WorldWideScience

Sample records for carbon 14 reactions

  1. Coal chemistry. 8. Reactions of tetralin with coal and with some carbon-14-containing model compounds

    International Nuclear Information System (INIS)

    Collins, C.J.; Raaen, V.F.; Benjamin, B.M.; Maupin, P.H.; Roark, W.H.

    1979-01-01

    When coal was treated with tetralin-l- 14 C at 400 0 C, small yields of α- and β-methylnaphthalenes- 14 C were observed. In order to determine the mechanism of the reaction, tetralin was heated with 14 C-labeled 1,3-diphenylpropanes (1), with 1,3-diphenylpropene (2), and with 14 C-labeled phenetoles (3). In each case methylnaphthalenes were observed, and the origins of the methyl groups were determined with carbon-14. In addition to the methylnaphthalenes, 1 and 2 also yielded toluene and ethylbenzene (after 19 h), whereas phenetole-β- 14 C (3-β- 14 C) yielded toluene (unlabeled) plus ethyl- 14 C-benzene, benzene, phenol, and a mixture of α- and β-ethyl- 14 C-naphthalenes. Crossover experiments with labeled phenetole and unlabeled ethyl p-tolyl ether proved the intramolecularity of the reaction phenetole → toluene + ethylbenzene, thus illustrating a 1,2-phenyl shift from oxygen to carbon

  2. Carbon-14 immobilization via the CO2-Ba(OH)2 hydrate gas-solid reaction

    International Nuclear Information System (INIS)

    Haag, G.L.

    1980-01-01

    Although no restrictions have been placed on the release of carbon-14, it has been identified as a potential health hazard due to the ease in which it may be assimilated into the biosphere. The intent of the Carbon-14 Immobilization Program, funded through the Airborne Waste Program Management Office, is to develop and demonstrate a novel process for restricting off-gas releases of carbon-14 from various nuclear facilities. The process utilizes the CO 2 -Ba(OH) 2 hydrate gas-solid reaction to directly remove and immobilize carbon-14. The reaction product, BaCO 3 , possesses both the thermal and chemical stability desired for long-term waste disposal. The process is capable of providing decontamination factors in excess of 1000 and reactant utilization of greater than 99% in the treatment of high volumetric, airlike (330 ppM CO 2 ) gas streams. For the treatment of an air-based off-gas stream, the use of packed beds of Ba(OH) 2 .8H 2 O flakes to remove CO 2 has been demonstrated. However, the operating conditions must be maintained between certain upper and lower limits with respect to the partial pressure of water. If the water vapor pressure in the gas is less than the dissociation vapor pressure of Ba(OH) 2 .8H 2 O, the bed will deactivate. If the vapor pressure is considerably greater, pressure drop problems will increase with increasing humidity as the particles curl and degrade. Results have indicated that when operated in the proper regime, the bulk of the increase in pressure drop results from the conversion of Ba(OH) 2 .8H 2 O to BaCO 3 and not from the hydration of the commercial Ba(OH) 2 .8H 2 O (i.e. Ba(OH) 2 .7.50H 2 O) to Ba(OH) 2 .8H 2 O

  3. Adsorption of carbon-14 on mortar

    International Nuclear Information System (INIS)

    Matsumoto, Junko; Banba, Tsunetaka; Muraoka, Susumu

    1995-01-01

    The sorption experiments of carbon-14 on the mortar grain (grain size: 0.50--1.0 mm) focused on the chemical form of the carbon-14 were carried out by the batch method. Three kinds of carbon-14 chemical form were used for the experiments: sodium carbonate (Na 2 14 CO 3 ) as the inorganic radiocarbon, and sodium acetate (CH 3 14 COONa) and acetaldehyde ( 14 CH 3 14 CHO) as the organic radiocarbons. 0.30 gram samples of mortar were soaked in the solution with carbon-14 at 15 C for periods of up to 160 days. At the end of each run, carbon-14 concentrations in the supernatants were determined before and after centrifugation (3,500 rpm., 1 hr). In the mortar-sodium carbonate system, the retention process of carbon-14 related to reaction on the surface of the mortar was speculated as follows. First, 3CaO-SiO 2 and 2CaO-SiO 2 of the mortar components contact with water and produce Ca(OH) 2 . Ca(OH) 2 produces Ca 2+ and OH - in the solution. Then, calcite forms from Ca 2+ and CO 3 2- in the solution. Thus, the sorption ratio of carbon-14 onto mortar will be high until mortar has been completely carbonated because Ca 2+ is rich in the mortar and the solubility of calcite is low. In the mortar-organic carbon system, the soluble organic carbon-14 is hardly sorbed on the surface of the mortar. Therefore, the cementitious materials may not inhibit the release of organic radiocarbons from the low-level radioactive wastes, contrary to the case of inorganic radiocarbon

  4. An improved synthesis of carbon-14 labelled carboxylic acids from carbon-14 labelled amino acids

    International Nuclear Information System (INIS)

    Ramamurthy, T.V.; Ravi, S.; Viswanathan, K.V.

    1988-01-01

    Various carbon-14 labelled amino acids including the aromatic ones viz., tyrosine, phenylalanine and tryptophan are converted to the corresponding carboxylic acids in high yield (70-90%) on a micromolar scale synthesis by reaction with hydroxyl-amine-O-sulphonic acid and in a short reaction time. The improvement in yield has been achieved by using aqeuous alcohol as solvent in lieu of water alone as the medium of reaction. (author)

  5. Carbon-14 waste management

    International Nuclear Information System (INIS)

    Bush, R.P.

    1984-01-01

    As part of their research programme on Radioactive Waste Management, the Commission of the European Communities has provided financial support for a detailed study of wastes containing 14 C and the options for their management. The main results of this study are outlined. Carbon-14 is formed by neutron activation reactions in core materials and is therefore present in a variety of waste streams both at reactors and at reprocessing plants. Data on the production and release of 14 C from various reactor systems are presented. A possible management strategy for 14 C might be reduction of 14 N impurity levels in core materials, but only reductions of about a factor of five in arisings could be achieved in this way. The key problem in 14 C management is its retention in off-gas streams, particularly in the dissolver off-gas stream at reprocessing plants. In this stream the nuclide is present as carbon dioxide and is extensively isotopically diluted by the carbon dioxide content of the air. Processes for trapping 14 C from these off-gases must be integrated with the other processes in the overall off-gas treatment system, and should provide for conversion to a stable solid compound of carbon, suitable for subsequent immobilization and disposal. Three trapping processes that convert carbon dioxide into insoluble carbonates can be identified: the double alkali (NaOH/Ca(OH) 2 ) process, the direct calcium hydroxide slurry process, and the barium ocathydrate gas/solid process. Calcium or barium carbonates, produced in the above processes, could probably be incorporated into satisfactory immobilized waste forms. However, the stability of such waste forms to prolonged irradiation and to leaching remains to be investigated. (author)

  6. Selection of a carbon-14 fixation form

    International Nuclear Information System (INIS)

    Scheele, R.D.; Burger, L.L.

    1982-09-01

    This report summarizes work on the selection of a disposal form for carbon-14 produced during the production of nuclear power. Carbon compounds were screened on the basis of solubility, thermal stability, resistance to oxidation, cost and availability, compatibility with the selected disposal matrix, leach resistance when incorporated in concrete, and compatibility with capture technologies. Carbonates are the products of the various technologies presently considered for carbon-14 capture. The alkaline earth carbonates exhibit the greatest thermal stabilities, lowest solubilities, lowest raw material cost, and greatest raw material availabilities. When reactions with cement and its impurities are considered, calcium and strontium carbonates are the only alkaline earth carbonates resistant to hydrolysis and reaction with sulfate. Leaching tests of barium, calcium, lead, potassium, and strontium carbonates in concrete showed calcium carbonate concrete to be slightly superior to the other alkaline earth carbonates, and greatly superior to a soluble carbonate, potassium carbonate, and lead carbonate. None of the additives to the concrete reduced the carbonate leaching. Acidic CO 2 -containing waters were found to greatly increase carbonate leaching from concrete. Sea water was found to leach less carbon from carbonate concretes than either distilled water or Columbia River water, which showed nearly equivalent leaching. Based on our work, calcium, barium, and strontium carbonates in concrete are the most suitable waste forms for carbon-14, with calcium carbonate concrete slightly superior to the others. If the waste form is to be exposed to natural waters, sea water will have the lowest leach rate. 6 figures, 7 tables

  7. Reactions of sulphur mustard on impregnated carbons.

    Science.gov (United States)

    Prasad, G K; Singh, Beer

    2004-12-31

    Activated carbon of surface area 1100 m2/gm is impregnated with 4% sodium hydroxide plus 3% Cr(VI) as CrO3 with and without 5% ethylene diamine (EDA), 4% magnesium nitrate and 5% ruthenium chloride by using their aqueous solutions. These carbons are characterized for surface area analysis by BET conventional method and exposed to the vapours of sulphur mustard (HD) at room temperature (30 degrees C). After 24 h, the reaction products are extracted in dichloromethane and analyzed using gas chromatography and mass spectrometry (GC-MS). Hemisulphur mustard, thiodiglycol, 1,4-oxathiane are observed to be the products of reaction between sulphur mustard and NaOH/CrO3/C system, whereas on NaOH/CrO3/EDA/C system HD reacted to give 1,4-thiazane. On Mg(NO3)2/C system it gave hemisulphur mustard and thiodiglycol. On RuCl3/C system it degraded to divinyl sulphone. Residual sulphur mustard is observed along with reaction products in all systems studied. Reaction mechanisms are also proposed for these interesting surface reactions. Above-mentioned carbons can be used in filtration systems for protection against hazardous gases such as sulphur mustard.

  8. Reactions of sulphur mustard on impregnated carbons

    International Nuclear Information System (INIS)

    Prasad, G.K.; Singh, Beer

    2004-01-01

    Activated carbon of surface area 1100 m 2 /gm is impregnated with 4% sodium hydroxide plus 3% Cr(Vi) as CrO 3 with and without 5% ethylene diamine (EDA), 4% magnesium nitrate and 5% ruthenium chloride by using their aqueous solutions. These carbons are characterized for surface area analysis by BET conventional method and exposed to the vapours of sulphur mustard (HD) at room temperature (30 deg. C). After 24 h, the reaction products are extracted in dichloromethane and analyzed using gas chromatography and mass spectrometry (GC-MS). Hemisulphur mustard, thiodiglycol, 1,4-oxathiane are observed to be the products of reaction between sulphur mustard and NaOH/CrO 3 /C system, whereas on NaOH/CrO 3 /EDA/C system HD reacted to give 1,4-thiazane. On Mg(NO 3 ) 2 /C system it gave hemisulphur mustard and thiodiglycol. On RuCl 3 /C system it degraded to divinyl sulphone. Residual sulphur mustard is observed along with reaction products in all systems studied. Reaction mechanisms are also proposed for these interesting surface reactions. Above-mentioned carbons can be used in filtration systems for protection against hazardous gases such as sulphur mustard

  9. Coprecipitation of {sup 14}C and Sr with carbonate precipitates: The importance of reaction kinetics and recrystallization pathways

    Energy Technology Data Exchange (ETDEWEB)

    Hodkin, David J. [School of Earth and Environment, University of Leeds, Leeds LS2 9JT (United Kingdom); Stewart, Douglas I. [School of Civil Engineering, University of Leeds (United Kingdom); Graham, James T. [National Nuclear Laboratory, Sellafield, Cumbria (United Kingdom); Burke, Ian T., E-mail: I.T.Burke@leeds.ac.uk [School of Earth and Environment, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2016-08-15

    This study investigated the simultaneous removal of Sr{sup 2+} and {sup 14}CO{sub 3}{sup 2−} from pH > 12 Ca(OH){sub 2} solution by the precipitation of calcium carbonate. Initial Ca{sup 2+}:CO{sub 3}{sup 2−} ratios ranged from 10:1 to 10:100 (mM:mM). Maximum removal of {sup 14}C and Sr{sup 2+} both occurred in the system containing 10 mM Ca{sup 2+} and 1 mM CO{sub 3}{sup 2−} (99.7% and 98.6% removal respectively). A kinetic model is provided that describes {sup 14}C and Sr removal in terms of mineral dissolution and precipitation reactions. The removal of {sup 14}C was achieved during the depletion of the initial TIC in solution, and was subsequently significantly affected by recrystallization of the calcite precipitate from an elongate to isotropic morphology. This liberated > 46% of the {sup 14}C back to solution. Sr{sup 2+} removal occurred as Ca{sup 2+} became depleted in solution and was not significantly affected by the recrystallization process. The proposed reaction could form the basis for low cost remediation scheme for {sup 90}Sr and {sup 14}C in radioactively contaminated waters (<$0.25 reagent cost per m{sup 3} treated). - Highlights: • 99.7% of {sup 14}C and 98.6% of Sr removed from aqueous solution by CaCO{sub 3} precipitation. • Remobilization of {sup 14}C observed during calcium carbonate recrystallization. • Sr displayed variable distribution coefficient (possibly affected by Ca:Sr ratio). • Reagent cost of $0.22/m{sup 3} of treated groundwater.

  10. Carbonates in leaching reactions in context of {sup 14}C dating

    Energy Technology Data Exchange (ETDEWEB)

    Michalska, Danuta, E-mail: danamich@amu.edu.pl [Institute of Geology, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, ul. Makow Polnych 16, 61-606 Poznan (Poland); Czernik, Justyna, E-mail: justyna.czernik@gmail.com [Poznań Radiocarbon Laboratory, ul. Rubież 46, 61-612 Poznań (Poland)

    2015-10-15

    Lime mortars as a mixture of binder and aggregate may contain carbon of various origins. If the mortars are made of totally burnt lime, radiocarbon dating of binder yields the real age of building construction. The presence of carbonaceous aggregate has a significant influence on the {sup 14}C measurements results and depending on the type of aggregate and fraction they may cause overaging. Another problem, especially in case of hydraulic mortars that continue to be chemically active for a very long time, is the recrystallization usually connected with rejuvenation of the results but also, depending on local geological structures, with so called reservoir effect yielding apparent ages. An attempt in separating the binder from other carbonaceous components successfully was made for samples from Israel by Nawrocka-Michalska et al. (2007). The same preparation procedure, after taking into account the petrographic composition, was used for samples coming from Poland, Nawrocka et al. (2009). To verify the procedure used previously for non-hydraulic samples determination an experimental tests on carbonaceous mortars with crushed bricks from Novae in Bulgaria were made. Additionally, to identify different carbonaceous structures and their morphology, a cathodoluminescence and scanning electron microscope with electron dispersive spectrometer were applied. The crushed bricks and brick dust used in mortars production process have been interpreted as an alternative use to other pozzolanic materials. The reaction between lime and pozzolanic additives take place easily and affects the rate and course of carbonates decomposition in orthophosphric acid, during the samples pretreatment for dating. The composition of the Bulgarian samples together with influence of climate conditions on mortar carbonates do not allow for making straightforward conclusions in chronology context, but gives some new guidelines in terms of hydraulic mortars application for dating. This work has mainly

  11. Carbonates in leaching reactions in context of "1"4C dating

    International Nuclear Information System (INIS)

    Michalska, Danuta; Czernik, Justyna

    2015-01-01

    Lime mortars as a mixture of binder and aggregate may contain carbon of various origins. If the mortars are made of totally burnt lime, radiocarbon dating of binder yields the real age of building construction. The presence of carbonaceous aggregate has a significant influence on the "1"4C measurements results and depending on the type of aggregate and fraction they may cause overaging. Another problem, especially in case of hydraulic mortars that continue to be chemically active for a very long time, is the recrystallization usually connected with rejuvenation of the results but also, depending on local geological structures, with so called reservoir effect yielding apparent ages. An attempt in separating the binder from other carbonaceous components successfully was made for samples from Israel by Nawrocka-Michalska et al. (2007). The same preparation procedure, after taking into account the petrographic composition, was used for samples coming from Poland, Nawrocka et al. (2009). To verify the procedure used previously for non-hydraulic samples determination an experimental tests on carbonaceous mortars with crushed bricks from Novae in Bulgaria were made. Additionally, to identify different carbonaceous structures and their morphology, a cathodoluminescence and scanning electron microscope with electron dispersive spectrometer were applied. The crushed bricks and brick dust used in mortars production process have been interpreted as an alternative use to other pozzolanic materials. The reaction between lime and pozzolanic additives take place easily and affects the rate and course of carbonates decomposition in orthophosphric acid, during the samples pretreatment for dating. The composition of the Bulgarian samples together with influence of climate conditions on mortar carbonates do not allow for making straightforward conclusions in chronology context, but gives some new guidelines in terms of hydraulic mortars application for dating. This work has mainly

  12. Vibrationally Excited Carbon Monoxide Produced via a Chemical Reaction Between Carbon Vapor and Oxygen

    Science.gov (United States)

    Jans, Elijah R.; Eckert, Zakari; Frederickson, Kraig; Rich, Bill; Adamovich, Igor V.

    2017-06-01

    Measurements of the vibrational distribution function of carbon monoxide produced via a reaction between carbon vapor and molecular oxygen has shown a total population inversion on vibrational levels 4-7. Carbon vapor, produced using an arc discharge to sublimate graphite, is mixed with an argon oxygen flow. The excited carbon monoxide is vibrationally populated up to level v=14, at low temperatures, T=400-450 K, in a collision-dominated environment, 15-20 Torr, with total population inversions between v=4-7. The average vibrational energy per CO molecule formed by the reaction is 0.6-1.2 eV/molecule, which corresponds to 10-20% of the reaction enthalpy. Kinetic modeling of the flow reactor, including state specific vibrational processes, was performed to infer the vibrational distribution of the products of the reaction. The results show viability of developing of a new chemical CO laser from the reaction of carbon vapor and oxygen.

  13. Global impact of carbon-14 from nuclear power reactors

    International Nuclear Information System (INIS)

    Moghissi, A.A.; Carter, M.W.

    1977-01-01

    Carbon-14 is produced by nuclear power reactors, predominently as a result of the interaction of a neutron and nitrogen-14 both in the fuel and in the coolant. Several other reactions also contribute to the production of carbon-14. Present operational procedures, in general, for reactors and fuel reprocessing plants result in the release of carbon-14 into the environment. Combustion of fossil fuels and certain industrial operations contribute to the supply of CO 2 in the atmosphere and this contribution is essentially free of carbon-14. Future carbon-14 burdens by assuming a thorough mixing of all CO 2 in the atmosphere is predicted. Available data on electric power generation, fossil fuel combustion and certain other information are used to calculate the projected specific activity of carbon-14 by the year 2000 and the twenty-first century. According to these calculations, the global population dose from carbon-14 can be substantial. Also, carbon-14 in the vicinity of nuclear power reactors is considered. Because of the chemistry of carbon-14, it is shown that local problems may be more significant around BWR's as compared to PWR's. Based on environmental considerations of carbon-14, its increasing production and discharge into the atmosphere, and available control technology, it is recommended that nitrogen use and its presence be minimized in pertinent reactor components and operations

  14. Preparation of pyridostigmine bromide labeled with carbon-14 and tritium

    Energy Technology Data Exchange (ETDEWEB)

    Kepler, J.A.; Twine, C.E.; Austin, R.D. (Research Triangle Inst., Research Triangle Park, NC (United States))

    1992-08-01

    [2-[sup 14]C]Pyridostigmine bromide was prepared in 17.6% radiochemical yield with specific activity of 18 mCi/mmol. The reaction sequence involved preparation of 2-furan[[sup 14]C]carboxylic acid by carbonation of 2-lithiofuran, followed by conversion to 2-amino[[sup 14]C]methylfuran by lithium aluminium hydride reduction of its carboxamide. Oxidative rearrangement of 2-amino[[sup 14]C]methylfuran gave 3-hydroxy[2-[sup 14]C]pyridine which was converted to [2-[sup 14]C]pyridostigmine bromide by reaction with dimethylcarbamyl chloride and quarternization with bromomethane. Pyridostigmine bromide labeled in the methyl group of the carbamate function was prepared in 73% yield with specific activity of 37.6 mCi/mmol by reaction of bis-3-pyridyl carbonate with [[sup 14]C]dimethylamine followed by quarternization with bromomethane. [6-[sup 3]H]-Pyridostigmine bromide with specific activity of 22.5 mCi/mmol was prepared by catalytic halogen-tritium replacement of 2,6-dibromo-3-dimethylcarbamyloxypyridine followed by quarternization with bromomethane and back-exchanging the labile 2-tritium. (author).

  15. Preparation of pyridostigmine bromide labeled with carbon-14 and tritium

    International Nuclear Information System (INIS)

    Kepler, J.A.; Twine, C.E.; Austin, R.D.

    1992-01-01

    [2- 14 C]Pyridostigmine bromide was prepared in 17.6% radiochemical yield with specific activity of 18 mCi/mmol. The reaction sequence involved preparation of 2-furan[ 14 C]carboxylic acid by carbonation of 2-lithiofuran, followed by conversion to 2-amino[ 14 C]methylfuran by lithium aluminium hydride reduction of its carboxamide. Oxidative rearrangement of 2-amino[ 14 C]methylfuran gave 3-hydroxy[2- 14 C]pyridine which was converted to [2- 14 C]pyridostigmine bromide by reaction with dimethylcarbamyl chloride and quarternization with bromomethane. Pyridostigmine bromide labeled in the methyl group of the carbamate function was prepared in 73% yield with specific activity of 37.6 mCi/mmol by reaction of bis-3-pyridyl carbonate with [ 14 C]dimethylamine followed by quarternization with bromomethane. [6- 3 H]-Pyridostigmine bromide with specific activity of 22.5 mCi/mmol was prepared by catalytic halogen-tritium replacement of 2,6-dibromo-3-dimethylcarbamyloxypyridine followed by quarternization with bromomethane and back-exchanging the labile 2-tritium. (author)

  16. Immobilization of carbon-14 from reactor graphite waste by use of self-sustaining reaction in the C-Al-TiO2 system

    International Nuclear Information System (INIS)

    Karlina, O.K.; Klimov, V.L.; Ojovan, M.I.; Pavlova, G.Yu.; Dmitriev, S.A.; Yurchenko, A.Yu.

    2005-01-01

    As a result of long-term neutron irradiation, the long-lived 14 C is produced in the reactor graphite. The exothermic self-sustaining reaction 3C(graphite) + 4Al + 3TiO 2 = 3TiC + 2Al 2 O 3 was proposed for processing of such waste. In doing so, the carbon, including the 14 C, is chemically bound in the stable TiC. The reaction products in the C-Al-TiO 2 system were investigated both by thermodynamic simulation and experimentally in the course of this work

  17. Synthesis of carbon-14 labelled ethyl chloride

    International Nuclear Information System (INIS)

    Kanski, R.

    1976-01-01

    A new efficient method of synthesis of ethyl chloride (1,2- 14 C), based on the Ba 14 CO 3 and dry hydrogen chloride as starting materials has been developed and described. Addition of the hydrogen chloride to ethylene (1,2- 14 C), obtained from Ba 14 CO 3 , has been carried out in the presence of the AlCl 3 as catalyst. The outlined method leads to ethyl chloride (1,2- 14 C) of high specific activity. The radiochemical yield of the reaction based on the activity of barium carbonate used was 72%. (author)

  18. Hydrogen Transfer from Hantzsch 1,4-Dihydropyridines to Carbon-Carbon Double Bonds under Microwave Irradiation

    OpenAIRE

    Jean Jacques Vanden Eynde; Didier Barbry; Guy Cordonnier; Séverine Torchy

    2002-01-01

    1,4-Dihydropyridines (DHPs) have been used in the reduction of carbon-carbon double bonds under microwave irradiation without solvent. The efficiency of the reactions is dramatically dependent on the steric effects in the DHPs and on the electronic effects in the olefins.

  19. Carbon 14 dating; La datation par le carbone 14

    Energy Technology Data Exchange (ETDEWEB)

    Laj, C.; Mazaud, A.; Duplessy, J.C. [CEA Saclay, Lab. des Sciences du Climat et de l' Environnement, 91 - Gif-sur-Yvette (France)

    2004-03-01

    In this article time dating based on carbon 14 method is reviewed, its limits are explained and recent improvements are presented. Carbon 14 is a by-product of the interactions of cosmic protons with air molecules. The fluctuations of the quantity of carbon 14 present in the atmosphere are responsible for the shift observed between the result given by the method and the real age. This shift appears for ages greater than 2000 years and is estimated to 1000 years for an age of 10.000 years. As a consequence carbon 14 dating method requires calibration by comparing with other methods like dendrochronology (till 11.000 years) and time dating of fossil corals (till 26.000 years and soon till 50.000 years). It is assumed that the fluctuations of carbon 14 in the atmosphere are due to: - the changes in the intensity and composition of cosmic radiations itself (due to the motion of the sun system through the galaxy or due to the explosion of a super-novae in the surroundings of the sun system); - the changes of the earth magnetic field that diverts cosmic rays; and - the changes in the interactions between the atmosphere and the oceans knowing that 40 tons of carbon 14 are dissolved in seas while only 1 ton belongs to the atmosphere. (A.C.)

  20. Carbon-14 waste management

    International Nuclear Information System (INIS)

    Bush, R.P.; Smith, G.M.; White, I.F

    1984-01-01

    Carbon-14 occurs in nature, but is also formed in nuclear reactors. Because of its long half-life and the biological significance of carbon, releases from nuclear facilities could have a significant radiological impact. Waste management strategies for carbon-14 are therefore of current concern. Carbon-14 is present in a variety of waste streams both at reactors and at reprocessing plants. A reliable picture of the production and release of carbon-14 from various reactor systems has been built up for the purposes of this study. A possible management strategy for carbon-14 might be the reduction of nitrogen impurity levels in core materials, since the activation of 14 N is usually the dominant source of carbon-14. The key problem in carbon-14 management is its retention of off-gas streams, particularly in the dissolver off-gas stream at reprocessing plants. Three alternative trapping processes that convert carbon dioxide into insoluble carbonates have been suggested. The results show that none of the options considered need be rejected on the grounds of potential radiation doses to individuals. All exposures should be as low as reasonably achievable, economic and social factors being taken into account. If, on these grounds, retention and disposal of carbon-14 is found to be beneficial, then, subject to the limitations noted, appropriate retention, immobilization and disposal technologies have been identified

  1. Investigations into the post-natal development of demethylating enzyme systems by determination of carbon dioxide 14 in the air exhaled by mice after applications of carbon 14 dimethyl amino-antipyrine

    International Nuclear Information System (INIS)

    Schmidt, H.

    1982-01-01

    Albino mice were subcutaneously injected with carbon 14 dimethyl aminopyrines, the methyl group of which can be metabolised in the organism into carbon dioxide 14. The following results were obtained: In the carbon dioxide 14 exhalation of neonate, young and adult animals after administration of carbon 14 aminopyrine, distinct differences were noted. The maximum of elimination via the lungs occurs after 20-30 minutes in grown-up mice, in neonates or young animals distinctly later (60-90 min). The carbon dioxide 14 exhalation was also measured after additional subcutaneous application of methrotrexate. In mice aged 8 and 10 days a distinct decrease in carbon dioxide 14 exhalation was found. By contrast, a rise in carbon dioxide 14 exhaled was found in mice aged 2 days. The orientating experiments with folic acid and carbon 14 dimethyl aminopyrine show that leucovorin leads to a distinct increase in carbon dioxide 14 exhalation during the first 30 minutes. As a cause of the different degrees of stimulation respectively inhibition of demethylation, different biochemical ways of formaldehyde formation are pointed out. One of these probably includes the folate-dependent reaction. (orig./MG) [de

  2. The carbon 14 and environment; Le carbone 14 et l'environnement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This article resume the history and the properties of the carbon 14 ({sup 14}C). We also find the different origins and the produced quantities. The carbon transfers in environment are explained and so the {sup 14}C. The biological effects and the sanitary aspects are clarified. The measurements of carbon 14 are given as well its application through the dating. The waste management is tackled. (N.C.)

  3. Evaluation of carbon-14 life cycle in reactors VVER-1000

    International Nuclear Information System (INIS)

    Lysakova, Katerina; Neumann, Jan; Vonkova, Katerina

    2012-09-01

    This work is aimed at the evaluation of carbon-14 life cycle in light water reactors VVER-1000. Carbon-14 is generated as a side product in different systems of nuclear reactors and has been an issue not only in radioactive waste management but mainly in release into the environment in the form of gaseous effluents. The principal sources of this radionuclide are in primary cooling water and fuel. Considerable amount of C-14 is generated by neutron reactions with oxygen 17 O and nitrogen 14 N present in water coolant and fuel. The reaction likelihood and consequently volume of generated radioisotope depends on several factors, especially on the effective cross-section, concentrations of parent elements and conditions of power plant operating strategies. Due to its long half-life and high capability of integration into the environment and thus into the living species, it is very important to monitor the movement of carbon-14 in all systems of nuclear power plant and to manage its release out of NPP. The dominant forms of radioactive carbon-14 are the hydrocarbons owing to the combinations with hydrogen used for absorption of radiolytic oxygen. These organic compounds, such as formaldehyde, methyl alcohol, ethyl alcohol and formic acid can be mostly retained on ion exchange resins used in the system for purifying primary cooling water. The gaseous carbon compounds (CH 4 and CO 2 ) are released into the atmosphere via the ventilation systems of NPP. Based on the information and data obtained from different sources, it has been designed a balance model of possible carbon-14 pathways throughout the whole NPP. This model includes also mass balance model equations for each important node in system and available sampling points which will be the background for further calculations. This document is specifically not to intended to describe the best monitoring program attributes or technologies but rather to provide evaluation of obtained data and find the optimal way to

  4. Study on hydrogen transfer in coal liquefaction by tritium and carbon-14 tracers

    International Nuclear Information System (INIS)

    Nitoh, Osamu; Kabe, Toshiaki; Kabe, Yaeko.

    1985-01-01

    For the analysis of mechanism of hydrogenation and cracking of coal, the liquefaction of Taiheiyo coal using tritium labeled gaseous hydrogen and tritium labeled tetralin with small amounts of carbon-14 labeled naphthalene has been studied. Taiheiyo coal(25g) was thermally decomposed in tetralin or naphthalene solvent(75g) at 400--440 0 C under the initial hydrogen pressure of 5.9MPa for 30min with Ni-Mo-Al 2 O 3 catalyst(0--5g). The reaction mixture in an autoclave was separated by filtration, distillation and solvent extraction. Produced gas, oils and the solvent were analyzed by gas chromatography. The tritium and carbon-14 contents of separated reaction products were measured with a liquid scintilation counter to study the hydrogen transfer mechanism. The distribution of reaction products and the amount of hydrogen transfer from gas or solvent to the products were also determined. In hydrogen donor solvent such as tetralin, the coal liquefaction yield was independent from the catalyst, but the catalyst was effective in hydrocracking of preasphaltene and asphaltene. In naphthalene solvent, the coal liquefaction reaction hardly occured in the absence of the catalyst, because hydrogen transfer from both the solvent and gaseous hydrogen was scarce. Tritium distribution in the reaction products showed that complicated hydrogen exchange reactions between gaseous hydrogen, coal liquids and solvent came out by the presence of coal liquids and catalyst. The very small amounts of carbon-14 transferred to the liquefaction products showed that carbon exchange or transfer between solvent and coal did not take place. (author)

  5. Dissolved Organic Carbon 14C in Southern Nevada Groundwater and Implications for Groundwater Travel Times

    Energy Technology Data Exchange (ETDEWEB)

    Hershey, Ronald L. [Nevada University, Reno, NV (United States). Desert Research Institute; Fereday, Wyall [Nevada University, Reno, NV (United States). Desert Research Institute; Thomas, James M [Nevada University, Reno, NV (United States). Desert Research Institute

    2016-08-01

    Dissolved inorganic carbon (DIC) carbon-14 (14C) ages must be corrected for complex chemical and physical reactions and processes that change the amount of 14C in groundwater as it flows from recharge to downgradient areas. Because of these reactions, DIC 14C can produce unrealistically old ages and long groundwater travel times that may, or may not, agree with travel times estimated by other methods. Dissolved organic carbon (DOC) 14C ages are often younger than DIC 14C ages because there are few chemical reactions or physical processes that change the amount of DOC 14C in groundwater. However, there are several issues that create uncertainty in DOC 14C groundwater ages including limited knowledge of the initial (A0) DOC 14C in groundwater recharge and potential changes in DOC composition as water moves through an aquifer. This study examines these issues by quantifying A0 DOC 14C in recharge areas of southern Nevada groundwater flow systems and by evaluating changes in DOC composition as water flows from recharge areas to downgradient areas. The effect of these processes on DOC 14C groundwater ages is evaluated and DOC and DIC 14C ages are then compared along several southern Nevada groundwater flow paths. Twenty-seven groundwater samples were collected from springs and wells in southern Nevada in upgradient, midgradient, and downgradient locations. DOC 14C for upgradient samples ranged from 96 to 120 percent modern carbon (pmc) with an average of 106 pmc, verifying modern DOC 14C ages in recharge areas, which decreases uncertainty in DOC 14C A0 values, groundwater ages, and travel times. The HPLC spectra of groundwater along a flow path in the Spring Mountains show the same general pattern indicating that the DOC compound composition does not change along this flow path

  6. A gaseous measurement system for carbon-14 dioxide and carbon-14 methane: An analytical methodology to be applied in the evaluation of the carbon-14 dioxide and carbon-14 methane produced via microbial activity in volcanic tuff

    International Nuclear Information System (INIS)

    Dolan, M.M.

    1987-01-01

    The objectives of this study were to develop a gaseous measurement system for the carbon-14 dioxide and carbon-14 methane produced via microbial activity or geochemical action on leachate in tuff; to determine the trapping efficiency of the system for carbon-14 dioxide; to determine the trapping efficiency of the system for carbon-14 methane; to apply the experimentally determined factors regarding the system's trapping efficiency for carbon-14 dioxide and carbon-14 methane to a trapping algorithm to determine the activity of the carbon-14 dioxide and carbon-14 methane in a mixed sample; to determine the minimum detectable activity of the measurement process in picocuries per liter; and to determine the lower limit or detection of the measurement process in counts per minute

  7. Compilation of carbon-14 data

    International Nuclear Information System (INIS)

    Paasch, R.A.

    1985-01-01

    A review and critical analysis was made of the original sources of carbon-14 in the graphite moderator and reflector zones of the eight Hanford production reactors, the present physical and chemical state of the carbon-14, pathways (other than direct combustion) by which the carbon-14 could be released to the biosphere, and the maximum rate at which it might be released under circumstances which idealistically favor the release. Areas of uncertainty are noted and recommendations are made for obtaining additional data in three areas: (1) release rate of carbon-14 from irradiated graphite saturated with aerated water; (2) characterization of carbon-14 deposited outside the moderator and reflector zones; and (3) corrosion/release rate of carbon-14 from irradiated steel and aluminum alloys

  8. Carbon and carbon-14 in lunar soil 14163

    International Nuclear Information System (INIS)

    Fireman, E.L.; Stoenner, R.W.

    1981-01-01

    Carbon is removed from the surface of lunar soil 14163 size fractions by combustions at 500 and 1000 0 C in an oxygen stream and the carbon contents and the carbon-14 activities are measured. The carbon contents are inversely correlated with grain size. A measured carbon content of 198 ppM for bulk 14163, obtained by combining the size fraction results, is modified to 109 +- 12 ppM by a carbon contamination correction. This value is in accord with a previous determination, 110 ppM, for bulk 14163. The small ( 53 μ) grains, 11.2 +- 2.0 dpm/kg. The combusted carbon and carbon-14 are attributed mainly to solar-wind implantation. Melt extractions of carbon-14 from the combusted soil samples gave essentially identical activities, 21.0 +- 1.5 and 19.2 +- 2.0 dpm/kg for the small and large grains, and are attributed to cosmic-ray spallation-produced carbon-14

  9. Laboratory Experiments to Evaluate Matrix Diffusion of Dissolved Organic Carbon Carbon-14 in Southern Nevada Fractured-rock Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Hershey, Ronald L. [Nevada University, Reno, NV (United States). Desert Research Institute; Fereday, Wyatt [Nevada University, Reno, NV (United States). Desert Research Institute

    2016-05-01

    Dissolved inorganic carbon (DIC) carbon-14 (14C) is used to estimate groundwater ages by comparing the DIC 14C content in groundwater in the recharge area to the DIC 14C content in the downgradient sampling point. However, because of chemical reactions and physical processes between groundwater and aquifer rocks, the amount of DIC 14C in groundwater can change and result in 14C loss that is not because of radioactive decay. This loss of DIC 14C results in groundwater ages that are older than the actual groundwater ages. Alternatively, dissolved organic carbon (DOC) 14C in groundwater does not react chemically with aquifer rocks, so DOC 14C ages are generally younger than DIC 14C ages. In addition to chemical reactions, 14C ages may also be altered by the physical process of matrix diffusion. The net effect of a continuous loss of 14C to the aquifer matrix by matrix diffusion and then radioactive decay is that groundwater appears to be older than it actually is. Laboratory experiments were conducted to measure matrix diffusion coefficients for DOC 14C in volcanic and carbonate aquifer rocks from southern Nevada. Experiments were conducted using bromide (Br-) as a conservative tracer and 14C-labeled trimesic acid (TMA) as a surrogate for groundwater DOC. Outcrop samples from six volcanic aquifers and five carbonate aquifers in southern Nevada were used. The average DOC 14C matrix diffusion coefficient for volcanic rocks was 2.9 x 10-7 cm2/s, whereas the average for carbonate rocks was approximately the same at 1.7 x 10-7 cm2/s. The average Br- matrix diffusion coefficient for volcanic rocks was 10.4 x 10-7 cm2/s, whereas the average for carbonate rocks was less at 6.5 x 10-7 cm2/s. Carbonate rocks exhibited greater variability in

  10. A detective from the past called carbon 14; Un detective del pasado llamado carbono 14

    Energy Technology Data Exchange (ETDEWEB)

    Trintan, R. M.

    2015-07-01

    The analysis is carried out using Radiometry or Accelerator mass spectrometry. After the system allowing to date the age of any organic rest - whether a fossil, a wood fragment, a parchment or a seed - is an isotope called carbon-14. An atom that comes from reactions nuclear produced in the atmosphere and cosmic-ray-induced they interact with oxygen to form carbon dioxide. This element they absorb it plants in photosynthesis and then passes to the animals remained almost unchanged during the life of the organism. to the meet the initial ratio of c-14 that had been in the atmosphere before his death, the remains that are left in it determine the elapsed time. (Author)

  11. Hofmann elimination of p-nitrophenylethyl-1-C-14-trimethylammonium bromide: a carbon-14 isotope effect study (Preprint no. AR-24)

    International Nuclear Information System (INIS)

    Ramamurthy, T.V.; Fry, Arthur

    1991-01-01

    The alpha carbon isotope effects in the Hofmann elimination of p-nitrophenylethyl-1-C-14-trimethylammonium bromide compound have been measured under changing buffer concentrations with a view to correlate mechanistic change. Since there are alpha-carbon isotope effects and the effects are small it is quite likely that the reaction is of the ElcB type, predominately irreversible, with the incursion of slightly increasing fractions of reaction by the reversible mechanism as the buffer concentration is increased. (author). 4 refs., 2 tab

  12. Cascade enzymatic reactions for efficient carbon sequestration.

    Science.gov (United States)

    Xia, Shunxiang; Zhao, Xueyan; Frigo-Vaz, Benjamin; Zheng, Wenyun; Kim, Jungbae; Wang, Ping

    2015-04-01

    Thermochemical processes developed for carbon capture and storage (CCS) offer high carbon capture capacities, but are generally hampered by low energy efficiency. Reversible cascade enzyme reactions are examined in this work for energy-efficient carbon sequestration. By integrating the reactions of two key enzymes of RTCA cycle, isocitrate dehydrogenase and aconitase, we demonstrate that intensified carbon capture can be realized through such cascade enzymatic reactions. Experiments show that enhanced thermodynamic driving force for carbon conversion can be attained via pH control under ambient conditions, and that the cascade reactions have the potential to capture 0.5 mol carbon at pH 6 for each mole of substrate applied. Overall it manifests that the carbon capture capacity of biocatalytic reactions, in addition to be energy efficient, can also be ultimately intensified to approach those realized with chemical absorbents such as MEA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Chemical reactions confined within carbon nanotubes.

    Science.gov (United States)

    Miners, Scott A; Rance, Graham A; Khlobystov, Andrei N

    2016-08-22

    In this critical review, we survey the wide range of chemical reactions that have been confined within carbon nanotubes, particularly emphasising how the pairwise interactions between the catalysts, reactants, transition states and products of a particular molecular transformation with the host nanotube can be used to control the yields and distributions of products of chemical reactions. We demonstrate that nanoscale confinement within carbon nanotubes enables the control of catalyst activity, morphology and stability, influences the local concentration of reactants and products thus affecting equilibria, rates and selectivity, pre-arranges the reactants for desired reactions and alters the relative stability of isomeric products. We critically evaluate the relative advantages and disadvantages of the confinement of chemical reactions inside carbon nanotubes from a chemical perspective and describe how further developments in the controlled synthesis of carbon nanotubes and the incorporation of multifunctionality are essential for the development of this ever-expanding field, ultimately leading to the effective control of the pathways of chemical reactions through the rational design of multi-functional carbon nanoreactors.

  14. Density distribution of {sup 14}Be from reaction cross-section measurements

    Energy Technology Data Exchange (ETDEWEB)

    Moriguchi, T. [Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan); Ozawa, A., E-mail: ozawa@tac.tsukuba.ac.jp [Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan); Ishimoto, S. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Abe, Y. [Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan); Fukuda, M. [Department of Physics, Osaka University, Osaka 560-0043 (Japan); Hachiuma, I. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Ishibashi, Y.; Ito, Y. [Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan); Kuboki, T. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Lantz, M. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Nagae, D. [Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan); Namihira, K. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Nishimura, D. [Department of Physics, Osaka University, Osaka 560-0043 (Japan); Ohtsubo, T. [Department of Physics, Niigata University, Niigata 950-2181 (Japan); Ooishi, H. [Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan); Suda, T. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); Suzuki, H. [Institute of Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8571 (Japan); Suzuki, T. [Department of Physics, Saitama University, Saitama 338-8570 (Japan); Takechi, M.; Tanaka, K. [RIKEN Nishina Center, Wako, Saitama 351-0198 (Japan); and others

    2014-09-15

    We measured the reaction cross sections of the two-neutron halo nucleus {sup 14}Be with proton and carbon targets at about 41 and 76 MeV/nucleon. Based on a Glauber model calculation, we deduced the matter density distribution of {sup 14}Be in which previously measured interaction cross sections at relativistic energies were also included. An s-wave dominance in {sup 14}Be has been confirmed, although the halo tail of {sup 14}Be is not distributed as much as that of {sup 11}Li. Significant mixing of the p-wave in addition to the s- and d-wave is also suggested.

  15. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    Science.gov (United States)

    Cortright, Randy D [Madison, WI; Dumesic, James A [Verona, WI

    2011-01-18

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  16. Carbon-14 as an hydrology tool

    International Nuclear Information System (INIS)

    Garcia y G, E.; Albarran B, R.

    1977-01-01

    Carbon-14 and tritium results from the action of cosmic radiation and of nuclear tests also. In general carbon-14 resulting from nuclear arms tests is of no interest from the hydrological point-of view, as tritium is a more efficient marker of juvenile waters through having a much shorter disintegration period. Radioactive carbon oxidizes and forms carbon dioxide which mixes with atmospheric carbon dioxide and enters the global carbon cycle. Use of carbon-14 in the dating of subterranean waters is based on the fact that the carbon dioxide found in the soil zone is of biologic origin arising from the respiration and decomposition of plant roots. Therefore it contains carbon-14 taken from the atmosphere by the plants. This carbon dioxide of biogenic origin is dissolved in infiltrating water and is borne along towards the water bearing strata. Its carbon-14 content decrease through radioactive loss and the fractional remainder of the original contents indicates the time which has passed since it left the supply zone in the soil, that is, the time passed since it filtrated the water. (author)

  17. Carbon-14 in neutron-irradiated graphite for graphite-moderated reactors. Joint research

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Kimio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Matsuo, Hideto [Radioactive Waste Management and Nuclear Facility Decommissioning Technology Center, Tokyo (Japan)

    2002-12-01

    The graphite moderated gas cooled reactor operated by the Japan Atomic Power Company was stopped its commercial operation on March 1998, and the decommissioning process has been started. Graphite material is often used as the moderator and the reflector materials in the core of the gas cooled reactor. During the operation, a long life nuclide of {sup 14}C is generated in the graphite by several transmutation reactions. Separation of {sup 14}C isotope and the development of the separation method have been recognized to be critical issues for the decommissioning of the reactor core. To understand the current methodologies for the carbon isotope separation, literature on the subject was surveyed. Also, those on the physical and chemical behavior of {sup 14}C were surveyed. This is because the larger part of the nuclides in the graphite is produced from {sup 14}N by (n,p) reaction, and the location of them in the material tends to be different from those of the other carbon atoms. This report summarizes the result of survey on the open literature about the behavior of {sup 14}C and the separation methods, including the list of the literature on these subjects. (author)

  18. Reaction of uranium oxides with chlorine and carbon or carbon monoxide to prepare uranium chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Haas, P.A.; Lee, D.D.; Mailen, J.C.

    1991-11-01

    The preferred preparation concept of uranium metal for feed to an AVLIS uranium enrichment process requires preparation of uranium tetrachloride (UCI{sub 4}) by reacting uranium oxides (UO{sub 2}/UO{sub 3}) and chlorine (Cl{sub 2}) in a molten chloride salt medium. UO{sub 2} is a very stable metal oxide; thus, the chemical conversion requires both a chlorinating agent and a reducing agent that gives an oxide product which is much more stable than the corresponding chloride. Experimental studies in a quartz reactor of 4-cm ID have demonstrated the practically of some chemical flow sheets. Experimentation has illustrated a sequence of results concerning the chemical flow sheets. Tests with a graphite block at 850{degrees}C demonstrated rapid reactions of Cl{sub 2} and evolution of carbon dioxide (CO{sub 2}) as a product. Use of carbon monoxide (CO) as the reducing agent also gave rapid reactions of Cl{sub 2} and formation of CO{sub 2} at lower temperatures, but the reduction reactions were slower than the chlorinations. Carbon powder in the molten salt melt gave higher rates of reduction and better steady state utilization of Cl{sub 2}. Addition of UO{sub 2} feed while chlorination was in progress greatly improved the operation by avoiding the plugging effects from high UO{sub 2} concentrations and the poor Cl{sub 2} utilizations from low UO{sub 2} concentrations. An UO{sub 3} feed gave undesirable effects while a feed of UO{sub 2}-C spheres was excellent. The UO{sub 2}-C spheres also gave good rates of reaction as a fixed bed without any molten chloride salt. Results with a larger reactor and a bottom condenser for volatilized uranium show collection of condensed uranium chlorides as a loose powder and chlorine utilizations of 95--98% at high feed rates. 14 refs., 7 figs., 14 tabs.

  19. Reactions on carbon anodes in aluminium electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Eidet, Trygve

    1997-12-31

    The consumption of carbon anodes and energy in aluminium electrolysis is higher than what is required theoretically. This thesis studies the most important of the reactions that consume anode materials. These reactions are the electrochemical anode reaction and the airburn and carboxy reactions. The first part of the thesis deals with the kinetics and mechanism of the electrochemical anode reaction using electrochemical impedance spectroscopy. The second part deals with air and carboxy reactivity of carbon anodes and studies the effects of inorganic impurities on the reactivity of carbon anodes in the aluminium industry. Special attention is given to sulphur since its effect on the carbon gasification is not well understood. Sulphur is always present in anodes, and it is expected that the sulphur content of available anode cokes will increase in the future. It has also been suggested that sulphur poisons catalyzing impurities in the anodes. Other impurities that were investigated are iron, nickel and vanadium, which are common impurities in anodes which have been reported to catalyze carbon gasification. 88 refs., 92 figs., 24 tabs.

  20. Carbon-14 labelling of biomolecules induced by 14CO ionized gas

    International Nuclear Information System (INIS)

    Lier, J.E. van; Sanche, L.

    1979-01-01

    Ionized 14 CO gas provides a rapid method for producing 14 C-labelled biomolecules. The apparatus consists of a high vacuum system in which a small amount of 14 CO is ionized by electron impact. The resulting species drift towards a target where they interact with the molecule of interest to produce 14 C-labelled compounds. Since the reaction time is only 2 minutes, the method is particularly promising for producing tracer biomolecules with short-lived 11 C at high specific activities. The applicability of the method to various classes of compounds of biological importance, including steroids, alkaloids, prostaglandins, nucleosides, amino acids and proteins has been studied. All compounds treated gave rise to 14 C addition and degradation products. Furthermore, for some compounds, chromatographic analysis in multiple systems followed by derivatization and crystallization to constant specific activity, indicated that carbon exchange may occur to produce the labelled, but otherwise unaltered substrate in yields of the order of 10-100 mCi/mol. More conclusive proof of radiochemical identity must await production of larger quantities of material and rigorous purification including at least two different chromatographic techniques. (author)

  1. Carbon-14 Bomb-Pulse Dating

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, B A

    2007-12-16

    Atmospheric testing of nuclear weapons during the 1950s and early 1960s doubled the concentration of carbon-14 atmosphere and created a pulse that labeled everything alive in the past 50 years as carbon moved up the food chain. The variation in carbon-14 concentration in time is well-documented and can be used to chronologically date all biological materials since the mid-1950s.

  2. Carbon 14

    International Nuclear Information System (INIS)

    2002-03-01

    Carbon 14 is one of the most abundant radionuclides of natural and artificial origin in the environment. The aim of this conference day organized by the French society of radioprotection (SFRP) was to take stock of our knowledge about this radionuclide (origins, production, measurement, management, effects on health..): state-of-the-art of 14 C metrology; dating use of 14 C; 14 C management and monitoring of the Hague site environment; Electricite de France (EdF) and 14 C; radiological and sanitary impact of 14 C contamination at the Ganagobie site (Haute-Provence, France); metabolism and biological effects of 14 C; 14 C behaviour in the marine environment near Cogema-La Hague plant; distribution of 14 C activities in waters, mud and sediments of the Loire river estuary; dynamical modeling of transfers in the aquatic and terrestrial environment of 14 C released by nuclear power plants in normal operation: human dose calculation using the Calvados model and application to the Loire river; 14 C distribution in continents; modeling of 14 C transfers in the terrestrial environment from atmospheric sources. (J.S.)

  3. Carbon-14 kinetic isotope effects and mechanisms of addition of 2,4-dinitrobenzenesulfenyl chloride to substituted styrenes-1-14C and styrenes-2-14C

    International Nuclear Information System (INIS)

    Kanska, M.; Fry, A.

    1983-01-01

    As the first reported examples of carbon isotope effects in simple electrophilic addition reactions we have measured the carbon-14 kinetic isotope effects in the addition of 2,4-dinitrobenzenesulfenyl chloride to a series of para-substituted α and β-labeled styrenes in acetic acid at 30.1 0 C: for para substituents Cl, H, and CH 3 the k/ 14 K values for α labeling are 1.027, 1.022, and 1.004, and the k/ 14 k values for β labeling are 1.035, 1.032, and 1.037, all +/-approx.0.004. The kinetics of the reaction were measured for the p-CH 3 O,p-CH 3 , unsubstituted, p-Cl, and m-NO 2 styrenes; electron-donating groups strongly accelerate the reaction, and electron-withdrawing groups retard it. The Hammett plot is curved with p + values ranging from about -4.6 at the electron-donating group (EDG) end to about -1.8 at the electron-withdrawing group (EWG) end. Both the isotope effect and kinetic data, and related data from the literature, are interpreted in terms of a changing mechanism, with the activated complexes of the rate-determining steps having much open carbenium ion (ion pair) character for EDG-substituted styrenes and much cyclic thiiranium io (ion par) character for EWG-substituted styrenes. 1 figure, 2 tables

  4. Carbon-14 isotope effects in the addition of 2,4-dinitrobenzenesulfenyl chloride to styrene-1-14C and styrene-2-14C

    International Nuclear Information System (INIS)

    Kanska, M.; Fry, A.

    1982-01-01

    The carbon-isotope effect reported here represents the first step in a general study of the mechanisms of simple electrophilic addition reactions by isotope effect techniques using the successive labeling approach. The addition of 2,4-dinitrobenzenesulfenyl chloride to styrene was chosen as a ''calibration case'' for the cyclic mechanism. The observed isotope effects at /sup α/C and /sup #betta#/C are fully consistent with the cyclic mechanism and probably inconsistent with the open carbenium ion mechanisms. The values of 12 k/ 14 k indicated in this report are averages (and standard deviations) of values for five different fractions of reaction ranging from 20% to 70% with the calculations being made by all four of the Tong and Yankwich equations for each fraction of reaction. Results indicated that there were no trends in the 12 k/ 14 k values as the fraction of reaction varied, and as can be seen by the low standard deviations, there was good agreement among the values calculated by the four equations. These two facts to indicate that the starting materials were of high chemical and radiochemical purity and that the procedures used in the isotope effect experiments were accurate and properly controlled

  5. Synthesis of canrenone and related steroids labelled with tritium, carbon-14, and sulfur-35

    International Nuclear Information System (INIS)

    Markos, C.S.; Dorn, C.R.; Zitzwitz, D.J.

    1988-01-01

    The syntheses of [1- 3 H]canrenone, [1- 3 H]spironolactone, [1- 3 H] potassium canrenoate, [22- 14 C]canrenone, [22- 14 C]spironolactone, [22- 14 C]potassium canrenoate, and [ 35 S]spironolactone are reported. Tritium labelled compounds were obtained by catalytic reduction of a 3-keto-1, 4-diene precursor followed by exchange of enolizable label. Carbon-14 compounds were obtained by reaction of a 17-ethynyl steroid with 14 CO 2 . Sulfur-35 spironolactone was synthesized by the in-situ generation of [ 35 S]thiolacetic acid from [ 35 S]sodium sulfide. (author)

  6. Kinetic study of the reaction of uranium with various carbon-containing gases; Etude cinetique de la reaction sur l'uranium de differents gaz carbones

    Energy Technology Data Exchange (ETDEWEB)

    Feron, G [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1963-09-15

    The kinetic study of the reaction U + CO{sub 2} and U + CO has been performed by a thermogravimetric method on a spherical uranium powder, in temperature ranges respectively from 460 to 690 deg. C and from 570 to 850 deg. C. The reaction with carbon dioxide leads to uranium dioxide. A carbon deposition takes place at the same time. The global reactions is the result of two reactions: U + 2 CO{sub 2} {yields} UO{sub 2} + 2 CO U + CO{sub 2} {yields} UO{sub 2} + C The reaction with carbon monoxide leads to a mixture of dioxide UO{sub 2}, dicarbide UC{sub 2} and free carbon. The main reaction can be written. U + CO {yields} 1/2 UO{sub 2} + 1/2 UC{sub 2} The free carbon results of the disproportionation of the carbon monoxide. A remarkable separation of the two phases UO{sub 2} and UC{sub 2} can be observed. A mechanism accounting for the phenomenon has been proposed. The two reactions U + CO{sub 2} and U + CO begin with a long germination period, after which, the reaction velocity seems to be limited in both cases by the ionic diffusion of oxygen through the uranium dioxide. (author) [French] L'etude cinetique des reactions U sol + CO{sub 2} gaz et U sol + CO gaz a ete effectuee par thermogravirnetrie sur une poudre d'uranium a grains spheriques, les domaines de temperature etudies s'etendant respectivement de 460 a 690 deg. C et de 570 a 850 deg. C. L'action du dioxyde de carbone conduit au dioxyde d'uranium UO{sub 2}; il se produit en meme temps un depot de carbone. La reaction globale resulte des deux reactions: U + 2 CO{sub 2} {yields} UO{sub 2} + 2 CO U + CO{sub 2} {yields} UO{sub 2} + C Le mono-oxyde de carbone conduit a un melange de dioxyde UO{sub 2}, de dicarbure UC{sub 2} et de carbone libre. La reaction principale s'ecrit: U + CO {yields} 1/2 UO{sub 2} + 1/2 UC{sub 2} Le carbone libre provient de la dismutation du mono-oxyde de carbone. On observe une separation remarquable des deux phases UO{sub 2} et UC{sub 2}; un mecanisme rendant compte de ce phenomene a

  7. Syntheses of carbon-14 and sulfur-35 labeled 2-(Morpholinothio)-benzothiazoles and carbon-14 labeled 2-(Cyclohexylaminothio)-benzothiazoles

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, A.; Fukuoka, M.; Adachi, T.; Yamaha, T.

    1986-04-01

    Some vulcanizing accelerators, mercaptobenzothiazole derivatives labeled with carbon-14 or sulfur-35 were prepared. 2-(Morpholinothio)benzothiazole labeled with carbon-14 or sulfur-35 of the sulfhydryl group at position 2 was synthesized by oxidative condensation with sodium hypochlorite from a mixture of morpholine and 2-mercaptobenzothiazole-2-/sup 14/C or 2-mercaptobenzothiazole-2-/sup 35/S. The same method was applicable to the synthesis of 2-(morpholino-U-/sup 14/C-thio) -benzothiazole using morpholine-U-/sup 14/C as starting material. 2-(Cyclohexylaminothio)benzothiazole-2-/sup 14/C was prepared, by oxidation with a mixture of iodine and potassium iodide, from cyclohexylamine and 2-mercapto-benzothiazole-2-/sup 14/C, which was synthesized from carbon-/sup 14/C disulfide and 2-mercaptoaniline in the presence of trace sodium sulfide in dimethylformamide. 2-(Cyclohexyl-U-/sup 14/C-aminothio)benzothiazole was also obtained from cylcohexyl-amine-U-/sup 14/C and 2-mercaptobenzothiazole.

  8. Reaction mechanisms for enhancing carbon dioxide mineral sequestration

    Science.gov (United States)

    Jarvis, Karalee Ann

    Increasing global temperature resulting from the increased release of carbon dioxide into the atmosphere is one of the greatest problems facing society. Nevertheless, coal plants remain the largest source of electrical energy and carbon dioxide gas. For this reason, researchers are searching for methods to reduce carbon dioxide emissions into the atmosphere from the combustion of coal. Mineral sequestration of carbon dioxide reacted in electrolyte solutions at 185°C and 2200 psi with olivine (magnesium silicate) has been shown to produce environmentally benign carbonates. However, to make this method feasible for industrial applications, the reaction rate needs to be increased. Two methods were employed to increase the rate of mineral sequestration: reactant composition and concentration were altered independently in various runs. The products were analyzed with complete combustion for total carbon content. Crystalline phases in the product were analyzed with Debye-Scherrer X-ray powder diffraction. To understand the reaction mechanism, single crystals of San Carlos Olivine were reacted in two solutions: (0.64 M NaHCO3/1 M NaCl) and (5.5 M KHCO3) and analyzed with scanning electron microscopy (SEM), transmission electron microscopy (TEM), electron energy loss spectroscopy (EELS), and fluctuation electron microscopy (FEM) to study the surface morphology, atomic crystalline structure, composition and amorphous structure. From solution chemistry studies, it was found that increasing the activity of the bicarbonate ion increased the conversion rate of carbon dioxide to magnesite. The fastest conversion, 60% conversion in one hour, occurred in a solution of 5.5 M KHCO3. The reaction product particles, magnesium carbonate, significantly increased in both number density and size on the coupon when the bicarbonate ion activity was increased. During some experiments reaction vessel corrosion also altered the mineral sequestration mechanism. Nickel ions from vessel

  9. Quantifying Carbon-14 for Biology Using Cavity Ring-Down Spectroscopy

    OpenAIRE

    McCartt, A. Daniel; Ognibene, Ted J.; Bench, Graham; Turteltaub, Kenneth W.

    2016-01-01

    A cavity ring-down spectroscopy (CRDS) instrument was developed using mature, robust hardware for the measurement of carbon-14 in biological studies. The system was characterized using carbon-14 elevated glucose samples and returned a linear response up to 387 times contemporary carbon-14 concentrations. Carbon-14 free and contemporary carbon-14 samples with varying carbon-13 concentrations were used to assess the method detection limit of approximately one-third contemporary carbon-14 levels...

  10. Carbon-14 measurements and characterization of dissolved organic carbon in ground water

    International Nuclear Information System (INIS)

    Murphy, E.M.

    1987-01-01

    Carbon-14 was measured in the dissolved organic carbon (DOC) in ground water and compared with 14 C analyses of dissolved inorganic carbon (DIC). Two field sites were used for this study; the Stripa mine in central Sweden, and the Milk River Aquifer in southern Alberta, Canada. The Stripa mine consists of a Precambrian granite dominated by fracture flow, while the Milk River Aquifer is a Cretaceous sandstone aquifer characterized by porous flow. At both field sites, 14 C analyses of the DOC provide additional information on the ground-water age. Carbon-14 was measured on both the hydrophobic and hydrophilic organic fractions of the DOC. The organic compounds in the hydrophobic and hydrophilic fractions were also characterized. The DOC may originate from kerogen in the aquifer matrix, from soil organic matter in the recharge zone, of from a combination of these two sources. Carbon-14 analyses, along with characterization of the organics, were used to determine this origin. Carbon-14 analyses of the hydrophobic fraction in the Milk River Aquifer suggest a soil origin, while 14 C analyses of the hydrophilic fraction suggest an origin within the Cretaceous sediments (kerogen) or from the shale in contact with the aquifer

  11. Reaction velocity of sodium hydration in humid air and sodium carbonation in humid carbon dioxide atmosphere. Fundamental study on sodium carbonate process in FBR bulk sodium coolant disposal technology

    International Nuclear Information System (INIS)

    Tadokoro, Yutaka; Yoshida, Eiichi

    1999-11-01

    A sodium carbonate processing method, which changes sodium to sodium carbonate and/or sodium bicarbonate by humid carbon dioxide, has been examined and about to be applied to large test loops dismantling. However, that the basic data regarding the progress of the reaction is insufficient on the other hand, is a present condition. The present report therefore aims at presenting basic data regarding the reaction velocity of sodium hydration in humid air and sodium carbonation in humid carbon dioxide atmosphere, and observing the reaction progress, for the application to large test loops dismantling. The test result is summarized as follows. (1) Although the reaction velocity of sodium varied with sodium specimen sizes and velocity measurement methods, the reaction velocity of sodium hydration was in about 0.16 ∼ 0.34 mmh -1 (0.016 ∼ 0.033g cm -2 h -1 , 6.8x10 -4 ∼ 1.4x10 -3 mol cm -2 h -1 ) and that of sodium carbonation was in about 0.16 ∼ 0.27mmh -1 (0.016 ∼ 0.023g cm -2 h -1 , 6.8x10 -4 ∼ 1.1x10 -3 mol cm -2 h -1 ) (26 ∼ 31degC, RH 100%). (2) The reaction velocity of sodium in carbon dioxide atmosphere was greatly affected by vapor partial pressure (absolutely humidity). And the velocity was estimated in 0.08 ∼ 0.12mmh -1 (0.008 ∼ 0.012g cm -2 h -1 , 3.4x10 -4 ∼ 5.2x10 -4 mol cm -2 h -1 ) in the carbon dioxide atmosphere, whose temperature of 20degC and relative humidity of 80% are assumed real sodium carbonate process condition. (3) By the X-ray diffraction method, NaOH was found in humid air reaction product. Na 2 CO 3 , NaHCO 3 were found in carbon dioxide atmosphere reaction product. It was considered that Sodium changes to NaOH, and subsequently to NaHCO 3 through Na 2 CO 3 . (4) For the application to large test loops dismantling, it is considered possible to change sodium to a target amount of sodium carbonate (or sodium bicarbonate) by setting up gas supply quantity and also processing time appropriately according to the surface area

  12. Synthesis of carbon-14-labeled sodium palmoxirate and its coenzyme A ester

    Energy Technology Data Exchange (ETDEWEB)

    Weaner, L.E.; Hoerr, D.C.

    1986-04-01

    Synthetic procedures for the preparation of carbon-14-labeled sodium palmoxirate (TDGA), labeled either in the carboxyl position or in the tetradecyl hydrocarbon chain, are described. In addition, the synthesis of the coenzyme A ester of TDGA-14C with a specific activity of 51 mCi/mmol is reported. The coenzyme A ester was prepared by formation of the acyl chloride with oxalyl chloride followed by reaction with coenzyme A (CoA) in a borate-buffered tetrahydrofuran solution. Purification methods and analytical and stability data are reported for the compounds.

  13. Fate of gaseous tritium and carbon-14 released from buried low-level radioactive waste

    International Nuclear Information System (INIS)

    Striegl, R.G.

    1988-01-01

    Microbial decomposition, chemical degradation, and volatilization of buried low-level radioactive waste results in the release of gases containing tritium ( 3 H) and carbon-14 ( 14 C) to the surrounding environment. Water vapor, carbon dioxide, and methane that contain 3 H or 14 C are primary products of microbial decomposition of the waste. Depending on the composition of the waste source, chemical degradation and volatilization of waste also may result in the production of a variety of radioactive gases and organic vapors. Movement of the gases in materials that surround waste trenches is affected by physical, geochemical, and biological mechanisms including sorption, gas-water-mineral reactions, isotopic dilution, microbial consumption, and bioaccumulation. These mechanisms either may transfer 3 H and 14 C to solids and infiltrating water or may result in the accumulation of the radionuclides in plant or animal tissue. Gaseous 3 H or 14 C that is not transferred to other forms is ultimately released to the atmosphere

  14. Carbon 14 distribution in irradiated BWR fuel cladding and released carbon 14 after aqueous immersion of 6.5 years

    Energy Technology Data Exchange (ETDEWEB)

    Sakuragi, T. [Radioactive Waste Management Funding and Research Center, Tsukishima 1-15-7, Chuo City, Tokyo, 104-0052 (Japan); Yamashita, Y.; Akagi, M.; Takahashi, R. [TOSHIBA Corporation, Ukishima Cho 4-1, Kawasaki Ward, Kawasaki, 210-0862 (Japan)

    2016-07-01

    Spent fuel cladding which is highly activated and strongly contaminated is expected to be disposed of in an underground repository. A typical activation product in the activated metal waste is carbon 14 ({sup 14}C), which is mainly generated by the {sup 14}N(n,p){sup 14}C reaction and produces a significant exposure dose due to the large inventory, long half-life (5730 years), rapid release rate, and the speciation and consequent migration parameters. In the preliminary Japanese safety case, the release of radionuclides from the metal matrix is regarded as the corrosion-related congruent release, and the cladding oxide layer is regarded as a source of instant release fraction (IRF). In the present work, specific activity of {sup 14}C was measured using an irradiated BWR fuel cladding (Zircaloy-2, average rod burnup of 41.6 GWd/tU) which has an external oxide film having a thickness of 25.3 μm. The {sup 14}C specific activity of the base metal was 1.49*10{sup 4} Bq/g, which in the corresponding burnup is comparable to values in the existing literature, which were obtained from various irradiated claddings. Although the specific activity in oxide was 2.8 times the base metal activity due to the additive generation by the {sup 17}O(n,α){sup 14}C reaction, the {sup 14}C abundance in oxide was less than 10% of total inventory. A static leaching test using the cladding tube was carried out in an air-tight vessel filled with a deoxygenated dilute NaOH solution (pH of 12.5) at room temperature. After 6.5 years, {sup 14}C was found in each leachate fraction of gas phase and dissolved organics and inorganics, the total of which was less than 0.01% of the {sup 14}C inventory of the immersed cladding tube. A simple calculation based on the congruent release with Zircaloy corrosion has suggested that the 96.7% of released {sup 14}C was from the external oxide layer and 3.3% was from the base Zircaloy metal. However, both the {sup 14}C abundance and the low leaching rate

  15. Capture reactions on C-14 in nonstandard big bang nucleosynthesis

    Science.gov (United States)

    Wiescher, Michael; Gorres, Joachim; Thielemann, Friedrich-Karl

    1990-01-01

    Nonstandard big bang nucleosynthesis leads to the production of C-14. The further reaction path depends on the depletion of C-14 by either photon, alpha, or neutron capture reactions. The nucleus C-14 is of particular importance in these scenarios because it forms a bottleneck for the production of heavier nuclei A greater than 14. The reaction rates of all three capture reactions at big bang conditions are discussed, and it is shown that the resulting reaction path, leading to the production of heavier elements, is dominated by the (p, gamma) and (n, gamma) rates, contrary to earlier suggestions.

  16. Synthesis of carbon-13 and carbon-14 labeled paldimycin tri-sodium salt

    International Nuclear Information System (INIS)

    Hsi, R.S.P.; Witz, D.F.; Visser, J.; Stolle, W.T.; Ditto, C.L.

    1989-01-01

    Carbon-14 labeled paldimycin trisodium salt was prepared by addition of N-acetyl-L-cysteine to [ 14 C]paulomycin, the radioactive antibiotic produced by fermentation of Streptomyces paulus in the presence of L-methionine labeled with carbon-14 in the S-methyl group. Carbon-13 nuclear magnetic resonance (NMR) spectra of paulomycin produced when the fermentation was carried out in the presence of L-[S-methyl- 13 C]methionine showed that the isotope incorporation had occurred specifically at the methoxy group of ring C, i.e., the 2-deoxy sugar portion of paulomycin. With sustained slow feed of labeled precursors during the optimum antibiotic production period, carbon-14 isotope yields of up to 17.5% with specific activity of up to 11.4 μCi per milligram of paulomycin, and carbon-13 isotope yields of up to 24% with 17-fold isotope enrichment over natural abundance, were achieved. (author)

  17. Measurement of the inelastic branch of the $^{14}$O(α,p)$^{17}$F reaction Implications for explosive burning in novae and x-ray bursters

    CERN Document Server

    He, J J; Davinson, T; Aliotta, M; Büscher, J; Clement, E; Delahaye, P; Hass, M; Jenkins, D G; Kumar, V; Murphy, A St J; Neyskens, P; Raabe, R; Robinson, A P; Voulot, D; van der Walle, J; Warr, N; Wenander, F

    2009-01-01

    A measurement of the inelastic component of the key astrophysical resonance in the 14O(α,p)17F reaction for burning and breakout from hot carbon-nitrogen-oxygen (CNO) cycles is reported. The inelastic component is found to be comparable to the ground-state branch and will enhance the 14O(α,p)17F reaction rate. The current results for the reaction rate confirm that the 14O(α,p)17F reaction is unlikely to contribute substantially to burning and breakout from the CNO cycles under novae conditions. The reaction can, however, contribute strongly to the breakout from the hot CNO cycles under the more extreme conditions found in x-ray bursters.

  18. The EC CAST project (carbon-14 source term)

    International Nuclear Information System (INIS)

    Williams, S. J.

    2015-01-01

    Carbon-14 is a key radionuclide in the assessment of the safety of underground geological disposal facilities for radioactive wastes. It is possible for carbon-14 to be released from waste packages in a variety of chemical forms, both organic and inorganic, and as dissolved or gaseous species The EC CAST (CArbon-14 Source Term) project aims to develop understanding of the generation and release of carbon-14 from radioactive waste materials under conditions relevant to packaging and disposal. It focuses on the release of carbon-14 from irradiated metals (steels and zirconium alloys), from irradiated graphite and from spent ion-exchange resins. The CAST consortium brings together 33 partners. CAST commenced in October 2013 and this paper describes progress to March 2015. The main activities during this period were reviews of the current status of knowledge, the identification and acquisition of suitable samples and the design of experiments and analytical procedures. (authors)

  19. Carbon-14 measurements in aquifers with methane

    International Nuclear Information System (INIS)

    Barker, J.F.; Fritz, P.; Brown, R.M.

    1979-01-01

    A survey of various groundwater systems indicates that methane is a common trace constituent and occasionally a major carbon species in groundwaters. Thermocatalytic methane had delta 13 Csub(CH 4 )>-45 per mille and microbially produced or biogenic methane had delta 13 Csub(CH 4 ) 13 C values for the inorganic carbon. Thermocatalytic methane had no apparent effect on the inorganic carbon. Because methanogenesis seriously affects the carbon isotope geochemistry of groundwaters, the correction of raw 14 C ages of affected groundwaters must consider these effects. Conceptual models are developed which adjust the 14 C activity of the groundwater for the effects of methanogenesis and for the dilution of carbon present during infiltration by simple dissolution of rock carbonate. These preliminary models are applied to groundwaters from the Alliston sand aquifer where methanogenesis has affected most samples. In this system, methanogenic bacteria using organic matter present in the aquifer matrix as substrate have added inorganic carbon to the groundwater which has initiated further carbonate rock dissolution. These processes have diluted the inorganic carbon 14 C activity. The adjusted groundwater ages can be explained in terms of the complex hydrogeology of this aquifer, but also indicate that these conceptual models must be more rigorously tested to evaluate their appropriateness. (author)

  20. Optical Excitation of Carbon Nanotubes Drives Localized Diazonium Reactions

    Science.gov (United States)

    2016-01-01

    Covalent chemistries have been widely used to modify carbon nanomaterials; however, they typically lack the precision and efficiency required to directly engineer their optical and electronic properties. Here, we show, for the first time, that visible light which is tuned into resonance with carbon nanotubes can be used to drive their functionalization by aryldiazonium salts. The optical excitation accelerates the reaction rate 154-fold (±13) and makes it possible to significantly improve the efficiency of covalent bonding to the sp2 carbon lattice. Control experiments suggest that the reaction is dominated by a localized photothermal effect. This light-driven reaction paves the way for precise nanochemistry that can directly tailor carbon nanomaterials at the optical and electronic levels. PMID:27588432

  1. Substitution reactions of carbon nanotube template

    Science.gov (United States)

    Li, Chi Pui; Chen, Ying; Gerald, John Fitz

    2006-05-01

    Substitution reactions between carbon nanotube (CNT) template and SiO with the formation of carbon rich silicon oxide nanowires (SiO-C-NWs) have been investigated using transmission electron microscopy and x-ray energy dispersive spectroscopy. The reaction was carried out by thermal annealing at 1200°C for 1h of a mixture of silicon monoxide (SiO) and iron (II) phthalocyanine, FeC32N8H16 (FePc) powders. Multiwalled CNTs were produced first via pyrolysis of FePc at a lower temperature (1000°C ). SiO vapors reacted with the CNTs at higher temperatures to produce amorphous SiO-C-NWs with a uniform diameter and a length in tens of micrometers. The special bamboolike structure of the CNTs allows the reaction to start from the external surface of the tubes and transform each CNT into a solid nanowire section by section.

  2. In-phantom dosimetry using the 13C(d,n)14N reaction for BNCT (boron neutron capture therapy)

    International Nuclear Information System (INIS)

    Burlon, Alejandro; Kreiner, Andres J.; White, S.; Blackburn, B.; Gierga, David; Yanch, Jacquelyn C.

