WorldWideScience

Sample records for carbon 14

  1. Carbon-14 waste management

    International Nuclear Information System (INIS)

    Carbon-14 occurs in nature, but is also formed in nuclear reactors. Because of its long half-life and the biological significance of carbon, releases from nuclear facilities could have a significant radiological impact. Waste management strategies for carbon-14 are therefore of current concern. Carbon-14 is present in a variety of waste streams both at reactors and at reprocessing plants. A reliable picture of the production and release of carbon-14 from various reactor systems has been built up for the purposes of this study. A possible management strategy for carbon-14 might be the reduction of nitrogen impurity levels in core materials, since the activation of 14N is usually the dominant source of carbon-14. The key problem in carbon-14 management is its retention of off-gas streams, particularly in the dissolver off-gas stream at reprocessing plants. Three alternative trapping processes that convert carbon dioxide into insoluble carbonates have been suggested. The results show that none of the options considered need be rejected on the grounds of potential radiation doses to individuals. All exposures should be as low as reasonably achievable, economic and social factors being taken into account. If, on these grounds, retention and disposal of carbon-14 is found to be beneficial, then, subject to the limitations noted, appropriate retention, immobilization and disposal technologies have been identified

  2. Compilation of carbon-14 data

    International Nuclear Information System (INIS)

    A review and critical analysis was made of the original sources of carbon-14 in the graphite moderator and reflector zones of the eight Hanford production reactors, the present physical and chemical state of the carbon-14, pathways (other than direct combustion) by which the carbon-14 could be released to the biosphere, and the maximum rate at which it might be released under circumstances which idealistically favor the release. Areas of uncertainty are noted and recommendations are made for obtaining additional data in three areas: (1) release rate of carbon-14 from irradiated graphite saturated with aerated water; (2) characterization of carbon-14 deposited outside the moderator and reflector zones; and (3) corrosion/release rate of carbon-14 from irradiated steel and aluminum alloys

  3. Carbon 14 dating method

    International Nuclear Information System (INIS)

    This document gives a first introduction to 14C dating as it is put into practice at the radiocarbon dating centre of Claude-Bernard university (Lyon-1 univ., Villeurbanne, France): general considerations and recalls of nuclear physics; the 14C dating method; the initial standard activity; the isotopic fractioning; the measurement of samples activity; the liquid-scintillation counters; the calibration and correction of 14C dates; the preparation of samples; the benzene synthesis; the current applications of the method. (J.S.)

  4. Carbon-14 in tree rings

    International Nuclear Information System (INIS)

    In order to investigate how reliably the carbon 14 content of tree rings reflects that of atmospheric carbon dioxide, two types of determinations were carried out: (1) carbon 14 determinations in annual rings from the beginning of this century until 1974 and (2) carbon 14 determinations in synchronous wood from the North American bristlecone pine and from European oak trees, dendrochronologically dated to have grown in the third and fourth century B.C. The first series of measurements showed that bomb-produced radiocarbon was incorporated in wood at a time when it was converted from sapwood to heartwood, whenever radiocarbon from bomb testing was present in the atmosphere. The second series showed that wood more than 2000 years old and grown on two different continents at different altitudes had, within the limits of experimental error, the same radiocarbon content. This work and other experimental evidence, obtained in part by other laboratories, show that tree rings reflect the average radiocarbon content of global atmospheric carbon dioxide accurately within several parts per mil. In rare cases, deviations of up to 10 parts per thousand may be possible. This means that a typical single radiocarbon date for wood or charcoal possesses an intrinsic uncertainty (viz., an estimated ''one-sigma error'' in addition to all the other errors) of the order of +-50 years. This intrinsic uncertainty is independent of the absolute age of the sample. More accurate dates can, in principle, be obtained by the so-called method of ''wiggle matching.''

  5. Chemical separation of carbon -14 in radwastes

    International Nuclear Information System (INIS)

    Carbon-14 has a long half-life of 5730 years and decays by beta emission of 156KeV to the stable nuclide, Nitrogen-14. Carbon-14 is produced mostly by the neutron activation of naturally occurring oxygen-17 in water molecules of the reactor coolant and Nitrogen-14 from nitrogen gas dissolved in the reactor coolant. Most of these carbon-14 are known to be discharged as gaseous wastes. The chemical forms of the gaseous emissions of carbon-14 from PWR stations range from 10∼26% as 14CO2 and 74∼90% as 14CH4 and other hydrocarbons, compared to about 95% as 14CO2 and 5% as 14CH4 and other hydrocarbons in BWR station gaseous emissions. Knowles reported that although the exact nature of these organic compounds was not identified, most of the carbon-14 was present as forms of organic species in a PWR primary coolant. Praudic measured the contents of the total organic and inorganic carbon-14 in waste trench leachates of New York commercial LLW disposal site and found that 74 ∼ 98% of carbon-14 was organic. In 1991, Dayal and Kirby reported that carbon-14 identified in LLW trench leachates from the Maxi Fiats site were carbonate and bicarbonate as inorganic carbon-14 and citric acid and palmitic acid as organic carbon-14. Thus concentrated Boric acid waste solutions(CB) which has generated from domestic NPP were classified into organic and inorganic carbon-14 with wet oxidation method in order to grasping a existing ratio of organic carbon-14 from total one due to affecting an environment

  6. Carbon-14 Bomb-Pulse Dating

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, B A

    2007-12-16

    Atmospheric testing of nuclear weapons during the 1950s and early 1960s doubled the concentration of carbon-14 atmosphere and created a pulse that labeled everything alive in the past 50 years as carbon moved up the food chain. The variation in carbon-14 concentration in time is well-documented and can be used to chronologically date all biological materials since the mid-1950s.

  7. Carbon-14 dating with the 14UD accelerator

    International Nuclear Information System (INIS)

    A carbon-14 accelerator mass spectroscopy system is now in routine operation on the 14UD accelerator. It offers a modest precision of ∼ 3% for samples that are >10% modern. Its performances and some of recent applications are briefly discussed

  8. The carbon 14 and environment; Le carbone 14 et l'environnement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This article resume the history and the properties of the carbon 14 ({sup 14}C). We also find the different origins and the produced quantities. The carbon transfers in environment are explained and so the {sup 14}C. The biological effects and the sanitary aspects are clarified. The measurements of carbon 14 are given as well its application through the dating. The waste management is tackled. (N.C.)

  9. Carbon 14 and tritium radioactivity of alcohols

    International Nuclear Information System (INIS)

    The method of measuring carbon 14 radioactivity of alcohols has been perfected in order to establish the correct determination of synthetic alcohol added to fermentation alcohol. The specific carbon and tritium activity of alcohol of different origins have been determined for 1973 and 1974. The Suess effect and nuclear fall-out are observed

  10. MODIFYING V-14 RUBBER WITH CARBON FIBERS

    OpenAIRE

    Shadrinov N. V.; Nartakhova S. I.

    2016-01-01

    The influence of carbon fibers and modified carbon fibers on properties of industrially produced V-14 rubber is examined. The dependences of physical and mechanical properties, hardness, abrasion resistance and resistance in aggressive environment on few amount of filled fiber are established. Structural properties of reinforced elastomeric composites are studied by scanning electron microscopy. Elastomeric layer on the surface of modified carbon fiber, confirmed with high adhesion is identified

  11. Carbon-14 measurements in aquifers with methane

    International Nuclear Information System (INIS)

    A survey of various groundwater systems indicates that methane is a common trace constituent and occasionally a major carbon species in groundwaters. Thermocatalytic methane had delta13Csub(CH4)>-45 per mille and microbially produced or biogenic methane had delta13Csub(CH4)13C values for the inorganic carbon. Thermocatalytic methane had no apparent effect on the inorganic carbon. Because methanogenesis seriously affects the carbon isotope geochemistry of groundwaters, the correction of raw 14C ages of affected groundwaters must consider these effects. Conceptual models are developed which adjust the 14C activity of the groundwater for the effects of methanogenesis and for the dilution of carbon present during infiltration by simple dissolution of rock carbonate. These preliminary models are applied to groundwaters from the Alliston sand aquifer where methanogenesis has affected most samples. In this system, methanogenic bacteria using organic matter present in the aquifer matrix as substrate have added inorganic carbon to the groundwater which has initiated further carbonate rock dissolution. These processes have diluted the inorganic carbon 14C activity. The adjusted groundwater ages can be explained in terms of the complex hydrogeology of this aquifer, but also indicate that these conceptual models must be more rigorously tested to evaluate their appropriateness. (author)

  12. Synthesis of carbon-14 labeled doxylamine succinate

    International Nuclear Information System (INIS)

    Doxylamine succinate, N,N-dimethyl-2-[1-phenyl-1-(2-pyridinyl)-ethoxy]ethanamine succinate is an antihistamine used primarily as a sedative. Carbon-14 labeled doxylamine succinate, required for toxicological studies, was synthesized in two steps starting from 2-benzoyl pyridine. (author)

  13. Concentration of carbon-14 in plants

    International Nuclear Information System (INIS)

    The carbon-14 survey program initiated 1960 to gather data on current levels of carbon-14 in environments. Plants essential oil and fermented alcohol were selected as sample materials. The carbon contained in these materials is fixed from atmospheric carbon dioxide by anabolism, so they well reflect the variation of carbon-14 in biosphere. Thymol; Thymol was obtained from the essential oil of Orthodon Japonicium Benth which was cultivated and harvested every year in the experimental field of NIRS and Chiba University. The methylation was carried out to eliminate the strong quenching action of the phenolic group of thymol. Eighteen grams of thymol methyl ether was used as liquid scintillator by adding 0.4% PPO and 0.01% POPOP. Menthol; Menthol was obtained from Mentha arvensis L which was cultivated in the east part of Hokkaido and prepared by Kitami Factory of Federation of Agricultural Cooperative Society of Hokkaido. The chemical conversion of menthol to p-cymene was carried out and used as liquid scintillator as same as above sample. Lemongrass oil; Lemongrass oil was obtained from Cymbopogon citratus Stapf which was cultivated in Izu Experimental Station of Medicinal Plants, National Institute of Hygienic Science located Minami-Izu, Shizuoka Pref. The p-cymene derived from Lemongrass oil was used as liquid scintillator. Alcohol; All sample of fermented alcohol were obtained from the Alcohol Factories of Ministry of Trade and Industry. Raw materials of alcohol were sweet potatos cultivated in several prefectures in Japan ''high test'' molasses and blackstrap molasses imported from several countries of Asia, South America and South Africa, crude alcohol imported from U.S.A., Argentina and Brazil. Mixed solvent of 10 ml sample alcohol and 10 ml toluene or p-xylene containing 0.8% PPO and 0.1% dimethyl POPOP was used as liquid scintillator. (author)

  14. The lichens, tritium and carbon 14 integrators

    International Nuclear Information System (INIS)

    The present report concerns a research for the tritium and for the carbon 14 in lichens in a spirit of bio-indication: the first results appear in Daillant and al (2004 ) and additional results were presented to the congress B.I.O.M.A.P. in Slovenia, organized collectively by the institute Josef Stefan from Ljubljana and the international atomic energy agency from Vienna (Daillant and al 2003). (N.C.)

  15. LDEO Carbon 14 Data from Selected Sea floor Cores

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Carbon-14 data in this file were compiled by W.F. Ruddiman and staff at the Lamont-Doherty Earth Observatory of Columbia University. Data include 974 carbon-14...

  16. A gaseous measurement system for carbon-14 dioxide and carbon-14 methane: An analytical methodology to be applied in the evaluation of the carbon-14 dioxide and carbon-14 methane produced via microbial activity in volcanic tuff

    International Nuclear Information System (INIS)

    The objectives of this study were to develop a gaseous measurement system for the carbon-14 dioxide and carbon-14 methane produced via microbial activity or geochemical action on leachate in tuff; to determine the trapping efficiency of the system for carbon-14 dioxide; to determine the trapping efficiency of the system for carbon-14 methane; to apply the experimentally determined factors regarding the system's trapping efficiency for carbon-14 dioxide and carbon-14 methane to a trapping algorithm to determine the activity of the carbon-14 dioxide and carbon-14 methane in a mixed sample; to determine the minimum detectable activity of the measurement process in picocuries per liter; and to determine the lower limit or detection of the measurement process in counts per minute

  17. Carbon-14 measurement using carbon dioxide absorption method - Our experience

    International Nuclear Information System (INIS)

    Carbon-C14 measurement using absorption technique consists of direct absorption of sample carbon dioxide into an absorber - scintillator mixture. This technique is a simple, fast, less expensive and less hazardous technique compared to benzene synthesis or any other technique. This techniques enable us in preparing six/seven samples in a day while benzene synthesis technique takes two days for the preparation of one sample. It is useful for radiocarbon age up to about 38,000 a BP (∼1 pMC), which is adequate for most of the hydrological investigations. All the total dissolved inorganic carbon (TDIC) is precipitated as barium carbonate from the ∼60 to 70 liters of water at the site. In the laboratory, it is reacted with orthophosphoric acid to give carbon dioxide (CO2). This carbon dioxide is transferred into 0.5 L capacity cylinder. The reaction and collection of gas is done under vacuum using a glass vacuum line. Carbon dioxide is directly absorbed in 11.5 ml of carbasorb + 11 ml of Permaflour V (commercially not available) or its equivalent scintillator in the specially made absorption apparatus. Since, absorption process is exothermic, temperature of the medium is maintained at about 220 deg. C, it results in the absorption of ∼7 m moles of carbon dioxide per mL of cabasorb. As reaction progresses, bubbles can be seen rising slowly. The end point is marked by rapid rise in the solution level. Carbon dioxide obtained from oxalic acid (Standard) and background carbon dioxide are also absorbed in the same quantity of absorber and scintillator mixture. Samples, standard and background are transferred in 22 mL teflon vials and counted in low level liquid scintillation counter (LKB Wallac 1220 Quantulus) for 1000 minutes. The counting efficiency at best factor of merit (AON/ON/√B) is ∼60 % where AON is normalized net count rate of standard and B is the background count rate. The mean count rate of last fifteen background samples is 0.64 ± .0005 cpm with an

  18. Soil metabolic transformations of carbon-14-myo-inositol, carbon-14-phytic acid and carbon-14-iron(III) phytate

    International Nuclear Information System (INIS)

    Uniformly labelled 14C-phytic acid and 14C-iron(III) phytate were synthesized from uniformly labelled 14C-myo-inositol. The three compounds were incubated in an Andosol sandy loam at 70% field capacity and 36.50C for a 12-day period. Myo-inositol, phytic acid and iron(III) phytate underwent a 61.0, 1.9 and 0% microbial oxidation respectively to CO2 during the incubation period. The rate of fixation of 14C-phytic acid was illustrated by its rapid decline in metabolism in the 12-day period. The metabolism rate of phytic was considerably reduced by the presumed formation of iron(III) and aluminium phytate. The metabolism rate of myo-inositol was reduced nine-fold after an initial rapid metabolism during the first day of incubation. The following mechanisms were observed in the soil metabolism of myo-inositol: (1) soil mineral-inositol carbon adsorption, (2) humic acid-inositol carbon adsorption, (3) the phosphorylation of myo-inositol, and (4) the epimerization of myo-inositol to chiro-inositol. The formation of (1) and (2) was found to be highly dependent upon microbial activity. Interactions (1), (2) and (3)are considered as possible mechanisms for the inhibition of the microbial oxidation of myo-inositol. The inhibition of myo-inositol oxidation via adsorption or phosphorylation is considered to be due to the chemical blockage of the stereo-specific microbial oxidative attack on the axial hydroxyl group. (author)

  19. The lichens, tritium and carbon 14 integrators; Les lichens, integrateurs de tritium et de carbone 14

    Energy Technology Data Exchange (ETDEWEB)

    Daillant, O

    2007-07-01

    The present report concerns a research for the tritium and for the carbon 14 in lichens in a spirit of bio-indication: the first results appear in Daillant and al (2004 ) and additional results were presented to the congress B.I.O.M.A.P. in Slovenia, organized collectively by the institute Josef Stefan from Ljubljana and the international atomic energy agency from Vienna (Daillant and al 2003). (N.C.)

  20. Behavior of carbon-14 in the Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Carbon-14 released from the nuclear facilities is an important radionuclide for the safety assessment, because it tends to accumulate in environment through food chain and has a significant impact to personal dose. Carbon-14 has been monitored routinely as one of the main gaseous radionuclides exhausted from the Tokai Reprocessing Plant (TRP) since October of 1991. Furthermore, behavior of carbon-14 in TRP has been investigated through the reprocessing operation and the literature survey. This report describes the result of investigation about the behavior of carbon-14 in TRP as followings. 1. Only a very small amount of carbon-14 in the fuel was liberated into the shear off-gas and most of it was liberated into the dissolver off-gas. Part of the carbon-14 was trapped at the caustic scrubber installed in the off-gas treatment process, and untrapped carbon-14 was released into the environment from the main stack. Amount of carbon-14 released from the main stack was about 4.1∼6.5 GBq every ton of uranium reprocessed. 2. Carbon-14 trapped at the caustic scrubbers installed in the dissolver off-gas and in the vessel off-gas treatment process is transferred to the low active waste vessel. Amount of carbon-14 transferred to the low active waste vessel was about 5.4∼9.6 GBq every ton of uranium reprocessed. 3. The total amount of carbon-14 input to TRP was summed up to about 11.9∼15.5 GBq every ton of uranium reprocessed considering the released amount from the main stack and the trapped amount in the off-gas treatment devices. The amount of nitrogen impurity in the initial fuel was calculated about 15∼22ppm of uranium metal based on the measured carbon-14. 4. The solution in the low active waste vessel is concentrated at the evaporator. Most of the carbon-14 in the solution was transferred into concentrated solution. 5. Total Vitrification Demonstration Facility (TVF) started to operate in 1994. Since then, carbon-14 has been measured in the second sub stack

  1. The optimization of the estimation of carbon-14 in urine

    International Nuclear Information System (INIS)

    The urinalysis method for carbon-14 currently used by the bioassay laboratory of the Dosimetric Research Branch at CRNL has been tested and optimized for both sensitivity and efficiency. Urine is first treated with an enzyme that catalyses the hydrolysis of urea, the major carbon-containing component of urine; carbon dioxide is then liberated by the measured addition of excess acid and collected in 2-aminoethanol. The aminoethanol can be directly counted by the addition of a liquid scintillation cocktail. This method can be used to measure both the specific activity, (Bq/g-carbon) or the total activity of carbon-14 released from the urine sample

  2. Differential monitoring of tritium and carbon-14 compounds

    International Nuclear Information System (INIS)

    A gaseous sampling system was developed to differentially collect all major volatile forms of tritium and carbon-14 according to chemical class. These chemical forms include: tritiated forms of water, hydrogen and organics; as well as 14C-containing carbon monoxide, carbon dioxide and organics. Sampling campaigns involving the use of this differential 3H and 14C collection system have been successfully conducted at a high level liquid waste solidification plant, at a spent fuel storage facility and in the vicinity of power reactors

  3. Biomass carbon-14 ratio measured by accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Measurement methods of a biomass carbon ratio in biomass products based on 14C-radiocarbon concentration have been reviewed. Determination of the biomass carbon ratio in biomass products is important to secure the reliance in the commercial market, because the 'biomass products' could contain products from petroleum. The biomass carbon ratio can be determined from percent Modern Carbon (pMC) using ASTM D6866 methods. The pMC value is calculated from the comparison between the 14C in sample and 14C in reference material. The 14C concentration in chemical products can be measured by liquid scintillation counter (LSC) and accelerator mass spectrometry (AMS). LSC can be applicable to determine the biomass carbon ratio for liquid samples such as gasoline with bioethanol (E5 or E10). On the other hand, AMS can be used to determine the biomass carbon ratio for almost all kinds of organic and inorganic compounds such as starch, cellulose, ethanol, gasoline, or polymer composite with inorganic fillers. AMS can accept the gaseous and solid samples. The graphite derived from samples included in solid phase is measured by AMS. The biomass carbon of samples derived from wood were higher than 100% due to the effect of atomic bomb test in the atmosphere around 1950 which caused the artificial 14C injection. Exact calculation methods of the biomass carbon ratio from pMC will be required for the international standard (ISO standard). (author)

  4. Carbon-14 kinetic isotope effect in the decarbonylation of lactic acid [1-14C

    International Nuclear Information System (INIS)

    The carbon-14 kinetic isotope effect for the decarbonation of lactic acid[1-14C] in sulfuric acid has been measured in the temperature interval of 20-90 deg C. The experimental values of (k12C/k14C) are compared with the theoretical 14C kinetic isotope effect calculated assuming that one carbon-oxygen stretching vibration is lost in the rate-determining step. The discrepancy between experimentally observed temperature dependence of the 14C kinetic isotope effect and the theoretical one is explained by the possible side reactions wich change the apparent degrees of decarbonylation and isotopic composition of CH3CHOHCOOH[1-14C] used in experiments aiming at the determination of carbon-14 kinetic isotope effect in the decarbonylation process itself. (author) 6 refs.; 1 tab

  5. Carbon-14: Some evidence of migration and experiments on immobilization

    International Nuclear Information System (INIS)

    Carbon-14 that is produced in nuclear reactors by reactions on C, N and O is one of the most biologically dangerous nuclides that are subject to global dispersion (H-3, 85-Kr, 129-I). It is assumed that about 20-30% of C-14 is released to atmosphere from NPPs and 80-70% remains in the fuel and will be released during reprocessing. Atmospheric dispersion of C-14 in the form of carbon dioxide cannot go without consequence for the environment, particularly for the vegetation. This influence of the carbon-14 release from a radio-chemical facility in Russia on the nearby forest is illustrated in the first part of the report by data on C-14 concentration in the barks of trees, analyzed year by year and showing yearly variation of C-14 releases. The second part of the report deals with the study of stability of portland-cement compounds and Ca, Ba and Sr carbonates to the leaching processes. Leaching tests were done on specially prepared samples of compounds, containing various (from 30% to 70%) concentrations of Ca, Sr or Ba carbonates, tagged by C-14. Distilled water was used as leaching agent. Leaching was conducted for 46 hours and C-14 concentrations and pH of resulting waters were monitored. Differential leaching rates and leaching coefficients were analyzed and general compound behavior and its dynamics has been observed

  6. The preparation of glucose uniformly labelled with carbon-14

    International Nuclear Information System (INIS)

    The plant, (Zea mais, L) and culture conditions for an optimum production of glucose has been chosen. To achieve the labelling of glucose, photosynthesis and carboxylation are carried on, under an artificial atmosphere of 14CO2 produced from 14C-barium carbonate. Following photosynthesis the sugars are extracted, and then the extract purified by several methods. The purified glucose is finally, degraded and the specific radioactivity is determined in each of its carbon atoms. (Author) 37 refs

  7. The preparation of glucosa uniformly labelled with carbon-14

    International Nuclear Information System (INIS)

    The plant, (Zea mais, L) and culture conditions for an optimun production of glucose has been chosen. To achieve the labelling of glucose, photosynthesis and carboxilation are carried on under an artificial atmosphere of 14CO2 produced from 14C-barium carbonate. Following photosynthesis, the sugars are extracted and then the extract purified by several methods. The purified glucose is, finally, degraded and the specific radiactivity is determined in each of its carbon atoms. (author)

  8. Hydrodynamic aspects of carbon-14 groundwater dating

    International Nuclear Information System (INIS)

    The influence of man-made hydraulic disturbances on the 14C ages of groundwater from confined aquifers is examined, also taking into account 14C diffusion, which has an effect on 14C ages only if the hydrostatic pressure in the lower, confined aquifer is not more than 0.5m higher than that in the upper, unconfined aquifer. If the water head of the lower aquifer exceeds this value, the 14C ages of the confined groundwater are reliable. If the water head is lower, the 14C water ages rapidly approach values of a few thousand years, which no longer reflect the history of the groundwater regeneration. With regard to the palaeohydrogeological situation in Central Europe and the Central Sahara during the last 40,000 years, the 14C ages of Holocene groundwater, and the duration of the preceding hiatus of the groundwater regeneration during the last glacial period, can be determined reliably. 14C ages older than that are too small in many cases; thus, groundwater velocities derived from such data are too great. Recently operations were started to use the groundwater from confined aquifers associated with rates for lowering the water table at 0.1-0.5m/a that result in a rapid decrease in the 14C ages determined for these aquifers, delayed for one or two decades after the beginning of the withdrawal. The 3H level and the chemical content of the groundwater may also be changed after the same delay period. Changes of this kind can be used to estimate the hydraulic properties of the aquifer system. In conclusion, an interpretation of the 14C content of the groundwater from confined aquifers in terms of its age is only possible if the water head of the confined aquifer has not been lower than that of the upper aquifer for even a relatively short period. (author)

  9. Synthesis of carbon-14 labeled Taxol (paclitaxel)

    International Nuclear Information System (INIS)

    Reductive cleavage of the C13 side chain of Taxol (1, paclitaxel) followed by regioselective silylation gave 7-triethylsilylbaccatin III (4). 3-O-Triethysilylation of 5 and subsequent reaction with benzoyl chloride-C7-14C gave azetidinone 7. Coupling of 4 and 7 followed by deprotection gave 1.26 g of Taxol-N3'-14C (11) having a specific activity of 26.5 mCi/mmol and a radiochemical purity of 95%. (author)

  10. Carbon-14 in reactor plant water

    International Nuclear Information System (INIS)

    The method for the analysis of 14C in reactor plant water and various waste streams previously used at the Idaho National Engineering Laboratory has been shown to be ineffective for samples which contain organic compounds. The previous method consisted of acidification and refluxing of the sample, precipitation of the liberated CO2, and subsequent analysis by the liquid scintillation method. The method was simple but it did not convert all compounds containing 14C in the sample to CO2. The new method, while it is based on the previous method, has been improved by employing a strong oxidant, potassium persulfate and silver nitrate, for more complete oxidation of the organics to CO2. The new method yields 14C values that have typically been one to two orders of magnitude higher than the values obtained using the former method. This indicates that most of the 14C present in the current reactor water samples being analyzed is associated with trace amounts of organics

  11. Determination of carbon-14 environmental samples by mixing 14CO2 with a liquid scintillator

    International Nuclear Information System (INIS)

    A method for the determination of Carbon-14 (14CO2) in environmental samples has been developed. The method use the direct absorption of the carbon dioxide into Carbosorb, followed with incorporation of the mixture (Carbosorb-CO2) to the liquid scintillator. The results obtained to apply this method and the benzene synthesis, usual in our laboratory, are discused and compared. The method of collection of atmospheric samples is also described. (Author)

  12. Determination of Carbon-14 in environmental samples by mixing 14CO2 with a liquid scintillator

    International Nuclear Information System (INIS)

    A method for the determination of Carbon-14 (14CO2) in environmental samples has been developed. The method use the direct absorption of the carbon dioxide into Carbosorb, followed with incorporation of the mixture (Carbosorb-CO2) to the liquid scintillator. The results obtained to apply this method and the benzene synthesis, usual in our laboratory, are discussed and compared. The method of collection of atmospheric samples is also described. (Author) 10 refs

  13. Monitoring of carbon 14 in atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    A purpose of this article is to present the first data of the atmospheric C-14 monitoring in CO2 form. In the Prague-Bulovka locality atmospheric CO2 have been continuously collected by absorption in 0.7 M NaOH solution. The samples were one month cumulated. Afterwards, the CO2 was extracted from the NaOH solution and benzene was synthesised. The benzene was measured by liquid scintillation counting (LSC). The monitoring results from January to July 2001 period are discussed and compared with the results from other countries. (authors)

  14. Evaluation of carbon-14 life cycle in reactors VVER-1000

    International Nuclear Information System (INIS)

    This work is aimed at the evaluation of carbon-14 life cycle in light water reactors VVER-1000. Carbon-14 is generated as a side product in different systems of nuclear reactors and has been an issue not only in radioactive waste management but mainly in release into the environment in the form of gaseous effluents. The principal sources of this radionuclide are in primary cooling water and fuel. Considerable amount of C-14 is generated by neutron reactions with oxygen 17O and nitrogen 14N present in water coolant and fuel. The reaction likelihood and consequently volume of generated radioisotope depends on several factors, especially on the effective cross-section, concentrations of parent elements and conditions of power plant operating strategies. Due to its long half-life and high capability of integration into the environment and thus into the living species, it is very important to monitor the movement of carbon-14 in all systems of nuclear power plant and to manage its release out of NPP. The dominant forms of radioactive carbon-14 are the hydrocarbons owing to the combinations with hydrogen used for absorption of radiolytic oxygen. These organic compounds, such as formaldehyde, methyl alcohol, ethyl alcohol and formic acid can be mostly retained on ion exchange resins used in the system for purifying primary cooling water. The gaseous carbon compounds (CH4 and CO2) are released into the atmosphere via the ventilation systems of NPP. Based on the information and data obtained from different sources, it has been designed a balance model of possible carbon-14 pathways throughout the whole NPP. This model includes also mass balance model equations for each important node in system and available sampling points which will be the background for further calculations. This document is specifically not to intended to describe the best monitoring program attributes or technologies but rather to provide evaluation of obtained data and find the optimal way to upgrade

  15. Carbon-14 geochemistry at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Kimberly A.; Kaplan, Daniel I.

    2013-05-10

    Carbon-14 is among the key radionuclides driving risk at the E-Area Low-Level Waste Disposal Facility on the Savannah River Site (SRS). Much of this calculated risk is believed to be the result of having to make conservative assumptions in risk calculations because of the lack of site-specific data. The original geochemical data package (Kaplan 2006) recommended that performance assessments and composite analyses for the SRS assume that {sup 14}C did not sorbed to sediments or cementitious materials, i.e., that C-14 K{sub d} value (solid:liquid concentration ratio) be set to 0 mL/g (Kaplan 2006). This recommendation was based primarily on the fact that no site-specific experimental work was available and the assumption that the interaction of anionic {sup 14}C as CO{sub 2}{sup 2-}) with similarly charged sediments or cementitious materials would be minimal. When used in reactive transport equations, the 0 mL/g Kd value results in {sup 14}C not interacting with the solid phase and moving quickly through the porous media at the same rate as water. The objective of this study was to quantify and understand how aqueous {sup 14}C, as dissolved carbonate, sorbs to and desorbs from SRS sediments and cementitious materials. Laboratory studies measuring the sorption of {sup 14}C, added as a carbonate, showed unequivocally that {sup 14}C-carbonate K{sub d} values were not equal to 0 mL/g for any of the solid phases tested, but they required several months to come to steady state. After six months of contact, the apparent K{sub d} values for a clayey sediment was 3,000 mL/g, for a sandy sediment was 10 mL/g, for a 36-year-old concrete was 30,000 mL/g, and for a reducing grout was 40 mL/g. Furthermore, it was demonstrated that (ad)sorption rates were appreciably faster than desorption rates, indicating that a kinetic sorption model, as opposed to the steady-state K{sub d} model, may be a more accurate description of the {sup 14}C-carbonate sorption process. A second study

  16. Synthesis of carbon-14 analogue of 1,5 diaryl-5-[14C]-1,2,3-triazoles

    International Nuclear Information System (INIS)

    Two 1,2,3-triazole anticonvulsants, 1-(4-methylsulfone-phenyl)-5-(4-methyl-phenyl)-1,2,3-triazole and 1-(4-methylsulfone-phenyl)-5-phenyl-1,2,3-triazole, both labeled with carbon-14 in the 5-position were prepared from para-tolunitrile-[cyano-14C] and benzonitrile-[cyano-14C], respectively

  17. Carbon 14 dating method; Methode de datation par le carbone 14

    Energy Technology Data Exchange (ETDEWEB)

    Fortin, Ph

    2000-07-01

    This document gives a first introduction to {sup 14}C dating as it is put into practice at the radiocarbon dating centre of Claude-Bernard university (Lyon-1 univ., Villeurbanne, France): general considerations and recalls of nuclear physics; the {sup 14}C dating method; the initial standard activity; the isotopic fractioning; the measurement of samples activity; the liquid-scintillation counters; the calibration and correction of {sup 14}C dates; the preparation of samples; the benzene synthesis; the current applications of the method. (J.S.)

  18. A detective from the past called carbon 14

    International Nuclear Information System (INIS)

    The analysis is carried out using Radiometry or Accelerator mass spectrometry. After the system allowing to date the age of any organic rest - whether a fossil, a wood fragment, a parchment or a seed - is an isotope called carbon-14. An atom that comes from reactions nuclear produced in the atmosphere and cosmic-ray-induced they interact with oxygen to form carbon dioxide. This element they absorb it plants in photosynthesis and then passes to the animals remained almost unchanged during the life of the organism. to the meet the initial ratio of c-14 that had been in the atmosphere before his death, the remains that are left in it determine the elapsed time. (Author)

  19. Behaviour of carbon-14 in graphite irradiated by neutrons

    International Nuclear Information System (INIS)

    The method of carbon-14 extraction from graphite irradiated by neutrons based on the thermal effect to graphite in a technological vacuum or air current is a basically new approach. When irradiated graphite is heated in a technological vacuum and in an air current, extraction of carbon-14 takes place and reaches as much as 99.5%. The mass of graphite decreases approximately by 10% in every 5 hours of heating. At the same time, its substance in different units can vary in wide ranges: from 3,5 to 110 kBq/g. This can be explained in terms of both the different substance of nitrogen impurities in graphite and different fluency of thermal neutrons

  20. Progressive extraction method applied to isotopic exchange of carbon-14

    International Nuclear Information System (INIS)

    Isotopic exchange in natural settings is essentially an irreversible process, so that it progresses continuously until there is complete isotopic equilibrium. In soils, this process involves interaction between isotopes in the liquid and solid phases, and complete isotopic equilibrium may take a very long time. Measurements after partial isotopic exchange have been used to characterize the labile fraction of elements in soils. We describe a method to characterize the extent of isotopic exchange, with application here to incorporation of inorganic carbon-14 (14C) into mineral carbonates and organic matter in soils. The procedure uses a continuous addition of extractant, acid, or H2O2in the examples presented here, coupled with sequential sampling. The method has been applied to demonstrate the degree of isotopic exchange in soil. The same strategy could be applied to many other elements, including plant nutrients. (author)

  1. Radiative Neutron Capture on Carbon-14 in Effective Field Theory

    OpenAIRE

    Rupak, Gautam; Fernando, Lakma; Vaghani, Akshay

    2012-01-01

    The cross section for radiative capture of neutron on carbon-14 is calculated using the model-independent formalism of halo effective field theory. The dominant contribution from E1 transition is considered, and the cross section is expressed in terms of elastic scattering parameters of the effective range expansion. Contributions from both resonant and non-resonant interaction are calculated. Significant interference between these leads to a capture contribution that deviates from simple Bre...

  2. The management of carbon-14 in Canadian nuclear facilities

    International Nuclear Information System (INIS)

    In Canada, Derived Emission Limits (DELs) for the release of radionuclides from nuclear facilities are set to ensure that the dose to a member of a critical group from one year's release does not exceed the limit on annual dose to a member of the public set by the Atomic Energy Control Regulations. The Advisory Committee on Radiological Protection (ACRP) has expressed concerns as to whether this procedure provides adequate protection to members of the public, including future generations, for certain radionuclides such as a carbon-14 (14C), which can accumulate in the environment and which can be dispersed, through environmental processes, beyond the local region where the critical group is assumed to live. The ACRP subsequently established a Working Group to review the production, release, environmental levels, and waste management of 14C arising in CANDU power reactors. The ACRP recommendations resulting from this review can be summarized as · Given the current levels of emissions from CANDU nuclear power stations resulting from the use of a carbon dioxide annulus gas and the limitations in the calculation and use of collective dose, the ACRP sees no need for and additional collective dose limit to be applied to these sources. · The AECB should require licensees of power reactors and waste management sites to provide an annual inventory of 14C held within reactor buildings and waste management sites; to provide information on the stability of the ion exchange resins and their continuing ability to retain the 14C; to demonstrate on an ongoing basis that releases of 14C are maintained at a small fraction of the emission limits; and to report annually the critical group and local collective doses arising from releases of 14C. 61 refs., 25 tabs., 4 figs

  3. Verification of the dispersion model by airborne carbon 14C

    International Nuclear Information System (INIS)

    This paper provides insight in the verification of the Lagrangean dispersion model for dose calculation in the environment. The verification method was based on the measurement of the airborne carbon 14C concentration which can be slightly increased close to the nuclear power plant. The results proved that this method is sensitive enough and that the sensitivity analysis can be used for model verification or for identification of possible improvements of the used meteorological data. The Lagrangean model is used at Krsko nuclear power plant (NPP) for calculation of dispersion coefficients and dose in the environment. To show compliance with the authorized dose limits it is required to present a realistic calculation of the dose to the public. This is a numerical model designed to calculate air pollution dispersion in the area of 25km x 25km. The model uses on-line local meteorological measurements. The same model was already verified for another location around a coal- fired power plant based on emission and environmental measurements of SO2. Krsko NPP is placed near the Sava River in a semiopened basin surrounded by several hills. The region is characterized by low winds and frequent thermal inversions. This paper presents a verification of the short range dispersion model based on the fact that the airborne carbon 14C concentration can be slightly increased close to the nuclear power plant. Other radioactive effluents are not detectable in the environment and carbon 14C measurements are accurate enough to detect small deviations from natural 14C levels and to compare them with the calculated concentration based on 14C effluents. The most of airborne 14C is released during the refuelling outage. Within the pre-selected period of ten days, increased effluents of 14C in the form of CO2 were sampled from the plant ventilation. The average atmospheric dispersion parameters were calculated for two locations in the environment where CO2 sampling plates were installed

  4. Measurements of carbon-14 with cavity ring-down spectroscopy

    Science.gov (United States)

    McCartt, A. D.; Ognibene, T.; Bench, G.; Turteltaub, K.

    2015-10-01

    Accelerator Mass Spectrometry (AMS) is the most sensitive method for quantitation of 14C in biological samples. This technology has been used in a variety of low dose, human health related studies over the last 20 years when very high sensitivity was needed. AMS helped pioneer these scientific methods, but its expensive facilities and requirements for highly trained technical staff have limited their proliferation. Quantification of 14C by cavity ring-down spectroscopy (CRDS) offers an approach that eliminates many of the shortcomings of an accelerator-based system and would supplement the use of AMS in biomedical research. Our initial prototype, using a non-ideal wavelength laser and under suboptimal experimental conditions, has a 3.5-modern, 1- σ precision for detection of milligram-sized, carbon-14-elevated samples. These results demonstrate proof of principle and provided a starting point for the development of a spectrometer capable of biologically relevant sensitivities.

  5. Cholestyramine-enhanced fecal elimination of carbon-14 in rats after administration of ammonium (/sup 14/C)perfluorooctanoate or potassium (/sup 14/C)perfluorooctanesulfonate

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.D.; Gibson, S.J.; Ober, R.E.

    1984-12-01

    After a single intravenous dose of ammonium (/sup 14/C)perfluorooctanoate (( /sup 14/C)PFO, 13.3 mg/kg) or of potassium (/sup 14/C)perfluorooctanesulfonate (( /sup 14/C)PFOS, 3.4 mg/kg) to rats, cholestyramine fed daily as a 4% mixture in feed was shown to increase the total carbon-14 eliminated via feces and to decrease liver concentration of carbon-14. Rats were fed cholestyramine in feed for 14 days after administration of (/sup 14/C)PFO and for 21 days after administration of (/sup 14/C)PFOS. Control rats were administered radiolabeled fluorochemical but were not treated with cholestyramine. Cholestyramine treatment increased mean cumulative carbon-14 elimination in feces by 9.8-fold for rats administered (/sup 14/C)PFO and by 9.5-fold for rats administered (/sup 14/C)PFOS. After (/sup 14/C)PFO, a mean of 4% of the dose of carbon-14 was in liver of cholestyramine-treated rats at 14 days versus 7.6% in control rats; after (/sup 14/C)PFOS, 11.3% of the dose was in liver at 21 days versus 40.3% in control rats. After administration of either radiolabeled compound, plasma and red blood cell carbon-14 concentrations, which were relatively lower than liver concentrations, were also significantly reduced by cholestyramine treatment.

  6. Cholestyramine-enhanced fecal elimination of carbon-14 in rats after administration of ammonium [14C]perfluorooctanoate or potassium [14C]perfluorooctanesulfonate

    International Nuclear Information System (INIS)

    After a single intravenous dose of ammonium [14C]perfluorooctanoate [( 14C]PFO, 13.3 mg/kg) or of potassium [14C]perfluorooctanesulfonate [( 14C]PFOS, 3.4 mg/kg) to rats, cholestyramine fed daily as a 4% mixture in feed was shown to increase the total carbon-14 eliminated via feces and to decrease liver concentration of carbon-14. Rats were fed cholestyramine in feed for 14 days after administration of [14C]PFO and for 21 days after administration of [14C]PFOS. Control rats were administered radiolabeled fluorochemical but were not treated with cholestyramine. Cholestyramine treatment increased mean cumulative carbon-14 elimination in feces by 9.8-fold for rats administered [14C]PFO and by 9.5-fold for rats administered [14C]PFOS. After [14C]PFO, a mean of 4% of the dose of carbon-14 was in liver of cholestyramine-treated rats at 14 days versus 7.6% in control rats; after [14C]PFOS, 11.3% of the dose was in liver at 21 days versus 40.3% in control rats. After administration of either radiolabeled compound, plasma and red blood cell carbon-14 concentrations, which were relatively lower than liver concentrations, were also significantly reduced by cholestyramine treatment

  7. Investigations on the biokinetics of carbon 14 in algae cultures

    International Nuclear Information System (INIS)

    The uptake of 14C by Scenedesmus quadricauda is quantitatively investigated by simulation models of radio ecological relevance. Due to the complexing of the procedures in the natural ecosystem, it was only possible to consider idealized conditions. The batch culture ressembles the conditons of still waters or relatively still waters without notable water exchange. The effect of the 14C enrichment, as well as the drastic carbon reduction in the substrate as a result of algae growth, was avoided in the modified batch culture under conditions of simultaneous substrate diffusion by means of a permeation system. The 14C and 12C uptake of the cells thus took place solely under the conditions of constant concentration in the culture medium. The consequences for flowing water resulting from a nuclear power plant accident are to be simulated for the extent of the 14C uptake by green algae using the continuous culture model with dynamic 14C exposure. The continuous infusion of 14C in the continuous culture corresponds to the possible cases where 14C escapes into a flowing water at a constant rate over a long period of time, whether this may be via chronical release from a nuclear power plant or by 'fallout' resulting from nuclear arms testing. The results shown lead to the conclusion that the emission of 14C to the environment, which according to prognoses will be considerably higher after the year 2000, presents a serious radioactivity potential which man and environment will have to live with should these developments continue and the prognoses come true. (orig./MG)

  8. A detective from the past called carbon 14; Un detective del pasado llamado carbono 14

    Energy Technology Data Exchange (ETDEWEB)

    Trintan, R. M.

    2015-07-01

    The analysis is carried out using Radiometry or Accelerator mass spectrometry. After the system allowing to date the age of any organic rest - whether a fossil, a wood fragment, a parchment or a seed - is an isotope called carbon-14. An atom that comes from reactions nuclear produced in the atmosphere and cosmic-ray-induced they interact with oxygen to form carbon dioxide. This element they absorb it plants in photosynthesis and then passes to the animals remained almost unchanged during the life of the organism. to the meet the initial ratio of c-14 that had been in the atmosphere before his death, the remains that are left in it determine the elapsed time. (Author)

  9. Study on behavior and treatment of radioiodine and carbon-14 at reprocessing of spent fuels

    International Nuclear Information System (INIS)

    Treatment of dissolver Off-gas (DOG) is one of important operation in the head-end process of spent fuel reprocessing. Radioiodine, carbon-14 are contained in the DOG. Confinement of radioiodine is required and the reduction of carbon-14 will be required following ALARA principle. In the present study spent fuel dissolution and off-gas treatment tests were carried out using spent fuel with burnups of 8,000 , 29,000 and 44,000 MWd·t-1. Behavior of radioiodine and carbon-14 was investigated. In addition, several adsorbents for carbon dioxide to capture carbon-14 from the DOG were tested in a cold equipment. (author)

  10. The future radiological burden due to carbon 14

    International Nuclear Information System (INIS)

    The global cycling of carbon dioxide from the combustion of fossil fuels and of radiocarbon released from nuclear power facilities has been simulated using a seven-box-model. The model is built up by two boxes for the atmosphere (stratosphere, troposphere), three boxes for the ocean (mixed surface layer, deep sea and sediments), and two boxes for the biosphere (short- and long-lived biota) with non-linear troposphere-biota and troposphere-ocean surface layer exchange rates and linear fluxes between the other reservoirs. The biota growth factor, the exchange of the atmospheric CO2 with the ocean, and the preindustrial atmospheric CO2 content were fitted using the records of the atmospheric CO2 concentration in Mauna Loa, the Suess-effect until 1954, and the response to the C-14 from nuclear weapons tests. The two scenarios considered are (I) annual energy growth rates of 2% and 4%, no nuclear power; (II) a upper and lower estimate of C-14 releases and a best estimate without retention and with a retention factor of four at the fuel reprocessing plants. Assuming logistic source functions for the increase of fossil fuel combustion and an exponentiel growth of nuclear power until the year 2020, the CO2 concentration of the troposphere reaches the 2-5 fold of the preindustrial level around 2100. Simultaneously, the specific C-14 activity of the atmosphere is decreased. The individual lifetime dose commitments (70 y) are found between 0.85 and 0.45 mSv (natural values: 0.73 mSv) and the collective dose commitments until 2100 are about 10% of those due to naturally produced C-14. (orig.)

  11. The test of carbon 14C introducing to sugar beet plant

    International Nuclear Information System (INIS)

    The carbon 14 was introduced to sugar beet plant by photosynthesis. The changes of radioactivity were investigated. It was stated that lower 25 % of carbon 14 stay in leaves, and about 75 % flow to roots in the form of sucrose 14C. (author)

  12. Improved quality control of carbon-14 labelled compounds

    International Nuclear Information System (INIS)

    IUT Ltd is a producer of carbon-14 labelled organic compounds like benzene, methanol, phenol, formaldehyde, Na-acetates and also special ordered compounds. The quality control of these compounds is carried out by means of HPLC and GC-MS due to chemical purity. Molar activity was determined by Liquid Scintillation Counting and HPLC being equipped by a radioactivity detector. Unfortunately the accuracy of the activity determination was arrived only ±4% relatively. This error is too high because of the large dilution factors. In respect of the IUT accreditation as an analytical laboratory in Germany the accuracy had to be improved remarkably. Therefore the GC-MS-determination of molar activities of labelled compounds is used as the 14C-labelled compound. A special evaluation code is used to determine the enrichment values relative to the unlabelled molecules. Taking into account the results of GC-MS the accuracy of molar activity determination is improved to ±2%. The spectra evaluation is demonstrated and some examples are discussed

  13. Carbonates in leaching reactions in context of 14C dating

    Science.gov (United States)

    Michalska, Danuta; Czernik, Justyna

    2015-10-01

    Lime mortars as a mixture of binder and aggregate may contain carbon of various origins. If the mortars are made of totally burnt lime, radiocarbon dating of binder yields the real age of building construction. The presence of carbonaceous aggregate has a significant influence on the 14C measurements results and depending on the type of aggregate and fraction they may cause overaging. Another problem, especially in case of hydraulic mortars that continue to be chemically active for a very long time, is the recrystallization usually connected with rejuvenation of the results but also, depending on local geological structures, with so called reservoir effect yielding apparent ages. An attempt in separating the binder from other carbonaceous components successfully was made for samples from Israel by Nawrocka-Michalska et al. (2007). The same preparation procedure, after taking into account the petrographic composition, was used for samples coming from Poland, Nawrocka et al. (2009). To verify the procedure used previously for non-hydraulic samples determination an experimental tests on carbonaceous mortars with crushed bricks from Novae in Bulgaria were made. Additionally, to identify different carbonaceous structures and their morphology, a cathodoluminescence and scanning electron microscope with electron dispersive spectrometer were applied. The crushed bricks and brick dust used in mortars production process have been interpreted as an alternative use to other pozzolanic materials. The reaction between lime and pozzolanic additives take place easily and affects the rate and course of carbonates decomposition in orthophosphric acid, during the samples pretreatment for dating. The composition of the Bulgarian samples together with influence of climate conditions on mortar carbonates do not allow for making straightforward conclusions in chronology context, but gives some new guidelines in terms of hydraulic mortars application for dating. This work has mainly

  14. The preparation of glucose uniformly labelled with carbon-14; Preparacion de glucosa uniformemente marcada con carbono-14

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M. D.; Suarez, C.; Rodrigo, M. E.

    1978-07-01

    The plant, (Zea mais, L) and culture conditions for an optimum production of glucose has been chosen. To achieve the labelling of glucose, photosynthesis and carboxylation are carried on, under an artificial atmosphere of 14CO{sub 2} produced from 14{sup C}-barium carbonate. Following photosynthesis the sugars are extracted, and then the extract purified by several methods. The purified glucose is finally, degraded and the specific radioactivity is determined in each of its carbon atoms. (Author) 37 refs.

  15. Chemical and biological evolution of (U-14C)phenol sorbed on activated carbon

    International Nuclear Information System (INIS)

    Methods describing the chemical and biological evolution of (U-14C)phenol adsorbed on activated carbon are given with or without the use of bacteria. Without bacteria, the (U-14C)phenol initially adsorbed is not removed from the carbon after adding a solution of unlabelled phenol through the column for eight days. With bacteria, the (U-14C)phenol initially present, is removed (60-70%) from activated carbon with a solution containing unlabelled phenol, nitrogen and phosphorus. (author)

  16. Uptake of bomb-produced carbon-14 by the Pacific Ocean

    International Nuclear Information System (INIS)

    Collection of seawater samples for carbon-14 analysis was performed from 1957 through 1972. The dissolved inorganic carbon was extracted on board the ships and returned to the laboratory for processing. Samples were analyzed for carbon-14 by gas proportional counting of acetylene prepared by conversion of carbon dioxide to acetylene via lithium carbide. Carbon-14 results are reported for 312 surface and 96 sub-surface Pacific Ocean samples and for 34 surface and 53 sub-surface Indian Ocean samples. The precision of measurements was generally from 0.5 to 1.5 percent (one-sigma). The purpose of the seawater measurements was to determine the distribution of bomb carbon-14 in the surface of the Pacific and Indian Oceans, the change in carbon-14 concentration with depth, and the rate of uptake of bomb carbon-14 by the oceans. The oceans are the largest reservoir of exchangeable carbon. The CO2 of the atmosphere exchanges with that of the sea through molecular exchange. In the surface Pacific, a strong latitudinal variation in carbon-14 concentration was found. By 1971, maxima of about 25 percent above pre-bomb levels were found at mid-latitudes of both hemispheres; this finding is attributed to relatively weak vertical mixing in the gyral circulation systems. A 1971 equatorial excess of only about 11 percent is caused by upwelling of sub-surface water and mixture of low carbon-14 Peru Current water into the equatorial system. South of the Antarctic Convergence surface radiocarbon levels rapidly decrease. To the North of the North Pacific gyre maximum, carbon-14 levels show a minimum at about 400N, apparently due to an influx of low carbon-14 water from north of Japan. Levels then rise to a maximum at 450N to 480N, before decreasing further north

  17. Use of the small proportional counter for carbon 14 measurement in 10 milligram carbon samples

    International Nuclear Information System (INIS)

    Ten years ago, the measurement of C-14/C-12 ratios in 10 milligram carbon samples seemed to be technically out of reach. However, two developments that make this goal possible have recently occurred: the first is an entirely new mass-spectrometric separation of C-14 and C-12 ions and their subsequent estimation by counting, while the second is simply the extension of conventional proportional counter operation (using CO2 as counter gas) to very small size carbon samples. The first method is very fast, precise, and capable of treating samples of even sub-milligram size, but requires an expensive installation. The second method is slow (counting times of two months or more are necessary), can probably be made sufficiently precise to handle most problems, works down to sample sizes of 10 mg carbon, and is relatively inexpensive, especially to install in already existing radiocarbon laboratories. It is this second method and its implications that are discussed in the present paper

  18. Synthesis of carbon-14 labelled indolic 5HT{sub 1} receptor agonists

    Energy Technology Data Exchange (ETDEWEB)

    Waterhouse, Ian; Cable, K.M.; Fellows, Ian; Wipperman, M.D.; Sutherland, D.R. [Glaxo Wellcome Research and Development, Stevenage (United Kingdom). Isotope Chemistry Unit

    1996-11-01

    Syntheses of carbon-14 labelled versions of indolic 5HT{sub 1} agonists sumatriptan (GR43175), GR40370 and naratriptan (GR85548) are described. Introduction of the label via cyanation of ketoformanilides, formed by oxidative cleavage of an indole ring, ensured incorporation of carbon-14 at the metabolically stable C-2 position of the indole. (author).

  19. Effect of dead carbon on the 14C dating of the speleothem

    Institute of Scientific and Technical Information of China (English)

    CAI Yanjun; Warren Beck; PENG Zicheng; ZHANG Zhaofeng

    2005-01-01

    Based on the comparison of dating results among high-precision TIMS U-series and AMS 14C as well as the published 14C dating results and their band counting ages (i.e. calendar ages), this paper discusses the effect of dead carbon on the speleothem 14C dating. The result shows that the fraction of incorporated dead carbon during the formation of speleothem varies. The change in the fraction of dead carbon would result in big deviation in the 14C age of the speleothem. It is indispensable to take the dead carbon into consideration when dating the speleothem using the 14C method or studying the atmospheric 14C concentration during the past with the speleothem.

  20. Effect of industrial fuel combustion on the carbon-14 level of atmospheric CO2

    International Nuclear Information System (INIS)

    As was previously noticed in 1953 by SUESS, the radiocarbon content of atmospheric CO2 was slightly lower in the 20th century (before the increase in the carbon-14 level due to the addition of artificial 14C) than at the time before the beginning of the industrial revolution in the 19th century. An exact knowledge of the magnitude of this effect is of interest in connection with the question of the rate of isotope exchange between atmospheric CO2 and the bicarbonates of the oceans. However, the radiocarbon level in the CO2 of the atmosphere is also subject to natural fluctuations caused by a variable cosmic-ray production rate of carbon-14. To investigate this the authors have cross-correlated sunspot numbers (as indicators of cosmic-ray activity) with the carbon-14 level in wood, and have detected a significant coherence between the two time series. The observed coherence permits an extrapolation of the natural carbon-14 values beyond the time of the beginning of artificial combustion of fossil fuel, around 1880. The results show that the observed small decrease in the carbon-14 level is somewhat affected by the increase of the production rate of carbon-14, as a consequence of relatively low solar activity during the preceding decades. The effect of industrial fuel combustion upon the carbon-14 level of the atmosphere can then be estimated for the Northern Hemisphere to be in the vicinity of -3%. (author)

  1. Laboratory Experiments to Evaluate Matrix Diffusion of Dissolved Organic Carbon Carbon-14 in Southern Nevada Fractured-rock Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Hershey, Ronald L. [Nevada University, Reno, NV (United States). Desert Research Institute; Fereday, Wyatt [Nevada University, Reno, NV (United States). Desert Research Institute

    2016-05-01

    Dissolved inorganic carbon (DIC) carbon-14 (14C) is used to estimate groundwater ages by comparing the DIC 14C content in groundwater in the recharge area to the DIC 14C content in the downgradient sampling point. However, because of chemical reactions and physical processes between groundwater and aquifer rocks, the amount of DIC 14C in groundwater can change and result in 14C loss that is not because of radioactive decay. This loss of DIC 14C results in groundwater ages that are older than the actual groundwater ages. Alternatively, dissolved organic carbon (DOC) 14C in groundwater does not react chemically with aquifer rocks, so DOC 14C ages are generally younger than DIC 14C ages. In addition to chemical reactions, 14C ages may also be altered by the physical process of matrix diffusion. The net effect of a continuous loss of 14C to the aquifer matrix by matrix diffusion and then radioactive decay is that groundwater appears to be older than it actually is. Laboratory experiments were conducted to measure matrix diffusion coefficients for DOC 14C in volcanic and carbonate aquifer rocks from southern Nevada. Experiments were conducted using bromide (Br-) as a conservative tracer and 14C-labeled trimesic acid (TMA) as a surrogate for groundwater DOC. Outcrop samples from six volcanic aquifers and five carbonate aquifers in southern Nevada were used. The average DOC 14C matrix diffusion coefficient for volcanic rocks was 2.9 x 10-7 cm2/s, whereas the average for carbonate rocks was approximately the same at 1.7 x 10-7 cm2/s. The average Br- matrix diffusion coefficient for volcanic rocks was 10.4 x 10-7 cm2/s, whereas the average for carbonate rocks was less at 6.5 x 10-7 cm2/s. Carbonate rocks exhibited greater variability in

  2. Modelling accidental releases of carbon 14 in the environment: application as an excel spreadsheet

    International Nuclear Information System (INIS)

    An application as an Excel spreadsheet of the simplified modelling approach of carbon 14 transfer in the environment developed by Tamponnet (2002) is presented. Based on the use of growth models of biological systems (plants, animals, etc.), the one-pool model (organic carbon) that was developed estimates the concentration of carbon 14 within the different compartments of the food chain and in fine the dose to man by ingestion in the case of a chronic or accidental release of carbon 14 in a river or the atmosphere. Data and knowledge have been implemented on Excel using the object-oriented programming language VisualBasic (Microsoft Visual Basic 6.0). The structure of the conceptual model and the Excel sheet are first briefly exposed. A numerical application of the model under a scenario of an accidental release of carbon 14 in the atmosphere is then presented. Simulation results and perspectives are discussed. (author)

  3. 14C in fractions of dissolved organic carbon in ground water

    International Nuclear Information System (INIS)

    Here we report carbon isotope ratios of fractions of natural organic compounds in ground waters isolated from the Stripa mine (Sweden) and the Milk River aquifer (Alberta, Canada). High-molecular-weight and low-molecular-weight fractions of the organic carbon were characterized and these, along with dissolved inorganic carbon, were analysed for δ13C and 14C. The 14C results suggest that the dissolved organic carbon originates from a combination of soil organic matter and kerogen in the aquifer matrix. The high-molecular-weight fractions show a predominant soil origin, whereas the low-molecular-weight fractions are often strongly influenced by kerogen. (author)

  4. Stable Isotopic Evidence for a Pedogenic Origin of Carbonates in Trench 14 near Yucca Mountain, Nevada.

    Science.gov (United States)

    Quade, J; Cerling, T E

    1990-12-14

    Layered carbonate and silica encrust fault fractures exposed in Trench 14 near Yucca Mountain, site of the proposed high-level nuclear waste repository in southern Nevada. Comparison of the stable carbon and oxygen isotopic compositions of the fracture carbonates with those of modern soil carbonates in the area shows that the fracture carbonates are pedogenic in origin and that they likely formed in the presence of vegetation and rainfall typical of a glacial climate. Their isotopic composition differs markedly from that of carbonate associated with nearby springs. The regional water table therefore remained below the level of Trench 14 during the time that the carbonates and silica precipitated, a period probably covering parts of at least the last 300,000 years. PMID:17818282

  5. Synthesis of the monosodium salt of carbon-14 labeled paclitaxel (Taxol) 2`-ethyl carbonate 7-phosphonooxymethyl ether, a potential prodrug of paclitaxel

    Energy Technology Data Exchange (ETDEWEB)

    Dischino, D.D.; Shuhui Chen; Golik, Jerzy; Walker, D.W.; Wong, H.S.L. [Bristol-Myers Squibb Co., Richard L. Gelb Center for Research and Development, Wallingford, CT (United States)

    1997-02-01

    The monosodium salt of carbon-14 labeled paclitaxel (Taxol) [N3`-{sup 14}COPh] 2`-ethyl carbonate 7-phosphonooymethyl ether, was prepared from C-14 labeled paclitaxel [N3`-{sup 14}COPh] in 5 steps. The radiochemical purity of the final product was greater than 99% and the specific activity was 25 {mu}Ci/mg. (author).

  6. Synthesis of δ-aminolevulic acid. Application to the introduction of carbon-14 and of tritium

    International Nuclear Information System (INIS)

    Several new syntheses of δ aminolevulic acid (δ A.L.A.) have been studied. 14C-4 δ - aminolevulic acid has been obtained from 14C allylacetic carboxylic acid with a yield of 30 per cent with respect to barium carbonate and with a specific activity of 32 mCi/mM. The 14C-1 or 14C-2 δ-A.L.A. has been prepared from the 14C-1 or 14C-2 acetate with a yield of 55 per cent with respect to the acetate. Finally the tritiated δ-A.L.A. has been obtained for the first time by tritiation of ethyl phthalimidodehydrolevulate. (author)

  7. Radiocarbon 14C differentiation of sparkling and carbonated wines

    International Nuclear Information System (INIS)

    Specific 14C-activities, percent of modern 14C-activity, and calculated percent of fermentation CO2 are presented for CO2 contained in commercial sparkling wines, labeled as champagne or produced by the bulk (charmat) process. These data are given for the production years 1976-1982. The survey encompassed effervescent wines produced in Spain, Italy, West Germany, California, and New York. Addition of synthetic CO2 to approximately 40 samples represented as sparkling wines was indicated by low 14C-activities of CO2 in these wines. Data for 14C-activity were also presented for the ethanol distilled from sparkling wines for the years 1977-1980. In all cases, the 14C-activity of ethanol was appropriate to the year of vintage

  8. Modelling the behaviour of carbon 14 released by nuclear power plants in rivers

    International Nuclear Information System (INIS)

    Under routine operation, French nuclear power plants of the PWR type release small amounts of carbon 14 in the environment either as airborne or liquid effluents. With the improvement of nuclear waste management, resulting in a significant reduction in corrosion products discharges, carbon 14 currently stands out as one of the main contributor to the individual dose to the public. Besides, with the decrease in military weapon tests fallout levels, nuclear reactors liquid releases are becoming the dominant artificial source of carbon 14 in rivers, downstream of power plants. To properly assess the fate of carbon 14 in rivers and to calculate individual doses to critical groups, a time-dependent food chain model was developed which considered the migration of carbon 14 in rivers and the transfer to terrestrial environments through irrigation with river water. Processes included in the model are: (1) dilution and equilibrium between the different forms of dissolved inorganic carbon in water, (2) exchange of carbon dioxide between water and atmosphere, (3) transfer to aquatic organisms, (4) transfer of irrigation water in the soil profile, (5) loss from the soil through volatilisation, (6) incorporation in plants by way of photosynthesis (7) transfer to livestock. This model is implemented on the Loire river and the modelling results are compared with the data obtained in radioecological surveys. These elements are then used to calculate doses to humans and non-human biota and assess the contribution from natural and industrial origins. (author)

  9. Results of interagency effort to determine carbon-14 source term in low-level radioactive waste

    International Nuclear Information System (INIS)

    A preliminary estimate of the risks from the shallow land disposal of low-level radioactive wastes by EPA in 1984-1985 indicated that Carbon-14 caused virtually all of the risk and that these risks were relatively high. Therefore, an informal interagency group, which included the US Department of Energy, US Geological Survey, US Nuclear Regulatory Commission, and US Environmental Protection Agency, formed in 1985 to obtain up-to-date information on the activity and chemical form of Carbon-14 in the different types of LLW and how Carbon-14 behaves after disposal. The EPA acted as a focal point for collating the information collected by all of the Agencies and will publish a report in Fall 1986 on the results of the Carbon-14 data collection effort. Of particular importance, the study showed that Carbon-14 activity in LLW was overestimated approximately 2000%. This paper summarizes results of the Carbon-14 data collection effort. 40 references, 1 figure, 3 tables

  10. Asphalt in carbon-14-dated archaeological samples from Terqa, Syria

    International Nuclear Information System (INIS)

    The results are reported of an organic geochemical study to verify contamination in 14C dated archaeological samples, which could account for much older apparent ages than expected. The data indicate that ancient asphalt must be the source of contamination, showing that caution should be exercised, in interpreting 14C dates of archaeological samples from areas containing asphalt or other fossil fuel deposits. (U.K.)

  11. Behavior of environmental carbon-14 and tritium in Japan

    International Nuclear Information System (INIS)

    The 14C activity in plants began to rise appreciably above normal in 1957, and the level rose almost linearly with the rate of 7% per year to the level in 1959. Steep increase of the level to a peak in 1963, between 85% and 90% above normal, shows the effect of large scale nuclear explosions through the end of 1962. Liquid scintillation counting was used as a sensitive assay method of 14C and 3H. For 14C determination, the naturally incorporated 14C into alcohol and essential oils (thymol, menthol and lemongrass oil) and used, and water samples were used for 3H measurement. The total amount 65 x 1027 of 14C atoms has been produced in nuclear tests, and this amount is about 3% of the total amount of 14C in nature. The 3H concentration in rivers, streams and ponds decreased exponentially from 600 pCi/l in 1967 to 150 pCi/l in 1972, with the half life of 2.5yr. The difference of the 3H concentration in surface water according to the sampling locations implies geographical and meteorological variations in fallout 3H level. It is said conclusively that environmental waters in Japan have not been influenced by the discharge effluent of the facilities with regard to tritium contamination and that tritium content in precipitation still play an important role in reflecting annual variation of tritium concentration to surface waters. (J.P.N.)

