate its usefulness, and in particular, will illustrate the power of the instrumentation through the presentation of several applications of both fundamental and industrial significance. Copyright (1999) Australian X-ray Analytical Association Inc

  12. Global search in photoelectron diffraction structure determination using genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Viana, M L [Departamento de Fisica, Icex, UFMG, Belo Horizonte, Minas Gerais (Brazil); Muino, R Diez [Donostia International Physics Center DIPC, Paseo Manuel de Lardizabal 4, 20018 San Sebastian (Spain); Soares, E A [Departamento de Fisica, Icex, UFMG, Belo Horizonte, Minas Gerais (Brazil); Hove, M A Van [Department of Physics and Materials Science, City University of Hong Kong, Hong Kong (China); Carvalho, V E de [Departamento de Fisica, Icex, UFMG, Belo Horizonte, Minas Gerais (Brazil)

    2007-11-07

    Photoelectron diffraction (PED) is an experimental technique widely used to perform structural determinations of solid surfaces. Similarly to low-energy electron diffraction (LEED), structural determination by PED requires a fitting procedure between the experimental intensities and theoretical results obtained through simulations. Multiple scattering has been shown to be an effective approach for making such simulations. The quality of the fit can be quantified through the so-called R-factor. Therefore, the fitting procedure is, indeed, an R-factor minimization problem. However, the topography of the R-factor as a function of the structural and non-structural surface parameters to be determined is complex, and the task of finding the global minimum becomes tough, particularly for complex structures in which many parameters have to be adjusted. In this work we investigate the applicability of the genetic algorithm (GA) global optimization method to this problem. The GA is based on the evolution of species, and makes use of concepts such as crossover, elitism and mutation to perform the search. We show results of its application in the structural determination of three different systems: the Cu(111) surface through the use of energy-scanned experimental curves; the Ag(110)-c(2 x 2)-Sb system, in which a theory-theory fit was performed; and the Ag(111) surface for which angle-scanned experimental curves were used. We conclude that the GA is a highly efficient method to search for global minima in the optimization of the parameters that best fit the experimental photoelectron diffraction intensities to the theoretical ones.

  13. X‐ray Photoelectron Spectroscopy of Pyridinium‐Based Ionic Liquids: Comparison to Imidazolium‐ and Pyrrolidinium‐Based Analogues

    Science.gov (United States)

    Mitchell, Daniel S.; Lovelock, Kevin R. J.

    2015-01-01

    Abstract We investigate eight 1‐alkylpyridinium‐based ionic liquids of the form [CnPy][A] by using X‐ray photoelectron spectroscopy (XPS). The electronic environment of each element of the ionic liquids is analyzed. In particular, a reliable fitting model is developed for the C 1s region that applies to each of the ionic liquids. This model allows the accurate charge correction of binding energies and the determination of reliable and reproducible binding energies for each ionic liquid. Shake‐up/off phenomena are determinedfor both C 1s and N 1s spectra. The electronic interaction between cations and anions is investigated for both simple ionic liquids and an example of an ionic‐liquid mixture; the effect of the anion on the electronic environment of the cation is also explored. Throughout the study, a detailed comparison is made between [C8Py][A] and analogues including 1‐octyl‐1‐methylpyrrolidinium‐ ([C8C1Pyrr][A]), and 1‐octyl‐3‐methylimidazolium‐ ([C8C1Im][A]) based samples, where X is common to all ionic liquids. PMID:25952131

  14. Structural and X-Ray Photoelectron Spectroscopy Study of Al-Doped Zinc-Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Bong Ju Lee

    2015-01-01

    Full Text Available Al-doped zinc-oxide (AZO thin films were prepared by RF magnetron sputtering at different oxygen partial pressures and substrate temperatures. The charge-carrier concentrations in the films decreased from 1.69 × 1021 to 6.16 × 1017 cm−3 with increased gas flow rate from 7 to 21 sccm. The X-ray diffraction (XRD patterns show that the (002/(103 peak-intensity ratio decreased as the gas flow rate increased, which was related to the increase of AZO thin film disorder. X-ray photoelectron spectra (XPS of the O1s were decomposed into metal oxide component (peak A and the adsorbed molecular oxygen on thin films (peak B. The area ratio of XPS peaks (A/B was clearly related to the stoichiometry of AZO films; that is, the higher value of A/B showed the higher stoichiometric properties.

  15. X-ray photoelectron spectroscopy study of the initial oxidation of uranium metal in oxygen+water-vapour mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Allen, G.C.; Tucker, P.M.; Lewis, R.A. (Central Electricity Generating Board, Berkeley (UK). Berkeley Nuclear Labs.)

    1984-08-01

    X-ray photoelectron spectroscopy (X.p.s.) has been used to study the chemical nature of the oxide film initially produced on clean uranium metal in oxygen + water-vapour atmospheres. The rate of reaction has been monitored and the nature of the surface film determined. From a consideration of the O 1s and U 4f X.p. spectra it has been possible to advance a mechanism which explains the complex nature of the surface oxide and the lack of satellite structure in the spectra. This is postulated to be a consequence of the way in which OH/sup -/ is involved in the growth of the oxide and the presence of hydrogen in the surface film. The presence of oxygen retards the water oxidation reaction by inhibiting the decomposition of water vapour at the gas/oxide interface.

  16. X-ray photoelectron spectroscopy study of the initial oxidation of uranium metal in oxygen+water-vapour mixtures

    International Nuclear Information System (INIS)

    Allen, G.C.; Tucker, P.M.; Lewis, R.A.

    1984-01-01

    X-ray photoelectron spectroscopy (X.p.s.) has been used to study the chemical nature of the oxide film initially produced on clean uranium metal in oxygen + water-vapour atmospheres. The rate of reaction has been monitored and the nature of the surface film determined. From a consideration of the O 1s and U 4f X.p. spectra it has been possible to advance a mechanism which explains the complex nature of the surface oxide and the lack of satellite structure in the spectra. This is postulated to be a consequence of the way in which OH - is involved in the growth of the oxide and the presence of hydrogen in the surface film. The presence of oxygen retards the water oxidation reaction by inhibiting the decomposition of water vapour at the gas/oxide interface. (author)

  17. Photoelectron binding energy shifts observed during oxidation of group IIA, IIIA and IVA elemental surfaces

    International Nuclear Information System (INIS)

    Heide, P.A.W. van der

    2006-01-01

    An extensive re-evaluation of XPS binding energies (BE's) and binding energy shifts (ΔBE's) from metals, oxides and the carbonates of the group II, III and IVA elements (exceptions are Be, Mg and Hf) has been carried out using a substrate specific BE referencing approach. From this, O-1s BE's are found to fall into surface oxide, bulk oxide and carbonate groupings, with bulk oxides showing the lowest BE's followed by surface oxides (+∼1.5 eV) and then carbonates (+∼3.0 eV). The O-1s BE's from the bulk oxides also appear to scale with 1/d, where d is inter-atomic distance. The same is noted in the ΔBE's observed from the metallic counterparts during oxidation of the elemental surfaces. This, and the decreasing BE exhibited by Ca, Sr and Ba on oxidation is explained within the charge potential model as resulting from competing inter- and intra-atomic effects, and is shown to be consistent with partial covalency arguments utilizing Madulung potentials. The ΔBE's also fall into groups according to the elements location in the periodic table, i.e. s, p or d block. These trends open up the possibility of approximating ΔBE's arising from initial and final state effects, and bond distances

  18. Co-implantation of carbon and nitrogen into silicon dioxide for synthesis of carbon nitride materials

    CERN Document Server

    Huang, M B; Nuesca, G; Moore, R

    2002-01-01

    Materials synthesis of carbon nitride has been attempted with co-implantation of carbon and nitrogen into thermally grown SiO sub 2. Following implantation of C and N ions to doses of 10 sup 1 sup 7 cm sup - sup 2 , thermal annealing of the implanted SiO sub 2 sample was conducted at 1000 degree sign C in an N sub 2 ambient. As evidenced in Fourier transform infrared measurements and X-ray photoelectron spectroscopy, different bonding configurations between C and N, including C-N single bonds, C=N double bonds and C=N triple bonds, were found to develop in the SiO sub 2 film after annealing. Chemical composition profiles obtained with secondary ion mass spectroscopy were correlated with the depth information of the chemical shifts of N 1s core-level electrons, allowing us to examine the formation of C-N bonding for different atomic concentration ratios between N and C. X-ray diffraction and transmission electron microscopy showed no sign of the formation of crystalline C sub 3 N sub 4 precipitates in the SiO ...

  19. X-ray photoelectron spectroscopic evidence for bacteria-enhanced dissolution of hornblende

    Science.gov (United States)

    Kalinowski, B. E.; Liermann, L. J.; Brantley, S. L.; Barnes, A.; Pantano, C. G.

    2000-04-01

    An Arthrobacter species capable of extracting Fe from hornblende was isolated from a soil from the Adirondacks, NY (USA). This bacteria isolate, used in batch experiments with hornblende, accelerated the release of Fe from hornblende without measurably affecting Al release. The isolate produces both low molecular weight organic acids (LMWOA) and a catecholate siderophore. Polished hornblende (glass and crystal) discs were analyzed with X-ray photoelectron spectroscopy (XPS) before and after incubation with growing Arthrobacter sp. to investigate whether the bacteria caused a distinguishable chemical signature on the upper 100 Å of mineral surface. After removal of the arthrobacter grown on hornblende crystal or glass substrates using lysozyme, XPS revealed surface depletion of Fe for samples grown for several days in buffered (crystal) and unbuffered (crystal and glass) media. Fe/Si ratios of hornblende surfaces dissolved under biotic conditions are significantly lower than Fe/Si ratios on surfaces dissolved under abiotic conditions for similar amounts of time. Enhanced Fe release and the formation of Fe-depleted surfaces is inferred to be caused by catechol complexation at the mineral surface. Because natural siderophore was not isolated in sufficient quantities to run bacteria-free leaching experiments, parallel investigations were run with a commercially available siderophore (desferrioxamine B). Desferrioxamine B was observed to enhance release of Fe, Si, and Al from hornblende both with and without added bacteria. Formation of desferrioxamine-Fe surface complexes were probed by studying the multiple splitting and shift in intensities of the N 1s line analyzed by XPS on siderophore ± Fe on gold surfaces and siderophore + hornblende crystal surfaces. Based upon the observed formation of an hydroxamate (desferrioxamine) surface complex on hornblende, we infer that catecholate siderophores, such as those produced by the arthrobacter, also complex on the

  20. Cobalt Oxide on N-Doped Carbon for 1-Butene Oligomerization to Produce Linear Octenes

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dongting [Department; Xu, Zhuoran [Department; Chada, Joseph P. [Department; Carrero, Carlos A. [Department; Rosenfeld, Devon C. [The Dow Chemical Company, 2301 N. Brazosport Boulevard, Freeport, Texas 77541-3257, United States; Rogers, Jessica L. [The Dow Chemical Company, 2301 N. Brazosport Boulevard, Freeport, Texas 77541-3257, United States; Hermans, Ive [Department; Huber, George W. [Department

    2017-10-02

    Cobalt oxide supported on N-doped carbon catalysts were investigated for 1-butene oligomerization. The materials were synthesized by treating activated carbon with nitric acid and subsequently with NH3 at 200, 400, 600, and 800 °C, followed by impregnation with cobalt. The 1-butene oligomerization selectivity increased with ammonia treatment temperature of the carbon support. The oligomerization selectivity of cobalt oxide on N-doped carbon synthesized at 800 °C (800A-CoOx/N-C) is 2.6 times higher than previously reported cobalt oxide on N-doped carbon synthesized with NH4OH (2A-CoOx/N-C). Over 70% of the butene dimers were linear C8 olefins for all catalysts. The oligomerization selectivity increased with 1-butene conversion. The catalysts were characterized by elemental analysis, N2 adsorption, X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), and X-ray photoelectron spectroscopy (XPS). The nitrogen content of the catalysts increases with ammonia treatment temperature as confirmed by elemental analysis. The surface content of pyridinic nitrogen with a binding energy of 398.4 ± 0.1 eV increased with ammonia treatment temperature as evidenced by deconvolution of N 1s XPS spectra.

  1. Radiation effects and metalloproteins studied by x-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wurzbach, J.A.

    1975-07-01

    X-ray photoelectron spectroscopy (XPS) is used to study the bonding structure at the iron site of cytochrome c and the bonding of rare earth ions to the phosphate oxygens of ATP. Radiation effects are studied on several amino acid and simple peptide model systems. The emission spectrum of the x-ray source is calculated from literature references. The distributions of photon energy as a function of photon frequency and as a function of take-off angle are obtained. From these distributions, the radiation dose absorbed by an organic sample is found to be 10/sup 6/ rads/sec. The C 1s and N 1s spectra of amino acids and peptides are studied to characterize an internal reference standard for protein XPS spectra. Samples of native cytochrome c prepared from solutions of pH 1.5, 3, 7, and 11 are studied. Control samples include porphyrin cytochrome c (PCC), the metal free analogue of the native protein, and microperoxidase (MP), a mixture of heme peptides derived from the peptic digestion of cytochrome c. These samples show two S 2p peaks. The first peak has a binding energy (BE) of 163 eV, which corresponds to the S containing amino acids; the second peak is shifted to 167 eV. This large shift may be the result of Fe-S binding, or oxidation, or both. Low spin ferricytochrome c and ferri-MP were found to have Fe 3p BE's that are unusually low (51 eV) compared to other ferric compounds (54 to 58 eV) and even Fe metal (53 eV). X-ray crystal structures of these compounds show that low spin heme Fe lies in the porphyrin plane; while, high spin heme Fe is displaced above the plane. The N 1s and P 2p spectra of ATP show no change except slight broadening when Nd/sup 3 +/ is substituted for Na/sup +/. Thus, there is no inconsistency with proposals that rare earth ions might be useful as substitutes for alkali metal ions and alkaline earth ions in proteins.

  2. Radiation effects and metalloproteins studied by x-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Wurzbach, J.A.

    1975-07-01

    X-ray photoelectron spectroscopy (XPS) is used to study the bonding structure at the iron site of cytochrome c and the bonding of rare earth ions to the phosphate oxygens of ATP. Radiation effects are studied on several amino acid and simple peptide model systems. The emission spectrum of the x-ray source is calculated from literature references. The distributions of photon energy as a function of photon frequency and as a function of take-off angle are obtained. From these distributions, the radiation dose absorbed by an organic sample is found to be 10 6 rads/sec. The C 1s and N 1s spectra of amino acids and peptides are studied to characterize an internal reference standard for protein XPS spectra. Samples of native cytochrome c prepared from solutions of pH 1.5, 3, 7, and 11 are studied. Control samples include porphyrin cytochrome c (PCC), the metal free analogue of the native protein, and microperoxidase (MP), a mixture of heme peptides derived from the peptic digestion of cytochrome c. These samples show two S 2p peaks. The first peak has a binding energy (BE) of 163 eV, which corresponds to the S containing amino acids; the second peak is shifted to 167 eV. This large shift may be the result of Fe-S binding, or oxidation, or both. Low spin ferricytochrome c and ferri-MP were found to have Fe 3p BE's that are unusually low (51 eV) compared to other ferric compounds (54 to 58 eV) and even Fe metal (53 eV). X-ray crystal structures of these compounds show that low spin heme Fe lies in the porphyrin plane; while, high spin heme Fe is displaced above the plane. The N 1s and P 2p spectra of ATP show no change except slight broadening when Nd 3+ is substituted for Na + . Thus, there is no inconsistency with proposals that rare earth ions might be useful as substitutes for alkali metal ions and alkaline earth ions in proteins

  3. Υ(1S)→γ+noninteracting particles

    International Nuclear Information System (INIS)

    Balest, R.; Cho, K.; Ford, T.; Johnson, D.R.; Lingel, K.; Lohner, M.; Rankin, P.; Smith, J.G.; Alexander, J.P.; Bebek, C.; Berkelman, K.; Bloom, K.; Browder, T.E.; Cassel, D.G.; Cho, H.A.; Coffman, D.M.; Crowcroft, D.S.; Drell, P.S.; Dumas, D.; Ehrlich, R.; Gaidarev, P.; Galik, R.S.; Garcia-Sciveres, M.; Geiser, B.; Gittelman, B.; Gray, S.W.; Hartill, D.L.; Heltsley, B.K.; Henderson, S.; Jones, C.D.; Jones, S.L.; Kandaswamy, J.; Katayama, N.; Kim, P.C.; Kreinick, D.L.; Ludwig, G.S.; Masui, J.; Mevissen, J.; Mistry, N.B.; Ng, C.R.; Nordberg, E.; Patterson, J.R.; Peterson, D.; Riley, D.; Salman, S.; Sapper, M.; Wuerthwein, F.; Urish, M.M.; Avery, P.; Freyberger, A.; Rodriguez, J.; Yang, S.; Yelton, J.; Cinabro, D.; Liu, T.; Saulnier, M.; Wilson, R.; Yamamoto, H.; Bergfeld, T.; Eisenstein, B.I.; Gollin, G.; Ong, B.; Palmer, M.; Selen, M.; Thaler, J.J.; Edwards, K.W.; Ogg, M.; Bellerive, A.; Britton, D.I.; Hyatt, E.R.F.; MacFarlane, D.B.; Patel, P.M.; Spaan, B.; Sadoff, A.J.; Ammar, R.; Baringer, P.; Bean, A.; Besson, D.; Coppage, D.; Copty, N.; Davis, R.; Hancock, N.; Kelly, M.; Kotov, S.; Kravchenko, I.; Kwak, N.; Lam, H.; Kubota, Y.; Lattery, M.; Momayezi, M.; Nelson, J.K.; Patton, S.; Poling, R.; Savinov, V.; Schrenk, S.; Wang, R.; Alam, M.S.; Kim, I.J.; Ling, Z.; Mahmood, A.H.; O'Neill, J.J.; Severini, H.; Sun, C.R.; Wappler, F.; Crawford, G.; Daubenmier, C.M.; Fulton, R.; Fujino, D.; Gan, K.K.; Honscheid, K.; Kagan, H.; Kass, R.; Lee, J.; Malchow, R.; Sung, M.; White, C.; Zoeller, M.M.; Butler, F.; Fu, X.; Nemati, B.; Ross, W.R.; Skubic, P.; Wood, M.; Bishai, M.; Fast, J.; Gerndt, E.; McIlwain, R.L.; Miao, T.; Miller, D.H.; Modesitt, M.; Payne, D.; Shibata, E.I.; Shipsey, I.P.J.; Wang, P.N.; Battle, M.; Ernst, J.; Gibbons, L.; Kwon, Y.; Roberts, S.; Thorndike, E.H.; Wang, C.H.; Dominick, J.; Lambrecht, M.; Sanghera, S.; Shelkov, V.; Skwarnicki, T.; Stroynowski, R.; Volobouev, I.; Wei, G.; Zadorozhny, P.; Artuso, M.; Gao, M.; Goldberg, M.; He, D.

    1995-01-01

    We consider the decay of Υ(1S) particles produced at CESR into a photon which is observed by the CLEO detector plus particles which are not seen. These could be real particles which fall outside of our acceptance, or particles which are noninteracting. We report the results of our search fo the process Υ(1S)→γ+''unseen'' for photon energies >1 GeV, obtaining limits for the case where ''unseen'' is either a single particle or a particle-antiparticle pair. Our upper limits represent the highest sensitivity measurements for such decays to date

  4. Radiative decays of the Upsilon(1S) meson

    International Nuclear Information System (INIS)

    Besson, D.Z.

    1986-01-01

    Using the CLEO detector at the Cornell Electron Storage Ring, the author is able to measure the QCD scaling parameter Λ/sub MS/ as well as the strong coupling constant α/sub s/ through a measurement of the direct photon energy spectrum resulting from decays of the Upsilon(1S) meson. The author finds fair agreement with previous work. In addition, the author sets limits on exclusive two-body radiative decays of the Upsilon(1S) meson and see no evidence for the type of such two-body decays which are observed in psi decays

  5. Assigning Oxidation States to Organic Compounds via Predictions from X-ray Photoelectron Spectroscopy: A Discussion of Approaches and Recommended Improvements

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vipul; Ganegoda, Hasitha; Engelhard, Mark H.; Terry, Jeff H.; Linford, Matthew R.

    2014-02-11

    The traditional assignment of oxidation numbers to organic molecules is problematic. Accordingly, in 1999, Calzaferri proposed a simple and elegant solution that is based on the similar electronegativities of carbon and hydrogen: hydrogen would be assigned an oxidation number of zero when bonded to carbon. Here we show that X-ray photoelectron spectroscopy (XPS), a core electron spectroscopy that is sensitive to oxidation states of elements, confirms his suggestion. In particular, in this work we: (i) list the typical rules for assigning oxidation numbers, (ii) discuss the traditional assignment of oxidation numbers to organic molecules, (iii) review Calzaferri’s solution, (iv) introduce X-ray photoelectron spectroscopy (XPS), (v) show the consistency of Calzaferri’s suggestion with XPS results, (vi) provide supporting examples from the literature, (vii) provide examples from our own research, and (viii) further confirm the Calzaferri suggestion/photoelectron spectroscopy results by discussing two organic well-known reactions. We end by reechoing Calzaferri’s suggestion that the traditional rules for assigning oxidation numbers to organic molecules be modified.

  6. 75 FR 63810 - Grant of Authority for Subzone Status; SICK, Inc. (Photo-Electronic Industrial Sensors...

    Science.gov (United States)

    2010-10-18

    ... Status; SICK, Inc. (Photo- Electronic Industrial Sensors); Bloomington, MN Pursuant to its authority... to establish a special- purpose subzone at the photo-electronic industrial sensor manufacturing and... manufacturing and distribution of photo-electronic industrial sensors at the SICK, Inc., facility located in...

  7. Imaging Molecular Structure through Femtosecond Photoelectron Diffraction on Aligned and Oriented Gas-Phase Molecules

    DEFF Research Database (Denmark)

    Boll, Rebecca; Rouzee, Arnaud; Adolph, Marcus

    2014-01-01

    This paper gives an account of our progress towards performing femtosecond time-resolved photoelectron diffraction on gas-phase molecules in a pump-probe setup combining optical lasers and an X-ray Free-Electron Laser. We present results of two experiments aimed at measuring photoelectron angular...

  8. Wettability of Oil-Producing Reservoir Rocks as Determined from X-ray Photoelectron Spectroscopy

    Science.gov (United States)

    Toledo; Araujo; Leon

    1996-11-10

    Wettability has a dominant effect in oil recovery by waterflooding and in many other processes of industrial and environmental interest. Recently, the suggestion has been made that surface science analytical techniques (SSAT) could be used to rapidly determine the wettability of reservoir materials. Here, we bring the capability of X-ray photoelectron spectroscopy (XPS) to bear on the wettability evaluation of producing reservoir rocks. For a suite of freshly exposed fracture surfaces of rocks we investigate the relationship between wettability and surface composition as determined from XPS. The classical wettability index as measured with the Amott-Harvey test is used here as an indicator of the wettability of natural sandstones. The XPS spectra of oil-wet surfaces of rocks reveal the existence of organic carbon and also of an "organic" silicon species, of the kind Si-CH relevant to silanes, having a well-defined binding energy which differs from that of the Si-O species of mineral grains. We provide quantifiable evidence that chemisorbed organic material on the pore surfaces defines the oil-wetting character of various reservoir sandstones studied here which on a mineralogic basis are expected to be water-wet. This view is supported by a strong correlation between C content of pore surfaces and rock wettability. The results also suggest a correlation between organic silicon content on the pore surfaces and rock hydrophobicity.

  9. Characterization of Colloidal Quantum Dot Ligand Exchange by X-ray Photoelectron Spectroscopy

    Science.gov (United States)

    Atewologun, Ayomide; Ge, Wangyao; Stiff-Roberts, Adrienne D.

    2013-05-01

    Colloidal quantum dots (CQDs) are chemically synthesized semiconductor nanoparticles with size-dependent wavelength tunability. Chemical synthesis of CQDs involves the attachment of long organic surface ligands to prevent aggregation; however, these ligands also impede charge transport. Therefore, it is beneficial to exchange longer surface ligands for shorter ones for optoelectronic devices. Typical characterization techniques used to analyze surface ligand exchange include Fourier-transform infrared spectroscopy, x-ray diffraction, transmission electron microscopy, and nuclear magnetic resonance spectroscopy, yet these techniques do not provide a simultaneously direct, quantitative, and sensitive method for evaluating surface ligands on CQDs. In contrast, x-ray photoelectron spectroscopy (XPS) can provide nanoscale sensitivity for quantitative analysis of CQD surface ligand exchange. A unique aspect of this work is that a fingerprint is identified for shorter surface ligands by resolving the regional XPS spectrum corresponding to different types of carbon bonds. In addition, a deposition technique known as resonant infrared matrix-assisted pulsed laser evaporation is used to improve the CQD film uniformity such that stronger XPS signals are obtained, enabling more accurate analysis of the ligand exchange process.

  10. X-ray photoelectron spectroscopy studies of hard coatings formed by titanium on 304 stainless steel

    International Nuclear Information System (INIS)

    Nair, M.R.; Kothari, D.C.; Rangwala, A.A.; Lal, K.B.; Prabhawalkar, P.D.; Raole, P.M.

    1986-01-01

    Titanium ions are implanted (at 30 keV) in 304 stainless steel to a dose of 1.8x10 17 ions cm -2 using 15 μA cm -2 and 5 μA cm -2 beam current densities for specimens 2 and 3 respectively. X-ray photoelectron spectroscopy (XPS) measurements are performed at different temperatures. The microhardness of implanted and unimplanted specimens is also measured. In specimen 2 the microhardness does not increase significantly and XPS measurements give evidence of carburized surface alloy formation. At 250 0 C TiO 2 is detected on the surface and it migrates into the bulk phase above 350 0 C. In specimen 3 the XPS measurements exhibit an absence of iron owing to the radiation-induced segregation of titanium on the surface. This specimen shows an increase in microhardness. The XPS measurements reveal a layer of (TiC x -C) on the surface which is suggested to be responsible for the increase in microhardness. Upon heating, TiC x is seen to move into the bulk phase and the carbon concentration is increased. These changes occurring at higher temperatures are suggested as having an effect on the wear-resistant properties of titanium-implanted 304 stainless steel. (orig.)

  11. Fessibility Study on Nitrogen in Explosives using X-ray Photoelectron Spectroscopy: Chemical Fertilizer

    International Nuclear Information System (INIS)

    Dararutana, P.

    2014-01-01

    It was known that an explosive is defined as a material which contains a large amount of energy stored in chemical bonds. The energetic stability of gaseous products, and hence, their generation come from the strong bond formation of carbon (mono/di)oxide and (di)nitrogen. Consequently, most commercial explosives are contained -NO 2 , -ONO 2 and/or -NHNO 2 groups which when detonated release gases like the aforementioned ones, e.g., nitroglycerin, TNT, HMX, PETN, nitrocellulose, etc. It was revealed that the elemental compositions, especially N was found in most of the explosive and fertilizer. Chemical fertilizers that used as explosive stimulants were analyzed using X-ray photoelectron spectroscopy (XPS) and scanning electron microscope coupled with energy-dispersive X-ray fluorescence spectroscopy (SEM-EDS). XPS spectra showed relatively high amount of nitrogen (N) in the various samples, especially sample #6 and #7. In addition, the elemental analysis revealed the presence of trace elements. Explosives and fertilizers have differences in specific compositions. It can be concluded that these methods seem to be used as a fingerprint examination to identify various kinds of explosives and fertilizers.

  12. Charge transfer in H2+-H(1s) collisions

    International Nuclear Information System (INIS)

    Errea, L.F.; Macias, A.; Mendez, L.; Rabadan, I.; Riera, A.

    2005-01-01

    We present an ab initio study of H 2 + +H(1s) collisions at H 2 + impact energies between 0.4 and 50keV. Cross sections are obtained within the sudden approximation for rotation and vibration of the diatomic molecule. We have found that anisotropy effects are crucial to correctly describe this system in this energy range

  13. Quantitative in-depth state analysis by means of x-ray photoelectron spectroscopy and its application to surface Layer of SiC coatings

    International Nuclear Information System (INIS)

    Yabe, Katsumasa; Yamashina, Toshiro.

    1980-01-01

    An attempt of quantitative state analysis was made on the surface and the depth profile of inorganic compounds by X-ray photoelectron spectroscopy (XPS) which was combined by the sputter-etching with argon ions. A masking attachment was designed for an area of sample which is exposed to the non-uniform portion of the ion beam. Uniform sputter-etching could be attained, with the advantages on XPS observation of low background level and less impurity spectra from other origins than the sample. The photoelectron yields were examined for the quantitative analysis by XPS. The method established here was applied to analyze the surface and in-depth composition of SiC coatings onto carbon and molybdenum which are promising candidate materials as the first wall in a controlled thermonuclear reactor. (author)

  14. Observation of atomic arrangement by using photoelectron holography and atomic stereo-photograph

    International Nuclear Information System (INIS)

    Matsushita, Tomohiro; Guo, Fang Zhun; Agui, Akane; Matsui, Fumihiko; Daimon, Hiroshi

    2006-01-01

    Both a photoelectron holography and atomic stereo-photograph are the atomic structure analysis methods on the basis of photoelectron diffraction. They have six special features such as 1) direct determination of atomic structure, 2) measurement of three dimensional atomic arrangements surrounding of specific element in the sample, 3) determination of position of atom in spite of electron cloud, 4) unnecessary of perfect periodic structure, 5) good sensitivity of structure in the neighborhood of surface and 6) information of electron structure. Photoelectron diffraction, the principle and measurement system of photoelectron holography and atomic stereo-photograph is explained. As application examples of atomic stereo-photograph, the single crystal of cupper and graphite are indicated. For examples of photoelectron holography, Si(001)2p and Ge(001)3s are explained. (S.Y.)

  15. Upper limits for the circular dichroism for the C 1s and O 1s core excitation of methyl oxirane

    International Nuclear Information System (INIS)

    Pruemper, G; Lischke, T; Fukuzawa, H; Reinkoester, A; Ueda, K

    2007-01-01

    The circular dichroism (CD) in the total and partial ion yields of methyl-oxirane C 3 H 6 O was measured at the C 1s and O 1s edges. The difference of the response of the chiral molecule to circularly polarized light with opposite handedness was found to be less than 0.2% for the total ion yield and less than 0.5% for the partial ion yield. Additionally we tried to find a dipole allowed molecular orientation CD effect by analysing the fragmentation in the forward and backward direction. For this effect we found an upper limit of 1-2% for all abundant ionic fragments

  16. X-ray photoelectron spectroscopic and morphologic studies of Ru nanoparticles deposited onto highly oriented pyrolytic graphite

    Energy Technology Data Exchange (ETDEWEB)

    Bavand, R.; Yelon, A.; Sacher, E., E-mail: edward.sacher@polymtl.ca

    2015-11-15

    Highlights: • Ru nanoparticle 3d, 3p, and 3s core XPS spectra were found to be composed of three symmetric components. The first component, Ru1, is due to zerovalent R, while components Ru2 and Ru3 are attributed to surface oxide species. • The nanoparticle surface additionally possesses a carbon-rich surface, from residual gas hydrocarbons present in the vacuum. • TEM photomicrographs show the aggregation and partial coalescence of nanoparticles deposited at high deposition rates, provoked by the high rate of release of the heat of condensation, indicating weak bonding to the HOPG substrate. • The analysis of the valence band indicates an increase of the Kubo gap with decreasing NP size, accompanied by an abrupt electron spill-over from the 4d to the 5s orbital. - Abstract: Ruthenium nanoparticles (Ru NPs) function as effective catalysts in specific reactions, such as methanation and Fischer-Tropsch syntheses. It is our purpose to physicochemically characterize their surfaces, at which catalysis occurs, by surface-sensitive X-ray photoelectron spectroscopy (XPS), using the symmetric peak component anaylsis technique developed in our laboratory to reveal previously hidden components. Ru NPs were deposited by evaporation (0.25–1.5 nm nominal deposition range) onto highly oriented pyrolytic graphite (HOPG). In addition to their surfaces being characterized by XPS, an indication of morphology was obtained from transmission electron microscopy (TEM). Our use of symmetric peak component XPS analysis has revealed detailed information on a previously unidentified surface oxide initially formed, as well as on the valence electronic structure and its variation with NP size, information that is of potential importance in the use of these NPs in catalysis. Each of the several Ru core XPS spectra characterized (3d, 3p and 3s) was found to be composed of three symmetric components. Together with two metal oxide O1s components, these give evidence of a rather complex

  17. Angular distributions of photoelectrons from free Na clusters

    International Nuclear Information System (INIS)

    Wopperer, P.; Dinh, P. M.; Faber, B.; Reinhard, P.-G.; Suraud, E.

    2010-01-01

    We explore, from a theoretical perspective, photoelectron angular distributions (PADs) of the Na clusters Na 8 , Na 10 , Na 12 , Na 18 , Na 3 + , Na 11 + , Na 13 + , and Na 19 + . The basis of the description is the time-dependent local-density approximation (TDLDA), augmented by a self-interaction correction (SIC) to describe ionization properties correctly. The scheme is solved on a numerical grid in coordinate space with absorbing bounds. We assume for each cluster system an isotropic ensemble of free clusters and develop for the case of one-photon emission analytical formulas for computing the orientation-averaged PAD on the basis of a few TDLDA-SIC calculations for properly chosen reference orientations. It turns out that all the information in the averaged PAD is contained in one anisotropy parameter. We find that this parameter varies very little with system size, but as a whole is crucially influenced by the detailed ionic structure. We also make comparisons with direct orientation averaging and consider one example reaching outside the perturbative regime.

  18. Multiphoton ionization photoelectron spectroscopy of xenon: Experiment and theory

    International Nuclear Information System (INIS)

    Bajic, S.J.; Compton, R.N.; Tang, X.; L'Huiller, A.; Lambropoulos, P.

    1988-11-01

    Photoelectron energy and angular distributions for resonantly enhanced multiphoton ionization (REMPI) of xenon via the three-photon-allowed 7s[3/2] 1 0 and 5d[3/2] 1 0 states have been studied both experimentally and theoretically. The electron kinetic energy spectra give the probability of leaving Xe + in either the 2 P/sub 1/2/ or 2 P/sub 3/2/ core. The measured branching ratio for leaving each ionic core is used to test the theoretical description of the REMPI process. Measurements of both the angular distributions and the [3+1] REMPI via the 5d state are adequately reproduced by multichannel quantum defect theory. However, measurements of angular distributions for the electrons resulting from [3+1] via the 7s[3/2] 1 0 state into Xe + 2 P/sub 3/2/ (core preserving) or Xe + 2 P/sub 1/2/ (core changing) are in striking disagreement with theory. 1 ref., 2 figs

  19. Renormalized multiple-scattering theory of photoelectron diffraction

    International Nuclear Information System (INIS)

    Biagini, M.

    1993-01-01

    The current multiple-scattering cluster techniques for the calculation of x-ray photoelectron and Auger-electron diffraction patterns consume much computer time in the intermediate-energy range (200--1000 eV); in fact, because of the large value of the electron mean free path and of the large forward-scattering amplitude at such energies, the electron samples a relatively large portion of the crystal, so that the number of paths to be considered becomes dramatically high. An alternative method is developed in the present paper: instead of calculating the individual contribution from each single path, the scattering matrix of each plane parallel to the surface is calculated with a renormalization process that calculates every scattering event in the plane up to infinite order. Similarly the scattering between two planes is calculated up to infinite order, and the double-plane scattering matrix is introduced. The process may then be applied to the calculation of a larger set of atomic layers. The advantage of the method is that a relatively small number of internuclear vectors have been used to obtain convergence in the calculation

  20. Core level photoelectron spectroscopy probed heterogeneous xenon/neon clusters

    International Nuclear Information System (INIS)

    Pokapanich, Wandared; Björneholm, Olle; Öhrwall, Gunnar; Tchaplyguine, Maxim

    2017-01-01

    Binary rare gas clusters; xenon and neon which have a significant contrariety between sizes, produced by a co-expansion set up and have been studied using synchrotron radiation based x-ray photoelectron spectroscopy. Concentration ratios of the heterogeneous clusters; 1%, 3%, 5% and 10% were controlled. The core level spectra were used to determine structure of the mixed cluster and analyzed by considering screening mechanisms. Furthermore, electron binding energy shift calculations demonstrated cluster aggregation models which may occur in such process. The results showed that in the case of low mixing ratios of 3% and 5% of xenon in neon, the geometric structures exhibit xenon in the center and xenon/neon interfaced in the outer shells. However, neon cluster vanished when the concentration of xenon was increased to 10%. - Highlights: • Co-expansion setup is suitable for producing binary Xe/Ne clusters. • Appropriate temperature, pressure, and mixing ratios should be strictly controlled. • Low mixing ratio, Xe formed in the core and Xe/Ne interfacing in the outer shell. • High mixing ratio, only pure Xe clusters were detected.