    2000-01-01

    The use of the 13 C(d,n) 14 N reaction at E d =1.5 MeV for accelerator-based boron neutron capture therapy is investigated. The 13 C(d,n) 14 N reaction presents the advantages of carbon as a target material and its large cross section. The deuteron beam was produced by a tandem accelerator at MIT's Laboratory for Accelerator Beam Applications. The resulting neutron spectra were evaluated in terms of RBE-dose rates at different depths inside a water-filled brain phantom using a heavy water moderator and lead reflector assembly. All results were simulated using the code MCNP. (author)

  3. Reaction of phosphorus ylides with carbonyl compounds in supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Jeong, Kyung Il; Kim, Hak Do; Shim, Jae Jin; Ra, Choon Sup

    2004-01-01

    The condensation reaction of (benzylene)triphenylphosphoranes with carbonyl compounds in supercritical carbon dioxide was examined. Reactions of (benzylene)phosphoranes (ca. 1 mmol) with several benzaldehydes in a supercritical carbon dioxide (80 .deg. C, 2,000 psi) containing THF entrainer (5%) in a 24 mL reactor proceed smoothly to yield olefination products in fairly good to excellent yields but slower, compared to reactions in a conventional THF solvent. Generally, phosphoranes that are not substituted with a nitro group show more (Z)-selective reactions with aromatic aldehydes under scCO 2 condition than in THF. The reaction of (benzylene)triphenylphosphosphoranes with 4-t-butylcyclohexanone gave the corresponding olefin compounds with a low conversion under both the supercritical carbon dioxide and the organic THF solvent. Our preliminary study showed the Wittig reaction carries out smoothly in supercritical carbon dioxide medium and also a possible tunability of this reaction pathway by adding a entrainer. The results would be useful for devising a novel process for the environmentally friendly Wittig reaction

  4. Carbon-14 in tree rings

    International Nuclear Information System (INIS)

    Cain, W.F.; Suess, H.E.

    1976-01-01

    In order to investigate how reliably the carbon 14 content of tree rings reflects that of atmospheric carbon dioxide, two types of determinations were carried out: (1) carbon 14 determinations in annual rings from the beginning of this century until 1974 and (2) carbon 14 determinations in synchronous wood from the North American bristlecone pine and from European oak trees, dendrochronologically dated to have grown in the third and fourth century B.C. The first series of measurements showed that bomb-produced radiocarbon was incorporated in wood at a time when it was converted from sapwood to heartwood, whenever radiocarbon from bomb testing was present in the atmosphere. The second series showed that wood more than 2000 years old and grown on two different continents at different altitudes had, within the limits of experimental error, the same radiocarbon content. This work and other experimental evidence, obtained in part by other laboratories, show that tree rings reflect the average radiocarbon content of global atmospheric carbon dioxide accurately within several parts per mil. In rare cases, deviations of up to 10 parts per thousand may be possible. This means that a typical single radiocarbon date for wood or charcoal possesses an intrinsic uncertainty (viz., an estimated ''one-sigma error'' in addition to all the other errors) of the order of +-50 years. This intrinsic uncertainty is independent of the absolute age of the sample. More accurate dates can, in principle, be obtained by the so-called method of ''wiggle matching.''

  5. Reaction studies of hot silicon, germanium and carbon atoms

    International Nuclear Information System (INIS)

    Gaspar, P.P.

    1990-01-01

    The goal of this project was to increase the authors understanding of the interplay between the kinetic and electronic energy of free atoms and their chemical reactivity by answering the following questions: (1) what is the chemistry of high-energy carbon silicon and germanium atoms recoiling from nuclear transformations; (2) how do the reactions of recoiling carbon, silicon and germanium atoms take place - what are the operative reaction mechanisms; (3) how does the reactivity of free carbon, silicon and germanium atoms vary with energy and electronic state, and what are the differences in the chemistry of these three isoelectronic atoms? This research program consisted of a coordinated set of experiments capable of achieving these goals by defining the structures, the kinetic and internal energy, and the charge states of the intermediates formed in the gas-phase reactions of recoiling silicon and germanium atoms with silane, germane, and unsaturated organic molecules, and of recoiling carbon atoms with aromatic molecules. The reactions of high energy silicon, germanium, and carbon atoms created by nuclear recoil were studied with substrates chosen so that their products illuminated the mechanism of the recoil reactions. Information about the energy and electronic state of the recoiling atoms at reaction was obtained from the variation in end product yields and the extent of decomposition and rearrangement of primary products (usually reactive intermediates) as a function of total pressure and the concentration of inert moderator molecules that remove kinetic energy from the recoiling atoms and can induce transitions between electronic spin states. 29 refs

  6. Reactions of carbon atoms in pulsed molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Reisler, H. [Univ. of Southern California, Los Angeles (United States)

    1993-12-01

    This research program consists of a broad scope of experiments designed to unravel the chemistry of atomic carbon in its two spin states, P and D, by using well-controlled initial conditions and state-resolved detection of products. Prerequisite to the proposed studies (and the reason why so little is known about carbon atom reactions), is the development of clean sources of carbon atoms. Therefore, in parallel with the studies of its chemistry and reaction dynamics, the authors continuously explore new, state-specific and efficient ways of producing atomic carbon. In the current program, C({sup 3}P) is produced via laser ablation of graphite, and three areas of study are being pursued: (i) exothermic reactions with small inorganic molecules (e.g., O{sub 2}, N{sub 2}O, NO{sub 2}) that can proceed via multiple pathways; (ii) the influence of vibrational and translational energy on endothermic reactions involving H-containing reactants that yield CH products (e.g., H{sub 2}O H{sub 2}CO); (iii) reactions of C({sup 3}P) with free radicals (e.g., HCO, CH{sub 3}O). In addition, the authors plan to develop a source of C({sup 1}D) atoms by exploiting the pyrolysis of diazotetrazole and its salts in the ablation source. Another important goal involves collaboration with theoreticians in order to obtain relevant potential energy surfaces, rationalize the experimental results and predict the roles of translational and vibrational energies.

  7. Heterogeneously Catalysed Chemical Reactions in Carbon Dioxide Medium

    DEFF Research Database (Denmark)

    Musko, Nikolai E.

    In this PhD-study the different areas of chemical engineering, heterogeneous catalysis, supercritical fluids, and phase equilibrium thermodynamics have been brought together for selected reactions. To exploit the beneficial properties of supercritical fluids in heterogeneous catalysis, experimental...... studies of catalytic chemical reactions in dense and supercritical carbon dioxide have been complemented by the theoretical calculations of phase equilibria using advanced thermodynamic models. In the recent years, the use of compressed carbon dioxide as innovative, non-toxic and non-flammable, cheap......, and widely available reaction medium for many practical and industrial applications has drastically increased. Particularly attractive are heterogeneously catalysed chemical reactions. The beneficial use of CO2 is attributed to its unique properties at dense and supercritical states (at temperatures...

  8. Growth and Destruction of PAH Molecules in Reactions with Carbon Atoms

    Energy Technology Data Exchange (ETDEWEB)

    Krasnokutski, Serge A.; Huisken, Friedrich; Jäger, Cornelia; Henning, Thomas [Laboratory Astrophysics Group of the Max Planck Institute for Astronomy at the Friedrich Schiller University Jena, Helmholtzweg 3, D-07743 Jena (Germany)

    2017-02-10

    A very high abundance of atomic carbon in the interstellar medium (ISM), and the high reactivity of these species toward different hydrocarbon molecules including benzene, raise questions regarding the stability of polycyclic aromatic hydrocarbon (PAH) molecules in space. To test the efficiency of destruction of PAH molecules via reactions with atomic carbon, we performed a set of laboratory and computational studies of the reactions of naphthalene, anthracene, and coronene molecules with carbon atoms in the ground state. The reactions were investigated in liquid helium droplets at T = 0.37 K and by quantum chemical computations. Our studies suggest that all small and all large catacondensed PAHs react barrierlessly with atomic carbon, and therefore should be efficiently destroyed by such reactions in a broad temperature range. At the same time, large compact pericondensed PAHs should be more inert toward such a reaction. In addition, taking into account their higher photostability, much higher abundances of pericondensed PAHs should be expected in various astrophysical environments. The barrierless reactions between carbon atoms and small PAHs also suggest that, in the ISM, these reactions could lead to the bottom-up formation of PAH molecules.

  9. Kinetic study of the reaction of uranium with various carbon-containing gases

    International Nuclear Information System (INIS)

    Feron, G.

    1963-09-01

    The kinetic study of the reaction U + CO 2 and U + CO has been performed by a thermogravimetric method on a spherical uranium powder, in temperature ranges respectively from 460 to 690 deg. C and from 570 to 850 deg. C. The reaction with carbon dioxide leads to uranium dioxide. A carbon deposition takes place at the same time. The global reactions is the result of two reactions: U + 2 CO 2 → UO 2 + 2 CO U + CO 2 → UO 2 + C The reaction with carbon monoxide leads to a mixture of dioxide UO 2 , dicarbide UC 2 and free carbon. The main reaction can be written. U + CO → 1/2 UO 2 + 1/2 UC 2 The free carbon results of the disproportionation of the carbon monoxide. A remarkable separation of the two phases UO 2 and UC 2 can be observed. A mechanism accounting for the phenomenon has been proposed. The two reactions U + CO 2 and U + CO begin with a long germination period, after which, the reaction velocity seems to be limited in both cases by the ionic diffusion of oxygen through the uranium dioxide. (author) [fr

  10. Distribution of carbon-14 assimilated by wheat awns

    International Nuclear Information System (INIS)

    Olugbemi, L.B.

    1978-01-01

    The pattern of distribution of carbon assimilated by awns was investigated in two lines of Triticum aestivum. Single awns on basal florets of spikelets in the central part of the ear were dosed with 14 C0 2 . Five days after dosing, 99% of the carbon-14 recovered was in the spikelet bearing the awn. Of the carbon-14 exported from the treated awn 57% went to the grain of the first floret, 1% to the second, 28% to the third and 7% to the fourth. (author)

  11. Study of the reaction 14 C (p,p) 14 C

    International Nuclear Information System (INIS)

    Murillo, G.; Ramirez, J.; Avila, O.; Fernandez, M.; Darden, S.E.; Prior, R.P.; Sen, S.

    1991-04-01

    The study of the elastic scattering of polarized protons in 14 C, it has been very limited. Some angular distributions exists to low energy, as well as measures of excitation functions to several angles for the differential section and the vectorial analyzer power. A detailed study of the elastic scattering of protons by 14 C, it give us experimental information of the excited states in 15 N. The study of these states, is since of considerable interest it is not very easy to obtain a target of 14 C also in a reaction 14 C (p,p) 14 C is possible to obtain information of levels in 15 N to an excitation energy E X >14.95 MeV. (Author)

  12. Measured neutron carbon kerma factors from 14.1 MeV to 18 MeV

    International Nuclear Information System (INIS)

    Deluca, P.M.; Barschall, H.H.; McDonald, J.C.

    1985-01-01

    For A-150 tissue-equivalent plastic, the total neutron kerma is dominated by the hydrogen kerma. Tissue kerma is inferred with reasonable accuracy by normalization to the kerma factor ratio between tissue and A-150 plastic. Because of the close match in the hydrogen abundance in these materials, the principal uncertainty is due to the kerma factors of carbon and oxygen. We have measured carbon kerma factor values of 0.183+-0.015 10 -8 cGy cm 2 and 0.210+-0.016 10 -8 cGy cm 2 at 14.1-MeV and 15-MeV neutron energy, respectively. A preliminary value of 0.297+-0.03 10 -8 cGy cm 2 has been determined at 17.9 MeV. A recent microscopic cross section measurement of the (n,n'3α) reaction in carbon at 14.1-MeV energy gives a kerma factor of 0.184+-0.019 10 -8 cGy cm 2 in agreement with the present result

  13. Reaction of phosphorus ylides with carbonyl compounds in supercritical carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kyung Il; Kim, Hak Do; Shim, Jae Jin; Ra, Choon Sup [Yeungnam Univ., Gyongsan (Korea, Republic of)

    2004-02-15

    The condensation reaction of (benzylene)triphenylphosphoranes with carbonyl compounds in supercritical carbon dioxide was examined. Reactions of (benzylene)phosphoranes (ca. 1 mmol) with several benzaldehydes in a supercritical carbon dioxide (80 .deg. C, 2,000 psi) containing THF entrainer (5%) in a 24 mL reactor proceed smoothly to yield olefination products in fairly good to excellent yields but slower, compared to reactions in a conventional THF solvent. Generally, phosphoranes that are not substituted with a nitro group show more (Z)-selective reactions with aromatic aldehydes under scCO{sub 2} condition than in THF. The reaction of (benzylene)triphenylphosphosphoranes with 4-t-butylcyclohexanone gave the corresponding olefin compounds with a low conversion under both the supercritical carbon dioxide and the organic THF solvent. Our preliminary study showed the Wittig reaction carries out smoothly in supercritical carbon dioxide medium and also a possible tunability of this reaction pathway by adding a entrainer. The results would be useful for devising a novel process for the environmentally friendly Wittig reaction.

  14. Isospin non-conservation in 14N(d,d')14N reaction

    International Nuclear Information System (INIS)

    Aoki, Y.; Sanada, J.; Yagi, K.; Kunori, S.; Higashi, Y.

    1978-01-01

    The deuteron inelastic scattering experiments on 14 N are made at E sub(d) = 10.03, 11.65, 14.82 and 17.88 MeV, laying an emphasis on the isospin-forbidden excitation of the 2.31 MeV (0 + , T = 1) state. In order to clarify the reaction mechanism, we have performed analyses assuming both the direct reaction mechanism and the compound nucleus formation. For the above isospin-forbidden transition, the calculation in the second-order DWBA which assumes the isospin mixing in the intermediate channels, reproduces fairly well the strong energy dependence of the angular distribution and the cross section. For the isospin-allowed transition the simple DWBA calculation gives reasonable agreement with the experiment. The present calculation shows that the observed isospin violation is well accounted for by the direct multi-step reaction mechanism assuming the isospin mixing in the intermediate channels. (author)

  15. Mineral carbonation of gaseous carbon dioxide using a clay-hosted cation exchange reaction.

    Science.gov (United States)

    Kang, Il-Mo; Roh, Ki-Min

    2013-01-01

    The mineral carbonation method is still a challenge in practical application owing to: (1) slow reaction kinetics, (2) high reaction temperature, and (3) continuous mineral consumption. These constraints stem from the mode of supplying alkaline earth metals through mineral acidification and dissolution. Here, we attempt to mineralize gaseous carbon dioxide into calcium carbonate, using a cation exchange reaction of vermiculite (a species of expandable clay minerals). The mineralization is operated by draining NaCI solution through vermiculite powders and continuously dropping into the pool of NaOH solution with CO2 gas injected. The mineralization temperature is regulated here at 293 and 333 K for 15 min. As a result of characterization, using an X-ray powder diffractometer and a scanning electron microscopy, two types of pure CaCO3 polymorphs (vaterite and calcite) are identified as main reaction products. Their abundance and morphology are heavily dependent on the mineralization temperature. Noticeably, spindle-shaped vaterite, which is quite different from a typical vaterite morphology (polycrystalline spherulite), forms predominantly at 333 K (approximately 98 wt%).

  16. Carbon-14 production in nuclear reactors

    International Nuclear Information System (INIS)

    Davis, W. Jr.

    1977-01-01

    The radioactive nuclide 14 C is formed in all nuclear reactors due to absorption of neutrons by carbon, nitrogen, or oxygen. These may be present as components of the fuel, moderator, or structural hardware, or they may be present as impurities. Most of the 14 C formed in the fuels or in the graphite of HTGRs will be converted to a gaseous form at the fuel reprocessing plant, primarily as carbon dioxide; this will be released to the environment unless special equipment is installed to collect it and convert it to a solid for essentially permanent storage. If the 14 C is released as carbon dioxide or in any other chemical form, it will enter the biosphere, be inhaled or ingested as food by nearly all living organisms including man, and will thus contribute to the radiation burden of these organisms. Detailed estimates are presented of the amounts of 14 C formed in LWRs, HTGR, and LMFBR with emphasis on those pathways that are likely to lead to the release of this nuclide, either at the reactor site or at the fuel reprocessing plant. 83 references

  17. Optical excitation of carbon nanotubes drives stoichiometric reaction with diazonium salts

    Science.gov (United States)

    Powell, Lyndsey; Piao, Yanmei; Wang, Yuhuang; YuHuang Wang Research Group Team

    Covalent chemistry is known to lack the precision required to tailor the physical properties of carbon nanostructures. Here we show that, for the first time, light can be used to drive a typically inefficient reaction with single-walled carbon nanotubes in a more stoichiometric fashion. Specifically, our experimental results suggest that light can enhance the reaction rate of diazonium salt with carbon nanotubes by as much as 35-fold, making possible stoichiometric control of the covalent bonding of a functional group to the sp2 carbon lattice. This light-controlled reaction paves the way for the possibility of highly selective and precise chemistry on single-walled carbon nanotubes and other graphitic nanostructures.

  18. Dynamics of carbon 14 in soils: a review

    International Nuclear Information System (INIS)

    Tamponnet, C.

    2004-01-01

    In terrestrial ecosystems, soil is the main interface between atmosphere, hydrosphere, lithosphere and biosphere. Its interactions with carbon cycle are primordial. Information about carbon 14 dynamics in soils is quite dispersed and an up-to-date status is therefore presented in this paper. Carbon 14 dynamics in soils are governed by physical processes (soil structure, soil aggregation, soil erosion) chemical processes (sequestration by soil components either mineral or organic), and soil biological processes (soil microbes, soil fauna, soil biochemistry). The relative importance of such processes varied remarkably among the various biomes (tropical forest, temperate forest, boreal forest, tropical savannah, temperate pastures, deserts, tundra, marshlands, agro ecosystems) encountered in the terrestrial eco-sphere. Moreover, application for a simplified modelling of carbon 14 dynamics in soils is proposed. (author)

  19. Synthesis and solubility measurement in supercritical carbon dioxide of two solid derivatives of 2-methylnaphthalene-1,4-dione (menadione): 2-(Benzylamino)-3-methylnaphthalene-1,4-dione and 3-(phenethylamino)-2-methylnaphthalene-1,4-dione

    International Nuclear Information System (INIS)

    Zacconi, Flavia C.; Nuñez, Olga N.; Cabrera, Adolfo L.; Valenzuela, Loreto M.

    2016-01-01

    Highlights: • Two menadione derivatives were synthesized, purified and characterized. • Solubility of menadione derivatives in SC-CO 2 was measured at T < 333 K, p < 28 MPa. • Thermodynamic consistency of solubility data measured was evaluated. • Solubility data was correlated in terms of temperature and CO 2 density. - Abstract: Synthesis of two solid derivatives of vitamin K 3 (2-methylnaphthalene-1,4-dione or menadione), 2-(benzylamino)-3-methylnaphthalene-1,4-dione and 3-(phenethylamino)-2-methylnaphthalene-1,4-dione was completed using a 1,4 Michael addition reaction at 323 K in an inert atmosphere, with reaction yields of 62% mol·mol −1 and 71% mol·mol −1 , respectively, and a purity grade of 98% mol·mol −1 for each component. Isothermal solubility (mole fraction) of each solid derivative in supercritical carbon dioxide was performed using an analytic-recirculation methodology, with direct determination of the molar composition of the carbon dioxide-rich phase by using high performance liquid chromatography, at temperatures of (313, 323 and 333) K and pressures from (8–28) MPa. Results indicated that the range of measured solubilities were from (59 × 10 −6 to 368 × 10 −6 ) mol·mol −1 for solid 2-(benzylamino)-3-methylnaphthalene-1,4-dione and from (40 × 10 −6 to 205 × 10 −6 ) mol·mol −1 for solid 3-(phenethylamino)-2-methylnaphthalene-1,4-dione. The experimental solubility was validated using three approaches, estimating the combined expanded uncertainty of measurement for each solubility data point, evaluating the thermodynamic consistency of the data utilizing a test based on the Gibbs–Duhem equation, and verifying the self-consistency by correlating the experimental solubility values with a semi-empirical model as a function of temperature, pressure and pure carbon dioxide density.

  20. Reactions of carbonate radical with cobalt(II) aminopolycarboxylates

    International Nuclear Information System (INIS)

    Mandal, P.C.; Bardhan, D.K.; Bhattacharyya, S.N.

    1992-01-01

    Reactions of carbonate (CO 3 - radical) and bicarbonate (HCO 3 radical) radicals generated by photolysis of a carbonate or bicarbonate solution at pH 11.2 and 8.5, respectively, with Co(II) complexes of iminodiacetic acid (IDA) and ethylenediaminetetraacetic acid (EDTA) have been studied. The rate constants for the reactions were in the order of 10 6 -10 7 dm 3 mol -1 s -1 . From the time-resolved spectroscopy of the products formed after reaction of CO 3 - radical or HCO 3 radical, it is observed that CO 3 - radical or HCO 3 radical oxidize the metal center to its higher oxidation state. (author) 26 refs.; 2 figs.; 1 tab

  1. Charged particle reaction studies on /sup 14/C. [Spectroscopic factors

    Energy Technology Data Exchange (ETDEWEB)

    Cecil, F E; Shepard, J R; Anderson, R E; Peterson, R J; Kaczkowski, P [Colorado Univ., Boulder (USA). Nuclear Physics Lab.

    1975-12-22

    The reactions /sup 14/C(p,d), (d,d') and (d,p) have been measured for E/sub p/ = 27 MeV and E/sub d/ = 17 MeV. The (d,d') and (d,p) reactions were studied between theta/sub lab/ = 15/sup 0/ and 85/sup 0/; the (p,d) reactions, between theta/sub lab/ = 5/sup 0/ and 40/sup 0/. The /sup 14/C deformation parameters were deduced from the deuteron inelastic scattering and found to agree with deformations measured in nearby doubly even nuclei. The spectroscopic factors deduced from the (p,d) reaction allowed a /sup 14/C ground-state wave function to be deduced which compares favorably with a theoretically deduced wave function. The (p,d) and (d,p) spectroscopic factors are consistent. The implications of our /sup 14/C ground-state wave function regarding the problem of the /sup 14/C hindered beta decay are discussed.

  2. Application of multi-step direct reaction theory to 14 MeV neutron reaction, 3 (n,. cap alpha. )

    Energy Technology Data Exchange (ETDEWEB)

    Kumabe, I.; Matoba, M.; Fukuda, K. [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering; Ikegami, H.; Muraoka, M [eds.

    1980-01-01

    Multi-step direct-reaction theory proposed by Tamura et al. has been applied to continuous spectra of the 14 MeV (n, ..cap alpha..) reaction with some modifications. Calculated results reproduce well the experimental energy and angular distributions of the 14 MeV (n, ..cap alpha..) reactions.

  3. Cluster correlation effects in 12C+12C and 14N+10B fusion-evaporation reactions

    Directory of Open Access Journals (Sweden)

    Morelli L.

    2015-01-01

    Full Text Available The decay of highly excited states of 24Mg is studied in fusion evaporation events completely detected in charge in the reactions 12C+12C and 14N+10B at 95 and 80 MeV incident energy respectively. The comparison of light charged particles measured spectra with statistical model predictions suggests that the dominant reaction mechanism is compound nucleus (CN formation and decay. However, in both reactions, a discrepancy with statistical expectations is found for α particles detected in coincidence with Carbon, Oxigen and Neon residues. The comparison between the two reactions shows that this discrepancy is only partly explained by an entrance channel effect. Evidence for cluster correlations in excited 24Mg CN is suggested by the comparison between the measured and calculated branching ratios for the channels involving α particles.

  4. Initial reaction between CaO and SO2 under carbonating and non-carbonating conditions

    DEFF Research Database (Denmark)

    Rasmussen, Martin Hagsted; Wedel, Stig; Pedersen, Kim H.

    2015-01-01

    The initial kinetics of the CaO/SO2 reaction have been investigated for reaction times shorter than 1s and in the temperature interval between 450 and 600°C under both carbonating and non-carbonating conditions (0-20 vol% CO2) to clarify how recirculating CaO influences the emission of SO2 from...... showed that the CaO conversion with respect to SO2 declined when the CO2 concentration was increased. Under all conditions, larger specific surface areas of CaO gave higher reaction rates with SO2. Higher temperatures had a positive effect on the reaction between SO2 and CaO under non......-carbonating conditions, but no or even a negative effect under carbonating conditions. The results led to the conclusion that SO2 released from raw meal in the upper stages of the preheater does not to any significant extent react with CaO recirculating in the preheater tower....

  5. Dual labelling of Lobuprofen with tritium and carbon-14

    International Nuclear Information System (INIS)

    Santamaria, J.; Rivera, P.; Esteban, M.; Martin, J.L.; Carretero, J.M.

    1988-01-01

    Dual labelling of Lobuprofen with tritium and carbon-14 was performed. The synthesis between 2-(4-isobutylphenyl)propionic acid (Ibuprofen), randomly labelled with tritium, and 2-[4-(3-chlorophenyl)-1-piperazinyl]ethanol (Cl-Alkanol) labelled with carbon-14 in the piperazine ring was achieved. Prior to this synthesis, the [ 14 C]Cl-Alkanol was obtained using 2-amino-[2- 14 C]ethanol as a precursor. (author)

  6. Carbon-14 studies on the role of oxygen-containing compounds in the reaction mechanism of the Fischer-Tropsch synthesis

    International Nuclear Information System (INIS)

    Aksoy, H.A.

    1975-01-01

    In this work the behaviour of organic oxygen compounds has been studied in the reaction mechanism of Fischer-Tropsch synthesis using the tracer method. As an oxygen carrying tracer materials i-propanole (2- 14 C), acetone (2- 14 C) and ethanole (1- 14 C) have been added to the synthesis gas. The synthesis experiments are performed under standard conditions: The synthesis products are separated in suitable fractions and then studied by gas- and radio-gaschromatography. As a result the C-number distributions of the synthesis products are obtained as a function of concentration (weight %, mol %) and radioactivity (activity %). On this basis the relative molar activities have been calculated for certain compounds and fractions. Adding i-propanole- 14 C a great part of the tracer compound is transformed to acetone- 14 C, however adding acetone- 14 C to the synthesis gas a large amount of i-propanole- 14 C is produced. The main hydrocarbon reaction product from i-propanol and acetone is propane. Besides propane also propene is produced with equal molar radioactivity. This indicates that the formation of adsorbed oxygen compounds, as they may also be produced by chemisorption from alcohols or carbonyle compounds, is the first step in the formation of hydrocarbons by hydrogenolytic separation of oxygen. Comparing the results obtained with ethanole- 14 C and i-propanole- 14 C as a tacer material, for ethane an essentially lower molar activity is obtained when adding ethanole- 14 C compared with propane when adding i-propanole- 14 C. This corresponds with a particularly low desorption probability at the C 2 -hydrocarbon level. (orig./HK) [de

  7. Aligned carbon nanotube with electro-catalytic activity for oxygen reduction reaction

    Science.gov (United States)

    Liu, Di-Jia; Yang, Junbing; Wang, Xiaoping

    2010-08-03

    A catalyst for an electro-chemical oxygen reduction reaction (ORR) of a bundle of longitudinally aligned carbon nanotubes having a catalytically active transition metal incorporated longitudinally in said nanotubes. A method of making an electro-chemical catalyst for an oxygen reduction reaction (ORR) having a bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes, where a substrate is in a first reaction zone, and a combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into the first reaction zone which is maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is then introduced to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes over the substrate with a catalytically active transition metal incorporated throughout the nanotubes.

  8. Measured neutron carbon kerma factors from 14.1 MeV to 18 MeV

    International Nuclear Information System (INIS)

    Deluca, P.M. Jr.; Barschall, H.H.; Haight, R.C.; McDonald, J.C.

    1984-01-01

    For A-150 tissue-equivalent plastic, the total neutron kerma is dominated by the hydrogen kerma. Tissue kerma is inferred with reasonable accuracy by normalization to the kerma factor ratio between tissue and A-150 plastic. Because of the close match in the hydrogen abundance in these materials, the principal uncertainty is due to the kerma factors of carbon and oxygen. We have measured carbon kerma factor values of 0.183 +- 0.015 10 -8 cGy cm 2 and 0.210 +- 0.16 10 -8 cGy cm 2 at 14.1-MeV and 15-MeV neutron energy, respectively. A preliminary value of 0.297 +- 0.03 10 -8 cGy cm 2 has been determined at 17.9 MeV. A recent microscopic cross section measurement of the (n,n'3α) reaction in carbon at 14.1-MeV energy gives a kerma factor of 0.184 +- 0.019 10 8 cGy cm 2 in agreement with the present result. 9 refs., 4 figs., 2 tabs

  9. Synthesis of deleobuvir, a potent hepatitis C virus polymerase inhibitor, and its major metabolites labeled with carbon-13 and carbon-14.

    Science.gov (United States)

    Latli, Bachir; Hrapchak, Matt; Chevliakov, Maxim; Li, Guisheng; Campbell, Scot; Busacca, Carl A; Senanayake, Chris H

    2015-05-30

    Deleobuvir, (2E)-3-(2-{1-[2-(5-bromopyrimidin-2-yl)-3-cyclopentyl-1-methyl-1H-indole-6-carboxamido]cyclobutyl}-1-methyl-1H-benzimidazol-6-yl)prop-2-enoic acid (1), is a non-nucleoside, potent, and selective inhibitor of hepatitis C virus NS5B polymerase. Herein, we describe the detailed synthesis of this compound labeled with carbon-13 and carbon-14. The synthesis of its three major metabolites, namely, the reduced double bond metabolite (2) and the acyl glucuronide derivatives of (1) and (2), is also reported. Aniline-(13) C6 was the starting material to prepare butyl (E)-3-(3-methylamino-4-nitrophenyl-(13) C6 )acrylate [(13) C6 ]-(11) in six steps. This intermediate was then used to obtain [(13) C6 ]-(1) and [(13) C6 ]-(2) in five and four more steps, respectively. For the radioactive synthesis, potassium cyanide-(14) C was used to prepare 1-cylobutylaminoacid [(14) C]-(23) via Buchrer-Bergs reaction. The carbonyl chloride of this acid was then used to access both [(14) C]-(1) and [(14) C]-(2) in four steps. The acyl glucuronide derivatives [(13) C6 ]-(3), [(13) C6 ]-(4) and [(14) C]-(3) were synthesized in three steps from the acids [(13) C6 ]-(1), [(13) C6 ]-(2) and [(14) C]-(1) using known procedures. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Absorption of carbon dioxide and isotope exchange rate of carbon in a reaction system between carbon dioxide and carbamic acid

    International Nuclear Information System (INIS)

    Takeshita, Kenji; Kitamoto, Asashi

    1985-01-01

    The performance of isotope separation of carbon-13 by chemical exchange between carbon dioxide and carbamic acid was studied. The working fluid used in the study was a solution of DNBA, (C 4 H 9 ) 2 NH and n-octane mixture. Factors related to the isotope exchange rate were measured, such as the absorption rate of carbon dioxide into the solution of DNBA and n-octane, the isotope exchange rate and the separation factor in the reaction between CO 2 and carbamic acid. The absorption of CO 2 into the working fluid was the sum of chemical absorption by DNBA and physical absorption by n-octane. The absorption of carbon dioxide into the working fluid was negligible at temperatures over 90 0 C, but increased gradually at lower temperatures. Carbon dioxide was absorbed into DNBA by chemical absorption, and DNBA was converted to carbamic acid by the reaction. The reaction for synthesis and decomposition of carbamic acid was reversible. The separation factor in equilibrium reached a large value at lower temperatures. The isotope exchange rate between gas and liquid was proportional to the product of the concentration of carbamic acid and the concentration of CO 2 by physical absorption. The isotope separation of carbon by chemical exchange reaction is better operated under the conditions of lower temperature and higher pressure. (author)

  11. LDEO Carbon 14 Data from Selected Sea floor Cores

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Carbon-14 data in this file were compiled by W.F. Ruddiman and staff at the Lamont-Doherty Earth Observatory of Columbia University. Data include 974 carbon-14 dates...

  12. Olefination reactions of phosphorus-stabilized carbon nucleophiles.

    Science.gov (United States)

    Gu, Yonghong; Tian, Shi-Kai

    2012-01-01

    A range of phosphorus-stabilized carbon nucleophiles have been employed for alkene synthesis with high chemo-, regio-, and stereoselectivity. The Wittig, Horner-Wadsworth-Emmons, Horner-Wittig, and Evans-Akiba reactions utilize phosphonium-, phosphonate-, phosphine oxide-, and pentacoordinated phosphorane-stabilized carbanions as nucleophiles, respectively, to undergo olefination with aldehydes or ketones, and each of these transformations has its own advantages and limitations. Modifying the structures of these nucleophiles along with optimizing reaction conditions results in the formation of a wide variety of polysubstituted alkenes in a highly stereoselective manner. The olefination of imines with phosphonium ylides has recently emerged as a useful approach to tune the stereoselectivity for alkene synthesis. This review focuses on recent advances in the stereoselective olefination of phosphorus-stabilized carbon nucleophiles.

  13. Carbon-14 geochemistry at the Savannah River Site

    International Nuclear Information System (INIS)

    Roberts, Kimberly A.; Kaplan, Daniel I.

    2013-01-01

    Carbon-14 is among the key radionuclides driving risk at the E-Area Low-Level Waste Disposal Facility on the Savannah River Site (SRS). Much of this calculated risk is believed to be the result of having to make conservative assumptions in risk calculations because of the lack of site-specific data. The original geochemical data package (Kaplan 2006) recommended that performance assessments and composite analyses for the SRS assume that 14 C did not sorbed to sediments or cementitious materials, i.e., that C-14 K d value (solid:liquid concentration ratio) be set to 0 mL/g (Kaplan 2006). This recommendation was based primarily on the fact that no site-specific experimental work was available and the assumption that the interaction of anionic 14 C as CO 2 2- ) with similarly charged sediments or cementitious materials would be minimal. When used in reactive transport equations, the 0 mL/g Kd value results in 14 C not interacting with the solid phase and moving quickly through the porous media at the same rate as water. The objective of this study was to quantify and understand how aqueous 14 C, as dissolved carbonate, sorbs to and desorbs from SRS sediments and cementitious materials. Laboratory studies measuring the sorption of 14 C, added as a carbonate, showed unequivocally that 14 C-carbonate K d values were not equal to 0 mL/g for any of the solid phases tested, but they required several months to come to steady state. After six months of contact, the apparent K d values for a clayey sediment was 3,000 mL/g, for a sandy sediment was 10 mL/g, for a 36-year-old concrete was 30,000 mL/g, and for a reducing grout was 40 mL/g. Furthermore, it was demonstrated that (ad)sorption rates were appreciably faster than desorption rates, indicating that a kinetic sorption model, as opposed to the steady-state K d model, may be a more accurate description of the 14 C-carbonate sorption process. A second study demonstrated that the 14 C-carbonate sorbed very strongly onto the

  14. Invariant mass spectroscopy of {sup 19,17}C and {sup 14}B using proton inelastic and charge-exchange reactions

    Energy Technology Data Exchange (ETDEWEB)

    Satou, Y., E-mail: satou@phya.snu.ac.k [Department of Physics and Astronomy, Seoul National University, Seoul (Korea, Republic of); Nakamura, T. [Department of Physics, Tokyo Institute of Technology, Tokyo (Japan); Fukuda, N. [Institute of Physical and Chemical Research (RIKEN), Saitama (Japan); Sugimoto, T.; Kondo, Y.; Matsui, N.; Hashimoto, Y.; Nakabayashi, T.; Okumura, Y.; Shinohara, M. [Department of Physics, Tokyo Institute of Technology, Tokyo (Japan); Motobayashi, T.; Yanagisawa, Y.; Aoi, N.; Takeuchi, S.; Gomi, T.; Togano, Y. [Institute of Physical and Chemical Research (RIKEN), Saitama (Japan); Kawai, S. [Department of Physics, Rikkyo University, Tokyo (Japan); Sakurai, H. [Institute of Physical and Chemical Research (RIKEN), Saitama (Japan); Ong, H.J.; Onishi, T.K. [Department of Physics, University of Tokyo, Tokyo (Japan)

    2010-03-01

    The neutron-rich carbon isotopes {sup 19,17}C and the boron isotope {sup 14}B have been investigated, respectively, by the proton inelastic and charge-exchange reactions on a liquid hydrogen target at around 70 MeV/nucleon. The invariant mass method in inverse kinematics was employed to map the energy spectrum above the neutron decay threshold of the residual nuclei. New states on carbon isotopes are reported. An experimental capability of extracting beta-decay strengths via forward angle (p,n) cross sections on unstable nuclei is shown.

  15. Kinetic Modeling of the Reaction Rate for Quartz and Carbon Pellet

    Science.gov (United States)

    Li, Fei; Tangstad, Merete

    2018-04-01

    Kinetic modeling of quartz and carbon pellet at temperatures of 1898 K, 1923 K, and 1948 K (1625 °C, 1650 °C, and 1675 °C) was investigated in this study. The carbon materials used were charcoal, coke, coal, and preheated coal. The overall SiC producing reaction can be described by the reaction SiO2 + 3C = SiC + 2CO. In the SiC-producing step, the reaction rate of quartz and carbon pellet can be expressed as {d{ pct}}/dt = ( {1 - 0.40 × X_{fix - C}^{ - 0.86} × FC × {pct}} ) × A × \\exp ( { - E/{{RT}}} ) The carbon factor F C was used to describe the influence of different carbon materials that effect the gas-solid interface reaction. For charcoal, coke, coal, and preheated coal, the F C values were 0.83, 0.80, 0.94, and 0.83, respectively. The pre-exponential factor A values for the preceding four carbon materials were 1.06 × 1016 min-1, 4.21 × 1015 min-1, 3.85 × 109 min-1, and 1.00 × 1025 min-1, respectively. The activation energies E for the SiC-producing step were 570, 563, 336, and 913 kJ/mole for charcoal, coke, coal, and preheated coal pellets, respectively.

  16. Reaction of yttrium polonides with carbon dioxide

    International Nuclear Information System (INIS)

    Abakumov, A.S.; Khokhlov, A.D.; Reznikova, N.F.

    1986-01-01

    It has been proved that heating of yttrium and tantalum in carbon dioxide to 500 and 800 0 C alters the gas phase composition, causing formation of carbon monoxide and reduction of oxygen content. A study of the thermal stability of yttrium polonides in carbon dioxide showed that yttrium sesqui- and monopolonides decompose at 400-430 0 C. The temperature dependence of the vapor pressure of polonium obtained upon decomposition of the referred polonides has been determined in a carbon dioxide environment radiotensometrically. The enthalpy of the process calculated from this dependence is close to the enthalpy of vaporization of elemental polonium in vacuo. The mechanism of the reactions has been suggested

  17. A synthesis of 1,4-thiazine carboxanilide: neighboring group participation in pummerer reaction

    International Nuclear Information System (INIS)

    Hahn, Hoh Gyu; Nam, Kee Dal; Mah, He Duck

    2002-01-01

    For the purpose of development of new agrochemical fungicide of α,β-unsaturated carboxanilide series a synthesis of 4-acetyl-3-methyl-N-phenyl-1,4-thiazine-2-carboxamide (6) is described. Pummerer reaction of sulfoxide 7 obtained by sulfoxidation of dihydro-1,4-thiazine methyl ester 11 gave α-acetoxy dihydro-1,4-thiazine 10a. Under the same reaction conditions, dihydro-1,4-thiazine carboxanilide sulfoxide 14 was converted to acetoxymethyl dihydro-1,4-thiazine 18 through vinylogous Pummerer reaction involving carboxanilide of sulfonium ion through intermediate 15. 1,4-Thiazine carboxanilide 6 was synthesized from the treatment of α-acetoxy dihydro-1,4-thiazine 10a with acid catalyst followed by hydrolysis and then the reaction with aniline

  18. On reaction of titanium polonides with carbon dioxide

    International Nuclear Information System (INIS)

    Abakumov, A.S.; Malyshev, M.L.; Reznikova, N.F.

    1986-01-01

    The reaction between titanium polonides and carbon dioxide has been studied by comparing titanium polonide thermal resistance in vacuum and in carbon dioxide. The investigation has shown that titanium mono- and semipolonides fail at temperatures below 350 deg C. Temperature dependence of polonium vapor pressure prepared at failure of the given polonides is determined by the radiotensiometry in carbon dioxide. Enthalpy calculated for this dependence is close to the enthalpy of elementary polonium evaporation in vacuum

  19. Reactions of carbon radicals generated by 1,5-transposition of reactive centers

    Directory of Open Access Journals (Sweden)

    ZIVORAD CEKOVIC

    2005-03-01

    Full Text Available Radical intermediates can undergo specific reactions, such as intramolecular rearrangements, i.e., the transpositions of radical centers, which are not known in classical ionic organic reactions. 1,5-Transposition of a radical center to a non-activated carbon atom are of great synthetic importance. It can be successfully applied for the introduction of different functional groups (oxygen, nitrogen, sulfur, halogens onto a carbon atom remote from the present functional group. In addition to functionalization of a remote non-activated carbon atom, the formation of new C-C bonds on the d-carbon atom have also been achieved. 1,5-Transposition of the radical centers takes place from alkoxyl, aminyl and carbon radicals to a remote carbon atom. Relocation of the radical centers preferentially involves 1,5-transfer of a hydrogen atom, although migrations of some other groups are known. The reactions of the carbon radical generated by 1,5-relocation of the radical center are presented and their synthetic applications are reviewed.

  20. Concentration of carbon-14 in plants

    International Nuclear Information System (INIS)

    1978-01-01

    The carbon-14 survey program initiated 1960 to gather data on current levels of carbon-14 in environments. Plants essential oil and fermented alcohol were selected as sample materials. The carbon contained in these materials is fixed from atmospheric carbon dioxide by anabolism, so they well reflect the variation of carbon-14 in biosphere. Thymol; Thymol was obtained from the essential oil of Orthodon Japonicium Benth which was cultivated and harvested every year in the experimental field of NIRS and Chiba University. The methylation was carried out to eliminate the strong quenching action of the phenolic group of thymol. Eighteen grams of thymol methyl ether was used as liquid scintillator by adding 0.4% PPO and 0.01% POPOP. Menthol; Menthol was obtained from Mentha arvensis L which was cultivated in the east part of Hokkaido and prepared by Kitami Factory of Federation of Agricultural Cooperative Society of Hokkaido. The chemical conversion of menthol to p-cymene was carried out and used as liquid scintillator as same as above sample. Lemongrass oil; Lemongrass oil was obtained from Cymbopogon citratus Stapf which was cultivated in Izu Experimental Station of Medicinal Plants, National Institute of Hygienic Science located Minami-Izu, Shizuoka Pref. The p-cymene derived from Lemongrass oil was used as liquid scintillator. Alcohol; All sample of fermented alcohol were obtained from the Alcohol Factories of Ministry of Trade and Industry. Raw materials of alcohol were sweet potatos cultivated in several prefectures in Japan ''high test'' molasses and blackstrap molasses imported from several countries of Asia, South America and South Africa, crude alcohol imported from U.S.A., Argentina and Brazil. Mixed solvent of 10 ml sample alcohol and 10 ml toluene or p-xylene containing 0.8% PPO and 0.1% dimethyl POPOP was used as liquid scintillator. (author)

  1. Revision of Fontes & Garnier's model for the initial 14C content of dissolved inorganic carbon used in groundwater dating

    Science.gov (United States)

    Han, Liang-Feng; Plummer, Niel

    2013-01-01

    The widely applied model for groundwater dating using 14C proposed by Fontes and Garnier (F&G) (Fontes and Garnier, 1979) estimates the initial 14C content in waters from carbonate-rock aquifers affected by isotopic exchange. Usually, the model of F&G is applied in one of two ways: (1) using a single 13C fractionation factor of gaseous CO2 with respect to a solid carbonate mineral, εg/s, regardless of whether the carbon isotopic exchange is controlled by soil CO2 in the unsaturated zone, or by solid carbonate mineral in the saturated zone; or (2) using different fractionation factors if the exchange process is dominated by soil CO2 gas as opposed to solid carbonate mineral (typically calcite). An analysis of the F&G model shows an inadequate conceptualization, resulting in underestimation of the initial 14C values (14C0) for groundwater systems that have undergone isotopic exchange. The degree to which the 14C0 is underestimated increases with the extent of isotopic exchange. Examples show that in extreme cases, the error in calculated adjusted initial 14C values can be more than 20% modern carbon (pmc). A model is derived that revises the mass balance method of F&G by using a modified model conceptualization. The derivation yields a “global” model both for carbon isotopic exchange dominated by gaseous CO2 in the unsaturated zone, and for carbon isotopic exchange dominated by solid carbonate mineral in the saturated zone. However, the revised model requires different parameters for exchange dominated by gaseous CO2 as opposed to exchange dominated by solid carbonate minerals. The revised model for exchange dominated by gaseous CO2 is shown to be identical to the model of Mook (Mook, 1976). For groundwater systems where exchange occurs both in the unsaturated zone and saturated zone, the revised model can still be used; however, 14C0 will be slightly underestimated. Finally, in carbonate systems undergoing complex geochemical reactions, such as oxidation of

  2. Study of a method of detection for natural carbon-14 using a liquid scintillator, recent variations in the natural radio-activity due to artificial carbon-14 (1963); Etude d'une methode de detection du carrons 14 naturel, utilisant un scintillateur liquide - variations recentes de l'activite naturelle dues au carbone 14 artificiel (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Leger, C [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-06-15

    Among the various natural isotopes of carbon, a radioactive isotope, carbon-14, is formed by the action of secondary neutrons from cosmic rays on nitrogen in the air. Until 1950, the concentration of this isotope in ordinary carbon underwent weak fluctuations of about 2-3 per cent. The exact measurement of this concentration 6 X 10{sup 12} Ci/gm of carbon, and of its fluctuations, are difficult and in the first part of this report a highly sensitive method is given using a liquid scintillator. Since 1950 this natural activity has shown large fluctuations because of the carbon-14 formed during nuclear explosions, and in the second part, the evolution in France of this specific activity of carbon in the atmosphere and biosphere is examined. In the last part is studied the local increase in carbon activity in the atmosphere around the Saclay site, an increase caused by the carbon-14 given off as C{sup 14}O{sub 2}, by the reactors cooled partially with exterior air. (author) [French] Parmi les differents isotopes naturels du carbone, un isotope radioactif, le carbone 14, est forme par l'action de neutrons secondaires due aux rayons cosmiques sir l'azote de l'air. Jusqu'en 1950, la concentration de cet isotope dans le carbone ordinaire est soumise a des fluctuations de faible amplitude, de l'ordre de 2 a 3 pour cent. Les mesures precises de cette concentration, 6. 10{sup -12} Ci/g de carbone, et de ses fluctuations sont delicates, et dans la premiere partie de ce rapport, on decrit une methode de detection a grande sensibilite utilisant un scintillateur liquide. Depuis 1950, cette activite naturelle subit des fluctuations importantes dues au carbone 14 forme lors des explosions nucleaires, et dans la seconde partie, on examine l'evolution en France de l'activite specifique du carbone de l'atmosphere et ce la biosphere. Dans la derniere partie, on etudie l'accroissement local de l'activite du carbone de l'air aux environs du site de Saclay, accroissement provoque par le

  3. Enhanced interfacial properties of carbon fiber composites via aryl diazonium reaction “on water”

    International Nuclear Information System (INIS)

    Wang, Yuwei; Meng, Linghui; Fan, Liquan; Ma, Lichun; Qi, Meiwei; Yu, Jiali; Huang, Yudong

    2014-01-01

    Highlights: • Carbon fibers are grafted with phenyl amine group via aryl diazonium reaction. • Interfacial shear strength of the carbon fibers increases by 73%. • Tensile strength of the carbon fibers does not decrease distinctly. • Using water as the reaction medium can avoid pollution from organic solvents. • Grafting via aryl diazonium reaction in one step can improve modification efficiency. - Abstract: Polyacrylonitrile-based carbon fibers were functionalized with phenyl amine group via aryl diazonium reaction “on water” to improve their interfacial bonding with resin matrix. Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy were employed to characterize ordered degree, functional groups, chemical states and morphology of carbon fiber surface, respectively. The results showed that phenyl amine groups were grafted on the fiber surface successfully. Mechanical property test results indicated that the aryl diazonium reaction in this paper could improve the interfacial shear strength by 73%, while the tensile strength was down very slightly. Hence aryl diazonium reaction “on water” could be a facile green platform to functionalize carbon fibers for many interesting applications

  4. Enhanced interfacial properties of carbon fiber composites via aryl diazonium reaction “on water”

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuwei [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Meng, Linghui [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Fan, Liquan [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Ma, Lichun; Qi, Meiwei; Yu, Jiali [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Huang, Yudong, E-mail: ydhuang.hit1@yahoo.com.cn [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2014-10-15

    Highlights: • Carbon fibers are grafted with phenyl amine group via aryl diazonium reaction. • Interfacial shear strength of the carbon fibers increases by 73%. • Tensile strength of the carbon fibers does not decrease distinctly. • Using water as the reaction medium can avoid pollution from organic solvents. • Grafting via aryl diazonium reaction in one step can improve modification efficiency. - Abstract: Polyacrylonitrile-based carbon fibers were functionalized with phenyl amine group via aryl diazonium reaction “on water” to improve their interfacial bonding with resin matrix. Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy were employed to characterize ordered degree, functional groups, chemical states and morphology of carbon fiber surface, respectively. The results showed that phenyl amine groups were grafted on the fiber surface successfully. Mechanical property test results indicated that the aryl diazonium reaction in this paper could improve the interfacial shear strength by 73%, while the tensile strength was down very slightly. Hence aryl diazonium reaction “on water” could be a facile green platform to functionalize carbon fibers for many interesting applications.

  5. Carbon-14 Graphitization Chemistry

    Science.gov (United States)

    Miller, James; Collon, Philippe; Laverne, Jay

    2014-09-01

    Accelerator Mass Spectrometry (AMS) is a process that allows for the analysis of mass of certain materials. It is a powerful process because it results in the ability to separate rare isotopes with very low abundances from a large background, which was previously impossible. Another advantage of AMS is that it only requires very small amounts of material for measurements. An important application of this process is radiocarbon dating because the rare 14C isotopes can be separated from the stable 14N background that is 10 to 13 orders of magnitude larger, and only small amounts of the old and fragile organic samples are necessary for measurement. Our group focuses on this radiocarbon dating through AMS. When performing AMS, the sample needs to be loaded into a cathode at the back of an ion source in order to produce a beam from the material to be analyzed. For carbon samples, the material must first be converted into graphite in order to be loaded into the cathode. My role in the group is to convert the organic substances into graphite. In order to graphitize the samples, a sample is first combusted to form carbon dioxide gas and then purified and reduced into the graphite form. After a couple weeks of research and with the help of various Physics professors, I developed a plan and began to construct the setup necessary to perform the graphitization. Once the apparatus is fully completed, the carbon samples will be graphitized and loaded into the AMS machine for analysis.

  6. Carbon budget of a marine phytoplankton-herbivore system with carbon-14 as a tracer

    International Nuclear Information System (INIS)

    Copping, A.E.; Lorenzen, C.J.

    1980-01-01

    Adult female and stage V Calanus pacificus were fed 14 C-labeled phytoplankton in the laboratory in the form of monospecific cultures and natural populations. A carbon budget was constructed by following the 14 C activity and the specific activity, over 48 h, in the phytoplankton, copepod, dissolved organic, dissolved inorganic, and fecal carbon compartments. The average incorporation of carbon into the copepod's body was 45% of the phytoplankton carbon available. Of the phytoplankton carbon, 27% appeared as dissolved organic carbon, 24% as dissolved inorganic carbon, and 3 to 4% in the form of fecal pellets. All of the tracer was recovered at the end of the experiments. The specific activity of the phytoplankton compartment was constant throughout each experiment. The other compartments had initial specific activities of zero, or close to zero, and increased throughout the experiment. In most experiments, the copepod specific activity equalled that of the phytoplankton at the end of 48 h, while the dissolved organic carbon, dissolved inorganic carbon, and fecal specific activities remained well below that of the phytoplankton

  7. Laboratory investigations of the alpha-pinene/ozone gas-phase reaction

    International Nuclear Information System (INIS)

    Benner, C.L.

    1985-01-01

    In order to provide more insight into terpene photooxidation or ozonolysis reaction mechanisms, a radiotracer technique was developed. This technique was applied to an investigation of the 14 C-alpha-pinene/ozone reaction. In the first phase of the research, the carbon distribution at the conclusion of the ozonolysis reaction was determined by separating carbon-14-labelled gaseous products from labelled aerosols, and counting each phase by liquid scintillation methods. The resulting carbon balance was 38% to 60% filtered aerosols, 6% to 20% gas phase compounds, and 11% to 29% products absorbed on the reaction chamber walls. Recoveries of the alpha-pinene carbon-14 ranging from 79% to 97% were achieved using this method. The alpha-pinene concentrations in these experiments were close to ambient (1 part per billion), yet the carbon balance was similar to that observed at much higher concentrations (>1 part per million). In the second phase of the alpha-pinene study, both gas and aerosol products of the ozonolysis reaction were collected on cartridges impregnated with 2,4-dinitrophenylhydrazine, then analyzed by HPLC. In the final experiments, alpha-pinene aerosol was reacted with a silylating agent to improve the detection of organic acids and alcohols. The gas chromatographic/mass spectrometric analysis of the silylated aerosol products showed evidence of dimer/polymer formation occurring in the ozonolysis reaction

  8. Carbon 14 and tritium radioactivity of alcohols

    International Nuclear Information System (INIS)

    Guerain, J.; Tourliere, S.

    1975-01-01

    The method of measuring carbon 14 radioactivity of alcohols has been perfected in order to establish the correct determination of synthetic alcohol added to fermentation alcohol. The specific carbon and tritium activity of alcohol of different origins have been determined for 1973 and 1974. The Suess effect and nuclear fall-out are observed [fr

  9. Selective free radical reactions using supercritical carbon dioxide.

    Science.gov (United States)

    Cormier, Philip J; Clarke, Ryan M; McFadden, Ryan M L; Ghandi, Khashayar

    2014-02-12

    We report herein a means to modify the reactivity of alkenes, and particularly to modify their selectivity toward reactions with nonpolar reactants (e.g., nonpolar free radicals) in supercritical carbon dioxide near the critical point. Rate constants for free radical addition of the light hydrogen isotope muonium to ethylene, vinylidene fluoride, and vinylidene chloride in supercritical carbon dioxide are compared over a range of pressures and temperatures. Near carbon dioxide's critical point, the addition to ethylene exhibits critical speeding up, while the halogenated analogues display critical slowing. This suggests that supercritical carbon dioxide as a solvent may be used to tune alkene chemistry in near-critical conditions.

  10. Study of a method of detection for natural carbon-14 using a liquid scintillator, recent variations in the natural radio-activity due to artificial carbon-14 (1963); Etude d'une methode de detection du carrons 14 naturel, utilisant un scintillateur liquide - variations recentes de l'activite naturelle dues au carbone 14 artificiel (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Leger, C. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-06-15

    Among the various natural isotopes of carbon, a radioactive isotope, carbon-14, is formed by the action of secondary neutrons from cosmic rays on nitrogen in the air. Until 1950, the concentration of this isotope in ordinary carbon underwent weak fluctuations of about 2-3 per cent. The exact measurement of this concentration 6 X 10{sup 12} Ci/gm of carbon, and of its fluctuations, are difficult and in the first part of this report a highly sensitive method is given using a liquid scintillator. Since 1950 this natural activity has shown large fluctuations because of the carbon-14 formed during nuclear explosions, and in the second part, the evolution in France of this specific activity of carbon in the atmosphere and biosphere is examined. In the last part is studied the local increase in carbon activity in the atmosphere around the Saclay site, an increase caused by the carbon-14 given off as C{sup 14}O{sub 2}, by the reactors cooled partially with exterior air. (author) [French] Parmi les differents isotopes naturels du carbone, un isotope radioactif, le carbone 14, est forme par l'action de neutrons secondaires due aux rayons cosmiques sir l'azote de l'air. Jusqu'en 1950, la concentration de cet isotope dans le carbone ordinaire est soumise a des fluctuations de faible amplitude, de l'ordre de 2 a 3 pour cent. Les mesures precises de cette concentration, 6. 10{sup -12} Ci/g de carbone, et de ses fluctuations sont delicates, et dans la premiere partie de ce rapport, on decrit une methode de detection a grande sensibilite utilisant un scintillateur liquide. Depuis 1950, cette activite naturelle subit des fluctuations importantes dues au carbone 14 forme lors des explosions nucleaires, et dans la seconde partie, on examine l'evolution en France de l'activite specifique du carbone de l'atmosphere et ce la biosphere. Dans la derniere partie, on etudie l'accroissement local de l'activite du carbone de l'air aux

  11. The synthesis of the insecticides Aldrin and Dieldrin labelled with carbon-14 at high specific activity; Synthese des insecticides aldrine et dieldrine marques au carbone-14 de haute activite specifique; Sintez insektitsidnogo aldrina i dildrina, mechennykh uglerodom-14 pri vysokoj udel'noj aktivnosti; Sintesis de los insecticidas aldrin y dieldrin de elevada actividad especifica marcados con carbono-14

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Daniel J; Kilner, A Edward [Radiochemical Centre, UKAEA, Amersham, Bucks (United Kingdom)

    1962-03-15

    Aldrin is the trade name given by Shell Chemicals to 1, 2, 3, 4, 10, 10-hexachloro-1, 4, 4a, 5, 8, 8a-hexahydro-exo-1, 4-endo-5, 8-dimethanonapthalene. Acetylene-1, 2-C{sup 14} is converted successively to tetrachloroethane and trichloroethylene, and this is condensed with carbon tetrachloride by the Prins reaction in the presence of aluminium chloride to octachlorocyclopentene. Dechlorination gives hexachlorocyclopentadiene which undergoes a Diels-Alder addition to bicyclo(2, 2, 1) hepta-2,5-diene to give aldrin-C{sup 14} in 12% yield from barium carbonate. Oxidation of Aldrin gives the 6,7 epoxide, Dieldrin, in 87% yield. The paper includes an account of the separation of octachlorocyclopentene from the crude product of the Prins reaction by gas-liquid chromatography and of the separation of Aldrin and Dieldrin on a small preparative scale by reversed-phase paper chromatography. (author) [French] Aldrine est la denomination commerciale par laquelle la Shell Chemicals designe l'hexachloro-1, 2, 3, 4, 10, 10-hexahydro-1, 4, 4a, 5, 8, 8a-exo-endo-1,4- dimethano-5, 8-naphtalene. L'acetylene-1,2-C{sup 14} est successivement transforme en terachloroethane et en trichloroethylene, lequel se condense avec le tetrachlorure de carbone, par la reaction de Prins, en presence de chlorure d'aluminium, pour donner de l'octachlorocyclopentene. La dechloruration fournit de l'hexachlorocyclopentadiene, lequel, par une synthese de Diels-Alder, se transforme en bicyclohepta(2, 2, 1)-diene-2, 5 pour donner de l'aldrine-C{sup 14}, avec un rendement de 12% par rapport au carbonate de baryum. L'oxydation de l'aldrine donne l'epoxyde-6 7-(dieldrine), avec un rendement de 87%. Les auteurs decrivent, en outre, la separation de l'octachlorocyclopentene par chromatographie gaz-liquide, a partir du produit brut de la reaction de Prins, ainsi que la separation de l'aldrine et de la dieldrine, en petite quantite, par chromatographie sur papier a phase renversee. (author) [Spanish] Aldrin es el

  12. Production of carbon-14 and preparation of some key precursors for labeling organic molecules

    International Nuclear Information System (INIS)

    Moriya, T.; Motoishi, S.

    1992-01-01

    Production of carbon-14 on 50 GBq scale has been performed by neutron irradiation of aluminium nitride target in the JMTR. This nuclide is separated in carbon dioxide form by combustion of the irradiated target at 1100degC with oxygen. The [ 14 C] carbon dioxide liberated thus is trapped in caustic solution and finally recovered as [ 14 C] barium carbonate. Some precursors useful for incorporating carbon-14 into a given organic molecule have been prepared. Precursors such as [1- 14 C] sodium acetate, [ 14 C] methanol and [ 14 C] potassium cyanide are prepared by rather conventional methods involving carbonation of methyl magnesium iodine, reduction of carbon dioxide with lithium aluminium hydride and reduction of carbonate with metallic potassium in the presence of ammonium salt, respectively. A catalytic polymerization of acetylene is used to prepare benzene. (author)

  13. Carbon-14 dating of groundwater under Christchurch, 1976 samples

    International Nuclear Information System (INIS)

    Stewart, M.K.; Brenninkmeijer, C.A.M.; Brown, L.J.

    1986-06-01

    Four samples of groundwater from deep aquifers under Christchurch have been analysed for carbon-14, tritium, oxygen-18 and chemical contents. Interpretation of the carbon-14 results requires two steps, (1) correction of the measured 14 C values for input of dead ( 14 C-free) carbon underground (indicating that the measured values of 80 PMC* should be increased to about 120 PMC), and (2) determination of water residence times for given flow models of the groundwater system. Interpretation of tritium results involves step 2 only. Three models are considered, of which the third is considered most appropriate to Christchurch. In this model, the 14 C and T results indicate that a small proportion of young water (post-1954) mixes with a larger proportion of older water (probably at least several hundred years). The oxygen-18 content indicates that recharge is mainly from the Waimakariri River and possibly from rainfall and streams near the foothills of the Canterbury Plains. Other aspect of the groundwater flow under Christchurch are discussed

  14. High-Throughput Screening of the Asymmetric Decarboxylative Alkylation Reaction of Enolate-Stabilized Enol Carbonates

    KAUST Repository

    Stoltz, Brian

    2010-06-14

    The use of high-throughput screening allowed for the optimization of reaction conditions for the palladium-catalyzed asymmetric decarboxylative alkylation reaction of enolate-stabilized enol carbonates. Changing to a non-polar reaction solvent and to an electron-deficient PHOX derivative as ligand from our standard reaction conditions improved the enantioselectivity for the alkylation of a ketal-protected,1,3-diketone-derived enol carbonate from 28% ee to 84% ee. Similar improvements in enantioselectivity were seen for a β-keto-ester derived- and an α-phenyl cyclohexanone-derived enol carbonate.

  15. High-Throughput Screening of the Asymmetric Decarboxylative Alkylation Reaction of Enolate-Stabilized Enol Carbonates

    KAUST Repository

    Stoltz, Brian; McDougal, Nolan; Virgil, Scott

    2010-01-01

    The use of high-throughput screening allowed for the optimization of reaction conditions for the palladium-catalyzed asymmetric decarboxylative alkylation reaction of enolate-stabilized enol carbonates. Changing to a non-polar reaction solvent and to an electron-deficient PHOX derivative as ligand from our standard reaction conditions improved the enantioselectivity for the alkylation of a ketal-protected,1,3-diketone-derived enol carbonate from 28% ee to 84% ee. Similar improvements in enantioselectivity were seen for a β-keto-ester derived- and an α-phenyl cyclohexanone-derived enol carbonate.

  16. Preparation of 14C-labelled poly(l-menthyl isopropenyl carbonates)

    International Nuclear Information System (INIS)

    Comes, R.A.; Grubbs, H.J.

    1981-01-01

    The synthesis of 14 C-labelled poly(l-menthyl isopropenyl carbonate) is described. Experimental conditions are included for incorporation of 14 C into each of the carbon atoms in the molecule. High pressure liquid chromatography conditions are given for separation and purification of the labelled intermediates. (author)

  17. Structure of 14C and 14B from the C,1514(d ,3He)B,1413 reactions

    Science.gov (United States)

    Bedoor, S.; Wuosmaa, A. H.; Albers, M.; Alcorta, M.; Almaraz-Calderon, Sergio; Back, B. B.; Bertone, P. F.; Deibel, C. M.; Hoffman, C. R.; Lighthall, J. C.; Marley, S. T.; Mcneel, D. G.; Pardo, R. C.; Rehm, K. E.; Schiffer, J. P.; Shetty, D. V.

    2016-04-01

    We have studied the C,1514(d ,3He)B,1413 proton-removing reactions in inverse kinematics. The (d ,3He ) reaction probes the proton occupation of the target ground state, and also provides spectroscopic information about the final states in B,1413. The experiments were performed using C,1514 beams from the ATLAS accelerator at Argonne National Laboratory. The reaction products were analyzed with the HELIOS device. Angular distributions were obtained for transitions from both reactions. The 14C-beam data reveal transitions to excited states in 13B that suggest configurations with protons outside the π (0 p3 /2) orbital, and some possibility of proton cross-shell 0 p -1 s 0 d excitations, in the 14C ground state. The 15C-beam data confirm the existence of a broad 2- excited state in 14B. The experimental data are compared to the results of shell-model calculations.

  18. Insights into the importance of oxygen functional groups in carbon reactions with oxygen containing gases

    International Nuclear Information System (INIS)

    John Zhu, Max Lu

    2005-01-01

    The role of pore structure of carbon in carbon-related adsorptions and reactions has been extensively investigated. However the studies on the role of surface chemistry of carbon are limited. In this paper, we present the importance of oxygen functional groups in carbon reactions with oxygen-containing gases. It is found that there is a good correlation between the electronic structures and reactivities of carbon edge sites. Zigzag sites are more active in oxygen adsorption because of the unpaired electrons and armchair sites are less active in oxygen adsorption due to the triple character. However, the desorption of semi-quinone oxygen from zigzag sites needs a bond energy ca. 30% higher than that of o-quinone oxygen from armchair edge sites. CO 2 and H 2 O adsorb on carbon surface much less favorably than O 2 . H 2 O is first physically adsorbed on the virgin graphite surface followed by chemisorption through oxygen atom approaching the carbon edge site and the movements of two hydrogen atoms to produce H 2 . The adsorption mechanism of H 2 O is different from that for CO 2 , but the final result is quite similar, i.e. producing only semi-quinone oxygen. Based upon the above studies, a new generalized mechanism, as shown in Fig. 1, is developed and can account for all the important kinetic phenomena of carbon-gas reactions. The key point is that in CO 2 /H 2 O-carbon reaction only semi-quinone formed; while, in O 2 -carbon reaction, semi-quinone, o-quinone (at lower pressure), and off-plane epoxy oxygen (at relatively higher pressure) can be formed. This is the main reason for the different reaction kinetics of O 2 -carbon reaction and CO 2 /H 2 O-carbon reactions as observed experimentally. The oxygen functional groups of carbon can be characterized by XPS, PZC (point of zero charge), IEP (isoelectric point) and TPD (temperature-programmed desorption), which were used in our previous studies. We treated the carbon surface with different acids, finding that HNO 3

  19. Environmental release of carbon-14 gas from a hypothetical nuclear waste repository

    International Nuclear Information System (INIS)

    Lehto, M.A.; Merrell, G.B.

    1994-01-01

    Radioisotopes may form gases in a spent nuclear fuel waste package due to elevated temperatures or degradation of the fuel rods. Radioactive carbon-14, as gaseous carbon dioxide, is one of the gaseous radioisotopes of concern at an underground disposal facility for spent nuclear fuel and high-level radioactive waste. Carbon-14 dioxide may accumulate inside an intact waste container. Upon breach of the container, a potentially large pulse of carbon-14 dioxide gas may be released to the surrounding environment, followed by a lower, long-term continuous release. If the waste were disposed of in an unsaturated geologic environment, the carbon-14 gas would begin to move through the unsaturated zone to the accessible environment. This study investigates the transport of radioactive carbon-14 gas in geologic porous media using a one-dimensional analytical solution. Spent nuclear fuel emplaced in a deep geologic repository located at a generic unsaturated tuff site is analyzed. The source term for the carbon-14 gas and geologic parameters was obtained from previously published materials. The one-dimensional analytical solution includes diffusion, advection, radionuclide retardation, and radioactive decay terms. Two hypothetical sites are analyzed. One is dominated by advective transport, and the other is dominated by diffusive transport. The dominant transport mechanism at an actual site depends on the site characteristics. Results from the simulations include carbon-14 dioxide travel times to the accessible environment and the total release to the environment over a 10,000-year period. The results are compared to regulatory criteria

  20. Determination of carbon-14 environmental samples by mixing 14CO2 with a liquid scintillator

    International Nuclear Information System (INIS)

    Garcia Sanz, M.R.; Gomez, V.; Heras, M.C.; Beltran, M.A.

    1990-01-01

    A method for the determination of Carbon-14 ( 14 CO 2 ) in environmental samples has been developed. The method use the direct absorption of the carbon dioxide into Carbosorb, followed with incorporation of the mixture (Carbosorb-CO 2 ) to the liquid scintillator. The results obtained to apply this method and the benzene synthesis, usual in our laboratory, are discused and compared. The method of collection of atmospheric samples is also described. (Author)

  1. Synthesis of carbon-14 labeled vigabatrin. [Antieplileptic

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, A.J.; Wagner, E.R. (Marion Merrell Dow Inc, Indianapolis, IN (United States))

    1993-01-01

    Carbon-14 labeled vigabatrin was synthesized in 5 steps from 5-hydroxymethyl-2-pyrrolidone tosylate and NaCN-[[sup 14]C]. A key step involved reduction of the resulting nitrile in the presence of excess dimethylamine to give the dimethylamino-ethyl 2-pyrrolidone derivative in one step. This afforded an overall radiochemical yield of 22% and radiochemical purity greater than 98%. (Author).

  2. The preparation of glucose uniformly labelled with carbon-14

    International Nuclear Information System (INIS)

    Garcia Pineda, M.D.; Suarez Contreras, C.; Rodrigo Gonzalez, M.E.

    1978-01-01

    The plant, (Zea mais, L) and culture conditions for an optimum production of glucose has been chosen. To achieve the labelling of glucose, photosynthesis and carboxylation are carried on, under an artificial atmosphere of 14CO 2 produced from 14 C -barium carbonate. Following photosynthesis the sugars are extracted, and then the extract purified by several methods. The purified glucose is finally, degraded and the specific radioactivity is determined in each of its carbon atoms. (Author) 37 refs

  3. Gold-Catalyzed Cyclization of Furan-Ynes bearing a Propargyl Carbonate Group: Intramolecular Diels-Alder Reaction with In Situ Generated Allenes.

    Science.gov (United States)

    Sun, Ning; Xie, Xin; Chen, Haoyi; Liu, Yuanhong

    2016-09-26

    Gold-catalyzed cyclization of various furan-ynes with a propargyl carbonate or ester moiety results in the formation of a series of polycyclic aromatic ring systems. The reactions can be rationalized through a tandem gold-catalyzed 3,3-rearrangement of the propargyl carboxylate moiety in furan-yne substrates to form an allenic intermediate, which is followed by an intramolecular Diels-Alder reaction of furan and subsequent ring-opening of the oxa-bridged cycloadduct. It was found that the steric and electronic properties of phosphine ligands on the gold catalyst had a significant impact on the reaction outcome. In the case of 1,5-furan-yne, the cleavage of the oxa-bridge in the cycloadduct with concomitant 1,2-migration of the R(1) group occurs to furnish anthracen-1(2H)-ones bearing a quaternary carbon center. For 1,4-furan-yne, a facile aromatization of the cycloadduct takes place to give 9-oxygenated anthracene derivatives. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Carbon-14 labeling of phytoplankton carbon and chlorophyll a carbon: determination of specific growth rates

    International Nuclear Information System (INIS)

    Welschmeyer, N.A.; Lorenzen, C.J.

    1984-01-01

    The pattern of photosynthetic 14 C labeling over time is described for phytoplankton. The carbon-specific growth rate (d -1 ) is defined explicitly by changes in the specific activity (dpm μg -1 C) of the algae. For Skeletonema costatum, growing in axenic batch culture, the specific activities of both total cellular carbon and chlorophyll carbon increase at equal rates and the change in specific activity with time follows the predicted pattern. The specific activity of 14 C-labeled chlorophyll a was used to estimate phytoplankton growth rates and C:Chl ratios of field samples in Dabob Bay (Puget Sound), Washington. Growth rates decreased with depth and C:Chl ratios were higher for samples incubated under high light intensity. In several instances the C:Chl ratio increased from the beginning to the end of the incubation; this trend was most conspicuous near surface light intensities and for days of high total incident radiation. On these occasions, Chl a was actively 14 C labeled, yet little (or even negative) change was noted in the concentration of Chl a. These results suggest that some process (or processes) of chlorophyll degradation must be active at the same time that chlorophyll is being synthesized

  5. Monitoring and removal of gaseous carbon-14 species

    International Nuclear Information System (INIS)

    Kabat, M.J.

    1979-01-01

    A simple and efficient method was developed for the monitoring of low level carbon-14 in nuclear power station areas and gaseous effluent. Gaseous carbon compounds (hydrocarbons and CO) are catalytically oxidized to CO 2 , which is then absorbed on solid Ca(OH) 2 at elevated temperatures. The 14 C collected is quantitatively liberated by thermal decomposition of CaCO 3 as CO 2 , which is either measured directly by flow-through detectors or absorbed in alkali hydroxide followed by liquid scintillation counting. The method can also be used for the removal of gaseous 14 C. The Ca 14 CO 3 can be immobilized in concrete for long term disposal. Ca(OH) 2 is an inexpensive absorber. It is selective for CO 2 and has high capacity and efficiency for its absorption and retention. A theoretical evaluation of thee optium conditions for CO 2 absorption and liberation is discussed and experimental investigations are described. There is good agreement between theoretical predictions and experimental findings

  6. Synthesis of carbon-14 analogue of 1,5 diaryl-5-[14C]-1,2,3-triazoles

    International Nuclear Information System (INIS)

    Matloubi, Hojatollah; Shafiee, Abbas; Saemian, Nader; Shirvani, Gholamhossein; Daha, Fariba Johari

    2004-01-01

    Two 1,2,3-triazole anticonvulsants, 1-(4-methylsulfone-phenyl)-5-(4-methyl-phenyl)-1,2,3-triazole and 1-(4-methylsulfone-phenyl)-5-phenyl-1,2,3-triazole, both labeled with carbon-14 in the 5-position were prepared from para-tolunitrile-[cyano- 14 C] and benzonitrile-[cyano- 14 C], respectively

  7. kinetics of the coupled gas-iron reactions involving silicon and carbon

    African Journals Online (AJOL)

    user

    1985-09-01

    Sep 1, 1985 ... out for the system involving liquid iron containing carbon and silicon and a gas ... in content with liquid iron at. 15600C, the ... of carbon monoxide bubbles at the. Slag - metal ..... equilibrium strongly make chemical reactions.