  12. Atmospheric nuclear weapons test history narrated by carbon-14 in human teeth

    International Nuclear Information System (INIS)

    The atmospheric testing of nuclear weapons since 1945 caused a significant increase in the concentration of atmospheric 14C. The 14C concentration in plants that assimilate 14C directly by photosynthesis reflects the atmospheric 14C concentration. Carbon-14 is then transferred into the human body through the food chain. Based on animal experiments, the collagen in human teeth is metabolically inert after its formation. This implies that the collagen of each tooth retains the 14C concentration which reflects the 14C concentration in the blood at the time collagen metabolism ceased. The distribution of the 14C concentration in the collagen of teeth from subjects of various ages would follow a pattern similar to that shown by soft tissues. In this paper the authors elucidate the relationship between the number of nuclear weapon tests and the distribution of 14C concentration in teeth

  13. Synthesis of a polycyclic aromatic hydrocarbon marked with carbon-14: (b, d e f) dibenzo-chrysene 14C-7,14

    International Nuclear Information System (INIS)

    (b, d e f) dibenzo-chrysene C-7,14 has been synthesized from radioactive carbon dioxide and the organic magnesium compound derived from 1,5 dibromo naphthalene. The product has been purified by a very precise series of fractionated chromatographs on alumina having a chromatographic activity. This has necessitated the development of a special technique. (author)

  14. Carbon 14 absorption and translocation in sugar cane

    International Nuclear Information System (INIS)

    Plant-cane stools were labelled with sup(14) CO sub(2), in the field, at Goiana-PE, Brazil, when 3, 7 and 11 months old. Each stool was enclosed in a chamber with sup(14) CO sub(2) for 90 minutes. The sub(14) C photosynthetic were measured in leaves, stalks, roots and soil 24 hours after labelling. Roots were divided into alive and dead and soil into rhizosphere and outer soil. At the end of the labelling period at 3, 7 and 11 months, 2, 19 and 1% of the initial sup(14) CO sub(2) were recovered in the plant and the soil. The low recovery of sub(14) C at 3 months could be attribute to losses by respiration and lack of sampling of the top growing point. The low CO sub(2) fixation and losses at first sampling in the 7 month old labelling were attributed to low light intensity during the day of labelling. Most of the recovered sub(14) C (>80%) was founded in the leaves but all plant parts received labelled photosynthetic. At 3 months, most of the sub(14) C translocated from the leaves went to the living roots (83%); at 7 and 11 months it went to the stalks (69 and 66%). While the roots received less than 2%. Root masses did not vary consistently along the plant cycle and dead root masses were always less than 10% of the total root mass. Radioactivity in the dead roots was always very low. These results suggest that the root system have a low turnover rate after 3 months old. (author)

  15. Carbon-14 ages of Allan Hills meteorites and ice

    Science.gov (United States)

    Fireman, E. L.; Norris, T.

    1982-01-01

    Allan Hills is a blue ice region of approximately 100 sq km area in Antarctica where many meteorites have been found exposed on the ice. The terrestrial ages of the Allan Hills meteorites, which are obtained from their cosmogenic nuclide abundances are important time markers which can reflect the history of ice movement to the site. The principal purpose in studying the terrestrial ages of ALHA meteorites is to locate samples of ancient ice and analyze their trapped gas contents. Attention is given to the C-14 and Ar-39 terrestrial ages of ALHA meteorites, and C-14 ages and trapped gas compositions in ice samples. On the basis of the obtained C-14 terrestrial ages, and Cl-36 and Al-26 results reported by others, it is concluded that most ALHA meteorites fell between 20,000 and 200,000 years ago.

  16. Synthesis of carbon-14 labeled Taxol (paclitaxel). [Anticancer agent

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.G.; Swigor, J.E. (Bristol-Myers Squibb Co., Syracuse, NY (United States). Pharmaceutical Research Inst.); Kant, Joydeep; Schroeder, D.R. (Bristol-Myers Squibb Co., Wallingford, CT (United States). Pharmaceutical Research Inst.)

    1994-10-01

    Reductive cleavage of the C13 side chain of Taxol (1, paclitaxel) followed by regioselective silylation gave 7-triethylsilylbaccatin III (4). 3-O-Triethysilylation of 5 and subsequent reaction with benzoyl chloride-C7-[sup 14]C gave azetidinone 7. Coupling of 4 and 7 followed by deprotection gave 1.26 g of Taxol-N3'-[sup 14]C (11) having a specific activity of 26.5 mCi/mmol and a radiochemical purity of 95%. (author).

  17. Results of excretion analyses on carbon 14 and their interpretation

    International Nuclear Information System (INIS)

    Personal monitoring of routinely radiation exposed persons according to paragraph 25 of the Austrian Radiation Protection Regulation usually can be performed with sufficient accuracy. A real problem, however, exists in the evaluation of the obtained data for calculating the dose commitment. The presented work reports some experiences with a routine monitoring program for 14C and gives a statistical review of the results from urinalysis of employees in the Research Center Seibersdorf for the period 1976-1978. For typical cases of incorporation, the received doses were estimated and proposals for organizing an effective survey program for workers handling 14C were made. (Auth.)

  18. Carbon-14 as an indicator of CO2 pollution in cities

    International Nuclear Information System (INIS)

    The combustion of fossil fuels in cities, and especially in industrial areas, releases large quantities of carbon dioxide into the local atmosphere. This carbon dioxide does not contain carbon-14, with the result that the carbon-14 content of the atmospheric carbon dioxide is locally depleted. The degree of depletion provides a measure for the carbon dioxide pollution at the sampling site. Since growing plants represent a convenient average sample of the carbon dioxide in the air, the leaves of deciduous trees can be used for comparing the magnitude of local pollution in different localities during the summer growing period. A series of leaf samples collected in 1973 from Europe, North America and South Africa reveals the expected differences in the degree of pollution. Extreme instances occur in Scholven (Ruhrgebiet, Germany), where the average day-time carbon dioxide content during the summer months is found to be 8.7% above normal, and in Manhatten, New York City, where the corresponding figure is 6.4%. The technique can easily be extended to include the winter months by directly absorbing carbon dioxide in a hydroxide solution during different seasons. The proposed method is sensitive but much less time-consuming than the continuous measurement of the carbon dioxide concentration in the air. It thus lends itself to the monitoring of impact areas of pollution. (author)

  19. Study of rock porosity by impregnation with carbon-14- methylmethacrylate

    International Nuclear Information System (INIS)

    An investigation of porosity and spatial porosity distribution to enable the determination of mineral specific characteristics was conducted on tonalite and mica gneiss from the Olkiluoto site in Eurajoki. The method that was used involved impregnation of the rocks with 14C-methyl-methacrylate, irradiation polymerization, autoradiography and optical densitometry with application of digital image processing techniques. The accuracy of the method was estimated by comparing the results with those obtained by water impregnation method. The 14C-polymethyl- methacrylate (14CPMMA) method provided an effective means of determining the different porous phases in the rock matrix which vary in their diffusive properties. With increased tracer activity and an improved measurement system, the 14CPMMA method allowed porosity detection down to 0.05 vol.per cent with spatial resolution of 20 μm. The porosity was found to lie at grain boundaries of the fresh unaltered rock. The spatial porosity was fairly evenly distributed in the rock with a fine grain size. Anisotropy of porous phases was observed in fine- and medium-grained tonalite and mica gneiss samples. Inter- and intracrystalline fissures of quartz and plagioclase were observed. Most porous phases, with 0.6-1.6 vol. per cent porosity, were biotite, serisite, epidote and cordierite minerals. The bulk porosities of the samples varied between 0.10 vol.per cent and 0.19 vol.per cent. (orig.) (9 refs., 16 figs., 1 tab.)

  20. Assessment of carbon-14 control technology and costs for the LWR fuel cycle. Final report

    International Nuclear Information System (INIS)

    The report is an effort to incorporate present knowledge of carbon-14 behavior in Light Water Reactors and Fuel Reprocessing Plants into Designs compatible with present technology. The impact of radioactive effluents are considered according to the traditional measure of maximum radiation dose to individuals, summation of individual annual doses to obtain a total population dose, and the environmental dose commitment. The sources of carbon-14 in LWR's and fuel reprocessing facilities are identified. Systems for the removal of carbon-14 in existing and future plants are addressed from both a technological and economic standpoint. Existing technology indicates that caustic scrubbing is the most cost-effective alternative for concurrently removing C-14 from waste-gas streams and leaving it in a form compatible with permanent disposal conditions

  1. Immobilization of carbon 14 contained in spent fuel hulls through melting-solidification treatment

    International Nuclear Information System (INIS)

    The melting-solidification treatment of spent nuclear fuel hulls is a potential technique to improve immobilization/stabilization of carbon-14 which is mobile in the environment due to its weakly absorbing properties. Carbon-14 can be immobilized in a solid during the treatment under an inert gas atmosphere, where carbon is not oxidized to gaseous form and remains in the solid. A series of laboratory scale experiments on retention of carbon into an alloy waste form was conducted. Metallic zirconium was melted with metallic copper (Zr/Cu=8/2 in weight) at 1200 deg C under an argon atmosphere. Almost all of the carbon remained in the resulting zirconium-copper alloy. (authors)

  2. Displacement of carbon-14 labelled amino acids from leaves

    International Nuclear Information System (INIS)

    The displacement of amino acids from nature leaves was investigated. The amino acids (Ala, Asn, Asp, Glu, Gln, Val, Leu, Lys, Ser, Pro) were applied on the leaves in L-form, uniformly labelled with 14C, and the type and direction of displacement have been observed. Most of the studies have been carried out on bush beans aged 3 to 4 weeks. The experiments were carried out in climatic chambers; in one case, barley plants just reaching maturity were used. In order to find out whether the applied amino acids were also displaced in their original form, freeze-dried plants were extracted and the 14C activity of the various fraction was determined. The radioactivity of some free amino acids was determined after two-dimensional separation by thin film chromatography. (orig./HK)

  3. Groundwater's carbon 14 age distribution in the Konya closed basin

    International Nuclear Information System (INIS)

    The Konya Closed basin extending from Taurids at the south toward Salt Lake at the north covers and area of 80,000 sq.km. Apart from the surface water transfer from neighboring basins, groundwater is the only potable water resource in this area where determination of groundwater age is crucial in view of understanding of the timing or recharge and flow dynamics. 14C model ages at 8 drilling wells scattered along the regional flow path extending between Taurids and Salt Lake were determined. Results indicate that groundwater age increases progressively from recent to ca. 40 ky BP along the flow path. This linear increase with distance from recharge area suggests a homogenous groundwater velocity distribution (3m/year) in the basin. 14C model and hydraulic (kinematic) ages are in agreement. 18O content of groundwater points out a steady decrease of recharge temperature (up to 60C) throughout the Wurm glacial period

  4. Determination of carbon-14 in environmental level, solid reference materials

    Energy Technology Data Exchange (ETDEWEB)

    Blowers, Paul, E-mail: paul.blowers@cefas.co.uk [Cefas Lowestoft Laboratory, Pakefield Road, Lowestoft, Suffolk, NR33 0HT (United Kingdom); Caborn, Jane, E-mail: jane.a.caborn@nnl.co.uk [NNL, Springfields, Salwick, Preston, Lancashire, PR4 0XJ (United Kingdom); Dell, Tony [Veterinary Laboratories Agency, New Haw, Addlestone, Surrey, KT15 3NB (United Kingdom); Gingell, Terry [DSTL, Radiation Protection Services, Crescent Road, Alverstoke, Gosport, Hants, PO12 2DL (United Kingdom); Harms, Arvic [National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW (United Kingdom); Long, Stephanie [Radiological Protection Institute of Ireland, 3 Clonskeagh Square, Clonskeagh Road, Dublin 14, Ireland (United Kingdom); Sleep, Darren [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP (United Kingdom); Stewart, Charlie [UKAEA (Waste Management Group), Chemical Support Services, D1310/14, Dounreay, Thurso, Caithness, KW14 7TZ (United Kingdom); Walker, Jill [Radiocarbon Dating, The Old Stables, East Lockinge, Wantage, Oxon OX12 8QY (United Kingdom); Warwick, Phil E. [GAU-Radioanalytical, National Oceanography Centre Southampton, European Way, Southampton, SO14 3ZH (United Kingdom)

    2011-10-15

    An intercomparison exercise to determine the {sup 14}C activity concentrations in a range of solid, environmental level materials was conducted between laboratories in the UK. IAEA reference materials, C2, C6 and C7, and an in-house laboratory QA material were dispatched in 2006 to ten laboratories comprising of members of the Analyst Informal Working Group (AIWG) and one other invited party. The laboratories performed the determinations using a number of techniques, and using the results each one was evaluated in terms of levels of precision, sensitivity and limits of detection. The results of the study show that all techniques are capable of successfully analysing {sup 14}C in environmental level materials, however, a shortage of certified environmental reference materials exists. The suitability of the IAEA reference materials and other material for use as reference materials was also assessed.

  5. Determination of carbon-14 in environmental level, solid reference materials

    International Nuclear Information System (INIS)

    An intercomparison exercise to determine the 14C activity concentrations in a range of solid, environmental level materials was conducted between laboratories in the UK. IAEA reference materials, C2, C6 and C7, and an in-house laboratory QA material were dispatched in 2006 to ten laboratories comprising of members of the Analyst Informal Working Group (AIWG) and one other invited party. The laboratories performed the determinations using a number of techniques, and using the results each one was evaluated in terms of levels of precision, sensitivity and limits of detection. The results of the study show that all techniques are capable of successfully analysing 14C in environmental level materials, however, a shortage of certified environmental reference materials exists. The suitability of the IAEA reference materials and other material for use as reference materials was also assessed.

  6. Study of a Dolomitic Aquifer with Carbon-14 and Tritium

    International Nuclear Information System (INIS)

    The Dolomite Series which outcrops over an extensive area of the Transvaal is frequently subdivided into separate groundwater compartments by vertical diabase dykes to form well-defined aquifers which usually overflow in strong springs at the lowest point on the surface. The hydrology of one such compartment has been analysed to provide figures for the aquifer characteristics which can be compared with the results of the isotope data. The recharge rate of the aquifer is found to be 17.7 mm/yr and the storage capacity is about 57 times the annual recharge. Expressions for the age distribution in an idealized model of the aquifer and the age of the water discharging from the spring are derived and used to determine the recharge and capacity from the 14C and tritium data. The initial 14C content of the groundwater varies from 80 to 90% with the result that this isotope is relatively unsuitable for quantitative deductions of recharge etc. Both 14C and tritium show a linear increase in age with depth in accordance with the theory. From the tritium results a recharge rate of 11.5 mm/yr, and a storage capacity of 106 times the annual recharge is deduced. Practically the same results are obtained from the tritium content of the spring water if the initial tritium content of the recharge, extrapolated from the age-depth curve (7 TU), is used and the relationship between average age and apparent age of the discharge employed. (author)

  7. Study of a dolomitic aquifer with carbon-14 and tritium

    International Nuclear Information System (INIS)

    The Dolomite Series which outcrops over an extensive area of the Transvaal is frequently subdivided into separate groundwater compartments by vertical diabase dykes to form well-defined aquifers which usually overflow in strong springs at the lowest point on the surface. The hydrology of one such compartment has been analysed to provide figures for the aquifer characteristics which can be compared with the results of the isotope data. The recharge rate of the aquifer is found to be 17.7 mm/yr and the storage capacity is about 57 times the annual recharge. Expressions for the age distribution in an idealized model of the aquifer and the age of the water discharging from the spring are derived and used to determine the recharge and capacity from the 14C and tritium data. The initial 14C content of the groundwater varies from 80 to 90% with the result that this isotope is relatively unsuitable for quantitative deductions of recharge etc. Both 14C and tritium show a linear increase in age with depth in accordance with the theory. From the tritium results a recharge rate of 11.5 mm/yr, and a storage capacity of 106 times the annual recharge is deduced. Practically the same results are obtained from the tritium content of the spring water if the initial tritium content of the recharge, extrapolated from the age-depth curve (7 TU), is used and the relationship between average age and apparent age of the discharge employed. (author)

  8. Characteristics of 14C and 13C of carbonate aerosols in dust storm events in China

    Science.gov (United States)

    Chen, Bing; Jie, Dongmei; Shi, Meinan; Gao, Pan; Shen, Zhenxing; Uchida, Masao; Zhou, Liping; Liu, Kexin; Hu, Ke; Kitagawa, Hiroyuki

    2015-10-01

    In contrast with its decrease in western China deserts, the dust storm event in eastern China, Korea, and Japan shows an increase in frequency. Although the drylands in northeastern China have been recognized as an important dust source, the relative contributions of dust transport from the drylands and deserts are inconclusive, thus the quantification of dust storm sources in downwind area remains a challenge. We measured the 14C and 13C contents in carbonates of dust samples from six sites in China, which were collected for the duration of dust storm events in drylands, deserts, and urban areas. The δ13C of the dryland dust samples considerably varied in a range of - 9.7 to - 5.0‰, which partly overlapped the desert dust carbonate δ13C ranges. The 14C content of the dryland dust carbonates showed a narrow range of 60.9 ± 4.0 (as an average and 1 SD of five samples) percent modern carbon (pMC), indicating the enrichment of modern carbonate. Dust samples in desert regions contained relatively aged carbonates with the depleting 14C showing of 28.8 ± 3.3 pMC. After the long-range transport of the western China desert dust plume, the carbonates collected at the southern China remained the depletion of 14C (33.5 ± 5.3 pMC) as in the desert regions. On the other hand, the samples of dust storm events at the urban areas of eastern China showed an enrichment of 14C contents (46.2 ± 5.0 pMC, n = 7), which might be explained by the stronger contribution of modern-carbonate-rich dryland dust.

  9. Two dimensional model study of atmospheric transport using carbon-14 and strontium-90 as inert tracers

    International Nuclear Information System (INIS)

    This study tests the transport processes in the LLNL two-dimensional chemical-radiative-transport model using recently reanalyzed carbon-14 and strontium-90 data. These radioactive tracers were produced bythe atmospheric nuclear bomb tests of 1952--58 and 1961--62, and they were measured at a few latitudes up to 35 kilometers over the period 1955--1970. Selected horizontal and vertical eddy diffusion coefficients were varied in the model to test their sensitivity to short and long term transpose of carbon-14. A sharp transition of Kzz and Kyy through the tropopause, as opposed to a slow transition between the same limiting values, shows a distinct improvement in the calculated carbon-14 distributions, a distinct improvement in the calculated seasonal and latitudinal distribution of ozone columns (relative to TOMS observations), and a very large difference in the calculated ozone reduction by a possible fleet of High Speed Civil Transports. Calculated northern hemisphere carbon-14 is more sensitive to variation of Kyy than are global ozone columns. Strontium-90 was used to test the LLNL tropopause height at four different latitudes. Starting with the 1960 background distribution of carbon-14, we calculate the input of carbon-14 as the sum of each nuclear test of the 1961--62 series, using two bomb-cloud rise models. With the Seitz bomb-rise formulation in the LLNL model, we find good agreement between calculated and observedcarbon-14 (with noticeable exceptions at the north polar tropopause and the short-term mid-latitude mid-stratosphere) between 1963 and 1970

  10. Characteristics study of a system for carbon 14 dating

    International Nuclear Information System (INIS)

    The developing of a radiocarbon dating laboratory, specially built to deal with carbonate samples from underground water, at the Institute de Energia Atomica, required the optimization of a benzene synthetizer, and also of the operative conditions of the liquid scintillator counter, used in sample measurements. An average yield of about 70% was obtained in our benzenic synthesis. If more refined conditions were used, better results could have been obtained, but the reported yield is good enough for our necessities. A comparison of the ages of several shell samples was done between the Geochronology Laboratory, belonging to the Instituto de Geociencias, at Sao Paulo University and our dating laboratory. The agreement between the results was fairly good, according to the precision required

  11. Source and age of carbon in peatland surface waters: new insights from 14C analysis

    Science.gov (United States)

    Billett, Michael; Garnett, Mark; Dinsmore, Kerry; Leith, Fraser

    2013-04-01

    Peatlands are a significant source of carbon to the aquatic environment which is increasingly being recognised as an important flux pathway (both lateral and vertical) in total landscape carbon budgets. Determining the source and age of the carbon (in its various forms) is a key step to understanding the stability of peatland systems as well as the connectivity between the soil carbon pool and the freshwater environment. Novel analytical and sampling methods using molecular sieves have been developed for (1) within-stream, in situ sampling of CO2 in the field and (2) for the removal/separation of CO2 in the laboratory prior to 14C analysis of CH4. Here we present dual isotope (δ13C and 14C) data from freshwater systems in UK and Finnish peatlands to show that significant differences exist in the source and age of CO2, DOC (dissolved organic carbon) and POC (particulate organic carbon). Individual peatlands clearly differ in terms of their isotopic freshwater signature, suggesting that carbon cycling may be "tighter" in some systems compared to others. We have also measured the isotopic signature of different C species in peatland pipes, which appear to be able to tap carbon from different peat depths. This suggests that carbon cycling and transport within "piped-peatlands" may be more complex than previously thought. Some of our most recent work has focussed on the development of a method to measure the 14C component of CH4 in freshwaters. Initial results suggest that CH4 in peatland streams is significantly older than CO2 and derived from a much deeper source. We have also shown that the age (but not the source) of dissolved CO2 changes over the hydrological year in response to seasonal changes in discharge and temperature. Radiocarbon measurements in the peat-riparian-stream system suggest that a significant degree of connectivity exists in terms of C transport and cycling, although the degree of connectivity differs for individual C species. In summary, 14C

  12. Carbon-14 as a Tracer of Land-to-Ocean Organic Carbon Transfers in Eight Northeastern US Rivers

    Science.gov (United States)

    Hossler, K.; Bauer, J. E.

    2011-12-01

    Rivers link the terrestrial and ocean carbon cycles, transporting and transforming an aggregate of upstream C exports. We used natural abundance 14C and 13C to identify controls on particulate and dissolved organic carbon (POC and DOC, respectively) for rivers draining eight different watershed subregions in the northeastern US. The rivers presented a range of lithology, land-use and other anthropogenic impacts (e.g., presence of nuclear and fossil-fuel power plants and waste-water treatment plants). POC and DOC δ13C signatures (per sample) ranged from -34 % to -22 % and -28 % to -15 %, respectively; while discharge-weighted means ranged from -29 % to -26 % (POC) and -28 % to -25 % (DOC), reflecting the predominance of C3 vegetation in the region. In contrast, Δ14C signatures were much more variable, ranging from -224 % to +1,230 % for POC and -233 % to +1,960 % for DOC (per sample), and with discharge-weighted means ranging from -160 % to +340 % (POC) and -60 % to +480 % (DOC). Samples depleted in 14C (i.e., Δ14C systems was of organic materials highly enriched in 14C (Δ14C = +163 % to +1,960 %), most likely because of 14C inputs from upstream nuclear power plants. Nuclear reactors were also present in two of the other watersheds, but did not elevate the 14C signatures. For all four watersheds with nuclear reactors, however, radiocarbon inputs likely resulted in underestimation of aged C contributions. Studies utilizing 14C as a tracer for natural and anthropogenic controls on C and organic matter inputs and fluxes, should take into consideration the various and sometimes opposing influences on the integrated signatures.

  13. 14C in fractions of dissolved organic carbon in ground water

    International Nuclear Information System (INIS)

    Here we report carbon isotope ratios of fractions of natural organic compounds in ground waters isolated from the Stripa mine (Sweden) and the Milk River aquifer (Alberta, Canada). High-molecular-weight and low-molecular-weight fractions of the organic carbon were characterized and these, along with dissolved inorganic carbon, were analysed for δ13C and 14C. The 14C results suggest that the dissolved organic carbon originates from a combination of soil organic matter and kerogen in the aquifer matrix. The high-molecular-weight fractions show a predominant soil origin, whereas the low-molecular-weight fractions are often strongly influenced by kerogen. (author). 23 refs., 1 fig., 1 tab

  14. Rapid localization of carbon 14-labeled molecules in biological samples by ion mass microscopy

    International Nuclear Information System (INIS)

    We report here on the ability of secondary ion mass spectrometry (SIMS) to provide rapid imaging of the intracellular distribution of 14C-labeled molecules. The validity of this method, using mass discrimination of carbon 14 atoms, was assessed by imaging the distribution of two molecules of well-known metabolism, [14C]-thymidine and [14C]-uridine, incorporated by human fibroblasts in culture. As expected, 14C ion images showed the presence of [14C]-thymidine in the nucleus of dividing cells, whereas [14C]-uridine was present in the cytoplasm as well as the nucleus of all cells, with a large concentration in the nucleoli. The time required to obtain the distribution images with the SMI 300 microscope was less than 6 min, whereas microautoradiography, the classical method for mapping the tissue distribution of 14C-labeled molecules, usually requires exposure times of several months. Secondary ion mass spectrometry using in situ mass discrimination is proposed here as a very sensitive method which permits rapid imaging of the subcellular distribution of molecules labeled with carbon 14

  15. Carbon-14 transfer into rice plants from a continuous atmospheric source: observations and model predictions

    International Nuclear Information System (INIS)

    Carbon-14 (14C) is one of the most important radionuclides from the perspective of dose estimation due to the nuclear fuel cycle. Ten years of monitoring data on 14C in airborne emissions, in atmospheric CO2 and in rice grain collected around the Tokai reprocessing plant (TRP) showed an insignificant radiological effect of the TRP-derived 14C on the public, but suggested a minor contribution of the TRP-derived 14C to atmospheric 14C concentrations, and an influence on 14C concentrations in rice grain at harvest. This paper also summarizes a modelling exercise (the so-called rice scenario of the IAEA's EMRAS program) in which 14C concentrations in air and rice predicted with various models using information on 14C discharge rates, meteorological conditions and so on were compared with observed concentrations. The modelling results showed that simple Gaussian plume models with different assumptions predict monthly averaged 14C concentrations in air well, even for near-field receptors, and also that specific activity and dynamic models were equally good for the prediction of inter-annual changes in 14C concentrations in rice grain. The scenario, however, offered little opportunity for comparing the predictive capabilities of these two types of models because the scenario involved a near-chronic release to the atmosphere. A scenario based on an episodic release and short-term, time-dependent observations is needed to establish the overall confidence in the predictions of environmental 14C models

  16. Study of a method of detection for natural carbon-14 using a liquid scintillator, recent variations in the natural radio-activity due to artificial carbon-14 (1963); Etude d'une methode de detection du carrons 14 naturel, utilisant un scintillateur liquide - variations recentes de l'activite naturelle dues au carbone 14 artificiel (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Leger, C. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-06-15

    Among the various natural isotopes of carbon, a radioactive isotope, carbon-14, is formed by the action of secondary neutrons from cosmic rays on nitrogen in the air. Until 1950, the concentration of this isotope in ordinary carbon underwent weak fluctuations of about 2-3 per cent. The exact measurement of this concentration 6 X 10{sup 12} Ci/gm of carbon, and of its fluctuations, are difficult and in the first part of this report a highly sensitive method is given using a liquid scintillator. Since 1950 this natural activity has shown large fluctuations because of the carbon-14 formed during nuclear explosions, and in the second part, the evolution in France of this specific activity of carbon in the atmosphere and biosphere is examined. In the last part is studied the local increase in carbon activity in the atmosphere around the Saclay site, an increase caused by the carbon-14 given off as C{sup 14}O{sub 2}, by the reactors cooled partially with exterior air. (author) [French] Parmi les differents isotopes naturels du carbone, un isotope radioactif, le carbone 14, est forme par l'action de neutrons secondaires due aux rayons cosmiques sir l'azote de l'air. Jusqu'en 1950, la concentration de cet isotope dans le carbone ordinaire est soumise a des fluctuations de faible amplitude, de l'ordre de 2 a 3 pour cent. Les mesures precises de cette concentration, 6. 10{sup -12} Ci/g de carbone, et de ses fluctuations sont delicates, et dans la premiere partie de ce rapport, on decrit une methode de detection a grande sensibilite utilisant un scintillateur liquide. Depuis 1950, cette activite naturelle subit des fluctuations importantes dues au carbone 14 forme lors des explosions nucleaires, et dans la seconde partie, on examine l'evolution en France de l'activite specifique du carbone de l'atmosphere et ce la biosphere. Dans la derniere partie, on etudie l'accroissement local de l'activite du carbone de l'air aux

  17. Vertical transport of carbon-14 into deep-sea food webs

    Science.gov (United States)

    Pearcy, W. G.; Stuiver, Minze

    1983-04-01

    During the years 1973 to 1976 the carbon-14 content was higher in epipelagic and vertically migrating, upper mesopelagic animals (caught between 0 and 500 m) than in lower mesopelagic, bathypelagic, and abyssobenthic animals (500 to 5180 m) in the northeastern Pacific Ocean. Only one species of deep-sea fish had a Δ14C value as high as surface-caught fish. The 14C content of most animals was higher pre-bomb levels, but the relatively low 14C content of most deep-sea animals indicates that the majority of their carbon was not derived directly from a near-surface food chain labeled with bomb carbon. A mean residence time of about 35 y was estimated for the organic carbon pool for abyssobenthic animals based on the relative increase of radiocarbon in surface-dwelling animals since 1967. The results suggest that rapidly sinking particles from surface waters, such as fecal pellets, are not the major source of organic carbon for deep-sea fishes and large benthic invertebrates.

  18. Dissolved Organic Carbon 14C in Southern Nevada Groundwater and Implications for Groundwater Travel Times

    Energy Technology Data Exchange (ETDEWEB)

    Hershey, Ronald L. [Nevada University, Reno, NV (United States). Desert Research Institute; Fereday, Wyall [Nevada University, Reno, NV (United States). Desert Research Institute; Thomas, James M [Nevada University, Reno, NV (United States). Desert Research Institute

    2016-08-01

    Dissolved inorganic carbon (DIC) carbon-14 (14C) ages must be corrected for complex chemical and physical reactions and processes that change the amount of 14C in groundwater as it flows from recharge to downgradient areas. Because of these reactions, DIC 14C can produce unrealistically old ages and long groundwater travel times that may, or may not, agree with travel times estimated by other methods. Dissolved organic carbon (DOC) 14C ages are often younger than DIC 14C ages because there are few chemical reactions or physical processes that change the amount of DOC 14C in groundwater. However, there are several issues that create uncertainty in DOC 14C groundwater ages including limited knowledge of the initial (A0) DOC 14C in groundwater recharge and potential changes in DOC composition as water moves through an aquifer. This study examines these issues by quantifying A0 DOC 14C in recharge areas of southern Nevada groundwater flow systems and by evaluating changes in DOC composition as water flows from recharge areas to downgradient areas. The effect of these processes on DOC 14C groundwater ages is evaluated and DOC and DIC 14C ages are then compared along several southern Nevada groundwater flow paths. Twenty-seven groundwater samples were collected from springs and wells in southern Nevada in upgradient, midgradient, and downgradient locations. DOC 14C for upgradient samples ranged from 96 to 120 percent modern carbon (pmc) with an average of 106 pmc, verifying modern DOC 14C ages in recharge areas, which decreases uncertainty in DOC 14C A0 values, groundwater ages, and travel times. The HPLC spectra of groundwater along a flow path in the Spring Mountains show the same general pattern indicating that the DOC compound composition does not change along this flow path

  19. Sampling and monitoring of carbon-14 in gaseous effluents from nuclear facilities

    International Nuclear Information System (INIS)

    This study reviews the possibilities from sampling and monitoring C-14 in gaseous effluents from nuclear facilities. After oxidation of various forms of carbon-14 in the off-gas into CO2 three main processes for trapping are used either separately or in combination. These are sorption, freezing and chemical processes. Absorption in alkaline solutions or solids or molecular sieve adsorption are the most frequently used methods. The main counting methods used are gas proportional counting and liquid scintillation counting

  20. Carbon-14 production compared to oxygen isotope records from Camp Century, Greenland and Devon Island, Canada

    International Nuclear Information System (INIS)

    Carbon-14 production rate variations that are not explainable by geomagnetic changes are thought to be in antiphase with solar activity and as such should be in antiphase with paleotemperature records or proxy temperature histories such as those obtainable from oxygen isotope analyses of ice cores. Oxygen isotope records from Camp Century, Greeland and Devon Island Ice Cap are in phase with each other over thousands of years and in antiphase to the 14C production rate residuals. (Auth.)

  1. Preparation and evaluation of the homogeneity of milk as a candidate reference material for carbon-14

    International Nuclear Information System (INIS)

    A pilot project was initiated to study the feasibility of preparing milk as a candidate reference material for 14C near environmental levels. Two materials, MK-B at natural level of 14C and MK-C4 at an elevated level, have been prepared from pasteurized 2% dairy milk. MK-C4 was spiked with an appropriate amount of 14C-methylated casein tracer to achieve the elevated level. Several samples from MK-B and MK-C4 have been analyzed to test the homogeneity of these materials for the distribution of 14C. The samples were combusted in oxygen under 20 atmospheres pressure using a Parr bomb. The 14C concentrations were determined by liquid scintillation counting using Carbo-Sorb/Permafluor E+ cocktail. The results indicate that these materials are homogeneous with respect to 14C concentration even in sub-sample sizes of 0.25 g of the freeze-dried material. The precision of our 14C measurements, as expressed by the % relative standard deviation, is within 5%. The accuracy has been tested by analyzing replicate samples of the IAEA 14C quality assurance materials, C-3 (cellulose) and C-6 (ANU sucrose) and found to be within 3%. The lower limits of detection are 0.08, 0.05 and 0.02 Bq.g-1 of carbon for 20 ml of liquid scintillation mixture (Carbo-Sorb/Permafluor E+ = ∼0.67) loaded with up to 0.4g of carbon from the sample and counted for 3 cycles of 60, 180 and 1000 min each, respectively. Our measurements of 14C specific activities of MK-B and MK-C4 are 0.26 ± 0.01 and 15.3 ± 0.4 Bq.g-1 of carbon, respectively. (author)

  2. Algal C-14 and total carbon metabolisms 2. Experimental observations with the diatom Skeletonema costatum

    DEFF Research Database (Denmark)

    Williams, P.J.L.; Robinson, C.; Søndergaard, M.; Jespersen, A.M.; Bentley, T.L.; Lefevre, D.; Richardson, Katherine; Riemann, B.

    1996-01-01

    Three sets of comparisons of net and gross inorganic carbon assimilation and C-14 uptake were made with an axenic culture of Skeletonema costatum. The comparisons showed that in the physiological window studied (10-20% of the intrinsic generation time and gross photosynthesis/respiration ratios of......2. The conclusion drawn was that over the time scale studied, the C-14 technique was measuring net photosynthesis, consistent with essentially 100% recycling of respiratory CO2. The study has shown that we now possess the basis to make a rigorous analysis of net, gross CO2 fixation and net C-14...

  3. 14.7% efficient mesoscopic perovskite solar cells using single walled carbon nanotubes/carbon composite counter electrodes

    Science.gov (United States)

    Li, Hao; Cao, Kun; Cui, Jin; Liu, Shuangshuang; Qiao, Xianfeng; Shen, Yan; Wang, Mingkui

    2016-03-01

    A single walled carbon nanotube (SWCNT) possesses excellent hole conductivity. This work communicates an investigation of perovskite solar cells using a mesoscopic TiO2/Al2O3 structure as a framework in combination with a certain amount of SWCNT-doped graphite/carbon black counter electrode material. The CH3NH3PbI3-based device achieves a power conversion efficiency of 14.7% under AM 1.5G illumination. Detailed investigations show an increased charge collection in this device compared to that without the SWCNT additive.A single walled carbon nanotube (SWCNT) possesses excellent hole conductivity. This work communicates an investigation of perovskite solar cells using a mesoscopic TiO2/Al2O3 structure as a framework in combination with a certain amount of SWCNT-doped graphite/carbon black counter electrode material. The CH3NH3PbI3-based device achieves a power conversion efficiency of 14.7% under AM 1.5G illumination. Detailed investigations show an increased charge collection in this device compared to that without the SWCNT additive. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07347b

  4. Recharge in northern clime calcareous sandy soils: soil water chemical and carbon-14 evolution

    International Nuclear Information System (INIS)

    Chemical analyses were performed on soil water extracted from two cores taken from a sandy calcareous soil near Delhi, Ontario. Calcite saturation is attained within the unsaturated zone over short distances and short periods of time, whereas dolomite undersaturation persists to the groundwater table. The progressive dissolution of dolomite by soil water, within the unsaturated zone, after calcite saturation is reached results in calcite supersaturation. Deposition of iron and manganese oxyhydroxide phases occurs at the carbonate leached/unleached zone boundary. This is a result of soil water neutralization due to carbonate dissolution during infiltration but may also reflect the increased rate of oxidation of dissolved ferrous and manganous ions at higher pH's. The role of bacteria in this process has not been investigated. The depth of the carbonate leached/unleached zone boundary in a calcareous soil has important implications for 14C groundwater dating. The depth of this interface at the study site (= approximately 2 m) does not appear to limit 14C diffusion from the root zone to the depth at which carbonate dissolution occurs. Thus, soil water achieves open system isotopic equilibrium with the soil CO2 gas phase. It is calculated that in soils with similar physical properties to the study soil but with depths of leaching of 5 m or more, complete 14C isotopic equilibration of soil water with soil gas would not occur. Soil water, under these conditions would recharge to the groundwater exhibiting some degree of closed system 14C isotopic evolution. (author)

  5. Study of barytocalcite as a conditioning matrix for carbon 14: Comparison of several synthesis routes

    Energy Technology Data Exchange (ETDEWEB)

    Massoni, Nicolas, E-mail: nicolas.massoni@cea.fr; Rosen, Jeremy; Chartier, Myriam; Cozzika, Théodore

    2013-10-15

    Carbon-14 arising from the spent nuclear fuel reprocessing can disseminate into natural cycles and then its sequestration could be advantageous. In this study, we focus on the ceramic phase barytocalcite BaCa(CO{sub 3}){sub 2} (8.08 wt.% C) obtained from different synthesis routes. We show that several elaboration routes are possible but only two emerge ensuring a high reaction yield for a fast process. The first is a room temperature aqueous precipitation with nitrated precursors and the other is a double salt high temperature reaction with carbonated starting compounds, both of these precursors being compatible with the usual carbon-14 trapping process. The sensibility to experimental conditions of reference synthesis route and the reaction mechanisms are investigated and discussed.

  6. A potent IκB kinase-β inhibitor labeled with carbon-14 and deuterium.

    Science.gov (United States)

    Latli, Bachir; Eriksson, Magnus; Hrapchak, Matt; Busacca, Carl A; Senanayake, Chris H

    2016-06-30

    3-Amino-4-(1,1-difluoro-propyl)-6-(4-methanesulfonyl-piperidin-1-yl)-thieno[2,3-b]pyridine-2-carboxylic acid amide (1) is a potent IκB Kinase-β (IKK-β) inhibitor. The efficient preparations of this compound labeled with carbon-14 and deuterium are described. The carbon-14 synthesis was accomplished in six radiochemical steps in 25% overall yield. The key transformations were the modified Guareschi-Thorpe condensation of 2-cyano-(14) C-acetamide and a keto-ester followed by chlorination to 2,6-dichloropyridine derivative in one pot. The isolated dichloropyridine was then converted in three steps in one pot to [(14) C]-(1). The carbon-14 labeled (1) was isolated with a specific activity of 54.3 mCi/mmol and radiochemical purity of 99.8%. The deuterium labeled (1) was obtained in eight steps and in 57% overall chemical yield using 4-hydroxypiperidine-2,2,3,3,4,5,5,6,6-(2) H9 . The final three steps of this synthesis were run in one pot. PMID:27073120

  7. Variation of 14C, 137Cs and stable carbon composition in forest soil and its implications

    International Nuclear Information System (INIS)

    In Japan, about 70% of land area is covered by forest. Therefore, forest ecosystem plays a vital role in ultimate fate of radionuclides and carbon cycle in terrestrial environment. Three undisturbed forest soil profiles were collected from Ibaraki Prefecture, Japan. The 137Cs data illustrate that maximum fallout deposition of 137Cs took place around 1964. 14C determination shows that 14C also has peak values in the top 10 cm of the soil profiles ascribed to the highest bomb 14C level in 1960's. The 13C data show that the turnover dynamics of soil organic carbon could be described very well by progressive enrichment values of δ13C. (author)

  8. Preparation of 14C-Labeled Multi-walled Carbon Nano-tubes for Biodistribution Investigations

    International Nuclear Information System (INIS)

    A new method allowing the 14C-labeling of carboxylic acid functions of carbon nano-tubes is described. The key step of the labeling process is a de-carbonylation reaction that has been developed and optimized with the help of a screening method. The optimized process has been successfully applied to multi-walled carbon nano-tubes (MWNTs), and the corresponding 14C-labeled nano-tubes were used to investigate their in vivo behavior. Preliminary results obtained after i.v. contamination of rats revealed liver as the main target organ. Radiolabeling of NTs with a long-life radioactive nucleus like 14C, coupled to a highly sensitive autoradiographic method, that provides a unique detection threshold, will make it possible to determine for a long time period whether or not NTs remain in any organs after animal exposure. (authors)

  9. Photosynthesis and assimilate partitioning characteristics of the coconut palm as observed by carbon-14 labelling

    International Nuclear Information System (INIS)

    A technique was developed on the use of carbon dioxide(carbon-14 labelled) rapid labelling of foliage and to ascertain photosynthesis and partitioning characteristics of labelled assimilate into other parts of the coconut palm. An eight-year-old Tall x Tall young coconut palm growing under field conditions at Bandirippuwa Estate and with six developing bunches , was selected for this study. The labelling was carried out on a bright sunny day and soil was at field capacity. Seventh leaf from the youngest open leaf was used for labelling with 5 mCi of sodium bi carbonate (Carbon-14 labelled). The results revealed that within 24 hours, 60% of the labelled assimilate was partitioned into other parts of the palm and at the end of the seventh day about 18% of the labelled assimilate still remained in the labelled leaf. Among the developing bunches fifth and sixth bunches from the youngest developing bunch received more labelled assimilate than young developing bunches above them. It was revealed that partitioning of assimilate into various ''sinks'' is determined by the developmental stage or activeness of the ''sink''. The proportion of C-14 labelled carbon assimilate, partitioned into developing bunches was substantially low compared to the total amount of labelled carbon fixed by the labelled leaf. Further, it was observed that partitioning of assimilated labelled carbon into the young leaves above, as well as the mature leaves below the labelled leaf. The complex vascular anatomy of the palms could be attributed to this pattern of partitioning of assimilates into upper and lower leaves from the labelled leaf

  10. Physiological conditions and uptake of inorganic carbon-14 by plant roots

    International Nuclear Information System (INIS)

    The uptake of inorganic 14C by bean plant roots was measured. The plants were grown in a nutrient solution culture at pH 6 and a NaH14CO3 tracer was added to the growth medium. Photosynthesis and transpiration were varied by exposing the aerial portions of the plants to different atmospheric CO2 concentrations, humidities and light levels in a cuvette system. Leaf concentrations of 14C were measured at the end of the experiments using liquid scintillation counting. Plant uptake of 14C via the roots was independent of the photosynthetic rate and, in most cases, could be predicted by knowing the transpiration rate and the nutrient solution concentration. However, when a less efficient root-medium aeration system was used, 14C uptake was greater than that predicted using transpiration, a phenomenon observed by other researchers. This contrasted to results of another experiment where the measured uptake of iodine was much slower than that predicted using transpiration. Knowledge of transpiration rates is useful in predicting inorganic carbon uptake via the roots and in estimating 14C transport from contaminated soils to biota. Also, the independence of the uptake from photosynthesis and ambient CO2 concentrations suggests that future increases in atmospheric CO2 concentrations may not have a direct effect on root uptake of soil carbon. (author)

  11. Multiphase Carbon-14 Transport in a Near-Field-Scale Unsaturated Column of Natural Sediments

    Energy Technology Data Exchange (ETDEWEB)

    D. T. Fox; Mitchell A. Plummer; Larry C. Hull; D. Craig Cooper

    2004-03-01

    Wastes buried at the Subsurface Disposal Area (SDA) of the Idaho National Engineering and Environmental Laboratory include activated metals that release radioactive carbon-14 (14C) as they corrode. To better understand 14C phase partitioning and transport in the SDA sediments, we conducted a series of transport experiments using 14C (radio-labeled sodium carbonate) and nonreactive gas (sulfur hexafluoride) and aqueous (bromide and tritiated water) tracers in a large (2.6-m high by 0.9-m diameter) column of sediments similar to those used as cover material at the SDA. We established steady-state unsaturated flow prior to injecting tracers into the column. Tracer migration was monitored using pore-water and pore-gas samples taken from co-located suction lysimeters and gas ports inserted at ~0.3-m intervals along the column’s length. Measurements of 14C discharged from the sediment to the atmosphere (i.e., 14CO2 flux) indicate a positive correlation between CO2 partial pressure (pCO2) in the column and changes in 14CO2 flux. Though 14CO2 diffusion is expected to be independent of pCO2, changes of pCO2 affect pore water chemistry sufficiently to affect aqueous/gas phase 14C partitioning and consequently 14C2 flux. Pore-water and -gas 14C activity measurements provide an average aqueous/gas partitioning ratio, Kag, of 4.5 (±0.3). This value is consistent with that calculated using standard carbonate equilibrium expressions with measured pH, suggesting the ability to estimate Kag from carbonate equilibrium. One year after the 14C injection, the column was cored and solid-phase 14C activity was measured. The average aqueous/solid partition coefficient, Kd, (1.6 L kg-1) was consistent with those derived from small-scale and short-term batch and column experiments using SDA sediments, suggesting that bench-scale measurements are a valid means of estimating aqueous/solid partitioning at the much larger spatial scale considered in these meso-scale experiments. However

  12. Carbon-14 in waste packages for spent fuel in a tuff repository

    International Nuclear Information System (INIS)

    Carbon-14 is produced naturally by cosmic ray neutrons in the upper atmosphere. It is also produced in nuclear reactors, in amounts much smaller than the global inventory. About one-third of this is released directly to the atmosphere, and the other two-thirds remains in the spent fuel. Both the Environmental Protection Agency and the Nuclear Regulatory Commission have established limits on release of the 14C in spent fuel. This is of particular concern for the proposed repository in tuff, because of the unsaturated conditions and the consequent possibility of gaseous transport of 14C as CO2. Existing measurements and calculations of the 14C inventory in spent fuel are reviewed. The physical distribution and chemical forms of the 14C are discussed. Available data on the release of 14C from spent fuel in aqueous solutions and in gaseous environments of air, nitrogen, and helium are reviewed. Projected 14C behavior in a tuff repository is described. It is concluded that 14C release measurements from spent fuel into moist air at temperatures both above and below the in situ boiling point of water as well as detailed transport calculations for the tuff geological environment will be needed to determine whether the 10CFR60 and 40CFR191 requirements can be met. 56 refs., 1 tab

  13. Sampling and monitoring of carbon-14 in gaseous effluents from nuclear facilities - a literature survey

    International Nuclear Information System (INIS)

    C-14 compounds produced in the coolant may be released mainly together with off-gas and waste water from the coolant purification and treatment system. In reactors the release of C-14 will occur mainly in gaseous effluents and only a few percent in liquid effluents. Reported releases from BWRs range from 260 to 670 GBq/GW(e) x year and from 90 to 430 GBq/GW(e) x year for PWRs. At BWRs the condenser air ejector contributes the main inplant release pathway, whereas in PWRs the off-gas treatment vents are the main pathway for C-14 release. C-14 sampling methods depend generally on the C-14 being in the form of CO2. The off-gas discharges from BWRs are mainly in the form of CO2 whereas in PWRs a major fraction of the released C-14 is in the form of hydrocarbons or carbon monoxide (generally 80-100%). Sampling systems in PWRs should therefore be equipped with a catalytic oxidizer to convert all C-14 to CO2 before trapping. The purpose of this study is to provide information on the techniques available for sampling and monitoring C-14

  14. Modelling the Environmental Transfer of Tritium and Carbon-14 to Biota and Man. Report of the Tritium and Carbon-14 Working Group of EMRAS Theme 1

    International Nuclear Information System (INIS)

    Hydrogen and carbon are biologically-regulated, essential elements that are highly mobile in the environment and the human body. As isotopes of these elements, tritium and 14C enter freely into water (in the case of tritium), plants, animals and humans. This complex behaviour means that there are substantial uncertainties in the predictions of models that calculate the transfer of tritium and 14C through the environment. The EMRAS Tritium/C14 Working Group (WG) was set up to establish the confidence that can be placed in the predictions of such models, to recommend improved modelling approaches, and to encourage experimental work leading to the development of data sets for model testing. The activities of the WG focused on the assessment of models for organically bound tritium (OBT) formation and translocation in plants and animals, the area where model uncertainties are largest. Environmental 14C models were also addressed because the dynamics of carbon and OBT are similar. The goals of the WG were achieved primarily through nine test scenarios in which model predictions were compared with observations obtained in laboratory or field studies. Seven of the scenarios involved tritium, covering terrestrial and aquatic ecosystems and steady-state and dynamic conditions. The remaining two scenarios concerned 14C, one addressing steady-state concentrations in plants and the other time-dependent concentrations in animals. The WG also considered one model intercomparison exercise involving the calculation of doses following a hypothetical, short-term release of tritium to the atmosphere in a farming area. Finally, the WG discussed the nature of OBT and proposed a definition to promote common understanding and usage within the international tritium community. The models used by the various participants varied in complexity from simple specific activity approaches to dynamic compartment models and process-oriented models, in which the various transfer processes were

  15. Algal C-14 and total carbon metabolisms 2. Experimental observations with the diatom Skeletonema costatum

    DEFF Research Database (Denmark)

    Williams, P.J.L.; Robinson, C.; Søndergaard, M.;

    1996-01-01

    of 2-3), C-14 uptake into the particulate plus the dissolved fractions approximated to net photosynthesis. Rate constants derived from the chemically determined changes were used to parameterize models that accounted for the respiration of photosynthetic products and for the recycling of respiratory CO......2. The conclusion drawn was that over the time scale studied, the C-14 technique was measuring net photosynthesis, consistent with essentially 100% recycling of respiratory CO2. The study has shown that we now possess the basis to make a rigorous analysis of net, gross CO2 fixation and net C-14......Three sets of comparisons of net and gross inorganic carbon assimilation and C-14 uptake were made with an axenic culture of Skeletonema costatum. The comparisons showed that in the physiological window studied (10-20% of the intrinsic generation time and gross photosynthesis/respiration ratios...

  16. A moderator ion exchange model to predict carbon-14 behaviour during operations

    International Nuclear Information System (INIS)

    Carbon-14 emissions from CANDU 6 stations are reduced through the removal of inorganic carbon ions by the ion exchange (IX) columns in the moderator purification system. A model has been developed to simulate the ion exchange behaviour of anions and cations present in the moderator. The model can be used to generate breakthrough curves for IX columns. Results from the program were compared to breakthrough curves generated by a small-scale experimental facility as well as data collected from Wolsong-3 where the IX column remained in service well past the recommended time. In both cases, the breakthrough curves were similar to the collected data. (author)

  17. Carbon-14 in neutron-irradiated graphite for graphite-moderated reactors. Joint research

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Kimio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Matsuo, Hideto [Radioactive Waste Management and Nuclear Facility Decommissioning Technology Center, Tokyo (Japan)

    2002-12-01

    The graphite moderated gas cooled reactor operated by the Japan Atomic Power Company was stopped its commercial operation on March 1998, and the decommissioning process has been started. Graphite material is often used as the moderator and the reflector materials in the core of the gas cooled reactor. During the operation, a long life nuclide of {sup 14}C is generated in the graphite by several transmutation reactions. Separation of {sup 14}C isotope and the development of the separation method have been recognized to be critical issues for the decommissioning of the reactor core. To understand the current methodologies for the carbon isotope separation, literature on the subject was surveyed. Also, those on the physical and chemical behavior of {sup 14}C were surveyed. This is because the larger part of the nuclides in the graphite is produced from {sup 14}N by (n,p) reaction, and the location of them in the material tends to be different from those of the other carbon atoms. This report summarizes the result of survey on the open literature about the behavior of {sup 14}C and the separation methods, including the list of the literature on these subjects. (author)

  18. Measurement of pion double charge exchange on carbon-13, carbon-14, magnesium-26, and iron-56

    International Nuclear Information System (INIS)

    Cross sections for the /sup 13,14/C,26Mg,56Fe(π+,π-)/sup 13,14/O,26Si,56Ni reactions were measured with the Energetic Pion Channel and Spectrometer at the Clinton P. Anderson Meson Physics Facility for 120 less than or equal to T/sub π/ less than or equal to 292 MeV and 0 less than or equal to theta less than or equal to 50. The double isobaric analog states (DIAS) are of primary interest. In addition, cross sections for transitions to 14O(0+, 5.92 MeV), 14O(2+, 7.77 MeV), 56Ni(gs), 13O(gs), and 13O(4.21 MeV) are presented. The 13O(4.21 MeV) state is postulated to have J/sup π/ = 1/2-. The data are compared to previously measured double-charge-exchange cross sections on other nuclei, and the systematics of double charge exchange on T greater than or equal to 1 target nuclei leading to the DIAS are studied. Near the Δ33 resonance, cross sections for the DIAS transitions are in disagreement with calculations in which the reaction is treated as sequential charge exchange through the free pion-nucleon amplitude, while for T/sub π/ > 200 MeV the anomalous features of the 164 MeV data are not apparent. This is evidence for significant higher order contributions to the double-charge-exchange amplitude near the reasonable energy. Two theoretical approaches that include two nucleon processes are applied to the DIAS data. 64 references

  19. The synthesis of the insecticides Aldrin and Dieldrin labelled with carbon-14 at high specific activity

    International Nuclear Information System (INIS)

    Aldrin is the trade name given by Shell Chemicals to 1, 2, 3, 4, 10, 10-hexachloro-1, 4, 4a, 5, 8, 8a-hexahydro-exo-1, 4-endo-5, 8-dimethanonapthalene. Acetylene-1, 2-C14 is converted successively to tetrachloroethane and trichloroethylene, and this is condensed with carbon tetrachloride by the Prins reaction in the presence of aluminium chloride to octachlorocyclopentene. Dechlorination gives hexachlorocyclopentadiene which undergoes a Diels-Alder addition to bicyclo(2, 2, 1) hepta-2,5-diene to give aldrin-C14 in 12% yield from barium carbonate. Oxidation of Aldrin gives the 6,7 epoxide, Dieldrin, in 87% yield. The paper includes an account of the separation of octachlorocyclopentene from the crude product of the Prins reaction by gas-liquid chromatography and of the separation of Aldrin and Dieldrin on a small preparative scale by reversed-phase paper chromatography. (author)

  20. Flux of carbon from 14C-enriched leaf litter throughout a forest soil mesocosm

    Energy Technology Data Exchange (ETDEWEB)

    Froberg, Mats J. [Sveriges Lantbruksuniversitet; Hanson, Paul J [ORNL; Trumbore, Susan E. [University of California, Irvine; Swanston, Christopher W. [USFS; Todd Jr, Donald E [ORNL

    2009-01-01

    The role of DOC for the build-up of soil organic carbon pools is still not well known, but it is thought to play a role in the transport of carbon to a greater depth where it becomes more stable. The aim of this study was to elucidate within-year dynamics of carbon transport from litter to the O (Oe and Oa) and A horizons. Mesocosms with constructed soil profiles were used to study dynamics of C transport from 14C-enriched (about 1000 ) leaf litter to the Oe/Oa and A horizons as well as the mineralization of leaf litter. The mesocosms were placed in the field for 17 months during which time fluxes and 14C content of DOC and CO2 were measured. Changes in 14C in leaf litter and bulk soil C pools were also recorded. Significant simultaneous release and immobilization of DOC occurring in both the O and A horizons was hypothesized. Contrary to our hypothesis, DOC released from the labeled Oi horizon was not retained within the Oe/Oa layer. DOC originating in the unlabeled Oe/Oa layer was also released for transport. Extensive retention of DOC occurred in the A horizon. DOC leaching from A horizon consisted of a mix of DOC from different sources, with a main fraction originating in the A horizon and a smaller fraction leached from the overlaying horizons. The C and 14C budget for the litter layer also indicated a surprisingly large amount of carbon with ambient Δ14C-signature to be respired from this layer. Data for this site also suggested significant contributions from throughfall to dissolved organic carbon (DOC) transport into and respiration from the litter layer. The results from this study showed that DOC retentionwas low in the O horizon and therefore not important for the O horizon carbon budget. In the A horizon DOC retention was extensive, but annual DOC input was small compared to C stocks and therefore not important for changes in soil C on an annual timescale.

  1. Synthesis of 1-(4-methylsulfone-phenyl)-5-(4-fluoro-phenyl)-5-[14C]-1,2,3- triazole and 1-(4-sulfonamide-phenyl)-5-(4-fluoro-phenyl)-5-[14C]-1,2,3- triazole as novel carbon-14 anticonvulsant

    International Nuclear Information System (INIS)

    Two 1,2,3-triazole anticonvulsants, 1-(4-methylsulfone-phenyl)-5-(4-fluoro-phenyl)-5-[14C]-1,2,3-triazole and 1-(4-sulfonamide-phenyl)-5-(4- fluoro-phenyl)-5-[14C]-1,2,3-triazole, both labeled with carbon-14 in the 5-position were prepared from para-fluoro-benzonitrile-[cyano-14C]. (author)

  2. Reexposure and advection of C-14-depleted organic carbon from old deposits at the upper continental slope

    OpenAIRE

    Tesi, Tommaso; Goñi, Miguel A.; Langone, Leonardo; Puig, Pere; Canals, Miquel; Nittrouer, Charles A.; Durrieu De Madron, Xavier; Calafat, Antoni; Palanques, Albert; Heussner, Serge; Davies, Maureen H.; Drexler, Tina M.; Fabres, Joan; Miserocchi, Stefano

    2010-01-01

    Outcrops of old strata at the shelf edge resulting from erosive gravity-driven flows have been globally described on continental margins. The reexposure of old strata allows for the reintroduction of aged organic carbon (OC), sequestered in marine sediments for thousands of years, into the modern carbon cycle. This pool of reworked material represents an additional source of C-14-depleted organic carbon supplied to the ocean, in parallel with the weathering of fossil organic carbon delivered ...

  3. Carbon-14 immobilization via the CO2-Ba(OH)2 hydrate gas-solid reaction

    International Nuclear Information System (INIS)

    Although no restrictions have been placed on the release of carbon-14, it has been identified as a potential health hazard due to the ease in which it may be assimilated into the biosphere. The intent of the Carbon-14 Immobilization Program, funded through the Airborne Waste Program Management Office, is to develop and demonstrate a novel process for restricting off-gas releases of carbon-14 from various nuclear facilities. The process utilizes the CO2-Ba(OH)2 hydrate gas-solid reaction to directly remove and immobilize carbon-14. The reaction product, BaCO3, possesses both the thermal and chemical stability desired for long-term waste disposal. The process is capable of providing decontamination factors in excess of 1000 and reactant utilization of greater than 99% in the treatment of high volumetric, airlike (330 ppM CO2) gas streams. For the treatment of an air-based off-gas stream, the use of packed beds of Ba(OH)2.8H2O flakes to remove CO2 has been demonstrated. However, the operating conditions must be maintained between certain upper and lower limits with respect to the partial pressure of water. If the water vapor pressure in the gas is less than the dissociation vapor pressure of Ba(OH)2.8H2O, the bed will deactivate. If the vapor pressure is considerably greater, pressure drop problems will increase with increasing humidity as the particles curl and degrade. Results have indicated that when operated in the proper regime, the bulk of the increase in pressure drop results from the conversion of Ba(OH)2.8H2O to BaCO3 and not from the hydration of the commercial Ba(OH)2.8H2O (i.e. Ba(OH)2.7.50H2O) to Ba(OH)2.8H2O

  4. Simulation of groundwater flow in the Voltaian (around Tamale) using carbon-14

    International Nuclear Information System (INIS)

    Studying the process of groundwater flow in subsurface systems using numerical simulation has been widely practiced. The purpose of this study was to establish a 2D groundwater flow model for evaluating groundwater resources of the Voltaian Basin (around Tamale) in the Northern Region of Ghana. To understand the rate of abstraction of groundwater in the study area, a finite-element, steady-state groundwater flow model was used to simulate groundwater flow in the aquifer. COMSOL Multiphysics' (FEMLAB) Earth Science Module (ESM) package which is finite element analysis and solver software was used. The radioisotope used in the study was Carbon-14. Three wells were sampled for Carbon-14 concentration and used for the model verification, based on elevation. From the results, groundwater in the study area moves generally from higher to lower hydraulic head along paths perpendicular to the equipotential lines. The groundwater flow paths in the aquifer in the study area indicated that flow is predominantly regional. There was a regional groundwater flow from Kashegu to Nawuni. Kanshegu appears to be recharge area and Nawuni as discharge area. The flow rate obtained using Carbon-14 date was 2.86×10-7 m/s. The overall flow rate obtained from the model simulations was 2.66×10-7 m/s with an error margin of 6%. (author)

  5. The use of barytocalcite for carbon 14 immobilization: One-year leaching behavior

    International Nuclear Information System (INIS)

    The spent nuclear fuel reprocessing process is one of the anthropogenic sources of carbon-14, and since this element is highly mobile in the geosphere, its sequestration is necessary. Several phases and industrial solutions to immobilize this radionuclide have been studied, including the barytocalcite phase BaCa(CO3)2 at 8.08 wt.% of C, which has many advantages such as its low specific volume of carbon. Recently, different options to synthesize this phase have been reported. Here we report on the aqueous durability of barytocalcite, studied for one year with pure water at 30 °C, in order to complete the behavior studies. Unexpected leaching behavior was encountered: it had been supposed that barytocalcite would only leach slowly, but after 1 year, it was no longer present. It appears that its simple CaCO3 and BaCO3 constituents precipitated, though the overall carbon loss was low during the period studied. This research gives a new insight into the behavior of this phase regarding carbon-14 immobilization

  6. Measurement of the carbon 14 activity at natural level in air samples

    International Nuclear Information System (INIS)

    The aim of the study was to measure the carbon 14 activity at natural level in air samples using classical methods of radiochemistry and beta counting. Three different methods have been tested in order to minimise the detection limit. In the three methods, the first step consists in trapping the atmospheric carbon 14 into NaOH (1N) using a bubbling chamber. The atmospheric carbon dioxide reacts with NaOH to form Na2CO3. In the first method the Na2CO3 solution is mixed with a liquid scintillate and is directly analysed by liquid scintillation counting (LSC). The detection limit is approximately 1 Bq/m3 of air samples. The second method consists in evaporating the carbonate solution and then counting the solid residue with a proportional gas circulation counter. The detection limit obtained is lower than the first method (0.4 Bq/m3 of air samples). In the third method, Na2CO3 is precipitated into CaCO3 in presence of CaCl2. CaCO3 is then analysed by LSC. This method appear to be the most appropriate, the detection limit is 0.05 Bq/m3 of air samples. (author)

  7. Relationship between carbon-14 concentrations in atmospheric CO2 and environmental samples

    International Nuclear Information System (INIS)

    Concentration of organically-bound 14C in the tree-ring cellulose of a pine tree grown in Shika-machi (37.1degN, 136.5degE), Ishikawa prefecture, Japan, was measured for the ring-years from 1949 to 1999 and compared with those in several trees from East Asia region reported by other researchers. Temporal variation of organically-bound 14C concentration in the tree-ring cellulose in Shika-machi showed essentially similar variations to those of other reports. However, small difference of Δ14C values was found during the period of 1970-1981 between our data and those of other reports, in addition to the difference during the period of 1963-1967 caused by the so-called latitude dependence of the 14C variations in the northern troposhere. These results suggest that the 14C concentration in atmospheric CO2 was considerably disturbed during the period of 1970-1981, especially in 1970, 1976, and 1978-1981, in the East Asia region. This phenomenon may be interpreted by the possibility of the several times of injections of 14C originated from a series of Chinese thermonuclear bomb tests. Temporal variation of 14C concentration in atmospheric CO2 in Kanazawa city, Ishikawa prefecture, Japan (36.3degN, 136.4degE), was also measured during the period of 1991-1999. An interesting result in comparing 14C concentrations in the tree-ring cellulose with those of atmospheric CO2 is that each of 14C concentrations in a series of tree rings reflected summer means of 14C concentrations in atmospheric CO2. It suggests that the carbon necessary for synthesizing tree-ring cellulose was mainly supplied from atmospheric CO2 in summer season. It is noteworthy that surface soils collected from different sites were found to demonstrate extremely low 14C concentrations than atmospheric CO2. It may be ascribed to the slow exchange rate of carbon between soils and atmospheric CO2. (author)

  8. Chemical Characterization and Removal of Carbon-14 from Irradiated Graphite II - 13023

    International Nuclear Information System (INIS)

    Approximately 250,000 tonnes of irradiated graphite waste exists worldwide and that quantity is expected to increase with decommissioning of Generation II reactors and deployment of Generation IV gas-cooled, graphite moderated reactors. This situation indicates the need for a graphite waste management strategy. Of greatest concern for long-term disposal of irradiated graphite is carbon-14 (C-14), with a half-life of 5730 years. Study of irradiated graphite from some nuclear reactors indicates C-14 is concentrated on the outer 5 mm of the graphite structure. The aim of the research presented last year and updated here is to identify the chemical form of C-14 in irradiated graphite and develop a practical method by which C-14 can be removed. A nuclear-grade graphite, NBG-18, and a high-surface-area graphite foam, POCOFoamR, were exposed to liquid nitrogen (to increase the quantity of C-14 precursor) and neutron-irradiated (1013 neutrons/cm2/s). Finer grained NBG-25 was not exposed to liquid nitrogen prior to irradiation at a neutron flux on the order of 1014 /cm2/s. Characterization of pre- and post-irradiation graphite was conducted to determine the chemical environment and quantity of C-14 and its precursors via the use of surface sensitive characterization techniques. Scanning Electron Microscopy (SEM) was used to evaluate the morphological features of graphite samples. The concentration, chemical composition, and bonding characteristics of C-14 and its precursors were determined through X-ray Photoelectron Spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (SIMS), and Energy Dispersive X-ray Analysis Spectroscopy (EDX). Results of post-irradiation characterization of these materials indicate a variety of surface functional groups containing carbon, oxygen, nitrogen and hydrogen. During thermal treatment, irradiated graphite samples are heated in the presence of an inert carrier gas (with or without oxidant gas), which carries off gaseous products

  9. A study of the levels and distribution of carbon-14 and iodine-129 in the Irish marine and terrestrial environment

    International Nuclear Information System (INIS)

    The Sellafield nuclear fuel reprocessing plant is considered to be the largest single source of global anthropogenic carbon-14 discharge, as well as a substantial source of iodine-129. This study addresses the effects of these releases on the Irish coastal marine environment. In particular, spatial trends in the carbon-14 content of seaweed (Fucus spp.) were assessed by collecting and analysing samples from well-distributed locations around the Irish coastline. Temporal trends were studied by comparing carbon-14 concentrations in present-day samples with levels found in archive material collected at the same locations during research campaigns conducted in the mid-1980s and mid-1990s. Contamination by carbon-14 discharged from Sellafield was most evident in seaweeds from the northeastern Irish coast. This indicates that the pattern of residual currents and, in particular, the south to north transfer of water known to predominate in the Irish Sea, largely controls the spatial distribution of carbon-14 releases. Maximum carbon-14 discharge levels to the marine environment from Sellafield were mirrored by peak concentrations found in seaweed from the mid-1990s and in present-day samples. Concentrations of carbon-14 in seaweed from the west coast of Ireland correspond closely with values measured for seaweeds from the Atlantic coast of northwest Spain and do not appear to be significantly affected by Sellafield discharges

  10. An assessment of the inventory of Carbon-14 in the oceans

    International Nuclear Information System (INIS)

    The oceanic inventory for natural 14C is 19.6x1029 atoms, an estimate similar to those found by other methods. The 14C produced from nuclear weapons (1972) is 550x1026 atoms and 52% was in the oceans. From 1972 to 1985 132x1026 atoms of bomb 14C were added. The nuclear power industry produces 0.5x1026 atoms per year (17% of natural production rate). Most estimates by varying methods indicate an exchange time of carbon from atmosphere to ocean of about seven years or about 22 moles m-2 yr-1 for the surface ocean. The oceanic distribution generally has higher concentrations in low to mid latitudes, and low concentrations in the most southern regions, with the deep ocean retaining levels similar to those before nuclear testing

  11. 14C Activity and Global Carbon Cycle Changes over the Past 50,000 Years

    Science.gov (United States)

    Hughen, K.; Lehman, S.; Southon, J.; Overpeck, J.; Marchal, O.; Herring, C.; Turnbull, J.