  1. X-Ray Photoelectron Spectroscopic Characterization of Iron Oxide Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Radu, T., E-mail: Teodora.Radu@itim-cj.ro [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293, Cluj Napoca (Romania); Iacovita, C. [Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400349, Cluj-Napoca (Romania); Benea, D. [Faculty of Physics, Babes Bolyai University, 400271, Cluj-Napoca (Romania); Turcu, R. [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat Street, 400293, Cluj Napoca (Romania)

    2017-05-31

    Highlights: • Characterization of three types of iron oxides magnetic nanoparticles. • A correlation between valence band XPS and the degree of iron oxidation is proposed. • Theoretical contributions of Fe in tetragonal and octahedral environment are shown. - Abstract: We report X-ray photoelectron spectroscopy (XPS) results on iron oxide magnetic nanoparticle (Fe{sub 3}O{sub 4}) synthesized using solvothermal reduction in the presence of polyethylene glycol. The magnetite obtained was employed as precursor for the synthesis of γ-Fe{sub 2}O{sub 3} (by oxygen dissociation) which in turn was transformed into α-Fe{sub 2}O{sub 3}. We confirmed the magnetite, maghemite and hematite structure by Fourier Transformed Spectroscopy (FTIR) and X-ray diffraction (XRD). The analysis of the XPS core level and valence band (VB) photoemission spectra for all investigated samples is discussed in terms of the degree of iron oxidation. This is of fundamental importance to better understand the electronic structure of the obtained iron oxide nanoparticles in order to control and improve their quality for specific biomedical applications. Moreover, theoretical band structure calculations are performed for magnetite and the separate contributions of Fe in tetragonal and octahedral environment are shown.

  2. Depth-profiling using X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Pijolat, M.; Hollinger, G.

    1980-12-01

    The possibilities of X-ray photoelectron spectroscopy (or ESCA) for depth-profiling into shallow depths (approximately 10-100 A) have been studied. The method of ion-sputtering removal has first been investigated in order to improve its depth-resolution (approximately 50-150 A). A procedure which eliminates the effects due to the resolution function of the instrumental probe (analysed depth approximately 50 A) has been settled; but it is not yet sufficient, and the sputter - broadening due to the ion-induced damages must be taken into account (broadening function approximately 50 A for approximately 150 A removal). Because of serious difficulties in estimating the broadening function an alternative is to develop non destructive methods, so a new method based on the dependence of the analysed depth with the electron emission angle is presented. The extraction of the concentration profile from angular distribution experiments is achieved, in the framework of a flat-layer model, by minimizing the difference between theoretical and experimental relative intensities. The applicability and limitations of the method are discussed on the basis of computer simulation results. The depth probed is of the order of 3 lambda (lambda being the value of the inelastic mean free path, typically 10-20 A) and the depth-resolution is of the order of lambda/3 [fr

  3. X-ray-excited Auger and photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Weightman, P.

    1982-01-01

    This article reviews developments in the understanding of x-ray-excited Auger and photoelectron spectra in the light of theoretical developments in atomic, molecular and solid-state physics. After reviewing progress in XPS and AES separately emphasis is placed on the inter-relationship between the two fields: Auger rates, for example, are the dominant contribution to core-level XPS linewidths and by combining XPS and AES it is possible to deduce information about Coster-Kronig processes which are difficult to study directly. An account is given of how the combination of measurements of environmentally dependent shifts in XPS and AES energies allows one to isolate initial- and final-state contributions which can then be related to the results of other experimental techniques. There is a brief discussion of many-electron effects and a discussion of how the combination of XPS and AES spectra involving valence levels enables the effects of hole-state localisation to be studied. (author)

  4. The effect of promoters on the electronic structure of ruthenium catalysts supported on carbon

    International Nuclear Information System (INIS)

    Guraya, Monica; Sprenger, Susanne; Rarog-Pilecka, Wioletta; Szmigiel, Dariusz; Kowalczyk, Zbigniew; Muhler, Martin

    2004-01-01

    Alkali- and earth-alkali-promoted ruthenium catalysts supported on graphitized carbon were investigated by means of X-ray and ultraviolet photoelectron spectroscopy (XPS and UPS) in order to study the effect of promoters on the electronic structure of this metal-support system. Samples were measured as prepared and after thorough reduction in hydrogen. The C 1s spectra of reduced alkali-promoted catalysts showed a shift towards higher binding energies and an asymmetric broadening. Neither non-promoted nor Ba-promoted Ru/C samples exhibited such a behaviour after similar treatments. The most important feature in the UP spectra of the reduced alkali-promoted catalysts was the appearance of a well defined Fermi edge absent in the semimetal-like electronic structure of graphite. No significant effects appeared in the case of non-promoted or Ba-promoted catalysts. The increase in the density of occupied states at the Fermi energy indicates a shift of this level into the conduction band, due to a charge transfer from the promoter to the support. This interpretation also provides an explanation for the observed higher C 1s binding energy and asymmetric broadening, due to the off-set introduced in the binding energy scale and the increasing probability of inelastic excitations near the Fermi level. In addition to photoelectron spectroscopy, low energy ion scattering (ISS) was used to obtain information about the localisation of the promoters. Based on the mild sputtering effect during prolonged series of spectra, it was possible to conclude that potassium covers both the carbon support and the Ru metal particles

  5. Design principles of the yeast G1/S switch.

    Directory of Open Access Journals (Sweden)

    Xiaojing Yang

    2013-10-01

    Full Text Available A hallmark of the G1/S transition in budding yeast cell cycle is the proteolytic degradation of the B-type cyclin-Cdk stoichiometric inhibitor Sic1. Deleting SIC1 or altering Sic1 degradation dynamics increases genomic instability. Certain key facts about the parts of the G1/S circuitry are established: phosphorylation of Sic1 on multiple sites is necessary for its destruction, and both the upstream kinase Cln1/2-Cdk1 and the downstream kinase Clb5/6-Cdk1 can phosphorylate Sic1 in vitro with varied specificity, cooperativity, and processivity. However, how the system works as a whole is still controversial due to discrepancies between in vitro, in vivo, and theoretical studies. Here, by monitoring Sic1 destruction in real time in individual cells under various perturbations to the system, we provide a clear picture of how the circuitry functions as a switch in vivo. We show that Cln1/2-Cdk1 sets the proper timing of Sic1 destruction, but does not contribute to its destruction speed; thus, it acts only as a trigger. Sic1's inhibition target Clb5/6-Cdk1 controls the speed of Sic1 destruction through a double-negative feedback loop, ensuring a robust all-or-none transition for Clb5/6-Cdk1 activity. Furthermore, we demonstrate that the degradation of a single-phosphosite mutant of Sic1 is rapid and switch-like, just as the wild-type form. Our mathematical model confirms our understanding of the circuit and demonstrates that the substrate sharing between the two kinases is not a redundancy but a part of the design to overcome the trade-off between the timing and sharpness of Sic1 degradation. Our study provides direct mechanistic insight into the design features underlying the yeast G1/S switch.

  6. Surface chemical composition of human maxillary first premolar as assessed by X-ray photoelectron spectroscopy (XPS)

    Science.gov (United States)

    Lou, Leo; Nelson, Alan E.; Heo, Giseon; Major, Paul W.

    2008-08-01

    The surface chemical composition of dental enamel has been postulated as a contributing factor in the variation of bond strength of brackets bonded to teeth, and hence, the probability of bracket failure during orthodontic treatment. This study systematically investigated the chemical composition of 98 bonding surfaces of human maxillary premolars using X-ray photoelectron spectroscopy (XPS) to ascertain compositional differences between right and left first premolars. The major elements detected in all samples were calcium, phosphorus, oxygen, nitrogen and carbon. Surface compositions were highly variable between samples and several elements were found to be highly correlated. No statistical significant difference in the chemical composition of the maxillary right and left first premolars was found ( p > 0.05). Knowledge of the chemical composition of enamel surfaces will facilitate future studies that relate this information to the variations in dental enamel bond strength.

  7. Surface chemical composition of human maxillary first premolar as assessed by X-ray photoelectron spectroscopy (XPS)

    Energy Technology Data Exchange (ETDEWEB)

    Lou, Leo [Orthodontic Graduate Program, Faculty of Medicine and Dentistry, University of Alberta (Canada); Nelson, Alan E. [Department of Chemical and Materials Engineering, University of Alberta (Canada)], E-mail: aenelson@dow.com; Heo, Giseon [Department of Statistics, Department of Dentistry, University of Alberta (Canada); Major, Paul W. [Orthodontic Graduate Program, Faculty of Medicine and Dentistry, University of Alberta (Canada)

    2008-08-30

    The surface chemical composition of dental enamel has been postulated as a contributing factor in the variation of bond strength of brackets bonded to teeth, and hence, the probability of bracket failure during orthodontic treatment. This study systematically investigated the chemical composition of 98 bonding surfaces of human maxillary premolars using X-ray photoelectron spectroscopy (XPS) to ascertain compositional differences between right and left first premolars. The major elements detected in all samples were calcium, phosphorus, oxygen, nitrogen and carbon. Surface compositions were highly variable between samples and several elements were found to be highly correlated. No statistical significant difference in the chemical composition of the maxillary right and left first premolars was found (p > 0.05). Knowledge of the chemical composition of enamel surfaces will facilitate future studies that relate this information to the variations in dental enamel bond strength.

  8. Three-Dimensional X-Ray Photoelectron Tomography on the Nanoscale: Limits of Data Processing by Principal Component Analysis

    DEFF Research Database (Denmark)

    Hajati, S.; Walton, J.; Tougaard, S.

    2013-01-01

    In a previous article, we studied the influence of spectral noise on a new method for three-dimensional X-ray photoelectron spectroscopy (3D XPS) imaging, which is based on analysis of the XPS peak shape [Hajati, S., Tougaard, S., Walton, J. & Fairley, N. (2008). Surf Sci 602, 3064-3070]. Here, we...... study in more detail the influence of noise reduction by principal component analysis (PCA) on 3D XPS images of carbon contamination of a patterned oxidized silicon sample and on 3D XPS images of Ag covered by a nanoscale patterned octadiene layer. PCA is very efficient for noise reduction, and using...... acquisition time. A small additional amount of information is obtained by using up to five PCA factors, but due to the increased noise level, this information can only be extracted if the intensity of the start and end points for each spectrum are obtained as averages over several energy points....

  9. Surface chemical composition of human maxillary first premolar as assessed by X-ray photoelectron spectroscopy (XPS)

    International Nuclear Information System (INIS)

    Lou, Leo; Nelson, Alan E.; Heo, Giseon; Major, Paul W.

    2008-01-01

    The surface chemical composition of dental enamel has been postulated as a contributing factor in the variation of bond strength of brackets bonded to teeth, and hence, the probability of bracket failure during orthodontic treatment. This study systematically investigated the chemical composition of 98 bonding surfaces of human maxillary premolars using X-ray photoelectron spectroscopy (XPS) to ascertain compositional differences between right and left first premolars. The major elements detected in all samples were calcium, phosphorus, oxygen, nitrogen and carbon. Surface compositions were highly variable between samples and several elements were found to be highly correlated. No statistical significant difference in the chemical composition of the maxillary right and left first premolars was found (p > 0.05). Knowledge of the chemical composition of enamel surfaces will facilitate future studies that relate this information to the variations in dental enamel bond strength

  10. Development of a superconducting radio frequency photoelectron injector

    International Nuclear Information System (INIS)

    Arnold, A.; Buettig, H.; Janssen, D.; Kamps, T.; Klemz, G.; Lehmann, W.D.; Lehnert, U.; Lipka, D.; Marhauser, F.; Michel, P.; Moeller, K.; Murcek, P.; Schneider, Ch.; Schurig, R.; Staufenbiel, F.; Stephan, J.; Teichert, J.; Volkov, V.; Will, I.; Xiang, R.

    2007-01-01

    A superconducting radio frequency (RF) photoelectron injector (SRF gun) is under development at the Research Center Dresden-Rossendorf. This project aims mainly at replacing the present thermionic gun of the superconducting electron linac ELBE. Thereby the beam quality is greatly improved. Especially, the normalized transverse emittance can be reduced by up to one order of magnitude depending on the operating conditions. The length of the electron bunches will be shortened by about two orders of magnitude making the present bunchers in the injection beam line dispensable. The maximum obtainable bunch charge of the present thermionic gun amounts to 80pC. The SRF gun is designed to deliver also higher bunch charge values up to 2.5nC. Therefore, this gun can be used also for advanced facilities such as energy recovery linacs (ERLs) and soft X-ray FELs. The SRF gun is designed as a 312 cell cavity structure with three cells basically TESLA cells supplemented by a newly developed gun cell and a choke filter. The exit energy is projected to be 9.5MeV. In this paper, we present a description of the design of the SRF gun with special emphasis on the physical and technical problems arising from the necessity of integrating a photocathode into the superconducting cavity structure. Preparation, transfer, cooling and alignment of the photocathode are discussed. In designing the SRF gun cryostat for most components wherever possible the technical solutions were adapted from the ELBE cryostat in some cases with major modifications. As concerns the status of the project the design is finished, most parts are manufactured and the gun is being assembled. Some of the key components are tested in special test arrangements such as cavity warm tuning, cathode cooling, the mechanical behavior of the tuners and the effectiveness of the magnetic screening of the cavity

  11. Coincident photoelectron spectroscopy on superconductors; Koinzidente Photoelektronenspektroskopie an Supraleitern

    Energy Technology Data Exchange (ETDEWEB)

    Voss, Stefan

    2011-07-01

    Aim of the performed experiments of this thesis was to attempt to detect Cooper pairs as carriers of the superconducting current directly by means of the photoelectric effect. The method of the coincident photoelectron spectroscopy aims thereby at the detection of two coherently emitted electrons by the interaction with a photon. Because electrostatic analyzers typically cover only a very small spatial angle, which goes along with very low coincidence rates, in connection with this thesis a time-of-flight projection system has been developed, which maps nearly the whole spatial angle on a position-resolving detector. The pulsed light source in form of special synchrotron radiation necessary for the measurement has been adjusted so weak, that only single photons could arrive at the sample. Spectroscoped were beside test measurements on silver layers both a lead monocrystal as representative of the classical BCS superconductors and monocrystalline Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} from the family of the high-temperature superconductors. With excitation energies up to 40 eV could be shown that sufficiently smooth and clean surfaces in the superconducting phase exhibit within the resolving power of about 0.5 eV no recognizable differences in comparison to the normally conducting phase. Beside these studies furthermore the simple photoemission at the different samples and especially in the case of the lead crystal is treated, because here no comparable results are known. Thereby the whole momentum space is discussed and the Fermi surface established as three-dimensional model, by means of which the measurement results are discussed. in the theoretical descriptions different models for the Cooper-pair production are presented, whereby to the momentum exchange with the crystal a special role is attributed, because this can only occur in direct excitations via discrete lattice vectors.

  12. Theory and Application of Photoelectron Diffraction for Complex Oxide Systems

    Science.gov (United States)

    Chassé, Angelika; Chassé, Thomas

    2018-06-01

    X-ray photoelectron diffraction (XPD) has been used to investigate film structures and local sites of surface and dopant atoms in complex oxide materials. We have performed angular-resolved measurements of intensity distribution curves (ADCs) and patterns (ADPs) of elemental core level intensities from binary to quaternary mixed oxide samples and compared them to multiple-scattering cluster (MSC) calculations in order to derive information on structural models and related parameters. MSC calculations permitted to describe both bulk diffraction features of binary oxide MnO(001) and the thickness-dependence of the tetragonal distortion of epitaxial MnO films on Ag(001). XPD was further used to investigate the surface termination of perovskite SrTiO3 and BaTiO3 substrates in order to evaluate influence of different ex situ and in situ preparation procedures on the surface layers, which are crucial for quality of following film growth. Despite the similarity of local environments of Sr (Ba) and Ti atoms in the perovskite film structure an angular region in the ADCs was identified as a fingerprint with the help of MSC simulations which provided clear conclusions on the perovskite oxide surfaces. Dopant sites in quaternary perovskite manganites La1-xCaxMnO3, La1-xSrxMnO3, and La1-xCexMnO3 were studied with polar angle scans of the photoemission intensities of host and dopant atoms. Both direct comparison of experimental ADCs and to the simulations within MSC models confirm the occupation of A sites by the dopants and the structural quality of the complex oxide films.

  13. X-ray photoelectron spectroscopy of high-temperature superconductor clean surfaces and interfaces

    International Nuclear Information System (INIS)

    Hill, D.M.

    1989-01-01

    X-ray photoelectron spectroscopy was used to determine the characteristic spectra for the high temperature superconductors La 1.85 Sr 0.15 CuO 4 , YBa 2 Cu 3 O 7-x , and Bi 2 Sr 2-x Ca 1+x Cu 2 O 8+y and their impurity phases. The oxidation state of Cu in all of these materials was predominantly Cu 2+ . The O 1s emission for clean surfaces was a single broad peak near 529 eV derived from emission from inequivalent O sites in the superconductors. The valence bands were a -6 eV wide manifold of Cu 3d-O 2p hybrid bands in the ∼ 1-7 eV binding energy range, with very low emission at E F arising from antibonding Cu 3d-O 2p orbitals. Emission from grain boundary and other impurity phases appeared at 531 eV for the O 1s core level, and in general ∼ 1-2 eV higher energy than the superconductor peak for other core levels except for Cu 2p. Impurity phases appeared in the valence bands as a shoulder at ∼ 5 eV. The amount of impurities detected was shown to be dependent on the fracture properties of the superconductors. All of the materials were shown to be stable under vacuum. The products and spatial extent of chemical reactions with Ag, Al, Al oxide, Au, Bi, Bi oxide, CaF 2 , Cu, Fe, Si, and Si oxide overlayers on these materials also were examined. Au, CaF 2 , and metal oxides deposited by activated oxidation during evaporation were non-reactive and non-disruptive of the superconductor surfaces. Ag overlayers were unique in that they disrupted the superconductor during deposition, but exhibited no evidence of any chemical reactions. Overlayers with an affinity for oxygen withdrew O from the superconductor. The O loss occurred preferentially from Cu atoms in the superconductor and disrupted the planar bonding structure

  14. Subcycle interference dynamics of time-resolved photoelectron holography with midinfrared laser pulses

    International Nuclear Information System (INIS)

    Bian Xuebin; Yuan, Kai-Jun; Bandrauk, Andre D.; Huismans, Y.; Smirnova, O.; Vrakking, M. J. J.

    2011-01-01

    Time-resolved photoelectron holography from atoms using midinfrared laser pulses is investigated by solving the corresponding time-dependent Schroedinger equation (TDSE) and a classical model, respectively. The numerical simulation of the photoelectron angular distribution of Xe irradiated with a low-frequency free-electron laser source agrees well with the experimental results. Different types of subcycle interferometric structures are predicted by the classical model. Furthermore with the TDSE model it is demonstrated that the holographic pattern is sensitive to the shape of the atomic orbitals. This is a step toward imaging by means of photoelectron holography.

  15. The multilayered structure of ultrathin amorphous carbon films synthesized by filtered cathodic vacuum arc deposition

    KAUST Repository

    Wang, Na; Komvopoulos, Kyriakos

    2013-01-01

    The structure of ultrathin amorphous carbon (a-C) films synthesized by filtered cathodic vacuum arc (FCVA) deposition was investigated by high-resolution transmission electron microscopy, electron energy loss spectroscopy, and x-ray photoelectron

  16. Observation and resonant x-ray optical interpretation of multi-atom resonant photoemission effects in O 1s emission from NiO

    International Nuclear Information System (INIS)

    Mannella, N.; Yang, S.-H.; Mun, B.S.; Garcia de Abajo, F.J.; Kay, A.W.; Sell, B.C.; Watanabe, M.; Ohldag, H.; Arenholz, E.; Young, A.T.; Hussain, Z.; Van Hove, M.A.; Fadley, C.S.

    2006-01-01

    We present experimental and theoretical results for the variation of the O 1s intensity from a NiO(001) surface as the excitation energy is varied through the Ni 2p1/2,3/2 absorption resonances, and as the incidence angle of the radiation is varied from grazing to larger values. For grazing incidence, a strong multi-atom resonant photoemission(MARPE) effect is seen on the O 1s intensity as the Ni 2p resonances are crossed, but its magnitude decreases rapidly as the incidence angle is increased. Resonant x-ray optical (RXRO) calculations are found to predict these effects very well, although the experimental effects are found to decrease at higher incidence angles faster than those in theory. The potential influence of photoelectron diffraction effects on such measurements are also considered, including experimental data with azimuthal-angle variation and corresponding multiple-scattering-diffraction calculations, but we conclude that they do not vary beyond what is expected on the basis of the change in photoelectron kinetic energy. Varying from linear polarization to circular polarization is found to enhance these effects in NiO considerably, although the reasons are not clear. We also discuss the relationship of these measurements to other related interatomic resonance experiments and theoretical developments, and make some suggestions for future studies in this area

  17. Influence of amine-grafted multi-walled carbon nanotubes on physical and rheological properties of PMMA-based nanocomposites

    International Nuclear Information System (INIS)

    Kim, Ki-Seok; Park, Soo-Jin

    2011-01-01

    In this work, poly(methyl methacrylate) (PMMA) was grafted onto amine treated multi-walled carbon nanotubes (NH-MWNTs) and the physical and rheological properties of the NH-MWNTs-g-PMMA nanocomposites were investigated. The graft reaction of NH-MWNTs and the PMMA matrix was confirmed from the change of the N 1S peaks, including those of amine oxygen and amide oxygen, by X-ray photoelectron spectroscopy (XPS). The thermal and mechanical properties of the NH-MWNT-g-PMMA nanocomposites were enhanced by the graft reaction between NH-MWNTs and PMMA matrix. In addition, the viscosity of the nanocomposites was increased with the addition of NH-MWNTs. Storage (G') and loss modulus (G'') were significantly increased by increase in the NH-MWNT content compared to acid-treated MWNTs/PMMA nanocomposites. This increase was attributed to the strong interaction by the grafting reaction between NH-MWNTs and the PMMA matrix. - Graphical abstract: This describes the increase of mechanical properties in NH-MWNTs-g-PMMA hybrid composites with different NH-MWNT contents. Highlights: → Aminized carbon nanotubes are used as reinforcement for poly(methylmethacrylate). → Poly(methylmethacrylate) is grafted on aminized carbon nanotubes by thermal reaction. → Grafting of carbon nanotubes and polymer provide enhanced physical properties. → It was due to the strong interaction between carbon nanotubes and polymer matrix.

  18. Photoelectron angular distribution parameters for elements Z=55 to Z=100 in the photoelectron energy range 100-5000 eV

    CERN Document Server

    Trzhaskovskaya, M B; Yarzhemsky, V G

    2002-01-01

    Presented here are parameters of the angular distribution of photoelectrons along with the subshell photoionization cross sections for all atoms with 55<=Z<=100 and for atomic shells with binding energies lower than 2000 eV. The parameters are given for nine photoelectron energies in the range 100-5000 eV. Relativistic calculations have been carried out within the quadrupole approximation by the use of the central Dirac-Fock-Slater potential. The effect of the hole resulting in the atomic subshell after photoionization has been taken into account in the framework of the frozen orbital approximation.

  19. Electrochemical study of nitrobenzene reduction using novel Pt nanoparticles/macroporous carbon hybrid nanocomposites

    International Nuclear Information System (INIS)

    Zhang Yufan; Zeng Lijun; Bo Xiangjie; Wang Huan; Guo Liping

    2012-01-01

    Graphical abstract: A one-step microwave-assisted route for rapidly synthesizing Pt nanoparticles ensemble on macroporous carbon hybrid nanocomposites (PNMPC) has been reported. As a novel electrode material, the excellent electrochemical behavior of nitrobenzene was investigated thoroughly at the PNMPC modified glassy carbon electrode. And moreover, the modified electrode was successfully applied to the determination of nitrobenzene in real samples. Highlights: ► One-step microwave-assisted heating synthesis Pt nanoparticles/macroporous carbon hybrid nanocomposites (PNMPC). ► Catalytic rate constant being 3.14 × 10 4 M −1 s −1 for NB in pH 7.0. ► Sensitive electrochemical detection of NB at the PNMPC/Nafion/GC electrode. ► The electrode showing excellent anti-interference ability and good stability for NB. - Abstract: Novel Pt nanoparticles (PN) ensemble on macroporous carbon (MPC) hybrid nanocomposites (PNMPC) were prepared through a rapidly and simple one-step microwave-assisted heating procedure. The obtained PNMPC was characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA) and electrochemical methods. The electrochemical reduction of nitrobenzene (NB) was thoroughly investigated at the PNMPC modified glassy carbon (GC) electrode, and the catalytic rate constant was calculated to be 3.14 × 10 4 M −1 s −1 for NB. A sensitive NB sensor was developed based on the PNMPC/GC electrode, which showed a wide linear range (1–200 μM), low detection limit (50 nM), high sensitivity (6.93 μA μM −1 ), excellent anti-interference ability and good stability. And moreover, the electrode was successfully applied to the determination of NB in real samples.

  20. Analysis of Charge Transfer for in Situ Li Intercalated Carbon Nanotubes

    KAUST Repository

    Rana, Kuldeep

    2012-05-24

    Vertically aligned carbon nanotube (VA-CNT) arrays have been synthesized with lithium (Li) intercalation through an alcohol-catalyzed chemical vapor deposition technique by using a Li-containing catalyst. Scanning electron microscopy images display that synthesized carbon nanotubes (CNTs) are dense and vertically aligned. The effect of the Li-containing catalyst on VA-CNTs has been studied by using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electron energy loss spectroscopy (EELS). XPS results show the change in binding energy of Li 1s and C 1s peaks, which indicates that Li is inserted in VA-CNTs during growth. Analysis of Raman spectra reveals that the G-band profile of CNTs synthesized with the Li-containing catalyst is shifted, suggesting an electronic interaction between Li and neighboring C atoms of the CNTs. The EELS spectra of the C K edge and Li K edge from CNTs also confirmed that Li is inserted into CNTs during synthesis. We have performed ab inito calculations based on density functional theory for a further understanding of the structural and electronic properties of Li intercalated CNTs, especially addressing the controversial charge-transfer state between Li and C. © 2012 American Chemical Society.

  1. Analysis of Charge Transfer for in Situ Li Intercalated Carbon Nanotubes

    KAUST Repository

    Rana, Kuldeep; Kucukayan-Dogu, Gokce; Sen, H. Sener; Boothroyd, Chris; Gulseren, Oguz; Bengu, Erman

    2012-01-01

    Vertically aligned carbon nanotube (VA-CNT) arrays have been synthesized with lithium (Li) intercalation through an alcohol-catalyzed chemical vapor deposition technique by using a Li-containing catalyst. Scanning electron microscopy images display that synthesized carbon nanotubes (CNTs) are dense and vertically aligned. The effect of the Li-containing catalyst on VA-CNTs has been studied by using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and electron energy loss spectroscopy (EELS). XPS results show the change in binding energy of Li 1s and C 1s peaks, which indicates that Li is inserted in VA-CNTs during growth. Analysis of Raman spectra reveals that the G-band profile of CNTs synthesized with the Li-containing catalyst is shifted, suggesting an electronic interaction between Li and neighboring C atoms of the CNTs. The EELS spectra of the C K edge and Li K edge from CNTs also confirmed that Li is inserted into CNTs during synthesis. We have performed ab inito calculations based on density functional theory for a further understanding of the structural and electronic properties of Li intercalated CNTs, especially addressing the controversial charge-transfer state between Li and C. © 2012 American Chemical Society.

  2. A high pressure x-ray photoelectron spectroscopy experimental method for characterization of solid-liquid interfaces demonstrated with a Li-ion battery system

    Energy Technology Data Exchange (ETDEWEB)

    Maibach, Julia; Xu, Chao; Gustafsson, Torbjörn; Edström, Kristina [Department of Chemistry–Ångström Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala (Sweden); Eriksson, Susanna K. [Department of Chemistry–Ångström Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala (Sweden); Åhlund, John [VG Scienta AB, Box 15120, SE-750 15 Uppsala (Sweden); Siegbahn, Hans; Rensmo, Håkan; Hahlin, Maria, E-mail: maria.hahlin@physics.uu.se [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden)

    2015-04-15

    We report a methodology for a direct investigation of the solid/liquid interface using high pressure x-ray photoelectron spectroscopy (HPXPS). The technique was demonstrated with an electrochemical system represented by a Li-ion battery using a silicon electrode and a liquid electrolyte of LiClO{sub 4} in propylene carbonate (PC) cycled versus metallic lithium. For the first time the presence of a liquid electrolyte was realized using a transfer procedure where the sample was introduced into a 2 mbar N{sub 2} environment in the analysis chamber without an intermediate ultrahigh vacuum (UHV) step in the load lock. The procedure was characterized in detail concerning lateral drop gradients as well as stability of measurement conditions over time. The X-ray photoelectron spectroscopy (XPS) measurements demonstrate that the solid substrate and the liquid electrolyte can be observed simultaneously. The results show that the solid electrolyte interphase (SEI) composition for the wet electrode is stable within the probing time and generally agrees well with traditional UHV studies. Since the methodology can easily be adjusted to various high pressure photoelectron spectroscopy systems, extending the approach towards operando solid/liquid interface studies using liquid electrolytes seems now feasible.

  3. Understanding the Oxygen Evolution Reaction Mechanism on CoOx using Operando Ambient-Pressure X-ray Photoelectron Spectroscopy

    International Nuclear Information System (INIS)

    Favaro, Marco; Yang, Jinhui; Nappini, Silvia; Magnano, Elena

    2017-01-01

    Photoelectrochemical water splitting is a promising approach for renewable production of hydrogen from solar energy and requires interfacing advanced water-splitting catalysts with semiconductors. Understanding the mechanism of function of such electrocatalysts at the atomic scale and under realistic working conditions is a challenging, yet important, task for advancing efficient and stable function. This is particularly true for the case of oxygen evolution catalysts and, here, we study a highly active Co 3 O 4 /Co(OH) 2 biphasic electrocatalyst on Si by means of operando ambient-pressure X-ray photoelectron spectroscopy performed at the solid/liquid electrified interface. Spectral simulation and multiplet fitting reveal that the catalyst undergoes chemical-structural transformations as a function of the applied anodic potential, with complete conversion of the Co(OH) 2 and partial conversion of the spinel Co 3 O 4 phases to CoO(OH) under precatalytic electrochemical conditions. Furthermore, we observe new spectral features in both Co 2p and O 1s core-level regions to emerge under oxygen evolution reaction conditions on CoO(OH). The operando photoelectron spectra support assignment of these newly observed features to highly active Co 4+ centers under catalytic conditions. Comparison of these results to those from a pure phase spinel Co 3 O 4 catalyst supports this interpretation and reveals that the presence of Co(OH) 2 enhances catalytic activity by promoting transformations to CoO(OH). The direct investigation of electrified interfaces presented in this work can be extended to different materials under realistic catalytic conditions, thereby providing a powerful tool for mechanism discovery and an enabling capability for catalyst design.

  4. Mechanisms of tryptophan adsorption onto single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Zhou Jieping; Tan Jun; Xu Pengshou; Sheng Liusi; Pan Guoqiang

    2011-01-01

    Near edge X-ray absorption fine structure spectroscopy (NEXAFS) and synchrotron radiation photoelectron spectroscopy (SRPES) were employed to investigate the adsorption mechanism of tryptophan (Trp) onto single-walled carbon nanotubes (SWCNTs). The difference of the carbon K-edge NEXAFS spectra between Trp molecules and Trp-adsorbed SWCNTs shows that a significant interaction occurs among the SWCNTs and Trp molecules adsorbed. However, negligible changes in the peak profiles and energy positions of nitrogen K-edge imply that neither of the two nitrogen atoms in Trp molecule is involved in the interface interaction. A change of the shape of the main absorption peak at the oxygen K-edge reveals that O atoms of the C=O or C-O or both are likely involved in the interface interaction. The fact that the peak at about 529 eV at the O K-edge become sharper and stronger demonstrates that the O atom in the C=O participates in the interface interaction, which was confirmed by O1s SRPES spectrum. (authors)

  5. Photoelectron spectroscopy on doped organic semiconductors and related interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Olthof, Selina Sandra

    2010-06-08

    Using photoelectron spectroscopy, we show measurements of energy level alignment of organic semiconducting layers. The main focus is on the properties and the influence of doped layers. The investigations on the p-doping process in organic semiconductors show typical charge carrier concentrations up to 2.10{sup 20} cm{sup -3}. By a variation of the doping concentration, an over proportional influence on the position of the Fermi energy is observed. Comparing the number of charge carriers with the amount of dopants present in the layer, it is found that only 5% of the dopants undergo a full charge transfer. Furthermore, a detailed investigation of the density of states beyond the HOMO onset reveals that an exponentially decaying density of states reaches further into the band gap than commonly assumed. For an increasing amount of doping, the Fermi energy gets pinned on these states which suggests that a significant amount of charge carriers is present there. The investigation of metal top and bottom contacts aims at understanding the asymmetric current-voltage characteristics found for some symmetrically built device stacks. It can be shown that a reaction between the atoms from the top contact with the molecules of the layer leads to a change in energy level alignment that produces a 1.16 eV lower electron injection barrier from the top. Further detailed investigations on such contacts show that the formation of a silver top contact is dominated by diffusion processes, leading to a broadened interface. However, upon insertion of a thin aluminum interlayer this diffusion can be stopped and an abrupt interface is achieved. Furthermore, in the case of a thick silver top contact, a monolayer of molecules is found to oat on top of the metal layer, almost independent on the metal layer thickness. Finally, several device stacks are investigated, regarding interface dipoles, formation of depletion regions, energy alignment in mixed layers, and the influence of the built

  6. Evaluation of Photoelectron Therapy Effect on Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    bahram Mofid

    2007-10-01

    Full Text Available Mofid B1, Navabpoor M2, Alizadeh Azimi M3 1. Assistant professor, Department of Radiotherapy, Faculty of Para-Medicine, Shahid Beheshti University of medical sciences 2. Instructor, Department of Technology of radiology, Faculty of Para-Medicine, Shahid Beheshti University of medical sciences Abstract Background: Photoelectron therapy method has been usad successfully, on the body phantom, cancer cells culture and animals. In this method, drugs containing x-Ray opaque factors–with high atomic numbers–are injected into the patient’s vein. After appropriate drug accumulation, about at least ten percent of the total injected amounts, 200kev. up to 300kev. of localized x-Ray beams is radiated to the site of the tumor. The Ethic Committee of Shahid Beheshti University of Medical Education and Health Services authorized the implementation of this new cancer treatment method, initially only on the group of patients who suffered from hepato-cellular carcinoma. Hepato cellular carcinoma is one of the most current malignancies of liver. In some cases, in addition to surgery, several approaches exist to come near the aim of predominating hepato-cellular carcinoma such as chemotherapy, current Radiation Therapy, Radio-Frequency application (RF, Trans-Artepical Chemo Embolization, (TACE, and Percutaneous Ethanol Injection (PEI. The effectiveness of the above-mentioned methods is about 10%-47%, applied alone or along side each other. Materials and methods: This study was a clinical-trial one. In this study, first, lipiodol (an x-ray opaque material with a high atomic number was transferred into the main vessel terminating to the tumor by angio-catheterization. Then,200kev. up to 250kev. of localized x-ray was radiated to the site of the tumor in one session. The drug volume was proportionally selected to the volume of the tumor, and the irradiation intensity was between 400 to 600cent.Gy. the beam energy absorption capacity of this drug is as times as

  7. Photoelectron diffraction studies of small adsorbates on single crystal surfaces

    International Nuclear Information System (INIS)

    Pascal, Mathieu

    2002-01-01

    The structural determination of small molecules adsorbed on single crystal surfaces has been investigated using scanned energy mode photoelectron diffraction (PhD). The experimental PhD data were compared to theoretical models using a simulation program based on multiple scattering calculations. Three adsorption systems have been examined on Ag(110), Cu(110) and Cu(111) crystals. The structure of the (2x1)-O adsorption phase on Ag(110) revealed that the O atoms occupied the long bridge site and are almost co-planar with the top layer of Ag atoms. The best agreement between multiple scattering theory and experiment has been obtained for a missing-row (or equivalently an 'added- row') reconstruction. Alternative buckled-row and unreconstructed surface models can be excluded. The adsorption of the benzoate species on Cu(110) has been found to occur via the carboxylate group. The molecules occupy short bridge sites with the O atoms being slightly displaced from atop sites and are aligned along the close-packed azimuth. The tilt of the molecule with respect to the surface and the degree to which the surface is relaxed have also been investigated. The adsorption of methyl on Cu(111) was studied using either azomethane or methyl iodide to prepare the surface layers. At saturation coverage the preferred adsorption site is the fcc threefold hollow site, whereas at half saturation coverage ∼ 30 % of the methyl species occupy the hop threefold hollow sites. Best agreement between theory and experiment corresponded to a methyl group adsorbed with C 3v symmetry. The height of the C above the surface in a pure methyl layer was 1.66 ± 0.02 A, but was reduced to 1.62 ± 0.02 A in the presence of co-adsorbed iodine, suggesting that iodine increases the strength of adsorption. Iodine was also found to occupy the fee threefold hollow sites with a Cu-l bondlength of 2.61 ± 0.02 A. (author)

  8. A study of the valence shell photoelectron and photoabsorption spectra of CF3SF5

    International Nuclear Information System (INIS)

    Holland, D M P; Shaw, D A; Walker, I C; McEwen, I J; Apra, E; Guest, M F

    2005-01-01

    The outer valence shell photoelectron spectrum of CF 3 SF 5 has been studied experimentally and theoretically. Synchrotron radiation has been used to record angle-resolved outer valence shell photoelectron spectra of CF 3 SF 5 in the photon energy range 18-60 eV. These spectra have allowed photoelectron asymmetry parameters and branching ratios to be derived. The Outer Valence Green's Function approach has been employed to calculate the molecular orbital configuration and associated binding energies. A charge distribution analysis has also been obtained. Assignments have been proposed for the peaks observed in the photoelectron spectrum. The absolute photoabsorption cross section of CF 3 SF 5 has been measured from threshold to 40 eV, and strongly resembles that of SF 6 . Assignments, involving intravalence transitions, have been proposed for some of the principal features appearing in the photoabsorption spectrum of CF 3 SF 5

  9. Long-Range Coulomb Effect in Intense Laser-Driven Photoelectron Dynamics.

    Science.gov (United States)

    Quan, Wei; Hao, XiaoLei; Chen, YongJu; Yu, ShaoGang; Xu, SongPo; Wang, YanLan; Sun, RenPing; Lai, XuanYang; Wu, ChengYin; Gong, QiHuang; He, XianTu; Liu, XiaoJun; Chen, Jing

    2016-06-03

    In strong field atomic physics community, long-range Coulomb interaction has for a long time been overlooked and its significant role in intense laser-driven photoelectron dynamics eluded experimental observations. Here we report an experimental investigation of the effect of long-range Coulomb potential on the dynamics of near-zero-momentum photoelectrons produced in photo-ionization process of noble gas atoms in intense midinfrared laser pulses. By exploring the dependence of photoelectron distributions near zero momentum on laser intensity and wavelength, we unambiguously demonstrate that the long-range tail of the Coulomb potential (i.e., up to several hundreds atomic units) plays an important role in determining the photoelectron dynamics after the pulse ends.