  8. 14C Behaviour in PWR coolant

    International Nuclear Information System (INIS)

    Sims, Howard; Dickinson Shirley; Garbett, Keith

    2012-09-01

    Although 14 C is produced in relatively small amounts in PWR coolant, it is important to know its fate, for example whether it is released by gaseous discharge, removed by absorption on ion exchange (IX) resins or deposited on the fuel pin surfaces. 14 C can exist in a range of possible chemical forms: inorganic carbon compounds (probably mainly CO 2 ), elemental carbon, and organic compounds such as hydrocarbons. This paper presents results from a preliminary survey of the possible reactions of 14 C in PWR coolant. The main conclusions of the study are: - A combination of thermal and radiolytic reactions controls the chemistry of 14 C in reactor coolant. A simple chemical kinetic model predicts that CH 3 OH would be the initial product from radiolytic reactions of 14 C following its formation from 17 O. CH 3 OH is predicted to arise as a result of reactions of OH . with CH 4 and CH 3 , and it persists because there is no known radiation chemical reduction mechanism. - Thermodynamic considerations show that CH 3 OH can be thermally reduced to CH 4 in PWR conditions, although formation of CO 2 from small organics is the most thermodynamically favourable outcome. Such reactions could be catalysed on active nickel surfaces in the primary circuit. - Limited plant data would suggest that CH 4 is the dominant form in PWR and CO 2 in BWR. This implies that radiation chemistry may be important in determining the speciation. - Addition of acetate does not affect the amount of 14 C formed, but the addition of large amounts of stable carbon would lead to a large range of additional products, some of which would be expected to deposit on fuel pin surfaces as high molecular weight hydrocarbons. However, the subsequent thermal decomposition reactions of these products are not known. - Acetate addition may represent a small input of 12 C compared with organic material released from CVCS resins, although the importance of this may depend on whether that is predominantly soluble

  9. How does the carbon fusion reaction happen in stars?

    International Nuclear Information System (INIS)

    Tang, X.; Bucher, B.; Fang, X.; Notani, M.; Tan, W.P.; Mooney, P.; Li, Y.; Esbensen, H.; Jiang, C.L.; Rehm, K.E.; Lin, C.J; Brown, E.

    2012-01-01

    The 12 C + 12 C fusion reaction is one of the most important reactions in the stellar evolution. Due to its complicated reaction mechanism, there is great uncertainty in the reaction rate which limits our understanding of various stellar objects, such as massive stellar evolution, explosions on neutron stars, and supernovae from accreting white dwarf stars. In this paper, I will review the challenges in the study of carbon burning. I will also report recent results from our studies: 1) an upper limit for the 12 C + 12 C fusion cross sections, 2) measurement of the 12 C + 12 C at deep sub-barrier energies, and 3) a new measurement of the 12 C( 12 C, n) reaction. The outlook for the studies of the astrophysical heavy-ion fusion reactions will also be presented

  10. A Small-Scale Capsule Test for Investigating the Sodium-Carbon Dioxide Reaction

    International Nuclear Information System (INIS)

    Kim, B. H.; Choi, J. H.; Suk, S. D.; Kim, J. M.; Choi, B. H.; Kim, B. H.; Hahn, D. H.

    2007-01-01

    The utilization of modular sodium-to-supercritical CO 2 heat exchangers may yield significant improvements for an overall plant energy utilization. The consequences of a failure of the sodium CO 2 heat exchanger boundary, however, would involve the blowdown and intermixing of high-pressure CO 2 in a sodium pool, causing a pressurization which may threaten the structural integrity of the heat exchanger. Available data seems to indicate that the chemical reaction between sodium and CO 2 would likely produce sodium oxides, sodium carbonate, carbon and carbon monoxide. Information on the kinetics of the sodium-CO 2 reaction is virtually non-existent

  11. Determination of Carbon-14 in environmental samples by mixing 14CO2 with a liquid scintillator

    International Nuclear Information System (INIS)

    Garcia, M. R.; Gomez, V.; Heras, M. C.; Beltran, M. A.

    1990-01-01

    A method for the determination of Carbon-14 (14CO2) in environmental samples has been developed. The method use the direct absorption of the carbon dioxide into Carbosorb, followed with incorporation of the mixture (Carbosorb-CO2) to the liquid scintillator. The results obtained to apply this method and the benzene synthesis, usual in our laboratory, are discussed and compared. The method of collection of atmospheric samples is also described. (Author) 10 refs

  12. Nuclear reactions with 11C and 14O radioactive ion beams

    International Nuclear Information System (INIS)

    Guo, Fanqing

    2004-01-01

    Radioactive ion beams (RIBs) have been shown to be a useful tool for studying proton-rich nuclides near and beyond the proton dripline and for evaluating nuclear models. To take full advantage of RIBs, Elastic Resonance Scattering in Inverse Kinematics with Thick Targets (ERSIKTT), has proven to be a reliable experimental tool for investigations of proton unbound nuclei. Following several years of effort, Berkeley Experiments with Accelerated Radioactive Species (BEARS), a RIBs capability, has been developed at the Lawrence Berkeley National Laboratory's 88-Inch Cyclotron. The current BEARS provides two RIBs: a 11C beam of up to 2x108 pps intensity on target and an 14O beam of up to 3x104 pps intensity. While the development of the 11C beam has been relatively easy, a number of challenges had to be overcome to obtain the 14O beam. The excellent 11C beam has been used to investigate several reactions. The first was the 197Au(11C,xn)208-xnAt reaction, which was used to measure excitation functions for the 4n to 8n exit channels. The measured cross sections were generally predicted quite well using the fusion-evaporation code HIVAP. Possible errors in the branching ratios of ?? decays from At isotopes as well as the presence of incomplete fusion reactions probably contribute to specific overpredictions. 15F has been investigated by the p(14O,p)14O reaction with the ERSIKTT technology. Several 14O+p runs have been performed. Excellent energy calibration was obtained using resonances from the p(14N,p)14N reaction in inverse kinematics, and comparing the results to those obtained earlier with normal kinematics. The differences between 14N+p and 14O+p in the stopping power function have been evaluated for better energy calibration. After careful calibration, the energy levels of 15F were fitted with an R-matrix calculation. Spins and parities were assigned to the two observed resonances. This new measurement of the 15F ground state supports the disappearance of the Z = 8

  13. Study of the 17O(n,α)14C reaction: Extension of the Trojan Horse Method to neutron induced reactions

    International Nuclear Information System (INIS)

    Guardo, G. L.; Lamia, L.; Spitaleri, C.; Cherubini, S.; Rapisarda, G. G.; Sergi, M. L.; Gulino, M.; Tang, X. D.; Bucher, B.; Couder, M.; Davies, P.; Boer, R. de; Fang, X.; Lamm, L.; Ma, C.; Notani, M.; OBrien, S.; Roberson, D.; Tan, W.; Wiescher, M.

    2014-01-01

    The experimental study of the 17 O(n,α) 14 C reaction has been performed in the energy range 0-350 keV. This reaction could play an important role in explaining heavy elements (s-process) nucleosynthesis in various astrophysical scenario. To overcome the practical problems arising from the neutrons production, a new application of the Trojan Horse Method has been recently suggested. In more details, the 17 O(n,α) 14 C reaction has been studied using the quasi-free 2 H( 17 O,α 14 C) 1 H reaction, induced at an energy of 43.5 MeV. The measurement allows one to investigate the ℓ=3, 75 keV resonance (E*=8.125 MeV, J π =5 − ), absent in the available direct measurements because of centrifugal suppression effects

  14. Table of nuclear reactions and subsequent radioactive dacays induced by 14-MeV neutrons

    International Nuclear Information System (INIS)

    Tsukada, Kineo

    1977-09-01

    Compilation of the data on nuclear reactions and subsequent radioactive decays induced by 14-MeV neutrons is presented in tabular form for most of the isotopes available in nature and for some of the artificially-produced isotopes, including the following items: Nuclide (isotopic abundance), type of nuclear reaction, reaction Q-value, reaction product, type of decay, decay Q-value, half-life of reaction product, decay product, maximum reaction cross section, neutron energy for maximum cross section, reaction cross section for 14 MeV neutrons, saturated radioactivity induced by irradiation of a neutron flux of 1 n/cm 2 sec for a mol of atoms, and reference for the cross section. The mass number dependence of (n, γ), (n, 2n), (n, p), (n, d), (n, t), (n, 3 He) and (n, α) reaction cross sections for 14-MeV neutrons is given in figures to show general trends of the cross sections

  15. Syntheses of [6-14C] and [5-carboxy, 6-14C2]nitrendipine

    International Nuclear Information System (INIS)

    Maul, N.; Scherling, D.

    1989-01-01

    [6- 14 C]Nitrendipine synthesis started from barium[ 14 ]carbonate, which was converted to [1- 14 C]acetyl chloride. The acid chloride was condensed with Meldrum's acid (2,2-dimethyl-1,3-dioxane-4,6-dione). The resulting intermediate was treated with boiling methanol to give methyl [3- 14 C]acetoacetate. The reaction with gaseous ammonia in toluene yielded the corresponding methyl 3-amino[3- 14 C]crotonate which was condensed with ethyl 2-(3-nitro-benzylidene) acetoacetate to obtain [6- 14 C]nitrendipine. (author)

  16. The metabolism and dosimetry of carbon-14 labelled compounds

    International Nuclear Information System (INIS)

    Crawley, F.E.H.

    1977-01-01

    The number of compounds labelled at high specific activity with carbon-14 has greatly increased over the last few years. There are limited biological data available to enable an assessment of the internal radiation dose and to identify the critical tissues after an intake of such compounds. The ICRP consider two Model Systems for deriving dose. Both Models assume a total elimination of the carbon-14 in the breath and only bone or whole body as critical tissues and are not representative of the majority of the compounds now available. A research programme has been established to study the rate of excretion and tissue distribution of selected carbon-14 labelled compounds in the rat after intravenous injection, pulmonary and gastric intubation and skin absorption. These metabolic data have been used to calculate the committed dose equivalent and maximum permissible annual intake (MPAI) for various tissues in man on the assumption that the experimental data obtained in the rat are true for man. To date potassium 14 C-cyanide and 14 C-methanol have been studied. The values for the MPAI's derived from the doses to individual tissues are more restrictive than values calculated from the whole body doses. The MPAI calculated from excretion data in terms of whole body dose is 31 mCi for 14 C-cyanide and 25 mCi for 14 C-methanol. However, the critical tissue for 14 C-cyanide is the stomach with an MPAI of 1.5 mCi based on a dose of 10.7 rem mCi -1 . This was an order of magnitude greater than the dose to any other region of the GI tract and 5 times that to the testis. The critical organs for 14 C-methanol are the testis (MPAI 2.5 mCi) for males and the ovaries (MPAI 6.2 mCi) for females

  17. How does the carbon fusion reaction happen in stars?

    Directory of Open Access Journals (Sweden)

    X. Tang

    2013-09-01

    Full Text Available The 12C + 12C fusion reaction is one of the most important reactions in the stellar evolution. Due to its compli-cated reaction mechanism, there is great uncertainty in the reaction rate which limits our understanding of vari-ous stellar objects, such as explosions on the surface of neutron stars, white dwarf (type Ia supernovae, and massive stellar evolution. In this paper, I will review the challenges in the study of carbon burning. I will also report recent re-sults from our studies: 1 an upper limit for the 12C + 12C fusion cross sections, 2 measurement of the 12C + 12C at deep sub-barrier energies, 3 a new measurement of the 12C(12C, n reaction. The outlook for the studies of the astrophysical heavy-ion fusion reactions will also be presented.

  18. Epoxidation and oxidation reactions using 1,4-butanediol ...

    Indian Academy of Sciences (India)

    Unknown

    and aryl halides to hydroxy compounds through a .... Epoxidation of olefins using 1,4-BDDMA-crosslinked polystyrene supported t- butyl hydroperoxide. Reaction. Isolated. Olefina timeb (h). Productc yield (%). Cinnamic acid. 39 ... aCinnamic acid; bcyclohexene; csubstrate to resin 1 : 2; solvent, dioxan, temperature, 70°C.

  19. Fabrication and characterization of reaction bonded silicon carbide/carbon nanotube composites

    International Nuclear Information System (INIS)

    Thostenson, Erik T; Karandikar, Prashant G; Chou, T.-W.

    2005-01-01

    Carbon nanotubes have generated considerable excitement in the scientific and engineering communities because of their exceptional mechanical and physical properties observed at the nanoscale. Carbon nanotubes possess exceptionally high stiffness and strength combined with high electrical and thermal conductivities. These novel material properties have stimulated considerable research in the development of nanotube-reinforced composites (Thostenson et al 2001 Compos. Sci. Technol. 61 1899, Thostenson et al 2005 Compos. Sci. Technol. 65 491). In this research, novel reaction bonded silicon carbide nanocomposites were fabricated using melt infiltration of silicon. A series of multi-walled carbon nanotube-reinforced ceramic matrix composites (NT-CMCs) were fabricated and the structure and properties were characterized. Here we show that carbon nanotubes are present in the as-fabricated NT-CMCs after reaction bonding at temperatures above 1400 deg. C. Characterization results reveal that a very small volume content of carbon nanotubes, as low as 0.3 volume %, results in a 75% reduction in electrical resistivity of the ceramic composites. A 96% decrease in electrical resistivity was observed for the ceramics with the highest nanotube volume fraction of 2.1%

  20. A Small-Scale Capsule Test for Investigating the Sodium-Carbon Dioxide Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B. H.; Choi, J. H.; Suk, S. D.; Kim, J. M.; Choi, B. H.; Kim, B. H.; Hahn, D. H

    2007-01-15

    The utilization of modular sodium-to-supercritical CO{sub 2} heat exchangers may yield significant improvements for an overall plant energy utilization. The consequences of a failure of the sodium CO{sub 2} heat exchanger boundary, however, would involve the blowdown and intermixing of high-pressure CO{sub 2} in a sodium pool, causing a pressurization which may threaten the structural integrity of the heat exchanger. Available data seems to indicate that the chemical reaction between sodium and CO{sub 2} would likely produce sodium oxides, sodium carbonate, carbon and carbon monoxide. Information on the kinetics of the sodium-CO{sub 2} reaction is virtually non-existent.

  1. Model study of atmospheric transport using carbon 14 and strontium 90 as inert tracers

    Science.gov (United States)

    Kinnison, D. E.; Johnston, H. S.; Wuebbles, D. J.

    1994-10-01

    The observed excess carbon 14 in the atmosphere from 1963 to 1970 provides unique, but limited, data up to an altitude of about 35 km for testing the air motions calculated by 11 multidimensional atmospheric models. Strontium 90 measurements in the atmosphere from 1964 to mid-1967 provide data that have more latitude coverage than those of carbon 14 and are useful for testing combined models of air motions and aerosol settling. Model calculations for carbon 14 begin at October 1963, 9 months after the conclusion of the nuclear bomb tests; the initial conditions for the calculations are derived by three methods, each of which agrees fairly well with measured carbon 14 in October 1963 and each of which has widely different values in regions of the stratosphere where there were no carbon 14 measurements. The model results are compared to the stratospheric measurements, not as if the observed data were absolute standards, but in an effort to obtain new insight about the models and about the atmosphere. The measured carbon 14 vertical profiles at 31°N are qualitatively different from all of the models; the measured vertical profiles show a maximum mixing ratio in the altitude range of 20 to 25 km from October 1963 through July 1966, but all modeled profiles show mixing ratio maxima that increase in altitude from 20 km in October 1963 to greater than 40 km by April 1966. Both carbon 14 and strontium 90 data indicate that the models differ substantially among themselves with respect to stratosphere-troposphere exchange rate, but the modeled carbon 14 stratospheric residence times indicate that differences among the models are small with respect to transport rate between the middle stratosphere and the lower stratosphere. Strontium 90 data indicate that aerosol settling is important up to at least 35 km altitude. Relative to the measurements, about three quarters of the models transport carbon 14 from the lower stratosphere to the troposphere too rapidly, and all models

  2. The metabolism and dosimetry of carbon-14 labelled diethylenetriaminepentaacetic acid (DTPA)

    International Nuclear Information System (INIS)

    Crawley, F.E.H.; Haines, J.W.

    1978-01-01

    Male rats were given carbon-14 labelled Ca-DTPA either by intravenous injection or by pulmonary intubation. The elimination of the carbon-14 by excretion in urine, faeces and breath was followed, Chromatographic examination of the urine showed that no metabolic degradation of the 14 C-DTPA had occurred. The distribution of activity between lung, kidneys, bone, muscle and GI tract was also followed. The data obtained have been used to assess the radiation dose to man from an intake of 14 C-DTPA on the assumption that the behaviour of 14 C-DTPA in man is the same as in the rat. The results are discussed. (U K.)

  3. Carbon-14 releases from an unsaturated repository: A senseless but expensive dilemma

    International Nuclear Information System (INIS)

    Pflum, C.G.

    1993-01-01

    The purpose of the US Environmental Protection Agency (EPA) Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR Part 191 or standards) is to protect public health and safety. The 1985 rule was developed on the basis of the assumption that the repository would be located in a geologic formation that lies below the water table. It is appropriate to examine gaseous releases and transport of pollutants in order to determine site adequacy. When the provisions of the 1985 standard are applied to Yucca Mountain, specifically the limits for carbon-14, we can release in 10,000 years no more than 7,000 curies of carbon-14 in the form of carbon dioxide. Meanwhile, the US Department of Energy (DOE) and others indicate that the repository may release about 8,000 curies of carbon-14 dioxide, an amount that exceeds the standard by 10 to 20 percent. The original basis of the 1985 standards was that, in a site below the water table, the limit for carbon-14 was technically achievable. It was not a standard based on a release level that would prevent a danger to public health. If we examine the danger to public health of the release of 8,000 curies of carbon-14 dioxide during and 8,000-year period, this release would not a pose a significant threat to the average individual. Industry and natural sources release many times this amount of carbon-14 dioxide each year. The question therefore becomes: is it appropriate to spend an additional $3.2 billion on waste packages when the expenditure does not measurably improve the public health?

  4. Master curves for the sulphur assisted crosslinking reaction of natural rubber in the presence of nano- and nano-structured sp2 carbon allotropes

    Directory of Open Access Journals (Sweden)

    S. Musto

    2017-06-01

    Full Text Available In this paper, master curves are reported for the crosslinking of a diene rubber with a sulphur based system in the presence of either nano- or nano-structured carbon allotropes, such as carbon nanotubes (CNT, a nanosized graphite with high surface area (HSAG and carbon black (CB. Poly(1,4-cis-isoprene from Hevea Brasiliensis was the diene rubber and crosslinking was performed in temperatures ranging from 151 to 180 °C, with carbon allotropes below and above their percolation threshold. Such carbon allotropes were characterized by different aspect ratio, surface area and pH. However, in the crosslinking reaction, they revealed common behaviour. In fact, the specific interfacial area could be used to correlate crosslinking parameters, such as induction time (ts1 and activation energy (Ea calculated by applying the autocatalytic model. Monotonous decrease of ts1 and increase of Ea were observed, with points lying on master curves, regardless of the nature of the carbon allotropes. Remarkable differences were however observed in the structure of the crosslinking network: when the carbon allotrope was above the percolation threshold much larger crosslinking density was obtained in the presence of CNT whereas composites based on HSAG became soluble in hydrocarbon solvent, after the reaction with a thiol. Proposed explanation of these results is based on the reactivity of carbon allotropes with sulphur and sulphur based compounds, demonstrated through the reaction of 1-dodecanethiol and sulphur with CNT and HSAG and with a model substrate such as anthracene.

  5. Synthesis of carbon-14 analogue of 1,5 diaryl-5-[{sup 14}C]-1,2,3-triazoles

    Energy Technology Data Exchange (ETDEWEB)

    Matloubi, Hojatollah E-mail: hmatloubi@aeoi.org.ir; Shafiee, Abbas; Saemian, Nader; Shirvani, Gholamhossein; Daha, Fariba Johari

    2004-05-01

    Two 1,2,3-triazole anticonvulsants, 1-(4-methylsulfone-phenyl)-5-(4-methyl-phenyl)-1,2,3-triazole and 1-(4-methylsulfone-phenyl)-5-phenyl-1,2,3-triazole, both labeled with carbon-14 in the 5-position were prepared from para-tolunitrile-[cyano-{sup 14}C] and benzonitrile-[cyano-{sup 14}C], respectively.

  6. Chemoenzymatic synthesis of carbon-14 labelled antioxidants

    International Nuclear Information System (INIS)

    Deigner, H.P.; Freyberg, C.; Heck, R.

    1993-01-01

    The syntheses of [ 14 C] labelled antioxidants are described. We developed an efficient synthetic methodology to prepare a series of labelled amides with antioxidant activity, starting from [ 14 C] KCN and alkyl or aryl halides. By a combination of nucleophilic displacement of halides by [ 14 C] cyanide, mediated by ultrasound and subsequent mild and selective enzymatic hydrolysis of the resulting nitriles, labelled carboxylic acids were obtained. Labelled amines were prepared by reduction of the respective nitriles. Availability of [ 14 C] KCN, efficient introduction of the label by ultrasound mediated reaction and selective and mild hydrolysis by commercially available nitrilase (Rhodococcus sp.), makes possible a wide range of applications of this methodology in the synthesis of functionalized labelled compounds. (Author)

  7. Carbon-14 dating of tree rings for tritium measurement

    International Nuclear Information System (INIS)

    Yamada, Y.; Yasuike, K.; Kiriyama, N.; Komura, K.; Ueno, K.

    1998-01-01

    The carbon-14 concentration in tree-ring cellulose of an 80-year-old pine tree which has been used for tritium measurement was measured during the 1941-1987 period. This was done to determine the formation year of each tree ring in order to study the pathway of tritium uptake into the tree rings. In the 1941 to 1953 period, the δ 14 C value remained slightly lower than 0 per mille. It began to increase from 1954 to a small broad peak of 250 per mille between 1959 and 1961, followed by rapid increase to the highest value of approximately 800 per mille in 1964. Since 1964, it had been diminishing year by year to reach a level of 190 per mille in 1987. The two peak years coincided with those in the known carbon-14 patterns in tree rings. However, there existed a difference in the amplitude of the δ 14 C values during the period of 1963-1967. (author)

  8. Enhanced interfacial properties of carbon fiber composites via aryl diazonium reaction “on water”

    Science.gov (United States)

    Wang, Yuwei; Meng, Linghui; Fan, Liquan; Ma, Lichun; Qi, Meiwei; Yu, Jiali; Huang, Yudong

    2014-10-01

    Polyacrylonitrile-based carbon fibers were functionalized with phenyl amine group via aryl diazonium reaction "on water" to improve their interfacial bonding with resin matrix. Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy were employed to characterize ordered degree, functional groups, chemical states and morphology of carbon fiber surface, respectively. The results showed that phenyl amine groups were grafted on the fiber surface successfully. Mechanical property test results indicated that the aryl diazonium reaction in this paper could improve the interfacial shear strength by 73%, while the tensile strength was down very slightly. Hence aryl diazonium reaction "on water" could be a facile green platform to functionalize carbon fibers for many interesting applications.

  9. The lichens, tritium and carbon 14 integrators; Les lichens, integrateurs de tritium et de carbone 14

    Energy Technology Data Exchange (ETDEWEB)

    Daillant, O

    2007-07-01

    The present report concerns a research for the tritium and for the carbon 14 in lichens in a spirit of bio-indication: the first results appear in Daillant and al (2004 ) and additional results were presented to the congress B.I.O.M.A.P. in Slovenia, organized collectively by the institute Josef Stefan from Ljubljana and the international atomic energy agency from Vienna (Daillant and al 2003). (N.C.)

  10. Results of interagency effort to determine carbon-14 source term in low-level radioactive waste

    International Nuclear Information System (INIS)

    Gruhlke, J.M.; Meyer, G.L.; Neiheisel, J.

    1987-01-01

    A preliminary estimate of the risks from the shallow land disposal of low-level radioactive wastes by EPA in 1984-1985 indicated that Carbon-14 caused virtually all of the risk and that these risks were relatively high. Therefore, an informal interagency group, which included the US Department of Energy, US Geological Survey, US Nuclear Regulatory Commission, and US Environmental Protection Agency, formed in 1985 to obtain up-to-date information on the activity and chemical form of Carbon-14 in the different types of LLW and how Carbon-14 behaves after disposal. The EPA acted as a focal point for collating the information collected by all of the Agencies and will publish a report in Fall 1986 on the results of the Carbon-14 data collection effort. Of particular importance, the study showed that Carbon-14 activity in LLW was overestimated approximately 2000%. This paper summarizes results of the Carbon-14 data collection effort. 40 references, 1 figure, 3 tables

  11. An integrated approach to geological disposal of UK wastes containing carbon-14

    International Nuclear Information System (INIS)

    Vines, Sarah; Lever, David

    2013-01-01

    Carbon-14 is a key radionuclide in the assessment of the safety of a geological disposal facility for radioactive waste because of the calculated assessment of the radiological consequences of gaseous carbon-14 bearing species [i]. It may be that such calculations are based on overly conservative assumptions and that better understanding could lead to considerably reduced assessment of the radiological consequences from these wastes. Alternatively, it may be possible to mitigate the impact of these wastes through alternative treatment, packaging or design options. The Radioactive Waste Management Directorate of the UK's Nuclear Decommissioning Authority (NDA RWMD) has established an integrated project team in which the partners are working together to develop a holistic approach to carbon-14 management in the disposal system [ii]. For a waste stream containing carbon-14 to be an issue: There must be a significant inventory of carbon-14 in the waste stream; and That waste stream has to generate carbon-14 bearing gas; and a bulk gas phase has to entrain the carbon-14 bearing gas: and these gases must migrate through the engineered barriers in significant quantities; and these gases must migrate through the overlying geological environment (either as a distinct gas phase or as dissolved gas); and these gases must interact with materials in the biosphere (i.e. plants) in a manner that leads to significant doses and risks to exposed groups or potentially exposed groups. The project team has developed and used this 'and' approach to structure and prioritise the technical work and break the problem down in a manageable way. We have also used it to develop our approach to considering alternative treatment, packaging and design options. For example, it may be possible to pre-treat some wastes to remove some of the inventory or to segregate other wastes so that they are removed from any bulk gas phase which might facilitate migration through the geosphere

  12. An integrated approach to geological disposal of UK wastes containing carbon-14

    Energy Technology Data Exchange (ETDEWEB)

    Vines, Sarah [Nuclear Decommissioning Authority, Harwell, Oxfordshire (United Kingdom); Lever, David [AMEC, Harwell, Oxfordshire (United Kingdom)

    2013-07-01

    Carbon-14 is a key radionuclide in the assessment of the safety of a geological disposal facility for radioactive waste because of the calculated assessment of the radiological consequences of gaseous carbon-14 bearing species [i]. It may be that such calculations are based on overly conservative assumptions and that better understanding could lead to considerably reduced assessment of the radiological consequences from these wastes. Alternatively, it may be possible to mitigate the impact of these wastes through alternative treatment, packaging or design options. The Radioactive Waste Management Directorate of the UK's Nuclear Decommissioning Authority (NDA RWMD) has established an integrated project team in which the partners are working together to develop a holistic approach to carbon-14 management in the disposal system [ii]. For a waste stream containing carbon-14 to be an issue: There must be a significant inventory of carbon-14 in the waste stream; and That waste stream has to generate carbon-14 bearing gas; and a bulk gas phase has to entrain the carbon-14 bearing gas: and these gases must migrate through the engineered barriers in significant quantities; and these gases must migrate through the overlying geological environment (either as a distinct gas phase or as dissolved gas); and these gases must interact with materials in the biosphere (i.e. plants) in a manner that leads to significant doses and risks to exposed groups or potentially exposed groups. The project team has developed and used this 'and' approach to structure and prioritise the technical work and break the problem down in a manageable way. We have also used it to develop our approach to considering alternative treatment, packaging and design options. For example, it may be possible to pre-treat some wastes to remove some of the inventory or to segregate other wastes so that they are removed from any bulk gas phase which might facilitate migration through the geosphere

  13. The preparation of glucose uniformly labelled with carbon-14; Preparacion de glucosa uniformemente marcada con carbono-14

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M D; Suarez, C; Rodrigo, M E

    1978-07-01

    The plant, (Zea mais, L) and culture conditions for an optimum production of glucose has been chosen. To achieve the labelling of glucose, photosynthesis and carboxylation are carried on, under an artificial atmosphere of 14CO{sub 2} produced from 14{sup C}-barium carbonate. Following photosynthesis the sugars are extracted, and then the extract purified by several methods. The purified glucose is finally, degraded and the specific radioactivity is determined in each of its carbon atoms. (Author) 37 refs.

  14. Effect of IX column maintenance on carbon-14 concentration in moderator systems

    International Nuclear Information System (INIS)

    Gallagher, C.L.; Tripple, A.W.

    2006-01-01

    The radionuclide 14 C is produced in CANDU reactors primarily by the (n,α) reaction with 17 O. Because of high neutron fluxes in the core, the majority of the 14 C (94.5%) is produced in the moderator. In the moderator system, 14 C is present mainly as CO 2 in the cover gas in dynamic equilibrium with dissolved carbonates, bicarbonates and CO 2 in the moderator water. Emissions of 14 C from reactors occur through venting or leakage of the cover gas. By controlling the dissolved carbonates in the moderator water with an ion exchange (IX) purification system, the amount of 14 C in the cover gas is minimized and thus the emissions of 14 C can be reduced. A study was conducted to measure the 14 C concentrations in the moderator system at Gentilly 2 in order to determine the effectiveness of the purification system in removing 14 C. Moderator water samples were obtained from the inlet and outlet of the purification system from 2004 January 14 to July 12, covering the operation of two IX columns (IX-1 and IX-3). The moderator water samples contained high levels of tritium (∼2 TBq·L -1 ). As both tritium and 14 C are β-radiation emitters, direct counting of moderator water for 14 C is impossible as the signal due to tritium dominates over that of other β-emitters. Therefore, a procedure developed by Caron et al. was used in this study, which involved acidifying the sample to release the dissolved 14 CO 2 as gas and collecting the 14 CO 2 in a base (NaOH), which could then be measured by liquid scintillation counting to determine the 14 C concentration. Both of the IX columns started with 14 C removal efficiencies of about 95%. The efficiency began to decrease almost immediately with the IX-1 column dropping to 80% efficiency after ∼1115 hours. This drop in efficiency also led to an increase in the inlet concentration over time. IX-1 column was removed from service after ∼1745 hours with a 14 C removal efficiency of ∼31%. IX-3 column was then placed in service

  15. Hybrid direct carbon fuel cells and their reaction mechanisms - a review

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Kammer Hansen, Kent

    2014-01-01

    with carbon capture and storage (CCS) due to the high purity of CO2 emitted in the exhaust gas. Direct carbon (or coal) fuel cells (DCFCs) are directly fed with solid carbon to the anode chamber. The fuel cell converts the carbon at the anode and the oxygen at the cathode into electricity, heat and reaction......As coal is expected to continue to dominate power generation demands worldwide, it is advisable to pursue the development of more efficient coal power generation technologies. Fuel cells show a much higher fuel utilization efficiency, emit fewer pollutants (NOx, SOx), and are more easily combined...

  16. Electro-deposition of Pd on Carbon paper and Ni foam via surface limited redox-replacement reaction for oxygen reduction reaction

    International Nuclear Information System (INIS)

    Modibedi, Remegia M.; Mathe, Mkhulu K.; Motsoeneng, Rapelang G.; Khotseng, Lindiwe E.; Ozoemena, Kenneth I.; Louw, Eldah K.

    2014-01-01

    Pd nanostructured catalysts were electrodeposited by surface-limited redox replacement reactions using the electrochemical atomic layer deposition technique. Carbon paper and Ni foam were used as substrates for the electrodeposition of the metal. Supported nanostructured Pd electrodes were characterized using electrochemical methods and scanning electron microscopy. Carbon paper and Ni foam produced good quality deposits with some agglomeration on Ni foam. The EDX profiles confirmed the presence of Pd particles. Cyclic voltammograms of the electrodeposited Pd on substrates showed features characteristic of polycrystalline Pd electrodes. In the acidic electrolyte a very weak oxygen reduction reaction (ORR) activity was observed on Pd/Carbon paper electrode when compared to Pd/Ni foam electrode. The Pd/Ni foam electrode showed improved ORR activity in alkaline medium

  17. ORIGIN OF PALMITIC ACID CARBON IN PALMITATES FORMED FROM HEXADECANE-1-C14 AND TETRADECANE-1-C14 BY MICROCOCCUS CERIFICANS

    Science.gov (United States)

    Finnerty, W. R.; Kallio, R. E.

    1964-01-01

    Finnerty, W. R. (University of Iowa, Iowa City), and R. E. Kallio. Origin of palmitic acid carbon in palmitates formed from hexadecane-1-C14 and tetradecane-1-C14 by Micrococcus cerificans. J. Bacteriol. 87:1261–1265. 1964.—Degradation of the palmitic acid moiety of cetyl palmitate and myristyl palmitate formed from hexadecane-1-C14 and tetradecane-1-C14 by Micrococcus cerificans was carried out. The patterns of C14 labeling in palmitic acid from cetyl palmitate showed that hexadecane is oxidized at the C1 position, and cetyl alcohol and palmitic acid thus formed are directly esterified. Palmitic acid arising from tetradecane and esterified to tetradecanol appeared to have been synthesized by the addition of two carbon atoms to an existing 14-carbon atom skeleton. Considerable mixing of C14 occurred in the C1 and C2 positions of palmitic acid thus synthesized. PMID:14188700

  18. Heterogeneously Catalysed Aldol Reactions in Supercritical Carbon Dioxide as Innovative and Non-Flammable Reaction Medium

    DEFF Research Database (Denmark)

    Musko, Nikolai; Grunwaldt, Jan-Dierk

    2011-01-01

    Aldol reactions of several aldehydes have been investigated over acidic and basic catalysts in supercritical carbon dioxide at 180 bar and 100 °C. Both acidic (Amberlyst-15, tungstosilicic acid (TSA) on SiO2 and MCM-41) and basic (hydrotalcite) materials showed interesting performance in this pre...

  19. Modelling accidental releases of carbon 14 in the environment: application as an excel spreadsheet

    International Nuclear Information System (INIS)

    Le Dizes, S.; Tamponnet, C.

    2004-01-01

    An application as an Excel spreadsheet of the simplified modelling approach of carbon 14 transfer in the environment developed by Tamponnet (2002) is presented. Based on the use of growth models of biological systems (plants, animals, etc.), the one-pool model (organic carbon) that was developed estimates the concentration of carbon 14 within the different compartments of the food chain and in fine the dose to man by ingestion in the case of a chronic or accidental release of carbon 14 in a river or the atmosphere. Data and knowledge have been implemented on Excel using the object-oriented programming language VisualBasic (Microsoft Visual Basic 6.0). The structure of the conceptual model and the Excel sheet are first briefly exposed. A numerical application of the model under a scenario of an accidental release of carbon 14 in the atmosphere is then presented. Simulation results and perspectives are discussed. (author)

  20. A kinetic study of the reaction of water vapor and carbon dioxide on uranium; Cinetique de la reaction de la vapeur d'eau et du dioxyde de carbone sur l'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Santon, J P [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1964-09-15

    The kinetic study of the reaction of water vapour and carbon dioxide with uranium has been performed by thermogravimetric methods at temperatures between 160 and 410 deg G in the first case, 350 and 1050 deg C in the second: Three sorts of uranium specimens were used: uranium powder, thin evaporated films, and small spheres obtained from a plasma furnace. The experimental results led in the case of water vapour, to a linear rate of reaction controlled by diffusion at the lower temperatures, and by a surface reaction at the upper ones. In the case of carbon dioxide, a parabolic law has been found, controlled by diffusional processes. (author) [French] L'etude cinetique de la reaction de la vapeur d'eau et du dioxyde de carbone sur l'uranium a ete entreprise au moyen de methodes thermogravimetriques, dans te premier cas entre 160 et 410 deg C et dans le second entre 350 et 1050 deg C. Le materiau utilise se presentait sous trois formes: poudres, couches minces evaporees et billes obtenues par fusion en chalumeau a plasma. Les resultats experimentaux ont permis de mettre en evidence, dans le cas de la vapeur d'eau, une cinetique lineaire controlee par la diffusion a basse temperature et d'interface a haute temperature. Dans le cas du dioxyde de carbone par contre, on trouve une cinetique parabolique controlee par la diffusion. (auteur)

  1. Study of the {sup 17}O(n,α){sup 14}C reaction: Extension of the Trojan Horse Method to neutron induced reactions

    Energy Technology Data Exchange (ETDEWEB)

    Guardo, G. L.; Lamia, L.; Spitaleri, C.; Cherubini, S.; Rapisarda, G. G.; Sergi, M. L. [INFN - Laboratori Nazionali del Sud, Catania, Italy and Department of Physics and Astronomy, University of Catania, Catania (Italy); Gulino, M. [INFN - Laboratori Nazionali del Sud, Catania, Italy and University of Enna (Italy); Tang, X. D.; Bucher, B.; Couder, M.; Davies, P.; Boer, R. de; Fang, X.; Lamm, L.; Ma, C.; Notani, M.; OBrien, S.; Roberson, D.; Tan, W.; Wiescher, M. [Department of Physics and Joint Institute for Nuclear Astrophysics, University of Notre Dame, IN (United States); and others

    2014-05-02

    The experimental study of the {sup 17}O(n,α){sup 14}C reaction has been performed in the energy range 0-350 keV. This reaction could play an important role in explaining heavy elements (s-process) nucleosynthesis in various astrophysical scenario. To overcome the practical problems arising from the neutrons production, a new application of the Trojan Horse Method has been recently suggested. In more details, the {sup 17}O(n,α){sup 14}C reaction has been studied using the quasi-free {sup 2}H({sup 17}O,α{sup 14}C){sup 1}H reaction, induced at an energy of 43.5 MeV. The measurement allows one to investigate the ℓ=3, 75 keV resonance (E*=8.125 MeV, J{sup π}=5{sup −}), absent in the available direct measurements because of centrifugal suppression effects.

  2. Carbon-14 as an indicator of CO2 pollution in cities

    International Nuclear Information System (INIS)

    Vogel, J.C.; Uhlitzsch, I.

    1975-01-01

    The combustion of fossil fuels in cities, and especially in industrial areas, releases large quantities of carbon dioxide into the local atmosphere. This carbon dioxide does not contain carbon-14, with the result that the carbon-14 content of the atmospheric carbon dioxide is locally depleted. The degree of depletion provides a measure for the carbon dioxide pollution at the sampling site. Since growing plants represent a convenient average sample of the carbon dioxide in the air, the leaves of deciduous trees can be used for comparing the magnitude of local pollution in different localities during the summer growing period. A series of leaf samples collected in 1973 from Europe, North America and South Africa reveals the expected differences in the degree of pollution. Extreme instances occur in Scholven (Ruhrgebiet, Germany), where the average day-time carbon dioxide content during the summer months is found to be 8.7% above normal, and in Manhatten, New York City, where the corresponding figure is 6.4%. The technique can easily be extended to include the winter months by directly absorbing carbon dioxide in a hydroxide solution during different seasons. The proposed method is sensitive but much less time-consuming than the continuous measurement of the carbon dioxide concentration in the air. It thus lends itself to the monitoring of impact areas of pollution. (author)

  3. Syntheses of (6- sup 14 C) and (5-carboxy, 6- sup 14 C sub 2 )nitrendipine

    Energy Technology Data Exchange (ETDEWEB)

    Maul, N.; Scherling, D. (Bayer AG, Wuppertal (Germany, F.R.). Inst. fuer Pharmakologie)

    1989-04-01

    (6-{sup 14}C)Nitrendipine synthesis started from barium({sup 14})carbonate, which was converted to (1-{sup 14}C)acetyl chloride. The acid chloride was condensed with Meldrum's acid (2,2-dimethyl-1,3-dioxane-4,6-dione). The resulting intermediate was treated with boiling methanol to give methyl (3-{sup 14}C)acetoacetate. The reaction with gaseous ammonia in toluene yielded the corresponding methyl 3-amino(3-{sup 14}C)crotonate which was condensed with ethyl 2-(3-nitro-benzylidene) acetoacetate to obtain (6-{sup 14}C)nitrendipine. (author).

  4. Determination of 14C age of inorganic and organic carbon in ancient Siberian permafrost

    Science.gov (United States)

    Onstott, T. C.; Liang, R.; Lau, M.; Vishnivetskaya, T. A.; Lloyd, K. G.; Pfiffner, S. M.; Hodgins, G.; Rivkina, E.

    2017-12-01

    Permafrost represents a large reservoir of ancient carbon that could have an important impact on the global carbon budget during climate warming. Due to the low turnover rate of carbon by microorganisms at subzero temperatures, the persistence of ancient carbon in younger permafrost deposits could also pose challenges for radiocarbon dating of permafrost sediment. We utilized Accelerator Mass Spectrometry to determine the 14C age of inorganic carbon, labile and recalcitrant organic carbon in Siberian permafrost sediment sampled at various depths from 2.9 to 5.6m. The fraction of inorganic carbon (CO2) was collected after acidification using phosphoric acid. The labile (younger) and recalcitrant (old) organic carbon in the subsequent residues were collected after combustion at 400 ºC and 800 ºC, respectively. The percentages of inorganic carbon increased from the youngest (2.9m) to the oldest (5.6m), whereas the fractions for organic carbon varied significantly at different depths. The 14C age determined in the inorganic fraction in the top sample (2.9 m) was 21,760 yr BP and gradually increased to 33,900 yr BP in the relative deeper sediment (3.5 and 5.6 m). Surprisingly, the fraction of "younger" carbon liberated at 400 oC was older than the more recalcitrant and presumably older organic carbon liberated at 800 oC in all cases. Moreover, the 14C age of the younger and older organic carbon fractions did not increase with depth as observed in the carbonate fraction. In particular, the 14C age of the organic carbon in the top sample (38,590-41,700 yr BP) was much older than the deeper samples at depth of 3.5m (18,228-20,158 yr BP) and 5.6m (29,040-38,020 yr BP). It should be noticed that the metabolism of ancient carbon in frozen permafrost may vary at different depths due to the different proportion of necromass and metabolically active microbes. Therefore, additional knowledge about the carbon dynamics of permafrost and more investigation would be required to

  5. The synthesis of PdPt/carbon paper via surface limited redox replacement reactions for oxygen reduction reaction

    CSIR Research Space (South Africa)

    Motsoeneng, RG

    2015-09-01

    Full Text Available Surface-limited redox replacement reactions using the electrochemical atomic layer deposition (EC-ALD) technique were used to synthesize PdPt bimetallic electrocatalysts on carbon paper substrate. Electrocatalysts having different Pd:Pt ratio were...

  6. Carbon-coated magnetic palladium: applications in partial oxidation of alcohols and coupling reactions.

    Science.gov (United States)

    Magnetic carbon supported Pd catalyst has been synthesized via in situ generation of nanoferrites and incorporation of carbon from renewable cellulose via calcination; catalyst can be used for oxidation of alcohols, amination reaction and arylation of aryl halides (cross coupli...

  7. Effect of reaction temperature on structure and fluorescence properties of nitrogen-doped carbon dots

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yi [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Department of Chemistry and Chemical Engineering, Lyuliang University, Lyuliang 033001 (China); Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Yaling [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024 (China); Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Feng, Xiaoting [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zhang, Feng [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024 (China); Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Yang, Yongzhen, E-mail: yyztyut@126.com [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024 (China); Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Liu, Xuguang, E-mail: liuxuguang@tyut.edu.cn [Key Laboratory of Interface Science and Engineering in Advanced Materials (Taiyuan University of Technology), Ministry of Education, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2016-11-30

    Highlights: • Nitrogen-doped carbon dots (NCDs) from ammonia solution and citric acid were synthesized at different temperatures. • Quantum yield (QY) of NCDs depends largely on the amount of fluorescent polymer chains (FPC), more FPC gives higher QY. • The law of QY of NCDs first increase and then decrease with the reaction temperature increased is found and explained. • Nitrogen doping plays significant role in getting increased UV–vis absorption and QY. - Abstract: To investigate the effect of reaction temperature and nitrogen doping on the structure and fluorescence properties of carbon dots (CDs), six kinds of nitrogen-doped CDs (NCDs) were synthesized at reaction temperatures of 120, 140, 160, 180, 200 and 220 °C, separately, by using citric acid as carbon source and ammonia solution as nitrogen source. Nitrogen-free CDs (N-free CDs-180) was also prepared at 180 °C by using citric acid as the only carbon source for comparison. Results show that reaction temperature has obvious effect on carbonization degree, quantum yield (QY), ultraviolet-visible (UV–vis) absorption and photoluminescence (PL) spectra but less effect on functional groups, nitrogen doping degree and fluorescence lifetime of NCDs. Compared with N-free CDs-180, NCDs-180 possesses enchanced QY and longer fluorescence lifetime. Doping nitrogen has obvious effect on UV–vis absorption and PL spectra but less effect on particles sizes and carbonization degree. The formation mechanism of NCDs is explored: QY of NCDs depends largely on the number of fluorescent polymer chains (FPC), the competition between FPC formation on the surface of NCDs and carbon core growth leads to the change in number of FPC, and consequently to the NCDs with highest QY at appropriate hydrothermal temperature.

  8. Research of Hydrogen Preparation with Catalytic Steam-Carbon Reaction Driven by Photo-Thermochemistry Process

    Directory of Open Access Journals (Sweden)

    Xiaoqing Zhang

    2013-01-01

    Full Text Available An experiment of hydrogen preparation from steam-carbon reaction catalyzed by K2CO3 was carried out at 700°C, which was driven by the solar reaction system simulated with Xenon lamp. It can be found that the rate of reaction with catalyst is 10 times more than that without catalyst. However, for the catalytic reaction, there is no obvious change for the rate of hydrogen generation with catalyst content range from 10% to 20%. Besides, the conversion efficiency of solar energy to chemical energy is more than 13.1% over that by photovoltaic-electrolysis route. An analysis to the mechanism of catalytic steam-carbon reaction with K2CO3 is given, and an explanation to the nonbalanced [H2]/[CO + 2CO2] is presented, which is a phenomenon usually observed in experiment.

  9. Carboxyl functionalization of carbon fibers via aryl diazonium reaction in molten urea to enhance interfacial shear strength

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuwei [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Meng, Linghui [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Fan, Liquan [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Wu, Guangshun; Ma, Lichun; Zhao, Min [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Huang, Yudong, E-mail: ydhuang.hit1@yahoo.com.cn [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2016-01-30

    Graphical abstract: - Highlights: • Carbon fibers are functionalized with benzoic acid groups via aryl diazonium reaction. • Interfacial shear strength of the carbon fibers increases by 66%. • Tensile strength of the carbon fibers is preserved after grafting reaction. • The treatment in molten urea can improve modification efficiency greatly. • Using molten urea as the reaction medium can avoid pollution from organic solvents. - Abstract: Using molten urea as the solvent, carbon fibers were functionalized with carboxylic acid groups via aryl diazonium reaction in 15 min to improve their interfacial bonding with epoxy resin. The surface functionalization was quantified by X-ray photoelectron spectroscopy, which showed that the relative surface coverage of carboxylic acid groups increased from an initial percentage of 3.17–10.41%. Mechanical property test results indicated that the aryl diazonium reaction in this paper could improve the interfacial shear strength by 66%. Meanwhile, the technique did not adopt any pre-oxidation step to produce functional groups prior to grafting and was shown to maintain the tensile strength of the fibers. This methodology provided a rapid, facile and economically viable route to produce covalently functionalized carbon fibers in large quantities with an eco-friendly method.

  10. Carboxyl functionalization of carbon fibers via aryl diazonium reaction in molten urea to enhance interfacial shear strength

    International Nuclear Information System (INIS)

    Wang, Yuwei; Meng, Linghui; Fan, Liquan; Wu, Guangshun; Ma, Lichun; Zhao, Min; Huang, Yudong

    2016-01-01

    Graphical abstract: - Highlights: • Carbon fibers are functionalized with benzoic acid groups via aryl diazonium reaction. • Interfacial shear strength of the carbon fibers increases by 66%. • Tensile strength of the carbon fibers is preserved after grafting reaction. • The treatment in molten urea can improve modification efficiency greatly. • Using molten urea as the reaction medium can avoid pollution from organic solvents. - Abstract: Using molten urea as the solvent, carbon fibers were functionalized with carboxylic acid groups via aryl diazonium reaction in 15 min to improve their interfacial bonding with epoxy resin. The surface functionalization was quantified by X-ray photoelectron spectroscopy, which showed that the relative surface coverage of carboxylic acid groups increased from an initial percentage of 3.17–10.41%. Mechanical property test results indicated that the aryl diazonium reaction in this paper could improve the interfacial shear strength by 66%. Meanwhile, the technique did not adopt any pre-oxidation step to produce functional groups prior to grafting and was shown to maintain the tensile strength of the fibers. This methodology provided a rapid, facile and economically viable route to produce covalently functionalized carbon fibers in large quantities with an eco-friendly method.

  11. Immobilization of carbon 14 contained in spent fuel hulls through melting-solidification treatment

    International Nuclear Information System (INIS)

    Mizuno, T.; Maeda, T.; Nakayama, S.; Banba, T.

    2004-01-01

    The melting-solidification treatment of spent nuclear fuel hulls is a potential technique to improve immobilization/stabilization of carbon-14 which is mobile in the environment due to its weakly absorbing properties. Carbon-14 can be immobilized in a solid during the treatment under an inert gas atmosphere, where carbon is not oxidized to gaseous form and remains in the solid. A series of laboratory scale experiments on retention of carbon into an alloy waste form was conducted. Metallic zirconium was melted with metallic copper (Zr/Cu=8/2 in weight) at 1200 deg C under an argon atmosphere. Almost all of the carbon remained in the resulting zirconium-copper alloy. (authors)

  12. Carbon Dioxide Utilization by the Five-Membered Ring Products of Cyclometalation Reactions

    Science.gov (United States)

    Omae, Iwao

    2016-01-01

    In carbon dioxide utilization by cyclometalated five-membered ring products, the following compounds are used in four types of applications: 1. 2-Phenylpyrazole iridium compounds, pincer phosphine iridium compounds and 2-phenylimidazoline iridium compounds are used as catalysts for both formic acid production from CO2 and H2, and hydrogen production from the formic acid. This formic acid can be a useful agent for H2 production and storage for fuel cell electric vehicles. 2. Other chemicals, e.g., dimethyl carbonate, methane, methanol and CO, are produced with dimethylaminomethylphenyltin compounds, pincer phosphine iridium compounds, pincer phosphine nickel compound and ruthenium carbene compound or 2-phenylpyridine iridium compounds, and phenylbenzothiazole iridium compounds as the catalysts for the reactions with CO2. 3. The five-membered ring intermediates of cyclometalation reactions with the conventional substrates react with carbon dioxide to afford their many types of carboxylic acid derivatives. 4. Carbon dioxide is easily immobilized at room temperature with immobilizing agents such as pincer phosphine nickel compounds, pincer phosphine palladium compounds, pincer N,N-dimethylaminomethyltin compounds and tris(2-pyridylthio)methane zinc compounds. PMID:28503084

  13. Determination of the cross-sections of some nuclear reactions occurring as a result of cosmic radiation (1963); Determination des sections efficaces de quelques reactions nucleaires intervenant dans les effets ou rayonnement cosmique (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Tamers, M A [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1962-06-15

    The high energy reactions studied during this research are reactions liable to occur as a result of cosmic radiation. On the one hand the reaction {sup 16}O(p, 3p){sup 14}C was studied and its cross-section measured between 65 MeV and 2.7 GeV; a value of 2.3 mb {+-} 0.5 was found. These values have mode it possible to forecast measurable quantities of carbon-14 in meteorites and also to measure them. On the other hand the reactions {sup 12}C({sup 16}O...), {sup 12}C({sup 14}N...) and {sup 12}C({sup 12}C...) have been studied and an attempt has been made to explain the mechanism of these reactions. (author) [French] Les reactions a hautes energies qui ont ete etudiees au court de ce travail sont des reactions susceptibles de se produire sous l'effet du rayonnement cosmique. Il s'agit d'une part de la reaction {sup 16}O(p, 3p){sup 14}C dont on a mesure la section efficoce egale a 2,3 mb {+-} 0,5 entre 65 MeV et 2,7 GeV. Ces valeurs ont permis de prevoir des quantites mesurables de carbone 14 dans les meteorites et par suite de les determiner. D'autre part les reaction {sup 12}C({sup 16}O...), {sup 12}C({sup 14}N...) et {sup 12}C({sup 12}C...) ont ete etudiees et on a tente d'expliquer le mecanisme de ces reactions. (auteur)

  14. A kinetic study of the reaction of water vapor and carbon dioxide on uranium

    International Nuclear Information System (INIS)

    Santon, J.P.

    1964-09-01

    The kinetic study of the reaction of water vapour and carbon dioxide with uranium has been performed by thermogravimetric methods at temperatures between 160 and 410 deg G in the first case, 350 and 1050 deg C in the second: Three sorts of uranium specimens were used: uranium powder, thin evaporated films, and small spheres obtained from a plasma furnace. The experimental results led in the case of water vapour, to a linear rate of reaction controlled by diffusion at the lower temperatures, and by a surface reaction at the upper ones. In the case of carbon dioxide, a parabolic law has been found, controlled by diffusional processes. (author) [fr

  15. Study of the biogenesis of flavones and cinnamic acids by using molecules labelled with carbon 14

    International Nuclear Information System (INIS)

    Chabannes, Bernard

    1970-01-01

    This research thesis reports the study of flavones, flavonoid compounds and cinnamic acids which are very common as natural pigments in plant species. The author first reports the study of the synthesis of shikimic acid labelled with carbon 14 (biological methods of preparation, synthesis), and then the synthesis of prunin labelled with carbon 14. The next part reports the study of the transformation of prunin labelled with carbon 14 into cosmosiine in flowers with white cosmos. The author finally compares the introduction of cinnamic acid and of shikimic acid (both labelled with carbon 14) into the sinapic acid of red cabbage leaves

  16. Study of 16O(12C,α20Ne)α for the investigation of carbon-carbon fusion reaction via the Trojan Horse Method

    International Nuclear Information System (INIS)

    Rapisarda, G.G.; Spitaleri, C; Kiss, G.G.; La Cognata, M.; Pizzone, R.G.; Romano, S.; Tumino, A.; Bordeanu, C.; Nita, C.; Pantelica, D.; Petrascu, H.; Velisa, G.; Hons, Z.; Mrazek, J.; Szücs, T.; Trache, L.

    2016-01-01

    Carbon-carbon fusion reaction represents a nuclear process of great interest in astrophysics, since the carbon burning is connected with the third phase of massive stars (M > 8 M ☉ ) evolution. In spite of several experimental works, carbon-carbon cross section has been measured at energy still above the Gamow window moreover data at low energy present big uncertainty. In this paper we report the results about the study of the 16 O( 12 C,α 20 Ne)α reaction as a possible three-body process to investigate 12 C( 12 C,α) 20 Ne at astrophysical energy via Trojan Horse Method (THM). This study represents the first step of a program of experiments aimed to measure the 12 C+ 12 C cross section at astrophysical energy using the THM. (paper)

  17. Application of the Trojan Horse Method to study neutron induced reactions: the 17O(n, α14C reaction

    Directory of Open Access Journals (Sweden)

    Gulino M.

    2014-03-01

    Full Text Available The reaction 17O(n, α14C was studied using virtual neutrons coming from the quasi-free deuteron break-up in the three body reaction 17O+d → α+14C+p. This technique, called virtual neutron method, extends the Trojan Horse method to neutron-induced reactions allowing to study the reaction cross section avoiding the suppression effects coming from the penetrability of the centrifugal barrier. For incident neutron energies from thermal up to a few hundred keV, direct experiments have shown the population of two out of three expected excited states at energies 8213 keV and 8282 keV and the influence of the sub-threshold level at 8038 keV. In the present experiment the 18O excited state at E* = 8.125 MeV, missing in the direct measurement, is observed. The angular distributions of the populated resonances have been measured for the first time. The results unambiguously indicate the ability of the method to overcome the centrifugal barrier suppression effect and to pick out the contribution of the bare nuclear interaction.

  18. Mineral carbonation: energy costs of pretreatment options and insights gained from flow loop reaction studies

    Energy Technology Data Exchange (ETDEWEB)

    Penner, Larry R.; O' Connor, William K.; Dahlin, David C.; Gerdemann, Stephen J.; Rush, Gilbert E.

    2004-01-01

    Sequestration of carbon as a stable mineral carbonate has been proposed to mitigate environmental concerns that carbon dioxide may with time escape from its sequestered matrix using alternative sequestration technologies. A method has been developed to prepare stable carbonate products by reacting CO2 with magnesium silicate minerals in aqueous bicarbonate/chloride media at high temperature and pressure. Because this approach is inherently expensive due to slow reaction rates and high capital costs, studies were conducted to improve the reaction rates through mineral pretreatment steps and to cut expenses through improved reactor technology. An overview is given for the estimated cost of the process including sensitivity to grinding and heating as pretreatment options for several mineral feedstocks. The energy costs are evaluated for each pretreatment in terms of net carbon avoided. New studies with a high-temperature, high-pressure flow-loop reactor have yielded information on overcoming kinetic barriers experienced with processing in stirred autoclave reactors. Repeated tests with the flow-loop reactor have yielded insights on wear and failure of system components, on challenges to maintain and measure flow, and for better understanding of the reaction mechanism.

  19. Mineral carbonation: energy costs of pretreatment options and insights gained from flow loop reaction studies

    International Nuclear Information System (INIS)

    Penner, Larry R.; O'Connor, William K.; Dahlin, David C.; Gerdemann, Stephen J.; Rush, Gilbert E.

    2004-01-01

    Sequestration of carbon as a stable mineral carbonate has been proposed to mitigate environmental concerns that carbon dioxide may with time escape from its sequestered matrix using alternative sequestration technologies. A method has been developed to prepare stable carbonate products by reacting CO2 with magnesium silicate minerals in aqueous bicarbonate/chloride media at high temperature and pressure. Because this approach is inherently expensive due to slow reaction rates and high capital costs, studies were conducted to improve the reaction rates through mineral pretreatment steps and to cut expenses through improved reactor technology. An overview is given for the estimated cost of the process including sensitivity to grinding and heating as pretreatment options for several mineral feedstocks. The energy costs are evaluated for each pretreatment in terms of net carbon avoided. New studies with a high-temperature, high-pressure flow-loop reactor have yielded information on overcoming kinetic barriers experienced with processing in stirred autoclave reactors. Repeated tests with the flow-loop reactor have yielded insights on wear and failure of system components, on challenges to maintain and measure flow, and for better understanding of the reaction mechanism

  20. Carbon-14 discharges from the nuclear fuel cycle: Pt. 1

    International Nuclear Information System (INIS)

    McCartney, M.; Baxter, M.S.; Scott, E.M.

    1988-01-01

    The radiological impact of 14 C produced by the nuclear fuel cycle is assessed using an advanced 25-box model of the carbon cycle coupled with a range of feasible energy-use scenarios. In particular, this study estimates both the short- and long-term dose implications to the global population. In the former context, it is predicted that the atmospheric 14 C specific activity in the year 2050 will be 234 Bq kg -1 (carbon), corresponding to delivery of an individual effective dose equivalent rate of 15 μSv year -1 . The contribution of reactor-derived 14 C to the individual dose rate increases steadily throughout this period, reaching 1.8 μSv year -1 in 2050, well within ICRP limits. In the longer term, however, the collective effective dose equivalent commitment is conservatively estimated at 141 man Sv TBq -1 , corresponding to 480 man Sv (GW(e) year) -1 . These figures indicate that 14 C could generate one of the largest contributions to the total dose to man from nuclear power production. (author)

  1. Synthesis of pyrimidinic nucleotides and nucleosides labelled with carbon 14, through tri-methylsilylated and lithiated derivatives

    International Nuclear Information System (INIS)

    Godbillon, Jacques

    1972-01-01

    After a presentation of the trimethysilylation, lithiation, and methylation processes, this research thesis reports the synthesis of methyl carbon 14 - 5 - uridine, of ethyl carbon 14 - 5 - desoxy - 2' - uridine, and of thymidine monophosphate - 5' (methyl carbon 14) by using silylated and lithiated derivatives. The author also reports preliminary studies of biological studies of the trimethylsilyl-5-uridine and of the iodine-6-thymine

  2. Kinetic Modeling of the Reaction Rate for Quartz and Carbon Black Pellet

    Science.gov (United States)

    Li, Fei; Tangstad, Merete

    2018-06-01

    The kinetic modeling for the carbothermal reduction reaction rate in quartz and carbon black pellets is studied at different temperatures, under varying CO partial pressures in ambient atmosphere, varying carbon contents, different quartz particle sizes, and different crucible opening areas. Carbon black is produced by the cracking of natural gas. The activation energy of the SiC-producing step was determined to be 594 kJ/mol. The averaged pre-exponential factor A obtained from 1898 K, 1923 K, and 1948 K (1625 °C, 1650 °C, and 1675 °C) is 2.62E+16 min-1. The reaction rate of the gas-solid interface factor, fix-C content ( X fix-C), temperature ( T), and CO partial pressure ( X CO) can be expressed as follows: {{d/pct}}{{{d}t}} = (1 - 0.40 × X_{{{fix} - C}}^{ - 0.86} × {pct}) × 2.62 × 10^{16} × \\exp ( { - 594000/RT} ) × (2.6 - 0.015 × X_{co} ).

  3. Study on the distribution of organic carbon in soil fractions and its reaction potential of binding the pesticides

    Science.gov (United States)

    Chowdhury, Ashim

    2010-05-01

    soil and groundwater conservation. The radio-tracer technology emerged as the latest technology in agriculture, which helps in studying the translocation of pesticide along with the organic matter and furthermore, the distribution of the pesticide in the soil phases. For the elucidation of these relationships and distribution of organic carbon in soil fractions and its reaction potential of binding the pesticides, the present laboratory study was undertaken using 14C-enriched and non labeled maize straw as a source of fresh SOM in different soil fractions vis-à-vis its effect on distribution of 14C-labeled benazolin and non labeled benazolin (a selective, post emergence herbicide) as a xenobiotics throughout the soil system. To determine the turnover of SOM fractionation of top layer of the both the benazolin treated soil column was done followed by determination of 14C content in four different soil phases obtained from fraction, characterization of different phase and identification of the metabolites with TLC, HPLC and GC-MS. The result clearly indicated that where soil columns received non- labeled maize straw and 14C-benazolin as well as 14C-labeled maize straw and nonlabeled benazolin; the unit weight distribution study of radioactivity in benazolin followed the decreasing trend in different phases in following order of electrolyte>colloidal> micro aggregate > sediment phases respectively. The percentage distribution of maize straw (fresh organic matter) was also found highest in electrolyte phase followed the same order as in the case of benazolin. It was observed in phase-wise distribution study that radioactivity either of 14C-maize straw or 14C-benazolin was mostly concentrated in the sediment phase followed by micro aggregate, colloidal and electrolyte phase. From this it was clear that the soil columns, which received maize straw, have bound the pesticide benazolin and hindered the translocation to the lower layers leading to higher percentage of recovered

  4. Synthesis of 14C-radiolabelled Tilmicosin

    International Nuclear Information System (INIS)

    Crouse, G.D.; Terando, N.H.

    1989-01-01

    Tilmicosin was radiolabelled with carbon-14 on the 3,5-dimethylpiperidinyl sidechain as a requirement for animal metabolism studies. A new radiosynthesis of 3,5-dimethyl-piperidine was developed for this purpose. Incorporation into the desmycosin nucleus was accomplished by a reductive amination reaction. (author)

  5. A high-performance mesoporous carbon supported nitrogen-doped carbon electrocatalyst for oxygen reduction reaction

    Science.gov (United States)

    Xu, Jingjing; Lu, Shiyao; Chen, Xu; Wang, Jianan; Zhang, Bo; Zhang, Xinyu; Xiao, Chunhui; Ding, Shujiang

    2017-12-01

    Investigating low-cost and highly active electrocatalysts for oxygen reduction reactions (ORR) is of crucial importance for energy conversion and storage devices. Herein, we design and prepare mesoporous carbon supported nitrogen-doped carbon by pyrolysis of polyaniline coated on CMK-3. This electrocatalyst exhibits excellent performance towards ORR in alkaline media. The optimized nitrogen-doped mesoporous electrocatalyst show an onset potential (E onset) of 0.95 V (versus reversible hydrogen electrode (RHE)) and half-wave potential (E 1/2) of 0.83 V (versus RHE) in 0.1 M KOH. Furthermore, the as-prepared catalyst presents superior durability and methanol tolerance compared to commercial Pt/C indicating its potential applications in fuel cells and metal-air batteries.

  6. TOTAL NUCLEAR-REACTION PROBABILITY OF 270 TO 390 N-14 IONS IN SI AND CSI

    NARCIS (Netherlands)

    WARNER, RE; CARPENTER, CL; FETTER, JM; WAITE, WF; WILSCHUT, HW; HOOGDUIN, JM

    A magnetic spectrograph and position-sensitive detectors were used to measure the total nuclear reaction probability eta(R) for alpha + CsI at 116 MeV, N-14 + CsI at 265 and 385 MeV, and N-14 + Si at 271 and 390 MeV. From these eta(R)'s, average reaction cross sections sigma(R) were deduced for

  7. The 14 mu m band of carbon stars

    NARCIS (Netherlands)

    Yamamura, [No Value; de Jong, T; Waters, LBFM; Cami, J; Justtanont, K; LeBertre, T; Lebre, A; Waelkens, C

    1999-01-01

    We have studied the absorption bands around 14 mum in the spectra of 11 carbon stars with mass-loss rates ranging from 10(-8) to 10(-4) M-circle dot yr(-1), based on data obtained with the Short Wavelength Spectrometer (SWS) on board the Infrared Space Observatory (ISO). All stars clearly show a

  8. Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data

    International Nuclear Information System (INIS)

    Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

    2007-01-01

    groundwater ages. The DIC calculated groundwater ages were compared with DOC calculated groundwater ages and both of these ages were compared to travel times developed in ground-water flow and transport models. If nuclear waste is stored in Yucca Mountain, the saturated zone is the final barrier against the release of radionuclides to the environment. The most recent rendition of the TSPA takes little credit for the presence of the saturated zone and is a testament to the inadequate understanding of this important barrier. If radionuclides reach the saturated zone beneath Yucca Mountain, then there is a travel time before they would leave the Yucca Mountain area and flow down gradient to the Amargosa Valley area. Knowing how long it takes groundwater in the saturated zone to flow from beneath Yucca Mountain to down gradient areas is critical information for potential radionuclide transport. Radionuclide transport in groundwater may be the quickest pathway for radionuclides in the proposed Yucca Mountain repository to reach land surface by way of groundwater pumped in Amargosa Valley. An alternative approach to ground-water flow and transport models to determine the travel time of radionuclides from beneath Yucca Mountain to down gradient areas in the saturated zone is by carbon-14 dating of both inorganic and organic carbon dissolved in the groundwater. A standard method of determining ground-water ages is to measure the carbon-13 and carbon-14 of DIC in the groundwater and then correct the measured carbon-14 along a flow path for geochemical reactions that involve carbon containing phases. These geochemical reactions are constrained by carbon-13 and isotopic fractionations. Without correcting for geochemical reactions, the ground-water ages calculated from only the differences in carbon-14 measured along a flow path (assuming the decrease in carbon-14 is due strictly to radioactive decay) could be tens of thousands of years too old. The computer program NETPATH, developed by

  9. Systematics of the (n, t) reaction cross sections at 14 MeV

    International Nuclear Information System (INIS)

    Yao Lishan

    1992-01-01

    The systematic behaviour of the (n, t) reaction cross sections have been studied for medium and heavy mass nuclei at 14 MeV. An analysis of the gross trend, the isotope and odd-even effects are given. Possible reaction mechanisms are also discussed. A set of the systematics parameters have been extracted on the basis of the analyzing and fitting of the available data. The (n, t) reaction cross sections of some nuclei have been predicted and a good agreement with the measured data has been obtained

  10. Mechanism of the reactions 14N(d,p)15N and 14N(d,n)15O by Doppler shift line shape method

    International Nuclear Information System (INIS)

    Abdel-Moneim, A.M.

    1976-06-01

    In this investigation the total and the differential absolute cross sections of the 14 N(d,p) 15 N reaction leading to excited states at 7.3, 8.3 and 9.05 MeV levels in 15 N and the 14 N(d,n) 15 O reaction leading to the 6.79 MeV level in 15 O, have been studied over the energy range from 0.5 MeV to 3 MeV. Doppler shift line shape method as well as γ-ray yield measurements have been used. The absolute cross sections are determined relative to the known 14 N(p,p) elastic differential cross sections. A comparison with previously determined values for the same reactions at selected energies shows good agreement in angular distribution as well as in absolute values. The total cross section for the d,p reaction shows a general energy dependence which is typical for direct reactions, but with minor contribution from compound nucleus formation at certain energy ranges. For the 14 N(d,n) 15 N reaction, the method applied is unique, since it allows the differential cross section to be studied all the way down to the threshold energy of deuterons at 2 MeV, with a detectorsystem efficiency which is constant over the entire range of neutron energies. The larger part of the energy range that has been investigated is dominated by a resonance at 2.55 π+ 0.05 MeV deuteron energy and a halfwidth depending on the amount of contribution from the direct reaction of the order of 200-400 keV. (JIW)

  11. Nano-Scale Au Supported on Carbon Materials for the Low Temperature Water Gas Shift (WGS Reaction

    Directory of Open Access Journals (Sweden)

    Paula Sánchez

    2011-12-01

    Full Text Available Au-based catalysts supported on carbon materials with different structures such as graphite (G and fishbone type carbon nanofibers (CNF-F were prepared using two different methods (impregnation and gold-sol to be tested in the water gas shift (WGS reaction. Atomic absorption spectrometry, transmission electron microscopy (TEM, temperature-programmed oxidation (TPO, X-ray diffraction (XRD, Raman spectroscopy, elemental analyses (CNH, N2 adsorption-desorption analysis, temperature-programmed reduction (TPR and temperature-programmed decomposition were employed to characterize both the supports and catalysts. Both the crystalline nature of the carbon supports and the method of gold incorporation had a strong influence on the way in which Au particles were deposited on the carbon surface. The higher crystallinity and the smaller and well dispersed Au particle size were, the higher activity of the catalysts in the WGS reaction was noted. Finally, catalytic activity showed an important dependence on the reaction temperature and steam-to-CO molar ratio.

  12. Synthesis of 1-(4-methylsulfone-phenyl)-5-(4-fluoro-phenyl)-5-[14C]-1,2,3- triazole and 1-(4-sulfonamide-phenyl)-5-(4-fluoro-phenyl)-5-[14C]-1,2,3- triazole as novel carbon-14 anticonvulsant

    International Nuclear Information System (INIS)

    Saemian, N.; Shirvani, G.; Matloubi, H.

    2006-01-01

    Two 1,2,3-triazole anticonvulsants, 1-(4-methylsulfone-phenyl)-5-(4-fluoro-phenyl)-5-[ 14 C]-1,2,3-triazole and 1-(4-sulfonamide-phenyl)-5-(4- fluoro-phenyl)-5-[ 14 C]-1,2,3-triazole, both labeled with carbon-14 in the 5-position were prepared from para-fluoro-benzonitrile-[cyano- 14 C]. (author)

  13. A highly efficient electrocatalyst for oxygen reduction reaction: phosphorus and nitrogen co-doped hierarchically ordered porous carbon derived from an iron-functionalized polymer

    Science.gov (United States)

    Deng, Chengwei; Zhong, Hexiang; Li, Xianfeng; Yao, Lan; Zhang, Huamin

    2016-01-01

    Heteroatom-doped carbon materials have shown respectable activity for the oxygen reduction reaction (ORR) in alkaline media. However, the performances of these materials are not satisfactory for energy conversion devices, such as fuel cells. Here, we demonstrate a new type of phosphorus and nitrogen co-doped hierarchically ordered porous carbon (PNHOPC) derived from an iron-functionalized mesoporous polymer through an evaporation-induced self-assembly process that simultaneously combines the carbonization and nitrogen doping processes. The soft template and the nitrogen doping process facilitate the formation of the hierarchically ordered structure for the PNHOPC. The catalyst possesses a large surface area (1118 cm2 g-1) and a pore volume of 1.14 cm3 g-1. Notably, it exhibits excellent ORR catalytic performance, superior stability and methanol tolerance in acidic electrolytes, thus making the catalyst promising for fuel cells. The correlations between the unique pore structure and the nitrogen and phosphorus configuration of the catalysts with high catalytic activity are thoroughly investigated.Heteroatom-doped carbon materials have shown respectable activity for the oxygen reduction reaction (ORR) in alkaline media. However, the performances of these materials are not satisfactory for energy conversion devices, such as fuel cells. Here, we demonstrate a new type of phosphorus and nitrogen co-doped hierarchically ordered porous carbon (PNHOPC) derived from an iron-functionalized mesoporous polymer through an evaporation-induced self-assembly process that simultaneously combines the carbonization and nitrogen doping processes. The soft template and the nitrogen doping process facilitate the formation of the hierarchically ordered structure for the PNHOPC. The catalyst possesses a large surface area (1118 cm2 g-1) and a pore volume of 1.14 cm3 g-1. Notably, it exhibits excellent ORR catalytic performance, superior stability and methanol tolerance in acidic

  14. Synthesis of a polycyclic aromatic hydrocarbon marked with carbon-14: (b, d e f) dibenzo-chrysene {sup 14}C-7,14; Synthese d'un hydrocarbure aromatique polycyclique marque au carbone 14: le dibenzo (b, d e f) chrysene {sup 14}C-7,14

    Energy Technology Data Exchange (ETDEWEB)

    Chatelain, G [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    (b, d e f) dibenzo-chrysene C-7,14 has been synthesized from radioactive carbon dioxide and the organic magnesium compound derived from 1,5 dibromo naphthalene. The product has been purified by a very precise series of fractionated chromatographs on alumina having a chromatographic activity. This has necessitated the development of a special technique. (author) [French] Le dibenzo (b, d e f) chrysene 14C-7,14 a ete synthetise au depart de gaz carbonique radioactif et de bis-organomagnesien derive du dibromo-1,5 naphtalene. Le produit a ete purifie par une serie de chromatographies fractionnees sur alumine d'activite chromatographique tres precise. Ceci a fait l'objet d'une mise au point de technique. (auteur)

  15. The management of carbon-14 in Canadian nuclear facilities

    International Nuclear Information System (INIS)

    1995-07-01

    In Canada, Derived Emission Limits (DELs) for the release of radionuclides from nuclear facilities are set to ensure that the dose to a member of a critical group from one year's release does not exceed the limit on annual dose to a member of the public set by the Atomic Energy Control Regulations. The Advisory Committee on Radiological Protection (ACRP) has expressed concerns as to whether this procedure provides adequate protection to members of the public, including future generations, for certain radionuclides such as a carbon-14 ( 14 C), which can accumulate in the environment and which can be dispersed, through environmental processes, beyond the local region where the critical group is assumed to live. The ACRP subsequently established a Working Group to review the production, release, environmental levels, and waste management of 14 C arising in CANDU power reactors. The ACRP recommendations resulting from this review can be summarized as · Given the current levels of emissions from CANDU nuclear power stations resulting from the use of a carbon dioxide annulus gas and the limitations in the calculation and use of collective dose, the ACRP sees no need for and additional collective dose limit to be applied to these sources. · The AECB should require licensees of power reactors and waste management sites to provide an annual inventory of 14 C held within reactor buildings and waste management sites; to provide information on the stability of the ion exchange resins and their continuing ability to retain the 14 C; to demonstrate on an ongoing basis that releases of 14 C are maintained at a small fraction of the emission limits; and to report annually the critical group and local collective doses arising from releases of 14 C. 61 refs., 25 tabs., 4 figs

  16. Interface conditions for fast-reaction fronts in wet porous mineral materials: the case of concrete carbonation

    NARCIS (Netherlands)

    Muntean, A.; Böhm, M.