    2004-01-01

    A series of 14C measurements in Ocean Drilling Program cores from the tropical Cariaco Basin, which have been correlated to the annual-layer counted chronology for the Greenland Ice Sheet Project 2 (GISP2) ice core, provides a high-resolution calibration of the radiocarbon time scale back to 50,000 years before the present. Independent radiometric dating of events correlated to GISP2 suggests that the calibration is accurate. Reconstructed 14C activities varied substantially during the last glacial period, including sharp peaks synchronous with the Laschamp and Mono Lake geomagnetic field intensity minimal and cosmogenic nuclide peaks in ice cores and marine sediments. Simulations with a geochemical box model suggest that much of the variability can be explained by geomagnetically modulated changes in 14C production rate together with plausible changes in deep-ocean ventilation and the global carbon cycle during glaciation.

  12. Source terms; isolation and radiological consequences of carbon-14 waste in the Swedish SFR repository

    International Nuclear Information System (INIS)

    The source term, isolation capacity, and long-term radiological exposure of 14C from the Swedish underground repository for low and intermediate level waste (SFR) is assessed. The prospective amount of 14C in the repository is assumed to be 5 TBq. Spent ion exchange resins will be the dominant source of 14C. The pore water in the concrete repository is expected to maintain a pH of >10.5 for a period of at least 106 y. The cement matrix of the repository will retain most of the 14CO32- initially present. Bacterial production of CO2 and CH4 from degradation of ion-exchange resins and bitumen may contribute to 14C release to the biosphere. However, CH4 contributes only to a small extent to the overall carbon loss from freshwater ecosystems. The individual doses to local and regional individuals peaked with 5x10-3 and regional individuals peaked with 5x10-3 and 8x10-4 μSv y-1 respectively at about 2.4x104 years. A total leakage of 8.4 GBq of 14C from the repository will cause a total collective dose commitment of 1.1 manSv or 130 manSv TBq-1. (authors)

  13. Analytical Validation of Accelerator Mass Spectrometry for Pharmaceutical Development: the Measurement of Carbon-14 Isotope Ratio.

    Energy Technology Data Exchange (ETDEWEB)

    Keck, B D; Ognibene, T; Vogel, J S

    2010-02-05

    Accelerator mass spectrometry (AMS) is an isotope based measurement technology that utilizes carbon-14 labeled compounds in the pharmaceutical development process to measure compounds at very low concentrations, empowers microdosing as an investigational tool, and extends the utility of {sup 14}C labeled compounds to dramatically lower levels. It is a form of isotope ratio mass spectrometry that can provide either measurements of total compound equivalents or, when coupled to separation technology such as chromatography, quantitation of specific compounds. The properties of AMS as a measurement technique are investigated here, and the parameters of method validation are shown. AMS, independent of any separation technique to which it may be coupled, is shown to be accurate, linear, precise, and robust. As the sensitivity and universality of AMS is constantly being explored and expanded, this work underpins many areas of pharmaceutical development including drug metabolism as well as absorption, distribution and excretion of pharmaceutical compounds as a fundamental step in drug development. The validation parameters for pharmaceutical analyses were examined for the accelerator mass spectrometry measurement of {sup 14}C/C ratio, independent of chemical separation procedures. The isotope ratio measurement was specific (owing to the {sup 14}C label), stable across samples storage conditions for at least one year, linear over 4 orders of magnitude with an analytical range from one tenth Modern to at least 2000 Modern (instrument specific). Further, accuracy was excellent between 1 and 3 percent while precision expressed as coefficient of variation is between 1 and 6% determined primarily by radiocarbon content and the time spent analyzing a sample. Sensitivity, expressed as LOD and LLOQ was 1 and 10 attomoles of carbon-14 (which can be expressed as compound equivalents) and for a typical small molecule labeled at 10% incorporated with {sup 14}C corresponds to 30 fg

  14. Proportion of biogenic carbon in flue gas by carbon-14 measurement

    International Nuclear Information System (INIS)

    The subject of this project is closely related to EU's emissions trading system and to the current and future monitoring needs therein. The determination of fossil part of emissions originated from various fuels by stack measurements or by laboratory analyses could possibly find users also in other fields outside the ETS (e.g. waste incineration). After the market analysis and preliminary measurements carried out in the previous Biocarbon project this project focused on the development of the sampling method for stack measurements and to the validation of isotope measurements. The results obtained for fossil proportion of the fuel by current methods will be compared to those obtained by isotope measurements. The operation of the sampling system was tested in long period tests in plant conditions. Moreover, the sample preparation methods and isotope measurements were validated by measuring the proportions of biogenic and fossil carbon of known traffic fuel mixtures. The developed service concept can also be utilised as a fraud prevention measure related to the expanding international biofuels-trade. (orig.)

  15. Synthesis of a polycyclic aromatic hydrocarbon marked with carbon-14: (b, d e f) dibenzo-chrysene {sup 14}C-7,14; Synthese d'un hydrocarbure aromatique polycyclique marque au carbone 14: le dibenzo (b, d e f) chrysene {sup 14}C-7,14

    Energy Technology Data Exchange (ETDEWEB)

    Chatelain, G. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    (b, d e f) dibenzo-chrysene C-7,14 has been synthesized from radioactive carbon dioxide and the organic magnesium compound derived from 1,5 dibromo naphthalene. The product has been purified by a very precise series of fractionated chromatographs on alumina having a chromatographic activity. This has necessitated the development of a special technique. (author) [French] Le dibenzo (b, d e f) chrysene 14C-7,14 a ete synthetise au depart de gaz carbonique radioactif et de bis-organomagnesien derive du dibromo-1,5 naphtalene. Le produit a ete purifie par une serie de chromatographies fractionnees sur alumine d'activite chromatographique tres precise. Ceci a fait l'objet d'une mise au point de technique. (auteur)

  16. Validation test for carbon-14 migration and accumulation in a Canadian shield lake

    International Nuclear Information System (INIS)

    This particular BIOMOVS II Technical Report is concerned with modelling the transfer of C-14 through the aquatic food chain following release to a Canadian shield lake. Model performance has been tested against field data supplied by Atomic Energy of Canada Limited. Carbon-14 was added in 1978 to the epilimnion of a small Canadian Shield lake to investigate primary production and carbon dynamics. Data from this experiment were used within BIOMOVS II to provide a validation test, which involved modelling the fate of the C-14 added to the lake. The nature of the spike and the subsequent monitoring allowed the investigation of both short-term processes relevant to evaluation of the impacts of accidental releases as well as longer-term processes relevant to routine release and to solid waste disposal. Four models participated in the scenario: 1) a simple mass balance model of a lake (AECL, Whiteshell Laboratories, Canada); 2) a relatively complex deterministic dynamic compartment model (QuantiSci Ltd.,UK); 3) a complex deterministic model (Studsvik Model A) and a more complex probabilistic model (Studsvik Model B; Studsvik Eco and Safety AB, Sweden). Endpoints were C-14 concentrations in water, sediment and whitefish over a thirteen year period. Each model produced reasonable predictions when compared to the observed data and when uncertainty is taken into consideration. About 0.2 to 0.4% of the initial C-14 inventory to the lakes remained in the water at the end of the study, because of internal recycling of C-14 from sediments. The simple AECL model did not account for this internal recycling of C-14 and, in this respect, its predictions were not as realistic as those of the QuantiSci and Studsvik models for concentrations in water. However, the AECL model predictions for the C-14 inventory remaining in lake sediment were closest to the observed values. Overall, Studsvik Model B was the most accurate in simulating C-14 concentrations in water and in whitefish, but

  17. Interactions of 14C-labeled multi-walled carbon nanotubes with soil minerals in water

    International Nuclear Information System (INIS)

    Carbon nanotubes are often modified to be stable in the aqueous phase by adding extensive hydrophilic surface functional groups. The stability of such CNTs in water with soil or sediment is one critical factor controlling their environmental fate. We conducted a series of experiments to quantitatively assess the association between water dispersed multi-walled carbon nanotubes (MWCNTs) and three soil minerals (kaolinite, smectite, or shale) in aqueous solution under different sodium concentrations. 14C-labeling was used in these experiments to unambiguously quantify MWCNTs. The results showed that increasing ionic strength strongly promoted the removal of MWCNTs from aqueous phase. The removal tendency is inversely correlated with the soil minerals’ surface potential and directly correlated with their hydrophobicity. This removal can be interpreted by the extended Derjaguin–Landau–Verwey–Overbeek (EDLVO) theory especially for kaolinite and smectite. Shale, which contains large and insoluble organic materials, sorbed MWCNTs the most strongly. - Graphical abstract: The stability of multi-walled carbon nanotubes in an aqueous system containing kaolinite, smectite or shale as model soil minerals is investigated using the 14C-labeling technique. Highlights: ► The interactions between MWCNTs and kaolinite, smectite, or shale were probed. ► Surface potential and hydrophobicity of the particles governs their interactions. ► EDLVO can be used to interpret the interactions. ► Insoluble organic materials in shale strongly sorb MWCNTs.

  18. Environmental levels of carbon-14 around a Swedish nuclear power plant measured with accelerator mass spectrometry

    Science.gov (United States)

    Stenström, K.; Erlandsson, B.; Hellborg, R.; Wiebert, A.; Skog, G.

    1996-06-01

    14C is one of the radionuclides which are produced by nuclear power plants. The main part of the 14C, which is released during normal operation, is produced through neutron induced reactions in the cooling water and is released as airborne effluents (such as CO 2 and hydrocarbons) through the ventilation system of the plant to the surrounding environment. Because of the biological importance of carbon and the long half-life of 14C, it is of interest to measure the releases and their incorporation into living material in the environment of the power plants. In this pilot study the accelerator mass spectrometry (AMS) facility at the University of Lund has been used to measure the 14C activity concentration in vegetation around a Swedish nuclear power plant. AMS is suitable mainly because of the accuracy obtained within a short measuring time, which makes it possible to analyze a sufficient number of samples for a thorough investigation. The results of this study demonstrate that the AMS method is suitable for investigations of the influence on the local environment of reactor-released 14C by analysis of living material. To test dispersion models, however, air sampling both of emission source and in the surrounding of the plant seems more suitable.

  19. Application of the dose limitation system to the control of carbon-14 releases from heavy-water-moderated reactors

    International Nuclear Information System (INIS)

    Heavy-water-moderated reactors produce substantially more carbon-14 than light-water reactors. Applying the principles of the systems of dose limitation, the paper presents the rationale used for establishing the release limit for effluents containing this nuclide and for the decisions made regarding the effluent treatment in the third nuclear power station in Argentina. Production of carbon-14 in PHWR and the release routes are analysed in the light of the different effluent treatment possibilities. An optimization assessment is presented, taking into account effluent treatment and waste management costs, and the collective effective dose commitment due to the releases. The contribution of present carbon-14 releases to future individual doses is also analysed in the light of an upper bound for the contribution, representing a fraction of the individual dose limits. The paper presents the resulting requirements for the effluent treatment regarding carbon-14 and the corresponding regulatory aspects used in Argentina. (author)

  20. Simulation of carbon cycling, including dissolved organic carbon transport, in forest soil locally enriched with 14C

    Energy Technology Data Exchange (ETDEWEB)

    Tipping, Ed [Lancaster Environment Center; Chamberlain, Paul M. [Lancaster Environment Center; Froberg, Mats J. [Sveriges Lantbruksuniversitet; Hanson, Paul J [ORNL; Jardine, Philip M [ORNL

    2012-01-01

    The DyDOC model was used to simulate organic matter decomposition and dissolved organic matter (DOM) transport in deciduous forest soils at the Oak Ridge Reservation (ORR) in Tennessee, USA. The model application relied on extensive data from the Enriched Background Isotope study (EBIS), which made use of a local atmospheric enrichment of radiocarbon to establish a large-scale manipulation experiment with different inputs of 14C from both above-ground and below-ground litter. The aim of the modelling was to test if the processes that constitute DyDOC can explain the available observations for C dynamics in the ORR. More specifically we used the model to investigate the origins of DOM, its dynamics within the soil profile, and how it contributes to the formation of stable carbon in the mineral soil. The model was first configured to account for water transport through the soil, then observed pools and fluxes of carbon and 14C data were used to fit the model parameters that describe the rates of the metabolic transformations. The soils were described by a thin O-horizon, a 15 cm thick A-horizon and a 45-cm thick B-horizon. Within the thin O-horizon, litter is either converted to CO2 or to a second organic matter pool, which is converted to CO2 at a different rate, both pools being able to produce DOM. The best model performance was obtained by assuming that adsorption of downwardly transported DOM in horizons A and B, followed by further conversion to stable forms, produces mineral-associated carbon pools, while root litter is the source of non-mineral associated carbon, with relatively short residence times. In the simulated steady-state, most carbon entering the O-horizon leaves quickly as CO2, but 17% (46 gC m-2 a-1) is lost as DOC in percolating water. The DOM comprises mainly hydrophobic material, 40% being derived from litter and 60% from older organic matter pools (residence time ~ 10 years). Most of the DOM is converted to CO2 in the mineral soil, over

  1. Utilization of Tritium and Carbon-14 in Studies of Isotope Effects

    International Nuclear Information System (INIS)

    The utility of tritium in organic research has been augmented by the development of a simple method for determining C14 and tritium in the same sample. The non-volatile, radioactive material, in a film that is 'infinitely thick' to tritium radiation, is counted in a windowless, gas-fiow proportional counter; the film is then re-counted when covered with a screen that stops all radiation from tritium but allows a fraction of that from C14 to pass. By introduction of one isotope at a point removed from the reaction centre, an isotope effect for the other can be determined from changes in the tritium-C14 ratio in the reactant and/or products as the reaction proceeds. Carriers of reactant, products or derivatives can be added at any point to facilitate isolation, because the analytical method depends primarily on the tritium-C14 ratio. Methods for utilizing the double-label technique will be illustrated by a study of isotope effects in the oxidation of the penultimate carbon of certain labelled polyols with Acetobacter suboxydans. Six D-mannitols position-labelled either with C14 or with tritium at C1, C2 or C3 were prepared. For these, isotope effects (k*/k) of 0.93, 0.23, and 0.71, respectively, were found with C14 at C2, tritium at C2, and tritium at C3; no detectable isotope effects were found for the remaining Dmannitols. In the oxidation of position-labelled D-glucitols, an isotope effect of 0.24 was found for tritium at C5; no detectable effect was found for either C14 or tritium at C1. The techniques are suitable for studying a variety of chemical and biological reactions. (author)

  2. Measurements of the Water Vapour, Tritium and Carbon-14 Content of the Middle Stratosphere over Southern England

    OpenAIRE

    Brown, F; Goldsmith, P.; Green, H F; Holt, A.; Parham, A. G.

    2011-01-01

    Measurements of the water vapour, tritium and carbon-14 content of the stratosphere at heights of between 80,000 and 100,000 feet, made over England during the years 1956 to 1960, are described. The tritium and carbon-14 concentrations are greater than those expected from natural production due to the cosmic radiation. The bulk of these two isotopes, at present in the stratosphere, has been injected there during the course of thermonuclear explosions. Mass spectrometric analyses show that t...

  3. Determination of the carbon content of domestic farm produces to estimate offsite C-14 ingestion dose

    International Nuclear Information System (INIS)

    The carbon content of grains, leafy and root vegetables, and fruits which the Koreans usually eat were calculated to use in the estimation of offsite C-14 ingestion dose. With the data of food intake per day in the Report on 1998 national health and nutrition survey- dietary intake survey, 5 age-group integrate d intake of the 4 farm produce groups were extracted for food items and the amount. Intake percentage in each food group were taken as food weighing factor for the foods. Carbon content was calculated using protein, fat, and carbohydrate content of the foods, and multiplied by the corresponding food weighing factor to derive the content of the food groups. The calculated carbon content of grains, leafy and root vegetables, and fruits were 39.%, 4.2%, 8.0%, and 5.9% respectively. Grains and fruits were not much different from ODCM for carbon content, but vegetables were higher by 0.7%∼4.5%

  4. Prise en compte du carbone 14 dans le modèle PASIM

    OpenAIRE

    Duclos, Etienne

    2010-01-01

    J'ai effectué mon stage de fin d'étude d'ingénieur ISIMA au sein de l'Institut National de la Recherche Agronomique (INRA), dans l'Unité de Recherche sur l'Ecosystème Prairial (UREP). Mon stage a été effectué en collaboration avec l'Institut de Radioprotection et de Sûreté Nucléaire (IRSN). J'ai été chargé d'ajouter la gestion du carbone 14 au sein de PaSim, modèle de simulation de prairie gérant déjà les flux de carbone et d'azote. Il m'a donc fallu faire la distinction, au...

  5. Carbon isotope (14C, 12C) measurements to quantify sources of atmospheric carbon monoxide in urban air

    International Nuclear Information System (INIS)

    Atmospheric air samples were collected during the Winter of 1989-90 in Albuquerque, NM USA, for carbon isotope (14C, 12C) analysis of carbon monoxide (CO). An experimental sample design was prepared to target periods when the concentration of CO exceeds the 9 μL/L (volume fraction), 8 hour National Ambient Air Quality Standard (NAAQS) and during periods of attainment. Sampling sites, time of day, sampling duration, and meteorology were carefully considered so that source impacts be optimal. A balanced sampling factorial design was used to yield maximum information from the constraints imposed; the number of samples was limited by the number of sample canisters available, time, and resources. Carbon isotope measurements of urban air, ''clean-air'' background from Niwot Ridge, Colorado, average (wood) logs and oxygenated-gasolines were used in a 3-source model to calculate the contribution of woodburning to the total atmospheric CO burden in Albuquerque. Results show that the estimated fractional contribution of residential wood combustion (Θ' RWC) ranged from 0 to 0.30 of CO concentrations corrected for ''clean-air'' background. For these same samples, the respective CO concentrations attributed to woodburning range from 0 to 0.90 μmol/mol (mole fraction), well below the NAAQS. In all cases, fossil CO is the predominant source of ambient CO concentrations ranging from 0.96 to 6.34 μmol/mol. A final comment is made on the potential of fossil CO measurements as an indirect tracer of atmospheric benzene, relevant to exposure risk estimates of motor vehicle emissions and occupational health and safety standards. (author). 26 refs, 3 figs, 4 tabs

  6. Tritium- and carbon-14-contents of wines of different vintage from the northern and southern hemisphere

    International Nuclear Information System (INIS)

    The carbon-14 and tritium radioactivity contents of up to 19 vintages of German and Southafrican wines were compared. A similar large dependence of the 14C- and of the 3H-activity in the German wine on the nuclear weapon tests of the years 1962/63 was found out. The radioactivity level is also 1977/78 still essentially higher than before 1950. The Southafrican wines have been influenced considerably less by nuclear explosions. The highest 3H-values were found in the vintage 1963 of the German wine with 5910 pCi/litre and in the vintage 1964 of the Southafrican wine with 510 pCi/litre. (orig.)

  7. Analysis and Characterization of Organic Carbon in Early Holocene Wetland Paleosols using Ramped Pyrolysis 14C and Biomarkers

    Science.gov (United States)

    Vetter, L.; Schreiner, K. M.; Fernandez, A.; Rosenheim, B. E.; Tornqvist, T. E.

    2014-12-01

    Radiocarbon analyses are a key tool for quantifying the dynamics of carbon cycling and storage in both modern soils and Quaternary paleosols. Frequently, bulk 14C dates of paleosol organic carbon provide ages older than the time of soil burial, and 14C dates of geochemical fractions such as alkali and acid extracts (operationally defined as humic acids) can provide anomalously old ages when compared to coeval plant macrofossil dates. Ramped pyrolysis radiocarbon analysis of sedimentary organic material has been employed as a tool for investigating 14C age spectra in sediments with multiple organic carbon sources. Here we combine ramped pyrolysis 14C analysis and biomarker analysis (lignin-phenols and other cupric oxide products) to provide information on the source and diagenetic state of the paleosol organic carbon. We apply these techniques to immature early Holocene brackish wetland entisols from three sediment cores in southeastern Louisiana, along with overlying basal peats. Surprisingly, we find narrow 14C age spectra across all thermal aliquots from both paleosols and peats. The weighted bulk 14C ages from paleosols and overlying peats are within analytical error, and are comparable to independently analyzed 14C AMS dates from charcoal fragments and other plant macrofossils from each peat bed. Our results suggest high turnover rates of carbon in soils relative to input of exogenous carbon sources. These data raise broader questions about processes within the active soil and during pedogenesis and burial of paleosols that can effectively homogenize radiocarbon content in soils across the thermochemical spectrum. The concurrence of paleosol and peat 14C ages also suggests that, in the absence of peats with identifiable plant macrofossils, ramped pyrolysis 14C analyses of paleosols may be used to provide ages for sea-level indicators.

  8. Measurement and analysis of Carbon-14 released from pressurized water reactor in Korea

    International Nuclear Information System (INIS)

    Since the amount of Carbon-14 released from pressurized water reactor (PWR) is small and its concentration is low, it is not used as a main monitored nuclide for environmental release in PWR in general. However, the dose conversion coefficient of C-14 in CO2 is relatively high, there is a possibility to overestimate public exposure dose with the assumption that all amount of C-14 is resulted from CO2. Therefore, a monitoring plan should be established to manage the effluent from PWR in safe. This plan consists of (1) specifying the chemical form of C-14 (2) evaluating its effect on environment. The majority of the C-14 released from PWR is in a gaseous form in CO2 and CH4. In order to monitor C-14 in PWR, Korea Hydro and Nuclear Power (KHNP) devised C-14 sampling instrument which can collect CO2 and methane separately. It is composed of three main components, that is, primary CO2 sampler, a methane oxidisation assembly and a secondary CO2 sampler. The primary CO2 sampler has one water bubbler and two NaOH bubblers. The water bubbler prevents the accumulation of NaOH at other bubblers, 2M-NaOH bubblers collect all CO2 in the gas to produce sodium carbonate (Na2CO3). Then the methane oxidisation assembly convert methane and CO to CO2. The catalyst is composed of equal mixture of Alumina with Palladium coating (1.0%) and Platinum coating (0.5%). The temperature of a furnace is maintained 500 .deg. C approximately, to convert CO and methane into CO2. Retaining time of the gas in catalytic is designed to be about 25 seconds to maximize conversion. After the catalytic conversion, the gas is cooled and is passed through the NaOH solution bubblers. The concentration of CO2 and methane at main vent lines in Yonggwang Unit-3 was analyzed using Gas Chromatography in order to evaluate the optimal treatment condition for the sample and estimate the optimal operating time for this device. As a result, the concentration of CO2 was approximately 450 ppm in average and that of

  9. Carbonated Eclogite Solidus Between 14 and 20 GPa: Results from the Model CMAS-CO2 System and Contrasting Solidus Behavior to Carbonated Peridotite

    Science.gov (United States)

    Keshav, S.; Gudfinnsson, G. H.

    2007-12-01

    The carbonate ledge at ~2.0 GPa is a pronounced feature of the carbonated peridotite solidus. At the ledge, where the CO2-bearing phase changes from vapour to carbonate, the melt composition becomes carbonatitic. After this drop, the solidus of carbonated peridotite gradually rises in P-T space, up to at least 12 GPa. Between 14 and 16 GPa, Keshav et al. (2007) reported another drop in the solidus of carbonated peridotite in the model CMS-CO2 system. Similar to the lower-pressure topology, the solidus at higher pressure resumes a positive slope between 16-20 GPa, and seems to flatten between 22 and 26 GPa. Concomitant with this second drop, the melts become extremely calcic (Ca/Ca+Mg, Ca no.-0.62) at 16 and 20 GPa, but attain more magnesio-carbonatitic (Ca no.-0.40) character both at shallower or greater depths than the transition zone. Clearly, the second drop in the carbonated peridotite solidus has tremendous consequences for geological processes in the deep mantle. The other major rock-type presumed to be present in the mantle is eclogite of broadly basaltic composition. Clarifying the solidus topology of carbonated eclogite in model systems over a similar pressure range is also an important task, because the solidus topology affects the fate of subducted carbonate in the deeper mantle. The position of the solidus of carbonated eclogite will address its impact on local or extensive melting (if it occurs), the possible relationship between the carbonated peridotite and carbonated eclogite solidi at these depths (400-600 km), their respective incipient melts, and ultimately the possibility of carbonate survival at these and greater depths. With these issues in mind, we have determined the solidus of model carbonated eclogite in model CMAS- CO2 system between 14 and 20 GPa. At 14 and 16 GPa, the melts are in equilibrium with cpx, majoritic garnet, stishovite, and magnesite. At 20 GPa, the melts are in equilibrium with calcium-perovskite (capv), garnet, stishovite

  10. Mountain scale modeling of transient, coupled gas flow, heat transfer and carbon-14 migration

    International Nuclear Information System (INIS)

    We simulate mountain-scale coupled heat transfer and gas flow at Yucca Mountain. A coupled rock-gas flow and heat transfer model, TGIF2, is used to simulate mountain-scale two-dimensional transient heat transfer and gas flow. The model is first verified against an analytical solution for the problem of an infinite horizontal layer of fluid heated from below. Our numerical results match very well with the analytical solution. Then, we obtain transient temperature and gas flow distributions inside the mountain. These distributions are used by a transient semianalytical particle tracker to obtain carbon-14 travel times for particles starting at different locations within the repository. Assuming that the repository is filled with 30-year-old waste at an initial areal power density of 57 kw/acre, we find that repository temperatures remain above 60 degrees C for more than 10,000 years. Carbon-14 travel times to the surface are mostly less than 1000 years, for particles starting at any time within the first 10,000 years

  11. Reconciling Change in Oi-Horizon Carbon-14 with Mass Loss for an Oak Forest

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Paul J [ORNL; Swanston, Christopher W. [Lawrence Livermore National Laboratory (LLNL); Garten Jr, Charles T [ORNL; Todd Jr, Donald E [ORNL; Trumbore, Susan E. [University of California, Irvine

    2005-01-01

    First-year litter decomposition was estimated for an upland-oak forest ecosystem using enrichment or dilution of the 14C-signature of the Oi-horizon. These isotopically-based mass-loss estimates were contrasted with measured mass-loss rates from past litterbag studies. Mass-loss derived from changes in the 14C-signature of the Oi-horizon suggested mean mass loss over 9 months of 45% which was higher than the corresponding 9-month rate extrapolated from litterbag studies (~35%). Greater mass loss was expected from the isotopic approach because litterbags are known to limit mass loss processes driven by soil macrofauna (e.g., fragmentation and comminution). Although the 14C-isotope approach offers the advantage of being a non-invasive method, it exhibited high variability that undermined its utility as an alternative to routine litterbag mass loss methods. However, the 14C approach measures the residence time of C in the leaf litter, rather than the time it takes for leaves to disappear; hence radiocarbon measures reflect C immobilization and recycling in the microbial pool, and do not necessarily replicate results from litterbag mass loss. The commonly applied two-compartment isotopic mixing model was appropriate for estimating decomposition from isotopic enrichment of near-background soils, but it produced divergent results for isotopic dilution of a multi-layered system with litter cohorts having independent 14C-signatures. This discrepancy suggests that cohort-based models are needed to adequately capture the complex processes involved in carbon transport associated with litter mass-loss. Such models will be crucial for predicting intra- and interannual differences in organic horizon decomposition driven by scenarios of climatic change.

  12. Assessment of adequacy of pancreatic enzyme replacement with the multiple-phase carbon-14-triolein test

    International Nuclear Information System (INIS)

    The carbon-14-triolein absorption test was used to investigate fat absorption and its response to pancreatic enzyme replacement therapy in 10 men with pancreatic steatorrhoea. Absorption was increased in all, from 1,14 plus minus 1,2% of the dose per hour (group mean plus minus SD) to 2,85 plus minus 2,33% (P less than 0,01) by the simultaneous administration of 8 tablets of enteric-coated pancreatic enzymes (Nutrizym; Merck). In patients with normal or high gastric acid secretion, neutralization of gastric acid with 30 ml magnesium trisilicate had no effect on absorption while the addition of an extract of gastric secretions (Enzynorm; Noristan) to the therapy of the 1 achlorhydric patient improved absorption from 2,2% to 3,81%. The 14C fat test offers a rapid and more acceptable alternative method for determining individual response to pancreatic enzyme replacement therapy than the conventional 72-hour faecal fat excretion measurement. The enteric-coated pancreatin preparation used in this study appears to be optimally effective under conditions of normal gastric acid secretion

  13. Dietary carbon sources of mussels and tubeworms from Galapagos hydrothermal vents determined from tissue 14C activity

    International Nuclear Information System (INIS)

    The results of an investigation of the dietary carbon sources of mussels and tubeworms from Galapagos hydrothermal vents, using data from 14C and 13C/12C ratio measurements in tissues, are reported. It is shown that: (1) filter-feeding organisms in the vent system are directly or indirectly incorporating 'dead' carbon of magmatic origin into their tissues; (2) approximately 25% or less of the dietary carbon available to the mussels is from sedimenting particulate organic carbon fixed photosynthetically at the surface; and (3) mussel tissue is incorporating relatively more 'dead' dissolved inorganic carbon than is mussel shell carbonate in specimens collected at the same location near the vent. (U.K.)

  14. 10 CFR 30.21 - Radioactive drug: Capsules containing carbon-14 urea for “in vivo” diagnostic use for humans.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Radioactive drug: Capsules containing carbon-14 urea for...: Capsules containing carbon-14 urea for “in vivo” diagnostic use for humans. (a) Except as provided in...-14 urea (allowing for nominal variation that may occur during the manufacturing process) each,...

  15. Hofmann elimination of p-nitrophenylethyl-1-C-14-trimethylammonium bromide: a carbon-14 isotope effect study (Preprint no. AR-24)

    International Nuclear Information System (INIS)

    The alpha carbon isotope effects in the Hofmann elimination of p-nitrophenylethyl-1-C-14-trimethylammonium bromide compound have been measured under changing buffer concentrations with a view to correlate mechanistic change. Since there are alpha-carbon isotope effects and the effects are small it is quite likely that the reaction is of the ElcB type, predominately irreversible, with the incursion of slightly increasing fractions of reaction by the reversible mechanism as the buffer concentration is increased. (author). 4 refs., 2 tab

  16. 14CO2-assimilation, translocation of 14C, and 14C-carbonate uptake in different organs of spring barley plants in relation to adult-plant resistance to powdery mildew

    International Nuclear Information System (INIS)

    The cultivar Peruvian of spring barley, which is susceptible at all growth stages, and Asse, which exhibits adult-plant resistance to powdery mildew, were compared in 14CO2 assimilation, distribution of 14C, and 14C-carbonate uptake in different organs of healthy and infected plants. The reduction of 14CO2 assimilation in infected plants at the first and fourth leaf stages was greater in Peruvian than in Asse. In Peruvian, the 14C which was fixed by the infected third leaf of plants with mildew on the lower 3 leaves remained in the third leaves with very little translocation to other parts of the plant. Infection of the lower three leaves at the fourth leaf stage reduced 14CO2 assimilation in noninfected fourth leaves of Asse less than that of Peruvian, but the flow of 14C from the healthy fourth leaves into other plant parts such as leaf sheaths was markedly stimulated in Peruvian compared to Asse. Infection also reduced the uptake of 14C-carbonate by seedling roots, the reduction being greater in Peruvian than Asse. A greater proportion of the 14C absorbed by roots of Asse was translocated to the infected leaves than that of Peruvian. It was concluded that powdery mildew disrupted the normal pattern of photosynthesis and translocation of metabolites in a susceptible cultivar more markedly than in an adult-plant-resistant cultivar of spring barley. (author)

  17. Carbon-14, tritium, stable isotope and chemical measurements on thermal waters from the Tauranga region

    International Nuclear Information System (INIS)

    The chemical compositions of groundwater from the Tauranga region are affected to varying degrees by reducing conditions due to buried organic matter. The levels of some dissolved constituents are also affected by mixing with sea water contained within the rocks and by rock-water interaction. Dissolved gas compositions range from oxygen-bearing to methane-bearing reflecting the varying redox conditions. Excess air may be present but further experiments are necessary to confirm this. Apparent ages deduced from carbon-14 measurements (corrected using 12C dilution and 13C fractionation methods) range from 2-25,000 years, suggesting that some of the waters were recharged during late Pleistocene or early Holocene time. ΔD and Δ18 O values of the oldest waters are slightly more negative than those of younger samples; this may indicate recharge during a cooler climate, in agreement with the 14C ages. Very low but significantly non-zero tritium contents (TR=(0.007-0.059)+-0.007) were measured using the high tritium-enrichment facilities at INS and the very low-background counters at the University of Bern. The tritium is thought to derive from contamination or nuclear reactions in the aquifer rocks rather than from recharge water

  18. In vivo uptake of carbon-14-colchicine for identification of tumor multidrug resistance

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, B.M.; Rosa, E.; Biedler, J.L. [Nuclear Medicine Research Lab., New York, NY (United States)] [and others

    1994-07-01

    A major limitation in the treatment of cancer with natural product chemotherapeutic agents is the development of multidrug resistance (MDR). Multidrug resistance is attributed to enhanced expression of the multidrug resistance gene MDR1. Colchicine (CHC) is known to be one of the MDR drugs. The authors have previously demonstrated that it is possible to distinguish multidrug resistant tumors from the multidrug-sensitive tumors in vivo on the basis of tritium ({sup 3}H) uptake following injection of {sup 3}H-CHC. The present studies were carried out in xenografted animals using {sup 14}C-CHC which may be more indicative of {sup 11}C-labeled CHC distribution with regard to circulating metabolites, since metabolic processes following injection of (ring C, methoxy-{sup 11}C)-CHC may produce significant amounts of circulating 1l-carbon fragments (i.e., methanol and/or formaldehyde). Experiments were carried out at a dose of 2 mg/kg. Activity concentration per injected dose was approximately twice as great in sensitive as in resistant tumors (p < 0.05) at 60 min following intravenous injection of {sup 14}C-CHC. About 75% of total activity was CHC in the sensitive tumors. The findings are further confirmed by the quantitative autoradiographic evaluation of resistant and sensitive tumors. These studies confirm our previous observations that it is possible to noninvasively distinguish multidrug-resistant tumors from sensitive tumors in vivo based on uptake of an injected MDR drug using a{sup 14}C-labeled CHC at the same position and of comparable specific activity to a {sup 11}C-CHC tracer used for PET imaging. 16 refs., 5 figs., 2 tabs.

  19. Diffusion-type model of the global carbon cycle for the estimation of dose to the world population from releases of carbon-14 to the atmosphere

    International Nuclear Information System (INIS)

    A nonlinear dynamic model of the exchange of carbon among the atmosphere, terrestrial biosphere, and ocean is described and applied to estimating the radiation dose to the world's population from the release of 14C to the atmosphere from the nuclear power industry. A computer implementation of the model, written in the IBM Continuous System Modeling Program III (CSMP III) simulation language, is presented. The model treats the ocean as a diffusive medium with respect to vertical transport of carbon, and the nonlinear variation of CO2 partial pressure with the total inorganic carbon concentration in surface waters is taken into account in calculating the transfer rate from ocean to atmosphere. Transfers between the atmosphere and terrestrial biosphere are represented by nonlinear equations which consider CO2 fertilization and impose a constraint on the ultimate total carbon mass in the biosphere

  20. Carbon-14 dating of a mummy from 'Caverna da Babilonia', Rio Novo Country, south of Minas Gerais (MG, Brazil)

    International Nuclear Information System (INIS)

    The vegetable fibers of a cloth wrapping a mummy of a woman, found in 'Caverna da Babilonia' (MG, Brazil), were dated with carbon-14. There is strong evidence that it is a pre-colombian mummym since the age of the sample is 600 + - 80 years (1σ). (C.L.B.)

  1. Release of (14)C-labelled carbon nanotubes from polycarbonate composites.

    Science.gov (United States)

    Rhiem, Stefan; Barthel, Anne-Kathrin; Meyer-Plath, Asmus; Hennig, Michael P; Wachtendorf, Volker; Sturm, Heinz; Schäffer, Andreas; Maes, Hanna M

    2016-08-01

    Waste disposal of carbon nanotube (CNT) containing products is expected to be the most important pathway for release of CNTs into the environment. In the present work, the use of radiolabelled CNTs ((14)C-CNT) for polycarbonate polymer nanocomposites with 1 wt% (14)C-CNT content allowed for the first time to quantify and differentiate the CNT release according to the type of impact along the materials' ageing history. After an initial exposure of the nanocomposite by solar-like irradiation, further environmental impacts were applied to composite material. They aimed at mimicking disposal site conditions that may induce further ageing effects and CNT release. This study included shaking in water, rapid temperature changes, soaking in humic acid solution as well as waste water effluent, and, finally, gentle mechanical abrasion. All ageing impacts were applied sequentially, both on pristine (control) and on solar-irradiated nanocomposites. All experiments were accompanied by absolute quantification of radioactive release as well as chemical and morphological analyses of the nanocomposite surfaces using infra-red (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The morphological analysis showed that spectral irradiation can uncover CNT networks on the outer nanocomposite surface layers by polymer degradation. After having subjected the solar-irradiated nanocomposite to all studied disposal site effect, the total radioactive release was quantified to amount to 64 mg CNT/m(2), whereas only 0.8 mg CNT/m(2) were found for the un-irradiated control sample. Solar degradation of polymers was thus found to significantly increase the propensity of the studied polymer nanocomposites to release CNTs during ageing effects at the product's end-of-life typical for disposal sites. PMID:27194367

  2. Distribution of {delta}{sup 14}C in western North Pacific and tracing carbons of human origin

    Energy Technology Data Exchange (ETDEWEB)

    Aramaki, Takafumi; Mizushima, Toshihiko; Togawa, Orihiko [Japan Atomic Energy Research Inst., Mutsu, Aomori (Japan). Mutsu Establishment; Watanabe, Shuichi; Tsunogai, Shizuo [Hokkaido Univ., Sapporo (Japan); Kuji, Tomoyuki [Japan marine Sience Fundation, Mutsu, Aomori (Japan)

    2001-02-01

    Seawater were collected at six points, 0deg to 48degN around 165degE. Dissolved inorganic carbonates was reduced into graphite. The ratio C-11/C-12 was measured by the accelerator mass analyzer. {sup 14}C concentration was calculated from {delta}{sup 13}C value calculated from the {sup 13}C/{sup 12}C ratio. {sup 14}C resulting from the nuclear weapon test was calculated by comparing estimated {sup 14}C and real {sup 14}C concentration. It was compared with that in 1970s. {sup 14}Cbomb has dissolved into North Pacific Intermediate Water in Arctic latitude, which has moved to Mid-latitude. (A. Yamamoto)

  3. Carbon and Oxygen Isotopic Stratigraphy of Mesoproterozoic Carbonate Sequences (1.6–1.4 Ga from Yanshan in North China

    Directory of Open Access Journals (Sweden)

    Kuang Hongwei

    2011-01-01

    Full Text Available In Yanshan, located in the northern part of North China, Mesoproterozoic carbonate sequences (1.6–1.4 Ga form a 10, 000 m thick succession in an aulacogen basin. Carbon and oxygen isotope (δ13O and δ18O, resp. data were obtained from 110 carbonate samples across three sections of these Mesoproterozoic deposits. From the early to late Mesoproterozoic, low negative values of δ13O appear, followed by low positive variation and then a stable increase. An abrupt decrease in δ13O values, with subsequent rapid increase, is found at the end of the Mesoproterozoic. During the whole Mesoproterozoic, δ18O shows a mainly negative trend and occasional highly negative isotopic shifts (from lower to upper deposits. Whole-rock carbon and oxygen isotopic compositions and profiles must be studied to provide a paleogeochemical record that can be associated with paleocean sedimentary environments, temperature, biological productivity, and sea-level fluctuations. Results of the present study correlate well with other international carbon and oxygen isotope profiles, suggesting that a global marine geochemical system existed during the interval of 1.6–1.4 Ga under a globally united tectonic, sedimentary, and geochemical background.

  4. Multimolecular tracers of terrestrial carbon transfer across the pan-Arctic: 14C characteristics of sedimentary carbon components and their environmental controls

    Science.gov (United States)

    Feng, Xiaojuan; Gustafsson, Örjan; Holmes, R. Max; Vonk, Jorien E.; Dongen, Bart E.; Semiletov, Igor P.; Dudarev, Oleg V.; Yunker, Mark B.; Macdonald, Robie W.; Wacker, Lukas; Montluçon, Daniel B.; Eglinton, Timothy I.

    2015-11-01

    Distinguishing the sources, ages, and fate of various terrestrial organic carbon (OC) pools mobilized from heterogeneous Arctic landscapes is key to assessing climatic impacts on the fluvial release of carbon from permafrost. Through molecular 14C measurements, including novel analyses of suberin- and/or cutin-derived diacids (DAs) and hydroxy fatty acids (FAs), we compared the radiocarbon characteristics of a comprehensive suite of terrestrial markers (including plant wax lipids, cutin, suberin, lignin, and hydroxy phenols) in the sedimentary particles from nine major arctic and subarctic rivers in order to establish a benchmark assessment of the mobilization patterns of terrestrial OC pools across the pan-Arctic. Terrestrial lipids, including suberin-derived longer-chain DAs (C24,26,28), plant wax FAs (C24,26,28), and n-alkanes (C27,29,31), incorporated significant inputs of aged carbon, presumably from deeper soil horizons. Mobilization and translocation of these "old" terrestrial carbon components was dependent on nonlinear processes associated with permafrost distributions. By contrast, shorter-chain (C16,18) DAs and lignin phenols (as well as hydroxy phenols in rivers outside eastern Eurasian Arctic) were much more enriched in 14C, suggesting incorporation of relatively young carbon supplied by runoff processes from recent vegetation debris and surface layers. Furthermore, the radiocarbon content of terrestrial markers is heavily influenced by specific OC sources and degradation status. Overall, multitracer molecular 14C analysis sheds new light on the mobilization of terrestrial OC from arctic watersheds. Our findings of distinct ages for various terrestrial carbon components may aid in elucidating fate of different terrestrial OC pools in the face of increasing arctic permafrost thaw.

  5. Optimization of liquid scintillation counting techniques for the determination of carbon-14 in environmental samples

    International Nuclear Information System (INIS)

    The goal of this work was to optimize the liquid scintillation counting techniques for the determination of 14C in stack effluent gases and in environmental samples such as biological and air samples. Carbon-14 activities in most environmental samples were measured with the direct CO2 absorption method. The highest figures of merit were found through the variation of Carbosorb E and Permafluor V ratio, and measurement windows. The best condition was an 1:1 volume ratio. Average 2.35 g of CO2 was reproducibly absorbed in the 20 ml mixture within 40 minutes. The counting efficiency determined by repeated analysis of NIST oxalic acid standard and the background count rate were measured to be 58.8±1.4% and 1.88±0.06 cpm, respectively, in case of saturated solution. The correction curves of counting efficiency for partially saturated solutions and for saturated solutions with quenching were prepared, respectively. The overall uncertainty of the sample specific activity for near background levels was estimated to be about 7% for 4 hours counting at 95% confidence level. Stack effluent gas samples were measured by a gel suspension counting method. After precipitation of CO2 in the form of BaCO3, 140 mg of which was mixed with 6 ml H2O and 12 ml of Instagel XF. The counting efficiency was measured to be 71.5±1.7% and the typical sensitivity of this technique was about 510 mBq/m3 for a 100 min count at a background count rate of 4.7 cpm. For the benzene counting method measurements were performed with a mixture of 3 ml benzene and 1 ml of scintillation cocktail (5 g of butyl-PBD in 100 ml of scintillation-grade toluene) in a low potassium 7 ml borosilicate glass vial. The counting efficiency and the background count rate were measured to be 64.3±1.0% and 0.51±0.05 cpm, respectively. The long-term stability of samples has been checked for all the counting techniques over a two week period, during which no apparent change in counting efficiency and background level was

  6. The history of ironware in Japan revealed by the AMS-carbon 14 age method

    International Nuclear Information System (INIS)

    This paper focuses on the influence what the AMS-carbon 14 age method attains to the history of the iron in the Japanese Islands. The research team in National Museum of Japanese History makes a clear that the Yayoi period began in 10 Cen. cal BC. However, there was a problem in this. It is iron. If the Yayoi period has started in the 10th Cen. BC, it means that the ironware in Japanese Islands had spread early rather than it spreads in China. The research team reexamined the ironware excavated from Magarita site in the Fukuoka Pref. considered to be the oldest ironware in Japan. Consequently, the excavation situation was indefinite and it turned out that we cannot specify the time to belong. Furthermore, 36 ironwares in the initial and early Yayoi were also already found by that time cannot be specified except for two points. Therefore, it turned out that Japanese ironware appeared in the 3rd century of B.C. What does this mean? Although it had been thought that the beginning of agriculture in Japan and the appearance of ironware were simultaneous, it turned out that agriculture has appeared early about in 700 years. Therefore, it became clear that agriculture of Japan started at the Stone Age. (author)

  7. Automatic counting and recording unit used for dating by the carbon 14 method

    International Nuclear Information System (INIS)

    A description is given of the unit used by the 'Centre Scientifique de Monaco' for low-level beta counting and fitted for radioactive dating by the Carbon 14 method. Built entirely by the laboratory in 1964, on the basis of electronic techniques then recent, it has worked without failure since that time. The proportional counter, its high-voltage negative supply, and the counting chains with visual and printing records are detailed by means of 38 figures which reproduce the counter and the electronic circuits. These are contained in two standard 5 U.I structures. The low-voltage power supply of the whole unit is carried out by plus 12 volts and minus 12 volts storage batteries, buffered on a charger connected on the 110 V alternative line. The proportional counter described is filled with CO2 under one atmosphere pressure and permits the dating of carbonaceous samples with a maximum of 30.000 + 1.000 years (background 3.96 c.p.m. ) within a moderate time (72 hours). (authors)

  8. Validation of a simplified carbon-14-urea breath test for routine use for detecting Helicobacter pylori noninvasively

    International Nuclear Information System (INIS)

    A carbon-14 (14C) urea breath test for detecting Helicobacter pylori with multiple breath sampling was developed. Carbon-14-urea (110 kBq) administered orally to 18 normal subjects and to 82 patients with Helicobacter infection. The exhaled 14C-labeled CO2 was trapped at 10-min intervals for 90 min. The total 14C activity exhaled over 90 min was integrated and expressed in %activity of the total dose given. In normals, a mean of 0.59% +/- 0.24% was measured, resulting in an upper limit of normal of 1.07%. In 82 patients, a sensitivity of 90.2%, a specificity of 83.8%, and a positive predictive value of 90.2% was found. The single probes at intervals of 40-60 min correlated best with the integrated result, with r ranging from 0.986 to 0.990. The test's diagnostic accuracy did not change at all when reevaluated with the 40-, 50-, or 60-min sample data alone. Thus, the 14C-urea breath test can be applied routinely as a noninvasive, low-cost and one-sample test with high diagnostic accuracy in detecting Helicobacter pylori colonization

  9. Carbon transfer between 2 1/4 Cr 1 Mo alloy and austenitic steels (experiments in anisothermal loops)

    International Nuclear Information System (INIS)

    Studies on carbon transfer between the ferritic steel 2 1/4 Cr 1 Mo and the austenitic steels 316L and 321H have shown that there is not any measurable carbon transfer in the operating conditions of the secondary circuit of PHENIX (475 deg C was the maximal temperature of the 2 1/4 Cr 1 Mo steel). A significant carbon transfer has been observed between the ferritic steel and the 316L steel when the 321H was replaced by the 2 1/4 Cr 1 Mo steel in the same thermohydraulic conditions (the ferritic steel was then used up to 545 deg C). This experiment has demonstrated the importance of the temperature and the initial carbon content of the ferritic steel as parameters in the decarburization process. It appears that decarburization may not be sensitive to the thermohydraulic conditions at least in the range investigated in those experiments. In the other hand the 316L steel is observed to have been carburized, the degree of carburization remaining appreciably constant and independent on the temperature between 400 deg C and 550 deg C

  10. Evaluation of two decomposition schemes in Earth System Models against LIDET, C14 observations and global soil carbon maps

    Science.gov (United States)

    Ricciuto, D. M.; Yang, X.; Thornton, P. E.

    2015-12-01

    Soils contain the largest pool of carbon in terrestrial ecosystems. Soil carbon dynamics and associated nutrient dynamics play significant roles in regulating global carbon cycle and atmospheric CO2 concentrations. Our capability to predict future climate change depends to a large extent on a well-constrained representation of soil carbon dynamics in ESMs. Here we evaluate two decomposition schemes - converging trophic cascade (CTC) and Century - in CLM4.5/ACME V0 using data from the long-term intersite decomposition experiment team (LIDET), radiocarbon (14C) observations, and Harmonized World Soil Database (HWSD). For the evaluation against LIDET, We exercise the full CLM4.5/ ACME V0 land model, including seasonal variability in nitrogen limitation and environmental scalars (temperature, moisture, O2), in order to represent LIDET experiment in a realistic way. We show that the proper design of model experiments is crucial to model evaluation using data from field experiments such as LIDET. We also use 14C profile data at 10 sites to evaluate the performance of CTC and CENTURY decomposition scheme. We find that the 14C profiles at these sites are most sensitive to the depth dependent decomposition parameters, consistent with previous studies.

  11. Measurement of Carbon Fixation Rates in Leaf Samples — Use of carbon-14 labeled sodium bicarbonate to estimate photosynthetic rates

    OpenAIRE

    sprotocols

    2014-01-01

    Author: David R. Caprette ### Generation of a Light Curve To address the hypothesis concerning photosynthetic efficiency it is necessary to expose sun and shade leaves to a range of light intensities long enough for them to fix significant amounts of carbon. It is necessary to expose identical surface areas under favorable conditions which are identical for all leaves except for light intensity (the experimental variable). A means of measuring the rate of carbon fixation is also neces...

  12. Evaluation of carbon-14 (C14) levels of terrestrial and marine food products of the environment of the site of Cogema La Hague

    International Nuclear Information System (INIS)

    This evaluation has for object to inform about the levels in carbon 14 in the environment of the factories of La Hague. Two sectors were differentiated on one hand the terrestrial environment, and on the other hand the marine environment. The investigations concerned first and foremost food products stemming as the vegetable culture (vegetables) or individual breeding (milk, eggs) but also foodstuffs stemming from the local agriculture (cereal). In touch with the second sector, the marine environment, the sampling concerned the accessible products of the sea by all and those locally marketed (fishes, molluscs, shellfishes). The different results are presented in tables. (N.C.)

  13. Biochar, activated carbon, and carbon nanotubes have different effects on fate of 14C-catechol and microbial community in soil

    Science.gov (United States)

    Shan, Jun; Ji, Rong; Yu, Yongjie; Xie, Zubin; Yan, Xiaoyuan

    2015-10-01

    This study investigated the effects of biochar, activated carbon (AC)-, and single-walled and multi-walled carbon nanotubes (SWCNTs and MWCNTs) in various concentrations (0, 0.2, 20, and 2,000 mg/kg dry soil) on the fate of 14C-catechol and microbial community in soil. The results showed that biochar had no effect on the mineralization of 14C-catechol, whereas AC at all amendment rates and SWCNTs at 2,000 mg/kg significantly reduced mineralization. Particularly, MWCNTs at 0.2 mg/kg significantly stimulated mineralization compared with the control soil. The inhibitory effects of AC and SWCNTs on the mineralization were attributed to the inhibited soil microbial activities and the shifts in microbial communities, as suggested by the reduced microbial biomass C and the separated phylogenetic distance. In contrast, the stimulatory effects of MWCNTs on the mineralization were attributed to the selective stimulation of specific catechol-degraders by MWCNTs at 0.2 mg/kg. Only MWCNTs amendments and AC at 2,000 mg/kg significantly changed the distribution of 14C residues within the fractions of humic substances. Our findings suggest biochar, AC, SWCNTs and MWCNTs have different effects on the fate of 14C-catechol and microbial community in soil.

  14. The present status of carbon 14 analysis and projects for beryllium 10 analysis at the Tandetron 1 accelerator, Nagoya University

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Toshio; Oda, Hirotaka; Ikeda, Akiko; Niu, Etsuko [Nagoya Univ. (Japan)

    2001-02-01

    The operation experience in 1999 of the Tandetron accelerator age estimation system, Nagoya University, is reported, after the overview and the history of the accelerator is briefly described. Total number of carbon 14 environmental samples analyzed was 8567. The project of introducing new HVEE Tandetron for C-14 analysis, and modifying the present GIC Tandetron for Be-10 analysis is presented. Ion source shall be replaced, and the heavy ion detector shall be installed. Projected geological and archaeological studies using Be-10 are enumerated. (A. Yamamoto)

  15. Bayesian calibration of a soil organic carbon model using Δ14C measurements of soil organic carbon and heterotrophic respiration as joint constraints

    Science.gov (United States)

    Ahrens, B.; Reichstein, M.; Borken, W.; Muhr, J.; Trumbore, S. E.; Wutzler, T.

    2014-04-01

    Soils of temperate forests store significant amounts of organic matter and are considered to be net sinks of atmospheric CO2. Soil organic carbon (SOC) turnover has been studied using the Δ14C values of bulk SOC or different SOC fractions as observational constraints in SOC models. Further, the Δ14C values of CO2 that evolved during the incubation of soil and roots have been widely used together with Δ14C of total soil respiration to partition soil respiration into heterotrophic respiration (HR) and rhizosphere respiration. However, these data have not been used as joint observational constraints to determine SOC turnover times. Thus, we focus on (1) how different combinations of observational constraints help to narrow estimates of turnover times and other parameters of a simple two-pool model, the Introductory Carbon Balance Model (ICBM); (2) whether relaxing the steady-state assumption in a multiple constraints approach allows the source/sink strength of the soil to be determined while estimating turnover times at the same time. To this end ICBM was adapted to model SOC and SO14C in parallel with litterfall and the Δ14C of litterfall as driving variables. The Δ14C of the atmosphere with its prominent bomb peak was used as a proxy for the Δ14C of litterfall. Data from three spruce-dominated temperate forests in Germany and the USA (Coulissenhieb II, Solling D0 and Howland Tower site) were used to estimate the parameters of ICBM via Bayesian calibration. Key findings are as follows: (1) the joint use of all four observational constraints (SOC stock and its Δ14C, HR flux and its Δ14C) helped to considerably narrow turnover times of the young pool (primarily by Δ14C of HR) and the old pool (primarily by Δ14C of SOC). Furthermore, the joint use of all observational constraints made it possible to constrain the humification factor in ICBM, which describes the fraction of the annual outflux from the young pool that enters the old pool. The Bayesian parameter

  16. Validation of ten-minute single sample carbon-14 urea breath test for diagnosis of Helicobacter pylori infection

    Energy Technology Data Exchange (ETDEWEB)

    Prabakaran, K.; Fernandes, V.; McDonald, J. [Illawarra Regional Hospital, Wollongong, NSW (Australia). Depts of Nuclear Medicine and Gastroenterology

    1996-09-01

    Helicobacter pylori infection is traditionally diagnosed by endoscopy followed by gastric biopsy and histologic demonstration of organisms, rapid urease test and culture. The non-invasive carbon-14-urea breath test has been widely accepted now for the diagnosis of this bacterium. This study was aimed to establish and validate normal and abnormal values for an Australian population, for a single sample carbon-14-urea breath test at ten minutes. A dose of 185 kBq was used in order to achieve reasonable counting statistics. The derived values were validated with the results of the rapid urease test. This method has a high sensitivity, specificity and greater patient acceptance, and could be used in many clinical settings as the first modality for the diagnosis of H. pylori infection and for documenting response or cure after antibiotic therapy for eradication. 11 refs., 1 tab., 4 figs.

  17. Validation of ten-minute single sample carbon-14 urea breath test for diagnosis of Helicobacter pylori infection

    International Nuclear Information System (INIS)

    Helicobacter pylori infection is traditionally diagnosed by endoscopy followed by gastric biopsy and histologic demonstration of organisms, rapid urease test and culture. The non-invasive carbon-14-urea breath test has been widely accepted now for the diagnosis of this bacterium. This study was aimed to establish and validate normal and abnormal values for an Australian population, for a single sample carbon-14-urea breath test at ten minutes. A dose of 185 kBq was used in order to achieve reasonable counting statistics. The derived values were validated with the results of the rapid urease test. This method has a high sensitivity, specificity and greater patient acceptance, and could be used in many clinical settings as the first modality for the diagnosis of H. pylori infection and for documenting response or cure after antibiotic therapy for eradication. 11 refs., 1 tab., 4 figs

  18. The use of C-14 as tracer in the carbon flow assimilated by the plants (maize, sugar cane, bean)

    International Nuclear Information System (INIS)

    The flow of carbon in three different crops (maize, beans and sugar cane) was studied by use of C-14. The plants were exposed to an atmosphere with a constant concentration of the tracer for 12 hours in a biosynthesis chamber. The detection of the isotope permitted the distribution and concentration of the photosynthetates in the various organs of the plants to be followed. (M.A.C.)

  19. Study of carbon-isotope exchange reactions between potassium cyanide and some carbonates, and their use for obtaining C14-labelled potassium cyanide

    International Nuclear Information System (INIS)

    The authors examine the results of a study on the isotope exchange of potassium cyanide with compounds differing greatly from it both in composition and structure, such as carbonates of alkaline and alkali-earth metals. The carbon-isotope exchange reaction in the KC12N-BaC14O3 system was studied at 600-800oC. The ratio between the components of this system and those given below agreed with the equimolecular ratio. The authors show that at high temperatures complete exchange between these compounds can be secured. The exchange reaction begins when the cyanide melt is formed; later it occurs between the liquid and the solid phases, and its speed increases with temperature; at 800oC it is completed in 2 h. With carbonates of alkali metals the exchange reaction occurs in the melt and is completed at lower temperatures. The authors obtained cyanide-labelled potassium by the following method : (1) The isotope exchange reaction KC12N-BaC14O3 is produced at 800oC in 2 h. (2) The mixture KCN+BaCO3 is separated by extracting the KCN with liquid ammonia in a circulating extractor. By exchanging the equimolecular quantities KCN and BaCO3, potassium cyanide is obtained with a chemical yield of more than 90% and a basic-substance content of 96-97%. By using BaCO3 with a high specific activity (60-70 mc/g), a KCN specific activity of over 80 mc/g may be obtained. The barium carbonate depleted of isotope C14 regenerates after the ammonia extraction without appreciable loss. (author)

  20. Carbon-14 labelled sucrose transportation in an Arabidopsis thaliana using an imaging plate and real time imaging system

    International Nuclear Information System (INIS)

    As an approach to increased production of rape seed oil from Brassica napus L., Arabidopsis thaliana, a species from the same Brassicaceae family, was used to investigate transport behavior and distribution of matter in the plant body. In this study, sucrose, an initial metabolic product of photosynthesis, labeled with carbon-14 was used. The sucrose was applied to A. thaliana via the surface of a rosette leaf. Using the real time radioisotope imaging system we developed and an imaging plate (IP), images of whole or part of the sample were obtained. The sucrose assimilation products were accumulated in maturing tissue such as flowers and fruits, and in a joint part. From the comparison among branches and stems, it was indicated that there were different patterns of demand and distribution of sucrose assimilation products depending on the tissue and its growing stage. This might be caused by either morphological reason such as diameter and location of the sieve tube, or genetic factors such as an activity of a membrane transport protein. Because of self-absorption of carpels, it was difficult to observe the accumulation of carbon-14 in the seeds inside the fruits; however, an IP image of a frozen section of a fruit revealed that carbon-14 transport to seeds was higher than that of carpels. These methods will help us gain insight into matter transport and strategies to improve the production of rape seed oil. (author)

  1. Simulation of Carbon-14 Migration Through a Thick Unsaturated Alluvial Basin Resulting from an Underground Nuclear Explosion

    Science.gov (United States)

    Martian, P.; Larentzos, J.