  10. Atomic and molecular photoelectron and Auger-electron-spectroscopy studies using synchrotron radiation

    International Nuclear Information System (INIS)

    Southworth, S.H.

    1982-01-01

    Electron spectroscopy, combined with synchrotron radiation, was used to measure the angular distributions of photoelectrons and Auger electrons from atoms and molecules as functions of photon energy. The branching ratios and partial cross sections were also measured in certain cases. By comparison with theoretical calculations, the experimental results are interpreted in terms of the characteristic electronic structure and ionization dynamics of the atomic or molecular sample. The time structure of the synchrotron radiation source was used to record time-of-flight (TOF) spectra of the ejected electrons. The double-angle-TOF method for the measurement of photoelectron angular distributions is discussed. This technique offers the advantages of increased electron collection efficiency and the elimination of certain systematic errors. An electron spectroscopy study of inner-shell photoexcitation and ionization of Xe, photoelectron angular distributions from H 2 and D 2 , and photoionization cross sections and photoelectron asymmetries of the valence orbitals of NO are reported

  11. Angular Correlation between Photoelectrons and Auger Electrons from K-Shell Ionization of Neon

    International Nuclear Information System (INIS)

    Landers, A. L.; Robicheaux, F.; Bhandary, A.; Jahnke, T.; Schoeffler, M.; Titze, J.; Akoury, D.; Doerner, R.; Osipov, T.; Lee, S. Y.; Adaniya, H.; Hertlein, M.; Weber, Th.; Prior, M. H.; Belkacem, A.; Ranitovic, P.; Bocharova, I.; Cocke, C. L.

    2009-01-01

    We have used cold target recoil ion momentum spectroscopy to study the continuum correlation between the photoelectron of core-photoionized neon and the subsequent Auger electron. We observe a strong angular correlation between the two electrons. Classical trajectory Monte Carlo calculations agree quite well with the photoelectron energy distribution that is shifted due to the potential change associated with Auger decay. However, a striking discrepancy results in the distribution of the relative angle between Auger and photoelectron. The classical model predicts a shift in photoelectron flux away from the Auger emission direction, and the data strikingly reveal that the flux is lost rather than diverted, indicating that the two-step interpretation of photoionization followed by Auger emission is insufficient to fully describe the core-photoionization process.

  12. Femtosecond x-ray photoelectron diffraction on gas-phase dibromobenzene molecules

    International Nuclear Information System (INIS)

    Rolles, D; Boll, R; Epp, S W; Erk, B; Foucar, L; Hömke, A; Adolph, M; Gorkhover, T; Aquila, A; Chapman, H N; Coppola, N; Delmas, T; Gumprecht, L; Holmegaard, L; Bostedt, C; Bozek, J D; Coffee, R; Decleva, P; Filsinger, F; Johnsson, P

    2014-01-01

    We present time-resolved femtosecond photoelectron momentum images and angular distributions of dissociating, laser-aligned 1,4-dibromobenzene (C 6 H 4 Br 2 ) molecules measured in a near-infrared pump, soft-x-ray probe experiment performed at an x-ray free-electron laser. The observed alignment dependence of the bromine 2p photoelectron angular distributions is compared to density functional theory calculations and interpreted in terms of photoelectron diffraction. While no clear time-dependent effects are observed in the angular distribution of the Br(2p) photoelectrons, other, low-energy electrons show a pronounced dependence on the time delay between the near-infrared laser and the x-ray pulse. (paper)

  13. Renner-Teller effects in the photoelectron spectra of CNC, CCN, and HCCN.

    Science.gov (United States)

    Coudert, Laurent H; Gans, Bérenger; Garcia, Gustavo A; Loison, Jean-Christophe

    2018-02-07

    The line intensity of photoelectron spectra when either the neutral or cationic species display a Renner-Teller coupling is derived and applied to the modeling of the photoelectron spectra of CNC, CCN, and HCCN. The rovibronic energy levels of these three radicals and of their cations are investigated starting from ab initio results. A model treating simultaneously the bending mode and the overall rotation is developed to deal with the quasilinearity problem in CNC + , CCN + , and HCCN and accounts for the large amplitude nature of their bending mode. This model is extended to treat the Renner-Teller coupling in CNC, CCN, and HCCN + . Based on the derived photoelectron line intensity, the photoelectron spectra of all three molecules are calculated and compared to the experimental ones.

  14. Mutation at the Human D1S80 Minisatellite Locus

    Directory of Open Access Journals (Sweden)

    Kuppareddi Balamurugan

    2012-01-01

    Full Text Available Little is known about the general biology of minisatellites. The purpose of this study is to examine repeat mutations from the D1S80 minisatellite locus by sequence analysis to elucidate the mutational process at this locus. This is a highly polymorphic minisatellite locus, located in the subtelomeric region of chromosome 1. We have analyzed 90,000 human germline transmission events and found seven (7 mutations at this locus. The D1S80 alleles of the parentage trio, the child, mother, and the alleged father were sequenced and the origin of the mutation was determined. Using American Association of Blood Banks (AABB guidelines, we found a male mutation rate of 1.04×10-4 and a female mutation rate of 5.18×10-5 with an overall mutation rate of approximately 7.77×10-5. Also, in this study, we found that the identified mutations are in close proximity to the center of the repeat array rather than at the ends of the repeat array. Several studies have examined the mutational mechanisms of the minisatellites according to infinite allele model (IAM and the one-step stepwise mutation model (SMM. In this study, we found that this locus fits into the one-step mutation model (SMM mechanism in six out of seven instances similar to STR loci.

  15. Atmospheric pressure plasma surface modification of carbon fibres

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Løgstrup Andersen, Tom; Michelsen, Poul

    2008-01-01

    Carbon fibres are continuously treated with dielectric barrier discharge plasma at atmospheric pressure in various gas conditions for adhesion improvement in mind. An x-ray photoelectron spectroscopic analysis indicated that oxygen is effectively introduced onto the carbon fibre surfaces by He, He...

  16. Mechanism of the adsorption of gold cyanide on activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, G. (University of the Witwatersrand, Johannesburg (South Africa). Dept. of Chemistry); Hancock, R.D. (Klipfontein Organic Products, Kempton Park (South Africa)); Wellington, O.L.; Nicol, M.J. (National Inst. for Metallurgy, Johannesburg (South Africa)); Copperthwaite, R.G. (Council for Scientific and Industrial Research, Pretoria (South Africa). National Chemical Research Lab.)

    1981-12-01

    X-ray photoelectron spectroscopy showed that the adsorption of gold cyanide on carbon in the presence or absence of electrolytes and acids proceeds by the same mechanism. The first detailed investigation of the fundamentals of the adsorption and elution of gold and silver cyanide on carbon, theories to state the results and the experimental method are discussed.

  17. Time-resolved photoelectron spectroscopy and ab initio multiple spawning studies of hexamethylcyclopentadiene

    DEFF Research Database (Denmark)

    Wolf, T. J. A.; Kuhlman, Thomas Scheby; Schalk, O.

    2014-01-01

    Time-resolved photoelectron spectroscopy and ab initio multiple spawning were applied to the ultrafast non-adiabatic dynamics of hexamethylcyclopentadiene. The high level of agreement between experiment and theory associates wavepacket motion with a distinct degree of freedom.......Time-resolved photoelectron spectroscopy and ab initio multiple spawning were applied to the ultrafast non-adiabatic dynamics of hexamethylcyclopentadiene. The high level of agreement between experiment and theory associates wavepacket motion with a distinct degree of freedom....

  18. Simulated photoelectron intensities at the aqueous solution–air interface for flat and cylindrical (microjet) geometries

    Science.gov (United States)

    Olivieri, Giorgia; Parry, Krista M.; Powell, Cedric J.; Tobias, Douglas J.

    2017-01-01

    Ion spatial distributions at the aqueous-air/vacuum interface are accessible by energy-dependent X-ray photoelectron spectroscopy (XPS). Here we quantify the difference between a flat surface and a cylindrical shaped microjet on the energy-dependent information depth of the XPS experiment and on the simulated photoelectron intensities using solutions of pure water and of 1 mol/L NaI as examples. PMID:28203664

  19. Intramolecular dynamics due to electron transitions: from photoelectron spectroscopy to Femtochemistry

    International Nuclear Information System (INIS)

    Gadzuk, J.W.

    1999-01-01

    Select spectroscopic and chemical physics problems associated with atomic motion triggered by electronic transitions are the topics of this paper. The story starts with the initial stimulation provided by Dick Brundle's photoelectron spectroscopy studies of adsorbed molecules and continues to contemporary examples in photoelectron spectroscopy and Femtochemistry, all of which are theoretically modelled within a unified framework of time-dependent, driven oscillators and decaying states. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  20. Photoelectron and ICD electron angular distributions from fixed-in-space neon dimers

    International Nuclear Information System (INIS)

    Jahnke, T; Czasch, A; Schoeffler, M; Schoessler, S; Kaesz, M; Titze, J; Kreidi, K; Grisenti, R E; Staudte, A; Jagutzki, O; Schmidt, L Ph H; Semenov, S K; Cherepkov, N A; Schmidt-Boecking, H; Doerner, R

    2007-01-01

    We report on molecular frame angular distributions of 2s photoelectrons and electrons emitted by interatomic Coulombic decay from neon dimers. We found that the measured angular distribution of the photoelectron strongly depends on the environment of the cluster. The experimental results are in excellent agreement with frozen core Hartree-Fock calculations. The ICD electrons show slight variations in their angular distribution for different kinetic energies

  1. F-GUTs with Mordell-Weil U(1)'s

    CERN Document Server

    Antoniadis, I

    2014-01-01

    In this note we study the constraints on F-theory GUTs with extra $U(1)$'s in the context of elliptic fibrations with rational sections. We consider the simplest case of one abelian factor (Mordell-Weil rank one) and investigate the conditions that are induced on the coefficients of its Tate form. Converting the equation representing the generic hypersurface $P_{112}$ to this Tate's form we find that the presence of a U(1), already in this local description, is consistent with the exceptional ${\\cal E}_6$ and ${\\cal E}_7$ non-abelian singularities. We briefly comment on a viable ${\\cal E}_6\\times U(1)$ effective F-theory model.

  2. Structure determination by photoelectron diffraction of small molecules on surfaces

    International Nuclear Information System (INIS)

    Booth, N.A.

    1998-05-01

    The synchrotron radiation based technique of Photoelectron Diffraction (PhD) has been applied to three adsorption systems. Structure determinations, are presented for each system which involve the adsorption of small molecules on the low index {110} plane of single crystal Cu and Ni substrates. For the NH 3 -Cu(110) system PhD was successful in determining a N-Cu bondlength of 2.05 ± 0.03 A as well as values for the anisotropic vibrational amplitudes of the N and an expansion of the 1st to 2nd Cu substrate layer spacing from the bulk value of 0.08 ± 0.08 A. The most significant and surprising structural parameter determined for this system was that the N atom occupies an asymmetric adsorption site. Rather than being situated in the expected high symmetry atop site the N atom was found to be offset parallel to the surface by 0.37 ± 0.12 A in the [001] azimuth. In studying the glycine-Cu(110) system the adsorption structure of an amino-acid has been quantified. The local adsorption geometries of all the atoms involved in the molecule to surface bond have been determined. The glycine molecule is found to be bonded to the surface via both its amino and carboxylate functional groups. The molecule straddles two [11-bar0] rows of the Cu substrate. The two O atoms are found to be in identical sites both approximately atop Cu atoms on the [11-bar0] rows offset parallel to the surface by 0.80 ± 0.05 A in the [001] azimuth, the O-Cu bondlength was found to be 2.03 ± 0.05 A. The N atom was also found to adsorb in an approximately atop geometry but offset parallel to the surface by 0.24 ± 0.10A in the [11-bar0] direction, the N-Cu bondlength was found to be 2.05± 0.05 A. PhD was unsuccessful in determining the positions of the two C atoms that form a bridge between the two functional groups bonded to the surface due to difficulties in separating the two inequivalent contributions to the final intensity modulation function. For the CN-Ni(110) system both PhD and Near Edge

  3. Correlation of sp{sup 3} and sp{sup 2} fraction of carbon with electrical, optical and nano-mechanical properties of argon-diluted diamond-like carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Dwivedi, Neeraj [Physics of Energy Harvesting Division, National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi (India); Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016 (India); Kumar, Sushil, E-mail: skumar@nplindia.org [Physics of Energy Harvesting Division, National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi (India); Malik, H.K. [Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016 (India); Govind [Surface Physics and Nano Structures Group, National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Rauthan, C.M.S.; Panwar, O.S. [Physics of Energy Harvesting Division, National Physical Laboratory (CSIR), Dr. K.S. Krishnan Road, New Delhi (India)

    2011-05-15

    In the present work the correlation of electrical, optical and nano-mechanical properties of argon-diluted diamond-like carbon (Ar-DLC) thin films with sp{sup 3} and sp{sup 2} fractions of carbon have been explored. These Ar-DLC thin films have been deposited, under varying C{sub 2}H{sub 2} gas pressures from 25 to 75 mTorr, by radio frequency-plasma enhanced chemical vapor deposition technique. X-ray photoelectron spectroscopy studies are performed to estimate the sp{sup 3} and sp{sup 2} fractions of carbon by deconvoluting C 1s core level spectra. Various electrical, optical and nano-mechanical parameters such as conductivity, I-V characteristics, optical band gap, stress, hardness, elastic modulus, plastic resistance parameter, elastic recovery and plastic deformation energy have been estimated and then correlated with calculated sp{sup 3} and sp{sup 2} fractions of carbon and sp{sup 3}/sp{sup 2} ratios. Observed tremendous electrical, optical and nano-mechanical properties in Ar-DLC films deposited under high base pressure conditions made it a cost effective material for not only hard and protective coating applications but also for electronic and optoelectronic applications.

  4. Functionalized carbon nanotubes containing isocyanate groups

    International Nuclear Information System (INIS)

    Zhao Chungui; Ji Lijun; Liu Huiju; Hu Guangjun; Zhang Shimin; Yang Mingshu; Yang Zhenzhong

    2004-01-01

    Functionalized carbon nanotubes containing isocyanate groups can extend the nanotube chemistry, and may promote their many potential applications such as in polymer composites and coatings. This paper describes a facile method to prepare functionalized carbon nanotubes containing highly reactive isocyanate groups on its surface via the reaction between toluene 2,4-diisocyanate and carboxylated carbon nanotubes. Fourier-transformed infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) confirmed that reactive isocyanate groups were covalently attached to carbon nanotubes. The content of isocyanate groups were determined by chemical titration and thermogravimetric analysis (TGA)

  5. Modelling Photoelectron Production in the Enceladus Plume and Comparison with Observations by CAPS-ELS

    Science.gov (United States)

    Taylor, S. A.; Coates, A. J.; Jones, G.; Wellbrock, A.; Waite, J. H., Jr.

    2016-12-01

    The Electron Spectrometer (ELS) of the Cassini Plasma Spectrometer (CAPS) measures electrons in the energy range 0.6-28,000 eV with an energy resolution of 16.7%. ELS has observed photoelectrons produced in the plume of Enceladus. These photoelectrons are found during Enceladus encounters in the energetic particle shadow where the spacecraft is shielded from penetrating radiation by the moon [Coates et al, 2013]. Observable is a population of photoelectrons at 20-30eV, which are seen at other bodies in the solar system and are usually associated with ionisation by the strong solar He II (30.4 nm) line. We have identified secondary peaks at 40-50eV detected by ELS which are also interpreted as a warmer population of photoelectrons created through the ionisation of neutrals in the Enceladus torus. We have constructed a model of photoelectron production in the plume and compared it with ELS Enceladus flyby data using automated fitting procedures. This has yielded estimates for electron temperature and density as well as a spacecraft potential estimate which is corrected for.

  6. DEVELOPMENT OF NEXT-GENERATION DETECTORS AND INSTRUMENTATION FOR PHOTOELECTRON SPECTROSCOPY, DIFFRACTION AND HOLOGRAPHY

    International Nuclear Information System (INIS)

    Charles S. Fadley, Principal Investigator

    2005-01-01

    We have developed a new multichannel detector for use in photoelectron spectroscopy (as well as other types of high-count-rate spectroscopy) that will operate at rates of up to 1 GHz. Such detectors are crucial to the full utilization of the high-brightness radiation generated by third-generation synchrotron radiation sources. In addition, new software and hardware has been developed to permit rapidly and accurately scanning photoelectron spectra that will be accumulated in as little as a 200 micros. A versatile next-generation sample goniometer permitting equally rapid scanning of specimen angles or photon energies for angle-resolved photoemission studies, photoelectron diffraction, and photoelectron holography measurements, and cooling to below 10K has also been designed and constructed. These capabilities have been incorporated into a unique photoelectron spectrometer/diffractometer at the Advanced Light Source of the Lawrence Berkeley National Laboratory; this experimental system includes ultrahigh energy resolution, in situ rotation, variable polarization, and optional spin detection. This overall system is now being used in studies of a variety of problems including magnetic metals and oxides; metal/metal, metal/metal oxide, and metal-oxide/metal-oxide multilayers; and systems exhibiting giant and colossal magnetoresistance

  7. A simple model for determining photoelectron-generated radiation scaling laws

    International Nuclear Information System (INIS)

    Dipp, T.M.

    1993-12-01

    The generation of radiation via photoelectrons induced off of a conducting surface was explored using a simple model to determine fundamental scaling laws. The model is one-dimensional (small-spot) and uses monoenergetic, nonrelativistic photoelectrons emitted normal to the illuminated conducting surface. Simple steady-state radiation, frequency, and maximum orbital distance equations were derived using small-spot radiation equations, a sin 2 type modulation function, and simple photoelectron dynamics. The result is a system of equations for various scaling laws, which, along with model and user constraints, are simultaneously solved using techniques similar to linear programming. Typical conductors illuminated by low-power sources producing photons with energies less than 5.0 eV are readily modeled by this small-spot, steady-state analysis, which shows they generally produce low efficiency (η rsL -10.5 ) pure photoelectron-induced radiation. However, the small-spot theory predicts that the total conversion efficiency for incident photon power to photoelectron-induced radiated power can go higher than 10 -5.5 for typical real conductors if photons having energies of 15 eV and higher are used, and should go even higher still if the small-spot limit of this theory is exceeded as well. Overall, the simple theory equations, model constraint equations, and solution techniques presented provide a foundation for understanding, predicting, and optimizing the generated radiation, and the simple theory equations provide scaling laws to compare with computational and laboratory experimental data

  8. Characterization of the 1S-2S transition in antihydrogen.

    Science.gov (United States)

    Ahmadi, M; Alves, B X R; Baker, C J; Bertsche, W; Capra, A; Carruth, C; Cesar, C L; Charlton, M; Cohen, S; Collister, R; Eriksson, S; Evans, A; Evetts, N; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Hangst, J S; Hardy, W N; Hayden, M E; Isaac, C A; Johnson, M A; Jones, J M; Jones, S A; Jonsell, S; Khramov, A; Knapp, P; Kurchaninov, L; Madsen, N; Maxwell, D; McKenna, J T K; Menary, S; Momose, T; Munich, J J; Olchanski, K; Olin, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sacramento, R L; Sameed, M; Sarid, E; Silveira, D M; Stutter, G; So, C; Tharp, T D; Thompson, R I; van der Werf, D P; Wurtele, J S

    2018-05-01

    In 1928, Dirac published an equation 1 that combined quantum mechanics and special relativity. Negative-energy solutions to this equation, rather than being unphysical as initially thought, represented a class of hitherto unobserved and unimagined particles-antimatter. The existence of particles of antimatter was confirmed with the discovery of the positron 2 (or anti-electron) by Anderson in 1932, but it is still unknown why matter, rather than antimatter, survived after the Big Bang. As a result, experimental studies of antimatter 3-7 , including tests of fundamental symmetries such as charge-parity and charge-parity-time, and searches for evidence of primordial antimatter, such as antihelium nuclei, have high priority in contemporary physics research. The fundamental role of the hydrogen atom in the evolution of the Universe and in the historical development of our understanding of quantum physics makes its antimatter counterpart-the antihydrogen atom-of particular interest. Current standard-model physics requires that hydrogen and antihydrogen have the same energy levels and spectral lines. The laser-driven 1S-2S transition was recently observed 8 in antihydrogen. Here we characterize one of the hyperfine components of this transition using magnetically trapped atoms of antihydrogen and compare it to model calculations for hydrogen in our apparatus. We find that the shape of the spectral line agrees very well with that expected for hydrogen and that the resonance frequency agrees with that in hydrogen to about 5 kilohertz out of 2.5 × 10 15 hertz. This is consistent with charge-parity-time invariance at a relative precision of 2 × 10 -12 -two orders of magnitude more precise than the previous determination 8 -corresponding to an absolute energy sensitivity of 2 × 10 -20 GeV.

  9. X-ray photoelectron spectroscopy/Ar+ ion profile study of thin oxide layers on InP

    International Nuclear Information System (INIS)

    Thurgate, S.M.; Erickson, N.E.

    1990-01-01

    The effect of incremental ion bombardment on the surface layers of an aqua regia etched InP sample was studied by monitoring the components of the In 3d 5/2 and O 1s x-ray photoelectron spectroscopy (XPS) lines as the sample was bombarded with low energy (1 keV) Ar + ions. The changes in the stoichiometry of the surface produced large shifts in the position of the In 3d and O 1s lines that were not paralleled by shifts in the P 2p line. Analysis of these shifts indicated that the surface was covered with a mixture of indium hydroxide and indium phosphate, with the phosphate closer to the InP substrate. It is proposed that this layer structure is due to differences in the dissolution rates of the oxidation products in the acid etch and the effect of the distilled water rinse. It may be possible to alter the composition of such oxides by carefully tailoring the etch conditions to optimize the kinetics for the particular oxide phase required. The analysis of the XPS lines also showed that the InP substrate was damaged at very low ion doses, and finally decomposed by the ion beam. When the ion ''cleaned'' sample was exposed to oxygen, a different oxide system was produced which consisted largely of In 2 O 3 and InPO 4 [or In(PO 3 ) x ]. This model of the oxidized surface of InP is consistent with other measurements and we conclude that ion milling together with XPS and careful curve fitting can be used to find the nature of the thin oxides on InP

  10. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy of Cobalt Perovskite Surfaces under Cathodic Polarization at High Temperatures

    KAUST Repository

    Crumlin, Ethan J.; Mutoro, Eva; Hong, Wesley T.; Biegalski, Michael D.; Christen, Hans M.; Liu, Zhi; Bluhm, Hendrik; Shao-Horn, Yang

    2013-01-01

    Heterostructured oxide interfaces have demonstrated enhanced oxygen reduction reaction rates at elevated temperatures (∼500-800 C); however, the physical origin underlying this enhancement is not well understood. By using synchrotron-based in situ ambient pressure X-ray photoelectron spectroscopy (APXPS), we focus on understanding the surface electronic structure, elemental composition, and chemical nature of epitaxial La0.8Sr 0.2CoO3-δ (LSC113), (La 0.5Sr0.5)2CoO4±δ (LSC214), and LSC214-decorated LSC113 (LSC 113/214) thin films as a function of applied electrical potentials (0 to -800 mV) at 520 C and p(O2) of 1 × 10-3 atm. Shifts in the top of the valence band binding energy and changes in the Sr 3d and O 1s spectral components under applied bias reveal key differences among the film chemistries, most notably in the degree of Sr segregation to the surface and quantity of active oxygen sites in the perovskite termination layer. These differences help to identify important factors governing the enhanced activity of oxygen electrocatalysis observed for the LSC113/214 heterostructured surface. © 2013 American Chemical Society.

  11. Photoelectron spectroscopy study of thin Ag films deposited on to amorphous In–Ga–Zn–O surface

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Se Jun [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Baik, Jaeyoon; Ha, Taekyun; Park, Chong Do [Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Shin, Hyun-Joon, E-mail: shj001@postech.ac.kr [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Chung, JaeGwan; Lee, Jaecheol [A E Group, Samsung Advanced Institute of Technology, Giheung-Gu, Yongin-Si, GyeingGi-Do 449-712 (Korea, Republic of)

    2014-11-03

    Ag was thermally evaporated onto amorphous In–Ga–Zn–O (a-IGZO) thin film, and the Ag-thickness (< 0.3 nm)-dependent chemical states of the Ag-deposited a-IGZO thin-film surfaces were investigated by high-resolution X-ray photoelectron spectroscopy. As Ag layer thickness increased, Ag 3d shifted towards the lower binding energy (BE) side and In 3d developed a lower-BE component; however, O 1s, Ga 3d, and Zn 3d showed much smaller spectral feature changes than Ag 3d or In 3d. The analysis suggests that Ag atoms preferentially interact and share electrons with In atoms. The Ag 4d split feature at the valence band and the metallic states near the Fermi edge were noticeably visible when the Ag thickness was greater than 0.1 nm. - Highlights: • Ag was deposited on a-IGZO thin film using thermal evaporation method. • Chemical state changes of Ag-deposited a-IGZO were investigated by XPS. • As Ag layer thickness increased, In 3d developed a lower-BE component. • As Ag layer thickness increased, Ag 3d shifted towards the lower BE side. • Ag atoms preferentially interact and share electrons with In atoms.

  12. X-Ray photoelectron spectroscopy and diffractometry of MnOx catalysts: surface to bulk composition relationships

    International Nuclear Information System (INIS)

    Zaki, M.I.; Kappenstein, C.

    1992-01-01

    Surface and bulk analyses of variously-composed, synthetic MnO x catalysts were carried out by means of X-ray photoelectron spectroscopy (XPS) and diffractometry (XRD), respectively. The data obtained were processed for a comprehensive assessment of bulk and surface compositions, surface oxidation state, and crystalline size. The XPS data processing revealed that a credible assessment of the surface composition (MnO x (OH) y (OH 2 ) z necessitates: (i) the implementation of experimental sensitivity factors determined on a local reference surface maintaining a close chemical similarity to the test materials, and (ii) the fine evaluation of contributions of various oxygen-containing surface species to the O 1s electron emission. The most prominent result of the present investigation is that the exposure of the bulk composition at the surface is quite proportioned. Such a surface to bulk intimacy is thought to enable genesizing the surface composition appropriate for certain catalytic and selectivity, via a possible control over the bulk formation events. (orig.)

  13. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy of Cobalt Perovskite Surfaces under Cathodic Polarization at High Temperatures

    KAUST Repository

    Crumlin, Ethan J.

    2013-08-08

    Heterostructured oxide interfaces have demonstrated enhanced oxygen reduction reaction rates at elevated temperatures (∼500-800 C); however, the physical origin underlying this enhancement is not well understood. By using synchrotron-based in situ ambient pressure X-ray photoelectron spectroscopy (APXPS), we focus on understanding the surface electronic structure, elemental composition, and chemical nature of epitaxial La0.8Sr 0.2CoO3-δ (LSC113), (La 0.5Sr0.5)2CoO4±δ (LSC214), and LSC214-decorated LSC113 (LSC 113/214) thin films as a function of applied electrical potentials (0 to -800 mV) at 520 C and p(O2) of 1 × 10-3 atm. Shifts in the top of the valence band binding energy and changes in the Sr 3d and O 1s spectral components under applied bias reveal key differences among the film chemistries, most notably in the degree of Sr segregation to the surface and quantity of active oxygen sites in the perovskite termination layer. These differences help to identify important factors governing the enhanced activity of oxygen electrocatalysis observed for the LSC113/214 heterostructured surface. © 2013 American Chemical Society.

  14. Study of the initial oxidation of the U4Zr2Nb alloy by X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Mendonca, Renato de; Ferraz, Wilmar B.; Braga, Daniel M.; Macedo, Waldemar A.A.

    2009-01-01

    In this work, the initial stages of oxidation of the U4Zr2Nb alloy in O 2 atmosphere were studied in-situ, in ultrahigh vacuum, by X-ray photoelectron spectroscopy (XPS), an advanced surface-sensitive technique. After several hours of Ar + ion-sputtering to surface cleanness, the O 2 exposures was realized on the sample at room temperature. The evolution of oxide film formed on the sample surface was followed by XPS measures, by using Mg K α radiation of 1253.6 eV and a CLAM-2 (Vacuum Generator) electron energy analyzer. The changes of U 4f, Nb 3d, Zr 3d and O 1s photoemission peaks with O 2 exposure indicate that the adsorption of oxygen on the U4Zr2Nb alloy surface leads to fast formation of UO 2 . The alloying elements show slower oxidation and different compounds are observed in Nb 3d spectra analysis. This work shows an expressive enlargement of Nb 3d peak at 100 Langmuir exposure, indicating the formation of Nb 2 O 5 and NbO in the oxide. On the other hand, the binding energy of Zr 3d suggests that the ZrO 2 formation is stable as well as uranium dioxide. (author)

  15. Electrophoretic deposition of carbon nanotubes on a carbon fiber surface with different index graphitization

    International Nuclear Information System (INIS)

    Almeida, E.C.; Baldan, M.R.; Ferreira, N.G.; Edwards, E.R.

    2009-01-01

    Full text: The purpose of this work is to examine the electrophoretic deposition of carbon nanotubes powder on carbon fibers, produced at different heat treatments temperatures. Besides, a systematic study of the effects of graphitization index from substrate on the structure and morphology of CNTs has been available. Carbon fibers were produced from polyacrylonitrile at three different heat treatments temperatures, 1000, 1500 and 2000 deg C. The carbon fibers microstructure or its graphitization index may be controlled by the heat treatments temperatures. The electrophoretic deposition of carbon nanotubes was obtained with the powder of carbon nanotubes dispersed in water by ultrasonication to obtain dispersions of 0.05 mg/mL. The carbon fibers were immersed in the nanotube dispersion, and a positive potential of 10 V/cm was applied. Morphology and microstructure of carbon nanotubes on carbon fibers were obtained by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. (author)

  16. Photoelectron spectra as a probe of double-core resonsance in two-electron atoms

    International Nuclear Information System (INIS)

    Grobe, R.; Haan, S.L.; Eberly, J.H.

    1996-01-01

    The authors calculate photoelectron spectra for a two-electron atom under the influence of two external driving fields, using an essential states formalism. They focus on the regime of so-called coherence transfer, in which electron-electron correlation transfers field-induced photo-coherence from one electron to the other. In the case studied here, two laser fields are resonant with coupled atomic transitions, in the manner familiar from three-level dark-state spectroscopy. Dynamical two electron effects are monitored via the photoelectron energy spectrum. The authors show that the distribution of the photoelectron energies can be singly, doubly or triply peaked depending on the relative laser intensities. The electron spectra are independent of the turn-on sequence of the fields

  17. Transient photoelectron spectroscopy of the dissociative Br2(1Piu) state.

    Science.gov (United States)

    Strasser, Daniel; Goulay, Fabien; Leone, Stephen R

    2007-11-14

    Photodissociation of bromine on the Br2(1Piu) state is probed with ultrafast extreme ultraviolet (53.7 nm) single-photon ionization. Time-resolved photoelectron spectra show simultaneously the depletion of ground state bromine molecules as well as the rise of Br(2P3/2) products due to 402.5 nm photolysis. A partial photoionization cross-section ratio of atomic versus molecular bromine is obtained. Transient photoelectron spectra of a dissociative wave packet on the excited state are presented in the limit of low-power-density, single-photon excitation to the dissociative state. Transient binding energy shifts of "atomic-like" photoelectron peaks are observed and interpreted as photoionization of nearly separated Br atom pairs on the Br2(1Piu) state to repulsive dissociative ionization states.

  18. Ar 3p photoelectron sideband spectra in two-color XUV + NIR laser fields

    Science.gov (United States)

    Minemoto, Shinichirou; Shimada, Hiroyuki; Komatsu, Kazma; Komatsubara, Wataru; Majima, Takuya; Mizuno, Tomoya; Owada, Shigeki; Sakai, Hirofumi; Togashi, Tadashi; Yoshida, Shintaro; Yabashi, Makina; Yagishita, Akira

    2018-04-01

    We performed photoelectron spectroscopy using femtosecond XUV pulses from a free-electron laser and femtosecond near-infrared pulses from a synchronized laser, and succeeded in measuring Ar 3p photoelectron sideband spectra due to the two-color above-threshold ionization. In our calculations of the first-order time-dependent perturbation theoretical model based on the strong field approximation, the photoelectron sideband spectra and their angular distributions are well reproduced by considering the timing jitter between the XUV and the NIR pulses, showing that the timing jitter in our experiments was distributed over the width of {1.0}+0.4-0.2 ps. The present approach can be used as a method to evaluate the timing jitter inevitable in FEL experiments.

