WorldWideScience

Sample records for carbon 14 reactions

  1. Carbonates in leaching reactions in context of 14C dating

    Science.gov (United States)

    Michalska, Danuta; Czernik, Justyna

    2015-10-01

    Lime mortars as a mixture of binder and aggregate may contain carbon of various origins. If the mortars are made of totally burnt lime, radiocarbon dating of binder yields the real age of building construction. The presence of carbonaceous aggregate has a significant influence on the 14C measurements results and depending on the type of aggregate and fraction they may cause overaging. Another problem, especially in case of hydraulic mortars that continue to be chemically active for a very long time, is the recrystallization usually connected with rejuvenation of the results but also, depending on local geological structures, with so called reservoir effect yielding apparent ages. An attempt in separating the binder from other carbonaceous components successfully was made for samples from Israel by Nawrocka-Michalska et al. (2007). The same preparation procedure, after taking into account the petrographic composition, was used for samples coming from Poland, Nawrocka et al. (2009). To verify the procedure used previously for non-hydraulic samples determination an experimental tests on carbonaceous mortars with crushed bricks from Novae in Bulgaria were made. Additionally, to identify different carbonaceous structures and their morphology, a cathodoluminescence and scanning electron microscope with electron dispersive spectrometer were applied. The crushed bricks and brick dust used in mortars production process have been interpreted as an alternative use to other pozzolanic materials. The reaction between lime and pozzolanic additives take place easily and affects the rate and course of carbonates decomposition in orthophosphric acid, during the samples pretreatment for dating. The composition of the Bulgarian samples together with influence of climate conditions on mortar carbonates do not allow for making straightforward conclusions in chronology context, but gives some new guidelines in terms of hydraulic mortars application for dating. This work has mainly

  2. Carbon-14 immobilization via the CO2-Ba(OH)2 hydrate gas-solid reaction

    International Nuclear Information System (INIS)

    Although no restrictions have been placed on the release of carbon-14, it has been identified as a potential health hazard due to the ease in which it may be assimilated into the biosphere. The intent of the Carbon-14 Immobilization Program, funded through the Airborne Waste Program Management Office, is to develop and demonstrate a novel process for restricting off-gas releases of carbon-14 from various nuclear facilities. The process utilizes the CO2-Ba(OH)2 hydrate gas-solid reaction to directly remove and immobilize carbon-14. The reaction product, BaCO3, possesses both the thermal and chemical stability desired for long-term waste disposal. The process is capable of providing decontamination factors in excess of 1000 and reactant utilization of greater than 99% in the treatment of high volumetric, airlike (330 ppM CO2) gas streams. For the treatment of an air-based off-gas stream, the use of packed beds of Ba(OH)2.8H2O flakes to remove CO2 has been demonstrated. However, the operating conditions must be maintained between certain upper and lower limits with respect to the partial pressure of water. If the water vapor pressure in the gas is less than the dissociation vapor pressure of Ba(OH)2.8H2O, the bed will deactivate. If the vapor pressure is considerably greater, pressure drop problems will increase with increasing humidity as the particles curl and degrade. Results have indicated that when operated in the proper regime, the bulk of the increase in pressure drop results from the conversion of Ba(OH)2.8H2O to BaCO3 and not from the hydration of the commercial Ba(OH)2.8H2O (i.e. Ba(OH)2.7.50H2O) to Ba(OH)2.8H2O

  3. Study of carbon-isotope exchange reactions between potassium cyanide and some carbonates, and their use for obtaining C14-labelled potassium cyanide

    International Nuclear Information System (INIS)

    The authors examine the results of a study on the isotope exchange of potassium cyanide with compounds differing greatly from it both in composition and structure, such as carbonates of alkaline and alkali-earth metals. The carbon-isotope exchange reaction in the KC12N-BaC14O3 system was studied at 600-800oC. The ratio between the components of this system and those given below agreed with the equimolecular ratio. The authors show that at high temperatures complete exchange between these compounds can be secured. The exchange reaction begins when the cyanide melt is formed; later it occurs between the liquid and the solid phases, and its speed increases with temperature; at 800oC it is completed in 2 h. With carbonates of alkali metals the exchange reaction occurs in the melt and is completed at lower temperatures. The authors obtained cyanide-labelled potassium by the following method : (1) The isotope exchange reaction KC12N-BaC14O3 is produced at 800oC in 2 h. (2) The mixture KCN+BaCO3 is separated by extracting the KCN with liquid ammonia in a circulating extractor. By exchanging the equimolecular quantities KCN and BaCO3, potassium cyanide is obtained with a chemical yield of more than 90% and a basic-substance content of 96-97%. By using BaCO3 with a high specific activity (60-70 mc/g), a KCN specific activity of over 80 mc/g may be obtained. The barium carbonate depleted of isotope C14 regenerates after the ammonia extraction without appreciable loss. (author)

  4. Carbon-14 waste management

    International Nuclear Information System (INIS)

    Carbon-14 occurs in nature, but is also formed in nuclear reactors. Because of its long half-life and the biological significance of carbon, releases from nuclear facilities could have a significant radiological impact. Waste management strategies for carbon-14 are therefore of current concern. Carbon-14 is present in a variety of waste streams both at reactors and at reprocessing plants. A reliable picture of the production and release of carbon-14 from various reactor systems has been built up for the purposes of this study. A possible management strategy for carbon-14 might be the reduction of nitrogen impurity levels in core materials, since the activation of 14N is usually the dominant source of carbon-14. The key problem in carbon-14 management is its retention of off-gas streams, particularly in the dissolver off-gas stream at reprocessing plants. Three alternative trapping processes that convert carbon dioxide into insoluble carbonates have been suggested. The results show that none of the options considered need be rejected on the grounds of potential radiation doses to individuals. All exposures should be as low as reasonably achievable, economic and social factors being taken into account. If, on these grounds, retention and disposal of carbon-14 is found to be beneficial, then, subject to the limitations noted, appropriate retention, immobilization and disposal technologies have been identified

  5. Compilation of carbon-14 data

    International Nuclear Information System (INIS)

    A review and critical analysis was made of the original sources of carbon-14 in the graphite moderator and reflector zones of the eight Hanford production reactors, the present physical and chemical state of the carbon-14, pathways (other than direct combustion) by which the carbon-14 could be released to the biosphere, and the maximum rate at which it might be released under circumstances which idealistically favor the release. Areas of uncertainty are noted and recommendations are made for obtaining additional data in three areas: (1) release rate of carbon-14 from irradiated graphite saturated with aerated water; (2) characterization of carbon-14 deposited outside the moderator and reflector zones; and (3) corrosion/release rate of carbon-14 from irradiated steel and aluminum alloys

  6. Carbon 14 dating method

    International Nuclear Information System (INIS)

    This document gives a first introduction to 14C dating as it is put into practice at the radiocarbon dating centre of Claude-Bernard university (Lyon-1 univ., Villeurbanne, France): general considerations and recalls of nuclear physics; the 14C dating method; the initial standard activity; the isotopic fractioning; the measurement of samples activity; the liquid-scintillation counters; the calibration and correction of 14C dates; the preparation of samples; the benzene synthesis; the current applications of the method. (J.S.)

  7. Carbon-14 in tree rings

    International Nuclear Information System (INIS)

    In order to investigate how reliably the carbon 14 content of tree rings reflects that of atmospheric carbon dioxide, two types of determinations were carried out: (1) carbon 14 determinations in annual rings from the beginning of this century until 1974 and (2) carbon 14 determinations in synchronous wood from the North American bristlecone pine and from European oak trees, dendrochronologically dated to have grown in the third and fourth century B.C. The first series of measurements showed that bomb-produced radiocarbon was incorporated in wood at a time when it was converted from sapwood to heartwood, whenever radiocarbon from bomb testing was present in the atmosphere. The second series showed that wood more than 2000 years old and grown on two different continents at different altitudes had, within the limits of experimental error, the same radiocarbon content. This work and other experimental evidence, obtained in part by other laboratories, show that tree rings reflect the average radiocarbon content of global atmospheric carbon dioxide accurately within several parts per mil. In rare cases, deviations of up to 10 parts per thousand may be possible. This means that a typical single radiocarbon date for wood or charcoal possesses an intrinsic uncertainty (viz., an estimated ''one-sigma error'' in addition to all the other errors) of the order of +-50 years. This intrinsic uncertainty is independent of the absolute age of the sample. More accurate dates can, in principle, be obtained by the so-called method of ''wiggle matching.''

  8. 1,4-Diketones from Cross-Conjugated Dienones: Potassium Permanganate-Interrupted Nazarov Reaction.

    Science.gov (United States)

    Kwon, Yonghoon; Schatz, Devon J; West, Frederick G

    2015-08-17

    A domino potassium permanganate-interrupted Nazarov reaction to yield syn-2,3-disubstituted 1,4-diketones via a decarbonylative cleavage of the Nazarov oxyallyl intermediate, believed to be without precedent, is presented. This process allows syn substituents to be established stereospecifically on the 2-carbon bridge connecting the ketone carbonyl carbons, and the formation of one carbon-carbon and two carbon-oxygen bonds. Two carbon-carbon bonds are cleaved in this process. PMID:26138361

  9. Chemical separation of carbon -14 in radwastes

    International Nuclear Information System (INIS)

    Carbon-14 has a long half-life of 5730 years and decays by beta emission of 156KeV to the stable nuclide, Nitrogen-14. Carbon-14 is produced mostly by the neutron activation of naturally occurring oxygen-17 in water molecules of the reactor coolant and Nitrogen-14 from nitrogen gas dissolved in the reactor coolant. Most of these carbon-14 are known to be discharged as gaseous wastes. The chemical forms of the gaseous emissions of carbon-14 from PWR stations range from 10∼26% as 14CO2 and 74∼90% as 14CH4 and other hydrocarbons, compared to about 95% as 14CO2 and 5% as 14CH4 and other hydrocarbons in BWR station gaseous emissions. Knowles reported that although the exact nature of these organic compounds was not identified, most of the carbon-14 was present as forms of organic species in a PWR primary coolant. Praudic measured the contents of the total organic and inorganic carbon-14 in waste trench leachates of New York commercial LLW disposal site and found that 74 ∼ 98% of carbon-14 was organic. In 1991, Dayal and Kirby reported that carbon-14 identified in LLW trench leachates from the Maxi Fiats site were carbonate and bicarbonate as inorganic carbon-14 and citric acid and palmitic acid as organic carbon-14. Thus concentrated Boric acid waste solutions(CB) which has generated from domestic NPP were classified into organic and inorganic carbon-14 with wet oxidation method in order to grasping a existing ratio of organic carbon-14 from total one due to affecting an environment

  10. Cascade enzymatic reactions for efficient carbon sequestration.

    Science.gov (United States)

    Xia, Shunxiang; Zhao, Xueyan; Frigo-Vaz, Benjamin; Zheng, Wenyun; Kim, Jungbae; Wang, Ping

    2015-04-01

    Thermochemical processes developed for carbon capture and storage (CCS) offer high carbon capture capacities, but are generally hampered by low energy efficiency. Reversible cascade enzyme reactions are examined in this work for energy-efficient carbon sequestration. By integrating the reactions of two key enzymes of RTCA cycle, isocitrate dehydrogenase and aconitase, we demonstrate that intensified carbon capture can be realized through such cascade enzymatic reactions. Experiments show that enhanced thermodynamic driving force for carbon conversion can be attained via pH control under ambient conditions, and that the cascade reactions have the potential to capture 0.5 mol carbon at pH 6 for each mole of substrate applied. Overall it manifests that the carbon capture capacity of biocatalytic reactions, in addition to be energy efficient, can also be ultimately intensified to approach those realized with chemical absorbents such as MEA. PMID:25708541

  11. Carbon-14 measurement using carbon dioxide absorption method - Our experience

    International Nuclear Information System (INIS)

    Carbon-C14 measurement using absorption technique consists of direct absorption of sample carbon dioxide into an absorber - scintillator mixture. This technique is a simple, fast, less expensive and less hazardous technique compared to benzene synthesis or any other technique. This techniques enable us in preparing six/seven samples in a day while benzene synthesis technique takes two days for the preparation of one sample. It is useful for radiocarbon age up to about 38,000 a BP (∼1 pMC), which is adequate for most of the hydrological investigations. All the total dissolved inorganic carbon (TDIC) is precipitated as barium carbonate from the ∼60 to 70 liters of water at the site. In the laboratory, it is reacted with orthophosphoric acid to give carbon dioxide (CO2). This carbon dioxide is transferred into 0.5 L capacity cylinder. The reaction and collection of gas is done under vacuum using a glass vacuum line. Carbon dioxide is directly absorbed in 11.5 ml of carbasorb + 11 ml of Permaflour V (commercially not available) or its equivalent scintillator in the specially made absorption apparatus. Since, absorption process is exothermic, temperature of the medium is maintained at about 220 deg. C, it results in the absorption of ∼7 m moles of carbon dioxide per mL of cabasorb. As reaction progresses, bubbles can be seen rising slowly. The end point is marked by rapid rise in the solution level. Carbon dioxide obtained from oxalic acid (Standard) and background carbon dioxide are also absorbed in the same quantity of absorber and scintillator mixture. Samples, standard and background are transferred in 22 mL teflon vials and counted in low level liquid scintillation counter (LKB Wallac 1220 Quantulus) for 1000 minutes. The counting efficiency at best factor of merit (AON/ON/√B) is ∼60 % where AON is normalized net count rate of standard and B is the background count rate. The mean count rate of last fifteen background samples is 0.64 ± .0005 cpm with an

  12. Carbon-14 kinetic isotope effect in the decarbonylation of lactic acid [1-14C

    International Nuclear Information System (INIS)

    The carbon-14 kinetic isotope effect for the decarbonation of lactic acid[1-14C] in sulfuric acid has been measured in the temperature interval of 20-90 deg C. The experimental values of (k12C/k14C) are compared with the theoretical 14C kinetic isotope effect calculated assuming that one carbon-oxygen stretching vibration is lost in the rate-determining step. The discrepancy between experimentally observed temperature dependence of the 14C kinetic isotope effect and the theoretical one is explained by the possible side reactions wich change the apparent degrees of decarbonylation and isotopic composition of CH3CHOHCOOH[1-14C] used in experiments aiming at the determination of carbon-14 kinetic isotope effect in the decarbonylation process itself. (author) 6 refs.; 1 tab

  13. Carbon-14 Bomb-Pulse Dating

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, B A

    2007-12-16

    Atmospheric testing of nuclear weapons during the 1950s and early 1960s doubled the concentration of carbon-14 atmosphere and created a pulse that labeled everything alive in the past 50 years as carbon moved up the food chain. The variation in carbon-14 concentration in time is well-documented and can be used to chronologically date all biological materials since the mid-1950s.

  14. Carbon-14: Some evidence of migration and experiments on immobilization

    International Nuclear Information System (INIS)

    Carbon-14 that is produced in nuclear reactors by reactions on C, N and O is one of the most biologically dangerous nuclides that are subject to global dispersion (H-3, 85-Kr, 129-I). It is assumed that about 20-30% of C-14 is released to atmosphere from NPPs and 80-70% remains in the fuel and will be released during reprocessing. Atmospheric dispersion of C-14 in the form of carbon dioxide cannot go without consequence for the environment, particularly for the vegetation. This influence of the carbon-14 release from a radio-chemical facility in Russia on the nearby forest is illustrated in the first part of the report by data on C-14 concentration in the barks of trees, analyzed year by year and showing yearly variation of C-14 releases. The second part of the report deals with the study of stability of portland-cement compounds and Ca, Ba and Sr carbonates to the leaching processes. Leaching tests were done on specially prepared samples of compounds, containing various (from 30% to 70%) concentrations of Ca, Sr or Ba carbonates, tagged by C-14. Distilled water was used as leaching agent. Leaching was conducted for 46 hours and C-14 concentrations and pH of resulting waters were monitored. Differential leaching rates and leaching coefficients were analyzed and general compound behavior and its dynamics has been observed

  15. Carbon-14 dating with the 14UD accelerator

    International Nuclear Information System (INIS)

    A carbon-14 accelerator mass spectroscopy system is now in routine operation on the 14UD accelerator. It offers a modest precision of ∼ 3% for samples that are >10% modern. Its performances and some of recent applications are briefly discussed

  16. The carbon 14 and environment; Le carbone 14 et l'environnement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This article resume the history and the properties of the carbon 14 ({sup 14}C). We also find the different origins and the produced quantities. The carbon transfers in environment are explained and so the {sup 14}C. The biological effects and the sanitary aspects are clarified. The measurements of carbon 14 are given as well its application through the dating. The waste management is tackled. (N.C.)

  17. Reactions on carbon anodes in aluminium electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Eidet, Trygve

    1997-12-31

    The consumption of carbon anodes and energy in aluminium electrolysis is higher than what is required theoretically. This thesis studies the most important of the reactions that consume anode materials. These reactions are the electrochemical anode reaction and the airburn and carboxy reactions. The first part of the thesis deals with the kinetics and mechanism of the electrochemical anode reaction using electrochemical impedance spectroscopy. The second part deals with air and carboxy reactivity of carbon anodes and studies the effects of inorganic impurities on the reactivity of carbon anodes in the aluminium industry. Special attention is given to sulphur since its effect on the carbon gasification is not well understood. Sulphur is always present in anodes, and it is expected that the sulphur content of available anode cokes will increase in the future. It has also been suggested that sulphur poisons catalyzing impurities in the anodes. Other impurities that were investigated are iron, nickel and vanadium, which are common impurities in anodes which have been reported to catalyze carbon gasification. 88 refs., 92 figs., 24 tabs.

  18. Carbon 14 and tritium radioactivity of alcohols

    International Nuclear Information System (INIS)

    The method of measuring carbon 14 radioactivity of alcohols has been perfected in order to establish the correct determination of synthetic alcohol added to fermentation alcohol. The specific carbon and tritium activity of alcohol of different origins have been determined for 1973 and 1974. The Suess effect and nuclear fall-out are observed

  19. MODIFYING V-14 RUBBER WITH CARBON FIBERS

    OpenAIRE

    Shadrinov N. V.; Nartakhova S. I.

    2016-01-01

    The influence of carbon fibers and modified carbon fibers on properties of industrially produced V-14 rubber is examined. The dependences of physical and mechanical properties, hardness, abrasion resistance and resistance in aggressive environment on few amount of filled fiber are established. Structural properties of reinforced elastomeric composites are studied by scanning electron microscopy. Elastomeric layer on the surface of modified carbon fiber, confirmed with high adhesion is identified

  20. Carbon-14 measurements in aquifers with methane

    International Nuclear Information System (INIS)

    A survey of various groundwater systems indicates that methane is a common trace constituent and occasionally a major carbon species in groundwaters. Thermocatalytic methane had delta13Csub(CH4)>-45 per mille and microbially produced or biogenic methane had delta13Csub(CH4)13C values for the inorganic carbon. Thermocatalytic methane had no apparent effect on the inorganic carbon. Because methanogenesis seriously affects the carbon isotope geochemistry of groundwaters, the correction of raw 14C ages of affected groundwaters must consider these effects. Conceptual models are developed which adjust the 14C activity of the groundwater for the effects of methanogenesis and for the dilution of carbon present during infiltration by simple dissolution of rock carbonate. These preliminary models are applied to groundwaters from the Alliston sand aquifer where methanogenesis has affected most samples. In this system, methanogenic bacteria using organic matter present in the aquifer matrix as substrate have added inorganic carbon to the groundwater which has initiated further carbonate rock dissolution. These processes have diluted the inorganic carbon 14C activity. The adjusted groundwater ages can be explained in terms of the complex hydrogeology of this aquifer, but also indicate that these conceptual models must be more rigorously tested to evaluate their appropriateness. (author)

  1. Capture reactions on C-14 in nonstandard big bang nucleosynthesis

    Science.gov (United States)

    Wiescher, Michael; Gorres, Joachim; Thielemann, Friedrich-Karl

    1990-01-01

    Nonstandard big bang nucleosynthesis leads to the production of C-14. The further reaction path depends on the depletion of C-14 by either photon, alpha, or neutron capture reactions. The nucleus C-14 is of particular importance in these scenarios because it forms a bottleneck for the production of heavier nuclei A greater than 14. The reaction rates of all three capture reactions at big bang conditions are discussed, and it is shown that the resulting reaction path, leading to the production of heavier elements, is dominated by the (p, gamma) and (n, gamma) rates, contrary to earlier suggestions.

  2. Synthesis of carbon-14 labeled Taxol (paclitaxel)

    International Nuclear Information System (INIS)

    Reductive cleavage of the C13 side chain of Taxol (1, paclitaxel) followed by regioselective silylation gave 7-triethylsilylbaccatin III (4). 3-O-Triethysilylation of 5 and subsequent reaction with benzoyl chloride-C7-14C gave azetidinone 7. Coupling of 4 and 7 followed by deprotection gave 1.26 g of Taxol-N3'-14C (11) having a specific activity of 26.5 mCi/mmol and a radiochemical purity of 95%. (author)

  3. Evaluation of carbon-14 life cycle in reactors VVER-1000

    International Nuclear Information System (INIS)

    This work is aimed at the evaluation of carbon-14 life cycle in light water reactors VVER-1000. Carbon-14 is generated as a side product in different systems of nuclear reactors and has been an issue not only in radioactive waste management but mainly in release into the environment in the form of gaseous effluents. The principal sources of this radionuclide are in primary cooling water and fuel. Considerable amount of C-14 is generated by neutron reactions with oxygen 17O and nitrogen 14N present in water coolant and fuel. The reaction likelihood and consequently volume of generated radioisotope depends on several factors, especially on the effective cross-section, concentrations of parent elements and conditions of power plant operating strategies. Due to its long half-life and high capability of integration into the environment and thus into the living species, it is very important to monitor the movement of carbon-14 in all systems of nuclear power plant and to manage its release out of NPP. The dominant forms of radioactive carbon-14 are the hydrocarbons owing to the combinations with hydrogen used for absorption of radiolytic oxygen. These organic compounds, such as formaldehyde, methyl alcohol, ethyl alcohol and formic acid can be mostly retained on ion exchange resins used in the system for purifying primary cooling water. The gaseous carbon compounds (CH4 and CO2) are released into the atmosphere via the ventilation systems of NPP. Based on the information and data obtained from different sources, it has been designed a balance model of possible carbon-14 pathways throughout the whole NPP. This model includes also mass balance model equations for each important node in system and available sampling points which will be the background for further calculations. This document is specifically not to intended to describe the best monitoring program attributes or technologies but rather to provide evaluation of obtained data and find the optimal way to upgrade

  4. Synthesis of carbon-14 labeled doxylamine succinate

    International Nuclear Information System (INIS)

    Doxylamine succinate, N,N-dimethyl-2-[1-phenyl-1-(2-pyridinyl)-ethoxy]ethanamine succinate is an antihistamine used primarily as a sedative. Carbon-14 labeled doxylamine succinate, required for toxicological studies, was synthesized in two steps starting from 2-benzoyl pyridine. (author)

  5. Carbon encapsulated magnetic nanoparticles produced by hydrothermal reaction

    Institute of Scientific and Technical Information of China (English)

    Nong Yue He; Ya Fei Guo; Yan Deng; Zhi Fei Wang; Song Li; Hong Na Liu

    2007-01-01

    Carbon encapsulated magnetic nanoparticles (CEMNs) were synthesized by heating an aqueous glucose solution containing FeAu (Au coated Fe nanoparticles) nanoparticles at 160-180 ℃ for 2 h. This novel hydrothermal approach is not only simple but also provides the surface of CEMNs with functional groups like-OH. The formation of carbon encapsulated magnetic nanoparticles was not favored when using pure Fe nanoparticles as cores because of the oxidation of Fe nanoparticles by H2O during the reaction and,therefore, the surfaces of the naked Fe nanoparticles had to be coated by Au shell in advance. TEM, XRD, XPS and VSM measurments characterized that they were uniform carbon spheres containing some embedded Fe-Au nanoparticles, with a saturation of 14.6 emu/g and the size of the typical product is ~350 nm.

  6. Reaction of carbon with lanthanide silicides. III

    International Nuclear Information System (INIS)

    The reaction of carbon with Gd5Si3 and Ho5Si3 was studied by arc melting the alloys with carbon and comparing the resultant phases with those identified previously in the Er5Si3 system. Ordering in the structure detected at x = 0.5 and x = 0.95 in Ln5Si3Csub(x) in both these systems is identical with that detected in the erbium system. Lower metal volatility in the gadolinium preparations produces single-phase systems more readily, but above x = 0.5 the carbide Gd15C19 is present in small amounts up to x = 0.95. Results for harndess, hydrolysis product distribution and X-ray and metallographic examination are presented. (Auth.)

  7. A detective from the past called carbon 14

    International Nuclear Information System (INIS)

    The analysis is carried out using Radiometry or Accelerator mass spectrometry. After the system allowing to date the age of any organic rest - whether a fossil, a wood fragment, a parchment or a seed - is an isotope called carbon-14. An atom that comes from reactions nuclear produced in the atmosphere and cosmic-ray-induced they interact with oxygen to form carbon dioxide. This element they absorb it plants in photosynthesis and then passes to the animals remained almost unchanged during the life of the organism. to the meet the initial ratio of c-14 that had been in the atmosphere before his death, the remains that are left in it determine the elapsed time. (Author)

  8. Concentration of carbon-14 in plants

    International Nuclear Information System (INIS)

    The carbon-14 survey program initiated 1960 to gather data on current levels of carbon-14 in environments. Plants essential oil and fermented alcohol were selected as sample materials. The carbon contained in these materials is fixed from atmospheric carbon dioxide by anabolism, so they well reflect the variation of carbon-14 in biosphere. Thymol; Thymol was obtained from the essential oil of Orthodon Japonicium Benth which was cultivated and harvested every year in the experimental field of NIRS and Chiba University. The methylation was carried out to eliminate the strong quenching action of the phenolic group of thymol. Eighteen grams of thymol methyl ether was used as liquid scintillator by adding 0.4% PPO and 0.01% POPOP. Menthol; Menthol was obtained from Mentha arvensis L which was cultivated in the east part of Hokkaido and prepared by Kitami Factory of Federation of Agricultural Cooperative Society of Hokkaido. The chemical conversion of menthol to p-cymene was carried out and used as liquid scintillator as same as above sample. Lemongrass oil; Lemongrass oil was obtained from Cymbopogon citratus Stapf which was cultivated in Izu Experimental Station of Medicinal Plants, National Institute of Hygienic Science located Minami-Izu, Shizuoka Pref. The p-cymene derived from Lemongrass oil was used as liquid scintillator. Alcohol; All sample of fermented alcohol were obtained from the Alcohol Factories of Ministry of Trade and Industry. Raw materials of alcohol were sweet potatos cultivated in several prefectures in Japan ''high test'' molasses and blackstrap molasses imported from several countries of Asia, South America and South Africa, crude alcohol imported from U.S.A., Argentina and Brazil. Mixed solvent of 10 ml sample alcohol and 10 ml toluene or p-xylene containing 0.8% PPO and 0.1% dimethyl POPOP was used as liquid scintillator. (author)

  9. The lichens, tritium and carbon 14 integrators

    International Nuclear Information System (INIS)

    The present report concerns a research for the tritium and for the carbon 14 in lichens in a spirit of bio-indication: the first results appear in Daillant and al (2004 ) and additional results were presented to the congress B.I.O.M.A.P. in Slovenia, organized collectively by the institute Josef Stefan from Ljubljana and the international atomic energy agency from Vienna (Daillant and al 2003). (N.C.)

  10. Polymorphs calcium carbonate on temperature reaction

    International Nuclear Information System (INIS)

    Calcium carbonate (CaCO3) has three different crystal polymorphs, which are calcite, aragonite and vaterite. In this study, effect of reaction temperature on polymorphs and crystallite structure of CaCO3 was investigated. X-ray powder diffraction (XRD), fourier transform infrared (FTIR), and variable pressure scanning electron microscope (VPSEM) were used to characterize the obtained CaCO3 particles. The obtained results showed that CaCO3 with different crystal and particle structures can be formed by controlling the temperature during the synthesis process

  11. LDEO Carbon 14 Data from Selected Sea floor Cores

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Carbon-14 data in this file were compiled by W.F. Ruddiman and staff at the Lamont-Doherty Earth Observatory of Columbia University. Data include 974 carbon-14...

  12. A gaseous measurement system for carbon-14 dioxide and carbon-14 methane: An analytical methodology to be applied in the evaluation of the carbon-14 dioxide and carbon-14 methane produced via microbial activity in volcanic tuff

    International Nuclear Information System (INIS)

    The objectives of this study were to develop a gaseous measurement system for the carbon-14 dioxide and carbon-14 methane produced via microbial activity or geochemical action on leachate in tuff; to determine the trapping efficiency of the system for carbon-14 dioxide; to determine the trapping efficiency of the system for carbon-14 methane; to apply the experimentally determined factors regarding the system's trapping efficiency for carbon-14 dioxide and carbon-14 methane to a trapping algorithm to determine the activity of the carbon-14 dioxide and carbon-14 methane in a mixed sample; to determine the minimum detectable activity of the measurement process in picocuries per liter; and to determine the lower limit or detection of the measurement process in counts per minute

  13. A detective from the past called carbon 14; Un detective del pasado llamado carbono 14

    Energy Technology Data Exchange (ETDEWEB)

    Trintan, R. M.