    2008-12-01

    Yucca Flat is one of several areas on the Nevada Test Site that was used for underground nuclear testing. Extensive testing performed in the unsaturated and saturated zones have resulted in groundwater contamination and surface subsidence craters in the vicinity of the underground test areas. Simulation of multiphase 14C transport through the thick Yucca Flat alluvial basin was performed to estimate the magnitude of radionuclide attenuation occurring within the unsaturated zone. Parameterization of the 14C transport in the multiphase flow and transport simulator (FEHM) was verified with experimental data collected from a large unsaturated soil column experiment. The experimental data included 14C as a radio-labeled bicarbonate solution, SF6 gas, and lithium bromide solution breakthroughs. Two representative simulation cases with working points located at shallow and deep depths relative to the water table were created to investigate the impact of subsidence crater-enhanced recharge, crater-playa areal extent, gas-phase partitioning, solid-phase partitioning, and a reduced permeability/porosity compressed zone created during the explosion on 14C transport. The representative shallow test had a detonation point located 175 m below land surface, and the deep test had a working point 435 m below land surface in a 500 m deep unsaturated zone. Carbon-14 transport is influenced by gas-phase diffusion and sorption within the alluvium. Gas-phase diffusion is an attenuation mechanism that transports 14C gas as 14CO2 throughout the unsaturated zone and exposes it to a large amount of soil moisture, resulting in dilute concentrations. The simulations indicated that the majority of the 14C inventory remains in the unsaturated zone over a 1,000-year time period after detonation because gas-phase diffusion moves the bulk of the 14C away from the higher recharge occurring in crater playas. Retardation also plays a role in slowing advective aqueous phase transport to the water

  2. Sup(14)C activity of dissolved organic carbon fractions in the north-central Pacific and Sargasso Sea

    International Nuclear Information System (INIS)

    Radiocarbon measurements of dissolved organic carbon (DOC) oxidizable by ultraviolet irradiation (DOCuv) yielded apparent ages of ∼6,000 yr in the deep waters of the oligotrophic north-central Pacific gyre. Recent reports of a potentially larger pool of DOC as measured by high-temperature catalytic combustion (DOChtc) using discrete injections of sea water have led to speculation that 'younger', more recently produced DOC could contribute significantly to overall oceanic organic carbon fluxes, owing to its suspected greater biological lability. Here we present a comparison of Δ14C (the deviation in parts per thousand from the 14C activity of nineteenth-century wood) of the DOChtc, DOCuv and humic substances in profiles from the oligotrophic north-central Pacific and Sargasso Sea. For each ocean, the Δ14C values of all three fractions are remarkably similar, yielding no evidence for a component of DOC that is cycled through the system on timescales shorter than several thousands of years. We observe an age difference between the two oceans of ∼2,000 yr for the deepest DOC, which can largely be accounted for by differences in the Δ14C of the DOC sources to the deep basins, and by the different deep-water circulation patterns and transit times in the two oceans. (author)

  3. A survey of methods to immobilize tritium and carbon-14 arising from a nuclear fuel reprocessing plant

    International Nuclear Information System (INIS)

    This report reviews the literature on methods to separate and immobilize tritium (3H) and carbon-14 (14C) released from U02 fuel in a nuclear fuel reprocessing plant. It was prepared as part of a broader review of fuel reprocessing waste management methods that might find future application in Canada. The calculated inventories of both 3H and 14C in used fuel are low; special measures to limit releases of these radionuclides from reprocessing plants are not currently in place, and may not be necessary in future. If required, however, several possible approaches to the concentration and immobilization of both radionuclides are available for development. Technology to control these radionuclides in reactor process streams is in general more highly developed than for reprocessing plant effluent, and some control methods may be adaptable to reprocessing applications

  4. Use of carbon-14 for the study of elementary carbon exchange between methane and its chemisorption residues on metallic films

    International Nuclear Information System (INIS)

    After giving the results of the most recent work done with a view to providing a rational account of the exchanges between two gases in contact with a catalyst, the authors, using C14, proceed to study elementary exchange between methane and its chemisorption residues on molybdenum films. The surface is labelled in two ways: by chemisorption of C14H4 at different temperatures; or by exchange between C14H4 with a high specific activity and a metallic film previously treated with inactive methane. The C14 is counted in the form of CO2 in the Geiger region. The results show that the exchange rate is measurable from about 100o C onwards and that it reaches a maximum at about 250o C. Furthermore, the exchange is governed by laws which vary according to the prior treatment of the surface. On the basis of the results discussed, the authors suggest a methane displacement pattern which they compare with the CH4 and D2 exchange mechanisms suggested by Kemball. (author)

  5. Characterization of carbon-14 generated by the nuclear power industry. Final report

    International Nuclear Information System (INIS)

    This report describes an evaluation of C-14 production rates in light-water reactors (LWRs) and characterization of its chemical speciation and environmental behavior. The study estimated the total production rate of the nuclide in operating PWRs and BWRs along with the assessment of the C-14 content of solid radwaste. The major source of production of C-14 in both PWR's and BWRs was the activation of 0-17 in the water molecule and of N-14 dissolved in reactor coolant. The production of C-14 was estimated to range from 7 Ci/GW(e)-year to 11 Ci/GW(e)-year. The estimated range of the quantity of C-14 in LLW was 1-2 Ci/ reactor-year which compares favorably with data obtained from shipping manifests. The environmental behavior of C-14 associated with low-level waste (LLW) disposal is greatly dependent upon its chemical speciation. This scoping study was performed to help identify the occurrence of inorganic and organic forms of C-14 in reactor coolant water and in primary coolant demineralization resins. These represent the major source for C-14 in LLW from nuclear power stations. Also, the behavior of inorganic and two of the organic forms of C-14 on soil uptake was determined by measuring distribution coefficients (Kd's) on two soil types and a cement, using two different groundwater types. This study confirms that C-14 concentrations are significantly higher in the primary coolant from PWR stations compared to BWR stations. The C-14 followed trends of Co-60 generation during primary coolant demineralization at all but one of the stations examined. However, the C-14/Co-60 activity ratios measured by this study in resin samples through which samples of coolant were drawn were about 8 to 42 times higher than those reported for waste samples in the industry data base for PWR stations, and 15 to 730 times lower for the BWR stations

  6. Oxygène-18, carbone-13, carbone-14 et diatomées dans les quatre carottes du lac Huynamarca (Bolivie) : premiers résultats

    OpenAIRE

    Wirrmann, Denis; Servant Vildary, Simone; Fontes, J.C.

    1982-01-01

    L'étude de géochimie isotopique des carbonates coquilliers de quatre carottes du lac Huynamarca (Bolivie), ainsi que les datations au carbone-14 de quelques échantillons montrent qu'au cours des dix derniers millénaires le bilan hydrologique du lac Titicaca a considérablement varié. Une phase sèche, située entre 3650 et 5325 ans B.P. se traduit par une baisse du niveau du lac d'au moins dix mètres par rapport à l'actuel, avec comme corrolaire l'augmentation de la teneur en sels dissous dans l...

  7. Determination of solubility product of lead carbonate using 14C radionuclide

    International Nuclear Information System (INIS)

    Using the obtained experimental data on lead carbonate solubility in bidistilled water at 25 deg C, the value of lead carbonate solubility product, which constituted (3.6+-0.1)x10sup(-11) at confidence level 0.95, is determined. The use of radioactive indicators permitted to eliminate the negative effect of carbonate-ion excess concentration and pH and to specify similar literature data. A high stability of leadcarbonate supersaturated solutions is shown, which can be explained by a slow rate of the process PbCO3 (aq) → PbCO3 (cr)

  8. Determination of solubility product of lead carbonate, using 14C radionuclide

    International Nuclear Information System (INIS)

    On the basis of experimental data on the solubility of lead carbonate in double distilled water at 25 C, the solubility product of lead carbonate has been found to be (3.6 + or - 0.1) .10-11 with a 0.95 confidence probability. Use of radioactive indicators in these experiments made it possible to eliminate the adverse effects from excess concentration of carbonate ions and from pH, and to refine the analogous literature data. It has been shown that supersaturated solutions of lead carbonate are highly stable; this can be explained by the slow course of the process PbCO3 (ag)→ PbCO3 (cr)

  9. Some interesting and exotic applications of carbon-14 dating by accelerator mass spectrometry

    International Nuclear Information System (INIS)

    There are many applications of 14C dating and other measurements using accelerator mass spectrometry (AMS). In particular, applications to dating of archaeological samples and interesting artifacts are discussed. Other applications, such as to extraterrestrial materials such as lunar samples and meteorites show the broad range of topics that can be addressed with 14C studies.

  10. Differentiation of Pigment in Eggs Using Carbon ((13)C/(12)C) and Nitrogen ((15)N/(14)N) Stable Isotopes.

    Science.gov (United States)

    Sun, Feng M; Shi, Guang Y; Wang, Hui W

    2016-07-01

    Consumers prefer natural and healthy food, but artificial pigments are often abused in egg products. The study aimed at differentiating the origin of pigments in eggs by applying the technique of carbon ((13)C/(12)C) and nitrogen ((15)N/(14)N) stable isotope analysis. Five hundred sixty laying hens were randomly distributed into 14 treatments, which were divided into four groups: maize, carophyll red pigment, carophyll yellow pigment, and a mixture of carophyll red and yellow pigments. Eggs were collected and pretreated to determe the values of the Roche Yolk Color Fan (RCF), δ(13)C, and δ(15)N. With increasing maize content, the RCF and δ(13)C values of yolks increased. Moreover, the RCF values in the three pigment groups were significantly influenced by the artificial colors, but δ(13)C values were not significantly different, regardless of the existence of pigment. The δ(15)N values in all treatments did not vary as regularly as the carbon stable isotope. A strong positive correlation was found between RCF and δ(13)C in the maize group, but no such correlation was be observed in the pigment groups. It is concluded that carbon stable isotope ratio analysis (δ(13)C) of the yolk can be used to differentiate the origin of the pigment added to eggs. PMID:27302905

  11. Quantification of Helicobacter pylori infection in gastritis and ulcer disease using a simple and rapid carbon-14-urea breath test

    Energy Technology Data Exchange (ETDEWEB)

    Debongnie, J.C.; Pauwels, S.; Raat, A.; de Meeus, Y.; Haot, J.; Mainguet, P. (Department of Nuclear Medicine, University of Louvain Medical School, Brussels (Belgium))

    1991-06-01

    Gastric urease was studied isotopically in 230 patients with biopsy-proven normal mucosa or chronic gastritis, including 59 patients with ulcer disease. Carbon-14-urea was given in 25 ml of water without substrate carrier or nutrient-dense meal, and breath samples were collected over a 60-min period. The amount of 14CO2 excreted at 10 min was independent of the rate of gastric emptying and was not quantitatively influenced by the buccal urease activity. The 10-min 14CO2 values discriminated well between Helicobacter pylori positive and negative patients (94% sensitivity, 89% specificity) and correlated with the number of organisms assessed by histology. The test was a good predictor of chronic gastritis (95% sensitivity and 96% specificity), and a quantitative relationship was observed between 14CO2 values and the severity and activity of the gastritis. In H. pylori positive patients, breath 14CO2 was found to be similar in patients with and without ulcer disease, suggesting that the number of bacteria is not a determining factor for the onset of ulceration.

  12. Quantification of Helicobacter pylori infection in gastritis and ulcer disease using a simple and rapid carbon-14-urea breath test

    International Nuclear Information System (INIS)

    Gastric urease was studied isotopically in 230 patients with biopsy-proven normal mucosa or chronic gastritis, including 59 patients with ulcer disease. Carbon-14-urea was given in 25 ml of water without substrate carrier or nutrient-dense meal, and breath samples were collected over a 60-min period. The amount of 14CO2 excreted at 10 min was independent of the rate of gastric emptying and was not quantitatively influenced by the buccal urease activity. The 10-min 14CO2 values discriminated well between Helicobacter pylori positive and negative patients (94% sensitivity, 89% specificity) and correlated with the number of organisms assessed by histology. The test was a good predictor of chronic gastritis (95% sensitivity and 96% specificity), and a quantitative relationship was observed between 14CO2 values and the severity and activity of the gastritis. In H. pylori positive patients, breath 14CO2 was found to be similar in patients with and without ulcer disease, suggesting that the number of bacteria is not a determining factor for the onset of ulceration

  13. Preliminary study of the impact of tritium and carbon 14 releases from the Saint-Alban nuclear power plant. CRIIRAD N.04-20 V1 Report

    International Nuclear Information System (INIS)

    After having recalled the results of previous studies on the radioactivity in surface water and land environments, and outlined the need of an investigation of the tritium and carbon 14 contamination, this report defines the objectives of this investigation, the adopted methodology (choice of plants, tritium and carbon 14 dose measurements, and sampling to study time variations). It recalls some aspects of tritium and carbon 14 releases (production of radionuclides, origins of emissions in the environment, assessments by EDF). It reports the investigation and the assessment of tritium activity in a land environment and in rain waters about the investigated site, and the investigation and the assessment of carbon 14 activity within the same environment. It reports preliminary results concerning the aquatic environment

  14. Spatial analysis of Carbon-14 dynamics in a wetland ecosystem (Duke Swamp, Chalk River Laboratories, Canada)

    International Nuclear Information System (INIS)

    A detailed survey was conducted to quantify the spatial distribution of 14C in Sphagnum moss and underlying soil collected in Duke Swamp. This wetland environment receives 14C via groundwater pathways from a historic radioactive Waste Management Area (WMA) on Atomic Energy Canada Limited (AECL)'s Chalk River Laboratories (CRL) site. Trends in 14C specific activities were evaluated with distance from the sampling location with the maximum 14C specific activity (DSS-35), which was situated adjacent to the WMA and close to an area of groundwater discharge. Based on a spatial evaluation of the data, an east-to-west 14C gradient was found, due to the influence of the WMA on 14C specific activities in the swamp. In addition, it was possible to identify two groups of sites, each showing significant exponential declines with distance from the groundwater source area. One of the groups showed relatively more elevated 14C specific activities at a given distance from source, likely due to their proximity to the WMA, the location of the sub-surface plume originating from the WMA, the presence of marsh and swamp habitat types, which facilitated 14C transport to the atmosphere, and possibly, 14C air dispersion patterns along the eastern edge of the swamp. The other group, which had lower 14C specific activities at a given distance from the groundwater source area, included locations that were more distant from the WMA and the sub-surface plume, and contained fen habitat, which is known to act as barrier to groundwater flow. The findings suggest that proximity to source, groundwater flow patterns and habitat physical characteristics can play an important role in the dynamics of 14C being carried by discharging groundwater into terrestrial and wetland environments. - Highlights: • Groundwater represents an important source of volatile radionuclides to wetlands. • Habitat type influenced 14C transport from sub-surface to surface environments. • C-14 specific activity

  15. Temperature effects on the behavior of carbon 14 in nuclear graphite

    Energy Technology Data Exchange (ETDEWEB)

    Silbermann, G. [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3, UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon, 4 Rue Enrico Fermi, F-69622 Villeurbanne cedex (France); EDF/DIN/CIDEN/DIE, 154 Avenue Thiers, CS 60018, Lyon 69458 (France); Moncoffre, N., E-mail: n.moncoffre@ipnl.in2p3.fr [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3, UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon, 4 Rue Enrico Fermi, F-69622 Villeurbanne cedex (France); Toulhoat, N. [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3, UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon, 4 Rue Enrico Fermi, F-69622 Villeurbanne cedex (France); Commissariat à l’énergie atomique CEA/DEN, Centre de Saclay, Gif sur Yvette 91191 (France); Bérerd, N. [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3, UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon, 4 Rue Enrico Fermi, F-69622 Villeurbanne cedex (France); Institut Universitaire de Technologie, Université Lyon 1, 94 Bd. Niels Bohr, Villeurbanne 69622 (France); Perrat-Mabilon, A. [Institut de Physique Nucléaire de Lyon, CNRS/IN2P3, UMR 5822, Université Claude Bernard Lyon 1, Université de Lyon, 4 Rue Enrico Fermi, F-69622 Villeurbanne cedex (France); Laurent, G. [EDF/DIN/CIDEN/DIE, 154 Avenue Thiers, CS 60018, Lyon 69458 (France); and others

    2014-08-01

    The dismantling of the 1st French generation UNGG (Uranium Naturel Graphite Gas) nuclear reactors operated by the French utility, EDF (Electricité de France) will generate around 17,000 tons of irradiated graphite wastes that have to be disposed of. {sup 14}C is one of the main radioactive dose contributors over 10,000 years. For the management of this waste, it is mandatory to get an accurate estimation of {sup 14}C. The general aim of our work is therefore to simulate the behavior of {sup 14}C in nuclear graphite and to elucidate the coupled and decoupled effects of temperature, irradiation and radiolytic corrosion that mainly influence {sup 14}C behavior in graphite during reactor operation. This paper focuses on the behavior of {sup 13}C implanted into nuclear graphite and used to simulate the presence of {sup 14}C displaced from its original structural site through recoil during neutron irradiation. It aims at evaluating both the temperature and the disorder level of the implanted graphite structure effects on {sup 13}C migration using two complementary techniques, NRA and SIMS, to evaluate the {sup 13}C distribution at the millimeter and micrometer lateral scales respectively. Raman micro-spectroscopy is used to check the graphite structure evolution. The results show that {sup 13}C is not released up to 1600 °C whatever the initial structural disorder level of the implanted graphite. This might be due to the fact that {sup 13}C might be trapped into interstitial clusters. The extrapolation of our results to the behavior of {sup 14}C shows that reactor temperatures (200–500 °C) did not induce any {sup 14}C release. Moreover, as long as there is no gasification of the graphite matrix, high temperatures tend to stabilize {sup 14}C into the remaining graphite structure. This fact has to be considered in case of high temperature purification of {sup 14}C from irradiated graphite.

  16. All-Carbon [3+3] Oxidative Annulations of 1,3-Enynes by Rhodium(III)-Catalyzed C–H Functionalization and 1,4-Migration**

    Science.gov (United States)

    Burns, David J; Best, Daniel; Wieczysty, Martin D; Lam, Hon Wai

    2015-01-01

    1,3-Enynes containing allylic hydrogens cis to the alkyne function as three-carbon components in rhodium(III)-catalyzed, all-carbon [3+3] oxidative annulations to produce spirodialins. The proposed mechanism of these reactions involves the alkenyl-to-allyl 1,4-rhodium(III) migration. PMID:26224377

  17. Spatial Distribution and Dynamics of Carbon-14 in a Wetland Ecosystem

    International Nuclear Information System (INIS)

    There is significant interest in assessing the impact of 14C releases from nuclear facilities, radioactive waste management areas, and geologic disposal facilities. As a result, there is a general need to gain understanding of 14C dynamics, especially in complex interface ecosystems, such as wetlands. This paper summarizes the key findings of two studies undertaken in Duke Swamp, a circa 0.1 km2 area of wetland consisting of marsh, fen and swamp habitats, on the Atomic Energy of Canada Limited (AECL)'s Chalk River Laboratories Site. The swamp receives radionuclides, such as 14C and tritium, from an up-gradient waste management area. The first study was an extensive field sampling campaign, involving collection of surface vegetation at 69 locations on a 50 m x 50 m grid, to evaluate the spatial distribution of 14C in Duke Swamp. Representative receptor plants and animals, and corresponding environmental media (including air, soil, and plant) samples were then collected, as part of a second study, at a subset of six locations with 14C specific activities that spanned the range present in Duke Swamp and also represented the different wetland habitats occurring there. The highest specific activity concentrations in surface vegetation were highly localized, representing a surface area of only about 150 m2. The spatial distribution of 14C in the swamp seemed to be at least partly accounted for by the physical attributes of the Duke Swamp habitat. In general, it was found that specific activities of 14C in biota tissues reflected those measured in surface vegetation collected from the same sampling location. Such information provides needed insight for biosphere assessments, as well as for the development of monitoring programs that demonstrate protection of biota in areas where exposure to 14C is elevated. (authors)

  18. Carbon 14 transfer from seawater to the atmosphere through degassing processes in the Bay of Seine (Northwest France)

    International Nuclear Information System (INIS)

    COGEMA La Hague nuclear reprocessing plant is located in the North West of Cotentin peninsula near Cherbourg (France). This nuclear plant releases radioelements in atmosphere and in the English Channel. About 8.5 TBq.year-1 of radiocarbon are released as the liquid wastes through a pipe a few kilometres off sea shore, West of the reprocessing plant (COGEMA data). Recent studies in the peninsula show anomalous higher radiocarbon contents in vegetation near the coast that have suggested a supplementary marine contribution through the degassing of the 14C excess supplied by liquid releases of the nuclear plant. Carbon dioxide partial pressure, 14C activities were measured in air and sea water in the Bay of Seine and around the COGEMA-La Hague nuclear reprocessing plant during three cruises in 2000 and 2002. Results show clearly that sea is a source of CO2 and 14C to the atmosphere. Higher 14C concentrations in air and water related to the La Hague liquid wastes are clearly recorded. The aim of this paper is to show results of these oceanographic campaigns. Flux between seawater and atmosphere are calculated in the northwest Cotentin and in Bay of Seine. (author)

  19. Gas-phase noncovalent functionalization of carbon nanotubes with a Ni(II) tetraaza[14]annulene complex

    International Nuclear Information System (INIS)

    The noncovalent functionalization of carbon nanotubes (CNTs) with aromatic polyazamacrocyclic compounds, based on π–π-interactions, keeps the intrinsic electronic structure of CNTs totally intact and allows for combining unique properties of the two interacting components. In addition to porphyrins and phthalocyanines, there are other, simpler compounds exhibiting similar properties, potentially useful for photovoltaic, catalytic and electrochemical applications: for example, tetraaza[14]annulenes. Many of them are highly thermally stable, which makes it possible to employ physical vapor deposition for the preparation of macrocycle–nanotube hybrids. One of such compounds is Ni(II) complex of 5,7,12,14-tetramethyldibenzo-1,4,8,11-tetraazacyclotetradeca-3,5,7,10,12, 14-hexaene (also called Ni(II)-tetramethyldibenzotetraaza[14]annulene, or NiTMTAA for simplicity). In the present work, we attempted the noncovalent functionalization of both single-walled and multi-walled CNTs with NiTMTAA in the gas phase at two selected temperatures of 220 and 270 °C, which does not require the use of organic solvents and therefore can be considered as ecologically friendly. The nanohybrids obtained were characterized by means of scanning and transmission electron microscopy, energy dispersive X-ray, Fourier-transform infrared and Raman spectroscopy, as well as thermogravimetric analysis. An additional insight into the structure of adsorption complexes of NiTMTAA on CNTs was provided from density functional theory and molecular mechanics calculations.

  20. Evaluation of carbon-14 (C{sup 14}) levels of terrestrial and marine food products of the environment of the site of Cogema La Hague; Evaluation des niveaux de carbone-14 ({sup 14}C) des denrees alimentaires terrestres et marines de l'environnement du site de COGEMA - La Hague

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-04-15

    This evaluation has for object to inform about the levels in carbon 14 in the environment of the factories of La Hague. Two sectors were differentiated on one hand the terrestrial environment, and on the other hand the marine environment. The investigations concerned first and foremost food products stemming as the vegetable culture (vegetables) or individual breeding (milk, eggs) but also foodstuffs stemming from the local agriculture (cereal). In touch with the second sector, the marine environment, the sampling concerned the accessible products of the sea by all and those locally marketed (fishes, molluscs, shellfishes). The different results are presented in tables. (N.C.)

  1. Carbon and 14C distribution in tropical and subtropical agricultural soils

    Science.gov (United States)

    Prastowo, Erwin; Grootes, Pieter; Nadeau, Marie

    2016-04-01

    Paddy soil management affects, through the alternating anoxic and oxic conditions it creates, the transport and stabilisation of soil organic matter (SOM). Irrigation water may percolate more organic materials - dissolved (DOM) and colloidal - into the subsoil during anoxic conditions. Yet a developed ploughpan tends to prevent C from going deeper in the subsoil and partly decouple C distribution in top and sub soil. We investigate the influence of different soil type and environment. We observed the C and 14C distribution in paddy and non-paddy soil profiles in three different soil types from four different climatic regions of tropical Indonesia, and subtropical China. Locations were Sukabumi (Andosol, ca. 850 m a.s.l), Bogor (clayey Alisol, ca. 240 m a.s.l), and Ngawi (Vertisol, ca. 70 m a.s.l) in Jawa, Indonesia, and Cixi (Alisol(sandy), ca. 4 - 6 m a.s.l) in Zhejiang Province, China. We compared rice paddies with selected neighbouring non-paddy fields and employed AMS 14C as a tool to study C dynamics from bulk, alkali soluble-humic, and insoluble humin samples, and macrofossils (plant remains, charcoal). Our data suggest that vegetation type determines the quantity and quality of biomass introduced as litter and root material in top and subsoil, and thus contributes to the soil C content and profile, which fits the 14C signal distribution, as well as 13C in Ngawi with C4 sugar cane as upland crop. 14C concentrations for the mobile humic acid fraction were generally higher than for bulk samples from the same depth, except when recent plant and root debris led to high 14C levels in near-surface samples. The difference in sampling, - averaged layer for bulk sample and 1-cm layer thickness for point sample - shows gradients in C and 14C across the layers, which could be a reason for discrepancies between the two. High 14C concentrations - in Andosol Sukabumi up to 111 pMC - exceed the atmospheric 14CO2concentration in the sampling year in 2012 (˜ 103 pMC) and

  2. The long-term trend of carbon-14 level in Japan

    International Nuclear Information System (INIS)

    The long-term trend of the specific activity of 14C in terms of dpm/gC from 1942 to 1991 in the natural environment in Japan was obtained as baseline data by analyzing plant components so as to evaluate the collective effective dose. It was deduced that the specific activity of 14C in plants reflected well that of atmospheric 14CO2. Uniform distribution of the specific activity in plant among species as well as the production places was confirmed. The Suess effect was observed clearly for a period of 10 years from the late 1960's. The 14C level was at about 13.7 dpm/gC due to cosmic ray production in 1940's, and reached a peak of about 24.5 dpm/gC in 1963 due to nuclear weapons testing and decreased to 15.6 dpm/gC in 1991. Fermented alcohol proved to be a convenient indicator for measuring the annual mean specific activity of 14C in the atmosphere. (3 figs.)

  3. Radiobiological half-lives for carbon-14 and hydrogen-3 leucine in man

    International Nuclear Information System (INIS)

    In vivo estimates of protein metabolism in many are often made by oral or intravenous administration of leucine or its ∼-ketoacid, ∼-ketoisocaproate, labeled with 14C or 3H. Previous estimates of radiation dose from such tracers have been based on the measurement of 14CO2 in breath. Using measurements of the decay of 3H or 14C leucine from plasma proteins, longer biological half-lives for these compounds were obtained. The estimated total-body radiation absorbed dose is 0.97 mrad/uCi for [1-14C]KIC (or [1-14C]leucine) and 0.11 mrad/+Ci for ]4,5-3H]leucine (or [3H]KIC). Assuming administered doses of 100 μCi each, the total-body radiation absorbed dose is still well within the limits set by the FDA for Radioactive Drug Research Committees. 12 references, 3 figures, 3 tables

  4. PRIORITY. Improved oil recovery and productivity from Lower Cretaceous Carbonates. 1.4.c: Compaction of Lower Cretaceous Carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Foged Christensen, H.; Roedbro, L. [GEO (Denmark); Krogsboell, A. [BYG-DTU (Denmark)

    2002-09-01

    The in-situ stress state in the Valdemar field is unknown, especially with respect to the horizontal stress state. The horizontal stress state (or confining stress) is known to affect the compressibility and compaction properties of a material. The objective of this study is to evaluate the effect of different stress ratios and different loading rates on the compaction properties. Finally, the effect of water flooding (water weakening) on strength and deformation properties is studied. Two triaxial compaction tests, three constant rate of strain (CRS) oedometer tests and two waterflooding tests have been carried out on medium to high porosity non-fractured oil-saturated Valdemar Lower Cretaceous carbonate, representing the Lower Cretaceous Upper Tuxen 1 and Middle Tuxen 1 formations. The deformation properties for the elastic and plastic stress regime have been expressed in terms of the oedometric modulus, K, and a number of reloading moduli, K{sub rel}, for the corresponding fixed horizontal to vertical stress ratios. The compaction tests showed that the reloading moduli increase with increasing confining pressure. The de Waal creep parameters (bc{sub m0}, product of the de Waal dynamic friction parameter and the uniaxial compressibility) is derived from curve fitting of strain/time curves, in order to correlate laboratory to field pore collapse stress. The waterflooding tests indicated a reduction of the pore collapse stress in the order of 1000-1500 psi, comparable to the water weakening effect observed on Upper Cretaceous chalk. Further, a time delay with respect to responding to waterflooding of the material is observed. (au)

  5. A comet could not produce the carbon-14 spike in the 8th century

    CERN Document Server

    Usoskin, Ilya

    2014-01-01

    A mysterious increase of radiocarbon 14C ca. 775 AD in the Earth's atmosphere has been recently found by Miyake et al. (Nature, 486, 240, 2012). A possible source of this event has been discussed widely, the most likely being an extreme solar energetic particle event. A new exotic hypothesis has been presented recently by Liu et al. (Nature Sci. Rep., 4, 3728, 2014) who proposed that the event was caused by a comet bringing additional 14C to Earth. Here we calculated a realistic mass and size of such a comet to show that it would have been huge (~100 km across and 10^{14}-10^{15} ton of mass) and would have produced a disastrous impact on Earth. Such an impact could not remain unnoticed in the geological records and chronicles. The absence of an evidence for such a dramatic event makes this hypothesis invalid.

  6. On the labelling of insuline and insuline derivatives with tritium and carbon-14

    International Nuclear Information System (INIS)

    Two different labelling methods were investigated. By means of the Wilzbach labelling with diaminosuberoylinsuline the insuline is irreversibly altered. As a second method the reductive methylation was used, in doing so it was possible to distinguish between mono and dimethylated parts of the reaction product by using C-14 labelled formaldehyde. Furthermore four N,N-dimethylated insuline derivatives were isolated with yields of 25 until 35%. By using C-14 and h-3 labelled reagents insuline can be labelled doubly. Moreover N-terminal amino groups could be protected irreversibly with this method. Furthermore structure-function investigations and investigations concerning the insuline metabolism were done. (SPI)

  7. Constraints on emissions of carbon monoxide, methane, and a suite of hydrocarbons in the Colorado Front Range using observations of 14CO2

    OpenAIRE

    LaFranchi, B. W; Pétron, G.; Miller, J. B.; S. J. Lehman; Andrews, A. E; E. J. Dlugokencky; Hall, B.; Miller, B. R.; Montzka, S. A.; W. Neff; P. C. Novelli; C. Sweeney; J. C. Turnbull; D. E. Wolfe; P. P. Tans

    2013-01-01

    Atmospheric radiocarbon (14C) represents an important observational constraint on emissions of fossil-fuel derived carbon into the atmosphere due to the absence of 14C in fossil fuel reservoirs. The high sensitivity and precision that accelerator mass spectrometry (AMS) affords in atmospheric 14C analysis has greatly increased the potential for using such measurements to evaluate bottom-up emissions inventories of fossil fuel CO2 (CO2ff), as well as those for other co-emitte...

  8. Syntheses of γ-aminobutyric-1-14C and of α-aminoadipic-6-14C acid from methoxy-3 chloropropyl-magnesium and marked carbon dioxide

    International Nuclear Information System (INIS)

    Carbonation of γ-methoxypropyl-magnesium chloride by CO2 gives γ-methoxy-butyric carboxylic-14C acid with a yield of about 95 per cent. When the latter is treated successively with anhydrous HBr and with diazomethane, methyl carboxylic γ-bromobutyrate-14C is formed. This in turn gives γ-amino-butyric carboxylic-14C acid with an overall yield of 66 per cent with respect to Ba14CO3, when it is condensed with potassium phthalimide and hydrolyzed by acid. By reacting methyl-γ-bromobutyrate-14C with the sodium derivative of ethyl cyanacetamido-acetate in ethanol, followed by an acid hydrolysis, α-aminoadipic-6-14C acid is obtained with an overall yield of 46 per cent with respect to Ba14CO3. (author)

  9. Carbon beam extraction with 14.5 GHz electron cyclotron resonance ion source at Korea Atomic Energy Research Institute.

    Science.gov (United States)

    Lee, Cheol Ho; Oh, Byung-Hoon; Chang, Dae-Sik; Jeong, Sun-Chan

    2014-02-01

    A 14.5 GHz Electron Cyclotron Resonance ion source (ECRIS) has been made to produce C(4+) beam for using a carbon therapy facility and recently tested at KAERI. Highly charged carbon ions have been successfully extracted. When using only CO2 gas, the beam current of C(4+) was almost 14 μA at 15 kV extraction voltage. To get higher current of the C(4+) beam, while optimizing confinement magnetic field configuration (e.g., axial strengths at minimum and extraction side), gas-mixing (CO2/He), and biased disk were introduced. When the gas mixing ratio of the CO2/He gas is 1:8 at an operational pressure of 5 × 10(-7) mbar and the disk was biased to -150 V relative to the ion source body, the highest current of the C(4+) beam was achieved to be 50 μA, more than three times higher than previously observed only with CO2 gas. Some details on the operating conditions of the ECRIS were discussed. PMID:24593482

  10. Synthesis of carbon-14 and tritium labelled forms of bupropion hydrochloride - a novel antidepressant

    International Nuclear Information System (INIS)

    Bupropion hydrochloride (2-tert-butylamino-3'-chloropropiophenone hydrochloride) was synthesized in the [14C]-labelled form with specific activity 36.5mCi/mmol suitable for drug metabolism, distribution and pharmacokinetic studies. The drug was synthesized in the [3H]-labelled form with specific activity 20.5 Ci/mmol suitable for development of a radioimmunoassay procedure. (author)

  11. Carbon-14 labelled nitrogen heterocycles; the syntheses of three phosphodiesterase inhibitors

    International Nuclear Information System (INIS)

    The syntheses of three heterocyclic phosphodiesterase inhibitors are described from a common radiolabelled precursor, namely 2-propoxybenzo[cyano-14C] nitrile. Conversion of the nitrile to the corresponding methyl ketone or amidine allows elaboration of the heterocycles radiolabelled within the ring systems. (Author)

  12. Carbon-14 based determination of the biogenic fraction of industrial CO2 emissions : Application and validation

    NARCIS (Netherlands)

    Palstra, S. W. L.; Meijer, H. A. J.

    2010-01-01

    The C-14 method is a very reliable and sensitive method for industrial plants, emission authorities and emission inventories to verify data estimations of biogenic fractions of CO2 emissions. The applicability of the method is shown for flue gas CO2 samples that have been sampled in I-h intervals at

  13. Interactive effects between carbon allotropes on the mechanical reinforcement of nanocomposites based on poly(1,4-cis-isoprene)

    Science.gov (United States)

    Musto, Sara; Cipolletti, Valeria; Barbera, Vincenzina; Agnelli, Silvia; Pandini, Stefano; Galimberti, Maurizio

    2014-05-01

    Interactive effects of carbon allotropes on the mechanical reinforcement of polymer nanocomposites were investigated by using, as the polymer matrix, poly(1,4-cis-isoprene) (PI) samples from industrial synthesis and from natural sources. Carbon nanotubes (CNT) and nano-graphite with high shape anisotropy (nanoG) were melt blended with PI, as the only fillers or in combination with carbon black (CB), measuring the shear modulus at low strain amplitudes. The nanofiller was found to increase the low amplitude storage modulus of the matrix, with or without CB, by a factor depending on nanofiller type and content. The filler-polymer interfacial area was able to correlate modulus data of composites with CNT, CB and with the hybrid filler system, leading to the construction of a common master curve. The filler networking phenomenon was found to be affected by type and amount of low molecular mass products of PI from natural sources. The correlation between chemical composition, dynamic mechanical and ultimate properties of nanocomposites was investigated. In particular, it was found that low molecular mass components control the ability of elastomeric nano-composites to store or dissipate energy.

  14. Use of 14C-uniformly labelled maize for studying carbon mineralization and humification in three soils (oxisol, mollisol, Andosol

    International Nuclear Information System (INIS)

    Maize plants have been grown for 120 days in a 14CO2 atmosphere under controlled conditions. At the end of this period, the whole plants were dried after the roots have been removed from the substrate culture. The uniformity of labelling of plant materials was then checked by selective extractions. After nine weeks, no very significant differences appear between the total mineralized carbon originating from the different parts of the plants. But differences in mineralization rate were significant during the first two weeks, particularly for water-soluble extracts and even for stalks and leaves. Other results appear as radioactive and total carbon balance before and after incubation. Quite 30% of the added material was mineralized in the three soil samples after nine weeks. The clearest differences were evident in the humified fraction percentage. For instance, in the horizon of the typic Andosol, are the least light fraction and the greatest alkali-soluble humified compounds; this is also true for total carbon. Humus formation is proved to be strongly influenced by soil mineralogy and humus type

  15. 14C dating of freshwater carbonate sediments with special reference to calcareous tufas and laminated lake sediments

    International Nuclear Information System (INIS)

    The sequence of laminated sediment of the lake Gosciaz, Poland, covers more than 13,000 years and is actually the longest sequence known so far. Besides of reconstructing past environmental changes, this sequence offers an excellent possibility for studying natural C-14 variations and calibrating the C-14 time scale in a range beyond 6,000 years B.P. The floating varve chronology based on previously taken sediment cores which cover a period of 9,682 years, has been improved by this study. Relative water level changes of the lake during the past 11,500 years have been reconstructed by means of C-14 and C-13 measurements carried out on carbonate fractions of the lake sediments. Periodical variations in the width of annual layers were found. The periods identified are 11 years and 22 years (solar cycle), 35 years (Bruckner cycle), and 200 years. The ratio of summer layer width and the total width of the annual layer shows secular changes which correlate with paleotemperature records. The duration of the Younger Dryas period was determined by combining the floating varve chronology with isotope and pollen analyses of the sediment material. A value of 1,500 years was found. The study also included radiocarbon dating of calcareous tufa taken from different study areas. 26 refs, 26 figs, 6 tabs

  16. A Chlorine-36 and Carbon-14 Study of the Role of Chlorine in the Forest Ecosystem

    Czech Academy of Sciences Publication Activity Database

    Matucha, Miroslav; Gryndler, Milan; Forczek, Sándor; Schröder, P.; Bastviken, D.; Rohlenová, Jana; Uhlířová, H.; Fuksová, Květoslava

    2007-01-01

    Roč. 50, č. 1 (2007), s. 1-3. ISSN 0362-4803 R&D Projects: GA ČR GA522/02/0874; GA ČR GA526/05/0636 Institutional research plan: CEZ:AV0Z50380511 Keywords : [14C]-synthesis * labeled compounds * tetrahydrocyclopenta[b]indol-3-yl acetic acid Subject RIV: EF - Botanics Impact factor: 1.142, year: 2007

  17. The natural thermoluminescence of meteorites. VI - Carbon-14, thermoluminescence and the terrestrial ages of meteorites

    Science.gov (United States)

    Benoit, P. H.; Jull, A. J. T.; McKeever, S. W. S.; Sears, D. W. G.

    1993-06-01

    A relationship is noted between the natural thermoluminescence (TL) levels and the C-14-derived terrestrial ages for meteorite finds from the U.S. Prairie States and Roosevelt County, NM; those in the Sahara are also in accord with calculated TL decay curves, for 'storage' temperatures equal to the approximate average annual temperatures at individual sites. This discussion is limited to the empirical correspondence between the two methodologies, and to theoretical decay curves for a single 'average' ordinary chondrite.

  18. Carbon-14 methylation of the 2-methylbutyryl side chain of mevinolin and its analogs

    International Nuclear Information System (INIS)

    A one step procedure for the preparation of three labeled mevinolin analogs possessing the 2,2-dimethylbutyryloxy side chain is described. Three lactones were converted into potassium salts of their corresponding di or trihydroxy carboxylic acids from which anionic ester enolates were generated and alkylated with [14]methyl iodide. Workup and purification by reverse phase HPLC provided the three radiochemically pure mevinolin analogs. The labeled lactones were converted into ammonium salts of their corresponding di or trihydroxy acids. (author)

  19. Modelling the transfer of tritium and carbon-14 in the environment

    International Nuclear Information System (INIS)

    The important processes in the transfer of 3H and 14C in the environment are reviewed. Relevant parameters and influencing conditions are discussed for sources, atmospheric and hydrologic dispersion, deposition and reemission, incorporation in the biosphere and dosimetric considerations. The uncertainty in the predictions of dynamic tritium models is about a factor of 10. The parameters and processes to which the models are most sensitive are presented as the basis for future work. (author)

  20. Characterization of airborne particulates by pyrolysis/mass spectrometry and carbon-14 analysis

    Energy Technology Data Exchange (ETDEWEB)

    Voorhees, K.J. (Colorado School of Mines, Golden); Durfee, S.L.; Currie, L.A.; Klouda, G.A.

    1981-08-01

    Pyrolysis/mass spectrometry (Py/MS) has been used to characterize the composition of organics in an ambient air particulate sample from the eastern Utah oil shale lands. The procedure involved collection of the individual contributors, pyrolysis of these samples, and finally a least-squares fitting of the individual contributor spectra to the pyrolysis mass spectrum of the ambient sample. The Py/MS results were verified by using /sup 14/C analysis.

  1. A synthetic approach to carbon-14 labeled anti-bacterial naphthyridine and quinolone carboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Ekhato, I.V.; Huang, C.C. (Parke, Davis and Co., Ann Arbor, MI (United States))

    1993-09-01

    Labeled versions of (S)-clinafloxacin (1) and two napththyridine carboxylic acid anti-bacterial compounds 2 and 3 which are currently in development were synthesized. Preparations started from hitherto unknown bromo compounds 22 and 10, from which the corresponding [sup 14]C-labeled aromatic carboxylic acids 23 and 12 were generated by metal-halogen exchange followed by carboxylation reaction. Details of these preparations are given. (author).

  2. Carbon-14 urea breath test for the diagnosis of Campylobacter pylori associated gastritis

    International Nuclear Information System (INIS)

    Urease in the human gastric mucosa is a marker for infection with Campylobacter pylori (CP), an organism suspected of causing chronic gastritis and peptic ulceration. To detect gastric urease, we examined 32 patients who were being evaluated for possible peptic ulcer disease. Fasting patients were given 10 microCi (370 kBq) of 14C-labeled urea. Breath samples were collected in hyamine at intervals between 1 and 30 min. The amount of 14C collected at these times was expressed as: body weight X (% of administered dose of 14C in sample)/(mmol of CO2 collected). The presence of C. pylori colonization was also determined by examination of multiple endoscopic gastric biopsy specimens. On average, patients who were proven to have C. pylori infection exhaled 20 times more labeled CO2 than patients who were not infected. The difference between infected patients and C. pylori negative control patients was highly significant at all time points between 2 and 30 min after ingestion of the radionuclide (p less than 0.0001). The noninvasive urea breath is less expensive than endoscopic biopsy of the stomach and more accurate than serology as a means of detecting Campylobacter pylori infection. Because the test detects actual viable CP organisms, it can be used to confirm eradication of the bacterium after antibacterial therapy

  3. Effects of entrainment through Oconee Nuclear Station on carbon-14 assimilation rates of phytoplankton

    International Nuclear Information System (INIS)

    Carbon assimilation rates of phytoplankton communities entrained through Oconee Nuclear Station were measured on six dates during 1974. Thermal, mechanical, condenser, and multiple entrainment effects on uptake rates were compared by incubating samples in vitro in controlled-temperature water baths. Duplicate light and dark bottles containing water from four cooling-system locations were exposed to temperatures approximating intake and discharge temperatures. The relationships were variable, but exposure of the hypolimnetic intake water at near-discharge temperatures (thermal effect) stimulated primary productivity in four of six experiments. Multiple entrainment and mechanical effects caused no consistent change in assimilation rates

  4. Carbon-14 immobilization via the Ba(OH)28H2O process

    International Nuclear Information System (INIS)

    The airborne release of 14C from various nuclear facilities has been identified as a potential biohazard due to the long half-life of 14C (5730 yrs) and the ease in which it may be assimilated into the biosphere. At Oak Ridge National Laboratory, technology is under development, as part of the Airborne Waste Management Program, for the removal and immobilization of this radionuclide. Prior studies have indicated that the 14C will likely exist in the oxidized form as CO2 and will contribute slightly to the bulk CO2 concentration of the gas stream, which is airlike in nature (approx. 330 ppMv CO2). The technology under development utilizes the CO2 - Ba(OH)2 8H2O gas-solid reaction with the mode of gas-solid contacting being a fixed bed. The product, BaCO3, possessing excellent thermal and chemical stability, prerequisites for the long-term disposal of nuclear wastes. For optimal process operation, studies have indicated that an operating window of adequate size does exist. When operating within the window, high CO2 removal efficiency (effluent concentrations 99%), and an acceptable pressure drop across the bed (3 kPa/m at 13 cm/s superficial velocity) are possible. This paper will address three areas of experimental investigation. These areas are (1) micro-scale studies on 150-mg samples to provide information concerning surface properties, kinetics, and equilibrium vapor pressures, (2) macro-scale studies on large fixed beds (4.2 kg reactant) to determine the effects of humidity, temperature, and gas flow-rate upon bed pressure drop and CO2 breakthrough, and (3) the design, construction, and initial operation of a pilot unit capable of continuously processing a 34 m3/h (20 ft3/min) air-based gas stream

  5. Equipment for a pyrolytic method of detecting tritium and carbon-14 in food

    International Nuclear Information System (INIS)

    The hydrogen isotope tritium is of main interest in food monitoring because of its special property to permeate metallic material and, thus released, commence exchange reactions. The Federal German Food Research Institute (BFE) has issued a manual for monitoring tritium and C-14 in food, and for the analytical method equipment had to be developed allowing user-friendly, semiautomatic testing. In addition, the pyrolytic method for investigation of biological material, a water purification system, and equipment for preparing water samples for comparison form part of the work under review. The main features of the equipment developed are explained along the instructions given in the manual. (orig./PW)

  6. Age determination of ground-waters by means of carbon 14

    International Nuclear Information System (INIS)

    At present the age determination of ground-waters aged between 1,500 and approximately 40,000 years is only possible by measuring their 14C content. A precise age assignment can be established in slightly mineralised waters, whereas it becomes vague in mineralised waters, particularly in acidulous springs. In general, additional information and data are required about the 13C, D, 18O, 3H, 85Kr and the 39Ar contents, about the ph value, temperature and the principal ions. (DG)

  7. Carbon-14 ages of Antarctic meteorites with accelerator and small-volume counting techniques

    International Nuclear Information System (INIS)

    C-14 measurements were made on six Yamato and Victoria Land meteorites using tandem accelerator mass spectroscopy. The studies brought to 27 the number of Antarctic meteorites that have been examined for terrestrial aging. Details of the spectroscopic method are provided, along with the results in combinations with the data from the other 21 meteorites. It is found that the Yamato meteorites are younger than those found at Allan Hills, implying that two mechanisms may exist for the abundant Antarctic meteorites: exposure where falling due to a paucity of ice, and transport and exposure by sublimating ice

  8. Carbon Nanotube and Nanofiber Exposure Assessments: An Analysis of 14 Site Visits.

    Science.gov (United States)

    Dahm, Matthew M; Schubauer-Berigan, Mary K; Evans, Douglas E; Birch, M Eileen; Fernback, Joseph E; Deddens, James A

    2015-07-01

    Recent evidence has suggested the potential for wide-ranging health effects that could result from exposure to carbon nanotubes (CNT) and carbon nanofibers (CNF). In response, the National Institute for Occupational Safety and Health (NIOSH) set a recommended exposure limit (REL) for CNT and CNF: 1 µg m(-3) as an 8-h time weighted average (TWA) of elemental carbon (EC) for the respirable size fraction. The purpose of this study was to conduct an industrywide exposure assessment among US CNT and CNF manufacturers and users. Fourteen total sites were visited to assess exposures to CNT (13 sites) and CNF (1 site). Personal breathing zone (PBZ) and area samples were collected for both the inhalable and respirable mass concentration of EC, using NIOSH Method 5040. Inhalable PBZ samples were collected at nine sites while at the remaining five sites both respirable and inhalable PBZ samples were collected side-by-side. Transmission electron microscopy (TEM) PBZ and area samples were also collected at the inhalable size fraction and analyzed to quantify and size CNT and CNF agglomerate and fibrous exposures. Respirable EC PBZ concentrations ranged from 0.02 to 2.94 µg m(-3) with a geometric mean (GM) of 0.34 µg m(-3) and an 8-h TWA of 0.16 µg m(-3). PBZ samples at the inhalable size fraction for EC ranged from 0.01 to 79.57 µg m(-3) with a GM of 1.21 µg m(-3). PBZ samples analyzed by TEM showed concentrations ranging from 0.0001 to 1.613 CNT or CNF-structures per cm(3) with a GM of 0.008 and an 8-h TWA concentration of 0.003. The most common CNT structure sizes were found to be larger agglomerates in the 2-5 µm range as well as agglomerates >5 µm. A statistically significant correlation was observed between the inhalable samples for the mass of EC and structure counts by TEM (Spearman ρ = 0.39, P 1 μg m(-3). Until more information is known about health effects associated with larger agglomerates, it seems prudent to assess worker exposure to airborne CNT and CNF

  9. Determination of dose coefficients and urinary excretion function for inhalation of carbon-14-labelled benzene

    International Nuclear Information System (INIS)

    Based on existing pharmacokinetic models for benzene, the distribution and retention of activity after inhalation of 14C-labelled benzene in humans were studied. Six different benzene concentrations from 0.1 to 10,000 ppm (corresponding to activity concentrations between 9.6 x 106 and 9.6 x 1011 Bq m-3) and five exposure times from 0.1 to 1000 min were considered. The cumulated activities in the different organs and tissues and the urinary excretion rates were observed to depend non-linearly on the activity intake. The fraction of activity removed via urine varies between 52 and 10% of the intake. Nevertheless, for times that are long compared to the exposure duration the urinary excretion rate is determined by the activity clearance from adipose tissue and thus decreases at a constant rate. This decrease is common for all exposure conditions examined and thus allowed determining a mean urinary excretion rate and corresponding dose coefficients for committed equivalent doses as well as for the effective dose. The uncertainty of the dose coefficients is estimated to be about 50% for the exposure range covered. A 14-day interval for the incorporation monitoring by urine activity counting seems to be reasonable. (author)

  10. Paleo-vegetation study using dating by 14 C and carbon isotope ratio

    International Nuclear Information System (INIS)

    Different approaches that include biological, geomorphological and botanical studies have been used to infer past climatic changes in the Amazon. Our approach involve the use of 13 C analyses in soil organic matter to infer past vegetation changes based on distinct isotopic composition that characterize C3 and C4 plants, and 14 C is used as dating tool, in two regions of natural Forest and Cerrado, located in Rondonia state. The soil at the Forest site is Podzolico Vermelho Amarelo and the Cerrado site is a Latosol Vermelho Amarelo. Radiocarbon analyses of total soil fraction samples indicate that the organic matter in these soils is at least Holocene in age δ13 C values for total soil organic matter in the forest varies from-28 at the surface to 25% at depth of 2 m, indicating the predominance of a C3 cycle in the last 3 270 yrs. At the Cerrado the δ13 C change from -21 to -14% in the first 30 cm characterizing C4 cycle and changed to -19% at 135 cm, probably characterizing a mixture between C3 and C4 plants and an increase to -16% is observed at 195 cm, again indicating a predominance of C4 plants. This data show that the Cerrado ecosystem was much more dynamics in term of vegetation changes than Forest. (author). 10 refs, 2 figs, 1 tab

  11. Automatic counting and recording unit used for dating by the carbon 14 method; Ensemble de comptage et d'impression automatique utilise pour la datation par la methode du carbone 14

    Energy Technology Data Exchange (ETDEWEB)

    Albertinoli, P.; Galliot, J.; Thommeret, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires. Centre Scientifique de Monaco, Monte Carlo

    1969-07-01

    A description is given of the unit used by the 'Centre Scientifique de Monaco' for low-level beta counting and fitted for radioactive dating by the Carbon 14 method. Built entirely by the laboratory in 1964, on the basis of electronic techniques then recent, it has worked without failure since that time. The proportional counter, its high-voltage negative supply, and the counting chains with visual and printing records are detailed by means of 38 figures which reproduce the counter and the electronic circuits. These are contained in two standard 5 U.I structures. The low-voltage power supply of the whole unit is carried out by plus 12 volts and minus 12 volts storage batteries, buffered on a charger connected on the 110 V alternative line. The proportional counter described is filled with CO{sub 2} under one atmosphere pressure and permits the dating of carbonaceous samples with a maximum of 30.000 + 1.000 years (background 3.96 c.p.m. ) within a moderate time (72 hours). (authors) [French] L'ensemble de comptage pour radioactivite beta a bas niveau, destine a la datation par la methode du carbone 14, utilise au Centre Scientifique de Monaco, est decrit. Entierement construit au laboratoire en 1964, sur la base de techniques electroniques alors recentes, il fonctionne depuis cette date sans defaillance. Le compteur proportionnel, son alimentation haute tension negative et les chaines de comptage transistorisees a affichage et impression sont detailles par 38 schemas reproduisant le compteur et les divers circuits electroniques. Ceux-ci sont contenus dans deux chassis standard 5 UI. L'alimentation basse tension de l'ensemble est obtenue par batteries plus 12 et moins 12 volts montees en tampon sur chargeur alimente par le reseau. Le compteur proportionnel decrit, rempli de CO2 sous une atmosphere, permet de dater les echantillons carbones avec un maximum de 30.000 + 1.000 ans (bruit de fond: 3,96 c.p.m. ) en un temps raisonnable (72 heures

  12. The rates of carbon cycling in several soils from AMS14C measurements of fractionated soil organic matter

    International Nuclear Information System (INIS)

    14C mean residence times (MRT) of fractionated organic matter are reported for three pre-bomb soil profiles. Comparisons of organic matter extracted with acid and base showed that the longest MRTs were associated with the non-acid-hydrolysable fraction. The MRT of organic matter in a soil layer represents a combination of the rates of several processes, including decay to CO2 and transport out of the layer. In some instances (notably in the A horizon of the Podzol soil studied in this paper), the MRT is dominated by the rate of transport, rather than the rate of decay. Thus it is important to use the distribution and balance of carbon in the soil profile to assess the meaning of the MRT with respect to influencing atmospheric CO2

  13. Incorporation of 14C glucose into glycogen and glucose-6-phosphate dehydrogenase activity in rat brain following carbon monoxide intoxication

    International Nuclear Information System (INIS)

    Incorporation of 14C glucose into glycogen and glucose-6-phosphate dehydrogenase activity in rat brain following carbon monoxide intoxication was studied. In brains of rats tested on the 20, 30 and 60th minute of exposure to CO and immediately after removal from the chamber the enzyme activity showed no essential deviation from the control level. In the group of rats tested 1 hour after taking them out from the chamber increase of the enzyme activity was noticed, amounting to about 33% of the control value. The brains tested 24 hours after exposure showed the largest increase of the enzyme activity by about 94%. In the next time periods, 48 and 72 hours after intoxication, the enzyme activity was decreasing. The glycogen content in brains of control animals increased 3 hours after CO intoxication by about 69%. The increase of glycogen synthesis was expressed by increase of the total radioactivity, which amounted to 160% of the control value. (Z.M.)

  14. Influence of a carbamate pesticide on growth, respiration (14C)-carbon metabolism and symbiosis of a Rhizobium sp

    International Nuclear Information System (INIS)

    Addition of aldicarb (2 methyl-2(methyl thio) propionaldehyde-O-methyl carbamoyl oxime) in the growth medium enhanced the growth of Rhizobium sp. (cowpea group) at 2ppm level while an inhibition was observed at the normal (5 ppm) and higher (10 ppm) concentrations. Respiration of the cells was also inhibited by 5 and 10 ppm levels of the chemical eventhough a stimulation was observed at 2 ppm (lower) concentration. The insecticide, when incorporated at 5 and 10 ppm levels in the medium increased the 14C-glucose incorporation and considerably altered the assimilation of the radioactive carbon in different fractions of rhizobium cells. Soil application of this insecticide (Temik 10 G) reduced the number of nodules formed and the total nitrogen content in cowpea plants inoculated with the Rhizobium sp. but enhanced the dry matter production of cowpea plants. (Auth.)

  15. Organic matter inputs to soil after growth of carbon-14-nitrogen-15 labeled maize

    International Nuclear Information System (INIS)

    After growth of doubly labeled (14C and 15N) maize (Zea mays L.), two loamy soils were labeled by root exudation and rhizodeposition, and by direct microbial immobilization of N. Fresh roots were than carefully separated and washed, eliminating organic and organomineral cementing agents by acid and alkaline solubilizing reagents, and the remaining insoluble humin was water dispersed in order to separate coarse, medium, and fine fractions. At harvest time, fresh roots represented 85% of the total C input, and rhizodeposition 15%. Sixty to 70% of the N input was still in living roots at this time, and other organic forms of N were more a result of microbial activity than of rhizodeposition. The largest and most homogeneous organic fraction was the finest insoluble fraction, in which about half of the label for both C and N was found

  16. Interactions between 59Fe(14C)EDTA and soils containing calcium carbonate

    International Nuclear Information System (INIS)

    Interaction between FeEDTA and calcareous soils was followed over a period of four weeks using a radiotracer technique, and a kinetic evaluation of the results was performed. 59Fe served to determine the quantity of iron, 14C to assay for EDTA and 45Ca to measure calcium. During the experiment, i.e. within four weeks in case of the chernozem soil 61% and in case of the clayey meadow soil 51% of the iron chelate disappeared from the solution. The loss in soluble iron was partly due to a rapid sorption process of about an hour and partly due to the slow decomposition of FeEDTA to Fe(OH)3. The two processes could be separated using the Christiansen equation. (author) 9 refs.; 1 figs.; 2 tabs

  17. Enzymatic determination of carbon-14 labeled L-alanine in biological samples

    International Nuclear Information System (INIS)

    A method for determination of L-alanine-specific radioactivity in biological samples is presented. This method is based on the specific enzymatic transformation of L-alanine to pyruvic acid hydrazone catalyzed by the enzyme L-alanine dehydrogenase, formation of the pyruvic acid 2,4-dinitrophenylhydrazone derivative, and quantitative trapping in Amberlite XAD-7 columns, followed by radioactivity counting of the lipophilic eluate. No interferences from other 14C-labeled materials such as D-glucose, glycerol, L-lactate, L-serine, L-glutamate, L-phenylalanine, glycine, L-leucine, and L-arginine were observed. This inexpensive and high-speed method is applicable to the simultaneous determination of L-alanine-specific radioactivity for a large number of samples

  18. Partitioning sources of recharge in environments with groundwater recirculation using carbon-14 and CFC-12

    Science.gov (United States)

    Bourke, Sarah A.; Cook, Peter G.; Dogramaci, Shawan; Kipfer, Rolf

    2015-06-01

    Groundwater recirculation occurs when groundwater is pumped from an aquifer onto the land surface, and a portion of that water subsequently infiltrates back to the aquifer. In environments where groundwater is recirculated, differentiation between various sources of recharge (e.g. natural rainfall recharge vs. recirculated water) can be difficult. Groundwater age indicators, in particular transient trace gases, are likely to be more sensitive tracers of recharge than stable isotopes or chloride in this setting. This is because, unlike stable isotopes or chloride, they undergo a process of equilibration with the atmosphere, and historical atmospheric concentrations are known. In this paper, groundwater age indicators (14C and CFC-12) were used as tracers of recharge by surplus mine water that is discharged to streams. Ternary mixing ratios were calculated based on 14C and CFC-12 concentrations measured along three transects of piezometers and monitoring wells perpendicular to the creeks, and from dewatering wells. Uncertainty in calculated mixing ratios was estimated using a Monte Carlo approach. Ternary mixing ratios in dewatering wells suggest that recharge by mine water accounted for between 10% and 87% of water currently abstracted by dewatering wells. The calculated mixing ratios suggest that recharge by mine water extends to a distance of more than 550 m from the creeks. These results are supported by seepage flux estimates based on the water and chloride balance along the creeks, which suggest that 85-90% of mine water discharged to the creeks recharges the aquifer and recharge by mine water extends between 110 and 730 m from the creeks. Mixing calculations based on gaseous groundwater age indicators could also be used to partition recharge associated with agricultural irrigation or artificial wetland supplementation.

  19. Carbon-14 immobilization via the Ba(OH)2.8H2O process

    International Nuclear Information System (INIS)

    The airborne release of 4C from varous nuclear facilities has been identified as a potential biohazard due to the long half-life of 14C (5730 y) and the ease with which it may be assimilated into the biosphere. At ORNL, technology has been developed for the removal and immobilization of this radionuclide. Prior studies have indicated that 14C will likely exist in the oxidized form as CO2 and will contribute slightly to the bulk CO2 concentration of the gas stream, which is airlike in nature (approx. 330 ppmv CO2). The technology that has been developed utilizes the CO2-Ba(OH)2.8H2O gas-solid reaction with the mode of gas-solid contacting being a fixed bed. The product, BaCO3, possesses excellent thermal and chemical stability, prerequisites for the long-term disposal of nuclear wastes. For optimal process operation, studies have indicated that an operating window of adequate size does exist. When operating within the window, high CO2 removal efficiency (effluent concentrations 99%), and an acceptable pressure drop across the bed (3 kPa/m at a superficial velocity of 13 cm/s) are possible. This paper addresses three areas of experimental investigation: (1) microscale studies on 150-mg samples to provide information concerning surface properties, kinetics, and equilibrium vapor pressures; (2) macroscale studies on large fixed beds (4.2 kg of reactant) to determine the effects of humidity, temperature, and gas flow rate upon bed pressure drop and CO2 breakthrough; and (3) design, construction, and initial operation of a pilot unit capable of continuously processing a 34-m3/h (20-ft3/min) air-based gas stream

  20. Synthesis of methyl [(chloro-2 ethyl)-3 nitroso-3 Ureido]-3 Didesoxy-2,3 α-D-Arabino-hexopyrannoside labelled with carbon-14 or carbon-13 (CY 233 - SR 90008)

    International Nuclear Information System (INIS)

    CY 233 (Ecomustine or SR 90098) is a new antitumour nitrosourea: it is characterized by a 2-chloroethylnitrosourea substituent on a dideoxycarbohydrate. It has been labelled with 14C on a) the carbonyl group of the urea in four stages starting with 14COCl2, b) the second carbon of the chloroethyl group in four stages starting with [14C] ethanolamine, and c) on the methyl group on the anomeric centre of the carbohydrate in three stages starting with 14CH3OH. The final position was also labelled with 13C starting with 13CH3OH. These differently labelled compounds are suitable for mechanistic studies of antitumour activity. (author)

  1. Dose assessments related to management options for a carbon 14-contaminated environment around the former laboratory of the Isotopchim Company in Ganagobie

    International Nuclear Information System (INIS)

    After a presentation of the site of a laboratory which released carbon 14 into the environment, a general presentation of carbon 14, of its transfer processes to the ecosystem and of the potential exposures, this report describes the contamination of the site as it appears from measurements performed on samples in 2001 and in 2009. Then the authors discuss different possible scenarios and their consequences: burning of trees belonging to a park, grinding of composting of wastes from the park, potential exposure ways due to the soil (ingestion or inhalation)

  2. Carbon cycling in primary production bottle incubations: inferences from grazing experiments and photosynthetic studies using 14C and 18O in the Arabian Sea

    Science.gov (United States)

    Laws, Edward A.; Landry, Michael R.; Barber, Richard T.; Campbell, Lisa; Dickson, Mary-Lynn; Marra, John

    Estimates of photosynthesis based on the incorporation of 14C-labeled inorganic carbon into particulate carbon were compared to estimates of gross photosynthesis based on net O 2 production and the production of 18O2 from H218O during the US Joint Global Ocean Flux Study (US JGOFS) Arabian Sea process cruises. For samples incubated below the surface and at optical depthsphotorespiration, dark respiration, excretion, and grazing effects on the two estimates of photosynthesis. The 14C uptake : gross photosynthesis ratio was distinctly higher (0.62) for samples incubated at the surface. This result is likely due to UV light effects, since the O 2 and 14C incubations were done in quartz and polysulfone bottles, respectively. The 14C uptake : gross photosynthesis ratio was lower (0.31) for bottles incubated at optical depths>3. This result probably reflects an increase in the ratio of dark respiration to net photosynthesis in the vicinity of the compensation light level.

  3. Soil aggregate fraction-based 14C analysis and its application in the study of soil organic carbon turnover under forests of different ages

    Institute of Scientific and Technical Information of China (English)

    TAN WenBing; ZHOU LiPing; LIU KeXin

    2013-01-01

    There still exist uncertainties in the trend,magnitude and efficiency of carbon sequestration with regard to the changes in soil organic carbon (SOC) pools after afforestation.In this study,SOC turnover times of the meadow steppe and planted forests at Saihanba Forest Station of Hebei Province,China are estimated by means of the radiocarbon (14C) method.Our results show that the SOC turnover times can be as long as from 70 to 250 years.After planting the Pinus sylvestri var.mongolica in the Leymus chinensis meadow steppe,the turnover times of organic carbon in both bulk samples and soil aggregate fractions of the topsoils are decreased with an increase of the stand age.Such a lowering of the turnover time would cause an increase in soil CO2 flux,implying that afforestation of grassland may reduce the capacity of topsoil to sequestrate organic carbon.Combined stable isotope and 14C analyses on soil aggregate fractions suggest that there are different responses to afforestation of grassland between young and old carbon pools in topsoils.In the young and middle-age planted forests,the proportion of CO2 emission from the older soil carbon pool shows an increasing trend.But in the mature planted forest,its proportion tends to decline,indicating that the stand age may influence the soil carbon sequestration mechanism.The CO2 emission from the topsoils estimated using the 14C method is relatively low compared to those by other methods and may be caused by the partial isolation of the young carbon component from the soil aggregates.For more accurate estimation of CO2 flux,future studies should therefore employ improved methodology for more effective separation of different soil carbon components before isotope analyses.