  19. Stereo photograph of atomic arrangement by circularly-polarized-light two-dimensional photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Daimon, Hiroshi

    2003-01-01

    A stereo photograph of atomic arrangement was obtained for the first time. The stereo photograph was displayed directly on the screen of display-type spherical-mirror analyzer without any computer-aided conversion process. This stereo photography was realized taking advantage of the phenomenon of circular dichroism in photoelectron angular distribution due to the reversal of orbital angular momentum of photoelectrons. The azimuthal shifts of forward focusing peaks in a photoelectron angular distribution pattern taken with left and right helicity light in a special arrangement are the same as the parallaxes in a stereo view of atoms. Hence a stereoscopic recognition of three-dimensional atomic arrangement is possible, when the left eye and the right eye respectively view the two images obtained by left and right helicity light simultaneously. (author)

  20. Dissociative photoionization of the NO molecule studied by photoelectron-photon coincidence technique

    International Nuclear Information System (INIS)

    Kivimaeki, A.; Alvarez-Ruiz, J.; Coreno, M.; Simone, M. de; Moise, A.; Partanen, L.; Richter, R.; Stankiewicz, M.

    2010-01-01

    Low-energy photoelectron-vacuum ultraviolet (VUV) photon coincidences have been measured using synchrotron radiation excitation in the inner-valence region of the nitric oxide molecule. The capabilities of the coincidence set-up were demonstrated by detecting the 2s -1 → 2p -1 radiative transitions in coincidence with the 2s photoelectron emission in Ne. In NO, the observed coincidence events are attributed to dissociative photoionization with excitation, whereby photoelectron emission is followed by fragmentation of excited NO + ions into O + + N* or N + + O* and VUV emission from an excited neutral fragment. The highest coincidence rate occurs with the opening of ionization channels which are due to correlation satellites of the 3σ photoionization. The decay time of VUV photon emission was also measured, implying that specific excited states of N atoms contribute significantly to observed VUV emission.

  1. Efficient and tunable high-order harmonic light sources for photoelectron spectroscopy at surfaces

    International Nuclear Information System (INIS)

    Chiang, Cheng-Tien; Huth, Michael; Trützschler, Andreas; Schumann, Frank O.; Kirschner, Jürgen; Widdra, Wolf

    2015-01-01

    Highlights: • An overview of photoelectron spectroscopy using high-order harmonics is presented. • Photoemission spectra on Ag(0 0 1) using megahertz harmonics are shown. • A gas recycling system for harmonic generation is presented. • Non-stop operation of megahertz harmonics up to 76 h is demonstrated. • The bandwidth and pulse duration of the harmonics are discussed. - Abstract: With the recent progress in high-order harmonic generation (HHG) using femtosecond lasers, laboratory photoelectron spectroscopy with an ultrafast, widely tunable vacuum-ultraviolet light source has become available. Despite the well-established technique of HHG-based photoemission experiments at kilohertz repetition rates, the efficiency of these setups can be intrinsically limited by the space-charge effects. Here we present recent developments of compact HHG light sources for photoelectron spectroscopy at high repetition rates up to megahertz, and examples for angle-resolved photoemission experiments are demonstrated.

  2. New method for evaluating effective recovery time and single photoelectron response in silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Grodzicka, Martyna, E-mail: m.grodzicka@ncbj.gov.pl; Szczęśniak, Tomasz; Moszyński, Marek; Szawłowski, Marek; Grodzicki, Krystian

    2015-05-21

    The linearity of a silicon photomultiplier (SiPM) response depends on the number of APD cells and its effective recovery time and it is related to the intensity and duration of the detected light pulses. The aim of this study was to determine the effective recovery time on the basis of the measured SiPM response to light pulses of different durations. A closer analysis of the SiPM response to the light pulses shorter than the effective recovery time of APD cells led to a method for the evaluation of the single photoelectron response of the devices where the single photoelectron peak cannot be clearly measured. This is necessary in the evaluation of the number of fired APD cells (or the number of photoelectrons) in measurements with light pulses of various durations. Measurements were done with SiPMs manufactured by two companies: Hamamatsu and SensL.

  3. Visible sub-band gap photoelectron emission from nitrogen doped and undoped polycrystalline diamond films

    Energy Technology Data Exchange (ETDEWEB)

    Elfimchev, S., E-mail: sergeyel@tx.technion.ac.il; Chandran, M.; Akhvlediani, R.; Hoffman, A.

    2017-07-15

    Highlights: • Nitrogen related centers in diamond film are mainly responsible for visible sub-band-gap photoelectron emission. • The influence of film thickness and substrate on the measured photoelectron emission yields was not found. • Nanocrystalline diamonds have low electron emission yields most likely because of high amount of defects. • Visible sub-band gap photoelectron emission may increase with temperature due to electron trapping/detrapping processes. - Abstract: In this study the origin of visible sub-band gap photoelectron emission (PEE) from polycrystalline diamond films is investigated. The PEE yields as a function of temperature were studied in the wavelengths range of 360–520 nm. Based on the comparison of electron emission yields from diamond films deposited on silicon and molybdenum substrates, with different thicknesses and nitrogen doping levels, we suggested that photoelectrons are generated from nitrogen related centers in diamond. Our results show that diamond film thickness and substrate material have no significant influence on the PEE yield. We found that nanocrystalline diamond films have low electron emission yields, compared to microcrystalline diamond, due to the presence of high amount of defects in the former, which trap excited electrons before escaping into the vacuum. However, the low PEE yield of nanocrystalline diamond films was found to increase with temperature. The phenomenon was explained by the trap assisted photon enhanced thermionic emission (ta-PETE) model. According to the ta-PETE model, photoelectrons are trapped by shallow traps, followed by thermal excitation at elevated temperatures and escape into the vacuum. Activation energies of trap levels were estimated for undoped nanocrystalline, undoped microcrystalline and N-doped diamond films using the Richardson-Dushman equation, which gives 0.13, 0.39 and 0.04 eV, respectively. Such low activation energy of trap levels makes the ta-PETE process very

  4. The adsorption of mercury on tungsten (100) studied by ultra-violet photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Egelhoff, W.F. Jr.; Perry, D.L.; Linnett, J.W.

    1976-01-01

    In recent years, photoelectron spectroscopy has been applied to the study of adsorption on several metal surfaces. A popular choice of substrate has been the 100 face of single crystal tungsten, since adsorption on this surface has been well-characterised by a wide variety of experimental techniques. In this letter a study of the adsorption of mercury on W(100) by ultra-violet photoelectron spectroscopy (UPS) is reported. These results, seen in the context of previous UPS studies of chemisorption, show a number of interesting features. (Auth.)

  5. Photoelectron interference fringes by super intense x-ray laser pulses

    International Nuclear Information System (INIS)

    Toyota, Koudai; Morishita, Toru; Watanabe, Shinichi; Tolstikhin, Oleg I

    2009-01-01

    The photoelectron spectra of H - produced by circularly polarized strong high-frequency laser pulses are theoretically studied. An oscillating substructure in the above-threshold ionization (ATI) peaks is observed, which extends the validity of the earlier findings in the 1D calculations [K. Toyota et al., Phys. Rev. A 76, 043418 (2007)] and 3D calculations for linear polarization [O. I. Tolstikhin, Phys. Rev. A 77, 032712 (2008)]. Its origin is due to an interference between a pair of photoelectron wave packets created in the rising and falling part of the pulse, which appears clearly in the stabilization regime.

  6. Non-dipole angular anisotropy parameters of photoelectrons from semi-filled shell atoms

    Energy Technology Data Exchange (ETDEWEB)

    Amusia, M Ya [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Chernysheva, L V [Ioffe Physical-Technical Institute, St-Petersburg 194021 (Russian Federation)

    2006-11-28

    We present the results of calculations of outer and next to outer shell non-dipole angular anisotropy parameters of photoelectrons for semi-filled shell atoms in the Hartree-Fock (HF) one-electron approximation and in the frame of the spin polarized random phase approximation with exchange (SP RPAE) which takes into account inter-electron correlations. We demonstrate for the first time that this characteristic of the photoionization process is essentially sensitive to whether the photoelectron has the same or opposite spin orientation to that of the semi-filled shell.

  7. Non-dipole angular anisotropy parameters of photoelectrons from semi-filled shell atoms

    International Nuclear Information System (INIS)

    Amusia, M Ya; Chernysheva, L V

    2006-01-01

    We present the results of calculations of outer and next to outer shell non-dipole angular anisotropy parameters of photoelectrons for semi-filled shell atoms in the Hartree-Fock (HF) one-electron approximation and in the frame of the spin polarized random phase approximation with exchange (SP RPAE) which takes into account inter-electron correlations. We demonstrate for the first time that this characteristic of the photoionization process is essentially sensitive to whether the photoelectron has the same or opposite spin orientation to that of the semi-filled shell

  8. Magnetic x-ray circular dichroism in spin-polarized photoelectron diffraction

    International Nuclear Information System (INIS)

    Waddill, G.D.; Tobin, J.G.

    1994-01-01

    The first structural determination with spin-polarized, energy-dependent photoelectron diffraction using circularly-polarized x-rays is reported for Fe films on Cu(001). Circularly-polarized x-rays produced spin-polarized photoelectrons from the Fe 2p doublet, and intensity asymmetries in the 2p 3/2 level are observed. Fully spin-specific multiple scattering calculations reproduced the experimentally-determined energy and angular dependences. A new analytical procedure which focuses upon intensity variations due to spin-dependent diffraction is introduced. A sensitivity to local geometric and magnetic structure is demonstrated

  9. Imprints of the Molecular Electronic Structure in the Photoelectron Spectra of Strong-Field Ionized Asymmetric Triatomic Model Molecules

    Science.gov (United States)

    Paul, Matthias; Yue, Lun; Gräfe, Stefanie

    2018-06-01

    We examine the circular dichroism in the angular distribution of photoelectrons of triatomic model systems ionized by strong-field ionization. Following our recent work on this effect [Paul, Yue, and Gräfe, J. Mod. Opt. 64, 1104 (2017), 10.1080/09500340.2017.1299883], we demonstrate how the symmetry and electronic structure of the system is imprinted into the photoelectron momentum distribution. We use classical trajectories to reveal the origin of the threefolded pattern in the photoelectron momentum distribution, and show how an asymmetric nuclear configuration of the triatomic system effects the photoelectron spectra.

  10. X-ray photoelectron spectroscopy and electrochemical studies of mild steel FeE500 passivation in concrete simulated water

    Science.gov (United States)

    Miserque, F.; Huet, B.; Azou, G.; Bendjaballah, D.; L'Hostis, V.

    2006-11-01

    In the context of the prediction of the long-term behaviour of reinforced concrete structures involved in the nuclear waste storage, the corrosion mechanisms of steels have to be assessed. When mild steel rebars are embedded in concrete, the chemical environment of the reinforcement is progressively modified, due to the carbonation of the concrete matrix. This modification leads to the variation of iron oxides properties formed at the steel/concrete interface, and the active corrosion can be initiated. The aim of this study is to evaluate the passivation behaviour and to provide insights into the depassivation of mild steel in concrete pore solution. In a young concrete, due to the alkalinity of the interstitial solution, steel reinforcement remains passive. Immersion tests of mild steel substrate in various alkaline solutions (from pH 13 to 10) have been performed. Due to the low thickness of the corrosion layers formed, X-ray photoelectron spectroscopy has been used to characterize them. In the passive domain, the corrosion products are similar for the various solutions. The corrosion layer is composed of a mixture of Fe3+ and Fe2+. A similar approach is used to determine the depassivation mechanism. The effect of various components such as carbonates, sulfates and silicates resulting from the dissolution of minerals of cement during the carbonation process is investigated. In addition to the surface analysis, the evolution of the electrochemical behaviour as function of the solution nature (pH) is evaluated with the help of electrochemical measurements (free corrosion potential, cyclic voltamperometry).

  11. The functionalization of carbon nanosheets

    Science.gov (United States)

    Quinlan, Ronald A.

    Carbon nanosheets are a novel two-dimensional nanostructure made up of 2-20 graphene atomic planes oriented with their in-plane axis perpendicular to the growth substrate. Previous efforts in developing nanosheet technology have focused on the characterization of the system and their development as an electron source due to the high atomic enhancement factor (beta) and low turn on field. Further investigation of nanosheets as high surface area electrodes revealed poor wetting by polymeric material and extreme hydrophobic behavior. Because nanosheet technology has promise as a high surface area electrode material, this thesis research has focused on three areas of interest: the enhancement of nanosheets through chemical modification, the incorporation of the nanosheets into a polymeric composite and the delivery of a proof of concept measurement. We have successfully introduced defects into the graphene lattice of the nanosheet system via an acid treatment. Inspection of these defects by x-ray absorption near-edge spectroscopy (XANES) shows the introduction of two features in the spectra assigned to C=O pi* and C-O sigma* transitions. Thermal desorption spectroscopy (TDS) was used to identify the oxygen containing groups created during the functionalization as carboxylic and hydroxyl functional groups. These groups were identified through the combination of carboxylic, hydroxyl, anhydride and lactone peaks in the CO2, CO and H 2O TDS spectra. Deconvolution of the TDS spectra using 1st and 2nd order Polanyi-Wigner equations enables the calculation of desorption energy values for individual features and for the estimation of the number of atoms desorbing from the surface during a particular event. Identification of the exact nature of the functional groups was attempted through high resolution x-ray photoelectron spectroscopy (XPS) of the C(1s) and O(1s) peaks. Though the pairing of sub-peaks with specific functionalities of the system was not possible due to the

  12. Characterization of sintered samples of La/Sr/Cu/O by X-ray diffraction, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS)

    International Nuclear Information System (INIS)

    Gonzalez, C.O. de; Polla, Griselda; Manghi, Estela

    1987-01-01

    Samples of La/Sr/Cu/O were sinterized by solid state reaction starting from a nominal composition of La 1 .8, Sr 0 .2, CuO 4 . They presented superconductive properties with T c = 40.9 K (onset) and δ T c = 17 K. Two phases were observed by X-ray diffraction and the more abundant was the tetragonal phase. The mean grain size was 1-5 μm. The X-ray photoelectron spectroscopy measurements were carried out using Mg kα (1486.6 eV) as incident radiation. Sample temperature was varied between -180 deg C and 420 deg C, approximately. The temperature variation produces a change in the atomic concentration of the surface components. Deconvolutions of the O 1s peaks show three components with binding energies (B.E.). The decomposition of Cu 2p 3 /2 peaks presents two components corresponding to Cu + and Cu 2+ . (Author) [es

  13. Surface Analysis of Marine Sulphate-Reducing Bacteria Exo polymers on Steel During Bio corrosion Using X-ray Photoelectron Spectroscopy

    International Nuclear Information System (INIS)

    Fathul Karim Sahrani; Madzlan Abd. Aziz; Zaharah Ibrahim; Adibah Yahya

    2008-01-01

    The aim of this study was to determine the surface chemistry during bio corrosion process on growth and on the production of exo polymeric substances (EPS) in batch cultures of mix-strains of marine sulphate-reducing bacteria (SRB) isolated from Malaysian Shipyard and Engineering Harbours, Pasir Gudang. The EPS and precipitates were analyzed by x-ray photoelectron spectroscopy (XPS). The XPS results indicate that Fe(2p 3/2 ) spectrum for iron sulphide can be fitted with Fe(II) and Fe(III) components, both corresponding to Fe-S bond types. The absence of oxide oxygen in the O(1s) spectrum and Fe(III)-O bond types in the Fe(2p 3/2 ) spectrum supports the conclusion that iron sulphides are composed of both ferric and ferrous iron coordinated with mono sulphide and disulphide. (author)

  14. X-ray photoelectron spectroscopy investigation of ion beam sputtered indium tin oxide films as a function of oxygen pressure during deposition

    International Nuclear Information System (INIS)

    Nelson, A.J.; Aharoni, H.

    1987-01-01

    X-ray photoelectron spectroscopy analysis was performed on ion beam sputter deposited films of indium tin oxide as a function of O 2 partial pressure during deposition. The oxygen partial pressure was varied over the range of 2.5 x 10 -6 --4.0 x 10 -5 Torr. Changes in composition as well as in the deconvoluted In 3d 5 /sub // 2 , Sn 3d 5 /sub // 2 , and O 1s core level spectra were observed and correlated with the variation of the oxygen partial pressure during deposition. Results show that the films become increasingly stoichiometric as P/sub =/ is increased and that the excess oxygen introduced during deposition is bound predominantly to the Sn and has little or no effect on the In--O bonding

  15. Investigation of the near-surface structures of polar InN films by chemical-state-discriminated hard X-ray photoelectron diffraction

    International Nuclear Information System (INIS)

    Yang, A. L.; Yamashita, Y.; Kobata, M.; Yoshikawa, H.; Sakata, O.; Kobayashi, K.; Matsushita, T.; Píš, I.; Imura, M.; Yamaguchi, T.; Nanishi, Y.

    2013-01-01

    Near-surface structures of polar InN films were investigated by laboratory-based hard X-ray photoelectron diffraction (HXPD) with chemical-state-discrimination. HXPD patterns from In 3d 5/2 and N 1s core levels of the In-polar and N-polar InN films were different from each other and compared with the simulation results using a multiple-scattering cluster model. It was found that the near-surface structure of the In-polar InN film was close to the ideal wurtzite structure. On the other hand, on the N-polar InN film, defects-rich surface was formed. In addition, the existence of the In-polar domains was observed in the HXPD patterns.

  16. Evidence of site-specific fragmentation on thioacetic acid, CH3C(O)SH, irradiated with synchrotron radiation around the S 2p and O 1s regions.

    Science.gov (United States)

    Erben, Mauricio F; Geronés, Mariana; Romano, Rosana M; Della Védova, Carlos O

    2006-01-26

    Site-specific fragmentations following S 2p and O 1s photoexcitation of thioacetic acid, CH3C(O)SH, have been studied by means of synchrotron radiation. Total ion yield (TIY) spectra were measured and multicoincidence techniques, which include photoelectron-photoion coincidence (PEPICO) and photoelectron-photoion-photoion coincidence (PEPIPICO) time-of-flight mass spectrometry, were applied. The equivalent-core approximation was employed in order to estimate ionization transition values, and the observed peaks were tentatively assigned. A site-specific fragmentation is moderately observed by comparing the mass spectra collected at resonant energies around the inner and shallow inner shell S 2p and O 1s ionization edges. Beside H+ ion, the most abundant ions observed at the S 2p edge excitation were CH3CO+, SH+, S+, and CH3+. At the O 1s region the large CH3CO+ fragment was depressed, and small CHx+ (x = 0, 1, 2, 3), S+, and SH+ fragments were dominant. The dissociation dynamic for the main ion-pair production has been discussed. Two- and three-body dissociation channels have been observed in the PEPIPICO spectra, and the dissociation mechanisms were proposed.

  17. Self-consistent modelling of X-ray photoelectron spectra from air-exposed polycrystalline TiN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Greczynski, G., E-mail: grzgr@ifm.liu.se; Hultman, L.

    2016-11-30

    Highlights: • We present first self-consistent model of TiN core level spectra with a cross-peak qualitative and quantitative agreement. • Model is tested for a series of TiN thin films oxidized to different extent by varying the venting temperature. • Conventional deconvolution process relies on reference binding energies that typically show large spread introducing ambiguity. • By imposing requirement of quantitative cross-peak self-consistency reliability of extracted chemical information is enhanced. • We propose that the cross-peak self-consistency should be a prerequisite for reliable XPS peak modelling. - Abstract: We present first self-consistent modelling of x-ray photoelectron spectroscopy (XPS) Ti 2p, N 1s, O 1s, and C 1s core level spectra with a cross-peak quantitative agreement for a series of TiN thin films grown by dc magnetron sputtering and oxidized to different extent by varying the venting temperature T{sub v} of the vacuum chamber before removing the deposited samples. So-obtained film series constitute a model case for XPS application studies, where certain degree of atmosphere exposure during sample transfer to the XPS instrument is unavoidable. The challenge is to extract information about surface chemistry without invoking destructive pre-cleaning with noble gas ions. All TiN surfaces are thus analyzed in the as-received state by XPS using monochromatic Al Kα radiation (hν = 1486.6 eV). Details of line shapes and relative peak areas obtained from deconvolution of the reference Ti 2p and N 1 s spectra representative of a native TiN surface serve as an input to model complex core level signals from air-exposed surfaces, where contributions from oxides and oxynitrides make the task very challenging considering the influence of the whole deposition process at hand. The essential part of the presented approach is that the deconvolution process is not only guided by the comparison to the reference binding energy values that often show

  18. Unraveling nonadiabatic ionization and Coulomb potential effect in strong-field photoelectron holography.

    Science.gov (United States)

    Song, Xiaohong; Lin, Cheng; Sheng, Zhihao; Liu, Peng; Chen, Zhangjin; Yang, Weifeng; Hu, Shilin; Lin, C D; Chen, Jing

    2016-06-22

    Strong field photoelectron holography has been proposed as a means for interrogating the spatial and temporal information of electrons and ions in a dynamic system. After ionization, part of the electron wave packet may directly go to the detector (the reference wave), while another part may be driven back and scatters off the ion(the signal wave). The interference hologram of the two waves may be used to extract target information embedded in the collision process. Unlike conventional optical holography, however, propagation of the electron wave packet is affected by the Coulomb potential as well as by the laser field. In addition, electrons are emitted over the whole laser pulse duration, thus multiple interferences may occur. In this work, we used a generalized quantum-trajectory Monte Carlo method to investigate the effect of Coulomb potential and the nonadiabatic subcycle ionization on the photoelectron hologram. We showed that photoelectron hologram can be well described only when the effect of nonadiabatic ionization is accounted for, and Coulomb potential can be neglected only in the tunnel ionization regime. Our results help paving the way for establishing photoelectron holography for probing spatial and dynamic properties of atoms and molecules.

  19. Angle resolved photoelectron distribution of the 1{pi} resonance of CO/Pt(111)

    Energy Technology Data Exchange (ETDEWEB)

    Haarlammert, Thorben; Wegner, Sebastian; Tsilimis, Grigorius; Zacharias, Helmut [Physikalisches Institut, Westfaelische Wilhelms Universitaet, Muenster (Germany); Golovin, Alexander [Institute of Physics, St. Petersburg State University (Russian Federation)

    2009-07-01

    The CO 1{pi} level of a c(4 x 2)-2CO/Pt(111) reconstruction shows a significant resonance when varying the photon energy between h{nu}=23 eV and h{nu}=48 e V. This resonance has not been observed in gas phase measurements or on the Pt(1 10) surface. To investigate the photoelectron distribution of the 1{pi} level high harmonic radiaton has been used. By conversion in rare gases like argon, neon, or helium photon energies of up to 100 eV have been generated at repetition r ates of up to 10 kHz. The single harmonics have been separated and focused by a toroidal grating and directed to the sample surface. A time-of-flight detector with multiple anodes registers the kinetic energies of the emitted photoelectrons and enables the simultaneous detection of multiple emission angles. The angular distributions of photoelectrons emitted from the CO 1{pi} level have been measured for a variety of initial photon energies. Further the angular distributions of the CO 1{pi} level photoelectrons emitted from a CO-Pt{sub 7} cluster have been calculated using the MSX{alpha}-Method which shows good agreement with the ex perimental data.

  20. Near surface composition of some alloys by X-ray photoelectron ...

    Indian Academy of Sciences (India)

    0.70Ni0.30) and BiSb (Bi0.80Sb0.20, Bi0.64Sb0.34, Bi0.55Sb0.45) are determined by X-ray photoelectron spectroscopy. The stoichiometries are determined and are compared with the bulk compositions. Possible sources of systematic errors ...

  1. Adsorbate induced surface alloy formation investigated by near ambient pressure X-ray photoelectron spectroscopy

    DEFF Research Database (Denmark)

    Nierhoff, Anders Ulrik Fregerslev; Conradsen, Christian Nagstrup; McCarthy, David Norman

    2014-01-01

    for engineering of more active or selective catalyst materials. Dynamical surface changes on alloy surfaces due to the adsorption of reactants in high gas pressures are challenging to investigate using standard characterization tools. Here we apply synchrotron illuminated near ambient pressure X-ray photoelectron...

  2. A coupled bunch instability due to beam-photoelectron interactions in KEKB-LER

    Energy Technology Data Exchange (ETDEWEB)

    Ohmi, Kazuhito [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1996-08-01

    LER of KEKB is designed to storage the positron beam of 2.6 A with multibunch operation. Nb = 3.3 x 10{sup 10} positrons are filled in a bunch and the bunch passes every 2ns through a beam chamber. The photoelectron instability may be serious for KEKB-LER. We consider a motion of photoelectrons produced by a bunch with a computer simulation technic. A cylindrical chamber with a diameter of 10 cm was used as a model chamber. About 15 times of the photoelectrons were produced by a bunch. The wake force was calculated for the loading bunches with displacements of 0.5 mm and 1 mm. The wake characteristics seems to be caused by the trapped electrons kicked by the loading bunch. The wake was saturated with the loading displacement of 0.5 mm. We obtained a growth rate by the wake force. It is very high rate, 2500s{sup -1} which exceeds damping rates of various mechanism, radiation, head-tail and feedback. Perhaps it is essential to remove the photoelectrons around the positron beam explicitly. If we apply magnetic field fo about 20 G, the growth rate will be reduced. (S.Y.)

  3. Hexamethylcyclopentadiene: time-resolved photoelectron spectroscopy and ab initio multiple spawning simulations

    DEFF Research Database (Denmark)

    Wolf, T. J. A.; Kuhlman, Thomas Scheby; Schalk, O.

    2014-01-01

    comparing time-resolved photoelectron spectroscopy (TRPES) with ab initio multiple spawning (AIMS) simulations on the MS-MR-CASPT2 level of theory. We disentangle the relationship between two phenomena that dominate the immediate molecular response upon light absorption: a spectrally dependent delay...

  4. Crystal structures and photoelectron spectra of some trimethanoanthracenes, tetramethanonaphthacenes, and pentamethanopentacenes. Experimental evidence for laticyclic hyperconjugation

    DEFF Research Database (Denmark)

    Paddon-Row, Michael N.; Englehardt, Lutz M.; Skelton, Brian W.

    1987-01-01

    Photoelectron (p.e.) spectra of the series of dienes (), (), ()-(), and crystal structures for the dodecachlorodienes()-() are reported. The spectra revealed large [small pi]-splitting energies of 0.32 and 0.52 eV for () and () respectively. The value of () is attributed to the presence of orbita...

  5. An analytical investigation: Effect of solar wind on lunar photoelectron sheath

    Science.gov (United States)

    Mishra, S. K.; Misra, Shikha

    2018-02-01

    The formation of a photoelectron sheath over the lunar surface and subsequent dust levitation, under the influence of solar wind plasma and continuous solar radiation, has been analytically investigated. The photoelectron sheath characteristics have been evaluated using the Poisson equation configured with population density contributions from half Fermi-Dirac distribution of the photoemitted electrons and simplified Maxwellian statistics of solar wind plasma; as a consequence, altitude profiles for electric potential, electric field, and population density within the photoelectron sheath have been derived. The expression for the accretion rate of sheath electrons over the levitated spherical particles using anisotropic photoelectron flux has been derived, which has been further utilized to characterize the charging of levitating fine particles in the lunar sheath along with other constituent photoemission and solar wind fluxes. This estimate of particle charge has been further manifested with lunar sheath characteristics to evaluate the altitude profile of the particle size exhibiting levitation. The inclusion of solar wind flux into analysis is noticed to reduce the sheath span and altitude of the particle levitation; the dependence of the sheath structure and particle levitation on the solar wind plasma parameters has been discussed and graphically presented.

  6. X-ray Photoelectron Spectroscopy Investigation on Electrochemical Degradation of Proton Exchange Membrane Fuel Cell Electrodes

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Dhiman, Rajnish; Skou, Eivind Morten

    2015-01-01

    X-ray photoelectron spectroscopy studies were systematically carried out on the electrodes before and after the electrochemical stress tests in an aqueous electrolyte at 20 °C and 70 °C. The electrodes have different ionomer structures (no ionomer, only ionomer, physically mixed ionomer and hot p...

  7. S-band and X-band integrated PWT photoelectron linacs

    International Nuclear Information System (INIS)

    Yu, D.; Newsham, D.; Zeng, J.; Rosenzweig, J.

    2001-01-01

    A compact high-energy injector, which has been developed by DULY Research Inc., will have wide scientific, industrial, and medical applications. The new photoelectron injector integrates the photocathode directly into a multicell linear accelerator. By focusing the beam with solenoids or permanent magnets, and producing high current with low emittance, high brightness and low energy spread are achieved. In addition to providing a small footprint and improved beam quality in an integrated structure, the compact system considerably simplifies external subsystems required to operate the photoelectron linac, including rf power transport, beam focusing, vacuum and cooling. The photoelectron linac employs an innovative Plane-Wave-Transformer (PWT) design, which provides strong cell-to-cell coupling, relaxes manufacturing tolerances and facilitates the attachment of external ports to the compact structure with minimal field interference. DULY Research Inc. under the support of the DOE Small Business Innovation Research (SBIR) program, has developed, constructed and installed a 20-MeV, S-band compact electron source at UCLA. Cold test results for this device are presented. DULY Research is also actively engaged in the development of an X-band photoelectron linear accelerator in a SBIR project. When completed, the higher frequency structure will be approximately three times smaller. Design considerations for this device are discussed following the S-band cold test results

  8. Photoelectron linear accelerator for producing a low emittance polarized electron beam

    Science.gov (United States)

    Yu, David U.; Clendenin, James E.; Kirby, Robert E.

    2004-06-01

    A photoelectron linear accelerator for producing a low emittance polarized electric beam. The accelerator includes a tube having an inner wall, the inner tube wall being coated by a getter material. A portable, or demountable, cathode plug is mounted within said tube, the surface of said cathode having a semiconductor material formed thereon.

  9. The protonation state of small carboxylic acids at the water surface from photoelectron spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Ottosson, N.; Wernersson, Erik; Söderström, J.; Pokapanich, W.; Kaufmann, S.; Svensson, S.; Persson, I.; Öhrwall, G.; Björneholm, O.

    2011-01-01

    Roč. 13, č. 26 (2011), s. 12261-12267 ISSN 1463-9076 Institutional research plan: CEZ:AV0Z40550506 Keywords : water surface * carboxylic acids * photoelectron spectroscopy Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.573, year: 2011

  10. Theoretical investigation of the (e,2e) simulation of photoelectron spectroscopy of polarized atoms

    International Nuclear Information System (INIS)

    Cherepkov, N.A.; Kuznetsov, V.V.

    1992-01-01

    It is shown that the (e, 2e) simulation of the photionization process can be used to perform the complete quantum-mechanical experiment provided the target atoms are polarized. The experimental technique developed earlier for simulation of the photoelectron angular distribution measurements can be used to obtain three additional parameters in the case of polarized atoms. (Author)

  11. Holographic Reconstruction of Photoelectron Diffraction and Its Circular Dichroism for Local Structure Probing

    Science.gov (United States)

    Matsui, Fumihiko; Matsushita, Tomohiro; Daimon, Hiroshi

    2018-06-01

    The local atomic structure around a specific element atom can be recorded as a photoelectron diffraction pattern. Forward focusing peaks and diffraction rings around them indicate the directions and distances from the photoelectron emitting atom to the surrounding atoms. The state-of-the-art holography reconstruction algorithm enables us to image the local atomic arrangement around the excited atom in a real space. By using circularly polarized light as an excitation source, the angular momentum transfer from the light to the photoelectron induces parallax shifts in these diffraction patterns. As a result, stereographic images of atomic arrangements are obtained. These diffraction patterns can be used as atomic-site-resolved probes for local electronic structure investigation in combination with spectroscopy techniques. Direct three-dimensional atomic structure visualization and site-specific electronic property analysis methods are reviewed. Furthermore, circular dichroism was also found in valence photoelectron and Auger electron diffraction patterns. The investigation of these new phenomena provides hints for the development of new techniques for local structure probing.

  12. Imaging photoelectron circular dichroism of chiral molecules by femtosecond multiphoton coincidence detection

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, C. Stefan; Ram, N. Bhargava; Janssen, Maurice H. M., E-mail: m.h.m.janssen@vu.nl [LaserLaB Amsterdam, VU University Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam (Netherlands); Powis, Ivan [School of Chemistry, University of Nottingham, Nottingham NG7 2RD (United Kingdom)

    2013-12-21

    Here, we provide a detailed account of novel experiments employing electron-ion coincidence imaging to discriminate chiral molecules. The full three-dimensional angular scattering distribution of electrons is measured after photoexcitation with either left or right circular polarized light. The experiment is performed using a simplified photoelectron-photoion coincidence imaging setup employing only a single particle imaging detector. Results are reported applying this technique to enantiomers of the chiral molecule camphor after three-photon ionization by circularly polarized femtosecond laser pulses at 400 nm and 380 nm. The electron-ion coincidence imaging provides the photoelectron spectrum of mass-selected ions that are observed in the time-of-flight mass spectra. The coincident photoelectron spectra of the parent camphor ion and the various fragment ions are the same, so it can be concluded that fragmentation of camphor happens after ionization. We discuss the forward-backward asymmetry in the photoelectron angular distribution which is expressed in Legendre polynomials with moments up to order six. Furthermore, we present a method, similar to one-photon electron circular dichroism, to quantify the strength of the chiral electron asymmetry in a single parameter. The circular dichroism in the photoelectron angular distribution of camphor is measured to be 8% at 400 nm. The electron circular dichroism using femtosecond multiphoton excitation is of opposite sign and about 60% larger than the electron dichroism observed before in near-threshold one-photon ionization with synchrotron excitation. We interpret our multiphoton ionization as being resonant at the two-photon level with the 3s and 3p Rydberg states of camphor. Theoretical calculations are presented that model the photoelectron angular distribution from a prealigned camphor molecule using density functional theory and continuum multiple scattering X alpha photoelectron scattering calculations

  13. High energy photoelectron spectroscopy in basic and applied science: Bulk and interface electronic structure

    Energy Technology Data Exchange (ETDEWEB)

    Knut, Ronny; Lindblad, Rebecka [Department of Physics and Astronomy, Uppsala University, SE-751 21 Uppsala (Sweden); Gorgoi, Mihaela [Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 15, 12489 Berlin (Germany); Rensmo, Håkan [Department of Physics and Astronomy, Uppsala University, SE-751 21 Uppsala (Sweden); Karis, Olof, E-mail: olof.karis@physics.uu.se [Department of Physics and Astronomy, Uppsala University, SE-751 21 Uppsala (Sweden)

    2013-10-15

    Highlights: •We demonstrate how hard X-ray photoelectron spectroscopy can be used to investigate interface properties of multilayers. •By combining HAXPES and statistical methods we are able to provide quantitative analysis of the interface diffusion process. •We show how photoionization cross sections can be used to map partial density of states contributions to valence states. •We use HAXPES to provide insight into the valence electronic structure of e.g. multiferroics and dye-sensitized solar cells. -- Abstract: With the access of new high-performance electron spectrometers capable of analyzing electron energies up to the order of 10 keV, the interest for photoelectron spectroscopy has grown and many new applications of the technique in areas where electron spectroscopies were considered to have limited use have been demonstrated over the last few decades. The technique, often denoted hard X-ray photoelectron spectroscopy (HX-PES or HAXPES), to distinguish the experiment from X-ray photoelectron spectroscopy performed at lower energies, has resulted in an increasing interest in photoelectron spectroscopy in many areas. The much increased mean free path at higher kinetic energies, in combination with the elemental selectivity of the core level spectroscopies in general has led to this fact. It is thus now possible to investigate the electronic structure of materials with a substantially enhanced bulk sensitivity. In this review we provide examples from our own research using HAXPES which to date has been performed mainly at the HIKE facility at the KMC-1 beamline at HZB, Berlin. The review exemplifies the new opportunities using HAXPES to address both bulk and interface electronic properties in systems relevant for applications in magnetic storage, energy related research, but also in purely curiosity driven problems.