    2015-07-01

    The analysis is carried out using Radiometry or Accelerator mass spectrometry. After the system allowing to date the age of any organic rest - whether a fossil, a wood fragment, a parchment or a seed - is an isotope called carbon-14. An atom that comes from reactions nuclear produced in the atmosphere and cosmic-ray-induced they interact with oxygen to form carbon dioxide. This element they absorb it plants in photosynthesis and then passes to the animals remained almost unchanged during the life of the organism. to the meet the initial ratio of c-14 that had been in the atmosphere before his death, the remains that are left in it determine the elapsed time. (Author)

  14. Soil metabolic transformations of carbon-14-myo-inositol, carbon-14-phytic acid and carbon-14-iron(III) phytate

    International Nuclear Information System (INIS)

    Uniformly labelled 14C-phytic acid and 14C-iron(III) phytate were synthesized from uniformly labelled 14C-myo-inositol. The three compounds were incubated in an Andosol sandy loam at 70% field capacity and 36.50C for a 12-day period. Myo-inositol, phytic acid and iron(III) phytate underwent a 61.0, 1.9 and 0% microbial oxidation respectively to CO2 during the incubation period. The rate of fixation of 14C-phytic acid was illustrated by its rapid decline in metabolism in the 12-day period. The metabolism rate of phytic was considerably reduced by the presumed formation of iron(III) and aluminium phytate. The metabolism rate of myo-inositol was reduced nine-fold after an initial rapid metabolism during the first day of incubation. The following mechanisms were observed in the soil metabolism of myo-inositol: (1) soil mineral-inositol carbon adsorption, (2) humic acid-inositol carbon adsorption, (3) the phosphorylation of myo-inositol, and (4) the epimerization of myo-inositol to chiro-inositol. The formation of (1) and (2) was found to be highly dependent upon microbial activity. Interactions (1), (2) and (3)are considered as possible mechanisms for the inhibition of the microbial oxidation of myo-inositol. The inhibition of myo-inositol oxidation via adsorption or phosphorylation is considered to be due to the chemical blockage of the stereo-specific microbial oxidative attack on the axial hydroxyl group. (author)

  15. Effective Permeability Change in Wellbore Cement with Carbon Dioxide Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Um, Wooyong; Jung, Hun Bok; Martin, Paul F.; McGrail, B. Peter

    2011-11-01

    Portland cement, a common sealing material for wellbores for geological carbon sequestration was reacted with CO{sub 2} in supercritical, gaseous, and aqueous phases at various pressure and temperature conditions to simulate cement-CO{sub 2} reaction along the wellbore from carbon injection depth to the near-surface. Hydrated Portland cement columns (14 mm diameter x 90 mm length; water-to-cement ratio = 0.33) including additives such as steel coupons and Wallula basalt fragments were reacted with CO{sub 2} in the wet supercritical (the top half) and dissolved (the bottom half) phases under carbon sequestration condition with high pressure (10 MPa) and temperature (50 C) for 5 months, while small-sized hydrated Portland cement columns (7 mm diameter x 20 mm length; water-to-cement ratio = 0.38) were reacted with CO{sub 2} in dissolved phase at high pressure (10 MPa) and temperature (50 C) for 1 month or with wet CO{sub 2} in gaseous phase at low pressure (0.2 MPa) and temperature (20 C) for 3 months. XMT images reveal that the cement reacted with CO{sub 2} saturated groundwater had degradation depth of {approx}1 mm for 1 month and {approx}3.5 mm for 5 month, whereas the degradation was minor with cement exposure to supercritical CO{sub 2}. SEM-EDS analysis showed that the carbonated cement was comprised of three distinct zones; the innermost less degraded zone with Ca atom % > C atom %, the inner degraded zone with Ca atom % {approx} C atom % due to precipitation of calcite, the outer degraded zone with C atom % > Ca atom % due to dissolution of calcite and C-S-H, as well as adsorption of carbon to cement matrix. The outer degraded zone of carbonated cement was porous and fractured because of dissolution-dominated reaction by carbonic acid exposure, which resulted in the increase in BJH pore volume and BET surface area. In contrast, cement-wet CO{sub 2}(g) reaction at low P (0.2 MPa)-T (20 C) conditions for 1 to 3 months was dominated by precipitation of micron

  16. Reaction from Dimethyl Carbonate to Diphenyl Carbonate. 1. Experimental Determination of the Chemical Equilibria

    NARCIS (Netherlands)

    Haubrock, J.; Raspe, M.; Versteeg, G.F.; Kooijman, H.A.; Taylor, R.; Hogendoorn, J.A.

    2008-01-01

    New experimental equilibrium data of the reaction of dimethyl carbonate (DMC) and phenol to methyl phenyl carbonate (MPC) and the subsequent disproportion and transesterification reaction of MPC to diphenyl carbonate (DPC) are presented and interpreted in terms of the reaction equilibrium coefficien

  17. Carbon compounds in the atmosphere and their chemical reactions

    OpenAIRE

    Martišová, Petra

    2013-01-01

    The essay dissert on compounds of carbon in the atmosphere and its reaction. The most important are carbon dioxide, carbon monoxide and methane. Included among important compounds of carbon are volatile organic substances, polycyclic aromatic hydrocarbon and dioxin. Carbon dioxide and methane representing greenhouse gases have also indispensable meaning. As they, together with water vapour, nitrogen monoxide and other gases are causing the major part of greenhouse effect. Primarily because of...

  18. The Path of Carbon in Photosynthesis IX. Photosynthesis, Photoreduction, and the Hydrogen-Oxygen-Carbon Dioxide Dark Reaction

    Science.gov (United States)

    Badin, E. J.; Calvin, M.

    1950-02-01

    A comparison of the rates of fixation of Carbon 14 dioxide in algae for the processes of photosynthesis, photoreduction and the hydrogen-oxygen-carbon dioxide dark reaction has been made. For the same series of experiments, rates of incorporation of tracer carbon into the separate soluble components using the radiogram method have been determined. The mechanism of carbon dioxide uptake has been shown to occur via two distinct paths. In all cases studied, essentially the same compounds appear radioactive. The distribution with time, however, differs markedly.

  19. Carbon dioxide as a carbon source in organic transformation: carbon-carbon bond forming reactions by transition-metal catalysts.

    OpenAIRE

    Tsuji, Yasushi; Fujihara, Tetsuaki

    2012-01-01

    Recent carbon-carbon bond forming reactions of carbon dioxide with alkenes, alkynes, dienes, aryl zinc compounds, aryl boronic esters, aryl halides, and arenes having acidic C-H bonds are reviewed in which transition-metal catalysts play an important role.

  20. Reaction from Dimethyl Carbonate (DMC) to Diphenyl Carbonate (DPC). 2. Kinetics of the Reactions from DMC via Methyl Phenyl Carbonate to DPC

    NARCIS (Netherlands)

    Haubrock, J.; Wermink, W.; Versteeg, G.F.; Kooijman, H.A.; Taylor, R.; Sint Annaland, M. van; Hogendoorn, J.A.

    2008-01-01

    The kinetics of the reaction of dimethyl carbonate (DMC) and phenol to methyl phenyl carbonate (MPC) and the subsequent disproportion and transesterification reaction of methyl phenyl carbonate (MPC) to diphenyl carbonate (DPC) have been studied. Experiments were carried out in a closed batch reacto

  1. The lichens, tritium and carbon 14 integrators; Les lichens, integrateurs de tritium et de carbone 14

    Energy Technology Data Exchange (ETDEWEB)

    Daillant, O

    2007-07-01

    The present report concerns a research for the tritium and for the carbon 14 in lichens in a spirit of bio-indication: the first results appear in Daillant and al (2004 ) and additional results were presented to the congress B.I.O.M.A.P. in Slovenia, organized collectively by the institute Josef Stefan from Ljubljana and the international atomic energy agency from Vienna (Daillant and al 2003). (N.C.)

  2. How to identify carbonate rock reactions in concrete

    International Nuclear Information System (INIS)

    This paper summarizes the modern petrographic techniques used to diagnose carbonate rock reactions in concrete. Concrete microbar specimens of the prototype RILEM AAR-5 test, provided by the Austrian Cement Research Institute, and typical Canadian concrete that had undergone alkali-carbonate reaction (ACR) were examined. Scanning electron microscopy, element mapping and quantitative analysis using electron-probe microanalyzer with energy-dispersive spectrometry (EPMA/EDS: around x 2000, <0.1 nA) were made of polished thin sections after completing polarizing microscopy. Dedolomitization produced a myrmekitic texture, composed of spotted brucite (<3 μm) and calcite within the reaction rim, along with a carbonate halo of calcite in the surrounding cement paste. However, no evidence was detected that dedolomitization had produced the expansion cracks in the cement paste, while the classical definition of alkali-carbonate reaction postulates their development. It was found that the alkali-silica reaction (ASR) due to cryptocrystalline quartz hidden in the matrix, always associated with dedolomitization in all the carbonate aggregates tested, was responsible for the expansion of both the laboratory and field concretes, even with the Canadian dolomitic limestone from Kingston, the reference material for alkali-carbonate reaction. It is suggested that the term alkali-carbonate reaction is misleading

  3. Behavior of carbon-14 in the Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Carbon-14 released from the nuclear facilities is an important radionuclide for the safety assessment, because it tends to accumulate in environment through food chain and has a significant impact to personal dose. Carbon-14 has been monitored routinely as one of the main gaseous radionuclides exhausted from the Tokai Reprocessing Plant (TRP) since October of 1991. Furthermore, behavior of carbon-14 in TRP has been investigated through the reprocessing operation and the literature survey. This report describes the result of investigation about the behavior of carbon-14 in TRP as followings. 1. Only a very small amount of carbon-14 in the fuel was liberated into the shear off-gas and most of it was liberated into the dissolver off-gas. Part of the carbon-14 was trapped at the caustic scrubber installed in the off-gas treatment process, and untrapped carbon-14 was released into the environment from the main stack. Amount of carbon-14 released from the main stack was about 4.1∼6.5 GBq every ton of uranium reprocessed. 2. Carbon-14 trapped at the caustic scrubbers installed in the dissolver off-gas and in the vessel off-gas treatment process is transferred to the low active waste vessel. Amount of carbon-14 transferred to the low active waste vessel was about 5.4∼9.6 GBq every ton of uranium reprocessed. 3. The total amount of carbon-14 input to TRP was summed up to about 11.9∼15.5 GBq every ton of uranium reprocessed considering the released amount from the main stack and the trapped amount in the off-gas treatment devices. The amount of nitrogen impurity in the initial fuel was calculated about 15∼22ppm of uranium metal based on the measured carbon-14. 4. The solution in the low active waste vessel is concentrated at the evaporator. Most of the carbon-14 in the solution was transferred into concentrated solution. 5. Total Vitrification Demonstration Facility (TVF) started to operate in 1994. Since then, carbon-14 has been measured in the second sub stack

  4. Study of the reaction 14 C (p,p) 14 C

    International Nuclear Information System (INIS)

    The study of the elastic scattering of polarized protons in 14 C, it has been very limited. Some angular distributions exists to low energy, as well as measures of excitation functions to several angles for the differential section and the vectorial analyzer power. A detailed study of the elastic scattering of protons by 14 C, it give us experimental information of the excited states in 15 N. The study of these states, is since of considerable interest it is not very easy to obtain a target of 14 C also in a reaction 14 C (p,p) 14 C is possible to obtain information of levels in 15 N to an excitation energy EX >14.95 MeV. (Author)

  5. Study of the reaction of carbon with atomic oxygen

    International Nuclear Information System (INIS)

    This research thesis reports the study of reactions of carbon when in contact with atomic oxygen in order to have a better understanding of the combustion mechanism. It appears that, at room temperature, oxygen atoms impacting the carbon surface do not all react with this surface (the reaction shock efficiency is very low). At temperatures higher than 200 C, all atoms which reach the surface react with it and the efficiency is much higher. The study of the reaction rate with respect to temperature allows three domains of reaction conditions to be distinguished according to the stability of formed surface oxides. The initial degassing of carbon results in a temporary excitation of the reaction rate, even with atomic oxygen. Whatever is the temperature, reaction is localised at the vicinity of the sample outer surface (this means that the regime is constantly diffusion). The BET surface of carbons does not vary with the reaction. As texture, the structure of the different carbons does not seem to have an influence on the reaction with atomic oxygen. Even though results are obtained in very different temperature ranges (600 C with O2, less than 200 C with atomic oxygen), there is an analogy between some phenomena noticed with atomic oxygen and molecular oxygen: surface oxides play a prevailing role

  6. Ultra-Low-Temperature Reactions of Carbon Atoms with Hydrogen Molecules

    CERN Document Server

    Krasnokutski, S A; Renzler, M; Jäger, C; Henning, Th; Scheier, P

    2016-01-01

    The reactions of carbon atoms with dihydrogen have been investigated in liquid helium droplets at $T$ = 0.37 K. A calorimetric technique was applied to monitor the energy released in the reaction. The barrierless reaction between a single carbon atom and a single dihydrogen molecule was detected. Reactions between dihydrogen clusters and carbon atoms have been studied by high-resolution mass spectrometry. The formation of hydrocarbon cations of the type C$_m$H$_n^+$, with $m$ = 1-4 and $n$ = 1-15 was observed. With enhanced concentration of dihydrogen, the mass spectra demonstrated the main "magic" peak assigned to the CH$_5^+$ cation. A simple formation pathway and the high stability of this cation suggest its high abundance in the interstellar medium.

  7. The optimization of the estimation of carbon-14 in urine

    International Nuclear Information System (INIS)

    The urinalysis method for carbon-14 currently used by the bioassay laboratory of the Dosimetric Research Branch at CRNL has been tested and optimized for both sensitivity and efficiency. Urine is first treated with an enzyme that catalyses the hydrolysis of urea, the major carbon-containing component of urine; carbon dioxide is then liberated by the measured addition of excess acid and collected in 2-aminoethanol. The aminoethanol can be directly counted by the addition of a liquid scintillation cocktail. This method can be used to measure both the specific activity, (Bq/g-carbon) or the total activity of carbon-14 released from the urine sample

  8. Study of barytocalcite as a conditioning matrix for carbon 14: Comparison of several synthesis routes

    Energy Technology Data Exchange (ETDEWEB)

    Massoni, Nicolas, E-mail: nicolas.massoni@cea.fr; Rosen, Jeremy; Chartier, Myriam; Cozzika, Théodore

    2013-10-15

    Carbon-14 arising from the spent nuclear fuel reprocessing can disseminate into natural cycles and then its sequestration could be advantageous. In this study, we focus on the ceramic phase barytocalcite BaCa(CO{sub 3}){sub 2} (8.08 wt.% C) obtained from different synthesis routes. We show that several elaboration routes are possible but only two emerge ensuring a high reaction yield for a fast process. The first is a room temperature aqueous precipitation with nitrated precursors and the other is a double salt high temperature reaction with carbonated starting compounds, both of these precursors being compatible with the usual carbon-14 trapping process. The sensibility to experimental conditions of reference synthesis route and the reaction mechanisms are investigated and discussed.

  9. Aminolysis Reaction of Glycerol Carbonate in Organic and Hydroorganic Medium

    OpenAIRE

    Nohra, Bassam; Candy, Laure; Blanco, Jean-François; Raoul, Yann; Mouloungui, Zephirin

    2012-01-01

    Aminolysis reaction of glycerol carbonate with primary amine in organic and hydroorganic media leads to the formation of two hydroxyurethane isomers and a partial decomposition of glycerol carbonate into glycerol. Aminolysis with a secondary amine promotes the condensation reaction and limits the formation of glycerol. The ratio of α versus β was determined by zgig 13C NMR. This technique permits computing the yield of α and β products in the medium. The quantity of glycerol was determined by...

  10. Laboratory Experiments to Evaluate Matrix Diffusion of Dissolved Organic Carbon Carbon-14 in Southern Nevada Fractured-rock Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Hershey, Ronald L. [Nevada University, Reno, NV (United States). Desert Research Institute; Fereday, Wyatt [Nevada University, Reno, NV (United States). Desert Research Institute

    2016-05-01

    Dissolved inorganic carbon (DIC) carbon-14 (14C) is used to estimate groundwater ages by comparing the DIC 14C content in groundwater in the recharge area to the DIC 14C content in the downgradient sampling point. However, because of chemical reactions and physical processes between groundwater and aquifer rocks, the amount of DIC 14C in groundwater can change and result in 14C loss that is not because of radioactive decay. This loss of DIC 14C results in groundwater ages that are older than the actual groundwater ages. Alternatively, dissolved organic carbon (DOC) 14C in groundwater does not react chemically with aquifer rocks, so DOC 14C ages are generally younger than DIC 14C ages. In addition to chemical reactions, 14C ages may also be altered by the physical process of matrix diffusion. The net effect of a continuous loss of 14C to the aquifer matrix by matrix diffusion and then radioactive decay is that groundwater appears to be older than it actually is. Laboratory experiments were conducted to measure matrix diffusion coefficients for DOC 14C in volcanic and carbonate aquifer rocks from southern Nevada. Experiments were conducted using bromide (Br-) as a conservative tracer and 14C-labeled trimesic acid (TMA) as a surrogate for groundwater DOC. Outcrop samples from six volcanic aquifers and five carbonate aquifers in southern Nevada were used. The average DOC 14C matrix diffusion coefficient for volcanic rocks was 2.9 x 10-7 cm2/s, whereas the average for carbonate rocks was approximately the same at 1.7 x 10-7 cm2/s. The average Br- matrix diffusion coefficient for volcanic rocks was 10.4 x 10-7 cm2/s, whereas the average for carbonate rocks was less at 6.5 x 10-7 cm2/s. Carbonate rocks exhibited greater variability in

  11. Effect of Carbon Containing Materials on Pure Carbon Reaction-bonded SiC

    Institute of Scientific and Technical Information of China (English)

    JI Xiaoli; WEI Lei; SUN Feng

    2008-01-01

    Petroleum coke, graphite, gas carbon and lower sulfur carbon black were used to prepare reaction-bonded silicon carbide. The influences of different carbon containing materials on properties of carbonaceous precursors, sintering process, and microstructure of the prepared SiC were researched. The results show that:(1)With the density of carbon containing materials increasing, the porosity of carbonaceous precursors decreases and the infiltrating process of liquid silicon is more difficult.(2)The reaction between carbon containing materials and liquid silicon, the volume effect is more obvious with the density of carbon containing materials increasing.(3)As the carbon containing materials density decreasing, residual carbon in reaction bonded SiC also decreases.

  12. Reactions of carbon cluster ions stored in an RF trap

    International Nuclear Information System (INIS)

    Reactions of carbon cluster ions with O2 were studied by using an RF ion trap in which cluster ions of specific size produced by laser ablation could be stored selectively. Reaction rate constants for positive and negative carbon cluster ions were estimated. In the case of the positive cluster ions, these were consistent with the previous experimental results using FTMS. Negative carbon cluster ions C-n (n=4-8) were much less reactive than positive cluster ions. The CnO- products were seen only in n=4 and 6. (orig.)

  13. Modeling Corrosion Reactions of Steel in a Dilute Carbonate Solution

    Science.gov (United States)

    Eliyan, Faysal Fayez; Alfantazi, Akram

    2016-02-01

    This research models the corrosion reactions of a high-strength steel in an aerated, dilute, carbonate solution during a single-cycle voltammetry. Based on a previous study (Eliyan et al. in J Mater Eng Perform 24(6):1-8, 2015) and a literature survey, the corrosion reactions of the cathodic reduction, anodic dissolution, and passivation, as well as the interfacial interactions and the chemistry of the corrosion products are illustrated in schematics. The paper provides a visual guide on the corrosion reactions for steel in carbonate solutions based on the available mechanistic details that were reported and are still being investigated in literature.

  14. Differential monitoring of tritium and carbon-14 compounds

    International Nuclear Information System (INIS)

    A gaseous sampling system was developed to differentially collect all major volatile forms of tritium and carbon-14 according to chemical class. These chemical forms include: tritiated forms of water, hydrogen and organics; as well as 14C-containing carbon monoxide, carbon dioxide and organics. Sampling campaigns involving the use of this differential 3H and 14C collection system have been successfully conducted at a high level liquid waste solidification plant, at a spent fuel storage facility and in the vicinity of power reactors

  15. Carbon induced reactions at low incident energies

    International Nuclear Information System (INIS)

    Accurate knowledge of the reactions which occur when two heavy ions interact is of importance in many trans-disciplinary fields, particularly in cancer therapy and space radiation protection. In these cases one needs to know what happens in a natural process to which all possible reaction mechanisms contribute and thus a theoretical calculation, to be really usable, must indeed be able to reproduce large sets of data in wide energy and mass ranges. We show here the results of an analysis of the spectra of intermediate mass fragments produced in the C + Al interaction at 13 MeV/n, both in direct and inverse kinematics, which supplies a very reasonable reproduction of a great number of data providing useful information on the leading reaction mechanisms

  16. Reactions over catalysts confined in carbon nanotubes.

    Science.gov (United States)

    Pan, Xiulian; Bao, Xinhe

    2008-12-21

    We review a new concept for modifying the redox properties of transition metals via confinement within the channels of carbon nanotubes (CNTs), and thus tuning their catalytic performance. Attention is also devoted to novel techniques for homogeneous dispersion of metal nanoparticles inside CNTs since these are essential for optimization of the catalytic activity. PMID:19048128

  17. Biomass carbon-14 ratio measured by accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Measurement methods of a biomass carbon ratio in biomass products based on 14C-radiocarbon concentration have been reviewed. Determination of the biomass carbon ratio in biomass products is important to secure the reliance in the commercial market, because the 'biomass products' could contain products from petroleum. The biomass carbon ratio can be determined from percent Modern Carbon (pMC) using ASTM D6866 methods. The pMC value is calculated from the comparison between the 14C in sample and 14C in reference material. The 14C concentration in chemical products can be measured by liquid scintillation counter (LSC) and accelerator mass spectrometry (AMS). LSC can be applicable to determine the biomass carbon ratio for liquid samples such as gasoline with bioethanol (E5 or E10). On the other hand, AMS can be used to determine the biomass carbon ratio for almost all kinds of organic and inorganic compounds such as starch, cellulose, ethanol, gasoline, or polymer composite with inorganic fillers. AMS can accept the gaseous and solid samples. The graphite derived from samples included in solid phase is measured by AMS. The biomass carbon of samples derived from wood were higher than 100% due to the effect of atomic bomb test in the atmosphere around 1950 which caused the artificial 14C injection. Exact calculation methods of the biomass carbon ratio from pMC will be required for the international standard (ISO standard). (author)

  18. Kinetics of the reaction between carbon dioxide and tertiary amines

    Energy Technology Data Exchange (ETDEWEB)

    Crooks, J.E.; Donnellan, J.P. (King' s Coll., London (England))

    1990-02-16

    The reaction between carbon dioxide and amines is of great technical importance and has been the subject of many investigations. The authors have shown that the reaction for secondary amines in anhydrous ethanol and in aqueous solution is exclusively second-order in amine and that the zwitterion intermediate postulated by Danckwerts is probably of negligible significance in the mechanism. The reaction with tertiary amines has also been studied, but the data are less controversial. In order to complete their studies of the reactions of carbon dioxide with amines, using their conductimetric stopped-flow apparatus, they have studied this reaction for MDEA (methyldiethanolamine, IUPAC name N-methyl-2,2{prime}-iminodiethanol) and TEA (triethanolamine, IUPAC name 2,2{prime},2{double prime}-nitrilotris(ethanol)).

  19. Carbon-Carbon Cross Coupling Reactions in Ionic Liquids Catalysed by Palladium Metal Nanoparticles

    OpenAIRE

    Martin H. G. Prechtl; Scholten, Jackson D.; Jairton Dupont

    2010-01-01

    A brief summary of selected pioneering and mechanistic contributions in the field of carbon-carbon cross-coupling reactions with palladium nanoparticles (Pd-NPs) in ionic liquids (ILs) is presented. Five exemplary model systems using the Pd-NPs/ILs approach are presented: Heck, Suzuki, Stille, Sonogashira and Ullmann reactions which all have in common the use of ionic liquids as reaction media and the use of palladium nanoparticles as reservoir for the catalytically active palladium species.

  20. The preparation of glucose uniformly labelled with carbon-14

    International Nuclear Information System (INIS)

    The plant, (Zea mais, L) and culture conditions for an optimum production of glucose has been chosen. To achieve the labelling of glucose, photosynthesis and carboxylation are carried on, under an artificial atmosphere of 14CO2 produced from 14C-barium carbonate. Following photosynthesis the sugars are extracted, and then the extract purified by several methods. The purified glucose is finally, degraded and the specific radioactivity is determined in each of its carbon atoms. (Author) 37 refs

  1. The preparation of glucosa uniformly labelled with carbon-14

    International Nuclear Information System (INIS)

    The plant, (Zea mais, L) and culture conditions for an optimun production of glucose has been chosen. To achieve the labelling of glucose, photosynthesis and carboxilation are carried on under an artificial atmosphere of 14CO2 produced from 14C-barium carbonate. Following photosynthesis, the sugars are extracted and then the extract purified by several methods. The purified glucose is, finally, degraded and the specific radiactivity is determined in each of its carbon atoms. (author)

  2. Hydrodynamic aspects of carbon-14 groundwater dating

    International Nuclear Information System (INIS)

    The influence of man-made hydraulic disturbances on the 14C ages of groundwater from confined aquifers is examined, also taking into account 14C diffusion, which has an effect on 14C ages only if the hydrostatic pressure in the lower, confined aquifer is not more than 0.5m higher than that in the upper, unconfined aquifer. If the water head of the lower aquifer exceeds this value, the 14C ages of the confined groundwater are reliable. If the water head is lower, the 14C water ages rapidly approach values of a few thousand years, which no longer reflect the history of the groundwater regeneration. With regard to the palaeohydrogeological situation in Central Europe and the Central Sahara during the last 40,000 years, the 14C ages of Holocene groundwater, and the duration of the preceding hiatus of the groundwater regeneration during the last glacial period, can be determined reliably. 14C ages older than that are too small in many cases; thus, groundwater velocities derived from such data are too great. Recently operations were started to use the groundwater from confined aquifers associated with rates for lowering the water table at 0.1-0.5m/a that result in a rapid decrease in the 14C ages determined for these aquifers, delayed for one or two decades after the beginning of the withdrawal. The 3H level and the chemical content of the groundwater may also be changed after the same delay period. Changes of this kind can be used to estimate the hydraulic properties of the aquifer system. In conclusion, an interpretation of the 14C content of the groundwater from confined aquifers in terms of its age is only possible if the water head of the confined aquifer has not been lower than that of the upper aquifer for even a relatively short period. (author)

  3. How does the carbon fusion reaction happen in stars?

    International Nuclear Information System (INIS)

    The 12C + 12C fusion reaction is one of the most important reactions in the stellar evolution. Due to its complicated reaction mechanism, there is great uncertainty in the reaction rate which limits our understanding of various stellar objects, such as massive stellar evolution, explosions on neutron stars, and supernovae from accreting white dwarf stars. In this paper, I will review the challenges in the study of carbon burning. I will also report recent results from our studies: 1) an upper limit for the 12C + 12C fusion cross sections, 2) measurement of the 12C + 12C at deep sub-barrier energies, and 3) a new measurement of the 12C(12C, n) reaction. The outlook for the studies of the astrophysical heavy-ion fusion reactions will also be presented

  4. Oxidation reaction of pyrolytic carbon coating

    International Nuclear Information System (INIS)

    The behaviour of pyrolytic carbon coatings on commercial grade graphite substrate in oxidizing environment is described. Specimens were examined under sputtering in plasma of oxygen and argon, or in an oxidizing solution of K2CrO7+H3PO4. Specimens of commercial grade graphite (ATJ) were quickly eroded under these conditions, compared to coated specimens. The erosion rate of the coating is dependent on its thickness and on the mean monticules diameter. The coatings disintegrated in the oxidizing environment in three steps: etching of monticules' boundaries; widening of the boundaries or cracking of the coating; falling off the coating. The degree of erosion decreased with increasing mean monticules diameter and increased where the diameter was non-homogeneous. The resistance of the coating to wear- under these oxidizing conditions- can be enhanced by homogenization of the coating and by its deposition in layered films. (author)

  5. Reactions of carbon atoms in pulsed molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Reisler, H. [Univ. of Southern California, Los Angeles (United States)

    1993-12-01

    This research program consists of a broad scope of experiments designed to unravel the chemistry of atomic carbon in its two spin states, P and D, by using well-controlled initial conditions and state-resolved detection of products. Prerequisite to the proposed studies (and the reason why so little is known about carbon atom reactions), is the development of clean sources of carbon atoms. Therefore, in parallel with the studies of its chemistry and reaction dynamics, the authors continuously explore new, state-specific and efficient ways of producing atomic carbon. In the current program, C({sup 3}P) is produced via laser ablation of graphite, and three areas of study are being pursued: (i) exothermic reactions with small inorganic molecules (e.g., O{sub 2}, N{sub 2}O, NO{sub 2}) that can proceed via multiple pathways; (ii) the influence of vibrational and translational energy on endothermic reactions involving H-containing reactants that yield CH products (e.g., H{sub 2}O H{sub 2}CO); (iii) reactions of C({sup 3}P) with free radicals (e.g., HCO, CH{sub 3}O). In addition, the authors plan to develop a source of C({sup 1}D) atoms by exploiting the pyrolysis of diazotetrazole and its salts in the ablation source. Another important goal involves collaboration with theoreticians in order to obtain relevant potential energy surfaces, rationalize the experimental results and predict the roles of translational and vibrational energies.