  4. Metabolism and distribution of 14C- and 35S-labeled carbon disulfide in immature rats of different ages

    International Nuclear Information System (INIS)

    The metabolism and distribution of 14C- and 35S-CS2 was examined in 1-, 5-, 10-, 20-, 30-, and 40-day-old rats. During a 3-hr period following an ip dose of 14C-CS2, 58-83% of the dose was expired as CS2 and 4-9% was metabolized to expired CO2 depending on age. Thirty- and forty-day-old rats metabolized significantly more CS2 to CO2 and expired significantly less CS2 than 1- through 20-day-old rats. At the end of the measured expiration period, only biotransformation products of CS2, which were in part covalently bound, remained in tissues from rats of all ages. Tissue levels of 35S-CS2-derived radioactivity exceeded levels of 14C-CS2-derived radioactivity indicating that sulfur metabolites free from the carbon atom of CS2 were formed in rats as young as 1 day of age. The 35S-CS2-derived radioactivity per g of tissue and thus 35S covalently bound to tissue protein was significantly higher in 1- through 20-day-old rats than in 30- and 40-day-old rats. Twenty-four hr after dosing, up to 13 times more 35S-labeled metabolites were covalently bound in organs from 1-day-old rats than in similar organs from 40-day-old rats. The results showed that elimination of the biotransformation products of CS2, in particular the covalently binding sulfur metabolites, was prolonged in newborn rats in comparison to 40-day-old rats

  5. Synthesis of carbon-14 labelled CD 271 (6-[3-(1-adamantyl)-4-methoxyphenyl]-2-naphthoic acid): a potential new agent for dermatology

    International Nuclear Information System (INIS)

    6-[3-(1-Adamantyl)-4-methoxyphenyl]-2-naphthoic acid, a promising new compound for the treatment of disorders of keratinization, has been synthesized in [14C]-labelled form from barium[14C]-carbonate via labelled benzene. Benzene-[U-14C] was converted to 4-bromo-methoxybenzene-[phenyl-U-14C] in six steps. Introduction of the adamantyl ring was carried out using 1-acetoxyadamantane under acid catalysis. 2-(1-Adamantyl)-4-bromo-methoxybenzene-[phenyl-U-14C] was converted to a zincate and coupled with methyl 6-bromo-2-naphthoate using a nickel catalyst. The product of the aryl coupling reaction was then saponified to give 6-[3-(1-adamantyl)-4-methoxyphenyl-[phenyl-U-14C

  6. Carbon-14 transfer into potato plants following a short exposure to an atmospheric 14CO2 emission: observations and model predictions.

    Science.gov (United States)

    Melintescu, A; Galeriu, D; Tucker, S; Kennedy, P; Siclet, F; Yamamoto, K; Uchida, S

    2013-01-01

    To improve the understanding of the environmental (14)C behaviour, the International Atomic Energy Agency (IAEA) coordinated a Tritium and C-14 Working Group (T&C WG) in its EMRAS (Environmental Modelling for Radiation Safety) programme. One of the scenarios developed in the frame of T&C WG involved the prediction of time dependent (14)C concentrations in potato plants. The experimental data used in the scenario were obtained from a study in which potatoes (Solanum tuberosum cv. Romano) were exposed to atmospheric (14)CO(2) in a wind tunnel. The observations were used to test models that predict temporal changes in (14)C concentrations in leaves at each sampling time for each experiment and (14)C concentrations in tubers at the final harvest of each experiment. The experimental data on (14)C dynamics in leaves are poorly reproduced by most of the models, but the predicted concentrations in tubers are in good agreement with the observations. PMID:22995861

  7. Nuclear graphite waste's behaviour under disposal conditions: Study of the release and repartition of organic and inorganic forms of carbon 14 and tritium in alkaline media

    International Nuclear Information System (INIS)

    23000 tons of graphite wastes will be generated during dismantling of the first generation of French reactors (9 gas cooled reactors). These wastes are classified as Long Lived Low Level wastes (LLW-LL). As requested by the law, the French National Radioactive Waste Management Agency (Andra) is studying concepts of low-depth disposals.In this work we focus on carbon 14, the main long-lived radionuclide in graphite waste (5730 y), but also on tritium, which is the main contributor to the radioactivity in the short term. Carbon 14 and tritium may be released from graphite waste in many forms in gaseous phase (14CO2, HT...) or in solution (14CO32-, HTO...). Their speciation will strongly affect their migration from the disposal site to the environment. Leaching experiments, in alkaline solution (0.1 M NaOH simulating repository conditions) have been performed on irradiated graphite, from Saint-Laurent A2 and G2 reactors, in order to quantify their release and characterize their speciation. The studies show that carbon 14 exists in both gaseous and aqueous phases. In the gaseous phase, release is weak (≤0.1%) and corresponds to oxidizable species. Carbon 14 is mainly released into liquid phase, as both inorganic and organic species. 65% of released fraction is inorganic and 35% organic carbon. Two tritiated species have been identified in gaseous phase: HTO and HT/Organically Bond Tritium. More than 90% of tritium in that phase corresponds to HT/OBT. But release is weak (≤0.1%). HTO is mainly in the liquid phase. (author)

  8. ICC resistance of thin-walled tubes of super low carbon steel Kh17N14M3, alloyed with nitrogen

    International Nuclear Information System (INIS)

    The tendency to intercrystallite corrosion (ICC) in the range of 400-750 deg CV and 1-1000 h of thin-walled (0.3 mm) tubes of steel Kh17N14M3 was studied. Electrochemical investigations confirmed high ICC resistance of the tubes from particularly low-carbon experimental steels

  9. Accuracy and precision of 14C-based source apportionment of organic and elemental carbon in aerosols using the Swiss_4S protocol

    Science.gov (United States)

    Mouteva, G. O.; Fahrni, S. M.; Santos, G. M.; Randerson, J. T.; Zhang, Y.-L.; Szidat, S.; Czimczik, C. I.

    2015-09-01

    Aerosol source apportionment remains a critical challenge for understanding the transport and aging of aerosols, as well as for developing successful air pollution mitigation strategies. The contributions of fossil and non-fossil sources to organic carbon (OC) and elemental carbon (EC) in carbonaceous aerosols can be quantified by measuring the radiocarbon (14C) content of each carbon fraction. However, the use of 14C in studying OC and EC has been limited by technical challenges related to the physical separation of the two fractions and small sample sizes. There is no common procedure for OC/EC 14C analysis, and uncertainty studies have largely focused on the precision of yields. Here, we quantified the uncertainty in 14C measurement of aerosols associated with the isolation and analysis of each carbon fraction with the Swiss_4S thermal-optical analysis (TOA) protocol. We used an OC/EC analyzer (Sunset Laboratory Inc., OR, USA) coupled to a vacuum line to separate the two components. Each fraction was thermally desorbed and converted to carbon dioxide (CO2) in pure oxygen (O2). On average, 91 % of the evolving CO2 was then cryogenically trapped on the vacuum line, reduced to filamentous graphite, and measured for its 14C content via accelerator mass spectrometry (AMS). To test the accuracy of our setup, we quantified the total amount of extraneous carbon introduced during the TOA sample processing and graphitization as the sum of modern and fossil (14C-depleted) carbon introduced during the analysis of fossil reference materials (adipic acid for OC and coal for EC) and contemporary standards (oxalic acid for OC and rice char for EC) as a function of sample size. We further tested our methodology by analyzing five ambient airborne particulate matter (PM2.5) samples with a range of OC and EC concentrations and 14C contents in an interlaboratory comparison. The total modern and fossil carbon blanks of our setup were 0.8 ± 0.4 and 0.67 ± 0.34 μg C, respectively

  10. Ventilation of the deep Greenland and Norwegian seas: evidence from krypton-85, tritium, carbon-14 and argon-39

    International Nuclear Information System (INIS)

    On leg 5 of the TTO expedition, the distributions of 85Kr, tritium, 14C, 39Ar, temperature, salinity, oxygen, carbon dioxide and nutrients were measured in the Greenland and Norwegian seas. These observations support previous observations that Greenland Sea Deep Water is formed by a deep convective process within the Greenland gyre. They also support AAGAARD et al.'s (1985, Journal of Geophysical Research, 90, 4833-4846) new hypothesis that Norwegian Sea Deep Water forms from a mixture of Greenland Sea Deep Water and Eurasian Basin Deep Water. Volume transports estimated from the distributions of 85Kr, tritium, 14C and 39Ar range from 0.53 to 0.74 Sv for exchange between the surface and deep Greenland Sea and from 0.9 to 1.47 Sv for exchange between the deep Greenland and deep Norwegian Seas. The residence time of water and the deep Greenland Sea with respect to exchange with surface water ranges from 24 to 34 years reported by PETERSON and ROOTH (1976, Deep-Sea Research, 23, 273-283) and 35-42 years reported by BULLISTER and WEISS (1983, Science, 221, 265-268). The residence time of water in the deep Norwegian Sea with respect to exchange with the deep Greenland Sea ranges from 19 to 30 years compared to 97-107 years reported by PETERSON and ROOTH (1976) and 10-28 years reported by BULLISTER and WEISS (1983). The oxygen consumption rate was estimated to be at most 1.04 μM kg-1 y-1 for the deep Greenland Sea and to be between 0.47 and 0.79 μM kg-1 y-1 for the deep Norwegian Sea. (author)

  11. New {sup 230}Th/U and {sup 14}C ages from Lake Lahontan carbonates, Nevada, USA, and a discussion of the origin of initial thorium

    Energy Technology Data Exchange (ETDEWEB)

    Lin, J.C.; Broecker, W.S.; Anderson, R.F. [Lamont-Doherty Earth Observatory of Columbia Univ., Palisades, NY (United States)] [and others

    1996-08-01

    Five sets of coeval lacustrine carbonate samples from Pleistocene Lake Lahontan in western Nevada were dated by both the AMS {sup 14}C and {sup 230}Th/U isochron methods. All five groups of samples were analyzed for U-Th isotopes by alpha spectrometry and one of the groups was additionally measured by thermal and secondary ionization mass spectrometry (TIMS and SIMS) for comparison. The {sup 14}C ages were corrected to calendar years using the calibration curve recommended by Bard et al. (1992). Without local reservoir correction on the {sup 14}C ages mean {sup 230}Th/U isochron ages of some sets are apparently older than their calendar-corrected {sup 14}C ages by up to 2300 years. Modern carbon contamination of these carbonate samples through recrystallization or deposition of secondary calcite is likely to be responsible for part of the age discrepancies. We explored additional biases associated with the isochron ages, maybe produced by the presence of initial Th coprecipitated from the lake water. It can be shown that if dissolved (hydrogenous) Th is directly incorporated into the pure carbonates, then the three-component mixing among (1) detrital Th, (2) hydrogenous Th adsorbed on detritus, and (3) hydrogenous Th incorporated by the carbonate can introduce a positive age bias. We have developed an approach to estimate the magnitude of this bias of the Lake Lahontan carbonates. The preliminary estimates suggest a positive age bias of 1000 to 2000 years for two sets of the samples. 49 refs., 10 figs., 9 tabs.

  12. Radioactive carbon-14 dating of ground waters in IPEN for evaluation of water resources in Rio Grande do Norte and Parana basin

    International Nuclear Information System (INIS)

    14C dating of deep ground waters from Potiguar basin and Parana basin was carried out to identify zones of recharge. In all 28 samples, five from Potiguar basin and 23 from Parana basin were analyzed for 14C. The methods of sample collection and analysis are described. The analysis consists of transforming carbon of the sample to benzene, by synthesis process involving four steps i.e. production of carbon dioxide, production of lithium carbide, hydrolysis to acetylene and catalytic polymerization to bezene. The specific activity of the synthertized benzene is measured by liquid scintillation counting. The corrections for initial 14C content have been made by using the model of Vogel. (Author)

  13. Effects of time passage and distance on distribution of carbon-14 among parts of rice during growth period at Korean CANDU plant

    International Nuclear Information System (INIS)

    The pattern of carbon-14 (C-14) distribution among parts of rice growing in the vicinity of the Korean CANDU plant during the growth period was investigated. Six-time samplings of rice and air were performed in seven fields from rice planting to harvest, and the measurements of C-14 content were made by using liquid scintillation counter on the air and each of available parts of the rice such as root, stem, crust and ear. The results illustrated that C-14 showed a relatively even distribution among parts of rice during the growth period implying C-14 accumulation was more dependent on interactions among the parts such as transportation of nutrients than on photosynthesis occurring only in stem that has chlorophyll. Also it was observed that the difference of C-14 concentration between each part of rice and the air decreased with time indicating that the time was needed for C-14 to reach equilibrium between both sides. The radius within which C-14 released from the Wolsong plant could have a significant effect on the C-14 concentrations of the parts was observed to be about 5 km. (author)

  14. Study on the dynamics of release of carbon-14 labelled herbicides from controlled-release formulations in water

    International Nuclear Information System (INIS)

    Experiments were conducted to study the processes governing the release of carbon-14 labelled butachlor and thiobencarb herbicides from two type of controlled-release (CR) formulations into water. The formulations were i) herbicides uniformly dispersed in a mixture of calcium alginate and kaolin and ii) herbicides adsorbed on corn cob granules which were then coated with a mixture of polyvinyl acetate (PVA) and polyoxyethylene glycol (POEG). Theoretical models and corresponding equations were developed and the experimental data for the release rate of the two herbicides was compared with the models. The results indicated that the release of the herbicides from the alginate formulations was governed by diffusion process; whereas, the release from the corn cob formulations was thermodynamic process. The diffusion of the herbicides from the alginate granules was inversely related to the thickness of the granule, with slower release from the larger granules and vice versa. The release of the herbicides from the corn cob granules was related to the type and composition of the polymer mixture on the surface of the granules. The study showed that the rate of release of the herbicides was faster from the corn cob formulations than the alginate formulations. (author). Abstract only

  15. Propylene carbonate quantification by its derivative 3,5-diacetyl-1,4-dihydro-2,6-lutidine.

    Science.gov (United States)

    Grizić, Daris; Heimer, Pascal; Vranić, Edina; Imhof, Diana; Lamprecht, Alf

    2016-05-01

    Propylene carbonate (PC) is a non-toxic solvent currently used in various pharmaceutical formulations. Consequently, a simple, cost-effective and most accurate analytical method for the quantification of this optical inert solvent is of major interest. Based on a consecutive three-step reaction 3,5-diacetyl-1,4-dihydro-2,6-lutidine was obtained from PC and used for quantification by either UV and fluorescent detection. Data were compared with results from LC-ESI-MS as a reference method. After using Mandel's test for linearity assessment of the calibration curves, linear fitting was used for LC-ESI-MS and spectrofluorimetry, while a polynomial 3rd order curve fitting was used for spectrophotometry. High intra- and inter-day precision as well as high accuracy were confirmed for all three analytical methods (spectrophotometry, spectrofluorimetry and LC-ESI-MS). The comparison of all three methods was assessed using correlation coefficients and Bland-Altman plots, both showing satisfying results with a high degree of agreement. The new method confirmed its applicability for PC quantification in two formulations, namely a PC-enriched cream and polyester microimplants. This new quantification method for PC is a reliable alternative to highly sophisticated chromatographic methods. PMID:26946012

  16. The evolution of a tropical rainforest/grassland mosaic in southeastern Brazil since 28,000 14C yr BP based on carbon isotopes and pollen records

    Science.gov (United States)

    Ruiz Pessenda, Luiz Carlos; De Oliveira, Paulo Eduardo; Mofatto, Milene; de Medeiros, Vanda Brito; Francischetti Garcia, Ricardo José; Aravena, Ramon; Bendassoli, José Albertino; Zuniga Leite, Acácio; Saad, Antonio Roberto; Lincoln Etchebehere, Mario

    2009-05-01

    The lack of paleoecological records from the montane Atlantic Rainforest of coastal Brazil, a hotspot of biological diversity, has been a major obstacle to our understanding of the vegetational changes since the last glacial cycle. We present carbon isotope and pollen records to assess the impact of the glaciation on the native vegetation of the Serra do Mar rainforest in São Paulo, Brazil. From ca. 28,000 to ˜ 22,000 14C yr BP, a subtropical forest with conifer trees is indicative of cool and humid conditions. In agreement carbon isotopic data on soil organic matter suggest the presence of C 3 plants and perhaps C 4 plants from ˜ 28,000 to ˜ 19,000 14C yr BP. The significant increase in the sedimentation rate and algal spores from ˜ 19,450 to ˜ 19,000 14C yr BP indicates increasing humidity, associated to an erosion process between ˜ 19,000 and ˜ 15,600 14C yr BP. From ˜ 15,600 14C yr BP to present there is a substantial increase in arboreal elements and herbs, indicating more humid and warmer climate. From ˜ 19,000 to ˜ 1000 14C yr BP, δ 13C values indicated the predominance of C 3 plants. These results are in agreement with studies in speleothems of caves, which suggest humid conditions during the last glacial maximum.

  17. Experimental urolithiasis : Part V - Role of dietary carbonate in the etiology of the disease using radioactive 14C-potassium bicarbonate

    International Nuclear Information System (INIS)

    Incorporation of 14C-potassium bicarbonate in rat kidney, bladder, blood and bladder contents was assessed to study the role of dietary carbonate in urolithiasis. Male rats (23) were fed carbonate-free diet and water, 19 of which were surgically induced for bladder stones and the remaining sham-operated. Total elimination of carbonate both from diet and drinking water lowered the incidence of stone by 63% as compared with a parallel group fed normal diet and tap water. At sacrifice, 5 μCi of 14C-KHCO3 were injected (ip) into each animal. Higher counts in the serum and kidney, than that in the contents of the bladder were noted on both types of diet. Feeding of normal diet and tap water, led to a significant increase (P14C uptake, and their relative distribution (as indicated by the total counts incorporated) in the various tissues of stoneformers and non-stoneformers as compared to controls, reflects individual differences in the handling of carbonate by each tissue. (auth.)

  18. Test of the suitability of ECOPATH/ECOSIM modelling software as a compliment to estimate flows of carbon, C-14 and radionuclides in the Oeregrundsgrepen area

    Energy Technology Data Exchange (ETDEWEB)

    Sandberg, Johannes [Stockholm Univ. (Sweden). Dept. of Systems Ecology

    2004-04-01

    In this study it was evaluated whether the ECOPATH with ECOSIM software could be used as a standard platform to facilitate for radioecologists to construct and study transport and accumulation of radionuclides in aquatic food webs. The evaluation was based upon: 1) a previously published food web model of carbon/carbon-14 flow for the Oeregrundsgrepen area, Baltic Sea, 2) a generic model, 3) an ECOSIM model and 4) an ECOTRACE model. The results presented clearly shows that there is great potential for a successful development of this scientific approach in the future. The original carbon flows and assumptions was easily incorporated into the ECOPATH with ECOSIM modelling environment. The carbon flows differed only negligible between the two models, except for the benthic flows, which was more accurately described in this study. Further, by using ECOPATH it was easily discovered that the growth efficiencies used in the original model was quite high, being 47% for most of the heterotrophs, which are high from an ecological point of view. However, that is probably due to differences in how the carbon flows have been estimated in the original versus the present study. It is likely, however that the carbon demand has been underestimated in the original model. The generic model was parameterised from data available through the software as well from the diets and assumptions used in the original carbon model. The use of these parameters resulted in carbon flows, which was between 0.7 to 11 times the flows estimated by the ECOPATH model. The difference was greatest for primary producers being 3.7 to 11 times the original flows. Thus, depending on the question one is addressing it was suggested that the use of generic parameters is best for making test models of carbon and radionuclide flows in ecosystems, where the data set for validation is limited. Finally, the ECOPATH and ECOSIM model was well suited to drive a C-14 flow model, such as ECOTRACER for each of the

  19. Test of the suitability of ECOPATH/ECOSIM modelling software as a compliment to estimate flows of carbon, C-14 and radionuclides in the Oeregrundsgrepen area

    International Nuclear Information System (INIS)

    In this study it was evaluated whether the ECOPATH with ECOSIM software could be used as a standard platform to facilitate for radioecologists to construct and study transport and accumulation of radionuclides in aquatic food webs. The evaluation was based upon: 1) a previously published food web model of carbon/carbon-14 flow for the Oeregrundsgrepen area, Baltic Sea, 2) a generic model, 3) an ECOSIM model and 4) an ECOTRACE model. The results presented clearly shows that there is great potential for a successful development of this scientific approach in the future. The original carbon flows and assumptions was easily incorporated into the ECOPATH with ECOSIM modelling environment. The carbon flows differed only negligible between the two models, except for the benthic flows, which was more accurately described in this study. Further, by using ECOPATH it was easily discovered that the growth efficiencies used in the original model was quite high, being 47% for most of the heterotrophs, which are high from an ecological point of view. However, that is probably due to differences in how the carbon flows have been estimated in the original versus the present study. It is likely, however that the carbon demand has been underestimated in the original model. The generic model was parameterised from data available through the software as well from the diets and assumptions used in the original carbon model. The use of these parameters resulted in carbon flows, which was between 0.7 to 11 times the flows estimated by the ECOPATH model. The difference was greatest for primary producers being 3.7 to 11 times the original flows. Thus, depending on the question one is addressing it was suggested that the use of generic parameters is best for making test models of carbon and radionuclide flows in ecosystems, where the data set for validation is limited. Finally, the ECOPATH and ECOSIM model was well suited to drive a C-14 flow model, such as ECOTRACER for each of the

  20. Physicochemical characteristics, oxidative capacities and cytotoxicities of sulfate-coated, 1,4-NQ-coated and ozone-aged black carbon particles

    Science.gov (United States)

    Li, Qian; Shang, Jing; Liu, Jia; Xu, Weiwei; Feng, Xiang; Li, Rui; Zhu, Tong

    2015-02-01

    Black carbon (BC) particles play important roles in climate change, visibility impairment, atmospheric reaction process, and health effect. The aging processes of BC alter not only atmospheric composition, but also the physicochemical characteristics of BC itself, thus impacting the environment and health effects. Here, three types of BC including sulfate-coated, 1,4-naphthoquinone (1,4-NQ)-coated, and O3-aged BC are presented. The morphologies, structures, extraction components, the amount of water-soluble organic carbon (WSOC) and free radical intensities of the three types of BC particles are examined by transmission electron microscopy, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), ultraviolet-visible spectrophotometry, total organic carbon detector and electron paramagnetic resonance, respectively. Dithiothreitol (DTT) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide assays are utilized to assess the changes in oxidative capacity and cytotoxicity towards murine alveolar macrophage cells. The orders of DTT activities and cytotoxicities of the particles are both arranged as follows: BC/1,4-NQ > BC/O3 > BC > BC/sulfate, mainly because 1,4-NQ owned high oxidative potential and cytotoxicity, while sulfate did not exhibit oxidative capacity and cytotoxicity. The insoluble components of particles contribute most of the total DTT activity, whereas either water or methanol extract is minor contributor. DTT activity was positively correlated with both WSOC content and free radical intensity, with the correlation between DTT activity and WSOC content was stronger than that between DTT activity and free radical intensity.

  1. {sup 14}C chronology of the oldest Scandinavian church in use. An AMS/PIXE study of lime lump carbonate in the mortar

    Energy Technology Data Exchange (ETDEWEB)

    Lindroos, Alf, E-mail: alf.lindroos@abo.fi [Geology and Mineralogy, Department of Natural Sciences, Åbo Akademi University (Finland); Art History, Faculty of Art, Åbo Akademi University (Finland); Ranta, Heikki [Diocese of Lund, Church of Sweden (Sweden); Heinemeier, Jan [AMS " 1" 4C Dating Laboratory, Department of Physics and Astronomy, University of Aarhus (Denmark); Lill, Jan-Olof [Accelerator Laboratory, Turku PET Centre, Åbo Akademi University (Finland)

    2014-07-15

    Mortar dating was applied to newly revealed, original mortar in the church of Dalby in Scania, southern Sweden which is considered to be the oldest still standing church in Scandinavia. Small white lime lumps were sampled by chipping from the supporting pillars in the interior of the church. Special emphasis was in sampling lime lumps because the church is situated in the Scania limestone area and aggregate limestone contamination was anticipated in the bulk mortars. Earlier studies have, however, shown that lime lumps do not contain aggregate material but only possible limestone rests from incomplete calcination. The sampled material was prepared for radiocarbon AMS dating. The carbonate in the lime lumps was hydrolyzed according to the sequential leaching technique developed for the Århus {sup 14}C laboratory in Denmark. Prior to the hydrolysis the lime lumps were examined for dead-carbon contamination using a stereo microscope and cathodoluminescence. The lime lumps displayed heterogeneous carbonate luminescence. This is, however, common and it was not considered a problem because carbonate growth in changing pH/Eh conditions often leads to changing luminescence colors. Two lumps had little dead carbon contamination and an early second millennium {sup 14}C signature. One lump, however, seemed to be heavily contaminated with dead carbon. Since the sample passed the microscopic screening, the leftovers of the lump was subjected to PIXE analysis and compared with the other two lumps. The well-defined, early 2nd millennium {sup 14}C age of the lime lumps of this particular church is an important contribution to the discussion on stone church chronology in Scandinavia.

  2. 14C chronology of the oldest Scandinavian church in use. An AMS/PIXE study of lime lump carbonate in the mortar

    Science.gov (United States)

    Lindroos, Alf; Ranta, Heikki; Heinemeier, Jan; Lill, Jan-Olof

    2014-07-01

    Mortar dating was applied to newly revealed, original mortar in the church of Dalby in Scania, southern Sweden which is considered to be the oldest still standing church in Scandinavia. Small white lime lumps were sampled by chipping from the supporting pillars in the interior of the church. Special emphasis was in sampling lime lumps because the church is situated in the Scania limestone area and aggregate limestone contamination was anticipated in the bulk mortars. Earlier studies have, however, shown that lime lumps do not contain aggregate material but only possible limestone rests from incomplete calcination. The sampled material was prepared for radiocarbon AMS dating. The carbonate in the lime lumps was hydrolyzed according to the sequential leaching technique developed for the Århus 14C laboratory in Denmark. Prior to the hydrolysis the lime lumps were examined for dead-carbon contamination using a stereo microscope and cathodoluminescence. The lime lumps displayed heterogeneous carbonate luminescence. This is, however, common and it was not considered a problem because carbonate growth in changing pH/Eh conditions often leads to changing luminescence colors. Two lumps had little dead carbon contamination and an early second millennium 14C signature. One lump, however, seemed to be heavily contaminated with dead carbon. Since the sample passed the microscopic screening, the leftovers of the lump was subjected to PIXE analysis and compared with the other two lumps. The well-defined, early 2nd millennium 14C age of the lime lumps of this particular church is an important contribution to the discussion on stone church chronology in Scandinavia.

  3. Δ14C and δ13C as tracers of organic carbon in Baltic Sea sediments collected in coastal waters off Lithuania and in the Gotland Deep

    International Nuclear Information System (INIS)

    Signatures of Δ14C and δ13C of total organic carbon in sediments as well as of total lipid extracts and phospholipid-derived fatty acid fractions isolated from the surface (0-3 cm) sediments collected in the Curonian Lagoon and in the open Baltic Sea were studied. An endmember mixing-model approach was applied to estimate relative contributions of the marine and terrestrial inputs to organic carbon in sediments, and to elucidate a possible leakage of chemical warfare agents at the Gotland Deep dumpsite. (author)

  4. Jean-François Gallotte, Joëlle Malberg, Carbone 14 le film, Les Mutins de Pangée

    OpenAIRE

    Curien, Julie

    2014-01-01

    Carbone 14 le film est un témoignage sur le mouvement des radios libres, à travers l'exemple de « Carbone 14 », « la radio active » devenue « la radio qui vous encule par les oreilles ». Filmé en 4 jours à la rentrée 1982, avec du matériel volé, le film ovni de Jean-François Galotte et Joëlle Malberg est sélectionné au Festival de Cannes en 1983. Il fait un tollé qui retombe comme une crêpe, aux oubliettes : on n'en parle plus avant... 2011, trente ans après la création de la radio culte et c...

  5. Le carbone 14 : progrès récents et limitations de la méthode de datation

    OpenAIRE

    J. C. Duplessy; Arnold, M; Bard, E.; Cortijo, E.; Labeyrie, L.; Laj, C.; Lehman, B; Mazaud, A.; M. Paterne; Tisnerat, N.; L. Vidal

    1998-01-01

    La méthode de datation par le carbone 14 a permis l'établissement d'une échelle chronologique du Quaternaire Supérieur et a contribué à la découverte de phénomènes insoupçonnés comme l'existence de variations climatiques abruptes et de grande amplitude pendant la dernière période glaciaire et la déglaciation qui l'a terminée. L'effort continu pour comparer les âges carbone 14 avec les âges calendaires a été maintenant étendu au delà de 30 000 ans, même si le nombre de mesures est encore trop ...

  6. Effects of litter traits, soil biota, and soil chemistry on soil carbon stocks at a common garden with 14 tree species

    OpenAIRE

    Mueller, KE; Hobbie, SE; Chorover, J.; Reich, PB; Eisenhauer, N; Castellano, MJ; Chadwick, OA; Dobies, T; Hale, CM; Jagodziński, AM; Kałucka, I; Kieliszewska-Rokicka, B.; Modrzyński, J; Rożen, A; Skorupski, M

    2015-01-01

    © 2015, US Government. Tree species interact with soil biota to impact soil organic carbon (C) pools, but it is unclear how this interaction is shaped by various ecological factors. We used multiple regression to describe how ~100 variables were related to soil organic C pools in a common garden experiment with 14 temperate tree species. Potential predictor variables included: (i) the abundance, chemical composition, and decomposition rates of leaf litter and fine roots, (ii) species richness...

  7. Study of carbon nitride compounds synthesised by co-implantation of 13C and 14N in copper at different temperatures

    International Nuclear Information System (INIS)

    Research highlights: → Simultaneous implantation of 13C and 14N in copper were performed to synthesise CNx compounds. → The formation of fullerene-like CNx compounds was highlighted by XPS and TEM. → Only about 20% of the implanted 14N atoms are contained in the FL CxNy structures. → The exceeding of implanted nitrogen precipitates in large N2 gas bubbles. → A growth model for the FL CxNy structures is proposed. - Abstract: Carbon nitride compounds have been synthesised in copper by simultaneous high fluence (1018 at. cm-2) implantation of 13C and 14N ions. During the implantation process, the substrate temperature was maintained at 25, 250, 350 or 450 deg. C. Depth profiles of 13C and 14N were determined using the non-resonant nuclear reactions (NRA) induced by a 1.05 MeV deuteron beam. The retained doses were deduced from NRA measurements and compared to the implanted fluence. The chemical bonds between carbon and nitrogen were studied as a function of depth and temperature by X-ray photoelectron spectroscopy (XPS). The curve fitting of C 1s and N 1s core level photoelectron spectra reveal different types of C-N bonds and show the signature of N2 molecules. The presence of nitrogen gas bubbles in copper was highlighted by mass spectroscopy. The structure of carbon nitride compounds was characterised by transmission electron microscopy (TEM). For that purpose, cross-sectional samples were prepared using a focused ion beam (FIB) system. TEM observations showed the presence of small amorphous carbon nitride 'nano-capsules' and large gas bubbles in copper. Based on our observations, we propose a model for the growth of these nano-objects. Finally, the mechanical properties of the implanted samples were investigated by nano-indentation.

  8. Measurement of specific radioactivity of tryptophan labeled with carbon-14 in plasma by high-performance liquid chromatography with a synchronized accumulating radioisotope detector

    International Nuclear Information System (INIS)

    Measurement of specific radioactivity by a high-performance liquid chromatograph with a synchronized accumulating radioisotope detector was conducted. Accuracy of measurement for an authentic sample containing 0.2 nCi of tryptophan labeled with carbon-14 exceeded 95%. In the case of a plasma sample obtained 120 min following intravenous administration of 15 muCi of labeled tryptophan to a rat, the coefficient of variation was 7.0%

  9. AMS-14C measurements for the carbonate platform of the offshore Campos Basin, Rio de Janeiro State, Brazil

    International Nuclear Information System (INIS)

    As part of our accelerator mass spectrometry (AMS) program in Brazil we prepared and measured some red algae carbonate crust samples from Campos Basin, Rio de Janeiro, Brazil. The measurements were performed at Purdue Rare Isotope Measurement Laboratory (PRIME Lab), Purdue University, IN, USA. This carbonate material is interlaminated with foraminiferal lime mud reflecting recurrent intervals of carbonate development, which might be linked to outer-shelf oceanographic circulation

  10. Determination of Carbon-14 (14C) and Tritium (3H) in the graphite thermal column of a IRT-2000 research reactor in Sofia

    International Nuclear Information System (INIS)

    Radiocarbon has average, and tritium has low level of radiotoxicity, but both are easily absorbable radionuclide from the body as due to their chemical nature they are included in almost all the chemical compounds involved in metabolic chains and in structure of proteins and biological macromolecules. Due to above mentioned reasons, the analysis and determination of these two major radionuclides is very significant for radiation protection for both the public and the environment as well as for occupational exposure of personnel. This publication describes the detailed procedure for determining the concentration of 3H and 14C in samples selected at the stage 'partial dismantling' of the research nuclear reactor IRT-2000 reconstruction. The procedure consists graphite sample thermal burning in the tubing muffle furnace at a maximum temperature of 850'0C. After combustion the gas mixture passes through a CuO catalyst, heated to 450-5000C and through a series of traps for 3H and 14C capturing. The captured CO2+ 14CO2 as Na2CO3 in NaOH precipitates with BaCl2 as BaCO3 and it is followed by a liquid scintillation spectrometry measurements

  11. Bio-Carbon Accounting for Bio-Oil Co-Processing: 14C and 13C/12C

    Energy Technology Data Exchange (ETDEWEB)

    Mora, Claudia I. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Li, Zhenghua [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vance, Zachary [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-21

    This is a powerpoint presentation on bio-carbon accounting for bio-oil co-processing. Because of the overlapping range in the stable C isotope compositions of fossil oils and biooils from C3-type feedstocks, it is widely thought that stable isotopes are not useful to track renewable carbon during co-production. In contrast, our study demonstrates the utility of stable isotopes to: • capture a record of renewable carbon allocation between FCC products of co-processing • record changes in carbon apportionments due to changes in reactor or feed temperature Stable isotope trends as a function of percent bio-oil in the feed are more pronounced when the δ13C of the bio-oil endmember differs greatly from the VGO (i.e., it has a C4 biomass source–corn stover, switch grass, Miscanthus, sugarcane– versus a C3 biomass source– pine, wheat, rice, potato), but trends on the latter case are significant for endmember differences of just a few permil. The correlation between measured 14C and δ13C may be useful as an alternative to carbon accounting, but the relationship must first be established for different bio-oil sources.

  12. Synthesis and purification of carbon-14 labelled 1, 1-hexamethylene-bis [5-(4-chlorophenyl)biguanide] (chlorhexidine, 'Hibitane')

    International Nuclear Information System (INIS)

    Two syntheses of [14C] chlorhexidine ('Hibitane') with the label specifically incorporated in two separate molecular positions are described. Ring labelled chlorhexidine prepared from p-chloro[U-14C]aniline was obtained with a molar specific activity of 27.9 mCi/mmol. Chain labelled material, where the 14C label was incorporated in the 1 and 6 positions of the hexamethylene bridge, was prepared from [1, 6 14C]-adiponitrile, with a molar specific activity of 11.5 mCi/mmol. Several methods of purification are described. (author)

  13. Synthesis of carbon-14 labelled (5Z)-4-bromo-5-(bromomethylene)-2(5H)-furanone:

    DEFF Research Database (Denmark)

    Persson, T.; Johansen, S.K.; Martiny, L.;

    2004-01-01

    The potent quorum sensing inhibitor (5Z)-4-bromo-5-(bromomethylene)-2(5H)-[2-C-14]furanone has been prepared in five steps in 7.7% overall yield starting from bromo[1-C-14]acetic acid. Condensation of ethyl bromo[1-C-14]acetate with ethyl acetoacetate followed by decarboxylation was accelerated by...... microwave heating to afford [1-C-14]levulinic acid. Subsequently, bromination and oxidation gave the targeted furan-2-one with a radiochemical purity of > 97% and a specific activity of 57 mCi/mmol....

  14. On the isolation of elemental carbon for micro-molar 14C accelerator mass spectrometry; evaluation of alternative isolation procedures, and accuracy assurance using a hybrid isotopic particulate carbon reference material

    Directory of Open Access Journals (Sweden)

    L. A. Currie

    2005-05-01

    Full Text Available The primary objective of the research reported here has been the development of an hybrid reference material (RM to serve as a test of accuracy for elemental carbon (EC isotopic (14C speciation measurements. Such measurements are critically important for the quantitative apportionment of fossil and biomass sources of ''soot'' (EC, the tracer of fire that has profound effects on health, atmospheric visibility, and climate. Previous studies of 14C-EC measurement quality, carried out with NIST SRM 1649a (Urban Dust, showed a range of results, but since the ''truth'' was not known for this natural matrix RM, one had to rely on isotopic-chemical consistency evidence (14C in PAH, EC of measurement validity (Currie et al., 2002. Components of the new Hybrid RM (DiesApple, however, have known 14C and EC composition, and they are nearly orthogonal (isotopically and chemically. NIST SRM 2975 (Forklift Diesel Soot has little or no 14C, and its major compositional component is EC. SRM 1515 (Apple Leaves has the 14C content of biomass-C, and it has little or no EC. Thus, the hybrid RM can serve as an absolute isotopic test for the absence of EC-mimicking pyrolysis-C from SRM 1515 in the EC isolate of the hybrid RM, together with testing for conservation of its dominant soot fraction through the isolation procedure.

  15. Relocation of carbon from decomposition of {sup 14}C-labelled needle and fine root litter in peat soil

    Energy Technology Data Exchange (ETDEWEB)

    Domish, T.; Laine, J.; Laiho, R. [Helsinki Univ. (Finland). Dept. of Forest Ecology; Finer, L. [Finnish Forest Research Inst. (Finland). Joensuu Research Station; Karsisto, M. [Finnish Forest Research Inst. (Finland). Dept. of Forest Ecology

    1996-12-31

    Drainage of peatlands promotes a shift of biomass and production from the ground vegetation to the trees. Thus, the above-ground (e.g. needles) and below-ground (roots) litter production of trees increases. Fine roots in particular are an important factor in the carbon and nutrient cycle in forest ecosystems. A major part of the annual net primary production of trees may be allocated below ground, the relative proportion being smaller on fertile sites than on less fertile ones. For modelling the carbon balance of drained peatlands, it is important to know the fate of carbon from newly introduced and decomposing litter. Newly added and fertilised tree litter material may be decomposed at a rate different than litter from the ground vegetation. The objectives of this study are to study the pathways of decomposing litter carbon in peat soil and to evaluate the use of the litterbag method in a controlled environment. (9 refs.)

  16. Lithology, fault displacement, and origin of secondary calcium carbonate and opaline silica at Trenches 14 and 14D on the Bow Ridge Fault at Exile Hill, Nye County, Nevada

    International Nuclear Information System (INIS)

    Yucca Mountain, a proposed site for a high-level nuclear-waste repository, is located in southern Nevada, 20 km east of Beatty, and adjacent to the southwest comer of the Nevada Test Site (NTS) (fig. 1). Yucca Mountain is located within the Basin and Range province of the western United States. The climate is semiarid, and the flora is transitional between that of the Mojave Desert to the south and the Great Basin Desert to the north. As part of the evaluation, hydrologic conditions, especially water levels, of Yucca Mountain and vicinity during the Quaternary, and especially the past 20,000 years, are being characterized. In 1982, the US Geological Survey, in cooperation with the US Department of Energy (under interagency agreement DE-A104-78ET44802), excavated twenty-six bulldozer and backhoe trenches in the Yucca Mountain region to evaluate the nature and frequency of Quaternary faulting (Swadley and others, 1984). The trenches were oriented perpendicular to traces of suspected Quaternary faults and across projections of known bedrock faults into Quaternary deposits. Trench 14 exposes the Bow Ridge Fault on the west side of Exile Hill. Although the original purpose of the excavation of trench 14 was to evaluate the nature and frequency of Quaternary faulting on the Bow Ridge Fault, concern arose as to whether or not the nearly vertical calcium carbonate (the term ''carbonate'' in this study refers to calcium carbonate) and opaline silica veins in the fault zone were deposited by ascending waters (ground water). These veins resemble in gross morphology veins commonly formed by hydrothermal processes

  17. Determination of Natural 14C Abundances in Dissolved Organic Carbon in Organic-Rich Marine Sediment Porewaters by Thermal Sulfate Reduction

    Science.gov (United States)

    Johnson, L.; Komada, T.

    2010-12-01

    The abundances of natural 14C in dissolved organic carbon (DOC) in the marine environment hold clues regarding the processes that influence the biogeochemical cycling of this large carbon reservoir. At present, UV irradiation is the widely accepted method for oxidizing seawater DOC for determination of their 14C abundances. This technique yields precise and accurate values with low blanks, but it requires a dedicated vacuum line, and hence can be difficult to implement. As an alternative technique that can be conducted on a standard preparatory vacuum line, we modified and tested a thermal sulfate reduction method that was previously developed to determine δ13C values of marine DOC (Fry B. et al., 1996. Analysis of marine DOC using a dry combustion method. Mar. Chem., 54: 191-201.) to determine the 14C abundances of DOC in marine sediment porewaters. In this method, the sample is dried in a 100 ml round-bottom Pyrex flask in the presence of excess oxidant (K2SO4) and acid (H3PO4), and combusted at 550 deg.C. The combustion products are cryogenically processed to collect and quantify CO2 using standard procedures. Materials we have oxidized to date range from 6-24 ml in volume, and 95-1500 μgC in size. The oxidation efficiency of this method was tested by processing known amounts of reagent-grade dextrose and sucrose (as examples of labile organic matter), tannic acid and humic acid (as examples of complex natural organic matter), and porewater DOC extracted from organic-rich nearshore sediments. The carbon yields for all of these materials averaged 99±4% (n=18). The 14C abundances of standard materials IAEA C-6 and IAEA C-5 processed by this method using >1mgC aliquots were within error of certified values. The size and the isotopic value of the blank were determined by a standard dilution technique using IAEA C-6 and IAEA C-5 that ranged in size from 150 to 1500 μgC (n=4 and 2, respectively). This yielded a blank size of 6.7±0.7 μgC, and a blank isotopic

  18. The applicability of C-14 measurements in the soil gas for the assessment of leakage out of underground carbon dioxide reservoirs

    Directory of Open Access Journals (Sweden)

    Chałupnik Stanisław

    2014-03-01

    Full Text Available Poland, due to the ratification of the Kioto Protocol, is obliged to diminish the emission of greenhouse gases. One of the possible solutions of this problem is CO2 sequestration (CCS - carbon capture and storage. Such an option is a priority in the European Union. On the other hand, CO2 sequestration may be potentially risky in the case of gas leakage from underground reservoirs. The most dangerous event may be a sudden release of the gas onto the surface. Therefore, it is very important to know if there is any escape of CO2 from underground gas reservoirs, created as a result of sequestration. Such information is crucial to ensure safety of the population in areas located above geological reservoirs. It is possible to assess the origin of carbon dioxide, if the measurement of radiocarbon 14C concentration in this gas is done. If CO2 contains no 14C, it means, that the origin of the gas is either geological or the gas has been produced as a result of combustion of fossil fuels, like coal. A lot of efforts are focused on the development of monitoring methods to ensure safety of CO2 sequestration in geological formations. A radiometric method has been tested for such a purpose. The main goal of the investigations was to check the application possibility of such a method. The technique is based on the liquid scintillation counting of samples. The gas sample is at first bubbled through the carbon dioxide adsorbent, afterwards the adsorbent is mixed with a dedicated cocktail and measured in a low-background liquid scintillation spectrometer Quantulus. The described method enables measurements of 14C in mine and soil gas samples.

  19. Synthesis of carbon C-14 labelled 2-phenyl-4-alpha-alkylaminomethyl-quinolinemethanol: a potential anti-leishmaniasis agent

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T.S.T.; Fawwaz, R.A.; Heertum, R.L.van [Columbia Univ., New York, NY (United States). Coll. of Physicians and Surgeons

    1995-07-01

    Using sodium acetate, [1-{sup 14}C] as a starting material, a total of seven steps were required to synthesize the title compound. This involved acylation of ortho-dichlorobenzene to form dichloroacetophenone, [2-{sup 14}C] (I). The 2-phenyl-4-quinoline carboxylic acid, [2-{sup 14}C] (II) was prepared by the Pfitzinger reaction from (1) and dichloroisatin. Compound 11 was converted to the acid chloride (III) by reaction with SOCl{sub 2} in benzene. Grignard condensation reaction of (III) yielded 4-quinolylmethylketone, [2-{sup 14}C] (IV) which was then converted to the bromomethylketone (V). Compound V was reacted with NaBH{sub 4} to form the ethylene oxide (VI). Alkylation of the oxide yielded the title compound (VII). The overall radiochemical yield was 10.1% and the specific activity was 3.0 mCi/mmol, with a radiochemical purity of >99.5%. (author).

  20. Synthesis of carbon C-14 labelled 2-phenyl-4-alpha-alkylaminomethyl-quinolinemethanol: a potential anti-leishmaniasis agent

    International Nuclear Information System (INIS)

    Using sodium acetate, [1-14C] as a starting material, a total of seven steps were required to synthesize the title compound. This involved acylation of ortho-dichlorobenzene to form dichloroacetophenone, [2-14C] (I). The 2-phenyl-4-quinoline carboxylic acid, [2-14C] (II) was prepared by the Pfitzinger reaction from (1) and dichloroisatin. Compound 11 was converted to the acid chloride (III) by reaction with SOCl2 in benzene. Grignard condensation reaction of (III) yielded 4-quinolylmethylketone, [2-14C] (IV) which was then converted to the bromomethylketone (V). Compound V was reacted with NaBH4 to form the ethylene oxide (VI). Alkylation of the oxide yielded the title compound (VII). The overall radiochemical yield was 10.1% and the specific activity was 3.0 mCi/mmol, with a radiochemical purity of >99.5%. (author)

  1. Carbon-14 in tree rings and other terrestrial samples in the vicinity of Ignalina Nuclear Power Plant, Lithuania

    Energy Technology Data Exchange (ETDEWEB)

    Mazeika, Jonas [Radioisotope Research Laboratory, Institute of Geology and Geography, T. Sevcenkos 13, LT-03223 Vilnius (Lithuania)], E-mail: mazeika@geo.lt; Petrosius, Rimantas [Radioisotope Research Laboratory, Institute of Geology and Geography, T. Sevcenkos 13, LT-03223 Vilnius (Lithuania); Pukiene, Rutile [Dendroclimatology and Radiometrics Group, Vytautas Magnus University, Z.E. Zilibero 6, LT-46324 Kaunas (Lithuania)], E-mail: r.pukiene@gmf.vdu.lt

    2008-02-15

    The results of {sup 14}C measurements in the annual tree rings from the Ignalina Nuclear Power Plant (INPP) surroundings, Lithuania, for the period of its operation from 1984 to 2002 are presented. The terrestrial samples, mainly moss and related soil, are studied in places as well. The tree rings have shown slightly enhanced {sup 14}C activity due to operation of the nuclear power plant. The maximal calculated normalized {sup 14}C release of 11 TBq GW{sub e}{sup -1} year{sup -1} and the maximal effective dose of 2.0 x 10{sup -3} mSv year{sup -1} resulting from the {sup 14}C were estimated for 1999. For other years of INPP operation these values are lower. The excess of {sup 14}C specific activity measured in the moss and soil samples from moss-covered sites near the nuclear power plant (up to 0.5 km) showed highly elevated {sup 14}C contents (up to 813 pMC), probably indicating releases of particulate material.

  2. Photoperiodic effects on short-pulse 14C assimilation and overall carbon and nitrogen allocation patterns in contrasting quinoa cultivars

    DEFF Research Database (Denmark)

    Bendevis, Mira Arpe; Sun, Yujie; Rosenqvist, Eva;

    2014-01-01

    photoperiod neutral cv. 'Titicaca' were studied under short (10h) and long (17.5h) days, with respect to C and N distribution as well as partitioning of newly assimilated C to plant organs. An extended photoperiod resulted in 14C decreasingly being allocated to stem growth and lower leaves in 'Titicaca', but...... an immediate increase in carbon allocation to upper leaves, and over time to the reproductive structures, resulting in a more than 50% increase in final yield. Collectively the results indicate that even though the photoperiod sensitive cultivar flowered under long photoperiod it did not develop...

  3. Influence of atmospheric 14CO2 on determination of the ratio of biogenic carbon to fossil one in exhaust gases using accelerator mass spectrometry. Experimental evaluation for industrial flue gases

    International Nuclear Information System (INIS)

    The influence of atmospheric 14CO2 was evaluated on the determination of biogenic carbon ratios in industrial flue gases using accelerated mass spectrometry(AMS). Bioethanol, n-hexane, and their mixtures were combusted with a four-stroke engine, and 14CO2 in exhaust gases was analyzed by AMS. The experimental biogenic carbon ratio determined by ASTM D6866 method was 1.2 times higher than the theoretical value of mixed fuel containing 3.18% biogenic carbons. In general, the influence of atmospheric 14CO2 taken in combustion gases is neglected. It seems that the error cannot be neglected under international trading of emission allowances, where a large amount of carbons in the fuel were evaluated. The experimental value became to be the theoretical value by subtracting the amount of atmospheric 14C from that of the samples. As the contents of biofuel increased, the experimental biogenic carbon ratios reached the theoretical values and the influence of atmospheric 14CO2 decreased. We recommend that the influence of atmospheric 14CO2 should be corrected when fuel samples contain low amounts of 14C. (author)

  4. Understanding the Mechanisms Enabling an Ultra-high Efficiency Moving Wire Interface for Real-time Carbon 14 Accelerator Mass Spectrometry Quantitation of Samples Suspended in Solvent

    Science.gov (United States)

    Thomas, Avraham Thaler

    Carbon 14 (14C) quantitation by accelerator mass spectrometry (AMS) is a powerfully sensitive and uniquely quantitative tool for tracking labeled carbonaceous molecules in biological systems. This is due to 14C's low natural abundance of 1 ppt, the nominal difference in biological activity between an unlabeled and a 14C-labeled molecule, and the ability of AMS to measure isotopic ratios independently of a sample's other characteristics. To make AMS more broadly accessible, a moving wire interface for real-time coupling of high pressure liquid chromatography (HPLC) to AMS and high throughput AMS quantitation of minute single samples has been developed. Prior to this work, samples needed to be converted to solid carbon before measurement. This conversion process has many steps and requires that the sample size be large enough to allow precise handling of the resulting graphite. These factors make the process susceptible to error and time consuming, as well as requiring 0.5 ug of carbon. Samples which do not contain enough carbon, such as HPLC fractions, must be bulked up. This adds background and increases effort. The moving wire interface overcomes these limitations by automating sample processing. Samples placed on the wire are transported through a solvent removal stage followed by a combustion stage after which the combustion products are directed to a gas accepting ion source. The ion source converts the carbon from the CO2 combustion product into C ions, from which an isotopic ratio can be determined by AMS. Although moving wire interfaces have been implemented for various tasks since 1964, the efficiency of these systems at transferring fluid from an HPLC to the wire was only 3%, the efficiency of transferring combustion products from the combustion oven to ion source was only 30%, the flow and composition of the carrier gas from the combustion oven to the ion source needed to be optimized for coupling to an AMS gas accepting ion source and the drying ovens

  5. Carbon cycle dynamics and solar activity embedded in a high-resolution 14C speleothem record from Belize, Central America

    Science.gov (United States)

    Lechleitner, Franziska A.; Breitenbach, Sebastian F. M.; McIntyre, Cameron; Asmerom, Yemane; Prufer, Keith M.; Polyak, Victor; Culleton, Brendan J.; Kennett, Douglas J.; Eglinton, Timothy I.; Baldini, James U. L.

    2015-04-01

    Speleothem 14C has recently emerged as a potentially powerful proxy for climate reconstruction. Several studies have highlighted the link between karst hydrology and speleothem 14C content, and a number of possible causes for this relationship have been proposed, such as dripwater flow dynamics in the karst and changes in soil organic matter (SOM) turnover time (e.g. Griffiths et al., 2012). Here we present a high resolution 14C record for a stalagmite (YOK-I) from Yok Balum cave in southern Belize, Central America. YOK-I grew continuously over the last 2000 years, and has been dated very precisely with the U-Th method (40 dates, mean uncertainty ventilation and hydrologic resilience to seismic activity, Journal of Cave and Karst Studies

  6. Autoradiographic study on the incorporation of carbon-14 labeled formate and adenine into nucleic acid in blood-forming cells

    International Nuclear Information System (INIS)

    The incorporation of [14C]formate and [8-14C]adenine into nucleic acid in blood-forming cells was studied by the autoradiographic technique. The isotopic markers were injected subcutaneously into young rats weighting from 100 to 150 g three times every 24 hours and the animals were examined 3 hours after the last injection. In the case of [14C]formate injection, erythroblasts exhibited extremely strong labeling in contrast to weaker labeling of other blood-forming cells. In the case of [14C]adenine administration, on the other hand, immature cells of the granuclocytic series as well as immature reticulum cells (proliferating cells of reticular tissue) were much more heavily labeled than were other blood-forming cells, particularly the erythroblasts which revealed weak or no labeling. By digestion or extraction of DNA, RNA or both from cells with DNase, RNase or hot 10% perchloric acid treatment, respectively, it was confirmed that the observed heavy labeling of any type of cells with either [14C]formate or [14C]adenine was due chiefly to incorporation of the radioactive materials into nuclear DNA. The present results are discussed together with the findings of earlier studies on lymphoid cells which indicate that, in certain cell types, the patterns of [3H]deoxycytidine labeling differ considerably from the corresponding patterns of [3H]deoxycytidine labeling. The present and earlier findings provide evidence to substantiate that, among blood-forming cells, there are considerable variations in the labeling patterns of nuclear DNA depending on differences in the radioactive DNA precursors used as well as in the cell types. (author)

  7. Non-elastic cross-sections for neutron interactions with carbon and oxygen above 14 MeV

    International Nuclear Information System (INIS)

    In the light of the new generation of high energy (less than or equal to 80 MeV) neutron therapy facilities currently being tested, the need for neutron kerma factors in the range from 15 to 80 MeV on carbon and oxygen has become of urgent importance. Not enough experimental data currently exist or are likely to be measured soon, so a nuclear model is essential for interpolation or, less satisfactorily, extrapolation of available data. The use of a suitable model, applicable to light nuclei, is shown to be crucial. Such a model is described, and good agreement between its results and the experimental data in the energy range of interest is reported. Comparisons between the model predictions and the ENDF/B-V evaluation of the non-elastic cross section for carbon between 15 and 20 MeV indicate that a re-evaluation of ENDF is required. 35 refs., 12 figs., 6 tabs

  8. Dual isotope (13C-14C) Studies of Water-Soluble Organic Carbon (WSOC) Aerosols in South and East Asia

    OpenAIRE

    Kirillova, Elena N.

    2013-01-01

    Atmospheric aerosols may be emitted directly as particles (primary) or formed from gaseous precursors (secondary) from different natural and anthropogenic sources. The highly populated South and East Asia regions are currently in a phase of rapid economic growth to which high emissions of carbonaceous aerosols are coupled. This leads to generally poor air quality and a substantial impact of anthropogenic aerosols on the regional climate. However, the emissions of different carbon aerosol comp...

  9. Comment on: Comment on ''Mysterious abrupt carbon-14 increase in coral contributed by a come'' Yi Liu et al

    CERN Document Server

    Melott, Adrian L

    2014-01-01

    Unfortunately, Liu et al. contains a number of errors and omissions which compromise its conclusions. These have to do with the amount of 14C which is necessary to deposit in the atmosphere in order to see a perturbation like that in 774 AD, and the ability of a comet to do so.

  10. Carbon isotope (δ13C excursions suggest times of major methane release during the last 14 ka in Fram Strait, the deep-water gateway to the Arctic

    Directory of Open Access Journals (Sweden)

    C. Consolaro

    2014-10-01

    Full Text Available We present results from a sediment core collected from a pockmark field on the Vestnesa Ridge (∼80° N in the eastern Fram Strait. This is the only deep-water gateway to the Arctic, and one of the northernmost marine gas hydrate provinces in the world. Eight 14C AMS dating reveals a detailed chronology for the last 14 ka BP. The δ13C record measured on the benthic foraminiferal species Cassidulina neoteretis shows two distinct intervals with negative values, as low as −4.37‰ in the Bølling–Allerød interstadials and as low as −3.41‰ in the early Holocene. After cleaning procedure designed to remove all authigenic carbonate coatings on benthic foraminiferal tests, the 13C values are still negative (as low as −2.75‰. We have interpreted these negative carbon isotope excursions (CIEs to record past methane release events, resulting from the incorporation of 13C-depleted carbon from methane emissions into the benthic foraminiferal shells. The CIEs during the Bølling–Allerød interstadials and the early Holocene relate to periods of ocean warming, sea level rise and increased concentrations of methane (CH4 in the atmosphere. CIEs with similar timing have been reported from other areas in the North Atlantic suggesting a regional event. The trigger mechanisms for such regional events remain to be determined. We speculate that sea-level rise and seabed loading due to high sediment supply in combination with increased seismic activity as a result of rapid deglaciation may have triggered the escape of significant amounts of methane to the seafloor and the water column above.

  11. Labeling of carbon pools in Bradyrhizobium japonicum and Rhizobium leguminosarum bv viciae bacteroids following incubation of intact nodules with 14CO2

    International Nuclear Information System (INIS)

    The aim of the work reported here was to ascertain that the patterns of labeling seen in isolated bacteroids also occurred in bacteroids in intact nodules and to observe early metabolic events following exposure of intact nodules to 14CO2. Intact nodules of soybean (Glycine max L. Merr. cv Ripley) inoculated with Bradyrhizobium japonicum USDA 110 and pea (Pisum sativum L. cv Progress 9) inoculated with Rhizobium leguminosarum by viciae isolate 128C53 were detached and immediately fed 14CO2 for 1 to 6 min. Bacteroids were purified from these nodules in 5 to 7 min after the feeding period. In the cytosol from both soybean and pea nodules, malate had the highest radioactivity, followed by citrate and aspartate. In peas, asparagine labeling equaled that of aspartate. In B. japonicum bacteroids, malate was the most rapidly labeled compound, and the rate of glutamate labeling was 67% of the rate of malate labeling. Aspartate and alanine were the next most rapidly labeled compounds. R. leguminosarum bacteroids had very low amounts of 14C and, after a 1-min feeding, malate contained 90% of the radioactivity in the organic acid fraction. Only a trace of activity was found in aspartate, whereas the rate of glutamate and alanine labeling approached that of malate after 6 min of feeding. Under the conditions studied, malate was the major form of labeled carbon supplied to both types of bacteroids. These results with intact nodules confirm our earlier results with isolated bacteroids, which showed that a significant proportion of provided labeled substrate, such as malate, is diverted to glutamate. This supports the conclusion that microaerobic conditions in nodules influence carbon metabolism in bacteroids. (author)

  12. A General Method for the Rapid Determination of Carbon-14- and Hydrogen-3-Labelled Substances by Gas Chromatography

    International Nuclear Information System (INIS)

    A method is described for the determination of 14C- and 3H- labelled substances by gas chromatography using different size flow counters. The method of cracking substances in a current of hydrogen gas is especially suitable for 3H-labelled compounds because it is free from the disadvantages encountered when the substances are first oxidized and the water formed subsequently converted. The general applicability of this method is shown for different classes of compounds. The analysis is independent of the chemical composition of the compound. By using a part oi the apparatus very rapid analyses of vaporizable 14C- and apparently all 3H-labelled substances can be made by direct injection into the reaction chamber. The apparatus can also be used for the oxidation procedure. (author)

  13. The carbon-14 spike in the 8th century was not caused by a cometary impact on Earth

    Science.gov (United States)

    Usoskin, Ilya G.; Kovaltsov, Gennady A.

    2015-11-01

    A mysterious increase of radiocarbon 14 C ca. 775 AD in the Earth's atmosphere has been recently found by Miyake et al. (Miyake, F., Nagaya, K., Masuda, K., Nakamura, T. [2012]. Nature, 486, 240). A possible source of this event has been discussed widely, the most likely being an extreme solar energetic particle event. A new exotic hypothesis has been presented recently by Liu et al. (Liu, Y. [2014]. Sci. Rep., 4, 3728) who proposed that the event was caused by a cometary impact on Earth bringing additional 14 C to the atmosphere. Here we calculated a realistic mass and size of such a comet to show that it would have been huge (≈100 km across and 1017-1020 g of mass) and would have produced a disastrous geological/biological impact on Earth. The absence of an evidence for such a dramatic event makes this hypothesis invalid.

  14. Translocation of labelled carbon in ramified peach shoots following 14CO2 assimilation by single primary leaves and secondary shoots

    International Nuclear Information System (INIS)

    The 5th, 11th, 20th and 28th primary leaves (counted from the tip downwards, not including the young unfolded leaves) of the rapidied peach shoots and secondary shoots situated on the 6th, 13th and 26 nodes on the central shoots of the peach cultivar Redhaven were fed with μC14CO2 at the time of vegetative tips of the central and secondary shoots were in a state of active growth. Results were scored using the method of autoradiography. It was established that 14C assimilates transport from the primary leaves toward the secondary shoots was favoured by two main factors: a) convenient phloem connection, and b) insufficient proper assimilates for the growth of secondary shoots. Vascular connection proved most convenient within the axial complex ''leaf-axilar shoot'' as well as between the 1st and the 6th node. Connection with the 4th leaf was comparatively good, with the third leaf it was considerably more inconvenient, while the 2nd and the 5th nodes were situated in a most unfavourable position in their relation to the 1st node. Eight to twelve leaves were necessary for a growing secondary shoot in order to be fully self sufficient. The rate of 14C assimilates translocation from the primary leaves toward the secondary shoots depended on the combination of the two above mentioned factors. Evidently the main function of the upper primary leaves was to supply the growing tips of the central and secondary shoots with photosynthesis. Transport from the lower leaves was directed exclusively toward the remified shoots' base and outwards. The young secondary shoots having no more than 8 mature leaves made use of their own and of imported assimilates, and at the same time exported certain quantities. Older secondary shoots were self-sufficient and exported assimilates. (author)

  15. Biomarker and carbon isotope constraints (δ13C, Δ14C) on sources and cycling of particulate organic matter discharged by large Siberian rivers draining permafrost areas

    International Nuclear Information System (INIS)

    Circumpolar permafrost soils store about half of the global soil organic carbon pool. These huge amounts of organic matter (OM) could accumulate due to low temperatures and water saturated soil conditions over the course of millennia. Currently most of this OM remains frozen and therefore does not take part in the active carbon cycle, making permafrost soils a globally important carbon sink. Over the last decades mean annual air temperatures in the Arctic increased stronger than the global mean and this trend is projected to continue. As a result the permafrost carbon pool is under climate pressure possibly creating a positive climate feedback due to the thaw-induced release of greenhouse gases to the atmosphere. Arctic warming will lead to increased annual permafrost thaw depths and Arctic river runoff likely resulting in enhanced mobilization and export of old, previously frozen soil-derived OM. Consequently, the great arctic rivers play an important role in global biogeochemical cycles by connecting the large permafrost carbon pool of their hinterlands with the arctic shelf seas and the Arctic Ocean. The first part of this thesis deals with particulate organic matter (POM) from the Lena Delta and adjacent Buor Khaya Bay. The Lena River in central Siberia is one of the major pathways translocating terrestrial OM from its southernmost reaches near Lake Baikal to the coastal zone of the Laptev Sea. The permafrost soils from the Lena catchment area store huge amounts of pre-aged OM, which is expected to be remobilized due to climate warming. To characterize the composition and vegetation sources of OM discharged by the Lena River, the lignin phenol and carbon isotopic composition (δ13C and Δ14C) in total suspended matter (TSM) from surface waters, surface sediments from the Buor Khaya Bay along with soils from the Lena Delta's first (Holocene) and third terraces (Pleistocene ice complex) were analyzed. The lignin compositions of these samples are consistent

  16. Constraints on emissions of carbon monoxide, methane, and a suite of hydrocarbons in the Colorado Front Range using observations of 14CO2

    Directory of Open Access Journals (Sweden)

    P. P. Tans

    2013-01-01

    Full Text Available Atmospheric radiocarbon (14CO represents an important observational constraint on emissions of fossil-fuel derived carbon into the atmosphere due to the absence of 14CO in fossil fuel reservoirs. The high sensitivity and precision that accelerator mass spectrometry (AMS affords in atmospheric 14CO analysis has greatly increased the potential for using such measurements to evaluate bottom-up emissions inventories of fossil fuel CO2 (CO2ff, as well as those for other co-emitted species. Here we use observations of 14CO2 and a series of hydrocarbons and combustion tracers from discrete air samples collected between June 2009 and September 2010 at the National Oceanic and Atmospheric Administration Boulder Atmospheric Observatory (BAO; Lat: 40.050° N, Lon: 105.004° W to derive emission ratios of each species to CO2ff. From these emission ratios, we estimate emissions of these species by using the Vulcan CO2ff high resolution data product as a reference. The species considered in this analysis are carbon monoxide (CO, methane (CH4, acetylene (C2H2, benzene (C6H6, and C3–C5 alkanes. Comparisons of top-down emissions estimates are made to existing inventories of these species for Denver and adjacent counties, as well as to previous efforts to estimate emissions from atmospheric observations over the same area. We find that CO is overestimated in the 2008 National Emissions Inventory (NEI, 2008 by a factor of ~2. A close evaluation of the inventory suggests that the ratio of CO emitted per unit fuel burned from on-road gasoline vehicles is likely over-estimated by a factor of 2.5. The results also suggest that while the oil and gas sector is the largest contributor to the CH4 signal in air arriving from the north and east, it is very likely that other sources, including agricultural sources, contribute to this signal and must be accounted for when attributing these signals to oil and gas industry activity from a top-down perspective. Our results are

  17. Investigation of HCCI Combustion of Diethyl Ether and Ethanol Mixtures Using Carbon 14 Tracing and Numerical Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Mack, J H; Dibble, R W; Buchholz, B A; Flowers, D L

    2004-01-16

    Despite the rapid combustion typically experienced in Homogeneous Charge Compression Ignition (HCCI), components in fuel mixtures do not ignite in unison or burn equally. In our experiments and modeling of blends of diethyl ether (DEE) and ethanol (EtOH), the DEE led combustion and proceeded further toward completion, as indicated by {sup 14}C isotope tracing. A numerical model of HCCI combustion of DEE and EtOH mixtures supports the isotopic findings. Although both approaches lacked information on incompletely combusted intermediates plentiful in HCCI emissions, the numerical model and {sup 14}C tracing data agreed within the limitations of the single zone model. Despite the fact that DEE is more reactive than EtOH in HCCI engines, they are sufficiently similar that we did not observe a large elongation of energy release or significant reduction in inlet temperature required for light-off, both desired effects for the combustion event. This finding suggests that, in general, HCCI combustion of fuel blends may have preferential combustion of some of the blend components.