  14. High energy photoelectron spectroscopy in basic and applied science: Bulk and interface electronic structure

    International Nuclear Information System (INIS)

    Knut, Ronny; Lindblad, Rebecka; Gorgoi, Mihaela; Rensmo, Håkan; Karis, Olof

    2013-01-01

    Highlights: •We demonstrate how hard X-ray photoelectron spectroscopy can be used to investigate interface properties of multilayers. •By combining HAXPES and statistical methods we are able to provide quantitative analysis of the interface diffusion process. •We show how photoionization cross sections can be used to map partial density of states contributions to valence states. •We use HAXPES to provide insight into the valence electronic structure of e.g. multiferroics and dye-sensitized solar cells. -- Abstract: With the access of new high-performance electron spectrometers capable of analyzing electron energies up to the order of 10 keV, the interest for photoelectron spectroscopy has grown and many new applications of the technique in areas where electron spectroscopies were considered to have limited use have been demonstrated over the last few decades. The technique, often denoted hard X-ray photoelectron spectroscopy (HX-PES or HAXPES), to distinguish the experiment from X-ray photoelectron spectroscopy performed at lower energies, has resulted in an increasing interest in photoelectron spectroscopy in many areas. The much increased mean free path at higher kinetic energies, in combination with the elemental selectivity of the core level spectroscopies in general has led to this fact. It is thus now possible to investigate the electronic structure of materials with a substantially enhanced bulk sensitivity. In this review we provide examples from our own research using HAXPES which to date has been performed mainly at the HIKE facility at the KMC-1 beamline at HZB, Berlin. The review exemplifies the new opportunities using HAXPES to address both bulk and interface electronic properties in systems relevant for applications in magnetic storage, energy related research, but also in purely curiosity driven problems

  15. Two-color visible/vacuum ultraviolet photoelectron imaging dynamics of Br2.

    Science.gov (United States)

    Plenge, Jürgen; Nicolas, Christophe; Caster, Allison G; Ahmed, Musahid; Leone, Stephen R

    2006-10-07

    An experimental two-color photoionization dynamics study of laser-excited Br2 molecules is presented, combining pulsed visible laser excitation and tunable vacuum ultraviolet (VUV) synchrotron radiation with photoelectron imaging. The X 1Sigmag + -B 3Pi0+u transition in Br2 is excited at 527 nm corresponding predominantly to excitation of the v' = 28 vibrational level in the B 3Pi0+u state. Tunable VUV undulator radiation in the energy range of 8.40-10.15 eV is subsequently used to ionize the excited molecules to the X 2Pi32,12 state of the ion, and the ionic ground state is probed by photoelectron imaging. Similar experiments are performed using single-photon synchrotron ionization in the photon energy range of 10.75-12.50 eV without any laser excitation. Photoelectron kinetic energy distributions are extracted from the photoelectron images. In the case of two-color photoionization using resonant excitation of the intermediate B 3Pi0+u state, a broad distribution of photoelectron kinetic energies is observed, and in some cases even a bimodal distribution, which depends on the VUV photon energy. In contrast, for single-photon ionization, a single nearly Gaussian-shaped distribution is observed, which shifts to higher energy with photon energy. Simulated spectra based on Franck-Condon factors for the transitions Br2(X 1Sigmag+, v" = 0)-Br2 +(X 2Pi12,32, v+) and Br2(B 3Pi0+u, v' = 28)-Br2 +(X 2Pi12,32, v+) are generated. Comparison of these calculated spectra with the measured images suggests that the differences in the kinetic energy distributions for the two ionization processes reflect the different extensions of the vibrational wave functions in the v" = 0 electronic ground state (X 1Sigmag+) versus the electronically and vibrationally excited state (B 3Pi0+u, v' = 28).

  16. Time-resolved photoelectron imaging using a femtosecond UV laser and a VUV free-electron laser

    OpenAIRE

    Liu, S. Y.; Ogi, Yoshihiro; Fuji, Takao; Nishizawa, Kiyoshi; Horio, Takuya; Mizuno, Tomoya; Kohguchi, Hiroshi; Nagasono, Mitsuru; Togashi, Tadashi; Tono, Kensuke; Yabashi, Makina; Senba, Yasunori; Ohashi, Haruhiko; Kimura, Hiroaki; Ishikawa, Tetsuya

    2010-01-01

    A time-resolved photoelectron imaging using a femtosecond ultraviolet (UV) laser and a vacuum UV freeelectron laser is presented. Ultrafast internal conversion and intersystem crossing in pyrazine in a supersonic molecular beam were clearly observed in the time profiles of photoioinzation intensity and time-dependent photoelectron images.

  17. The Utilization of Spin Polarized Photoelectron Spectroscopy as a Probe of Electron Correlation with an Ultimate Goal of Pu

    International Nuclear Information System (INIS)

    Tobin, James; Yu, Sung; Chung, Brandon; Morton, Simon; Komesu, Takashi; Waddill, George

    2008-01-01

    We are developing the technique of spin-polarized photoelectron spectroscopy as a probe of electron correlation with the ultimate goal of resolving the Pu electronic structure controversy. Over the last several years, we have demonstrated the utility of spin polarized photoelectron spectroscopy for determining the fine details of the electronic structure in complex systems such as those shown in the paper.

  18. Hydroxyapatite-diamondlike carbon nanocomposite films

    International Nuclear Information System (INIS)

    Narayan, Roger J.

    2005-01-01

    Hydroxyapatite is a bioactive ceramic that mimics the mineral composition of natural bone. Conventional plasma-sprayed hydroxyapatite coatings demonstrate poor adhesion and poor mechanical integrity. We have developed hydroxyapatite-diamondlike carbon bilayer film. The diamondlike carbon interlayer serves to prevent metal ion release and improve adhesion of the hydroxyapatite film. These films were characterized using X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectroscopy, nanoindentation, and microscratch adhesion testing. Based on the results of this study, hydroxyapatite-diamondlike carbon bilayers demonstrate promise for use in several orthopedic implants

  19. Hydroxyapatite-diamondlike carbon nanocomposite films

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Roger J. [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States)]. E-mail: roger.narayan@mse.gatech.edu

    2005-05-15

    Hydroxyapatite is a bioactive ceramic that mimics the mineral composition of natural bone. Conventional plasma-sprayed hydroxyapatite coatings demonstrate poor adhesion and poor mechanical integrity. We have developed hydroxyapatite-diamondlike carbon bilayer film. The diamondlike carbon interlayer serves to prevent metal ion release and improve adhesion of the hydroxyapatite film. These films were characterized using X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectroscopy, nanoindentation, and microscratch adhesion testing. Based on the results of this study, hydroxyapatite-diamondlike carbon bilayers demonstrate promise for use in several orthopedic implants.

  20. Hydrogen spillover in Pt-single-walled carbon nanotube composites: formation of stable C-H bonds.

    Science.gov (United States)

    Bhowmick, Ranadeep; Rajasekaran, Srivats; Friebel, Daniel; Beasley, Cara; Jiao, Liying; Ogasawara, Hirohito; Dai, Hongjie; Clemens, Bruce; Nilsson, Anders

    2011-04-13

    Using in situ electrical conductivity and ex situ X-ray photoelectron spectroscopy (XPS) measurements, we have examined how the hydrogen uptake of single-walled carbon nanotubes (SWNTs) is influenced by the addition of Pt nanoparticles. The conductivity of platinum-sputtered single-walled carbon nanotubes (Pt-SWNTs) during molecular hydrogen exposure decreased more rapidly than that of the corresponding pure SWNTs, which supports a hydrogenation mechanism facilitated by "spillover" of dissociated hydrogen from the Pt nanoparticles. C 1s XPS spectra indicate that the Pt-SWNTs store hydrogen by means of chemisorption, that is, covalent C-H bond formation: molecular hydrogen charging at elevated pressure (8.27 bar) and room temperature yielded Pt-SWNTs with up to 16 ± 1.5 at. % sp(3)-hybridized carbon atoms, which corresponds to a hydrogen-storage capacity of 1.2 wt % (excluding the weight of Pt nanoparticles). Pt-SWNTs prepared by the Langmuir-Blodgett (LB) technique exhibited the highest Pt/SWNT ratio and also the best hydrogen uptake. © 2011 American Chemical Society

  1. Coupling of carbon monoxide molecules over oxygen-defected UO2(111) single crystal and thin film surfaces.

    Science.gov (United States)

    Senanayake, S D; Waterhouse, G I N; Idriss, H; Madey, Theodore E

    2005-11-22

    While coupling reactions of carbon-containing compounds are numerous in organometallic chemistry, they are very rare on well-defined solid surfaces. In this work we show that the reductive coupling of two molecules of carbon monoxide to C2 compounds (acetylene and ethylene) could be achieved on oxygen-defected UO2(111) single crystal and thin film surfaces. This result allows in situ electron spectroscopic investigation of a typical organometallic reaction such as carbon coupling and extends it to heterogeneous catalysis and solids. By using high-resolution photoelectron spectroscopy (HRXPS) it was possible to track the changes in surface states of the U and O atoms as well as identify the intermediate of the reaction. Upon CO adsorption U cations in low oxidation states are oxidized to U4+ ions; this was accompanied by an increase of the O-to-U surface ratios. The HRXPS C 1s lines show the presence of adsorbed species assigned to diolate species (-OCH=CHO-) that are most likely the reaction intermediate in the coupling of two CO molecules to acetylene and ethylene.

  2. Coupling of Carbon Monoxide Molecules over Oxygen Defected UO2 (111) Single Crystal and Thin Film Surfaces

    International Nuclear Information System (INIS)

    Senanayake, S.; Waterhouse, G.; Idriss, H.; Madey, T.

    2005-01-01

    While coupling reactions of carbon-containing compounds are numerous in organometallic chemistry, they are very rare on well-defined solid surfaces. In this work we show that the reductive coupling of two molecules of carbon monoxide to C 2 compounds (acetylene and ethylene) could be achieved on oxygen-defected UO 2 (111) single crystal and thin film surfaces. This result allows in situ electron spectroscopic investigation of a typical organometallic reaction such as carbon coupling and extends it to heterogeneous catalysis and solids. By using high-resolution photoelectron spectroscopy (HRXPS) it was possible to track the changes in surface states of the U and O atoms as well as identify the intermediate of the reaction. Upon CO adsorption U cations in low oxidation states are oxidized to U 4+ ions; this was accompanied by an increase of the O-to-U surface ratios. The HRXPS C 1s lines show the presence of adsorbed species assigned to diolate species (-OCH=CHO-) that are most likely the reaction intermediate in the coupling of two CO molecules to acetylene and ethylene

  3. Improved wavelengths for the 1s2s3S1-1s2p3P0,2 transitions in helium-like Si12+

    International Nuclear Information System (INIS)

    Armour, I.A.; Myers, E.G.; Silver, J.D.; Traebert, E.; Oxford Univ.

    1979-01-01

    The wavelengths of the 1s2s 3 S 1 -1s2p 3 P 0 , 2 transitions in He-like Si 12+ have been remaesured to be 87.86 +- 0.01 nm and 81.48 +- 0.01 nm. The use of Rydberg lines for the calibration of fast beam spectra is discussed. (orig.)

  4. Intense Vibronic Modulation of the Chiral Photoelectron Angular Distribution Generated by Photoionization of Limonene Enantiomers with Circularly Polarized Synchrotron Radiation.

    Science.gov (United States)

    Rafiee Fanood, Mohammad M; Ganjitabar, Hassan; Garcia, Gustavo A; Nahon, Laurent; Turchini, Stefano; Powis, Ivan

    2018-04-17

    Photoionization of the chiral monoterpene limonene has been investigated using polarized synchrotron radiation between the adiabatic ionization threshold, 8.505 and 23.5 eV. A rich vibrational structure is seen in the threshold photoelectron spectrum and is interpreted using a variety of computational methods. The corresponding photoelectron circular dichroism-measured in the photoelectron angular distribution as a forward-backward asymmetry with respect to the photon direction-was found to be strongly dependent on the vibronic structure appearing in the photoelectron spectra, with the observed asymmetry even switching direction in between the major vibrational peaks. This effect can be ultimately attributed to the sensitivity of this dichroism to small phase shifts between adjacent partial waves of the outgoing photoelectron. These observations have implications for potential applications of this chiroptical technique, where the enantioselective analysis of monoterpene components is of particular interest. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Distortion dependent intersystem crossing: A femtosecond time-resolved photoelectron spectroscopy study of benzene, toluene, and p-xylene

    Directory of Open Access Journals (Sweden)

    Anne B. Stephansen

    2017-07-01

    Full Text Available The competition between ultrafast intersystem crossing and internal conversion in benzene, toluene, and p-xylene is investigated with time-resolved photoelectron spectroscopy and quantum chemical calculations. By exciting to S2 out-of-plane symmetry breaking, distortions are activated at early times whereupon spin-forbidden intersystem crossing becomes (partly allowed. Natural bond orbital analysis suggests that the pinnacle carbon atoms distorting from the aromatic plane change hybridization between the planar Franck-Condon geometry and the deformed (boat-shaped S2 equilibrium geometry. The effect is observed to increase in the presence of methyl-groups on the pinnacle carbon-atoms, where largest extents of σ and π orbital-mixing are observed. This is fully consistent with the time-resolved spectroscopy data: Toluene and p-xylene show evidence for ultrafast triplet formation competing with internal conversion, while benzene appears to only decay via internal conversion within the singlet manifold. For toluene and p-xylene, internal conversion to S1 and intersystem crossing to T3 occur within the time-resolution of our instrument. The receiver triplet state (T3 is found to undergo internal conversion in the triplet manifold within ≈100–150 fs (toluene or ≈180–200 fs (p-xylene as demonstrated by matching rise and decay components of upper and lower triplet states. Overall, the effect of methylation is found to both increase the intersystem crossing probability and direct the molecular axis of the excited state dynamics.

  6. Determination of the 1s2{\\ell }2{{\\ell }}^{\\prime } state production ratios {{}^{4}P}^{o}/{}^{2}P, {}^{2}D/{}^{2}P and {{}^{2}P}_{+}/{{}^{2}P}_{-} from fast (1{s}^{2},1s2s\\,{}^{3}S) mixed-state He-like ion beams in collisions with H2 targets

    Science.gov (United States)

    Benis, E. P.; Zouros, T. J. M.

    2016-12-01

    New results are presented on the ratio {R}m={σ }{T2p}( {}4P)/{σ }{T2p}({}2P) concerning the production cross sections of Li-like 1s2s2p quartet and doublet P states formed in energetic ion-atom collisions by single 2p electron transfer to the metastable 1s2s {}3S component of the He-like ion beam. Spin statistics predict a value of R m = 2 independent of the collision system in disagreement with most reported measurements of {R}m≃ 1{--}9. A new experimental approach is presented for the evaluation of R m having some practical advantages over earlier approaches. It also allows for the determination of the separate contributions of ground- and metastable-state beam components to the measured spectra. Applying our technique to zero-degree Auger projectile spectra from 4.5 MeV {{{B}}}3+ (Benis et al 2002 Phys. Rev. A 65 064701) and 25.3 MeV {{{F}}}7+ (Zamkov et al 2002 Phys. Rev. A 65 062706) mixed state (1{s}2 {}1S,1s2s {}3S) He-like ion collisions with H2 targets, we report new values of {R}m=3.5+/- 0.4 for boron and {R}m=1.8+/- 0.3 for fluorine. In addition, the ratios of {}2D/{}2P and {{}2P}+/{{}2P}- populations from either the metastable and/or ground state beam component, also relevant to this analysis, are evaluated and compared to previously reported results for carbon collisions on helium (Strohschein et al 2008 Phys. Rev. A 77 022706) including a critical comparison to theory.

  7. Effect of epoxy coatings on carbon fibers during manufacture of carbon fiber reinforced resin matrix composites

    International Nuclear Information System (INIS)

    Guo, Hui; Huang, Yudong; Liu, Li; Shi, Xiaohua

    2010-01-01

    The changes in oxygen and nitrogen during manufacture of the carbon fiber reinforced resin matrix composites were measured using the X-ray photoelectron spectroscopy method. The effects of the change in oxygen and nitrogen on the strength of the carbon fibers were investigated and the results revealed that the change of the tensile strength with increasing heat curing temperature was attributed to the change in the surface flaws of the carbon fibers because the carbon fibers are sensitive to the surface flaws. The effect of the surface energy that was calculated using Kaelble's method on the strength of the carbon fibers was investigated. Furthermore, the surface roughness of the carbon fibers was measured using atom force microscopy. The change trend of roughness was reverse to that of the strength, which was because of the brittle fracture of the carbon fibers.

  8. Electronic properties and bonding in Zr Hx thin films investigated by valence-band x-ray photoelectron spectroscopy

    Science.gov (United States)

    Magnuson, Martin; Schmidt, Susann; Hultman, Lars; Högberg, Hans

    2017-11-01

    The electronic structure and chemical bonding in reactively magnetron sputtered Zr Hx (x =0.15 , 0.30, 1.16) thin films with oxygen content as low as 0.2 at.% are investigated by 4d valence band, shallow 4p core-level, and 3d core-level x-ray photoelectron spectroscopy. With increasing hydrogen content, we observe significant reduction of the 4d valence states close to the Fermi level as a result of redistribution of intensity toward the H 1s-Zr 4d hybridization region at ˜6 eV below the Fermi level. For low hydrogen content (x =0.15 , 0.30), the films consist of a superposition of hexagonal closest-packed metal (α phase) and understoichiometric δ -Zr Hx (Ca F2 -type structure) phases, while for x =1.16 , the films form single-phase Zr Hx that largely resembles that of stoichiometric δ -Zr H2 phase. We show that the cubic δ -Zr Hx phase is metastable as thin film up to x =1.16 , while for higher H contents the structure is predicted to be tetragonally distorted. For the investigated Zr H1.16 film, we find chemical shifts of 0.68 and 0.51 eV toward higher binding energies for the Zr 4 p3 /2 and 3 d5 /2 peak positions, respectively. Compared to the Zr metal binding energies of 27.26 and 178.87 eV, this signifies a charge transfer from Zr to H atoms. The change in the electronic structure, spectral line shapes, and chemical shifts as a function of hydrogen content is discussed in relation to the charge transfer from Zr to H that affects the conductivity by charge redistribution in the valence band.

  9. Genetic analysis of complement C1s deficiency associated with systemic lupus erythematosus highlights alternative splicing of normal C1s gene

    DEFF Research Database (Denmark)

    Amano, Mariane T; Ferriani, Virgínia P L; Florido, Marlene P C

    2008-01-01

    Deficiencies of complement proteins of the classical pathway are strongly associated with the development of autoimmune diseases. Deficiency of C1r has been observed to occur concomitantly with deficiency in C1s and 9 out of 15 reported cases presented systemic lupus erythematosus (SLE). Here, we...... describe a family in which all four children are deficient in C1s but only two of them developed SLE. Hemolytic activity mediated by the alternative and the lectin pathways were normal, but classical pathway activation was absent in all children's sera. C1s was undetectable, while in the parents' sera...

  10. Atomic hydrogen cleaning of In{sub 0.53}Ga{sub 0.47}As studied using synchrotron radiation photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, Barry [Department of Material Science and Engineering, University of Texas at Dallas, Richardson, Texas (United States); Kumarappan, Kumar; Hughes, Greg [Surface and Interface Research Lab, National Centre for Sensor Research, School of Physical Sciences, Dublin City University, Glasnevin, Dublin 9 (Ireland)

    2013-11-15

    The removal of the native oxides from the In{sub 0.53}Ga{sub 0.47}As surface by exposure to atomic hydrogen has been investigated by highly surface sensitive synchrotron radiation based photoelectron spectroscopy. This shows that it is possible to fully remove the arsenic oxides at low temperatures, while still leaving a low concentration of stable Ga{sub 2}O and In{sub 2}O at the surface, and no evidence of indium loss from the substrate. The removal of surface carbon contamination is also seen, however full removal is only detected in the absence of prior substrate annealing. (copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Coulomb-free and Coulomb-distorted recolliding quantum orbits in photoelectron holography

    Science.gov (United States)

    Maxwell, A. S.; Figueira de Morisson Faria, C.

    2018-06-01

    We perform a detailed analysis of the different types of orbits in the Coulomb quantum orbit strong-field approximation (CQSFA), ranging from direct to those undergoing hard collisions. We show that some of them exhibit clear counterparts in the standard formulations of the strong-field approximation for direct and rescattered above-threshold ionization, and show that the standard orbit classification commonly used in Coulomb-corrected models is over-simplified. We identify several types of rescattered orbits, such as those responsible for the low-energy structures reported in the literature, and determine the momentum regions in which they occur. We also find formerly overlooked interference patterns caused by backscattered Coulomb-corrected orbits and assess their effect on photoelectron angular distributions. These orbits improve the agreement of photoelectron angular distributions computed with the CQSFA with the outcome of ab initio methods for high energy phtotoelectrons perpendicular to the field polarization axis.

  12. Photoelectron and x-ray holography by contrast: enhancing image quality and dimensionality

    Energy Technology Data Exchange (ETDEWEB)

    Fadley, C.S.; Zhao, L. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Department of Physics, University of California, Davis, CA (United States); Hove, M.A. van [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Department of Physics, University of California, Davis, CA (United States); Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Kaduwela, A.; Marchesini, S. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Omori, S. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Institute of Industrial Science, University of Tokyo, Tokyo (Japan); Sony Corporation Semiconductor Network Company, Asahi-cho, Atsugi, Kanagawa (Japan)

    2001-11-26

    Three forms of electron or x-ray holography 'by contrast' are discussed: they all exploit small changes in diffraction conditions to improve image quality and/or extract additional information. Spin-polarized photoelectron holography subtracts spin-down from spin-up holograms so as to image the relative orientations of atomic magnetic moments around an emitter atom. Differential photoelectron holography subtracts holograms taken at slightly different energies so as to overcome the forward-scattering problem that normally degrades the three-dimensional imaging of atoms, particularly for emitter atoms that are part of a bulk substrate environment. Resonant x-ray fluorescence holography also subtracts holograms at slightly different energies, these being chosen above and below an absorption edge of a constituent atom, thus allowing the selective imaging of that type of atom, or what has been referred to as imaging 'in true colour'. (author)

  13. Photoelectron and UV absorption spectroscopy for determination of electronic configurations of negative molecular ions: Chlorophenols

    International Nuclear Information System (INIS)

    Tseplin, E.E.; Tseplina, S.N.; Tuimedov, G.M.; Khvostenko, O.G.

    2009-01-01

    The photoelectron and UV absorption spectra of p-, m-, and o-chlorophenols in the gas phase have been obtained. On the basis of DFT B3LYP/6-311++G(d, p) calculations, the photoelectron bands have been assigned to occupied molecular orbitals. From the TDDFT B3LYP/6-311++G(d, p) calculation results, the UV absorption bands have been assigned to excited singlet states of the molecules under investigation. For each excited state a dominant transition was found. It has been shown that the energies of these singlet transitions correlate with the energy differences between the ground-state molecular orbitals participating in them. Using the UV spectra interpretation, the electronic states of molecular anions detected earlier for the same compounds by means of the resonant electron capture mass-spectrometry have been determined.

  14. X-ray photoelectron spectroscopy of the uranium/oxygen system

    International Nuclear Information System (INIS)

    Allen, G.C.; Holmes, N.R.

    1986-10-01

    Other authors have presented evidence to show that the oxidised surface layer which forms on UO 2 at 25 0 C is amorphous UO 3 . In the present study X-ray photoelectron spectroscopy, infra-red spectroscopy and X-ray diffraction have been used to characterise the higher oxides α-UO 3 , β-UO 3 , γ-UO 3 and δ-UO 3 . While the infra-red and X-ray diffraction results may be used to characterise each oxide the X-ray photoelectron spectra for each phase are very similar. During reduction of the oxide surface in the spectrometer changes in the spectra were observed which were shown to be associated with particular oxidation states of the metal rather than different uranium atom coordination sites within the oxide. A close structural relationship is demonstrated between these oxides and the product at the surface of air-oxidised UO 2 fuel. (author)

  15. Probing molecular orientations in thin films by x-ray photoelectron spectroscopy

    Science.gov (United States)

    Li, Y.; Li, P.; Lu, Z.-H.

    2018-03-01

    A great number of functional organic molecules in active thin-film layers of optoelectronic devices have highly asymmetric structures, such as plate-like, rod-like, etc. This makes molecular orientation an important aspect in thin-films as it can significantly affect both the optical and electrical performance of optoelectronic devices. With a combination of in-situ ultra violet photoelectron spectroscopy (UPS) and x-ray photoelectron spectroscopy (XPS) investigations for organic molecules having a broad range of structural properties, we discovered a rigid connection of core levels and frontier highest occupied molecular orbital levels at organic interfaces. This finding opens up opportunities of using X-ray photoemission spectroscopy as an alternative tool to UPS for providing an easy and unambiguous data interpretation in probing molecular orientations.

  16. Probing molecular orientations in thin films by x-ray photoelectron spectroscopy

    Directory of Open Access Journals (Sweden)

    Y. Li

    2018-03-01

    Full Text Available A great number of functional organic molecules in active thin-film layers of optoelectronic devices have highly asymmetric structures, such as plate-like, rod-like, etc. This makes molecular orientation an important aspect in thin-films as it can significantly affect both the optical and electrical performance of optoelectronic devices. With a combination of in-situ ultra violet photoelectron spectroscopy (UPS and x-ray photoelectron spectroscopy (XPS investigations for organic molecules having a broad range of structural properties, we discovered a rigid connection of core levels and frontier highest occupied molecular orbital levels at organic interfaces. This finding opens up opportunities of using X-ray photoemission spectroscopy as an alternative tool to UPS for providing an easy and unambiguous data interpretation in probing molecular orientations.

  17. A microcomputer-controlled modulation technique for the detection of transient species in UV photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Lonkhuyzen, H. van; Muller, H.G.; Lange, C.A. de

    1980-01-01

    A microcomputer-controlled modulation method is described to measure UV photoelectron spectra of transient species generated in a microwave discharge. Spectra at low and high microwave power levels are simultaneously recorded and afterwards linearly combined in order to remove parent compound signals. The method is applied to discharged oxygen where the transition O 2 + ( 2 PHIsub(u)) 2 ( 1 Δsub(g)) becomes visible without interference from the parent molecule O 2 ( 3 Σsub(g) - ), and to discharged sulphur dioxide where SO( 3 Σ - ) and S( 3 P) photoelectron spectra are obtained free from SO 2 bands. Finally the build-up of transient bands as a function of time is recorded. (orig.)

  18. Electron mean free path from angle-dependent photoelectron spectroscopy of aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Goldmann, Maximilian; Miguel-Sánchez, Javier; West, Adam H. C.; Yoder, Bruce L.; Signorell, Ruth, E-mail: rsignorell@ethz.ch [Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich (Switzerland)

    2015-06-14

    We propose angle-resolved photoelectron spectroscopy of aerosol particles as an alternative way to determine the electron mean free path of low energy electrons in solid and liquid materials. The mean free path is obtained from fits of simulated photoemission images to experimental ones over a broad range of different aerosol particle sizes. The principal advantage of the aerosol approach is twofold. First, aerosol photoemission studies can be performed for many different materials, including liquids. Second, the size-dependent anisotropy of the photoelectrons can be exploited in addition to size-dependent changes in their kinetic energy. These finite size effects depend in different ways on the mean free path and thus provide more information on the mean free path than corresponding liquid jet, thin film, or bulk data. The present contribution is a proof of principle employing a simple model for the photoemission of electrons and preliminary experimental data for potassium chloride aerosol particles.

  19. Direct Visualization of Valence Electron Motion Using Strong-Field Photoelectron Holography

    Science.gov (United States)

    He, Mingrui; Li, Yang; Zhou, Yueming; Li, Min; Cao, Wei; Lu, Peixiang

    2018-03-01

    Watching the valence electron move in molecules on its intrinsic timescale has been one of the central goals of attosecond science and it requires measurements with subatomic spatial and attosecond temporal resolutions. The time-resolved photoelectron holography in strong-field tunneling ionization holds the promise to access this realm. However, it remains to be a challenging task hitherto. Here we reveal how the information of valence electron motion is encoded in the hologram of the photoelectron momentum distribution (PEMD) and develop a novel approach of retrieval. As a demonstration, applying it to the PEMDs obtained by solving the time-dependent Schrödinger equation for the prototypical molecule H2+ , the attosecond charge migration is directly visualized with picometer spatial and attosecond temporal resolutions. Our method represents a general approach for monitoring attosecond charge migration in more complex polyatomic and biological molecules, which is one of the central tasks in the newly emerging attosecond chemistry.

  20. Electron scattering in large water clusters from photoelectron imaging with high harmonic radiation.

    Science.gov (United States)

    Gartmann, Thomas E; Hartweg, Sebastian; Ban, Loren; Chasovskikh, Egor; Yoder, Bruce L; Signorell, Ruth

    2018-06-06

    Low-energy electron scattering in water clusters (H2O)n with average cluster sizes of n < 700 is investigated by angle-resolved photoelectron spectroscopy using high harmonic radiation at photon energies of 14.0, 20.3, and 26.5 eV for ionization from the three outermost valence orbitals. The measurements probe the evolution of the photoelectron anisotropy parameter β as a function of cluster size. A remarkably steep decrease of β with increasing cluster size is observed, which for the largest clusters reaches liquid bulk values. Detailed electron scattering calculations reveal that neither gas nor condensed phase scattering can explain the cluster data. Qualitative agreement between experiment and simulations is obtained with scattering calculations that treat cluster scattering as an intermediate case between gas and condensed phase scattering.

  1. Investigation of photoelectronic processes in CdIn2S4 by photoinduced current transient spectroscopy

    International Nuclear Information System (INIS)

    Serpi, A.

    1986-01-01

    Photoelectronic processes in CdIn 2 S 4 are investigated by four-gate photoinduced current transient spectroscopy. In general the photocurrent decay transients are non-exponential because of a nonlinear multichannel recombination mechanism. Nevertheless suitable extrinsic excitation allows to open one recombination channel only and so to evidence a purely exponential relaxation. The detailed analysis of this process leads to the interpretation that the defects associated with the energy levels continuously distributed below the conduction band act as relay centres for radiative recombination of photoelectrons rather than as thermal emitting traps. An electron trapping level located at about 0.6 eV from the bottom of the conduction band is also evidenced. (author)

  2. A lab-based ambient pressure x-ray photoelectron spectrometer with exchangeable analysis chambers

    Energy Technology Data Exchange (ETDEWEB)

    Newberg, John T., E-mail: jnewberg@udel.edu; Arble, Chris; Goodwin, Chris; Khalifa, Yehia; Broderick, Alicia [Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716 (United States); Åhlund, John [Scienta AB, Box 15120, 750 15 Uppsala (Sweden)

    2015-08-15

    Ambient pressure X-ray photoelectron spectroscopy (APXPS) is a powerful spectroscopy tool that is inherently surface sensitive, elemental, and chemical specific, with the ability to probe sample surfaces under Torr level pressures. Herein, we describe the design of a new lab-based APXPS system with the ability to swap small volume analysis chambers. Ag 3d(5/2) analyses of a silver foil were carried out at room temperature to determine the optimal sample-to-aperture distance, x-ray photoelectron spectroscopy analysis spot size, relative peak intensities, and peak full width at half maximum of three different electrostatic lens modes: acceleration, transmission, and angular. Ag 3d(5/2) peak areas, differential pumping pressures, and pump performance were assessed under varying N{sub 2}(g) analysis chamber pressures up to 20 Torr. The commissioning of this instrument allows for the investigation of molecular level interfacial processes under ambient vapor conditions in energy and environmental research.

  3. Observation of elastic scattering effects on photoelectron angular distributions in free Xe clusters

    International Nuclear Information System (INIS)

    Oehrwall, G; Tchaplyguine, M; Gisselbrecht, M; Lundwall, M; Feifel, R; Rander, T; Schulz, J; Marinho, R R T; Lindgren, A; Sorensen, S L; Svensson, S; Bjoerneholm, O

    2003-01-01

    We report an observation of substantial deviations in the photoelectron angular distribution for photoionization of atoms in free Xe clusters compared to the case of photoionization of free atoms. The cross section, however, seems not to vary between the cluster and free atoms. This observation was made in the vicinity of the Xe 4d Cooper minimum, where the atomic angular distribution is known to vary dramatically. The angular distribution of electrons emitted from atoms in the clusters is more isotropic than that of free atoms over the entire kinetic energy range studied. Furthermore, the angular distribution is more isotropic for atoms in the interior of the clusters than for atoms at the surface. We attribute this deviation to elastic scattering of the outgoing photoelectrons. We have investigated two average cluster sizes, ≥ 4000 and 1000 and found no significant differences between these two cases

  4. Many-body effect in the partial singles N2,3 photoelectron spectroscopy spectrum of atomic Cd

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2008-01-01

    We can extract out the photoelectron kinetic energy (KE) dependent imaginary part of the core-hole self-energy by employing Auger-photoelectron coincidence spectroscopy (APECS). The variation with photoelectron KE in the Auger electron spectroscopy (AES) spectral peak intensity of a selected decay channel measured in coincidence with photoelectrons of a selected KE is the partial singles (non-coincidence) photoelectron spectroscopy (PES) spectrum, i.e., the product of the singles PES one and the branching ratio of the partial Auger decay width of a selected decay channel to the imaginary part of the core-hole self-energy. When a decay channel the partial Auger decay width of which is photoelectron KE independent is selected, we can extract out spectroscopically the imaginary part of the core-hole self-energy because the variation with photoelectron KE in the relative spectral intensity of the partial singles PES spectrum to the singles one is that in the branching ratio of the partial Auger decay width of a selected decay channel. As an example we discussed the N 2,3 -hole self-energy of atomic Cd

  5. Time-resolved X-ray photoelectron spectroscopy techniques for the study of interfacial charge dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Neppl, Stefan, E-mail: sneppl@lbl.gov; Gessner, Oliver

    2015-04-15

    Highlights: • Ultrafast interfacial charge transfer is probed with atomic site specificity. • Femtosecond X-ray photoelectron spectroscopy using a free electron laser. • Efficient and flexible picosecond X-ray photoelectron pump–probe scheme using synchrotron radiation. - Abstract: X-ray photoelectron spectroscopy (XPS) is one of the most powerful techniques to quantitatively analyze the chemical composition and electronic structure of surfaces and interfaces in a non-destructive fashion. Extending this technique into the time domain has the exciting potential to shed new light on electronic and chemical dynamics at surfaces by revealing transient charge configurations with element- and site-specificity. Here, we describe prospects and challenges that are associated with the implementation of picosecond and femtosecond time-resolved X-ray photoelectron spectroscopy at third-generation synchrotrons and X-ray free-electron lasers, respectively. In particular, we discuss a series of laser-pump/X-ray-probe photoemission experiments performed on semiconductor surfaces, molecule-semiconductor interfaces, and films of semiconductor nanoparticles that demonstrate the high sensitivity of time-resolved XPS to light-induced charge carrier generation, diffusion and recombination within the space charge layers of these materials. Employing the showcase example of photo-induced electronic dynamics in a dye-sensitized semiconductor system, we highlight the unique possibility to probe heterogeneous charge transfer dynamics from both sides of an interface, i.e., from the perspective of the molecular electron donor and the semiconductor acceptor, simultaneously. Such capabilities will be crucial to improve our microscopic understanding of interfacial charge redistribution and associated chemical dynamics, which are at the heart of emerging energy conversion, solar fuel generation, and energy storage technologies.

  6. Modeling and parameterization of photoelectrons emitted in condensed matter by linearly polarized synchrotron radiation

    Science.gov (United States)

    Jablonski, A.

    2018-01-01

    Growing availability of synchrotron facilities stimulates an interest in quantitative applications of hard X-ray photoemission spectroscopy (HAXPES) using linearly polarized radiation. An advantage of this approach is the possibility of continuous variation of radiation energy that makes it possible to control the sampling depth for a measurement. Quantitative applications are based on accurate and reliable theory relating the measured spectral features to needed characteristics of the surface region of solids. A major complication in the case of polarized radiation is an involved structure of the photoemission cross-section for hard X-rays. In the present work, details of the relevant formalism are described and algorithms implementing this formalism for different experimental configurations are proposed. The photoelectron signal intensity may be considerably affected by variation in the positioning of the polarization vector with respect to the surface plane. This information is critical for any quantitative application of HAXPES by polarized X-rays. Different quantitative applications based on photoelectrons with energies up to 10 keV are considered here: (i) determination of surface composition, (ii) estimation of sampling depth, and (iii) measurements of an overlayer thickness. Parameters facilitating these applications (mean escape depths, information depths, effective attenuation lengths) were calculated for a number of photoelectron lines in four elemental solids (Si, Cu, Ag and Au) in different experimental configurations and locations of the polarization vector. One of the considered configurations, with polarization vector located in a plane perpendicular to the surface, was recommended for quantitative applications of HAXPES. In this configurations, it was found that the considered parameters vary weakly in the range of photoelectron emission angles from normal emission to about 50° with respect to the surface normal. The averaged values of the mean

  7. Coincidence and covariance data acquisition in photoelectron and -ion spectroscopy. I. Formal theory

    Science.gov (United States)

    Mikosch, Jochen; Patchkovskii, Serguei

    2013-10-01

    We derive a formal theory of noisy Poisson processes with multiple outcomes. We obtain simple, compact expressions for the probability distribution function of arbitrarily complex composite events and its moments. We illustrate the utility of the theory by analyzing properties of coincidence and covariance photoelectron-photoion detection involving single-ionization events. The results and techniques introduced in this work are directly applicable to more general coincidence and covariance experiments, including multiple ionization and multiple-ion fragmentation pathways.