  6. Carbon-14 in reactor plant water

    International Nuclear Information System (INIS)

    The method for the analysis of 14C in reactor plant water and various waste streams previously used at the Idaho National Engineering Laboratory has been shown to be ineffective for samples which contain organic compounds. The previous method consisted of acidification and refluxing of the sample, precipitation of the liberated CO2, and subsequent analysis by the liquid scintillation method. The method was simple but it did not convert all compounds containing 14C in the sample to CO2. The new method, while it is based on the previous method, has been improved by employing a strong oxidant, potassium persulfate and silver nitrate, for more complete oxidation of the organics to CO2. The new method yields 14C values that have typically been one to two orders of magnitude higher than the values obtained using the former method. This indicates that most of the 14C present in the current reactor water samples being analyzed is associated with trace amounts of organics

  7. Determination of carbon-14 environmental samples by mixing 14CO2 with a liquid scintillator

    International Nuclear Information System (INIS)

    A method for the determination of Carbon-14 (14CO2) in environmental samples has been developed. The method use the direct absorption of the carbon dioxide into Carbosorb, followed with incorporation of the mixture (Carbosorb-CO2) to the liquid scintillator. The results obtained to apply this method and the benzene synthesis, usual in our laboratory, are discused and compared. The method of collection of atmospheric samples is also described. (Author)

  8. Determination of Carbon-14 in environmental samples by mixing 14CO2 with a liquid scintillator

    International Nuclear Information System (INIS)

    A method for the determination of Carbon-14 (14CO2) in environmental samples has been developed. The method use the direct absorption of the carbon dioxide into Carbosorb, followed with incorporation of the mixture (Carbosorb-CO2) to the liquid scintillator. The results obtained to apply this method and the benzene synthesis, usual in our laboratory, are discussed and compared. The method of collection of atmospheric samples is also described. (Author) 10 refs

  9. In-phantom dosimetry using the 13C(d,n)14N reaction for BNCT (boron neutron capture therapy)

    International Nuclear Information System (INIS)

    The use of the 13 C(d,n)14 N reaction at Ed =1.5 MeV for accelerator-based boron neutron capture therapy is investigated. The 13 C(d,n)14 N reaction presents the advantages of carbon as a target material and its large cross section. The deuteron beam was produced by a tandem accelerator at MIT's Laboratory for Accelerator Beam Applications. The resulting neutron spectra were evaluated in terms of RBE-dose rates at different depths inside a water-filled brain phantom using a heavy water moderator and lead reflector assembly. All results were simulated using the code MCNP. (author)

  10. Lithological influence of aggregate in the alkali-carbonate reaction

    International Nuclear Information System (INIS)

    The reactivity of carbonate rock with the alkali content of cement, commonly called alkali-carbonate reaction (ACR), has been investigated. Alkali-silica reaction (ASR) can also contribute in the alkali-aggregate reaction (AAR) in carbonate rock, mainly due to micro- and crypto-crystalline quartz or clay content in carbonate aggregate. Both ACR and ASR can occur in the same system, as has been also evidenced on this paper. Carbonate aggregate samples were selected using lithological reactivity criteria, taking into account the presence of dedolomitization, partial dolomitization, micro- and crypto-crystalline quartz. Selected rocks include calcitic dolostone with chert (CDX), calcitic dolostone with dedolomitization (CDD), limestone with chert (LX), marly calcitic dolostone with partial dolomitization (CD), high-porosity ferric dolostone with clays (FD). To evaluate the reactivity, aggregates were studied using expansion tests following RILEM AAR-2, AAR-5, a modification using LiOH AAR-5Li was also tested. A complementary study was done using petrographic monitoring with polarised light microscopy on aggregates immersed in NaOH and LiOH solutions after different ages. SEM-EDAX has been used to identify the presence of brucite as a product of dedolomitization. An ACR reaction showed shrinkage of the mortar bars in alkaline solutions explained by induced dedolomitization, while an ASR process typically displayed expansion. Neither shrinkage nor expansion was observed when mortar bars were immersed in solutions of lithium hydroxide. Carbonate aggregate classification with AAR pathology risk has been elaborated based on mechanical behaviours by expansion and shrinkage. It is proposed to be used as a petrographic method for AAR diagnosis to complement the RILEM AAR1 specifically for carbonate aggregate. Aggregate materials can be classified as I (non-reactive), II (potentially reactive), and III (probably reactive), considering induced dedolomitization ACR

  11. Pattern Formation and Reaction Textures during Dunite Carbonation

    Science.gov (United States)

    Lisabeth, H. P.; Zhu, W.

    2015-12-01

    Alteration of olivine-bearing rocks by fluids is one of the most pervasive geochemical processes on the surface of the Earth. Serpentinized and/or carbonated ultramafic rocks often exhibit characteristic textures on many scales, from polygonal mesh textures on the grain-scale to onion-skin or kernel patterns on the outcrop scale. Strong disequilibrium between pristine ultramafic rocks and common geological fluids such as water and carbon dioxide leads to rapid reactions and coupled mechanical and chemical feedbacks that manifest as characteristic textures. Textural evolution during metasomatic reactions can control effective reaction rates by modulating dynamic porosity and therefore reactant supply and reactive surface area. We run hydrostatic experiments on thermally cracked dunites saturated with carbon dioxide bearing brine at 15 MPa confining pressure and 150°C to explore the evolution of physical properties and reaction textures as carbon mineralization takes place in the sample. Compaction and permeability reduction are observed throughout experiments. Rates of porosity and permeability changes are sensitive to pore fluid chemistry. After reaction, samples are imaged in 3-dimension (3D) using a dual-beam FIB-SEM. Analysis of the high resolution 3D microstructure shows that permeable, highly porous domains are created by olivine dissolution at a characteristic distance from pre-existing crack surfaces while precipitation of secondary minerals such as serpentine and magnesite is limited largely to the primary void space. The porous dissolution channels provide an avenue for fluid ingress, allow reactions to continue and could lead to progressive hierarchical fracturing. Initial modeling of the system indicates that this texture is the result of coupling between dissolution-precipitation reactions and the local stress state of the sample.

  12. Adverse reactions in treatment with lithium carbonate and haloperidol.

    Science.gov (United States)

    Baastrup, P C; Hollnagel, P; Sorensen, R; Schou, M

    1976-12-01

    Hospital records of 425 patients who had been treated simultaneously with lithium carbonate and haloperidol were examined. Adverse reactions in these patients were the same as in patients given lithium alone or haloperidol alone. None of the patients developed a syndrome resembling that described by others in patients treated with a lithium and haloperidol combination. PMID:1036539

  13. Effects of hydrolysis and carbonization reactions on hydrochar production.

    Science.gov (United States)

    Fakkaew, K; Koottatep, T; Polprasert, C

    2015-09-01

    Hydrothermal carbonization (HTC) is a thermal conversion process which converts wet biomass into hydrochar. In this study, a low-energy HTC process named "Two-stage HTC" comprising of hydrolysis and carbonization stages using faecal sludge as feedstock was developed and optimized. The experimental results indicated the optimum conditions of the two-stage HTC to be; hydrolysis temperature of 170 °C, hydrolysis reaction time of 155 min, carbonization temperature of 215 °C, and carbonization reaction time of 100 min. The hydrolysis reaction time and carbonization temperature had a statistically significant effect on energy content of the produced hydrochar. Energy input of the two-stage HTC was about 25% less than conventional HTC. Energy efficiency of the two-stage HTC for treating faecal sludge was higher than that of conventional HTC and other thermal conversion processes such as pyrolysis and gasification. The two-stage HTC could be considered as a potential technology for treating FS and producing hydrochar. PMID:26051497

  14. Dissolved Organic Carbon 14C in Southern Nevada Groundwater and Implications for Groundwater Travel Times

    Energy Technology Data Exchange (ETDEWEB)

    Hershey, Ronald L. [Nevada University, Reno, NV (United States). Desert Research Institute; Fereday, Wyall [Nevada University, Reno, NV (United States). Desert Research Institute; Thomas, James M [Nevada University, Reno, NV (United States). Desert Research Institute

    2016-08-01

    Dissolved inorganic carbon (DIC) carbon-14 (14C) ages must be corrected for complex chemical and physical reactions and processes that change the amount of 14C in groundwater as it flows from recharge to downgradient areas. Because of these reactions, DIC 14C can produce unrealistically old ages and long groundwater travel times that may, or may not, agree with travel times estimated by other methods. Dissolved organic carbon (DOC) 14C ages are often younger than DIC 14C ages because there are few chemical reactions or physical processes that change the amount of DOC 14C in groundwater. However, there are several issues that create uncertainty in DOC 14C groundwater ages including limited knowledge of the initial (A0) DOC 14C in groundwater recharge and potential changes in DOC composition as water moves through an aquifer. This study examines these issues by quantifying A0 DOC 14C in recharge areas of southern Nevada groundwater flow systems and by evaluating changes in DOC composition as water flows from recharge areas to downgradient areas. The effect of these processes on DOC 14C groundwater ages is evaluated and DOC and DIC 14C ages are then compared along several southern Nevada groundwater flow paths. Twenty-seven groundwater samples were collected from springs and wells in southern Nevada in upgradient, midgradient, and downgradient locations. DOC 14C for upgradient samples ranged from 96 to 120 percent modern carbon (pmc) with an average of 106 pmc, verifying modern DOC 14C ages in recharge areas, which decreases uncertainty in DOC 14C A0 values, groundwater ages, and travel times. The HPLC spectra of groundwater along a flow path in the Spring Mountains show the same general pattern indicating that the DOC compound composition does not change along this flow path

  15. The 14N(p,gamma)15O reaction studied with a composite germanium detector

    CERN Document Server

    Marta, M; Bemmerer, D; Broggini, C; Caciolli, A; Corvisiero, P; Costantini, H; Elekes, Z; Fulop, Zs; Gervino, G; Guglielmetti, A; Gustavino, C; Gyurky, Gy; Imbriani, G; Junker, M; Lemut, A; Limata, B; Mazzocchi, C; Menegazzo, R; Prati, P; Roca, V; Rolfs, C; Alvarez, C Rossi; Somorjai, E; Straniero, O; Strieder, F; Terrasi, F; Trautvetter, H P; Vomiero, A

    2011-01-01

    The rate of the carbon-nitrogen-oxygen (CNO) cycle of hydrogen burning is controlled by the 14N(p,gamma)15O reaction. The reaction proceeds by capture to the ground states and several excited states in O-15. In order to obtain a reliable extrapolation of the excitation curve to astrophysical energy, fits in the R-matrix framework are needed. In an energy range that sensitively tests such fits, new cross section data are reported here for the four major transitions in the 14N(p,gamma)15O reaction. The experiment has been performed at the Laboratory for Underground Nuclear Astrophysics (LUNA) 400 kV accelerator placed deep underground in the Gran Sasso facility in Italy. Using a composite germanium detector, summing corrections have been considerably reduced with respect to previous studies. The cross sections for capture to the ground state and to the 5181, 6172, and 6792 keV excited states in O-15 have been determined at 359, 380, and 399 keV beam energy. In addition, the branching ratios for the decay of the...

  16. The synthesis of the insecticides Aldrin and Dieldrin labelled with carbon-14 at high specific activity

    International Nuclear Information System (INIS)

    Aldrin is the trade name given by Shell Chemicals to 1, 2, 3, 4, 10, 10-hexachloro-1, 4, 4a, 5, 8, 8a-hexahydro-exo-1, 4-endo-5, 8-dimethanonapthalene. Acetylene-1, 2-C14 is converted successively to tetrachloroethane and trichloroethylene, and this is condensed with carbon tetrachloride by the Prins reaction in the presence of aluminium chloride to octachlorocyclopentene. Dechlorination gives hexachlorocyclopentadiene which undergoes a Diels-Alder addition to bicyclo(2, 2, 1) hepta-2,5-diene to give aldrin-C14 in 12% yield from barium carbonate. Oxidation of Aldrin gives the 6,7 epoxide, Dieldrin, in 87% yield. The paper includes an account of the separation of octachlorocyclopentene from the crude product of the Prins reaction by gas-liquid chromatography and of the separation of Aldrin and Dieldrin on a small preparative scale by reversed-phase paper chromatography. (author)

  17. Monitoring of carbon 14 in atmospheric carbon dioxide

    International Nuclear Information System (INIS)

    A purpose of this article is to present the first data of the atmospheric C-14 monitoring in CO2 form. In the Prague-Bulovka locality atmospheric CO2 have been continuously collected by absorption in 0.7 M NaOH solution. The samples were one month cumulated. Afterwards, the CO2 was extracted from the NaOH solution and benzene was synthesised. The benzene was measured by liquid scintillation counting (LSC). The monitoring results from January to July 2001 period are discussed and compared with the results from other countries. (authors)

  18. Diffusion-reaction compromise the polymorphs of precipitated calcium carbonate

    Institute of Scientific and Technical Information of China (English)

    Han Wang; Wenlai Huang; Yongsheng Han

    2013-01-01

    Diffusion is seldom considered by chemists and materialists in the preparation of materials while it plays an important role in the field of chemical engineering.If we look at crystallization at the atomic level,crystal growth in a solution starts from the diffusion of ions to the growing surface followed by the incorporation of ions into its lattice.Diffusion can be a rate determining step for the growth of crystals.In this paper,we take the crystallization of calcium carbonate as an example to illustrate the microscopic processes of diffusion and reaction and their compromising influence on the morphology of the crystals produced.The diffusion effect is studied in a specially designed three-cell reactor.Experiments show that a decrease of diffusion leads to retardation of supersaturation and the formation of a continuous concentration gradient in the reaction cell,thus promoting the formation of cubic calcite particles.The reaction rate is regulated by temperature.Increase of reaction rate favors the formation of needle-like aragonite particles.When diffusion and reaction play joint roles in the reaction system,their compromise dominates the formation of products,leading to a mixture of cubic and needle-like particles with a controllable ratio.Since diffusion and reaction are universal factors in the preparation of materials,the finding of this paper could be helpful in the controlled synthesis of other materials.

  19. Preparation of 14C-Labeled Multi-walled Carbon Nano-tubes for Biodistribution Investigations

    International Nuclear Information System (INIS)

    A new method allowing the 14C-labeling of carboxylic acid functions of carbon nano-tubes is described. The key step of the labeling process is a de-carbonylation reaction that has been developed and optimized with the help of a screening method. The optimized process has been successfully applied to multi-walled carbon nano-tubes (MWNTs), and the corresponding 14C-labeled nano-tubes were used to investigate their in vivo behavior. Preliminary results obtained after i.v. contamination of rats revealed liver as the main target organ. Radiolabeling of NTs with a long-life radioactive nucleus like 14C, coupled to a highly sensitive autoradiographic method, that provides a unique detection threshold, will make it possible to determine for a long time period whether or not NTs remain in any organs after animal exposure. (authors)

  20. Carbon-14 geochemistry at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Kimberly A.; Kaplan, Daniel I.

    2013-05-10

    Carbon-14 is among the key radionuclides driving risk at the E-Area Low-Level Waste Disposal Facility on the Savannah River Site (SRS). Much of this calculated risk is believed to be the result of having to make conservative assumptions in risk calculations because of the lack of site-specific data. The original geochemical data package (Kaplan 2006) recommended that performance assessments and composite analyses for the SRS assume that {sup 14}C did not sorbed to sediments or cementitious materials, i.e., that C-14 K{sub d} value (solid:liquid concentration ratio) be set to 0 mL/g (Kaplan 2006). This recommendation was based primarily on the fact that no site-specific experimental work was available and the assumption that the interaction of anionic {sup 14}C as CO{sub 2}{sup 2-}) with similarly charged sediments or cementitious materials would be minimal. When used in reactive transport equations, the 0 mL/g Kd value results in {sup 14}C not interacting with the solid phase and moving quickly through the porous media at the same rate as water. The objective of this study was to quantify and understand how aqueous {sup 14}C, as dissolved carbonate, sorbs to and desorbs from SRS sediments and cementitious materials. Laboratory studies measuring the sorption of {sup 14}C, added as a carbonate, showed unequivocally that {sup 14}C-carbonate K{sub d} values were not equal to 0 mL/g for any of the solid phases tested, but they required several months to come to steady state. After six months of contact, the apparent K{sub d} values for a clayey sediment was 3,000 mL/g, for a sandy sediment was 10 mL/g, for a 36-year-old concrete was 30,000 mL/g, and for a reducing grout was 40 mL/g. Furthermore, it was demonstrated that (ad)sorption rates were appreciably faster than desorption rates, indicating that a kinetic sorption model, as opposed to the steady-state K{sub d} model, may be a more accurate description of the {sup 14}C-carbonate sorption process. A second study

  1. Chemical Reactions in the Processing of Mosi2 + Carbon Compacts

    Science.gov (United States)

    Jacobson, Nathan S.; Lee, Kang N.; Maloy, Stuart A.; Heuer, Arthur H.

    1993-01-01

    Hot-pressing of MoSi2 powders with carbon at high temperatures reduces the siliceous grain boundary phase in the resultant compact. The chemical reactions in this process were examined using the Knudsen cell technique. A 2.3 wt pct oxygen MoSi2 powder and a 0.59 wt pct oxygen MoSi2 powder, both with additions of 2 wt pct carbon, were examined. The reduction of the siliceous grain boundary phase was examined at 1350 K and the resultant P(SiO)/P(CO) ratios interpreted in terms of the SiO(g) and CO(g) isobars on the Si-C-O predominance diagram. The MoSi2 + carbon mixtures were then heated at the hot-pressing temperature of 2100 K. Large weight losses were observed and could be correlated with the formation of a low-melting eutectic and the formation and vaporization of SiC.

  2. Hofmann elimination of p-nitrophenylethyl-1-C-14-trimethylammonium bromide: a carbon-14 isotope effect study (Preprint no. AR-24)

    International Nuclear Information System (INIS)

    The alpha carbon isotope effects in the Hofmann elimination of p-nitrophenylethyl-1-C-14-trimethylammonium bromide compound have been measured under changing buffer concentrations with a view to correlate mechanistic change. Since there are alpha-carbon isotope effects and the effects are small it is quite likely that the reaction is of the ElcB type, predominately irreversible, with the incursion of slightly increasing fractions of reaction by the reversible mechanism as the buffer concentration is increased. (author). 4 refs., 2 tab

  3. Carbon-14 in neutron-irradiated graphite for graphite-moderated reactors. Joint research

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Kimio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Matsuo, Hideto [Radioactive Waste Management and Nuclear Facility Decommissioning Technology Center, Tokyo (Japan)

    2002-12-01

    The graphite moderated gas cooled reactor operated by the Japan Atomic Power Company was stopped its commercial operation on March 1998, and the decommissioning process has been started. Graphite material is often used as the moderator and the reflector materials in the core of the gas cooled reactor. During the operation, a long life nuclide of {sup 14}C is generated in the graphite by several transmutation reactions. Separation of {sup 14}C isotope and the development of the separation method have been recognized to be critical issues for the decommissioning of the reactor core. To understand the current methodologies for the carbon isotope separation, literature on the subject was surveyed. Also, those on the physical and chemical behavior of {sup 14}C were surveyed. This is because the larger part of the nuclides in the graphite is produced from {sup 14}N by (n,p) reaction, and the location of them in the material tends to be different from those of the other carbon atoms. This report summarizes the result of survey on the open literature about the behavior of {sup 14}C and the separation methods, including the list of the literature on these subjects. (author)

  4. Synthesis of carbon-14 analogue of 1,5 diaryl-5-[14C]-1,2,3-triazoles

    International Nuclear Information System (INIS)

    Two 1,2,3-triazole anticonvulsants, 1-(4-methylsulfone-phenyl)-5-(4-methyl-phenyl)-1,2,3-triazole and 1-(4-methylsulfone-phenyl)-5-phenyl-1,2,3-triazole, both labeled with carbon-14 in the 5-position were prepared from para-tolunitrile-[cyano-14C] and benzonitrile-[cyano-14C], respectively

  5. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    Science.gov (United States)

    Cortright, Randy D.; Dumesic, James A.

    2011-01-18

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  6. Effect of partial carbonation on the cyclic CaO carbonation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Grasa, G.; Abanades, J.C.; Anthony, E.J. [CSIC, Zaragoza (Spain)

    2009-10-15

    CaO particles from the calcination of natural limestones can be used as regenerable solid sorbents in some CO{sub 2} capture systems. Their decay curves in terms of CO{sub 2} capture capacity have been extensively studied in the literature, always in experiments allowing particles to reach their maximum carbonation conversion for a given cycle. However, at the expected operating conditions in a CO{sub 2} capture system using the carbonation reaction, a relevant fraction of the CaO particles will not have time to fully convert in the carbonator reactor. This work investigates if there is any effect on the decay curves when CaO is only partially converted in each cycle. Experiments have been conducted in a thermobalance arranged to interrupt the carbonation reaction in each cycle before the end of the fast reaction period typical in the CaO-CO{sub 2} reaction. It is shown that, after the necessary normalization of results, the effective capacity of the sorbent to absorb CO{sub 2} during particle lifetime in the capture system slightly increases and CaO particles partially converted behave 'younger' than particles fully converted after every calcination. This has beneficial implications for the design of carbonation/calcination loops.

  7. Carbon 14 dating method; Methode de datation par le carbone 14

    Energy Technology Data Exchange (ETDEWEB)

    Fortin, Ph

    2000-07-01

    This document gives a first introduction to {sup 14}C dating as it is put into practice at the radiocarbon dating centre of Claude-Bernard university (Lyon-1 univ., Villeurbanne, France): general considerations and recalls of nuclear physics; the {sup 14}C dating method; the initial standard activity; the isotopic fractioning; the measurement of samples activity; the liquid-scintillation counters; the calibration and correction of {sup 14}C dates; the preparation of samples; the benzene synthesis; the current applications of the method. (J.S.)

  8. The Reactions of Hot Fluorine-18 with Gaseous Carbon Tetrafluoride

    International Nuclear Information System (INIS)

    Studies on the reactions of hot Fie atoms with carbon tetrafluoride are reported. Gaseous samples were exposed to the 40-60 MeV (maximum) bremsstrahlung beam of the Yale University Electron Accelerator. The F19 (γ, n) F18 process produces F18 with a kinetic energy of the order of 105-106 eV. These species lose energy by collision and are expected to reach the ''chemical'' energy range (18 atoms. Analysis of products was made using standard radio-gas chromatography techniques. The system was found to be quite sensitive to extraneous radiation damage effects and appropriate precautions were taken. Hot displacement reactions, similar to those observed for hot hydrogen, but much less efficient, were found: F18 + CF4 --> CF3F18 + F, F18 +CF4 --> CF2F18 + (F + F), It was impossible to study the abstraction reaction F18 + CF4 --> CF3 + FF18 directly. However, indirect evidence suggests that it also has a low efficiency. Detailed studies of the effect of moderator on the F18 + CF4 system have been made. The data obtained were analysed by means of the kinetic theory of hot reactions. The system was found to be in accord with this formalism, providing quantitative confirmation of the present interpretation of the results. The carbon tetrafluoride and methane systems provide a basis for some tentative conclusions on the mechanisms of hot fluorine atom reactions. At present it appears that with certain important, but natural, modifications the model first developed for hot hydrogen atoms is applicable

  9. Systematic analysis of reaction cross sections of carbon isotopes

    CERN Document Server

    Horiuchi, W; Kohama, A; Suzuki, Y

    2006-01-01

    We systematically analyze total reaction cross sections of carbon isotopes with N=6--16 on a $^{12}$C target for wide range of incident energy. The intrinsic structure of the carbon isotope is described by a Slater determinant generated from a phenomenological mean-field potential, which reasonably well reproduces the ground state properties for most of the even $N$ isotopes. We need separate studies not only for odd nuclei but also for $^{16}$C and $^{22}$C. The density of the carbon isotope is constructed by eliminating the effect of the center of mass motion. For the calculations of the cross sections, we take two schemes: one is the Glauber approximation, and the other is the eikonal model using a global optical potential. We find that both of the schemes successfully reproduce low and high incident energy data on the cross sections of $^{12}$C, $^{13}$C and $^{16}$C on $^{12}$C. The calculated reaction cross sections of $^{15}$C are found to be considerably smaller than the empirical values observed at l...

  10. Behaviour of carbon-14 in graphite irradiated by neutrons

    International Nuclear Information System (INIS)

    The method of carbon-14 extraction from graphite irradiated by neutrons based on the thermal effect to graphite in a technological vacuum or air current is a basically new approach. When irradiated graphite is heated in a technological vacuum and in an air current, extraction of carbon-14 takes place and reaches as much as 99.5%. The mass of graphite decreases approximately by 10% in every 5 hours of heating. At the same time, its substance in different units can vary in wide ranges: from 3,5 to 110 kBq/g. This can be explained in terms of both the different substance of nitrogen impurities in graphite and different fluency of thermal neutrons

  11. Progressive extraction method applied to isotopic exchange of carbon-14

    International Nuclear Information System (INIS)

    Isotopic exchange in natural settings is essentially an irreversible process, so that it progresses continuously until there is complete isotopic equilibrium. In soils, this process involves interaction between isotopes in the liquid and solid phases, and complete isotopic equilibrium may take a very long time. Measurements after partial isotopic exchange have been used to characterize the labile fraction of elements in soils. We describe a method to characterize the extent of isotopic exchange, with application here to incorporation of inorganic carbon-14 (14C) into mineral carbonates and organic matter in soils. The procedure uses a continuous addition of extractant, acid, or H2O2in the examples presented here, coupled with sequential sampling. The method has been applied to demonstrate the degree of isotopic exchange in soil. The same strategy could be applied to many other elements, including plant nutrients. (author)

  12. Synthesis of carbon-14 labeled Taxol (paclitaxel). [Anticancer agent

    Energy Technology Data Exchange (ETDEWEB)

    Walker, D.G.; Swigor, J.E. (Bristol-Myers Squibb Co., Syracuse, NY (United States). Pharmaceutical Research Inst.); Kant, Joydeep; Schroeder, D.R. (Bristol-Myers Squibb Co., Wallingford, CT (United States). Pharmaceutical Research Inst.)

    1994-10-01

    Reductive cleavage of the C13 side chain of Taxol (1, paclitaxel) followed by regioselective silylation gave 7-triethylsilylbaccatin III (4). 3-O-Triethysilylation of 5 and subsequent reaction with benzoyl chloride-C7-[sup 14]C gave azetidinone 7. Coupling of 4 and 7 followed by deprotection gave 1.26 g of Taxol-N3'-[sup 14]C (11) having a specific activity of 26.5 mCi/mmol and a radiochemical purity of 95%. (author).

  13. Radiative Neutron Capture on Carbon-14 in Effective Field Theory

    OpenAIRE

    Rupak, Gautam; Fernando, Lakma; Vaghani, Akshay

    2012-01-01

    The cross section for radiative capture of neutron on carbon-14 is calculated using the model-independent formalism of halo effective field theory. The dominant contribution from E1 transition is considered, and the cross section is expressed in terms of elastic scattering parameters of the effective range expansion. Contributions from both resonant and non-resonant interaction are calculated. Significant interference between these leads to a capture contribution that deviates from simple Bre...

  14. The management of carbon-14 in Canadian nuclear facilities

    International Nuclear Information System (INIS)

    In Canada, Derived Emission Limits (DELs) for the release of radionuclides from nuclear facilities are set to ensure that the dose to a member of a critical group from one year's release does not exceed the limit on annual dose to a member of the public set by the Atomic Energy Control Regulations. The Advisory Committee on Radiological Protection (ACRP) has expressed concerns as to whether this procedure provides adequate protection to members of the public, including future generations, for certain radionuclides such as a carbon-14 (14C), which can accumulate in the environment and which can be dispersed, through environmental processes, beyond the local region where the critical group is assumed to live. The ACRP subsequently established a Working Group to review the production, release, environmental levels, and waste management of 14C arising in CANDU power reactors. The ACRP recommendations resulting from this review can be summarized as · Given the current levels of emissions from CANDU nuclear power stations resulting from the use of a carbon dioxide annulus gas and the limitations in the calculation and use of collective dose, the ACRP sees no need for and additional collective dose limit to be applied to these sources. · The AECB should require licensees of power reactors and waste management sites to provide an annual inventory of 14C held within reactor buildings and waste management sites; to provide information on the stability of the ion exchange resins and their continuing ability to retain the 14C; to demonstrate on an ongoing basis that releases of 14C are maintained at a small fraction of the emission limits; and to report annually the critical group and local collective doses arising from releases of 14C. 61 refs., 25 tabs., 4 figs

  15. Carbon Nanowalls for oxygen reduction reaction in Bio Fuel Cells

    International Nuclear Information System (INIS)

    We report on the usage of Carbon Nanowalls (CNW) synthesized by a PECVD process as electrode material for oxygen reduction reaction (ORR). In order to substitute the platinum based catalysts in fuel cells, graphene is a promising candidate. Carbon Nanowalls are a graphene modification with good accessibility and a controllable morphology. By controlling height and pore size, they can be optimized for different applications. A ID/IG ratio around 2.5 and the SEM images indicate vertical nanocrystallin graphene sheets. Tests with ferrocene as electroactive compound verify CNW suitability as electrode material. Cyclic voltammetry measurements in oxygen saturated PBS prove the catalytic activity of CNW towards ORR. The results support the feasibility of CNW as cathode in Bio Fuel Cells

  16. Chemical Reaction Equilibrium in Nanoporous Materials: NO Dimerization Reaction in Carbon Slit Nanopores

    Czech Academy of Sciences Publication Activity Database

    Lísal, Martin; Brennan, J.K.; Smith, W.R.