  18. The 14C as tracer in the carbon flow assimilated by the plants (maize, sugar cane, bean) and it liberation to the soil

    International Nuclear Information System (INIS)

    The flow of carbon in three different crops, maize, beans and sugar cane was studied by use of 14V. The plants were exposed to an atmosphere with a constant concentration of the tracer for 12 hours in a biosynthesis chamber. The detection of the isotope permitted the distribution and concentration of the photosynthetates in the various organs of the plants and the losses by liberation to the soil whether by root respiration or rhizodeposition to be followed. The technique of marking metabolites through photosynthesis and their detection in the various plant organs is well known and is employed despite the requirement for hight sophisticated apparatus. On the other hand the quantification of the plant-soil-microorganism interchanges presents great difficulties being dynamic processes, showing the necessity of more detailed studies. (author)

  19. Organic Carbon Delivery to a High Arctic Watershed over the Late Holocene: Insights from Plant Biomarkers and Compound Specific δ13C and Δ14C Measurements

    Science.gov (United States)

    Schreiner, K. M.; Bianchi, T. S.; Eglinton, T. I.; Allison, M. A.

    2012-12-01

    The Colville River in Alaska is the largest river in North America which has a drainage basin that is exclusively underlain by permafrost, and as such provides a unique signal of historical changes in one of the world's most vulnerable areas to climate changes. Additionally, the Colville flows into Simpson's Lagoon, an area of the Alaskan Beaufort coast protected by a barrier island chain, lessening the impacts of Arctic storms and ice grounding on sediment mixing. Cores collected from the Colville river delta in August of 2010 were found to be composed of muddy, organic-rich, well-laminated sediments. The 2.5 to 3 meter length of each core spans about one to two thousand years of Holocene history, including the entire Anthropocene and much of the late Holocene. Two cores were sampled for this data set - one from close to the river mouth, and one from farther east in Simpson's Lagoon. Samples were taken every 2 cm for the entire length of both cores. In order to determine how the amount of terrestrial organic matter input changed over the Holocene, bulk analyses including percent organic carbon, percent nitrogen, and stable carbon isotopic analysis were performed, and biomarkers including lignin-phenols and fatty acids were measured. It was shown that lignin-phenol input is positively correlated with Alaskan North Slope temperature reconstructions. To determine whether the source of this increased terrestrial organic matter input was from fresh vegetation (for example, shrub encroachment onto tundra areas) or aged soil organic matter (potentially due to permafrost thawing and breakdown), selected samples were analyzed for compound-specific δ13C and Δ14C of fatty acids and lignin-phenols. These analyses show significant changes in carbon storage and in terrestrial carbon delivery to the Lagoon over time. These results represent the first fine-scale organic biomarker study in a high Arctic North American Lagoon, and have many implications for the future of carbon

  20. Carbon-14 immobilization via the Ba(OH)/sub 2/8H/sub 2/O process

    Energy Technology Data Exchange (ETDEWEB)

    Haag, G.L.; Nehls, J.W. Jr.; Young, G.C.

    1982-01-01

    The airborne release of /sup 14/C from various nuclear facilities has been identified as a potential biohazard due to the long half-life of /sup 14/C (5730 yrs) and the ease in which it may be assimilated into the biosphere. At Oak Ridge National Laboratory, technology is under development, as part of the Airborne Waste Management Program, for the removal and immobilization of this radionuclide. Prior studies have indicated that the /sup 14/C will likely exist in the oxidized form as CO/sub 2/ and will contribute slightly to the bulk CO/sub 2/ concentration of the gas stream, which is airlike in nature (approx. 330 ppMv CO/sub 2/). The technology under development utilizes the CO/sub 2/ - Ba(OH)/sub 2/ 8H/sub 2/O gas-solid reaction with the mode of gas-solid contacting being a fixed bed. The product, BaCO/sub 3/, possessing excellent thermal and chemical stability, prerequisites for the long-term disposal of nuclear wastes. For optimal process operation, studies have indicated that an operating window of adequate size does exist. When operating within the window, high CO/sub 2/ removal efficiency (effluent concentrations < 100 ppBv), high reactant utilization (> 99%), and an acceptable pressure drop across the bed (3 kPa/m at 13 cm/s superficial velocity) are possible. This paper will address three areas of experimental investigation. These areas are (1) micro-scale studies on 150-mg samples to provide information concerning surface properties, kinetics, and equilibrium vapor pressures, (2) macro-scale studies on large fixed beds (4.2 kg reactant) to determine the effects of humidity, temperature, and gas flow-rate upon bed pressure drop and CO/sub 2/ breakthrough, and (3) the design, construction, and initial operation of a pilot unit capable of continuously processing a 34 m/sup 3//h (20 ft/sup 3//min) air-based gas stream.

  1. Cost-benefit analyses for the retention of tritium, carbon 14 and krypton 85 from plants reprocessing LWR fuel elements

    International Nuclear Information System (INIS)

    ICRP's new system for the limitation of permissible doses is applied for the determination of optimum emission rates from reprocessing plants. Equivalent doses and collective doses are calculated using radioecological methods. Economy-oriented and sociological methods were used to estimate the damage to health and life expressed in monetary units (α-value equals DM 200.-/manxrem). A cost-benefit analysis was done considering retention cost, collective doses and α-value, and the results were different from those supplied by the nowadays customary retention criteria, the latter being based on the limitation of individual doses rather than collective doses. The results are surprising because for the Gorleben facility retention of krypton-85 and tritium is planned, C-14 being left out of consideration so far. (DG)

  2. Studies of palaeovegetation changes in the Central Amazon by carbon isotopes (12C, 13C, 14C) of soil organic matter

    International Nuclear Information System (INIS)

    The paper presents carbon isotope data δ13C and 14C on soil organic matter collected along an ecosystem transect in southern Amazon state, north-central Amazon region, that includes three distinct vegetation communities: savannah (Campos de Humaita), a savannah-forest transition and forest (Manaus). The study sites are located along road BR 319. Botanical identification and 13C analysis of modern vegetation in the savannah and forest sites indicate that most of the vegetation is C3 plants, although a few C4 plants are present at Campos de Humaita. The 13C and 14C data for soil organic matter in the Humaita region show that significant vegetation changes have occurred in the past, probably associated with climatic changes. During the early Holocene, forest vegetation extended throughout the study region, including areas occupied today by savannah vegetation. Savannah vegetation expanded at least 2 km into the modern forest ecotone during the middle Holocene, suggesting drier conditions. The last approximately 1000 years appear to indicate a recent expansion of forest vegetation, reflecting a return to a more moist climate. The study illustrates that the transition area between forest and savannah vegetation is quite sensitive to climatic changes, and this region should be the focus of more extensive research related to past climate and vegetation dynamics in the Amazon region. (author)

  3. Near Surface Leakage Monitoring for the Verification and Accounting of Geologic Carbon Sequestration Using a Field Ready {sup 14}C Isotopic Analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Marino, Bruno

    2014-04-14

    Results for the development of a field ready multi-isotopic analyzer for {sup 12}CO{sub 2}, {sup 13}CO{sub 2} and {sup 14}CO{sub 2} and applications for carbon capture and storage (CCS) containment performance are described. A design goal of the field platform was to provide isotopic data with a high data rate, a standardized reference baseline and acceptable precision (e.g., ~ ±50 per mil D{sup 14}CO{sub 2}) for detection and quantification of fossil-fuel CO{sub 2} CCS leakage scenarios. The instrument platform was not designed to replace high precision accelerator mass spectrometry. An additional goal was to combine project scale isotopic data and associated fluxes with unique financial instruments linking CCS containment performance to a publicly traded security providing project revenue to stakeholders. While the primary goals of the project were attained additional work is needed for the instrument platform and deployment within a full scale CCS site that was not available during the project timeframe.

  4. A Model-based Interpretation of Low-frequency Changes in the Carbon Cycle during the Last 120,000 years and its Implications for the Reconstruction of Atmospheric (delta) 14-C

    Science.gov (United States)

    Koehler, Peter; Muscheler, Raimund; Fischer, Hubertus

    2006-01-01

    A main caveat in the interpretation of observed changes in atmospheric (Delta)C-l4 during the last 50,000 years is the unknown variability of the carbon cycle, which together with changes in the C-14 production rates determines the C-14 dynamics. A plausible scenario explaining glacial/interglacial dynamics seen in atmospheric CO2 and (delta)C-13 was proposed recently (Kohler et al., 2005a). A similar approach that expands its interpretation to the C-14 cycle is an important step toward a deeper understanding of (Delta)C-14 variability. This approach is based on an ocean/atmosphere/biosphere box model of the global carbon cycle (BICYCLE) to reproduce low-frequency changes in atmospheric CO2 as seen in Antarctic ice cores. The model is forced forward in time by various paleoclimatic records derived from ice and sediment cores. The simulation results of our proposed scenario match a compiled CO2 record from various ice cores during the last 120,000 years with high accuracy (r(sup 2) = 0.89). We analyze scenarios with different C-14 production rates, which are either constant or based on Be-10 measured in Greenland ice cores or the recent high-resolution geomagnetic field reconstruction GLOPIS-75 and compare them with the available (Delta)C-14 data covering the last 50,000 years. Our results suggest that during the last glacial cycle in general less than 110%0o f the increased atmospheric (Delta)C-14 is based on variations in the carbon cycle, while the largest part (5/6) of the variations has to be explained by other factors. Glacial atmospheric (Delta)C-14 larger than 700% cannot not be explained within our framework, neither through carbon cycle-based changes nor through variable C-14 production. Superimposed on these general trends might lie positive anomalies in atmospheric (Delta)C-14 of approx. 50% caused by millennial-scale variability of the northern deep water production during Heinrich events and Dansgaard/Oeschger climate fluctuations. According to our

  5. Accuracy of a rapid 10-minute carbon-14 urea breath test for the diagnosis of Helicobacter pylori-associated peptic ulcer disease

    International Nuclear Information System (INIS)

    Urease in the human gastric mucosa is a marker for infection with Helicobacter pylori (HP), an organism which is associated with peptic ulcer disease. To detect gastric urease, we examined 184 patients (144 males, 40 females; mean age: 49.8±15.6 years) with suspected peptic ulcer disease. Fasting patients were given orally 5 μCi of carbon-14 labelled urea. For each patient only one breath sample was collected in hyamine at 10 min. The amount of 14C collected at 10 min was expressed as follows: [(DPM/mmol CO2 collected)/(DPM administered)]x100xbody weight (kg). The presence of HP colonization was determined by examination of multiple endoscopic prepyloric antral biopsy specimens subjected to culture or a rapid urease test. For the purpose of this study, HP-positive patients were defined as those with characteristic bacteria as indicated by a positive result of either the culture or the rapid urease test; HP-negative patients were defined as those with negative findings on both the culture and the rapid urease test. Of the 184 cases, 99 (53.8%) were positive for HP infection, and 85 (46.2%), negative. The sensitivity and specificity of the rapid 10 min 14C-urea breath test for the diagnosis of HP-associated peptic ulcer disease were evaluated by a receiver operating characteristic (ROC) curve with a variable cut-off value from 1.5 to 4.5. When a cut-off value of 1.5 was selected, the sensitivity was 100% and the specificity, 83.5%; when a cut-off value of 4.5 was selected, the sensitivity was 54.5% and the specificity, 97.6%. (orig.)

  6. Accuracy of a rapid 10-minute carbon-14 urea breath test for the diagnosis of Helicobacter pylori-associated peptic ulcer disease

    Energy Technology Data Exchange (ETDEWEB)

    Kao Chiahung (Taichung Veterans General Hospital (Taiwan, Province of China). Dept. of Nuclear Medicine); Wang Shyhjen (Taichung Veterans General Hospital (Taiwan, Province of China). Dept. of Nuclear Medicine); Hsu Chungyuan (Taichung Veterans General Hospital (Taiwan, Province of China). Dept. of Nuclear Medicine); Lin Wanyu (Taichung Veterans General Hospital (Taiwan, Province of China). Dept. of Nuclear Medicine); Huang Chihkua (Taichung Veterans General Hospital (Taiwan, Province of China). Dept. of Gastroenterology); Chen Granhum (Taichung Veterans General Hospital (Taiwan, Province of China). Dept. of Gastroenterology)

    1993-08-01

    Urease in the human gastric mucosa is a marker for infection with Helicobacter pylori (HP), an organism which is associated with peptic ulcer disease. To detect gastric urease, we examined 184 patients (144 males, 40 females; mean age: 49.8[+-]15.6 years) with suspected peptic ulcer disease. Fasting patients were given orally 5 [mu]Ci of carbon-14 labelled urea. For each patient only one breath sample was collected in hyamine at 10 min. The amount of [sup 14]C collected at 10 min was expressed as follows: (DPM/mmol CO[sub 2] collected)/(DPM administered)x100xbody weight (kg). The presence of HP colonization was determined by examination of multiple endoscopic prepyloric antral biopsy specimens subjected to culture or a rapid urease test. For the purpose of this study, HP-positive patients were defined as those with characteristic bacteria as indicated by a positive result of either the culture or the rapid urease test; HP-negative patients were defined as those with negative findings on both the culture and the rapid urease test. Of the 184 cases, 99 (53.8%) were positive for HP infection, and 85 (46.2%), negative. The sensitivity and specificity of the rapid 10 min [sup 14]C-urea breath test for the diagnosis of HP-associated peptic ulcer disease were evaluated by a receiver operating characteristic (ROC) curve with a variable cut-off value from 1.5 to 4.5. When a cut-off value of 1.5 was selected, the sensitivity was 100% and the specificity, 83.5%; when a cut-off value of 4.5 was selected, the sensitivity was 54.5% and the specificity, 97.6%. (orig.)

  7. Comparative dual-tracer studies of carbon-14 tryptophan and iodine-131 HIPDM in animal models of pancreatic diseases

    International Nuclear Information System (INIS)

    Our previous studies have shown that a significant amount of the diamine derivative 131I-N,N,N'-trimethyl-N'-(2-hydroxy-3-methyl-5-iodobenzyl)-1,3- propanediamine (HIPDM) is taken up and retained by the normal pancreas. Therefore, we studied the uptake of [131I]HIPDM in various pathophysiological models in mice (chronic alcoholism, diabetes with beta-cell atrophy and obesity with beta-cell hypertrophy) and compared to 14C-L-Tryptophan (TRY) distribution in order to determine the factors influencing their pancreatic uptake. In normal animals, the pancreas uptake of TRY was generally higher than HIPDM. In diabetes, the relative concentration of both compounds was higher over the controls; however, in obesity, TRY showed lower accumulation than in controls while HIPDM showed no significant difference. Chronic ethanol (20%) ingestion increased TRY uptake in the pancreas compared to controls (36.88 ± 3.21 vs. 30.03 ± 4.17% ID/g; p less than 0.01) after 5 wk study period, but it decreased by 10 wk (22.36 ± 0.95% ID/g; p less than 0.005). There were no significant changes in [131I]HIPDM distribution in alcoholics as compared to the controls. Radioiodinated HIPDM has potential advantages over [11C]TRY for pancreatic imaging since conventional imaging techniques can be employed. Our data, however, suggest that 11C-L-TRY is a more sensitive indicator of various pancreatic disorders

  8. Palaeoclimatic information from deuterium and oxygen-18 in carbon-14-dated north Saharian groundwaters. Groundwater formation in the past

    International Nuclear Information System (INIS)

    A statistical presentation of 14C groundwater ages for various regions of the northern Sahara reflects the alternating sequence of humid and arid periods in the late Pleistocene and Holocene. Groundwaters older than 20,000 years BP are found all over the Sahara. Isoline-presentation of the continental effect in deuterium and oxygen-18 of Saharian groundwater is similar to the one in modern European groundwater. This similarity proves the Western Drift influence when, in the past, winter rain was sufficient for groundwater formation in the Sahara (great pluvial). The postpluvial humid phases of the Sahara during the Holocene were probably of decreasing importance from west to east. The lower deuterium excess d=deltaD - 8xdelta18O observed in old Saharian groundwaters is interpreted to be due to a lower moisture deficit of the air over the ocean during the last ice-age. Extremely high D and 18O contents of modern groundwater in the Sahel zone south of the Sahara are probably due to summer rain originating from tropical rain forest evapotranspiration. (author)

  9. Labeled plasma metabolites of L-methyl-hydrogen-3-methionine and L-methyl-carbon-14-methionine in the dog

    International Nuclear Information System (INIS)

    The validity of the mathematical models that attempt to describe positron emission tomography (PET) images produced with [11CH3] methionine in terms of rates of local cerebral protein synthesis has yet to be established. A major objection to current models is that the use of methionine labeled at the methyl position results in the dispersal of the label among various methyl-accepting compounds that appear in the plasma and may then enter the brain. One approach to overcoming this problem has been the use of ''standard'' corrections for the activity contributed to plasma by labeled plasma protein and labeled serine. In order to determine the validity of this approach, the metabolic fate of labeled methionine was studied in six dogs. After injection with either [C3H3] methionine or [14CH3] methionine arterial blood was sampled. Plasma fractions containing protein were separated by fast gel filtration, counted with standard scintillation techniques, and their radioactivity was compared with total plasma radioactivity. Plasma was also separated by high-pressure liquid chromatography into methionine, serine, and nonmethionine or serine-containing fractions. These fractions were counted, and their radioactivity was compared with total plasma radioactivity. Labeled protein appeared in plasma about 20 minutes postinjection and then increased steadily. Labeled serine also appeared and reached a peak value of 9.4 +/- 2.1% of plasma activity at 40 minutes. Of greatest interest was the appearance in later plasma samples of increasing amounts of activity contained in nonserine low molecular weight metabolites of methionine. At 40 minutes, those metabolites made up 27 +/- 6.9% of total plasma activity

  10. Synthesis of carbon-13 labelled carbonaceous deposits and their evaluation for potential use as surrogates to better understand the behaviour of the carbon-14-containing deposit present in irradiated PGA graphite

    Science.gov (United States)

    Payne, L.; Walker, S.; Bond, G.; Eccles, H.; Heard, P. J.; Scott, T. B.; Williams, S. J.

    2016-03-01

    The present work has used microwave plasma chemical vapour deposition to generate suitable isotopically labelled carbonaceous deposits on the surface of Pile Grade A graphite for use as surrogates for studying the behaviour of the deposits observed on irradiated graphite extracted from UK Magnox reactors. These deposits have been shown elsewhere to contain an enhanced concentration of 14C compared to the bulk graphite. A combination of Raman spectroscopy, ion beam milling with scanning electron microscopy and secondary ion mass spectrometry were used to determine topography and internal morphology in the formed deposits. Direct comparison was made against deposits found on irradiated graphite samples trepanned from a Magnox reactor core and showed a good similarity in appearance. This work suggests that the microwave plasma chemical vapour deposition technique is of value in producing simulant carbon deposits, being of sufficiently representative morphology for use in non-radioactive surrogate studies of post-disposal behaviour of 14C-containing deposits on some irradiated Magnox reactor graphite.

  11. Dating by C14

    International Nuclear Information System (INIS)

    This report summarizes the results of studies made with two assemblies for dating geological and archaeological objects with C14. The advantages and drawbacks of three ways of determining C14 activity in solid, liquid and gaseous substances are discussed. Data are given of the chemical preparation and cleaning of the gaseous carbon compounds ethane, acetylene and carbon dioxide, and the calculation of their C14 activity. The report assesses the mistakes that can be made in determining age by C14, and gives data for geological and archaeological objects in the Soviet Union. (author)

  12. Traceability of animal byproducts in quail (Coturnix coturnix japonica tissues using carbon (13C/12C and nitrogen (15N/14N stable isotopes

    Directory of Open Access Journals (Sweden)

    C Móri

    2007-12-01

    Full Text Available Consistent information on meat products consumed by the public is essential. The technique of stable isotopes is a powerful tool to recover consumers' confidence, as it allows the detection of animal byproduct residues in poultry meat, particularly in quail meat. This study aimed at checking the presence of poultry byproduct mixtures in quail diets by applying the technique of carbon (13C/12C and nitrogen (15N/14N stable isotopes in quail breast muscle, keel, and tibia. Sixty four one-day-old male quails were obtained from a commercial farm. Birds were housed in an experimental house from one to 42 days of age, and were randomly distributed into 8 experimental treatments, and fed diets containing poultry offal meal (POM, bovine meat and bone meal (MBM or poultry feather meal (PFM, or their mixtures. Four birds per treatment were slaughtered at 42 days of age, and breast (Pectoralis major, keel, and tibia were collected for analyses. The inclusion of animal byproducts in quail diets was detected by 13C e 15N analyses in the tissues of the birds; however, it was not possible to specify which byproducts were used. It was concluded that quail meat can be certified by the technique of stable isotopes.

  13. Imaging and retention measurements of selenium 75 homocholic acid conjugated with taurine, and the carbon 14 glycochol breath test to document ileal dysfunction due to late radiation damage

    International Nuclear Information System (INIS)

    In order to assess ileal dysfunction in patients with complaints after pelvic radiation therapy, retention measurements and scintigraphic imaging with selenium 75 homocholic acid conjugated with taurine (75Se-HCAT), combined with the carbon 14 clycochol breath test, were evaluated in 39 patients. In 22 patients without ileal resection the results of the 75Se-HCAT test and the breath test differentiated between a normal functioning ileum (both tests negative) and ileal dysfunction as a cause of complaints (one or both tests positive). Among the patients with ileal dysfunction, the combination of both tests permitted those with bacterial overgrowth (breath test positive, 75Se-HCAT negative) to be separated from patients with evidence of bile acid malabsorption (75Se-HCAT positive, breath test positive or negative). In 17 patients with small-bowel resection, the 75Se-HCAT test helped to estimate the severity of bile acid malabsorption with implications for therapy. In this group the breath test was false-negative in 7 cases with abnormal 75Se-HCAT. Additional systematically performed scintigraphic imaging improved the accuracy of the 75Se-HCAT test, revealing cases with prolonged colonic accumulation of the radiopharmaceutical, causing spurious retention values. In conclusion, assessment of ileal dysfunction by nuclear medicine techniques in post-irradiation conditions provides information about the aetiology and therefore the possibility of adjustment in the clinical management. (orig.)

  14. Carbon-rich presolar grains from massive stars. Subsolar 12C/13C and 14N/15N ratios and the mystery of 15N

    CERN Document Server

    Pignatari, M; Hoppe, P; Jordan, C J; Gibson, B K; Trappitsch, R; Herwig, F; Fryer, C; Hirschi, R; Timmes, F X

    2015-01-01

    Carbon-rich grains with isotopic anomalies compared to the Sun are found in primitive meteorites. They were made by stars, and carry the original stellar nucleosynthesis signature. Silicon carbide grains of Type X and C, and low-density graphites condensed in the ejecta of core-collapse supernovae. We present a new set of models for the explosive He shell and compare them with the grains showing 12C/13C and 14N/15N ratios lower than solar. In the stellar progenitor H was ingested into the He shell and not fully destroyed before the explosion. Different explosion energies and H concentrations are considered. If the SN shock hits the He-shell region with some H still present, the models can reproduce the C and N isotopic signatures in C-rich grains. Hot-CNO cycle isotopic signatures are obtained, including a large production of 13C and 15N. The short-lived radionuclides 22Na and 26Al are increased by orders of magnitude. The production of radiogenic 22Ne from the decay of 22Na in the He shell might solve the pu...

  15. Decomposition performance of animals as an indicator of stress acting on beech-forest ecosystems - microcosmos experiments with carbon-14-labelled litter components

    International Nuclear Information System (INIS)

    The effect of acid rain and heavy metals on the biotic interactions in the soil of beech forest with mull, must, and limed must was investigated with the aid of close-to-nature microcosmos systems. Parameters made use of were the decomposition of carbon-14-labelled litter components and the turnover of the microflora in C, N, and P. As the results show, increased proton uptake will bear on rearly every stage of the decomposition process in mull soils. As a result, there may be litter accumulation on the ground and first signs of humus disintegration in the mineral soil of mull soils. A direct relation between the acidity of the environment and the extent of decomposition inhibition does not exist. Despite wide-ranging impairment of edaphic animals, the activity of the ground fauna still is to be considered as the most important buffer system of soils rich in bases. Acidic condition of the beech forest soils with the humus form 'must' led to drastic inhibition of litter decomposition, to a change of the effect of edaphic animals, and to an increase in N mineralization. The grazing animals frequently aggravate the decomposition inhibition resulting from acid precipitation. The comparision of the decomposition process in a soil containing must as compared to one containing mull showed acidic soils to be on a lower biological buffer level than soils rich in bases. The main buffer capacity of acidic soils lies in the microflora, which is adapted to sudden increases in acidity and which recovers quickly. In the opinion of the authors, simple liming is not enough to increase the long-term biogenic stability of a forest ecosystem. A stabilizing effect of the fauna, for instance on nitrogen storage, is possible only if forest care measuries are carried out, for instance careful loosening of the mineral soil, which will attract earthworm species penetrating deeply into the soil. (orig./MG) With 12 refs., 6 figs

  16. The preparation of nucleotides uniformly labelled with carbon-14 by biosynthetic methods. Isolation of adenylic, uridylic, cytidylic,and guanylic acids, from the alkaline hydrolysate of escherichia coli RNA

    International Nuclear Information System (INIS)

    A method is described for the preparation and analysis of adenylic, uri dilic, cytidi- 11c and guanylic acids, labelled with 14C. Escherichia coli cells have been labelled by growing them in a medi dia containing glucose-14C as their only source of carbon. RNA is isolated from the cells, and after hydrolysis of the molecule the resulting nucleotides are separated by gel filtration and exchange chromatography. Chemical and radiochemical purity of the Isolated nucleotides is determined, and also its specific radioactivity. (Author) 30 refs

  17. Lake highstands on the Altiplano (Tropical Andes) contemporaneous with Heinrich 1 and the Younger Dryas : new insights from (14)C, U-Th dating and delta(18)O of carbonates

    OpenAIRE

    Blard, P.H.; Sylvestre, Florence; A. K. Tripati; Claude, C.; Causse, C.; Coudrain, Anne; Condom, Thomas; Seidel, J.L.; Vimeux, Françoise; Moreau, C; Dumoulin, J.P.; J. Lavé

    2011-01-01

    This study provides new geochronological and stable isotope constraints on Late Pleistocene fluctuations in lake level that occurred in the closed-watershed of the Central Altiplano between similar to 25 and similar to 12 ka. U-series isochrons and (14)C ages from carbonates are used to confirm and refine the previous chronology published (Placzek et al., 2006b). Our new data support three successive lake highstands during the Late Pleistocene: (i) the lake Sajsi cycle, from similar to 25 to ...

  18. On the isolation of elemental carbon (EC for micro-molar 14C accelerator mass spectrometry: development of a hybrid reference material for 14C-EC accuracy assurance, and a critical evaluation of the thermal optical kinetic (TOK EC isolation procedure

    Directory of Open Access Journals (Sweden)

    L. A. Currie

    2005-01-01

    Full Text Available The primary objective of the research reported here has been the development of a hybrid reference material (RM to serve as a test of accuracy for elemental carbon (EC isotopic (14C speciation measurements. Such measurements are vital for the quantitative apportionment of fossil and biomass sources of 'soot' (EC, the tracer of fire that has profound effects on health, atmospheric visibility, and climate. Previous studies of 14C-EC measurement quality, carried out with NIST SRM 1649a (Urban Dust, showed a range of results, but since the 'truth' was not known for this natural matrix RM, one had to rely on isotopic-chemical consistency evidence (14C in PAH, EC of measurement validity (Currie et al., 2002. Components of the new Hybrid RM (DiesApple, however, have known 14C and EC composition, and they are nearly orthogonal (isotopically and chemically. NIST SRM 2975 (Forklift Diesel Soot has little or no 14C, and its major compositional component is EC; SRM 1515 (Apple Leaves has the 14C content of biomass-C, and it has little or no EC. Thus, the Hybrid RM can serve as an absolute isotopic test for the absence of EC-mimicking pyrolysis-C (char from SRM 1515 in the EC isolate of the Hybrid RM, as well as a test for conservation of its dominant soot fraction throughout the isolation procedure. The secondary objective was to employ the Hybrid RM for the comparative evaluation of the thermal optical kinetic (TOK and thermal optical transmission (TOT methods for the isolation of EC for micro-molar carbon accelerator mass spectrometry (AMS. As part of this process, the relatively new TOK method was subjected to a critical evaluation and significant development. Key findings of our study are: (1 both methods exhibited biomass-C 'leakage'; for TOT, the EC fraction isolated for AMS contained about 8% of the original biomass-C; for TOK, the refractory carbon (RC isolated contained about 3% of the original biomass-C.; (2 the initial isothermal oxidation stage

  19. The synthesis of [14C]-3S,4R-4-(4-fluorophenyl)-3-(3,4-methylenedioxyphenoxymethyl) piperidine hydrochloride (BRL 29060A), and mechanistic studies using carbon-13 labelling

    International Nuclear Information System (INIS)

    Paroxetine, BRL 29060A has been labelled with both carbon-14 and carbon-13. Hydroxymethylation of 4-(4-fluorophenyl)-1-methyl-1,2,5,6-tetrahydropyridine, using [14C]formaldehyde, produced an enantiomeric mixture of products which was taken without separation through a multistage sequence. Resolution of the mixture of stereoisomers at the penultimate step gave [14C]BRL 29060A with the required configuration. The overall radiochemical yield was 8%. At some stage in this process, as shown by C-13 labelling studies, scrambling of the label took place to give BRL 29060A with the majority of the label in the C-2 position of the piperidine ring and the remainder at the expected 7-methylene position. Further investigations of this route using carbon-13 as the label are described. When sesamol, (3,4-methylenedioxyphenol) was reacted with the O-benzene sulphonate of -cis-4-(4-fluorophenyl)-3-(hydroxy[13C]methyl-l-methylpiperidine, an inversion of configuration resulted via the previously described 1-aza[3.1.1]bicycloheptane ring system. It is also shown that the corresponding -trans-substituted piperidine, under similar conditions, does not undergo this inversion. (Author)

  20. The synthesis of [[sup 14]C]-3S,4R-4-(4-fluorophenyl)-3-(3,4-methylenedioxyphenoxymethyl) piperidine hydrochloride (BRL 29060A), and mechanistic studies using carbon-13 labelling

    Energy Technology Data Exchange (ETDEWEB)

    Willcocks, K.; Rustidge, D.C.; Tidy, D.J.D. (SmithKline Beecham Pharmaceuticals Research Div., Harlow (United Kingdom)); Barnes, R.D. (SmithKline Beecham Pharmaceuticals Div., Betchworth (United Kingdom). Chemotherapeutic Research Centre)

    1993-01-01

    Paroxetine, BRL 29060A has been labelled with both carbon-14 and carbon-13. Hydroxymethylation of 4-(4-fluorophenyl)-1-methyl-1,2,5,6-tetrahydropyridine, using [[sup 14]C]formaldehyde, produced an enantiomeric mixture of products which was taken without separation through a multistage sequence. Resolution of the mixture of stereoisomers at the penultimate step gave [[sup 14]C]BRL 29060A with the required configuration. The overall radiochemical yield was 8%. At some stage in this process, as shown by C-13 labelling studies, scrambling of the label took place to give BRL 29060A with the majority of the label in the C-2 position of the piperidine ring and the remainder at the expected 7-methylene position. Further investigations of this route using carbon-13 as the label are described. When sesamol, (3,4-methylenedioxyphenol) was reacted with the O-benzene sulphonate of -cis-4-(4-fluorophenyl)-3-(hydroxy[[sup 13]C]methyl-l-methylpiperidine), an inversion of configuration resulted via the previously described 1-aza[3.1.1]bicycloheptane ring system. It is also shown that the corresponding -trans-substituted piperidine, under similar conditions, does not undergo this inversion. (Author).

  1. Seasonal and snowmelt-driven changes in the water-extractable organic carbon dynamics in a cool-temperate Japanese forest soil, estimated using the bomb-14C tracer

    International Nuclear Information System (INIS)

    Water-extractable organic carbon (WEOC) in soil consists of a mobile and bioavailable portion of the dissolved organic carbon (DOC) pool. WEOC plays an important role in dynamics of soil organic carbon (SOC) and transport of radionuclides in forest soils. Although considerable research has been conducted on the importance of recent litter versus older soil organic matter as WEOC sources in forest soil, a more thorough evaluation of the temporal pattern of WEOC is necessary. We investigated the seasonal variation in WEOC in a Japanese cool-temperate beech forest soil by using the carbon isotopic composition (14C and 13C) of WEOC as a tracer for the carbon sources. Our observations demonstrated that fresh leaf litter DOC significantly contributed to WEOC in May (35–52%) when the spring snowmelt occurred because of the high water flux and low temperature. In the rainy season, increases in the concentration of WEOC and the proportion of hydrophobic compounds were caused by high microbial activity under wetter conditions. From summer to autumn, the WEOC in the mineral soil horizons was also dominated by microbial release from SOC (>90%). These results indicate that the origin and dynamics of WEOC are strongly controlled by seasonal events such as the spring snowmelt and the rainy season's intense rainfall. -- Highlights: • 14C and 13C were used for a tracer for the carbon sources of WEOC in a forest soil. • Fresh leaf litter DOC significantly contributed to WEOC in the spring snowmelt. • Microbial activity caused the increase of WEOC concentration in the rainy season

  2. The preparation of nucleotides uniformly labelled with carbon-14 by biosynthetic methods. Isolation of adenylic, uridylic, cytidylic,and guanylic acids, from the alkaline hydrolysate of escherichia coli RNA; Preparacion de nucleiotidos uniformemente marcados con 14{sup C}, por via biosintetica. Aislamiento de los acidos adenilico, uridilico, citidilico y guanilico, procedentes de la hidrolisis alcalina de RNA de escherichia Coli.

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Pineda, M. D.; Pacheco Lopez, J.

    1978-07-01

    A method is described for the preparation and analysis of adenylic, uri dilic, cytidi- 11c and guanylic acids, labelled with 14{sup C}. Escherichia coli cells have been labelled by growing them in a medi dia containing glucose-14{sup C} as their only source of carbon. RNA is isolated from the cells, and after hydrolysis of the molecule the resulting nucleotides are separated by gel filtration and exchange chromatography. Chemical and radiochemical purity of the Isolated nucleotides is determined, and also its specific radioactivity. (Author) 30 refs.

  3. Ice core measurements of 14CH4 show no evidence of methane release from methane hydrates or old permafrost carbon during a large warming event 11,600 years ago

    Science.gov (United States)

    Petrenko, Vasilii; Severinghaus, Jeffrey; Smith, Andrew; Riedel, Katja; Brook, Edward; Schaefer, Hinrich; Baggenstos, Daniel; Harth, Christina; Hua, Quan; Buizert, Christo; Schilt, Adrian; Fain, Xavier; Mitchell, Logan; Bauska, Thomas; Orsi, Anais

    2015-04-01

    Thawing permafrost and marine methane hydrate destabilization in the Arctic and elsewhere have been proposed as large sources of methane to the atmosphere in the future warming world. To evaluate this hypothesis it is useful to ask whether such methane releases happened during past warming events. The two major abrupt warming events of the last deglaciation, Oldest Dryas - Bølling (OD-B, ≈ 14,500 years ago) and Younger Dryas - Preboreal (YD-PB; ≈11,600 years ago), were associated with large (up to 50%) increases in atmospheric methane (CH4) concentrations. The sources of these large warming-driven CH4 increases remain incompletely understood, with possible contributions from tropical and boreal wetlands, thawing permafrost as well as marine CH4 hydrates. We present new measurements of 14C of paleoatmospheric CH4 over the YD-PB transition from ancient ice outcropping at Taylor Glacier, Antarctica. 14C can unambiguously identify CH4 emissions from "old carbon" sources, such as permafrost and CH4 hydrates. The only prior study of paleoatmospheric 14CH4 (from Greenland ice) suggested that wetlands were the main driver of the YD-PB CH4 increase, but the results were weakened by an unexpected and poorly understood 14CH4 component from in situ cosmogenic production directly in near-surface ice. In this new study, we have been able to accurately characterize and correct for the cosmogenic 14CH4 component. All samples from before, during and after the abrupt warming and associated CH4 increase yielded 14CH4 values that are consistent with 14C of atmospheric CO2 at that time, indicating a purely contemporaneous methane source. These new measurements rule out the possibility of large CH4 releases to the atmosphere from methane hydrates or old permafrost carbon in response to the large and rapid YD-PB warming. To the extent that the characteristics of the YD-PB warming are comparable to those of the current anthropogenic warming, our measurements suggest that large future

  4. Carbon-14 analysis in solidified product of non-metallic solid waste by a combination of alkaline fusion and gaseous CO2 trapping.

    Science.gov (United States)

    Ishimori, Ken-ichiro; Kameo, Yutaka; Matsue, Hideaki; Ohki, Yoshiyuki; Nakashima, Mikio; Takahashi, Kuniaki

    2011-02-01

    In order to establish a simple and rapid analytical method for (14)C in solidified products made from non-metallic low-level radioactive solid wastes such as concrete, mortar and glass by melting treatment, a radiochemical analysis in combination with alkaline fusion as a sample decomposition method was examined. A simulated solidified product containing (14)C, which was prepared by using nuclear reaction (14)N(n, p)(14)C with thermal neutron irradiation, was analyzed by the present method to compare with a conventional radiochemical analysis using oxidizing combustion. The reproducible and quantitative recovery of (14)C from the simulated solidified product indicates that the present method is more efficient for (14)C analysis in solidified products than the conventional method using oxidizing combustion. PMID:21074999

  5. Increased accuracy of the carbon-14 D-xylose breath test in detecting small-intestinal bacterial overgrowth by correction with the gastric emptying rate

    International Nuclear Information System (INIS)

    The aim of this study was to determine whether the accuracy of 14C-D-xylose breath test for detecting bacterial overgrowth can be increased by correction with the gastric emptying rate of 14C-D-xylose. Ten culture-positive patients and ten culture-negative controls were included in the study. Small-intestinal aspirates for bacteriological culture were obtained endoscopically. A liquid-phase gastric emptying study was performed simultaneously to assess the amount of 14C-D-xylose that entered the small intestine. The results of the percentage of expired 14CO2 at 30 min were corrected with the amount of 14C-D-xylose that entered the small intestine. There were six patients in the culture-positive group with a 14CO2 concentration above the normal limit. Three out of four patients with initially negative results using the uncorrected method proved to be positive after correction. All these three patients had prolonged gastric emptying of 14C-D-xylose. When compared with cultures of small-intestine aspirates, the sensitivity and specificity of the uncorrected 14C-D-xylose breath test were 60% and 90%, respectively. In contrast, the sensitivity and specificity of the corrected 14C-D-xylose breath test improved to 90% and 100%, respectively. (orig./MG)

  6. Increased accuracy of the carbon-14 D-xylose breath test in detecting small-intestinal bacterial overgrowth by correction with the gastric emptying rate

    Energy Technology Data Exchange (ETDEWEB)

    Chang Chisen [Div. of Gastroenterology, Dept. of Internal Medicine, Taichung Veterans General Hospital Taichung (Taiwan, Province of China); Chen Granhum [Div. of Gastroenterology, Dept. of Internal Medicine, Taichung Veterans General Hospital Taichung (Taiwan, Province of China); Kao Chiahung [Dept. of Nuclear Medicine, Taichung Veterans General Hospital, Taichung (Taiwan, Province of China); Wang Shyhjen [Dept. of Nuclear Medicine, Taichung Veterans General Hospital, Taichung (Taiwan, Province of China); Peng Shihnen [Div. of Gastroenterology, Dept. of Internal Medicine, Taichung Veterans General Hospital Taichung (Taiwan, Province of China); Huang Chihkuen [Div. of Gastroenterology, Dept. of Internal Medicine, Taichung Veterans General Hospital Taichung (Taiwan, Province of China); Poon Sekkwong [Div. of Gastroenterology, Dept. of Internal Medicine, Taichung Veterans General Hospital Taichung (Taiwan, Province of China)

    1995-10-01

    The aim of this study was to determine whether the accuracy of {sup 14}C-D-xylose breath test for detecting bacterial overgrowth can be increased by correction with the gastric emptying rate of {sup 14}C-D-xylose. Ten culture-positive patients and ten culture-negative controls were included in the study. Small-intestinal aspirates for bacteriological culture were obtained endoscopically. A liquid-phase gastric emptying study was performed simultaneously to assess the amount of {sup 14}C-D-xylose that entered the small intestine. The results of the percentage of expired {sup 14}CO{sub 2} at 30 min were corrected with the amount of {sup 14}C-D-xylose that entered the small intestine. There were six patients in the culture-positive group with a {sup 14}CO{sub 2} concentration above the normal limit. Three out of four patients with initially negative results using the uncorrected method proved to be positive after correction. All these three patients had prolonged gastric emptying of {sup 14}C-D-xylose. When compared with cultures of small-intestine aspirates, the sensitivity and specificity of the uncorrected {sup 14}C-D-xylose breath test were 60% and 90%, respectively. In contrast, the sensitivity and specificity of the corrected {sup 14}C-D-xylose breath test improved to 90% and 100%, respectively. (orig./MG)

  7. Synthesis and purification of carbon-14 labelled 1, 1-hexamethylene-bis (5-(4-chlorophenyl)biguanide) (chlorhexidine, 'Hibitane')

    Energy Technology Data Exchange (ETDEWEB)

    Burns, J. (Imperial Chemical Industries Ltd., Macclesfield (UK). Pharmaceuticals Div.)

    1982-10-01

    Two syntheses of (/sup 14/C) chlorhexidine ('Hibitane') with the label specifically incorporated in two separate molecular positions are described. Ring labelled chlorhexidine prepared from p-chloro(U-/sup 14/C)aniline was obtained with a molar specific activity of 27.9 mCi/mmol. Chain labelled material, where the /sup 14/C label was incorporated in the 1 and 6 positions of the hexamethylene bridge, was prepared from (1, 6 /sup 14/C)-adiponitrile, with a molar specific activity of 11.5 mCi/mmol. Several methods of purification are described.

  8. Soil and vegetation dynamics in a forest-savannah boundary in Southern Amazon state during the holocene, using 14C dating and stable carbon isotopes of soil organic matter

    International Nuclear Information System (INIS)

    This work presents a comparative study between organic soil horizons formed in depressions, distant ca. 500 meters from each sampling site, in a forest/savannah boundary in the Southern Amazon Basin. The influence of the paleovegetation and soil dynamics, based on carbon isotope (12C, 13C, 14C) data of soil organic matter (SOM) was evaluated. The soils were classified as Dystropept (Cambissolo) and were considered as clayey. The total organic carbon contents decreased from the surface to deeper parts of the soils profiles. At deeper parts of the soil profiles in the savannah site, between 100 cm and 30 cm, the δ13C values characterized the influence of C4 plants (around -18,0 per mille). From about 20 cm to the surface the δ13C values characterized the mixture of C3 and C4 plants. The soil δ13C values in the forest site ranged from -25,0 per mille at deeper parts of the profile to -26,0 per mille in the surface, characterizing the dominance of C3 plants in this location. 13C and 14C data from soil samples indicated a predominance of C3 plants in the early Holocene. From ca. 7000 to 3000 years BP the influence of C4 plants increased, characterizing a savannah expansion probably related to a drier climate in the region. Since 3000 years 14C BP, the carbon isotope data suggest the forest expansion, probably due to a return to wetter climate. 14C data in the 40-50 cm and 100 cm soil depth were contemporary, showing no difference on the soil organic matter deposition in the savannah and in the forest locations. (author)

  9. Synthesis of triple (13C2, 15N), single (14C), and double (14C2) labeled trimetrexate

    International Nuclear Information System (INIS)

    A method was developed for the synthesis of triple (13C2, 14N) labeled trimetrexate. A method for single carbon-14 labeled synthesis is also described. Modifications of the triple labeled synthesis with carbon-14 produced a doubled carbon-14 labeled trimetrexate. (author)

  10. Biodegradation of poly(butylene succinate) powder in a controlled compost at 58°C evaluated by naturally-occurring carbon 14 amounts in evolved CO(2) based on the ISO 14855-2 method.

    Science.gov (United States)

    Kunioka, Masao; Ninomiya, Fumi; Funabashi, Masahiro

    2009-10-01

    The biodegradabilities of poly(butylene succinate) (PBS) powders in a controlled compost at 58 degrees C have been studied using a Microbial Oxidative Degradation Analyzer (MODA) based on the ISO 14855-2 method, entitled "Determination of the ultimate aerobic biodegradability of plastic materials under controlled composting conditions-Method by analysis of evolved carbon dioxide-Part 2: Gravimetric measurement of carbon dioxide evolved in a laboratory-scale test". The evolved CO(2) was trapped by an additional aqueous Ba(OH)(2) solution. The trapped BaCO(3) was transformed into graphite via a serial vaporization and reduction reaction using a gas-tight tube and vacuum manifold system. This graphite was analyzed by accelerated mass spectrometry (AMS) to determine the percent modern carbon [pMC (sample)] based on the (14)C radiocarbon concentration. By using the theory that pMC (sample) was the sum of the pMC (compost) (109.87%) and pMC (PBS) (0%) as the respective ratio in the determined period, the CO(2) (respiration) was calculated from only one reaction vessel. It was found that the biodegradabilities determined by the CO(2) amount from PBS in the sample vessel were about 30% lower than those based on the ISO method. These differences between the ISO and AMS methods are caused by the fact that part of the carbons from PBS are changed into metabolites by the microorganisms in the compost, and not changed into CO(2). PMID:20057944

  11. Free allocations in EU ETS Phase 3: The impact of emissions performance benchmarking for carbon-intensive industry - Working Paper No. 2013-14

    International Nuclear Information System (INIS)

    From Phase 3 (2013-20) of the European Union Emissions Trading Scheme, carbon-intensive industrial emitters will receive free allocations based on harmonised, EU-wide benchmarks. This paper analyses the impacts of these new rules on allocations to key energy-intensive sectors across Europe. It explores an original dataset that combines recent data from the National Implementing Measures of 20 EU Member States with the Community Independent Transaction Log and other EU documents. The analysis reveals that free allocations to benchmarked sectors will be reduced significantly compared to Phase 2 (2008-12). This reduction should both increase public revenues from carbon auctions and has the potential to enhance the economic efficiency of the carbon market. The analysis also shows that changes in allocation vary mostly across installations within countries, raising the possibility that the carbon-cost competitiveness impacts may be more intense within rather than across countries. Lastly, the analysis finds evidence that the new benchmarking rules will, as intended, reward installations with better emissions performance and will improve harmonisation of free allocations in the EU ETS by reducing differences in allocation levels across countries with similar carbon intensities of production. (authors)

  12. Effect of Ginkgo Biloba Extract on The Toxicity and Distribution of 14C-Carbon Tetrachloride in Adult Male Albino Rats

    International Nuclear Information System (INIS)

    The present study was conducted to investigate the possibility of whether the standardized extract of Ginkgo biloba (EGb-761) has a protective and therapeutic effect on the toxicity and distribution of 14C-CCl4 in different brain areas (cerebellum, striatum, cerebral cortex) of adult male albino rats for determination of distribution of 14C-CCl4 and monoamine contents (dopamine (DA), norepinephrine (NE) and serotonin (5- HT)) and also estimation of serum total antioxidant capacity (TAC) in adult male albino rat. The i.p. injection of 14C-CCl4 (1ml/kg) resulted in increase in the activity of counted 14C in all tested brain areas all over the experimental period. The treatment with EGb-761 (200 mg/kg) pre and post 1'4C-CCl4 injection resulted in a significant reduction (P14C in tested areas. The maximum reduction was observed in cerebral cortex on 1st day (-40.91%) after pre-treatment with EGb-761. The treatment with CCl4 (1ml/kg) resulted in a significant reduction (P4 . The pre and post-treatment with EGb-761 ameliorated the effect of CCl4 in all tested brain areas throughout the experimental period. This may be due to the free radical scavenger property of its constituents. Data obtained could recommend that EGb-761 has a protective and therapeutic effect against toxicity produced by CCl4 .

  13. Volumetric Properties of the Mixture Dimethyl carbonate C3H6O3 + C10H22O5 2,5,8,11,14-Pentaoxapentadecane (VMSD1112, LB4865_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Dimethyl carbonate C3H6O3 + C10H22O5 2,5,8,11,14-Pentaoxapentadecane (VMSD1112, LB4865_V)' providing data by calculation of mass density in the single-phase region(s) from low-pressure dilatometric measurements of the molar excess volume at variable mole fraction and constant temperature.

  14. Volumetric Properties of the Mixture Dimethyl carbonate C3H6O3 + C10H22O5 2,5,8,11,14-Pentaoxapentadecane (VMSD1211, LB4862_V)

    Science.gov (United States)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Volumetric Properties of the Mixture Dimethyl carbonate C3H6O3 + C10H22O5 2,5,8,11,14-Pentaoxapentadecane (VMSD1211, LB4862_V)' providing data from direct low-pressure dilatometric measurement of molar excess volume at variable mole fraction and constant temperature.

  15. Comportement des déchets graphite en situation de stockage : Relâchement et répartition des espèces organiques et inogarniques du carbone 14 et du tritium en milieu alcalin

    OpenAIRE

    Vende, Ludivine

    2012-01-01

    23000 tons of graphite wastes will be generated during dismantling of the first generation of French reactors (9 gas cooled reactors). These wastes are classified as Long Lived Low Level wastes (LLW-LL). As requested by the law, the French National Radioactive Waste Management Agency (Andra) is studying concepts of low-depth disposals.In this work we focus on carbon 14, the main long-lived radionuclide in graphite waste (5730y), but also on tritium, which is the main contributor to the radioa...

  16. Activation and micropore structure determination of carbon-fiber composite molecular sieves. Topical report, 30 March 1994--14 April 1995

    Energy Technology Data Exchange (ETDEWEB)

    Jagtoyen, M.; Derbyshire, F.; Kimber, G.; Fei, You Qing [Kentucky Univ., Lexington, KY (United States). Center for Applied Energy Research

    1995-05-19

    Progress in developing novel, rigid, monolithic adsorbent carbon fiber composites is described. Carbon fiber composites are activated using steam or CO{sub 2}, in order to produce uniform activation through the material and to control the pore structure and adsorptive properties. There is an overall shrinkage during activation, which is directly correlated with burnoff; burnoff above 40% results in fracture. Burnoffs higher than 10% does not produce any benefit for separation of CH{sub 4}-CO{sub 2} mixtures. Five samples of CFCMS have been prepared for testing as molecular sieves; all have relatively narrow pore size distributions with average pore diameters around 6A.

  17. Simulations of the global carbon cycle and anthropogenic CO{sub 2} transient. Final report, September 15, 1993--September 14, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento, J.L.; Pacala, S.W.

    1998-06-01

    The primary accomplishment of this research was the development of an ocean biogeochemistry model for the carbon cycle, and the application of this model to studies of anthropogenic CO{sub 2} uptake and the global carbon cycle. The model has been used to study the oceanic uptake that would occur if future atmospheric CO{sub 2} were to be stabilized with the ocean circulation remaining constant. The authors also modeled how oceanic uptake would be affected by changes in ocean circulation that are predicted to occur due to global warming. The research resulted in 21 publications, and an additional 5 papers either in press or in preparation. The accomplishments of this research served as the foundation on which the Carbon Modeling Consortium was built. The CMC is a NOAA funded collaborative program involving principal investigators from various NOAA laboratories and universities. It has the goal of developing techniques to monitor the global carbon cycle on land as well as the ocean, and to predict its future course.

  18. Biomarker and carbon isotope constraints (δ{sup 13}C, Δ{sup 14}C) on sources and cycling of particulate organic matter discharged by large Siberian rivers draining permafrost areas

    Energy Technology Data Exchange (ETDEWEB)

    Winterfeld, Maria

    2014-08-15

    Circumpolar permafrost soils store about half of the global soil organic carbon pool. These huge amounts of organic matter (OM) could accumulate due to low temperatures and water saturated soil conditions over the course of millennia. Currently most of this OM remains frozen and therefore does not take part in the active carbon cycle, making permafrost soils a globally important carbon sink. Over the last decades mean annual air temperatures in the Arctic increased stronger than the global mean and this trend is projected to continue. As a result the permafrost carbon pool is under climate pressure possibly creating a positive climate feedback due to the thaw-induced release of greenhouse gases to the atmosphere. Arctic warming will lead to increased annual permafrost thaw depths and Arctic river runoff likely resulting in enhanced mobilization and export of old, previously frozen soil-derived OM. Consequently, the great arctic rivers play an important role in global biogeochemical cycles by connecting the large permafrost carbon pool of their hinterlands with the arctic shelf seas and the Arctic Ocean. The first part of this thesis deals with particulate organic matter (POM) from the Lena Delta and adjacent Buor Khaya Bay. The Lena River in central Siberia is one of the major pathways translocating terrestrial OM from its southernmost reaches near Lake Baikal to the coastal zone of the Laptev Sea. The permafrost soils from the Lena catchment area store huge amounts of pre-aged OM, which is expected to be remobilized due to climate warming. To characterize the composition and vegetation sources of OM discharged by the Lena River, the lignin phenol and carbon isotopic composition (δ{sup 13}C and Δ{sup 14}C) in total suspended matter (TSM) from surface waters, surface sediments from the Buor Khaya Bay along with soils from the Lena Delta's first (Holocene) and third terraces (Pleistocene ice complex) were analyzed. The lignin compositions of these samples are

  19. Role Of Ginkgo BILOBA Extract In Ameliorating The Toxicity And Distribution Of 14C-Carbon Tetrachloride In Some Brain Areas Of Adult Male Albino Rats

    International Nuclear Information System (INIS)

    The present study was conducted to investigate the protective and therapeutic effect of the standardized extract of Ginkgo biloba (EGb-761) on distribution of14C-CCl4 in different brain areas (hippocampus, brain stem and hypothalamus) and its toxicity using the determination of monoamine contents (dopamine (DA), norepinephrine (NE) and serotonin (5-HT)) as well as estimation of serum nitric oxide (NO) and malondialdehyde (MDA) in adult male albino rat. The i.p. injection of14C-CCl4 (1 ml/kg) resulted in increase in the activity of 14C amount in all tested brain areas during experimental period. The treatment with EGb-761 (200 mg/kg) pre and post 14C-CCl4 treatment resulted in a significant reduction (P14C amount in areas under investigation. The maximum reduction was recorded in hypothalamus on 3rd day (-49.28%) after pre-treatment with EGb-761. The treatment with CCl4 (1ml/kg) resulted in a significant reduction (P4. The pre and post-treatment with EGb-761 ameliorated the effect of CCl4 in all tested brain areas throughout the experimental period, which might be due to the free radical scavenger property of its constituents. The data obtained could recommend that EGb-761 has a protective and therapeutic effect against toxicity produced by CCl4.

  20. The Path of Carbon in Photosynthesis XIII. pH Effects in C{sup 14}O{sub 2} Fixation by Scenedesmus

    Science.gov (United States)

    Ouellet, C.; Benson, A. A.

    1951-10-23

    The rates of photosynthesis and dark fixation of C{sup 14}O{sub 2} in Scenedesmus have been compared in dilute phosphate buffers of 1.6 to 11.4 pH; determination of C{sup 14} incorporation into the various products shows enhancement of uptake in an acid medium into sucrose, polysaccharides, alanine and serine, in an alkaline medium into malic asparctic acids. kinetic experiments at extreme pH values suggest that several paths are available for CO{sub 2} assimilation. A tentative correlation of the results with the pH optima of some enzymes and resultant effects upon concentrations of intermediates is presented.

  1. Natural 14C variations

    International Nuclear Information System (INIS)

    This thesis deals with the natural variations in the atmospheric 14C activity, their geophysical origin and their impact on radiocarbon dating. Studies confirm the idea that one is dealing with a mechanism of a certain regularity. The correlation between a 14C variation during the Little Ice Age and the absence of sunspots on the solar surface suggest the sun to be responsible for some kind of modulation of the galactic cosmic ray spectrum. The background of a changing natural 14C level is relevant when studying the antropogenic perturbation of the atmospheric 14C concentration by the addition of CO2 from fossil fuel combustion. The results presented point to a Suess effect over the past 150 years of about 20 per thousand, but also show a local dilution effect. If this local effect is present over large continental parts of the Northern Hemisphere this will put limits to the use of tree ring 14C measurements for testing carbon reservoir models. Finally the influence of 14C variations upon the interpretations of 14C dates for archaeological and geological purposes has been investigated. It is shown that care must be taken especially in the interpretation of highly accurate 14C data of material only covering a few years of growth. One geological example illustrates that 14C variations can easily be interpretated as alternating fast and slow rises of the sea level. (Auth.)

  2. The chemical nature of the carbon-14- labelled organic matter released into soil from growing wheat roots. Effects of soil micro-organisms

    International Nuclear Information System (INIS)

    Individual wheat plants were grown in a sandy soil under an atmosphere of 14CO2 for 21 days with the plant roots maintained under sterile or non-sterile conditions. A comparison has been made of the chemical nature of the 14C-labelled organic matter present in root-free soil from the sterile and non-sterile treatments, based on solubility, molecular size and ion-exchange chromatography of soil extracts and acid hydrolysates of whole soil. There was little difference between sterile and non-sterile soils for the values from any of these determinations. It is proposed that a major part of the organic 14C present in soils from both treatments resulted from autolysis of root tissue, particularly in localized zones where low water availability may have limited microbial decomposition of sugars and amino acids released from the roots. About 15% of the 14C in both soil treatments was present in humic acid fractions with a molecular weight, estimated from ultrafiltration of >5X104. These experiments show that there can be a significant formation of soil organic matter during active root growth, much of it directly from root tissue without the intervention of soil microflora or microfauna. Such reactions would be important in nutrient cycling in permanent pastures and forests, and in the interchange of nutrients in grass/legume associations. (author)

  3. Preparation of a Lipopolysaccharide from Escherichia coli 01lla, 01llb, k58: h21 bacterial wall, labeled with carbon-14

    International Nuclear Information System (INIS)

    A brief description of the morphological and chemical structure of Li po polysaccharides is given, as well as its occurrence in nature and its mechanisms of action. It is emphasized the usefulness for actual biochemical and biomedical research of the labeled Lipopolysaccharide. The method for the labelling, isolation and purification of 14''C-Lipopolysacchari de is described. (Author) 23 refs

  4. Biodegradation of Poly(butylene succinate Powder in a Controlled Compost at 58 °C Evaluated by Naturally-Occurring Carbon 14 Amounts in Evolved CO2 Based on the ISO 14855-2 Method

    Directory of Open Access Journals (Sweden)

    Masahiro Funabashi

    2009-09-01

    Full Text Available The biodegradabilities of poly(butylene succinate (PBS powders in a controlled compost at 58 °C have been studied using a Microbial Oxidative Degradation Analyzer (MODA based on the ISO 14855-2 method, entitled “Determination of the ultimate aerobic biodegradability of plastic materials under controlled composting conditions—Method by analysis of evolved carbon dioxide—Part 2: Gravimetric measurement of carbon dioxide evolved in a laboratory-scale test”. The evolved CO2 was trapped by an additional aqueous Ba(OH2 solution. The trapped BaCO3 was transformed into graphite via a serial vaporization and reduction reaction using a gas-tight tube and vacuum manifold system. This graphite was analyzed by accelerated mass spectrometry (AMS to determine the percent modern carbon [pMC (sample] based on the 14C radiocarbon concentration. By using the theory that pMC (sample was the sum of the pMC (compost (109.87% and pMC (PBS (0% as the respective ratio in the determined period, the CO2 (respiration was calculated from only one reaction vessel. It was found that the biodegradabilities determined by the CO2 amount from PBS in the sample vessel were about 30% lower than those based on the ISO method. These differences between the ISO and AMS methods are caused by the fact that part of the carbons from PBS are changed into metabolites by the microorganisms in the compost, and not changed into CO2.

  5. Comparing microfossil shell weight from two locations on the California coast to understand controls on bottom water carbonate chemistry over the past 14 ka

    Science.gov (United States)

    Downing, S. C.; Hill, T. M.; Flores, S. C.; Myhre, S.

    2009-12-01

    Foraminiferal shell weight has been utilized, primarily in planktonic foraminifera, to understand changes in seawater carbonate ion concentration in the geologic past. Such data can provide important insight into the natural and anthropogenic processes that induce variability in the pH and carbonate ion content of seawater. This study investigated shell weights of benthic foraminifera (E. hannai, U. peregrina and B. argentea) using sediment cores from two California sites: Tomales Bay (3 m water depth), a narrow estuary in Northern California, and Santa Barbara Basin (from 400 m) within the Southern California Bight. Based upon sedimentation rates derived from radiocarbon analyses and oxygen isotopic stratigraphy, the Tomales Bay core (2.95 mm/year) extends back ~1000 years b.p., and the Santa Barbara Basin record (~80 cm/ka) extends back to 16 ka b.p. In Tomales Bay, two decreases in shell weight of E. hannai correlate to historically-documented increases in rainfall (404 and 595 years b.p.). At the top of the core a decrease in shell weight and an overall decrease in E. hannai population may correlate to human impacts on the estuary, including land use changes that caused localized “acidification”. In Santa Barbara Basin, shell weight measurements of B. argentea do not exhibit significant variability; however, U. peregrina shell weights increase during the early Holocene, indicating a potential relationship between increased upwelling/productivity at the surface and optimal foraminiferal growth conditions at 400m. Both B. argentea and U. peregrina document a decrease in shell weight over the past 3ka making it difficult to ascertain any anthropogenic influence in the upper most sediments of the core. Further work is needed to understand the roles of carbonate ion content and foraminiferal growth conditions in forcing shell weight changes in benthic foraminifera.

  6. 2-Butyne-1,4-diol as a novel corrosion inhibitor for API X65 steel pipeline in carbonate/bicarbonate solution

    International Nuclear Information System (INIS)

    Highlights: ► Corrosion of API 5L X65 is effectively reduced by the addition of the inhibitor. ► The techniques include weight loss, potentiodynamic polarization, EIS and AFM. ► 2-Butyne-1,4-diol acts as a mixed-type inhibitor. ► The adsorption of 2-butyne-1,4-diol obeys Langmuir adsorption isotherm. - Abstract: The inhibition effects of 2-butyne-1,4-diol on the corrosion susceptibility of grade API 5L X65 steel pipeline in 2 M Na2CO3/1 M NaHCO3 solution were studied by electrochemical techniques and weight loss measurements. The results indicated that this inhibitor was a mixed-type inhibitor, with a maximum percentage inhibition efficiency of approximately 92% in the presence of 5 mM inhibitor. Atomic force microscopy revealed that a protective film was formed on the surface of the inhibited sample. The adsorption of the inhibitor was found to conform to the Langmuir isotherm with the standard adsorption free energy of −21.08 kJ mol−1.

  7. The applicability of C-14 measurements in the soil gas for the assessment of leakage out of underground carbon dioxide reservoirs

    OpenAIRE

    Chałupnik Stanisław; Wysocka Małgorzata

    2014-01-01

    Poland, due to the ratification of the Kioto Protocol, is obliged to diminish the emission of greenhouse gases. One of the possible solutions of this problem is CO2 sequestration (CCS - carbon capture and storage). Such an option is a priority in the European Union. On the other hand, CO2 sequestration may be potentially risky in the case of gas leakage from underground reservoirs. The most dangerous event may be a sudden release of the gas onto the surface. Therefore, it is very important to...

  8. The risk of leukaemia in young children from exposure to tritium and carbon-14 in the discharges of German nuclear power stations and in the fallout from atmospheric nuclear weapons testing.