  8. Photoelectron photoion coincidence imaging of ultrafast control in multichannel molecular dynamics.

    Science.gov (United States)

    Lehmann, C Stefan; Ram, N Bhargava; Irimia, Daniel; Janssen, Maurice H M

    2011-01-01

    The control of multichannel ionic fragmentation dynamics in CF3I is studied by femtosecond pulse shaping and velocity map photoelectron photoion coincidence imaging. When CF3I is photoexcited with femtosecond laser pulses around 540 nm there are two major ions observed in the time-of-flight mass spectrum, the parent CF3I+ ion and the CF3+ fragment ion. In this first study we focussed on the influence of LCD-shaped laser pulses on the molecular dynamics. The three-dimensional recoil distribution of electrons and ions were imaged in coincidence using a single time-of-flight delay line detector. By fast switching of the voltages on the various velocity map ion lenses after detection of the electron, both the electron and the coincident ion are measured with the same imaging detector. These results demonstrate that a significant simplification of a photoelectron-photoion coincidence imaging apparatus is in principle possible using switched lens voltages. It is observed that shaped laser fields like chirped pulses, double pulses, and multiple pulses can enhance the CF3+CF3I+ ratio by up to 100%. The total energetics of the dynamics is revealed by analysis of the coincident photoelectron spectra and the kinetic energy of the CF3+ and I fragments. Both the parent CF3I+ and the CF3+ fragment result from a five-photon excitation process. The fragments are formed with very low kinetic energy. The photoelectron spectra and CF3+/CF3I+ ratio vary with the center wavelength of the shaped laser pulses. An optimal enhancement of the CF3+/CF3I+ ratio by about 60% is observed for the double pulse excitation when the pulses are spaced 60 fs apart. We propose that the control mechanism is determined by dynamics on neutral excited states and we discuss the results in relation to the location of electronically excited (Rydberg) states of CF3I.

  9. Transition absorption as a mechanism of surface photoelectron emission from metals

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Protsenko, Igor E.; Ikhsanov, Renat Sh

    2015-01-01

    Transition absorption of a photon by an electron passingthrough a boundary between two media with different permit-tivities is described both classically and quantum mechani-cally. Transition absorption is shown to make a substantialcontribution to photoelectron emission at a metal....../semicon-ductor interface in nanoplasmonic systems, and is put forth asa possible microscopic mechanism of the surface photoelec-tric effect in photodetectors and solar cells containing plas-monic nanoparticles....

  10. Understanding interface properties from high kinetic energy photoelectron spectroscopy and first principles theory

    International Nuclear Information System (INIS)

    Granroth, Sari; Olovsson, Weine; Holmstroem, Erik; Knut, Ronny; Gorgoi, Mihaela; Svensson, Svante; Karis, Olof

    2011-01-01

    Advances in instrumentation regarding 3rd generation synchrotron light sources and electron spectrometers has enabled the field of high kinetic energy photoelectron spectroscopy (HIKE) (also often denoted hard X-ray photoelectron spectroscopy (HX-PES or HAXPES)). Over the last years, the amount of investigations that relies on the HIKE method has increased dramatically and can arguably be said to have given a rebirth of the interest in photoelectron spectroscopy in many areas. It is in particular the much increased mean free path at higher kinetic energies in combination with the elemental selectivity of the core level spectroscopies in general that has lead to this fact, as it makes it possible to investigate the electronic structure of materials with a substantially reduced surface sensitivity. In this review we demonstrate how HIKE can be used to investigate the interface properties in multilayer systems. Relative intensities of the core level photoelectron peaks and their chemical shifts derived from binding energy changes are found to give precise information on physico-chemical properties and quality of the buried layers. Interface roughening, including kinetic properties such as the rate of alloying, and temperature effects on the processes can be analyzed quantitatively. We will also provide an outline of the theoretical framework that is used to support the interpretation of data. We provide examples from our own investigations of multilayer systems which comprises both systems of more model character and a multilayer system very close to real applications in devices that are considered to be viable alternative to the present read head technology. The experimental data presented in this review is exclusively recorded at the BESSY-II synchrotron at the Helmholtz-Zentrum Berlin fuer Materialien und Energie. This HIKE facility is placed at the bending magnet beamline KMC-1, which makes it different from several other facilities which relies on undulators as

  11. GaN quantum dot polarity determination by X-ray photoelectron diffraction

    Czech Academy of Sciences Publication Activity Database

    Romanyuk, Olexandr; Bartoš, Igor; Brault, J.; De Mierry, P.; Paskova, T.; Jiříček, Petr

    2016-01-01

    Roč. 389, Dec (2016), s. 1156-1160 ISSN 0169-4332 R&D Projects: GA ČR GA15-01687S; GA MŠk LM2015088 Institutional support: RVO:68378271 Keywords : GaN * semipolar GaN * quantum dots * X-ray photoelectron diffraction * surface polarity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.387, year: 2016

  12. X-ray photoelectron spectrometer calibration and thin film investigations on germanium oxides

    OpenAIRE

    Deegan, Terri

    1998-01-01

    The first aim of this project was the characterisation of the VG Scientific Clam 100 based, XPS (X-ray Photoelectron Spectroscopy). Spectrometer in the Physics department at Dublin City University Detailed energy scale and intensity scale calibrations were carried out using sputter-cleaned Au (Gold), Ag (Silver), Cu (Copper) and Pd (Palladium) foil samples. Analysis of these calibration spectra against standard reference spectra led to an accurate energy calibration and the production of indi...

  13. Proline adsorption on TiO 2(1 1 0) single crystal surface: A study by high resolution photoelectron spectroscopy

    Science.gov (United States)

    Fleming, G. J.; Adib, K.; Rodriguez, J. A.; Barteau, M. A.; Idriss, H.

    2007-12-01

    The surface chemistry and binding of DL-proline were investigated on the oxidised (stoichiometric) and reduced (sub-stoichiometric) TiO 2(1 1 0) single crystal surfaces. TiO 2 was chosen as the substrate as it best represents the surface of a biomedical implant, which bio-molecules interact with during the healing of bone/teeth fractures (molecular recognition). High resolution X-ray photoelectron spectroscopy (HR-XPS) studies of the C1s and N1s regions revealed that DL-proline is present in two forms (dissociated and zwitterionic) on the oxidised TiO 2 surface. On TiO 2(1 1 0) surfaces reduced by Ar + sputtering, a significant increase in the amount of zwitterionic proline at the surface was detected when compared with the oxidised surface. Study of the temperature effect showed that in both cases the zwitterionic structure was the less stable structure. The reason for its relative instability appears to be thermodynamic.

  14. Shake-up transitions in S 2p, S 2s and F 1s photoionization of the SF6 molecule

    International Nuclear Information System (INIS)

    Decleva, P; Fronzoni, G; Kivimaeki, A; Alvarez Ruiz, J; Svensson, S

    2009-01-01

    Shake-up transitions occurring upon core photoionization in the SF 6 molecule have been studied experimentally and theoretically. The S 2p, S 2s and F 1s shake-up satellite photoelectron spectra were measured using Al Ka radiation at 1487 eV photon energy. They have been interpreted with the aid of ab initio configuration interaction calculations in the sudden-limit approximation. For the S 2p spectrum, conjugate shake-up transitions were also calculated. Clear evidence of conjugate processes is observed in the S 2p shake-up spectrum measured at 230 eV photon energy. The experimental and theoretical S 2p and S 2s shake-up spectra show very similar structures mainly due to orbital relaxation involving S 3s and 3p participation. For the calculation of the F 1s shake-up spectrum, the symmetry lowering of the molecule in the final states was considered, resulting in a good agreement with the experiment.

  15. Analysis of Dietz's single, rectangular pulse theory for the generation of radiation via photoelectrons

    International Nuclear Information System (INIS)

    Dipp, T.M.

    1993-12-01

    The generation of radiation via photoelectrons induced off of a conducting surface has been analytically modeled and computationally simulated by several researchers. This paper analyzes and compares Dietz's theory predictions with my research to form a unified foundation of consistent, inter-supporting results that should provide confidence in the independently performed basic research and resulting scaling laws and predictions. In doing so, this paper concentrated on Dietz's small-spot, single, rectangular, ''weak'' pulse theory and equations, which involve nonrelativistic, monoenergetic photoelectrons emitted normal to a conducting surface in vacuum. In this paper I: (1) analytically compare Dietz's theory equations with my theory equations, (2) compare Dietz's theoretical scaling laws with my Particle-In-Cell (PIC) code simulation results, and (3) make Dietz's equations easier to use in predicting and optimizing photoelectron-generated radiation. As a result, it is shown that Dietz's equations match my theory's equations in their predicted scaling laws, differing only slightly in their coefficients and unique model parameters. Also, Dietz's equations generally agree with the PIC code results. Finally, optimization analysis showed that theoretical conversion efficiencies for typical real metals can meet and exceed values of 10 -5 if optimal photon energies of 15 to 20 eV are used. Even better efficiencies should be possible if the small-spot constraint is violated as well

  16. Two-color photoionization and photoelectron studies by combining infrared and vacuum ultraviolet

    International Nuclear Information System (INIS)

    Ng, C.Y.

    2005-01-01

    Recent developments of two-color infrared (IR)-vacuum ultraviolet (VUV) and VUV-IR photoionization and photoelectron detection schemes for spectroscopic studies are described. By preparing molecules in selected rovibrational states by IR excitation prior to VUV-photoionization, state-selected and state-to-state photoionization cross sections can be obtained by IR-VUV-photoionization efficiency (IR-VUV-PIE) and IR-VUV-pulsed field ionization-photoelectron (IR-VUV-PFI-PE) measurements, respectively. Rotationally resolved autoionizing Rydberg states converging to excited ionic states, which cannot be observed by single-photon VUV-PIE measurements, can be examined by the IR-VUV-PIE scheme. By monitoring the photoion and the PFI-PE intensities at a fixed VUV energy as a function of IR frequency, the respective IR photoion and IR absorption spectra of the corresponding neutral molecule can be measured. Two-color VUV-IR photo-induced Rydberg ionization (PIRI) experiment, in which high-n Rydberg states are prepared by VUV-photoexcitation followed by IR-induced autoionization, has also been demonstrated. Since the IR-VUV-PIE, IR-VUV-PFI-PE, and VUV-IR-PIRI methods do not require the existence of a bound intermediate electronic state in the UV and are generally applicable to all molecules, the development of these two-color photoionization and photoelectron schemes is expected to significantly enhance the scope of VUV spectroscopy and chemistry

  17. Explaining the MoVO4- photoelectron spectrum: Rationalization of geometric and electronic structure.

    Science.gov (United States)

    Thompson, Lee M; Jarrold, Caroline C; Hratchian, Hrant P

    2017-03-14

    Attempts to reconcile simulated photoelectron spectra of MoVO 4 - clusters are complicated by the presence of very low energy barriers in the potential energy surfaces (PESs) of the lowest energy spin states and isomers. Transition state structures associated with the inversion of terminal oxygen ligands are found to lie below, or close to, the zero point energy of associated modes, which themselves are found to be of low frequency and thus likely to be significantly populated in the experimental characterization. Our simulations make use of Boltzmann averaging over low-energy coordinates and full mapping of the PES to obtain simulations in good agreement with experimental spectra. Furthermore, molecular orbital analysis of accessible final spin states reveals the existence of low energy two-electron transitions in which the final state is obtained from a finite excitation of an electron along with the main photodetachment event. Two-electron transitions are then used to justify the large difference in intensity between different bands present in the photoelectron spectrum. Owing to the general presence of terminal ligands in metal oxide clusters, this study identifies and proposes a solution to issues that are generally encountered when attempting to simulate transition metal cluster photoelectron spectroscopy.

  18. Observation of relaxation on time scale of core hole decay by coincidence photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2007-01-01

    It is shown by a many-body theory that when the relaxation time of a metastable core hole state(s) to the most stable one is comparable to or shorter than core hole decay time of the former state(s), a comparison between the singles (noncoincidence) photoelectron spectroscopy (PES) spectrum and the coincidence one provides a direct evidence of the relaxation. In principle the variation with photoelectron kinetic energy of relaxation (or charge transfer (CT)) time can be determined. By singles measurement the correlation of a photoelectron generated by creation of the metastable states not only with an Auger electron generated by annihilation of the same core hole state but also with an Auger electron generated by annihilation of the stable state via relaxation of the metastable state, is completely lost, unless only the metastable state is observed by PES, whereas the correlation often manifests directly in the coincidence spectra. Thus, compared to the coincidence spectroscopy the singles one is often much less capable of elucidating the competition between relaxation and core hole decay of a metastable state. Such examples are discussed

  19. Model independent approach to the single photoelectron calibration of photomultiplier tubes

    Energy Technology Data Exchange (ETDEWEB)

    Saldanha, R.; Grandi, L.; Guardincerri, Y.; Wester, T.

    2017-08-01

    The accurate calibration of photomultiplier tubes is critical in a wide variety of applications in which it is necessary to know the absolute number of detected photons or precisely determine the resolution of the signal. Conventional calibration methods rely on fitting the photomultiplier response to a low intensity light source with analytical approximations to the single photoelectron distribution, often leading to biased estimates due to the inability to accurately model the full distribution, especially at low charge values. In this paper we present a simple statistical method to extract the relevant single photoelectron calibration parameters without making any assumptions about the underlying single photoelectron distribution. We illustrate the use of this method through the calibration of a Hamamatsu R11410 photomultiplier tube and study the accuracy and precision of the method using Monte Carlo simulations. The method is found to have significantly reduced bias compared to conventional methods and works under a wide range of light intensities, making it suitable for simultaneously calibrating large arrays of photomultiplier tubes.

  20. Emission Depth Distribution Function of Al 2s Photoelectrons in Al2O3

    Science.gov (United States)

    Hucek, S.; Zemek, J.; Jablonski, A.; Tilinin, I. S.

    The escape probability of Al 2s photoelectrons leaving an aluminum oxide sample (Al2O3) has been studied as a function of depth of origin. It has been found that the escape probability (the so-called emission depth distribution function - DDF) depends strongly on the photoelectron emission direction with respect to that of the incident X-ray beam. In particular, in the emission direction close to that of photon propagation, the DDF differs substantially from the simple Beer-Lambert law and exhibits a nonmonotonic behavior with a maximum in the near-surface region at a depth of about 10 Å. Experimental results are in good agreement with theoretical predictions based on Monte Carlo simulations of the electron transport and with analytical solution of the linearized Boltzmann kinetic equation with appropriate boundary conditions. Both theoretical approaches take into account multiple elastic scattering of photoelectrons on their way out of the sample. It is shown that the commonly used straight line approximation (SLA), which neglects elastic scattering effects, fails to describe adequately experimental data at emission directions close to minima of the differential photoelectric cross section.

  1. Photoelectron spectra and electronic structure of nitrogen analogues of boron β-diketonates with aromatic substituents

    Energy Technology Data Exchange (ETDEWEB)

    Tikhonov, Sergey A., E-mail: allser@bk.ru [Far Eastern Federal University, 8 Sukhanova St., Vladivostok, 690950 (Russian Federation); Vovna, Vitaliy I. [Far Eastern Federal University, 8 Sukhanova St., Vladivostok, 690950 (Russian Federation); Borisenko, Aleksandr V. [Vladivostok Branch of Russian Customs Academy, 16v Strelkovaya St., Vladivostok, 690034 (Russian Federation)

    2016-11-15

    Highlights: • The electronic structures of three nitrogen analogues of boron β-diketonates have been investigated. • UV photoelectron spectra have been interpreted. • The structure of the UV photoelectron spectra is in good agreement with the energies and compositions of Kohn-Sham orbitals. - Abstract: The electronic structure of three nitrogen analogoues of boron β-diketonates containing aromatic substituents was studied by the ultraviolet photoelectron spectroscopy and within the density functional theory. In order to determine effects of heteroatom substitution in the chelate ligand, a comparative analysis was carried out for the electronic structure of three model compounds. In a range of model compounds, the HOMO's nature was revealed to be the same. The HOMO-1 orbital of nitrogen containing compounds is determined by the presence of lone electron pairs of nitrogen. In a range of the complexes under study, the influence of aromatic substituents on the electronic structure was defined. In the imidoylamidinate complex, in contrast to formazanates and β-diketonates, it was found the absence of any noticeable mixing of π-orbitals of the chelate and benzene rings. It was shown that within energy range to 11 eV, the calculated results reproduce well the energy differences between the ionized states of complexes.

  2. Photoelectron imaging spectroscopy for (2+1) resonance-enhanced multiphoton ionization of atomic bromine

    International Nuclear Information System (INIS)

    Kim, Yong Shin; Jung, Young Jae; Kang, Wee Kyung; Jung, Kyung Hoon

    2002-01-01

    Two-photon resonant third photon ionization of atomic bromine (4p 5 2 P 3/2 and 2 P 1/2 ) has been studied using a photoelectron imaging spectroscopy in the wavelength region 250-278 nm. The technique has yielded simultaneously both relative branching ratios to the three levels of Br + ( 3 P 2 , 3 P 0,1 and 1 D 2 ) with 4p 4 configuration and the angular distributions of outgoing photoelectrons. The product branching ratios reveal a strong propensity to populate particular levels in many cases. Several pathways have been documented for selective formation of Br + ( 3 P 2 ) and Br + ( 3 P 0,1 ) ions. In general, the final ion level distributions are dominated by the preservation of the ion core configuration of a resonant excited state. Some deviations from this simple picture are discussed in terms of the configuration interaction of resonant states and the autoionization in the continuum. The photoelectron angular distributions are qualitatively similar for all transitions, with a positive A 2 anisotropy coefficient of 1.0 - 2.0 and negligible A 4 in most cases, which suggests that the angular distribution is mainly determined by the single-photon ionization process of a resonant excited state induced from the third photon absorption

  3. Screen-printed carbon electrode modified on its surface with amorphous carbon nitride thin film: Electrochemical and morphological study

    Energy Technology Data Exchange (ETDEWEB)

    Ghamouss, F. [Universite de Nantes, UMR 6006-CNRS, FR-2465-CNRS, Laboratoire d' Analyse isotopique et Electrochimique de Metabolismes (LAIEM) (France); Tessier, P.-Y. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Djouadi, A. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Besland, M.-P. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Boujtita, M. [Universite de Nantes, UMR 6006-CNRS, FR-2465-CNRS, Laboratoire d' Analyse isotopique et Electrochimique de Metabolismes (LAIEM) (France)]. E-mail: mohammed.boujtita@univ-nantes.fr

    2007-04-20

    The surface of a screen-printed carbon electrode (SPCE) was modified by using amorphous carbon nitride (a-CN {sub x}) thin film deposited by reactive magnetron sputtering. Scanning electron microscopy and photoelectron spectroscopy measurements were used to characterise respectively the morphology and the chemical structure of the a-CN {sub x} modified electrodes. The incorporation of nitrogen in the amorphous carbon network was demonstrated by X ray photoelectron spectroscopy. The a-CN {sub x} layers were deposited on both carbon screen-printed electrode (SPCE) and silicon (Si) substrates. A comparative study showed that the nature of substrate, i.e. SPCE and Si, has a significant effect on both the surface morphology of deposited a-CN {sub x} film and their electrochemical properties. The improvement of the electrochemical reactivity of SPCE after a-CN {sub x} film deposition was highlighted both by comparing the shapes of voltammograms and calculating the apparent heterogeneous electron transfer rate constant.

  4. Complete cDNA sequence of human complement C1s and close physical linkage of the homologous genes C1s and C1r

    International Nuclear Information System (INIS)

    Tosi, M.; Duponchel, C.; Meo, T.; Julier, C.

    1987-01-01

    Overlapping molecular clones encoding the complement subcomponent C1s were isolated from a human liver cDNA library. The nucleotide sequence reconstructed from these clones spans about 85% of the length of the liver C1s messenger RNAs, which occur in three distinct size classes around 3 kilobases in length. Comparisons with the sequence of C1r, the other enzymatic subcomponent of C1, reveal 40% amino acid identity and conservation of all the cysteine residues. Beside the serine protease domain, the following sequence motifs, previously described in C1r, were also found in C1s: (a) two repeats of the type found in the Ba fragment of complement factor B and in several other complement but also noncomplement proteins, (b) a cysteine-rich segment homologous to the repeats of epidermal growth factor precursor, and (c) a duplicated segment found only in C1r and C1s. Differences in each of these structural motifs provide significant clues for the interpretation of the functional divergence of these interacting serine protease zymogens. Hybridizations of C1r and C1s probes to restriction endonuclease fragments of genomic DNA demonstrate close physical linkage of the corresponding genes. The implications of this finding are discussed with respect to the evolution of C1r and C1s after their origin by tandem gene duplication and to the previously observed combined hereditary deficiencies of Clr and Cls

  5. Photoelectron energy-loss study of the Bi2CaSr2Cu2O8 superconductor

    International Nuclear Information System (INIS)

    Shen, Z.; Lindberg, P.A.P.; Dessau, D.S.; Lindau, I.; Spicer, W.E.; Mitzi, D.B.; Bozovic, I.; Kapitulnik, A.

    1989-01-01

    Using energy-loss spectroscopy of photoelectrons from a single crystal of Bi 2 CaSr 2 Cu 2 O 8 , we show that the electronic structure of the near-surface region is the same as that of the bulk. Utilizing the fact that photoelectrons of different elements are excited at different locations in the unit cell, we identify the energy-loss features as due to valence plasmon excitations, and one-electron excitations by comparing the photoelectron energy-loss spectra of the different elements

  6. Accounting for many-body correlation effects in the calculation of the valence band photoelectron emission spectra of ferromagnets

    International Nuclear Information System (INIS)

    Minar, J.; Chadov, S.; Ebert, H.; Chioncel, L.; Lichtenstein, A.; De Nadai, C.; Brookes, N.B.

    2005-01-01

    The influence of dynamical correlation effects on the valence band photoelectron emission of ferromagnetic Fe, Co and Ni has been investigated. Angle-resolved as well as angle-integrated valence band photoelectron emission spectra were calculated on the basis of the one-particle Green's function, which was obtained by using the fully relativistic Korringa-Kohn-Rostoker method. The correlation effects have been included in terms of the electronic self-energy which was calculated self-consistently within Dynamical Mean-Field Theory (DMFT). In addition a theoretical approach to calculate high-energy angle-resolved valence band photoelectron emission spectra is presented

  7. Investigating Surface and Interface Phenomena in LiFeBO3 Electrodes Using Photoelectron Spectroscopy Depth Profiling

    DEFF Research Database (Denmark)

    Maibach, Julia; Younesi, Reza; Schwarzburger, Nele

    2014-01-01

    The formation of surface and interface layers at the electrodes is highly important for the performance and stability of lithium ion batteries. To unravel the surface composition of electrode materials, photoelectron spectroscopy (PES) is highly suitable as it probes chemical surface and interface...... properties with high surface sensitivity. Additionally, by using synchrotron-generated hard x-rays as excitation source, larger probing depths compared to in-house PES can be achieved. Therefore, the combination of in-house soft x-ray photoelectron spectroscopy and hard x-ray photoelectron spectroscopy...

  8. Photoelectron imaging, probe of the dynamics: from atoms... to clusters; Imagerie de photoelectrons, sonde de la dynamique: des atomes... aux agregats

    Energy Technology Data Exchange (ETDEWEB)

    Lepine, F

    2003-06-15

    This thesis concerns the study of the deexcitation of clusters and atoms by photoelectron imaging. The first part is dedicated to thermionic emission of a finite size system. A 3-dimensional imaging setup allows us to measure the time evolution of the kinetic energy spectrum of electrons emitted from different clusters (W{sub n}{sup -}, C{sub n}{sup -}, C{sub 60}). Then we have a direct access to the fundamental quantities which characterize this statistical emission: the temperature of the finite heat bath and the decay rate. The second part concerns the ionization of atomic Rydberg states placed in a static electric field. We performed the first experiment of photoionization microscopy which allows us to obtain a picture which is the macroscopic projection of the electronic wave function. Then we have access to the detail of the photoionization and particularly to the quantum properties of the electron usually confined at the atomic scale. (author)

  9. Tribocharging in electrostatic beneficiation of coal: Effects of surface composition on work function as measured by x-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy in air

    International Nuclear Information System (INIS)

    Trigwell, S.; Mazumder, M.K.; Pellissier, R.

    2001-01-01

    The cleaning of coal by electrostatic beneficiation is based on tribocharging characteristics of pulverized coal particles with diameter smaller than 120 μm. The tribocharging process should be such that the organic coal particles must charge with a polarity opposite to that of the sulfur and the mineral containing particles so that coal can be separated from minerals by using a charge separator. However, the charge distribution of electrostatically separated coal particles indicates that coal exhibits bipolar charging. A significant fraction of the coal particles charges negatively which appears to be in conflict with expectations in that the organic coal particles should charge positively, and the mineral particles, present as impurities such as pyrite, charge negatively when tribocharged against copper. The relative work functions of the particles (coal and mineral) and that of the metal surface (copper or stainless steel) used for tribocharging predict these expected results. However, ultraviolet photoelectron spectroscopy (UPS) measurements in air on specimens of three different coal species, showed the work function to be approximately 5.4 eV, which is higher than a reported measured work function of 3.93 eV. Studies by UPS and x-ray photoelectron spectroscopy on copper, stainless steel, aluminum, and other commonly used tribocharging materials such as nylon and polytetrafluorethylene, as well as pure pyrite, showed that the work function varied considerably as a function of surface composition. Therefore, the reason for the bipolar charging of the coal particles may be the too small differences in work functions between coal powder and copper used as the charging material. The choice of a material for impaction triboelectric charging for coal or mineral separation should therefore depend upon the actual work function as modified by the ambient conditions such as moisture content and the oxidation of the surface

  10. Photocatalytic oxidation of acetaminophen using carbon self-doped titanium dioxide

    Directory of Open Access Journals (Sweden)

    Mark Daniel G. de Luna

    2016-07-01

    Full Text Available A new carbon self-doped (C-doped TiO2 photocatalyst was synthesized by sol–gel method, in which titanium butoxide was utilized because of its dual functions as a titanium precursor and a carbon source. The effects of calcination temperature from 200 to 600 °C on the photocatalytic activity towards acetaminophen (ACT, which was used as a model persistent organic pollutant under visible light were examined. The effects of temperature on the structure and physicochemical properties of the C-doped TiO2 were also investigated by X-ray diffraction, BET measurement, X-ray photoelectron spectroscopy, and scanning electron microscopy. The specific surface area of the as-doped TiO2 declined as the crystal size increased with increasing calcination temperature. Only amorphous TiO2 was present at 200 °C, while an anatase phase was observed between 300 and 500 °C. Both anatase and rutile phases were observed at 600 °C. Photocatalytic activity increased as the calcination temperature initially increased from 200 to 300 °C but it decreased as the calcination temperature further increased from 400 to 600 °C. The highest ACT removal of 94% with an apparent rate constant of 5.0 × 10−3 min−1 was achieved using the new doped TiO2 calcined at 300 °C, which had an atomic composition of 31.6% Ti2p3, 50.3% O1s and 18.2% C1s.

  11. Numerical solution of the kinetic equation for photoelectrons in the plasmasphere with account for free and trapped zones

    International Nuclear Information System (INIS)

    Khazanov, G.V.; Koen, M.A.; Burenkov, S.I.

    1979-01-01

    Considered is the dinamics of photoelectron fluxes formation in the Earth plasmasphere with account of zone interaction of free and trapped photoelectrons. An algorithm and the results of numerical solution of the equation are presented. The problem of boundary condition choice is discussed. The angular distribution of 10 eV energy photoelectrons at different altitudes of plasmasphere is presented as an example. It is shown that the changes of photoelectron distribution function from bottom of plasmasphere to the top of a force line of the geomagnetic field are within the 1.6 limits. Presented is the estimate of plasmasphere transmittance value and its comparison with the experiment for Mc Ilwain parameter L=2

  12. Classical and semi-classical treatments of Li3+, Ne10++H(1s) collisions

    International Nuclear Information System (INIS)

    Errea, L F; Illescas, Clara; Mendez, L; Pons, B; Riera, A; Suarez, J

    2004-01-01

    We perform molecular close-coupling and impact-parameter classical trajectory Monte Carlo calculations of total and partial cross sections for capture and ionization in collisions of highly charged ions on H(1s). We first consider Li 3+ +H(1s) as a benchmark to ascertain the complementarity of the methods, and then Ne 10+ +H(1s), which has been scarcely studied up to now, and has recently become of interest for fusion plasma research

  13. The DNA Replication Checkpoint Directly Regulates MBF-Dependent G1/S Transcription▿

    OpenAIRE

    Dutta, Chaitali; Patel, Prasanta K.; Rosebrock, Adam; Oliva, Anna; Leatherwood, Janet; Rhind, Nicholas

    2008-01-01

    The DNA replication checkpoint transcriptionally upregulates genes that allow cells to adapt to and survive replication stress. Our results show that, in the fission yeast Schizosaccharomyces pombe, the replication checkpoint regulates the entire G1/S transcriptional program by directly regulating MBF, the G1/S transcription factor. Instead of initiating a checkpoint-specific transcriptional program, the replication checkpoint targets MBF to maintain the normal G1/S transcriptional program du...

  14. High-Resolution Photoionization, Photoelectron and Photodissociation Studies. Determination of Accurate Energetic and Spectroscopic Database for Combustion Radicals and Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Cheuk-Yiu [Univ. of California, Davis, CA (United States)

    2016-04-25

    The main goal of this research program was to obtain accurate thermochemical and spectroscopic data, such as ionization energies (IEs), 0 K bond dissociation energies, 0 K heats of formation, and spectroscopic constants for radicals and molecules and their ions of relevance to combustion chemistry. Two unique, generally applicable vacuum ultraviolet (VUV) laser photoion-photoelectron apparatuses have been developed in our group, which have used for high-resolution photoionization, photoelectron, and photodissociation studies for many small molecules of combustion relevance.

  15. X-ray photoelectron spectroscopy study of the growth kinetics of biomimetically grown hydroxyapatite thin-film coatings

    International Nuclear Information System (INIS)

    McLeod, K.; Kumar, S.; Dutta, N.K.; Smart, R.St.C.; Voelcker, N.H.; Anderson, G.I.

    2010-01-01

    Hydroxyapatite (HA) thin-film coatings grown biomimetically using simulated body fluid (SBF) are desirable for a range of applications such as improved fixation of fine- and complex-shaped orthopedic and dental implants, tissue engineering scaffolds and localized and sustained drug delivery. There is a dearth of knowledge on two key aspects of SBF-grown HA coatings: (i) the growth kinetics over short deposition periods, hours rather than weeks; and (ii) possible difference between the coatings deposited with and without periodic SBF replenishment. A study centred on these aspects is reported. X-ray photoelectron spectroscopy (XPS) has been used to study the growth kinetics of SBF-grown HA coatings for deposition periods ranging from 0.5 h to 21 days. The coatings were deposited with and without periodic replenishment of SBF. The XPS studies revealed that: (i) a continuous, stable HA coating fully covered the titanium substrate after a growth period of 13 h without SBF replenishment; (ii) thicker HA coatings about 1 μm in thickness resulted after a growth period of 21 days, both with and without SBF replenishment; and (iii) the Ca/P ratio at the surface of the HA coating was significantly lower than that in its bulk. No significant difference between HA grown with and without periodic replenishment of SBF was found. The coatings were determined to be carbonated, a characteristic desirable for improved implant fixation. The atomic force and scanning electron microscopies results suggested that heterogeneous nucleation and growth are the primary deposition mode for these coatings. Primary osteoblast cell studies demonstrated the biocompatibility of these coatings, i.e., osteoblast colony coverage of approximately 80%, similar to the control substrate (tissue culture polystyrene).

  16. X-ray photoelectron spectroscopy study of the growth kinetics of biomimetically grown hydroxyapatite thin-film coatings

    Energy Technology Data Exchange (ETDEWEB)

    McLeod, K. [Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia); Kumar, S., E-mail: sunil.kumar@unisa.edu.au [Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia); Dutta, N.K. [Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia); Smart, R.St.C. [Applied Centre for Structural and Synchrotron Studies, University of South Australia, Mawson Lakes, SA 5095 (Australia); Voelcker, N.H. [School of Chemistry, Physics and Earth Sciences, Flinders University of South Australia, GPO Box 2100, Adelaide 5001 (Australia); Anderson, G.I. [School of Veterinary Science, University of Adelaide, Adelaide, SA 5005 (Australia)

    2010-09-15

    Hydroxyapatite (HA) thin-film coatings grown biomimetically using simulated body fluid (SBF) are desirable for a range of applications such as improved fixation of fine- and complex-shaped orthopedic and dental implants, tissue engineering scaffolds and localized and sustained drug delivery. There is a dearth of knowledge on two key aspects of SBF-grown HA coatings: (i) the growth kinetics over short deposition periods, hours rather than weeks; and (ii) possible difference between the coatings deposited with and without periodic SBF replenishment. A study centred on these aspects is reported. X-ray photoelectron spectroscopy (XPS) has been used to study the growth kinetics of SBF-grown HA coatings for deposition periods ranging from 0.5 h to 21 days. The coatings were deposited with and without periodic replenishment of SBF. The XPS studies revealed that: (i) a continuous, stable HA coating fully covered the titanium substrate after a growth period of 13 h without SBF replenishment; (ii) thicker HA coatings about 1 {mu}m in thickness resulted after a growth period of 21 days, both with and without SBF replenishment; and (iii) the Ca/P ratio at the surface of the HA coating was significantly lower than that in its bulk. No significant difference between HA grown with and without periodic replenishment of SBF was found. The coatings were determined to be carbonated, a characteristic desirable for improved implant fixation. The atomic force and scanning electron microscopies results suggested that heterogeneous nucleation and growth are the primary deposition mode for these coatings. Primary osteoblast cell studies demonstrated the biocompatibility of these coatings, i.e., osteoblast colony coverage of approximately 80%, similar to the control substrate (tissue culture polystyrene).

  17. Defects in MAP1S-mediated autophagy turnover of fibronectin cause renal fibrosis.

    Science.gov (United States)

    Xu, Guibin; Yue, Fei; Huang, Hai; He, Yongzhong; Li, Xun; Zhao, Haibo; Su, Zhengming; Jiang, Xianhan; Li, Wenjiao; Zou, Jing; Chen, Qi; Liu, Leyuan

    2016-05-01

    Excessive deposition of extracellular matrix proteins in renal tissues causes renal fibrosis and renal function failure. Mammalian cells primarily use the autophagy-lysosome system to degrade misfolded/aggregated proteins and dysfunctional organelles. MAP1S is an autophagy activator and promotes the biogenesis and degradation of autophagosomes. Previously, we reported that MAP1S suppresses hepatocellular carcinogenesis in a mouse model and predicts a better prognosis in patients suffering from clear cell renal cell carcinomas. Furthermore, we have characterized that MAP1S enhances the turnover of fibronectin, and mice overexpressing LC3 but with MAP1S deleted accumulate fibronectin and develop liver fibrosis because of the synergistic impact of LC3-induced over-synthesis of fibronectin and MAP1S depletion-caused impairment of fibronectin degradation. Here we show that a suppression of MAP1S in renal cells caused an impairment of autophagy clearance of fibronectin and an activation of pyroptosis. Depletion of MAP1S in mice leads to an accumulation of fibrosis-related proteins and the development of renal fibrosis in aged mice. The levels of MAP1S were dramatically reduced and levels of fibronectin were greatly elevated in renal fibrotic tissues from patients diagnosed as renal atrophy and renal failure. Therefore, MAP1S deficiency may cause the accumulation of fibronectin and the development of renal fibrosis.