    2006-01-01

    Roč. 124, č. 6 (2006), s. 64712.1-64712.14. ISSN 0021-9606 R&D Projects: GA ČR(CZ) GA203/05/0725; GA AV ČR(CZ) 1ET400720507; GA AV ČR(CZ) 1ET400720409 Institutional research plan: CEZ:AV0Z40720504 Keywords : nanopore * NO dimerization * reaction Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.166, year: 2006

  17. Study of redox reactions to split water and carbon dioxide

    Science.gov (United States)

    Arifin, Darwin

    The development of carbon-neutral, environmentally-sustainable energy carrier is a technological imperative necessary to mitigate the impact of anthropogenic carbon dioxide on earth's climate. One compelling approach rapidly gaining international attention is the conversion of solar energy into renewable fuels, such as H2 or CO, via a two-step thermochemical cycle driven by concentrated solar power. In accordance with the increased interest in this process, there is a need to better understand the gas splitting chemistry on the metal oxide intermediates encountered in such solar-driven processes. Here we measured the H2 and CO production rates during oxidation by H2O and CO2 in a stagnation flow reactor. Redox cycles were performed over various metal oxide chemistries such as hercynite and ceria based materials that are thermally reduced by laser irradiation. In addition to cycle capacity evaluation, reaction kinetics intrinsic to the materials were extracted using a model-based analytical approach to account for the effects of mixing and dispersion in the reactor. Investigation of the "hercynite chemistry" with raman spectroscopy verifies that, at the surface, the cycle proceeds by stabilizing the reduced and oxidized moieties in two different compounds, which allows the thermal reduction reaction to occur to a greater extent at a temperature 150 °C lower than a similarly prepared CoFe2O4-coated m-ZrO2. Investigation of the ceria cycle shows that the water splitting reaction, in the range of 750 - 950 °C and 20 - 40 vol.% H2O, can best be described by a first-order kinetic model with low apparent activation energy (29 kJ/mol). The carbon dioxide splitting reaction, in the range of 650 - 875 °C and 10 - 40 vol.% CO2, is a more complex surface-mediated phenomena that is controlled by a temperature-dependent surface site blocking mechanism involving adsorbed carbon. Moreover, we find that lattice substitution of ceria with zirconium can increase H2 production by

  18. Sarcoidosis patient: an unexpected reaction to carbonic anhydrase enzyme inhibitor

    OpenAIRE

    Khedr, Yahya A H; Khedr, Abdulla H

    2013-01-01

    Ocular diseases are very common in many of the systemic diseases such as sarcoidosis, and may sometimes be the presenting symptom of the disease. In this case report, we present an unusual reaction of the sarcoid granuloma to carbonic anhydrase enzyme inhibitors (CAIs), which was encountered in a patient with ocular sarcoidosis. This observation was taken after a 2-week interval between a CT scan orbits and an MRI orbits which showed a decrease in size from 4×3×4 cm to 2.5×2.5×2 cm, respectiv...

  19. Verification of the dispersion model by airborne carbon 14C

    International Nuclear Information System (INIS)

    This paper provides insight in the verification of the Lagrangean dispersion model for dose calculation in the environment. The verification method was based on the measurement of the airborne carbon 14C concentration which can be slightly increased close to the nuclear power plant. The results proved that this method is sensitive enough and that the sensitivity analysis can be used for model verification or for identification of possible improvements of the used meteorological data. The Lagrangean model is used at Krsko nuclear power plant (NPP) for calculation of dispersion coefficients and dose in the environment. To show compliance with the authorized dose limits it is required to present a realistic calculation of the dose to the public. This is a numerical model designed to calculate air pollution dispersion in the area of 25km x 25km. The model uses on-line local meteorological measurements. The same model was already verified for another location around a coal- fired power plant based on emission and environmental measurements of SO2. Krsko NPP is placed near the Sava River in a semiopened basin surrounded by several hills. The region is characterized by low winds and frequent thermal inversions. This paper presents a verification of the short range dispersion model based on the fact that the airborne carbon 14C concentration can be slightly increased close to the nuclear power plant. Other radioactive effluents are not detectable in the environment and carbon 14C measurements are accurate enough to detect small deviations from natural 14C levels and to compare them with the calculated concentration based on 14C effluents. The most of airborne 14C is released during the refuelling outage. Within the pre-selected period of ten days, increased effluents of 14C in the form of CO2 were sampled from the plant ventilation. The average atmospheric dispersion parameters were calculated for two locations in the environment where CO2 sampling plates were installed

  20. Measurements of carbon-14 with cavity ring-down spectroscopy

    Science.gov (United States)

    McCartt, A. D.; Ognibene, T.; Bench, G.; Turteltaub, K.

    2015-10-01

    Accelerator Mass Spectrometry (AMS) is the most sensitive method for quantitation of 14C in biological samples. This technology has been used in a variety of low dose, human health related studies over the last 20 years when very high sensitivity was needed. AMS helped pioneer these scientific methods, but its expensive facilities and requirements for highly trained technical staff have limited their proliferation. Quantification of 14C by cavity ring-down spectroscopy (CRDS) offers an approach that eliminates many of the shortcomings of an accelerator-based system and would supplement the use of AMS in biomedical research. Our initial prototype, using a non-ideal wavelength laser and under suboptimal experimental conditions, has a 3.5-modern, 1- σ precision for detection of milligram-sized, carbon-14-elevated samples. These results demonstrate proof of principle and provided a starting point for the development of a spectrometer capable of biologically relevant sensitivities.

  1. Cholestyramine-enhanced fecal elimination of carbon-14 in rats after administration of ammonium (/sup 14/C)perfluorooctanoate or potassium (/sup 14/C)perfluorooctanesulfonate

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.D.; Gibson, S.J.; Ober, R.E.

    1984-12-01

    After a single intravenous dose of ammonium (/sup 14/C)perfluorooctanoate (( /sup 14/C)PFO, 13.3 mg/kg) or of potassium (/sup 14/C)perfluorooctanesulfonate (( /sup 14/C)PFOS, 3.4 mg/kg) to rats, cholestyramine fed daily as a 4% mixture in feed was shown to increase the total carbon-14 eliminated via feces and to decrease liver concentration of carbon-14. Rats were fed cholestyramine in feed for 14 days after administration of (/sup 14/C)PFO and for 21 days after administration of (/sup 14/C)PFOS. Control rats were administered radiolabeled fluorochemical but were not treated with cholestyramine. Cholestyramine treatment increased mean cumulative carbon-14 elimination in feces by 9.8-fold for rats administered (/sup 14/C)PFO and by 9.5-fold for rats administered (/sup 14/C)PFOS. After (/sup 14/C)PFO, a mean of 4% of the dose of carbon-14 was in liver of cholestyramine-treated rats at 14 days versus 7.6% in control rats; after (/sup 14/C)PFOS, 11.3% of the dose was in liver at 21 days versus 40.3% in control rats. After administration of either radiolabeled compound, plasma and red blood cell carbon-14 concentrations, which were relatively lower than liver concentrations, were also significantly reduced by cholestyramine treatment.

  2. Cholestyramine-enhanced fecal elimination of carbon-14 in rats after administration of ammonium [14C]perfluorooctanoate or potassium [14C]perfluorooctanesulfonate

    International Nuclear Information System (INIS)

    After a single intravenous dose of ammonium [14C]perfluorooctanoate [( 14C]PFO, 13.3 mg/kg) or of potassium [14C]perfluorooctanesulfonate [( 14C]PFOS, 3.4 mg/kg) to rats, cholestyramine fed daily as a 4% mixture in feed was shown to increase the total carbon-14 eliminated via feces and to decrease liver concentration of carbon-14. Rats were fed cholestyramine in feed for 14 days after administration of [14C]PFO and for 21 days after administration of [14C]PFOS. Control rats were administered radiolabeled fluorochemical but were not treated with cholestyramine. Cholestyramine treatment increased mean cumulative carbon-14 elimination in feces by 9.8-fold for rats administered [14C]PFO and by 9.5-fold for rats administered [14C]PFOS. After [14C]PFO, a mean of 4% of the dose of carbon-14 was in liver of cholestyramine-treated rats at 14 days versus 7.6% in control rats; after [14C]PFOS, 11.3% of the dose was in liver at 21 days versus 40.3% in control rats. After administration of either radiolabeled compound, plasma and red blood cell carbon-14 concentrations, which were relatively lower than liver concentrations, were also significantly reduced by cholestyramine treatment

  3. Functionalized multi-walled carbon nanotubes in an aldol reaction

    Science.gov (United States)

    Chronopoulos, D. D.; Kokotos, C. G.; Karousis, N.; Kokotos, G.; Tagmatarchis, N.

    2015-01-01

    The covalent functionalization of multi-walled carbon nanotubes (MWCNTs) with a proline-based derivative is reported. Initially, MWCNTs were oxidized in order to introduce a large number of carboxylic units on their tips followed by N-tert-butoxycarbonyl-2,2'(ethylenedioxy)bis-(ethylamine) conjugation through an amide bond. Then, a proline derivative bearing a carboxylic terminal moiety at the 4-position was coupled furnishing proline-modified MWCNTs. This new hybrid material was fully characterized by spectroscopic and microscopy means and its catalytic activity in the asymmetric aldol reaction between acetone and 4-nitrobenzaldehyde was evaluated for the first time, showing to proceed almost quantitatively in aqueous media. Furthermore, several amino-modified MWCNTs were prepared and examined in the particular aldol reaction. These new hybrid materials exhibited an enhanced catalytic activity in water, contrasting with the pristine MWCNTs as well as the parent organic molecule, which failed to catalyze the reaction efficiently. Furthermore, the modified MWCNTs proved to catalyze the aldol reaction even after three repetitive cycles. Overall, a green approach for the aldol reaction is presented, where water can be employed as the solvent and modified MWCNTs can be used as catalysts, which can be successfully recovered and reused, while their catalytic activity is retained.The covalent functionalization of multi-walled carbon nanotubes (MWCNTs) with a proline-based derivative is reported. Initially, MWCNTs were oxidized in order to introduce a large number of carboxylic units on their tips followed by N-tert-butoxycarbonyl-2,2'(ethylenedioxy)bis-(ethylamine) conjugation through an amide bond. Then, a proline derivative bearing a carboxylic terminal moiety at the 4-position was coupled furnishing proline-modified MWCNTs. This new hybrid material was fully characterized by spectroscopic and microscopy means and its catalytic activity in the asymmetric aldol reaction

  4. Utilization of Tritium and Carbon-14 in Studies of Isotope Effects

    International Nuclear Information System (INIS)

    The utility of tritium in organic research has been augmented by the development of a simple method for determining C14 and tritium in the same sample. The non-volatile, radioactive material, in a film that is 'infinitely thick' to tritium radiation, is counted in a windowless, gas-fiow proportional counter; the film is then re-counted when covered with a screen that stops all radiation from tritium but allows a fraction of that from C14 to pass. By introduction of one isotope at a point removed from the reaction centre, an isotope effect for the other can be determined from changes in the tritium-C14 ratio in the reactant and/or products as the reaction proceeds. Carriers of reactant, products or derivatives can be added at any point to facilitate isolation, because the analytical method depends primarily on the tritium-C14 ratio. Methods for utilizing the double-label technique will be illustrated by a study of isotope effects in the oxidation of the penultimate carbon of certain labelled polyols with Acetobacter suboxydans. Six D-mannitols position-labelled either with C14 or with tritium at C1, C2 or C3 were prepared. For these, isotope effects (k*/k) of 0.93, 0.23, and 0.71, respectively, were found with C14 at C2, tritium at C2, and tritium at C3; no detectable isotope effects were found for the remaining Dmannitols. In the oxidation of position-labelled D-glucitols, an isotope effect of 0.24 was found for tritium at C5; no detectable effect was found for either C14 or tritium at C1. The techniques are suitable for studying a variety of chemical and biological reactions. (author)

  5. Investigations on the biokinetics of carbon 14 in algae cultures

    International Nuclear Information System (INIS)

    The uptake of 14C by Scenedesmus quadricauda is quantitatively investigated by simulation models of radio ecological relevance. Due to the complexing of the procedures in the natural ecosystem, it was only possible to consider idealized conditions. The batch culture ressembles the conditons of still waters or relatively still waters without notable water exchange. The effect of the 14C enrichment, as well as the drastic carbon reduction in the substrate as a result of algae growth, was avoided in the modified batch culture under conditions of simultaneous substrate diffusion by means of a permeation system. The 14C and 12C uptake of the cells thus took place solely under the conditions of constant concentration in the culture medium. The consequences for flowing water resulting from a nuclear power plant accident are to be simulated for the extent of the 14C uptake by green algae using the continuous culture model with dynamic 14C exposure. The continuous infusion of 14C in the continuous culture corresponds to the possible cases where 14C escapes into a flowing water at a constant rate over a long period of time, whether this may be via chronical release from a nuclear power plant or by 'fallout' resulting from nuclear arms testing. The results shown lead to the conclusion that the emission of 14C to the environment, which according to prognoses will be considerably higher after the year 2000, presents a serious radioactivity potential which man and environment will have to live with should these developments continue and the prognoses come true. (orig./MG)

  6. Reaction between molybdenum and carbon, and several carbides

    International Nuclear Information System (INIS)

    Diffusion couples of molybdenum with carbon and several carbides, i.e. B4C, SiC, TiC, and TaC, respectively, were heated for up to 3.6 x 105 s at various temperatures ranging from 1373 to 2223 K. The couples were then examined for composition, growth rate, structure, and hardness of reaction layers. Main results obtained are as follows: (1) In the Mo-C system, only Mo2C layer was formed at below 1873 K, while two sub- layers consisted of Mo2C and eta (MoC sub(1-x)), respectively, were found at above 1873 K. The activation energy for growth of total layer was 374 kJ/mol. (2) In the Mo-B4C system, two sub-layers consisted of Mo2B and MoB, respectively, with dispersed carbon particles were formed. (3) In the Mo-SiC system, Mo2C layer, including eta (MoC sub(1-x)) phase at high temperature, mixture of Mo2C and Mo3Si2 phases, and Mo3Si2 phase in order from the Mo side were formed. The activation energy for growth of total layer was 477 kJ/mol. (4) In the Mo-TiC system, two kinds of TiC in point of view of free carbon content were used; one is with 0.2% free carbon and the other is with 0.01%. In the Mo-TiC with 0.2% free carbon system, two sub-layers, i.e. relatively thick Mo2C layer and thin (Ti, Mo)C layer, were formed, while in the Mo-TiC with 0.01% free carbon system two thin sub-layers, Mo2C and (Ti, Mo)C, were formed; the Mo2C layer in the latter case was very thin and was not found after short time heating at low temperature. The activation energy for growth of Mo2C layer in the former system was 393 kJ/mol. (5) In the Mo-TaC with 0.02% free carbon system, two thin sub-layers, (Mo, Ta)2C and (Ta, Mo)C, were observed. (6) TEM studies on the interface between Mo (bcc) and Mo2C (hcp) showed that there was the following orientation relation, called as the Burgers relation, between these two phases; (110)sub(Mo)//(0001)sub(Mo2C), sub(Mo)//-0>sub(Mo2C). (author)

  7. Polarized proton induced reactions on lithium isotopes around 14 MeV

    International Nuclear Information System (INIS)

    Differential cross sections, analyzing powers, and double differential cross sections were measured for 6Li(p,x) reactions at 14.0 MeV and for 7Li(p,x) reactions at 12.0, 14.0 and 16.0 MeV. The three-body breakup reactions of 6Li(p,d)pα, 6Li(p,α)pd and 7Li(p,t)pα were intensively studied in order to understand their reaction mechanisms, which must be similar in the neutron induced reactions. Moreover, the contribution of the four-body 6Li(p,2p)nα breakup reaction in the 6Li(p,xp) reaction has been estimated and analyzed on the basis of the sequential decay processes. The optical potential of the p-7Li system has been discussed. (author)

  8. Methods for synthesizing diethyl carbonate from ethanol and supercritical carbon dioxide by one-pot or two-step reactions in the presence of potassium carbonate

    OpenAIRE

    Gasc, Fabien; Thiebaud-Roux, Sophie; Mouloungui, Zephirin

    2009-01-01

    Carbon dioxide sequestration was studied by synthesizing diethyl carbonate (DEC) from ethanol and CO2 under supercritical conditions in the presence of potassium carbonate as a base. The co-reagent was ethyl iodide or a concentrated strong acid. This sequestration reaction occurs in two steps, which were studied separately and in a one-pot reaction. An organic-inorganic carbonate hybrid, potassium ethyl carbonate (PEC) is generated at the end of the first step. This intermediate was character...

  9. Effect of carbon on the Ni catalyzed methane cracking reaction: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jingde; Croiset, Eric; Ricardez–Sandoval, Luis, E-mail: laricard@uwaterloo.ca

    2014-08-30

    Highlights: • Effect of carbon deposition on kinetic properties of methane dissociation is studied. • Existence of surface and subsurface C atoms destabilized CH{sub x} species adsorption. • CH{sub x} activation is hindered with the deposition of C on and in the Ni (1 1 1) surface. - Abstract: To understand the effects of carbon atoms on the Ni catalyzed methane cracking reactions, methane dissociation on clean, surface-carbon-covered, and subsurface-carbon-accumulated Ni(1 1 1) surfaces were investigated using density functional theory (DFT). The results show that the existence of surface and subsurface C atoms destabilized the adsorption of the surface hydrocarbon species when compared to the clean Ni(1 1 1) surface. The projected density state (PDOS) analysis shows that the deposition of C atoms on and into the Ni surface modified the electronic structure of the Ni surface, and thus reduced the catalytic activity of the bonded Ni atoms. Moreover, it was found that the presence carbon atoms increase the CH{sub x} (x = 4–1) species activation barriers especially on the surface carbon covered (1/4 ML) Ni(1 1 1) surface, where CH{sub x} (x = 4–1) species encounter highest energy barrier for dissociation due to the electronic deactivation induced by C-Ni bonding and the strong repulsive carbon -CH{sub x} interaction. The calculations also show that CH{sub x} dissociation barriers are not affected by its neighboring C atom at low surface carbon coverage (1/9 ML). This work can be used to estimate more realistic kinetic parameters for this system.

  10. Effect of carbon on the Ni catalyzed methane cracking reaction: A DFT study

    International Nuclear Information System (INIS)

    Highlights: • Effect of carbon deposition on kinetic properties of methane dissociation is studied. • Existence of surface and subsurface C atoms destabilized CHx species adsorption. • CHx activation is hindered with the deposition of C on and in the Ni (1 1 1) surface. - Abstract: To understand the effects of carbon atoms on the Ni catalyzed methane cracking reactions, methane dissociation on clean, surface-carbon-covered, and subsurface-carbon-accumulated Ni(1 1 1) surfaces were investigated using density functional theory (DFT). The results show that the existence of surface and subsurface C atoms destabilized the adsorption of the surface hydrocarbon species when compared to the clean Ni(1 1 1) surface. The projected density state (PDOS) analysis shows that the deposition of C atoms on and into the Ni surface modified the electronic structure of the Ni surface, and thus reduced the catalytic activity of the bonded Ni atoms. Moreover, it was found that the presence carbon atoms increase the CHx (x = 4–1) species activation barriers especially on the surface carbon covered (1/4 ML) Ni(1 1 1) surface, where CHx (x = 4–1) species encounter highest energy barrier for dissociation due to the electronic deactivation induced by C-Ni bonding and the strong repulsive carbon -CHx interaction. The calculations also show that CHx dissociation barriers are not affected by its neighboring C atom at low surface carbon coverage (1/9 ML). This work can be used to estimate more realistic kinetic parameters for this system

  11. Improved study of the 14O(α,p)17F reaction at stellar energies

    International Nuclear Information System (INIS)

    We have performed a study of the 14O(α, p)17F reaction at stellar energies within the framework of the Generator Coordinate Method (GCM). Our calculation improves a previous study by enlargement of the model space. (orig.)

  12. All-Carbon [3+3] Oxidative Annulations of 1,3-Enynes by Rhodium(III)-Catalyzed C–H Functionalization and 1,4-Migration**

    Science.gov (United States)

    Burns, David J; Best, Daniel; Wieczysty, Martin D; Lam, Hon Wai

    2015-01-01

    1,3-Enynes containing allylic hydrogens cis to the alkyne function as three-carbon components in rhodium(III)-catalyzed, all-carbon [3+3] oxidative annulations to produce spirodialins. The proposed mechanism of these reactions involves the alkenyl-to-allyl 1,4-rhodium(III) migration. PMID:26224377

  13. Carbon and oxygen isotope separation by plasma chemical reactions in carbon monoxide glow discharge

    International Nuclear Information System (INIS)

    The separation of carbon and oxygen isotopes in CO glow discharge has been studied. The isotope enrichment in the products was measured by quadru-pole mass spectrometer. The reaction yield and empirical formula of solid phase products were determined by the gas-volumetric analysis. The stable products obtained in our experiment are CO2 and solid polymers formed on the discharge wall. The polymer consists of both carbon and oxygen and the oxygen/carbon mole ratio in the polymer is 0.35±0.05. Thi isotope enrichment coefficients show a strong negative dependence on discharge current though the relative reaction yields have an opposite tendency. Consequently, the maximum isotope enrichment coefficients for 13C in wall deposit of 2.31 and for 18O in CO2 of 1.37 are obtained when the discharge current and the reaction yields are minimum in our experimental range. The experimental results of isotope enrichment have been compared with theoretical values estimated by an analytical model of literature. The dilution mechanism of the isotope enrichment of stable products is inferred from the isotopic distributions of 13C and 18O in products and theoretical predictions for isotope enrichment. (author)

  14. Carbon-coated magnetic palladium: applications in partial oxidation of alcohols and coupling reactions.

    Science.gov (United States)

    Magnetic carbon supported Pd catalyst has been synthesized via in situ generation of nanoferrites and incorporation of carbon from renewable cellulose via calcination; catalyst can be used for oxidation of alcohols, amination reaction and arylation of aryl halides (cross coupli...

  15. Radiation induced chemical reaction of carbon monoxide and hydrogen mixture

    International Nuclear Information System (INIS)

    Previous studies of radiation induced chemical reactions of CO-H2 mixture have revealed that the yields of oxygen containing products were larger than those of hydrocarbons. In the present study, methane was added to CO-H2 mixture in order to increase further the yields of the oxygen containing products. The yields of most products except a few products such as formaldehyde increased with the addition of small amount of methane. Especially, the yields of trioxane and tetraoxane gave the maximum values when CO-H2 mixture containing 1 mol% methane was irradiated. When large amounts of methane were added to the mixture, the yields of aldehydes and carboxylic acids having more than two carbon atoms increased, whereas those of trioxane and tetraoxane decreased. From the study at reaction temperature over the range of 200 to 473 K, it was found that the yields of aldehydes and carboxylic acids showed maxima at 323 K. The studies on the effects of addition of cationic scavenger (NH3) and radical scavenger (O2) on the products yields were also carried out on the CO-H2-CH4 mixture. (author)

  16. Complete reaction mechanisms of mercury oxidation on halogenated activated carbon.

    Science.gov (United States)

    Rungnim, Chompoonut; Promarak, Vinich; Hannongbua, Supa; Kungwan, Nawee; Namuangruk, Supawadee

    2016-06-01

    The reaction mechanisms of mercury (Hg) adsorption and oxidation on halogenated activated carbon (AC) have been completely studied for the first time using density functional theory (DFT) method. Two different halogenated AC models, namely X-AC and X-AC-X (X=Cl, Br, I), were adopted. The results revealed that HgX is found to be stable-state on the AC edge since its further desorption from the AC as HgX, or further oxidation to HgX2, are energetically unfavorable. Remarkably, the halide type does not significantly affect the Hg adsorption energy but it strongly affects the activation energy barrier of HgX formation, which obviously increases in the order HgIelimination significantly decreases as I-AC>Br-AC>Cl-AC. Thus, the study of the complete reaction mechanism is essential because the adsorption energy can not be used as a guideline for the rational material design in the halide impregnated AC systems. The activation energy is an important descriptor for the predictions of sorbent reactivity to the Hg oxidation process. PMID:26943019

  17. Synthesis of beta carbon nitride nanosized crystal through mechanochemical reaction

    CERN Document Server

    Yin Long Wei; Liu Yu Xian; Sui Jin Ling; Wang Jing Min

    2003-01-01

    Nanosized beta carbon nitride (beta-C sub 3 N sub 4), of grain size several tens of nanometres, has been synthesized by mechanochemical reaction processing. The low-cost synthetic method developed facilitates the novel and effective synthesis of nanosized crystalline beta-C sub 3 N sub 4 (a = 6.36 A, c = 4.648 A) powders. The graphite powders were first milled to a nanoscale state, then the nanosized graphite powders were milled in an atmosphere of NH sub 3 gas. It was found that nanosized beta-C sub 3 N sub 4 was formed after high-energy ball milling under an NH sub 3 atmosphere. After thermal annealing, the shape of the beta-C sub 3 N sub 4 changes from flake-like to sphere-like. The nanosized beta-C sub 3 N sub 4 formed was characterized by x-ray diffraction, Fourier transformation infrared spectroscopy, and transmission electron microscopy. A solid-gas reaction mechanism was proposed for the formation of nanosized beta-C sub 3 N sub 4 at room temperature induced by mechanochemical activation.

  18. Behavior of shungite carbon in reactions simulating thermal transformations of coal

    Energy Technology Data Exchange (ETDEWEB)

    Grigor' eva, E.N.; Rozhkova, N.N. [Russian Academy of Science, Moscow (Russian Federation)

    2000-07-01

    The catalytic activity of shungite carbon in reactions of model compounds (tetralin and benzyl phenyl ether) simulating thermolysis of coal was studied. The orders, rate constants, and activation energies of reactions were determined.

  19. "Homeopathic" palladium nanoparticle catalysis of cross carbon-carbon coupling reactions.

    Science.gov (United States)

    Deraedt, Christophe; Astruc, Didier

    2014-02-18

    Catalysis by palladium derivatives is now one of the most important tools in organic synthesis. Whether researchers design palladium nanoparticles (NPs) or nanoparticles occur as palladium complexes decompose, these structures can serve as central precatalysts in common carbon-carbon bond formation. Palladium NPs are also valuable alternatives to molecular catalysts because they do not require costly and toxic ligands. In this Account, we review the role of "homeopathic" palladium catalysts in carbon-carbon coupling reactions. Seminal studies from the groups of Beletskaya, Reetz, and de Vries showed that palladium NPs can catalyze Heck and Suzuki-Miyaura reactions with aryl iodides and, in some cases, aryl bromides at part per million levels. As a result, researchers coined the term "homeopathic" palladium catalysis. Industry has developed large-scale applications of these transformations. In addition, chemists have used Crooks' concept of dendrimer encapsulation to set up efficient nanofilters for Suzuki-Miyaura and selective Heck catalysis, although these transformations required high PdNP loading. With arene-centered, ferrocenyl-terminated dendrimers containing triazolyl ligands in the tethers, we designed several generations of dendrimers to compare their catalytic efficiencies, varied the numbers of Pd atoms in the PdNPs, and examined encapsulation vs stabilization. The catalytic efficiencies achieved "homeopathic" (TON = 540 000) behavior no matter the PdNP size and stabilization type. The TON increased with decreasing the Pd/substrate ratio, which suggested a leaching mechanism. Recently, we showed that water-soluble arene-centered dendrimers with tri(ethylene glycol) (TEG) tethers stabilized PdNPs involving supramolecular dendritic assemblies because of the interpenetration of the TEG branches. Such PdNPs are stable and retain their "homeopathic" catalytic activities for Suzuki-Miyaura reactions for months. (TONs can reach 2.7 × 10(6) at 80 °C for aryl

  20. Study on behavior and treatment of radioiodine and carbon-14 at reprocessing of spent fuels

    International Nuclear Information System (INIS)

    Treatment of dissolver Off-gas (DOG) is one of important operation in the head-end process of spent fuel reprocessing. Radioiodine, carbon-14 are contained in the DOG. Confinement of radioiodine is required and the reduction of carbon-14 will be required following ALARA principle. In the present study spent fuel dissolution and off-gas treatment tests were carried out using spent fuel with burnups of 8,000 , 29,000 and 44,000 MWd·t-1. Behavior of radioiodine and carbon-14 was investigated. In addition, several adsorbents for carbon dioxide to capture carbon-14 from the DOG were tested in a cold equipment. (author)

  1. The future radiological burden due to carbon 14

    International Nuclear Information System (INIS)

    The global cycling of carbon dioxide from the combustion of fossil fuels and of radiocarbon released from nuclear power facilities has been simulated using a seven-box-model. The model is built up by two boxes for the atmosphere (stratosphere, troposphere), three boxes for the ocean (mixed surface layer, deep sea and sediments), and two boxes for the biosphere (short- and long-lived biota) with non-linear troposphere-biota and troposphere-ocean surface layer exchange rates and linear fluxes between the other reservoirs. The biota growth factor, the exchange of the atmospheric CO2 with the ocean, and the preindustrial atmospheric CO2 content were fitted using the records of the atmospheric CO2 concentration in Mauna Loa, the Suess-effect until 1954, and the response to the C-14 from nuclear weapons tests. The two scenarios considered are (I) annual energy growth rates of 2% and 4%, no nuclear power; (II) a upper and lower estimate of C-14 releases and a best estimate without retention and with a retention factor of four at the fuel reprocessing plants. Assuming logistic source functions for the increase of fossil fuel combustion and an exponentiel growth of nuclear power until the year 2020, the CO2 concentration of the troposphere reaches the 2-5 fold of the preindustrial level around 2100. Simultaneously, the specific C-14 activity of the atmosphere is decreased. The individual lifetime dose commitments (70 y) are found between 0.85 and 0.45 mSv (natural values: 0.73 mSv) and the collective dose commitments until 2100 are about 10% of those due to naturally produced C-14. (orig.)