    2009-01-01

    Reaction–diffusion processes, where slow diffusion balances fast reaction, usually exhibit internal loci where the reactions are concentrated. Some modeling and simulation aspects of using kinetic free-boundary conditions to drive fast carbonation reaction fronts into unsaturated porous cement-based

  17. Determination of the 13N(p,γ)14O reaction rate through the Coulomb break-up of a 14O radioactive beam

    International Nuclear Information System (INIS)

    Kiener, J.; Lefebvre, A.; Aguer, P.; Bogaert, G.; Coc, A.; Pasquier, G.; Thibaud, J.P.; Bacri, C.O.; Bimbot, R.; Borderie, B.; Clapier, F.; Fortier, S.; Rivet, M.F.; Stephan, C.; Tassan-Got, L.; Disdier, D.; Kraus, L.; Linck, I.; Grunberg, C.; Laurent, F.S.

    1993-01-01

    In stellar-evolution models, the 13 N(p,γ) 14 O reaction plays an important role in the hot CNO cycle. Its reaction rate depends directly on the magnitude of the radiative width of the 5.17 MeV level in 14 O. That width has been measured using the Coulomb break-up technique. A 70 MeV/u 14 O beam was excited in the Coulomb field of a 208 Pb target, the 13 N and proton fragments being recorded using a magnetic spectrometer and CsI scintillators, respectively. The experimental value Γ γ =2.4±0.9 eV in overall agreement with other recent measurements. (orig.)

  18. Sources of C-14 generation and associated doses

    International Nuclear Information System (INIS)

    Amado, Valeria A.; Biaggio, Alfredo L.; Canoba, Analia C.; Curti, Adriana R.

    2009-01-01

    C-14 is a radioactive isotope of C with a half-life of 5700 years that decays to N-14 by emission of beta radiation. It is naturally produced in the upper atmosphere by cosmic ray neutrons via the (n;p) reaction over N-14. Anthropogenic C-14 has been generated in the past by atmospheric nuclear weapon tests and it is currently produced during the operation of nuclear reactors. Once released this radionuclide behaves in the biosphere as the standard carbon cycle. Since the beginning of the industrial period the relationship Carbon-14/Stable Carbon has changed continuously, and so the dose incurred by the world population. In this paper the main anthropogenic activities that modified such relationship are presented and analyzed: the Suess effect and the generation of nuclear energy. It is concluded that the current trend of reduction of the total dose due to C-14 will continue during the next decades. Finally it is indicated that in order to prevent an excessive accumulation of this radionuclide in the biosphere, actions should be collectively implemented to be effective. (author) [es

  19. Chemical Reaction Equilibrium in Nanoporous Materials: NO Dimerization Reaction in Carbon Slit Nanopores

    Czech Academy of Sciences Publication Activity Database

    Lísal, Martin; Brennan, J.K.; Smith, W.R.

    2006-01-01

    Roč. 124, č. 6 (2006), s. 64712.1-64712.14 ISSN 0021-9606 R&D Projects: GA ČR(CZ) GA203/05/0725; GA AV ČR(CZ) 1ET400720507; GA AV ČR(CZ) 1ET400720409 Institutional research plan: CEZ:AV0Z40720504 Keywords : nanopore * NO dimerization * reaction Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.166, year: 2006

  20. Synthesis of (9Z, 12E-, (9E, 12Z-[1-14C]-linoleic acid, (9Z, 12Z, 15E-, (9E, 12Z, 15Z-[1-14C]-linolenic acid and (5Z, 8Z, 11Z, 14E-[1-14C]-arachidonic acid

    Directory of Open Access Journals (Sweden)

    Enard, Thierry

    1996-04-01

    Full Text Available Trans polyunsaturated fatty acids are produced in vegetable oils during heat treatment (240-250 °C.ln order to study the metabolic pathway of 9c, 12t and 9t, 12c linoleic acid and 9c, 12c, 15t and 9t, 12c, 15c linolenic acid, these products were prepared labelled with carbon 14 in the carboxylic position. 5c, 8c, 11c, 14t-Arachidonic acid was also labelled on the carboxylic position with carbon 14 in order to study its physiological effects. To introduce the labelling (E-bromo precursors with a 17 carbons chain or a 19 carbon chain were needed. The different syntheses were done by elongation steps and creation of cis double bonds via highly stereospecific Wittig reactions. The radioactive carbon atom was introduced from [14C]-potassium cyanide. The final radioactive fatty acids had a specific activity greater than 50 mCi/mmol and a radioactive purity better than 99 % for linoleic and linolenic and better than 98.6 % for arachidonic acid.

  1. DFT studies for the substituent effect on the diels-alder reaction of 1,4-diaza-1,3-butadienes

    International Nuclear Information System (INIS)

    Lee, Gab Yong

    2001-01-01

    DFT calculations have been performed on several substituted 1,4-diaza-1,3-butadienes (1,4-DABs) with electron donating and withdrawing groups at the terminal two nitrogens to investigate the reactivity of Diels-Alder reaction with acrolein. The calculated FMO (Frontier Molecular orbital) energies for the optimized 1,4-disubstituted-1,4DABs have been used to explain both normal and inverse electron demand Diels-Alder reactions. It is shown that the electron donating and withdrawing substituents lead to the normal(HOMO diene controlled) and inverse electron demand (LUMO diene controlled) Diels-Alder reactions, respectively

  2. MOF-derived Cu/nanoporous carbon composite and its application for electro-catalysis of hydrogen evolution reaction

    International Nuclear Information System (INIS)

    Raoof, Jahan-Bakhsh; Hosseini, Sayed Reza; Ojani, Reza; Mandegarzad, Sakineh

    2015-01-01

    In this work, metal-organic framework Cu_3(BTC)_2 [BTC = 1,3,5-benzenetricarboxylate] (commonly known as MOF-199 or HKUST-1), is used as porous template for preparation of a Cu/nanoporous carbon composite. The MOF-derived Cu/nanoporous carbon composite (Cu/NPC composite) is synthesized by direct carbonization of the MOF-199 without any carbon precursor additive. The physical characterization of the solid catalyst is achieved by using a variety of different techniques, including XRD (X-ray powder diffraction), scanning electron microscopy, thermo-gravimetric analysis, and nitrogen physisorption measurements. The electrochemical results have shown that the Cu/NPC composite modified glassy carbon electrode (Cu/NPC/GCE) as a non-platinum electrocatalyst exhibited favorable catalytic activity for hydrogen evolution reaction, in spite of high resistance to faradic process. This behavior can be attributed to existence of Cu metal confirmed by XRD and/or high effective pore surface area (1025 m"2 g"−"1) in the Cu/NPC composite. The electron transfer coefficient and exchange current density for the Cu/NPC/GCE is calculated by Tafel plot at about 0.34 and 1.2 × 0"−"3 mAcm"−"2, respectively. - Graphical abstract: Metal organic framework-derived Cu/nanoporous carbon composite (Cu/NPC composite) was prepared by direct carbonization of MOF-199 without addition of any carbon source at 900 °C. The Cu/NPC/GCE demonstrated an excellent electrocatalytic activity towards hydrogen evolution reaction compared with bare GCE. - Highlights: • MDNPC (MOF-199 derived nanoporous carbon) is prepared by direct carbonization. • MOF-199 is utilized as a template without addition of carbon resource. • The MDNPC has a good electrocatalytic activity in hydrogen evolution reaction. • High BET surface area and hydrogen adsorption property improved catalyst activity.

  3. Inelastic Branch of the Stellar Reaction $^{14}$O$(\\alpha,p)^{17}$F

    CERN Multimedia

    Hass, M; Van duppen, P L E

    2002-01-01

    We propose to use the upgraded REX-ISOLDE beam energy to study the astrophysically important $^{14}$O($\\alpha$, p)$^{17}$F reaction in time reverse kinematics. In particular, we will use the highly efficient miniball + CD detection system to measure the previously undetermined inelastic proton branch of the 1$^-$ state at 6.15 MeV in $^{18}$Ne. This state dominates the reaction rate under X-ray burster conditions.

  4. Synthesis of sup 14 C-radiolabelled Tilmicosin

    Energy Technology Data Exchange (ETDEWEB)

    Crouse, G D; Terando, N H [Lilly (Eli) and Co., Indianapolis, IN (USA). Lilly Research Labs.

    1989-04-01

    Tilmicosin was radiolabelled with carbon-14 on the 3,5-dimethylpiperidinyl sidechain as a requirement for animal metabolism studies. A new radiosynthesis of 3,5-dimethyl-piperidine was developed for this purpose. Incorporation into the desmycosin nucleus was accomplished by a reductive amination reaction. (author).

  5. Neutron halo in 14B studied via reaction cross sections

    International Nuclear Information System (INIS)

    Fukuda, M.; Tanaka, M.; Iwamoto, K.; Wakabayashi, S.; Yaguchi, M.; Ohno, J.; Morita, Y.; Kamisho, Y.; Mihara, M.; Matsuta, K.; Nishimura, D.; Suzuki, S.; Nagashima, M.; Ohtsubo, T.; Ogura, T.; Abe, K.; Kikukawa, N.; Sakai, T.; Sera, D.; Takechi, M.; Izumikawa, T.; Suzuki, T.; Yamaguchi, T.; Sato, K.; Furuki, H.; Miyazawa, S.; Ichihashi, N.; Kohno, J.; Yamaki, S.; Kitagawa, A.; Sato, S.; Fukuda, S.

    2014-01-01

    Reaction cross sections (σ R ) for the neutron-rich nucleus 14 B on Be, C, and Al targets have been measured at several energies in the intermediate energy range of 45-120 MeV/nucleon. The present experimental σ R show a significant enhancement relative to the systematics of stable nuclei. The nucleon density distribution was deduced through the fitting procedure with the modified Glauber calculation. The necessity of a long tail in the density distribution was found, which is consistent with the valence neutron in 2s 1/2 orbital with the small empirical one-neutron separation energy in 14 B. (authors)

  6. Two dimensional model study of atmospheric transport using carbon-14 and strontium-90 as inert tracers

    International Nuclear Information System (INIS)

    Kinnison, D.E.; Wuebbles, D.J.; Johnston, H.S.

    1992-02-01

    This study tests the transport processes in the LLNL two-dimensional chemical-radiative-transport model using recently reanalyzed carbon-14 and strontium-90 data. These radioactive tracers were produced bythe atmospheric nuclear bomb tests of 1952--58 and 1961--62, and they were measured at a few latitudes up to 35 kilometers over the period 1955--1970. Selected horizontal and vertical eddy diffusion coefficients were varied in the model to test their sensitivity to short and long term transpose of carbon-14. A sharp transition of K zz and K yy through the tropopause, as opposed to a slow transition between the same limiting values, shows a distinct improvement in the calculated carbon-14 distributions, a distinct improvement in the calculated seasonal and latitudinal distribution of ozone columns (relative to TOMS observations), and a very large difference in the calculated ozone reduction by a possible fleet of High Speed Civil Transports. Calculated northern hemisphere carbon-14 is more sensitive to variation of K yy than are global ozone columns. Strontium-90 was used to test the LLNL tropopause height at four different latitudes. Starting with the 1960 background distribution of carbon-14, we calculate the input of carbon-14 as the sum of each nuclear test of the 1961--62 series, using two bomb-cloud rise models. With the Seitz bomb-rise formulation in the LLNL model, we find good agreement between calculated and observedcarbon-14 (with noticeable exceptions at the north polar tropopause and the short-term mid-latitude mid-stratosphere) between 1963 and 1970

  7. Dilepton spectroscopy at intermediate energies; the carbon - carbon reaction at 1 GeV/A; Spectroscopie des dileptons aux energies intermediaires; la reaction carbone - carbone A 1 GeV/A

    Energy Technology Data Exchange (ETDEWEB)

    Prunet, M

    1995-06-01

    The Physics context of this work is heavy ion collisions at relativistic energies where di-electron provide informations on the produced hot and dense nuclear matter. The experiment is performed by the DiLepton Spectrometer (DLS) Collaboration at the Lawrence Berkeley`s Bevalac. After a description of the apparatus, we review the whole program and the main results so far obtained: first evidence of a significant di-electron signal at energies above 1 GeV/A; improvement of the understanding of di-electron production (electromagnetic decays of hadrons, {pi}{sup +}{pi}{sup -} annihilation and hadronic Bremsstrahlung). The results of p-p, p-d reactions from 1 to 4.9 GeV/A show that hadronic Bremsstrahlung (pp, pn) should be reformulated. Our analysis, optimized on the reaction Carbon-Carbon at 1 GeV/A, has been applied to {alpha}-Ca and d-Ca. We have developed two main aspects: improvement of the time resolution (500 ps) in order to eliminate all of the protons. Improvement of the space resolution (300 {mu}) for better mass resolution, in particular in the {rho} region. We obtain the cross section of di-electron production as a function of mass, transverse momentum and rapidity from the C-C, {alpha}-Ca and d-Ca reactions at 1 GeV/A. We also compare the cross section for all of the measured systems at 1 GeV/A, including Ca-Ca, and we show a (ApAt){sup {alpha}} dependence with {alpha} {approx_equal} 1.1. A study of the associated multiplicity has also been performed. Nevertheless, the limited acceptance of the DLS and its poor mass resolution to identify the {rho}, {omega} vector mesons, do not allow to conclude on hadron behaviour in nuclear matter. This point is one of the main goal of the HADES project at GSI (Darmstadt), which we give a brief description of the main features. (authors). 60 refs.

  8. Accelerator mass analyses of meteorites - carbon-14 terrestrial ages

    International Nuclear Information System (INIS)

    Miura, Y.; Rucklidge, J.; Beukens, R.; Fireman, E.

    1988-01-01

    Carbon-14 terrestrial ages of ten Antarctic meteorites have been measured by the IsoTrace accelerator mass spectrometry (AMS). The 14 C terrestrial age of 1 gram sample was determined from 14 C concentrations collected at melt and re-melt temperatures, compared with the 14 C concentration of the known Bruderheim chondrite. Yamato-790448 (LL3) chondrite was found to be the oldest terrestrial age of 3x10 4 years in the nine Yamato chondrites, whereas Yamato-791630 (L4) chondrite is considered to be the youngest chondrites less than thousand years. Allan Hills chondrite of ALH-77231 (L6) shows older terrestrial age than the nine Yamato chondrites. New accelerator data of the terrestrial age show higher accuracy with smaller sample than the previous counting method. (author)

  9. Electro-deposition of Pd on carbon paper and Ni foam via surface limited redox-replacement reaction for oxygen reduction reaction

    CSIR Research Space (South Africa)

    Modibedi, RM

    2014-05-01

    Full Text Available Pd nanostructured catalysts were electrodeposited by surface-limited redox replacement reactions usingthe electrochemical atomic layer deposition technique. Carbon paper and Ni foam were used as substratesfor the electrodeposition of the metal...

  10. Laboratory Experiments to Evaluate Diffusion of 14C into Nevada Test Site Carbonate Aquifer Matrix

    Energy Technology Data Exchange (ETDEWEB)

    Ronald L. Hershey; William Howcroft; Paul W. Reimus

    2003-03-01

    Determination of groundwater flow velocities at the Nevada Test Site is important since groundwater is the principal transport medium of underground radionuclides. However, 14C-based groundwater velocities in the carbonate aquifers of the Nevada Test Site are several orders of magnitude slower than velocities derived from the Underground Test Area regional numerical model. This discrepancy has been attributed to the loss or retardation of 14C from groundwater into the surrounding aquifer matrix making 14C-based groundwater ages appear much older. Laboratory experiments were used to investigate the retardation of 14C in the carbonate aquifers at the Nevada Test Site. Three sets of experiments were conducted evaluating the diffusion of 14C into the carbonate aquifer matrix, adsorption and/or isotopic exchange onto the pore surfaces of the carbonate matrix, and adsorption and/or isotopic exchange onto the fracture surfaces of the carbonate aquifer. Experimental results a nd published aquifer matrix and fracture porosities from the Lower Carbonate Aquifer were applied to a 14C retardation model. The model produced an extremely wide range of retardation factors because of the wide range of published aquifer matrix and fracture porosities (over three orders of magnitude). Large retardation factors suggest that groundwater with very little measured 14C activity may actually be very young if matrix porosity is large relative to the fracture porosity. Groundwater samples collected from highly fractured aquifers with large effective fracture porosities may have relatively small correction factors, while samples from aquifers with a few widely spaced fractures may have very large correction factors. These retardation factors were then used to calculate groundwater velocities from a proposed flow path at the Nevada Test Site. The upper end of the range of 14C correction factors estimated groundwater velocities that appear to be at least an order of magnitude too high compared

  11. Coating of graphite flakes with MgO/carbon nanocomposite via gas state reaction

    International Nuclear Information System (INIS)

    Sharif, M.; Faghihi-Sani, M.A.; Golestani-Fard, F.; Saberi, A.; Soltani, Ali Khalife

    2010-01-01

    Coating of graphite flakes with MgO/carbon nanocomposite was carried out via gaseous state reaction between mixture of Mg metal, CO gas and graphite flakes at 1000 o C. XRD and FE-SEM analysis of coating showed that the coating was comprised of MgO nano particles and amorphous carbon distributed smoothly and covered the graphite surface evenly. Thermodynamic calculations were employed to predict the reaction sequences as well as phase stability. The effect of coating on water wettability and oxidation resistance of graphite was studied using contact angle measurement and TG analysis, respectively. It was demonstrated that the reaction between Mg and CO could result in MgO/C nanocomposite deposition. The coating improved water wettability of graphite and also enhanced the oxidation resistance of graphite flakes significantly. Also the graphite coating showed significant phenolic resin-wettabilty owing to high surface area of such hydrophilic nano composite coating. The importance of graphite coating is explained with emphasis on its potential application in graphite containing refractories.

  12. Study of the 14N + 159Tb reaction between 6 and 22 MeV/u

    International Nuclear Information System (INIS)

    Balster, G.J.

    1987-01-01

    The main topic of this thesis is the study of the dynamics of asymmetric nucleus-nucleus collisions from low to intermediate energies by concentrating on one specific reaction, 14 N+ 159 Tb. The main experimental techniques involved are inclusive measurements and measurements of coincidences between particles and KX-rays. Additional experiments that were performed to support this study are also discussed. Results from measurements of target KX-ray production cross sections for heavy ion beams at energies above the Coulomb barrier are presented. It is shown that these cross sections can be accurately calculated and hence that the measurement of target KX-rays can serve as a convenient way of normalizing the particle-KX-ray coincidence data. Results from inclusive measurements of 92 MeV 14 N induced reactions on different targets are employed to investigate the reaction systematics at low energies. The systematic study of the 14 N+ 159 Tb reaction between 6 and 22 MeV/u via inclusive measurements and the measurement of particle-KX-ray coincidences is then presented. (Auth.)

  13. The Degradation of 14C-Glutamic Acid by L-Glutamic Acid Decarboxylase.

    Science.gov (United States)

    Dougherty, Charles M; Dayan, Jean

    1982-01-01

    Describes procedures and semi-micro reaction apparatus (carbon dioxide trap) to demonstrate how a particular enzyme (L-Glutamic acid decarboxylase) may be used to determine the site or sites of labeling in its substrate (carbon-14 labeled glutamic acid). Includes calculations, solutions, and reagents used. (Author/SK)

  14. Comments on (n, charged particle) reactions at E/sub n/ = 14 MeV

    International Nuclear Information System (INIS)

    Haight, R.C.

    1984-01-01

    The study of charged particles produced by bombarding materials with 14 MeV neutrons is important for the development of fusion reactors and for biomedical applications as well as for the basic understanding of nuclear reactions. Several experimental techniques for investigating these reactions are discussed here. The interpretation of the data requires the consideration of several possible reaction mechanisms including equilibrium and preequilibrium particle emission and, for light nuclei, sequential particle emission, final state interactions, and the effect of resonances. 17 references

  15. Final Report: The Impact of Carbonate on Surface Protonation, Electron Transfer and Crystallization Reactions in Iron Oxide Nanoparticles and Colloids

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, David Adams [The University of Alabama

    2013-07-02

    This project addresses key issues of importance in the geochemical behavior of iron oxides and in the geochemical cycling of carbon and iron. For Fe, we are specifically studying the influence of carbonate on electron transfer reactions, solid phase transformations, and the binding of carbonate to reactive sites on the edges of particles. The emphasis on carbonate arises because it is widely present in the natural environment, is known to bind strongly to oxide surfaces, is reactive on the time scales of interest, and has a speciation driven by acid-base reactions. The geochemical behavior of carbonate strongly influences global climate change and CO{sub 2} sequestration technologies. Our goal is to answer key questions with regards to specific site binding, electron transfer reactions, and crystallization reactions of iron oxides that impact both the geochemical cycling of iron and CO{sub 2} species. Our work is focused on the molecular level description of carbonate chemistry in solution including the prediction of isotope fractionation factors. We have also done work on critical atmospheric species.

  16. Metabolism and risks from tritium and carbon-14 in the developing organism

    International Nuclear Information System (INIS)

    Gerber, G.B.; Kirchmann, R.; Hoek, J. van den

    1987-01-01

    In this review the risks are considered from tritium and carbon-14 to the developing organs of mammals. It mainly deals with H-3 but the conclusions are largely valid also for C-14. The metabolism and average tissue of THO as well as of organically bound tritium are discussed. Dosimetry of radiosensitive structures is also considered. 14 refs.; 2 figs.; 1 table

  17. Importance of sequential two-step transfer process in a ΔS = 1 and ΔT = 1 inelastic transition of 14N(p, p')14N reaction

    International Nuclear Information System (INIS)

    Aoki, Y.; Kunori, S.; Nagano, K.; Toba, Y.; Yagi, K.

    1981-01-01

    Differential cross sections and vector analyzing powers for 14 N(p, p') and 14 N(p, d) reactions have been measured at E sub(p) = 21.0 MeV to elucidate the reaction mechanism and the effective interaction for the ΔS = ΔT = 1 transition in 14 N(p, p') 14 N(2.31 MeV) reaction. The data are analyzed in terms of finite-range distorted wave Borm approximation (DWBA) which include direct, knock-on exchange and (p, d)(d, p') two-step processes. Shell model wave functions of Cohen and Kurath are used. The data for the first excited state is reasonably well explained by introducing two-step process. The two-step process explains half of the experimental intensity. Moreover vector analyzing power can hardly be explained without introducing this two-step process. Vector analyzing power of protons leading to the second excited state in 14 N is better explained by introducing macroscopic calculation. The data for 14 N(p, d) 13 N(gs) reaction are well explained by a suitable choice of deuteron optical potential. Knock-on exchange contribution is relatively small. Importance of this two-step process for ΔS = ΔT = 1 transition is discussed up to 40 MeV. (author)

  18. Temperature dependence of desoxyribosylation of pyrimidine derivatives labelled with carbon-14 and tritium

    International Nuclear Information System (INIS)

    Pritasil, L.; Filip, J.

    1977-01-01

    The effect of the temperature and concentration of the enzyme preparation from Escherichia coli B on the reaction of pyrimidine bases with 2-desoxy-α-D-riboso-l-phosphate or α-D-riboso-l-phosphate was studied. It was found that at +2 deg C and low enzyme concentration higher yields of nucleosides are obtained than at the commonly used temperature of 37 deg C. The reaction time, however, must be protracted. The prepared [2- 14 C] uridine, 2'-deoxy[2- 14 C] uridine and [2- 14 C] thymidine had a high specific activity and radiochemical purity

  19. Chemical Reactions in the Processing of Mosi2 + Carbon Compacts

    Science.gov (United States)

    Jacobson, Nathan S.; Lee, Kang N.; Maloy, Stuart A.; Heuer, Arthur H.

    1993-01-01

    Hot-pressing of MoSi2 powders with carbon at high temperatures reduces the siliceous grain boundary phase in the resultant compact. The chemical reactions in this process were examined using the Knudsen cell technique. A 2.3 wt pct oxygen MoSi2 powder and a 0.59 wt pct oxygen MoSi2 powder, both with additions of 2 wt pct carbon, were examined. The reduction of the siliceous grain boundary phase was examined at 1350 K and the resultant P(SiO)/P(CO) ratios interpreted in terms of the SiO(g) and CO(g) isobars on the Si-C-O predominance diagram. The MoSi2 + carbon mixtures were then heated at the hot-pressing temperature of 2100 K. Large weight losses were observed and could be correlated with the formation of a low-melting eutectic and the formation and vaporization of SiC.

  20. Study of the preparation of Cu-TiC composites by reaction of soluble Ti and ball-milled carbon coating TiC

    Science.gov (United States)

    Xu, Xuexia; Li, Wenbin; Wang, Yong; Dong, Guozhen; Jing, Shangqian; Wang, Qing; Feng, Yanting; Fan, Xiaoliang; Ding, Haimin

    2018-06-01

    In this work, Cu-TiC composites have been successfully prepared by reaction of soluble Ti and carbon coating TiC. Firstly, the ball milling of graphite and TiC mixtures is used to obtain the carbon coating TiC which has fine size and improved reaction activity. After adding the ball milled carbon coating TiC into Cu-Ti melts, the soluble Ti will easily react with the carbon coating to form TiC. This process will also improve the wettability between Cu melts and TiC core. As a result, besides the TiC prepared by reaction of soluble Ti and carbon coating, the ball milled TiC will also be brought into the melts. Some of these ball-milled TiC particles will go on being coated by the formed TiC from the reaction of Ti and the coating carbon and left behind in the composites. However, most of TiC core will be further reacted with the excessive Ti and be transformed into the newly formed TiC with different stoichiometry. The results indicate that it is a feasible method to synthesize TiC in Cu melts by reaction of soluble Ti and ball-milled carbon coating TiC.

  1. Physiological conditions and uptake of inorganic carbon-14 by plant roots

    International Nuclear Information System (INIS)

    Amiro, B.D.; Ewing, L.L.

    1992-01-01

    The uptake of inorganic 14 C by bean plant roots was measured. The plants were grown in a nutrient solution culture at pH 6 and a NaH 14 CO 3 tracer was added to the growth medium. Photosynthesis and transpiration were varied by exposing the aerial portions of the plants to different atmospheric CO 2 concentrations, humidities and light levels in a cuvette system. Leaf concentrations of 14 C were measured at the end of the experiments using liquid scintillation counting. Plant uptake of 14 C via the roots was independent of the photosynthetic rate and, in most cases, could be predicted by knowing the transpiration rate and the nutrient solution concentration. However, when a less efficient root-medium aeration system was used, 14 C uptake was greater than that predicted using transpiration, a phenomenon observed by other researchers. This contrasted to results of another experiment where the measured uptake of iodine was much slower than that predicted using transpiration. Knowledge of transpiration rates is useful in predicting inorganic carbon uptake via the roots and in estimating 14 C transport from contaminated soils to biota. Also, the independence of the uptake from photosynthesis and ambient CO 2 concentrations suggests that future increases in atmospheric CO 2 concentrations may not have a direct effect on root uptake of soil carbon. (author)

  2. The Carbonation of Wollastonite: A Model Reaction to Test Natural and Biomimetic Catalysts for Enhanced CO2 Sequestration

    Directory of Open Access Journals (Sweden)

    Fulvio Di Lorenzo

    2018-05-01

    Full Text Available One of the most promising strategies for the safe and permanent disposal of anthropogenic CO2 is its conversion into carbonate minerals via the carbonation of calcium and magnesium silicates. However, the mechanism of such a reaction is not well constrained, and its slow kinetics is a handicap for the implementation of silicate mineral carbonation as an effective method for CO2 capture and storage (CCS. Here, we studied the different steps of wollastonite (CaSiO3 carbonation (silicate dissolution → carbonate precipitation as a model CCS system for the screening of natural and biomimetic catalysts for this reaction. Tested catalysts included carbonic anhydrase (CA, a natural enzyme that catalyzes the reversible hydration of CO2(aq, and biomimetic metal-organic frameworks (MOFs. Our results show that dissolution is the rate-limiting step for wollastonite carbonation. The overall reaction progresses anisotropically along different [hkl] directions via a pseudomorphic interface-coupled dissolution–precipitation mechanism, leading to partial passivation via secondary surface precipitation of amorphous silica and calcite, which in both cases is anisotropic (i.e., (hkl-specific. CA accelerates the final carbonate precipitation step but hinders the overall carbonation of wollastonite. Remarkably, one of the tested Zr-based MOFs accelerates the dissolution of the silicate. The use of MOFs for enhanced silicate dissolution alone or in combination with other natural or biomimetic catalysts for accelerated carbonation could represent a potentially effective strategy for enhanced mineral CCS.

  3. Modeling of Sheath Ion-Molecule Reactions in Plasma Enhanced Chemical Vapor Deposition of Carbon Nanotubes

    Science.gov (United States)

    Hash, David B.; Govindan, T. R.; Meyyappan, M.

    2004-01-01

    In many plasma simulations, ion-molecule reactions are modeled using ion energy independent reaction rate coefficients that are taken from low temperature selected-ion flow tube experiments. Only exothermic or nearly thermoneutral reactions are considered. This is appropriate for plasma applications such as high-density plasma sources in which sheaths are collisionless and ion temperatures 111 the bulk p!asma do not deviate significantly from the gas temperature. However, for applications at high pressure and large sheath voltages, this assumption does not hold as the sheaths are collisional and ions gain significant energy in the sheaths from Joule heating. Ion temperatures and thus reaction rates vary significantly across the discharge, and endothermic reactions become important in the sheaths. One such application is plasma enhanced chemical vapor deposition of carbon nanotubes in which dc discharges are struck at pressures between 1-20 Torr with applied voltages in the range of 500-700 V. The present work investigates The importance of the inclusion of ion energy dependent ion-molecule reaction rates and the role of collision induced dissociation in generating radicals from the feedstock used in carbon nanotube growth.

  4. An enzymic method for the determination of [1-14C] lactose

    International Nuclear Information System (INIS)

    Davies, E.; Bourke, E.; Costello, J.

    1975-01-01

    A simple, rapid and specific method for the determination of [1- 14 C] lactose in biological fluids is described. It is based on the enzymic removal of the 1- 14 C atom of lactose as [ 14 C] carbon dioxide, using commercially available enzymes. The assay involves only one critical addition and the entire reaction can be carried out in a scintillation vial. (author)

  5. The use of barytocalcite for carbon 14 immobilization: One-year leaching behavior

    Energy Technology Data Exchange (ETDEWEB)

    Massoni, Nicolas, E-mail: nicolas.massoni@cea.fr; Marcou, Céline; Rosen, Jérémy; Jollivet, Patrick

    2014-11-15

    The spent nuclear fuel reprocessing process is one of the anthropogenic sources of carbon-14, and since this element is highly mobile in the geosphere, its sequestration is necessary. Several phases and industrial solutions to immobilize this radionuclide have been studied, including the barytocalcite phase BaCa(CO{sub 3}){sub 2} at 8.08 wt.% of C, which has many advantages such as its low specific volume of carbon. Recently, different options to synthesize this phase have been reported. Here we report on the aqueous durability of barytocalcite, studied for one year with pure water at 30 °C, in order to complete the behavior studies. Unexpected leaching behavior was encountered: it had been supposed that barytocalcite would only leach slowly, but after 1 year, it was no longer present. It appears that its simple CaCO{sub 3} and BaCO{sub 3} constituents precipitated, though the overall carbon loss was low during the period studied. This research gives a new insight into the behavior of this phase regarding carbon-14 immobilization.

  6. Determination of Carbon-14 in environmental samples by mixing 14CO{sub 2} with a liquid scintillator; Determinacion de carbono-14 en muestras ambientales por incorporacion de 14CO{sub 2} a un centelleador liquido

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M. R.; Gomez, V.; Heras, M. C.; Beltran, M. A.

    1990-07-01

    A method for the determination of Carbon-14 (14CO2) in environmental samples has been developed. The method use the direct absorption of the carbon dioxide into Carbosorb, followed with incorporation of the mixture (Carbosorb-CO2) to the liquid scintillator. The results obtained to apply this method and the benzene synthesis, usual in our laboratory, are discussed and compared. The method of collection of atmospheric samples is also described. (Author) 10 refs.

  7. Study of reaction mechanism for 12C(14N, 6Li) by angular correlation measurement

    International Nuclear Information System (INIS)

    Goldberg, V.Z.; Golovkov, M.S.; Rogatchev, G.V.; Barrov, S.P.; Zurmuhle, R.W.; Liu, Z.; Benton, D.R.; Miao, Y.; Lee, C.; Wimer, N.G.; Murgatroyd, J.T.; Li, X.

    1999-01-01

    An angular correlation for the reaction 12 C ( 14 N, 6 Li) 20 Ne* (α) populating the 8.78 MeV (6 + ) level in 20 Ne is measured at 48 MeV incident 14 N energy. 6 Li is registered for 0-degree geometry in coincidence with α particles from the 20 Ne excited state decay. The results shows that 20% was the upper limit for the contribution of compound nucleus formation. Possible main direct mechanisms of the reaction are discussed [ru

  8. Abiotic and bioaugmented granular activated carbon for the treatment of 1,4-dioxane-contaminated water.

    Science.gov (United States)

    Myers, Michelle A; Johnson, Nicholas W; Marin, Erick Zerecero; Pornwongthong, Peerapong; Liu, Yun; Gedalanga, Phillip B; Mahendra, Shaily

    2018-06-04

    1,4-Dioxane is a probable human carcinogen and an emerging contaminant that has been detected in surface water and groundwater resources. Many conventional water treatment technologies are not effective for the removal of 1,4-dioxane due to its high water solubility and chemical stability. Biological degradation is a potentially low-cost, energy-efficient approach to treat 1,4-dioxane-contaminated waters. Two bacterial strains, Pseudonocardia dioxanivorans CB1190 (CB1190) and Mycobacterium austroafricanum JOB5 (JOB5), have been previously demonstrated to break down 1,4-dioxane through metabolic and co-metabolic pathways, respectively. However, both CB1190 and JOB5 have been primarily studied in laboratory planktonic cultures, while most environmental microbes grow in biofilms on surfaces. Another treatment technology, adsorption, has not historically been considered an effective means of removing 1,4-dioxane due to the contaminant's low K oc and K ow values. We report that the granular activated carbon (GAC), Norit 1240, is an adsorbent with high affinity for 1,4-dioxane as well as physical dimensions conducive to attached bacterial growth. In abiotic batch reactor studies, 1,4-dioxane adsorption was reversible to a large extent. By bioaugmenting GAC with 1,4-dioxane-degrading microbes, the adsorption reversibility was minimized while achieving greater 1,4-dioxane removal when compared with abiotic GAC (95-98% reduction of initial 1,4-dioxane as compared to an 85-89% reduction of initial 1,4-dioxane, respectively). Bacterial attachment and viability was visualized using fluorescence microscopy and confirmed by amplification of taxonomic genes by quantitative polymerase chain reaction (qPCR) and an ATP assay. Filtered samples of industrial wastewater and contaminated groundwater were also tested in the bioaugmented GAC reactors. Both CB1190 and JOB5 demonstrated 1,4-dioxane removal greater than that of the abiotic adsorbent controls. This study suggests that

  9. Rapid localization of carbon 14-labeled molecules in biological samples by ion mass microscopy

    International Nuclear Information System (INIS)

    Hindie, E.; Escaig, F.; Coulomb, B.; Lebreton, C.; Galle, P.

    1989-01-01

    We report here on the ability of secondary ion mass spectrometry (SIMS) to provide rapid imaging of the intracellular distribution of 14 C-labeled molecules. The validity of this method, using mass discrimination of carbon 14 atoms, was assessed by imaging the distribution of two molecules of well-known metabolism, [ 14 C]-thymidine and [ 14 C]-uridine, incorporated by human fibroblasts in culture. As expected, 14 C ion images showed the presence of [ 14 C]-thymidine in the nucleus of dividing cells, whereas [ 14 C]-uridine was present in the cytoplasm as well as the nucleus of all cells, with a large concentration in the nucleoli. The time required to obtain the distribution images with the SMI 300 microscope was less than 6 min, whereas microautoradiography, the classical method for mapping the tissue distribution of 14 C-labeled molecules, usually requires exposure times of several months. Secondary ion mass spectrometry using in situ mass discrimination is proposed here as a very sensitive method which permits rapid imaging of the subcellular distribution of molecules labeled with carbon 14

  10. Functionalization of multi-walled carbon nanotubes with iron phthalocyanine via a liquid chemical reaction for oxygen reduction in alkaline media

    Science.gov (United States)

    Yan, Xiaomei; Xu, Xiao; Liu, Qin; Guo, Jia; Kang, Longtian; Yao, Jiannian

    2018-06-01

    Iron single-atom catalyst in form of iron-nitrogen-carbon structure possesses the excellent catalytic activity in various chemical reactions. However, exploring a sustainable and stable single-atom metal catalyst still faces a great challenge due to low yield and complicated synthesis. Here, we report a functional multi-wall carbon nanotubes modified with iron phthalocyanine molecules via a liquid chemical reaction and realize the performance of similar single-atom catalysis for oxygen reduction reaction. A serial of characterizations strongly imply the structure change of iron phthalocyanine molecule and its close recombination with multi-wall carbon nanotubes, which are in favor of ORR catalysis. Compared to commercial platinum-carbon catalyst, composites exhibit superior activity for oxygen reduction reaction with higher half-wave potential (0.86 V), lower Tafel slope (38 mV dec-1), higher limiting current density and excellent electrochemical stability. The corresponding Zinc-air battery also presents higher maximum power density and discharge stability. Therefore, these findings provide a facile route to synthesize a highly efficient non-precious metal carbon-based catalyst.

  11. Coating of graphite flakes with MgO/carbon nanocomposite via gas state reaction

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M., E-mail: Sharif_m@metaleng.iust.ac.i [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Faghihi-Sani, M.A. [Sharif University of Technology, Tehran (Iran, Islamic Republic of); Golestani-Fard, F. [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Saberi, A. [Tabriz University (Iran, Islamic Republic of); Soltani, Ali Khalife [Iran University of Science and Technology, Tehran (Iran, Islamic Republic of)

    2010-06-18

    Coating of graphite flakes with MgO/carbon nanocomposite was carried out via gaseous state reaction between mixture of Mg metal, CO gas and graphite flakes at 1000 {sup o}C. XRD and FE-SEM analysis of coating showed that the coating was comprised of MgO nano particles and amorphous carbon distributed smoothly and covered the graphite surface evenly. Thermodynamic calculations were employed to predict the reaction sequences as well as phase stability. The effect of coating on water wettability and oxidation resistance of graphite was studied using contact angle measurement and TG analysis, respectively. It was demonstrated that the reaction between Mg and CO could result in MgO/C nanocomposite deposition. The coating improved water wettability of graphite and also enhanced the oxidation resistance of graphite flakes significantly. Also the graphite coating showed significant phenolic resin-wettabilty owing to high surface area of such hydrophilic nano composite coating. The importance of graphite coating is explained with emphasis on its potential application in graphite containing refractories.

  12. Carbon dioxide/methanol conversion cycle based on cascade enzymatic reactions supported on superparamagnetic nanoparticles

    Directory of Open Access Journals (Sweden)

    CATERINA G.C. MARQUES NETTO

    2017-10-01

    Full Text Available ABSTRACT The conversion of carbon dioxide into important industrial feedstock is a subject of growing interest in modern society. A possible way to achieve this goal is by carrying out the CO2/methanol cascade reaction, allowing the recycle of CO2 using either chemical catalysts or enzymes. Efficient and selective reactions can be performed by enzymes; however, due to their low stability, immobilization protocols are required to improve their performance. The cascade reaction to reduce carbon dioxide into methanol has been explored by the authors, using, sequentially, alcohol dehydrogenase (ADH, formaldehyde dehydrogenase (FalDH, and formate dehydrogenase (FDH, powered by NAD+/NADH and glutamate dehydrogenase (GDH as the co-enzyme regenerating system. All the enzymes have been immobilized on functionalized magnetite nanoparticles, and their reactions investigated separately in order to establish the best performance conditions. Although the stepwise scheme led to only 2.3% yield of methanol per NADH; in a batch system under CO2 pressure, the combination of the four immobilized enzymes increased the methanol yield by 64 fold. The studies indicated a successful regeneration of NADH in situ, envisaging a real possibility of using immobilized enzymes to perform the cascade CO2-methanol reaction.

  13. Carbon-13 Labeling Used to Probe Cure and Degradation Reactions of High- Temperature Polymers

    Science.gov (United States)

    Meador, Mary Ann B.; Johnston, J. Christopher

    1998-01-01

    High-temperature, crosslinked polyimides are typically insoluble, intractible materials. Consequently, in these systems it has been difficult to follow high-temperature curing or long-term degradation reactions on a molecular level. Selective labeling of the polymers with carbon-13, coupled with solid nuclear magnetic resonance spectrometry (NMR), enables these reactions to be followed. We successfully employed this technique to provide insight into both curing and degradation reactions of PMR-15, a polymer matrix resin used extensively in aircraft engine applications.

  14. Nuclear reactions with 11C and 14O radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Fanqing [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    Radioactive ion beams (RIBs) have been shown to be a useful tool for studying proton-rich nuclides near and beyond the proton dripline and for evaluating nuclear models. To take full advantage of RIBs, Elastic Resonance Scattering in Inverse Kinematics with Thick Targets (ERSIKTT), has proven to be a reliable experimental tool for investigations of proton unbound nuclei. Following several years of effort, Berkeley Experiments with Accelerated Radioactive Species (BEARS), a RIBs capability, has been developed at the Lawrence Berkeley National Laboratory's 88-Inch Cyclotron. The current BEARS provides two RIBs: a 11C beam of up to 2x108 pps intensity on target and an 14O beam of up to 3x104 pps intensity. While the development of the 11C beam has been relatively easy, a number of challenges had to be overcome to obtain the 14O beam. The excellent 11C beam has been used to investigate several reactions. The first was the 197Au(11C,xn)208-xnAt reaction, which was used to measure excitation functions for the 4n to 8n exit channels. The measured cross sections were generally predicted quite well using the fusion-evaporation code HIVAP. Possible errors in the branching ratios of ?? decays from At isotopes as well as the presence of incomplete fusion reactions probably contribute to specific overpredictions. 15F has been investigated by the p(14O,p)14O reaction with the ERSIKTT technology. Several 14O+p runs have been performed. Excellent energy calibration was obtained using resonances from the p(14N,p)14N reaction in inverse kinematics, and comparing the results to those obtained earlier with normal kinematics. The differences between 14N+p and 14O+p in the stopping power function have been evaluated for better energy calibration. After careful calibration, the energy levels of 15F

  15. Synthesis of a polycyclic aromatic hydrocarbon marked with carbon-14: (b, d e f) dibenzo-chrysene 14C-7,14

    International Nuclear Information System (INIS)

    Chatelain, G.

    1965-01-01

    (b, d e f) dibenzo-chrysene C-7,14 has been synthesized from radioactive carbon dioxide and the organic magnesium compound derived from 1,5 dibromo naphthalene. The product has been purified by a very precise series of fractionated chromatographs on alumina having a chromatographic activity. This has necessitated the development of a special technique. (author) [fr

  16. Nitrogen-Doped Carbon Nanotube and Graphene Materials for Oxygen Reduction Reactions

    Directory of Open Access Journals (Sweden)

    Qiliang Wei

    2015-09-01

    Full Text Available Nitrogen-doped carbon materials, including nitrogen-doped carbon nanotubes (NCNTs and nitrogen-doped graphene (NG, have attracted increasing attention for oxygen reduction reaction (ORR in metal-air batteries and fuel cell applications, due to their optimal properties including excellent electronic conductivity, 4e− transfer and superb mechanical properties. Here, the recent progress of NCNTs- and NG-based catalysts for ORR is reviewed. Firstly, the general preparation routes of these two N-doped carbon-allotropes are introduced briefly, and then a special emphasis is placed on the developments of both NCNTs and NG as promising metal-free catalysts and/or catalyst support materials for ORR. All these efficient ORR electrocatalysts feature a low cost, high durability and excellent performance, and are thus the key factors in accelerating the widespread commercialization of metal-air battery and fuel cell technologies.

  17. Synthesis of 1,4-naphthoquinone derivatives using 1,3-dipolar cycloaddition and Sonogashira reactions

    Directory of Open Access Journals (Sweden)

    Wilson Silva do Nascimento

    2010-04-01

    Full Text Available Naphthoquinones are known according to their important bio-activities, such as their antitumoral and topoisomerase inhibition properties. From 2-azido (3 or 2,3-diacetylene-1,4-naphthoquinone (4 it was possible to obtain triazole derivatives (naphthoquinonic. This work describes the synthesis of two novel molecules, with triazole groups linked to 1,4-naphthoquinone using the 1,3-dipolar cycloaddition and Sonogashira reactions. The synthetic strategy followed two routes (Scheme 1. First, we synthesized the 2-bromo-1,4-naphthoquinone (2, yield 98% by using Br2 and CH3CO2H, and then used it to obtain 2-azido-1,4-naphthoquinone (3, yield 62% from compound 1, along with ethanolic solution (reflux and NaN3. Finally, we prepared 1,2,3-triazole compounds (4a, b by 1,3-dipolar cycloaddition, involving compound (3 and terminal acetylenes (phenylacetylene, a and glycoside (b using Cu(OAc2 and ascorbate, under argon atmosphere. During the second step, 2,3-dibromo-1,4-naphthoquinone was prepared using Br2/CH2Cl2 at room temperature. From compound (5 it was possible to synthesize (6, catalyzed by Pd(PPh32Cl2/CuI/Et3N, under argon atmosphere, in 40% yield. The 1,3-dipolar cycloaddition reactions involving 2-azido-1,4-naphthoquinone (3 and alkynes (a, yield 23% and b, yield 30% were conducted using the solvent system, (1:1 terc-BuOH/H2O/r.t/ 20 mol% of Cu(OAc2 and sodium ascorbate, under stirring during 24 hours. The reaction involving 2,3-dibromo-1,4-naphthoquinone (5, yield 65% and phenylacetylene was prepared using the solvent mixture (2:1 DMSO/CHCl3 and catalytic amount of CuI/Pd(PPh32Cl2. The final products were characterized by elemental analysis and spectrometric techniques (IR, NMR 1H and 13C. Two novel triazole compounds were synthesized from naphthoquinones by 1,3-dipolar cycloaddition from suitable 1,4-naphthoquinones obtained by Sonogashira couplings.

  18. Electrochemical characteristics of vanadium redox reactions on porous carbon electrodes for microfluidic fuel cell applications

    International Nuclear Information System (INIS)

    Lee, Jin Wook; Hong, Jun Ki; Kjeang, Erik

    2012-01-01

    Microfluidic vanadium redox fuel cells are membraneless and catalyst-free fuel cells comprising a microfluidic channel network with two porous carbon electrodes. The anolyte and catholyte for fuel cell operation are V(II) and V(V) in sulfuric acid based aqueous solution. In the present work, the electrochemical characteristics of the vanadium redox reactions are investigated on commonly used porous carbon paper electrodes and compared to a standard solid graphite electrode as baseline. Half-cell electrochemical impedance spectroscopy is applied to measure the overall ohmic resistance and resistivity of the electrodes. Kinetic parameters for both V(II) and V(V) discharging reactions are extracted from Tafel plots and compared for the different electrodes. Cyclic voltammetry techniques reveal that the redox reactions are irreversible and that the magnitudes of peak current density vary significantly for each electrode. The obtained kinetic parameters for the carbon paper are implemented into a numerical simulation and the results show a good agreement with measured polarization curves from operation of a microfluidic vanadium redox fuel cell employing the same material as flow-through porous electrodes. Recommendations for microfluidic fuel cell design and operation are provided based on the measured trends.

  19. Metabolism of carbon-14 labelled l-tryptophan, l-kynerenine and hydroxy-l-kynerenine in miners with scleroderma

    International Nuclear Information System (INIS)

    Hankes, L.V.; De Bruin, E.; Jansen, C.R.; Voster, L.; Schmaeler, M.

    1977-01-01

    Six South African white miners were studied with the 2-g l-tryptophan load test and tracer doses of L-tryptophan-7a-carbon-14, L-kynurenine-keto-carbon-14 and hydroxy-L-kynerenine-keto-carbon-14. The breath 14 CO 2 and 14 urinary metabolites were measured. When they were compared with a previous study of American women with scleroderma, similar 14 CO 2 and tryptophan metabolite excretion patterns were observed in the data from the miners. The labelled quinolinic acid excretion was more significantly elevated in the South African miners' urine than in the urine of the American women. The data from both studies suggest that some patients with scleroderma have an altered step in the tryptophan metabolic pathway after hydroxy-anthranilic acid. What relationship exists between the induction of pulmonary silicosis and the subsequent development of scleroderma, requires additional human studies

  20. Investigation of Thermochemistry Associated with the Carbon–Carbon Coupling Reactions of Furan and Furfural Using ab Initio Methods

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Cong; Assary, Rajeev S.; Curtiss, Larry A.

    2014-06-26

    Upgrading of furan and small oxygenates obtained from the decomposition of cellulosic materials via formation of carbon-carbon bonds is critical to effective conversion of biomass to liquid transportation fuels. Simulation-driven molecular level understanding of carbon-carbon bond formation is required to design efficient catalysts and processes. Accurate quantum chemical methods are utilized here to predict the reaction energetics for conversion of furan (C4H4O) to C5-C8 ethers and the transformation of furfural (C5H6O2) to C13-C26 alkanes. Furan, can be coupled with various C1 to C4 lower molecular weight carbohydrates obtained from the pyrolysis via Diels-Alder type reactions in the gas phase to produce C5-C8 cyclic ethers. The computed reaction barriers for these reactions (~25 kcal/mol) are lower than the cellulose activation or decomposition reactions (~50 kcal/mol). Cycloaddition of C5-C8 cyclo-ethers with furans can also occur in the gas phase, and the computed activation energy is similar to that of the first Diels-Alder reaction. Furfural, obtained from biomass, can be coupled with aldehydes or ketones with α-hydrogen atoms to form longer chain aldol products and these aldol products can undergo vapor phase hydrocycloaddition (activation barrier of ~20 kcal/mol) to form the precursors of C26 cyclic hydrocarbons. These thermochemical studies provide the basis for further vapor phase catalytic studies required for upgrading of furans/furfurals to longer chain hydrocarbons.

  1. Synthesis of {delta}-aminolevulic acid. Application to the introduction of carbon-14 and of tritium; Syntheses de l'acide {delta} aminolevulique. Application a l'introduction de carbone 14 et de tritium

    Energy Technology Data Exchange (ETDEWEB)

    Loheac, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-06-01

    Several new syntheses of {delta} aminolevulic acid ({delta} A.L.A.) have been studied. {sup 14}C-4 {delta} - aminolevulic acid has been obtained from {sup 14}C allylacetic carboxylic acid with a yield of 30 per cent with respect to barium carbonate and with a specific activity of 32 mCi/mM. The {sup 14}C-1 or {sup 14}C-2 {delta}-A.L.A. has been prepared from the {sup 14}C-1 or {sup 14}C-2 acetate with a yield of 55 per cent with respect to the acetate. Finally the tritiated {delta}-A.L.A. has been obtained for the first time by tritiation of ethyl phthalimidodehydrolevulate. (author) [French] Plusieurs syntheses nouvelles de l'acide {delta}-aminolevulique ont ete etudiees. L'acide {delta}-aminolevulique {sup 14}C-4 a ete obtenu a partir d'acide allylacetique carboxylique {sup 14}C, avec un rendement global de 30 pour cent par rapport au carbonate de baryum a une activite specifique de 32 mCi/M. Le {delta}-A.A.L. {sup 14}C-1 ou {sup 14}C-2 a ete obtenu a partir d'acetate {sup 14}C-1 ou {sup 14}C-2 avec un rendement de 55 pour cent par rapport a l'acetate. Enfin le {delta}-A.A.L. tritie a ete obtenu pour la premiere fois par tritiation du phtalimidodehydrolevulate d'ethyle. (auteur)

  2. Carbon-14 behavior in a cement-dominated environment: Implications for spent CANDU resin waste disposal

    International Nuclear Information System (INIS)

    Dayal, R.; Reardon, E.J.

    1994-01-01

    Cement based waste forms and concrete engineered barriers are expected to play a key role in providing 14 C waste containment and control 14 C migration for time periods commensurate with its hazardous life of about 50,000 years. The main thrust of this study was, therefore, to evaluate the performance of cement based waste forms with regard to 14 C containment. Of particular importance are the geochemical processes controlling 14 C solubility and release under anticipated cement dominated low and intermediate level waste repository conditions. Immobilization of carbonate-form exchange resin in grout involves transfer of sorbed 14 CO 3 2- ions, through exchange for hydroxyl ions from the grout slurry, followed by localized precipitation of solid calcium carbonate at the cement/resin interface in the grout matrix. Carbon-14 release behavior can be attributed to the dissolution characteristics and solubility of calcite present in the cement based waste form. The groundwater flow regime can exert a pronounced effect both on the near-field chemistry and the leaching behavior of 14 C. For a cement dominated repository, at relatively low-flow or stagnant groundwater conditions, the alkaline near-field chemical environments inhibits the release of 14 C from the cemented waste form. Under high flow conditions, the near-field environment is characterized by relatively neutral pH conditions which promote calcite dissolution, thus resulting in 14 C release from the waste form

  3. Palladium on Carbon-Catalyzed Suzuki-Miyaura Coupling Reaction Using an Efficient and Continuous Flow System

    Directory of Open Access Journals (Sweden)

    Tomohiro Hattori

    2015-01-01

    Full Text Available The continuous flow Suzuki-Miyaura reaction between various haloarenes and arylboronic acids was successfully achieved within only ca. 20 s during the single-pass through a cartridge filled with palladium on carbon (Pd/C. No palladium leaching was observed in the collected reaction solution by atomic absorption spectrometry (detection limit: 1 ppm.

  4. Determination of reaction cross sections with the aid of α decay in the 12C, 14C + 209Bl reactions

    International Nuclear Information System (INIS)

    Hick, H.

    1980-01-01

    For the reactions 14 C + 209 Bi and 12 C + 209 Bi excitation functions at energies in the range between 57 MeV and 76 MeV are measured. Radiative capture and particle evaporation cross sections were determined by means of α-spectroscopy, and fission cross sections were determined by the measurement of the γ-radiation after the β-decay of the fission products. For the radiative capture for the reaction 14 C + 209 Bi upper limits for the cross section from 21 nbarn to 178 nbarn in the energy interval 61-74 MeV were determined. The fission cross sections were 80 +- 30 mbarn at 490 +- 200 mbarn at 76 MeV. For the reaction 12 C + 209 Bi three new α-lines were found. They were due to the slope at their excitation functions assigned to the decay of isomeric states of following nuclei: 219 Ac Esub(α) = 9419 +- 4 keV Tsub(1/2) = 830 +- 100/μsec, 218 Ac Esub(α) = 9271 +- 4 keV Tsub(1/2) = 810 +- 70/μsec, 217 Ac Eα = 9730 +- 5 keV Tsub(1/2) = 970 +- 190/μsec. For the reactions respectively 12 C + 209 Bi calculations using the statistical model code Grogi of J. Gilat are performed. The calculated branchings of the evaporation channels were compared with the experiment. (orig./HSI) [de

  5. Thermodynamic Data for Geochemical Modeling of Carbonate Reactions Associated with CO2 Sequestration - Literature Review

    International Nuclear Information System (INIS)

    Krupka, Kenneth M.; Cantrell, Kirk J.; McGrail, B. Peter

    2010-01-01

    Permanent storage of anthropogenic CO 2 in deep geologic formations is being considered as a means to reduce the concentration of atmospheric CO 2 and thus its contribution to global climate change. To ensure safe and effective geologic sequestration, numerous studies have been completed of the extent to which the CO 2 migrates within geologic formations and what physical and geochemical changes occur in these formations when CO 2 is injected. Sophisticated, computerized reservoir simulations are used as part of field site and laboratory CO 2 sequestration studies. These simulations use coupled multiphase flow-reactive chemical transport models and/or standalone (i.e., no coupled fluid transport) geochemical models to calculate gas solubility, aqueous complexation, reduction/oxidation (redox), and/or mineral solubility reactions related to CO 2 injection and sequestration. Thermodynamic data are critical inputs to modeling geochemical processes. The adequacy of thermodynamic data for carbonate compounds has been identified as an important data requirement for the successful application of these geochemical reaction models to CO 2 sequestration. A review of thermodynamic data for CO 2 gas and carbonate aqueous species and minerals present in published data compilations and databases used in geochemical reaction models was therefore completed. Published studies that describe mineralogical analyses from CO 2 sequestration field and natural analogue sites and laboratory studies were also reviewed to identify specific carbonate minerals that are important to CO 2 sequestration reactions and therefore require thermodynamic data. The results of the literature review indicated that an extensive thermodynamic database exists for CO 2 and CH 4 gases, carbonate aqueous species, and carbonate minerals. Values of Δ f G 298 o and/or log K r,298 o are available for essentially all of these compounds. However, log K r,T o or heat capacity values at temperatures above 298 K exist

  6. Reactivity of Single-Walled Carbon Nanotubes in the Diels-Alder Cycloaddition Reaction: Distortion-Interaction Analysis along the Reaction Pathway.

    Science.gov (United States)

    Li, Yingzi; Osuna, Sílvia; Garcia-Borràs, Marc; Qi, Xiaotian; Liu, Song; Houk, Kendall N; Lan, Yu

    2016-08-26

    Diels-Alder cycloaddition is one of the most powerful tools for the functionalization of single-walled carbon nanotubes (SWCNTs). Density functional theory at the B3-LYP level of theory has been used to investigate the reactivity of different-diameter SWCNTs (4-9,5) in Diels-Alder reactions with 1,3-butadiene; the reactivity was found to decrease with increasing SWCNT diameter. Distortion/interaction analysis along the whole reaction pathway was found to be a better way to explore the reactivity of this type of reaction. The difference in interaction energy along the reaction pathway is larger than that of the corresponding distortion energy. However, the distortion energy plots for these reactions show the same trend. Therefore, the formation of the transition state can be determined from the interaction energy. A lower interaction energy leads to an earlier transition state, which indicates a lower activation energy. The computational results also indicate that the original distortion of the SWCNTs leads to an increase in the reactivity of the SWCNTs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Nitrogen-Doped Hollow Carbon Spheres with Embedded Co Nanoparticles as Active Non-Noble-Metal Electrocatalysts for the Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Ruohao Xing

    2018-02-01

    Full Text Available Transition metal (Fe, Co, Ni complexes on carbon nanomaterials are promising candidates as electrocatalysts towards the oxygen reduction reaction (ORR. In this paper, nitrogen-doped hollow carbon spheres with embedded Co nanoparticles were successfully prepared via a controllable synthesis strategy. The morphology characterization shows that the hollow carbon spheres possess an average diameter of ~150 nm with a narrow size distribution and a shell thickness of ~14.5 nm. The content of N doping ranges from 2.1 to 6.6 at.% depending on the calcination temperature from 900 to 1050 °C. Compared with commercial Pt/C, the Co-containing nitrogen-doped hollow carbon spheres prepared at 900 °C (CoNHCS-900 as an ORR electrocatalyst shows a half-wave potential shift of only ∆E1/2 = 55 mV, but a superior stability of about 90.2% maintenance after 20,000 s in the O2-saturated 0.1 M KOH at a rotating speed of 1600 rpm. This could be ascribed to the synergistic effects of N-containing moieties, Co-Nx species, and Co nanoparticles, which significantly increase the density of active sites and promote the charge transfer during the ORR process.

  8. Fluid phase equilibria of the reaction mixture during the selective hydrogenation of 2-butenal in dense carbon dioxide

    DEFF Research Database (Denmark)

    Musko, Nikolai; Jensen, Anker Degn; Baiker, Alfons

    2012-01-01

    Knowledge of the phase behaviour and composition is of paramount importance for understanding multiphase reactions. We have investigated the effect of the phase behaviour in the palladium-catalysed selective hydrogenation of 2-butenal to saturated butanal in dense carbon dioxide. The reactions were...... cell. The results of the catalytic experiments showed that small amounts of carbon dioxide added to the system significantly decrease the conversion, whereas at higher loadings of CO2 the reaction rate gradually increases reaching a maximum. The CPA calculations revealed that this maximum is achieved...... performed using a 5wt% Pd on activated carbon in custom-designed high pressure autoclaves at 323K. The Cubic-Plus-Association (CPA) equation of state was employed to model the phase behaviour of the experimentally studied systems. CPA binary interaction parameters were estimated based on the experimental...

  9. Experimental and modeling study of high performance direct carbon solid oxide fuel cell with in situ catalytic steam-carbon gasification reaction

    Science.gov (United States)

    Xu, Haoran; Chen, Bin; Zhang, Houcheng; Tan, Peng; Yang, Guangming; Irvine, John T. S.; Ni, Meng

    2018-04-01

    In this paper, 2D models for direct carbon solid oxide fuel cells (DC-SOFCs) with in situ catalytic steam-carbon gasification reaction are developed. The simulation results are found to be in good agreement with experimental data. The performance of DC-SOFCs with and without catalyst are compared at different operating potential, anode inlet gas flow rate and operating temperature. It is found that adding suitable catalyst can significantly speed up the in situ steam-carbon gasification reaction and improve the performance of DC-SOFC with H2O as gasification agent. The potential of syngas and electricity co-generation from the fuel cell is also evaluated, where the composition of H2 and CO in syngas can be adjusted by controlling the anode inlet gas flow rate. In addition, the performance DC-SOFCs and the percentage of fuel in the outlet gas are both increased with increasing operating temperature. At a reduced temperature (below 800 °C), good performance of DC-SOFC can still be obtained with in-situ catalytic carbon gasification by steam. The results of this study form a solid foundation to understand the important effect of catalyst and related operating conditions on H2O-assisted DC-SOFCs.

  10. Design, Synthesis, and Applications of Carbon Nanohoops

    Science.gov (United States)

    2016-05-23

    rings via one electron reduction reactions was feasible. Therefore, the synthesis and spectroscopic investigations of these ring systems by reducing...Release; Distribution Unlimited UU UU UU UU 23-05-2016 15-Feb-2012 14-Feb-2016 Final Report: Design, Synthesis , and Applications of Carbon Nanohoops The...Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Caron Nanohoops, paracyclophanes, carbon nanotubes, organic synthesis REPORT

  11. Graphene-oxide-supported CuAl and CoAl layered double hydroxides as enhanced catalysts for carbon-carbon coupling via Ullmann reaction

    Science.gov (United States)

    Ahmed, Nesreen S.; Menzel, Robert; Wang, Yifan; Garcia-Gallastegui, Ainara; Bawaked, Salem M.; Obaid, Abdullah Y.; Basahel, Sulaiman N.; Mokhtar, Mohamed

    2017-02-01

    Two efficient catalyst based on CuAl and CoAl layered double hydroxides (LDHs) supported on graphene oxide (GO) for the carbon-carbon coupling (Classic Ullmann Homocoupling Reaction) are reported. The pure and hybrid materials were synthesised by direct precipitation of the LDH nanoparticles onto GO, followed by a chemical, structural and physical characterisation by electron microscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), surface area measurements and X-ray photoelectron spectroscopy (XPS). The GO-supported and unsupported CuAl-LDH and CoAl-LDH hybrids were tested over the Classic Ullman Homocoupling Reaction of iodobenzene. In the current study CuAl- and CoAl-LDHs have shown excellent yields (91% and 98%, respectively) at very short reaction times (25 min). GO provides a light-weight, charge complementary and two-dimensional material that interacts effectively with the 2D LDHs, in turn enhancing the stability of LDH. After 5 re-use cycles, the catalytic activity of the LDH/GO hybrid is up to 2 times higher than for the unsupported LDH.

  12. Bio-inspired carbon electro-catalysis for the oxygen reduction reaction

    OpenAIRE

    Preuss, Kathrin; Kannuchamy, Vasanth Kumar; Marinovic, Adam; Isaacs, Mark; Wilson, Karen; Abrahams, Isaac; Titirici, Maria-Magdalena

    2016-01-01

    We report the synthesis, characterisation and catalytic performance of two nature-inspired biomass-derived electro-catalysts for the oxygen reduction reaction in fuel cells. The catalysts were prepared via pyrolysis of a real food waste (lobster shells) or by mimicking the composition of lobster shells using chitin and CaCO3 particles followed by acid washing. The simplified model of artificial lobster was prepared for better reproducibility. The calcium carbonate in both samples acts as a po...

  13. Study of 17O(p,α)14N reaction via the Trojan Horse Method for application to 17O nucleosynthesis

    International Nuclear Information System (INIS)

    Sergi, M. L.; Spitaleri, C.; Pizzone, R. G.; Gulino, M.; Cherubini, S.; Crucilla, V.; La Cognata, M.; Lamia, L.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Tudisco, S.; Tumino, A.; Coc, A.; Burjan, V.; Hons, Z.; Kroha, V.; Hammache, F.; Sereville, N. de; Kiss, G.

    2008-01-01

    Because of the still present uncertainties on its rate, the 17 O(p,α) 14 N is one of the most important reaction to be studied in order to get more information about the fate of 17 O in different astrophysical scenarios. The preliminary study of the three-body reaction 2 H( 17 O,α 14 N)n is presented here as a first stage of the indirect study of this important 17 O(p,α) 14 N reaction through the Trojan Horse Method (THM)

  14. Capture cross-section and rate of the 14 C (n, γ) 15 C reaction from ...

    Indian Academy of Sciences (India)

    We calculate the Coulomb dissociation of 15C on a Pb target at 68 MeV/u incident beam energy within the fully quantum mechanical distorted wave Born approximation formalism of breakup reactions. The capture cross-section and the subsequent rate of the 14C(, )15C reaction are calculated from the ...

  15. Oxygen depth profiling using the 16O(d,α)14N nuclear reaction

    International Nuclear Information System (INIS)

    Khubeis, I.; Al-Rjob, R.

    1997-01-01

    The excitation function of the 16 O(d,α) 14 N nuclear reaction has been determined in the deuteron energy range of 0.88-2.28 MeV. Major resonances are observed at deuteron energies of 0.98, 1.31, 1.53, 1.60, 1.73 and 2.22 MeV. The present results show good agreement with those of Haase and Khubeis, however there is a shift of 60 keV in the first resonance compared with the measurements of Amsel. The use of a thin surface barrier detector (t=22 μm) and a bias voltage of +20 V coupled with a proper pile-up rejection circuit has allowed the determination of the oxygen depth profiling to a resolution of 16 nm for thick targets. This method is efficient in eliminating interferences from other nuclear reactions such as 16 O(d,p) 17 O and 12 C(d,p) 19 C, where emitted protons have severely obscured α-particles from the 16 O(d,α) 14 N reaction. A 1.08 MeV deuteron beam has been employed to increase the α-yield from the target. The target has been tilted at 70 to enhance depth resolution. This reaction is well suited for the determination of oxygen concentration in oxides of high temperature superconductors. (orig.)

  16. Dilepton spectroscopy at intermediate energies; the carbon - carbon reaction at 1 GeV/A

    International Nuclear Information System (INIS)

    Prunet, M.

    1995-01-01

    The Physics context of this work is heavy ion collisions at relativistic energies where di-electron provide informations on the produced hot and dense nuclear matter. The experiment is performed by the DiLepton Spectrometer (DLS) Collaboration at the Lawrence Berkeley's Bevalac. After a description of the apparatus, we review the whole program and the main results so far obtained: first evidence of a significant di-electron signal at energies above 1 GeV/A; improvement of the understanding of di-electron production (electromagnetic decays of hadrons, π + π - annihilation and hadronic Bremsstrahlung). The results of p-p, p-d reactions from 1 to 4.9 GeV/A show that hadronic Bremsstrahlung (pp, pn) should be reformulated. Our analysis, optimized on the reaction Carbon-Carbon at 1 GeV/A, has been applied to α-Ca and d-Ca. We have developed two main aspects: improvement of the time resolution (500 ps) in order to eliminate all of the protons. Improvement of the space resolution (300 μ) for better mass resolution, in particular in the ρ region. We obtain the cross section of di-electron production as a function of mass, transverse momentum and rapidity from the C-C, α-Ca and d-Ca reactions at 1 GeV/A. We also compare the cross section for all of the measured systems at 1 GeV/A, including Ca-Ca, and we show a (ApAt) α dependence with α ≅ 1.1. A study of the associated multiplicity has also been performed. Nevertheless, the limited acceptance of the DLS and its poor mass resolution to identify the ρ, ω vector mesons, do not allow to conclude on hadron behaviour in nuclear matter. This point is one of the main goal of the HADES project at GSI (Darmstadt), which we give a brief description of the main features. (authors). 60 refs

  17. Response of a carbon-walled proportional counter to 14 MeV neutrons

    International Nuclear Information System (INIS)

    Lewis, K.D.

    1982-01-01

    The response of a carbon-walled spherical proportional counter filled with a methane-based tissue-equivalent gas mixture at low pressure and irradiated with 14 MeV neutrons is first measured experimentally and is then calculated theoretically by using an analytical model. The model, called the CISS model, is derived from a consideration of four basic modes of interaction of charged particles generated in neutron-nucleus reactions with the spherical cavity of the detector. Since several quantities which have application in neutron dosimetry, radiation protection, and radiation biology make direct use of such spectra, it is desirable to have the ability to theoretically predict what is expected experimentally. Thus, a comparison between the two response curves is made. The discrepancy between them is investigated by considering several physical phenomena occurring within the detector wall which tend to distort the experimental response curve. In particular, the C(n,n',3α) reaction occurring in the detector wall gives rise to multiple events, originating from a single neutron interaction in the wall simultaneously strike the detector cavity, and are recorded as a single larger event in an experimental spectra. In the analytic model, the simultaneous entry of two charged particles into the cavity is scored as two separate smaller events, uncorrelated in their production. In this work, an effort is made to modify the analytic model prediction of the response curve by correcting for the multiple events which occur. Finally, the CISS model is used to compute mass stopping power corrections for this inhomogeneous detector

  18. Composition of amino acid using carbon monoxide. Amide carbonylation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Izawa, Kunisuke (Ajinomoto Co., Inc., Tokyo (Japan))

    1989-02-01

    Amide carbonylation reaction is a method to compose N-acyl-{alpha}-amino acid from aldehyde, carboxylic acid amide, and carbon monoxide in a phase and with high yield. Unlike the conventional Strecker reaction, this method does not use HCN which is in question on public pollution and does not require hydrolysis. This amide carbonylation reaction was discovered by Wakamatsu and others of Ajinomoto Co.,Ltd. Present application examples of this method are the composition of N-acetyl amino acid from the aldehyde class, the composition of N-Acyl amino acid from olefin, the composition of N-acyl or acetyl amino acid from the raw material of alcohol and the halide class, the composition of N-acyl or acetyl amino acid via the isomerization of epoxide and allyl alcohol, the composition of amino dicarboxylic acid, applying deoxidation of ring acid anhydride, the composition of N-acyl amino acid from the raw material of the amine class, the stereoselective composition of -substitution ring-{alpha}-amino acid, and the composition of amino aldehyde. 24 refs., 2 figs., 2 tabs.

  19. Projectile break-up of 14N at 62,7 MeV

    International Nuclear Information System (INIS)

    Bozek, E.; Cassagnou, Y.; Dayras, R.; Legrain, R.; Pagano, A.; Rodriguez, L.; Lanzano, G.; Palmeri, A.; Pappalardo, G.

    1983-01-01

    In plane and out of plane angular correlations between light particles and heavy ions have been measured in the reaction 14 N + 12 C at 62.7 MeV bombarding energy. Special attention has been given to the break-up of 14 N into 13 C + p, 12 C + d and 10 B + α. The observed correlations are consistent with sequential break-up of the 14 N projectile. A Monte-Carlo calculation assuming isotropic emission of particles in the rest frame of the projectile from well defined states in 14 N is in good agreement with the experimental angular correlations. From a comparison between calculated and experimental boron and carbon single energy spectra, it appears that after transfer reactions, sequential break-up of 14 N is the dominant process to produce these nuclei

  20. Measurement of the carbon 14 activity at natural level in air samples

    International Nuclear Information System (INIS)

    Olivier, A.; Tenailleau, L.; Baron, Y.; Maro, D.

    2004-01-01

    The aim of the study was to measure the carbon 14 activity at natural level in air samples using classical methods of radiochemistry and beta counting. Three different methods have been tested in order to minimise the detection limit. In the three methods, the first step consists in trapping the atmospheric carbon 14 into NaOH (1N) using a bubbling chamber. The atmospheric carbon dioxide reacts with NaOH to form Na 2 CO 3 . In the first method the Na 2 CO 3 solution is mixed with a liquid scintillate and is directly analysed by liquid scintillation counting (LSC). The detection limit is approximately 1 Bq/m 3 of air samples. The second method consists in evaporating the carbonate solution and then counting the solid residue with a proportional gas circulation counter. The detection limit obtained is lower than the first method (0.4 Bq/m 3 of air samples). In the third method, Na 2 CO 3 is precipitated into CaCO 3 in presence of CaCl 2 . CaCO 3 is then analysed by LSC. This method appear to be the most appropriate, the detection limit is 0.05 Bq/m 3 of air samples. (author)

  1. Multimolecular tracers of terrestrial carbon transfer across the pan-Arctic: 14C characteristics of sedimentary carbon components and their environmental controls

    Science.gov (United States)

    Feng, Xiaojuan; Gustafsson, Örjan; Holmes, R. Max; Vonk, Jorien E.; van Dongen, Bart E.; Semiletov, Igor P.; Dudarev, Oleg V.; Yunker, Mark B.; Macdonald, Robie W.; Wacker, Lukas; Montluçon, Daniel B.; Eglinton, Timothy I.

    2015-11-01

    Distinguishing the sources, ages, and fate of various terrestrial organic carbon (OC) pools mobilized from heterogeneous Arctic landscapes is key to assessing climatic impacts on the fluvial release of carbon from permafrost. Through molecular 14C measurements, including novel analyses of suberin- and/or cutin-derived diacids (DAs) and hydroxy fatty acids (FAs), we compared the radiocarbon characteristics of a comprehensive suite of terrestrial markers (including plant wax lipids, cutin, suberin, lignin, and hydroxy phenols) in the sedimentary particles from nine major arctic and subarctic rivers in order to establish a benchmark assessment of the mobilization patterns of terrestrial OC pools across the pan-Arctic. Terrestrial lipids, including suberin-derived longer-chain DAs (C24,26,28), plant wax FAs (C24,26,28), and n-alkanes (C27,29,31), incorporated significant inputs of aged carbon, presumably from deeper soil horizons. Mobilization and translocation of these "old" terrestrial carbon components was dependent on nonlinear processes associated with permafrost distributions. By contrast, shorter-chain (C16,18) DAs and lignin phenols (as well as hydroxy phenols in rivers outside eastern Eurasian Arctic) were much more enriched in 14C, suggesting incorporation of relatively young carbon supplied by runoff processes from recent vegetation debris and surface layers. Furthermore, the radiocarbon content of terrestrial markers is heavily influenced by specific OC sources and degradation status. Overall, multitracer molecular 14C analysis sheds new light on the mobilization of terrestrial OC from arctic watersheds. Our findings of distinct ages for various terrestrial carbon components may aid in elucidating fate of different terrestrial OC pools in the face of increasing arctic permafrost thaw.