  18. Search for charm production in direct decays of the Υ(1S) resonance

    International Nuclear Information System (INIS)

    Albrecht, H.; Ehrlichmann, H.; Hamacher, T.; Krueger, A.; Nau, A.; Nippe, A.; Nowak, S.; Reidenbach, M.; Schaefer, M.; Schroeder, H.; Schulz, H.D.; Walter, M.; Wurth, R.; Appuhn, R.D.; Hast, C.; Herrera, G.; Kolanoski, H.; Lange, A.; Lindner, A.; Mankel, R.; Schieber, M.; Siegmund, T.; Spaan, B.; Thurn, H.; Toepfer, D.; Walther, A.; Wegener, D.; Britton, D.I.; Charlesworth, C.E.K.; Edwards, K.W.; Hyatt, E.R.F.; Kapitza, H.; Krieger, P.; MacFarlane, D.B.; Patel, P.M.; Prentice, J.D.; Saull, P.R.B.; Seidel, S.C.; Tzamariudaki, K.; Van de Water, R.G.; Yoon, T.S.; Ressling, D.; Schmidtler, M.; Schneider, M.; Schubert, K.R.; Strahl, K.; Waldi, R.; Weseler, S.

    1992-01-01

    The production of D * (2010) + and J/ψ mesons and of prompt leptons has been investigated in e + e - interactions at the Υ(1S) resonance energy. The data were collected at the storage ring DORIS II at DESY with the ARGUS detector. We obtain upper limits of BR dir (Υ(1S)→D * (2010) ± +X) p >0.2) and BR dir (Υ(1S)→J/ψ+X) -3 , both at the 90% confidence level. From the prompt lepton analysis, a model dependent limit of BR dir (Υ(1S)→Y c +X) c denoting a charm-containing particle) is derived. (orig.)

  19. X-ray Photoelectron Spectroscopic and Raman microscopic investigation of the variscite group minerals: Variscite, strengite, scorodite and mansfieldite

    Science.gov (United States)

    Kloprogge, J. Theo; Wood, Barry J.

    2017-10-01

    Several structurally related AsO4 and PO4 minerals, were studied with Raman microscopy and X-ray Photoelectron Spectroscopy (XPS). XPS revealed only Fe, As and O for scorodite. The Fe 2p, As 3d, and O 1s indicated one position for Fe2 +, while 2 different environments for O and As were observed. The O 1s at 530.3 eV and the As 3d 5/2 at 43.7 eV belonged to AsO4, while minor bands for O 1s at 531.3 eV and As 3d 5/2 at 44.8 eV were due to AsO4 groups exposed on the surface possibly forming OH-groups. Mansfieldite showed, besides Al, As and O, a trace of Co. The PO4 equivalent of mansfieldite is variscite. The change in crystal structure replacing As with P resulted in an increase in the binding energy (BE) of the Al 2p by 2.9 eV. The substitution of Fe3 + for Al3 + in the structure of strengite resulted in a Fe 2p at 710.8 eV. An increase in the Fe 2p BE of 4.8 eV was found between mansfieldite and strengite. The scorodite Raman OH-stretching region showed a sharp band at 3513 cm- 1 and a broad band around 3082 cm- 1. The spectrum of mansfieldite was like that of scorodite with a sharp band at 3536 cm- 1 and broader maxima at 3100 cm- 1 and 2888 cm- 1. Substituting Al in the arsenate structure instead of Fe resulted in a shift of the metal-OH-stretching mode by 23 cm- 1 towards higher wavenumbers due to a slightly longer H-bonding in mansfieldite compared to scorodite. The intense band for scorodite at 805 cm- 1 was ascribed to the symmetric stretching mode of the AsO4. The medium intensity bands at 890, 869, and 830 cm- 1 were ascribed to the internal modes. A significant shift towards higher wavenumbers was observed for mansfieldite. The strengite Raman spectrum in the 900-1150 cm- 1 shows a strong band at 981 cm- 1 accompanied by a series of less intense bands. The 981 cm- 1 band was assigned to the PO4 symmetric stretching mode, while the weak band at 1116 cm- 1 was the corresponding antisymmetric stretching mode. The remaining bands at 1009, 1023 and 1035 cm- 1

  20. Direct synthesis of sp-bonded carbon chains on graphite surface by femtosecond laser irradiation

    International Nuclear Information System (INIS)

    Hu, A.; Rybachuk, M.; Lu, Q.-B.; Duley, W. W.

    2007-01-01

    Microscopic phase transformation from graphite to sp-bonded carbon chains (carbyne) and nanodiamond has been induced by femtosecond laser pulses on graphite surface. UV/surface enhanced Raman scattering spectra and x-ray photoelectron spectra displayed the local synthesis of carbyne in the melt zone while nanocrystalline diamond and trans-polyacetylene chains form in the edge area of gentle ablation. These results evidence possible direct 'writing' of variable chemical bonded carbons by femtosecond laser pulses for carbon-based applications

  1. Scanned-energy mode photoelectron diffraction measurements at beamline 7.0.1

    International Nuclear Information System (INIS)

    Toomes, R.; Booth, N.A.; Woodruff, D.P.

    1997-01-01

    This report covers the results of the authors first experimental run, in May 1996, conducted to explore the advantages offered by the high spectral resolution available at the SpectroMicroscopy Facility on beam line 7.0 to conduct scanned-energy mode photoelectron diffraction (PhD). This technique is now a well-established method for the determination of local structure of atomic and molecular adsorbates on well-characterised surfaces. The directly-emitted component of an adsorbate core-level photoelectron wavefield interferes coherently with components of the same wavefield elastically scattered by surrounding atoms, leading to a modulation in the photoemission intensity as a function of kinetic energy in any specific emission direction. A series of such PhD modulation spectra, each typically covering energies from 50-500 eV, for a series of different emission directions, provides the basis for a quantitative structure determination of the emitter-scatterer geometry. Within the last years the authors have developed an integrated approach to extract the structural information from these photoelectron diffraction (PhD) spectra in a quantitative way. A direct data inversion technique (the so-called Projection method) provides a first-order estimate of the local adsorbate geometry in the form of an 'image' of the scatterer atoms which are nearest neighbours to the emitter. This information is then used as a starting model for optimisation of the structural parameters by comparing the experimental PhD spectra with the results of multiple scattering simulations using a code developed by Fritzsche. The optimisation uses an automated trial-and-error procedure by minimising a reliability factor which provides an objective measure of the quality of agreement between experiment and theory. The authors have successfully applied this approach to the structure determination of about 30 adsorption systems

  2. Dealloying of Cu{sub x}Au studied by hard X-ray photoelectron spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Rajput, Parasmani, E-mail: parasmani.rajput@northwestern.edu [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, F-38043 Grenoble (France); Gupta, Ajay [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452 017 (India); Detlefs, Blanka [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, F-38043 Grenoble (France); Kolb, Dieter M. [Institute for Electrochemistry, University of Ulm, D-89069 Ulm (Germany); Potdar, Satish [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452 017 (India); Zegenhagen, Jörg [European Synchrotron Radiation Facility, 6 rue Jules Horowitz, F-38043 Grenoble (France)

    2013-10-15

    Highlights: ► The shift in binding energy of Cu and Au lines in CuAu alloys is opposite to expected from the nobility of the elements. ► The magnitude of the chemical shifts of the metal lines in CuAu alloys is strongly influenced by finite size effects and disorder. ► Cu 3s and/or Au 4f cross-sections are not well described by theory (Scofield). The Cu 3s photoabsorption cross-section seems to be strongly overestimated. ► We find/confirm that (CuAu) dealloying proceeds into depth like a spinodal decomposition. -- Abstract: We studied pristine and leached ultra-thin Cu{sub x}Au (x ≈ 4) films by hard X-ray photoelectron spectroscopy. The Au 4f and Cu 3s core levels show a shift in binding energy which is opposite to expected from the nobility of the elements, which is explained by charge transfer involving differently screening s and d valence levels of the elements [W. Eberhardt, S.C. Wu, R. Garrett, D. Sondericker, F. Jona, Phys. Rev. B 31 (1985) 8285]. The magnitude of the chemical shifts of the metal lines is strongly influenced by the finite size and disorder of the films. Angular dependent photoelectron emission allowed to assess the alloy composition as a function of depth larger than 5 nm. The potential controlled dealloying proceeds into depth like a spinodal decomposition with Cu going into solution and the remaining Au accumulating in the surface region. The compositional gradient did not lead to a significant broadening of the metal photoelectron lines suggesting a non-local screening mechanism.

  3. Academician A.M. Prokhorov and femto-atto-photoelectronics: a memorial lecture

    Science.gov (United States)

    Schelev, Mikhail Y.

    2003-07-01

    The Great Russian physicist Academician A.M. Prokhorov passed away on the 8th of January 2002 in Moscow. He was born in Australia (Atorton Town) on the 11th of July 1916. Together with Academician N.G. Basov and Prof. C.H. Townes in 1964, he received the Nobel Prize in physics for discovery the fundamental operational principles of the LASER (Light Amplification by Stimulated Emission and Radiation). Among the great variety of scientific and technological areas to which Academician A.M. Prokhorov had devoted his extraordinary talent and his encyclopedical knowledge in physics, is the ultrafast photoelectronics and in particular image-converter high-speed photography. As early as at the beginning of the sixties, he clearly realized the importance and valuability of ultrafast image tubes application for gaining direct visual information in laser research. It was Academician A.M. Prokhorov who had initiated the image tube photography development specially oriented for laser investigations, providing steadily improvement of its time resolution starting from subnanosecond level in the sixties of the 20th Century down to subfemtosecond level at the beginning of the 21st Century. The new area of high-speed research, known as Femto-Attosecond Photoelectronics, is now established as the outstanding result of his imaginative efforts. In this memorial lecture some important achievements in the ultrafast photoelectronics attained under Academician A.M. Prokhorov supervision will be pointed out. Memorized are some perspective targets in high-speed image-converter photography to which Academician A.M. Prokhorov has been concerned during the last period of his brilliant and creative life.

  4. Scanned-energy mode photoelectron diffraction measurements at beamline 7.0.1

    Energy Technology Data Exchange (ETDEWEB)

    Toomes, R.; Booth, N.A.; Woodruff, D.P. [Univ. of Warwick, Coventry (United Kingdom)] [and others

    1997-04-01

    This report covers the results of the authors first experimental run, in May 1996, conducted to explore the advantages offered by the high spectral resolution available at the SpectroMicroscopy Facility on beam line 7.0 to conduct scanned-energy mode photoelectron diffraction (PhD). This technique is now a well-established method for the determination of local structure of atomic and molecular adsorbates on well-characterised surfaces. The directly-emitted component of an adsorbate core-level photoelectron wavefield interferes coherently with components of the same wavefield elastically scattered by surrounding atoms, leading to a modulation in the photoemission intensity as a function of kinetic energy in any specific emission direction. A series of such PhD modulation spectra, each typically covering energies from 50-500 eV, for a series of different emission directions, provides the basis for a quantitative structure determination of the emitter-scatterer geometry. Within the last years the authors have developed an integrated approach to extract the structural information from these photoelectron diffraction (PhD) spectra in a quantitative way. A direct data inversion technique (the so-called Projection method) provides a first-order estimate of the local adsorbate geometry in the form of an `image` of the scatterer atoms which are nearest neighbours to the emitter. This information is then used as a starting model for optimisation of the structural parameters by comparing the experimental PhD spectra with the results of multiple scattering simulations using a code developed by Fritzsche. The optimisation uses an automated trial-and-error procedure by minimising a reliability factor which provides an objective measure of the quality of agreement between experiment and theory. The authors have successfully applied this approach to the structure determination of about 30 adsorption systems.

  5. Variable Mixed Orbital Character in the Photoelectron Angular Distribution of NO_{2}

    Science.gov (United States)

    Laws, Benjamin A.; Cavanagh, Steven J.; Lewis, Brenton R.; Gibson, Stephen T.

    2017-06-01

    NO_{2} a key component of photochemical smog and an important species in the Earth's atmosphere, is an example of a molecule which exhibits significant mixed orbital character in the HOMO. In photoelectron experiments the geometric properties of the parent anion orbital are reflected in the photoelectron angular distribution (PAD), an area of research that has benefited largely from the ability of velocity-map imaging (VMI) to simultaneously record both the energetic and angular information, with 100% collection efficiency. Photoelectron spectra of NO_{2}^{-}, taken over a range of wavelengths (355nm-520nm) with the ANU's VMI spectrometer, reveal an anomalous jump in the anisotropy parameter near threshold. Consequently, the orbital behavior of NO_{2}^{-} appears to be quite different near threshold compared to detachment at higher photon energies. This surprising effect is due to the Wigner Threshold law, which causes p orbital character to dominate the photodetachment cross-section near threshold, before the mixed s/d orbital character becomes significant at higher electron kinetic energies. By extending recent work on binary character models to form a more general expression, the variable mixed orbital character of NO_{2}^{-} is able to be described. This study provides the first multi-wavelength NO_{2} anisotropy data, which is shown to be in decent agreement with much earlier zero-core model predictions of the anisotropy parameter. K. J. Reed, A. H. Zimmerman, H. C. Andersen, and J. I. Brauman, J. Chem. Phys. 64, 1368, (1976). doi:10.1063/1.432404 D. Khuseynov, C. C. Blackstone, L. M. Culberson, and A. Sanov, J. Chem. Phys. 141, 124312, (2014). doi:10.1063/1.4896241 W. B. Clodius, R. M. Stehman, and S. B. Woo, Phys. Rev. A. 28, 760, (1983). doi:10.1103/PhysRevA.28.760 Research supported by the Australian Research Council Discovery Project Grant DP160102585

  6. High resolution surface scanning of Thick-GEM for single photo-electron detection

    International Nuclear Information System (INIS)

    Hamar, G.; Varga, D.

    2012-01-01

    An optical system for high resolution scanning of TGEM UV photon detection systems is introduced. The structure exploits the combination of a single Au-coated TGEM under study, and an asymmetric MWPC (Close Cathode Chamber) as post-amplification stage. A pulsed UV LED source with emission down to 240 nm has been focused to a spot of 0.07 mm on the TGEM surface, and single photo-electron charge spectra has been recorded over selected two dimensional regions. This way, the TGEM gain (order of 10–100) and TGEM photo-electron detection efficiency is clearly separated, unlike in case of continuous illumination. The surface structure connected to the TGEM photon detection is well observable, including inefficiencies in the holes and at the symmetry points between holes. The detection efficiency as well as the gas gain are fluctuating from hole to hole. The gain is constant in the hexagon around any hole, pointing to the fact that the gain depends on hole geometry, and less on the position where the electron enters. The detection probability map strongly changes with the field strength above the TGEM surface, in relation to the change of the actual surface field configuration. The results can be confronted with position-dependent simulations of TGEM electron transfer and gas multiplication. -- Highlights: ► First demonstration of Thick GEM surface scanning with single photo-electrons. ► Resolution of 0.1 mm is sufficient to identify structures connected to TGEM surface field structure. ► Gain and detection efficiency and separately measurable. ► Detection efficiency is high in a ring around the holes, and gain is constant in the hexagonal collection regions.

  7. Many-body calculation of the coincidence L3 photoelectron spectroscopy main line of Ni metal

    International Nuclear Information System (INIS)

    Ohno, Masahide

    2008-01-01

    The partial singles L 3 photoelectron spectroscopy (PES) main line of Ni metal correlated with Auger electrons emitted by the localized L 3 -VV Auger decay is calculated by a many-body theory. The partial singles L 3 PES main line of Ni metal almost coincides in both line shape and peak kinetic energy (KE) with the singles one. The former main line peak shows a KE shift of only 0.01 eV toward the lower KE and a very small asymmetric line shape change compared to the singles one. The asymmetric line shape change and the peak KE shift of the partial singles L 3 main line are very small. However, they are due to the variation with photoelectron KE in the branching ratio of the partial Auger decay width in the partial singles L 3 PES main line by the photoelectron KE dependent imaginary part of the shakeup self-energy. The L 3 PES main line of Ni metal measured in coincidence with the L 3 -VV ( 1 G) Auger electron spectroscopy (AES) main line peak is the partial singles one modulated by a spectral function R a of a fixed energy Auger electron analyzer so that it should show only a symmetric line narrowing by R a compared to the singles one. The L 3 PES main line peak of Ni metal measured in coincidence with the delocalized band-like L 3 -VV AES peak or not completely split-off (or not completely localized) L 3 -VV ( 3 F) AES peak, will show an asymmetric line narrowing and a KE shift compared to the singles one. Thus, the L 3 PES main line of Ni metal in coincidence with various parts of the L 3 -VV AES spectrum depends on which part of the L 3 -VV AES spectrum a fixed energy Auger electron analyzer is set. The experimental verification is in need

  8. Electronic structure and thermal decomposition of 5-aminotetrazole studied by UV photoelectron spectroscopy and theoretical calculations

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Rui M., E-mail: ruipinto@fct.unl.pt [CFA, Centro de Fisica Atomica, Departamento de Fisica, Faculdade de Ciencias e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Dias, Antonio A.; Costa, Maria L. [CFA, Centro de Fisica Atomica, Departamento de Fisica, Faculdade de Ciencias e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2011-03-18

    Graphical abstract: Gas-phase UV photoelectron spectrum of the thermal decomposition of 5-aminotetrazole (5ATZ), obtained at 245 {sup o}C, and mechanism underlying the thermal dissociation of 2H-5ATZ. Research highlights: {yields} Electronic structure of 5ATZ studied by photoelectron spectroscopy. {yields} Gas-phase 5-ATZ exists mainly as the 2H-tautomer. {yields} Thermal decomposition of 5ATZ gives N{sub 2}, NH{sub 2}CN, HN{sub 3} and HCN, at 245 {sup o}C. {yields} HCN can be originated from a carbene intermediate. - Abstract: The electronic properties and thermal decomposition of 5-aminotetrazole (5ATZ) are investigated using UV photoelectron spectroscopy (UVPES) and theoretical calculations. Simulated spectra of both 1H- and 2H-5ATZ, based on electron propagator methods, are produced in order to study the relative gas-phase tautomer population. The thermal decomposition results are rationalized in terms of intrinsic reaction coordinate (IRC) calculations. 5ATZ yields a HOMO ionization energy of 9.44 {+-} 0.04 eV and the gas-phase 5ATZ assumes mainly the 2H-form. The thermal decomposition of 5ATZ leads to the formation of N{sub 2}, HN{sub 3} and NH{sub 2}CN as the primary products, and HCN from the decomposition of a intermediate CH{sub 3}N{sub 3} compound. The reaction barriers for the formation of HN{sub 3} and N{sub 2} from 2H-5ATZ are predicted to be {approx}228 and {approx}150 kJ/mol, at the G2(MP2) level, respectively. The formation of HCN and HNNH from the thermal decomposition of a CH{sub 3}N{sub 3} carbene intermediate is also investigated.

  9. High resolution surface scanning of Thick-GEM for single photo-electron detection

    Energy Technology Data Exchange (ETDEWEB)

    Hamar, G., E-mail: hamar.gergo@wigner.mta.hu [Wigner Research Centre for Physics, Budapest (Hungary); Varga, D., E-mail: vdezso@mail.cern.ch [Eoetvoes Lorand University, Budapest (Hungary)

    2012-12-01

    An optical system for high resolution scanning of TGEM UV photon detection systems is introduced. The structure exploits the combination of a single Au-coated TGEM under study, and an asymmetric MWPC (Close Cathode Chamber) as post-amplification stage. A pulsed UV LED source with emission down to 240 nm has been focused to a spot of 0.07 mm on the TGEM surface, and single photo-electron charge spectra has been recorded over selected two dimensional regions. This way, the TGEM gain (order of 10-100) and TGEM photo-electron detection efficiency is clearly separated, unlike in case of continuous illumination. The surface structure connected to the TGEM photon detection is well observable, including inefficiencies in the holes and at the symmetry points between holes. The detection efficiency as well as the gas gain are fluctuating from hole to hole. The gain is constant in the hexagon around any hole, pointing to the fact that the gain depends on hole geometry, and less on the position where the electron enters. The detection probability map strongly changes with the field strength above the TGEM surface, in relation to the change of the actual surface field configuration. The results can be confronted with position-dependent simulations of TGEM electron transfer and gas multiplication. -- Highlights: Black-Right-Pointing-Pointer First demonstration of Thick GEM surface scanning with single photo-electrons. Black-Right-Pointing-Pointer Resolution of 0.1 mm is sufficient to identify structures connected to TGEM surface field structure. Black-Right-Pointing-Pointer Gain and detection efficiency and separately measurable. Black-Right-Pointing-Pointer Detection efficiency is high in a ring around the holes, and gain is constant in the hexagonal collection regions.

  10. Carbon nitride films synthesized by NH3-ion-beam-assisted deposition

    International Nuclear Information System (INIS)

    Song, H.W.; Cui, F.Z.; He, X.M.; Li, W.Z.; Li, H.D.

    1994-01-01

    Carbon nitride thin film films have been prepared by NH 3 -ion-beam-assisted deposition with bombardment energies of 200-800 eV at room temperature. These films have been characterized by transmission electron microscopy. Auger electron spectroscopy and x-ray photoelectron spectroscopy for chemical analysis. It was found that the structure of the films varied with the bombardment energy. In the case of 400 eV bombardment, the tiny crystallites immersed on an amorphous matrix were identified to be β-C 3 N 4 . X-ray photoelectron spectroscopy indicated that some carbon atoms and nitrogen atoms form unpolarized covalent bonds in these films. (Author)

  11. Theoretical study of the femtosecond-resolved photoelectron spectrum of the NO molecule

    International Nuclear Information System (INIS)

    Meng Qingtian; Yang Guanghui; Sun Hailin; Han Keli; Lou Nanquan

    2003-01-01

    The effect of laser fields on the NO interaction potentials is obtained by the calculation of time-resolved photoelectron spectrum (TRPES) using the time-dependent wave-packet method. The calculation not only shows that the overlap of the pump-probe pulses makes some NO molecular 'invisible' states visible, but also that the coupling strength and the positions of relevant curves change on increasing the laser intensity. These changed potentials affect their dynamical behavior and influence the shape and position of each peak in TRPES. That the coupling strength of relevant potentials can be changed by the field-matter interaction is consistent with our ab initio calculations

  12. Complete k-space visualization of x-ray photoelectron diffraction

    International Nuclear Information System (INIS)

    Denlinger, J.D.; Lawrence Berkeley Lab., CA; Rotenberg, E.; Lawrence Berkeley Lab., CA; Kevan, S.D.; Tonner, B.P.

    1996-01-01

    A highly detailed x-ray photoelectron diffraction data set has been acquired for crystalline Cu(001). The data set for bulk Cu 3p emission encompasses a large k-space volume (k = 3--10 angstrom -1 ) with sufficient energy and angular sampling to monitor the continuous variation of diffraction intensities. The evolution of back-scattered intensity oscillations is visualized by energy and angular slices of this volume data set. Large diffraction data sets such as this will provide rigorous experimental tests of real-space reconstruction algorithms and multiple-scattering simulations

  13. Ionization in elliptically polarized pulses: Multielectron polarization effects and asymmetry of photoelectron momentum distributions

    DEFF Research Database (Denmark)

    Shvetsov-Shilovskiy, Nikolay; Dimitrovski, Darko; Madsen, Lars Bojer

    2012-01-01

    In the tunneling regime we present a semiclassical model of above-threshold ionization with inclusion of the Stark shift of the initial state, the Coulomb potential, and a polarization induced dipole potential. The model is used for the investigation of the photoelectron momentum distributions...... in close to circularly polarized light, and it is validated by comparison with ab initio results and experiments. The momentum distributions are shown to be highly sensitive to the tunneling exit point, the Coulomb force, and the dipole potential from the induced dipole in the atomic core...

  14. Surface analysis of Al alloys with X-ray photoelectron and Auger electron spectroscopies

    International Nuclear Information System (INIS)

    Sakairi, Masatoshi; Suzuki, Keita; Sasaki, Ryo

    2015-01-01

    In this paper, X-ray photoelectron spectroscopy (XPS) and Auger electron spectroscopy (AES) were applied to investigate passive films formed on aluminum alloy in 0.5 kmol m -3 H 3 BO 3 /0.05 kmol m -3 Na 2 B 4 O 7 with different metal cations. The metal cation is classified by metal cation hardness, X, which are calculated based on the concept of hard and soft acids and bases (HSAB) of the acid and base in Lewis's rule. From XPS analysis, the metal cations with X > 4 were incorporated in passive films. The area-selected surface analysis of AES was also introduced. (author)

  15. Energy band alignment at ferroelectric/electrode interface determined by photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Chen Feng; Wu Wen-Bin; Li Shun-Yi; Klein Andreas

    2014-01-01

    The most important interface-related quantities determined by band alignment are the barrier heights for charge transport, given by the Fermi level position at the interface. Taking Pb(Zr,Ti)O 3 (PZT) as a typical ferroelectric material and applying X-ray photoelectron spectroscopy (XPS), we briefly review the interface formation and barrier heights at the interfaces between PZT and electrodes made of various metals or conductive oxides. Polarization dependence of the Schottky barrier height at a ferroelectric/electrode interface is also directly observed using XPS. (topical review - magnetism, magnetic materials, and interdisciplinary research)

  16. X-ray photoelectron spectroscopy study of synchrotron radiation irradiation of a polytetrafluoroethylene surface

    CERN Document Server

    Haruyama, Y; Matsui, S; Ideta, T; Ishigaki, H

    2003-01-01

    The effect of synchrotron radiation (SR) irradiation of a polytetrafluoroethylene (PTFE) surface was investigated using X-ray photoelectron spectroscopy (XPS). After the SR irradiation, the relative intensity of the F ls peak to the C ls peak decreased markedly. The chemical composition ratio to the F atoms to C atoms was estimated to be 0.29. From the curve fitting analysis of C ls and F ls XPS spectra, the chemical components and their intensity ratio were determined. The reason for the chemical composition change by the SR irradiation was discussed. (author)

  17. Early stages of methanol radiolysis from data of photoelectron spectroscopy and mass spectrometry

    International Nuclear Information System (INIS)

    Kalyazin, E.P.; Kovalev, G.V.

    1982-01-01

    Comparison of data on photoelectron spectroscopy and mass spectrometry permits to conclude that 4 types of molecular ions CH 3 O + H, H + CH 2 OH, H 3 C + OH and CH 3 O + H are initial products of methanol radiolysis. They start four parallel lines of methanol transformations. Mass spectrum of methanol can be evaluated according to the structural formula of methanol molecule. Composition of radiolysis products of gaseous methanol correlate satisfactorily with its mass spectrum. Reasons for the difference in compositions of radiolysis products of liquid and gaseous methanol are discussed

  18. X-ray photoelectron spectroscopy in North America - the early years

    International Nuclear Information System (INIS)

    Shirley, D.A.; Fadley, C.S.

    2004-01-01

    In this paper, we present a brief overview of the beginning years of X-ray photoelectron spectroscopy in the USA, with particular emphasis on activities in Berkeley with which we are more familiar, but comments also on some other significant developments during this period. With some arbitrariness, we have limited ourselves to topics that were at least underway by the time of the first conference in this series in 1971, and thus finally published by 1973 or so. Some key first results or analyses are illuminated with figures from the literature

  19. Transmission of electric fields and photoelectron fluxes between conjugate ionospheric F2-regions

    International Nuclear Information System (INIS)

    Petelski, E.F.

    1975-01-01

    The dynamic behaviour of the ionospheric F2-layer requires considerable vertical transport of ionization. Possible causes of such transport are ambipolar diffusion, neutral air winds and electric fields. Here mid-latitude electric fields are investigated. Real height variations of the F2-layer indicate that the phases and amplitudes of these fields are similar at well conjugate points and that the field strengths can become unexpectedly high. It is further shown that photoelectrons can migrate between the two hemispheres along the geomagnetic field lines. (orig.) [de

  20. He I and He II Photoelectron Studies of Bis(cyclopentadienyl)vanadium(III) Complexes

    NARCIS (Netherlands)

    Green, Jennifer C.; Payne, Martin P.; Teuben, Jan H.

    He I and He II photoelectron spectra have been obtained for a series of bis(η5-cyclopentadienyl)vanadium(III) halides, alkyls, and aryls, V(η-C5H5)2X, where X = Cl, Br, I, Me, CH2SiMe3, CH2CMe3, C6F5, C6H5, o-C6H4Me, m-C6H4Me, and 2,6-C6H3Me2. Assignments are made principally on the basis of

  1. Angular distribution of Xe 5s→epsilonp photoelectrons: Disagreement between experiment and theory

    International Nuclear Information System (INIS)

    Fahlman, A.; Carlson, T.A.; Krause, M.O.

    1983-01-01

    The angular asymmetry parameter β for the Xe 5s→epsilonp photoelectrons has been studied with use of synchrotron radiation (hν = 28--65 eV). The present results show that the relativistic random-phase approximation theory does not satisfactorily describe the Xe 5s photoionization process close to the Cooper minimum and thus require a renewed theoretical approach. The 5s partial photoionization cross section was obtained over the same photon region and the results agree with experimental values found in the literature

  2. Photoelectron yields of scintillation counters with embedded wavelength-shifting fibers read out with silicon photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Artikov, Akram; Baranov, Vladimir; Blazey, Gerald C.; Chen, Ningshun; Chokheli, Davit; Davydov, Yuri; Dukes, E. Craig; Dychkant, Alexsander; Ehrlich, Ralf; Francis, Kurt; Frank, M. J.; Glagolev, Vladimir; Group, Craig; Hansen, Sten; Magill, Stephen; Oksuzian, Yuri; Pla-Dalmau, Anna; Rubinov, Paul; Simonenko, Aleksandr; Song, Enhao; Stetzler, Steven; Wu, Yongyi; Uzunyan, Sergey; Zutshi, Vishnu

    2018-05-01

    Photoelectron yields of extruded scintillation counters with titanium dioxide coating and embedded wavelength shifting fibers read out by silicon photomultipliers have been measured at the Fermilab Test Beam Facility using 120\\,GeV protons. The yields were measured as a function of transverse, longitudinal, and angular positions for a variety of scintillator compositions and reflective coating mixtures, fiber diameters, and photosensor sizes. Timing performance was also studied. These studies were carried out by the Cosmic Ray Veto Group of the Mu2e collaboration as part of their R\\&D program.

  3. Photoelectron spectra and electronic structure of β-diketonates of p- and d-elements

    International Nuclear Information System (INIS)

    Vovna, V.I.; Andreev, V.A.; Cherednichenko, A.I.

    1990-01-01

    Consideration is given to results of studying electronic structure of β-diketonates of metals and β-diketones by the method of gas-phase photoelectron spectroscopy. Manifestation of covalence of metal-ligand bonds in PE spectra and change of covalence in series and groups of d-elements of the periodic table are analysed. It is shown that ionization energy of outer valence electrons doesn't reflect in all cases effective charges of ligands, due to the influence of molecular potential. 35 refs.; 7 figs.; 12 tabs

  4. Single-order laser high harmonics in XUV for ultrafast photoelectron spectroscopy of molecular wavepacket dynamics

    Directory of Open Access Journals (Sweden)

    Mizuho Fushitani

    2016-11-01

    Full Text Available We present applications of extreme ultraviolet (XUV single-order laser harmonics to gas-phase ultrafast photoelectron spectroscopy. Ultrashort XUV pulses at 80 nm are obtained as the 5th order harmonics of the fundamental laser at 400 nm by using Xe or Kr as the nonlinear medium and separated from other harmonic orders by using an indium foil. The single-order laser harmonics is applied for real-time probing of vibrational wavepacket dynamics of I2 molecules in the bound and dissociating low-lying electronic states and electronic-vibrational wavepacket dynamics of highly excited Rydberg N2 molecules.

  5. Ionization energies of aqueous nucleic acids: Photoelectron spectroscopy of pyridine nucleosides and ab initio calculations

    Czech Academy of Sciences Publication Activity Database

    Slavíček, Petr; Winter, B.; Faubel, M.; Bradforth, S. E.; Jungwirth, Pavel

    2009-01-01

    Roč. 131, č. 18 (2009), s. 6460-6467 ISSN 0002-7863 R&D Projects: GA MŠk LC512; GA ČR GA203/08/0114 Grant - others:GA ČR(CZ) GP203/07/P449 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z40400503 Keywords : DNA bases * photoelectron spectroscopy * ab initio calculations Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 8.580, year: 2009

  6. Statistical method for resolving the photon-photoelectron-counting inversion problem

    International Nuclear Information System (INIS)

    Wu Jinlong; Li Tiejun; Peng, Xiang; Guo Hong

    2011-01-01

    A statistical inversion method is proposed for the photon-photoelectron-counting statistics in quantum key distribution experiment. With the statistical viewpoint, this problem is equivalent to the parameter estimation for an infinite binomial mixture model. The coarse-graining idea and Bayesian methods are applied to deal with this ill-posed problem, which is a good simple example to show the successful application of the statistical methods to the inverse problem. Numerical results show the applicability of the proposed strategy. The coarse-graining idea for the infinite mixture models should be general to be used in the future.

  7. Quantum photoelectron effects in the eye retina and development of colour vision theory

    International Nuclear Information System (INIS)

    Kremkov, M.V.

    2011-01-01

    The quantum semiconductor mechanism of the colour vision of mans is created. The mechanism is based on quantum effects under influence of light waves exciting valence electrons in different microelement's atoms (Zn, Cu, Fe, Co, P, Br, Se, et al.) that are presented in the photoreceptor's cells of the eye retina (columns and retorts) with the quasi-periodical disks structure. The microelement concentrations correspond to the impurity atom amount in semiconductors, and the photoelectron's current passes out its signal to the vision nerve. The mechanism explains existence of the man colour-blindness, degradation of the vision sensitivity with the man's age and other peculiarities of the colour vision. (authors)

  8. Assessment of nanocomposite photonic systems with the X-ray photoelectron spectroscopy

    Institute of Scientific and Technical Information of China (English)

    L. Minati; G. Speranza; M. Anderle; M. Ferrari; A. Chiasera; G. C. Righini

    2007-01-01

    The chemical compositions of Ag-Er co-doped phosphate and silicate glasses were investigated with X-ray photoelectron spectroscopy with the purpose to identify the chemical state of silver. The analysis of the Ag 3d core lines show the presence of nanometer-sized silver particles in each of the annealed samples, even if these Ag 3d lines appear to be very different from each other. We explain these results as a different interaction of silver with the two glasses matrix, which leads to a different nucleation rate of the Ag clusters.

  9. Ultrafast soft X-ray photoelectron spectroscopy at liquid water microjets.

    Science.gov (United States)

    Faubel, M; Siefermann, K R; Liu, Y; Abel, B

    2012-01-17

    Since the pioneering work of Kai Siegbahn, electron spectroscopy for chemical analysis (ESCA) has been developed into an indispensable analytical technique for surface science. The value of this powerful method of photoelectron spectroscopy (PES, also termed photoemission spectroscopy) and Siegbahn's contributions were recognized in the 1981 Nobel Prize in Physics. The need for high vacuum, however, originally prohibited PES of volatile liquids, and only allowed for investigation of low-vapor-pressure molecules attached to a surface (or close to a surface) or liquid films of low volatility. Only with the invention of liquid beams of volatile liquids compatible with high-vacuum conditions was PES from liquid surfaces under vacuum made feasible. Because of the ubiquity of water interfaces in nature, the liquid water-vacuum interface became a most attractive research topic, particularly over the past 10 years. PES studies of these important aqueous interfaces remained significantly challenging because of the need to develop high-pressure PES methods. For decades, ESCA or PES (termed XPS, for X-ray photoelectron spectroscopy, in the case of soft X-ray photons) was restricted to conventional laboratory X-ray sources or beamlines in synchrotron facilities. This approach enabled frequency domain measurements, but with poor time resolution. Indirect access to time-resolved processes in the condensed phase was only achieved if line-widths could be analyzed or if processes could be related to a fast clock, that is, reference processes that are fast enough and are also well understood in the condensed phase. Just recently, the emergence of high harmonic light sources, providing short-wavelength radiation in ultrashort light pulses, added the dimension of time to the classical ESCA or XPS technique and opened the door to (soft) X-ray photoelectron spectroscopy with ultrahigh time resolution. The combination of high harmonic light sources (providing radiation with laserlike

  10. Electronic structure effects in liquid water studied by photoelectron spectroscopy and density functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Nordlund, Dennis; Odelius, Michael; Bluhm, Hendrik; Ogasawara, Hirohito; Pettersson, Lars G.M.; Nilsson, Anders

    2008-04-29

    We present valence photoelectron emission spectra of liquid water in comparison with gas-phase water, ice close to the melting point, low temperature amorphous and crystalline ice. All aggregation states have major electronic structure changes relative to the free molecule, with rehybridization and development of bonding and anti-bonding states accompanying the hydrogen bond formation. Sensitivity to the local structural order, most prominent in the shape and splitting of the occupied 3a{sub 1} orbital, is understood from the electronic structure averaging over various geometrical structures, and reflects the local nature of the orbital interaction.