  2. Environmental levels of carbon-14 around a Swedish nuclear power plant measured with accelerator mass spectrometry

    Science.gov (United States)

    Stenström, K.; Erlandsson, B.; Hellborg, R.; Wiebert, A.; Skog, G.

    1996-06-01

    14C is one of the radionuclides which are produced by nuclear power plants. The main part of the 14C, which is released during normal operation, is produced through neutron induced reactions in the cooling water and is released as airborne effluents (such as CO 2 and hydrocarbons) through the ventilation system of the plant to the surrounding environment. Because of the biological importance of carbon and the long half-life of 14C, it is of interest to measure the releases and their incorporation into living material in the environment of the power plants. In this pilot study the accelerator mass spectrometry (AMS) facility at the University of Lund has been used to measure the 14C activity concentration in vegetation around a Swedish nuclear power plant. AMS is suitable mainly because of the accuracy obtained within a short measuring time, which makes it possible to analyze a sufficient number of samples for a thorough investigation. The results of this study demonstrate that the AMS method is suitable for investigations of the influence on the local environment of reactor-released 14C by analysis of living material. To test dispersion models, however, air sampling both of emission source and in the surrounding of the plant seems more suitable.

  3. Highly vibrationally excited CO generated in a low-temperature chemical reaction between carbon vapor and molecular oxygen

    Science.gov (United States)

    Jans, E.; Frederickson, K.; Yurkovich, M.; Musci, B.; Rich, J. W.; Adamovich, I. V.

    2016-08-01

    A chemical flow reactor is used to study the vibrational population distribution of CO produced by a reaction between carbon vapor generated in an arc discharge and molecular oxygen. The results demonstrate formation of highly vibrationally excited CO, up to vibrational level v = 14, at low temperatures, T = 400-450 K, with population inversion at v = 4-7, in a collision-dominated environment, 15-20 Torr. The average vibrational energy per CO molecule formed by the reaction is 0.6-1.2 eV/molecule, which corresponds to 10-20% of reaction enthalpy. The results show feasibility of development of a new CO chemical laser using carbon vapor and oxygen as reactants.

  4. The test of carbon 14C introducing to sugar beet plant

    International Nuclear Information System (INIS)

    The carbon 14 was introduced to sugar beet plant by photosynthesis. The changes of radioactivity were investigated. It was stated that lower 25 % of carbon 14 stay in leaves, and about 75 % flow to roots in the form of sucrose 14C. (author)

  5. Evaluation of the forward-backward coefficient in the 14N(N,P)14C reaction

    International Nuclear Information System (INIS)

    In the present work the forward-backward asymmetry effect in the 14N(n,p)14C reaction was calculated in the frame of the model of mixing states with different parities of the compound nucleus. It is supposed that the states of the compound nucleus are characterized by definite quantum numbers. The contribution of different resonances to the forward-backward effect were evaluated. These calculations are important in the light of correct interpretation of the experiments on the P-odd effect measurement as well as from the point of view of extracting new resonance parameters from the measurements of the different angular correlation

  6. The kinetics of the O2/CO2 reaction in molten carbonate - Reaction orders for O2 and CO2 on NiO. [in fuel cells

    Science.gov (United States)

    Winnick, J.; Ross, P. N.

    1980-01-01

    The kinetics of the O2/CO2 reaction in molten carbonate is investigated using paste electrolytes and nickel sinter electrodes. A two-step approach to the determination of reaction orders is employed. First, exchange currents at various P(CO2) and P(O2) were measured using the low polarization method. Second, alpha(+) and alpha(-) values were obtained from the slope of the Allen-Hickling plot for current densities low enough so that concentration polarization within the electrode can be neglected. The reaction orders are + 1/4 in CO2 and + 5/8 in O2 in the cathodic direction, and - 3/4 in CO2 and + 1/8 in O2 in the anodic direction.

  7. Application of the Trojan Horse Method to study neutron induced reactions: the 17O(n, α14C reaction

    Directory of Open Access Journals (Sweden)

    Gulino M.

    2014-03-01

    Full Text Available The reaction 17O(n, α14C was studied using virtual neutrons coming from the quasi-free deuteron break-up in the three body reaction 17O+d → α+14C+p. This technique, called virtual neutron method, extends the Trojan Horse method to neutron-induced reactions allowing to study the reaction cross section avoiding the suppression effects coming from the penetrability of the centrifugal barrier. For incident neutron energies from thermal up to a few hundred keV, direct experiments have shown the population of two out of three expected excited states at energies 8213 keV and 8282 keV and the influence of the sub-threshold level at 8038 keV. In the present experiment the 18O excited state at E* = 8.125 MeV, missing in the direct measurement, is observed. The angular distributions of the populated resonances have been measured for the first time. The results unambiguously indicate the ability of the method to overcome the centrifugal barrier suppression effect and to pick out the contribution of the bare nuclear interaction.

  8. Application of the Trojan Horse Method to study neutron induced reactions: the 17O(n, α)14C reaction

    Science.gov (United States)

    Gulino, M.; Spitaleri, C.; Tang, X. D.; Guardo, G. L.; Lamia, L.; Cherubini, S.; Bucher, B.; Burjan, V.; Couder, M.; Davies, P.; deBoer, R.; Fang, X.; Goldberg, V. Z.; Hons, Z.; Kroha, V.; Lamm, L.; La Cognata, M.; Li, C.; Ma, C.; Mrazek, J.; Mukhamedzhanov, A. M.; Notani, M.; O'Brien, S.; Pizzone, R. G.; Rapisarda, G. G.; Roberson, D.; Sergi, M. L.; Tan, W.; Thompson, I. J.; Wiescher, M.

    2014-03-01

    The reaction 17O(n, α)14C was studied using virtual neutrons coming from the quasi-free deuteron break-up in the three body reaction 17O+d → α+14C+p. This technique, called virtual neutron method, extends the Trojan Horse method to neutron-induced reactions allowing to study the reaction cross section avoiding the suppression effects coming from the penetrability of the centrifugal barrier. For incident neutron energies from thermal up to a few hundred keV, direct experiments have shown the population of two out of three expected excited states at energies 8213 keV and 8282 keV and the influence of the sub-threshold level at 8038 keV. In the present experiment the 18O excited state at E* = 8.125 MeV, missing in the direct measurement, is observed. The angular distributions of the populated resonances have been measured for the first time. The results unambiguously indicate the ability of the method to overcome the centrifugal barrier suppression effect and to pick out the contribution of the bare nuclear interaction.

  9. Metal doped carbon nanoneedles and effect of carbon organization with activity for hydrogen evolution reaction (HER).

    Science.gov (United States)

    Araujo, Rafael A; Rubira, Adley F; Asefa, Tewodros; Silva, Rafael

    2016-02-10

    Cellulose nanowhiskers (CNW) from cotton, was prepared by acid hydrolysis and purified using a size selection process to obtain homogeneous samples with average particle size of 270 nm and 85.5% crystallinity. Purified CNW was used as precursor to carbon nanoneedles (CNN) synthesis. The synthesis of CNN loaded with different metals dopants were carried out by a nanoreactor method and the obtained CNNs applied as electrocatalysts for hydrogen evolution reaction (HER). In the carbon nanoneedles synthesis, Ni, Cu, or Fe worked as graphitization catalyst and the metal were found present as dopants in the final material. The used metal appeared to have direct influence on the degree of organization of the particles and also in the surface density of polar groups. It was evaluated the influence of the graphitic organization on the general properties and nickel was found as the more appropriate metal since it leads to a more organized material and also to a high activity toward HER. PMID:26686184

  10. Reaction in plasma generated in supercritical carbon dioxide

    International Nuclear Information System (INIS)

    The generation of non-thermal plasmas was studied under supercritical conditions. This is interesting in view of both the basic phenomena involved and of potential industrial applications. When supercritical fluids are combined with discharge plasma they develop unique characteristics, including an enhanced chemical reactivity. This is the motivation for investigating the generation of discharge plasma in supercritical CO2. In this study, breakdown voltages were measured in CO2 in order to generate electric discharges in supercritical CO2. The experimental data show that the breakdown voltage increased smoothly up to the intersection points, but beyond these points the rates of increase of the breakdown voltage are different. This phenomenon can be explained with the help of pressure-density curves of carbon dioxide at a constant temperature. In addition, the generated plasma in supercritical CO2 was applied to several chemical reactions. The alpha conversion of tocopherols and transesterification of soybean oil with methanol were investigated. In addition, we explored the possibility of replacing catalysts with plasma in supercritical CO2

  11. Reaction in plasma generated in supercritical carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Goto, M; Sasaki, M; Kiyan, T; Fang, T; Roy, B C; Namihira, T; Akiyama, H; Hara, M [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan)], E-mail: mgoto@kumamoto-u.ac.jp

    2008-07-15

    The generation of non-thermal plasmas was studied under supercritical conditions. This is interesting in view of both the basic phenomena involved and of potential industrial applications. When supercritical fluids are combined with discharge plasma they develop unique characteristics, including an enhanced chemical reactivity. This is the motivation for investigating the generation of discharge plasma in supercritical CO{sub 2}. In this study, breakdown voltages were measured in CO{sub 2} in order to generate electric discharges in supercritical CO{sub 2}. The experimental data show that the breakdown voltage increased smoothly up to the intersection points, but beyond these points the rates of increase of the breakdown voltage are different. This phenomenon can be explained with the help of pressure-density curves of carbon dioxide at a constant temperature. In addition, the generated plasma in supercritical CO{sub 2} was applied to several chemical reactions. The alpha conversion of tocopherols and transesterification of soybean oil with methanol were investigated. In addition, we explored the possibility of replacing catalysts with plasma in supercritical CO{sub 2}.

  12. Improved quality control of carbon-14 labelled compounds

    International Nuclear Information System (INIS)

    IUT Ltd is a producer of carbon-14 labelled organic compounds like benzene, methanol, phenol, formaldehyde, Na-acetates and also special ordered compounds. The quality control of these compounds is carried out by means of HPLC and GC-MS due to chemical purity. Molar activity was determined by Liquid Scintillation Counting and HPLC being equipped by a radioactivity detector. Unfortunately the accuracy of the activity determination was arrived only ±4% relatively. This error is too high because of the large dilution factors. In respect of the IUT accreditation as an analytical laboratory in Germany the accuracy had to be improved remarkably. Therefore the GC-MS-determination of molar activities of labelled compounds is used as the 14C-labelled compound. A special evaluation code is used to determine the enrichment values relative to the unlabelled molecules. Taking into account the results of GC-MS the accuracy of molar activity determination is improved to ±2%. The spectra evaluation is demonstrated and some examples are discussed

  13. A Study on Reactions of Carbon-Carbonate Mixture at Elevated Temperature : As an Anode Media of SO-DCFC

    International Nuclear Information System (INIS)

    A direct carbon fuel cell (DCFC) generates electricity directly by converting the chemical energy in coal. In particular, a DCFC system with a solid oxide electrolyte and molten carbonate anode media has been proposed by SRI. In this system, however, there are conflicting effects of temperature, which enhances the ion conductivity of the solid electrolyte and reactivity at the electrodes while causing a stability problem for the anode media. In this study, the effect of temperature on the stability of a carbon-carbonate mixture was investigated experimentally. TGA analysis was conducted under either nitrogen or carbon dioxide ambient for Li2 CO3, K2 CO3, and their mixtures with carbon black. The composition of the exit gas was also monitored during temperature elevation. A simplified reaction model was suggested by considering the decomposition of carbonates and the catalyzed Boudouard reactions. The suggested model could well explain both the measured weight loss of the mixture and the gas formation from it

  14. High-Throughput Screening of the Asymmetric Decarboxylative Alkylation Reaction of Enolate-Stabilized Enol Carbonates

    KAUST Repository

    Stoltz, Brian

    2010-06-14

    The use of high-throughput screening allowed for the optimization of reaction conditions for the palladium-catalyzed asymmetric decarboxylative alkylation reaction of enolate-stabilized enol carbonates. Changing to a non-polar reaction solvent and to an electron-deficient PHOX derivative as ligand from our standard reaction conditions improved the enantioselectivity for the alkylation of a ketal-protected,1,3-diketone-derived enol carbonate from 28% ee to 84% ee. Similar improvements in enantioselectivity were seen for a β-keto-ester derived- and an α-phenyl cyclohexanone-derived enol carbonate.

  15. The preparation of glucose uniformly labelled with carbon-14; Preparacion de glucosa uniformemente marcada con carbono-14

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M. D.; Suarez, C.; Rodrigo, M. E.

    1978-07-01

    The plant, (Zea mais, L) and culture conditions for an optimum production of glucose has been chosen. To achieve the labelling of glucose, photosynthesis and carboxylation are carried on, under an artificial atmosphere of 14CO{sub 2} produced from 14{sup C}-barium carbonate. Following photosynthesis the sugars are extracted, and then the extract purified by several methods. The purified glucose is finally, degraded and the specific radioactivity is determined in each of its carbon atoms. (Author) 37 refs.

  16. Chemical and biological evolution of (U-14C)phenol sorbed on activated carbon

    International Nuclear Information System (INIS)

    Methods describing the chemical and biological evolution of (U-14C)phenol adsorbed on activated carbon are given with or without the use of bacteria. Without bacteria, the (U-14C)phenol initially adsorbed is not removed from the carbon after adding a solution of unlabelled phenol through the column for eight days. With bacteria, the (U-14C)phenol initially present, is removed (60-70%) from activated carbon with a solution containing unlabelled phenol, nitrogen and phosphorus. (author)

  17. Carbon dioxide sequestration via olivine carbonation: Examining the formation of reaction products

    Science.gov (United States)

    King, H. E.; Plümper, O.; Putnis, A.

    2009-04-01

    Due to its abundance and natural ability to sequester CO2, olivine has been proposed as one mineral that could be used in the control of CO2 emissions into the atmosphere (Metz, 2005). Large scale peridotite deposits found in locations such as the Western Gneiss Region in Norway could provide in-situ sites for sequestration or the raw materials for ex-situ mineral carbonation. Determining the conditions under which magnesite (MgCO3) forms most efficiently is crucial to conduct a cost effective process. Understanding the development of secondary minerals is particularly important for in-situ methods as these phases can form passivating layers and affect the host rock porosity. The final solution of flow-through experiments conducted at alkaline pH have been shown to be supersaturated with respect to talc and chrysotile (Giammer et al., 2005), although these phases were not found to have precipitated the formation of a passivating, amorphous silica layer has been observed on reacted olivine surfaces (Bearat et al., 2006). By studying magnesite and other products produced during the carbonation of olivine within Teflon lined steel autoclaves we have begun to form a more comprehensive understanding of how these reactions would proceed during sequestration processes. We have performed batch experiments using carbonated saline solutions in the presence of air or gaseous CO2 from 80 to 200 ˚ C. X-ray powder diffraction was used to identify magnesite within the reaction products. Crystals of magnesite up to 20 m in diameter can be observed on olivine grain surfaces with scanning electron microscopy. Secondary reaction products formed a platy layer on olivine surfaces in reactions above 160 ˚ C and below pH 12. Energy dispersive X-ray analysis of the platy layer revealed an increase in Fe concentration. The macroscopically observable red colouration of the reaction products and Raman spectroscopy indicate that hematite is present in these layers. For experiments with

  18. Carbonated Eclogite Solidus Between 14 and 20 GPa: Results from the Model CMAS-CO2 System and Contrasting Solidus Behavior to Carbonated Peridotite

    Science.gov (United States)

    Keshav, S.; Gudfinnsson, G. H.

    2007-12-01

    , and magnesite. From average calculated melting reactions along these isobarically univariant curves, stishovite is produced upon melting at all pressures investigated. Significantly, cpx at 14 and 16 GPa and capv at 20 GPa are the dominant contributors toward melt production/composition, in contrast to lower pressures (3-8 GPa) where carbonate dominantly contributes toward melt generation/composition at the solidus. The solidus of model carbonated eclogite at 14, 16, and 20 GPa, lies at 1350, 1450, and 1600 degrees C, respectively, and is nearly linear in P-T space. Melts in equilibrium with all the crystalline phases are highly calcic (Ca no.-0.70), resembling calcio-carbonatites. When magnesite is exhausted from the crystalline assemblage, the melts become slightly less calcic (Ca no.-65). The model carbonated eclogite solidus is always lower than the model carbonated peridotite solidus in the same pressure range. The most remarkable feature of this work is the absence of a drop in the solidus of model carbonated eclogite between 14 and 16 GPa, a result that is in stark contrast to that observed for the model carbonated peridotite at identical pressures. Therefore, even though the solidus temperatures in both carbonated peridotite and eclogite are strongly influenced by the presence of crystalline carbonate, melt compositions and the shape of the solidus in the pressure range investigated seem to be dominantly controlled by the silicate component of the rock in question. Given these results, it is fair to say that a wide range of petrological and geochemical processes operate at these depths in the mantle, and that we have barely scratched the surface in our investigation.

  19. Inelastic Branch of the Stellar Reaction $^{14}$O$(\\alpha,p)^{17}$F

    CERN Multimedia

    Hass, M; Van duppen, P L E

    2002-01-01

    We propose to use the upgraded REX-ISOLDE beam energy to study the astrophysically important $^{14}$O($\\alpha$, p)$^{17}$F reaction in time reverse kinematics. In particular, we will use the highly efficient miniball + CD detection system to measure the previously undetermined inelastic proton branch of the 1$^-$ state at 6.15 MeV in $^{18}$Ne. This state dominates the reaction rate under X-ray burster conditions.

  20. Probing the Mechanism of 1,4-Conjugate Elimination Reactions Catalyzed by Terpene Synthases

    OpenAIRE

    Faraldos, Juan A.; Gonzalez, Veronica; Li, Amang; Yu, Fanglei; Köksal, Mustafa; Christianson, David W.; Allemann, Rudolf K.

    2012-01-01

    The reaction mechanisms of (E)-β-farnesene synthase (EBFS) and isoprene synthase (ISPS), enzymes that catalyze a formal regioespecific 1,4-conjugate elimination of hydrogen-diphosphate from (E, E)-farnesyl and dimethylallyl diphosphate (FDP and DMADP) to generate the semiochemicals (E)-β-farnesene and isoprene, respectively, were probed with substrate analogs and kinetic measurements. The results support stepwise reaction mechanisms through analogous enzyme-bound allylic cationic intermediate...

  1. The C-14(alpha, gamma)O-18 reaction at astrophysical energies

    International Nuclear Information System (INIS)

    The C-14(alpha, gamma)O-18 reaction rate is estimated for temperatures important for He flashes in white dwarfs and for nonhomogeneous big-bang nucleosynthesis. If available, the resonant contributions to the rate are derived using recent experimental data. The direct capture rate is evaluated on the basis of a microscopic multichannel calculation of the C-14(alpha, gamma)O-18 reaction. Possible interference contributions are discussed. The present rate is compared to previous estimates of Hashimoto et al. (1986) and of Buchmann et al. (1988). 23 refs

  2. The C-14(alpha, gamma)O-18 reaction at astrophysical energies

    Energy Technology Data Exchange (ETDEWEB)

    Funck, C.; Langanke, K. (Muenster Universitaet (Germany, F.R.))

    1989-09-01

    The C-14(alpha, gamma)O-18 reaction rate is estimated for temperatures important for He flashes in white dwarfs and for nonhomogeneous big-bang nucleosynthesis. If available, the resonant contributions to the rate are derived using recent experimental data. The direct capture rate is evaluated on the basis of a microscopic multichannel calculation of the C-14(alpha, gamma)O-18 reaction. Possible interference contributions are discussed. The present rate is compared to previous estimates of Hashimoto et al. (1986) and of Buchmann et al. (1988). 23 refs.

  3. Uptake of bomb-produced carbon-14 by the Pacific Ocean

    International Nuclear Information System (INIS)

    Collection of seawater samples for carbon-14 analysis was performed from 1957 through 1972. The dissolved inorganic carbon was extracted on board the ships and returned to the laboratory for processing. Samples were analyzed for carbon-14 by gas proportional counting of acetylene prepared by conversion of carbon dioxide to acetylene via lithium carbide. Carbon-14 results are reported for 312 surface and 96 sub-surface Pacific Ocean samples and for 34 surface and 53 sub-surface Indian Ocean samples. The precision of measurements was generally from 0.5 to 1.5 percent (one-sigma). The purpose of the seawater measurements was to determine the distribution of bomb carbon-14 in the surface of the Pacific and Indian Oceans, the change in carbon-14 concentration with depth, and the rate of uptake of bomb carbon-14 by the oceans. The oceans are the largest reservoir of exchangeable carbon. The CO2 of the atmosphere exchanges with that of the sea through molecular exchange. In the surface Pacific, a strong latitudinal variation in carbon-14 concentration was found. By 1971, maxima of about 25 percent above pre-bomb levels were found at mid-latitudes of both hemispheres; this finding is attributed to relatively weak vertical mixing in the gyral circulation systems. A 1971 equatorial excess of only about 11 percent is caused by upwelling of sub-surface water and mixture of low carbon-14 Peru Current water into the equatorial system. South of the Antarctic Convergence surface radiocarbon levels rapidly decrease. To the North of the North Pacific gyre maximum, carbon-14 levels show a minimum at about 400N, apparently due to an influx of low carbon-14 water from north of Japan. Levels then rise to a maximum at 450N to 480N, before decreasing further north

  4. Correlation between carbon-carbon bond length and the ease of retro Diels-Alder reaction

    Indian Academy of Sciences (India)

    Sambasivarao Kotha; Shaibal Banerjee; Mobin Shaikh

    2014-09-01

    The bond length between C8-C9 in (1′R,4′S,4a′R,8a′S)-6′,7′-dimethyl-1′,4′,4a′,8a′-tetrahydrospiro [cyclopropane-1,9′-[1,4]methanonaphthalene]-5′,8′-dione is 1.571 (2) Å and between C7-C12 is 1.567 (2) Å which are longer than the corresponding bond length for saturated bicyclic systems (1.531-1.535Å). This paper reports the correlation between bond length and the ease of retro Diels−Alder reaction.

  5. Use of the small proportional counter for carbon 14 measurement in 10 milligram carbon samples

    International Nuclear Information System (INIS)

    Ten years ago, the measurement of C-14/C-12 ratios in 10 milligram carbon samples seemed to be technically out of reach. However, two developments that make this goal possible have recently occurred: the first is an entirely new mass-spectrometric separation of C-14 and C-12 ions and their subsequent estimation by counting, while the second is simply the extension of conventional proportional counter operation (using CO2 as counter gas) to very small size carbon samples. The first method is very fast, precise, and capable of treating samples of even sub-milligram size, but requires an expensive installation. The second method is slow (counting times of two months or more are necessary), can probably be made sufficiently precise to handle most problems, works down to sample sizes of 10 mg carbon, and is relatively inexpensive, especially to install in already existing radiocarbon laboratories. It is this second method and its implications that are discussed in the present paper

  6. Synthesis of 1,4-naphthoquinone derivatives using 1,3-dipolar cycloaddition and Sonogashira reactions

    OpenAIRE

    Wilson Silva do Nascimento; Mauro Gomes da Silva; Ronaldo Nascimento de Oliveira; Celso Amorim Câmara

    2010-01-01

    Naphthoquinones are known according to their important bio-activities, such as their antitumoral and topoisomerase inhibition properties. From 2-azido (3) or 2,3-diacetylene-1,4-naphthoquinone (4) it was possible to obtain triazole derivatives (naphthoquinonic). This work describes the synthesis of two novel molecules, with triazole groups linked to 1,4-naphthoquinone using the 1,3-dipolar cycloaddition and Sonogashira reactions. The synthetic strategy followed two routes (Scheme 1). First, w...

  7. Kinetic study of the reaction of uranium with various carbon-containing gases; Etude cinetique de la reaction sur l'uranium de differents gaz carbones

    Energy Technology Data Exchange (ETDEWEB)

    Feron, G. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1963-09-15

    The kinetic study of the reaction U + CO{sub 2} and U + CO has been performed by a thermogravimetric method on a spherical uranium powder, in temperature ranges respectively from 460 to 690 deg. C and from 570 to 850 deg. C. The reaction with carbon dioxide leads to uranium dioxide. A carbon deposition takes place at the same time. The global reactions is the result of two reactions: U + 2 CO{sub 2} {yields} UO{sub 2} + 2 CO U + CO{sub 2} {yields} UO{sub 2} + C The reaction with carbon monoxide leads to a mixture of dioxide UO{sub 2}, dicarbide UC{sub 2} and free carbon. The main reaction can be written. U + CO {yields} 1/2 UO{sub 2} + 1/2 UC{sub 2} The free carbon results of the disproportionation of the carbon monoxide. A remarkable separation of the two phases UO{sub 2} and UC{sub 2} can be observed. A mechanism accounting for the phenomenon has been proposed. The two reactions U + CO{sub 2} and U + CO begin with a long germination period, after which, the reaction velocity seems to be limited in both cases by the ionic diffusion of oxygen through the uranium dioxide. (author) [French] L'etude cinetique des reactions U sol + CO{sub 2} gaz et U sol + CO gaz a ete effectuee par thermogravirnetrie sur une poudre d'uranium a grains spheriques, les domaines de temperature etudies s'etendant respectivement de 460 a 690 deg. C et de 570 a 850 deg. C. L'action du dioxyde de carbone conduit au dioxyde d'uranium UO{sub 2}; il se produit en meme temps un depot de carbone. La reaction globale resulte des deux reactions: U + 2 CO{sub 2} {yields} UO{sub 2} + 2 CO U + CO{sub 2} {yields} UO{sub 2} + C Le mono-oxyde de carbone conduit a un melange de dioxyde UO{sub 2}, de dicarbure UC{sub 2} et de carbone libre. La reaction principale s'ecrit: U + CO {yields} 1/2 UO{sub 2} + 1/2 UC{sub 2} Le carbone libre provient de la dismutation du mono-oxyde de carbone. On observe une separation remarquable des deux phases UO{sub 2} et UC{sub 2}; un mecanisme

  8. Carbon catalysis of reactions in the lithium SOCl2 and SO2 systems

    Science.gov (United States)

    Kilroy, W. P.

    1981-01-01

    Certain hazards associated with lithium batteries have delayed widespread acceptance of these power sources. The reactivity of ground lithium carbon mixtures was examined. The effect of carbon types on this reactivity was determined. The basic reaction involved mixtures of lithium and carbon with battery electrolyte. The various parameters that influenced this reactivity included: the nature and freshness of the carbon; the freshness, the purity, and the conductive salt of the electrolyte; and the effect of Teflon or moisture.

  9. Kinetic study of the reaction of uranium with various carbon-containing gases

    International Nuclear Information System (INIS)

    The kinetic study of the reaction U + CO2 and U + CO has been performed by a thermogravimetric method on a spherical uranium powder, in temperature ranges respectively from 460 to 690 deg. C and from 570 to 850 deg. C. The reaction with carbon dioxide leads to uranium dioxide. A carbon deposition takes place at the same time. The global reactions is the result of two reactions: U + 2 CO2 → UO2 + 2 CO U + CO2 → UO2 + C The reaction with carbon monoxide leads to a mixture of dioxide UO2, dicarbide UC2 and free carbon. The main reaction can be written. U + CO → 1/2 UO2 + 1/2 UC2 The free carbon results of the disproportionation of the carbon monoxide. A remarkable separation of the two phases UO2 and UC2 can be observed. A mechanism accounting for the phenomenon has been proposed. The two reactions U + CO2 and U + CO begin with a long germination period, after which, the reaction velocity seems to be limited in both cases by the ionic diffusion of oxygen through the uranium dioxide. (author)

  10. FUSION-LIKE PROCESSES IN THE N-14+TH-232 REACTION AT 30 MEV NUCLEON

    NARCIS (Netherlands)

    LEEGTE, HKW; BOONSTRA, AL; HINNEFELD, JD; KOLDENHOF, EE; SIEMSSEN, RH; SIWEKWILCZYNSKA, K; SOSIN, Z; WILCZYNSKI, J; WILSCHUT, HW

    1992-01-01

    Fusionlike processes were studied in the N-14 + Th-232 reaction at 30 MeV per nucleon. Partition of the fusionlike cross section was determined by detecting nonequilibrium charged particles with an array of phoswich detectors (plastic wall) in coincidence with fission fragments for which the folding

  11. Proton, deuteron and triton emission in 14N + Ag reaction at 52 MeV/nucleon

    International Nuclear Information System (INIS)

    Inclusive energy spectra of p, d, t and multiplicities from the reaction 14N(Ag, X), X = p, d, t at E/A = 52 MeV were measured. The experimental data are compared with Dubna version of the Cascade Model (DCM) and are analyzed in the framework of the moving source model

  12. Impacts of carbon nanotubes on biochemical reactions: insight into interaction between carbon nanotubes and DNA polymerase enzyme

    OpenAIRE

    Uysal, Ebru; Meral, Yüce; Meral, Yuce; Hasan KURT

    2014-01-01

    Recently, the Polymerase Chain Reaction technique has begun to benefit from nanotechnology. In this paper, effects of carbon nanotubes in the Polymerase Chain Reaction were investigated by Electrophoresis, Circular Dichroism Spectrometry and Dynamic Light Scattering Techniques. The unique ability to amplify low copy number DNA within minutes has made in vitro Polymerase Chain Reaction (PCR) one of the most essential techniques in modern biology. In order to harness this technique to its full ...