  2. Soil-Carbon Measurement System Based on Inelastic Neutron Scattering

    International Nuclear Information System (INIS)

    Orion, I.; Wielopolski, L.

    2002-01-01

    Increase in the atmospheric CO 2 is associated with concurrent increase in the amount of carbon sequestered in the soil. For better understanding of the carbon cycle it is imperative to establish a better and extensive database of the carbon concentrations in various soil types, in order to develop improved models for changes in the global climate. Non-invasive soil carbon measurement is based on Inelastic Neutron Scattering (INS). This method has been used successfully to measure total body carbon in human beings. The system consists of a pulsed neutron generator that is based on D-T reaction, which produces 14 MeV neutrons, a neutron flux monitoring detector and a couple of large NaI(Tl), 6'' diameter by 6'' high, spectrometers [4]. The threshold energy for INS reaction in carbon is 4.8 MeV. Following INS of 14 MeV neutrons in carbon 4.44 MeV photons are emitted and counted during a gate pulse period of 10 μsec. The repetition rate of the neutron generator is 104 pulses per sec. The gamma spectra are acquired only during the neutron generator gate pulses. The INS method for soil carbon content measurements provides a non-destructive, non-invasive tool, which can be optimized in order to develop a system for in field measurements

  3. Photosynthesis and assimilate partitioning characteristics of the coconut palm as observed by carbon-14 labelling

    International Nuclear Information System (INIS)

    Jayasekara, K.S.; Jayaswkara, K.S.; Bowen, G.D.

    2000-01-01

    A technique was developed on the use of carbon dioxide(carbon-14 labelled) rapid labelling of foliage and to ascertain photosynthesis and partitioning characteristics of labelled assimilate into other parts of the coconut palm. An eight-year-old Tall x Tall young coconut palm growing under field conditions at Bandirippuwa Estate and with six developing bunches , was selected for this study. The labelling was carried out on a bright sunny day and soil was at field capacity. Seventh leaf from the youngest open leaf was used for labelling with 5 mCi of sodium bi carbonate (Carbon-14 labelled). The results revealed that within 24 hours, 60% of the labelled assimilate was partitioned into other parts of the palm and at the end of the seventh day about 18% of the labelled assimilate still remained in the labelled leaf. Among the developing bunches fifth and sixth bunches from the youngest developing bunch received more labelled assimilate than young developing bunches above them. It was revealed that partitioning of assimilate into various ''sinks'' is determined by the developmental stage or activeness of the ''sink''. The proportion of C-14 labelled carbon assimilate, partitioned into developing bunches was substantially low compared to the total amount of labelled carbon fixed by the labelled leaf. Further, it was observed that partitioning of assimilated labelled carbon into the young leaves above, as well as the mature leaves below the labelled leaf. The complex vascular anatomy of the palms could be attributed to this pattern of partitioning of assimilates into upper and lower leaves from the labelled leaf

  4. 14C-labeling of a tetrahydroacridine, a novel CNS-selective cholinesterase inhibitor

    International Nuclear Information System (INIS)

    Nishioka, Kazuhiko; Kamada, Takeshi; Kanamaru, Hiroshi

    1992-01-01

    9-Amino-8-fluoro-2,4-methano-1,2,3,4-tetrahydroacridine citrate (SM-10888), a novel cholinesterase inhibitor, was labeled with carbon-14 at C9 of the tetrahydroacridine ring for use in metabolic studies. Carbonation of 2,6-difluorophenyllithium (3) with [ 14 C]carbon dioxide gave the acid (4). Chlorination of 4 followed by treatment of the resulting acid chloride with ammonia afforded the amide (5). Dehydration of 5 with thionyl chloride and subsequent displacement reaction with ammonia gave the aminobenzonitrile (7). Condensation of 7 with the ketone (8) in the presence of anhydrous zinc chloride yielded the aminoacridine (9), which was treated with citric acid to afford [9- 14 C]SM-10888 (1). The overall yield of 1 was 37% from 2, and the specific activity was 1.35 GBq/mmol. (author)

  5. Fluorescent Carbon Dots Derived from Maillard Reaction Products: Their Properties, Biodistribution, Cytotoxicity, and Antioxidant Activity.

    Science.gov (United States)

    Li, Dongmei; Na, Xiaokang; Wang, Haitao; Xie, Yisha; Cong, Shuang; Song, Yukun; Xu, Xianbing; Zhu, Bei-Wei; Tan, Mingqian

    2018-02-14

    Food-borne nanoparticles have received great attention because of their unique physicochemical properties and potential health risk. In this study, carbon dots (CDs) formed during one of the most important chemical reactions in the food processing field, the Maillard reaction from the model system including glucose and lysine, were investigated. The CDs purified from Maillard reaction products emitted a strong blue fluorescence under ultraviolet light with a fluorescent quantum yield of 16.30%. In addition, they were roughly spherical, with sizes of around 4.3 nm, and mainly composed of carbon, oxygen, hydrogen, and nitrogen. Their surface groups such as hydroxyl, amino, and carboxyl groups were found to possibly enable CDs to scavenge DPPH and hydroxyl radicals. Furthermore, the cytotoxicity assessment of CDs showed that they could readily enter HepG2 cells while causing negligible cell death at low concentration. However, high CDs concentrations were highly cytotoxic and led to cell death via interference of the glycolytic pathway.

  6. Reactions of carbon acids and 1,3-dipoles in the presence of ionic liquids

    International Nuclear Information System (INIS)

    Zlotin, Sergei G; Makhova, Nina N

    2010-01-01

    The review is devoted to the use of ionic liquids as solvents, immobilized organocatalysts and reagents in reactions involving carbon acids and 1,3-dipoles, which are widely used to prepare practically valuable organic compounds of various classes. The characteristic features of processes in the presence of ionic liquids, the effects of the structure of cations and anions on the regio-, stereo- and enantioselectivities of reactions and methods of recovery of ionic liquids are considered.

  7. XPS study on the surface reaction of uranium metal with carbon monoxide at 200 degree C

    International Nuclear Information System (INIS)

    Wang Xiaoling; Fu Yibei; Xie Renshou; Huang Ruiliang

    1996-12-01

    The surface reaction of uranium metal with carbon monoxide at 200 degree C has been studied by X-ray photoelectron spectroscopy (XPS). The carbon monoxide adsorption on the surface oxide layer resulted in U4f peak shifting to the lower binding energy and the content of oxygen in the oxide is decreased. O/U radio decreases with increasing the exposure of carbon monoxide to the surface layer. The investigation indicated the surface layer of uranium metal was further reduced in the atmosphere of carbon monoxide at high temperature. (3 refs., 5 figs.)

  8. Resonance Raman spectroscopy of 2H-labelled spheroidenes in petroleum ether and in the Rhodobacter sphaeroides reaction centre.

    Science.gov (United States)

    Kok, P; Köhler, J; Groenen, E J; Gebhard, R; van der Hoef, I; Lugtenburg, J; Farhoosh, R; Frank, H A

    1997-03-01

    As a step towards the structural analysis of the carotenoid spheroidene in the Rhodobacter sphaeroides reaction centre, we present the resonance Raman spectra of 14-2H, 15-2H, 15'-2H, 14'-2H, 14,15'-2H2 and 15-15'-2H2 spheroidenes in petroleum ether and, except for 14,15'-2H2 spheroidene, in the Rb. sphaeroides R26 reaction center (RC). Analysis of the spectral changes upon isotopic substitution allows a qualitative assignment of most of the vibrational bands to be made. For the all-trans spheroidenes in solution the resonance enhancement of the Raman bands is determined by the participation of carbon carbon stretching modes in the centre of the conjugated chain, the C9 to C15' region. For the RC-bound 15,15'-cis spheroidenes, enhancement is determined by the participation of carbon-carbon stretching modes in the centre of the molecule, the C13 to C13' region. Comparison of the spectra in solution and in the RC reveals evidence for an out-of-plane distortion of the RC-bound spheroidene in the central C14 to C14' region of the carotenoid. The characteristic 1240 cm-1 band in the spectrum of the RC-bound spheroidene has been assigned to a normal mode that contains the coupled C12-C13 and C13'-C12' stretch vibrations.

  9. Biogenic Carbon Fraction of Biogas and Natural Gas Fuel Mixtures Determined with 14C

    NARCIS (Netherlands)

    Palstra, Sanne W. L.; Meijer, Harro A. J.

    2014-01-01

    This study investigates the accuracy of the radiocarbon-based calculation of the biogenic carbon fraction for different biogas and biofossil gas mixtures. The focus is on the uncertainty in the C-14 reference values for 100% biogenic carbon and on the C-13-based isotope fractionation correction of

  10. Evaluating the Catalytic Effects of Carbon Materials on the Photocatalytic Reduction and Oxidation Reactions of TiO2

    International Nuclear Information System (INIS)

    Khan, Gulzar; Kim, Young Kwang; Choi, Sung Kyu; Han, Dong Suk; Abdelwahab, Ahmed; Park, Hyunwoong

    2013-01-01

    TiO 2 composites with seven different carbon materials (activated carbons, graphite, carbon fibers, single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene oxides, and reduced graphene oxides) that are virgin or treated with nitric acid are prepared through an evaporation method. The photocatalytic activities of the as-prepared samples are evaluated in terms of H 2 production from aqueous methanol solution (photo-catalytic reduction: PCR) and degradation of aqueous pollutants (phenol, methylene blue, and rhodamine B) (photocatalytic oxidation: PCO) under AM 1.5-light irradiation. Despite varying effects depending on the kinds of carbon materials and their surface treatment, composites typically show enhanced PCR activity with maximum 50 times higher H 2 production as compared to bare TiO 2 . Conversely, the carbon-induced synergy effects on PCO activities are insignificant for all three substrates. Colorimetric quantification of hydroxyl radicals supports the absence of carbon effects. However, platinum deposition on the binary composites displays the enhanced effect on both PCR and PCO reactions. These differing effects of carbon materials on PCR and PCO reactions of TiO 2 are discussed in terms of physicochemical properties of carbon materials, coupling states of TiO 2 /carbon composites, interfacial charge transfers. Various surface characterizations of composites (UV-Vis diffuse reflectance, SEM, FTIR, surface area, electrical conductivity, and photoluminescence) are performed to gain insight on their photocatalytic redox behaviors

  11. Nitrogen and Fluorine-Codoped Carbon Nanowire Aerogels as Metal-Free Electrocatalysts for Oxygen Reduction Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Shaofang [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Zhu, Chengzhou [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Song, Junhua [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Engelhard, Mark H. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Xiao, Biwei [Energy and Environmental Directory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Du, Dan [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Lin, Yuehe [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA

    2017-07-11

    The development of active, durable, and low-cost catalysts to replace noble metal-based materials is highly desirable to promote the sluggish oxygen reduction reaction in fuel cells. Herein, nitrogen and fluorine-codoped three-dimensional carbon nanowire aerogels, composed of interconnected carbon nanowires, were synthesized for the first time by a hydrothermal carbonization process. Owing to their porous nanostructures and heteroatom-doping, the as-prepared carbon nanowire aerogels, with optimized composition, present excellent electrocatalytic activity that is comparable to commercial Pt/C. Remarkably, the aerogels also exhibit superior stability and methanol tolerance. This synthesis procedure paves a new way to design novel heteroatomdoped catalysts.

  12. Kinetics of reactions of oxidation of carbon by carbon dioxide and water steam at high temperatures and low pressures

    International Nuclear Information System (INIS)

    Boulangier, Francois

    1956-01-01

    The first objective of this research thesis was to obtain new and reliable experimental results about the reaction kinetics of the oxidation of carbon by carbon dioxide and water steam, and to avoid some disturbing phenomena, for example and more particularly the appearance of electric discharges beyond 1900 K initiated by the filament thermoelectric emission. The author tried to identify the mechanism of the accelerating effect. It appears that previous experiments had been performed only in these disturbed conditions. At the lowest temperatures, the author highlighted the existence of a surface contamination by the desorption products from the apparatus [fr

  13. Atmospheric nuclear weapons test history narrated by carbon-14 in human teeth

    International Nuclear Information System (INIS)

    Nishizawa, Kunihide; Nagatsu, Toshiharu; Togari, Akifumi; Matsumoto, Shosei

    1991-01-01

    The atmospheric testing of nuclear weapons since 1945 caused a significant increase in the concentration of atmospheric 14 C. The 14 C concentration in plants that assimilate 14 C directly by photosynthesis reflects the atmospheric 14 C concentration. Carbon-14 is then transferred into the human body through the food chain. Based on animal experiments, the collagen in human teeth is metabolically inert after its formation. This implies that the collagen of each tooth retains the 14 C concentration which reflects the 14 C concentration in the blood at the time collagen metabolism ceased. The distribution of the 14 C concentration in the collagen of teeth from subjects of various ages would follow a pattern similar to that shown by soft tissues. In this paper the authors elucidate the relationship between the number of nuclear weapon tests and the distribution of 14 C concentration in teeth

  14. Dissolution and secondary mineral precipitation in basalts due to reactions with carbonic acid

    Science.gov (United States)

    Kanakiya, Shreya; Adam, Ludmila; Esteban, Lionel; Rowe, Michael C.; Shane, Phil

    2017-06-01

    One of the leading hydrothermal alteration processes in volcanic environments is when rock-forming minerals with high concentrations of iron, magnesium, and calcium react with CO2 and water to form carbonate minerals. This is used to the advantage of geologic sequestration of anthropogenic CO2. Here we experimentally investigate how mineral carbonation processes alter the rock microstructure due to CO2-water-rock interactions. In order to characterize these changes, CO2-water-rock alteration in Auckland Volcanic Field young basalts (less than 0.3 Ma) is studied before and after a 140 day reaction period. We investigate how whole core basalts with similar geochemistry but different porosity, permeability, pore geometry, and volcanic glass content alter due to CO2-water-rock reactions. Ankerite and aluminosilicate minerals precipitate as secondary phases in the pore space. However, rock dissolution mechanisms are found to dominate this secondary mineral precipitation resulting in an increase in porosity and decrease in rigidity of all samples. The basalt with the highest initial porosity and volcanic glass volume shows the most secondary mineral precipitation. At the same time, this sample exhibits the greatest increase in porosity and permeability, and a decrease in rock rigidity post reaction. For the measured samples, we observe a correlation between volcanic glass volume and rock porosity increase due to rock-fluid reactions. We believe this study can help understand the dynamic rock-fluid interactions when monitoring field scale CO2 sequestration projects in basalts.

  15. Exploration of the Role of Heat Activation in Enhancing Serpentine Carbon Sequestration Reactions

    International Nuclear Information System (INIS)

    McKelvy, M.J.; Chizmeshya, A.V.G.; Diefenbacher, J.; Bearat, H.; Wolf, G.

    2005-01-01

    As compared with other candidate carbon sequestration technologies, mineral carbonation offers the unique advantage of permanent disposal via geologically stable and environmentally benign carbonates. The primary challenge is the development of an economically viable process. Enhancing feedstock carbonation reactivity is key. Heat activation dramatically enhances aqueous serpentine carbonation reactivity. Although the present process is too expensive to implement, the materials characteristics and mechanisms that enhance carbonation are of keen interest for further reducing cost. Simultaneous thermogravimetric and differential thermal analysis (TGA/DTA) of the serpentine mineral lizardite was used to isolate a series of heat-activated materials as a function of residual hydroxide content at progressively higher temperatures. Their structure and composition are evaluated via TGA/DTA, X-ray powder diffraction (including phase analysis), and infrared analysis. The meta-serpentine materials that were observed to form ranged from those with longer range ordering, consistent with diffuse stage-2 like interlamellar order, to an amorphous component that preferentially forms at higher temperatures. The aqueous carbonation reaction process was investigated for representative materials via in situ synchrotron X-ray diffraction. Magnesite was observed to form directly at 15 MPa CO 2 and at temperatures ranging from 100 to 125 C. Carbonation reactivity is generally correlated with the extent of meta-serpentine formation and structural disorder.

  16. Thermodynamic Data for Geochemical Modeling of Carbonate Reactions Associated with CO2 Sequestration – Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Krupka, Kenneth M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B. Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2010-09-01

    Permanent storage of anthropogenic CO2 in deep geologic formations is being considered as a means to reduce the concentration of atmospheric CO2 and thus its contribution to global climate change. To ensure safe and effective geologic sequestration, numerous studies have been completed of the extent to which the CO2 migrates within geologic formations and what physical and geochemical changes occur in these formations when CO2 is injected. Sophisticated, computerized reservoir simulations are used as part of field site and laboratory CO2 sequestration studies. These simulations use coupled multiphase flow-reactive chemical transport models and/or standalone (i.e., no coupled fluid transport) geochemical models to calculate gas solubility, aqueous complexation, reduction/oxidation (redox), and/or mineral solubility reactions related to CO2 injection and sequestration. Thermodynamic data are critical inputs to modeling geochemical processes. The adequacy of thermodynamic data for carbonate compounds has been identified as an important data requirement for the successful application of these geochemical reaction models to CO2 sequestration. A review of thermodynamic data for CO2 gas and carbonate aqueous species and minerals present in published data compilations and databases used in geochemical reaction models was therefore completed. Published studies that describe mineralogical analyses from CO2 sequestration field and natural analogue sites and laboratory studies were also reviewed to identify specific carbonate minerals that are important to CO2 sequestration reactions and therefore require thermodynamic data. The results of the literature review indicated that an extensive thermodynamic database exists for CO2 and CH4 gases, carbonate aqueous species, and carbonate minerals. Values of ΔfG298° and/or log Kr,298° are available for essentially all of these compounds. However, log Kr,T° or heat capacity values at temperatures above 298 K exist for less than

  17. Sintering uranium oxide in the reaction product of hydrogen-carbon dioxide mixtures

    International Nuclear Information System (INIS)

    De Hollander, W.R.; Nivas, Y.

    1975-01-01

    Compacted pellets of uranium oxide alone or containing one or more additives such as plutonium dioxide, gadolinium oxide, titanium dioxide, silica, and alumina are heated to 900 to 1599 0 C in the presence of a mixture of hydrogen and carbon dioxide, either alone or with an inert carrier gas and held at the desired temperature in this atmosphere to sinter the pellets. The sintered pellets are then cooled in an atmosphere having an oxygen partial pressure of 10 -4 to 10 -18 atm of oxygen such as dry hydrogen, wet hydrogen, dry carbon monoxide, wet carbon monoxide, inert gases such as nitrogen, argon, helium, and neon and mixtures of ayny of the foregoing including a mixture of hydrogen and carbon dioxide. The ratio of hydrogen to carbon dioxide in the gas mixture fed to the furnace is controlled to give a ratio of oxygen to uranium atoms in the sintered particles within the range of 1.98:1 to about 2.10:1. The water vapor present in the reaction products in the furnace atmosphere acts as a hydrolysis agent to aid removal of fluoride should such impurity be present in the uranium oxide. (U.S.)

  18. The synthesis of a tritium, carbon-14, and stable isotope-labeled cathepsin C inhibitors.

    Science.gov (United States)

    Allen, Paul; Bragg, Ryan A; Caffrey, Moya; Ericsson, Cecilia; Hickey, Michael J; Kingston, Lee P; Elmore, Charles S

    2017-02-01

    As part of a medicinal chemistry program aimed at developing a highly potent and selective cathepsin C inhibitor, tritium, carbon-14, and stable isotope-labeled materials were required. The synthesis of tritium-labeled methanesulfonate 5 was achieved via catalytic tritiolysis of a chloro precursor, albeit at a low radiochemical purity of 67%. Tritium-labeled AZD5248 was prepared via a 3-stage synthesis, utilizing amide-directed hydrogen isotope exchange. Carbon-14 and stable isotope-labeled AZD5248 were successfully prepared through modifications of the medicinal chemistry synthetic route, enabling the use of available labeled intermediates. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Ambient Mechanochemical Solid-State Reactions of Carbon Nanotubes and Their Reactions via Covalent Coordinate Bond in Solution

    Science.gov (United States)

    Kabbani, Mohamad A.

    In its first part, this thesis deals with ambient mechanochemical solid-state reactions of differently functionalized multiple walled carbon nanotubes (MWCNTs) while in its second part it investigates the cross-linking reactions of CNTs in solution via covalent coordinate bonds with transitions metals and carboxylate groups decorating their surfaces. In the first part a series of mechanochemical reactions involving different reactive functionalities on the CNTs such as COOH/OH, COOH/NH2 and COCl/OH were performed. The solid-state unzipping of CNTs leading to graphene formation was confirmed using spectroscopic, thermal and electron microscopy techniques. The non-grapheme products were established using in-situ quadruple mass spectroscopy. The experimental results were confirmed by theoretical simulation calculations using the 'hot spots' protocol. The kinetics of the reaction between MWCNT-COOH and MWCNT-OH was monitored using variable temperature Raman spectroscopy. The low activation energy was discussed in terms of hydrogen bond mediated proton transfer mechanism. The second part involves the reaction of MWCNTII COOH with Zn (II) and Cu (II) to form CNT metal-organic frame (MOFs) products that were tested for their effective use as counter-electrodes in dyes sensitized solar cells (DSSC). The thesis concludes by the study of the room temperature reaction between the functionalized graphenes, GOH and G'-COOH followed by the application of compressive loads. The 3D solid graphene pellet product ( 0.6gm/cc) is conductive and reflective with a 35MPa ultimate strength as compared to 10MPa strength of graphite electrode ( 2.2gm/cc).

  20. Carbon-14, tritium, stable isotope and chemical measurements on thermal waters from the Tauranga region

    International Nuclear Information System (INIS)

    Stewart, M.K.; McGill, R.C.; Taylor, C.B.; Whitehead, N.E.; Downes, C.J.

    1984-03-01

    The chemical compositions of groundwater from the Tauranga region are affected to varying degrees by reducing conditions due to buried organic matter. The levels of some dissolved constituents are also affected by mixing with sea water contained within the rocks and by rock-water interaction. Dissolved gas compositions range from oxygen-bearing to methane-bearing reflecting the varying redox conditions. Excess air may be present but further experiments are necessary to confirm this. Apparent ages deduced from carbon-14 measurements (corrected using 12C dilution and 13C fractionation methods) range from 2-25,000 years, suggesting that some of the waters were recharged during late Pleistocene or early Holocene time. ΔD and Δ18 O values of the oldest waters are slightly more negative than those of younger samples; this may indicate recharge during a cooler climate, in agreement with the 14C ages. Very low but significantly non-zero tritium contents (TR=(0.007-0.059)+-0.007) were measured using the high tritium-enrichment facilities at INS and the very low-background counters at the University of Bern. The tritium is thought to derive from contamination or nuclear reactions in the aquifer rocks rather than from recharge water

  1. Application of the dose limitation system to the control of carbon-14 releases from heavy-water-moderated reactors

    International Nuclear Information System (INIS)

    Beninson, D.; Gonzalez, A.J.

    1982-01-01

    Heavy-water-moderated reactors produce substantially more carbon-14 than light-water reactors. Applying the principles of the systems of dose limitation, the paper presents the rationale used for establishing the release limit for effluents containing this nuclide and for the decisions made regarding the effluent treatment in the third nuclear power station in Argentina. Production of carbon-14 in PHWR and the release routes are analysed in the light of the different effluent treatment possibilities. An optimization assessment is presented, taking into account effluent treatment and waste management costs, and the collective effective dose commitment due to the releases. The contribution of present carbon-14 releases to future individual doses is also analysed in the light of an upper bound for the contribution, representing a fraction of the individual dose limits. The paper presents the resulting requirements for the effluent treatment regarding carbon-14 and the corresponding regulatory aspects used in Argentina. (author)

  2. The reactions of loaded carbon nanotubes, studied by novel electron microscope techniques

    International Nuclear Information System (INIS)

    Rawcliffe, A.

    1999-01-01

    A novel electron microscope technique, controlled environment transmission electron microscopy (CETEM), has been used to investigate the reaction of materials loaded within the internal cavities of carbon nanotubes. CETEM allows the introduction of up to 20 mbar of gas around an electron microscope sample, while maintaining a high resolution imaging capability. The microscope is stable, flexible and reliable under these conditions and high resolution images of encapsulated transmission metal oxide reduction have been recorded at 460 deg. C. Recently discovered carbon nanotubes have in theory many applications, many of which will require controlled reliable loading of the internal cavity. However, at present, there is little experimental evidence to confirm theoretical descriptions of the fundamental mechanisms which govern both the extent of loading and the state in which it is found. Similarly, reaction within the cavity and the effect of encapsulation on the nano-scale particle distribution must also be understood, and CETEM proves to be an ideal technique for the study of these processes. Nanotubes have been loaded from aqueous solution with (NH 4 ) 2 IrCI 6 and with molten MoO 3 or K 2 WO 4 /WO 3 . Bulk samples of the first salt are known to decompose spontaneously in air at 200 deg. C, and the bulk oxides are partially reduced at temperature under hydrogen to give potentially useful conducting phases. Comparing the reaction of these materials it is thus possible to: investigate the effect of loading on their reaction; compare the reaction of these materials in- and out-side the tube cavity; and assess the result of violent loading processes on the tubes themselves. Fortuitously, a spontaneous decomposition, a solid-gas reduction and a phase rearrangement were all recorded, allowing mechanistic implications of encapsulation to be considered for each of these reactions. Perhaps surprisingly, the results can be largely interpreted using the reported bulk

  3. Calculation of astrophysical S-factor in reaction ^{13}C(p,γ )^{14}N for first resonance levels

    Science.gov (United States)

    Moghadasi, A.; Sadeghi, H.; Pourimani, R.

    2018-01-01

    The ^{13}C(p,γ )^{14}N reaction is one of the important reactions in the CNO cycle, which is a key process in nucleosynthesis. We first calculated wave functions for the bound state of ^{14}N with Faddeev's method. In this method, the considered reaction components are ^{12}C+n+p. Then, by using direct capture cross section and Breit-Wigner formulae, the non-resonant and resonant cross sections were calculated, respectively. In the next step, we calculated the total S-factor and compared it with experimental data, which showed good agreement between them. Next, we extrapolated the S-factor for the transition to the ground state at zero energy and obtained S(0)=5.8 ± 0.7 (keV b) and then calculate reaction rate. These ones are in agreement with previous reported results.

  4. Simultaneous Transformation of Commingled Trichloroethylene, Tetrachloroethylene, and 1,4-Dioxane by a Microbially Driven Fenton Reaction in Batch Liquid Cultures

    Science.gov (United States)

    Sekar, Ramanan; Taillefert, Martial

    2016-01-01

    ABSTRACT Improper disposal of 1,4-dioxane and the chlorinated organic solvents trichloroethylene (TCE) and tetrachloroethylene (also known as perchloroethylene [PCE]) has resulted in widespread contamination of soil and groundwater. In the present study, a previously designed microbially driven Fenton reaction system was reconfigured to generate hydroxyl (HO˙) radicals for simultaneous transformation of source zone levels of single, binary, and ternary mixtures of TCE, PCE, and 1,4-dioxane. The reconfigured Fenton reaction system was driven by fed batch cultures of the Fe(III)-reducing facultative anaerobe Shewanella oneidensis amended with lactate, Fe(III), and contaminants and exposed to alternating anaerobic and aerobic conditions. To avoid contaminant loss due to volatility, the Fe(II)-generating, hydrogen peroxide-generating, and contaminant transformation phases of the microbially driven Fenton reaction system were separated. The reconfigured Fenton reaction system transformed TCE, PCE, and 1,4-dioxane either as single contaminants or as binary and ternary mixtures. In the presence of equimolar concentrations of PCE and TCE, the ratio of the experimentally derived rates of PCE and TCE transformation was nearly identical to the ratio of the corresponding HO˙ radical reaction rate constants. The reconfigured Fenton reaction system may be applied as an ex situ platform for simultaneous degradation of commingled TCE, PCE, and 1,4-dioxane and provides valuable information for future development of in situ remediation technologies. IMPORTANCE A microbially driven Fenton reaction system [driven by the Fe(III)-reducing facultative anaerobe S. oneidensis] was reconfigured to transform source zone levels of TCE, PCE, and 1,4-dioxane as single contaminants or as binary and ternary mixtures. The microbially driven Fenton reaction may thus be applied as an ex situ platform for simultaneous degradation of at least three (and potentially more) commingled contaminants

  5. Carbon-14 dynamics in rice: an extension of the ORYZA2000 model

    Energy Technology Data Exchange (ETDEWEB)

    Galeriu, D.; Melintescu, A. [' ' Horia Hulubei' ' National Institute for Physics and Nuclear Engineering, Life and Environmental Physics Department, 30 Reactorului St., POB MG-6, Bucharest-Magurele (Romania)

    2014-03-15

    Carbon-14 ({sup 14}C) is a radionuclide of major interest in nuclear power production. The Fukushima accident changed the public attitude on the use of nuclear energy all over the world. In terms of nuclear safety, the need of quality-assured radiological models was emphasized by many international organizations, and for models used by decision-makers (i.e. regulatory environmental models and radiological models), a moderate conservatism, transparency, relative simplicity and user friendliness are required. Because the interaction between crops and the environment is complex and regulated by many feedback mechanisms, however, these requirements are difficult to accomplish. The present study makes a step forward regarding the development of a robust model dealing with food contamination after a short-term accidental emission and considers a single crop species, rice (Oryza sativa), one of the most widely used rice species. Old and more recent experimental data regarding the carbon dynamics in rice plants are reviewed, and a well-established crop growth model, ORYZA2000, is used and adapted in order to assess the dynamics of {sup 14}C in rice after a short-term exposure to {sup 14}CO{sub 2}. Here, the model is used to investigate the role of the genotype, management and weather on the concentration of radiocarbon at harvest. (orig.)

  6. Production cross section measurement of discrete gammas-ray at 90 degree for interactions of 14. 9 MeV neutrons with carbon and niobium

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Hongyu; Yan Yiming; Tang lin; Wen Chenlin; Zhang Shenji; Hua Ming; Han Chongzhan; Ding Xiaoji; Lan Liqiao; Fan Guoying; Yan Hua; Wang Xingfu; Wang Qi; Sun Suxu; Rong Yaning; Liu Shuzhen (Institute of Low Energy Nuclear Physics, Beijing Normal University, Beijing (CN))

    1989-05-01

    The cross sections of discrete gamma-ray produced by interactions of 14.9 MeV neutrons with carbon and niobium were investigated. A pulsed {ital T}({ital d},{ital n}){sup 4} He neutron source was used in the measurement. Neutron flux incident upon the sample was determined with the associated particle method. Technique of time-of-flight was used for reducing the background. A new method to calculate neutron flux attenuation in large cylindrical sample was proposed. The split of 4.439 MeV gamma-ray line from {sup 12}C({ital n},{ital n}{prime}{gamma}){sup 12}C reactions was confirmed. 79 discrete gamma-ray lines and their production cross sections for the interactions of 14.9 MeV neutrons with niobium were obtained for the first time.

  7. Radiolytic decomposition of organic C-14 released from TRU waste

    International Nuclear Information System (INIS)

    Kani, Yuko; Noshita, Kenji; Kawasaki, Toru; Nishimura, Tsutomu; Sakuragi, Tomofumi; Asano, Hidekazu

    2007-01-01

    It has been found that metallic TRU waste releases considerable portions of C-14 in the form of organic molecules such as lower molecular weight organic acids, alcohols and aldehydes. Due to the low sorption ability of organic C-14, it is important to clarify the long-term behavior of organic forms under waste disposal conditions. From investigations on radiolytic decomposition of organic carbon molecules into inorganic carbonic acid, it is expected that radiation from TRU waste will decompose organic C-14 into inorganic carbonic acid that has higher adsorption ability into the engineering barriers. Hence we have studied the decomposition behavior of organic C-14 by gamma irradiation experiments under simulated disposal conditions. The results showed that organic C-14 reacted with OH radicals formed by radiolysis of water, to produce inorganic carbonic acid. We introduced the concept of 'decomposition efficiency' which expresses the percentage of OH radicals consumed for the decomposition reaction of organic molecules in order to analyze the experimental results. We estimated the effect of radiolytic decomposition on the concentration of organic C-14 in the simulated conditions of the TRU disposal system using the decomposition efficiency, and found that the concentration of organic C-14 in the waste package will be lowered when the decomposition of organic C-14 by radiolysis was taken into account, in comparison with the concentration of organic C-14 without radiolysis. Our prediction suggested that some amount of organic C-14 can be expected to be transformed into the inorganic form in the waste package in an actual system. (authors)

  8. Efficient Construction of Energetic Materials via Nonmetallic Catalytic Carbon-Carbon Cleavage/Oxime-Release-Coupling Reactions.

    Science.gov (United States)

    Zhao, Gang; He, Chunlin; Yin, Ping; Imler, Gregory H; Parrish, Damon A; Shreeve, Jean'ne M

    2018-03-14

    The exploitation of C-C activation to facilitate chemical reactions is well-known in organic chemistry. Traditional strategies in homogeneous media rely upon catalyst-activated or metal-mediated C-C bonds leading to the design of new processes for applications in organic chemistry. However, activation of a C-C bond, compared with C-H bond activation, is a more challenging process and an underdeveloped area because thermodynamics does not favor insertion into a C-C bond in solution. Carbon-carbon bond cleavage through loss of an oxime moiety has not been reported. In this paper, a new observation of self-coupling via C-C bond cleavage with concomitant loss of oxime in the absence of metals (either metal-complex mediation or catalysis) results in dihydroxylammonium 5,5-bistetrazole-1,10-diolate (TKX-50) as well as N, N'-([3,3'-bi(1,2,4-oxadiazole)]-5,5'-diyl)dinitramine, a potential candidate for a new generation of energetic materials.

  9. Effect of anthropogenic activities on atmospheric 14C content and radiocarbon chronologies of the future.

    Science.gov (United States)

    Hajdas, Irka

    2017-04-01

    Radiocarbon (14C) is a naturally produced radioactive isotope of carbon (T1/2=5700 yrs), which is continuously produced in the atmosphere. This occur in a reaction of thermal neutrons, which are secondary particles, products of cosmic rays reactions with the atmosphere, with nitrogen that is commonly present in the atmosphere. Until the mid 19th century the natural concentration showed temporal variability around the mean value (14C / 12C ratio =1.8 x 10-12). However anthropogenic activity created 2 types effects that are changing the 14C concentration of the atmosphere. Industrial revolution triggered adding 14C free (old) carbon that originates from the burning of fossil fuels (Suess effect). This in the late 19th century and early 20th century atmosphere was becoming older. The nuclear tests in the 1950ties caused additional production of radiocarbon atoms (artificial). The effect has been almost double of the natural production and created an excess 14C activity in the atmosphere and in terrestrial carbon bearing materials. The bomb produced 14C has been identified soon after the tests started but the peak (ca. 100% above the normal levels) reached its maximum in 1963 in the northern Hemisphere where most of the tests took place. In the southern Hemisphere the bomb peak reached lower values (ca. 80 % of normal level) and was delayed by ca. 2 years. After the ban on nuclear tests the atmospheric 14C content began to decrease mainly due to the uptake by the ocean but also due to the above mentioned addition old carbon. Continuous monitoring of the atmospheric 14C ratio during the years that followed the nuclear tests, provide basis for environmental studies. Applications range from studies of ocean circulation, CO2 uptake, carbon storage in soils and peat, root turn over time to the medical, forensic and detection of forgeries. However, the so called ' 14C bomb peak' nearly disappeared due to the combined effect of ocean uptake of CO2 and an input to the

  10. Reaction between molybdenum and carbon, and several carbides

    International Nuclear Information System (INIS)

    Morozumi, Shotaro; Kikuchi, Michio; Sugai, Shinzo; Hayashi, Masaaki.

    1980-01-01

    Diffusion couples of molybdenum with carbon and several carbides, i.e. B 4 C, SiC, TiC, and TaC, respectively, were heated for up to 3.6 x 10 5 s at various temperatures ranging from 1373 to 2223 K. The couples were then examined for composition, growth rate, structure, and hardness of reaction layers. Main results obtained are as follows: (1) In the Mo-C system, only Mo 2 C layer was formed at below 1873 K, while two sub- layers consisted of Mo 2 C and eta (MoC sub(1-x)), respectively, were found at above 1873 K. The activation energy for growth of total layer was 374 kJ/mol. (2) In the Mo-B 4 C system, two sub-layers consisted of Mo 2 B and MoB, respectively, with dispersed carbon particles were formed. (3) In the Mo-SiC system, Mo 2 C layer, including eta (MoC sub(1-x)) phase at high temperature, mixture of Mo 2 C and Mo 3 Si 2 phases, and Mo 3 Si 2 phase in order from the Mo side were formed. The activation energy for growth of total layer was 477 kJ/mol. (4) In the Mo-TiC system, two kinds of TiC in point of view of free carbon content were used; one is with 0.2% free carbon and the other is with 0.01%. In the Mo-TiC with 0.2% free carbon system, two sub-layers, i.e. relatively thick Mo 2 C layer and thin (Ti, Mo)C layer, were formed, while in the Mo-TiC with 0.01% free carbon system two thin sub-layers, Mo 2 C and (Ti, Mo)C, were formed; the Mo 2 C layer in the latter case was very thin and was not found after short time heating at low temperature. The activation energy for growth of Mo 2 C layer in the former system was 393 kJ/mol. (5) In the Mo-TaC with 0.02% free carbon system, two thin sub-layers, (Mo, Ta) 2 C and (Ta, Mo)C, were observed. (6) TEM studies on the interface between Mo (bcc) and Mo 2 C (hcp) showed that there was the following orientation relation, called as the Burgers relation, between these two phases; (110)sub(Mo)//(0001)sub(Mo 2 C), sub(Mo)// - 0>sub(Mo 2 C). (author)

  11. NMR studies of stock process water and reaction pathways in hydrothermal carbonization of furfural residue

    Directory of Open Access Journals (Sweden)

    Fen Yue

    2018-04-01

    Full Text Available Hydrothermal carbonization (HTC is a valuable approach to convert furfural residue (FR into carbon material. The prepared biochars are usually characterized comprehensively, while the stock process water still remains to be studied in detail. Herein, a NMR study of the main components in stock process water generated at different HTC reaction conditions was reported. Various qualitative and quantitative NMR techniques (1H and 13C NMR, 1H–1H COSY and 1H13C HSQC etc. especially 1D selective gradient total correlation spectroscopy (TOCSY NMR were strategically applied in the analysis of HTC stock process water. Without separation and purification, it was demonstrated that the main detectable compounds are 5-hydroxymethylfurfural, formic acid, methanol, acetic acid, levulinic acid, glycerol, hydroxyacetone and acetaldehyde in this complicate mixture. Furthermore, the relationship between the concentration of major products and the reaction conditions (180–240 °C at 8 h, and 1–24 h at 240 °C was established. Finally, reasonable reaction pathways for hydrothermal conversion of FR were proposed based on this result and our previously obtained characteristics of biochars. The routine and challenging NMR methods utilized here would be an alternative other than HPLC or GC for biomass conversion research and can be extended to more studies. Keywords: NMR, Hydrothermal carbonization, Furfural residue, Stock process water

  12. Synthesis of puric bases labelled with carbon 14 and nitrogen 15

    International Nuclear Information System (INIS)

    Lamorre, Yves

    1975-01-01

    In this report for graduation in organic chemistry engineering, the author reports the synthesis of adenine 14 C-2 et 14 C-6 by two different chemical ways from two derivatives of imidazole. He has used adenine 14 C-6 to obtain hypoxanthine 14 C-6, and then, by enzymatic processing, uric acid 14 C-6. He reports the study of the production of guanine 14 C-2 by cyclization of silylated derivative of imidazole with the carbon 14 C sulphur. However, a method of complete synthesis of this same compound revealed to be more practical. This complete synthesis way allowed the labelling of guanine in positions 1, 2 and 3 by the 96 per cent isotopic nitrogen. Nitrogen in positions 7 and 9 could have been labelled by the same way from the ethyl cyanoacetate 15 N and from the sodium nitrite 15 N. The study of the mass spectrum of these compounds labelled with nitrogen 15 N allowed most of fragments obtained during this analysis to be identified [fr

  13. ATOMIC-LEVEL IMAGING OF CO2 DISPOSAL AS A CARBONATE MINERAL: OPTIMIZING REACTION PROCESS DESIGN; A

    International Nuclear Information System (INIS)

    M.J. McKelvy; R. Sharma; A.V.G. Chizmeshya; H. Bearat; R.W. Carpenter

    2001-01-01

    Fossil fuels, especially coal, can support the energy demands of the world for centuries to come, if the environmental problems associated with CO(sub 2) emissions can be overcome. Permanent and safe methods for CO(sub 2) capture and disposal/storage need to be developed. Mineralization of stationary-source CO(sub 2) emissions as carbonates can provide such safe capture and long-term sequestration. Mg-rich lamellar-hydroxide based minerals (e.g., brucite and serpentine) offer a class of widely available, low-cost materials, with intriguing mineral carbonation potential. Carbonation of such materials inherently involves dehydroxylation, which can disrupt the material down to the atomic level. As such, controlled dehydroxylation, before and/or during carbonation, may provide an important parameter for enhancing carbonation reaction processes. Mg(OH)(sub 2) was chosen as the model material for investigating lamellar hydroxide mineral dehydroxylation/carbonation mechanisms due to (i) its structural and chemical simplicity, (ii) interest in Mg(OH)(sub 2) gas-solid carbonation as a potentially cost-effective CO(sub 2) mineral sequestration process component, and (iii) its structural and chemical similarity to other lamellar-hydroxide-based minerals (e.g., serpentine-based minerals) whose carbonation reaction processes are being explored due to their low-cost CO(sub 2) sequestration potential. Fundamental understanding of the mechanisms that govern dehydroxylation/carbonation processes is essential for minimizing the cost of any lamellar-hydroxide-based mineral carbonation sequestration process. This report covers the third year progress of this grant, as well as providing an integrated overview of the progress in years 1-3, as we have been granted a one-year no-cost extension to wrap up a few studies and publications to optimize project impact

  14. Preparation of ultra-fine calcium carbonate by a solvent-free reaction using supersonic airflow and low temperatures

    OpenAIRE

    Cai, Yan-Hua; Ma, Dong-Mei; Peng, Ru-Fang; Chu, Shi-Jin

    2008-01-01

    The treatment of calcium chloride with sodium carbonate under solvent-free conditions with a supersonic airflow and at a low heating temperature leads to the synthesis of ultra-fine calcium carbonate. The reaction not only involves mild conditions, a simple operation, and high yields but also gives a high conversion rate.

  15. Polyaniline-Derived Ordered Mesoporous Carbon as an Efficient Electrocatalyst for Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Kai Wan

    2015-06-01

    Full Text Available Nitrogen-doped ordered mesoporous carbon was synthesized by using polyaniline as the carbon source and SBA-15 as the template. The microstructure, composition and electrochemical behavior were extensively investigated by the nitrogen sorption isotherm, X-ray photoelectron spectroscopy, cyclic voltammetry and rotating ring-disk electrode. It is found that the pyrolysis temperature yielded a considerable effect on the pore structure, elemental composition and chemical configuration. The pyrolysis temperature from 800 to 1100 °C yielded a volcano-shape relationship with both the specific surface area and the content of the nitrogen-activated carbon. Electrochemical tests showed that the electrocatalytic activity followed a similar volcano-shape relationship, and the carbon catalyst synthesized at 1000 °C yielded the best performance. The post-treatment in NH3 was found to further increase the specific surface area and to enhance the nitrogen doping, especially the edge-type nitrogen, which favored the oxygen reduction reaction in both acid and alkaline media. The above findings shed light on electrocatalysis and offer more strategies for the controllable synthesis of the doped carbon catalyst.

  16. Organic compounds preparation with 14 C

    International Nuclear Information System (INIS)

    Shirvani, Gholam Hossein.

    1996-09-01

    Active urea is a basic reagent for the synthesis of active uric-8- 14 C acid. In our manner, activated Barium carbonate with specified activity was placed in a special furnace with ability of passing gases. Then, ammonia gas was passed through it at about 850 Degree C to obtain Barium Cyanamide. Reaction of the produced compound with CO 2 , and then acidification of the mixture, gave activated urea. Condensation of the urea with Ethylcyanoacetate, produce 6-Aminouracil which upon nitrosation, reduction and then condensation with urea, the desired Uric-8- 14 C acid was synthesized. (author). 148 refs.,

  17. CO2-laser decomposition method of carbonate for AMS 14C measurements

    International Nuclear Information System (INIS)

    Kitagawa, Hiroyuki

    2013-01-01

    A CO 2 laser decomposition method enabled the efficient preparation of carbonate samples for AMS 14 C measurement. Samples were loaded in a vacuum chamber and thermally decomposed using laser emission. CO 2 liberated from the carbonate was directly trapped in the cold finger trap of a small CO 2 reduction reactor and graphitized by a hydrogen gas reduction method using catalytic iron powder. The fraction modern values for 0.07–0.57 mg of carbon, obtained from 200 μm-diameter spots of IAEA-C1, varied with sample size in the range of 0.00072 ± 0.00003 to 0.00615 ± 0.00052. The contamination induced by the laser decomposition method and the following graphite handling was estimated to be 0.53 ± 0.21 μg of modern carbon, assuming a constant amount of extraneous carbon contamination. This method could also make it possible to avoid the time-consuming procedures of the conventional acid dissolution method that involves multiple complex steps for the preparation of carbonate samples.

  18. Reduced Reactivity of Amines against Nucleophilic Substitution via Reversible Reaction with Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Fiaz S. Mohammed

    2015-12-01

    Full Text Available The reversible reaction of carbon dioxide (CO2 with primary amines to form alkyl-ammonium carbamates is demonstrated in this work to reduce amine reactivity against nucleophilic substitution reactions with benzophenone and phenyl isocyanate. The reversible formation of carbamates has been recently exploited for a number of unique applications including the formation of reversible ionic liquids and surfactants. For these applications, reduced reactivity of the carbamate is imperative, particularly for applications in reactions and separations. In this work, carbamate formation resulted in a 67% reduction in yield for urea synthesis and 55% reduction for imine synthesis. Furthermore, the amine reactivity can be recovered upon reversal of the carbamate reaction, demonstrating reversibility. The strong nucleophilic properties of amines often require protection/de-protection schemes during bi-functional coupling reactions. This typically requires three separate reaction steps to achieve a single transformation, which is the motivation behind Green Chemistry Principle #8: Reduce Derivatives. Based upon the reduced reactivity, there is potential to employ the reversible carbamate reaction as an alternative method for amine protection in the presence of competing reactions. For the context of this work, CO2 is envisioned as a green protecting agent to suppress formation of n-phenyl benzophenoneimine and various n-phenyl–n-alky ureas.

  19. First accelerator carbon-14 date for pigment from a rock painting

    International Nuclear Information System (INIS)

    Van der Merwe, N.J.; Sealy, J.; Yates, R.

    1987-01-01

    South Africa is particularly blessed with rock art: thousands of paintings and engravings provide a window on the cognitive systems of prehistoric populations. A major stumbling block in studying the art is the lack of a method for dating it. This article shows that some of the paintings can be directly dated by means of accelerator 14 C counting of carbon from black pigment. The advent of accelerator 14 C provides the capability of analysing very small samples and brings pigments from rock paintings into the realm of datable materials

  20. 14CO2-assimilation, translocation of 14C, and 14C-carbonate uptake in different organs of spring barley plants in relation to adult-plant resistance to powdery mildew

    International Nuclear Information System (INIS)

    Hwang, B.K.; Ibenthal, W.-D.; Heitefuss, R.

    1986-01-01

    The cultivar Peruvian of spring barley, which is susceptible at all growth stages, and Asse, which exhibits adult-plant resistance to powdery mildew, were compared in 14 CO 2 assimilation, distribution of 14 C, and 14 C-carbonate uptake in different organs of healthy and infected plants. The reduction of 14 CO 2 assimilation in infected plants at the first and fourth leaf stages was greater in Peruvian than in Asse. In Peruvian, the 14 C which was fixed by the infected third leaf of plants with mildew on the lower 3 leaves remained in the third leaves with very little translocation to other parts of the plant. Infection of the lower three leaves at the fourth leaf stage reduced 14 CO 2 assimilation in noninfected fourth leaves of Asse less than that of Peruvian, but the flow of 14 C from the healthy fourth leaves into other plant parts such as leaf sheaths was markedly stimulated in Peruvian compared to Asse. Infection also reduced the uptake of 14 C-carbonate by seedling roots, the reduction being greater in Peruvian than Asse. A greater proportion of the 14 C absorbed by roots of Asse was translocated to the infected leaves than that of Peruvian. It was concluded that powdery mildew disrupted the normal pattern of photosynthesis and translocation of metabolites in a susceptible cultivar more markedly than in an adult-plant-resistant cultivar of spring barley. (author)

  1. Excitation functions of pion reactions on 14N, 16O, and 19F through the (3,3) resonance

    International Nuclear Information System (INIS)

    Jacob, N.P. Jr.; Markowitz, S.S.

    1976-01-01

    Cross sections for pion-induced reactions of the form (π,πN) and more complex spallation reactions of the form (π,X) have been measured from 50--550 MeV on the target nuclei 14 N, 16 O, and 19 F using the secondary pion beams at the Lawrence Berkeley Laboratory 184-inch synchrocyclotron and the Clinton P. Anderson Meson Physics Facility. The dominance of the (3,3) free-particle resonance is seen in all excitation functions determined in this work. Relative to the 12 C(π/sup plus-or-minus/,πN) 11 C reactions, the (π/sup plus-or-minus/,πN) reactions on 14 N, 16 O, and 19 F have magnitudes of 0.2, 1, and 0.7, respectively. The cross section ratio R=sigma (π - ,π - n)/sigma (π + ,π N) =1.68+-0.18 for 14 N at 188+-15 MeV, 1.68+-0.05 for 16 O at 188+-9 MeV, and 1.68+-0.03 for 19 F at 178+-2 MeV incident pion energy. The results from this work are compared to previous pion work, analogous proton-induced reactions, Monte Carlo intranuclear cascade-evaporation calculations, and to a semiclassical nucleon charge-exchange model which convincingly explains the (π,πN) reaction mechanism in the (3,3) resonance region

  2. Synthesis of 14C and 32P double labelled triethylphosphine

    International Nuclear Information System (INIS)

    Kanska, M.; Drabarek, S.

    1979-01-01

    The synthesis of 14 C and 32 P double labelled triethylphosphine has been carried out using red phosphorus [ 32 P] and barium carbonate [ 14 C] as starting materials. The product of the reaction has been separated by gas chromatography. The 32 P radioactivity assay of the obtained product was performed by the liquid scintillation technique. The 14 C radioactivity was determined by the liquid scintillation technique and internal gas counting method. The radioactivity measurements have served to determine the total yield of double labelled triethylphosphine. (author)

  3. Carbonate as sputter target material for rapid {sup 14}C AMS

    Energy Technology Data Exchange (ETDEWEB)

    Longworth, Brett E., E-mail: blongworth@whoi.edu [Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA (United States); Robinson, Laura F. [Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA (United States); Roberts, Mark L.; Beaupre, Steven R.; Burke, Andrea [Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA (United States); Jenkins, William J. [Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA (United States)

    2013-01-15

    This paper describes a technique for measuring the {sup 14}C content of carbonate samples by producing C{sup -} ions directly in the negative ion sputter source of an accelerator mass spectrometer (AMS) system. This direct analysis of carbonate material eliminates the time and expense of graphite preparation. Powdered carbonate is mixed with titanium powder, loaded into a target cartridge, and compressed. Beam currents for optimally-sized carbonate targets (0.09-0.15 mg C) are typically 10-20% of those produced by optimally-sized graphite targets (0.5-1 mg C). Modern (>0.8 Fm) samples run by this method have standard deviations of 0.009 Fm or less, and near-modern samples run as unknowns agree with values from traditional hydrolysis/graphite to better than 2%. Targets with as little as 0.06 mg carbonate produce useable ion currents and results, albeit with increased error and larger blank. In its current state, direct sputtering is best applied to problems where a large number of analyses with lower precision are required. These applications could include age surveys of deep-sea corals for determination of historic population dynamics, to identify samples that would benefit from high precision analysis, and for growth rate studies of organisms forming carbonate skeletons.

  4. Measurement of pion double charge exchange on carbon-13, carbon-14, magnesium-26, and iron-56

    International Nuclear Information System (INIS)

    Seidl, P.A.

    1985-02-01

    Cross sections for the /sup 13,14/C, 26 Mg, 56 Fe(π + ,π - )/sup 13,14/O, 26 Si, 56 Ni reactions were measured with the Energetic Pion Channel and Spectrometer at the Clinton P. Anderson Meson Physics Facility for 120 less than or equal to T/sub π/ less than or equal to 292 MeV and 0 less than or equal to theta less than or equal to 50. The double isobaric analog states (DIAS) are of primary interest. In addition, cross sections for transitions to 14 O(0 + , 5.92 MeV), 14 O(2 + , 7.77 MeV), 56 Ni(gs), 13 O(gs), and 13 O(4.21 MeV) are presented. The 13 O(4.21 MeV) state is postulated to have J/sup π/ = 1/2 - . The data are compared to previously measured double-charge-exchange cross sections on other nuclei, and the systematics of double charge exchange on T greater than or equal to 1 target nuclei leading to the DIAS are studied. Near the Δ 33 resonance, cross sections for the DIAS transitions are in disagreement with calculations in which the reaction is treated as sequential charge exchange through the free pion-nucleon amplitude, while for T/sub π/ > 200 MeV the anomalous features of the 164 MeV data are not apparent. This is evidence for significant higher order contributions to the double-charge-exchange amplitude near the reasonable energy. Two theoretical approaches that include two nucleon processes are applied to the DIAS data. 64 references

  5. Study of the behaviour of organic carbon in the soil, and carbon 14 study of podzols; Contribution a l'etude du comportement du carbone organique dans le sol et etude des podzols a l'aide du carbone 14

    Energy Technology Data Exchange (ETDEWEB)

    Nakhla Shawki, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-07-01

    Using the penetration into soil of carbon 14 of thermo-nuclear origin, the behaviour and renewal rate were studied on different organic fractions of the soil. It was established that 18% of the total organic matter is renewed in about 400 years. In addition the formation of podzol-type fossil soils in France was dated from the first millenary B.C., i.e. the end of the sub-boreal period and the beginning of the atlantic period. (author) [French] En utilisant la penetration dans le sol du carbone 14 d'origine thermonucleaire, on a etudie le comportement et la vitesse de renouvellement des differentes fractions de la matiere organique du sol. On a pu preciser que 18% de la matiere organique globale se renouvelait en 400 ans environ. Par ailleurs, la formation en France des sols fossiles du type podzol a ete datee du premier millenaire avant J.C. c'est a dire a la fin de la periode subboreale et au debut de la periode atlantique. (auteur)

  6. Three-dimensional iron, nitrogen-doped carbon foams as efficient electrocatalysts for oxygen reduction reaction in alkaline solution

    International Nuclear Information System (INIS)

    Ma, Yanjiao; Wang, Hui; Feng, Hanqing; Ji, Shan; Mao, Xuefeng; Wang, Rongfang

    2014-01-01

    Graphical abstract: Three-dimentional Fe, N-doped carbon foams prepared by two steps exhibited comparable catalytic activity for oxygen reduction reaction to commercial Pt/C due to the unique structure and the synergistic effect of Fe and N atoms. - Highlights: • Three-dimensional Fe, N-doped carbon foam (3D-CF) were prepared. • 3D-CF exhibits comparable catalytic activity to Pt/C for oxygen reduction reaction. • The enhanced activity of 3D-CF results of its unique structure. - Abstract: Three-dimensional (3D) Fe, N-doped carbon foams (3D-CF) as efficient cathode catalysts for the oxygen reduction reaction (ORR) in alkaline solution are reported. The 3D-CF exhibit interconnected hierarchical pore structure. In addition, Fe, N-doped carbon without porous strucuture (Fe-N-C) and 3D N-doped carbon without Fe (3D-CF’) are prepared to verify the electrocatalytic activity of 3D-CF. The electrocatalytic performance of as-prepared 3D-CF for ORR shows that the onset potential on 3D-CF electrode positively shifts about 41 mV than those of 3D-CF’ and Fe-N-C respectively. In addition, the onset potential on 3D-CF electrode for ORR is about 27 mV more negative than that on commercial Pt/C electrode. 3D-CF also show better methanol tolerance and durability than commercial Pt/C catalyst. These results show that to synthesize 3D hierarchical pores with high specific surface area is an efficient way to improve the ORR performance

  7. Measurement of 167Er(n,p)167Ho reaction at 13.5 and 14.8 MeV

    International Nuclear Information System (INIS)

    Luo, Junhua; Liu, Jun; Han, Jiuning; Jiang, Li; Liu, Rong; Ge, Suhong; Liu, Zhenlai

    2013-01-01

    We have measured the 167 Er(n,p) 167 Ho cross-sections at two different neutron energies 13.5 and 14.8 MeV. Measurements were performed at Pd-300 neutron generator of Chinese Academy of Engineering Physics (CAEP) with monoenergetic neutrons produced via the 3 H(d,n) 4 He reaction using a tritium–titanium (T–Ti) target. Induced gamma activities were measured by a high-resolution gamma-ray spectrometer with high-purity germanium (HPGe) detector. The data for 167 Er(n,p) 167 Ho reaction cross-sections are reported to be 2.2±0.6 and 2.8±1.4 mb at 13.5±0.2 and 14.8±0.2 MeV incident neutron energies, respectively. The cross sections were also estimated with the TALYS-1.4 nuclear model code and compared with experimental data found in the literature, and with the comprehensive evaluation data in ENDF/B-VII.1 and JEFF-3.1/A libraries. - Highlights: • D–T neutron source was used to measure cross sections using activation method. • 27 Al(n,α) 24 Na was used as the monitor for the measurement. • The cross sections for the 167 Er(n,p) 167 Ho reactions have been measured. • Contribution of the interfering reaction 170 Er(n,α) 167 Dy was subtracted. • The results were compared with previous data and with evaluation data

  8. Improved quality control of carbon-14 labelled compounds

    International Nuclear Information System (INIS)

    Leonhardt, J.W.; Fuchs, P.; Standtke, K.

    1997-01-01

    IUT Ltd is a producer of carbon-14 labelled organic compounds like benzene, methanol, phenol, formaldehyde, Na-acetates and also special ordered compounds. The quality control of these compounds is carried out by means of HPLC and GC-MS due to chemical purity. Molar activity was determined by Liquid Scintillation Counting and HPLC being equipped by a radioactivity detector. Unfortunately the accuracy of the activity determination was arrived only ±4% relatively. This error is too high because of the large dilution factors. In respect of the IUT accreditation as an analytical laboratory in Germany the accuracy had to be improved remarkably. Therefore the GC-MS-determination of molar activities of labelled compounds is used as the 14 C-labelled compound. A special evaluation code is used to determine the enrichment values relative to the unlabelled molecules. Taking into account the results of GC-MS the accuracy of molar activity determination is improved to ±2%. The spectra evaluation is demonstrated and some examples are discussed

  9. Calculation of carbon-14, chlorine-37, and deuterium kinetic isotope effects in the solvolysis of tert-butyl chloride

    International Nuclear Information System (INIS)

    Burton, G.W.; Sims, L.B.; Wilson, J.C.; Fry, A.

    1977-01-01

    In the solvolysis of tert-butyl chloride, satisfactory α-carbon-14, β-deuterium, and chlorine kinetic isotope effects (KIE) may be calculated for a productlike transition state characterized by bond orders n/sub C Cl/ = 0.2, n/sub C C/ = 1.18, and n/sub C H/ = 0.94, employing a diagonal valence force field, provided that allowance is made for hydrogen-bonded solvation of the developing chloride ion with n/sub Cl H/ approx. 0.05 (approx. 7 kcal/mole hydrogen bonds). The effect of the three solvating molecules appears to be to increase the ''effective'' mass of the incipient chloride ion and to decrease the loss of zero-point energy in going to the transition state. Reaction coordinates more complicated than a simple heterolysis of the carbon-chlorine bond appear to be unnecessary and there is no advantage in employing force fields more complex than a simple valence force field containing only diagonal elements for both the reactant and the transition state model. The structural and bonding features of the proposed transition state are in accord with earlier more qualitative conclusions concerning the polar nature and productlike character of the transition state, and provide a reasonable explanation of the kinetic and equilibrium isotope effects (EIE) for the reaction. An alternative transition state model involving weak solvent nucleophilic assistance provides reasonable calculated values for the KIE, but the EIE strongly suggest the importance of solvation of the leaving group which, together with the hyperconjugation of the β hydrogens, provides a preferred explanation of the tert-butyl solvolysis results

  10. Interaction of 2'-deoxyguanosine with cis-2-butene-1,4-dial: Computational approach to analysis of multistep chemical reactions

    Directory of Open Access Journals (Sweden)

    Sviatenko L. K.

    2014-05-01

    Full Text Available cis-2-Butene-1,4-dial represents a microsomal metabolite of furan, an industrially important chemical found in cigarette smoke, air pollution, and also in canned or jarred food. It is expected to be a human carcinogen. Aim. Investigation an effect of cis-2-butene-1,4-dial on the 2'-deoxyguanine which is a model of DNA site. Methods. Optimization of reaction species molecular structures, spectral parameters and Gibbs free energy calculations were performed using Gaussian09 program. Systems of differential equations for kinetics generation were solved using Mathcad15 program. Results. The predicted mechanism of the reaction of cis-2-butene-1,4-dial with 2'-deoxyguanine consists of four-step process formation of four diastereomeric primary adducts and further base-mediated five-step transformation of the primary adducts to the secondary one. The reaction kinetics, which allows defining theconcentration change of any reaction species was calculated. Conclusions. Under physiological conditions the interaction between cis-2-butene-1,4-dial and 2'-deoxyguanine leads to the formation of a stable adduct which could be responsible for the furan genotoxicity.

  11. The effect of toxic carbon source on the reaction of activated sludge in the batch reactor.

    Science.gov (United States)

    Wu, Changyong; Zhou, Yuexi; Zhang, Siyu; Xu, Min; Song, Jiamei

    2018-03-01

    The toxic carbon source can cause higher residual effluent dissolved organic carbon than easily biodegraded carbon source in activated sludge process. In this study, an integrated activated sludge model is developed as the tool to understand the mechanism of toxic carbon source (phenol) on the reaction, regarding the carbon flows during the aeration period in the batch reactor. To estimate the toxic function of phenol, the microbial cells death rate (k death ) is introduced into the model. The integrated model was calibrated and validated by the experimental data and it was found the model simulations matched the all experimental measurements. In the steady state, the toxicity of phenol can result in higher microbial cells death rate (0.1637 h -1 vs 0.0028 h -1 ) and decay rate coefficient of biomass (0.0115 h -1 vs 0.0107 h -1 ) than acetate. In addition, the utilization-associated products (UAP) and extracellular polymeric substances (EPS) formation coefficients of phenol are higher than that of acetate, indicating that more carbon flows into the extracellular components, such as soluble microbial products (SMP), when degrading toxic organics. In the non-steady state of feeding phenol, the yield coefficient for growth and maximum specific growth rate are very low in the first few days (1-10 d), while the decay rate coefficient of biomass and microbial cells death rate are relatively high. The model provides insights into the difference of the dynamic reaction with different carbon sources in the batch reactor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Differential cross sections for carbon neutron elastic and inelastic scattering from 8.0 to 14.5 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Haouat, G.; Lachkar, J.; Patin, Y.; Sigaud, J.; Cocu, F.

    1975-06-01

    Differential elastic and inelastic cross sections for fast neutrons scattered by carbon have been measured between 8.0 and 14.5 MeV. No experimental results on {sup 12}C seem to have been reported, at this time, between 9 and 14 MeV. A complete and consistent set of data on carbon, including total, elastic and inelastic, (n,α) and (n,n'3α) cross sections, is now available for energies below 14.5MeV.

  13. Incorporation of Pt, Ru and Pt-Ru nanoparticles into ordered mesoporous carbons for efficient oxygen reduction reaction in alkaline media

    International Nuclear Information System (INIS)

    Stojmenović, Marija; Momčilović, Milan; Gavrilov, Nemanja; Pašti, Igor A.; Mentus, Slavko; Jokić, Bojan; Babić, Biljana

    2015-01-01

    Ordered mesoporous carbon, volume-doped up to 3 w.% with Pt, Ru and Pt-Ru nanoparticles was synthesized by evaporation-induced self-assembly method, under acidic conditions. The content of incorporated metal was determined by EDX analysis. The X-ray diffractometry confirmed the existence of highly dispersed metallic phases in doped samples. Specific surface area was determined by N 2 -physisorption measurements to range between 452 and 545 m 2 g −1 . Raman spectroscopy of investigated materials indicated highly disordered carbon structure with crystallite sizes around 1.4 nm. In a form of thin-layer electrode on glassy carbon support, in 0.1 M KOH solution, the prepared materials displayed high activity toward oxygen reduction reaction (ORR) in alkaline media, with onset potentials more positive than −0.10 V vs. SCE. The kinetics of O 2 reduction was found to be affected by both the specific surface area and the concentration of metal dopants. The ethanol tolerance of (Pt, Ru)-doped OMCs was found to be higher than that of common Pt/C ORR catalysts. Presented study provides a new route for the synthesis of active and selective ORR catalysts in alkaline media, being competitive with, or superior to, the existing ones in terms of performance and price

  14. Synthesis and Characterization of Graphene and Graphene Oxide Based Palladium Nanocomposites and Their Catalytic Applications in Carbon-Carbon Cross-Coupling Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Minjae [Kunsan National Univ., Gunsan (Korea, Republic of); Kim, Bohyun; Lee, Yuna; Kim, Beomtae; Park, Joon B. [Chonbuk National Univ., Jeonju (Korea, Republic of)

    2014-07-15

    We have developed an efficient method to generate highly active Pd and PdO nanoparticles (NPs) dispersed on graphene and graphene oxide (GO) by an impregnation method combined with thermal treatments in H{sub 2} and O{sub 2} gas flows, respectively. The Pd NPs supported on graphene (Pd/G) and the PdO NPs supported on GO (PdO/GO) demonstrated excellent carbon-carbon cross-coupling reactions under a solvent-free, environmentally-friendly condition. The morphological and chemical structures of PdO/GO and Pd/G were fully characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). We found that the remarkable reactivity of the Pd/G and PdO/GO catalysts toward the cross-coupling reaction is attributed to the high degree of dispersion of the Pd and PdO NPs while the oxidative states of Pd and the oxygen functionalities of graphene oxide are not critical for their catalytic performance.

  15. Synthesis and Characterization of Graphene and Graphene Oxide Based Palladium Nanocomposites and Their Catalytic Applications in Carbon-Carbon Cross-Coupling Reactions

    International Nuclear Information System (INIS)

    Lee, Minjae; Kim, Bohyun; Lee, Yuna; Kim, Beomtae; Park, Joon B.

    2014-01-01

    We have developed an efficient method to generate highly active Pd and PdO nanoparticles (NPs) dispersed on graphene and graphene oxide (GO) by an impregnation method combined with thermal treatments in H 2 and O 2 gas flows, respectively. The Pd NPs supported on graphene (Pd/G) and the PdO NPs supported on GO (PdO/GO) demonstrated excellent carbon-carbon cross-coupling reactions under a solvent-free, environmentally-friendly condition. The morphological and chemical structures of PdO/GO and Pd/G were fully characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). We found that the remarkable reactivity of the Pd/G and PdO/GO catalysts toward the cross-coupling reaction is attributed to the high degree of dispersion of the Pd and PdO NPs while the oxidative states of Pd and the oxygen functionalities of graphene oxide are not critical for their catalytic performance

  16. Polyallylamine-Rh nanosheet nanoassemblies-carbon nanotubes organic-inorganic nanohybrids: A electrocatalyst superior to Pt for the hydrogen evolution reaction

    Science.gov (United States)

    Bai, Juan; Xing, Shi-Hui; Zhu, Ying-Ying; Jiang, Jia-Xing; Zeng, Jing-Hui; Chen, Yu

    2018-05-01

    Rationally tailoring the surface/interface structures of noble metal nanostructures emerges as a highly efficient method for improving their electrocatalytic activity, selectivity, and long-term stability. Recently, hydrogen evolution reaction is attracting more and more attention due to the energy crisis and environment pollution. Herein, we successfully synthesize polyallylamine-functionalized rhodium nanosheet nanoassemblies-carbon nanotube nanohybrids via a facile one-pot hydrothermal method. Three-dimensionally branched rhodium nanosheet nanoassemblies are consisted of two dimensionally atomically thick ultrathin rhodium nanosheets. The as-prepared polyallylamine-functionalized rhodium nanosheet nanoassemblies-carbon nanotube nanohybrids show the excellent electrocatalytic activity for the hydrogen evolution reaction in acidic media, with a low onset reduction potential of -1 mV, a small overpotential of 5 mV at 10 mA cm-2, which is much superior to commercial platinum nanocrystals. Two dimensionally ultrathin morphology of rhodium nanosheet, particular rhodium-polyallylamine interface, and three-dimensionally networks induced by carbon nanotube are the key factors for the excellent hydrogen evolution reaction activity in acidic media.

  17. Reaction of carbon tetrachloride with methane in a non-equilibrium plasma at atmospheric pressure, and characterisation of the polymer thus formed

    Energy Technology Data Exchange (ETDEWEB)

    Gaikwad, Vaibhav [Process Safety and Environment Protection Research Group, School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia); Kennedy, Eric, E-mail: Eric.Kennedy@newcastle.edu.au [Process Safety and Environment Protection Research Group, School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia); Mackie, John [Process Safety and Environment Protection Research Group, School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia); Holdsworth, Clovia [Centre for Organic Electronics, Chemistry Building, School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308 (Australia); Molloy, Scott; Kundu, Sazal; Stockenhuber, Michael [Process Safety and Environment Protection Research Group, School of Engineering, The University of Newcastle, Callaghan, NSW 2308 (Australia); Dlugogorski, Bogdan [School of Engineering and Information Technology, Murdoch University, Murdoch, WA 6150 (Australia)

    2014-09-15

    Highlights: • CCl{sub 4} remediation using non-equilibrium plasma and non-oxidative conditions is proposed. • The reaction mechanism relies on experimental data and quantum chemical analysis. • Comprehensive mass balance for the reaction is provided. • CCl{sub 4} is converted to an environmentally benign and potentially useful polymer. • Characterisation of the polymer structure based on NMR and FTIR analyses is presented. - Abstract: In this paper we focus on the development of a methodology for treatment of carbon tetrachloride utilising a non-equilibrium plasma operating at atmospheric pressure, which is not singularly aimed at destroying carbon tetrachloride but rather at converting it to a non-hazardous, potentially valuable commodity. This method encompasses the reaction of carbon tetrachloride and methane, with argon as a carrier gas, in a quartz dielectric barrier discharge reactor. The reaction is performed under non-oxidative conditions. Possible pathways for formation of major products based on experimental results and supported by quantum chemical calculations are outlined in the paper. We elucidate important parameters such as carbon tetrachloride conversion, product distribution, mass balance and characterise the chlorinated polymer formed in the process.

  18. A study of the reactions 14C( vector d, dprime)14C and 14C ( vector d, p)15C at 16.0 MeV

    International Nuclear Information System (INIS)

    Murillo, G.; Sen, S.; Darden, S.E.

    1994-01-01

    Cross-section and vector-analyzing-power measurements for 14 C(d, d prime) and 14 C(d, p) reactions have been carried out for E d =16 MeV. The inelastic-scattering data have been analyzed using the DWBA with a collective and a microscopic model form-factor and also by using the coupled-channels formalism with a vibrational model form-factor. It is observed that while the cross-section angular-distribution data for the two 2 + states at E x =7.012 and 8.318 MeV are very similar, the corresponding vector analyzing powers are quite different. The results of the analyses indicate that the distinctive characteristics probably arise from the difference in the relative importance of the proton and neutron components in the transition amplitude. The 3 - state at E x =6.728 MeV is identified as predominantly a 1p-3h state. Although the deformation parameters are relatively large, the single-particle structure aspects play a more dominant role than channel-coupling effects in populating the inelastic states. The transfer reaction data have been analyzed using the DWBA for bound and unbound states. The importance of two-step processes has been investigated via coupled-reaction-channels calculations. The g.s. and the states with excitation energies 0.770, 3.103 and 4.78 MeV in 15 C are populated primarily by a one-step process with a small two-step contribution in the case of the 3.103 MeV state. The 4.22 MeV state is populated predominantly by two-step processes. The 4.78 and the 5.83 MeV states have been identified as 1p-2h and 3p-4h, [3]/[2] + state, respectively, in an earlier report. There is close similarity in the level structures and reaction mechanisms between the states of 15 C and 17 O populated via the (d, p) reaction. ((orig.))

  19. Effect of fasting and different diets on 14C incorporation from U-14C glucose into glycogen and carbon dioxide by cerebral cortical slices of rats

    International Nuclear Information System (INIS)

    Visweswaran, P.; Binod Kumar; Sinha, A.P.; Suraiya, A.; Brahamchari, A.K.; Singh, S.P.

    1994-01-01

    There are some reports regarding change in the glycogen level due to fasting. Here an attempt is made by keeping the albino rats under fasting or feeding different diets on the rate of 14 C incorporation into glycogen and carbon dioxide from U- 14 C glucose. Our study reveals that the above conditions do not alter any significant change in the glycogen and carbon dioxide in the cerebral cortical slices of albino rats. (author). 8 refs., 1 tab

  20. Analysis of agility, reaction time and balance variables at badminton players aged 9-14 years

    Directory of Open Access Journals (Sweden)

    Seydi Ahmet Ağaoğlu

    2017-12-01

    Full Text Available Aim: The aim of this study was investigated agility, static and dynamic balance and reaction time variables of badminton players aged between 9-14 and relate with among variables. Material and Methods: In Samsun, 19 males (sport age, 3.42±1.64 years and 12 females (3.00±1.28 years active badminton players were voluntarily participated in who are in 9-14 ages range. Agility was measured by “T” test, CSMI-Tecnobody Pk-252 isokinetic balance system measuring instrument was used to test static balance and dynamic balance and Mozart Lafayette reaction measuring instrument was used to test visual and auditory reaction times of players. Spearman correlation analysis was applied so as to correlation analysis. The level of significance was taken as p<0.05. Results: For female athletes, a positive relation was determined between the agility and the perimeter (mm used (r=0.727; p<0.01 through the static balance measure double foot and eyes are open. For male athletes, a positive relation was determined between the visual reaction time and the perimeter (mm used (r=0.725; p<0.01 through the static balance measure dominant foot and eyes are open. For male and female athletes were not found any correlation between reaction time and dynamic balance. Conclusion: It was determined that audio (ears and visual (eyes reaction time was effective on balance. While badminton players are closed eyes, audio sensors are more influence on balance test through measure dominant foot.