  11. Surface characterization of uranium metal and uranium dioxide using X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Allen, G.C.; Trickle, I.R.; Tucker, P.M.

    1981-01-01

    X-ray photoelectron spectra of pure uranium metal and stoichiometric uranium dioxide have been obtained using an AEI ES300 spectrometer. Binding energy values for core and valence electrons have been determined using an internally calibrated energy scale and monochromatic Al Kα radiation. Satellite peaks observed accompanying certain principal core ionizations are discussed in relation to the mechanisms by which they arise. Confirmation is obtained that for stoichiometric UOsub(2.00) a single shake-up satellite is observed accompanying the U 4fsub(7/2,5/2) principal core lines, separated by 6.8 eV to higher binding energy. (author)

  12. Photoelectron yields of scintillation counters with embedded wavelength-shifting fibers read out with silicon photomultipliers

    Science.gov (United States)

    Artikov, Akram; Baranov, Vladimir; Blazey, Gerald C.; Chen, Ningshun; Chokheli, Davit; Davydov, Yuri; Dukes, E. Craig; Dychkant, Alexsander; Ehrlich, Ralf; Francis, Kurt; Frank, M. J.; Glagolev, Vladimir; Group, Craig; Hansen, Sten; Magill, Stephen; Oksuzian, Yuri; Pla-Dalmau, Anna; Rubinov, Paul; Simonenko, Aleksandr; Song, Enhao; Stetzler, Steven; Wu, Yongyi; Uzunyan, Sergey; Zutshi, Vishnu

    2018-05-01

    Photoelectron yields of extruded scintillation counters with titanium dioxide coating and embedded wavelength shifting fibers read out by silicon photomultipliers have been measured at the Fermilab Test Beam Facility using 120 GeV protons. The yields were measured as a function of transverse, longitudinal, and angular positions for a variety of scintillator compositions, reflective coating mixtures, and fiber diameters. Timing performance was also studied. These studies were carried out by the Cosmic Ray Veto Group of the Mu2e collaboration as part of their R&D program.

  13. Single-order laser high harmonics in XUV for ultrafast photoelectron spectroscopy of molecular wavepacket dynamics.

    Science.gov (United States)

    Fushitani, Mizuho; Hishikawa, Akiyoshi

    2016-11-01

    We present applications of extreme ultraviolet (XUV) single-order laser harmonics to gas-phase ultrafast photoelectron spectroscopy. Ultrashort XUV pulses at 80 nm are obtained as the 5th order harmonics of the fundamental laser at 400 nm by using Xe or Kr as the nonlinear medium and separated from other harmonic orders by using an indium foil. The single-order laser harmonics is applied for real-time probing of vibrational wavepacket dynamics of I 2 molecules in the bound and dissociating low-lying electronic states and electronic-vibrational wavepacket dynamics of highly excited Rydberg N 2 molecules.

  14. Measurement of the t dependence in exclusive photoproduction of Upsilon(1S) mesons at HERA

    CERN Document Server

    Abramowicz, H.

    2012-02-14

    The exclusive photoproduction reaction gamma p -> Upsilon(1S) p has been studied with the ZEUS detector in ep collisions at HERA using an integrated luminosity of 468 pb^-1. The measurement covers the kinematic range 60 Upsilon(1S) p cross section.

  15. Iron 1s X-ray photoemission of Fe{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Miedema, P.S., E-mail: p.s.miedema@gmail.com [Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht (Netherlands); Borgatti, F. [CNR-ISMN, Instituto per Io Studio di Materiali Nanostrutturati, Via Gobetti 101, I-40129 Bologna (Italy); Offi, F. [Dipartimento di Scienze, Università di Roma Tre, I-00146 Rome (Italy); Panaccione, G. [Consiglio Nazionale delle Ricerche, CNR-IOM, Laboratorio TASC, Area Science Park, I-34149 Trieste (Italy); Groot, F.M.F. de [Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht (Netherlands)

    2015-08-15

    Highlights: • Three peaks of 1s XPS of Fe{sub 2}O{sub 3} means use of three configurations. • 1s XPS vs 2p XPS: advantage of 1s XPS for charge transfer parameter analysis. • Charge transfer multiplet analysis with same parameters for 1s and 2p XPS. - Abstract: We present the 1s X-ray photoemission spectrum of α-Fe{sub 2}O{sub 3} in comparison with its 2p photoemission spectrum. We show that in case of transition metal oxides, because the 1s core hole is not affected by core hole spin-orbit coupling and almost not affected by core-valence multiplet effects, the Fe 1s spectrum and the complementary charge transfer multiplet calculations allow for an accurate determination of the charge transfer parameters. The consistency of the obtained parameters for the 1s photoemission was confirmed with 2p photoemission calculations and compared to 2p experimental photoemission spectra.

  16. Electron impact excitation of 1'S-2'S transition in helium

    International Nuclear Information System (INIS)

    Mohanty, J.P.; Singh, C.S.

    1989-01-01

    The modified variable-charge Coulomb-projected Born approximation is applied to electron impact excitation of 1 1 S-2 1 S transition in helium. The results are compared with other theoretical and experimental results. (author). 30 refs., 4 figs

  17. The 1s x-ray absorption pre-edge structures in transition metal oxides

    NARCIS (Netherlands)

    de Groot, Frank|info:eu-repo/dai/nl/08747610X; Vanko, Gyoergy; Glatzel, Pieter

    2009-01-01

    We develop a general procedure to analyse the pre-edges in 1s x-ray absorption near edge structure (XANES) of transition metal oxides and coordination complexes. Transition metal coordination complexes can be described from a local model with one metal ion. The 1s 3d quadrupole transitions are

  18. Production Cross Sections of $J/\\Psi$(1S) and $Y$(1S) at $\\sqrt{s}$ = 7 TeV with CMS

    CERN Document Server

    Beranek, Sarah

    Measurements of the production cross sections of $J/\\Psi$(1S) and $Υ$(1S) resonances in the dimuon channel in proton-proton collisions with a $\\sqrt{s}$ = 7 TeV at the CMS experiment at LHC (CERN) are presented. The efficiencies are obtained via data-driven methods. The differential cross sections are presented as a function of the transverse momentum. The total inclusive $J/\\Psi$(1S) production cross section for an integrated luminosity of 36 pb$^{−1}$ is measured with (50.61 $\\pm$ 0.04$_{stat}$ $\\pm$ 3.09$_{sys}$ $\\pm$ 2.02$_{lumi}$ ) $nb$ for a transverse momentum between 8 and 30 GeV/c and a rapidity range of |y| < 2.4. The total production cross section for the $Υ$(1S) resonance is measured for an integrated luminosity of 36 pb$^{−1}$ in the rapidity range of |y| < 2.0 and a transverse momentum range between 3 and 30 GeV/c with (4.96 $\\pm$ 0.06$_{stat}$ $\\pm$ 0.47$_{sys}$ $\\pm$ 0.20$_{lumi}$ ) $nb$.

  19. Nb 3d and O 1s core levels and chemical bonding in niobates

    International Nuclear Information System (INIS)

    Atuchin, V.V.; Kalabin, I.E.; Kesler, V.G.; Pervukhina, N.V.

    2005-01-01

    A set of available experimental data on binding energies of Nb 3d 5/2 and O 1s core levels in niobates has been observed with using energy difference (O 1s-Nb 3d 5/2 ) as a robust parameter for compound characterization. An empirical relationship between (O 1s-Nb 3d 5/2 ) values measured with XPS for Nb 5+ -niobates and mean chemical bond length L(Nb-O) has been discussed. A range of (O 1s-Nb 3d 5/2 ) values possible in Nb 5+ -niobates has been defined. An energy gap ∼1.4-1.8 eV is found between (O 1s-Nb 3d 5/2 ) values reasonable for Nb 5+ and Nb 4+ states in niobates

  20. Nb 3d and O 1s core levels and chemical bonding in niobates

    Energy Technology Data Exchange (ETDEWEB)

    Atuchin, V.V. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation)]. E-mail: atuchin@thermo.isp.nsc.ru; Kalabin, I.E. [Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Kesler, V.G. [Technical Center, Institute of Semiconductor Physics, SB RAS, Novosibirsk 630090 (Russian Federation); Pervukhina, N.V. [Laboratory of Crystal Chemistry, Institute of Inorganic Chemistry, SB RAS, Novosibirsk 630090 (Russian Federation)

    2005-02-01

    A set of available experimental data on binding energies of Nb 3d{sub 5/2} and O 1s core levels in niobates has been observed with using energy difference (O 1s-Nb 3d{sub 5/2}) as a robust parameter for compound characterization. An empirical relationship between (O 1s-Nb 3d{sub 5/2}) values measured with XPS for Nb{sup 5+}-niobates and mean chemical bond length L(Nb-O) has been discussed. A range of (O 1s-Nb 3d{sub 5/2}) values possible in Nb{sup 5+}-niobates has been defined. An energy gap {approx}1.4-1.8 eV is found between (O 1s-Nb 3d{sub 5/2}) values reasonable for Nb{sup 5+} and Nb{sup 4+} states in niobates.

  1. Exonization of active mouse L1s: a driver of transcriptome evolution?

    Directory of Open Access Journals (Sweden)

    Badge Richard

    2007-10-01

    Full Text Available Abstract Background Long interspersed nuclear elements (LINE-1s, L1s have been recently implicated in the regulation of mammalian transcriptomes. Results Here, we show that members of the three active mouse L1 subfamilies (A, GF and TF contain, in addition to those on their sense strands, conserved functional splice sites on their antisense strands, which trigger multiple exonization events. The latter is particularly intriguing in the light of the strong antisense orientation bias of intronic L1s, implying that the toleration of antisense insertions results in an increased potential for exonization. Conclusion In a genome-wide analysis, we have uncovered evidence suggesting that the mobility of the large number of retrotransposition-competent mouse L1s (~2400 potentially active L1s in NCBIm35 has significant potential to shape the mouse transcriptome by continuously generating insertions into transcriptional units.

  2. A new endstation at the Swiss Light Source for ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy measurements of liquid solutions

    International Nuclear Information System (INIS)

    Brown, Matthew A.; Redondo, Amaia Beloqui; Duyckaerts, Nicolas; Mächler, Jean-Pierre; Jordan, Inga; Wörner, Hans Jakob; Lee, Ming-Tao; Ammann, Markus; Nolting, Frithjof; Kleibert, Armin; Huthwelker, Thomas; Birrer, Mario; Honegger, Juri; Wetter, Reto; Bokhoven, Jeroen A. van

    2013-01-01

    A new liquid microjet endstation designed for ultraviolet (UPS) and X-ray (XPS) photoelectron, and partial electron yield X-ray absorption (XAS) spectroscopies at the Swiss Light Source is presented. The new endstation, which is based on a Scienta HiPP-2 R4000 electron spectrometer, is the first liquid microjet endstation capable of operating in vacuum and in ambient pressures up to the equilibrium vapor pressure of liquid water at room temperature. In addition, the Scienta HiPP-2 R4000 energy analyzer of this new endstation allows for XPS measurements up to 7000 eV electron kinetic energy that will enable electronic structure measurements of bulk solutions and buried interfaces from liquid microjet samples. The endstation is designed to operate at the soft X-ray SIM beamline and at the tender X-ray Phoenix beamline. The endstation can also be operated using a Scienta 5 K ultraviolet helium lamp for dedicated UPS measurements at the vapor-liquid interface using either He I or He II α lines. The design concept, first results from UPS, soft X-ray XPS, and partial electron yield XAS measurements, and an outlook to the potential of this endstation are presented

  3. A new endstation at the Swiss Light Source for ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy measurements of liquid solutions.

    Science.gov (United States)

    Brown, Matthew A; Redondo, Amaia Beloqui; Jordan, Inga; Duyckaerts, Nicolas; Lee, Ming-Tao; Ammann, Markus; Nolting, Frithjof; Kleibert, Armin; Huthwelker, Thomas; Müächler, Jean-Pierre; Birrer, Mario; Honegger, Juri; Wetter, Reto; Wörner, Hans Jakob; van Bokhoven, Jeroen A

    2013-07-01

    A new liquid microjet endstation designed for ultraviolet (UPS) and X-ray (XPS) photoelectron, and partial electron yield X-ray absorption (XAS) spectroscopies at the Swiss Light Source is presented. The new endstation, which is based on a Scienta HiPP-2 R4000 electron spectrometer, is the first liquid microjet endstation capable of operating in vacuum and in ambient pressures up to the equilibrium vapor pressure of liquid water at room temperature. In addition, the Scienta HiPP-2 R4000 energy analyzer of this new endstation allows for XPS measurements up to 7000 eV electron kinetic energy that will enable electronic structure measurements of bulk solutions and buried interfaces from liquid microjet samples. The endstation is designed to operate at the soft X-ray SIM beamline and at the tender X-ray Phoenix beamline. The endstation can also be operated using a Scienta 5 K ultraviolet helium lamp for dedicated UPS measurements at the vapor-liquid interface using either He I or He II α lines. The design concept, first results from UPS, soft X-ray XPS, and partial electron yield XAS measurements, and an outlook to the potential of this endstation are presented.

  4. A new endstation at the Swiss Light Source for ultraviolet photoelectron spectroscopy, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy measurements of liquid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Matthew A.; Redondo, Amaia Beloqui; Duyckaerts, Nicolas; Mächler, Jean-Pierre [Institute for Chemical and Bioengineering, ETH Zürich, CH-8093 Zürich (Switzerland); Jordan, Inga; Wörner, Hans Jakob [Laboratory of Physical Chemistry, ETH Zürich, CH-8093 Zürich (Switzerland); Lee, Ming-Tao; Ammann, Markus; Nolting, Frithjof; Kleibert, Armin; Huthwelker, Thomas; Birrer, Mario; Honegger, Juri; Wetter, Reto [Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Bokhoven, Jeroen A. van [Institute for Chemical and Bioengineering, ETH Zürich, CH-8093 Zürich (Switzerland); Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland)

    2013-07-15

    A new liquid microjet endstation designed for ultraviolet (UPS) and X-ray (XPS) photoelectron, and partial electron yield X-ray absorption (XAS) spectroscopies at the Swiss Light Source is presented. The new endstation, which is based on a Scienta HiPP-2 R4000 electron spectrometer, is the first liquid microjet endstation capable of operating in vacuum and in ambient pressures up to the equilibrium vapor pressure of liquid water at room temperature. In addition, the Scienta HiPP-2 R4000 energy analyzer of this new endstation allows for XPS measurements up to 7000 eV electron kinetic energy that will enable electronic structure measurements of bulk solutions and buried interfaces from liquid microjet samples. The endstation is designed to operate at the soft X-ray SIM beamline and at the tender X-ray Phoenix beamline. The endstation can also be operated using a Scienta 5 K ultraviolet helium lamp for dedicated UPS measurements at the vapor-liquid interface using either He I or He II α lines. The design concept, first results from UPS, soft X-ray XPS, and partial electron yield XAS measurements, and an outlook to the potential of this endstation are presented.

  5. Interface electronic properties of co-evaporated MAPbI3 on ZnO(0001): In situ X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy study

    International Nuclear Information System (INIS)

    Zhou, Xianzhong; Li, Xiaoli; Huang, Feng; Zhong, Dingyong; Liu, Yuan

    2016-01-01

    In this work, the interface electronic properties of ZnO(0001)/CH 3 NH 3 PbI 3 were investigated by both X-ray and ultraviolet photoelectron spectroscopy. The CH 3 NH 3 PbI 3 thin films were grown on single crystalline ZnO(0001) substrate in situ by co-evaporation of PbI 2 and CH 3 NH 3 I at room temperature with various thickness from 1.5 nm to 190 nm. It was found that the conduction band minimum of ZnO lies 0.3 eV below that of CH 3 NH 3 PbI 3 , while the valence band maximum of ZnO lies 2.1 eV below that of CH 3 NH 3 PbI 3 , implying that the electrons can be effectively transported from CH 3 NH 3 PbI 3 to ZnO, and the holes can be blocked in the same time. A PbI 2 rich layer was initially formed at the interface of ZnO(0001)/CH 3 NH 3 PbI 3 during the growth. As a consequence, an interface barrier was built up which may prevent the electron transport at the interface.

  6. N-type doping effect of single-walled carbon nanotubes with aromatic amines

    Energy Technology Data Exchange (ETDEWEB)

    Koizhaiganova, Raushan B.; Hwang, Doo Hee; Lee, Cheol Jin; Dettlaff-Weglikowska, Urszula [School of Electrical Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Roth, Siegmar [School of Electrical Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Sineurop Nanotech GmbH, Nobelstreet15, 70569 Stuttgart (Germany)

    2010-12-15

    We investigated the chemical doping of the single-walled carbon nanotubes (SWCNTs) networks by a treatment with aromatic amines. Adsorption and intercalation of amine molecules in bundled SWCNTs leads to typical n-type doping observed already for alkali metals. The electron donation to SWCNTs is demonstrated by the X-ray-induced photoelectron spectra (XPS), where the carbon C 1s peak observed at 284.4 eV for the sp{sup 2} carbon in pristine samples is shifted by up to 0.3 eV to higher binding energy upon chemical treatment. The development of a Breit-Wigner-Fano component on the lower energy side of the G{sup -} mode in the Raman spectrum as well as a shift of the G{sup +} to lower frequency provide evidence for charge accumulation in the nanotube {pi} system, and indication for the n-type doping. The spectroscopic changes are accompanied by the modification of the electrical properties of the SWCNTs. A reduction of conductivity depends on the doping level and implies the decreasing concentration of the charge carriers in the naturally p-doped tubes. Comparing the two selected n-type dopants, the tetramethyl-p-phenylenediamine, shows more pronounced changes in the XPS and the Raman spectra than tetramethylpyrazine, indicating that the sp{sup 3} hybridization of nitrogen in the amine groups attached to phenyl ring is much more effective in interaction with the tube {pi} system than the sp{sup 2} hybridization of nitrogen in the aromatic pyrazine ring. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. X-ray photoelectron spectroscopic and morphologic studies of Ru nanoparticles deposited onto highly oriented pyrolytic graphite

    Science.gov (United States)

    Bavand, R.; Yelon, A.; Sacher, E.

    2015-11-01

    Ruthenium nanoparticles (Ru NPs) function as effective catalysts in specific reactions, such as methanation and Fischer-Tropsch syntheses. It is our purpose to physicochemically characterize their surfaces, at which catalysis occurs, by surface-sensitive X-ray photoelectron spectroscopy (XPS), using the symmetric peak component anaylsis technique developed in our laboratory to reveal previously hidden components. Ru NPs were deposited by evaporation (0.25-1.5 nm nominal deposition range) onto highly oriented pyrolytic graphite (HOPG). In addition to their surfaces being characterized by XPS, an indication of morphology was obtained from transmission electron microscopy (TEM). Our use of symmetric peak component XPS analysis has revealed detailed information on a previously unidentified surface oxide initially formed, as well as on the valence electronic structure and its variation with NP size, information that is of potential importance in the use of these NPs in catalysis. Each of the several Ru core XPS spectra characterized (3d, 3p and 3s) was found to be composed of three symmetric components. Together with two metal oxide O1s components, these give evidence of a rather complex, previously unidentified oxide that is initially formed. The Ru valence band (4d and 5s) spectra clearly demonstrate a loss of metallicity, a simultaneous increase of the Kubo gap, and an abrupt transfer in valence electron density from the 4d to the 5s orbitals (known as electron spill-over), as the NP size decreases below 0.5 nm. TEM photomicrographs, as a function of deposition rate, show that, at a rate that gives insufficient time for the NP condensation energy to dissipate, the initially well-separated NPs are capable of diffusing laterally and aggregating. This indicates weak NP bonding to the HOPG substrate. Carbide is formed, at both high and low deposition rates, at Ru deposition thicknesses greater than 0.25 nm, its formation explained by Ru NPs reacting with residual

  8. X-ray photoelectron spectroscopy characterization of the ω phase in water quenched Ti-5553 alloy

    International Nuclear Information System (INIS)

    Qin, Dongyang; Lu, Yafeng; Zhang, Kong; Liu, Qian; Zhou, Lian

    2012-01-01

    X-ray photoelectron spectroscopy was used to investigate the ω phase in water quenched Ti-5553 alloy with a nominal composition of Ti–5Al–5V–5Mo–3Cr (wt.%), and the ω and the β phase were distinguished by deconvoluting the XPS spectra of Al2p, V2p and Cr2p core level regions. In addition, it is found that the binding energy of core level electron of alloying elements shifts comparing with that of pure metals, and the fact was interpreted by charge redistribution model. X-ray photoelectron spectroscopy technique could be used to characterize the nano-scale ω phase in β alloys. - Highlights: ► We characterize the ω phase in Ti-5553 alloy by XPS. ► Binding energy of Al2p, V2p and Cr2p electron are different in the ω and β phase. ► Structural difference leads to the binding energy gap.

  9. Photoelectron diffraction study of Rh nanoparticles growth on Fe3O4/Pd(111) ultrathin film

    International Nuclear Information System (INIS)

    Abreu, G. J. P.; Pancotti, A; Lima, L. H. de; Landers, R.; Siervo, A. de

    2013-01-01

    Metallic nanoparticles (NPs) supported on oxides thin films are commonly used as model catalysts for studies of heterogeneous catalysis. Several 4d and 5d metal NPs (for example, Pd, Pt and Au) grown on alumina, ceria and titania have shown strong metal support interaction (SMSI), for instance the encapsulation of the NPs by the oxide. The SMSI plays an important role in catalysis and is very dependent on the support oxide used. The present work investigates the growth mechanism and atomic structure of Rh NPs supported on epitaxial magnetite Fe 3 O 4 (111) ultrathin films prepared on Pd(111) using the Molecular Beam Epitaxy (MBE) technique. The iron oxide and the Rh NPs were characterized using X-ray photoelectron spectroscopy (XPS), low-energy electron diffraction and photoelectron diffraction (PED). The combined XPS and PED results indicate that Rh NPs are metallic, cover approximately 20 % of the iron oxide surface and show height distribution ranging 3–5 ML (monolayers) with essentially a bulk fcc structure.

  10. Frontend electronics for high-precision single photo-electron timing using FPGA-TDCs

    Energy Technology Data Exchange (ETDEWEB)

    Cardinali, M., E-mail: cardinal@kph.uni-mainz.de [Institut für Kernphysik, Johannes Gutenberg-University Mainz, Mainz (Germany); Helmholtz Institut Mainz, Mainz (Germany); Dzyhgadlo, R.; Gerhardt, A.; Götzen, K.; Hohler, R.; Kalicy, G.; Kumawat, H.; Lehmann, D.; Lewandowski, B.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwarz, C.; Schwiening, J.; Traxler, M.; Ugur, C.; Zühlsdorf, M. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); Dodokhov, V.Kh. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Britting, A. [Friedrich Alexander-University of Erlangen-Nuremberg, Erlangen (Germany); and others

    2014-12-01

    The next generation of high-luminosity experiments requires excellent particle identification detectors which calls for Imaging Cherenkov counters with fast electronics to cope with the expected hit rates. A Barrel DIRC will be used in the central region of the Target Spectrometer of the planned PANDA experiment at FAIR. A single photo-electron timing resolution of better than 100 ps is required by the Barrel DIRC to disentangle the complicated patterns created on the image plane. R and D studies have been performed to provide a design based on the TRB3 readout using FPGA-TDCs with a precision better than 20 ps RMS and custom frontend electronics with high-bandwidth pre-amplifiers and fast discriminators. The discriminators also provide time-over-threshold information thus enabling walk corrections to improve the timing resolution. Two types of frontend electronics cards optimised for reading out 64-channel PHOTONIS Planacon MCP-PMTs were tested: one based on the NINO ASIC and the other, called PADIWA, on FPGA discriminators. Promising results were obtained in a full characterisation using a fast laser setup and in a test experiment at MAMI, Mainz, with a small scale DIRC prototype. - Highlights: • Frontend electronics for Cherenkov detectors have been developed. • FPGA-TDCs have been used for high precision timing. • Time over threshold has been utilised for walk correction. • Single photo-electron timing resolution less than 100 ps has been achieved.

  11. Observation of photoelectrons of magnetic conjugate point with the rocket K-9M-54

    International Nuclear Information System (INIS)

    Mukai, Toshinori; Hirao, Kunio

    1976-01-01

    The results of the observation of photoelectrons with the rocket K-9M-54 are described. The instrument used for the observation has been reported elsewhere, and it is a low energy electron spectrometer. The angle of direction of the collimator of the detector was 30 degrees to the spin axis of the rocket. Variation of the electric potential was large. The rocket K-9M-54 took off on January 17, 1976, at six o'clock. The finally attained altitude of the rocket was about 366 km. The solar zenith angles were 106 degrees at Uchinoura and 94 degrees at the magnetic conjugate point. The UV shadow heights were 361 km at Uchinoura and 116 km at the magnetic conjugate point. The distribution of the pitch angle was observed, and was almost isotropic. The altitude variation of the integrated flux is shown in a figure, and it shows remarkable difference between the present result and the previous ones observed in day-time. The relations between energy and photoelectron flux at various altitudes were obtained. The characteristic features of the energy distribution were similar to those of the spectra observed in day-time. (Kato, T.)

  12. Interpretation of the photoelectron spectra of FeS(2)(-) by a multiconfiguration computational approach.

    Science.gov (United States)

    Clima, Sergiu; Hendrickx, Marc F A

    2007-11-01

    The ground states of FeS(2) and FeS(2)(-), and several low-lying excited electronic states of FeS(2) that are responsible for the FeS(2)(-) photoelectron spectrum, are calculated. At the B3LYP level an open, quasi-linear [SFeS](-) conformation is found as the most stable structure, which is confirmed at the ab initio CASPT2 computational level. Both the neutral and the anionic unsaturated complexes possess high-spin electronic ground states. For the first time a complete assignment of the photoelectron spectrum of FeS(2)(-) is proposed. The lowest energy band in this spectrum is ascribed to an electron detachment from the two highest-lying 3dpi antibonding orbitals (with respect to the iron-sulfur bonding) of iron. The next-lowest experimental band corresponds to an electron removal from nonbonding, nearly pure sulfur orbitals. The two highest bands in the spectra are assigned as electron detachments from pi and sigma bonding mainly sulfur orbitals.

  13. A scanning photoelectron microscope (SPEM) at the National Synchrotron Light Source (NSLS)

    International Nuclear Information System (INIS)

    Ade, H.; Kirz, J.; Hulbert, S.; Johnson, E.; Anderson, E.; Kern, D.; Brookhaven National Lab., Upton, NY; Lawrence Berkeley Lab., CA; International Business Machines Corp., Yorktown Heights, NY

    1989-01-01

    We are in the process of developing and commissioning a scanning photoelectron microscope (SPEM) at the X1A beamline of the National Synchrotron Light Source (NSLS). It is designed to make use of the Soft X-ray Undulator (SXU) at the NSLS. This high brightness source illuminates a Fresnel zone plate, which forms a focused probe, ≤ 0.2μm in size, on the specimen surface. A grating monochromator selects the photon energy in the 400-800 eV range with an energy resolution of better than 1 eV. The expected flux in the focus is in the 5 x 10 7 - 10 9 photons/s range. A single pass Cylindrical Mirror Analyzer (CMA) is used to record photoemission spectra, or to form an image within a fixed electron energy bandwidth as the specimen is mechanically scanned. As a first test, a 1000 mesh Au grid was successfully imaged with a resolution of about 1μm and the CMA tuned to the Au 4 f photoelectron peak. Once it is commissioned, a program is planned which will utilize the microscope to study beam sensitive systems, such as thin oxide/sub-oxide films of alumina and silica, and ultimately various adsorbates on these films. 14 refs., 4 figs

  14. Secondary electron images obtained with a standard photoelectron emission microscope set-up

    International Nuclear Information System (INIS)

    Benka, Oswald; Zeppenfeld, Peter

    2005-01-01

    The first results of secondary electron images excited by 3-4.3 keV electrons are presented. The images are obtained with a standard FOCUS-PEEM set-up equipped with an imaging energy filter (IEF). The electron gun was mounted on a standard PEEM entrance flange at an angle of 25 deg. with respect to the sample surface. A low extraction voltage of 500 V was used to minimize the deflection of the electron beam by the PEEM extraction electrode. The secondary electron images are compared to photoelectron images excited by a standard 4.9 eV UV lamp. In the case of a Cu pattern on a Si substrate it is found that the lateral resolution without the IEF is about the same for electron and photon excitation but that the relative electron emission intensities are very different. The use of the IEF reduces the lateral resolution. Images for secondary electron energies between eV 1 and eV 2 were obtained by setting the IEF to -V 1 and -V 2 ∼-(V 1 +5V) potentials and taking the difference of both images. Images up to 100 eV electron energies were recorded. The material contrast obtained in these difference images is discussed in terms of a secondary electron and photoelectron emission model and secondary electron energy spectra measured with a LEED-Auger spectrometer

  15. A high-resolution photoelectron imaging and theoretical study of CP- and C2P.

    Science.gov (United States)

    Czekner, Joseph; Cheung, Ling Fung; Johnson, Eric L; Fortenberry, Ryan C; Wang, Lai-Sheng

    2018-01-28

    The discovery of interstellar anions has been a milestone in astrochemistry. In the search for new interstellar anions, CP - and C 2 P - are viable candidates since their corresponding neutrals have already been detected astronomically. However, scarce data exist for these negatively charged species. Here we report the electron affinities of CP and C 2 P along with the vibrational frequencies of their anions using high-resolution photoelectron imaging. These results along with previous spectroscopic data of the neutral species are used further to benchmark very accurate quartic force field quantum chemical methods that are applied to CP, CP - , C 2 P, and two electronic states of C 2 P - . The predicted electron affinities, vibrational frequencies, and rotational constants are in excellent agreement with the experimental data. The electron affinities of CP (2.8508 ± 0.0007 eV) and C 2 P (2.6328 ± 0.0006 eV) are measured accurately and found to be quite high, suggesting that the CP - and C 2 P - anions are thermodynamically stable and possibly observable. The current study suggests that the combination of high-resolution photoelectron imaging and quantum chemistry can be used to determine accurate molecular constants for exotic radical species of astronomical interest.

  16. Ambipolar Electric Field, Photoelectrons, and Their Role in Atmospheric Escape From Hot Jupiters

    Science.gov (United States)

    Cohen, O.; Glocer, A.

    2012-01-01

    Atmospheric mass loss from Hot Jupiters can be large due to the close proximity of these planets to their host star and the strong radiation the planetary atmosphere receives. On Earth, a major contribution to the acceleration of atmospheric ions comes from the vertical separation of ions and electrons, and the generation of the ambipolar electric field. This process, known as the "polar wind," is responsible for the transport of ionospheric constituents to Earth's magnetosphere, where they are well observed. The polar wind can also be enhanced by a relatively small fraction of super-thermal electrons (photoelectrons) generated by photoionization.We formulate a simplified calculation of the effect of the ambipolar electric field and the photoelectrons on the ion scale height in a generalized manner. We find that the ion scale height can be increased by a factor of 2-15 due to the polar wind effects. We also estimate a lower limit of an order of magnitude increase of the ion density and the atmospheric mass-loss rate when polar wind effects are included.

  17. Electronic structures of melatonin and related compounds studied by photoelectron spectroscopy

    CERN Document Server

    Kubota, M

    2003-01-01

    Melatonin is a hormone structurally regarded as being composed of a 5-methoxyindole group and an N-ethylacetamide group; its various physiological activities have attracted a great deal of attention recently. The gas phase He(I) photoelectron spectra of melatonin (M) and its related compounds including N-acetylserotonin have been studied with the aid of molecular orbital calculations. The first photoelectron spectral band group of compound M is ascribed to ionizations from the two pi orbitals localized on the methoxyindole group. The second band group is quite complicated and is regarded as being composed of several bands. The lower energy part of the second band group is ascribed to the three orbitals relevant to the third highest occupied pi orbital of 5-methoxyindole and the highest occupied pi and the n sub C sub = sub 0 orbitals of N-ethylacetamide. The interactions among the three orbitals have been found to operate on the basis of the molecular orbital calculations; these interactions depend strongly o...

  18. (He 1) photoelectron spectra of vinyl- and (1-dimethylaminovinyl)pyridines

    International Nuclear Information System (INIS)

    Baidin, V.N.; Koikov, L.N.; Terent'ev, P.B.; Gloriozov, I.P.

    1985-01-01

    The (He 1) photoelectron spectra of α=, β-, γ-vinyl, α-, β-, and γ-(1-dimethylvinyl)-pyridines, 1-dimethyl- and 1-diethylaminostyrenes were obtained and interpreted within the framework of the molecular orbital perturbation theory. In both pyridine derivative series, there is a regular increase in the ionization energy of the 1α 2 , π/sub C=C/ and n/sub en/ orbitals and decrease in the ionization energy of the 2b 1 orbitals in the order α 2 and 2b 1 is found for γ-vinylpyridine). The splitting of the energy levels of the heterocycle in dimethylaminovinylpyridines is less than in the corresponding vinyl derivatives, which indicates a weakening of the interaction between the aromatic (or heteroaromatic) ring and the enamine fragment extruding from the ring plane. The ionization energy of the unshared electron pair of the nitrogen atom of the pyridine ring for all the compounds except for α- (1-dimethylaminovinyl)pyridine (which displays an ortho effect) is close to that for pyridine. The photoelectron spectral data are compared with the MO energies calculated by the MINDO/3 method

  19. Threshold photoelectron--photonion coincidence mass spectrometric study of ethylene and ethylene-d4

    International Nuclear Information System (INIS)

    Stockbauer, R.; Inghram, M.G.

    1975-01-01

    Experimental curves have been obtained for the fragmentation of ethylene and ethylene-d 4 ions as a function of the internal energy of those ions using threshold photoelectron--photoion coincidence mass spectrometry. The results are compared with the previous results of photoionization mass spectrometry, He I photoelectron--photoion coicidence, charge exchange experiments, and with quasiequilibrium theory (QET) calculations. The discrepancies between results of these previous experiments and QET calculations do not appear in the present data. It is suggested that ion--molecule reactions competing with charge exchange has led to erroneous conclusions in the interpretation of the charge exchange data. It is concluded that QET does describe the fragmentation of ethylene and ethylene-d 4 within the limits of the data and calculations available. The secondary ion fragmentation C 2 H 4 + → C 2 H 3 + +H → C 2 H 2 + +2H is discussed in detail with regard to the C 2 H 3 + fragment ion internal energy distribution

  20. Multi-reference approach to the calculation of photoelectron spectra including spin-orbit coupling

    Energy Technology Data Exchange (ETDEWEB)

    Grell, Gilbert; Bokarev, Sergey I., E-mail: sergey.bokarev@uni-rostock.de; Kühn, Oliver [Institut für Physik, Universität Rostock, D-18051 Rostock (Germany); Winter, Bernd; Seidel, Robert [Helmholtz-Zentrum Berlin für Materialien und Energie, Methods for Material Development, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany); Aziz, Emad F. [Helmholtz-Zentrum Berlin für Materialien und Energie, Methods for Material Development, Albert-Einstein-Strasse 15, D-12489 Berlin (Germany); Department of Physics, Freie Universität Berlin, Arnimalle 14, D-14159 Berlin (Germany); Aziz, Saadullah G. [Chemistry Department, Faculty of Science, King Abdulaziz University, 21589 Jeddah (Saudi Arabia)

    2015-08-21

    X-ray photoelectron spectra provide a wealth of information on the electronic structure. The extraction of molecular details requires adequate theoretical methods, which in case of transition metal complexes has to account for effects due to the multi-configurational and spin-mixed nature of the many-electron wave function. Here, the restricted active space self-consistent field method including spin-orbit coupling is used to cope with this challenge and to calculate valence- and core-level photoelectron spectra. The intensities are estimated within the frameworks of the Dyson orbital formalism and the sudden approximation. Thereby, we utilize an efficient computational algorithm that is based on a biorthonormal basis transformation. The approach is applied to the valence photoionization of the gas phase water molecule and to the core ionization spectrum of the [Fe(H{sub 2}O){sub 6}]{sup 2+} complex. The results show good agreement with the experimental data obtained in this work, whereas the sudden approximation demonstrates distinct deviations from experiments.