  13. Synthesis of carbon-14 labelled indolic 5HT{sub 1} receptor agonists

    Energy Technology Data Exchange (ETDEWEB)

    Waterhouse, Ian; Cable, K.M.; Fellows, Ian; Wipperman, M.D.; Sutherland, D.R. [Glaxo Wellcome Research and Development, Stevenage (United Kingdom). Isotope Chemistry Unit

    1996-11-01

    Syntheses of carbon-14 labelled versions of indolic 5HT{sub 1} agonists sumatriptan (GR43175), GR40370 and naratriptan (GR85548) are described. Introduction of the label via cyanation of ketoformanilides, formed by oxidative cleavage of an indole ring, ensured incorporation of carbon-14 at the metabolically stable C-2 position of the indole. (author).

  14. Cross-sections of 14 MeV neutron reactions on phosphorus and calcium

    International Nuclear Information System (INIS)

    Cross-section values for 14.7 MeV neutrons are measured for the following reactions: 31P(n, α)28Al, (132+-10) mb; 42Ca(n, p)42K, (173+-19) mb; 43Ca(n, p)43K, (111+-9) mb; 44Ca(n, p)44K, (42+-2) mb; 44Ca(n, α)41Ar, (27+-2) mb; 48Ca(n, 2n)47Ca, (616+-54) mb. The preferred mean values for each reaction are given. The 27Al(n, p)27Mg reaction is used as a reference reaction the cross-section of which is taken as σsub(r)=75 mb, while the half-life of 27Mg is T=9.45 m. This reaction is suitable for short-lived activities arising in the different reactions. For long-lived activities the 27Al(n, α)24Na (T=15 h) reaction is used as a standard. The cross-section for this reaction was selected using the good agreement of mean values given in earlier reports. The samples were irradiated in the SAMES neutron generator which produces 14 MeV neutrons by the 3H(d, n)4He reaction. A rotating target assembly was used to provide stable neutron yields, which were monitored and registered so that it was possible to deduce PHIsub(corr)-terms when necessary. Measurements of the spectra were performed with a 110 cm3 Ge(Li) detector on line with a PDP-9 computer. The peak analyses of the spectra were performed with the aid of the VIPUNEN program on a Burroughs 6700 computer. (T.G.)

  15. Measurement of pion double charge exchange on carbon-13, carbon-14, magnesium-26, and iron-56

    International Nuclear Information System (INIS)

    Cross sections for the /sup 13,14/C,26Mg,56Fe(π+,π-)/sup 13,14/O,26Si,56Ni reactions were measured with the Energetic Pion Channel and Spectrometer at the Clinton P. Anderson Meson Physics Facility for 120 less than or equal to T/sub π/ less than or equal to 292 MeV and 0 less than or equal to theta less than or equal to 50. The double isobaric analog states (DIAS) are of primary interest. In addition, cross sections for transitions to 14O(0+, 5.92 MeV), 14O(2+, 7.77 MeV), 56Ni(gs), 13O(gs), and 13O(4.21 MeV) are presented. The 13O(4.21 MeV) state is postulated to have J/sup π/ = 1/2-. The data are compared to previously measured double-charge-exchange cross sections on other nuclei, and the systematics of double charge exchange on T greater than or equal to 1 target nuclei leading to the DIAS are studied. Near the Δ33 resonance, cross sections for the DIAS transitions are in disagreement with calculations in which the reaction is treated as sequential charge exchange through the free pion-nucleon amplitude, while for T/sub π/ > 200 MeV the anomalous features of the 164 MeV data are not apparent. This is evidence for significant higher order contributions to the double-charge-exchange amplitude near the reasonable energy. Two theoretical approaches that include two nucleon processes are applied to the DIAS data. 64 references

  16. Nuclear reactions with 11C and 14O radioactive ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Fanqing

    2004-12-09

    Radioactive ion beams (RIBs) have been shown to be a useful tool for studying proton-rich nuclides near and beyond the proton dripline and for evaluating nuclear models. To take full advantage of RIBs, Elastic Resonance Scattering in Inverse Kinematics with Thick Targets (ERSIKTT), has proven to be a reliable experimental tool for investigations of proton unbound nuclei. Following several years of effort, Berkeley Experiments with Accelerated Radioactive Species (BEARS), a RIBs capability, has been developed at the Lawrence Berkeley National Laboratory's 88-Inch Cyclotron. The current BEARS provides two RIBs: a 11C beam of up to 2x108 pps intensity on target and an 14O beam of up to 3x104 pps intensity. While the development of the 11C beam has been relatively easy, a number of challenges had to be overcome to obtain the 14O beam. The excellent 11C beam has been used to investigate several reactions. The first was the 197Au(11C,xn)208-xnAt reaction, which was used to measure excitation functions for the 4n to 8n exit channels. The measured cross sections were generally predicted quite well using the fusion-evaporation code HIVAP. Possible errors in the branching ratios of ?? decays from At isotopes as well as the presence of incomplete fusion reactions probably contribute to specific overpredictions. 15F has been investigated by the p(14O,p)14O reaction with the ERSIKTT technology. Several 14O+p runs have been performed. Excellent energy calibration was obtained using resonances from the p(14N,p)14N reaction in inverse kinematics, and comparing the results to those obtained earlier with normal kinematics. The differences between 14N+p and 14O+p in the stopping power function have been evaluated for better energy calibration. After careful calibration, the energy levels of 15F were fitted with an R-matrix calculation. Spins and parities were assigned to the two observed resonances. This new measurement of the 15F ground state supports the disappearance of the Z

  17. Nuclear reactions with 11C and 14O radioactive ion beams

    International Nuclear Information System (INIS)

    Radioactive ion beams (RIBs) have been shown to be a useful tool for studying proton-rich nuclides near and beyond the proton dripline and for evaluating nuclear models. To take full advantage of RIBs, Elastic Resonance Scattering in Inverse Kinematics with Thick Targets (ERSIKTT), has proven to be a reliable experimental tool for investigations of proton unbound nuclei. Following several years of effort, Berkeley Experiments with Accelerated Radioactive Species (BEARS), a RIBs capability, has been developed at the Lawrence Berkeley National Laboratory's 88-Inch Cyclotron. The current BEARS provides two RIBs: a 11C beam of up to 2x108 pps intensity on target and an 14O beam of up to 3x104 pps intensity. While the development of the 11C beam has been relatively easy, a number of challenges had to be overcome to obtain the 14O beam. The excellent 11C beam has been used to investigate several reactions. The first was the 197Au(11C,xn)208-xnAt reaction, which was used to measure excitation functions for the 4n to 8n exit channels. The measured cross sections were generally predicted quite well using the fusion-evaporation code HIVAP. Possible errors in the branching ratios of ?? decays from At isotopes as well as the presence of incomplete fusion reactions probably contribute to specific overpredictions. 15F has been investigated by the p(14O,p)14O reaction with the ERSIKTT technology. Several 14O+p runs have been performed. Excellent energy calibration was obtained using resonances from the p(14N,p)14N reaction in inverse kinematics, and comparing the results to those obtained earlier with normal kinematics. The differences between 14N+p and 14O+p in the stopping power function have been evaluated for better energy calibration. After careful calibration, the energy levels of 15F were fitted with an R-matrix calculation. Spins and parities were assigned to the two observed resonances. This new measurement of the 15F ground state supports the disappearance of the Z = 8

  18. Microscopic study of the 14O(α,p)17F reactions at stellar energies

    International Nuclear Information System (INIS)

    We have studied the 14O(α,p)17F reaction at astrophysically important energies within a microscopic multichannel calculation based on the framework of the generator coordinate method. Our study gives a consistent description of the 18Ne states close to the α-threshold as well as of the direct (α,p) reaction process which has not been considered in previous calculations. We find that the 14O(α,p)17F rate at temperatures T ≤ 5x108 K is strongly influenced by the 2+ resonance at E = 30 keV above the α-threshold and by the direct reaction cross section. At higher temperatures 18Ne states not present in our model space become important. We have estimated the influence of these resonances on the 14O(α,p)17F rate within the standard formalism developed by Fowler assigning experimentally unknown spins to the states on the basis of a Thomas-Ehrman shift analysis using theoretical and experimental informations on the respective analogue states in 18O. We find an 14O(α,p)17F rate which is noticeably higher than the rate estimated by Wiescher et al. for T ≤ 5x108 K. Both rates are of the same magnitude for T ≥ 109 K. Our estimate predicts that the 14O(α,p)17F rate is compatible to the 15O(α,γ)19Ne rate under nova conditions. For explosive burning on accreting neutron stars our rate allows for a break-out from the CNO cycle via the 14O(α,p)17F reaction. (orig.)

  19. Hybrid direct carbon fuel cells and their reaction mechanisms - a review

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Kammer Hansen, Kent

    2014-01-01

    with carbon capture and storage (CCS) due to the high purity of CO2 emitted in the exhaust gas. Direct carbon (or coal) fuel cells (DCFCs) are directly fed with solid carbon to the anode chamber. The fuel cell converts the carbon at the anode and the oxygen at the cathode into electricity, heat and...... efforts is discussed on the fuel cell stack and system levels. The range of DCFC types can be roughly broken down into four fuel cell types: aqueous hydroxide, molten hydroxide, molten carbonate and solid oxide fuel cells. Emphasis is placed on the electrochemical reactions occurring at the anode and the...... proposed mechanism(s) of these reactions for molten carbonate, solid oxide and hybrid direct carbon fuel cells. Additionally, the criteria of choosing the ‘best’ DCFC technology is explored, including system design (continuous supply of solid fuel), performance (power density, efficiency), environmental...

  20. Studies of reductive elimination reactions to form carbon-oxygen bonds from Pt(IV) complexes.

    Science.gov (United States)

    Williams, B S; Goldberg, K I

    2001-03-21

    The platinum(IV) complexes fac-L(2)PtMe(3)(OR) (L(2) = bis(diphenylphosphino)ethane, o-bis(diphenylphosphino)benzene, R = carboxyl, aryl; L = PMe(3), R = aryl) undergo reductive elimination reactions to form carbon-oxygen bonds and/or carbon-carbon bonds. The carbon-oxygen reductive elimination reaction produces either methyl esters or methyl aryl ethers (anisoles) and L(2)PtMe(2), while the carbon-carbon reductive elimination reaction affords ethane and L(2)PtMe(OR). Choice of reaction conditions allows the selection of either type of coupling over the other. A detailed mechanistic study of the reductive elimination reactions supports dissociation of the OR(-) ligand as the initial step for the C-O bond formation reaction. This is followed by a nucleophilic attack of OR(-) upon a methyl group bound to the Pt(IV) cation to produce the products MeOR and L(2)PtMe(2). C-C reductive elimination proceeds from L(2)PtMe(3)(OR) by initial L (L = PMe(3)) or OR(-) (L(2) = dppe, dppbz) dissociation, followed by C-C coupling from the resulting five-coordinate intermediate. Our studies demonstrate that both C-C and C-O reductive elimination reactions from Pt(IV) are more facile in polar solvents, in the presence of Lewis acids, and for OR(-) groups that contain electron withdrawing substituents. PMID:11456927

  1. Effect of dead carbon on the 14C dating of the speleothem

    Institute of Scientific and Technical Information of China (English)

    CAI Yanjun; Warren Beck; PENG Zicheng; ZHANG Zhaofeng

    2005-01-01

    Based on the comparison of dating results among high-precision TIMS U-series and AMS 14C as well as the published 14C dating results and their band counting ages (i.e. calendar ages), this paper discusses the effect of dead carbon on the speleothem 14C dating. The result shows that the fraction of incorporated dead carbon during the formation of speleothem varies. The change in the fraction of dead carbon would result in big deviation in the 14C age of the speleothem. It is indispensable to take the dead carbon into consideration when dating the speleothem using the 14C method or studying the atmospheric 14C concentration during the past with the speleothem.

  2. Study of the 14N + 159Tb reaction between 6 and 22 MeV/u

    International Nuclear Information System (INIS)

    The main topic of this thesis is the study of the dynamics of asymmetric nucleus-nucleus collisions from low to intermediate energies by concentrating on one specific reaction, 14N+159Tb. The main experimental techniques involved are inclusive measurements and measurements of coincidences between particles and KX-rays. Additional experiments that were performed to support this study are also discussed. Results from measurements of target KX-ray production cross sections for heavy ion beams at energies above the Coulomb barrier are presented. It is shown that these cross sections can be accurately calculated and hence that the measurement of target KX-rays can serve as a convenient way of normalizing the particle-KX-ray coincidence data. Results from inclusive measurements of 92 MeV 14N induced reactions on different targets are employed to investigate the reaction systematics at low energies. The systematic study of the 14N+159Tb reaction between 6 and 22 MeV/u via inclusive measurements and the measurement of particle-KX-ray coincidences is then presented. (Auth.)

  3. Effect of industrial fuel combustion on the carbon-14 level of atmospheric CO2

    International Nuclear Information System (INIS)

    As was previously noticed in 1953 by SUESS, the radiocarbon content of atmospheric CO2 was slightly lower in the 20th century (before the increase in the carbon-14 level due to the addition of artificial 14C) than at the time before the beginning of the industrial revolution in the 19th century. An exact knowledge of the magnitude of this effect is of interest in connection with the question of the rate of isotope exchange between atmospheric CO2 and the bicarbonates of the oceans. However, the radiocarbon level in the CO2 of the atmosphere is also subject to natural fluctuations caused by a variable cosmic-ray production rate of carbon-14. To investigate this the authors have cross-correlated sunspot numbers (as indicators of cosmic-ray activity) with the carbon-14 level in wood, and have detected a significant coherence between the two time series. The observed coherence permits an extrapolation of the natural carbon-14 values beyond the time of the beginning of artificial combustion of fossil fuel, around 1880. The results show that the observed small decrease in the carbon-14 level is somewhat affected by the increase of the production rate of carbon-14, as a consequence of relatively low solar activity during the preceding decades. The effect of industrial fuel combustion upon the carbon-14 level of the atmosphere can then be estimated for the Northern Hemisphere to be in the vicinity of -3%. (author)

  4. Dilepton spectroscopy at intermediate energies; the carbon - carbon reaction at 1 GeV/A

    International Nuclear Information System (INIS)

    The Physics context of this work is heavy ion collisions at relativistic energies where di-electron provide informations on the produced hot and dense nuclear matter. The experiment is performed by the DiLepton Spectrometer (DLS) Collaboration at the Lawrence Berkeley's Bevalac. After a description of the apparatus, we review the whole program and the main results so far obtained: first evidence of a significant di-electron signal at energies above 1 GeV/A; improvement of the understanding of di-electron production (electromagnetic decays of hadrons, π+π- annihilation and hadronic Bremsstrahlung). The results of p-p, p-d reactions from 1 to 4.9 GeV/A show that hadronic Bremsstrahlung (pp, pn) should be reformulated. Our analysis, optimized on the reaction Carbon-Carbon at 1 GeV/A, has been applied to α-Ca and d-Ca. We have developed two main aspects: improvement of the time resolution (500 ps) in order to eliminate all of the protons. Improvement of the space resolution (300 μ) for better mass resolution, in particular in the ρ region. We obtain the cross section of di-electron production as a function of mass, transverse momentum and rapidity from the C-C, α-Ca and d-Ca reactions at 1 GeV/A. We also compare the cross section for all of the measured systems at 1 GeV/A, including Ca-Ca, and we show a (ApAt)α dependence with α ≅ 1.1. A study of the associated multiplicity has also been performed. Nevertheless, the limited acceptance of the DLS and its poor mass resolution to identify the ρ, ω vector mesons, do not allow to conclude on hadron behaviour in nuclear matter. This point is one of the main goal of the HADES project at GSI (Darmstadt), which we give a brief description of the main features. (authors). 60 refs

  5. Resonance strengths in the 14N(p,gamma)15O and 15N(p,alpha gamma)12C reactions

    CERN Document Server

    Marta, Michele; Bemmerer, Daniel; Beyer, Roland; Broggini, Carlo; Caciolli, Antonio; Erhard, Martin; Fülöp, Zsolt; Grosse, Eckart; Gyürky, György; Hannaske, Roland; Junghans, Arnd R; Menegazzo, Roberto; Nair, Chithra; Schwengner, Ronald; Szücs, Tamás; Vezzú, Simone; Wagner, Andreas; Yakorev, Dmitry

    2010-01-01

    The 14N(p,gamma)15O reaction is the slowest reaction of the carbon-nitrogen-oxygen cycle of hydrogen burning in stars. As a consequence, it determines the rate of the cycle. The 15N(p,alpha gamma)12C reaction is frequently used in inverse kinematics for hydrogen depth profiling in materials. The 14N(p,gamma)15O and 15N(p,alpha gamma)12C reactions have been studied simultaneously, using titanium nitride targets of natural isotopic composition and a proton beam. The strengths of the resonances at Ep = 1058 keV in 14N(p,gamma)15O and at Ep = 897 and 430 keV in 15N(p,alpha gamma)12C have been determined with improved precision, relative to the well-known resonance at Ep = 278 keV in 14N(p,gamma)15O. The new recommended values are \\omega\\gamma = 0.352$\\pm$0.018, 362$\\pm$20, and 22.0$\\pm$0.9\\,eV for their respective strengths. In addition, the branching ratios for the decay of the Ep = 1058 keV resonance in 14N(p,gamma)15O have been redetermined. The data reported here should facilitate future studies of off-resona...

  6. Insights into the importance of oxygen functional groups in carbon reactions with oxygen containing gases

    International Nuclear Information System (INIS)

    The role of pore structure of carbon in carbon-related adsorptions and reactions has been extensively investigated. However the studies on the role of surface chemistry of carbon are limited. In this paper, we present the importance of oxygen functional groups in carbon reactions with oxygen-containing gases. It is found that there is a good correlation between the electronic structures and reactivities of carbon edge sites. Zigzag sites are more active in oxygen adsorption because of the unpaired electrons and armchair sites are less active in oxygen adsorption due to the triple character. However, the desorption of semi-quinone oxygen from zigzag sites needs a bond energy ca. 30% higher than that of o-quinone oxygen from armchair edge sites. CO2 and H2O adsorb on carbon surface much less favorably than O2. H2O is first physically adsorbed on the virgin graphite surface followed by chemisorption through oxygen atom approaching the carbon edge site and the movements of two hydrogen atoms to produce H2. The adsorption mechanism of H2O is different from that for CO2, but the final result is quite similar, i.e. producing only semi-quinone oxygen. Based upon the above studies, a new generalized mechanism, as shown in Fig. 1, is developed and can account for all the important kinetic phenomena of carbon-gas reactions. The key point is that in CO2/H2O-carbon reaction only semi-quinone formed; while, in O2-carbon reaction, semi-quinone, o-quinone (at lower pressure), and off-plane epoxy oxygen (at relatively higher pressure) can be formed. This is the main reason for the different reaction kinetics of O2 -carbon reaction and CO2/H2O-carbon reactions as observed experimentally. The oxygen functional groups of carbon can be characterized by XPS, PZC (point of zero charge), IEP (isoelectric point) and TPD (temperature-programmed desorption), which were used in our previous studies. We treated the carbon surface with different acids, finding that HNO3 treatment can

  7. Reactions of 1,4-bis(tetrazole)benzenes: formation of long chain alkyl halides

    OpenAIRE

    Kelleher, Fintan; Bond, Andrew; Fleming, Adrienne; McGinley, John; Prajapati, Vipa

    2006-01-01

    The reactions of 1,4-bis[2-(tributylstannyl)tetrazol-5-yl]benzene with α,ω-dibromoalkanes were carried out in order to synthesise pendant alkyl halide derivatives of the parent bis-tetrazole. This led to the formation of several alkyl halide derivatives, substituted variously at N1 or N2 on the tetrazole ring. The crystal structures of 1,4-bis[(2-(4-bromobutyl)tetrazol-5-yl)]benzene (2-N,2-N′), 1,4-bis[(2-(4-bromobutyl)tetrazol-5-yl)]benzene (1-N,2-N′) and 1,4-bis[(2-(8-bromooctyl)tetra...

  8. First measurements of the ^16O(e,e'pn)^14N reaction

    CERN Document Server

    Middleton, D G; Barbieri, C; Barneo, P; Bartsch, P; Bauman, D; Bermuth, J; Bosnar, D; Blok, H P; Böhm, R; Ding, M; Distler, M O; Elsner, D; Friedrich, J; Giusti, C; Glazier, D I; Grabmayr, P; Grozinger, S; Hehl, T; Heim, J; Hesselink, W H A; Jans, E; Klein, F; Köhl, M; Lapikas, L; MacGregor, I J D; Martin, I; McGeorge, J C; Merkel, H; Merle, P; Moschini, F; Müller, U; Pospischil, T; Rosner, G; Schmieden, H; Seimetz, M; Sule, A; De Vries, H; Walcher, T; Watts, D P; Weis, M; Zihlmann, B; Pospischil, Th.; Walcher, Th.

    2006-01-01

    This paper reports on the first measurement of the ^16O(e,e'pn)^14N reaction. Data were measured in kinematics centred on a super-parallel geometry at energy and momentum transfers of 215 MeV and 316 MeV/c. The experimental resolution was sufficient to distinguish groups of states in the residual nucleus but not good enough to separate individual states. The data show a strong dependence on missing momentum and this dependence appears to be different for two groups of states in the residual nucleus. Theoretical calculations of the reaction using the Pavia code do not reproduce the shape or the magnitude of the data.

  9. Cross section measurement for (n,n{alpha}) reactions by 14 MeV neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Kasugai, Y.; Ikeda, Y.; Uno, Y. [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; Yamamoto, H.; Kawade, K.

    1997-03-01

    Nine (n,n{alpha}) cross sections for (n,n{alpha}) reactions induced by 13.5-14.9 MeV neutrons were measured for {sup 51}V, {sup 65}Cu, {sup 71}Ga, {sup 76}Ge, {sup 87}Rb, {sup 91}Zr, {sup 93}Nb, {sup 96}Zr and {sup 109}Ag isotopes by using Fusion Neutronics Source (FNS) at JAERI. The reactions for 91Zr and 96Zr were measured for the first time. The evaluated data of JENDL-3 and ENDF/B-VI were compared with the present data. Some of the evaluated values are much different from our data by a factor more than ten. (author)

  10. Enhanced interfacial properties of carbon fiber composites via aryl diazonium reaction “on water”

    International Nuclear Information System (INIS)

    Highlights: • Carbon fibers are grafted with phenyl amine group via aryl diazonium reaction. • Interfacial shear strength of the carbon fibers increases by 73%. • Tensile strength of the carbon fibers does not decrease distinctly. • Using water as the reaction medium can avoid pollution from organic solvents. • Grafting via aryl diazonium reaction in one step can improve modification efficiency. - Abstract: Polyacrylonitrile-based carbon fibers were functionalized with phenyl amine group via aryl diazonium reaction “on water” to improve their interfacial bonding with resin matrix. Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy were employed to characterize ordered degree, functional groups, chemical states and morphology of carbon fiber surface, respectively. The results showed that phenyl amine groups were grafted on the fiber surface successfully. Mechanical property test results indicated that the aryl diazonium reaction in this paper could improve the interfacial shear strength by 73%, while the tensile strength was down very slightly. Hence aryl diazonium reaction “on water” could be a facile green platform to functionalize carbon fibers for many interesting applications

  11. Carbon reaction with levitated silicon - Experimental and thermodynamic approaches

    Energy Technology Data Exchange (ETDEWEB)

    Beaudhuin, M., E-mail: mickael.beaudhuin@univ-montp2.fr [SIMAP EPM, UMR-CNRS 5266, 1340 rue de la piscine, F-38402 Saint Martin d' Heres Cedex (France); ICGM C2M, UMR-CNRS 5253, Place Eugene Bataillon, Bat 15 CC1504, F-34095 Montpellier Cedex (France); Chichignoud, G.; Bertho, P.; Duffar, T. [SIMAP EPM, UMR-CNRS 5266, 1340 rue de la piscine, F-38402 Saint Martin d' Heres Cedex (France); Lemiti, M. [Universite de Lyon, INL, UMR-CNRS 5270, INSA de Lyon, Bat. 502, 20 Av. Albert Einstein, F-69621 Villeurbanne Cedex (France); Zaidat, K. [SIMAP EPM, UMR-CNRS 5266, 1340 rue de la piscine, F-38402 Saint Martin d' Heres Cedex (France)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Interaction of methane with levitated silicon at high temperature. Black-Right-Pointing-Pointer Silicon nucleation undercooling decreases when the carbon concentration increases. Black-Right-Pointing-Pointer Experimental and thermodynamical calculation shows remarkable similar behavior. - Abstract: Metallurgical grade silicon (MG-Si) has become a new source of raw material for the photovoltaic industry. The use of this material as an alternative feed stock has however introduced phenomena that are detrimental to both the yield of the manufacturing process and the performance of the photovoltaic cells produced. This is mainly related to the presence of carbon, which precipitates to silicon carbide (SiC) in the ingot. This article focuses on the effect of carbon on silicon nucleation. Statistical experimental results of silicon nucleation are obtained as a function of carbon concentration and are presented and compared to thermodynamic calculations.

  12. Carbon reaction with levitated silicon – Experimental and thermodynamic approaches

    International Nuclear Information System (INIS)

    Highlights: ► Interaction of methane with levitated silicon at high temperature. ► Silicon nucleation undercooling decreases when the carbon concentration increases. ► Experimental and thermodynamical calculation shows remarkable similar behavior. - Abstract: Metallurgical grade silicon (MG-Si) has become a new source of raw material for the photovoltaic industry. The use of this material as an alternative feed stock has however introduced phenomena that are detrimental to both the yield of the manufacturing process and the performance of the photovoltaic cells produced. This is mainly related to the presence of carbon, which precipitates to silicon carbide (SiC) in the ingot. This article focuses on the effect of carbon on silicon nucleation. Statistical experimental results of silicon nucleation are obtained as a function of carbon concentration and are presented and compared to thermodynamic calculations.

  13. Implications of the 14C(α,γ)18O reaction for nonstandard big bang nucleosynthesis

    International Nuclear Information System (INIS)

    The thermonuclear burning rates for the 14C(α,γ)18O radiative capture reaction are calculated at temperatures (0.3- state, at approximately 9.0 MeV in 18O as would be deduced from the Yale-Michigan State University measurement of the beta-delayed alpha-particle emission of 18N and suggested by the Notre Dame-Caltech measurement of the nonresonant 14C(α,γ)18O cross section. The gamma widths of the proposed broad state is estimated using the Alhassid, Gai, and Bertsch sum rule, and an experimental study is proposed

  14. Modelling accidental releases of carbon 14 in the environment: application as an excel spreadsheet

    International Nuclear Information System (INIS)

    An application as an Excel spreadsheet of the simplified modelling approach of carbon 14 transfer in the environment developed by Tamponnet (2002) is presented. Based on the use of growth models of biological systems (plants, animals, etc.), the one-pool model (organic carbon) that was developed estimates the concentration of carbon 14 within the different compartments of the food chain and in fine the dose to man by ingestion in the case of a chronic or accidental release of carbon 14 in a river or the atmosphere. Data and knowledge have been implemented on Excel using the object-oriented programming language VisualBasic (Microsoft Visual Basic 6.0). The structure of the conceptual model and the Excel sheet are first briefly exposed. A numerical application of the model under a scenario of an accidental release of carbon 14 in the atmosphere is then presented. Simulation results and perspectives are discussed. (author)

  15. New Condensation Reaction of β-keto-δ-valerolactones, Carbon Disulfide and Alkyl Halides

    Institute of Scientific and Technical Information of China (English)

    You Ming WANG; Yu Xin LI; Su Hua WANG; Zheng Ming LI

    2004-01-01

    β-Keto-δ-valerolactones, which were obtained by reaction of acetoacetate with aldehydes or ketones, reacted with carbon disulfide, alkyl halides and a new condensation reaction was developed. The structures of the products 3 were confirmed by 1HNMR spectra and elemental analysis.

  16. Analytical evaluation of the solid rocket motor nozzle surface recession by the alumina-carbon reaction

    OpenAIRE

    Matsukawa, Yutaka; Sato, Yutaka; 松川 豊; 佐藤 裕

    2008-01-01

    A theoretical model describing the chemical ablation of a solid rocket motor nozzle ablator by the alumina-carbon reaction is presented. An application of it to a typical solid rocket motor with a graphite nozzle ablator indicates a large influence of the reaction on the nozzle surface recession.

  17. The US nuclear reaction data network. Summary of the first meeting, March 13 & 14 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    The first meeting of the US Nuclear Reaction Data Network (USNRDN) was held at the Colorado School of Mines, March 13-14, 1996 chaired by F. Edward Cecil. The Agenda of the meeting is attached. The Network, its mission, products and services; related nuclear data and data networks, members, and organization are described in Attachment 1. The following progress reports from the members of the USNRDN were distributed prior to the meeting and are given as Attachment 2. (1) Measurements and Development of Analytic Techniques for Basic Nuclear Physics and Nuclear Applications; (2) Nuclear Reaction Data Activities at the National Nuclear Data Center; (3) Studies of nuclear reactions at very low energies; (4) Nuclear Reaction Data Activities, Nuclear Data Group; (5) Progress in Neutron Physics at Los Alamos - Experiments; (6) Nuclear Reaction Data Activities in Group T2; (7) Progress Report for the US Nuclear Reaction Data Network Meeting; (8) Nuclear Astrophysics Research Group (ORNL); (9) Progress Report from Ohio University; (10) Exciton Model Phenomenology; and (11) Progress Report for Coordination Meeting USNRDN.