  1. [sup 14]C-labeling of a tetrahydroacridine, a novel CNS-selective cholinesterase inhibitor

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, Kazuhiko; Kamada, Takeshi; Kanamaru, Hiroshi (Sumitomo Chemical Co., Ltd., Takatsukasa, Takarazuka (Japan). Environmental Health Science Lab.)

    1992-06-01

    9-Amino-8-fluoro-2,4-methano-1,2,3,4-tetrahydroacridine citrate (SM-10888), a novel cholinesterase inhibitor, was labeled with carbon-14 at C9 of the tetrahydroacridine ring for use in metabolic studies. Carbonation of 2,6-difluorophenyllithium (3) with [[sup 14]C]carbon dioxide gave the acid (4). Chlorination of 4 followed by treatment of the resulting acid chloride with ammonia afforded the amide (5). Dehydration of 5 with thionyl chloride and subsequent displacement reaction with ammonia gave the aminobenzonitrile (7). Condensation of 7 with the ketone (8) in the presence of anhydrous zinc chloride yielded the aminoacridine (9), which was treated with citric acid to afford [9-[sup 14]C]SM-10888 (1). The overall yield of 1 was 37% from 2, and the specific activity was 1.35 GBq/mmol. (author).

  2. A bio-inspired N-doped porous carbon electrocatalyst with hierarchical superstructure for efficient oxygen reduction reaction

    Science.gov (United States)

    Miao, Yue-E.; Yan, Jiajie; Ouyang, Yue; Lu, Hengyi; Lai, Feili; Wu, Yue; Liu, Tianxi

    2018-06-01

    The bio-inspired hierarchical "grape cluster" superstructure provides an effective integration of one-dimensional carbon nanofibers (CNF) with isolated carbonaceous nanoparticles into three-dimensional (3D) conductive frameworks for efficient electron and mass transfer. Herein, a 3D N-doped porous carbon electrocatalyst consisting of carbon nanofibers with grape-like N-doped hollow carbon particles (CNF@NC) has been prepared through a simple electrospinning strategy combined with in-situ growth and carbonization processes. Such a bio-inspired hierarchically organized conductive network largely facilitates both the mass diffusion and electron transfer during the oxygen reduction reactions (ORR). Therefore, the metal-free CNF@NC catalyst demonstrates superior catalytic activity with an absolute four-electron transfer mechanism, strong methanol tolerance and good long-term stability towards ORR in alkaline media.

  3. Biogenic Methane Generation Potential in the Eastern Nankai Trough, Japan: Effect of Reaction Temperature and Total Organic Carbon

    Science.gov (United States)

    Aung, T. T.; Fujii, T.; Amo, M.; Suzuki, K.

    2017-12-01

    Understanding potential of methane flux from the Pleistocene fore-arc basin filled turbiditic sedimentary formation along the eastern Nankai Trough is important in the quantitative assessment of gas hydrate resources. We considered generated methane could exist in sedimentary basin in the forms of three major components, and those are methane in methane hydrate, free gas and methane dissolved in water. Generation of biomethane strongly depends on microbe activity and microbes in turn survive in diverse range of temperature, salinity and pH. This study aims to understand effect of reaction temperature and total organic carbon on generation of biomethane and its components. Biomarker analysis and cultural experiment results of the core samples from the eastern Nankai Trough reveal that methane generation rate gets peak at various temperature ranging12.5°to 35°. Simulation study of biomethane generation was made using commercial basin scale simulator, PetroMod, with different reaction temperature and total organic carbon to predict how these effect on generation of biomethane. Reaction model is set by Gaussian distribution with constant hydrogen index and standard deviation of 1. Series of simulation cases with peak reaction temperature ranging 12.5°to 35° and total organic carbon of 0.6% to 3% were conducted and analyzed. Simulation results show that linear decrease in generation potential while increasing reaction temperature. But decreasing amount becomes larger in the model with higher total organic carbon. At higher reaction temperatures, >30°, extremely low generation potential was found. This is due to the fact that the source formation modeled is less than 1 km in thickness and most of formation do not reach temperature more than 30°. In terms of the components, methane in methane hydrate and free methane increase with increasing TOC. Drastic increase in free methane was observed in the model with 3% of TOC. Methane amount dissolved in water shows almost

  4. Synthesis of carbon C-14 labelled 2-phenyl-4-alpha-alkylaminomethyl-quinolinemethanol: a potential anti-leishmaniasis agent

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T.S.T.; Fawwaz, R.A.; Heertum, R.L.van [Columbia Univ., New York, NY (United States). Coll. of Physicians and Surgeons

    1995-07-01

    Using sodium acetate, [1-{sup 14}C] as a starting material, a total of seven steps were required to synthesize the title compound. This involved acylation of ortho-dichlorobenzene to form dichloroacetophenone, [2-{sup 14}C] (I). The 2-phenyl-4-quinoline carboxylic acid, [2-{sup 14}C] (II) was prepared by the Pfitzinger reaction from (1) and dichloroisatin. Compound 11 was converted to the acid chloride (III) by reaction with SOCl{sub 2} in benzene. Grignard condensation reaction of (III) yielded 4-quinolylmethylketone, [2-{sup 14}C] (IV) which was then converted to the bromomethylketone (V). Compound V was reacted with NaBH{sub 4} to form the ethylene oxide (VI). Alkylation of the oxide yielded the title compound (VII). The overall radiochemical yield was 10.1% and the specific activity was 3.0 mCi/mmol, with a radiochemical purity of >99.5%. (author).

  5. Oxygen evolution reaction in nanoconfined carbon nanotubes

    Science.gov (United States)

    Li, Ying; Lu, Xuefeng; Li, Yunfang; Zhang, Xueqing

    2018-05-01

    Improving oxygen electrochemistry through nanoscopic confinement has recently been highlighted as a promising strategy. In-depth understanding the role of confinement is therefore required. In this study, we simulate the oxygen evolution reaction (OER) on iron oxide nanoclusters under confinement of (7,7) and (8,8) armchair carbon nanotubes (CNTs). The free energies of the four proton coupled electron transfer (PCET) steps and the OER overpotentials are calculated. The Fe4O6 nanocluster confined in (7,7) CNT is found to be the most active for OER among the systems considered in this work. This leads to an increase in catalytic efficiency of OER compared to the hematite (110) surface, which was reported recently as an active surface towards OER. The calculated results show that the OER overpotential depends strongly on the magnetic properties of the iron oxide nanocluster. These findings are helpful for experimental design of efficient catalyst for water splitting applications.

  6. Carbon supported ultrafine gold phosphorus nanoparticles as highly efficient electrocatalyst for alkaline ethanol oxidation reaction

    International Nuclear Information System (INIS)

    Li, Tongfei; Fu, Gengtao; Su, Jiahui; Wang, Yi; Lv, Yinjie; Zou, Xiuyong; Zhu, Xiaoshu; Xu, Lin; Sun, Dongmei; Tang, Yawen

    2017-01-01

    Graphical abstract: We develop a new kind of carbon supported gold-phosphorus (Au-P/C) electrocatalyst by a facile and novel phosphorus reduction method, and demonstrate the Au-P/C is a highly active and stable electrocatalyst for the ethanol oxidation reaction. - Highlights: • Au-P/C catalyst is synthesized by a facile and novel white-phosphorus reduce method. • AuP particles with ultrafine particle-size are uniformly dispersed on carbon support. • Au-P/C catalyst exhibits much higher content of P 0 than reported metal/P catalysts. • Au-P/C catalysts show excellent catalytic properties for ethanol oxidation reaction. - Abstract: Herein, we develop a new kind of carbon supported gold-phosphorus (Au-P/C) electrocatalyst for the alkaline ethanol oxidation reaction (EOR). The Au-P/C catalysts with different Au/P ratio (i.e., AuP/C, Au 3 P 2 /C and Au 4 P 3 /C) can be obtained by a facile and novel hot-reflux method with white phosphorus (P 4 ) as reductant and ethanol as solvent. The crystal structure, composition and particle-size of the Au-P/C catalysts are investigated by X-ray diffraction (XRD), Energy Dispersive Spectrometer (EDS), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS), etc. The results demonstrate that Au-P/C catalysts present an alloy phase with the high content of P, ultrafine particle-size and high dispersity on carbon support, which results in excellent electrocatalytic activity and stability towards the EOR compared with that of the free-phosphorus Au/C catalyst. In addition, among the various Au-P/C catalysts with different Au/P ratio, the AuP/C sample exhibits the best electrocatalytic performance in comparison with other Au 3 P 2 /C and Au 4 P 3 /C samples.

  7. Investigation of chemical and electrochemical reactions mechanisms in a direct carbon fuel cell using olive wood charcoal as sustainable fuel

    Science.gov (United States)

    Elleuch, Amal; Halouani, Kamel; Li, Yongdan

    2015-05-01

    Direct carbon fuel cell (DCFC) is a high temperature fuel cell using solid carbon as fuel. The use of environmentally friendly carbon material constitutes a promising option for the DCFC future. In this context, this paper focuses on the use of biomass-derived charcoal renewable fuel. A practical investigation of Tunisian olive wood charcoal (OW-C) in planar DCFCs is conducted and good power density (105 mW cm-2) and higher current density (550 mA cm-2) are obtained at 700 °C. Analytical and predictive techniques are performed to explore the relationships between fuel properties and DCFC chemical and electrochemical mechanisms. High carbon content, carbon-oxygen groups and disordered structure, are the key parameters allowing the achieved good performance. Relatively complex chain reactions are predicted to explain the gas evolution within the anode. CO, H2 and CH4 participation in the anodic reaction is proved.

  8. A study of the mechanism of certain heterogeneous catalytic processes using C{sup 14}-labelled compounds; Utilisation de composes marques au carbone-14 pour l'etude du mecanisme de certains processus catalytiques heterogenes; Issledovanie mekhanizma nekotorykh geterogenno-kataliticheskikh protsessov s primeneniem soedinenij, mechennykh uglerodom-14; Estudio del mecanismo de algunos procesos de catalisis heterogenea con ayuda de compuestos marcados con carbono-14

    Energy Technology Data Exchange (ETDEWEB)

    Isagulyants, G V; Balandin, A A

    1962-03-15

    An investigation is made of the method of calculating individual phase velocities for parallel, consecutive and parallel-consecutive reactions from kinetic data obtained by the use of labelled atoms. The method is used for calculating individual phase velocities in the decomposition reaction of isopropyl alcohol into vanadium trioxides, dehydrogenations of butane-butylene mixtures and dehydrations of ethyl alcohol. Compounds containing C{sup 14} were used in this study. (author) [French] Le memoire expose une methode par laquelle on calcule les vitesses a differents stades dans les reactions paralleles, consecutives et paralleles-consecutives en se servant de donnees cinetiques obtenues par l'utilisation d'atomes indicateurs. Cette methode est utilisee pour le calcul des vitesses a differents stades de la decomposition de l'alcool isopropylique par le trioxyde de vanadium, de la deshydrogenation des melanges butane-butylene et de la deshydratation de l'alcool ethylique. Pour ces travaux, on a utilise des composes contenant du carbone-14. (author) [Spanish] Se describe un metodo de calculo de las velocidades correspondientes a las distintas etapas de una serie de reacciones paralelas, consecutivas y paralelo-consecutivas, partiendo de datos cineticos obtenidos mediante atomos marcados. El metodo se aplica a la determinacion de las velocidades de las reacciones de descomposicion del alcohol isopropilico por el trioxido de vanadio, de deshidrogenacion de mezclas de butano y buteno y de deshidratacion del alcohol etilico. El trabajo se llevo a cabo con ayuda de compuestos marcados con carbono-14. (author) [Russian] Rassmotren metod rascheta skorostej otdel'nykh stadij dlya parallel'nykh, konsekutivnykh i parallel'no-konsekutivnykh reaktsij, iskhodya iz kineticheskikh dannykh, poluchennykh s primeneniem mechenykh atomov. Metod primenen k raschetu skorostej otdel'nykh stadij v reaktsii razlozheniya izopropilovogo spirta na trekhokisi vanadiya, degidrogenizatsii butan

  9. Kinetics of Several Oxygen-Containing Carbon-Centered Free Radical Reactions with Nitric Oxide.

    Science.gov (United States)

    Rissanen, Matti P; Ihlenborg, Marvin; Pekkanen, Timo T; Timonen, Raimo S

    2015-07-16

    Kinetics of four carbon-centered, oxygen-containing free radical reactions with nitric oxide (NO) were investigated as a function of temperature at a few Torr pressure of helium, employing flow tube reactors coupled to a laser-photolysis/resonance-gas-discharge-lamp photoionization mass spectrometer (LP-RPIMS). Rate coefficients were directly determined from radical (R) decay signals under pseudo-first-order conditions ([R]0 ≪ [NO]). The obtained rate coefficients showed negative temperature dependences, typical for a radical-radical association process, and can be represented by the following parametrizations (all in units of cm(3) molecule(-1) s(-1)): k(CH2OH + NO) = (4.76 × 10(-21)) × (T/300 K)(15.92) × exp[50700/(RT)] (T = 266-363 K, p = 0.79-3.44 Torr); k(CH3CHOH + NO) = (1.27 × 10(-16)) × (T/300 K)(6.81) × exp[28700/(RT)] (T = 241-363 K, p = 0.52-3.43 Torr); k(CH3OCH2 + NO) = (3.58 ± 0.12) × 10(-12) × (T/300 K)(-3.17±0.14) (T = 221-363 K, p = 0.50-0.80 Torr); k(T)3 = 9.62 × 10(-11) × (T/300 K)(-5.99) × exp[-7100/(RT)] (T = 221-473 K, p = 1.41-2.95 Torr), with the uncertainties given as standard errors of the fits and the overall uncertainties estimated as ±20%. The rate of CH3OCH2 + NO reaction was measured in two density ranges due to its observed considerable pressure dependence, which was not found in the studied hydroxyalkyl reactions. In addition, the CH3CO + NO rate coefficient was determined at two temperatures resulting in k298K(CH3CO + NO) = (5.6 ± 2.8) × 10(-13) cm(3) molecule(-1) s(-1). No products were found during these experiments, reasons for which are briefly discussed.

  10. New method of radiation measurement at carbon isotope 14 low level in an environmental atmospheric sampling

    International Nuclear Information System (INIS)

    Tormos, J.

    2009-01-01

    A new method of preparation is proposed to extract the atmospheric carbon trapped in the solution of soda coming from air sampling in environment with a carbon-14 bubbler (type H.A.G. 7000). It is based on the neutralisation of the global soda solution got from bubbling pots by nitric acid, the complete desorption of the carbon under gaseous oxidized form (CO 2 ) and its trapping in a only capacity containing a reactive. The whole of the device is scanned by air at steady rate. A test catch of the reactive and of the trapped carbon dioxide is then blended to a glistening liquid (Permafluor E+) and measured in beta counting by scintillation in liquid medium with a counter for the measurement of low energy beta emitters at very low level of activity (Quantulus type). this method allows to get a limit of detection equal to 5 mBq/m 3 for the atmospheric organic carbon. The principal interest of this method is its quickness and simplicity of setting in motion for a measurement of 14 C in the atmospheric carbon dioxide at a level of natural activity. (N.C.)

  11. Processing ix spent resin waste for C-14 isotope recovery

    International Nuclear Information System (INIS)

    Chang, F. H.; Woodall, K. B.; Sood, S. K.; Vogt, H. K.; Krochmainek, L. S.

    1991-01-01

    -213 Ci/m 3 for the Moderator spent resins generated by CANDU reactors. For an estimated average C-14 activity level of 100 Ci/m 3 , a total of 400 Ci of C-14 can be produced each year. Based on the current market value of the C-14 isotope, the cost of the demonstration plant can be recovered in less than two years. Upon successful demonstration, the process can be scaled up. The volume of resin wastes produced by the stations can readily supply a full scale production of 2000 Ci or more per annum. Several alternative routes have been considered for this process which include: thermal stripping vs. acid stripping of the spent resins, laser enrichment vs. cryogenic distillation for the enrichment of the gaseous intermediate product, and direct gas phase reaction vs. liquid phase ionic precipitation of the final product. Analysis of the experimental results obtained at Ontario Hydro Research Division and also those reported in the literature has led to the selection of the following process: The C-14 is first removed by acid stripping the resins to form carbon dioxide. The gas is then separated from the carrier gas and converted by reaction with zinc to carbon monoxide, which is cryogenically distilled. Essentially pure C-14 monoxide is obtained and oxidized to produce C-14 dioxide. The gas is then reacted with a suitable hydroxide to produce the desired carbonate product

  12. A study of the carbon dynamics of Japanese grassland and forest using 14C and 13C

    International Nuclear Information System (INIS)

    Katsuno, Kazumi; Miyairi, Yosuke; Tamura, Kenji; Matsuzaki, Hiroyuki; Fukuda, Kenji

    2010-01-01

    We quantified the carbon contents of grassland and forest soil using conventional methods and studied the changes in their dynamics by measuring δ 13 C and Δ 14 C. Soil samples were taken from a neighboring Miscanthus sinensis grassland and Pinus densiflora forest in central Japan. Both had been maintained as grassland until the 1960s, when the latter was abandoned and became a pine forest by natural succession. The soil carbon content of the forest was much lower than that of the grassland, implying that the soil carbon decreased as the grassland became forest. The δ 13 C values were very similar in the grassland and forest, at approximately -20 per mille , suggesting that M. sinensis (a C4 plant) contributed to carbon storage, whereas there was little carbon accumulation from P. densiflora (a C3 plant) in forest soil. The Δ 14 C values and calculated soil carbon mean residence time (MRT) showed that the soil carbon in the upper A horizon was older, and that in the lower A horizon was younger in forest than in grassland. From these results, we conclude that young, fast-MRT soil carbon is decomposed in the upper A horizon, and old, stable soil carbon was decomposed in the lower A horizon after the pine invasion.

  13. Carbon dioxide sequestration by direct mineral carbonation with carbonic acid

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, William K.; Dahlin, David C.; Nilsen, David N.; Walters, Richard P.; Turner, Paul C.

    2000-01-01

    The Albany Research Center (ARC) of the U.S. Dept. of Energy (DOE) has been conducting a series of mineral carbonation tests at its Albany, Oregon, facility over the past 2 years as part of a Mineral Carbonation Study Program within the DOE. Other participants in this Program include the Los Alamos National Laboratory, Arizona State University, Science Applications International Corporation, and the DOE National Energy Technology Laboratory. The ARC tests have focused on ex-situ mineral carbonation in an aqueous system. The process developed at ARC utilizes a slurry of water mixed with a magnesium silicate mineral, olivine [forsterite end member (Mg2SiO4)], or serpentine [Mg3Si2O5(OH)4]. This slurry is reacted with supercritical carbon dioxide (CO2) to produce magnesite (MgCO3). The CO2 is dissolved in water to form carbonic acid (H2CO3), which dissociates to H+ and HCO3 -. The H+ reacts with the mineral, liberating Mg2+ cations which react with the bicarbonate to form the solid carbonate. The process is designed to simulate the natural serpentinization reaction of ultramafic minerals, and for this reason, these results may also be applicable to in-situ geological sequestration regimes. Results of the baseline tests, conducted on ground products of the natural minerals, have been encouraging. Tests conducted at ambient temperature (22 C) and subcritical CO2 pressures (below 73 atm) resulted in very slow conversion to the carbonate. However, when elevated temperatures and pressures are utilized, coupled with continuous stirring of the slurry and gas dispersion within the water column, significant reaction occurs within much shorter reaction times. Extent of reaction, as measured by the stoichiometric conversion of the silicate mineral (olivine) to the carbonate, is roughly 90% within 24 hours, using distilled water, and a reaction temperature of 185?C and a partial pressure of CO2 (PCO2) of 115 atm. Recent tests using a bicarbonate solution, under identical reaction

  14. Carbon dioxide sequestration by direct mineral carbonation with carbonic acid

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, W.K.; Dahlin, D.C.; Nilsen, D.N.; Walters, R.P.; Turner, P.C.

    2000-07-01

    The Albany Research Center (ARC) of the US Department of Energy (DOE) has been conducting a series of mineral carbonation tests at its Albany, Oregon, facility over the past 2 years as part of a Mineral Carbonation Study Program within the DOE. The ARC tests have focused on ex-situ mineral carbonation in an aqueous system. The process developed at ARC utilizes a slurry of water mixed with a magnesium silicate mineral, olivine [forsterite and member (mg{sub 2}SiO{sub 4})], or serpentine [Mg{sub 3}Si{sub 2}O{sub 5}(OH){sub 4}]. This slurry is reacted with supercritical carbon dioxide (CO{sub 2}) to produce magnesite (MgCO{sub 3}). The CO{sub 2} is dissolved in water to form carbonic acid (H{sub 2}CO{sub 3}), which dissociates to H{sup +} and HCO{sub 3}{sup {minus}}. The H{sup +} reacts with the mineral, liberating Mg{sup 2+} cations which react with the bicarbonate to form the solid carbonate. The process is designed to simulate the natural serpentinization reaction of ultramafic minerals, and for this reason, these results may also be applicable to in-situ geological sequestration regimes. Results of the baseline tests, conducted on ground products of the natural minerals, have been encouraging. Tests conducted at ambient temperature (22 C) and subcritical CO{sub 2} pressures (below 73 atm) resulted in very slow conversion to the carbonate. However, when elevated temperatures and pressures are utilized, coupled with continuous stirring of the slurry and gas dispersion within the water column, significant reaction occurs within much shorter reaction times. Extent of reaction, as measured by the stoichiometric conversion of the silicate mineral (olivine) to the carbonate, is roughly 90% within 24 hours, using distilled water, and a reaction temperature of 185 C and a partial pressure of CO{sub 2} (P{sub CO{sub 2}}) of 115 atm. Recent tests using a bicarbonate solution, under identical reaction conditions, have achieved roughly 83% conversion of heat treated serpentine

  15. Crossed-beam reaction of carbon atoms with hydrocarbon molecules. IV. Chemical dynamics of methylpropargyl radical formation, C4H5, from reaction of C(3Pj) with propylene, C3H6 (X1A)

    International Nuclear Information System (INIS)

    Kaiser, R.I.; Stranges, D.; Bevsek, H.M.; Lee, Y.T.; Suits, A.G.

    1997-01-01

    The reaction between ground state carbon atoms and propylene, C 3 H 6 , was studied at average collision energies of 23.3 and 45.0 kJmol -1 using the crossed molecular beam technique. Product angular distributions and time-of-flight spectra of C 4 H 5 at m/e=53 were recorded. Forward-convolution fitting of the data yields a maximum energy release as well as angular distributions consistent with the formation of methylpropargyl radicals. Reaction dynamics inferred from the experimental results suggest that the reaction proceeds on the lowest 3 A surface via an initial addition of the carbon atom to the π-orbital to form a triplet methylcyclopropylidene collision complex followed by ring opening to triplet 1,2-butadiene. Within 0.3 endash 0.6 ps, 1,2-butadiene decomposes through carbon endash hydrogen bond rupture to atomic hydrogen and methylpropargyl radicals. The explicit identification of C 4 H 5 under single collision conditions represents a further example of a carbon endash hydrogen exchange in reactions of ground state carbon with unsaturated hydrocarbons. This versatile machine represents an alternative pathway to build up unsaturated hydrocarbon chains in combustion processes, chemical vapor deposition, and in the interstellar medium. copyright 1997 American Institute of Physics

  16. Heavily Graphitic-Nitrogen Self-doped High-porosity Carbon for the Electrocatalysis of Oxygen Reduction Reaction

    Science.gov (United States)

    Feng, Tong; Liao, Wenli; Li, Zhongbin; Sun, Lingtao; Shi, Dongping; Guo, Chaozhong; Huang, Yu; Wang, Yi; Cheng, Jing; Li, Yanrong; Diao, Qizhi

    2017-11-01

    Large-scale production of active and stable porous carbon catalysts for oxygen reduction reaction (ORR) from protein-rich biomass became a hot topic in fuel cell technology. Here, we report a facile strategy for synthesis of nitrogen-doped porous nanocarbons by means of a simple two-step pyrolysis process combined with the activation of zinc chloride and acid-treatment process, in which kidney bean via low-temperature carbonization was preferentially adopted as the only carbon-nitrogen sources. The results show that this carbon material exhibits excellent ORR electrocatalytic activity, and higher durability and methanol-tolerant property compared to the state-of-the-art Pt/C catalyst for the ORR, which can be mainly attributed to high graphitic-nitrogen content, high specific surface area, and porous characteristics. Our results can encourage the synthesis of high-performance carbon-based ORR electrocatalysts derived from widely-existed natural biomass.

  17. Thermodynamic and kinetic studies of the equilibration reaction between the sulfur and carbon bonded forms of a cobalt(III) complex with the ligands 1,4,7-triazycyclononane and 1,4-diaza-7-thiacyclodecane

    DEFF Research Database (Denmark)

    Song, Y.S.; Becker, J.; Kofod, Pauli

    1996-01-01

    The new cyclic thioether 1,4-diaza-7-thiacyclodecane, dathicd, has been synthesized and used for the prepn. of the sulfur- and carbon-bonded cobalt(III) complexes: [Co(tacn)(S-dathicd)]Cl3.5H2O and [Co(tacn)(C-dathicd)](ClO4)2 (tacn, 1,4,7-triazacyclononane; C-dathicd, 1,4-diamino-7-thiacyclodecan......-sulfur complex to form the alkyl complex gave 100% loss of deuterium. It is concluded that the labile methylene proton is bound to the carbon atom which in the alkyl complex is bound to cobalt(III). From the kinetic data it is estd. that the carbanion reacts with water 270 times faster than it is captured...

  18. Carbon-14 tracer study of polyacrylate polymer in a wastewater plant

    International Nuclear Information System (INIS)

    Martin, J.E.; King, L.W.; Hylko, J.M.

    1990-01-01

    A highly absorbent consumer-product, polyacrylate-polymer material tagged with carbon-14 ( 14 C), was dosed to a standard on-site aerobic wastewater treatment plant which contained a settling chamber, an aeration chamber, and an effluent chamber. Operation of the test plant was essentially the same as that of a control plant even under exaggerated conditions. About 97% of the polymer material was retained in solids deposited in the primary and aeration chambers, and effluent releases were minimal. The use of a 14 C tagging procedure proved to be a successful method for studying the behavior of these complex materials. It may be useful to conduct a further study on retained solids to determine whether microbial decomposition of the polymer material occurs while they remain in typical plants. (author)

  19. Applications of environmental tritium and carbon-14 in water resources investigation in Taiyuan region China

    International Nuclear Information System (INIS)

    Cai Zuhuang; Shi Huixin

    1988-01-01

    To evaluate the influence of exploiting karst groundwater by 0.5-1 cubic metre per second by Gujiao Coal Mine on the discharge rate of the major Lancun spring, Jinci spring and Xizhang waterworks in the Taiyuan region, Shanxi Province, and to seek new sources of water to make up for this influence, we carried out systematic hydrogeological studies in this region from 1983 to 1986, including measurement of 180 data of tritium, 49 data of carbon-13, 20 data of carbon-14, as well as more than 2,000 chemical data. Isotopic and chemical data were interpreted and used to distinguish the groundwater system, to determine the mixing ratios of various groundwaters, to trace the movement of groundwater both inside each subsystem and from one subsystem to another. Groundwater ages at 13 sites in the studied region were obtained after correction for mixing with young water, correction for dilution by dead carbon, and correction for variation of initial carbon-14 concentration. The velocity of groundwater flow was determined on the basis of groundwater ages. (author). 3 figs, 5 tabs

  20. Role of adsorbed surfactant in the reaction of aryl diazonium salts with single-walled carbon nanotubes.

    Science.gov (United States)

    Hilmer, Andrew J; McNicholas, Thomas P; Lin, Shangchao; Zhang, Jingqing; Wang, Qing Hua; Mendenhall, Jonathan D; Song, Changsik; Heller, Daniel A; Barone, Paul W; Blankschtein, Daniel; Strano, Michael S

    2012-01-17

    Because covalent chemistry can diminish the optical and electronic properties of single-walled carbon nanotubes (SWCNTs), there is significant interest in developing methods of controllably functionalizing the nanotube sidewall. To date, most attempts at obtaining such control have focused on reaction stoichiometry or strength of oxidative treatment. Here, we examine the role of surfactants in the chemical modification of single-walled carbon nanotubes with aryl diazonium salts. The adsorbed surfactant layer is shown to affect the diazonium derivatization of carbon nanotubes in several ways, including electrostatic attraction or repulsion, steric exclusion, and direct chemical modification of the diazonium reactant. Electrostatic effects are most pronounced in the cases of anionic sodium dodecyl sulfate and cationic cetyltrimethylammonium bromide, where differences in surfactant charge can significantly affect the ability of the diazonium ion to access the SWCNT surface. For bile salt surfactants, with the exception of sodium cholate, we find that the surfactant wraps tightly enough such that exclusion effects are dominant. Here, sodium taurocholate exhibits almost no reactivity under the explored reaction conditions, while for sodium deoxycholate and sodium taurodeoxycholate, we show that the greatest extent of reaction is observed among a small population of nanotube species, with diameters between 0.88 and 0.92 nm. The anomalous reaction of nanotubes in this diameter range seems to imply that the surfactant is less effective at coating these species, resulting in a reduced surface coverage on the nanotube. Contrary to the other bile salts studied, sodium cholate enables high selectivity toward metallic species and small band gap semiconductors, which is attributed to surfactant-diazonium coupling to form highly reactive diazoesters. Further, it is found that the rigidity of anionic surfactants can significantly influence the ability of the surfactant layer to

  1. Cross section measurement for (n,n{alpha}) reactions by 14 MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Kasugai, Y.; Ikeda, Y.; Uno, Y. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Yamamoto, H.; Kawade, K.

    1997-03-01

    Nine (n,n{alpha}) cross sections for (n,n{alpha}) reactions induced by 13.5-14.9 MeV neutrons were measured for {sup 51}V, {sup 65}Cu, {sup 71}Ga, {sup 76}Ge, {sup 87}Rb, {sup 91}Zr, {sup 93}Nb, {sup 96}Zr and {sup 109}Ag isotopes by using Fusion Neutronics Source (FNS) at JAERI. The reactions for 91Zr and 96Zr were measured for the first time. The evaluated data of JENDL-3 and ENDF/B-VI were compared with the present data. Some of the evaluated values are much different from our data by a factor more than ten. (author)

  2. Electrochemical investigations of Pu(IV)/Pu(III) redox reaction using graphene modified glassy carbon electrodes and a comparison to the performance of SWCNTs modified glassy carbon electrodes

    International Nuclear Information System (INIS)

    Gupta, Ruma; Gamare, Jayashree; Sharma, Manoj K.; Kamat, J.V.

    2016-01-01

    Highlights: • First report of aqueous electrochemistry of Plutonium on graphene modified electrode. • Graphene is best electrocatalytic material for Pu(IV)/Pu(III) redox couple among the reported modifiers viz. reduced graphene oxide (rGO) and SWCNT’s. • The electrochemical reversibility of Pu(IV)/Pu(III) redox couple improves significantly on graphene modified electrode compared to previously reported rGO & SWCNTs modified electrodes • Donnan interaction between plutonium species and graphene surface offers a possibility for designing a highly sensitive sensor for plutonium • Graphene modified electrode shows higher sensitivity for the determination of plutonium compared to glassy carbon and single walled carbon nanotube modified electrode - Abstract: The work reported in this paper demonstrates for the first time that graphene modified glassy carbon electrode (Gr/GC) show remarkable electrocatalysis towards Pu(IV)/Pu(III) redox reaction and the results were compared with that of single-walled carbon nanotubes modified GC (SWCNTs/GC) and glassy carbon (GC) electrodes. Graphene catalyzes the exchange of current of the Pu(IV)/Pu(III) couple by reducing both the anodic and cathodic overpotentials. The Gr/GC electrode shows higher peak currents (i p ) and smaller peak potential separation (ΔE p ) values than the SWCNTs/GC and GC electrodes. The heterogeneous electron transfer rate constants (k s ), charge transfer coefficients (α) and the diffusion coefficients (D) involved in the electrocatalytic redox reaction were determined. Our observations show that graphene is best electrocatalytic material among both the SWCNTs and GC to study Pu(IV)/Pu(III) redox reaction.

  3. Influence of Micropore and Mesoporous in Activated Carbon Air-cathode Catalysts on Oxygen Reduction Reaction in Microbial Fuel Cells

    International Nuclear Information System (INIS)

    Liu, Yi; Li, Kexun; Ge, Baochao; Pu, Liangtao; Liu, Ziqi

    2016-01-01

    In this study, carbon samples with different micropore and mesoporous structures are prepared as air-cathode catalyst layer to explore the role of pore structure on oxygen reduction reaction. The results of linear sweep voltammetry and power density show that the commercially-produced activated carbon (CAC) has the best electrochemical performance, and carbon samples with only micropore or mesoporous show lower performance than CAC. Nitrogen adsorption-desorption isotherms analysis confirm that CAC has highest surface area (1616 m 2 g −1 ) and a certain amount of micropore and mesoporous. According to Tafel plot and rotating disk electrode, CAC behaves the highest kinetic activity and electron transfer number, leading to the improvement of oxygen reduction reaction. The air permeability test proves that mesoporous structure enhance oxygen permeation. Carbon materials are also analyzed by In situ Fourier Transform Infrared Spectroscopy and H 2 temperature programmed reduction, which indicate that micropore provide active sites for catalysis. In a word, micropore and mesoporous together would improve the electrochemical performance of carbon materials.

  4. Carbon 14 in the aquatic food chain

    International Nuclear Information System (INIS)

    Mueller, H.; Fischer, E.

    1983-01-01

    In the links of the food chain consisting of water, water plants, and fish from 6 several aquatic ecosystems, the specific C-14 activity of the carbon was determined from 1979 to 1981 and compared with values of the terrestrial food chain. The mean values obtained from the specific acitivities of the links were between 203 and 321 mBq/g C (5.5 and 8.7 pCi/g C). Four of the six mean values differ from the values for the terrestrial food chain of 260 to 240 mBg/g C (7.0 to 6.5 pCi/g C) investigated for 1979 to 1980. The specific-acitivity model is valid for the aquatic food chain only if atmosphere and man are not included as chain links. (orig.) [de

  5. A study for the fabulously of introducing an acceleration mass spectrometer facility (ABMs) for carbon-14 applications

    International Nuclear Information System (INIS)

    Aly, A.I.M.; Comsan, N.; Sadek, M.

    2004-01-01

    In this work a study was conducted to show the importance and feasibility of introducing an accelerating mass spectrometer facility for carbon-14 analysis in the environmental levels. The different applications of Carbon-14 (e.g. dating and identification of food additives of synthetic origin) are discussed. There are two methods for C- 14 measurements, beta decay counting and accelerator mass spectrometry (AMS). The beta decay method requires gram quantities of the sample carbon, compared to few milligram quantities in case of AMS method. The Central Lab. for Environmental Isotope Hydrology of the National Center for Nuclear Safety and Radiation Control has a Carbon-14 analysis facility based on beta decay counting using a liquid scintillation counter after sample preparation in the form of benzene through rather complicated chemical conversion steps. This strongly limits the capacity of the laboratory to about 100-150 samples per year. Also, the amount of sample required limits our expansion for some very important applications like dating of archaeological small samples and especially old bone samples which normally have a low concentration of organic compounds. These applications are only possible by using the AMS method. For some applications only AMS could be used e.g measuring C-14 in atmospheric gases such as methane and carbon dioxide is virtually impossible using decay counting but quite feasible with AMS. The importance of purchasing an AMS facility or upgrading the existing accelerator is discussed in view of the shortage of such a facility in Africa and the Middle East. Acquiring an AMS in Egypt will make it possible to accurately date the Egyptian antiquities and to act as a regional laboratory and to enter into new applications where the amount of sample is limiting

  6. Carbon 14 dating method; Methode de datation par le carbone 14

    Energy Technology Data Exchange (ETDEWEB)

    Fortin, Ph

    2000-07-01

    This document gives a first introduction to {sup 14}C dating as it is put into practice at the radiocarbon dating centre of Claude-Bernard university (Lyon-1 univ., Villeurbanne, France): general considerations and recalls of nuclear physics; the {sup 14}C dating method; the initial standard activity; the isotopic fractioning; the measurement of samples activity; the liquid-scintillation counters; the calibration and correction of {sup 14}C dates; the preparation of samples; the benzene synthesis; the current applications of the method. (J.S.)

  7. Graphene-oxide-supported CuAl and CoAl layered double hydroxides as enhanced catalysts for carbon-carbon coupling via Ullmann reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Nesreen S. [Department of Chemistry, Faculty of Science, King Abdulaziz University (Saudi Arabia); Surface Chemistry and Catalytic Studies Group, King Abdulaziz University (Saudi Arabia); Menzel, Robert [Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Bio Nano Consulting, The Gridiron Building, One Pancras Square, London N1C 4AG (United Kingdom); Wang, Yifan [Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Garcia-Gallastegui, Ainara [Bio Nano Consulting, The Gridiron Building, One Pancras Square, London N1C 4AG (United Kingdom); Bawaked, Salem M.; Obaid, Abdullah Y.; Basahel, Sulaiman N. [Department of Chemistry, Faculty of Science, King Abdulaziz University (Saudi Arabia); Surface Chemistry and Catalytic Studies Group, King Abdulaziz University (Saudi Arabia); Mokhtar, Mohamed, E-mail: mmokhtar2000@yahoo.com [Department of Chemistry, Faculty of Science, King Abdulaziz University (Saudi Arabia); Surface Chemistry and Catalytic Studies Group, King Abdulaziz University (Saudi Arabia)

    2017-02-15

    Two efficient catalyst based on CuAl and CoAl layered double hydroxides (LDHs) supported on graphene oxide (GO) for the carbon-carbon coupling (Classic Ullmann Homocoupling Reaction) are reported. The pure and hybrid materials were synthesised by direct precipitation of the LDH nanoparticles onto GO, followed by a chemical, structural and physical characterisation by electron microscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), surface area measurements and X-ray photoelectron spectroscopy (XPS). The GO-supported and unsupported CuAl-LDH and CoAl-LDH hybrids were tested over the Classic Ullman Homocoupling Reaction of iodobenzene. In the current study CuAl- and CoAl-LDHs have shown excellent yields (91% and 98%, respectively) at very short reaction times (25 min). GO provides a light-weight, charge complementary and two-dimensional material that interacts effectively with the 2D LDHs, in turn enhancing the stability of LDH. After 5 re-use cycles, the catalytic activity of the LDH/GO hybrid is up to 2 times higher than for the unsupported LDH. - Graphical abstract: CuAl- and CoAl-LDHs have shown excellent yields (91% and 98%, respectively) at very short reaction times (25 min). GO provides a light-weight, charge complementary, two-dimensional material that interacts effectively with the 2D LDHs, in turn enhancing the stability of LDH. - Highlights: • CuAl LDH/GO and CoAl LDH/GO hybrid materials with different LDH compositions were prepared. • Hybrids were fully characterised and their catalytic efficiency over the Classic Ullman Reaction was studied. • CuAl- and CoAl-LDHs have shown excellent yields (91% and 98%, respectively) in 25 min reaction times. • GO provides a light-weight, charge complementary, two-dimensional material that interacts effectively with the 2D LDHs. • After 5 re-use cycles, the catalytic activity of the LDH/GO hybrid is up to 2 times higher than for the unsupported LDH.

  8. Co@Co3O4 nanoparticle embedded nitrogen-doped carbon architectures as efficient bicatalysts for oxygen reduction and evolution reactions

    Science.gov (United States)

    Qi, Chunling; Zhang, Li; Xu, Guancheng; Sun, Zhipeng; Zhao, Aihua; Jia, Dianzeng

    2018-01-01

    The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play crucial roles in efficient energy conversion and storage solutions. Here, Co@Co3O4 nanoparticle embedded nitrogen-doped carbon architectures (denoted as Co@Co3O4/NCs) are prepared via a simple two-step and in situ approach by carbonization and subsequent oxidation of Co-MOF containing high contents of carbon and nitrogen. When evaluated as electrocatalyst towards both ORR and OER in a KOH electrolyte solution, the as-fabricated Co@Co3O4/NC-2 exhibits similar ORR catalytic activity to the commercial Pt/C catalyst, but superior stability and good methanol tolerance. Furthermore, the as-fabricated catalysts also show promising catalytic activity for OER. The effective catalytic activities originate from the synergistic effects between well wrapped Co@Co3O4 nanoparticles and nitrogen doped carbon structures.

  9. Neutron induced reaction cross-sections on 115In at around 14 MeV

    International Nuclear Information System (INIS)

    Csikai, J.; Lantos, Z.; Buczko, C.M.; Sudar, S.

    1990-01-01

    A systematic investigation was carried out on 115 In isotope to determine the contribution of different reactions to the total non-elastic cross-section in the 13.43 and 14.84 MeV range. All the major component cross-sections of σ NE were measured with exception of the σ g (n,n'). In the knowledge of σ NE , the energy dependence of σ g (n,n') could be deduced. The isomeric cross section ratios both for (n,2n) and (n,n') processes were also determined in the given energy range. The present experiment proves the dependence of σ m /(σ g +σ m ) ratio on the spin value (I m ) of the isomeric state in (n,2n) reaction. Excitation functions of (n,2n), (n,n') and (n,ch) reactions were compared with results calculated by STAPRE code. (author). 37 refs, 5 figs, 4 tabs

  10. Synergistically enhanced activity of nitrogen-doped carbon dots/graphene composites for oxygen reduction reaction

    Science.gov (United States)

    Liu, Hui; Zhao, Qingshan; Liu, Jingyan; Ma, Xiao; Rao, Yuan; Shao, Xiaodong; Li, Zhongtao; Wu, Wenting; Ning, Hui; Wu, Mingbo

    2017-11-01

    With rapid dissociative adsorption of oxygen, nitrogen-doped carbon nanomaterials have been demonstrated to be efficient alternative catalysts for oxygen reduction reaction (ORR) in fuel cells. Herein, we developed a mild hydrothermal strategy to construct nitrogen-doped carbon dots/graphene (NCDs-NG) composites towards ORR. Carbon dots (CDs) were derived from petroleum coke via acid oxidation while graphene oxide (GO) was obtained from graphite by modified Hummer's method. Graphene was employed as a conductive substrate to disperse CDs during hydrothermal reducing reaction while ammonia was utilized as N source to dope both graphene and CDs. The synergistic effects, i.e. CDs as pillars for graphene and catalytic sites for ORR, the high conductivity of graphene, the quick O2 adsorption on doped pyridinic nitrogen endow the NCDs-NG composites with enhanced ORR catalytic performance in alkaline electrolyte. The onset potential of -95 mV and kinetic current density of 12.7 mA cm-2 at -0.7 V (vs. Ag/AgCl) can be compared to those of the commercial 20 wt% Pt/C catalyst. The electron transfer number is about 3.9, revealing a four-electron pathway for ORR. The optimal NCDs-NG catalyst shows superior durability and methanol tolerance than 20 wt% Pt/C. This work demonstrates a feasible and effective strategy to prepare metal-free efficient ORR electrocatalysts for fuel cell applications.

  11. Carbon transfer between 2 1/4 Cr 1 Mo alloy and austenitic steels (experiments in anisothermal loops)

    International Nuclear Information System (INIS)

    Baque, P.; Besson, M.; Champeix, L.; Donati, J.R.; Oberlin, C.; Saint-Paul, P.

    1976-01-01

    Studies on carbon transfer between the ferritic steel 2 1/4 Cr 1 Mo and the austenitic steels 316L and 321H have shown that there is not any measurable carbon transfer in the operating conditions of the secondary circuit of PHENIX (475 deg C was the maximal temperature of the 2 1/4 Cr 1 Mo steel). A significant carbon transfer has been observed between the ferritic steel and the 316L steel when the 321H was replaced by the 2 1/4 Cr 1 Mo steel in the same thermohydraulic conditions (the ferritic steel was then used up to 545 deg C). This experiment has demonstrated the importance of the temperature and the initial carbon content of the ferritic steel as parameters in the decarburization process. It appears that decarburization may not be sensitive to the thermohydraulic conditions at least in the range investigated in those experiments. In the other hand the 316L steel is observed to have been carburized, the degree of carburization remaining appreciably constant and independent on the temperature between 400 deg C and 550 deg C [fr

  12. An assessment of the inventory of Carbon-14 in the oceans

    International Nuclear Information System (INIS)

    Lassey, K.R.; Manning, M.R.; O'Brien, B.J.

    1987-04-01

    The oceanic inventory for natural 14 C is 19.6x10 29 atoms, an estimate similar to those found by other methods. The 14 C produced from nuclear weapons (1972) is 550x10 26 atoms and 52% was in the oceans. From 1972 to 1985 132x10 26 atoms of bomb 14 C were added. The nuclear power industry produces 0.5x10 26 atoms per year (17% of natural production rate). Most estimates by varying methods indicate an exchange time of carbon from atmosphere to ocean of about seven years or about 22 moles m -2 yr -1 for the surface ocean. The oceanic distribution generally has higher concentrations in low to mid latitudes, and low concentrations in the most southern regions, with the deep ocean retaining levels similar to those before nuclear testing

  13. Application of {sup 14}N({sup 3}He,{sup 4}He){sup 13}N nuclear reaction to nitrogen profiling

    Energy Technology Data Exchange (ETDEWEB)

    Wielunski, L.S. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1996-12-31

    In this paper the {sup 14}N({sup 3}He,{sup 4}He){sup 1`}3N reaction is proposed for nitrogen profiling in metals and other materials. The beam energy is chosen to be 4.65 MeV in order to use the high cross section. Two types of particle filtering are used: a 25 {mu}m thick mylar in front of the detector to avoid backscattered particle pileup and reduced detector bias voltage to avoid full energy detection of high energy protons produced by competing reactions. The depth resolution is about 150-200 nm and the sensitivity is better than for the {sup 14}N(d,{sup 4}He){sup 12}C reaction. The low level of neutron radiation background allows use of this reaction in accelerator laboratories without radiation shielding. 11 refs., 5 figs.

  14. Application of {sup 14}N({sup 3}He,{sup 4}He){sup 13}N nuclear reaction to nitrogen profiling

    Energy Technology Data Exchange (ETDEWEB)

    Wielunski, L S [Commonwealth Scientific and Industrial Research Organisation (CSIRO), Lindfield, NSW (Australia). Div. of Applied Physics

    1997-12-31

    In this paper the {sup 14}N({sup 3}He,{sup 4}He){sup 1`}3N reaction is proposed for nitrogen profiling in metals and other materials. The beam energy is chosen to be 4.65 MeV in order to use the high cross section. Two types of particle filtering are used: a 25 {mu}m thick mylar in front of the detector to avoid backscattered particle pileup and reduced detector bias voltage to avoid full energy detection of high energy protons produced by competing reactions. The depth resolution is about 150-200 nm and the sensitivity is better than for the {sup 14}N(d,{sup 4}He){sup 12}C reaction. The low level of neutron radiation background allows use of this reaction in accelerator laboratories without radiation shielding. 11 refs., 5 figs.

  15. Synthesis of δ-aminolevulic acid. Application to the introduction of carbon-14 and of tritium

    International Nuclear Information System (INIS)

    Loheac, J.

    1966-06-01

    Several new syntheses of δ aminolevulic acid (δ A.L.A.) have been studied. 14 C-4 δ - aminolevulic acid has been obtained from 14 C allylacetic carboxylic acid with a yield of 30 per cent with respect to barium carbonate and with a specific activity of 32 mCi/mM. The 14 C-1 or 14 C-2 δ-A.L.A. has been prepared from the 14 C-1 or 14 C-2 acetate with a yield of 55 per cent with respect to the acetate. Finally the tritiated δ-A.L.A. has been obtained for the first time by tritiation of ethyl phthalimidodehydrolevulate. (author) [fr

  16. Distribution of Δ14C in western North Pacific and tracing carbons of human origin

    International Nuclear Information System (INIS)

    Aramaki, Takafumi; Mizushima, Toshihiko; Togawa, Orihiko; Kuji, Tomoyuki

    2001-01-01

    Seawater were collected at six points, 0deg to 48degN around 165degE. Dissolved inorganic carbonates was reduced into graphite. The ratio C-11/C-12 was measured by the accelerator mass analyzer. 14 C concentration was calculated from δ 13 C value calculated from the 13 C/ 12 C ratio. 14 C resulting from the nuclear weapon test was calculated by comparing estimated 14 C and real 14 C concentration. It was compared with that in 1970s. 14 Cbomb has dissolved into North Pacific Intermediate Water in Arctic latitude, which has moved to Mid-latitude. (A. Yamamoto)

  17. Contribution of 194.1 keV Resonance to 17O(p, alpha) 14N Reaction Rate using R Matrix Code

    International Nuclear Information System (INIS)

    Chafa, A.; Messili, F.Z.; Barhoumi, S.

    2009-01-01

    Knowledge of the 17 O(p, alpha ) 14 N reaction rates is required for evaluating elemental abundances in a number of hydrogen - burning stellar sites. This reaction is specifically very important for nucleosynthesis of the rare oxygen isotope 17 O. Classical novae are thought to be a major source of 17 O in the Galaxy and produce the short-live radioisotope 18 F whose + decay is followed by a gamma ray emission which could be observed with satellites such as the Integral observatory. As the 17 O(p, alpha) 14 N and 17 O(p, alpha ) 18 F reactions govern the destruction of 17 O and the formation of 1 '8F, their rates are decisive in determining the final abundances of these isotopes. Stellar temperatures of primary importance for nucleosynthesis are typically in the ranges T = 0.01-0.1 GK for red giant, AGB, and massive stars, and T 0.01-0.4 GK for classical nova explosions In recent work, we observed, for the first time, a resonance a 183.3 keV corresponding to level in 18 F at Ex 5789.8 ± 0.3 keV. A new astrophysical parameters of this resonance are found. In this work we study this reaction using numerical code based on R matrix method including the new values of level energy and parameters of 183.3 keV resonance in order to show his contribution to 17 O(p, alpha) 14 N reaction rates. We also use old parameters values of this resonance given in Keiser work for comparison. We show that this resonance predominate the reaction rates in all range of stellar temperature for classical nova explosions. This is in good agreement with our work with experimental method. We also study cross section and differential cross section 17 O(p, alpha ) 14 N reaction with R matrix method

  18. Carbon-14 urea utilization in diagnosis of the presence Campylobacter pylori in stomach

    International Nuclear Information System (INIS)

    Chausson, Y.

    1989-01-01

    A new method to detect the Campylobacter pylori in the stomach, using carbon-14 urea is presented. The technique consists in after the tracer ingestion, the tracer is recuperated by the expiration way in organic hiamin and after counting and evaluating. (M.L.J.)

  19. Isomeric cross-section ratios of some (n,2n) reactions at 14. 7 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Garg, K C; Khurana, C S [Punjabi Univ., Patiala (India). Nuclear Science Labs.

    1979-08-01

    Isomeric cross-section ratios of (n,2n) reactions at 14.7 MeV leading to the millisecond isomeric levels have been calculated theoretically using the statistical theory of nuclear reactions and the spin distribution form due to Bethe and Bloch. The theoretical ratios have been compared with the experimentally measured values in order to evaluate the spin cut-off parameter sigma. This parameter has been used to calculate the effective moment of inertia of the nucleus to draw useful conclusions from the results of present calculations.

  20. Investigations on the biokinetics of carbon 14 in algae cultures

    International Nuclear Information System (INIS)

    Leister, W.

    1981-01-01

    The uptake of 14 C by Scenedesmus quadricauda is quantitatively investigated by simulation models of radio ecological relevance. Due to the complexing of the procedures in the natural ecosystem, it was only possible to consider idealized conditions. The batch culture ressembles the conditons of still waters or relatively still waters without notable water exchange. The effect of the 14 C enrichment, as well as the drastic carbon reduction in the substrate as a result of algae growth, was avoided in the modified batch culture under conditions of simultaneous substrate diffusion by means of a permeation system. The 14 C and 12 C uptake of the cells thus took place solely under the conditions of constant concentration in the culture medium. The consequences for flowing water resulting from a nuclear power plant accident are to be simulated for the extent of the 14 C uptake by green algae using the continuous culture model with dynamic 14 C exposure. The continuous infusion of 14 C in the continuous culture corresponds to the possible cases where 14 C escapes into a flowing water at a constant rate over a long period of time, whether this may be via chronical release from a nuclear power plant or by 'fallout' resulting from nuclear arms testing. The results shown lead to the conclusion that the emission of 14 C to the environment, which according to prognoses will be considerably higher after the year 2000, presents a serious radioactivity potential which man and environment will have to live with should these developments continue and the prognoses come true. (orig./MG) [de

  1. Temperature dependence of carbon kinetic isotope effect for the oxidation reaction of ethane by OH radicals under atmospherically relevant conditions

    Science.gov (United States)

    Piansawan, Tammarat; Saccon, Marina; Laumer, Werner; Gensch, Iulia; Kiendler-Scharr, Astrid

    2015-04-01

    Modeling of the global distribution of atmospheric ethane sources and sinks by using the 13C isotopic composition requires accurate knowledge of the carbon kinetic isotope effect (KIE) of its atmospheric removal reactions. The quantum mechanical prediction implies the necessity to elucidate the temperature dependence of KIE within atmospherically relevant temperature range by experiment. In this study, the KIE and its temperature dependence for ethane oxidation by OH radicals was investigated at ambient pressure in a temperature range of 243 K to 303 K. The chemical reactions were carried out in a 15 L PFE reaction chamber, suspended in a thermally controlled oven. The isotope ratios of the gas phase components during the course of the reactions were measured by Thermal Desorption -- Gas Chromatography -- Isotope Ratio Mass Spectrometry (TD-GC-IRMS). For each temperature, the KIE was derived from the temporal evolution of the concentration and stable carbon isotope ratio (δ13C) of ethane using a method adapted from the relative reaction rate concept. The room temperature KIE of the ethane reaction with OH radicals was found to be 6.85 ± 0.32 ‰. This value is in agreement with the previously reported value of 8.57 ± 1.95 ‰ [Anderson et al. 2004] but has a substantially lower uncertainty. The experimental results will be discussed with the KIE temperature dependence predicted by quantum mechanical calculations. Reference: Rebecca S. Anderson, Lin Huang, Richard Iannone, Alexandra E. Thompson, and Jochen Rudolph (2004), Carbon Kinetic Isotope Effects in the Gas Phase Reactions of Light Alkanes and Ethene with the OH Radical at 296 ± 4 K, J. Phys. Chem. A, 108, 11537--11544

  2. Systematical investigations of the emission of carbon 14 from a TRIGA-Mark-II reactor - methods and results

    International Nuclear Information System (INIS)

    Pfeiffer, K.J.

    1981-01-01

    Almost no information is available about the extent of the carbon-14 releases from a research reactor. For this reason this report is dealing with the emission of C-14 from the Vienna TRIGA-Mark-II reactor. In addition the resulting radiation exposure is estimated. Due to the low activity concentrations of C-14 in research reactor effluents special requirements are necessary for sampling and measuring. A technique providing both sufficient lower limit of detection and little effort of sample preparation was developed. Carbon dioxide was trapped by bubbling air taken from the stack through washing bottles containing an aqueous solution of sodium hydroxide. After sampling a precipitate of CaCO 3 was formed and about 8 g of calcium carbonate were counted as a gel suspension by liquid scintillation counting. The formation of the gel was provided by mixing water with a scintillation cocktail originally developed for uptake of high quantities of aqueous solutions. The resulting lower limit of detection was about 50 Bq/kg carbon being equivalent to 9mBq/m 3 air. Concluding the measurements, which were carried out by weekly counting and a period of some 14 months, a normalized release rate of about 280 Bq (7, 1μCi) was found. This release rate is somewhat higher than the reported values for power reactors, because the main activity is produced by activation of air in experimental equipments. (author)

  3. Graphite Carbon-Supported Mo2C Nanocomposites by a Single-Step Solid State Reaction for Electrochemical Oxygen Reduction.

    Science.gov (United States)

    Huang, K; Bi, K; Liang, C; Lin, S; Wang, W J; Yang, T Z; Liu, J; Zhang, R; Fan, D Y; Wang, Y G; Lei, M

    2015-01-01

    Novel graphite-molybdenum carbide nanocomposites (G-Mo2C) are synthesized by a typical solid state reaction with melamine and MoO3 as precursors under inert atmosphere. The characterization results indicate that G-Mo2C composites are composed of high crystallization and purity of Mo2C and few layers of graphite carbon. Mo2C nanoparticles with sizes ranging from 5 to 50 nm are uniformly supported by surrounding graphite layers. It is believed that Mo atom resulting from the reduction of MoO3 is beneficial to the immobilization of graphite carbon. Moreover, the electrocatalytic performances of G-Mo2C for ORR in alkaline medium are investigated by cyclic voltammetry (CV), rotating disk electrode (RDE) and chronoamperometry test with 3M methanol. The results show that G-Mo2C has a considerable catalytic activity and superior methanol tolerance performance for the oxygen reduction reaction (ORR) benefiting from the chemical interaction between the carbide nanoparticles and graphite carbon.

  4. Evaluation and control of poisoning of impregnated carbons used for organic iodide removal

    International Nuclear Information System (INIS)

    Kovach, J.L.; Rankovic, L.

    1979-01-01

    By the evaluation of the chemical reactions which have taken place on impregnated activated carbon surfaces exposed to nuclear reactor atmospheric environments, the role of various impregnants has been studied. The evaluation shows several different paths for the aging and posioning to take place. The four major causes were found to be: organic solvent contamination; inorganic acid gas contamination; formation of organic acids on carbon surface; and, formation of SO 2 from carbon sulfur content. Prevention of poisoning by the first two paths can be accomplished only by procedural changes within the facility. However the last three poisoning paths can be controlled to some extent by the selection of carbon pretreatment techniques and the type of impregnant used. Results were generated by evaluating used carbons from 14 nuclear power plants and by artificial poisoning of laboratory impregnated carbons. Impregnants which have antioxidant properties, besides reaction with organic iodides, can increase the life of the impregnated activated carbons

  5. [Involvement of carbonate/bicarbonate ions in the superoxide-generating reaction of adrenaline autoxidation].

    Science.gov (United States)

    Sirota, T V

    2015-01-01

    An important role of carbonate/bicarbonate ions has been recognized in the superoxide generating reaction of adrenaline autooxidation in an alkaline buffer (a model of quinoid adrenaline oxidation in the body). It is suggested that these ions are directly involved not only in formation of superoxide anion radical (О(2)(-)) but also other radicals derived from the carbonate/bicarbonate buffer. Using various buffers it was shown that the rate of accumulation of adrenochrome, the end product of adrenaline oxidation, and the rate of О(2)(-)· formation depend on concentration of carbonate/bicarbonate ions in the buffer and that these ions significantly accelerate adrenaline autooxidation thus demonstrating prooxidant properties. The detectable amount of diformazan, the product of nitro blue tetrazolium (NBT) reduction, was significantly higher than the amount of adrenochrome formed; taking into consideration the literature data on О(2)(-)· detection by NBT it is suggested that adrenaline autooxidation is accompanied by one-electron reduction not only of oxygen dissolved in the buffer and responsible for superoxide formation but possible carbon dioxide also dissolved in the buffer as well as carbonate/bicarbonate buffer components leading to formation of corresponding radicals. The plots of the dependence of the inhibition of adrenochrome and diformazan formation on the superoxide dismutase concentration have shown that not only superoxide radicals are formed during adrenaline autooxidation. Since carbonate/bicarbonate ions are known to be universally present in the living nature, their involvement in free radical processes proceeding in the organism is discussed.

  6. Synthesis of 2D Nitrogen-Doped Mesoporous Carbon Catalyst for Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Zhipeng Yu

    2017-02-01

    Full Text Available 2D nitrogen-doped mesoporous carbon (NMC is synthesized by using a mesoporous silica film as hard template, which is then investigated as a non-precious metal catalyst for the oxygen reduction reaction (ORR. The effect of the synthesis conditions on the silica template and carbon is extensively investigated. In this work, we employ dual templates—viz. graphene oxide and triblock copolymer F127—to control the textural features of a 2D silica film. The silica is then used as a template to direct the synthesis of a 2D nitrogen-doped mesoporous carbon. The resultant nitrogen-doped mesoporous carbon is characterized by transmission electron microscopy (TEM, nitrogen ad/desorption isotherms, X-ray photoelectron spectroscopy (XPS, cyclic voltammetry (CV, and rotating disk electrode measurements (RDE. The electrochemical test reveals that the obtained 2D-film carbon catalyst yields a highly electrochemically active surface area and superior electrocatalytic activity for the ORR compared to the 3D-particle. The superior activity can be firstly attributed to the difference in the specific surface area of the two catalysts. More importantly, the 2D-film morphology makes more active sites accessible to the reactive species, resulting in a much higher utilization efficiency and consequently better activity. Finally, it is noted that all the carbon catalysts exhibit a higher ORR activity than a commercial Pt catalyst, and are promising for use in fuel cells.

  7. Carboxyl functionalization of carbon fibers via aryl diazonium reaction in molten urea to enhance interfacial shear strength

    Science.gov (United States)

    Wang, Yuwei; Meng, Linghui; Fan, Liquan; Wu, Guangshun; Ma, Lichun; Zhao, Min; Huang, Yudong

    2016-01-01

    Using molten urea as the solvent, carbon fibers were functionalized with carboxylic acid groups via aryl diazonium reaction in 15 min to improve their interfacial bonding with epoxy resin. The surface functionalization was quantified by X-ray photoelectron spectroscopy, which showed that the relative surface coverage of carboxylic acid groups increased from an initial percentage of 3.17-10.41%. Mechanical property test results indicated that the aryl diazonium reaction in this paper could improve the interfacial shear strength by 66%. Meanwhile, the technique did not adopt any pre-oxidation step to produce functional groups prior to grafting and was shown to maintain the tensile strength of the fibers. This methodology provided a rapid, facile and economically viable route to produce covalently functionalized carbon fibers in large quantities with an eco-friendly method.

  8. Kinetics and reaction mechanism for aminolysis of benzyl 4-pyridyl carbonate in H2O: Effect of modification of nucleofuge from 2-pyridyl oxide to 4-pyridyl oxide on reactivity and reaction mechanism

    International Nuclear Information System (INIS)

    Kang, Ji Sun; Um, Ikhwan

    2012-01-01

    Pseudo-first-order rate constants k amine have been measured spectrophotometrically for the reactions of benzyl 4-pyridyl carbonate 6 with a series of alicyclic secondary amines in H 2 O at 25.0.deg.C. The plots of k amine vs. [amine] curve upward, indicating that the reactions proceed through a stepwise mechanism with two intermediates, a zwitterionic tetrahedral intermediate T ± and its deprotonated form T - . This contrasts to the report that the corresponding reactions of benzyl 2-pyridyl carbonate 5 proceed through a forced concerted pathway. The k amine values for the reactions of 6 have been dissected into the second-order rate constant Kk 2 and the third order rate constant Kk 3 . The Brφnsted-type plots are linear with β nuc = 0.94 and 1.18 for Kk 2 and Kk 3 , respectively. The Kk 2 for the reaction of 6 is smaller than the second-order rate constant k N for the corresponding reaction of 5, although 4-pyridyl oxide in 6 is less basic and a better nucleofuge than 2-pyridyl oxide in 5

  9. Carbon-14 speciation during anoxic corrosion of activated steel in a repository environment

    Energy Technology Data Exchange (ETDEWEB)

    Wieland, E.; Cvetkovic, B.Z.; Kunz, D. [Paul Scherrer Institute, Villigen (Switzerland). Lab. for Waste Management; Salazar, G.; Szidat, S. [Bern Univ. (Switzerland). Dept. of Chemistry and Biochemistry and Oeschger Centre for Climate Change Research

    2018-01-15

    Radioactive waste contains significant amounts of {sup 14}C which has been identified a key radionuclide in safety assessments. In Switzerland, the {sup 14}C inventory of a cement-based repository for low- and intermediate-level radioactive waste (L/ILW) is mainly associated with activated steel (∝85 %). {sup 14}C is produced by {sup 14}N activation in steel parts exposed to thermal neutron flux in light water reactors. Release of {sup 14}C occurs in the near field of a deep geological repository due to anoxic corrosion of activated steel. Although the {sup 14}C inventory of the L/ILW repository and the sources of {sup 14}C are well known, the formation of {sup 14}C species during steel corrosion is only poorly understood. The aim of the present study was to identify and quantify the {sup 14}C-bearing carbon species formed during the anoxic corrosion of iron and steel and further to determine the {sup 14}C speciation in a corrosion experiment with activated steel. All experiments were conducted in conditions similar to those anticipated in the near field of a cement-based repository.

  10. Measurement of fission cross-section for the {sup 232}Th(n,f){sup 141}Ba reaction induced by neutrons around 14 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Chang-Lin; Fang, Kai-Hong [Lanzhou University, School of Nuclear Science and Technology, Lanzhou, Gansu Province (China); Lanzhou University, Engineering Research Center for Neutron Application, Ministry of Education, Lanzhou, Gansu Province (China); Liu, Shuang-Tong; Lv, Tao; Wang, Qiang; Zhang, Zheng-Wei [Lanzhou University, School of Nuclear Science and Technology, Lanzhou, Gansu Province (China); Lai, Cai-Feng [Chinese Academy of Engineering Physics, Institute of Nuclear Physics and Chemistry, Mianyang, Sichuan Province (China)

    2016-11-15

    The fission cross-section of the {sup 232}Th(n,f){sup 141}Ba reaction induced by neutrons around 14 MeV was measured precisely with the neutron activation and off-line gamma-ray spectrometric technique. Neutron fluence was monitored on-line using the accompanying α-particles from the {sup 3}H({sup 2}H,n){sup 4}He reaction, whereas the neutron energies were measured by the method of cross-section ratios of {sup 90}Zr(n,2n){sup 89}Zr to {sup 93}Nb(n,2n){sup 92m}Nb reactions. The experimentally determined {sup 232}Th(n,f){sup 141}Ba reaction cross-sections were 12.2 ± 0.4 mb at E{sub n} = 14.1 ± 0.3 MeV, 13.0 ± 0.5 mb at E{sub n} = 14.5 ± 0.3 MeV and 13.3 ± 0.5 mb at E{sub n} = 14.7 ± 0.3 MeV, respectively. (orig.)

  11. The synthesis of SL-75.212 (Betaxolol) labelled with carbon 14: 1-[4-(2-cyclopropyl methoxyethyl-[1-14C]) phenoxy]-3-isopropyl amino-2-propanol

    International Nuclear Information System (INIS)

    Aubert, F.; Beaucourt, J.P.; Pichat, L.

    1982-01-01

    Carbonation with 14 CO 2 of the Grigard reagent 1 gave 4-benzyloxy [carboxyl- 14 C] benzoic acid: 2 (87 % yield). 2 was successively treated in diethyl ether solution with diazomethane and lithium aluminium hydride giving rise to [7- 14 C] 4 benzyloxybenzyl alcohol 4 (82 % yield). Alcohol 4 was transformed into the corresponding chloride 5 when exposed to thionylchloride in ether. 5 was condensed with NaCN in DMF to give the nitrile 6 which was hydrolysed into the acid 7 isolated in a 75 % overall yield from Ba 14 CO 3 . 7 gave the alcohol 9 by successive treatments with diazomethane and LiAlH 4 in ether. 9 with NaH gave the corresponding alkoxide which when condensed with bromomethylcyclopropane gave the ether 10 purified by silicagel column chromatography and isolated with an overall yield of 71 % from Ba 14 CO 3 . Hydrogenolysis of 10 gave the phenol 11. The epoxide 12 was secured by condensation with epichlorhydrin in presence of NaOH. After purification by silicagel column chromatography 10 was opened with isopropylamine leading to the target compound BETAXOLOL 13 isolated as the hydrochloride. After extensive purification by Sephadex G-10 column chromatography, SL 75.212 [ethyl-1- 14 C] was obtained in an overall yield of 26 % from barium [ 14 C] carbonate and a radiochemical purity better than 99 % (specific activity 57 mCi/mole). (author)

  12. Dimethyl carbonate synthesis via transesterification of propylene carbonate with methanol by ceria-zinc catalysts: Role of catalyst support and reaction parameters

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Praveen; Srivastava, Vimal Chandra; Mishra, Indra Mani [Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand (India)

    2015-09-15

    Ceria and zinc oxide catalyst were impregnated onto various oxide supports, namely Al{sub 2}O{sub 3}, TiO{sub 2} and SiO{sub 2}, individually by deposition-coprecipitation method. The synthesized catalysts (CZA, CZS and CZT having supports Al{sub 2}O{sub 3}, TiO{sub 2} and SiO{sub 2}, respectively) were characterized by X-ray diffraction (XRD), NH{sub 3}- and CO{sub 2}-temperature programmed desorption (TPD) and N2 adsorption. These catalysts were used for synthesis of dimethyl carbonate (DMC) from methanol and propylene carbonate in a batch reactor. CZS was found to have larger average grain size as compared to CZA and CZT. Composite oxides (catalysts) were found to contain individual phases of ZnO, CeO{sub 2} and some spinel forms of Zn, Ce along with their supports. CZS having highest basicity and surface area showed better catalytic activity as compared to CZA and CZT. Effect of reaction temperature and methanol/PC molar ratio on DMC yield was studied and a reaction mechanism has been discussed. Maximum DMC yield of 77% was observed with CZS catalyst at 170 .deg. C with methanol/PC molar ratio of 10.

  13. Charged particle spectra in oxygen-induced reactions at 14. 6 and 60 GeV/Nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Adamovich, M I; Aggarwal, M M; Arora, R; Alexandrov, Y A; Azimov, S A; Badyal, S K; Basova, E; Bhalla, K B; Bahsin, A; Bhatia, V S; Bomdarenko, R A; Burnett, T H; Cai, X; Chernova, L P; Chernyavski, M M; Dressel, B; Friedlander, E M; Gadzhieva, S I; Ganssauge, E R; Garpman, S; Gerassimov, S G; Gill, A; Grote, J; Gulamov, K G; Gulyamov, V G; Gupta, V K; Hackel, S; Heckman, H H; Jakobsson, B; Judek, B; Katroo, S; Kadyrov, F G; Kallies, H; Karlsson, L; Kaul, G L; Kaur, M; Kharlamov, S P; Kohli, J; Kumar, V; Lal, P; Larionova, V G; Lindstrom, P J; Liu, L S; Lokanathan, S; Lord, J; Lukicheva, N S; Mangotra, L K; Maslennikova, N V; Mitta, I S; Monnand, E; Mookerjee, S; Mueller, C; Nasyrov, S H; Nvtny, V S; Orlova, G I; Otterlund, I; Peresadko, N G; Persson, S; Petrov, N V; Qian, W Y; Raniwala, R; Raniwala, S; Rao, N K; Rhee, J Y; Shaidkhanov, N; Salmanova, N G; Schulz, W; Schussler, F; Shukla, V S; Skelding, D; Soederstroe,

    1989-10-01

    Multiplicity distributions and pseudo-rapidity distributions of charged particles from oxygen-induced nuclear reactions at 14.6 and 60 GeV/nucleon are presented. The data were taken from the EMU{minus}01 emulsion stacks and compared to simulations from the Lund Monte Carlo Model (FRITIOF).

  14. Glycerol carbonate in Ferrier reaction: Access to new enantiopure building blocks to develop glycoglycerolipid analogues.

    Science.gov (United States)

    da Costa, Pollyanna Leite Ferreira; Melo, Valentina Nascimento; Guimarães, Bruna Martins; Schuler, Marie; Pimenta, Vanessa; Rollin, Patrick; Tatibouët, Arnaud; de Oliveira, Ronaldo Nascimento

    2016-12-21

    Glycerol carbonate and tri-O-acetyl-D-glucal were used for the synthesis of glycero-functionalized carbohydrates. Ferrier reaction between the two partners afforded the O-glucoside in 84% yield. Spontaneous crystallization yielded 28% of a pure diastereoisomer with the S configuration as determined by X-ray crystallography. Then, the azido-glycerosugar was prepared in two steps: ring opening of the cyclic carbonate with sodium azide and per-acetylation with an excellent yield of 94%. A library of glycoconjugates were prepared using a 1,3-dipolar cycloaddition in yields ranging from 64 to 99%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Fe/Ni-N-CNFs electrochemical catalyst for oxygen reduction reaction/oxygen evolution reaction in alkaline media

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhuang [MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001 (China); Li, Mian [Faculty of Chemistry, Northeast Normal University, Changchun 130024 (China); Fan, Liquan; Han, Jianan [MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001 (China); Xiong, Yueping, E-mail: ypxiong@hit.edu.cn [MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2017-04-15

    Highlights: • Novel Fe/Ni-N-CNFs electrocatalysts are prepared by electrospinning technique. • The Fe1Ni1-N-CNFs catalyst exhibits the excellent ORR and OER catalytic activity. • Synergy of Fe/Ni alloy is responsible for the excellent catalytic performance. - Abstract: The novel of iron, nickel and nitrogen doped carbon nanofibers (Fe/Ni-N-CNFs) as bifunctional electrocatalysts are prepared by electrospinning technique. In alkaline media, the Fe/Ni-N-CNFs catalysts (especially for Fe1Ni1-N-CNFs) exhibit remarkable electrocatalytic performances of oxygen reduction reaction (ORR)/oxygen evolution reaction (OER). For ORR catalytic activity, Fe1Ni1-N-CNFs catalyst offers a higher onset potential of 0.903 V, a similar four-electron reaction pathway, and excellent stability. For OER catalytic activity, Fe1Ni1-N-CNFs catalyst possesses a lower onset potential of 1.528 V and a smaller charge transfer resistance of 48.14 Ω. The unparalleled catalytic activity of ORR and OER for the Fe1Ni1-N-CNFs is attributed to the 3D porous cross-linked microstructures of carbon nanofibers with Fe/Ni alloy, N dopant, and abundant M-N{sub x} and NiOOH as catalytic active sites. Thus, Fe1Ni1-N-CNFs catalyst can be acted as one of the efficient and inexpensive catalysts of metal-air batteries.

  16. Weathering controls on mechanisms of carbon storage in grassland soils

    Science.gov (United States)

    Masiello, C.A.; Chadwick, O.A.; Southon, J.; Torn, M.S.; Harden, J.W.

    2004-01-01

    On a sequence of soils developed under similar vegetation, temperature, and precipitation conditions, but with variations in mineralogical properties, we use organic carbon and 14C inventories to examine mineral protection of soil organic carbon. In these soils, 14C data indicate that the creation of slow-cycling carbon can be modeled as occurring through reaction of organic ligands with Al3+ and Fe3+ cations in the upper horizons, followed by sorption to amorphous inorganic Al compounds at depth. Only one of these processes, the chelation Al3+ and Fe3+ by organic ligands, is linked to large carbon stocks. Organic ligands stabilized by this process traverse the soil column as dissolved organic carbon (both from surface horizons and root exudates). At our moist grassland site, this chelation and transport process is very strongly correlated with the storage and long-term stabilization of soil organic carbon. Our 14C results show that the mechanisms of organic carbon transport and storage at this site follow a classic model previously believed to only be significant in a single soil order (Spodosols), and closely related to the presence of forests. The presence of this process in the grassland Alfisol, Inceptisol, and Mollisol soils of this chronosequence suggests that this process is a more significant control on organic carbon storage than previously thought. Copyright 2004 by the American Geophysical Union.