    Science.gov (United States)

    Wakeford, Richard

    2014-05-01

    Towards the end of 2007, the results were published from a case-control study (the "KiKK Study") of cancer in young children, diagnosed tritium and carbon-14 discharges in this supposedly severe underestimation of risk. Both (3)H and (14)C are generated naturally in the upper atmosphere, and substantial increases in these radionuclides in the environment occurred as a result of their production by atmospheric testing of nuclear weapons during the late 1950s and early 1960s. If the leukaemogenic effect of these radionuclides has been seriously underestimated to the degree necessary to explain the KiKK Study findings, then a pronounced increase in the worldwide incidence of leukaemia among young children should have followed the notably elevated exposure to (3)H and (14)C from nuclear weapons testing fallout. To investigate this hypothesis, the time series of incidence rates of leukaemia among young children <5 years of age at diagnosis has been examined from ten cancer registries from three continents and both hemispheres, which include registration data from the early 1960s or before. No evidence of a markedly increased risk of leukaemia in young children following the peak of above-ground nuclear weapons testing, or that incidence rates are related to level of exposure to fallout, is apparent from these registration rates, providing strong grounds for discounting the idea that the risk of leukaemia in young children from (3)H or (14)C (or any other radionuclide present in both nuclear weapons testing fallout and discharges from nuclear installations) has been grossly underestimated and that such exposure can account for the findings of the KiKK Study. PMID:24477409

  9. Use of natural radioactive carbon 14C in the study of organic matter dynamic in the soil in two different environment

    International Nuclear Information System (INIS)

    The natural prairies which are distributed in the Alsace region in the north east of France occupy very large areas of lands. However, there is gradual retraction in these prairies at the expense of arable lands expansion. This has led to an ecological imbalance. The dynamic of the organic matter in the soil was studied by means of humic horizon, and sub-surface horizon found within these two systems (prairies and arable lands), using the natural radiocarbon isotope (C14) method. The study showed that changing the ecological system from prairies to agricultural system resulted in aging the organic matter. Age determination using C14 method also indicated that the activity of the organic matter within 'Ap' horizon and the horizon below was less than the activity of similar horizons in the prairies soils. The fraction of the organic matter for both types of soil and ages determination for the different part of organic using C14 method contributed to the following information: (1) the organic matter consists of compartments of various apparent ages. (2) the new components such as plant residuals, folic acids and the relatively new organic particles were small in the arable soils in comparison with prairies soils. The annual accumulation of organic matter and the speed of mineralization for these substances differ from system to another. These two factors lead to the disappearance of the new components from the cultivated lands, as a result the organic matter becomes aged. (3) the older particles within the organic matter are the residuals of hydrolysis of humic. (author)

  10. Self–activation and effect of regeneration conditions in CO2 – carbonate looping with CaO - Ca12Al14O33 sorbent

    OpenAIRE

    STENDARDO Stefano; Andersen, Lars; HERCE C

    2012-01-01

    CO2 capture by solid sorbents through uptake–regeneration cycling is a promising option for high temperature removal of CO2 from combustion gases and synthesis/fuel gases. The present study investigates the influence of regeneration atmosphere and temperature on the CO2 uptake capacity during repeated cycling of CaO–based solid sorbents. The sorbents were synthesised to contain 75 and 85 %w/w of active phase (CaO) and binder (Ca12Al14O33) and were then subjected to cycling tests with repeate...

  11. Stringent control during carbon starvation of marine Vibrio sp. strain S14: molecular cloning, nucleotide sequence, and deletion of the relA gene.

    OpenAIRE

    Flärdh, K; Axberg, T; Albertson, N H; Kjelleberg, S

    1994-01-01

    In order to evaluate the role of the stringent response in starvation adaptations of the marine Vibrio sp. strain S14, we have cloned the relA gene and generated relaxed mutants of this organism. The Vibrio relA gene was selected from a chromosomal DNA library by complementation of an Escherichia coli delta relA strain. The nucleotide sequence contains a 743-codon open reading frame that encodes a polypeptide that is identical in length and highly homologous to the E. coli RelA protein. The a...

  12. Uptake of [35S] carbonyl sulphide and [14C] carbon dioxide by crops in the vicinity of an advanced gas-cooled reactor

    International Nuclear Information System (INIS)

    The uptake into major crops of 35S and 14C released to the atmosphere during operation of Hinkley Point Nuclear Power Station was studied at an on-site experimental plot. Both radionuclides were measured in air and edible crop parts, while the effect of boiling on the 35S content of the latter was also investigated. The results were analysed in terms of air to crop transfer factors and the implications of these were assessed for both collective dose and dose to a hypothetical critical group. The transfer factor for 35S to green vegetables was found to be much smaller than believed previously, to the extent that the vegetable consumption pathway is of secondary importance to that of fresh milk. A possible reduction is indicated in critical group individual 35S doses of 20-60% and in collective dose by a factor of about 2, but vegetable consumption remains of potential radiological significance. It was confirmed that the specific activity approach used currently for assessments of 'first pass' dose from 14C releases is broadly correct, but a possible reduction of up to 3.5 times is indicated in the air-crop transfer for root vegetables. (author)

  13. Effect of aldicarb on growth and radio-carbon (14C) and radio-phosphorus (32P) assimilation by Rhizobium japonicum

    International Nuclear Information System (INIS)

    In vitro studies on the effect of aldicarb (2-methyl-2-(methyl thio) propionaldehde-o-methyl carbamoyl oxime), a soil applied systemic insecticide, on Rhizobium japonicum revealed that the chemical (at 1,2 and 5 ppm levels) stimulated the growth of the organism initially upto 48 hr which declined thereafter upto 72 hr. The incorporation of 14C-glucose by the cells considerably reduced due to the insecticide treatment. The production of extracellular, water-soluble slime (polysacchardes) was also reduced considerably with increased concentrations of the chemical. However, the incorporation of 14C-radio-activity in the extracellular slime generally enhanced due to the treatment, upto 6 hr after injection of the radioactivity, which declined significantly later at 15 hr, indicating a qualitative difference in the extracellular polysaccharides produced by the insecticide treated cells. The insecticide treatment drastically reduced the incorporation of 32P-disodium hydrogen phosphate into Rhizobium cells, but enhanced the specific activity of the extracellular polysacchrides. (author)

  14. Isotopic signatures (13C/12C; 15N/14N) of blue penguin burrow soil invertebrates : carbon sources and trophic relationships

    International Nuclear Information System (INIS)

    Seabird burrows provide a soil environment for processing discards such as feathers and guano, hence constituting a primary interface between the sea and the land. This study involved collection and culturing of soil invertebrates from three blue penguin (Eudyptula minor) burrows, and examined their 13C/12C and 15N/14N isotopic composition in relation to potential burrow resources (terrestrial plant litter, burrow soil, guano, blue penguin feathers). Two taxa (cerylonid beetles and small tineid moth larvae) had a depleted 13C/12C indicative of a level of dependence on C from terrestrial soil. Tineid moth larvae (Monopis crocicapitella and (or) M. ethelella) substantially increased their 13C/12C enrichment during development, implying increasing dependence on marine C. Remaining taxa, both decomposers and predators, had 13C/12C intermediate between guano and feathers. Larval and emergent fleas had the most enriched 13C/12C , indicative of a greater dependence on feather C and the likelihood of co-processing with guano. Pseudoscorpions and histerid beetles had overlapping isotopic enrichments implying competition for prey, but were spatially separated in burrow soil. With their highly enriched 15N/14N and marine 13C/12C, larvae and protonymphs of the histiostomatid mite Myianoetus antipodus stood alone. Blue penguin burrows therefore support a diverse invertebrate fauna that incorporates terrestrial soil as well as varying proportions of the various blue penguin discards. (author). 45 refs., 1 fig., 1 tab.

  15. 9,10-Dibromo-N-aryl-9,10-dihydro-9,10-[3,4]epipyrroloanthracene-12,14-diones: Synthesis and Investigation of Their Effects on Carbonic Anhydrase Isozymes I, II, IX, and XII.

    Science.gov (United States)

    Göksu, Haydar; Topal, Meryem; Keskin, Ali; Gültekin, Mehmet S; Çelik, Murat; Gülçin, İlhami; Tanc, Muhammet; Supuran, Claudiu T

    2016-06-01

    N-substituted maleimides were synthesized from maleic anhydride and primary amines. 1,4-Dibromo-dibenzo[e,h]bicyclo-[2,2,2]octane-2,3-dicarboximide derivatives (4a-f) were prepared by the [4+2] cycloaddition reaction of dibromoanthracenes with the N-substituted maleimide derivatives. The carbonic anhydrase (CA, EC 4.2.1.1) inhibitory effects of the new derivatives were assayed against the human (h) isozymes hCA I, II, IX, and XII. All tested bicyclo dicarboximide derivatives exhibited excellent inhibitory effects in the nanomolar range, with Ki values in the range of 117.73-232.87 nM against hCA I and of 69.74-111.51 nM against hCA II, whereas they were low micromolar inhibitors against hCA IX and XII. PMID:27174792

  16. Primary production off Southern California relative to surface layer carbon budgets: A component of the California Basins Study, CaBS. Final report, [1 June 1989--14 November 1991

    Energy Technology Data Exchange (ETDEWEB)

    Trees, C.C.

    1994-04-22

    This study started on 1 June 1989 and ended 14 November 1991. Two moored in situ natural fluorometers were deployed in January 1990 to collect bio-optical data for one year, making ground truth measurements around the mooring during 4 cruises. This one-year time series would investigate how the short-term physical forcing aliases the long-term primary production record such that the apparent, larger interannual variability in the record is in reality ``noise`` due to short-term fluctuations in the rate of nutrient input to the euphotic zone. These continuous measurements from moored bio-optical instruments would also allow better estimates of the mean and variance in primary production in these waters than has previously been available from shipboard measurements, as well as, phytoplankton response to short-term physical events. Ancillary measurements that were made were: (1) characterization of the apparent and inherent optical properties, (2) photosynthetic pigment distributions using both HPLC and standard fluorometric methods, (3) carbon, hydrogen and nitrogen content of suspended particulate matter, (4) primary production using conventional {sup 14}C methods from simulated in situ experiments.

  17. β-alumina-14H and β-alumina-21R: Two chromic Na2-δ(Al,Mg,Cr)17O25 polysomes observed in slags from the production of low-carbon ferrochromium

    Science.gov (United States)

    Hejny, Clivia; Kahlenberg, Volker; Schmidmair, Daniela; Tribus, Martina; deVilliers, Johan

    2016-09-01

    The crystal structures of unknown phases found in slags from the production of low-carbon ferrochromium were studied by powder and single-crystal X-ray diffraction. Two phases of Na2-δ(Al, Mg, Cr)17O25 composition were found to be composed of an alternating stacking of a spinel-type and a Na-hosting block. Similar structures are known for β-alumina and β"-alumina, NaAl11O17. However, the spinel-type block in Na2-δ(Al, Mg, Cr)17O25 is composed of five cation layers in contrast to three cation layers in the β-alumina spinel-block. The two new phases, β-alumina-14H, P63/mmc, a=5.6467(2), c=31.9111(12) Å, and β-alumina-21R, R 3 ̅m, a=5.6515(3), c=48.068(3) Å have a 14-layer and 21-layer stacking with a 2 × (cccccch) and a 3 × (ccccccc) repeat sequence of oxygen layers in cubic and hexagonal close packing, respectively.

  18. Stereochemical determination of carbon partitioning between photosynthesis and photorespiration in C3 plants: use of (3R)-D-[3-3H1, 3-14C]glyceric acid

    International Nuclear Information System (INIS)

    When (3R)-D-[3-3H1,3-14C]glyceric acid is supplied in tracer amounts to illuminated tobacco leaf discs, the acid penetrates to the chloroplasts without loss of 3H, and is phosphorylated there. Subsequent metabolism associated with the reductive photosynthetic cycle fully conserves 3H. Oxidation of ribulose bisphosphate (RuBP) by RuBP carboxylase-oxygenase (EC 4.1.1.39) results in the formation of (2R)-[2-3H1, 14C]glycolic acid which, on oxidation by glycolate oxidase (EC 1.1.3.1), releases 3H to water. Loss of 3H from the combined photosynthetic and photorespiratory systems is, therefore, associated with the oxidative photorespiratory loop. Assuming steady-state conditions and a basic metabolic model, the fraction of RuBP oxidized and the photorespiratory carbon flux relative to gross or net CO2 fixation can be calculated from the fraction of supplied 3H retained in the triose phosphates exported from the chloroplasts. This retention can be determined from the 3H:14C ratio for glucose obtained from isolated sucrose. The dependence of 3H retention upon O2 and CO2 concentrations can be deduced by assuming simple competitive kinetics for RuBP carboxylase-oxygenase. The experimental results confirmed the stereochemical assumptions made. Under conditions of negligible photorespiration 3H retention was essentially complete. The change in 3H retention with O2 and CO2 concentrations were investigated. For leaf discs (upper surface up) in normal air, it was estimated that 39% of the RuBP was oxidized, 32% of the fixed CO2 was photorespired, and the photorespiration rate was 46% of the net photosynthetic CO2 fixation rate. These are minimal estimates, as it is assumed that the only source of photorespired CO2 is glycine decarboxylation

  19. Carbonation of ternary building cementing materials

    OpenAIRE

    Fernández Carrasco, Lucía; Torrens Martín, David; Martínez Ramírez, Sagrario

    2012-01-01

    The carbonation processes of ettringite and calcium aluminate hydrates phases developed by hydration of calcium aluminate cement, fly ash and calcium sulphate ternary mixtures have been studied. The hydrated samples were submitted to 4% of CO2 in a carbonation chamber, and were analysed, previous carbonation and after 14 and 90 days of carbonation time, by infrared spectroscopy and X-ray diffraction; the developed morphology was performed with the 14 days carbonated samples. The results evide...

  20. The use of 14C ethanolamine as a precursor

    International Nuclear Information System (INIS)

    Two new 2 chloroethyl nitrosoureas were labelled on two positions by 14C starting from Na14CN and using 14C ethanolamine as intermediate, i.e. on the carbon 2 of the 2 chloro ethyl group and on the carbon 2 of the cysteamine part. (author)

  1. Thermophilic Anaerobic Biodegradation of [14C]Lignin, [14C]Cellulose, and [14C]Lignocellulose Preparations

    OpenAIRE

    Benner, Ronald; Hodson, Robert E.

    1985-01-01

    Thermophilic (55°C) anaerobic enrichment cultures were incubated with [14C-lignin]lignocellulose, [14C-polysaccharide]lignocellulose, and kraft [14C]lignin prepared from slash pine, Pinus elliottii, and 14C-labeled preparations of synthetic lignin and purified cellulose. Significant but low percentages (2 to 4%) of synthetic and natural pine lignin were recovered as labeled methane and carbon dioxide during 60-day incubations, whereas much greater percentages (13 to 23%) of kraft lignin were ...

  2. Modelling 14C transfer in terrestrial environments in response to chronic and accidental 14C releases.

    OpenAIRE

    Le Dizès, S.

    2011-01-01

    Concern about the quantity of carbon-14 (14C) released for several decades from nuclear facilities has prompted several modelling approaches of 14C behaviour in the environment. The TOCATTA model aims at estimating 14C (and 3H) transfers in terrestrial ecosystems exposed to atmospheric 14C (and 3H) releases from nuclear facilities under normal operating or accidental conditions. The model belongs to the larger framework of the SYMBIOSE modelling and simulation platform that aims at assessing ...

  3. SATS 14

    DEFF Research Database (Denmark)

    Frølunde, Lisbeth; Andreasen, Lars Birch; Hansen, Susanne Pihl

    SATS14 projektet har drejet sig om at undersøge mulighederne i at kunne tilbyde en særlig indsats til de produktionsskoleelever, der har brug for det, så vidt muligt lokalt på deres skole. Projektets formål har været at indhente erfaringer med at tilbyde elever på 14 produktionsskoler på Sjælland...... mål. SATS14 kan dermed ses i en større social sammenhæng. Der er en stigende erkendelse af behovet for initiativer til at hjælpe de elever, der oplever psykiske vanskeligheder. I forordet til en rapport fra Undervisningsministeriet om erhvervsuddannelser beskrives målet: ”95 procent af en...... ungdomsårgang i 2015 skal gennemføre en ungdomsuddannelse… For at opfylde regeringens mål… er det nødvendigt med en særlig indsats for at fastholde de unge, som begynder i en uddannelse, herunder også de bogligt svage” (Kirkegaard og Nielsen, 2008). Da SATS14 projektet startede, var der ikke megen opmærksomhed...

  4. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from time series observations using Bubble type equilibrator for autonomous carbon dioxide (CO2) measurement, Carbon dioxide (CO2) gas analyzer and other instruments from the MOORINGS in the North Pacific Ocean from 1997-11-14 to 2010-08-25 (NODC Accession 0100084)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0100084 includes chemical, physical, and time series data collected from MOORINGS in the North Pacific Ocean from 1997-11-14 to 2010-08-25. These...

  5. Carbon Carbon Composites: An Overview .

    OpenAIRE

    G. Rohini Devi; K. Rama Rao

    1993-01-01

    Carbon carbon composites are a new class of engineering materials that are ceramic in nature but exhibit brittle to pseudoplastic behaviour. Carbon-carbon is a unique all-carbon composite with carbon fibre embeded in carbon matrix and is known as an inverse composite. Due to their excellent thermo-structural properties, carbon-carbon composites are used in specialised application like re-entry nose-tips, leading edges, rocket nozzles, and aircraft brake discs apart from several indust...

  6. 14C measurements in aquifers with methane

    International Nuclear Information System (INIS)

    A survey of various groundwater systems indicates that methane is a common trace constituent and occasionally a major carbon species in groundwaters. Thermocatalytic methane had delta13CCH4 > -45%0 and microbially-produced or biogenic methane had delta13CCH4 0. Groundwaters containing significant biogenic methane had abnormally heavy delta13C values for the inorganic carbon. Thermocatalytic methane had no apparent effect on the inorganic carbon. Because methanogenesis seriously affects the carbon isotope geochemistry of groundwaters, the correction of raw 14C ages of affected groundwaters must consider these effects. Conceptual models are developed which adjust the 14C activity of the groundwater for the effects of methanogenesis and for the dilution of carbon present during infiltration by simple dissolution of rock carbonate. These preliminary models are applied to groundwaters from the Alliston sand aquifer where methanogenesis has affected most samples. In this system, methanogenic bacteria using organic matter present in the aquifer matrix as substrate, have added inorganic carbon to the groundwater which has initiated further carbonate rock dissolution. These processes have diluted the inorganic carbon 14C activity. (orig.)

  7. Measurements of 14C in ancient ice from Taylor Glacier, Antarctica constrain in situ cosmogenic 14CH4 and 14CO production rates

    Science.gov (United States)

    Petrenko, Vasilii V.; Severinghaus, Jeffrey P.; Schaefer, Hinrich; Smith, Andrew M.; Kuhl, Tanner; Baggenstos, Daniel; Hua, Quan; Brook, Edward J.; Rose, Paul; Kulin, Robb; Bauska, Thomas; Harth, Christina; Buizert, Christo; Orsi, Anais; Emanuele, Guy; Lee, James E.; Brailsford, Gordon; Keeling, Ralph; Weiss, Ray F.

    2016-03-01

    Carbon-14 (14C) is incorporated into glacial ice by trapping of atmospheric gases as well as direct near-surface in situ cosmogenic production. 14C of trapped methane (14CH4) is a powerful tracer for past CH4 emissions from "old" carbon sources such as permafrost and marine CH4 clathrates. 14C in trapped carbon dioxide (14CO2) can be used for absolute dating of ice cores. In situ produced cosmogenic 14C in carbon monoxide (14CO) can potentially be used to reconstruct the past cosmic ray flux and past solar activity. Unfortunately, the trapped atmospheric and in situ cosmogenic components of 14C in glacial ice are difficult to disentangle and a thorough understanding of the in situ cosmogenic component is needed in order to extract useful information from ice core 14C. We analyzed very large (≈1000 kg) ice samples in the 2.26-19.53 m depth range from the ablation zone of Taylor Glacier, Antarctica, to study in situ cosmogenic production of 14CH4 and 14CO. All sampled ice is >50 ka in age, allowing for the assumption that most of the measured 14C originates from recent in situ cosmogenic production as ancient ice is brought to the surface via ablation. Our results place the first constraints on cosmogenic 14CH4 production rates and improve on prior estimates of 14CO production rates in ice. We find a constant 14CH4/14CO production ratio (0.0076 ± 0.0003) for samples deeper than 3 m, which allows the use of 14CO for correcting the 14CH4 signals for the in situ cosmogenic component. Our results also provide the first unambiguous confirmation of 14C production by fast muons in a natural setting (ice or rock) and suggest that the 14C production rates in ice commonly used in the literature may be too high.

  8. Reassessment of 14CO2 compartmentation and of [14C]formate oxidation in rat liver

    International Nuclear Information System (INIS)

    Our previous report had concluded that a fraction of [14C]formate oxidation in liver occurs in the mitochondrion. This conclusion was based on the labeling patterns of urea and acetoacetate labeled via 14CO2 generated from [14C]formate and other [14C]substrates. We reassessed our interpretation in experiments conducted in (i) perifused mitochondria and (ii) isolated livers perfused with buffer containing [14C]formate, [14C]gluconolactone, 14CO2, or NaH13CO3, in the absence and presence of acetazolamide, an inhibitor of carbonic anhydrase. Our data show that the cytosolic pools of bicarbonate and CO2 are not in isotopic equilibrium when 14CO2 is generated in the cytosol or is supplied as NaH14CO3. We retract our earlier suggestion of a mitochondrial site of [14C]formate oxidation

  9. Carbon isotope techniques

    International Nuclear Information System (INIS)

    This book is a hands-on introduction to using carbon isotope tracers in experimental biology and ecology. It is a bench-top reference with protocols for the study of plants, animals, and soils. The 11C, 12C, 13C, and 14C carbon isotopes are considered and standard techniques are described by established authors. The compilation includes the following features: specific, well-established, user-oriented techniques; carbon cycles in plants, animals, soils, air, and water; isotopes in ecological research; examples and sample calculations

  10. The global balance of carbon monoxide

    OpenAIRE

    Weinstock, Bernhard; Yup Chang, Tai

    2011-01-01

    Radioactive carbon-14 monoxide produced by cosmic ray neutrons provides a useful tracer to deduce the residence time of carbon monoxide in the troposphere. From the steady-state equations for stable carbon monoxide and radioactive carbon monoxide, the production rate of stable carbon monoxide can also be derived. This rate is an order of magnitude greater than that estimated for CO sources such as the oceans, combustion, and chlorophyll decay. The oxidation of tropospheric methane initiated b...

  11. Determination of the characteristics and transformations in a mull medium of a humic model derived from auto-oxidation of the catechol-glycine system and selectively labelled with carbon-14

    International Nuclear Information System (INIS)

    Brown nitrogen-containing polymers are prepared by auto-oxidation at pH 7.9 from an equimolar mixture of catechol and glycine. Strict control of the experimental conditions yields products of constant composition, and affords a basis for the selective preparation of three polymers labelled with 14C on the atoms C1 and C2 of the glycine and on the catechol ring. These polymers have a mean molecular size smaller than that of humic acids extracted from neutral soils but their structure resembles more that of hydrolytic residues from eutrophic humic acids and melanins. Their stoichiometric ratio is 2 moles of glycine to 7 moles of catechol. They are not completely homogeneous and contain two groups of substances: the first and more abundant group is larger and permits optimum stabilization of the glycine in highly resonant structures; the second group remains more sensitive to hydrolytic treatment and biodegradation; they are characterized by partial fission of the aromatic rings during synthesis, which is responsible for the formation of the ring-deriving-COOH groups. The biodegradation of these polymers in a neutral mull reveals two successive stages: (a) an initial stage lasting five days, during which the ring-deriving-COOH groups are actively decarboxylated, whereas the glycine bound to the less stable fraction is degraded perferentially and then metabolized in the unextractable microbial substances (microbial humin). The non-amino residues of the polymers then have a depressant effect on soil respiration, which disappears only when their transformation by degradation or reaction with the soil organic compounds occurs; (b) A second stage, characterized by very slow mineralization and affecting almost exclusively the more stable polymers incorporated into the humin by physico-chemical insolubilization. There is then no further preferential degradiation of the glycine, the stability of which equals that of the ring-deriving carbon compounds of aromatic origin. The

  12. Carbon budgets in symbiotic associations

    Energy Technology Data Exchange (ETDEWEB)

    Muscatine, L.; Falkowski, P.G.; Dubinsky, Z.

    1983-01-01

    Methods are described which permit the estimation of daily budgets for photosynthetically fixed carbon in any alga-invertebrate symbiosis. Included is a method for estimating total daily translocation which does not involve the use of C-14. A daily carbon budget for a shallow water symbiotic reef coral is presented.

  13. 1,4-Diketones from Cross-Conjugated Dienones: Potassium Permanganate-Interrupted Nazarov Reaction.

    Science.gov (United States)

    Kwon, Yonghoon; Schatz, Devon J; West, Frederick G

    2015-08-17

    A domino potassium permanganate-interrupted Nazarov reaction to yield syn-2,3-disubstituted 1,4-diketones via a decarbonylative cleavage of the Nazarov oxyallyl intermediate, believed to be without precedent, is presented. This process allows syn substituents to be established stereospecifically on the 2-carbon bridge connecting the ketone carbonyl carbons, and the formation of one carbon-carbon and two carbon-oxygen bonds. Two carbon-carbon bonds are cleaved in this process. PMID:26138361

  14. 14 CFR 31.14 - Weight limits.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Weight limits. 31.14 Section 31.14 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: MANNED FREE BALLOONS Flight Requirements § 31.14 Weight limits. (a) The range of weights...

  15. 14 CFR 380.14 - Unused space.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Unused space. 380.14 Section 380.14 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) SPECIAL REGULATIONS PUBLIC CHARTERS Conditions and Limitations § 380.14 Unused space. Noting contained in this...

  16. 14 CFR 14.23 - Reply.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Reply. 14.23 Section 14.23 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURAL RULES RULES IMPLEMENTING THE EQUAL ACCESS TO JUSTICE ACT OF 1980 Procedures for Considering Applications § 14.23 Reply....

  17. 14 CFR 14.27 - Decision.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Decision. 14.27 Section 14.27 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURAL RULES RULES IMPLEMENTING THE EQUAL ACCESS TO JUSTICE ACT OF 1980 Procedures for Considering Applications § 14.27...

  18. Synthesis of carbonyl-14C labelled 'acetochlor'

    International Nuclear Information System (INIS)

    Carbonyl-14C labelled 'acetochlor' (2-chloro-N-ethoxymethyl-N-(2-ethyl-6-methylphenyl)acetamide) was prepared by chlorination of acetic-1-14C acid obtained from barium radiocarbonate to monochloroacetic-1-14C acid which was further chlorinated to monochloroacetyl-1-14C chloride. The addition reaction of this latter with 2-ethyl-6-methylene aniline gave a chloromethyl derivative the ethanolysis of which resulted in 'acetochlor' labelled in its carbonyl carbon. The overall radiochemical yield is 51%. (author)

  19. Synthesis of [sup 14]C-radiolabeled ractopamine hydrochloride

    Energy Technology Data Exchange (ETDEWEB)

    Terando, N.H. (DowElanco, Greenfield Labs., Greenfield, IN (United States))

    1992-09-01

    Ractopamine HC1 was uniformly labeled with carbon-14 in one of two phenyl rings as a requirement for animal metabolism studies. The six-step synthesis was completed in a 14% yield. Product instability on silica gel complicated purification, but development of a chromatographic method afforded ractopamine HCl-[sup 14]C with a radiochemical purity of 98.2%. (author).

  20. Synthesis of 14C-radiolabeled ractopamine hydrochloride

    International Nuclear Information System (INIS)

    Ractopamine HC1 was uniformly labeled with carbon-14 in one of two phenyl rings as a requirement for animal metabolism studies. The six-step synthesis was completed in a 14% yield. Product instability on silica gel complicated purification, but development of a chromatographic method afforded ractopamine HCl-14C with a radiochemical purity of 98.2%. (author)

  1. Conducting carbonized polyaniline nanotubes

    Science.gov (United States)

    Mentus, Slavko; Ćirić-Marjanović, Gordana; Trchová, Miroslava; Stejskal, Jaroslav

    2009-06-01

    Conducting nitrogen-containing carbon nanotubes were synthesized by the carbonization of self-assembled polyaniline nanotubes protonated with sulfuric acid. Carbonization was carried out in a nitrogen atmosphere at a heating rate of 10 °C min-1 up to a maximum temperature of 800 °C. The carbonized polyaniline nanotubes which have a typical outer diameter of 100-260 nm, with an inner diameter of 20-170 nm and a length extending from 0.5 to 0.8 µm, accompanied with very thin nanotubes with outer diameters of 8-14 nm, inner diameters 3.0-4.5 nm and length extending from 0.3 to 1.0 µm, were observed by scanning and transmission electron microscopies. Elemental analysis showed 9 wt% of nitrogen in the carbonized product. Conductivity of the nanotubular PANI precursor, amounting to 0.04 S cm-1, increased to 0.7 S cm-1 upon carbonization. Molecular structure of carbonized polyaniline nanotubes has been analyzed by FTIR and Raman spectroscopies, and their paramagnetic characteristics were compared with the starting PANI nanotubes by EPR spectroscopy.

  2. Conducting carbonized polyaniline nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mentus, Slavko; Ciric-Marjanovic, Gordana [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade (Serbia); Trchova, Miroslava; Stejskal, Jaroslav [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 162 06 Prague 6 (Czech Republic)], E-mail: gordana@ffh.bg.ac.rs

    2009-06-17

    Conducting nitrogen-containing carbon nanotubes were synthesized by the carbonization of self-assembled polyaniline nanotubes protonated with sulfuric acid. Carbonization was carried out in a nitrogen atmosphere at a heating rate of 10 deg. C min{sup -1} up to a maximum temperature of 800 deg. C. The carbonized polyaniline nanotubes which have a typical outer diameter of 100-260 nm, with an inner diameter of 20-170 nm and a length extending from 0.5 to 0.8 {mu}m, accompanied with very thin nanotubes with outer diameters of 8-14 nm, inner diameters 3.0-4.5 nm and length extending from 0.3 to 1.0 {mu}m, were observed by scanning and transmission electron microscopies. Elemental analysis showed 9 wt% of nitrogen in the carbonized product. Conductivity of the nanotubular PANI precursor, amounting to 0.04 S cm{sup -1}, increased to 0.7 S cm{sup -1} upon carbonization. Molecular structure of carbonized polyaniline nanotubes has been analyzed by FTIR and Raman spectroscopies, and their paramagnetic characteristics were compared with the starting PANI nanotubes by EPR spectroscopy.

  3. Photosynthetic carbon assimilation in C/sub 3/- and C/sub 4/-plants. Tracer experiments using /sup 3/H, /sup 14/C, /sup 13/C and /sup 18/O

    Energy Technology Data Exchange (ETDEWEB)

    Ohhama, Tamiko (Tokyo Univ. (Japan). Inst. of Applied Microbiology)

    1982-09-01

    The photosynthetic mechanisms of plants have become to be well understood by the use of radioactive and stable isotopes. This review included the distribution of /sup 14/C in photosynthetic intermediates by assimilation with /sup 14/CO/sub 2/, resultant CO/sub 2/ receptors, Calvin cycle, C/sub 4/ photosynthetic pathway, differences between the photosynthetic pathway for C/sub 3/-plants and that for C/sub 4/-plants, photorespiration, glycolate pathway, the yield of photosynthetic quanta and the relationship between assimilation with /sup 14/CO/sub 2/ and /sup 13/C values. Reference was made to the photosynthetic mechanism in /sup 13/C-NMR follow-up with /sup 13/CO/sub 2/.

  4. Assessment of C-14 discharge through liquid waste of NPP

    International Nuclear Information System (INIS)

    Radioactivity and annual discharge rate oc C-14 through the liquid waste of nuclear power plant was investigated using a Carbon sampling kit developed by KEPRI for the analysis of C-14 level of ground water samples near NPP. From the results of periodic samplings and C-14 radioactivity measurements, we realized that the amount of C-14 discharge through the liquid waste is ignorable compared to that through the stack and proportional to H-3 level of liquid waste

  5. Influence of organic carbon sources and isotope exchange processes between water and nitrate on the fractionation of the stable isotopes 15N/14N and 18O/16O in dissolved nitrate during microbial dentrification in groundwater

    International Nuclear Information System (INIS)

    Stable isotopes of nitrate are commonly used to determine sources and degradation of nitrate. In this study, nitrite oxidizing bacteria were found to promote an oxygen isotope exchange between water and nitrate under anoxic conditions. Also, different carbon sources were found to influence the enrichment of stable isotopes in nitrate during microbial denitrification. Both results refine the stable isotope model of nitrate in respect to nitrate source determination and microbial nitrate reduction.

  6. Effect of HF leaching on 14C dates of pottery

    International Nuclear Information System (INIS)

    This paper presents the experiments with 14C dating of two potsherds, which contained carbon dispersed rather homogeneously in their clay fabric. After AAA treatment, the potsherds still appeared to be contaminated with young carbon, presumably connected with humic acids. To make removal of humic acids more effective, we treated the sherds with HF acid of different concentration. The 14C results obtained demonstrate that HF treatment indeed helps to remove humic contaminants, but it also mobilizes carbon bound to raw clay, which may make 14C dates too old. We conclude therefore, that using a simple combination of HF and AAA treatment seems insufficient in reliable 14C dating of carbon homogeneously dispersed in the volume of potsherds.

  7. Synthesis of 1-[14C]methyl-1H-tetrazole-5-thiol([14C]NMTT) and [NMTT-[14C

    International Nuclear Information System (INIS)

    The title compounds were prepared for metabolic studies, with the 14C labelling being made at methyl of the 1-methyl-1H-tetrazol-5-ylthio (NMTT) group in overall radiochemical yields of 26% and 22% based on barium [14C]carbonate, respectively. (author)

  8. Preparation of a Lipopolysaccharide from Escherichia coli 01lla, 01llb, k58: h21 bacterial wall, labeled with carbon-14; Preparacion de un lipopolisacarido de la pared baceteriana de escherichia coli 01lla, 01llb, K58: H21, marcado con carbono-14

    Energy Technology Data Exchange (ETDEWEB)

    Solano Aunon, M. L.; Pacheco Lopez, J.; Garcia Pineda, M. D.; Roca, M.; Bayon, A.

    1981-07-01

    A brief description of the morphological and chemical structure of Li po polysaccharides is given, as well as its occurrence in nature and its mechanisms of action. It is emphasized the usefulness for actual biochemical and biomedical research of the labeled Lipopolysaccharide. The method for the labelling, isolation and purification of 14''C-Lipopolysacchari de is described. (Author) 23 refs.

  9. Degradation of multiwall carbon nanotubes by bacteria

    International Nuclear Information System (INIS)

    Understanding the environmental transformation of multiwall carbon nanotubes (MWCNTs) is important to their life cycle assessment and potential environmental impacts. We report that a bacterial community is capable of degrading 14C-labeled MWCNTs into 14CO2 in the presence of an external carbon source via co-metabolism. Multiple intermediate products were detected, and genotypic characterization revealed three possible microbial degraders: Burkholderia kururiensis, Delftia acidovorans, and Stenotrophomonas maltophilia. This result suggests that microbe/MWCNTs interaction may impact the long-term fate of MWCNTs. Highlights: •Mineralization of MWCNTs by a bacterial community was observed. •The mineralization required an external carbon source. •Multiple intermediate products were identified in the MWCNT degrading culture. •Three bacterial species were found likely responsible for MWCNT degradation. -- The 14C-labeled multiwall carbon nanotubes can be degraded to 14CO2 and other byproducts by a bacteria community under natural conditions

  10. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the AKADEMIK IOFFE in the South Pacific Ocean from 1992-02-14 to 1992-04-06 (NODC Accession 0115013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115013 includes chemical, discrete sample, physical and profile data collected from AKADEMIK IOFFE in the South Pacific Ocean from 1992-02-14 to...

  11. Measurement of C-14 distribution in forest around nuclear facilities

    International Nuclear Information System (INIS)

    A simple analytical method of C-14 measurement using fast bomb combustion and liquid scintillation counting (LSC) has been developed for measuring C-14 distribution in the terrestrial environment. Specific activities of C-14 in cedar leaves and soils collected from an area around nuclear facilities and control areas were measured using this method. Depth distribution of Cs-137 in soils was also measured at the same sampling sites and compared with the depth distribution of C-14. C-14 specific activity in cedar leaves examined around nuclear facilities exceeded that in the control areas by 8 to 30 mBq (g carbon)-1. The depth distribution of C-14 in forest soil shows that C-14 has peak values in the top 10 cm of the soil profiles ascribed to the highest bomb C-14 level in the 1960's. The data were made available to assess the behavior of fallout C-14 in the surface environment. (author)

  12. The management of carbon-14 and iodine-129 wastes - a site specific survey of current and future arisings, possible management options and potential impact with respect to the United Kingdom

    International Nuclear Information System (INIS)

    Part 1 - A site-specific survey, by the Harwell Laboratory, of current and future gaseous, liquid and solid arisings of 14C and 129I at UK nuclear installations, is presented in the form of tables and maps. In the tables the arisings are characterised in terms of quantity, activity and accompanying radionuclides. Management options discussed are: dispersal in the environment; capture and retention of arisings from power stations, reprocessing plants, and industrial sites producing pharmaceuticals and research materials; direct disposal of unprocessed spent fuel elements in an underground repository. Comparative costings of the various options are given. Part 2 - The information in part 1 is used by the National Radiological Protection Board as the basis for an examination of the effects that various management options would have on the radiological impact of 14C and 129I on the public. Comparison is made between different types of discharge, and disposal as a solid waste to various kinds of repository, in terms of their health detriment costs. Emphasis is placed on illustrating the use of a decision analysis methodology for assessment of the different waste management strategies. (author)

  13. Spinocerebellar Ataxia Type 14 (SCA14)

    Science.gov (United States)

    ... SCA14) is one of those types of hereditary cerebellar ataxias. The involved gene, discovered in 2003, is located ... evaluation by a physician makes the diagnosis of cerebellar ataxia. A CT or MRI scan of the brain ...

  14. Juno II (AM-14)

    Science.gov (United States)

    1959-01-01

    Juno II (AM-14) on the launch pad just prior to launch, March 3, 1959. The payload of AM-14 was Pioneer IV, America's first successful lunar mission. The Juno II was a modification of Jupiter ballistic missile

  15. Fresh carbon input differentially impacts soil carbon decomposition across natural and managed systems.

    Science.gov (United States)

    Luo, Zhongkui; Wang, Enli; Smith, Chris

    2015-10-01

    The amount of fresh carbon input into soil is experiencing substantial changes under global change. It is unclear what will be the consequences of such input changes on native soil carbon decomposition across ecosystems. By synthesizing data from 143 experimental comparisons, we show that, on average, fresh carbon input stimulates soil carbon decomposition by 14%. The response was lower in forest soils (1%) compared with soils from other ecosystems (> 24%), and higher following inputs of plant residue-like substrates (31%) compared to root exudate-like substrates (9%). The responses decrease with the baseline soil carbon decomposition rate under no additional carbon input, but increase with the fresh carbon input rate. The rates of these changes vary significantly across ecosystems and with the carbon substrates being added. These findings can be applied to provide robust estimates of soil carbon balance across ecosystems under changing aboveground and belowground inputs as consequence of climate and land management changes. PMID:26649400

  16. Carbon isotope effects in carbonate systems

    Science.gov (United States)

    Deines, Peter

    2004-06-01

    Global carbon cycle models require a complete understanding of the δ 13C variability of the Earth's C reservoirs as well as the C isotope effects in the transfer of the element among them. An assessment of δ 13C changes during CO 2 loss from degassing magmas requires knowledge of the melt-CO 2 carbon isotope fractionation. In order to examine the potential size of this effect for silicate melts of varying composition, 13C reduced partition functions were computed in the temperature range 275 to 4000 K for carbonates of varying bond strengths (Mg, Fe, Mn, Sr, Ba, Pb, Zn, Cd, Li, and Na) and the polymorphs of calcite. For a given cation and a given pressure the 13C content increases with the density of the carbonate structure. For a given structure the tendency to concentrate 13C increases with pressure. The effect of pressure (‰/10 kbar) on the size of the reduced partition function of aragonite varies with temperature; in the pressure range 1 to 10 5 bars the change is given by: Δ 13C p average=-0.01796+0.06635∗ 10 3/T+0.006875∗ 10 6/T2 For calcite III the pressure effect is on average 1.4× larger than that for aragonite at all temperatures. The nature of the cation in a given structure type has a significant effect on the carbon isotope fractionation properties. The tendency to concentrate 13C declines in the series magnesite, aragonite, dolomite, strontianite, siderite, calcite, smithonite, witherite, rhodochrosite, otavite, cerrusite. For divalent cations a general expression for an estimation of the reduced partition function (β) from the reduced mass (μ = [M Cation × M Carbonate]/[M Cation + M Carbonate]) is: 1000 lnβ=(0.032367-0.072563∗ 10 3/T-0.01073∗ 10 6/T2)∗μ-14.003+29.953∗ 10 3/T+9.4610∗ 10 6/T2 For Mg-calcite the 13C content varies with the Mg concentration. The fractionation between Mg-calcite (X = mole fraction of MgCO 3) and calcite is given by: 1000 ln(α MgCalite- Calcite)=[0.013702-0.10957× 10 3/T+1.35940× 10 6/T2

  17. Porous carbons

    Indian Academy of Sciences (India)

    Satish M Manocha

    2003-02-01

    Carbon in dense as well as porous solid form is used in a variety of applications. Activated porous carbons are made through pyrolysis and activation of carbonaceous natural as well as synthetic precursors. Pyrolysed woods replicate the structure of original wood but as such possess very low surface areas and poor adsorption capacities. On activation, these exhibit increased adsorption volumes of 0.5–0.8 cm3 /gm and surface areas of 700–1800 m2 /gm depending on activation conditions, whether physical or chemical. Former carbons possess mixed pore size distribution while chemically activated carbons predominantly possess micropores. Thus, these carbons can be used for adsorption of wide distributions of molecules from gas to liquid. The molecular adsorption within the pores is due to single layer or multilayer molecule deposition at the pore walls and hence results in different types of adsorption isotherm. On the other hand, activated carbon fibres with controlled microporous structure and surface area in the range of 2500 m2 /gm can be developed by controlled pyrolysis and physical activation of amorphous carbon fibres. Active carbon fibres with unmatchable pore structure and surface characteristics are present and futuristic porous materials for a number of applications from pollution control to energy storage.

  18. 14C Behaviour in PWR coolant

    International Nuclear Information System (INIS)

    Although 14C is produced in relatively small amounts in PWR coolant, it is important to know its fate, for example whether it is released by gaseous discharge, removed by absorption on ion exchange (IX) resins or deposited on the fuel pin surfaces. 14C can exist in a range of possible chemical forms: inorganic carbon compounds (probably mainly CO2), elemental carbon, and organic compounds such as hydrocarbons. This paper presents results from a preliminary survey of the possible reactions of 14C in PWR coolant. The main conclusions of the study are: - A combination of thermal and radiolytic reactions controls the chemistry of 14C in reactor coolant. A simple chemical kinetic model predicts that CH3OH would be the initial product from radiolytic reactions of 14C following its formation from 17O. CH3OH is predicted to arise as a result of reactions of OH. with CH4 and CH3, and it persists because there is no known radiation chemical reduction mechanism. - Thermodynamic considerations show that CH3OH can be thermally reduced to CH4 in PWR conditions, although formation of CO2 from small organics is the most thermodynamically favourable outcome. Such reactions could be catalysed on active nickel surfaces in the primary circuit. - Limited plant data would suggest that CH4 is the dominant form in PWR and CO2 in BWR. This implies that radiation chemistry may be important in determining the speciation. - Addition of acetate does not affect the amount of 14C formed, but the addition of large amounts of stable carbon would lead to a large range of additional products, some of which would be expected to deposit on fuel pin surfaces as high molecular weight hydrocarbons. However, the subsequent thermal decomposition reactions of these products are not known. - Acetate addition may represent a small input of 12C compared with organic material released from CVCS resins, although the importance of this may depend on whether that is predominantly soluble material or suspended

  19. Carbone-14, carbone-13 et oxygène-18 dans les sédiments carbonatés du lac Titicaca: premières estimations des vitesses de sédimentation et essai de paléoclimatologie

    OpenAIRE

    Fontes, J.C.; Boulangé, Bruno; Rodrigo, L

    1981-01-01

    La précipitation des carbonates se produit et s'est produite dans des conditions voisines de l'équilibre avec l'eau du lac et le CO2 de l'atmosphère. La vitesse moyenne de sédimentation est de l'ordre de 0,5 mm.an-1 au cours du dernier millenaire qui a vu le bilan hydrologique du lac fluctuer assez largement. (Résumé d'auteur)

  20. Synthesis of carbon-14 and carbon-13 labelled (R)-(-)2[[4-(2,6-di-1-pyrrolidinyl-4-pyrimidinyl)-1-piperazinyl]me thyl]-3,4-dihydro-2,5,7,8-tetramethyl-2H-1-benzopyran-6-ol. [Anti-asthmatic

    Energy Technology Data Exchange (ETDEWEB)

    Ackland, M.J.; Howard, M.R.; Dring, L.G. (Upjohn Laboratories-Europe, Upjohn Ltd., Crawley (United Kingdom)); Jacobsen, E.J.; Secreast, S.L. (Upjohn Co., Kalamazoo, MI (United States))

    1993-01-01

    This paper describes the synthesis and characterisation of 2[[4-(2,6-di-1-pyrrolidinyl-4-pyrimidinyl)-1-piperazinyl]-[[sup 14]C -methyl]-3,4-dihydro-2,5,7,8-tetramethyl-2H-1-benzopyran-6-ol and 2[[4-(2,6-di-1-pyrrolidinyl-4-[[sup 13]C[sub 2

  1. Estimation of the contribution of soil carbon to paddy rice and soil to rice carbon transfer factor using natural abundances of stable carbon isotopes

    International Nuclear Information System (INIS)

    To obtain the soil-to-rice transfer factor (TF) of carbon-14 (14C), TF of stable carbon was estimated by measuring stable carbon isotope ratios (13C/12C) and total C concentrations in rice grain and associated soil samples collected throughout Japan. Carbon isotope ratios were reported in terms of a δ13C value. By comparing δ13C values for brown rice, white rice and bran, we concluded that white rice was the most suitable part to be used for this estimation because it reflects products from photosynthesis. The δ13C values for white rice and soil showed a weak correlation which may indicate a potential carbon supply from soil to rice. Thus we took a statistical approach to estimate the percent of soil-origin carbon in rice plants. We found that a maximum 1.6% of total carbon in rice plants was from soil under the reasonable assumptions that the carbon fractionation by paddy rice was -19 per mille and δ13C of atmospheric CO2 was -8 per mille. Maximum TF value ranged from 0.05 to 0.5 for stable carbon and the value would also be applicable for 14C because the carbon fractionation effect for 14C would be negligible in carbon transfer. (author)

  2. Diastereoselective Ni-catalyzed 1,4-hydroboration of chiral dienols#

    OpenAIRE

    Ely, Robert J.; Yu, Zhiyong; Morken, James P.

    2015-01-01

    The Ni-catalyzed hydroboration of dienols occurs in a 1,4 fashion and delivers a syn-propionate motif in high diastereoselectivity and with a stereodefined trisubstituted crotylboronic ester. The boronic ester can be further manipulated to provide carbon-carbon or carbon-oxygen bonds.

  3. Calcium Carbonate

    Science.gov (United States)

    ... before being swallowed; do not swallow them whole. Drink a full glass of water after taking either the regular or chewable tablets or capsules. Some liquid forms of calcium carbonate must be shaken well before use.Do not ...

  4. Carbon Stars

    Indian Academy of Sciences (India)

    T. Lloyd Evans

    2010-12-01

    In this paper, the present state of knowledge of the carbon stars is discussed. Particular attention is given to issues of classification, evolution, variability, populations in our own and other galaxies, and circumstellar material.

  5. RIVERINE INORGANIC CARBON DYNAMICS: OVERVIEW AND PERSPECTIVE

    Institute of Scientific and Technical Information of China (English)

    YAO Guan-rong; GAO Quan-zhou

    2006-01-01

    Inorganic carbon, the great part of the riverine carbon exported to the ocean, plays an important role in the global carbon cycle and ultimately impacts the coupled carbon-climate system. An overview was made on both methods and results of the riverine inorganic carbon researches. In addition to routine in situ survey, measurement and calculation,the direct precipitation method and the gas evolution technique were commonly used to analyze dissolved inorganic carbon in natural water samples. Soil CO2, carbonate minerals and atmospheric CO2 incorporated into riverine inorganic carbon pool via different means, with bicarbonate ion being the dominant component. The concentration of inorganic carbon, the composition of carbon isotopes (δ13C and △14C), and their temporal or spatial variations in the streams were controlled by carbon input, output and changes of carbon biogeochemistry within the riverine system. More accurate flux estimation, better understanding of different influential processes, and quantitative determination of various inputs or outputs need to be well researched in future.

  6. Isotopic fractionation between organic carbon and carbonate carbon in Precambrian banded ironstone series from Brazil

    International Nuclear Information System (INIS)

    37 delta13Csub(org) and 9 delta13Csub(carb) values furnished by argillaceous and carbonate sediments from the Rio das Velhas and Minas Series (Minas Gerais, Brazil) have yielded means of -24.3 +- 3.9 promille [PDB] and -0.9 +- 1.4 promille [PDB], respectively. These results, obtained from a major sedimentary banded ironstone province with an age between 2 and 3 x 109 yr, support previous assumptions that isotopic fractionation between inorganic and organic carbon in Precambrian sediments is about the same as in Phanerozoic rocks. This is consistent with a theoretically expected constancy of the kinetic fractionation factor governing biological carbon fixation and, likewise, with a photosynthetic pedigree of the reduced carbon fraction of Precambrian rocks. (orig.)

  7. Black carbon in deep-sea sediments

    OpenAIRE

    Masiello, CA; Druffel, ERM

    1998-01-01

    Black carbon (BC) enters the ocean through aerosol and river deposition. BC makes up 12 to 31 percent of the sedimentary organic carbon (SOC) at two deep ocean sites, and it is 2400 to 13,900 carbon-14 years older than non-BC SOC deposited concurrently. BC is likely older because it is stored in an intermediate reservoir before sedimentary deposition. Possible intermediate pools are oceanic dissolved organic carbon (DOC) and terrestrial soils. If DOC is the intermediate reservoir, then BC is ...

  8. 14C analysis via intracavity optogalvanic spectroscopy

    International Nuclear Information System (INIS)

    A new ultra sensitive laser-based analytical technique, intracavity optogalvanic spectroscopy (ICOGS), allowing extremely high sensitivity for detection of 14C-labeled carbon dioxide has recently been demonstrated. Capable of replacing accelerator mass spectrometers (AMS) for many applications, the technique quantifies zeptomoles of 14C in sub micromole CO2 samples. Based on the specificity of narrow laser resonances coupled with the sensitivity provided by standing waves in an optical cavity, and detection via impedance variations, limits of detection near 10-1514C/12C ratios have been obtained with theoretical limits much lower. Using a 15 W 14CO2 laser, a linear calibration with samples from 5 x 10-15 to >1.5 x 10-12 in 14C/12C ratios, as determined by AMS, was demonstrated. Calibration becomes non-linear over larger concentration ranges due to interactions between CO2 and buffer gas, laser saturation effects and changes in equilibration time constants. The instrument is small (table top), low maintenance and can be coupled to GC or LC input. The method can also be applied to detection of other trace entities. Possible applications include microdosing studies in drug development, individualized sub-therapeutic tests of drug metabolism, carbon dating and real time monitoring of atmospheric radiocarbon.

  9. Helicobacter pylori infection studies using 14C UBT method

    International Nuclear Information System (INIS)

    Carbon 14 (14C) is a naturally occurring radioactive isotope of carbon. The half-life of 14C is about 5,730 years, and it decays by emitting a low energy beta (â) particle of mean energy 49 KeV. The biological half life of 14C is 10 to 12 days. 14C is present in the environment and in all organic materials and behaves in the environment in the same manner as other carbon isotopes. In medicine, 14C can be injected to study abnormalities of metabolism that underlie diabetes, gout, anaemia and acromegaly (adult 'gigantism'), and for diagnosis of Helicobacterpylori (H pylori), The discovery H Pylori by Warren and Marshall in 1982 changed the approach to treat peptic ulcer disease (PUD), Since then H pylori has been the focus of clinical research and debate. The causal relationship between H pylori infection and chronic gastritis is well established, H pylori infection is one of the most common human infections worldwide. This organism has been shown to infect over half of the world's population. By the application of radiation much progress has been made worldwide in the field of medicine. This article presents the application of 14C Urea Breath Test (14C UBT) for the diagnosis of the H pylori bacteria which present in the stomach and duodenum, 14C UBT relies on the urease activity of H pylori to detect the presence of active infection. Board of Radiation and Isotope Technology (BRIT), Mumbai has developed 14C UBT method and already in regular practice in many hospitals across the country. Orally administered 14C urea will be hydrolyzed into ammonia (NH4) and 14C labelled carbon dioxide (14CO2). The presence of a significant amount of (14CO2) in the exhaled breath indicates active H pylori infection. 14C UBT is relatively inexpensive, is easy to perform, and does not require endoscopy. 14C UBT has proved to be one of the most accurate methods for assessing H pylori status. The ionizing radiation dose involved in this test is extremely low, much lower than the

  10. Radiolysis of Ca14CO3

    International Nuclear Information System (INIS)

    The partition-ion exclusion chromatography is evaluated to analyse non-ionic organic compounds obtained from radiolysis of high specific activity Ca14CO3. The Ca14CO3 was irradiated by β- decay of carbon-14 or by γ rays from a cobalt-60 source. The crystals were dissolved for qualitative and quantitative analysis of the radiolytic products. Formic and oxalic acids were produced in high yields. Glyoxylic, acetic and glycolic acids, formaldehyde and methanol were produced in low yields. Quantitative determination was carried out by liquid scintillation spectroscopy and the chemical yields (G-values) were calculated for the products. Mechanisms of product formation are proposed based on thermal annealing experiments. (Author)

  11. Processing ix spent resin waste for C-14 isotope recovery

    International Nuclear Information System (INIS)

    A process developed at Ontario Hydro for recovering carbon-14 (C-14) from spent ion exchange resin wastes is described. Carbon-14 is an undesirable by-product of CANDU1 nuclear reactor operation. It has an extremely long (5730 years) half-life and can cause dosage to inhabitants by contact, inhalation, or through the food cycle via photosynthesis. Release of carbon-14 to the environment must be minimized. Presently, all the C-14 produced in the Moderator and Primary Heat Transport (PHT) systems of the reactor is effectively removed by the respective ion exchange columns, and the spent ion exchange resins are stored in suitably engineered concrete structures. Because of the large volumes of spent resin waste generated each year this method of disposal by long term storage tends to be uneconomical; and may also be unsatisfactory considering the long half-life of the C-14. However, purified C-14 is a valuable commercial product for medical, pharmaceutical, agricultural, and organic chemistry research. Currently, commercial C-14 is made artificially in research reactors by irradiating aluminum nitride targets for 4.5 years. If the C-14 containing resin waste can be used to reduce this unnecessary production of C-14, the total global build-up of this radioactive chemical can be reduced. There is much incentive in removing the C-14 from the resin waste to reduce the volume of C-14 waste, and also in purifying the recovered C-14 to supply the commercial market. The process developed by Ontario Hydro consists of three main steps: C-14 removal from spent resins, enrichment of recovered C-14, and preparation of final product. Components of the process have been successfully tested at Ontario Hydro's Research Division, but the integration of the process is yet to be demonstrated. A pilot scale plant capable of processing 4 m3 of spent resins annually is being planned for demonstrating the technology. The measured C-14 activity levels on the spent resins ranged from 47-213 Ci

  12. Degradation of 1,4-Dioxane and Cyclic Ethers by an Isolated Fungus

    OpenAIRE

    Nakamiya, Kunichika; Hashimoto, Syunji; Ito, Hiroyasu; Edmonds, John S.; Morita, Masatoshi

    2005-01-01

    By using 1,4-dioxane as the sole source of carbon, a 1,4-dioxane-degrading microorganism was isolated from soil. The fungus, termed strain A, was able to utilize 1,4-dioxane and many kinds of cyclic ethers as the sole source of carbon and was identified as Cordyceps sinensis from its 18S rRNA gene sequence. Ethylene glycol was identified as a degradation product of 1,4-dioxane by the use of deuterated 1,4-dioxane-d8 and gas chromatography-mass spectrometry analysis. A degradation pathway invo...

  13. The synthesis of [methylenedioxy-[sup 14]C]paroxetine BRL 29060A

    Energy Technology Data Exchange (ETDEWEB)

    Lawrie, K.W.M.; Rustidge, D.C. (SmithKline Beecham Pharmaceuticals Research and Development, Harlow (United Kingdom))

    1993-01-01

    Paroxetine (1), BRL 29060A, a potent antidepressant, has been prepared radiolabelled with carbon-14 in the methylenedioxy group in 5 steps and 20.9% overall yield from [[sup 14]C]dibromomethane. Two alternative preparations of 3,4-[methylenedioxy-[sup 14]C]phenol are also described. (Author).

  14. Progress in the development of methods for the determination of 14C

    International Nuclear Information System (INIS)

    Two methods are described in detail: liquid scintillation counting of 14C in the form of benzene, and liquid scintillation counting of 14C in carbonate solution. The former method is used, for example, to monitor atmospheric 14C in CO2, the latter, to monitor gaseous discharges from nuclear power plants. (P.A.)

  15. Temporal distribution of bomb 14C in a forest soil

    International Nuclear Information System (INIS)

    Patterns of 14C enrichment in the superficial plant debris and mineral soil horizons of an established woodland have been monitored at regular intervals during the past 15 years. These data are compared with a model evaluation of carbon turnover based on the recorded changes in atmospheric 14C concentration since AD 1900. Leaf litter and decomposing plant debris are characterized by steady-state turnover values of ca 2 and ca 8 years, respectively. A two-component system of fast (≤20 yr) and slow (ca 350 yr) cycling carbon is indicated for the surface (0-5cm) soil humus; below 10cm, the fast component is rare (14C to the soil carbon pool

  16. Carbon particles

    Science.gov (United States)

    Hunt, Arlon J.

    1984-01-01

    A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

  17. Carbon classified?

    DEFF Research Database (Denmark)

    Lippert, Ingmar

    2012-01-01

    . Using an actor- network theory (ANT) framework, the aim is to investigate the actors who bring together the elements needed to classify their carbon emission sources and unpack the heterogeneous relations drawn on. Based on an ethnographic study of corporate agents of ecological modernisation over a...... corporations construing themselves as able and suitable to manage their emissions, and, additionally, given that the construction of carbon emissions has performative consequences, the underlying practices need to be declassified, i.e. opened for public scrutiny. Hence the paper concludes by arguing for a...

  18. Radio photosynthesis of some 14 C-labelled sugars using the unicellular green alga scenedesmus ACUTUS

    International Nuclear Information System (INIS)

    Radiosynthesis has been carried out using the unicellular green alga scenedesmus acutus together with Na H 14 CO3 solution as a carbon-14 source, in an ordinary photosynthesis chamber. The process is more easier and less laborious than the techniques involving the use of gaseous 14 CO2 in a tight photosynthesis chamber. Uniformly labelled 14 C-glucose, 14 C-fructose and 14 C-sucrose have been prepared with specific activities of several micro curies per milli mole. The specific activity of the products was found to increase on increasing the photosynthesis time or the initial activity of the Na H 14 CO3 solution used. 3 tabs

  19. Soil carbon dynamics inferred from carbon isotope compositions of soil organic matter and soil respiration

    International Nuclear Information System (INIS)

    To better understand 14C cycling in terrestrial ecosystems, 14C abundances were evaluated for fractionated soil organic matter (SOM) and soil respiration in an urban forest. In 2001 soil profile, Δ 14C values of litter and bulk SOM increased rapidly from litter surface (62.7 per mille) to uppermost mineral soil layer (244.9 per mille), and then decreased sharply to 6 cm depth of mineral soil (125.0 per mille). Carbon enriched in 14C by atmospheric nuclear weapons testing had penetrated to at least 16 cm depth of mineral soil. The average Δ 14C in atmospheric CO2 was 58.8 per mille in August 2001, suggesting recent carbon input to the topmost litter layer. Although a similar depth distribution was observed for Δ 14C values of residual SOM after acid hydrolysis, the Δ 14C values were slightly lower than those in bulk SOM. This indicates input of 'bomb' C into this organic fraction and higher 14C abundance in acid-soluble SOM. The most of CO2 may be derived from the microbial decomposition of the acid-soluble, or labile, SOM. Therefore, the labile SOM may become most influential pool for soil carbon cycling. In contrast, carbon in base-insoluble SOM remained considerably low in 14C abundance at all depths, suggesting no or little incorporation of 'bomb' C to this fraction. Values of Δ 14C in soil respiration ranged from 91.9 to 146.4 per mille in August 2001, showing a significant contribution from decomposition of SOM fixed over past 2-40 years. These results indicate that the use of bulk SOM as a representative of soil carbon pool would lead to severe misunderstand of the soil C dynamics on decadal and shorter time scales. (author)

  20. Carbon tetrachloride under extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pravica, Michael, E-mail: pravica@physics.unlv.edu; Sneed, Daniel; Wang, Yonggang; Smith, Quinlan [High Pressure Science and Engineering Center (HiPSEC) and Department of Physics, University of Nevada Las Vegas (UNLV), Las Vegas, Nevada 89154-4002 (United States); Subrahmanyam, Garimella [Canadian Light Source, Department of Physics, University of Saskatchewan, Saskatoon, Saskatchewan S7N 2V3 (Canada)

    2014-05-21

    We report on three experiments on carbon tetrachloride subjected to extreme conditions. In the first experiment, Raman spectra of CCl{sub 4} were acquired up to 28 GPa. Evidence was observed for at least two new phases of CCl{sub 4} above 14 GPa (phase VI) and above 22 GPa (phase VII). Decompression of the sample showed no evidence of pressure-induced decomposition. In the second experiment, a synchrotron x-ray diffraction study was performed up to 30 GPa verifying phase V and potential phases above 14 (VI) and 22 GPa (VII), respectively. In the third study, we examined irradiated CCl{sub 4} using synchrotron infrared spectroscopy to reduce fluorescent contamination. Some sort of carbon allotrope appears as a byproduct suggesting the following reaction with hard x-rays: CCl{sub 4}+ hν → C + 2Cl{sub 2}.

  1. Assimilation of 14CO2 and 14C sucrose by citrus fruit tissues

    International Nuclear Information System (INIS)

    Assimilation and metabolism of 14CO2 was compared to that of [U-14C] sucrose in young grapefruit (ca 25 mm diameter) to determine their respective roles in fruit growth. Fixation of 14CO2 by isolated fruit tissues during 10 min in light exceeded that in dark by 2- to 30-fold depending on tissue content of chlorophyll. Greatest apparent photosynthesis occurred in outer green peel, but green juice tissues assimilated more than did adjoining inner peel tissue. In the dark, juice tissues incorporated 2.5-fold more 14CO2 than any other tissue. Neutral sugars accounted for a smaller proportion and organic acids, a greater proportion, of the 14C-assimilates in interior peel and juice tissues. These data suggest more extensive production of organic acids from 14CO2 in tissues isolated from the fruit interior. In contrast, little difference among tissues was evident in extent of organic- and amino-acid production from exogenous [U-14C] sucrose. A small area of cuticle on whole fruit was replaced by a filter disc impregnated with radiolabeled sucrose and incubated for 16 h. Thus, carbon derived from CO2 assimilation by fruit appears to be partitioned differently than that derived from sucrose

  2. Production of carbon 14-labeled fumonisin in liquid culture

    International Nuclear Information System (INIS)

    Currently, fumonisin B1 is obtained primarily by using solid culture methods. Although fumonisin B1 concentrations obtained in solid culture are typically quite high, subsequent extraction and purification present problems. In addition, current methods utilize complex media which makes analysis of biosynthetic pathways and control mechanisms difficult. Liquid culture methods of production could eliminate many problems associated with production in solid culture. However, in the past, concentrations obtained in liquid culture have been relatively low. In this work, factors affecting the production of fumonisin B1 from a shake flask scale of 100 ml to a fermenter scale of 100 liters were examined. Best results were obtained by using a fed batch method that is nitrogen limited, with pH control. With this method, concentrations in excess of 1000 ppm can be obtained. (author)

  3. Preparation of hollow spherical carbon nanocages

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, C.-K.; Kang, H. Y.; Hong, C.-I; Huang, C.-H.; Chang, F.-C.; Wang, H. Paul, E-mail: wanghp@mail.ncku.edu.tw [National Cheng Kung University, Department of Environmental Engineering, Taiwan (China)

    2012-12-15

    This study presents a new and simple method for the synthesis of hollow carbon spheres possessing nanocage sizes of 7.1, 14, and 20 nm in diameter. The core-shell (i.e., Cu-C) nanoparticles prepared by carbonization of the Cu{sup 2+}-cyclodextrin (CD) complexes at 573 K for 2 h was etched with HCl (6N) to yield the hollow carbon spheres. The carbon-shell of the hollow carbon nanospheres, which consisted of mainly diamond-like and graphite carbons, is not perturbed during etching. In addition to the nanocages, the hollow carbon nanospheres also possess micropores with an opening of 0.45 nm, allowing small molecules to diffuse in and out through the carbon-shell. Many elements (such as Zn{sup 2+} or Cu{sup 2+}) can therefore be filled into the nanocages of the hollow carbon nanospheres. With these unique properties, for instance, designable active species such as Cu and ZnO encapsulated in the carbon-shell can act as Cu-ZnO-C yolk-shell nanoreactors which are found very effective in the catalytic decomposition of methanol.