  18. The US nuclear reaction data network. Summary of the first meeting, March 13 ampersand 14 1996

    International Nuclear Information System (INIS)

    The first meeting of the US Nuclear Reaction Data Network (USNRDN) was held at the Colorado School of Mines, March 13-14, 1996 chaired by F. Edward Cecil. The Agenda of the meeting is attached. The Network, its mission, products and services; related nuclear data and data networks, members, and organization are described in Attachment 1. The following progress reports from the members of the USNRDN were distributed prior to the meeting and are given as Attachment 2. (1) Measurements and Development of Analytic Techniques for Basic Nuclear Physics and Nuclear Applications; (2) Nuclear Reaction Data Activities at the National Nuclear Data Center; (3) Studies of nuclear reactions at very low energies; (4) Nuclear Reaction Data Activities, Nuclear Data Group; (5) Progress in Neutron Physics at Los Alamos - Experiments; (6) Nuclear Reaction Data Activities in Group T2; (7) Progress Report for the US Nuclear Reaction Data Network Meeting; (8) Nuclear Astrophysics Research Group (ORNL); (9) Progress Report from Ohio University; (10) Exciton Model Phenomenology; and (11) Progress Report for Coordination Meeting USNRDN

  19. Pd-catalyzed cascade reactions between o-iodo-N-alkenylanilines and tosylhydrazones: novel approaches to the synthesis of polysubstituted indoles and 1,4-dihydroquinolines.

    Science.gov (United States)

    Paraja, Miguel; Valdés, Carlos

    2016-05-01

    Two different Pd-catalyzed cascade reactions between o-iodo-N-alkenylanilines and tosylhydrazones are described. The outcome of the cascade processes is determined by the substitution on the N-alkenyl fragment. The reactions with N-tosyl-N-ethylene-o-iodoanilines lead to indoles through a sequence that involves the sequential migratory insertions of a carbene ligand and a C-C double bond, featuring a 5-exo-trig cyclization. The reactions with N-alkyl-N-alkenyl-o-iodoanilines provide 1,4-dihydroquinolines through a cascade reaction that includes a formal 6-endo-trig cyclization. In both cases the benzofused heterocycles are built through the formation of two C-C bonds on the hydrazonic carbon atom. PMID:27087628

  20. Preparation of hollow carbon nanospheres at low temperature via new reaction route

    International Nuclear Information System (INIS)

    Hollow carbon nanospheres were obtained at 200oC via a new reaction route, by using magnesium, hexachloroethane and aluminum trichloride as starting materials and benzene as solvent. The products were characterized with X-ray diffraction pattern, transmission electron microscope, high-resolution transmission electron microscope images and Raman spectrum. The reaction conditions are easy to be maintained and controlled. They may provide a new method to produce other carbonaceous materials. A possible mechanism of reaction was proposed

  1. Initial reaction between CaO and SO2 under carbonating and non-carbonating conditions

    DEFF Research Database (Denmark)

    Rasmussen, Martin Hagsted; Wedel, Stig; Pedersen, Kim H.;

    2015-01-01

    The initial kinetics of the CaO/SO2 reaction have been investigated for reaction times shorter than 1s and in the temperature interval between 450 and 600°C under both carbonating and non-carbonating conditions (0-20 vol% CO2) to clarify how recirculating CaO influences the emission of SO2 from a...... showed that the CaO conversion with respect to SO2 declined when the CO2 concentration was increased. Under all conditions, larger specific surface areas of CaO gave higher reaction rates with SO2. Higher temperatures had a positive effect on the reaction between SO2 and CaO under non...

  2. A Small-Scale Capsule Test for Investigating the Sodium-Carbon Dioxide Reaction

    International Nuclear Information System (INIS)

    The utilization of modular sodium-to-supercritical CO2 heat exchangers may yield significant improvements for an overall plant energy utilization. The consequences of a failure of the sodium CO2 heat exchanger boundary, however, would involve the blowdown and intermixing of high-pressure CO2 in a sodium pool, causing a pressurization which may threaten the structural integrity of the heat exchanger. Available data seems to indicate that the chemical reaction between sodium and CO2 would likely produce sodium oxides, sodium carbonate, carbon and carbon monoxide. Information on the kinetics of the sodium-CO2 reaction is virtually non-existent

  3. Measurement and calculation of 238U fission reaction rates induced by neutrons reflected by carbon material

    International Nuclear Information System (INIS)

    To check the data of carbon material reflecting neutrons, the distribution of 238U fission reaction rates induced by D-T fusion neutrons reflected by carbon material was measured by using the small depleted uranium fission chamber and the capturing detector. For comparison, 238U fission rates without carbon material was measured too. The combined standard uncertainty of 238U fission reaction rate is 5.1%-6.4%. The measured results are consistent with the calculated ones with MCNP/4A code and ENDF/B-IV library data in the range of the error

  4. 14C in fractions of dissolved organic carbon in ground water

    International Nuclear Information System (INIS)

    Here we report carbon isotope ratios of fractions of natural organic compounds in ground waters isolated from the Stripa mine (Sweden) and the Milk River aquifer (Alberta, Canada). High-molecular-weight and low-molecular-weight fractions of the organic carbon were characterized and these, along with dissolved inorganic carbon, were analysed for δ13C and 14C. The 14C results suggest that the dissolved organic carbon originates from a combination of soil organic matter and kerogen in the aquifer matrix. The high-molecular-weight fractions show a predominant soil origin, whereas the low-molecular-weight fractions are often strongly influenced by kerogen. (author)

  5. Stable Isotopic Evidence for a Pedogenic Origin of Carbonates in Trench 14 near Yucca Mountain, Nevada.

    Science.gov (United States)

    Quade, J; Cerling, T E

    1990-12-14

    Layered carbonate and silica encrust fault fractures exposed in Trench 14 near Yucca Mountain, site of the proposed high-level nuclear waste repository in southern Nevada. Comparison of the stable carbon and oxygen isotopic compositions of the fracture carbonates with those of modern soil carbonates in the area shows that the fracture carbonates are pedogenic in origin and that they likely formed in the presence of vegetation and rainfall typical of a glacial climate. Their isotopic composition differs markedly from that of carbonate associated with nearby springs. The regional water table therefore remained below the level of Trench 14 during the time that the carbonates and silica precipitated, a period probably covering parts of at least the last 300,000 years. PMID:17818282

  6. A kinetic study of the reaction of water vapor and carbon dioxide on uranium

    International Nuclear Information System (INIS)

    The kinetic study of the reaction of water vapour and carbon dioxide with uranium has been performed by thermogravimetric methods at temperatures between 160 and 410 deg G in the first case, 350 and 1050 deg C in the second: Three sorts of uranium specimens were used: uranium powder, thin evaporated films, and small spheres obtained from a plasma furnace. The experimental results led in the case of water vapour, to a linear rate of reaction controlled by diffusion at the lower temperatures, and by a surface reaction at the upper ones. In the case of carbon dioxide, a parabolic law has been found, controlled by diffusional processes. (author)

  7. REACTION MECHANISMS OF MAGNESIUM SILICATES WITH CARBON DIOXIDE IN MICROWAVE FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    William B. White; Michael R. Silsbee; B. Joe Kearns

    2004-02-18

    The objective of the investigation was to determine whether microwave fields would enhance the reactions of CO{sub 2} with silicates that are relevant to the sequestration of carbon dioxide. Three sets of experiments were conducted. (1) Serpentine and CO{sub 2} were reacted directly at one atmosphere pressure in a microwave furnace. Little reaction was observed. (2) Serpentine was dehydroxylated in a microwave furnace. The reaction was rapid, reaching completion in less than 30 minutes. A detailed investigation of this reaction produced an S-shaped kinetics curve, similar to the kinetics from dehydroxylating serpentine in a resistance furnace, but offset to 100 C lower temperature. This set of experiments clearly demonstrates the effect of microwaves for enhancing reaction kinetics. (3) Reactions of serpentine with alkaline carbonates and in acid solution were carried out in a microwave hydrothermal apparatus. There was a greatly enhanced decomposition of the serpentine in acid solution but, at the temperature and pressure of the reaction chamber (15 bars; 200 C) the carbonates did not react. Overall, microwave fields, as expected, enhance silicate reaction kinetics, but higher CO{sub 2} pressures are needed to accomplish the desired sequestration reactions.

  8. Film forming kinetics and reaction mechanism of γ-glycidoxypropyltrimethoxysilane on low carbon steel surfaces

    International Nuclear Information System (INIS)

    The film forming kinetics and reaction mechanism of γ-GPS on low carbon steel surfaces was investigated by FTIR-ATR, AFM, NSS and theoretical calculation method. The results from experimental section indicated that the reaction of γ-GPS on low carbon steel surfaces followed the conventional reaction mechanism, which can be described as reaction (I) (Me (Metal)-OH + HO-Si → Me-O-Si + H2O) and reaction (II) (Si-OH + Si-OH → Si-O-Si + H2O). During film forming process, the formation of Si-O-Fe bond (reaction (I)) exhibited oscillatory phenomenon, the condensation degree of silanol monomers (reaction (II)) increased continuously. The metal hydroxyl density had significant influence on the growth mechanisms and corrosion resisting property of γ-GPS films. The results from theoretical calculation section indicated that the patterns of reaction (I) and reaction (II) were similar, involving a nucleophilic attack on the silicon center. The formation of Si-O-Fe bond (reaction (I)) was kinetically and thermodynamically preferred, which had catalytic effect on its condensation with neighboring silanol monomers (reaction (II)). Our DFT calculations were good consistent with the experimental measurements.

  9. Heterogeneously Catalysed Chemical Reactions in Carbon Dioxide Medium

    DEFF Research Database (Denmark)

    Musko, Nikolai E.

    determination of phase equilibria is very time consuming, expensive, and very often reveals very little information. However, these problems can be overcome when thermodynamic modelling is applied. The Cubic-Plus-Association Equation of State (CPA) was used throughout this study; therefore this model is...... studied. Furthermore, the “one-pot” synthesis with 2-butenal was performed using bifunctional and mixed catalysts. The reactions were studied in different reactor types and reaction conditions were optimised using CPA calculations. Extensive catalyst characterisation was carried out in order to understand...... equilibria of the reaction mixture can make the process economically more feasible. Many different thermodynamic models of different capability and applicability have been applied for this task. The CPA model is an advanced model that accounts for complex interactions between associating molecules like water...

  10. Carbon-14, tritium, stable isotope and chemical measurements on thermal waters from the Tauranga region

    International Nuclear Information System (INIS)

    The chemical compositions of groundwater from the Tauranga region are affected to varying degrees by reducing conditions due to buried organic matter. The levels of some dissolved constituents are also affected by mixing with sea water contained within the rocks and by rock-water interaction. Dissolved gas compositions range from oxygen-bearing to methane-bearing reflecting the varying redox conditions. Excess air may be present but further experiments are necessary to confirm this. Apparent ages deduced from carbon-14 measurements (corrected using 12C dilution and 13C fractionation methods) range from 2-25,000 years, suggesting that some of the waters were recharged during late Pleistocene or early Holocene time. ΔD and Δ18 O values of the oldest waters are slightly more negative than those of younger samples; this may indicate recharge during a cooler climate, in agreement with the 14C ages. Very low but significantly non-zero tritium contents (TR=(0.007-0.059)+-0.007) were measured using the high tritium-enrichment facilities at INS and the very low-background counters at the University of Bern. The tritium is thought to derive from contamination or nuclear reactions in the aquifer rocks rather than from recharge water

  11. Resonant and nonresonant behavior of the heavy-ion reaction 14C + 12C

    International Nuclear Information System (INIS)

    The 14C + 12C reaction has been studied by a kinematic coincidence technique at 13 incident energies ranging from Ec.m.=19.35 to 24.9 MeV. The resonances previously reported from γ-ray yield measurements were observed in the equivalent excitation functions, as well as in the large angle elastic scattering data, of the present measurements. Spin assignments were made to the two resonances in this energy range. These resonances are members of a band with angular momenta several units larger than the grazing values corresponding to 14C and 12C orbiting about each other at a distance significantly outside the strong absorption radius. Other structures which were observed were unrelated to the resonant behavior. (author) 22 refs.; 14 figs

  12. Carbon Isotopic Fractionation in Fischer-Tropsch Type Reactions and Relevance to Meteorite Organics

    Science.gov (United States)

    Johnson, Natasha M; Elsila, Jamie E.; Kopstein, Mickey; Nuth, Joseph A., III

    2012-01-01

    Fischer-Tropsch-Type (FTT) reactions have been hypothesized to contribute to the formation of organic compounds in the early solar system, but it has been difficult to identify a signature of such reactions in meteoritic organics. The work reported here examined whether temperature-dependent carbon isotopic fractionation of FTT reactions might provide such a signature. Analyses of bulk organic deposits resulting from FTT experiments show a slight trend towards lighter carbon isotopic ratios with increasing temperature. It is unlikely, however, that these carbon isotopic signatures could provide definitive provenance for organic compounds in solar system materials produced through FTT reactions, because of the small scale of the observed fractionations and the possibility that signatures from many different temperatures may be present in any specific grain.

  13. Base-promoted reactions of bridged ketones and 1,3- and 1,4-haloalkyl azides: competitive alkylation vs azidation reactions of ketone enolates.

    Science.gov (United States)

    Yao, Lei; Smith, Brenton T; Aubé, Jeffrey

    2004-03-01

    The reactions of 1,3- and 1,4-haloalkyl azides with enolates of 2-norbornanone (and a ring-expanded analog) afford polycyclic 1,2,3-triazolines in good yields. The reaction occurs by the initial azidation of the ketone enolate, followed in order by triazoline formation and O-alkylation. An interesting element of this process is the preferential reaction of the alkyl azide with an enolate anion as opposed to the more familiar reaction of the alkyl halide (including Cl and I derivatives). Reactions of acyclic or monocyclic enolates generally lead to 1,2,3-triazoles but none of the alternative C-alkylation product. PMID:14987033

  14. Synthesis of the monosodium salt of carbon-14 labeled paclitaxel (Taxol) 2`-ethyl carbonate 7-phosphonooxymethyl ether, a potential prodrug of paclitaxel

    Energy Technology Data Exchange (ETDEWEB)

    Dischino, D.D.; Shuhui Chen; Golik, Jerzy; Walker, D.W.; Wong, H.S.L. [Bristol-Myers Squibb Co., Richard L. Gelb Center for Research and Development, Wallingford, CT (United States)

    1997-02-01

    The monosodium salt of carbon-14 labeled paclitaxel (Taxol) [N3`-{sup 14}COPh] 2`-ethyl carbonate 7-phosphonooymethyl ether, was prepared from C-14 labeled paclitaxel [N3`-{sup 14}COPh] in 5 steps. The radiochemical purity of the final product was greater than 99% and the specific activity was 25 {mu}Ci/mg. (author).

  15. Nuclear fusion in dense matter: Reaction rate and carbon burning

    CERN Document Server

    Gasques, L R; Aguilera, E F; Beard, M; Chamon, L C; Ring, P; Wiescher, M; Yakovlev, D G

    2005-01-01

    In this paper we analyze the nuclear fusion rate between equal nuclei for all five different nuclear burning regimes in dense matter (two thermonuclear regimes, two pycnonuclear ones, and the intermediate regime). The rate is determined by Coulomb barrier penetration in dense environments and by the astrophysical S-factor at low energies. We evaluate previous studies of the Coulomb barrier problem and propose a simple phenomenological formula for the reaction rate which covers all cases. The parameters of this formula can be varied, taking into account current theoretical uncertainties in the reaction rate. The results are illustrated for the example of the ^{12}C+^{12}C fusion reaction. This reaction is very important for the understanding of nuclear burning in evolved stars, in exploding white dwarfs producing type Ia supernovae, and in accreting neutron stars. The S-factor at stellar energies depends on a reliable fit and extrapolation of the experimental data. We calculate the energy dependence of the S-f...

  16. Application of Moessbauer Spectroscopy to the Carbon Oxides Hydrogenation Reactions

    International Nuclear Information System (INIS)

    Iron-based catalysts have favorable activity and selectivity properties for the CO and CO2 hydrogenation reactions. Several Fe phases (oxides and carbides) can be present in these catalysts. The interaction of Fe with the other components of the catalyst (support, promoters) can affect the ease of reduction and also its transformation during the reactions. In this work, the relationship between catalytic behavior in the CO and CO2 hydrogenation reactions and the Fe phase composition of fresh and reacted catalysts was studied. Two types of catalysts were tested: a laterite and the other one made of iron supported on alumina, both unpromoted and promoted with K and Mn. Only those Fe species which can be reduced-carburized, by means of a pretreatment or by an in situ transformation under the reaction, seem to be able to perform the CO or CO2 hydrogenation. The reoxidation of the Fe carbide to magnetite was not associated to deactivation. The selectivity seems to be more affected by Fe species difficult to reduce than by magnetite produced by reoxidation

  17. Carbon Isotopic Fractionation During Formation of Macromolecular Organic Grain Coatings via FTT Reactions

    Science.gov (United States)

    Nuth, J. A.; Johnson, N. M.; Elsila-Cook, J.; Kopstein, M.

    2011-01-01

    Observations of carbon isotopic fractionation of various organic compounds found in meteorites may provide useful diagnostic information concerning the environments and mechanisms that were responsible for their formation. Unfortunately, carbon has only two stable isotopes, making interpretation of such observations quite problematic. Chemical reactions can increase or decrease the C-13/C-12 ratio by various amounts, but the final ratio will depend on the total reaction pathway followed from the source carbon to the final product, a path not readily discernable after 4.5 billion years. In 1970 Libby showed that the C-13/C-12 ratios of terrestrial and meteoritic carbon were similar by comparing carbon from the Murchison meteorite to that of terrestrial sediments. More recent studies have shown that the C-13/C-12 ratio of the Earth and meteorites may be considerably enriched in C-13 compared to the ratio observed in the solar wind [2], possibly suggesting that carbon produced via ion-molecule reactions in cold dark clouds could be an important source of terrestrial and meteoritic carbon. However, meteoritic carbon has been subjected to parent body processing that could have resulted in significant changes to the C-13/C-12 ratio originally present while significant variation has been observed in the C-13/C-12 ratio of the same molecule extracted from different terrestrial sources. Again we must conclude that understanding the ratio found in meteorites may be difficult.

  18. Synthesis of δ-aminolevulic acid. Application to the introduction of carbon-14 and of tritium

    International Nuclear Information System (INIS)

    Several new syntheses of δ aminolevulic acid (δ A.L.A.) have been studied. 14C-4 δ - aminolevulic acid has been obtained from 14C allylacetic carboxylic acid with a yield of 30 per cent with respect to barium carbonate and with a specific activity of 32 mCi/mM. The 14C-1 or 14C-2 δ-A.L.A. has been prepared from the 14C-1 or 14C-2 acetate with a yield of 55 per cent with respect to the acetate. Finally the tritiated δ-A.L.A. has been obtained for the first time by tritiation of ethyl phthalimidodehydrolevulate. (author)

  19. Radiocarbon 14C differentiation of sparkling and carbonated wines

    International Nuclear Information System (INIS)

    Specific 14C-activities, percent of modern 14C-activity, and calculated percent of fermentation CO2 are presented for CO2 contained in commercial sparkling wines, labeled as champagne or produced by the bulk (charmat) process. These data are given for the production years 1976-1982. The survey encompassed effervescent wines produced in Spain, Italy, West Germany, California, and New York. Addition of synthetic CO2 to approximately 40 samples represented as sparkling wines was indicated by low 14C-activities of CO2 in these wines. Data for 14C-activity were also presented for the ethanol distilled from sparkling wines for the years 1977-1980. In all cases, the 14C-activity of ethanol was appropriate to the year of vintage

  20. Research of Hydrogen Preparation with Catalytic Steam-Carbon Reaction Driven by Photo-Thermochemistry Process

    Directory of Open Access Journals (Sweden)

    Xiaoqing Zhang

    2013-01-01

    Full Text Available An experiment of hydrogen preparation from steam-carbon reaction catalyzed by K2CO3 was carried out at 700°C, which was driven by the solar reaction system simulated with Xenon lamp. It can be found that the rate of reaction with catalyst is 10 times more than that without catalyst. However, for the catalytic reaction, there is no obvious change for the rate of hydrogen generation with catalyst content range from 10% to 20%. Besides, the conversion efficiency of solar energy to chemical energy is more than 13.1% over that by photovoltaic-electrolysis route. An analysis to the mechanism of catalytic steam-carbon reaction with K2CO3 is given, and an explanation to the nonbalanced [H2]/[CO + 2CO2] is presented, which is a phenomenon usually observed in experiment.

  1. XPS study on the surface reaction of uranium metal with carbon monoxide at 200 degree C

    International Nuclear Information System (INIS)

    The surface reaction of uranium metal with carbon monoxide at 200 degree C has been studied by X-ray photoelectron spectroscopy (XPS). The carbon monoxide adsorption on the surface oxide layer resulted in U4f peak shifting to the lower binding energy and the content of oxygen in the oxide is decreased. O/U radio decreases with increasing the exposure of carbon monoxide to the surface layer. The investigation indicated the surface layer of uranium metal was further reduced in the atmosphere of carbon monoxide at high temperature. (3 refs., 5 figs.)

  2. Residual carbon detection in barium titanate ceramics by nuclear reaction technique

    International Nuclear Information System (INIS)

    Residual carbon content in BaTiO3 ceramics synthesized by the citric resin route has been evaluated by the 12C(d,p)13C nuclear reaction technique. The C content inside ceramics sintered at 1400oC is about 50 ppm in weight. The surface layer (0.4 μm) exhibits a concentration of several hundreds or thousands ppm with two origins for the detected carbon: atmospheric contamination carbon adsorbed at the surface, which has been roughly evaluated, and material intrinsic carbon: its concentration depends mainly on the sintering conditions, shape of ceramic pieces and sintering temperature. (author)

  3. Reactions between sodium and various carbon bearing compounds

    International Nuclear Information System (INIS)

    The presence of carbon bearing materials in liquid sodium is undesirable because of their ability to carburise stainless steel components. It has been demonstrated for example that carbon taken up by stainless steels can affect their mechanical properties and that thinner sectioned material such as fuel cladding and the tubing of intermediate heat exchanger may be more sensitive to such effects. Generally speaking, there are a number of potential carbon sources in reactor systems. Some of the sources such as the graphite in neutron shield rods, boron carbide in control rods and carbide fuels are part of the reactor designs while others such as oil in mechanical pumps arid 'coupling-fluids' used to inspect plant components are associated with the respective operation arid inspection of the plant. In this paper it is intended to discuss in general terms the way these various compounds behave in liquid sodium and to assess what effect their presence will have on the materials of construction in fast reactor systems. The paper also reviews the chemistry of the environment in relation to the types of carburizing species which may exist in sodium systems

  4. Modelling the behaviour of carbon 14 released by nuclear power plants in rivers

    International Nuclear Information System (INIS)

    Under routine operation, French nuclear power plants of the PWR type release small amounts of carbon 14 in the environment either as airborne or liquid effluents. With the improvement of nuclear waste management, resulting in a significant reduction in corrosion products discharges, carbon 14 currently stands out as one of the main contributor to the individual dose to the public. Besides, with the decrease in military weapon tests fallout levels, nuclear reactors liquid releases are becoming the dominant artificial source of carbon 14 in rivers, downstream of power plants. To properly assess the fate of carbon 14 in rivers and to calculate individual doses to critical groups, a time-dependent food chain model was developed which considered the migration of carbon 14 in rivers and the transfer to terrestrial environments through irrigation with river water. Processes included in the model are: (1) dilution and equilibrium between the different forms of dissolved inorganic carbon in water, (2) exchange of carbon dioxide between water and atmosphere, (3) transfer to aquatic organisms, (4) transfer of irrigation water in the soil profile, (5) loss from the soil through volatilisation, (6) incorporation in plants by way of photosynthesis (7) transfer to livestock. This model is implemented on the Loire river and the modelling results are compared with the data obtained in radioecological surveys. These elements are then used to calculate doses to humans and non-human biota and assess the contribution from natural and industrial origins. (author)

  5. Chemical Reactions and Kinetics of the Carbon Monoxide Coupling in the Presence of Hydrogen

    Institute of Scientific and Technical Information of China (English)

    Fandong Meng; Genhui Xu; Zhenhua Li; Pa Du

    2002-01-01

    The chemical reactions and kinetics of the catalytic coupling reaction of carbon monoxide to diethyl oxalate were studied in the presence of hydrogen over a supported palladium catalyst in the gaseous phase at the typical coupling reaction conditions. The experiments were performed in a continuous flow fixed-bed reactor. The results indicated that hydrogen only reacts with ethyl nitrite to form ethanol, and kinetic studies revealed that the rate-determining step is the surface reaction of adsorbed hydrogen and the ethoxy radical (EtO-). A kinetic model is proposed and a comparison of the observed and calculated conversions showed that the rate expressions are of rather high confidence.

  6. Results of interagency effort to determine carbon-14 source term in low-level radioactive waste

    International Nuclear Information System (INIS)

    A preliminary estimate of the risks from the shallow land disposal of low-level radioactive wastes by EPA in 1984-1985 indicated that Carbon-14 caused virtually all of the risk and that these risks were relatively high. Therefore, an informal interagency group, which included the US Department of Energy, US Geological Survey, US Nuclear Regulatory Commission, and US Environmental Protection Agency, formed in 1985 to obtain up-to-date information on the activity and chemical form of Carbon-14 in the different types of LLW and how Carbon-14 behaves after disposal. The EPA acted as a focal point for collating the information collected by all of the Agencies and will publish a report in Fall 1986 on the results of the Carbon-14 data collection effort. Of particular importance, the study showed that Carbon-14 activity in LLW was overestimated approximately 2000%. This paper summarizes results of the Carbon-14 data collection effort. 40 references, 1 figure, 3 tables

  7. Application of the random pore model to the carbonation cyclic reaction

    Energy Technology Data Exchange (ETDEWEB)

    Grasa, G.; Murillo, R.; Alonso, M.; Abanades, J.C. [Institute of Carboquimica, Zaragoza (Spain). Environment & Energy Department

    2009-05-15

    Calcium oxide has been proved to be a suitable sorbent for high temperature CO{sub 2} capture processes based on the cyclic carbonation-calcination reaction. It is important to have reaction rate models that are able to describe the behavior of CaO particles with respect to the carbonation reaction. Fresh calcined lime is known to be a reactive solid toward carbonation, but the average sorbent particle in a CaO-based CO{sub 2} capture system experiences many carbonation-calcination cycles and the reactivity changes with the number of cycles. This study applies the random pore model (RPM) to estimate the intrinsic rate parameters for the carbonation reaction and develops a simple model to calculate particle conversion with time as a function of the number of cycles, partial pressure of CO{sub 2}, and temperature. This version of the RPM model integrates knowledge obtained in earlier works on intrinsic carbonation rates, critical product layer thickness, and pore structure evolution in highly cycled particles.

  8. Effect of temperature on kinetic parameters of decomposition reaction of calcium carbonate

    Institute of Scientific and Technical Information of China (English)

    CHEN Hongwei; CHEN Jiangtao; WEI Riguang; SUO Xinliang

    2013-01-01

    In order to investigate the influence of temperature on behavior of calcium carbonate decomposition,especially on kinetic parameters of the decomposition reaction,the analytically pure calcium carbonate was calcined on a self-built large dose thermogravimetric analyzer.The results indicated that,with an increase in the reaction temperature,the reactivity index of calcium carbonate decomposition increased at stage state while the kinetic parameters decreased at stage state.Moreover,both the reaction indices and the kinetic parameters can be divided into three stages and the temperature turning points in different stages were the same.The phase boundary reaction (cylindrical symmetry) theory was more suitable for calcium carbonate calcination under N2 atmosphere.The change trend of the logarithm of reaction activation with temperature was similar as that of the pre-exponential factor.There existed good liner relationship and kinetic compensation effect between them.The isokinetic temperature of the CaCO3 calcination was 842 ℃ and the reaction rate constant was 0.104 9 min-1 derived by the compensation coefficients.

  9. Asphalt in carbon-14-dated archaeological samples from Terqa, Syria

    International Nuclear Information System (INIS)

    The results are reported of an organic geochemical study to verify contamination in 14C dated archaeological samples, which could account for much older apparent ages than expected. The data indicate that ancient asphalt must be the source of contamination, showing that caution should be exercised, in interpreting 14C dates of archaeological samples from areas containing asphalt or other fossil fuel deposits. (U.K.)

  10. Behavior of environmental carbon-14 and tritium in Japan

    International Nuclear Information System (INIS)

    The 14C activity in plants began to rise appreciably above normal in 1957, and the level rose almost linearly with the rate of 7% per year to the level in 1959. Steep increase of the level to a peak in 1963, between 85% and 90% above normal, shows the effect of large scale nuclear explosions through the end of 1962. Liquid scintillation counting was used as a sensitive assay method of 14C and 3H. For 14C determination, the naturally incorporated 14C into alcohol and essential oils (thymol, menthol and lemongrass oil) and used, and water samples were used for 3H measurement. The total amount 65 x 1027 of 14C atoms has been produced in nuclear tests, and this amount is about 3% of the total amount of 14C in nature. The 3H concentration in rivers, streams and ponds decreased exponentially from 600 pCi/l in 1967 to 150 pCi/l in 1972, with the half life of 2.5yr. The difference of the 3H concentration in surface water according to the sampling locations implies geographical and meteorological variations in fallout 3H level. It is said conclusively that environmental waters in Japan have not been influenced by the discharge effluent of the facilities with regard to tritium contamination and that tritium content in precipitation still play an important role in reflecting annual variation of tritium concentration to surface waters. (J.P.N.)