  17. A critical review of atmospheric 14 C activities

    International Nuclear Information System (INIS)

    Krajcar Bronic, I.; Horvatincic, N.; Baresic, J.; Obelic, B.; Vreca, P.

    2006-01-01

    14 C activity of atmospheric CO 2 has been measured at the Rudjer Boskovi Institute as a part of environmental monitoring in order to determine possible differences between clean-air sites, industrialized city and sites in the vicinity of nuclear power plant. Samples of CO 2 from the atmosphere have been collected by absorption of CO 2 on the saturated carbonate-free NaOH solution for a period of 1 month under stationary conditions. The obtained Na 2 CO 3 has been dissolved in HCl and the produced CO 2 used for CH 4 preparation by catalytic reaction with H 2 at 450 degrees Celsius. A gas proportional counter filled with CH 4 has been used for 14 C activity measurement. The method of collection of CO 2 does not require any power source and can be therefore used for sampling at the remote sites, such as mountains or forests. However,due to the lack of mixing of the Na OH solution, the absorption process is limited on the surface of the solution, and there exists the possibility of fractionation of carbon isotopes due to different reaction rate constants of 12 C and 13 C. A continuous record of atmospheric 14 CO 2 activity exists for the city of Zagreb (1986 to 2005), while shorter records (1-2 years) exist for several other sites of various characteristics: two clean-air sites (Mt. Medvednica, altitude about 1000 m a.s.l., for period 1995 to 1996, and the Plitvice National Park for period 2003 to 2005), and a site close to the Nuclear Power Plant Krsko (1984 to 1986).Within the bilateral Croatian-Slovene project we have recently measured also the stable isotope composition (δ13 C) of Na 2 CO 3 collected at two different sampling sites in order to determine seasonal fluctuations in both 14 C and 13 C isotope composition. Unexpectedly low δ13 C values have been obtained about (-25±2)0/00 instead of expected (-7±1)0/00. Such low values have been attributed to the carbon isotope fractionation during the CO 2 absorption on the highly alkaline medium because of

  18. Organic products from Ca14Co3 autoradiolysis: effects of thermal annealing

    International Nuclear Information System (INIS)

    Albarran S, M.G.; Collins, K.E.; Collins, C.H.

    1986-01-01

    Autoradiolysis of Ca 14 Co 3 produces several different low molecular mass organic compounds which can be conveniently observed after ion exclusion-partition chromatographic separation of the dissolved sample, provided that the solid was prepared with high specific activity carbon-14 and has been stored for a sufficiently long period. Subsequent thermal annealing changes the distribution of these observed compounds, demonstrating that chemical reactions of the precursor species take place in the solid Ca 14 Co 3 matrix. Specifically, the following products were observed after an autoradiolytic dose of 5 MGy: methanol, formaldehyde, formic acid, oxalic acid, glyoxylic acid, glycolic acid and acetic acid, with-G-values ranging from 5x10 -6 to 2x10 -3 . Isochronal annealing to 500 0 C markedly changes the yields of carbon-14 labelled formic and acetic acids but has lesser effects on the other acidic products. This indicates that several different precursor species are present in the autoradiolyzed solid. (Author) [pt

  19. Radiation induced chemical reaction of carbon monoxide and hydrogen mixture

    International Nuclear Information System (INIS)

    Sugimoto, Shun-ichi; Nishii, Masanobu

    1985-01-01

    Previous studies of radiation induced chemical reactions of CO-H 2 mixture have revealed that the yields of oxygen containing products were larger than those of hydrocarbons. In the present study, methane was added to CO-H 2 mixture in order to increase further the yields of the oxygen containing products. The yields of most products except a few products such as formaldehyde increased with the addition of small amount of methane. Especially, the yields of trioxane and tetraoxane gave the maximum values when CO-H 2 mixture containing 1 mol% methane was irradiated. When large amounts of methane were added to the mixture, the yields of aldehydes and carboxylic acids having more than two carbon atoms increased, whereas those of trioxane and tetraoxane decreased. From the study at reaction temperature over the range of 200 to 473 K, it was found that the yields of aldehydes and carboxylic acids showed maxima at 323 K. The studies on the effects of addition of cationic scavenger (NH 3 ) and radical scavenger (O 2 ) on the products yields were also carried out on the CO-H 2 -CH 4 mixture. (author)

  20. The influenced of reaction time on the degradation of palm oil empty fruit bunch (EFB) in hydrothermal carbonization

    Science.gov (United States)

    Sarwono, Rakhman; Kurniawan, Hendris Hendarsyah

    2017-11-01

    Hydrothermal carbonization (HTC) of empty fruit bunch (EFB) of palm oil in different reaction times were investigated. Experiments were carried out in an autoclave at different reaction time of 3,6,9, 15, 20, 25 and 40 hours. With a fixed solid/liquid ratio of 5 gram of EFB in 50 ml water as a solvent, and temperature reaction of 250 °C. Increase the reaction time the soluble products are also increased. The liquid products were analyzed using GCMS to determine the chemical composition. The chemical composition were greatly affected by the reaction time. The main component was glycolic acid, by increasing the reaction time made the varieties of chemical compositions in liquid products, especially for the glycolic acid component, it was decreased slightly. The higher heating value (HHV) also increase slighly by increasing the reaction time both solid and liquid products.

  1. Production of carbon nanotubes using mechanical milling in the presence of an exothermic reaction

    International Nuclear Information System (INIS)

    Karimi, E.Z.; Zebarjad, S.M.; Khaki, J. Vahdati; Izadi, H.

    2010-01-01

    Carbon nanotubes (CNTs) have shown promising potential for many applications in field of engineering due to their unusual significant properties. A major challenge for the industrial applications of CNTs is the large-quantity production. In this field, one new method for CNT production is annealing the ball milled graphite powder. The annealing process should be done in high temperature (1200-1400 o C) and needs time more than 6 h. The novel process introduced in this paper is elimination the annealing stage thorough a thermite reaction. The necessity heat for the conversion of milling products to CNTs was generated in the milling chamber by an exothermic reaction. In addition, the reaction products acted as catalysts to the CNT formation process. The adiabatic temperatures of 1809, 2000 and 2325 K were selected according to balancing graphite and thermite mixture (Aluminum + Iron oxide powders) for exothermic reaction. The results of thermo gravimetric analysis (TGA) test proved that CNT formation strongly depends on adiabatic temperature. The results of microscopic evaluation done by transition electron microscope (TEM) showed that at higher adiabatic temperature CNTs could be produced.

  2. Oxidation of sodium (2-14C) acetate with alkaline permanganate

    International Nuclear Information System (INIS)

    Zielinski, M.

    1983-01-01

    The mechanism and kinetics of the oxidation of sodium acetate with permanganate in alkile and neutral media have been investigated using (2- 14 C) acetate. The reaction is first order with respect to both permanganate and acetate ions. The initial second order rate constants depend linearly on the square of the hydroxide ion concentration. Arrhenius activation energy of the oxidation reaction carried out in 12M NaOH is 24.0 kcal/mole in the temperature interval of 50-100 deg C. The mechanism of the principal path leading to the oxalate formation and the mechanism of the side reaction resulting in the carbon dioxide production have been proposed and discussed. (author)

  3. Contribution of deep sourced carbon from hydrocarbon seeps to sedimentary organic carbon: Evidence from Δ14C and δ13C isotopes

    Science.gov (United States)

    Feng, D.; Peckmann, J.; Peng, Y.; Liang, Q.; Roberts, H. H.; Chen, D.

    2017-12-01

    Sulfate-driven anaerobic oxidation of methane (AOM) limits the release of methane from marine sediments and promotes the formation of carbonates close to the seafloor along continental margins. It has been established that hydrocarbon seeps are a source of dissolved inorganic and organic carbon to marine environments. However, questions remain about the contribution of deep sourced carbon from hydrocarbon seeps to the sedimentary organic carbon pool. For a number of hydrocarbon seeps from the South China Sea and the Gulf of Mexico, the portion of modern carbon was determined based on natural radiocarbon abundances (Δ14C) and stable carbon isotope (δ13Corganic carbon) compositions of the non-carbonate fractions extracted from authigenic carbonates. Samples from both areas show a mixing trend between ideal planktonic organic carbon (δ13C = -22‰ VPDB and 90% modern carbon) and the ambient methane. The δ13Corganic carbon values of non-carbonate fractions from three ancient seep deposits (northern Italy, Miocene; western Washington State, USA, Eocene to Oligocene) confirm that the proxy can be used to constrain the record of sulfate-driven AOM through most of Earth history by measuring the δ13C values of organic carbon. This study reveals the potential of using δ13C values of organic carbon to discern seep and non-seep environments. This new approach is particularly promising when authigenic carbonate is not present in ancient sedimentary environments. Acknowledgments: The authors thank BOEM and NOAA for their years' support of the deep-sea dives. Funding was provided by the NSF of China (Grants: 41422602 and 41373085).

  4. Towards a global understanding of vertical soil carbon dynamics: meta-analysis of soil 14C data

    Science.gov (United States)

    hatte, C.; Balesdent, J.; Guiot, J.

    2012-12-01

    Soil represents the largest terrestrial storage mechanism for atmospheric carbon from photosynthesis, with estimates ranging from 1600 Pg C within the top 1 meter to 2350 Pg C for the top 3 meters. These values are at least 2.5 times greater than atmospheric C pools. Small changes in soil organic carbon storage could result in feedback to atmospheric CO2 and the sensitivity of soil organic matter to changes in temperature, and precipitation remains a critical area of research with respect to the global carbon cycle. As an intermediate storage mechanism for organic material through time, the vertical profile of carbon generally shows an age continuum with depth. Radiocarbon provides critical information for understanding carbon exchanges between soils and atmosphere, and within soil layers. Natural and "bomb" radiocarbon has been used to demonstrate the importance and nature of the soil carbon response to climatic and human impacts on decadal to millennial timescales. Radiocarbon signatures of bulk, or chemically or physically fractionated soil, or even of specific organic compounds, offer one of the only ways to infer terrestrial carbon turnover times or test ecosystem carbon models. We compiled data from the literature on radiocarbon distribution on soil profiles and characterized each study according to the following categories: soil type, analyzed organic fraction, location (latitude, longitude, elevation), climate (temperature, precipitation), land use and sampling year. Based on the compiled data, soil carbon 14C profiles were reconstructed for each of the 226 sites. We report here partial results obtained by statistical analyses of portion of this database, i.e. bulk and bulk-like organic matter and sampling year posterior to 1980. We highlight here 14C vertical pattern in relationship with external parameters (climate, location and land use).

  5. Carbon-14 in sludge

    International Nuclear Information System (INIS)

    Fowler, J.R.; Coleman, C.J.

    1983-01-01

    The level of C-14 in high-level waste is needed to establish the amount of C-14 that will be released to the environment either as off-gas from the Defense Waste Processing Facility (DWPF) or as a component of saltstone. Available experimental data confirmed a low level of C-14 in soluble waste, but no data was available for sludge. Based on the processes used in each area, Purex LAW sludge in F-area and HM HAW sludge in H-area will contain the bulk of any sludge produced by the cladding. Accordingly, samples from Tank 8F containing Purex LAW and Tank 15H containing HM HAW were obtained and analyzed for C-14. These two waste types constitute approximately 70% of the total sludge inventory now stored in the waste tanks. Results from analyses of these two sludge types show: the total C-14 inventory in sludge now stored in the waste tanks is 6.8 Ci; C-14 releases to the atmosphere from the DWPF will average approximately 0.6 Ci annually at the projected sludge processing rate in the DWPF. 4 references, 2 tables

  6. Grafting methyl acrylic onto carbon fiber via Diels-Alder reaction for excellent mechanical and tribological properties of phenolic composites

    Science.gov (United States)

    Fei, Jie; Duan, Xiao; Luo, Lan; Zhang, Chao; Qi, Ying; Li, Hejun; Feng, Yongqiang; Huang, Jianfeng

    2018-03-01

    Carbon fibers (CFs) were grafted with methyl acrylic via Diels-Alder reaction at the different oil bath temperature effectively creating a carboxyl functionalized surface. The effect of grafting temperature on the surface morphology and functional groups of carbon fibers were investigated by FTIR, Raman spectroscopy, XPS and SEM respectively. The results showed that the optimal grafting temperature was 80 °C, and the relative surface coverage by carboxylic acid groups increased from an initial 5.16% up to 19.30% significantly improved the chemical activity without damaging the skin and core region of the carbon fibers. Mechanical property tests indicated that the shear and tensile strength of the sample with the grafting temperature of 80 °C (CFRP-3) increased obviously by 90.3% and 78.7%, respectively, compared with the pristine carbon fibers reinforced composite. Further, the sample CFRP-3 exhibited higher and more stable friction coefficient and improved wear resistance, while the wear rate decreased 52.7%, from 10.8 × 10-6 to 5.1 × 10-6 mm3/N m. The present work shows that grafting methyl acrylic via Diels-Alder reaction could be a highly efficient and facile method to functionalize carbon fibers for advanced composites.

  7. Unified mechanism of alkali and alkaline earth catalyzed gasification reactions of carbon by CO2 and H2O

    Science.gov (United States)

    Chen, S.G.; Yang, R.T.

    1997-01-01

    From molecular orbital calculations, a unified mechanism is proposed for the gasification reactions of graphite by CO2 and H2O, both uncatalyzed and catalyzed by alkali and alkaline earth catalysts. In this mechanism, there are two types of oxygen intermediates that are bonded to the active edge carbon atoms: an in-plane semiquinone type, Cf(O), and an off-plane oxygen bonded to two saturated carbon atoms that are adjacent to the semiquinone species, C(O)Cf(O). The rate-limiting step is the decomposition of these intermediates by breaking the C-C bonds that are connected to Cf(O). A new rate equation is derived for the uncatalyzed reactions, and that for the catalyzed reactions is readily available from the proposed mechanism. The proposed mechanism can account for several unresolved experimental observations: TPD and TK (transient kinetics) desorption results of the catalyzed systems, the similar activation energies for the uncatalyzed and catalyzed reactions, and the relative activities of the alkali and alkaline earth elements. The net charge of the edge carbon active site is substantially changed by gaining electron density from the alkali or alkaline earth element (by forming C-O-M, where M stands for metal). The relative catalytic activities of these elements can be correlated with their abilities of donating electrons and changing the net charge of the edge carbon atom. As shown previously (Chen, S. G.; Yang, R. T. J. Catal. 1993, 141, 102), only clusters of the alkali compounds are active. This derives from the ability of the clusters to dissociate CO2 and H2O to form O atoms and the mobility of the dissociated O atoms facilitated by the clusters.

  8. Observation of non-statistical structures in the excitation function of the reaction 10B(14N,12C)12C under extreme forward angles

    International Nuclear Information System (INIS)

    Klauss, E.U.

    1984-01-01

    In the present thesis the excitation functions of the reaction 10 B( 14 N, 12 C) 12 C to the ground states, the first excited state at 4.43 MeV (Jsup(π) = 2 1 + ) of a 12 C residual nucleus, and to the double excitation of ejectile and residue nucleus to the 4.43 state are studied. The measurements were performed in an energy range 13MeV 14 N) 0 (in the c.m. system). By a fitting to elastic scattering data the optical potential for 10 B+ 14 N was determined. With this potential it was tried by means of Hauser-Feshbach calculations to calculate the cross sections of the reaction 10 B( 14 N, 12 C) 12 C. The strong 16 + resonance and indications of 18 + in the excitation function of the reaction 10 B( 14 N, 12 Csub(g.s.)) 12 Csub(g.s.) should be pronounced. An unexpected large cross section was observed in the reaction 10 B( 14 N, 12 Csub(g.s.)) 12 C(4 1 + ). This is considered as a further indication to the strong contribution of a direct process. (orig./HSI) [de

  9. Implications of the 14C(α,γ)18O reaction for nonstandard big bang nucleosynthesis

    International Nuclear Information System (INIS)

    Gai, M.

    1992-01-01

    The thermonuclear burning rates for the 14 C(α,γ) 18 O radiative capture reaction are calculated at temperatures (0.3 - state, at approximately 9.0 MeV in 18 O as would be deduced from the Yale-Michigan State University measurement of the beta-delayed alpha-particle emission of 18 N and suggested by the Notre Dame-Caltech measurement of the nonresonant 14 C(α,γ) 18 O cross section. The gamma widths of the proposed broad state is estimated using the Alhassid, Gai, and Bertsch sum rule, and an experimental study is proposed

  10. Validation of a simplified carbon-14-urea breath test for routine use for detecting Helicobacter pylori noninvasively

    International Nuclear Information System (INIS)

    Henze, E.; Malfertheiner, P.; Clausen, M.; Burkhardt, H.; Adam, W.E.

    1990-01-01

    A carbon-14 ( 14 C) urea breath test for detecting Helicobacter pylori with multiple breath sampling was developed. Carbon-14-urea (110 kBq) administered orally to 18 normal subjects and to 82 patients with Helicobacter infection. The exhaled 14 C-labeled CO 2 was trapped at 10-min intervals for 90 min. The total 14 C activity exhaled over 90 min was integrated and expressed in %activity of the total dose given. In normals, a mean of 0.59% +/- 0.24% was measured, resulting in an upper limit of normal of 1.07%. In 82 patients, a sensitivity of 90.2%, a specificity of 83.8%, and a positive predictive value of 90.2% was found. The single probes at intervals of 40-60 min correlated best with the integrated result, with r ranging from 0.986 to 0.990. The test's diagnostic accuracy did not change at all when reevaluated with the 40-, 50-, or 60-min sample data alone. Thus, the 14 C-urea breath test can be applied routinely as a noninvasive, low-cost and one-sample test with high diagnostic accuracy in detecting Helicobacter pylori colonization

  11. Poisoning by carbon monoxide in the hydrogen exchange reaction between deuterium gas and water preadsorbed on a platinum--alumina catalyst

    International Nuclear Information System (INIS)

    Iida, I.; Tamaru, K.

    1979-01-01

    Poisoning by carbon monoxide in the exchange reaction between deuterium and the water preadsorbed on a platinum--alumina catalyst was studied, by measuring not only the rate of reaction but also its kinetic behavior and the adsorption of reactants on the catalyst surface. The shape of the poisoning curve is closely associated with the kinetic behavior and exhibited an abrupt change on freezing the adsorbed water below 273 0 K. When the rate is proportional to deuterium pressure and independent of the amount of water adsorbed, the exchange rate dropped sharply by carbon monoxide adsorbed of a few percent coverage without any marked changes in the amount and the rate of hydrogen adsorption on the platinum surface. However, at temperatures lower than 273 0 K and at higher deuterium pressures, the rate depends not on the deuterium pressure but on the amount of water adsorbed. The migration of hydrogen in or through the adsorbed water is seemingly sufficiently suppressed by freezing to control the overall reaction rate. In this case, a small amount of adsorption of carbon monoxide did not show any toxicity, but then a steep poisoning started accompanying a change in the kinetic behavior. It was accordingly demonstrated that the mechanism of the reaction may be better understood by studying poisoning and measuring adsorption, overall rate, and kinetic behavior

  12. The US nuclear reaction data network. Summary of the first meeting, March 13 ampersand 14 1996

    International Nuclear Information System (INIS)

    1996-03-01

    The first meeting of the US Nuclear Reaction Data Network (USNRDN) was held at the Colorado School of Mines, March 13-14, 1996 chaired by F. Edward Cecil. The Agenda of the meeting is attached. The Network, its mission, products and services; related nuclear data and data networks, members, and organization are described in Attachment 1. The following progress reports from the members of the USNRDN were distributed prior to the meeting and are given as Attachment 2. (1) Measurements and Development of Analytic Techniques for Basic Nuclear Physics and Nuclear Applications; (2) Nuclear Reaction Data Activities at the National Nuclear Data Center; (3) Studies of nuclear reactions at very low energies; (4) Nuclear Reaction Data Activities, Nuclear Data Group; (5) Progress in Neutron Physics at Los Alamos - Experiments; (6) Nuclear Reaction Data Activities in Group T2; (7) Progress Report for the US Nuclear Reaction Data Network Meeting; (8) Nuclear Astrophysics Research Group (ORNL); (9) Progress Report from Ohio University; (10) Exciton Model Phenomenology; and (11) Progress Report for Coordination Meeting USNRDN

  13. Systematics of (n,t) reactions in medium and heavy mass nuclei at 14.6 MeV

    International Nuclear Information System (INIS)

    Woo, T.T.

    1979-01-01

    The production cross sections for (n,t) reactions of 14.6-MeV neutrons with isotopes of the natural elements Ca, Ti, Cr, Fe, Ni, Y, Mo, Pd, Cd, Sn, Pb, La, and with the enriched isotopes 86 Sr, 114 Cd, 130 Te, 205 Tl were measured by the activation technique using high-energy resolution gamma-ray spectrometry. The systematics for the (n,t) reactions were investigated as a function of the relative neutron excess. The experimentally determined values of the cross sections are in good agreement with values calculated by an empirical equation. The cross section ratios (n,t) and (n,p) reactions were calculated on the basis of the statistical model

  14. Functionalization of Carbon Nanotubes via Electrophilic Substitution Reaction in Polyphosphoric Acid

    Science.gov (United States)

    2006-07-26

    single fiber. The resulting fiber bundles were chopped, collected, and washed with diluted ammonium hydroxide, and then Soxhlet -extracted with water...quantitative yield . Anal. Calcd. for C14.98H8O2: C, 81.78%; H, 3.67%. Found: C, 80.19%; H, 3.61%. 3. Results and Discussion 3.1 Characterization of MWNT...carbon nanomaterials. Furthermore, Soxhlet extractions of MWNT-g-mPEK and VGCNF- g-mPEK with dichloromethane, which is good solvent for mPEK, were

  15. Measurement of carbon-14 in hydrological samples

    International Nuclear Information System (INIS)

    Hussain, S.D.

    1991-11-01

    Thermal neutrons produced by cosmic rays or nuclear weapon tests interact with atmospheric nitrogen resulting in the formation of radiocarbon which, after oxidation into carbon dioxide, follows the natural carbon cycle. The partial pressure of carbon dioxide in the soil is several times that in the atmosphere due to plant root respiration and decay of organic matter. Water absorbs biogenic carbon dioxide while percolating through the unsaturated zone. The carbon content of groundwater is mainly in the form of bicarbonate ions. The extraction of carbon from water sample as barium carbonate is carried out in the field. Benzene is synthesised from the carbonate sample. The activity of radiocarbon in the synthesised benzene is determined by using a liquid scintillation analyzer. Details of sampling procedure, benzene synthesis, counter calibration and treatment of sample data have been given. 7 figs. (author)

  16. Sources of C-14 generation and associated doses; Fuentes de generacion de C-14 y dosis asociadas

    Energy Technology Data Exchange (ETDEWEB)

    Amado, Valeria A; Biaggio, Alfredo L; Canoba, Analia C; Curti, Adriana R. [Autoridad Regulatoria Nuclear, Buenos Aires (Argentina)], E-mail: vamado@cae.arn.gov.ar

    2009-07-01

    C-14 is a radioactive isotope of C with a half-life of 5700 years that decays to N-14 by emission of beta radiation. It is naturally produced in the upper atmosphere by cosmic ray neutrons via the (n;p) reaction over N-14. Anthropogenic C-14 has been generated in the past by atmospheric nuclear weapon tests and it is currently produced during the operation of nuclear reactors. Once released this radionuclide behaves in the biosphere as the standard carbon cycle. Since the beginning of the industrial period the relationship Carbon-14/Stable Carbon has changed continuously, and so the dose incurred by the world population. In this paper the main anthropogenic activities that modified such relationship are presented and analyzed: the Suess effect and the generation of nuclear energy. It is concluded that the current trend of reduction of the total dose due to C-14 will continue during the next decades. Finally it is indicated that in order to prevent an excessive accumulation of this radionuclide in the biosphere, actions should be collectively implemented to be effective. (author) [Spanish] El C-14 es un isotopo radiactivo del C con un periodo de semidesintegracion igual a 5700 anios y que decae a N-14 por emision de radiacion beta. Se produce naturalmente en las altas capas de la atmosfera debido a la reaccion N-14(n,p)C-14 inducida por neutrones lentos de rayos cosmicos. El C-14 antropogenico se genero debido a los ensayos nucleares y actualmente es producido durante la operacion de los reactores nucleares. Una vez liberado se incorpora a la biosfera a traves del ciclo del carbono. A partir de los inicios del periodo industrial la relacion C-14/C-estable, y por ende la dosis debida a C-14 que recibiria la poblacion mundial, ha variado continuamente. El objetivo del presente trabajo es presentar y analizar los distintos factores antropogenicos que modifican la concentracion de C-14, en particular el efecto Suess y la generacion de energia nuclear. Se observa que las

  17. WC Nanocrystals Grown on Vertically Aligned Carbon Nanotubes: An Efficient and Stable Electrocatalyst for Hydrogen Evolution Reaction.

    Science.gov (United States)

    Fan, Xiujun; Zhou, Haiqing; Guo, Xia

    2015-05-26

    Single nanocrystalline tungsten carbide (WC) was first synthesized on the tips of vertically aligned carbon nanotubes (VA-CNTs) with a hot filament chemical vapor deposition (HF-CVD) method through the directly reaction of tungsten metal with carbon source. The VA-CNTs with preservation of vertical structure integrity and alignment play an important role to support the nanocrystalline WC growth. With the high crystallinity, small size, and uniform distribution of WC particles on the carbon support, the formed WC-CNTs material exhibited an excellent catalytic activity for hydrogen evolution reaction (HER), giving a η10 (the overpotential for driving a current of 10 mA cm(-2)) of 145 mV, onset potential of 15 mV, exchange current density@ 300 mV of 117.6 mV and Tafel slope values of 72 mV dec(-1) in acid solution, and η10 of 137 mV, onset potential of 16 mV, exchange current density@ 300 mV of 33.1 mV and Tafel slope values of 106 mV dec(-1) in alkaline media, respectively. Electrochemical stability test further confirms the long-term operation of the catalyst in both acidic and alkaline media.

  18. Cobalt-Embedded Nitrogen-Rich Carbon Nanotubes Efficiently Catalyze Hydrogen Evolution Reaction at All pH Values

    Czech Academy of Sciences Publication Activity Database

    Zou, X.; Huang, X.; Goswami, A.; Silva, R.; Sathe, B. R.; Mikmeková, Eliška; Asefa, T.

    2014-01-01

    Roč. 53, č. 17 (2014), s. 4372-4376 ISSN 1433-7851 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : carbon nanotubes * cobalt nanoparticles * electrocatalysis * hydrogen evolution reaction * water splitting Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 11.261, year: 2014

  19. Characterization of materials eliciting foreign body reaction in stapled human gastrointestinal anastomoses.

    Science.gov (United States)

    Lim, C B B; Goldin, R D; Darzi, A; Hanna, G B

    2008-08-01

    Staples are made of titanium, which elicits minimal tissue reaction. The authors have encountered foreign body reaction associated with stapled human gastrointestinal anastomoses, although the literature has no reports of this. The aim of this study was to identify the refractile foreign materials causing this reaction. Histological sections were taken from 14 gastrointestinal specimens from patients with a history of a stapled anastomosis within the specimen excised. These were reviewed by light and polarization microscopy. Scanning electron microscopy and energy dispersive X-ray analysis were carried out on these sections, staples and stapler cartridges used for gastrointestinal surgery. Foreign bodies rich in fluorine were found in three patients, and those rich in carbon in 12. Other elements identified included oxygen, calcium, sodium, potassium, magnesium, aluminium and silicon. One specimen was found to contain titanium with no surrounding foreign body reaction. Stapler cartridges contained carbon, oxygen, fluorine, calcium, sodium, potassium, magnesium, aluminium, silicon and traces of titanium. Staples were composed of pure titanium with some fibrous material on the surface containing elements found in stapler cartridges. The presence of foreign body reaction was confirmed in stapled human gastrointestinal anastomoses. The source of refractile materials eliciting this reaction was the stapler cartridges. (c) 2008 British Journal of Surgery Society Ltd. Published by John Wiley & Sons, Ltd.

  20. Carbon-14 in the biosphere: Modeling and supporting research for the Canadian Nuclear Fuel Waste Management program

    International Nuclear Information System (INIS)

    Sheppard, S.C.; Amiro, B.D.; Sheppard, M.I.; Stephenson, M.; Zach, R.; Bird, G.A.

    1994-01-01

    Carbon-14 stands apart from most of the radionuclides present in nuclear fuel waste for several reasons. It has a relatively long radiological half-life and low retardation by granitic geological media so that 14 C is superceded only by 36 Cl and 129 I in potential release to the biosphere from unprocessed used fuel. In the biosphere, its importance continues because it is readily incorporated into the carbon compounds of life. Much of the behavior of 14 C in the biosphere can be conceptualized as isotopic exchange, where the 14 C mixes with 12 C from the biosphere. However, because of lack of data, the authors model the behavior of 14 C only partly as isotopic exchange, with most of the calculations relying on compartment transfer models. The authors experimental work has shown that soil-to-plant transfer may be dominated by the soil-atmosphere-plant pathway. Gaseous loss of 14 C from soils and lakes is significant. However, recalcitrant forms may persist in soils and sediments for long time periods. The impact of these forms is expected to be relatively low because their bioavailability is correspondingly low. Future research should be directed to support full modeling of 14 C as a series of isotopic exchange processes

  1. Facilitated Oxygen Chemisorption in Heteroatom-Doped Carbon for Improved Oxygen Reaction Activity in All-Solid-State Zinc-Air Batteries.

    Science.gov (United States)

    Liu, Sisi; Wang, Mengfan; Sun, Xinyi; Xu, Na; Liu, Jie; Wang, Yuzhou; Qian, Tao; Yan, Chenglin

    2018-01-01

    Driven by the intensified demand for energy storage systems with high-power density and safety, all-solid-state zinc-air batteries have drawn extensive attention. However, the electrocatalyst active sites and the underlying mechanisms occurring in zinc-air batteries remain confusing due to the lack of in situ analytical techniques. In this work, the in situ observations, including X-ray diffraction and Raman spectroscopy, of a heteroatom-doped carbon air cathode are reported, in which the chemisorption of oxygen molecules and oxygen-containing intermediates on the carbon material can be facilitated by the electron deficiency caused by heteroatom doping, thus improving the oxygen reaction activity for zinc-air batteries. As expected, solid-state zinc-air batteries equipped with such air cathodes exhibit superior reversibility and durability. This work thus provides a profound understanding of the reaction principles of heteroatom-doped carbon materials in zinc-air batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Brown carbon formation from ketoaldehydes of biogenic monoterpenes

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Tran B.; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey

    2013-04-10

    Sources and chemical composition of the brown carbon are poorly understood, and even less is known about the mechanisms of its atmospheric transformations. This work presents molecular level investigation of the reactive compound ketolimononaldehyde (KLA, C9H14O3), a second generation ozonolysis product of limonene (C10H16), as a potent brown carbon precursor in secondary organic aerosol (SOA) through its reactions with reduced nitrogen compounds such as ammonium ion (NH4+), ammonia, and amino acids. The reactions of synthesized and purified KLA with NH4+ and glycine resulted in the formation of chromophores nearly identical in spectral properties and formation rates to those found in similarly-aged limonene/O3 SOA. Similar chemical reaction processes of limononaldehyde (LA, C10H16O2) and pinonaldehyde (PA, C10H16O2), the first-generation ozonolysis products in the oxidation of limonene and α-pinene, respectively, were also studied, but the resulting products did not exhibit light absorption properties of brown carbon, suggesting that the unique molecular structure of KLA produces visible-light-absorbing compounds. The KLA/NH4+ and KLA/GLY reactions produce water-soluble, hydrolysis-resilient chromophores with high mass absorption coefficients (MAC = 2000-4000 cm2 g-1) at λ ~ 500 nm, precisely at the maximum of the solar emission spectrum. Liquid chromatography was used to isolate the light-absorbing fraction, and UV-Vis, FTIR, NMR and high-resolution mass spectrometry (HR-MS) techniques were used to investigate the structures and chemical properties of the light-absorbing compounds. The KLA browning reaction generates a diverse mixture of light-absorbing compounds, with the majority of the observable products containing 1-4 units of KLA and 0-2 nitrogen atoms. Based on the HR-MS product distribution, conjugated aldol condensates, secondary imines (Schiff bases), and N-heterocycles like pyrroles may contribute in varying degree to the light-absorbing properties

  3. Tests of intestinal absorption using carbon-14-labeled isotopes

    International Nuclear Information System (INIS)

    Fromm, H.; Sarva, R.P.

    1983-01-01

    Beta radiation-emitting isotopes are being used increasingly in diagnostic gastroenterology for the study of absorption. The major reason for the popularity of radioisotopes is that their use is convenient for patient and physician alike. They often obviate naso- or orointestinal intubation and the collection, storage, and analysis of stool. The radioactivity used for the studies of digestive and absorptive processes is small and is not hazardous. In spite of the safety of the radiolabeled compounds, their use is restricted in children and pregnant women. Therefore, for most tests, promising alternative methods that make use of the stable isotope of carbon, /sup 13/C, instead of the radioactive /sup 14/C have been developed. The analysis of stable isotopes requires more sophisticated technology than that of radioactive compounds, however. Only a few centers presently are equipped and staffed to analyze stable isotopes on a routine basis. In contrast, the analysis of radioactive isotopes has become a routine procedure in almost ever major laboratory. The last decade has brought the development of several radioactive absorption tests. The clinically most useful tests relate to the study of bile acid, fat, lactose, and xylose absorption. All of these tests utilize the excretion rate of /sup 14/CO/sub 2/ in breath after ingestion of a /sup 14/C-labeled compound as a measure of the rate of its absorption or malabsorption

  4. In situ synthesis of N and Cu functionalized mesoporous FDU-14 resins and carbons for electrochemical hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Kong, AiGuo; Wang, WenJuan; Yang, Fan; Ding, HanMing; Shan, YongKui [Department of Chemistry, East China Normal University, ShangHai 200062 (China)

    2010-07-15

    N and Cu cooperatively functionalized mesoporous resin and carbon materials with bicontinuous cubic structure (FDU-14) were obtained by a novel synthesis method. In this method, block copolymers were used as the templates as well as the precursors for the preparation of these modifying mesoporous materials. The CuC{sub 2}O{sub 4} in the channels of mesoporous FDU-14 resins was gotten by in situ oxidation of the templates in a catalytic redox system containing Cu{sup 2+}, Al{sup 3+}, NO{sub 3}{sup -}, PO{sub 4}{sup 3-}, SO{sub 4}{sup 2-} ions. Simultaneously, the phenol-formaldehyde resin frameworks were in situ functionalized by the amine group resulting from the reduction of NO{sub 3}{sup -}, leading to the formation of N and CuC{sub 2}O{sub 4} modified mesoporous FDU-14 resin materials. Its pyrolysis at the different temperatures resulted in the production of N and Cu cooperatively functionalized mesoporous FDU-14 resin and carbon materials. The structure and composition of these materials were characterized by the X-ray power diffraction, transmission electron microscopy, N{sub 2} adsorption-desorption analysis, X-ray photoelectron spectroscopy, infrared spectroscopy, thermogravimetry analysis, and inductive coupled plasma emission spectroscopy. The electrochemical measurement indicated that N and Cu cooperatively functionalized mesoporous FDU-14 carbon materials possessed the enhanced electrochemical hydrogen storage performance. (author)

  5. Proton, deuteron and triton emission in 14N + Ag reaction at 52 MeV/nucleon

    International Nuclear Information System (INIS)

    Aleksakhin, V.Yu.; Gostkin, M.I.; Gudima, K.K.

    1998-01-01

    Inclusive energy spectra of p, d, t and multiplicities from the reaction 14 N(Ag, X), X = p, d, t at E/A = 52 MeV were measured. The experimental data are compared with Dubna version of the Cascade Model (DCM) and are analyzed in the framework of the moving source model

  6. Understanding the carbon cycle in a Late Quaternary-age limestone aquifer system using radiocarbon of dissolved inorganic and organic carbon

    Science.gov (United States)

    Bryan, Eliza; Meredith, Karina T.; Baker, Andy; Andersen, Martin S.; Post, Vincent E. A.

    2017-04-01

    Estimating groundwater residence time is critical for our understanding of hydrogeological systems, for groundwater resource assessments and for the sustainable management of groundwater resources. Due to its capacity to date groundwater up to 30 thousand years old, as well as the ubiquitous nature of dissolved carbon (as organic and inorganic forms) in groundwater, 14C is the most widely used radiogenic dating technique in regional aquifers. However, the geochemistry of carbon in groundwater systems includes interaction with the atmosphere, biosphere and geosphere, which results in multiple sources and sinks of carbon that vary in time and space. Identifying these sources of carbon and processes relating to its release or removal is important for understanding the evolution of the groundwater and essential for residence time calculations. This study investigates both the inorganic and organic facets of the carbon cycle in groundwaters throughout a freshwater lens and mixing zone of a carbonate island aquifer and identifies the sources of carbon that contribute to the groundwater system. Groundwater samples were collected from shallow (5-20 m) groundwater wells on a small carbonate Island in Western Australia in September 2014 and analysed for major and minor ions, stable water isotopes (SWIs: δ18O, δ2H), 3H, 14C and 13C carbon isotope values of both DIC and DOC, and 3H. The composition of groundwater DOC was investigated by Liquid Chromatography-Organic Carbon Detection (LC-OCD) analysis. The presence of 3H (0.12 to 1.35 TU) in most samples indicates that groundwaters on the Island are modern, however the measured 14CDIC values (8.4 to 97.2 pmc) suggest that most samples are significantly older due to carbonate dissolution and recrystallisation reactions that are identified and quantified in this work. 14CDOC values (46.6 to 105.6 pMC) were higher than 14CDIC values and were well correlated with 3H values, however deeper groundwaters had lower 14CDOC values than

  7. Deexcitation processes in nuclear reactions. Progress report, August 1, 1983-July 31, 1984

    International Nuclear Information System (INIS)

    Porile, N.T.

    1984-01-01

    Research performed on the following studies during the past year is described: fragment emission in reactions of 60 to 350 GeV protons with rare gas targets; study of fragment emission from rare gas targets by protons in the near-threshold regime, 1 to 28 GeV; differential ranges, angular distributions, and thick-target recoil properties of products from the interaction of 400 GeV protons with nuclear targets; recoil studies of pion-induced reactions on carbon and gold; radiochemical search for anomalons. 14 references

  8. Effect of carbons (G and CFs), TM (Ni, Fe and Al) and oxides (Nb_2O_5 and V_2O_5) on hydrogen generation from ball milled Mg-based hydrolysis reaction for fuel cell

    International Nuclear Information System (INIS)

    Awad, A.S.; El-Asmar, E.; Tayeh, T.; Mauvy, F.; Nakhl, M.; Zakhour, M.; Bobet, J.-L.

    2016-01-01

    This paper dedicated to investigation the effect of carbons (graphite and carbon fibers), transition metals (TM = Ni, Fe and Al) and oxides (Nb_2O_5 and V_2O_5) on Mg–H hydrolysis reaction in aqueous media (3.5 wt% NaCl). Mg – 10 wt% X (X = C, TM and oxides) mixtures were prepared by mechanical milling (1, 3 and 5 h). Mg – 10 wt% G mixtures show the best hydrolysis performance (95% of theoretical hydrogen generation yield in almost 3 min) in comparison to Mg – oxide and Mg – TM mixtures. In addition to the presence of micro-galvanic cells, particle size, MgH_2 content, density defects, fractures and cracking have an important influence on the hydrolysis reaction. Synergetic effect of carbons and transition metals has been studied for Mg – 5 wt% G – 5 wt% Ni mixture. Activation energies were calculated using Avrami–Erofeev model. An activation energy of 14.34 kJ/mol was found for Mg/G/Ni mixture which demonstrates the best hydrolysis behavior (95% of theoretical hydrogen generation yield within 2 min). Hydrogen generated from Mg–H hydrolysis reaction was fed directly to a single Proton Exchange Membrane Fuel Cell (PEMFC). At 0.15 A, the cell voltage exhibited a stable value of approximately 0.52 V for roughly 35 min. - Highlights: • The presence of carbon and transition metals enhance the hydrolysis reaction of magnesium. • The synergetic effect of graphite and Ni leads to the best hydrolysis kinetics. • Cl"− ions replace OH"− ions to destabilize the Mg(OH)_2 passivation layer. • Production of electricity is feasible from hydrogen generated from Mg.

  9. Chemical equilibrium of glycerol carbonate synthesis from glycerol

    International Nuclear Information System (INIS)

    Li Jiabo; Wang Tao

    2011-01-01

    Research highlights: → Transesterification of glycerol with cyclic carbonates or alkyl carbonates is thermodynamically favourable for the preparation of glycerol carbonate from glycerol. → The reaction of glycerol and carbon dioxide is thermodynamically limited. → High temperature and low pressure is favourable to the reaction of glycerol and urea. → Increasing temperature can increase the chemical equilibrium constant for the reaction of glycerol and dimethyl carbonate. → For the reaction of glycerol and ethylene carbonate, increasing temperature can decrease the chemical equilibrium constant. - Abstract: In this paper, the chemical equilibrium for the glycerol carbonate preparation from glycerol was investigated. The chemical equilibrium constants were calculated for the reactions to produce glycerol carbonate from glycerol. The theoretical calculation was compared with the experimental results for the transesterification of glycerol with dimethyl carbonate. Transesterification of glycerol with cyclic carbonates or alkyl carbonates is thermodynamically favourable for producing glycerol carbonate from glycerol according to the equilibrium constant. Increasing temperature can increase the chemical equilibrium constant for the reaction of glycerol with dimethyl carbonate. For the reaction of glycerol with ethylene carbonate, increasing temperature can decrease the chemical equilibrium constant. The reaction of glycerol with carbon dioxide is thermodynamically limited. High temperature and low pressure are favourable to the reaction of glycerol and urea.

  10. Resonant elastic scattering, inelastic scattering and astrophysical reactions; Diffusion elastique resonante, diffusion inelastique et reactions astrophysiques

    Energy Technology Data Exchange (ETDEWEB)

    De Oliveira Santos, F. [Grand Accelerateur National d' Ions Lourds, UMR 6415, 14 - Caen (France)

    2007-07-01

    Nuclear reactions can occur at low kinetic energy. Low-energy reactions are characterized by a strong dependence on the structure of the compound nucleus. It turns out that it is possible to study the nuclear structure by measuring these reactions. In this course, three types of reactions are treated: Resonant Elastic Scattering (such as N{sup 14}(p,p)N{sup 14}), Inelastic Scattering (such as N{sup 14}(p,p')N{sup 14*}) and Astrophysical reactions (such as N{sup 14}(p,{gamma})O{sup 15}). (author)

  11. Carbon 14 dating method

    International Nuclear Information System (INIS)

    Fortin, Ph.

    2000-01-01

    This document gives a first introduction to 14 C dating as it is put into practice at the radiocarbon dating centre of Claude-Bernard university (Lyon-1 univ., Villeurbanne, France): general considerations and recalls of nuclear physics; the 14 C dating method; the initial standard activity; the isotopic fractioning; the measurement of samples activity; the liquid-scintillation counters; the calibration and correction of 14 C dates; the preparation of samples; the benzene synthesis; the current applications of the method. (J.S.)

  12. Mace-like hierarchical MoS2/NiCo2S4 composites supported by carbon fiber paper: An efficient electrocatalyst for the hydrogen evolution reaction

    Science.gov (United States)

    Sun, Lan; Wang, Tao; Zhang, Long; Sun, Yunjin; Xu, Kewei; Dai, Zhengfei; Ma, Fei

    2018-02-01

    The rational design and preparation of earth-abundant, stable and efficient electrocatalysts for hydrogen production is currently the subject in extensive scientific and technological researches toward the future of a clean-energy society. Herein, a mace-like MoS2/NiCo2S4 hierarchical structure is designed and synthesized on carbon fiber paper via a facile hydrothermal method, and evaluated as electrocatalyst for hydrogen evolution reaction. In the MoS2/NiCo2S4/carbon fiber paper hierarchical structures, MoS2 nanosheets are dispersively distributed on the surface of NiCo2S4 nanowires, which provides an enlarged surface area, abundant interfaces and catalytic active sites. As for hydrogen evolution reaction, such MoS2/NiCo2S4/carbon fiber paper heterostructures give rise to a hydrogen evolution reaction catalytic current density of 10 mA cm-2 with a lower overpotential of 139 mV and a smaller Tafel slope of 37 mV·dec-1 than those of MoS2/carbon fiber paper and NiCo2S4/carbon fiber paper counterparts, exhibiting a prominent electrocatalytic performance. Moreover, the electrocatalytic properties change little after 5000 CV cycles and continual electrolysis for 12 h without obvious decay, respectively, demonstrating high durability and stability. The excellent hydrogen evolution reaction performances endow the hierarchical configuration MoS2/NiCo2S4/carbon fiber paper with promising alternative in HER and other related renewable energy fields.

  13. A novel reaction catalysed by active carbons production of dichloromethane from phosgene and formaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, T A; Stacey, M H

    1984-08-01

    A variety of Activated charcoals have been found to catalyse a reaction between phosgene and formaldehyde. In a continuous flow fluidized bed reactor, the reaction rate reaches a broad maximum near 170/sup 0/C where the selectivity is consistent with the stoichiometry. The reaction proceeds via a strongly adsorbed intermediate which has been identified as chloromethyl chloroformate. This ester is an adduct of formaldehyde and phosgen and forms rapidly above 100/sup 0/C in co-adsorption/desorption experiments. It decomposes rapidly 170/sup 0/C without significant desorption of the intact molecule to give the observed products dichloromethane and carbon dioxide. Under steady-state conditions the rate-determining step is the formation of this ester so that it is normally only present on the surface at low coverages; hence it is not observable in the gas phase. The catalysis is probably due to the presence of polar acid or base sites on the surface of the activated charcoals.

  14. Determination of gluconeogenesis in vivo with 14C-labeled substrates

    International Nuclear Information System (INIS)

    Katz, J.

    1985-01-01

    A mitochondrial model of gluconeogenesis and the tricarboxylic acid cycle, where pyruvate is metabolized via pyruvate carboxylase and pyruvate dehydrogenase, and pyruvate kinase is examined. The effect of the rate of tricarboxylic acid flux and the rates of the three reactions of pyruvate metabolism on the labeling patterns from [ 14 C]pyruvate and [ 14 C]acetate are analyzed. Expressions describing the specific radioactivities and 14 C distribution in glucose as a function of these rates are derived. Specific radioactivities and isotopic patterns depend markedly on the ratio of the rates of pyruvate carboxylation and decarboxylation to the rate of citrate synthesis, but the effect of phosphoenolpyruvate hydrolysis is minor. The effects of these rates on 1) specific radioactivity of phosphoenolpyruvate, 2) labeling pattern in glucose, and 3) contribution of pyruvate, acetyl-coenzyme A, and CO 2 to glucose carbon are illustrated. To determine the contribution of lactate or alanine to gluconeogenesis, experiments with two compounds labeled in different carbons are required. Methods in current use to correct for the dilution of 14 C in gluconeogenesis from [ 14 C]pyruvate are shown to be erroneous. The experimental design and techniques to determine gluconeogenesis from 14 C-labeled precursors are presented and illustrated with numerical examples

  15. Reaction kinetics, reaction products and compressive strength of ternary activators activated slag designed by Taguchi method

    NARCIS (Netherlands)

    Yuan, B.; Yu, Q.L.; Brouwers, H.J.H.

    2015-01-01

    This study investigates the reaction kinetics, the reaction products and the compressive strength of slag activated by ternary activators, namely waterglass, sodium hydroxide and sodium carbonate. Nine mixtures are designed by the Taguchi method considering the factors of sodium carbonate content

  16. The chemistry of the carbothermal synthesis of β-SiC : reaction mechanism, reaction rate and grain growth

    NARCIS (Netherlands)

    van Dijen, F.K.; Metselaar, R.

    1991-01-01

    Evidence is given that in the present case the reaction mechanism of ß-SiC formation from silica and carbon is a direct solid-state reaction in which silica migrates over the silicon carbide surface to the carbon. A high value (440 kJ/mol) of activation energy is obtained for this reaction. This

  17. Carbon isotope exchange between gaseous CO2 and thin solution films: Artificial cave experiments and a complete diffusion-reaction model

    Science.gov (United States)

    Hansen, Maximilian; Scholz, Denis; Froeschmann, Marie-Louise; Schöne, Bernd R.; Spötl, Christoph

    2017-08-01

    Speleothem stable carbon isotope (δ13C) records provide important paleoclimate and paleo-environmental information. However, the interpretation of these records in terms of past climate or environmental change remains challenging because of various processes affecting the δ13C signals. A process that has only been sparsely discussed so far is carbon isotope exchange between the gaseous CO2 of the cave atmosphere and the dissolved inorganic carbon (DIC) contained in the thin solution film on the speleothem, which may be particularly important for strongly ventilated caves. Here we present a novel, complete reaction diffusion model describing carbon isotope exchange between gaseous CO2 and the DIC in thin solution films. The model considers all parameters affecting carbon isotope exchange, such as diffusion into, out of and within the film, the chemical reactions occurring within the film as well as the dependence of diffusion and the reaction rates on isotopic mass and temperature. To verify the model, we conducted laboratory experiments under completely controlled, cave-analogue conditions at three different temperatures (10, 20, 30 °C). We exposed thin (≈0.1 mm) films of a NaHCO3 solution with four different concentrations (1, 2, 5 and 10 mmol/l, respectively) to a nitrogen atmosphere containing a specific amount of CO2 (1000 and 3000 ppmV). The experimentally observed temporal evolution of the pH and δ13C values of the DIC is in good agreement with the model predictions. The carbon isotope exchange times in our experiments range from ca. 200 to ca. 16,000 s and strongly depend on temperature, film thickness, atmospheric pCO2 and the concentration of DIC. For low pCO2 (between 500 and 1000 ppmV, as for strongly ventilated caves), our time constants are substantially lower than those derived in a previous study, suggesting a potentially stronger influence of carbon isotope exchange on speleothem δ13C values. However, this process should only have an

  18. Measurements of the interaction cross-sections for 14Be and 14,15B as projectiles with a new scheme at RIBLL

    International Nuclear Information System (INIS)

    Ozawa, A.; Cai, Y.Z.; Chen, Z.Q.; Chiba, M.; Fang, D.Q.; Guo, Z.G.; Izumikawa, T.; Li, J.X.; Mao, R.S.; Ohnishi, T.; Shen, W.Q.; Suda, T.; Sun, Z.Y.; Suzuki, T.; Tanihata, I.; Tian, W.D.; Wang, J.S.; Wang, M.; Wei, Y.B.; Xiao, G.Q.; Xiao, Z.G.; Yamaguchi, T.; Yamaguchi, Y.; Yoshida, A.; Zhan, W.L.; Zhang, H.Y.; Zheng, T.; Zhong, C.

    2006-01-01

    We have measured the interaction cross-sections (σ I ) for light neutron-rich nuclei ( 14 Be, 14,15 B) at ∼50A MeV at the Radioactive Ion Beam Line in Lanzhou (RIBLL) in IMP with a new scheme. In this scheme, a carbon reaction target was installed at the intermediate focusing point at RIBLL. This scheme allowed us to identify particles before and after the reaction target unambiguously. However, this scheme might suffer a large loss of transmission efficiency in the second half of RIBLL. We checked this effect by changing the emittance of the RI beams. The results showed that a correction of the transmission efficiency is needed to deduce σ I . We performed a Monte Carlo type simulation and tried to deduce σ I for the above nuclei. Finally, we obtained reasonable σ I although their error bars were fairly large. The results were compared with calculations by an energy-dependent semi-empirical formula

  19. Radioactivity measurement of barium carbonate [14C] by liquid scintillation counting

    International Nuclear Information System (INIS)

    Kobayashi, Katsutoshi; Hoizumi, Kiyoshi

    1985-03-01

    Two methods of sample preparation for the measurement of specific activity of BaCO 3 [ 14 C] by external standard method in liquid scintillation counting were studied. BaCO 3 [ 14 C] was decomposed by perchloric acid solution and generated CO 2 [ 14 C] was absorbed by ethylene glycol monomethyl ether solution of monoethanolamine as the method 1 or aqueous sodium hydroxide as the method 2. In order to prepare the sample solution of adequate radioactivity concentration, these carbonate solutions by the methods 1 and 2 were diluted with the suitable organic solvent and distilled water respectively. One tenth millilitre of these sample solutions was added into 10 ml of PPO-toluene scintillator containing 0.1 ml of monoethanolamine in a counting vial and homogeneously dissolved with ethyl alcohol. The results of the radioactivity measurement of BaCO 3 [ 14 C] based on the different method agreed within 5 % and the counting rate was found to be stable for as long as 7 deays or more. Both methods of preparation are suitable for the routine measurement because of their simplicity and feasibility. In the case of method 2, the liquid radioactive waste is almost inorganic solution and recovery in the form of BaCO 3 [ 14 C] is easily performed, so that this method is very advantageous from the view point of the radioactive waste treatement. (author)

  20. S-factor of 14 N (α, γ)18 F reaction at low-energies

    Science.gov (United States)

    Khalili, H.

    2018-06-01

    The astrophysical S-factor of the 14 N (α, γ)18 F reaction has been studied at range of bombarding energy 1-1.30 MeV. The 14 N (α, γ)18 F process is important in low energy astrophysics so that a possible source of energy in massive stars which have spent their hydrogen cycle. Using the Wood-saxon potential model, we have been calculated non resonances the astrophysical S-factors for the E 2 transition and our results for Eα = 0.0 MeV is S ≈ 0.5 MeV.b where from experimental is measured to Eα = 0.0 is S ≈ o . 7 MeV.b (Couch et al., 1971) that in comparison with our data good agreement is achieved for the astrophysical S-factor of this process.

  1. Application of bis-(L zinc prolinate (II on the synthesis reactions of some 1,4-dyhidropyridines

    Directory of Open Access Journals (Sweden)

    Cristiane R. Winck

    2012-06-01

    Full Text Available The 1,4-Dyhidropyridine (DHP is a class of substances that presents a wide spectrum of biological activities. Among these applications, it can be applied on the treatment of cardiovascular diseases e.g. hypertension. This project proposes the synthesis of some DHPs through multicomponent reactions (one pot using bis-(L zinc prolinate (II as catalyst. Initially the synthesis of the precursor enamine was held using the catalyst and later, there was an addition of cinnmaldehyde to the same reaction media. Such procedure resulted on the formation of the compound of interest (Figure 1. Another important factor is that the ultrasound was used to reach the results, which makes such reactions highly convergent and coherent with the principles of the Green Chemistry.

  2. Dating of archaeological objects using Carbon-14 facilities

    International Nuclear Information System (INIS)

    Kamisah Hj Alias; Noraishah Othman; Nasasni Nasrol

    2004-01-01

    Dating is the key to organising all archaeological evidence. Furthermore, the development of dating methods, whether traditional or scientific, illustrates the ingenuity and lateral thinking that make archaeological problem-solving such a fascinating exercise. The development of MINT radiocarbon dating procedures is reviewed. Basic principles and counting techniques are discussed. A sample is converted by chemical methods into a suitable form, such as carbon dioxide followed by the acetylene gas, and the benzene end-product is placed inside a proportional counter to measure the radioactivity of 14 C. Not until some years ago did absolute dates by radiocarbon dating become a reality for prehistoric archaeology in Malaysia where thermoluminescence and fission-track dating had begun to provide a locally applicable dating method some decades earlier. Applications of radiocarbon dating procedures in the fields of archaeology are also discussed. (Author)

  3. Enantioselective organocatalyzed Oxa-Michael-Aldol cascade reactions: Construction of chiral 4H-chromenes with a trifluoromethylated tetrasubstituted carbon stereocenter

    KAUST Repository

    Zhang, Jing; Ajitha, Manjaly John; He, Lin; Liu, Kai; Dai, Bin; Huang, Kuo-Wei

    2015-01-01

    The first organocatalytic asymmetric synthesis of 4H-chromenes bearing a trifluoromethylated tetrasubstituted carbon center is presented. Chiral secondary amines promote the oxa-Michael-aldol cascade reaction between alkynals and 2

  4. Application of Alkenone 14C-Based chronostratigraphy in carbonate barren sediments on the Peru Margin.

    Science.gov (United States)

    Higginson, M. J.; Altabet, M. A.; Herbert, T. D.

    2003-04-01

    Despite the availability of high-quality sediment cores in key locations, little paleoclimatic information exists for the Peru margin largely because poor carbonate preservation severely restricts the use of traditional carbonate-based proxies for stratigraphy, dating, and paleo-environmental reconstruction. Many sites also include hiatuses produced by the variable influence of undercurrents on sediment accumulation. To overcome these difficulties, we have developed (in collaboration with T. Eglinton, WHOI) a laboratory facility to successfully extract and purify haptophyte-derived alkenones for compound specific 14C AMS dating (modified from OHKOUCHI et al., 2002). This avoids potential problems with dating bulk organic carbon which we assume, even in an upwelling environment as highly productive as the Peru margin, is not a priori solely of marine origin. In a recently collected, mid-Peru Margin core (ODP Leg 201 Site 1228D), comparison of our alkenone 14C dates with bulk sediment organic carbon dates and known stratigraphic markers produces a very well constrained, curvilinear age-depth relationship for at least the last 14 Kyr. A discrete ash layer at Site 1228D with an adjacent alkenone 14C age of 3890 ± 350 yr, is within error identical to the 14C age of a prominent ash layer (3800 ± 50 yr) found west of the large Peruvian El Misti volcano (16^o18'S, 71^o24'W). In summary, these results show that the Peru margin alkenones are autochthonous (i.e. not from an older, distant source) and provide sufficient dating precision to permit, for the first time, high-resolution paleoceanographic studies in this highly important marine province. Based upon this new chronology, synchronous changes in alkenone-derived SST estimates in two of our independently-dated records are the first to record at high-resolution (a) a large LGM-Holocene SST range in the Tropics (up to 7.8 ^oC during brief events in this upwelling location); and (b) sharp coolings (4 ^oC) consistent with

  5. The 65 keV resonance in the O-17(p,alpha)N-14 thermonuclear reaction

    Czech Academy of Sciences Publication Activity Database

    Sergi, M. L.; Spitaleri, C.; Coc, A.; Mukhamedzhanov, A. M.; Burjan, Václav; Gulino, M.; Hammache, F.; Hons, Zdeněk; Irgaziev, B.; Kiss, G.G.; Kroha, Václav; La Cognata, M.; Lamia, L.; Pizzone, R. G.; de Sereville, N.; Somorjai, E.

    2010-01-01

    Roč. 834, 1-4 (2010), 676C-678C ISSN 0375-9474. [10th International Conference on Nucleus-Nucleus Collisions (NN2009). Beijing, 16.08.2009-21.08.2009] Institutional research plan: CEZ:AV0Z10480505 Keywords : REACTION-RATES * ENERGIES Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.986, year: 2010

  6. Catalytic-site mapping of pyruvate formate lyase. Hypophosphite reaction on the acetyl-enzyme intermediate affords carbon-phosphorus bond synthesis (1-hydroxyethylphosphonate).

    Science.gov (United States)

    Plaga, W; Frank, R; Knappe, J

    1988-12-15

    Pyruvate formate-lyase of Escherichia coli cells, a homodimeric protein of 2 x 85 kDa, is distinguished by the property of containing a stable organic free radical (g = 2.0037) in its resting state. The enzyme (E-SH) achieves pyruvate conversion to acetyl-CoA via two distinct half-reactions (E-SH + pyruvate in equilibrium E-S-acetyl + formate; E-S-acetyl + CoA in equilibrium E-SH + acetyl-CoA), the first of which has been proposed to involve reversible homolytic carbon-carbon bond cleavage [J. Knappe et al. (1984) Proc. Natl Acad. Sci. USA 81, 1332-1335]. Present studies identified Cys-419 as the covalent-catalytic cysteinyl residue via CNBr fragmentation of E-S-[14C]acetyl and radio-sequencing of the isolated peptide CB-Ac (amino acid residues 406-423). Reaction of the formate analogue hypophosphite with E-S-acetyl was investigated and found to produce 1-hydroxyethylphosphonate with a thioester linkage to the adjacent Cys-418. The structure was determined from the chymotryptic peptide CH-P (amino acid residues 415-425), using 31P-NMR spectroscopy (delta = 44 ppm) and by chemical characterisation through degradation into 1-hydroxyethylphosphonate with phosphodiesterase or bromine. This novel P-C-bond synthesis involves the enzyme-based free radical and is proposed to resemble the physiological C-C-bond synthesis (pyruvate production) from formate and E-S-acetyl. These findings are interpreted as proof of a radical mechanism for the action of pyruvate formate-lyase. The central Cys-418/Cys-419 pair of the active site shows a distinctive thiolate property even in the inactive (nonradical) form of the enzyme, as determined using an iodoacetate probe.

  7. THM determination of the 65 keV resonance strength intervening in the {sup 17}O(p,α){sup 14}N reaction rate

    Energy Technology Data Exchange (ETDEWEB)

    Sergi, M. L.; La Cognata, M.; Pizzone, R. G. [INFN-Laboratori Nazionali del Sud, Catania (Italy); Spitaleri, C.; Cherubini, S.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S. [Università di Catania, Catania, Italy and INFN-Laboratori Nazionali del Sud, Catania (Italy); Burjan, S. V.; Hons, Z.; Kroha, V. [Nuclear Physics Institute of ASCR Rez near Prague (Czech Republic); Coc, A. [CSNSM, UMR 8609, CNRS/IN2P3 and Universitè Paris Sud 11, Bâtiment 104, 91405 Orsay Campus (France); Gulino, M.; Tumino, A. [Università di Catania, Catania, Italy and INFN-Laboratori Nazionali del Sud, Catania, Italy and Universitá Kore di Enna, Enna (Italy); Hammache, F. [IPN, IN2P3-CNRS et Université de Paris-Sud 91406 Orsay Cedex (France); Irgaziev, B. [GIK Institute of Engineering Sciences and Technology Topi District Swabi NWFP (Pakistan); Kiss, G. G.; Somorjai, E. [ATOMKI, Debrecen (Hungary); Lamia, L. [Università di Catania, Catania (Italy); Mukhamedzhanov, A. [Cyclotron Institute,Texas A and M University College Station (United States); and others

    2015-02-24

    The {sup 17}O(p,α){sup 14}N reaction is of paramount importance for the nucleosynthesis in a number of stellar sites, including red giants (RG), asymptotic giant branch (AGB) stars, massive stars and classical novae. We report on the indirect study of the {sup 17}O(p,α){sup 14}N reaction via the Trojan Horse Method by applying the approach recently developed for extracting the resonance strength of the narrow resonance at E{sub c.m.}{sup R} = 65 keV (E{sub X} =5.673 MeV). The strength of the 65 keV resonance in the {sup 17}O(p,α){sup 14}N reaction, measured by means of the THM, has been used to renormalize the corresponding resonance strength in the {sup 17}O+p radiative capture channel.

  8. Application of Monte Carlo Methods to Perform Uncertainty and Sensitivity Analysis on Inverse Water-Rock Reactions with NETPATH

    Energy Technology Data Exchange (ETDEWEB)

    McGraw, David [Desert Research Inst. (DRI), Reno, NV (United States); Hershey, Ronald L. [Desert Research Inst. (DRI), Reno, NV (United States)

    2016-06-01

    Methods were developed to quantify uncertainty and sensitivity for NETPATH inverse water-rock reaction models and to calculate dissolved inorganic carbon, carbon-14 groundwater travel times. The NETPATH models calculate upgradient groundwater mixing fractions that produce the downgradient target water chemistry along with amounts of mineral phases that are either precipitated or dissolved. Carbon-14 groundwater travel times are calculated based on the upgradient source-water fractions, carbonate mineral phase changes, and isotopic fractionation. Custom scripts and statistical code were developed for this study to facilitate modifying input parameters, running the NETPATH simulations, extracting relevant output, postprocessing the results, and producing graphs and summaries. The scripts read userspecified values for each constituent’s coefficient of variation, distribution, sensitivity parameter, maximum dissolution or precipitation amounts, and number of Monte Carlo simulations. Monte Carlo methods for analysis of parametric uncertainty assign a distribution to each uncertain variable, sample from those distributions, and evaluate the ensemble output. The uncertainty in input affected the variability of outputs, namely source-water mixing, phase dissolution and precipitation amounts, and carbon-14 travel time. Although NETPATH may provide models that satisfy the constraints, it is up to the geochemist to determine whether the results are geochemically reasonable. Two example water-rock reaction models from previous geochemical reports were considered in this study. Sensitivity analysis was also conducted to evaluate the change in output caused by a small change in input, one constituent at a time. Results were standardized to allow for sensitivity comparisons across all inputs, which results in a representative value for each scenario. The approach yielded insight into the uncertainty in water-rock reactions and travel times. For example, there was little

  9. [Organic carbon and carbon mineralization characteristics in nature forestry soil].

    Science.gov (United States)

    Yang, Tian; Dai, Wei; An, Xiao-Juan; Pang, Huan; Zou, Jian-Mei; Zhang, Rui

    2014-03-01

    Through field investigation and indoor analysis, the organic carbon content and organic carbon mineralization characteristics of six kinds of natural forest soil were studied, including the pine forests, evergreen broad-leaved forest, deciduous broad-leaved forest, mixed needle leaf and Korean pine and Chinese pine forest. The results showed that the organic carbon content in the forest soil showed trends of gradual decrease with the increase of soil depth; Double exponential equation fitted well with the organic carbon mineralization process in natural forest soil, accurately reflecting the mineralization reaction characteristics of the natural forest soil. Natural forest soil in each layer had the same mineralization reaction trend, but different intensity. Among them, the reaction intensity in the 0-10 cm soil of the Korean pine forest was the highest, and the intensities of mineralization reaction in its lower layers were also significantly higher than those in the same layers of other natural forest soil; comparison of soil mineralization characteristics of the deciduous broad-leaved forest and coniferous and broad-leaved mixed forest found that the differences of litter species had a relatively strong impact on the active organic carbon content in soil, leading to different characteristics of mineralization reaction.

  10. Composite of TiN nanoparticles and few-walled carbon nanotubes and its application to the electrocatalytic oxygen reduction reaction

    KAUST Repository

    Isogai, Shunsuke

    2011-11-30

    Nanoparticles meet nanotubes! Direct synthesis of TiN nanoparticles in a three-dimensional network of few-walled carbon nanotubes (FWCNTs) was achieved by using mesoporous graphitic carbon nitride (C 3N 4) as both a hard template and a nitrogen source. The TiN/FWCNT composite showed high performance for the oxygen reduction reaction in acidic media. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Development of Carbon-14 Waste Destruction and Recovery System Using AC Plasma Torch Technology Final Report CRADA No. TC02108.0

    Energy Technology Data Exchange (ETDEWEB)

    Althouse, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McKannay, R. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-08-15

    This was a collaborative effort between Lawrence Livermore National Security, LLC as manager and operator of Lawrence Livermore National Laboratory (LLNL) and ISOFLEX USA (ISOFLEX), to 1) develop and test a prototype waste destruction system ("System") using AC plasma torch technology to break down and drastically reduce the volume of Carbon-14 (C-14) contaminated medical laboratory wastes while satisfying all environmental regulations, and 2) develop and demonstrate methods for recovering 99%+ of the carbon including the C-14 allowing for possible re-use as a tagging and labeling tool in the biomedical industry.

  12. A combined high-temperature experimental and theoretical kinetic study of the reaction of dimethyl carbonate with OH radicals

    KAUST Repository

    Khaled, Fathi; Giri, Binod; Szőri, Milá n; Mai, Tam V.-T.; Huynh, Lam K.; Farooq, Aamir

    2017-01-01

    The reaction kinetics of dimethyl carbonate (DMC) and OH radicals were investigated behind reflected shock waves over the temperature range of 872-1295 K and at pressures near 1.5 atm. Reaction progress was monitored by detecting OH radicals at 306.69 nm using a UV laser absorption technique. The rate coefficients for the reaction of DMC with OH radicals were extracted using a detailed kinetic model developed by Glaude et al. (Proc. Combust. Inst. 2005, 30(1), 1111-1118). The experimental rate coefficients can be expressed in Arrhenius form as: kexpt'l = 5.15 × 10(13) exp(-2710.2/T) cm(3) mol(-1) s(-1). To explore the detailed chemistry of the DMC + OH reaction system, theoretical kinetic analyses were performed using high-level ab initio and master equation/Rice-Ramsperger-Kassel-Marcus (ME/RRKM) calculations. Geometry optimization and frequency calculations were carried out at the second-order Møller-Plesset (MP2) perturbation level of theory using Dunning's augmented correlation consistent-polarized valence double-ζ basis set (aug-cc-pVDZ). The energy was extrapolated to the complete basis set using single point calculations performed at the CCSD(T)/cc-pVXZ (where X = D, T) level of theory. For comparison purposes, additional ab initio calculations were also carried out using composite methods such as CBS-QB3, CBS-APNO, G3 and G4. Our calculations revealed that the H-abstraction reaction of DMC by OH radicals proceeds via an addition elimination mechanism in an overall exothermic process, eventually forming dimethyl carbonate radicals and H2O. Theoretical rate coefficients were found to be in excellent agreement with those determined experimentally. Rate coefficients for the DMC + OH reaction were combined with literature rate coefficients of four straight chain methyl ester + OH reactions to extract site-specific rates of H-abstraction from methyl esters by OH radicals.

  13. Reaction of hydrogen atoms with acrylaldehyde

    International Nuclear Information System (INIS)

    Koda, Seiichiro; Nakamura, Kazumoto; Hoshino, Takashi; Hikita, Tsutomu

    1978-01-01

    The reaction of hydrogen atoms with acrylaldehyde was investigated in a fast flow reactor equipped with a time-of-flight type mass spectrometer under reduced pressure. Main reaction products were carbon monoxide, ethylene, ethane, methane, and propanal. Consideration of the distributions of the reaction products under various reaction conditions showed that hydrogen atoms attacked the C=C double bond, especially its inner carbon side under reduced pressure. Resulting hot radicals caused subsequent reactions. The relative value of the apparent bimolecular rate constant of the reaction against that of trans-2-butene with hydrogen atoms was 1.6+-0.2, which supported the above-mentioned initial reaction. (auth.)

  14. Biodegradation of Poly(butylene succinate Powder in a Controlled Compost at 58 °C Evaluated by Naturally-Occurring Carbon 14 Amounts in Evolved CO2 Based on the ISO 14855-2 Method

    Directory of Open Access Journals (Sweden)

    Masahiro Funabashi

    2009-09-01

    Full Text Available The biodegradabilities of poly(butylene succinate (PBS powders in a controlled compost at 58 °C have been studied using a Microbial Oxidative Degradation Analyzer (MODA based on the ISO 14855-2 method, entitled “Determination of the ultimate aerobic biodegradability of plastic materials under controlled composting conditions—Method by analysis of evolved carbon dioxide—Part 2: Gravimetric measurement of carbon dioxide evolved in a laboratory-scale test”. The evolved CO2 was trapped by an additional aqueous Ba(OH2 solution. The trapped BaCO3 was transformed into graphite via a serial vaporization and reduction reaction using a gas-tight tube and vacuum manifold system. This graphite was analyzed by accelerated mass spectrometry (AMS to determine the percent modern carbon [pMC (sample] based on the 14C radiocarbon concentration. By using the theory that pMC (sample was the sum of the pMC (compost (109.87% and pMC (PBS (0% as the respective ratio in the determined period, the CO2 (respiration was calculated from only one reaction vessel. It was found that the biodegradabilities determined by the CO2 amount from PBS in the sample vessel were about 30% lower than those based on the ISO method. These differences between the ISO and AMS methods are caused by the fact that part of the carbons from PBS are changed into metabolites by the microorganisms in the compost, and not changed into CO2.

  15. Oxidation kinetics and mechanisms of four-direction carbon/carbon composites and their components in carbon dioxide at high temperature

    International Nuclear Information System (INIS)

    Qin, Fei; Peng, Li-na; He, Guo-qiang; Li, Jiang

    2013-01-01

    Highlights: •Four-direction C/C composite was fabricated using carbon fibres and coal tar pitches. •Large-sized bulk matrix was prepared using same process as matrix of C/C composites. •A and E a of C/C, bulk matrix and fibres in CO 2 were determined, respectively. •Pressure exponent n was 0.62 in C/C–CO 2 . -- Abstract: Thermogravimetric analysis and scanning electron microscopy were used to study the oxidation kinetics of four-direction carbon/carbon composites and their components (fibres and matrix) in a CO 2 atmosphere at high temperature. The ablation processes were restricted to reaction-limited oxidation. The mass loss rate was estimated for the four-direction carbon/carbon composites and their components within the temperature of range of 600–1400 °C. The pressure exponent for the reaction of carbon/carbon composites and CO 2 was 0.62, and the pre-exponential factor and activation energy for the reactions of CO 2 and the carbon/carbon composites, carbon fibres and matrix were determined, respectively

  16. Search for a resonance in the 14N(p,γ)15O reaction at Ep=127 keV

    International Nuclear Information System (INIS)

    Runkle, R.C.; Champagne, A.E.; Fox, C.; Iliadis, C.; Pollanen, J.; Stephan, A.; Westerfeldt, C.

    2002-01-01

    The 14 N(p,γ) 15 O reaction regulates the energy produced by the CN cycle in main-sequence stars and in red giants. Recently, preliminary evidence was presented for a new resonance in this reaction, which would significantly increase the reaction rate for temperatures near 10 8 K. We have attempted to confirm this result and find no indication of a resonance near E p lab =127 keV. Our upper limit on its strength is ωγ≤32 neV (95% C.L.), which is more than 2 orders of magnitude below the previously reported value

  17. Stereoselective synthesis of organosulfur compounds incorporating N-aromatic heterocyclic motifs and quaternary carbon centers via a sulfa-Michael triggered tandem reaction.

    Science.gov (United States)

    Qin, Tianyou; Cheng, Lu; Zhang, Sean Xiao-An; Liao, Weiwei

    2015-06-14

    A novel sulfa-Michael addition (SMA)-triggered tandem reaction was developed by combining a SMA reaction with a simultaneous rearomatization process utilizing a less reactive carbonyl group as an intramolecular electrophile partner, which provided a unique synthetic route to access various organosulfur compounds incorporating an N-aromatic heterocyclic motif and quaternary carbon centers.