  4. Use of 14CO2 ratios in metabolic assessment of human spermatozoa

    International Nuclear Information System (INIS)

    Comparison of 14CO2 production for [1-14C], [2-14C] and [3-14C] pyruvate indicates the metabolic fate of pyruvate. Assuming that all pyruvate oxidized enters the TCA cycle via pyruvate dehydrogenase, the ratio of steady state 14CO2 production, [2-14C] pyruvate: [3-14C] pyruvate, determines the probability that specific citrate carbons will complete a turn of the TCA cycle. Comparing this probability and the 14CO2 production from [1-14C] pyruvate estimates the flux pyruvate to products derived from acetate that do not enter the TCA cycle. Data was collected for human sperm metabolizing glutamine and pyruvate over a four-hour period. The ratio of 14CO2 production, [2-14C] pyruvate: [3-14C] pyruvate even when correction was made for the fact that not all carbon derived from [2-14C] pyruvate that enters the TCA cycle is converted to CO2. 14CO2 production from [U-14C] glutamine was linear for glutamine concentration below 0.5 mM. In conclusion, CO2 ratios methods are applicable in metabolic analysis of small samples of human sperm where metabolite measurements are impractical

  5. Measuring radioactive carbon with a liquid scintillator

    Energy Technology Data Exchange (ETDEWEB)

    Petkov, T.

    1975-01-01

    Results are presented on the measurement of the soft beta emitter carbon-14 in a liquid scintillator by means of a single-channel scintillation spectrometer provided with a lucite light-guide. The scintillation solution had the composition: PPO-10 grams, POPOP-0.25 grams, naphthalene-100 grams, and dioxane-1 liter. The background count rate and counting efficiency were determined at a discrimination threshold of 2 V and an amplification of 54. Carbon-14 activities of 10 to 20 picocuries could be measured at 90% counting efficiency under the proper conditions. (SJR)

  6. Are there carbon stars in the Bulge ?

    OpenAIRE

    Ng, Y. K.

    1998-01-01

    The bulge carbon stars have been a mystery since their discovery, because they are about 2.5mag too faint to be regarded as genuine AGB stars, if located inside the metal-rich bulge (m-M=14.5mag). Part of the mystery can be solved if these carbon stars are related to the Sagittarius dwarf galaxy (SDG; m-M=17.0mag). They are in that case not old and metal-rich, but young, ~0.1 Gyr, with SMC-like metallicity. The sigma_RV=113+/-14 km/s radial velocity dispersion of the stars appears to be consi...

  7. Root-uptake of {sup 14}C derived from acetic acid and {sup 14}C transfer to rice edible parts

    Energy Technology Data Exchange (ETDEWEB)

    Ogiyama, Shinichi [Office of Biospheric Assessment for Waste Disposal, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555 (Japan)], E-mail: ogiyama@nirs.go.jp; Suzuki, Hiroyuki [Graduate School of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba-shi 263-5522 (Japan); Inubushi, Kazuyuki [Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo-shi 271-8510 (Japan); Takeda, Hiroshi; Uchida, Shigeo [Office of Biospheric Assessment for Waste Disposal, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba-shi 263-8555 (Japan)

    2010-02-15

    Three types of culture experiments using paddy rice (Oryza sativa L.) were performed to examine root-uptake of {sup 14}C in the form of acetic acid: double pot experiment (hydroponics), wet culture experiment (submerged sand medium), and chamber experiment (hydroponics and submerged sand medium). The {sup 14}C radioactivity in the plant, mediums, and atmospheric carbon dioxide ({sup 14}CO{sub 2}) in the chamber were determined, and the distribution of {sup 14}C in the plant was visualized using autoradiography. In the double pot experiment, the shoot of the plant and the lower root which was soaked in the culture solution had {sup 14}C radioactivity, but the upper root which did not have contact with the solution had none. There were also {sup 14}C radioactivity in the grains and roots in the wet culture experiment. Results of the chamber experiment showed that {sup 14}CO{sub 2} gas was released from the culture solution in both types of cultures. Results indicated that the {sup 14}C-acetic acid absorbed by rice plant through its root would be very small. Most of the {sup 14}C-acetic acid was transformed into gaseous forms either in the culture solution or rhizosphere. A relatively longer time would be needed to assimilate {sup 14}C derived from acetic acid to grain parts after it was once absorbed by the shoot through the root. Availability of {sup 14}C for the plant in sand culture was considered to be decreased compared with that for the plant in the hydroponics experiment. It was suggested that rice plant absorbed and assimilated {sup 14}C through the plant roots not because of uptake of {sup 14}C-acetic acid but because of uptake of {sup 14}C in gaseous forms such as {sup 14}CO{sub 2}.

  8. Root-uptake of 14C derived from acetic acid and 14C transfer to rice edible parts

    International Nuclear Information System (INIS)

    Three types of culture experiments using paddy rice (Oryza sativa L.) were performed to examine root-uptake of 14C in the form of acetic acid: double pot experiment (hydroponics), wet culture experiment (submerged sand medium), and chamber experiment (hydroponics and submerged sand medium). The 14C radioactivity in the plant, mediums, and atmospheric carbon dioxide (14CO2) in the chamber were determined, and the distribution of 14C in the plant was visualized using autoradiography. In the double pot experiment, the shoot of the plant and the lower root which was soaked in the culture solution had 14C radioactivity, but the upper root which did not have contact with the solution had none. There were also 14C radioactivity in the grains and roots in the wet culture experiment. Results of the chamber experiment showed that 14CO2 gas was released from the culture solution in both types of cultures. Results indicated that the 14C-acetic acid absorbed by rice plant through its root would be very small. Most of the 14C-acetic acid was transformed into gaseous forms either in the culture solution or rhizosphere. A relatively longer time would be needed to assimilate 14C derived from acetic acid to grain parts after it was once absorbed by the shoot through the root. Availability of 14C for the plant in sand culture was considered to be decreased compared with that for the plant in the hydroponics experiment. It was suggested that rice plant absorbed and assimilated 14C through the plant roots not because of uptake of 14C-acetic acid but because of uptake of 14C in gaseous forms such as 14CO2.

  9. Cycling of black carbon in the ocean

    OpenAIRE

    Coppola, Alysha I; Druffel, Ellen R. M.

    2016-01-01

    Black carbon (BC) is a byproduct of combustion from wildfires and fossil fuels and is a slow-cycling component of the carbon cycle. Whether BC accumulates and ages on millennial timescales in the world oceans has remained unknown. Here, we quantified dissolved BC (DBC) in marine dissolved organic carbon (DOC) isolated by solid phase extraction (SPE) at several sites in the world ocean. We find that DBC in the Atlantic, Pacific and Arctic oceans ranges from 1.4 to 2.6 μM in the surface and is ...

  10. 14 CFR 14.05 - Allowance fees and expenses.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Allowance fees and expenses. 14.05 Section 14.05 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURAL RULES RULES IMPLEMENTING THE EQUAL ACCESS TO JUSTICE ACT OF 1980 General Provisions § 14.05...

  11. 14 CFR 14.03 - Eligibility of applicants.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Eligibility of applicants. 14.03 Section 14.03 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROCEDURAL RULES RULES IMPLEMENTING THE EQUAL ACCESS TO JUSTICE ACT OF 1980 General Provisions § 14.03...

  12. Effect of HF leaching on {sup 14}C dates of pottery

    Energy Technology Data Exchange (ETDEWEB)

    Goslar, Tomasz, E-mail: goslar@radiocarbon.pl [Faculty of Physics, Adam Mickiewicz University, ul. Umultowska 85, 61-614 Poznan (Poland); Poznan Radiocarbon Laboratory, ul. Rubiez 46, 61-612 Poznan (Poland); Kozlowski, Janusz [Institute of Archaeology, Jagiellonian University, ul. Golebia 11, 30-007 Krakow (Poland); Szmyt, Marzena [Institute for Eastern Studies, Adam Mickiewicz University, ul. 28 Czerwca 1956 nr 198, 61-486 Poznan (Poland); Czernik, Justyna [Poznan Radiocarbon Laboratory, ul. Rubiez 46, 61-612 Poznan (Poland)

    2013-01-15

    This paper presents the experiments with {sup 14}C dating of two potsherds, which contained carbon dispersed rather homogeneously in their clay fabric. After AAA treatment, the potsherds still appeared to be contaminated with young carbon, presumably connected with humic acids. To make removal of humic acids more effective, we treated the sherds with HF acid of different concentration. The {sup 14}C results obtained demonstrate that HF treatment indeed helps to remove humic contaminants, but it also mobilizes carbon bound to raw clay, which may make {sup 14}C dates too old. We conclude therefore, that using a simple combination of HF and AAA treatment seems insufficient in reliable {sup 14}C dating of carbon homogeneously dispersed in the volume of potsherds.

  13. Carbon Footprints

    OpenAIRE

    Rahel Aichele; Gabriel Felbermayr

    2011-01-01

    Lässt sich der Beitrag eines Landes zum weltweiten Klimaschutz an der Veränderung seines CO2-Ausstoßes messen, wie es im Kyoto-Abkommen implizit unterstellt wird? Oder ist aufgrund der Bedeutung des internationalen Güterhandels der Carbon Footprint – der alle CO2-Emissionen erfasst, die durch die Absorption (d.h. Konsum und Investitionen) eines Landes entstehen – das bessere Maß? Die Autoren erstellen eine Datenbank mit den Footprints von 40 Ländern für den Zeitraum 1995–2007. Die deskriptive...

  14. Carbon Nanomembranes.

    Science.gov (United States)

    Turchanin, Andrey; Gölzhäuser, Armin

    2016-08-01

    Carbon nanomembranes (CNMs) are synthetic 2D carbon sheets with tailored physical or chemical properties. These depend on the structure, molecular composition, and surroundings on either side. Due to their molecular thickness, they can be regarded as "interfaces without bulk" separating regions of different gaseous, liquid, or solid components and controlling the materials exchange between them. Here, a universal scheme for the fabrication of 1 nm-thick, mechanically stable, functional CNMs is presented. CNMs can be further modified, for example perforated by ion bombardment or chemically functionalized by the binding of other molecules onto the surfaces. The underlying physical and chemical mechanisms are described, and examples are presented for the engineering of complex surface architectures, e.g., nanopatterns of proteins, fluorescent dyes, or polymer brushes. A simple transfer procedure allows CNMs to be placed on various support structures, which makes them available for diverse applications: supports for electron and X-ray microscopy, nanolithography, nanosieves, Janus nanomembranes, polymer carpets, complex layered structures, functionalization of graphene, novel nanoelectronic and nanomechanical devices. To close, the potential of CNMs in filtration and sensorics is discussed. Based on tests for the separation of gas molecules, it is argued that ballistic membranes may play a prominent role in future efforts of materials separation. PMID:27281234

  15. Impact of atmospheric 14C to the karst environment

    International Nuclear Information System (INIS)

    Naturally cosmic-ray produced radiocarbon 14C is a part of the CO2 cycle and through the atmosphere-biosphere-hydrosphere exchange process it has been introduced to the environment. Anthropogenic disturbance of the natural 14C activity caused by nuclear tests, nuclear power plants and also by fossil fuel combustion has been recorded in the atmospheric CO2. The karst environment including water, carbonate sediment and soil, where exchange processes within the CO2-HCO3 -CaCO3 system play an important role, is very sensitive to any change in the atmosphere and response to the contamination is very fast. 14C activity of atmospheric CO2 has been continuously measured in monthly samples in Zagreb area since 1983. Seasonal variations have been observed, as well as steady decrease of yearly mean values. Influence of fossil fuel combustion in the city area during winter months was also observed. Few examples of isotopic study in karst environment in Croatia and Slovenia will be presented: 1) The influence of atmospheric 14C activity to the recent carbonate precipitated in the surface water in form of tufa in the Plitvice Lakes, Korana, Krka and Zrmanja rivers in Croatia, and Krka river in Slovenia; 2) 14C activity in recent speleothems from several caves in Croatia and Postojna Cave in Slovenia; 3) Distribution of 14C activity in the surface soil in Plitvice Lakes and Postojna areas; 4) 14C activity of atmospheric CO2 inside and outside the Postojna Cave, 5) 14C activity in recent plants (aquatic and terrestrial) and shells. The stable isotopes δ 13C and δ 18O for some of the samples above will be presented too. Distribution of 14C in the karst environment will be discussed and compared with 14C activity of atmospheric CO2

  16. 14-plex Feasibility Report

    Energy Technology Data Exchange (ETDEWEB)

    Kotongan, Victoria Hazel [Native Village of Unalakleet

    2013-06-21

    The Native Village of Unalakleet project was a feasibility study for a retrofit of a “tribally owned” three story, 14 apartment complex located in Unalakleet, Alaska. The program objective and overall goal was to create a plan for retrofitting to include current appraised value and comparable costs of new construction to determine genuine feasibility as low-income multi-family housing for tribal members.

  17. Chernobyl, 14 years later

    International Nuclear Information System (INIS)

    This report draws an account of the consequences of Chernobyl accident 14 years after the disaster. It is made up of 8 chapters whose titles are: 1) Some figures about Chernobyl accident, 2) Chernobyl nuclear power plant, 3)Sanitary consequences of Chernobyl accident, 4) The management of contaminated lands, 5) The impact in France of Chernobyl fallout, 6) International cooperation, 7) More information about Chernobyl and 8) Glossary

  18. Carbon monoxide : A quantitative tracer for fossil fuel CO2?

    NARCIS (Netherlands)

    Gamnitzer, Ulrike; Karstens, Ute; Kromer, Bernd; Neubert, Rolf E. M.; Meijer, Harro A. J.; Schroeder, Hartwig; Levin, Ingeborg

    2006-01-01

    Carbon monoxide (CO), carbon dioxide (CO2), and radiocarbon ((CO2)-C-14) measurements have been made in Heidelberg from 2001 to 2004 in order to determine the regional fossil fuel CO2 component and to investigate the application of CO as a quantitative tracer for fossil fuel CO2 (CO2(foss)). The obs

  19. Trading forest carbon

    Science.gov (United States)

    The nature of carbon in forests is discussed from the perspective of carbon trading. Carbon inventories, specifically in the area of land use and forestry are reviewed for the Pacific Northwest. Carbon turnover in forests is discussed as it relates to carbon sequestration. Scient...

  20. Standardisation of gas mixtures for estimating carbon monoxide transfer factor.

    OpenAIRE

    Kendrick, A. H.; Laszlo, G.

    1993-01-01

    BACKGROUND--The American Thoracic Society recommends that the inspired concentration used for the estimation of carbon monoxide transfer factor (TLCO) mixture should be 0.25-0.35% carbon monoxide, 10-14% helium, 17-21% oxygen, balance nitrogen. Inspired oxygen influences alveolar oxygen and hence carbon monoxide uptake, such that transfer factor increases by 0.35% per mm Hg decrease in alveolar oxygen. To aid in the standardisation of TLCO either a known inspired oxygen concentration should b...

  1. Carbon source/sink function of a subtropical, eutrophic lake determined from an overall mass balance and a gas exchange and carbon burial balance

    International Nuclear Information System (INIS)

    Although studies on carbon burial in lake sediments have shown that lakes are disproportionately important carbon sinks, many studies on gaseous carbon exchange across the water-air interface have demonstrated that lakes are supersaturated with CO2 and CH4 causing a net release of CO2 and CH4 to the atmosphere. In order to more accurately estimate the net carbon source/sink function of lake ecosystems, a more comprehensive carbon budget is needed, especially for gaseous carbon exchange across the water-air interface. Using two methods, overall mass balance and gas exchange and carbon burial balance, we assessed the carbon source/sink function of Lake Donghu, a subtropical, eutrophic lake, from April 2003 to March 2004. With the overall mass balance calculations, total carbon input was 14 905 t, total carbon output was 4950 t, and net carbon budget was +9955 t, suggesting that Lake Donghu was a great carbon sink. For the gas exchange and carbon burial balance, gaseous carbon (CO2 and CH4) emission across the water-air interface totaled 752 t while carbon burial in the lake sediment was 9477 t. The ratio of carbon emission into the atmosphere to carbon burial into the sediment was only 0.08. This low ratio indicates that Lake Donghu is a great carbon sink. Results showed good agreement between the two methods with both showing Lake Donghu to be a great carbon sink. This results from the high primary production of Lake Donghu, substantive allochthonous carbon inputs and intensive anthropogenic activity. Gaseous carbon emission accounted for about 15% of the total carbon output, indicating that the total output would be underestimated without including gaseous carbon exchange. - Due to high primary production, substantive allochthonous carbon inputs and intensive anthropogenic acitivity, subtropical, eutrophic Lake Donghu is a great carbon sink

  2. New Carbons Made by Soft Chemistry

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav

    2001-01-01

    Roč. 200, Supplement (2001), s. 223-224. ISSN 0371-5345 R&D Projects: GA MŠk OC D14.10 Institutional research plan: CEZ:AV0Z4040901 Keywords : carbon * nanostructures * chemical modification Subject RIV: CF - Physical ; Theoretical Chemistry

  3. Carbon Farming as a Carbon Negative Technology

    Science.gov (United States)

    Anderson, C.; Laird, D.; Hayes, D. J.

    2015-12-01

    Carbon farms have a pivotal role in national and international efforts to mitigate and adapt to climate change. A carbon farm in its broadest sense is one that reduces greenhouse gas (GHG) emissions or captures and holds carbon in vegetation and soils. Their capacity to remove carbon from the air and store it safely and permanently, while providing additional human and ecosystem benefits, means they could contribute significantly to national efforts to stabilize or reduce GHGs. We examine carbon farms in the context of corn and soybean production agriculture. We illustrate, using Iowa data but with relevance across United States corn and soybean production, the potential for carbon farms to reduce human GHG emissions and sequester carbon permanently at a rate that has meaningful impact on global greenhouse gas concentration. Carbon has been viewed as a next generation cash crop in Iowa for over a decade. The carbon farm perspective, however, goes beyond carbon as cash crop to make carbon the center of an entire farm enterprise. The transformation is possible through slight adjustment crop practices mixed with advances in technology to sequester carbon through biochar. We examine carbon balance of Iowa agriculture given only the combination of slight reduction in fertilizer and sequestration by biochar. We find the following. Iowa carbon farms could turn Iowa agriculture into a carbon sink. The estimated range of GHG reduction by statewide implementation of carbon farms is 19.46 to 90.27 MMt CO2-equivalent (CO2-e), while the current agricultural CO2-e emission estimate is 35.38 MMt CO2-e. Iowa carbon farm GHG reduction would exceed Iowa GHG reduction by wind energy (8.7 MMt CO2-e) and could exceed combined reductions from wind energy and corn grain ethanol (10.7 MMt CO2-e; 19.4 MMt CO2-e combined). In fact, Iowa carbon farms alone could exceed GHG reduction from national corn grain ethanol production (39.6 MMt CO2-e). A carbon price accessible to agricultural

  4. Carbon Monoxide Poisoning

    Science.gov (United States)

    ... Recommend on Facebook Tweet Share Compartir What is Carbon Monoxide? Carbon monoxide, or “CO,” is an odorless, colorless gas that can kill you. Carbon monoxide detector Where is CO found? CO is ...

  5. Net Ecosystem Carbon Flux

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Net Ecosystem Carbon Flux is defined as the year-over-year change in Total Ecosystem Carbon Stock, or the net rate of carbon exchange between an ecosystem and the...

  6. Carbon Monoxide (CO)

    Science.gov (United States)

    ... IAQ) » Carbon Monoxide's Impact on Indoor Air Quality Carbon Monoxide's Impact on Indoor Air Quality On this ... length of exposure. Top of Page Sources of Carbon Monoxide Sources of CO include: unvented kerosene and ...

  7. Estimation of 14CO2 flux at soil-atmosphere interface and distribution of 14C in forest ecosystem

    International Nuclear Information System (INIS)

    To realize the dynamical behavior of 14C among exchangeable carbon reservoirs in terrestrial environment, a method for in situ determination of 14CO2 flux at soil-atmosphere interface and a high flow rate CO2 sampler were developed. This method allowed us to collect integrated quantity of CO2 for determining 14C activity over an extended time period under environmental conditions with minimal site disturbance. The 14CO2 flux from ground surface was estimated to be 1.59x10-5 Bq m-2 s-1 in a forest floor with the method. The specific activities of 14C in environmental materials such as some biological and air samples were also determined in the vicinity of the place, where the flux measurement was made, to discuss the behavior of 14C in the forest ecosystem. The results indicated that fresh pine needles had a similar 14C specific activity to the atmospheric CO2 at the same height due to its fairly rapid equilibrium, 14C specific activity in the atmospheric CO2 has a concentration gradient near the ground surface and, at least in this site, CO2 with high 14C specific activity was generated by decomposition of soil organic matter which may be accumulated in soil as a result of former nuclear weapons tests

  8. Cycling of black carbon in the ocean

    Science.gov (United States)

    Coppola, Alysha I.; Druffel, Ellen R. M.

    2016-05-01

    Black carbon (BC) is a by-product of combustion from wildfires and fossil fuels and is a slow-cycling component of the carbon cycle. Whether BC accumulates and ages on millennial time scales in the world oceans has remained unknown. Here we quantified dissolved BC (DBC) in marine dissolved organic carbon isolated by solid phase extraction at several sites in the world ocean. We find that DBC in the Atlantic, Pacific, and Arctic oceans ranges from 1.4 to 2.6 μM in the surface and is 1.2 ± 0.1 μM in the deep Atlantic. The average 14C age of surface DBC is 4800 ± 620 14C years and much older in a deep water sample (23,000 ± 3000 14C years). The range of DBC structures and 14C ages indicates that DBC is not homogeneous in the ocean. We show that there are at least two distinct pools of marine DBC, a younger pool that cycles on centennial time scales and an ancient pool that cycles on >105 year time scales.

  9. Integral Ring Carbon-Carbon Piston

    Science.gov (United States)

    Northam, G. Burton (Inventor)

    1999-01-01

    An improved structure for a reciprocating internal combustion engine or compressor piston fabricate from carbon-carbon composite materials is disclosed. An integral ring carbon-carbon composite piston, disclosed herein, reduces the need for piston rings and for small clearances by providing a small flexible, integral component around the piston that allows for variation in clearance due to manufacturing tolerances, distortion due to pressure and thermal loads, and variations in thermal expansion differences between the piston and cylinder liner.

  10. Carbon dioxide sequestration by mineral carbonation

    OpenAIRE

    Huijgen, W.J.J.

    2007-01-01

    The increasing atmospheric carbon dioxide (CO2) concentration, mainly caused by fossil fuel combustion, has lead to concerns about global warming. A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept behind mineral CO2 sequestration is the mimicking of natural weathering processes in which calcium or magnesium containing minerals react with gaseous CO2 and form solid calcium or magnesium carbonate...

  11. An analytical method for 14C in environmental water based on a wet-oxidation process

    International Nuclear Information System (INIS)

    An analytical method for 14C in environmental water based on a wet-oxidation process was developed. The method can be used to determine the activity concentrations of organic and inorganic 14C in environmental water, or total 14C, including in drinking water, surface water, rainwater and seawater. The wet-oxidation of the organic component allows the conversion of organic carbon to an inorganic form, and the extraction of the inorganic 14C can be achieved by acidification and nitrogen purging. Environmental water with a volume of 20 L can be used for the wet-oxidation and extraction, and a detection limit of about 0.02 Bq/g(C) can be achieved for water with carbon content above 15 mg(C)/L, obviously lower than the natural level of 14C in the environment. The collected carbon is sufficient for measurement with a low level liquid scintillation counter (LSC) for typical samples. Extraction or recovery experiments for inorganic carbon and organic carbon from typical materials, including analytical reagents of organic benzoquinone, sucrose, glutamic acid, nicotinic acid, humic acid, ethane diol, et cetera., were conducted with excellent results based on measurement on a total organic carbon analyzer and LSC. The recovery rate for inorganic carbon ranged tween 98.7%–99.0% with a mean of 98.9(±0.1)%, for organic carbon recovery ranged between 93.8% and 100.0% with a mean of 97.1(±2.6)%. Verification and an uncertainty budget of the method are also presented for a representative environmental water. The method is appropriate for 14C analysis in environmental water, and can be applied also to the analysis of liquid effluent from nuclear facilities. - Highlights: • An analytical method of 14C in environmental water was developed. • Extraction or recovery experiments were conducted with excellent results. • Verification and uncertainty assessment was presented

  12. Carbon dioxide sequestration by mineral carbonation

    NARCIS (Netherlands)

    Huijgen, W.J.J.

    2007-01-01

    The increasing atmospheric carbon dioxide (CO2) concentration, mainly caused by fossil fuel combustion, has lead to concerns about global warming. A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept beh

  13. Carbonate precipitation by the thermophilic archaeon Archaeoglobus fulgidus: a model of carbon flow for an ancient microorganism

    Directory of Open Access Journals (Sweden)

    P. Ostrom

    2008-08-01

    Full Text Available Microbial carbonate precipitation experiments were conducted using the archaeon bacteria Archaeoglobus fulgidus to determine chemical and isotopic fractionation of organic and inorganic carbon into mineral phases. Carbonate precipitation was induced in two different experiments using A. fulgidus to determine the relative abundance of organically derived carbon incorporated into carbonate minerals as well as to define any distinct phases or patterns that could be attributed to the precipitation process. One experiment used a medium containing 13C-depleted organic carbon and 13C-enriched inorganic carbon, and the other used a 14C-labeled organic carbon source. Results indicated that 0.9–24.8% organic carbon was incorporated into carbonates precipitated by A. fulgidus and that this process was mediated primarily by pH and CO2 emission from cells. Data showed that the carbon in the CO2 produced from this microorganism is incorporated into carbonates and that the rate at which precipitation occurs and the dynamics of the carbonate precipitation process are strongly mediated by the specific steps involved in the biochemical process for lactate oxidation by A. fulgidus.

  14. 14C content in aerosols in Mexico City

    Science.gov (United States)

    Gómez, V.; Solís, C.; Chávez, E.; Andrade, E.; Ortiz, M. E.; Huerta, A.; Aragón, J.; Rodríguez-Ceja, M.; Martínez, M. A.; Ortiz, E.

    2016-03-01

    14C-AMS of total carbon was determined in aerosols (PM10 fraction), collected in Mexico City during two weeks from 21 November to 3 December 2012. Other tracers such as total carbon (TC), organic carbon (OC), elemental carbon (EC) and trace element contents were also determined. F14C values varied from 0.39 to 0.48 with an average of 0.43. These values are slightly lower than those previously obtained for PM2.5 in 2003 and 2006 and reflect a high contribution of fossil CO2 to the carbonaceous matter in aerosols from Mexico City. In contrast, from 2006 to 2012 PM10 increased; EC, Ca, Ti and Fe concentrations remained constant, while OC, TC and K concentrations decreased. The use of potassium as an indicator of biomass burning showed that this source was negligible during this campaign. Combined analytical approaches allowed us to distinguish temporal variations of anthropogenic and natural inputs to the F14C.

  15. Monte-Carlo simulation of soil carbon measurements by inelastic neutron scattering

    Science.gov (United States)

    Measuring soil carbon is critical for assessing the potential impact of different land management practices on carbon sequestration. The inelastic neutron scattering (INS) of fast neutrons (with energy around 14 MeV) on carbon-12 nuclei produces gamma rays with energy of 4.43 MeV; this gamma flux ca...

  16. Benzene Synthesis for 14C Measurements and Evaluation of Uncertainty in Mollusk Shells

    International Nuclear Information System (INIS)

    This work describes the method and Instrumentation used by Environmental Isotopes laboratory of the CIEMAT Analytical Chemistry Laboratory (DIAE) for the synthesis of benzene from carbonates of mollusk shells and the liquid scintillation counting of 14C for radiocarbon dating in these samples. The usefulness of mollusk shells for 14C dating are considered. (Author) 15 refs

  17. 14 CFR 45.14 - Identification of critical components.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Identification of critical components. 45.14 Section 45.14 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... related procedure is specified in the Airworthiness Limitations section of a manufacturer's...

  18. Fish as major carbonate mud producers and missing components of the tropical carbonate factory.

    Science.gov (United States)

    Perry, Chris T; Salter, Michael A; Harborne, Alastair R; Crowley, Stephen F; Jelks, Howard L; Wilson, Rod W

    2011-03-01

    Carbonate mud is a major constituent of recent marine carbonate sediments and of ancient limestones, which contain unique records of changes in ocean chemistry and climate shifts in the geological past. However, the origin of carbonate mud is controversial and often problematic to resolve. Here we show that tropical marine fish produce and excrete various forms of precipitated (nonskeletal) calcium carbonate from their guts ("low" and "high" Mg-calcite and aragonite), but that very fine-grained (mostly 4 mole % MgCO(3)) are their dominant excretory product. Crystallites from fish are morphologically diverse and species-specific, but all are unique relative to previously known biogenic and abiotic sources of carbonate within open marine systems. Using site specific fish biomass and carbonate excretion rate data we estimate that fish produce ∼6.1 × 10(6) kg CaCO(3)/year across the Bahamian archipelago, all as mud-grade (the < 63 μm fraction) carbonate and thus as a potential sediment constituent. Estimated contributions from fish to total carbonate mud production average ∼14% overall, and exceed 70% in specific habitats. Critically, we also document the widespread presence of these distinctive fish-derived carbonates in the finest sediment fractions from all habitat types in the Bahamas, demonstrating that these carbonates have direct relevance to contemporary carbonate sediment budgets. Fish thus represent a hitherto unrecognized but significant source of fine-grained carbonate sediment, the discovery of which has direct application to the conceptual ideas of how marine carbonate factories function both today and in the past. PMID:21368155

  19. Composite carbon foam electrode

    Science.gov (United States)

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1997-05-06

    Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  20. Root-Uptake of C-14 Acetic Acid by Various Plants and C-14 Dynamics Surrounding the Experimental Tessera

    International Nuclear Information System (INIS)

    Carbon-14 (C-14, t1/2 = 5.73x103 yrs) from radioactive waste is one of the most important radioactive nuclides for environmental assessment in the context of geological disposal, and understanding the transfer of radioactive elements to plants is essential for public health safety. In order to obtain fundamental knowledge, culture experiments using marigold (Tagetes patula L.), tall fescue (Festuca arundinacea S.), paddy rice (Oryza sativa L.), radish (Raphanus sativus L.), and carrot (Daucus carota L.) plants were conducted to examine root-uptake and dynamics of C-14 in the laboratory. The C-14 radioactivity in each plant part (e.g. shoot, root, edible part, etc.), medium (e.g. culture solution, sand, etc.), and air was determined. The distribution of C-14 in the plants was visualized using autoradiography. For a comparison, autoradiography was also done using Na-22. Results of the present study indicated that C-14 labeled CO2 gas was released from the culture solution to the atmosphere. Clear autoradiography images were observed in plants for the shoots and lower roots which were soaked in the culture solution. The upper roots which were not soaked in the culture solution were not clearly imaged. In the radiotracer experiment using Na-22, a clear image was observed for the whole carrot seedling, even including the upper root, on the autoradiography. However, the amounts of C-14 acetic acid absorbed by all the plants through their roots were considered to be very small. Inorganic carbon transformed from C-14 acetic acid would be taken up by plants through the roots, and some fraction of C-14 would be assimilated into the shoots by photosynthesis. (authors)

  1. Ocean sequestration of crop residue carbon: recycling fossil fuel carbon back to deep sediments.

    Science.gov (United States)

    Strand, Stuart E; Benford, Gregory

    2009-02-15

    For significant impact any method to remove CO2 from the atmosphere must process large amounts of carbon efficiently, be repeatable, sequester carbon for thousands of years, be practical, economical and be implemented soon. The only method that meets these criteria is removal of crop residues and burial in the deep ocean. We show here that this method is 92% efficient in sequestration of crop residue carbon while cellulosic ethanol production is only 32% and soil sequestration is about 14% efficient. Deep ocean sequestration can potentially capture 15% of the current global CO2 annual increase, returning that carbon backto deep sediments, confining the carbon for millennia, while using existing capital infrastructure and technology. Because of these clear advantages, we recommend enhanced research into permanent sequestration of crop residues in the deep ocean. PMID:19320149

  2. Application of AMS 14C measurements to criminal investigations

    International Nuclear Information System (INIS)

    14C variations of atmospheric CO2 as well as carbonaceous fraction of living materials, such as collagen from tooth and bone, tissue, skin, hair, nail, etc., of modern humans are influenced by 14C produced artificially by nuclear bomb tests in the atmosphere from late 1950s to early 1960s. By careful investigation of 14C concentration of tree rings and human body samples formed in this time intervals, we can establish a relationship of their 14C concentrations with calendar year. By applying this relation to a sample whose 14C concentration can be measured, we can estimate the formation age of the sample. In addition, sources of the chemicals that were used in some criminal cases can be possibly identified, by their carbon isotope ratios (13C/12C and 14C/12C). This method of age determination has been applied to a forensic study, i.e., two criminal cases of murder. For each case, by comparing the measured 14C abundances of several pieces of hair and one tooth (the third molar) from the body with the annual change on concentrations of bomb-produced 14C, the time of death of the body and the age of the victim were estimated. The estimated values were consistent with the real ones that were revealed by the confession of the real murderers. (author)

  3. Soluble CD14 in periodontitis

    NARCIS (Netherlands)

    E.A. Nicu; M.L. Laine; S.A. Morre; U. van der Velden; B.G. Loos

    2009-01-01

    Lipopolysaccharide (LPS) binds to soluble (s)CD14. We investigated which factors contribute to variations in sCD14 levels in periodontitis, a chronic infectious disease of tooth-supporting tissues associated with endotoxemia and leading to inflammation and subsequently loss of teeth. The sCD14 level

  4. An enzymic method for the determination of [1-14C] lactose

    International Nuclear Information System (INIS)

    A simple, rapid and specific method for the determination of [1-14C] lactose in biological fluids is described. It is based on the enzymic removal of the 1-14C atom of lactose as [14C] carbon dioxide, using commercially available enzymes. The assay involves only one critical addition and the entire reaction can be carried out in a scintillation vial. (author)

  5. Bacterial decomposition of synthetic 14C-labeled lignin and lignin monomer derivatives

    International Nuclear Information System (INIS)

    Nocardia sp. which was isolated from soil is capable of degrading synthetic lignin and utilizing its monomer derivatives. Decomposition was monitored by measuring the 14CO2 evolved and O2 consumed, when the bacterium was grown on a medium containing specifically 14C-labeled lignins or monomer phenolic compounds as major carbon source. The time course of the 14CO2 release and O2 uptake indicates a significant depolymerization and utilization of lignin by the Nocardia sp. (author)

  6. Patient risk of 14C-urea breath test

    International Nuclear Information System (INIS)

    Helicobacter Pylori bacteria infection is determined by activity measurement of the exhaled 14C-carbon dioxide formed from 14C-urea in stomach. About 37 kBq of capsulated 14C -urea is administered to the patient. Because 14C is a weak beta emitter, patients receive certain radiation dose. This could be the only drawback of this method. Because of that in this paper the effective dose has been determined. On that basis the patient risk has been estimated. The results show that the patient effective dose is at the level of the daily background radiation. So, from the radiation protection point of view this method is very safe. Including other excellent performances of the method like sensitivity, selectivity, noninvasivity, fastness and low costs, it could be recommended in diagnosis and eradication of Helicobacter Pylori infections. (author)

  7. Weathering controls on mechanisms of carbon storage in grassland soils

    Energy Technology Data Exchange (ETDEWEB)

    Masiello, C.A.; Chadwick, O.A.; Southon, J.; Torn, M.S.; Harden, J.W.

    2004-09-01

    On a sequence of soils developed under similar vegetation, temperature, and precipitation conditions, but with variations in mineralogical properties, we use organic carbon and 14C inventories to examine mineral protection of soil organic carbon. In these soils, 14C data indicate that the creation of slow-cycling carbon can be modeled as occurring through reaction of organic ligands with Al3+ and Fe3+ cations in the upper horizons, followed by sorption to amorphous inorganic Al compounds at depth. Only one of these processes, the chelation of Al3+ and Fe3+ by organic ligands, is linked to large carbon stocks. Organic ligands stabilized by this process traverse the soil column as dissolved organic carbon (both from surface horizons and root exudates). At our moist grassland site, this chelation and transport process is very strongly correlated with the storage and long-term stabilization of soil organic carbon. Our 14C results show that the mechanisms of organic carbon transport and storage at this site follow a classic model previously believed to only be significant in a single soil order (Spodosols), and closely related to the presence of forests. The presence of this process in the grassland Alfisol, Inceptisol, and Mollisol soils of this chronosequence suggests that this process is a more significant control on organic carbon storage than previously thought.

  8. Opportunities and Challenges for Being a Carbon Black Great Power

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    1. The "Uth Five-year Plan" Lay- ing the Foundation for Carbon Black Great Power 1.1 Rapid growth of carbon black output and production capacity During the "llth Five-year Plan" Period, China carbon black output was increased by 1.1 times and realized doubling; and the production capacity of carbon black realized an average annu- al growth of 16.9%. In 2011, the carbon black output was 3.853 million tons, increased by 14.2% compared with that of the last year, and the pro- portion of carbon black output in the world carbon black output was increased from 16% to 36%. The carbon black production capacity was 5.345 mil- lion tons, increased by 6% compared with that of the last year, and the proportion of carbon black production capacity in the world carbon black out- put reached 38%. Chinese carbon black output has been ranking the 1st place throughout the world for 6 years successively, and China has become a great power of carbon black production in the world.

  9. Mutagenicity of carbon nanomaterials

    DEFF Research Database (Denmark)

    Wallin, Håkan; Jacobsen, Nicklas Raun; White, Paul A;

    2011-01-01

    Carbon nanomaterials such carbon nanotubes, graphene and fullerenes are some the most promising nanomaterials. Although carbon nanomaterials have been reported to possess genotoxic potential, it is imperitive to analyse the data on the genotoxicity of carbon nanomaterials in vivo and in vitro and...

  10. Carbon Activation Diagnostic for Tertiary Neutron Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Glebov, V.Yu.; Stoeckl, C.; Sangster, T.C.; Meyerhofer, D.D.; Radha, P.B.; Padalino, S.; Baumgart, L.; Fuschino, J.

    2003-03-28

    OAK B202 The yield of tertiary neutrons with energies greater than 20 MeV has been proposed to determine the high rho R of inertial confinement fusion targets. The activation of carbon is a valuable measurement technique because of its high reaction threshold, the availability of high-purity samples, and relatively low cost. The 12C(n,2n)11C reaction has a Q value of 18.7 MeV, well above the 14.1 MeV primary DT neutron energy. The isotope 11C decays with a half-life of 20.3 min and emits a positron, resulting in the production of two back-to-back, 511 keV gamma rays upon annihilation. The positron decay of 11C is nearly identical to the copper decay used in the activation measurements of 14.1 MeV primary DT yields; therefore, the present copper activation gamma-detection system can be used to detect the tertiary-produced carbon activation. Because the tertiary neutron yield is more than six orders of magnitude lower than primary neutron yield, the carbon activation diagnostic requires ultrapure carbon samples, free from any positron-emitting contamination. In recent years we have developed carbon purification, packaging, and handling procedures that minimize the contamination signal to a level low enough to use carbon activation for tertiary neutron measurements in direct-drive implosion experiments with DT cryogenic targets on OMEGA. Experimental results of contamination measurements in carbon samples performed on high-neutron-yield shots on OMEGA in 2001-2002 will be presented. A concept for implementing a carbon activation system on the National Ignition Facility (NIF)will be discussed.

  11. Electroanalysis with carbon paste electrodes

    CERN Document Server

    Svancara, Ivan; Walcarius, Alain; Vytras, Karel

    2011-01-01

    Introduction to Electrochemistry and Electroanalysis with Carbon Paste-Based ElectrodesHistorical Survey and GlossaryField in Publication Activities and LiteratureCarbon Pastes and Carbon Paste ElectrodesCarbon Paste as the Binary MixtureClassification of Carbon Pastes and Carbon Paste ElectrodesConstruction of Carbon Paste HoldersCarbon Paste as the Electrode MaterialPhysicochemical Properties of Carbon PastesElectrochemical Characteristics of Carbon PastesTesting of Unmodified CPEsIntera

  12. Pyrolyzed thin film carbon

    Science.gov (United States)

    Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor)

    2010-01-01

    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  13. An analytical method for 14C in environmental water based on a wet-oxidation process.

    Science.gov (United States)

    Huang, Yan-Jun; Guo, Gui-Yin; Wu, Lian-Sheng; Zhang, Bing; Chen, Chao-Feng; Zhang, Hai-Ying; Qin, Hong-Juan; Shang-Guan, Zhi-Hong

    2015-04-01

    An analytical method for (14)C in environmental water based on a wet-oxidation process was developed. The method can be used to determine the activity concentrations of organic and inorganic (14)C in environmental water, or total (14)C, including in drinking water, surface water, rainwater and seawater. The wet-oxidation of the organic component allows the conversion of organic carbon to an inorganic form, and the extraction of the inorganic (14)C can be achieved by acidification and nitrogen purging. Environmental water with a volume of 20 L can be used for the wet-oxidation and extraction, and a detection limit of about 0.02 Bq/g(C) can be achieved for water with carbon content above 15 mg(C)/L, obviously lower than the natural level of (14)C in the environment. The collected carbon is sufficient for measurement with a low level liquid scintillation counter (LSC) for typical samples. Extraction or recovery experiments for inorganic carbon and organic carbon from typical materials, including analytical reagents of organic benzoquinone, sucrose, glutamic acid, nicotinic acid, humic acid, ethane diol, et cetera., were conducted with excellent results based on measurement on a total organic carbon analyzer and LSC. The recovery rate for inorganic carbon ranged tween 98.7%-99.0% with a mean of 98.9(± 0.1)%, for organic carbon recovery ranged between 93.8% and 100.0% with a mean of 97.1(± 2.6)%. Verification and an uncertainty budget of the method are also presented for a representative environmental water. The method is appropriate for (14)C analysis in environmental water, and can be applied also to the analysis of liquid effluent from nuclear facilities. PMID:25590997

  14. Simulation of 14C in IAP/LASG L30T63 Ocean Model

    Institute of Scientific and Technical Information of China (English)

    LI Qingquan; SHI Guangyu

    2005-01-01

    14C plays an important role in the study of ocean circulation and anthropogenic CO2. Radioactive 14C is usually used in ocean carbon circulation model to test the physical performance of model. In the present paper, a 14C model is established and coupled with the IAP/LASG L30T63 global ocean circulation model to simulate the distribution of natural 14C in oceans and the penetration and uptake of 14C in oceans after industrial revolution and nuclear bomb test. The simulation of natural 14C reveals the basic characteristics of oceanic ventilation. However, simulation value is "younger" than observation in the Pacific and Indian Oceans, and "older" than observation in the Atlantic deep ocean. The simulation of bomb 14C agrees well with GEOSECS observation, but the volume inventory and averaged penetration depth of bomb 14C in oceans are smaller than observation. The probable reasons for these discrepancies are analyzed.

  15. Wood - a carbon depot

    OpenAIRE

    Lipušček, Igor; Tišler, Vesna

    2003-01-01

    The article examines the global movement of carbon dioxide, the most important greenhouse gas due to its large quantities. We studied the carbon cycle with possibilities of its extension, and analysed the mechanisms that remove carbon dioxide from the atmosphere and bind it into solid substances for a longer period of time. The focus was on carbon dioxide sink into biomass and carbon deposit in wood. On the basis of wood component data and chemical analysis of the components, we calculated th...

  16. Carbon cycle uncertainty in the Alaskan Arctic

    Directory of Open Access Journals (Sweden)

    J. B. Fisher

    2014-02-01

    Full Text Available Climate change is leading to a disproportionately large warming in the high northern latitudes, but the magnitude and sign of the future carbon balance of the Arctic are highly uncertain. Using 40 terrestrial biosphere models for Alaska, we provide a baseline of terrestrial carbon cycle structural and parametric uncertainty, defined as the multi-model standard deviation (σ against the mean (x for each quantity. Mean annual uncertainty (σ/x was largest for net ecosystem exchange (NEE (−0.01± 0.19 kg C m−2 yr−1, then net primary production (NPP (0.14 ± 0.33 kg C m−2 yr−1, autotrophic respiration (Ra (0.09 ± 0.20 kg C m−2 yr−1, gross primary production (GPP (0.22 ± 0.50 kg C m−2 yr−1, ecosystem respiration (Re (0.23 ± 0.38 kg C m−2 yr−1, CH4 flux (2.52 ± 4.02 g CH4 m−2 yr−1, heterotrophic respiration (Rh (0.14 ± 0.20 kg C m−2 yr−1, and soil carbon (14.0± 9.2 kg C m−2. The spatial patterns in regional carbon stocks and fluxes varied widely with some models showing NEE for Alaska as a strong carbon sink, others as a strong carbon source, while still others as carbon neutral. Additionally, a feedback (i.e., sensitivity analysis was conducted of 20th century NEE to CO2 fertilization (β and climate (γ, which showed that uncertainty in γ was 2x larger than that of β, with neither indicating that the Alaskan Arctic is shifting towards a certain net carbon sink or source. Finally, AmeriFlux data are used at two sites in the Alaskan Arctic to evaluate the regional patterns; observed seasonal NEE was captured within multi-model uncertainty. This assessment of carbon cycle uncertainties may be used as a baseline for the improvement of experimental and modeling activities, as well as a reference for future trajectories in carbon cycling with climate change in the Alaskan Arctic.

  17. The Path of Carbon in Photosynthesis IX. Photosynthesis, Photoreduction, and the Hydrogen-Oxygen-Carbon Dioxide Dark Reaction

    Science.gov (United States)

    Badin, E. J.; Calvin, M.

    1950-02-01

    A comparison of the rates of fixation of Carbon 14 dioxide in algae for the processes of photosynthesis, photoreduction and the hydrogen-oxygen-carbon dioxide dark reaction has been made. For the same series of experiments, rates of incorporation of tracer carbon into the separate soluble components using the radiogram method have been determined. The mechanism of carbon dioxide uptake has been shown to occur via two distinct paths. In all cases studied, essentially the same compounds appear radioactive. The distribution with time, however, differs markedly.

  18. The Path of Carbon in Photosynthesis X. Carbon Dioxide Assimilation in Plants

    Science.gov (United States)

    Calvin, M.; Bassham, J. A.; Benson, A. A.; Lynch, V.; Ouellet, C.; Schou, L.; Stepka, W.; Tolbert, N. E.

    1950-04-01

    The conclusions which have been drawn from the results of C{sup 14}O{sub 2} fixation experiments with a variety of plants are developed in this paper. The evidence for thermochemical reduction of carbon dioxide fixation intermediates is presented and the results are interpreted from such a viewpoint.

  19. Aspects of the metabolism of U-14C arginine, U-14C histidine and U-14C lysine by adult female Glossina morsitans during pregnancy

    International Nuclear Information System (INIS)

    U-14C arginine, U-14C histidine or U-14C lysine was injected into haemolymph of pregnant female Glossina morsitans. Radioactivity was detected in the post-parturient female and its larval offspring mostly in arginine or histidine, but in the case of lysine injection radioactivity was detected in the two life stages in lysine lipids and a range of nonessential amino acids. The pattern of radioactivity in the developing oocyte and larva was related to growth characteristics of these young stages. Whereas arginine and histidine were mostly excreted unchanged, lysine derived radioactivity was detected in the excreted uric acid and expired carbon dioxide; radioactivity in such products was greater in early than late pregnancy. (author)

  20. Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

    2007-06-25

    Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated

  1. Comparison of carbon dynamics in tropical and temperate soils using radiocarbon measurements

    OpenAIRE

    Trumbore, S.

    1993-01-01

    The magnitude and timing of the response of the soil carbon reservoir to changes in land use or climate is a large source of uncertainty in global carbon cycle models. One method of assessing soil carbon dynamics, based on modeling the observed increase of C-14 in organic matter pools during the 30 years since atmospheric weapons testing ended, is described in this paper. Differences in the inventory and residence time of carbon are observed in organic matter from soils representing tropical ...

  2. Effect of Strength Enhancement of Soil Treated with Environment-Friendly Calcium Carbonate Powder

    OpenAIRE

    Kyungho Park; Sangju Jun; Daehyeon Kim

    2014-01-01

    This study aims to investigate the effects of the strength improvement of soft ground (sand) by producing calcium carbonate powder through microbial reactions. To analyze the cementation effect of calcium carbonate produced through microbial reaction for different weight ratios, four different types of specimens (untreated, calcium carbonate, cement, and calcium carbonate + cement) with different weight ratios (2%, 4%, 6%, and 8%) were produced and cured for a period of 3 days, 7 days, 14 day...

  3. Utilization of ancient permafrost carbon in headwaters of Arctic fluvial networks

    OpenAIRE

    Paul J. Mann; Eglinton, Timothy I.; Mcintyre, Cameron P.; Zimov, Nikita; Davydova, Anna; Vonk, Jorien E.; Holmes, Robert M.; Spencer, Robert G.M.

    2015-01-01

    Northern high-latitude rivers are major conduits of carbon from land to coastal seas and the Arctic Ocean. Arctic warming is promoting terrestrial permafrost thaw and shifting hydrologic flowpaths, leading to fluvial mobilization of ancient carbon stores. Here we describe 14 C and 13 C characteristics of dissolved organic carbon from fluvial networks across the Kolyma River Basin (Siberia), and isotopic changes during bioincubation experiments. Microbial communities utilized ancient carbon (1...

  4. Dating human DNA with the 14C bomb peak

    International Nuclear Information System (INIS)

    In 1963 the limited nuclear test ban treaty stopped nuclear weapons testing in the atmosphere. By then the addition from bomb-produced 14C had doubled the 14C content of the atmosphere. Through the CO2 cycle this excess exchanged with the hydrosphere and biosphere leading to a rapidly decreasing 14C level in the atmosphere. Today we are almost back to the pre-nuclear level. As a consequence all people on Earth who lived during the second half of the 20th century were exposed to this rapidly changing 14C signal. A few years ago, a group at the Department of Cell and Molecular Biology of the Karolinska Institute in Stockholm started to use the 14C bomb peak signal in DNA to determine retrospectively the age of cells from various parts of the human body (brain, heart, fat). In a collaboration with this group, we have studied the age of olfactory bulb neurons in the human brain. For this investigation, 14C AMS measurements were developed at VERA for very small carbon samples in the range from 2 to 4 micrograms. In the presentation the general concept of 14C bomb peak dating of human DNA and several applications are discussed.

  5. Accelerating Mineral Carbonation Using Carbonic Anhydrase.

    Science.gov (United States)

    Power, Ian M; Harrison, Anna L; Dipple, Gregory M

    2016-03-01

    Carbonic anhydrase (CA) enzymes have gained considerable attention for their potential use in carbon dioxide (CO2) capture technologies because they are able to catalyze rapidly the interconversion of aqueous CO2 and bicarbonate. However, there are challenges for widespread implementation including the need to develop mineralization process routes for permanent carbon storage. Mineral carbonation of highly reactive feedstocks may be limited by the supply rate of CO2. This rate limitation can be directly addressed by incorporating enzyme-catalyzed CO2 hydration. This study examined the effects of bovine carbonic anhydrase (BCA) and CO2-rich gas streams on the carbonation rate of brucite [Mg(OH)2], a highly reactive mineral. Alkaline brucite slurries were amended with BCA and supplied with 10% CO2 gas while aqueous chemistry and solids were monitored throughout the experiments (hours to days). In comparison to controls, brucite carbonation using BCA was accelerated by up to 240%. Nesquehonite [MgCO3·3H2O] precipitation limited the accumulation of hydrated CO2 species, apparently preventing BCA from catalyzing the dehydration reaction. Geochemical models reproduce observed reaction progress in all experiments, revealing a linear correlation between CO2 uptake and carbonation rate. Data demonstrates that carbonation in BCA-amended reactors remained limited by CO2 supply, implying further acceleration is possible. PMID:26829491

  6. Carbon fuel cells with carbon corrosion suppression

    Science.gov (United States)

    Cooper, John F.

    2012-04-10

    An electrochemical cell apparatus that can operate as either a fuel cell or a battery includes a cathode compartment, an anode compartment operatively connected to the cathode compartment, and a carbon fuel cell section connected to the anode compartment and the cathode compartment. An effusion plate is operatively positioned adjacent the anode compartment or the cathode compartment. The effusion plate allows passage of carbon dioxide. Carbon dioxide exhaust channels are operatively positioned in the electrochemical cell to direct the carbon dioxide from the electrochemical cell.

  7. Diet control on carbon isotopic composition of land snail shell carbonate

    Institute of Scientific and Technical Information of China (English)

    LIU ZongXiu; GU ZhaoYan; WU NaiQin; XU Bing

    2007-01-01

    Carbon isotope compositions for both the carbonate shells and soft bodies (organic tissue) of living land snails collected mostly from the Loess Plateau, China have been measured. The result shows that δ13C values range from -13.1‰ to -4.3‰ for the aragonite shell samples and from -26.8‰ to -18.0‰ for the soft body samples. Although the shells are enriched in 13C relative to the bodies averagely by 14.2(±0.8)‰, the shell δ13Ca values are closely correlated to the body δ13Corg values, expressed as δ13Ca = 1.021 δ13Corg + 14.38 (R = 0.965; N = 31). This relationship indicates that δ13Ca is primarily a function of the isotopic composition of the snail diets since previous studies have proved that the snail body is the same as their food in carbon isotope composition. In other words, carbon isotope compo-sition of the carbonate shell can be used as a proxy to estimate the dietary 13C abundance of the land snails. The data also support that the 13C enrichment of the carbonate shells results mainly from the equilibrium fractionations between the metabolic CO2, HCO3- in the hemolymph and shell aragonite, and partially from kinetic fractionations when snail shells form during their activity.

  8. Assimilation of /sup 14/CO/sub 2/ and /sup 14/C sucrose by citrus fruit tissues

    Energy Technology Data Exchange (ETDEWEB)

    Tomlinson, P.T.; Koch, K.E.

    1987-04-01

    Assimilation and metabolism of /sup 14/CO/sub 2/ was compared to that of (U-/sup 14/C) sucrose in young grapefruit (ca 25 mm diameter) to determine their respective roles in fruit growth. Fixation of /sup 14/CO/sub 2/ by isolated fruit tissues during 10 min in light exceeded that in dark by 2- to 30-fold depending on tissue content of chlorophyll. Greatest apparent photosynthesis occurred in outer green peel, but green juice tissues assimilated more than did adjoining inner peel tissue. In the dark, juice tissues incorporated 2.5-fold more /sup 14/CO/sub 2/ than any other tissue. Neutral sugars accounted for a smaller proportion and organic acids, a greater proportion, of the /sup 14/C-assimilates in interior peel and juice tissues. These data suggest more extensive production of organic acids from /sup 14/CO/sub 2/ in tissues isolated from the fruit interior. In contrast, little difference among tissues was evident in extent of organic- and amino-acid production from exogenous (U-/sup 14/C) sucrose. A small area of cuticle on whole fruit was replaced by a filter disc impregnated with radiolabeled sucrose and incubated for 16 h. Thus, carbon derived from CO/sub 2/ assimilation by fruit appears to be partitioned differently than that derived from sucrose.

  9. Dating of groundwater with tritium and 14C

    International Nuclear Information System (INIS)

    Shallow groundwater can be dated with some accuracy on the basis of its bomb tritium content if the unsaturated soil cover and the aquifer itself is sufficiently homogeneous. A few examples from the Rhine valley are presented. The decrease in tritium level from the water table to a few metres below is nearly two orders of magnitude. Agreement between the measured or estimated variation of bomb tritium in rain during the past decade and the tritium found in shallow groundwater can be obtained if one takes into account that (a) practically no summer rain reaches the water table, and (b) water is mixed by diffusion. Both effects can also be observed in the soil moisture of the unsaturated soil above the water table. Carbon-14 increase in groundwater due to bombs is delayed compared to tritium, the reasons being delay in the biological system and exchange with the carbonate in the soil. Nevertheless lysimeters show a marked increase of 14C, which depends on the plant cover, being high in a plant-covered lysimeter and low in a bare one. A simple model is presented, which allows the evaluation of the influence of exchange on the 14C age obtained. It turns out that the deviation from the true age depends on the ratio of the carbonate content in the aquifer material to the carbonate content of the water, on the specific contact surface or the grain size but not on the groundwater velocity. On the basis of this model the experimental finding that 14C ages are usually in agreement with other age estimates despite the loss by exchange is plausible owing to the fact that only material of sufficiently coarse grain size can make up a reasonable aquifer. Assuming only exchange with a monomolecular surface layer of the carbonate grains one finds that the 14C age is likely to differ by not more than a factor of two in the most unfavourable case. Under natural conditions (steady state of cosmic-ray-produced 14C) the 14C content of shallow groundwater is hardly influenced at all by

  10. Dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the HUDSON in the North Atlantic Ocean from 1993-04-05 to 1993-05-14 (NODC Accession 0113551)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113551 includes chemical, discrete sample, physical and profile data collected from HUDSON in the North Atlantic Ocean from 1993-04-05 to 1993-05-14...

  11. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the HESPERIDES in the North Atlantic Ocean from 1992-06-14 to 1992-08-15 (NODC Accession 0115227)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0115227 includes chemical, discrete sample, physical and profile data collected from HESPERIDES in the North Atlantic Ocean from 1992-06-14 to...

  12. Dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the TYRO in the North Atlantic Ocean from 1990-07-14 to 1990-07-29 (NODC Accession 0113603)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113603 includes chemical, discrete sample, physical and profile data collected from TYRO in the North Atlantic Ocean from 1990-07-14 to 1990-07-29...

  13. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using Alkalinity titrator, CTD and other instruments from the MARION DUFRESNE in the Indian Ocean from 2011-01-14 to 2011-02-20 (NODC Accession 0108369)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0108369 includes chemical, discrete sample, physical and profile data collected from MARION DUFRESNE in the Indian Ocean from 2011-01-14 to...

  14. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the METEOR in the North Atlantic Ocean from 1996-06-13 to 1996-07-14 (NODC Accession 0113911)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113911 includes chemical, discrete sample, physical and profile data collected from METEOR in the North Atlantic Ocean from 1996-06-13 to 1996-07-14...

  15. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the Soyo Maru in the North Pacific Ocean from 1998-04-14 to 1998-04-29 (NODC Accession 0112301)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112301 includes chemical, discrete sample, physical and profile data collected from Soyo Maru in the North Pacific Ocean from 1998-04-14 to...

  16. Rapid incorporation of 14C of glucose into phytosiderophores in iron-deficient barley roots

    International Nuclear Information System (INIS)

    Feeding experiments with 14C-labeled compounds were conducted to clarify the biosynthetic pathway of methionine for the production of the mugineic acid family of phytosiderophores (MAs) assuming that glucose may be converted to MAs through the glycolytic pathway, TCA cycle, and homoserine. CArbon-14 labeled glucose or homoserine was fed to intact roots of iron-deficient barley (Hordeum vulgare L. cv. Minorimugi) plants, and 14C-labeled glucose, malate, succinate, pyruvate, or glycerol was fed to excised roots of iron-deficient barley. In the feeding experiment with 14C-glucose using intact roots, 14C of glucose was incorporated into MAs rapidly and the molar radioactivity of the amino butanoic acid unit (C-4 unit) of the MAs was higher than that of citrate and malate. Carbon-14 of homoserine was incorporated into threonine rather than into MAS. Carbon-14 of malate, succinate, or pyruvate fed to the excised roots was not incorporated into MAS, while 14C of glycerol was incorporated into MAs. It was suggested that MAs may be synthesized from glucose through an unknown pathway that bypasses the organic acids of the TCA cycle, aspartate and homoserine; and that glycerol may be involved in the unknown pathway

  17. Effect of some drugs on ethanol-induced changes in blood brain barrier permeability for 14C-tyrosine

    International Nuclear Information System (INIS)

    This investigation seeks to compare the effects of membrane stabilizers chlorpromazine and alpha-tocopherol, and also the dopaminergic antagonist haloperidol, in changes in permeability of the blood-brain barrier for carbon 14-labelled tyrosine

  18. Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements.

    Science.gov (United States)

    Gatti, L V; Gloor, M; Miller, J B; Doughty, C E; Malhi, Y; Domingues, L G; Basso, L S; Martinewski, A; Correia, C S C; Borges, V F; Freitas, S; Braz, R; Anderson, L O; Rocha, H; Grace, J; Phillips, O L; Lloyd, J

    2014-02-01

    Feedbacks between land carbon pools and climate provide one of the largest sources of uncertainty in our predictions of global climate. Estimates of the sensitivity of the terrestrial carbon budget to climate anomalies in the tropics and the identification of the mechanisms responsible for feedback effects remain uncertain. The Amazon basin stores a vast amount of carbon, and has experienced increasingly higher temperatures and more frequent floods and droughts over the past two decades. Here we report seasonal and annual carbon balances across the Amazon basin, based on carbon dioxide and carbon monoxide measurements for the anomalously dry and wet years 2010 and 2011, respectively. We find that the Amazon basin lost 0.48 ± 0.18 petagrams of carbon per year (Pg C yr(-1)) during the dry year but was carbon neutral (0.06 ± 0.1 Pg C yr(-1)) during the wet year. Taking into account carbon losses from fire by using carbon monoxide measurements, we derived the basin net biome exchange (that is, the carbon flux between the non-burned forest and the atmosphere) revealing that during the dry year, vegetation was carbon neutral. During the wet year, vegetation was a net carbon sink of 0.25 ± 0.14 Pg C yr(-1), which is roughly consistent with the mean long-term intact-forest biomass sink of 0.39 ± 0.10 Pg C yr(-1) previously estimated from forest censuses. Observations from Amazonian forest plots suggest the suppression of photosynthesis during drought as the primary cause for the 2010 sink neutralization. Overall, our results suggest that moisture has an important role in determining the Amazonian carbon balance. If the recent trend of increasing precipitation extremes persists, the Amazon may become an increasing carbon source as a result of both emissions from fires and the suppression of net biome exchange by drought. PMID:24499918

  19. Long-term bone retention of C-14 following oral administration of C-14-xylose

    International Nuclear Information System (INIS)

    Oral administration of C-14-labeled xylose followed by measurement of C-14 activity in the breath has become a clinically useful test for diagnosis of small bowel bacterial overgrowth. However, accurate biodistribution and radiation dosimetry information was not available in the literature, so the true radiation exposure of the human subjects was not known. The purpose of this study was to determine the actual biodistribution data for orally administered C-14-xylose. A series of rats were given the material orally and sacrificed at various ages, up to 1 month after dosing. Tissues and fluids were solubilized and counted by liquid scintillation counting. Exhaled C-14-carbon dioxide was measured by trapping the gas in ethanolamine. Approximately two-thirds of the administered dose was absorbed from the GI tract and eventually appeared in the breath and urine. Much of the dose was not found in the major organs within the first day; it was presumed to be in the fatty tissue or muscle, which were not sampled. After most of the C-14 had disappeared from the GI and urinary tract, however, the bone retained a significant amount of radioactivity: approximately 5-6% of the administered dose was found in bone at one week, and remained at one month. These findings suggest that radiation exposure to the skeleton is long-term, much greater in magnitude than previously estimated, and suggests that the value of the test should be reevaluated in the light of the long-term radiation burden to the skeleton, especially in young patients

  20. Carbon nanotube cathode with capping carbon nanosheet

    Science.gov (United States)

    Li, Xin; Zhao, Dengchao; Pang, Kaige; Pang, Junchao; Liu, Weihua; Liu, Hongzhong; Wang, Xiaoli

    2013-10-01

    Here, we report a vertically aligned carbon nanotube (VACNT) film capped with a few layer of carbon nanosheet (FLCN) synthesized by chemical vapor deposition using a carbon source from iron phthalocyanine pyrolysis. The square resistance of the VACNT film is significantly reduced from 1500 Ω/□ to 300 Ω/□ when it is capped with carbon nanosheet. The VACNT capped with carbon nanosheet was transferred to an ITO glass substrate in an inverted configuration so that the carbon nanosheet served as a flexible transparent electrode at the bottom and the VACNT roots served as emission tips. Because all of the VACNTs start growing from a flat silicon substrate, the VACNT roots are very neat and uniform in height. A field emission test of the carbon nanosheet-capped VACNT film proved that the CNT roots show better uniformity in field emission and the carbon nanosheet cap could also potentially serve as a flexible transparent electrode, which is highly desired in photo-assisted field emission.