  18. Synthesis of propylene carbonate from urea and propylene glycol over zinc oxide: A homogeneous reaction

    Directory of Open Access Journals (Sweden)

    Dengfeng Wang

    2014-11-01

    Full Text Available In this work, several metal oxides and zinc salts were used to catalyze propylene carbonate (PC synthesis from urea and propylene glycol (PG. According to the results of catalytic test and characterization, the catalytic pattern of ZnO was different from that of other metal oxides such as CaO, MgO and La2O3, but similar to that of zinc salts. In fact, the leaching of Zn species took place during reaction for ZnO. And ZnO was found to be the precursor of homogenous catalyst for reaction of urea and PG. Thus, the relationship between the amount of dissolved zinc species and the catalytic performance of employed ZnO was revealed. In addition, a possible reaction mechanism over ZnO was discussed based on the catalytic runs and the characterization of XRD, FTIR, and element analysis.

  19. Enantioselective organocatalyzed Oxa-Michael-Aldol cascade reactions: Construction of chiral 4H-chromenes with a trifluoromethylated tetrasubstituted carbon stereocenter

    KAUST Repository

    Zhang, Jing

    2015-03-13

    The first organocatalytic asymmetric synthesis of 4H-chromenes bearing a trifluoromethylated tetrasubstituted carbon center is presented. Chiral secondary amines promote the oxa-Michael-aldol cascade reaction between alkynals and 2-trifluoroacetylphenols via iminium-allenamine activation to produce pharmaceutically important heterocycles with excellent enantioselectivities. The proposed reaction can be scaled-up easily with maintenance of the excellent enantioselectivity. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Proof-of-Concept Study: Novel Microbially-Driven Fenton Reaction for In Situ Remediation of Groundwater Contaminated with 1,4-Dioxane, Tetrachloroethene (PCE) and Trichloroethene (TCE)

    Science.gov (United States)

    2014-09-17

    with 1,4-Dioxane, Tetrachloroethene (PCE) and Trichloroethene ( TCE ) SERDP Project ER-2305 September 2014 Thomas DiChristina Georgia...HO) radicals that degrade 1,4- dioxane, TCE , and PCE. In comparison to conventional (purely abiotic) Fenton reactions, the microbially-driven Fenton...reaction operates at circumneutral pH and does not require addition of exogenous H2O2 or UV irradiation to regenerate Fe(II). The 1,4-dioxane, TCE

  1. Improving the electrocatalytic performance of carbon nanotubes for VO"2"+/VO_2"+ redox reaction by KOH activation

    International Nuclear Information System (INIS)

    Dai, Lei; Jiang, Yingqiao; Meng, Wei; Zhou, Huizhu; Wang, Ling; He, Zhangxing

    2017-01-01

    Highlights: • KOH-activated carbon nanotubes (CNTs) was investigated as superior catalyst for VO"2"+/VO_2"+ redox reaction for vanadium redox flow battery (VRFB) for the first time. • KOH activation for CNTs can result in the chemical etching of surface and improved wettability, accelerating the mass transfer of vanadium ions. • KOH activation can introduce many oxygen-containing groups as active sites on the surface of CNTs. • KOH-activated CNTs as positive catalyst could increase the comprehensive energy storage performance of VRFB. - Abstract: In this paper, carbon nanotubes (CNTs) was activated by KOH treatment at high temperature and investigated as catalyst for VO"2"+/VO_2"+ redox reaction for vanadium redox flow battery (VRFB). X-ray photoelectron spectroscopy results suggest that the oxygen-containing groups can be introduced on CNTs by KOH activation. The mass transfer of vanadium ions can be accelerated by chemical etching by KOH activation and improved wettability due to the introduction of hydrophilic groups. The electrochemical properties of VO"2"+/VO_2"+ redox reaction can be enhanced by introduced oxygen-containing groups as active sites. The sample treated at 900 °C with KOH/CNTs mass ratio of 3:1 (CNTs-3) exhibits the highest electrocatalytic activity for VO"2"+/VO_2"+ redox reaction. The cell using CNTs-3 as positive catalyst demonstrates the smallest electrochemical polarization, the highest capacity and efficiency among the samples. Using KOH-activated CNTs-3 can increase the average energy efficiency of the cell by 4.4%. This work suggests that KOH-activated CNTs is a low-cost, efficient and promising catalyst for VO"2"+/VO_2"+ redox reaction for VRFB system.

  2. Biogenesis of tritiated and carbon-14 methane from low-level radioactive waste

    International Nuclear Information System (INIS)

    Francis, A.J.; Dobbs, S.; Doering, R.F.

    1980-01-01

    Methane bacteria were detected in leachate samples collected from commercial low-level radioactive waste disposal sites. Significant amounts of tritiated and carbon-14 methane were generated by a mixed methanogenic culture from a leachate sample collected from the low-level radioactive waste disposal site, Maxey Flats, KY. Tritiated methane was produced by methane bacteria from synthetic media containing 2 mCi of tritium as tritiated water or tritiated acetate, and the level of tritium added to the medium had no effect on methanogenesis. Under anaerobic conditions the organic compounds containing 14 C and 3 H activity and tritiated water in the waste are metabolized by microorganisms and they produce radioactive gases which escape into the environment from the disposal sites. 4 figures, 3 tables

  3. Validation test for carbon-14 migration and accumulation in a Canadian shield lake

    International Nuclear Information System (INIS)

    Bird, G.A.

    1996-09-01

    This particular BIOMOVS II Technical Report is concerned with modelling the transfer of C-14 through the aquatic food chain following release to a Canadian shield lake. Model performance has been tested against field data supplied by Atomic Energy of Canada Limited. Carbon-14 was added in 1978 to the epilimnion of a small Canadian Shield lake to investigate primary production and carbon dynamics. Data from this experiment were used within BIOMOVS II to provide a validation test, which involved modelling the fate of the C-14 added to the lake. The nature of the spike and the subsequent monitoring allowed the investigation of both short-term processes relevant to evaluation of the impacts of accidental releases as well as longer-term processes relevant to routine release and to solid waste disposal. Four models participated in the scenario: 1) a simple mass balance model of a lake (AECL, Whiteshell Laboratories, Canada); 2) a relatively complex deterministic dynamic compartment model (QuantiSci Ltd.,UK); 3) a complex deterministic model (Studsvik Model A) and a more complex probabilistic model (Studsvik Model B; Studsvik Eco and Safety AB, Sweden). Endpoints were C-14 concentrations in water, sediment and whitefish over a thirteen year period. Each model produced reasonable predictions when compared to the observed data and when uncertainty is taken into consideration. About 0.2 to 0.4% of the initial C-14 inventory to the lakes remained in the water at the end of the study, because of internal recycling of C-14 from sediments. The simple AECL model did not account for this internal recycling of C-14 and, in this respect, its predictions were not as realistic as those of the QuantiSci and Studsvik models for concentrations in water. However, the AECL model predictions for the C-14 inventory remaining in lake sediment were closest to the observed values. Overall, Studsvik Model B was the most accurate in simulating C-14 concentrations in water and in whitefish, but

  4. Validation test for carbon-14 migration and accumulation in a Canadian shield lake

    Energy Technology Data Exchange (ETDEWEB)

    Bird, G.A. [AECL, Pinawa, MB (Canada). Whiteshell Labs.] [and others

    1996-09-01

    This particular BIOMOVS II Technical Report is concerned with modelling the transfer of C-14 through the aquatic food chain following release to a Canadian shield lake. Model performance has been tested against field data supplied by Atomic Energy of Canada Limited. Carbon-14 was added in 1978 to the epilimnion of a small Canadian Shield lake to investigate primary production and carbon dynamics. Data from this experiment were used within BIOMOVS II to provide a validation test, which involved modelling the fate of the C-14 added to the lake. The nature of the spike and the subsequent monitoring allowed the investigation of both short-term processes relevant to evaluation of the impacts of accidental releases as well as longer-term processes relevant to routine release and to solid waste disposal. Four models participated in the scenario: (1) a simple mass balance model of a lake (AECL, Whiteshell Laboratories, Canada); (2) a relatively complex deterministic dynamic compartment model (QuantiSci Ltd.,UK); (3) a complex deterministic model (Studsvik Model A) and a more complex probabilistic model (Studsvik Model B; Studsvik Eco and Safety AB, Sweden). Endpoints were C-14 concentrations in water, sediment and whitefish over a thirteen year period. Each model produced reasonable predictions when compared to the observed data and when uncertainty is taken into consideration. About 0.2 to 0.4% of the initial C-14 inventory to the lakes remained in the water at the end of the study, because of internal recycling of C-14 from sediments. The simple AECL model did not account for this internal recycling of C-14 and, in this respect, its predictions were not as realistic as those of the QuantiSci and Studsvik models for concentrations in water. However, the AECL model predictions for the C-14 inventory remaining in lake sediment were closest to the observed values. Overall, Studsvik Model B was the most accurate in simulating C-14 concentrations in water and in whitefish, but

  5. CARBON CRYOGEL MICROSPHERE FOR ETHYL LEVULINATE PRODUCTION: EFFECT OF CARBONIZATION TEMPERATURE AND TIME

    Directory of Open Access Journals (Sweden)

    MUZAKKIR M. ZAINOL

    2016-07-01

    Full Text Available The side products of biomass and bio-fuel industry have shown potential in producing carbon catalyst. The carbon cryogel was synthesized from ligninfurfural mixture based on the following details: 1.0 of lignin to furfural (L/F ratio, 1.0 of lignin to water (L/W ratio, and 8M of acid concentration. The lignin-furfural sol-gel mixture, initially prepared via polycondensation reaction at 90 °C for 30 min, was followed by freeze drying and carbonization process. Effects of carbonization temperature and time were investigated on the total acidity and surface area of the carbon cryogel. Furthermore, the effects of these parameters were studied on the ethyl levulinate yield through esterification reaction of levulinic acid in ethanol. The esterification reaction was conducted at reflux temperature, 10 h of reaction time, 19 molar ratio of ethanol to levulinic acid, and 15.0 wt.% carbon cryogel loading. Based on the carbonization temperature and time studies, the carbon cryogel carbonized at 500 °C and 4 h exhibited good performance as solid acid catalyst. Large total surface area and acidity significantly influenced the catalytic activity of carbon cryogel with 80.0 wt.% yield of ethyl levulinate. Thus, carbon cryogel is highly potential as acid catalyst for the esterification of levulinic acid with ethanol.

  6. A study of the 10, 11B(p,n)10, 11C reactions between Ep=13,7 and 14,7 MeV

    International Nuclear Information System (INIS)

    Schelin, H.R.

    1985-01-01

    Using time-of-flight facilities of the Sao Paulo 8UD Pelletron Accelerator, absolute differential cross sections for the n 0 , n 1 , n 2 , n 3 , (n 4 +n 5 ), n 6 and n 7 groups for the reaction 11 B(p,n) 11 C and the n 0 and n 1 neutron groups for the reaction 10 B(p,n) 10 C have been measured at incident proton energies of 14.0, 14.3 and 14.6 MeV in the angular interval of 20 to 160 degrees. Excitation functions at θ lab =20 deg from Ep=13.7 to 14.7 MeV in intervals of 100 KeV were also measured. The theoretical analysis was conducted to determine relative contributions of the diret and compound nucleus processes in the differential cross sections. To this end, a two couple channel model model for the reactions was assumed. The DWBA model for the direct and the Hauser-Feshbch for the compound nucleus processes were in such a way as to simulate the exact coupled channels calculation through an appropriate choice of the absorption term W in the optical potential. The results indicate that about half of the cross section is due to the compound nucleus mechanism. The theoretical analysis aimed at obtaining the elastic enhancement factor for the channel 11 B(p,n 0 ) 11 C at Ep=14.3 MeV. This has been demonstrated to appear in compound nucleus charge reactions by Harney, Weidemueller and Richter and predicted to attain the value 2 when isospin is conserved. Our results show an enhancement factor larger than 1 indicating that isospin mixing is weak in this reaction. (Author) [pt

  7. J-type Carbon Stars: A Dominant Source of {sup 14}N-rich Presolar SiC Grains of Type AB

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Nan; Nittler, Larry R.; Alexander, Conel M. O’D.; Wang, Jianhua [Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC 20015 (United States); Stephan, Thomas; Boehnke, Patrick; Davis, Andrew M.; Trappitsch, Reto; Pellin, Michael J., E-mail: nliu@carnegiescience.edu [Department of the Geophysical Sciences, The University of Chicago, Chicago, IL 60637 (United States)

    2017-07-20

    We report Mo isotopic data of 27 new presolar SiC grains, including 12 {sup 14}N-rich AB ({sup 14}N/{sup 15}N > 440, AB2) and 15 mainstream (MS) grains, and their correlated Sr and Ba isotope ratios when available. Direct comparison of the data for the MS grains, which came from low-mass asymptotic giant branch (AGB) stars with large s -process isotope enhancements, with the AB2 grain data demonstrates that AB2 grains show near-solar isotopic compositions and lack s -process enhancements. The near-normal Sr, Mo, and Ba isotopic compositions of AB2 grains clearly exclude born-again AGB stars, where the intermediate neutron-capture process ( i -process) takes place, as their stellar source. On the other hand, low-mass CO novae and early R- and J-type carbon stars show {sup 13}C and {sup 14}N excesses but no s -process enhancements and are thus potential stellar sources of AB2 grains. Because both early R-type carbon stars and CO novae are rare objects, the abundant J-type carbon stars (10%–15% of all carbon stars) are thus likely to be a dominant source of AB2 grains.

  8. Formation of organic acids from trace carbon in acidic oxidizing media

    International Nuclear Information System (INIS)

    Terrassier, C.

    2003-01-01

    Carbon 14 does not fully desorb as CO 2 during the hot concentrated nitric acid dissolution step of spent nuclear fuel reprocessing: a fraction is entrained in solution into the subsequent process steps as organic species. The work described in this dissertation was undertaken to identify the compounds arising from the dissolution in 3 N nitric acid of uranium carbides (selected as models of the chemical form of carbon 14 in spent fuel) and to understand their formation and dissolution mechanism. The compounds were present at traces in solution, and liquid-solid extraction on a specific stationary phase (porous graphite carbon) was selected to concentrate the monoaromatic poly-carboxylic acids including mellitic acid, which is mentioned in the literature but has not been formally identified. The retention of these species and of oxalic acid - also cited in the literature - was studied on this stationary phase as a function of the mobile phase pH, revealing an ion exchange retention mechanism similar to the one observed for benzyltrimethylammonium polystyrene resins. The desorption step was then optimized by varying the eluent pH and ionic strength. Mass spectrometry analysis of the extracts identified acetic acid, confirmed the presence of mellitic acid, and revealed compounds of high molecular weight (about 200 g/mol); the presence of oxalic acid was confirmed by combining gas chromatography and mass spectrometry. Investigating the dissolution of uranium and zirconium carbides in nitric acid provided considerable data on the reaction and suggested a reaction mechanism. The reaction is self-catalyzing via nitrous acid, and the reaction rate de pends on the acidity and nitrate ion concentration in solution. Two uranium carbide dissolution mechanisms are proposed: one involves uranium at oxidation state +IV in solution, coloring the dissolution solution dark green, and the other assumes that uranium monocarbide is converted to uranium oxide. The carboxylic acid

  9. Substrate dependent reaction channels of the Wolff–Kishner reduction reaction: A theoretical study

    Directory of Open Access Journals (Sweden)

    Shinichi Yamabe

    2014-01-01

    Full Text Available Wolff–Kishner reduction reactions were investigated by DFT calculations for the first time. B3LYP/6-311+G(d,p SCRF=(PCM, solvent = 1,2-ethanediol optimizations were carried out. To investigate the role of the base catalyst, the base-free reaction was examined by the use of acetone, hydrazine (H2N–NH2 and (H2O8. A ready reaction channel of acetone → acetone hydrazine (Me2C=N–NH2 was obtained. The channel involves two likely proton-transfer routes. However, it was found that the base-free reaction was unlikely at the N2 extrusion step from the isopropyl diimine intermediate (Me2C(H–N=N–H. Two base-catalyzed reactions were investigated by models of the ketone, H2N–NH2 and OH−(H2O7. Here, ketones are acetone and acetophenone. While routes of the ketone → hydrazone → diimine are similar, those from the diimines are different. From the isopropyl diimine, the N2 extrusion and the C–H bond formation takes place concomitantly. The concomitance leads to the propane product concertedly. From the (1-phenylethyl substituted diimine, a carbanion intermediate is formed. The para carbon of the phenyl ring of the anion is subject to the protonation, which leads to a 3-ethylidene-1,4-cyclohexadiene intermediate. Its [1,5]-hydrogen migration gives the ethylbenzene product. For both ketone substrates, the diimines undergoing E2 reactions were found to be key intermediates.

  10. J-type Carbon Stars: A Dominant Source of 14 N-rich Presolar SiC Grains of Type AB

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Nan; Stephan, Thomas; Boehnke, Patrick; Nittler, Larry R.; Alexander, Conel M. O’D.; Wang, Jianhua; Davis, Andrew M.; Trappitsch, Reto; Pellin, Michael J.

    2017-07-20

    We report Mo isotopic data of 27 new presolar SiC grains, including 12 N-14-rich AB (N-14/N-15 > 440, AB2) and 15 mainstream (MS) grains, and their correlated Sr and Ba isotope ratios when available. Direct comparison of the data for the MS grains, which came from low-mass asymptotic giant branch (AGB) stars with large s-process isotope enhancements, with the AB2 grain data demonstrates that AB2 grains show near-solar isotopic compositions and lack s-process enhancements. The near-normal Sr, Mo, and Ba isotopic compositions of AB2 grains clearly exclude born-again AGB stars, where the intermediate neutron-capture process (i-process) takes place, as their stellar source. On the other hand, low-mass CO novae and early R-and J-type carbon stars show C-13 and N-14 excesses but no s-process enhancements and are thus potential stellar sources of AB2 grains. Because both early R-type carbon stars and CO novae are rare objects, the abundant J-type carbon stars (10%-15% of all carbon stars) are thus likely to be a dominant source of AB2 grains.

  11. Mountain scale modeling of transient, coupled gas flow, heat transfer and carbon-14 migration

    International Nuclear Information System (INIS)

    Lu, Ning; Ross, B.

    1993-01-01

    We simulate mountain-scale coupled heat transfer and gas flow at Yucca Mountain. A coupled rock-gas flow and heat transfer model, TGIF2, is used to simulate mountain-scale two-dimensional transient heat transfer and gas flow. The model is first verified against an analytical solution for the problem of an infinite horizontal layer of fluid heated from below. Our numerical results match very well with the analytical solution. Then, we obtain transient temperature and gas flow distributions inside the mountain. These distributions are used by a transient semianalytical particle tracker to obtain carbon-14 travel times for particles starting at different locations within the repository. Assuming that the repository is filled with 30-year-old waste at an initial areal power density of 57 kw/acre, we find that repository temperatures remain above 60 degrees C for more than 10,000 years. Carbon-14 travel times to the surface are mostly less than 1000 years, for particles starting at any time within the first 10,000 years

  12. The nuclear reaction analysis (NRA) as a means for detecting carbon in GaAs and in source materials and additives

    International Nuclear Information System (INIS)

    Bethge, K.; Mader, A.; Michelmann, R.; Krauskopf, J.; Thee, P.; Meyer, J.D.

    1991-01-01

    The nuclear reaction ananlysis (NRA) on the basis of the reaction 12 C (d,p) 13 C is a method allowing the detection and description of both lateral and depth profiles of the presence of carbon in GaAs and in the source materials and additives. The NRA is an absolute method with a detection limit for C of approx. 4x10 15 cm 3 . The achievable detection range in depth under the experimental conditions goes from the surface down to 6 μm. Combined with channeling measurements, NRA is capable of identifying the position of carbon in the GaAs crystal lattice, and thus permits to examine the mobility of C in GaAs. (BBR) With 11 refs [de

  13. Relation between separation factor of carbon isotope and chemical reaction of CO2 with amine in nonaqueous solvent

    International Nuclear Information System (INIS)

    Takeshita, Kenji; Kitamoto, Asashi

    1989-01-01

    The separation factor for carbon isotope exchange reaction between CO 2 and amine in nonaqueous solvent was related to absorption reaction of CO 2 in a solution. The test solutions were mixtures of primary amine (such as butylamine and tert-butylamine) or secondary amine (such as diethylamine, dipropylamine and dibutylamine) diluted with nonpolar solvent (octane or triethyalmine) or polar solvent (methanol), respectively. The isotope exchange reaction consists of three steps related to chemical reaction of CO 2 in amine and nonaqueous solvent mixture, namely the reaction between CO 2 and carbamic acid, that between CO 2 and amine carbamate, and that between CO 2 and carbamic ion. Above all, the isotope separation factor between CO 2 and carbamic acid had the highest value. The overall separation factor can be higher in amine-nonaqueous solvent mixture where the concentration of carbamic acid becomes higher. (author)

  14. Metal cluster cation reactions: Carbon monoxide association to Cu + n ions

    Science.gov (United States)

    Leuchtner, R. E.; Harms, A. C.; Castleman, A. W., Jr.

    1990-06-01

    Copper cluster cations (Cu+n,n=1-14) were produced in a laser vaporization/flow tube apparatus and equilibrated to room temperature. The association rate constants of carbon monoxide onto these ions were measured; low-pressure, termolecular behavior was observed for the smaller species while for clusters greater than Cu+7, the longer lifetimes due to the increased number of degrees of freedom leads to pressure independence (>0.3 Torr) of the effective bimolecular rates. Unimolecular decay theory (RRKM) is used to explain the overall trend and when intrinsic surface site reactivity is taken into account, excellent agreement with measured reactivity is obtained.

  15. Synthesis of 11-14C-quetiapine, 11-14C-isoclotiapine and 10-(4-methylpiperazin-1-yl)pyrido[4,3-b][1,4]benzothiazepine[10-14C

    International Nuclear Information System (INIS)

    Naghi Saadatjoo; Mohsen Javaheri; Nuclear Science and Technology Research Institute, Tehran; Nader Saemian; Mohsen Amini

    2016-01-01

    Quetiapine is one of the most widely used antipsychotic drug which acts as an antagonist for multiple neurotransmitter receptor sites. 2-[2-(4-(Dibenzo[b,f][1,4]thiazepin-11-yl)piperazin-1-yl)ethoxy]ethanol (quetiapine) labeled with carbon-14 in 11-position has been synthesized as part of a 5-step sequence from anthranilic acid-[carboxy- 14 C]. We have presented a convenient synthetic pathway for labeling of quetiapine with carbon-14 by using one-pot procedures from a key thiazepin-11(10H)-one-[11- 14 C] by good radiochemical yield. And also isoclotiapine[11- 14 C], and 10-(4-methylpiperazin-1-yl)pyrido[4,3-b][1,4]benzothiazepine[10- 14 C], synthesized according to this route. (author)

  16. Hetero-atom doped carbon nanotubes for dye degradation and oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Nandan, Ravi, E-mail: aerawat27@gmail.com; Nanda, Karuna Kar [Materials Research Centre, Indian Institute of Science, Bangalore-560012 (India)

    2015-06-24

    We report the synthesis of nitrogen doped vertically aligned multi-walled (MWNCNTs) carbon nanotubes by pyrolysis and its catalytic performance for degradation of methylene blue (MB) dye & oxygen reduction reaction (ORR). The degradation of MB was monitored spectrophotometrically with time. Kinetic studies show the degradation of MB follows a first order kinetic with rate constant k=0.0178 min{sup −1}. The present rate constant is better than that reported for various supported/non-supported semiconducting nanomaterials. Further ORR performance in alkaline media makes MWNCNTs a promising cost-effective, fuel crossover tolerance, metal-free, eco-friendly cathode catalyst for direct alcohol fuel cell.

  17. Structure and morphology controllable synthesis of Ag/carbon hybrid with ionic liquid as soft-template and their catalytic properties

    International Nuclear Information System (INIS)

    Wu Shuying; Ding Yunsheng; Zhang Xiaomin; Tang Haiou; Chen Long; Li Boxuan

    2008-01-01

    Ag/carbon hybrids were fabricated by the redox of glucose and silver nitrate (AgNO 3 ) in the presence of imidazolium ionic liquid ([C 14 mim]BF 4 ) under hydrothermal condition. Monodisperse carbon hollow sub-microspheres encapsulating Ag nanoparticles and Ag/carbon cables were selectively prepared by varying the concentration of ionic liquid. Other reaction parameters, such as reaction temperature, reaction time and the mole ratio of silver nitrate to glucose, play important roles in controlling the structures of the products. The products were characterized by XRD, TEM (HRTEM), SEM, energy-dispersive X-ray spectroscopy (EDX), FTIR spectroscopy and a Raman spectrometer. The possible formation mechanism was proposed. The catalytic property of the hybrid in the oxidation of 1-butanol by H 2 O 2 was also investigated. - Graphical abstract: Monodisperse carbon hollow nanospheres encapsulating Ag nanoparticles and Ag/carbon nanocables were selectively prepared with ionic liquids as the soft-template. The controllable synthesis of Ag/C nano-hybrids was realized by varying the concentration of ionic liquids, reaction temperature, reaction time and the mole ratio of silver nitrate to glucose. The catalysis of Ag/C nano-hybrid in the oxidation of 1-butanol by H 2 O 2 was also investigated

  18. Preparation and Characterization of Pd Modified TiO2 Nanofiber Catalyst for Carbon–Carbon Coupling Heck Reaction

    Directory of Open Access Journals (Sweden)

    Leah O. Nyangasi

    2017-01-01

    Full Text Available TiO2 fibers were prepared through electrospinning of poly methyl methacrylate (PMMA and titanium isopropoxide (TIP solution followed by calcination of fibers in air at 500°C. Cetyltrimethylammonium bromide (CTAB protected palladium nanoparticles (Pd NPs prepared through reduction method were successfully adsorbed on the TiO2 nanofibers (NF. Combined studies of X-ray diffraction (XRD, scanning electron microscope (SEM, and transmission electron microscope (TEM indicated that the synthesized Pd/TiO2 had anatase. BET indicated that the synthesized TiO2 and Pd/TiO2 had a surface area of 53.4 and 43.4 m2/g, respectively. The activity and selectivity of 1 mol% Pd/TiO2 in the Heck reaction have been investigated towards the Mizoroki-Heck carbon–carbon cross-coupling of bromobenzene (ArBr and styrene. Temperature, time, solvent, and base were optimized and catalyst was recycled thrice. 1H NMR and 13C NMR indicated that stilbene, a known compound from literature, was obtained in various Heck reactions at temperatures between 100°C and 140°C but the recyclability was limited due to some palladium leaching and catalyst poisoning which probably arose from some residual carbon from the polymer. The catalyst was found to be highly active under air atmosphere with reaction temperatures up to 140°C. Optimized reaction condition resulted in 89.7% conversions with a TON of 1993.4 and TOF value of 332.2 hr−1.

  19. On the labelling of insuline and insuline derivatives with tritium and carbon-14

    International Nuclear Information System (INIS)

    Uschkoreit, J.

    1979-01-01

    Two different labelling methods were investigated. By means of the Wilzbach labelling with diaminosuberoylinsuline the insuline is irreversibly altered. As a second method the reductive methylation was used, in doing so it was possible to distinguish between mono and dimethylated parts of the reaction product by using C-14 labelled formaldehyde. Furthermore four N,N-dimethylated insuline derivatives were isolated with yields of 25 until 35%. By using C-14 and h-3 labelled reagents insuline can be labelled doubly. Moreover N-terminal amino groups could be protected irreversibly with this method. Furthermore structure-function investigations and investigations concerning the insuline metabolism were done. (SPI) [de

  20. 15C-15F Charge Symmetry and the 14C(n,γ)15C Reaction Puzzle

    International Nuclear Information System (INIS)

    Timofeyuk, N.K.; Thompson, I.J.; Baye, D.; Descouvemont, P.; Kamouni, R.

    2006-01-01

    The low-energy reaction 14 C(n,γ) 15 C provides a rare opportunity to test indirect methods for the determination of neutron capture cross sections by radioactive isotopes versus direct measurements. It is also important for various astrophysical scenarios. Currently, puzzling disagreements exist between the 14 C(n,γ) 15 C cross sections measured directly, determined indirectly, and calculated theoretically. To solve this puzzle, we offer a strong test based on a novel idea that the amplitudes for the virtual 15 C→ 14 C+n and the real 15 F→ 14 O+p decays are related. Our study of this relation, performed in a microscopic model, shows that existing direct and some indirect measurements strongly contradict charge symmetry in the 15 C and 15 F mirror pair. This brings into question the experimental determinations of the astrophysically important (n,γ) cross sections for short-lived radioactive targets

  1. Reaction of titanium polonides with carbon dioxide

    International Nuclear Information System (INIS)

    Abakumov, A.S.; Malyshev, M.L.; Reznikova, N.F.

    1987-01-01

    It has been ascertained that heating titanium and tantalum in carbon dioxide to temperatures of 500 or 800 0 C alters the composition of the gas phase, causing the advent of carbon monoxide and lowering the oxygen content. Investigation of the thermal stability of titanium polonides in a carbon dioxide medium has shown that titanium mono- and hemipolonides are decomposed at temperatures below 350 0 C. The temperature dependence of the vapor pressure of polonium produced in the decomposition of these polonides in a carbon dioxide medium have been determined by a radiotensimetric method. The enthalpy of the process, calculated from this relationship, is close to the enthalpy of vaporization of elementary polonium in vacuo

  2. Centrality in Hadron-Carbon, Hadron-Lead, and Lead-Lead Reactions at 158 GeV/c

    International Nuclear Information System (INIS)

    Rybicki, A.

    2006-08-01

    A study of centrality in p + C, π + C, p + Pb, π + Pb, and Pb + Pb reactions is made. The analysis is performed by means of a simple geometrical model. The mean number of elementary collisions, , is estimated in minimum bias p + C reactions. For the specific case of the carbon nucleus, estimates on appear to depend strongly on assumed nuclear densities. Most realistic of the presented assumptions result in a value of 1.71 ± 0.05. Additional quantities, like predictions for the total inelastic cross-section in p + C reactions, or the number of participants in minimum bias C + C collisions, are given. The analysis is subsequently extended to minimum bias π + C, π + Pb, and p + Pb reactions. Estimates are given for the mean number of elementary collisions as well as for the contribution of single collisions P(1). A comparison with experimental data is made. Finally, the impact parameter dependence of p + Pb and Pb + Pb collisions is discussed. In view of future studies, various aspects of the analysis are discussed in detail; a bibliography of used references is included. (author)

  3. Organic electrochemistry and carbon electrodes

    International Nuclear Information System (INIS)

    Weinberg, N.

    1983-01-01

    Carbons are often used in organic electrosynthesis and are critical as anodes or cathodes to certain reactions. Too often the surface properties of carbons have been left uncharacterized in relation to the reaction; however, these physical and chemical properties of carbons are important to the nature of the products, and the selectivity. Examples presented include the Kolbe reaction, the oxidation of aromatics in presence of carboxylate salts, electrofluorination of organics, acetamidation of aromatics, the hydrodimerization of formaldehyde and the oxidation of carbon fibers. These reactions apparently involve special surface characteristics: structure, surface area, stabilized surface sites, and the presence or absence of significant ''oxide'' functionality

  4. Determination of the cross section for (n,p) and (n,α) reactions on 165Ho at 13.5 and 14.8 MeV

    International Nuclear Information System (INIS)

    Luo, Junhua; An, Li; Jiang, Li; He, Long

    2015-01-01

    Activation cross-sections for the 165 Ho(n,p) 165 Dy and 165 Ho(n,α) 162 Tb reactions were measured by means of the activation method at 13.5 and 14.8 MeV, to resolve inconsistencies in existing data. A neutron beam produced via the 3 H(d,n) 4 He reaction was used. Statistical model calculations were performed using the nuclear-reaction codes EMPIRE-3.2 Malta and TALYS-1.6 with default parameters, at neutron energies varying from the reaction threshold to 20 MeV. Results are also discussed and compared with some corresponding values found in the literature. The calculational results on the 165 Ho(n,α) 162 Tb reaction agreed fairly well with experimental data, but there were large discrepancies in the results for the 165 Ho(n,p) 165 Dy reaction. - Highlights: • 27 Al(n,α) 24 Na was used as a monitor for neutron fleunce. • The cross sections for the 165 Ho(n,p) 165 Dy and 165 Ho(n,α) 162 Tb reactions were measured at 13.5 and 14.8 MeV neutron energies. • Nuclear reaction codes TALYS-1.6 and EMPIRE-3.2 Malta were used to model the reactions. • Inconsistency with previous data and with model calculations are noted

  5. Highly Efficient Electrocatalysts for Oxygen Reduction Reaction Based on 1D Ternary Doped Porous Carbons Derived from Carbon Nanotube Directed Conjugated Microporous Polymers

    KAUST Repository

    He, Yafei; Gehrig, Dominik; Zhang, Fan; Lu, Chenbao; Zhang, Chao; Cai, Ming; Wang, Yuanyuan; Laquai, Fré dé ric; Zhuang, Xiaodong; Feng, Xinliang

    2016-01-01

    © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.One-dimensional (1D) porous materials have shown great potential for gas storage and separation, sensing, energy storage, and conversion. However, the controlled approach for preparation of 1D porous materials, especially porous organic materials, still remains a great challenge due to the poor dispersibility and solution processability of the porous materials. Here, carbon nanotube (CNT) templated 1D conjugated microporous polymers (CMPs) are prepared using a layer-by-layer method. As-prepared CMPs possess high specific surface areas of up to 623 m2 g-1 and exhibit strong electronic interactions between p-type CMPs and n-type CNTs. The CMPs are used as precursors to produce heteroatom-doped 1D porous carbons through direct pyrolysis. As-produced ternary heteroatom-doped (B/N/S) 1D porous carbons possess high specific surface areas of up to 750 m2 g-1, hierarchical porous structures, and excellent electrochemical-catalytic performance for oxygen reduction reaction. Both of the diffusion-limited current density (4.4 mA cm-2) and electron transfer number (n = 3.8) for three-layered 1D porous carbons are superior to those for random 1D porous carbon. These results demonstrate that layered and core-shell type 1D CMPs and related heteroatom-doped 1D porous carbons can be rationally designed and controlled prepared for high performance energy-related applications.

  6. Highly Efficient Electrocatalysts for Oxygen Reduction Reaction Based on 1D Ternary Doped Porous Carbons Derived from Carbon Nanotube Directed Conjugated Microporous Polymers

    KAUST Repository

    He, Yafei

    2016-10-11

    © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.One-dimensional (1D) porous materials have shown great potential for gas storage and separation, sensing, energy storage, and conversion. However, the controlled approach for preparation of 1D porous materials, especially porous organic materials, still remains a great challenge due to the poor dispersibility and solution processability of the porous materials. Here, carbon nanotube (CNT) templated 1D conjugated microporous polymers (CMPs) are prepared using a layer-by-layer method. As-prepared CMPs possess high specific surface areas of up to 623 m2 g-1 and exhibit strong electronic interactions between p-type CMPs and n-type CNTs. The CMPs are used as precursors to produce heteroatom-doped 1D porous carbons through direct pyrolysis. As-produced ternary heteroatom-doped (B/N/S) 1D porous carbons possess high specific surface areas of up to 750 m2 g-1, hierarchical porous structures, and excellent electrochemical-catalytic performance for oxygen reduction reaction. Both of the diffusion-limited current density (4.4 mA cm-2) and electron transfer number (n = 3.8) for three-layered 1D porous carbons are superior to those for random 1D porous carbon. These results demonstrate that layered and core-shell type 1D CMPs and related heteroatom-doped 1D porous carbons can be rationally designed and controlled prepared for high performance energy-related applications.

  7. Thermonuclear reaction listing

    International Nuclear Information System (INIS)

    Fukai, Yuzo

    1993-01-01

    The following 10 elements, including T, are well known as nuclear fusion fuels: p, D, T, 3 He, 4 He, 6 Li, 7 Li, 9 Be, 10 B, 11 B, ( 12 C, 13 C), where 12 C and 13 C are considered only in the calculation of Q value. Accordingly the number of the thermonuclear reactions is 55, and 78, if including carbon elements. The reactions have some branches. For the branches having two and three reaction products, the reaction products, Q value and threshold energy are calculated by using a computer. We have investigated those of the branches having more than three products from the papers of Ajzenberg-Selove and so on. And also, by the same papers, we check whether the above mentioned branch has been observed or not. The results are as follows: (I) the number of reactions which have Q 0 branches only with γ ray production, and Q 0 and neutron production is 36(17), and (IV) that of reactions whose branch with Q > 0 does not produce neutrons is 9(3). The value in the parentheses shows the number of the case of the carbon elements. For 55 thermonuclear reactions induced by lighter nuclides than 11 B, the reaction products, the values of Q and threshold energy, and the papers with reaction cross section data are presented in the tables. (author)

  8. Mechanistic insights into the hydrocyanation reaction

    NARCIS (Netherlands)

    Bini, L.

    2009-01-01

    The hydrocyanation of an alkene is a catalytic carbon-carbon bond formation reaction and the obtained nitriles can be converted into a variety of valuable products. The investigation of this reaction has mainly focused on the DuPont adiponitrile (AdN) process. This process is so far the only example

  9. Kinetics of extracellular release of 14C-labelled organic carbon by submerged macrophytes

    International Nuclear Information System (INIS)

    Soendergaard, M.

    1981-01-01

    The release of extracellular organic carbon (EOC) by six submerged freswater macrophytes was measured in time course studies with a 14 C-technique. Incubation in light in an open water-flow system made it possible to assay the time courses of 14 C-fixation and the simultaneous release of labelled EOC. Heterotrophic utilization of the released products by epiphytic communities was measured. Two patterns of release kinetics were found: (1) Constant rates of release occurred during the incubations, (2) The rates still increased after 24 h of incubation. During the first hours of incubation the rates of release increased in all species. Elodea reached constant rates after 2-4 h and Littorella and Ceratophyllum demersum after about 20 h. In the experiments with C. submersum and Nitella the rates of release increased almost linearly during the entire incubation period. The kinetics of release were in agreement with the molecular weight distribution of the dissolved EOC measured with gel chromatography. Low molecular weight products ( 10000 Daltons) dominated the dissolved EOC released by C. submersum and Nitella. A large fraction (18-60%) of the total EOC could be recovered on filters with a pore size of 0.2 μm. This particulate fraction probably represents some abiotic removal. The quantities of relase were low in all species and did not exceed 0.9% of the photosynthetic carbon fixation. Heterotrophic uptake by the epiphytic communities was less than 10% of the EOC released. The results emphasize that the 14 C-labelling of extracellular products is a time dependent process. (author)

  10. Contribution to the study of a method for measuring continuously the isotopic effect. The search for an isotopic effect during the reduction of cuprous oxide by a {sup 12}CO - {sup 14}CO mixture (1962); Contribution a l'etude d'une methode de mesure continue de l'effet isotopique. Recherche d'un effet isotopique dans la reduction de l'oxyde cuivreux par le melange {sup 12}CO - {sup 14}CO (1962)

    Energy Technology Data Exchange (ETDEWEB)

    Richard, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-15

    The determination of an isotopic effect between the two reactions: {sup 12}CO + Cu{sub 2}O {yields} {sup 12}CO{sub 2} + 2 Cu 'light' reaction {sup 14}CO + Cu{sub 2}O {yields} {sup 14}C{sub O}2 + 2 Cu 'heavy' reaction is possible if the respective kinetics are known. The condensation, during the reaction, of the carbon dioxide formed, and the measurement as a function of time of the residual carbon monoxide pressure, makes it possible to deduce, uninterruptedly, the 'light' reaction kinetics. The 'heavy' reaction kinetics are obtained by measuring continuously, in situ, the radioactivity of the residual reactant gas as a function of the time. The apparatus used for this is a plastic scintillator counter. A calibration curve of the measured radioactivity as a function of the reactant gas pressure in the absence of reaction makes it possible to compare the kinetics of the 'light' and 'heavy' reactions. The reaction temperature is chosen such that the reaction rate is sufficiently slow, so that the variation of the radioactivity during unit counting time is negligible. (author) [French] La determination d'un effet isotopique entre les deux reactions: {sup 12}CO + Cu{sub 2}O {yields} {sup 12}CO{sub 2} + 2 Cu reaction 'legere' {sup 14}CO + Cu{sub 2}O {yields} {sup 14}C{sub O}2 + 2 Cu reaction 'lourde' est rendue possible par la connaissance de leurs cinetiques respectives. La condensation, au cours de la reaction, du gaz carbonique forme et la mesure en fonction du temps de la pression de l'oxyde de carbone residuel, permet d'obtenir, de facon continue, la cinetique de la reaction 'legere'. La cinetique de la reaction lourde est determinee par la mesure continue, in situ, du taux de radioactivite du reactif gazeux residuel en fonction du temps. Le dispositif employe dans ce but est un compteur a scintillateur plastique. Une courbe d'etalonnage, du taux mesure de radioactivite en fonction de la pression du gaz reactif, en l'absence de reaction, permet de comparer les

  11. Catalytic Depolymerization of Lignin and Woody Biomass in Supercritical Ethanol: Influence of Reaction Temperature and Feedstock.

    Science.gov (United States)

    Huang, Xiaoming; Atay, Ceylanpinar; Zhu, Jiadong; Palstra, Sanne W L; Korányi, Tamás I; Boot, Michael D; Hensen, Emiel J M

    2017-11-06

    The one-step ethanolysis approach to upgrade lignin to monomeric aromatics using a CuMgAl mixed oxide catalyst is studied in detail. The influence of reaction temperature (200-420 °C) on the product distribution is investigated. At low temperature (200-250 °C), recondensation is dominant, while char-forming reactions become significant at high reaction temperature (>380 °C). At preferred intermediate temperatures (300-340 °C), char-forming reactions are effectively suppressed by alkylation and Guerbet and esterification reactions. This shifts the reaction toward depolymerization, explaining high monomeric aromatics yield. Carbon-14 dating analysis of the lignin residue revealed that a substantial amount of the carbon in the lignin residue originates from reactions of lignin with ethanol. Recycling tests show that the activity of the regenerated catalyst was strongly decreased due to a loss of basic sites due to hydrolysis of the MgO function and a loss of surface area due to spinel oxide formation of the Cu and Al components. The utility of this one-step approach for upgrading woody biomass was also demonstrated. An important observation is that conversion of the native lignin contained in the lignocellulosic matrix is much easier than the conversion of technical lignin.

  12. Estimation of carbon flow in a Calluna heath system

    International Nuclear Information System (INIS)

    Roesberg, I.; Oevstedal, D.O.; Seljelid, R.; Schreiner, Oe.; Goksoeyr, J.

    1981-01-01

    In a Culluna heath, plots of 1 m 2 were pulse labelled with 14 CO 2 , and the radioactivity in vegetation above ground, roots, litter and soil organic matter followed for almost two years. In a separate experiment, radioactivity in above ground and root respiration and in soil microbial biomass was determined. A kinetic model for the carbon transfer reaction is presented, and shown to give a satisfactory agreement with the experimental data. The results demonstrate that a major part of the assimilated carbon passes through the roots and into the soil, where it is rapidly mineralized. (author)

  13. A combined high-temperature experimental and theoretical kinetic study of the reaction of dimethyl carbonate with OH radicals

    KAUST Repository

    Khaled, Fathi

    2017-02-08

    The reaction kinetics of dimethyl carbonate (DMC) and OH radicals were investigated behind reflected shock waves over the temperature range of 872-1295 K and at pressures near 1.5 atm. Reaction progress was monitored by detecting OH radicals at 306.69 nm using a UV laser absorption technique. The rate coefficients for the reaction of DMC with OH radicals were extracted using a detailed kinetic model developed by Glaude et al. (Proc. Combust. Inst. 2005, 30(1), 1111-1118). The experimental rate coefficients can be expressed in Arrhenius form as: kexpt\\'l = 5.15 × 10(13) exp(-2710.2/T) cm(3) mol(-1) s(-1). To explore the detailed chemistry of the DMC + OH reaction system, theoretical kinetic analyses were performed using high-level ab initio and master equation/Rice-Ramsperger-Kassel-Marcus (ME/RRKM) calculations. Geometry optimization and frequency calculations were carried out at the second-order Møller-Plesset (MP2) perturbation level of theory using Dunning\\'s augmented correlation consistent-polarized valence double-ζ basis set (aug-cc-pVDZ). The energy was extrapolated to the complete basis set using single point calculations performed at the CCSD(T)/cc-pVXZ (where X = D, T) level of theory. For comparison purposes, additional ab initio calculations were also carried out using composite methods such as CBS-QB3, CBS-APNO, G3 and G4. Our calculations revealed that the H-abstraction reaction of DMC by OH radicals proceeds via an addition elimination mechanism in an overall exothermic process, eventually forming dimethyl carbonate radicals and H2O. Theoretical rate coefficients were found to be in excellent agreement with those determined experimentally. Rate coefficients for the DMC + OH reaction were combined with literature rate coefficients of four straight chain methyl ester + OH reactions to extract site-specific rates of H-abstraction from methyl esters by OH radicals.

  14. S-factor measurement of the 13C(p,γ)14N reaction in reverse kinematics

    International Nuclear Information System (INIS)

    Genard, G; Terwagne, G; Descouvemont, P

    2010-01-01

    We measure the S-factor of the 13 C(p,γ) 14 N reaction in reverse kinematics for energies ranging from 561 down to 225 keV with a low background experimental setup. The results are compared with previous measurements and an R-matrix treatment is applied to the data in order to obtain the properties of the 511 keV resonance that dominates the cross section at low energies.

  15. Study of reaction mechanisms in 40Ar+68Zn interaction at 14.6 and 27.6 MeV/N

    International Nuclear Information System (INIS)

    Rami, F.

    1985-01-01

    The competing mechanisms in the 40 Ar+ 68 Zn reaction have been investigated at two bombarding energies: 14.6 and 27.6 MeV/nucleon. Mass, charge and energy spectra of the reaction products have been measured in a large angular range (3 0 0 ). The results show that important changes occur in this energy region. At 14.6 MeV/nucleon the production of the projectile-like fragments results mainly from deep inelastic and direct nucleon transfer reactions; while at 27.6 MeV/nucleon a strong component corresponding to process similar to projectile fragmentation is also observed. A distinction between the fragmentation process and direct transfer of few nucleons has been possible by analysing the linear momentum distributions of the detected fragments. The energy dependance of the fusion cross section indicates that this process should disappear for incident energies E/A > approximately 30 MeV/nucleon. The maximum temperature reached by the compound nucleus has been deduced i.e. Tmax approximately equal 7 MeV; this value is in agreement with recent theoretical predictions [fr

  16. Durability of carbon-supported manganese oxide nanoparticles for the oxygen reduction reaction (ORR) in alkaline medium

    Czech Academy of Sciences Publication Activity Database

    Roche, I.; Chainet, E.; Chatenet, M.; Vondrák, Jiří

    2008-01-01

    Roč. 38, č. 9 (2008), s. 1195-1201 ISSN 0021-891X R&D Projects: GA AV ČR KJB4813302; GA ČR GA104/02/0731 Grant - others:CNRS(FR) 18105 Institutional research plan: CEZ:AV0Z40320502 Keywords : oxygen reduction reaction * rotating ring-disc electrode * carbon-supported manganese oxide Subject RIV: CA - Inorganic Chemistry Impact factor: 1.540, year: 2008

  17. Hydrogen evolution reaction at Ru-modified nickel-coated carbon fibre in 0.1 M NaOH

    Directory of Open Access Journals (Sweden)

    Pierożyński Bogusław

    2015-03-01

    Full Text Available The electrochemical activity towards hydrogen evolution reaction (HER was studied on commercially available (Toho-Tenax and Ru-modified nickel-coated carbon fibre (NiCCF materials. Quality and extent of Ru electrodeposition on NiCCF tows were examined by means of scanning electron microscopy (SEM. Kinetics of the hydrogen evolution reaction were investigated at room temperature, as well as over the temperature range: 20-50°C in 0.1 M NaOH solution for the cathodic overpotential range: -100 to -300 mV vs. RHE. Corresponding values of charge-transfer resistance, exchange current-density for the HER and other electrochemical parameters for the examined fibre tow composites were recorded.

  18. Effects of carbon source and carbon content on electrochemical performances of Li{sub 4}Ti{sub 5}O{sub 12}/C prepared by one-step solid-state reaction

    Energy Technology Data Exchange (ETDEWEB)

    Hu Xuebu [College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610066 (China); Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan 610041 (China); Lin Ziji [China National Quality Supervision and Inspection Center for Alcoholic Beverage Products and Processed Food, Luzhou, Sichuan 646100 (China); Yang Kerun [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan 610041 (China); Hua, Yongjian [China Aviation Lithium Battery Co. Ltd., Luoyang, Henan 471009 (China); Deng Zhenghua, E-mail: zhdeng@cioc.ac.cn [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan 610041 (China)

    2011-05-30

    Highlights: > A simple route to prepare the Li{sub 4}Ti{sub 5}O{sub 12}/C by one-step solid-state reaction. > Carbon source and carbon content are two important factors on the electrochemical performances of Li{sub 4}Ti{sub 5}O{sub 12}/C. > As-prepared Li{sub 4}Ti{sub 5}O{sub 12}/C under optimized conditions shows excellent electrochemical performances. - Abstract: Li{sub 4}Ti{sub 5}O{sub 12}/C composites were synthesized by one-step solid-state reaction method using four commonly used organic compounds or organic polymers as carbon source, i.e., polyacrylate acid (PAA), citric acid (CA), maleic acid (MA) and polyvinyl alcohol (PVA). The physical characteristics of Li{sub 4}Ti{sub 5}O{sub 12}/C composites were investigated by X-ray diffraction, electron microscopy, Raman spectroscopy, particle size distribution and thermogravimetry-derivative thermogravimetry techniques. Their electrochemical properties were characterized by cyclic voltammograms, electrochemical impedance spectra, constant current charge-discharge and rate charge-discharge. These analyses indicated that the carbon source and carbon content have a great effect on the physical and electrochemical performances of Li{sub 4}Ti{sub 5}O{sub 12}/C composites. An ideal carbon source and appropriate carbon content effectively improved the electrical contact between the Li{sub 4}Ti{sub 5}O{sub 12} particles, which enhanced the discharge capacity and rate capability of Li{sub 4}Ti{sub 5}O{sub 12}/C composites. PAA was the best carbon source for the synthesis of Li{sub 4}Ti{sub 5}O{sub 12}/C composites. When the carbon content was 3.49 wt.% (LiOH.H{sub 2}O/PAA molar ratio of 1), as-prepared Li{sub 4}Ti{sub 5}O{sub 12}/C showed the maximum discharge capacity. At 0.2 C, initial capacity of the optimized sample was 168.6 mAh g{sup -1} with capacity loss of 2.8% after 50 cycles. At 8 and 10 C, it showed discharge capacities of 143.5 and 132.7 mAh g{sup -1}, with capacity loss of 8.7 and 9.9% after 50 cycles

  19. Variations in the patterns of soil organic carbon mineralization and microbial communities in response to exogenous application of rice straw and calcium carbonate

    International Nuclear Information System (INIS)

    Feng, Shuzhen; Huang, Yuan; Ge, Yunhui; Su, Yirong; Xu, Xinwen; Wang, Yongdong; He, Xunyang

    2016-01-01

    The addition of exogenous inorganic carbon (CaCO 3 ) and organic carbon has an important influence on soil organic carbon (SOC) mineralization in karst soil, but the microbial mechanisms underlying the SOC priming effect are poorly understood. We conducted a 100-day incubation experiment involving four treatments of the calcareous soil in southwestern China's karst region: control, 14 C-labeled rice straw addition, 14 C-labeled CaCO 3 addition, and a combination of 14 C-labeled rice straw and CaCO 3 . Changes in soil microbial communities were characterized using denaturing gradient gel electrophoresis with polymerase chain reaction (PCR-DGGE) and real-time quantitative PCR (q-PCR). Both 14 C-rice straw and Ca 14 CO 3 addition stimulated SOC mineralization, suggesting that organic and inorganic C affected SOC stability. Addition of straw alone had no significant effect on bacterial diversity; however, when the straw was added in combination with calcium carbonate, it had an inhibitory effect on bacterial and fungal diversity. At the beginning of the experimental period, exogenous additives increased bacterial abundance, although at the end of the 100-day incubation bacterial community abundance had gradually declined. Incubation time, exogenous input, and their interaction significantly affected SOC mineralization (in terms of priming and the cumulative amount of mineralization), microbial biomass carbon (MBC), and microbial community abundance and diversity. Moreover, the key factors influencing SOC mineralization were MBC, bacterial diversity, and soil pH. Overall, these findings support the view that inorganic C is involved in soil C turnover with the participation of soil microbial communities, promoting soil C cycling in the karst region. - Highlights: • Different patterns of 14 C-rice straw and Ca 14 CO 3 addition on positive priming effects of SOC mineralization. • Inorganic C is involved in soil C cycling with the participation of soil microbial

  20. Storage of CO2 by mineral carbonation of olivine: Study of the global process for the recovery of the reaction products and the separation of chromite particles by flotation

    International Nuclear Information System (INIS)

    Turri, Laura

    2017-01-01

    This work deals with the study of direct carbonation of olivine in solution, for the chemical transformation of CO 2 emitted by the industries. The influence of operating conditions is evaluated in order to optimize the yield of the reaction. However, for environmental acceptability and economic viability of the project, the beneficiation of recoverable metals and products is considered. Chromite particles contained in olivine are unreactive during the carbonation reaction: the separation is developed by flotation upstream of the reaction. According to the results, the extraction of chromite by magnetic separation is also conceivable. Gravimetric separation by sedimentation is considered to recover residual olivine in the reaction products, in order to recycle them in the carbonation process. Products sieving allowed to concentrate carbonates (less than 40 μm) and silica (between 40 and 106 μm). However, the co-precipitation of mixed carbonates due to the presence of iron and nickel included in the magnesium matrix, compromises the purification and the optimal valorization of the solids. Moreover, the formation of a passivation layer on the particles surface limits the conversion of olivine. Pretreatment of olivine is envisaged for the leaching of nickel in ammoniac solution. Besides, preliminary dissolution of olivine and selective precipitation of species with pH control of the solution can be an interesting alternative for higher carbonation extent and more efficient purification of the products. (author)

  1. Resonance Strength Measurement at Astrophysical Energies: The 17O(p,α14N Reaction Studied via THM

    Directory of Open Access Journals (Sweden)

    Sergi M.L.

    2016-01-01

    Full Text Available In recent years, the Trojan Horse Method (THM has been used to investigate the low-energy cross sections of proton-induced reactions on 17O nuclei, overcoming extrapolation procedures and enhancement effects due to electron screening. We will report on the indirect study of the 17O(p,α14N reaction via the Trojan Horse Method by applying the approach developed for extracting the resonance strength of narrow resonance in the ultralow energy region. The mean value of the strengths obtained in the two measurements was calculated and compared with the direct data available in literature.

  2. Biosynthesis of glycerol carbonate from glycerol by lipase in dimethyl carbonate as the solvent.

    Science.gov (United States)

    Lee, Kyung Hwa; Park, Chang-Ho; Lee, Eun Yeol

    2010-11-01

    Glycerol carbonate was synthesized from renewable glycerol and dimethyl carbonate using lipase in solvent-free reaction system in which excess dimethyl carbonate played as the reaction medium. A variety of lipases have been tested for their abilities to catalyze transesterification reaction, and Candida antartica lipase B and Novozyme 435 exhibited higher catalytic activities. The silica-coated glycerol with a 1:1 ratio was supplied to prevent two-phase formation between hydrophobic dimethyl carbonate and hydrophilic glycerol. Glycerol carbonate was successfully synthesized with more than 90% conversion from dimethyl carbonate and glycerol with a molar ratio of 10 using Novozyme 435-catalyzed transesterification at 70 °C. The Novozyme 435 [5% (w/w) and 20% (w/w)] and silica gel were more than four times recycled with good stability in a repeated batch operation for the solvent-free synthesis of glycerol carbonate.

  3. Sampling and monitoring of carbon-14 in gaseous effluents from nuclear facilities - a literature survey

    International Nuclear Information System (INIS)

    Snellman, M.

    1988-12-01

    C-14 compounds produced in the coolant may be released mainly together with off-gas and waste water from the coolant purification and treatment system. In reactors the release of C-14 will occur mainly in gaseous effluents and only a few percent in liquid effluents. Reported releases from BWRs range from 260 to 670 GBq/GW(e) x year and from 90 to 430 GBq/GW(e) x year for PWRs. At BWRs the condenser air ejector contributes the main inplant release pathway, whereas in PWRs the off-gas treatment vents are the main pathway for C-14 release. C-14 sampling methods depend generally on the C-14 being in the form of CO 2 . The off-gas discharges from BWRs are mainly in the form of CO 2 whereas in PWRs a major fraction of the released C-14 is in the form of hydrocarbons or carbon monoxide (generally 80-100%). Sampling systems in PWRs should therefore be equipped with a catalytic oxidizer to convert all C-14 to CO 2 before trapping. The purpose of this study is to provide information on the techniques available for sampling and monitoring C-14

  4. Algal C-14 and total carbon metabolisms 2. Experimental observations with the diatom Skeletonema costatum

    DEFF Research Database (Denmark)

    Williams, P.J.L.; Robinson, C.; Søndergaard, M.

    1996-01-01

    Three sets of comparisons of net and gross inorganic carbon assimilation and C-14 uptake were made with an axenic culture of Skeletonema costatum. The comparisons showed that in the physiological window studied (10-20% of the intrinsic generation time and gross photosynthesis/respiration ratios...... of 2-3), C-14 uptake into the particulate plus the dissolved fractions approximated to net photosynthesis. Rate constants derived from the chemically determined changes were used to parameterize models that accounted for the respiration of photosynthetic products and for the recycling of respiratory CO......2. The conclusion drawn was that over the time scale studied, the C-14 technique was measuring net photosynthesis, consistent with essentially 100% recycling of respiratory CO2. The study has shown that we now possess the basis to make a rigorous analysis of net, gross CO2 fixation and net C-14...

  5. Utilization in rats of 14C-L-lysine-labeled casein browned by amino-carbonyl reaction

    International Nuclear Information System (INIS)

    Mori, Bunpei; Nakatsuji, Hirotaka.

    1977-01-01

    The investigation was carried out in order to elucidate the reason for the reduction in nutritive value of browned protein, by using labeled casein as a model protein. Goat casein preparation in which lysine residues had been labeled with 14 C was browned by amino-carbonyl reaction with glucose at 37 0 C. Browned or non-browned casein was ingested by growing rats by spaced feeding. When the rats ingested the browned casein the experimental group, higher radioactivity was found in TCA-soluble fraction in the small intestine as compared with that in the control group, while radioactivity was scarecely found in feces for 22 hr. Along with absorption delay, considerably high radioactivity was found in urine. The recovery of radioactivity in expired air of rats fed the labeled casein (browned and non-browned) was measured. In the experimental group, expired 14 CO 2 came out slower than the control group. From these results, it is suggested that the main reason for the reduction in nutritive value by browning reaction may be the formation of a lysine derivative in a protein, which remains in the small intestinal lumen as an absorption-delayed material and is finally excreted in urine. (auth.)

  6. Cross section measurements of the (n,2n) reaction with 14 MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Kaji, Harumi; Shiokawa, Takanobu [Tohoku Univ., Sendai (Japan). Faculty of Science; Suehiro, Teruo; Yagi, Masuo

    1975-07-01

    Cross sections are measured for the reactions /sup 64/Zn(n, 2n)/sup 63/Zn, /sup 75/As(n, 2n)/sup 74/As, /sup 79/Br(n, 2n)/sup 78/Br, /sup 90/Zr(n, 2n)/sup 89/Zr, /sup 141/Pr(n, 2n)/sup 140/Pr and /sup 144/Sm(n, 2n)/sup 143/Sm by activation method in the energy range 13.5-14.8 MeV. The cross sections are determined relatively to the cross section for the /sup 63/Cu(n, 2n)/sup 62/Cu and /sup 19/F(n, 2n)/sup 18/F reactions. Before the cross section measurement, incident-neutron energies are measured by recoil proton method. The results of the cross sections are compared with data existing in the literatures and are discussed with reference to the theory of Weisskopf and Ewing.

  7. Ordered hierarchically porous carbon codoped with iron and nitrogen as electrocatalyst for the oxygen reduction reaction.

    Science.gov (United States)

    Deng, Chengwei; Zhong, Hexiang; Yao, Lan; Liu, Sisi; Xu, Zhuang; Zhang, Huamin

    2014-12-01

    N-doped carbon catalysts have attracted great attention as potential alternatives to expensive Pt-based catalysts used in fuel cells. Herein, an ordered hierarchically porous carbon codoped with N and Fe (Fe-NOHPC) is prepared by an evaporation-induced self-assembly process followed by carbonization under ammonia. The soft template and Fe species promote the formation of the porous structure and facilitate the oxygen reduction reaction (ORR).The catalyst possesses an ordered hierarchically porous structure with a large surface area (1172.5 m(2) g(-1) ) and pore volume of 1.03 cm(3) g(-1) . Compared to commercial 20% Pt/C, it exhibits better ORR catalytic activity and higher stability as well as higher methanol tolerance in an alkaline electrolyte, which demonstrates its potential use in fuel cells as a nonprecious cathode catalyst. The N configuration, Fe species, and pore structure of the catalysts are believed to correlate with its high catalytic activity. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Requirements for controlling a repository's releases of carbon-14 dioxide; the high costs and negligible benefits

    International Nuclear Information System (INIS)

    Park, U Sun; Pflum, C.G.

    1990-01-01

    A repository excavated within the unsaturated zone may release carbon (C)-14 dioxide in amounts that exceed limits imposed by the Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC). The release would not threaten the general population, but may expose some hypothetical maximally exposed individual to 0.0005 millirems/year. Yet a repository's releases of C-14 dioxide are strictly regulated, perhaps unintentionally. The EPA and NRC regulations could force the Department of Energy to design and fabricate an expensive 10,000-year waste package solely for the sake of controlling releases of C-14 dioxide. This paper argues that the repository regulations should exempt releases of C-14 dioxide or at least impose more equitable limits. 21 refs., 1 tab

  9. Radiocarbon (14C) Constraints On The Fraction Of Refractory Dissolved Organic Carbon In Primary Marine Aerosol From The Northwest Atlantic

    Science.gov (United States)

    Beaupre, S. R.; Kieber, D. J.; Keene, W. C.; Long, M. S.; Frossard, A. A.; Kinsey, J. D.; Duplessis, P.; Chang, R.; Maben, J. R.; Lu, X.; Zhu, Y.; Bisgrove, J.

    2017-12-01

    Nearly all organic carbon in seawater is dissolved (DOC), with more than 95% considered refractory based on modeled average lifetimes ( 16,000 years) and characteristically old bulk radiocarbon (14C) ages (4000 - 6000 years) that exceed the timescales of overturning circulation. Although this refractory dissolved organic carbon (RDOC) is present throughout the oceans as a major reservoir of the global carbon cycle, its sources and sinks are poorly constrained. Recently, RDOC was proposed to be removed from the oceans through adsorption onto the surfaces of rising bubble plumes produced by breaking waves, ejection into the atmosphere via bubble bursting as a component of primary marine aerosol (PMA), and subsequent oxidation in the atmosphere. To test this mechanism, we used natural abundance 14C (5730 ± 40 yr half-life) to trace the fraction of RDOC in PMA produced in a high capacity generator at two biologically-productive and two oligotrophic hydrographic stations in the Northwest Atlantic Ocean during a research cruise aboard the R/V Endeavor (Sep - Oct 2016). The 14C signatures of PMA separately generated day and night from near-surface (5 m) and deep (2500 m) seawater were compared with corresponding 14C signatures in seawater of near-surface dissolved inorganic carbon (DIC, a proxy for recently produced organic matter), bulk deep DOC (a proxy for RDOC), and near-surface bulk DOC. Results constrain the selectivity of PMA formation from RDOC in natural mixtures of recently produced and refractory DOC. The implications of these results for PMA formation and RDOC biogeochemistry will be discussed.

  10. Stellar reaction of 14N(p,γ)15O and hydrogen burning in massive stars

    International Nuclear Information System (INIS)

    Schroeder, U.; Becker, H.W.; Bogaert, G.; Goerres, J.; Rolfs, C.; Trautvetter, H.P.; Azuma, R.E.; Campbell, C.; King, J.D.; Vise, J.

    1987-01-01

    The capture reaction 14 N(p,γ) 15 O has been investigated in the energy range E p =0.2 to 3.6 MeV with the use of windowless gas targets as well as implanted 14 N solid targets of high isotopic purity. The measurement of absolute cross sections, γ-ray angular distributions and excitation functions is reported. The data provide information on the capture amplitudes involved in the transitions to all bound states of 15 O. The astrophysical S-factor at stellar energies has been determined by means of theoretical fits. The result of S(0)=3.20 keV . b is in good agreement with the value incorporated in the compilations. Also discussed are the nuclear physics aspects of the data. (orig.)

  11. Reactions of N,N'-bis(2-hydroxyethyl)oxalamide with Ethylene Carbonate and Use of the Obtained Products as Components of Polyurethanes Foams

    International Nuclear Information System (INIS)

    Niemiec, I.Z.

    2010-01-01

    N,N'-bis(2-hydroxyethyl)oxalamide (BHEOA) was subject to hydroxy alkylation with ethylene carbonate (EC). By means of instrumental methods (IR, 1H-NMR, MALDI ToF, GC, and GC-MS), an influence of the reaction conditions on structure and compositions of the obtained products was investigated. The hydroxyalkyl and hydroxy alkoxy derivatives of oxalamide (OA) were obtained by reaction of BHEOA with 210-molar excess of ethylene carbonate (EC, 1,3-dioxolane-2-one). The products have a good thermal stability and possess suitable physical properties as substrates for foamed polyurethanes. The obtained products were used in manufacturing the rigid polyurethane foams which possess enhanced thermal stability and good mechanical properties.

  12. Diffusion-type model of the global carbon cycle for the estimation of dose to the world population from releases of carbon-14 to the atmosphere

    International Nuclear Information System (INIS)

    Killough, G.G.

    1977-05-01

    A nonlinear dynamic model of the exchange of carbon among the atmosphere, terrestrial biosphere, and ocean is described and applied to estimating the radiation dose to the world's population from the release of 14 C to the atmosphere from the nuclear power industry. A computer implementation of the model, written in the IBM Continuous System Modeling Program III (CSMP III) simulation language, is presented. The model treats the ocean as a diffusive medium with respect to vertical transport of carbon, and the nonlinear variation of CO 2 partial pressure with the total inorganic carbon concentration in surface waters is taken into account in calculating the transfer rate from ocean to atmosphere. Transfers between the atmosphere and terrestrial biosphere are represented by nonlinear equations which consider CO 2 fertilization and impose a constraint on the ultimate total carbon mass in the biosphere

  13. The leachability of carbon-14-labelled 3,4-benzopyrene from coal ash into aqueous systems

    NARCIS (Netherlands)

    Besemer, A.C.; Kanij, J.

    1984-01-01

    The leachability of polycyclic aromatic hydrocarbons from coal ash into aqueous systems was studied. Carbon-14-labeled 3,4-Benzopyrene (BaP) was deposited on coal fly ash by adsorption from the liquid phase in quantities of about 10 ??g/g ash. After a thermal treatment in air at 120??C for 2 hours

  14. Mechanism of ({sup 14}N, {sup 12}B) reactions at intermediate energy leading to large spin-polarization of {sup 12}B

    Energy Technology Data Exchange (ETDEWEB)

    Mitsuoka, Shin-ichi [Osaka Univ., Ibaraki (Japan). Research Center for Nuclear Physics; Shimoda, Tadashi; Miyatake, Hiroari [and others

    1996-05-01

    To study mechanisms of the ({sup 14}N, {sup 12}B) reactions at intermediate energies, double differential cross section and nuclear spin-polarization of the {sup 12}B projectile-like fragments have been measured as a function of longitudinal momentum in the angular range of 0deg - 9deg. Large spin-polarization of the reaction products {sup 12}B has been observed in the {sup 9}Be({sup 14}N, {sup 12}B) reaction at 39.3 MeV/u. The momentum distributions at forward angles exhibit characteristic features which can not be understood by the current projectile fragmentation picture. It is shown that by assuming the existence of direct two-proton transfer process in addition to the fragmentation process, both the cross section and polarization of {sup 12}B fragments are successfully explained. The target and incident energy dependence of the momentum distribution are also explained reasonably. (author)

  15. Electrocatalytic Activity of Carbonized Nanostructured Polyanilines for Oxidation Reactions: Sensing of Nitrite Ions and Ascorbic Acid

    International Nuclear Information System (INIS)

    Micić, Darko; Šljukić, Biljana; Zujovic, Zoran; Travas-Sejdic, Jadranka; Ćirić-Marjanović, Gordana

    2014-01-01

    Highlights: • Carbonized PANIs prepared from various nanostructured PANI precursors • Electroanalytical performances of carbonized PANIs evaluated using voltammetry • Study of carbonized PANIs physico-chemical properties related to electroactivity • The lowest over-potential for NO 2 − oxidation at c-PANI (+0.87 V vs. SCE) • The lowest over-potential for ascorbic acid oxidation at both c-PANI and c-PANI-SSA - Abstract: A comparative study of the electrocatalytic activity of nitrogen-containing carbon nanomaterials, prepared by the carbonization of nanostructured polyaniline (PANI) salts, for the electrooxidation reactions is presented. Nanostructured PANI salts were synthesized by the oxidative polymerization of aniline with ammonium peroxydisulfate in an aqueous solution in the presence of 5-sulfosalicylic acid (PANI-SSA), 3,5-dinitrosalicylic acid (PANI-DNSA) as well as without added acid (PANI), and subsequently carbonized to c-PANI-SSA, c-PANI-DNSA and c-PANI, respectively. Glassy carbon tip was modified with nanostructured c-PANIs and used for the investigation of sensing of nitrite and ascorbic acid in aqueous solutions as model analytes by linear sweep voltammetry. All three types of the investigated c-PANIs gave excellent response to the nitrite ions and ascorbic acid electrooxidation. The lowest peak potential for nitrite ion oxidation exhibited c-PANI (+0.87 V vs. SCE), and for ascorbic acid oxidation both c-PANI and c-PANI-SSA (ca. + 0.13 V vs. SCE). Electrochemical data were correlated with structural and textural data obtained by Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, elemental and nitrogen sorption analysis

  16. 14C chronology of the oldest Scandinavian church in use. An AMS/PIXE study of lime lump carbonate in the mortar

    International Nuclear Information System (INIS)

    Lindroos, Alf; Ranta, Heikki; 14C Dating Laboratory, Department of Physics and Astronomy, University of Aarhus (Denmark))" data-affiliation=" (AMS 14C Dating Laboratory, Department of Physics and Astronomy, University of Aarhus (Denmark))" >Heinemeier, Jan; Lill, Jan-Olof

    2014-01-01

    Mortar dating was applied to newly revealed, original mortar in the church of Dalby in Scania, southern Sweden which is considered to be the oldest still standing church in Scandinavia. Small white lime lumps were sampled by chipping from the supporting pillars in the interior of the church. Special emphasis was in sampling lime lumps because the church is situated in the Scania limestone area and aggregate limestone contamination was anticipated in the bulk mortars. Earlier studies have, however, shown that lime lumps do not contain aggregate material but only possible limestone rests from incomplete calcination. The sampled material was prepared for radiocarbon AMS dating. The carbonate in the lime lumps was hydrolyzed according to the sequential leaching technique developed for the Århus 14 C laboratory in Denmark. Prior to the hydrolysis the lime lumps were examined for dead-carbon contamination using a stereo microscope and cathodoluminescence. The lime lumps displayed heterogeneous carbonate luminescence. This is, however, common and it was not considered a problem because carbonate growth in changing pH/Eh conditions often leads to changing luminescence colors. Two lumps had little dead carbon contamination and an early second millennium 14 C signature. One lump, however, seemed to be heavily contaminated with dead carbon. Since the sample passed the microscopic screening, the leftovers of the lump was subjected to PIXE analysis and compared with the other two lumps. The well-defined, early 2nd millennium 14 C age of the lime lumps of this particular church is an important contribution to the discussion on stone church chronology in Scandinavia

  17. Thermodynamics of calcium-isotope-exchange reactions. 1. Exchange between isotopic calcium carbonates and aqueous calcium ions

    International Nuclear Information System (INIS)

    Zhang, R.S.; Nash, C.P.; Rock, P.A.

    1988-01-01

    This paper reports the authors results for the direct experimental determination of the equilibrium constant for the calcium-isotope-exchange reaction 40 CaCO 3 (s) + 44 CaCl 2 (aq) reversible 44 CaCO 2 (s) + 40 CaCl 2 (aq). The reaction was studied in electrochemical double cells without liquid junction of the type shown in eq 2. The experimental value of the equilibrium constant at 295 +/- 2 K is K = 1.08 +/- 0.02. The experimental value for K is compared with the values of K calculated for various model reactions according to the statistical thermodynamic theory of isotope effects. The isotopic solid carbonates were modeled according to both the Debye and Kieffer theories. No structured models of solvated isotopic aqueous calcium ions yield calculated equilibrium constants in agreement with their experimental results. This conclusion is in agreement with published molecular dynamics calculations which show that the aqueous solvation of Ca 2 =(aq) is essentially unstructured

  18. Effect of Reaction Temperature on Carbon Yield and Morphology of CNTs on Copper Loaded Nickel Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hu Ming

    2016-01-01

    Full Text Available This investigation was attempted to introduce carbon nanotubes (CNTs onto surface of copper powders in order to improve heat transfer performance of copper matrix for engineering application of electrical packaging materials. The Ni/MgO catalyst was formed on the copper powders surface by means of codeposition method. CVD technique was executed to fabricate uniform CNTs on copper powders and effect of reaction temperature on the morphology of CNTs was surveyed. The results showed that CNTs products on the copper powder surface were distributed uniformly even if reaction temperature was different. The diameter dimension of CNTs was within the scope of 30~60 nm. Growth behaviors of CNTs by CVD method were considered to be “tip-growth” mechanism. Raman spectra of CNTs proved that intensity ratio of D-band to G-band (ID/IG increased as deposition reaction temperature increased, which implied that order degree of graphitic structure in synthesized CNTs improved.

  19. Suzuki-Miyaura cross-coupling reactions in aqueous media: Green and sustainable syntheses of biaryls

    KAUST Repository

    Polshettiwar, Vivek; Decottignies, Audrey; Len, Christophe; Fihri, Aziz

    2010-01-01

    Carbon-carbon cross-coupling reactions are among the most important processes in organic chemistry, and Suzuki-Miyaura reactions are among the most widely used protocols for the formation of carbon-carbon bonds. These reactions are generally

  20. Carbene Reactions

    DEFF Research Database (Denmark)

    Hoffmann, R. W.; Barth, W.; Carlsen, Lars

    1983-01-01

    The gas-phase thermolysis of the norbornadienespirodithiolane S-oxides (5) and (7) led to benzene, ethylene, and carbon disulphide as the major products, possibly involving carbon disulphide oxides as intermediates. Thermolyses of the related sulphones (9) or (14) led to completely different prod...