  11. Study of the 17O(n,α)14C reaction: Extension of the Trojan Horse Method to neutron induced reactions

    Science.gov (United States)

    Guardo, G. L.; Lamia, L.; Spitaleri, C.; Gulino, M.; Tang, X. D.; Bucher, B.; Burjan, V.; Cherubini, S.; Couder, M.; Davies, P.; deBoer*, R.; Fang, X.; Goldberg, V. Z.; Hons, Z.; Kroha, V.; Lamm, L.; La Cognata, M.; Li, C.; Ma, C.; Mrazek, J.; Mukhamedzhanov, A. M.; Notani, M.; OBrien, S.; Pizzone, R. G.; Rapisarda, G. G.; Roberson, D.; Sergi, M. L.; Tan, W.; Thompson, I. J.; Wiescher, M.

    2014-05-01

    The experimental study of the 17O(n,α)14C reaction has been performed in the energy range 0-350 keV. This reaction could play an important role in explaining heavy elements (s-process) nucleosynthesis in various astrophysical scenario. To overcome the practical problems arising from the neutrons production, a new application of the Trojan Horse Method has been recently suggested. In more details, the 17O(n,α)14C reaction has been studied using the quasi-free 2H(17O,α14C)1H reaction, induced at an energy of 43.5 MeV. The measurement allows one to investigate the ℓ=3, 75 keV resonance (E*=8.125 MeV, Jπ=5-), absent in the available direct measurements because of centrifugal suppression effects.

  12. Study of the {sup 17}O(n,α){sup 14}C reaction: Extension of the Trojan Horse Method to neutron induced reactions

    Energy Technology Data Exchange (ETDEWEB)

    Guardo, G. L.; Lamia, L.; Spitaleri, C.; Cherubini, S.; Rapisarda, G. G.; Sergi, M. L. [INFN - Laboratori Nazionali del Sud, Catania, Italy and Department of Physics and Astronomy, University of Catania, Catania (Italy); Gulino, M. [INFN - Laboratori Nazionali del Sud, Catania, Italy and University of Enna (Italy); Tang, X. D.; Bucher, B.; Couder, M.; Davies, P.; Boer, R. de; Fang, X.; Lamm, L.; Ma, C.; Notani, M.; OBrien, S.; Roberson, D.; Tan, W.; Wiescher, M. [Department of Physics and Joint Institute for Nuclear Astrophysics, University of Notre Dame, IN (United States); and others

    2014-05-02

    The experimental study of the {sup 17}O(n,α){sup 14}C reaction has been performed in the energy range 0-350 keV. This reaction could play an important role in explaining heavy elements (s-process) nucleosynthesis in various astrophysical scenario. To overcome the practical problems arising from the neutrons production, a new application of the Trojan Horse Method has been recently suggested. In more details, the {sup 17}O(n,α){sup 14}C reaction has been studied using the quasi-free {sup 2}H({sup 17}O,α{sup 14}C){sup 1}H reaction, induced at an energy of 43.5 MeV. The measurement allows one to investigate the ℓ=3, 75 keV resonance (E*=8.125 MeV, J{sup π}=5{sup −}), absent in the available direct measurements because of centrifugal suppression effects.

  13. Reactions of carbon radicals generated by 1,5-transposition of reactive centers

    Directory of Open Access Journals (Sweden)

    ZIVORAD CEKOVIC

    2005-03-01

    Full Text Available Radical intermediates can undergo specific reactions, such as intramolecular rearrangements, i.e., the transpositions of radical centers, which are not known in classical ionic organic reactions. 1,5-Transposition of a radical center to a non-activated carbon atom are of great synthetic importance. It can be successfully applied for the introduction of different functional groups (oxygen, nitrogen, sulfur, halogens onto a carbon atom remote from the present functional group. In addition to functionalization of a remote non-activated carbon atom, the formation of new C-C bonds on the d-carbon atom have also been achieved. 1,5-Transposition of the radical centers takes place from alkoxyl, aminyl and carbon radicals to a remote carbon atom. Relocation of the radical centers preferentially involves 1,5-transfer of a hydrogen atom, although migrations of some other groups are known. The reactions of the carbon radical generated by 1,5-relocation of the radical center are presented and their synthetic applications are reviewed.

  14. Atmospheric nuclear weapons test history narrated by carbon-14 in human teeth

    International Nuclear Information System (INIS)

    The atmospheric testing of nuclear weapons since 1945 caused a significant increase in the concentration of atmospheric 14C. The 14C concentration in plants that assimilate 14C directly by photosynthesis reflects the atmospheric 14C concentration. Carbon-14 is then transferred into the human body through the food chain. Based on animal experiments, the collagen in human teeth is metabolically inert after its formation. This implies that the collagen of each tooth retains the 14C concentration which reflects the 14C concentration in the blood at the time collagen metabolism ceased. The distribution of the 14C concentration in the collagen of teeth from subjects of various ages would follow a pattern similar to that shown by soft tissues. In this paper the authors elucidate the relationship between the number of nuclear weapon tests and the distribution of 14C concentration in teeth

  15. Synthesis of a polycyclic aromatic hydrocarbon marked with carbon-14: (b, d e f) dibenzo-chrysene 14C-7,14

    International Nuclear Information System (INIS)

    (b, d e f) dibenzo-chrysene C-7,14 has been synthesized from radioactive carbon dioxide and the organic magnesium compound derived from 1,5 dibromo naphthalene. The product has been purified by a very precise series of fractionated chromatographs on alumina having a chromatographic activity. This has necessitated the development of a special technique. (author)

  16. Carbon 14 absorption and translocation in sugar cane

    International Nuclear Information System (INIS)

    Plant-cane stools were labelled with sup(14) CO sub(2), in the field, at Goiana-PE, Brazil, when 3, 7 and 11 months old. Each stool was enclosed in a chamber with sup(14) CO sub(2) for 90 minutes. The sub(14) C photosynthetic were measured in leaves, stalks, roots and soil 24 hours after labelling. Roots were divided into alive and dead and soil into rhizosphere and outer soil. At the end of the labelling period at 3, 7 and 11 months, 2, 19 and 1% of the initial sup(14) CO sub(2) were recovered in the plant and the soil. The low recovery of sub(14) C at 3 months could be attribute to losses by respiration and lack of sampling of the top growing point. The low CO sub(2) fixation and losses at first sampling in the 7 month old labelling were attributed to low light intensity during the day of labelling. Most of the recovered sub(14) C (>80%) was founded in the leaves but all plant parts received labelled photosynthetic. At 3 months, most of the sub(14) C translocated from the leaves went to the living roots (83%); at 7 and 11 months it went to the stalks (69 and 66%). While the roots received less than 2%. Root masses did not vary consistently along the plant cycle and dead root masses were always less than 10% of the total root mass. Radioactivity in the dead roots was always very low. These results suggest that the root system have a low turnover rate after 3 months old. (author)

  17. Aligned carbon nanotube with electro-catalytic activity for oxygen reduction reaction

    Science.gov (United States)

    Liu, Di-Jia; Yang, Junbing; Wang, Xiaoping

    2010-08-03

    A catalyst for an electro-chemical oxygen reduction reaction (ORR) of a bundle of longitudinally aligned carbon nanotubes having a catalytically active transition metal incorporated longitudinally in said nanotubes. A method of making an electro-chemical catalyst for an oxygen reduction reaction (ORR) having a bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes, where a substrate is in a first reaction zone, and a combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into the first reaction zone which is maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is then introduced to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes over the substrate with a catalytically active transition metal incorporated throughout the nanotubes.

  18. First measurements of the {sup 16}O(e,e'pn){sup 14}N reaction

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, D.G.; Annand, J.R.M.; Glazier, D.I.; MacGregor, I.J.D.; McGeorge, J.C.; Rosner, G. [University of Glasgow, Department of Physics and Astronomy, Scotland (United Kingdom); Barbieri, C. [Gesellschaft fuer Schwerionenforschung, Darmstadt (Germany); Barneo, P.; Blok, H.P.; Jans, E.; Lapikas, L.; de Vries, H. [NIKHEF, P.O. Box 41882, Amsterdam (Netherlands); Boehm, R.; Distler, M.O.; Friedrich, J.; Kohl, M.; Merkel, H.; Seimetz, M.; Walcher, T. [Universitaet Mainz, Institut fuer Kernphysik (Germany); Giusti, C. [Dipartimento di Fisica Nucleare e Teorica dell' Universita degli Studi di Pavia and Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia (Italy); Grabmayr, P.; Hehl, T.; Heim, J.; Martin, I.; Moschini, F. [Universitaet Tuebingen, Physikalisches Institut (Germany); Hesselink, W.H.A. [NIKHEF, Ammsterdam (Netherlands); Physikalisches Institut, Universitaet Tuebingen (Germany); Watts, D.P. [Department of Physics and Astronomy, University of Glasgow (United Kingdom); School of Physics, University of Edingburgh (United Kingdom); Zihlmann, B. [NIKHEF, Amsterdam (Netherlands); Vrije Universiteit, Amsterdam (Netherlands)

    2006-09-15

    This paper reports on the first measurement of the {sup 16}O(e,e'pn){sup 14}N reaction. Data were measured in kinematics centred on a super-parallel geometry at energy and momentum transfers of 215 MeV and 316 eV/c. The experimental resolution was sufficient to distinguish groups of states in the residual nucleus but not good enough to separate individual states. The data show a strong dependence on missing momentum and this dependence appears to be different for two groups of states in the residual nucleus. Theoretical calculations of the reaction using the Pavia code do not reproduce the shape or the magnitude of the data. (orig.)

  19. Characterization of the major reactions during conversion of lignin to carbon fiber

    Directory of Open Access Journals (Sweden)

    Hendrik Mainka

    2015-10-01

    Full Text Available Lightweight design is an essential part of the overall Volkswagen strategy for reducing the CO2 emissions. The use of carbon fiber offers an enormous lightweight potential. In comparison to steel enabling a mass reduction of up to 70% in automotive parts without a degradation of the functionalities is possible. Today, the use of carbon fiber is limited in mass series applications of the automotive industry by the cost of the conventional C-fiber precursor polyacrylonitrile (PAN. 50% of the cost of a conventional carbon fiber already belongs to the cost of the PAN precursor. Lignin as a precursor for carbon fiber production can realize enormous savings in cost. For qualifying lignin-based carbon fiber for automotive mass production a detailed characterization of this new material is necessary. Therefore, nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy are used. Using the results of these experiments, the major reactions during conversion of lignin to carbon fiber are proposed.

  20. Low energy proton capture study of the 14N(p, gamma)15O reaction

    Science.gov (United States)

    Daigle, Stephen Michael

    The 14N(p,gamma)15O reaction regulates the rate of energy production for stars slightly more massive than the sun throughout stable hydrogen burning on the main sequence. The 14N(p,gamma)15O reaction rate also determines the luminosity for all stars after leaving the main sequence when their cores have exhausted hydrogen fuel, and later when they become red giant stars. The significant role that this reaction plays in stellar evolution has far-reaching consequences, from neutrino production in our Sun, to age estimates of globular clusters in our Galaxy. The weak cross section and inherent coincidence summing in the 15O gamma-ray decay scheme make a precision measurement of the astrophysical S-factor especially challenging, particularly for the ground-state transition. The present study, performed in the Laboratory for Experimental Nuclear Astrophysics (LENA), was aimed at measuring the ground-state transition at low energy by utilizing a new 24-element, position-sensitive, NaI(Tl) detector array. Because the array is highly segmented, the 14N( p,gamma)15O S-factor was evaluated for transitions to the ground, 5.18, 6.18, and 6.79 MeV states without the need for coincidence summing corrections. Additionally, the position-sensitivity of the detector was exploited to measure the angular correlation of the two-photon cascades. Software cuts were made to the data in order to identify single and coincident gamma-ray events and a fraction fit analysis technique was used to extract the characteristic 15O peaks from the composite gamma-ray spectrum. The results from the current work demonstrated a new approach to measuring weak nuclear cross sections near astrophysically relevant energies that, with refinements, has broader applications in gamma-ray spectroscopy.

  1. The reaction of carbon with rare earth silicides. I

    International Nuclear Information System (INIS)

    The solubility of carbon and its effect on the D88 structure of Er5Si3 were investigated by X-ray examination, metallography and hardness measurements. Corrosion products arising from attack by water vapour and dilute nitric acid on the carbides were analysed. The addition of carbon to Er5Si3Csub(x) in the range from x=0 to x=2.0 produced complex changes. Solutions with x up to 0.2 expanded the lattice, but between x=0.2 and x=0.8 the expansion was accompanied by the appearance of a superlattice unit cell. At x=0.8 the superstructure became disordered prior to changing to a new superstructure at x=1.0. Two new orthorhombic phases in which there appeared to be some C2sup(n-) dipoles were identified at Er5Si3Csub(1.8) and Er5Si3Csub(2.0). (Auth.)

  2. Heterogeneously Catalysed Aldol Reactions in Supercritical Carbon Dioxide as Innovative and Non-Flammable Reaction Medium

    DEFF Research Database (Denmark)

    Musko, Nikolai; Grunwaldt, Jan-Dierk

    2011-01-01

    preliminary study under the entitled reaction conditions. Small and linear aldehydes, such as propanal, butanal, pentanal and hexanal, react more efficiently than the branched 3-methylbutanal, which is converted much slower. Whereas Amberlyst-15 showed the highest conversion based on the catalyst mass...

  3. Cross Section of Heavy Ion Reaction (14.5 MeV/u) 132Xe + Bi

    Institute of Scientific and Technical Information of China (English)

    G. Sher; M. I. Shahzad; M. Hussain; M. A. Rana; E. U. Khan

    2006-01-01

    @@ We investigate the cross section of the heavy ion reaction (14.5 MeV/u) 132Xe + Bi by using a CR-39 plastic track detector. The target-detector assembly is exposed at UNILAC beam facility of GSI, Germany. After etching under appropriate etching conditions, the detector is scanned for multipronged events produced as a result of interactions of projectile ions with target atoms. The elastic events are separated from binary events and used for the determination of the quarter-point angle..

  4. Carbon-14 ages of Allan Hills meteorites and ice

    Science.gov (United States)

    Fireman, E. L.; Norris, T.

    1982-01-01

    Allan Hills is a blue ice region of approximately 100 sq km area in Antarctica where many meteorites have been found exposed on the ice. The terrestrial ages of the Allan Hills meteorites, which are obtained from their cosmogenic nuclide abundances are important time markers which can reflect the history of ice movement to the site. The principal purpose in studying the terrestrial ages of ALHA meteorites is to locate samples of ancient ice and analyze their trapped gas contents. Attention is given to the C-14 and Ar-39 terrestrial ages of ALHA meteorites, and C-14 ages and trapped gas compositions in ice samples. On the basis of the obtained C-14 terrestrial ages, and Cl-36 and Al-26 results reported by others, it is concluded that most ALHA meteorites fell between 20,000 and 200,000 years ago.

  5. Carbon content influence on the peritectic reaction path in stainless steels

    Directory of Open Access Journals (Sweden)

    J. Głownia

    2013-01-01

    Full Text Available An important role for the peritectic reaction path in castings of stainless steel play small changes in a carbon content (e.g. from 0,02 to 0,06 % C, at maintaining constant chromium and nickel values. An influence of the carbon content on the peritectic reaction stages constitutes the subject of studies. The calculations of the steel solidification pathways in the four-component system, of a constant chromium and nickel content of 18 % and 9 % – respectively and of various carbon content from 0,01 to 0,06 %, were performed. It was proved by means of the PANDAT program that the carbon concentration increases the Cr segregation and thereby changes the solidification path under actual conditions.

  6. Results of excretion analyses on carbon 14 and their interpretation

    International Nuclear Information System (INIS)

    Personal monitoring of routinely radiation exposed persons according to paragraph 25 of the Austrian Radiation Protection Regulation usually can be performed with sufficient accuracy. A real problem, however, exists in the evaluation of the obtained data for calculating the dose commitment. The presented work reports some experiences with a routine monitoring program for 14C and gives a statistical review of the results from urinalysis of employees in the Research Center Seibersdorf for the period 1976-1978. For typical cases of incorporation, the received doses were estimated and proposals for organizing an effective survey program for workers handling 14C were made. (Auth.)

  7. Carbon-14 as an indicator of CO2 pollution in cities

    International Nuclear Information System (INIS)

    The combustion of fossil fuels in cities, and especially in industrial areas, releases large quantities of carbon dioxide into the local atmosphere. This carbon dioxide does not contain carbon-14, with the result that the carbon-14 content of the atmospheric carbon dioxide is locally depleted. The degree of depletion provides a measure for the carbon dioxide pollution at the sampling site. Since growing plants represent a convenient average sample of the carbon dioxide in the air, the leaves of deciduous trees can be used for comparing the magnitude of local pollution in different localities during the summer growing period. A series of leaf samples collected in 1973 from Europe, North America and South Africa reveals the expected differences in the degree of pollution. Extreme instances occur in Scholven (Ruhrgebiet, Germany), where the average day-time carbon dioxide content during the summer months is found to be 8.7% above normal, and in Manhatten, New York City, where the corresponding figure is 6.4%. The technique can easily be extended to include the winter months by directly absorbing carbon dioxide in a hydroxide solution during different seasons. The proposed method is sensitive but much less time-consuming than the continuous measurement of the carbon dioxide concentration in the air. It thus lends itself to the monitoring of impact areas of pollution. (author)

  8. Synthesis and processing of beta silicon carbide powder by silicon - carbon reaction

    International Nuclear Information System (INIS)

    SiC is an important structural ceramic and finds applications in nuclear industry. Processing of SiC ceramic components for such applications require sinter-active beta silicon carbide powders. Various novel methods have been reported for the synthesis of beta SiC powder based on silica - carbon and silicon - carbon reactions. In this research, beta-silicon carbide (β-SiC) was synthesized from the reaction of Si and C. In this research, beta-silicon carbide (β-SiC) was synthesized from the reaction of Si and C. Stoichiometric amount of silicon and petroleum coke having agglomerate size ∼ 5-8μ were planetarily wet mixed, dried, granulated and compacted to reaction specimens

  9. Mechanism of carbon monoxide reactions under high pressure catalyzed by acids and bases

    Energy Technology Data Exchange (ETDEWEB)

    Takezaki, Y.

    1978-05-01

    A review, based mainly on work done at Kyoto University, covers the mechanisms and kinetics of acid-catalyzed carbonylations, including the hydrogen fluoride-catalyzed addition of carbon monoxide to methallyl chloride, the sulfuric acid-catalyzed synthesis of succinic acid from acrylic acid, and the conversion of toluene to p-tolualdehyde in hydrogen fluoride/boron trifluoride by the Gattermann-Koch reaction; and of base-catalyzed reactions, including the production of methyl formate from methanol with 1,8-diazabicyclo (5,4,0)undec-7-ene catalyst and of malonic acid from potassium acetate and potassium carbonate. Graphs, tables, and 34 references.

  10. β-Sialon Produced by Carbon Thermal Nitriding Reaction of Bauxite

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    β-Sialon was produced by carbon thermal nitriding reaction in N2 gas atmosphere when the mixtures of bauxite and anthracite were put into vertical furnace. According to the mass loss of raw materials and the result of X-ray diffration (XRD) of products, the influences of the process parameters on the compositions and relative contents of products, such as the fixed carbon content, the flow of N2, the soaking time and the temperature, were researched.

  11. Study of rock porosity by impregnation with carbon-14- methylmethacrylate

    International Nuclear Information System (INIS)

    An investigation of porosity and spatial porosity distribution to enable the determination of mineral specific characteristics was conducted on tonalite and mica gneiss from the Olkiluoto site in Eurajoki. The method that was used involved impregnation of the rocks with 14C-methyl-methacrylate, irradiation polymerization, autoradiography and optical densitometry with application of digital image processing techniques. The accuracy of the method was estimated by comparing the results with those obtained by water impregnation method. The 14C-polymethyl- methacrylate (14CPMMA) method provided an effective means of determining the different porous phases in the rock matrix which vary in their diffusive properties. With increased tracer activity and an improved measurement system, the 14CPMMA method allowed porosity detection down to 0.05 vol.per cent with spatial resolution of 20 μm. The porosity was found to lie at grain boundaries of the fresh unaltered rock. The spatial porosity was fairly evenly distributed in the rock with a fine grain size. Anisotropy of porous phases was observed in fine- and medium-grained tonalite and mica gneiss samples. Inter- and intracrystalline fissures of quartz and plagioclase were observed. Most porous phases, with 0.6-1.6 vol. per cent porosity, were biotite, serisite, epidote and cordierite minerals. The bulk porosities of the samples varied between 0.10 vol.per cent and 0.19 vol.per cent. (orig.) (9 refs., 16 figs., 1 tab.)

  12. Assessment of carbon-14 control technology and costs for the LWR fuel cycle. Final report

    International Nuclear Information System (INIS)

    The report is an effort to incorporate present knowledge of carbon-14 behavior in Light Water Reactors and Fuel Reprocessing Plants into Designs compatible with present technology. The impact of radioactive effluents are considered according to the traditional measure of maximum radiation dose to individuals, summation of individual annual doses to obtain a total population dose, and the environmental dose commitment. The sources of carbon-14 in LWR's and fuel reprocessing facilities are identified. Systems for the removal of carbon-14 in existing and future plants are addressed from both a technological and economic standpoint. Existing technology indicates that caustic scrubbing is the most cost-effective alternative for concurrently removing C-14 from waste-gas streams and leaving it in a form compatible with permanent disposal conditions

  13. Activated carbon becomes active for oxygen reduction and hydrogen evolution reactions.

    Science.gov (United States)

    Yan, Xuecheng; Jia, Yi; Odedairo, Taiwo; Zhao, Xiaojun; Jin, Zhao; Zhu, Zhonghua; Yao, Xiangdong

    2016-06-21

    We utilized a facile method for creating unique defects in the activated carbon (AC), which makes it highly active for the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). The ORR activity of the defective AC (D-AC) is comparable to the commercial Pt/C in alkaline medium, and the D-AC also exhibits excellent HER activity in acidic solution. PMID:27277286

  14. Computational Investigations of Organic Reactions on Graphene, Fullerenes, and Carbon Nanotubes

    OpenAIRE

    Cao, Yang

    2014-01-01

    This dissertation involves explorations of on surfaces and on carbon-based nanomaterials, especially graphene, using quantum chemical calculations. The work evaluates energetics of cycloaddition reactions on different sites of graphene, improving the understanding of graphene chemistry and guiding experiments.Chapter 1 to 3 describes theoretical investigations of 1,3-dipolar cycloadditions, Diels- Alder reactions, (2+2) cycloadditions, (4+4) cycloadditions and non-covalent interactions to gra...

  15. Immobilization of carbon 14 contained in spent fuel hulls through melting-solidification treatment

    International Nuclear Information System (INIS)

    The melting-solidification treatment of spent nuclear fuel hulls is a potential technique to improve immobilization/stabilization of carbon-14 which is mobile in the environment due to its weakly absorbing properties. Carbon-14 can be immobilized in a solid during the treatment under an inert gas atmosphere, where carbon is not oxidized to gaseous form and remains in the solid. A series of laboratory scale experiments on retention of carbon into an alloy waste form was conducted. Metallic zirconium was melted with metallic copper (Zr/Cu=8/2 in weight) at 1200 deg C under an argon atmosphere. Almost all of the carbon remained in the resulting zirconium-copper alloy. (authors)

  16. Epoxidation and oxidation reactions using 1,4-butanediol dimethacrylate crosslinked polystyrene-supported tertiary butyl hydroperoxide

    Indian Academy of Sciences (India)

    M S Sheela; K Sreekumar

    2004-11-01

    1,4-Butanediol dimethacrylate (1,4-BDDMA) crosslinked polystyrene-supported -butyl hydroperoxide was employed in the epoxidation of olefins and oxidation of alcohols to carbonyl compounds. The reagent proved to be successful as a recyclable solid phase organic reagent with as much or more efficiency when compared to its monomeric counterpart. The extent of reaction was found to be dependent on various reaction parameters like solvent, temperature, molar concentration and presence of catalyst.

  17. Modeling reaction-driven cracking during mineral carbonation in peridotite for CO2 sequestration

    Science.gov (United States)

    Paukert, A. N.; Sonnenthal, E. L.; Matter, J.; Kelemen, P. B.

    2013-12-01

    In situ mineral carbonation in mantle peridotite has been proposed as a mechanism for long-term, environmentally benign CO2 sequestration1,2. This process converts peridotite and CO2 to carbonate minerals, like magnesite, in the subsurface, providing permanent and safe storage of the CO2. The volume that can be sequestered in this manner is an open question as peridotite carbonation involves a positive volume change and peridotite aquifers have limited porosity and permeability to accommodate the addition of solid volume. Conversion of peridotite to magnesite results in a volume increase of ~44%, which will fill the existing pore space and could limit the extent of carbonation by reducing porosity and permeability, clogging fluid flow paths, and armoring the reactive surface area. Alternatively, the force of crystallization and changes in fluid pressure from carbonation could act as driving forces for mechanical deformation and fracture propagation within the peridotite, creating new porosity, permeability, and reactive surface area, allowing carbonation to continue3. Natural examples of peridotite that have been entirely converted to magnesite suggest that reactive cracking from mineral carbonation is possible given the right conditions, such as elevated temperature and pCO2 2. Results will be presented from a reactive transport model that has been developed for peridotite carbonation using TOUGHREACT v.24. This model evaluates water and CO2 flow through peridotite fractured at different scales using a multiple continuum mesh. The effect of fluid flow, chemical reactions, and porosity and permeability feedbacks on carbonation rate and extent are explored, as is the effect of temperature. Peridotite carbonation is exothermic, so the release of heat of reaction could be balanced with the fluid injection temperature to maintain the 185oC conditions that facilitate the fastest carbonation rate2. The effect of fluid temperature and flow rate on the rate of carbonation

  18. Kinetics of reactions of oxidation of carbon by carbon dioxide and water steam at high temperatures and low pressures

    International Nuclear Information System (INIS)

    The first objective of this research thesis was to obtain new and reliable experimental results about the reaction kinetics of the oxidation of carbon by carbon dioxide and water steam, and to avoid some disturbing phenomena, for example and more particularly the appearance of electric discharges beyond 1900 K initiated by the filament thermoelectric emission. The author tried to identify the mechanism of the accelerating effect. It appears that previous experiments had been performed only in these disturbed conditions. At the lowest temperatures, the author highlighted the existence of a surface contamination by the desorption products from the apparatus

  19. Solid-state reactions of hydrogen-containing carbon films with metal substrates

    International Nuclear Information System (INIS)

    Hydrogen-containing carbon films were prepared on tungsten, molybdenum and beryllium as model systems to simulate changes in physiochemical properties of carbon depositing on the inner wall of tokamak, in which carbon tiles are used in combination with two or more plasma facing materials. The properties of the co-existing layers and their solid-state reactions at elevated temperatures were studied by means of infrared, Raman, X-ray photoelectron (XPS), X-ray diffraction (XRD) and thermal desorption (TDS) spectroscopies

  20. Displacement of carbon-14 labelled amino acids from leaves

    International Nuclear Information System (INIS)

    The displacement of amino acids from nature leaves was investigated. The amino acids (Ala, Asn, Asp, Glu, Gln, Val, Leu, Lys, Ser, Pro) were applied on the leaves in L-form, uniformly labelled with 14C, and the type and direction of displacement have been observed. Most of the studies have been carried out on bush beans aged 3 to 4 weeks. The experiments were carried out in climatic chambers; in one case, barley plants just reaching maturity were used. In order to find out whether the applied amino acids were also displaced in their original form, freeze-dried plants were extracted and the 14C activity of the various fraction was determined. The radioactivity of some free amino acids was determined after two-dimensional separation by thin film chromatography. (orig./HK)

  1. Groundwater's carbon 14 age distribution in the Konya closed basin

    International Nuclear Information System (INIS)

    The Konya Closed basin extending from Taurids at the south toward Salt Lake at the north covers and area of 80,000 sq.km. Apart from the surface water transfer from neighboring basins, groundwater is the only potable water resource in this area where determination of groundwater age is crucial in view of understanding of the timing or recharge and flow dynamics. 14C model ages at 8 drilling wells scattered along the regional flow path extending between Taurids and Salt Lake were determined. Results indicate that groundwater age increases progressively from recent to ca. 40 ky BP along the flow path. This linear increase with distance from recharge area suggests a homogenous groundwater velocity distribution (3m/year) in the basin. 14C model and hydraulic (kinematic) ages are in agreement. 18O content of groundwater points out a steady decrease of recharge temperature (up to 60C) throughout the Wurm glacial period

  2. Determination of carbon-14 in environmental level, solid reference materials

    Energy Technology Data Exchange (ETDEWEB)

    Blowers, Paul, E-mail: paul.blowers@cefas.co.uk [Cefas Lowestoft Laboratory, Pakefield Road, Lowestoft, Suffolk, NR33 0HT (United Kingdom); Caborn, Jane, E-mail: jane.a.caborn@nnl.co.uk [NNL, Springfields, Salwick, Preston, Lancashire, PR4 0XJ (United Kingdom); Dell, Tony [Veterinary Laboratories Agency, New Haw, Addlestone, Surrey, KT15 3NB (United Kingdom); Gingell, Terry [DSTL, Radiation Protection Services, Crescent Road, Alverstoke, Gosport, Hants, PO12 2DL (United Kingdom); Harms, Arvic [National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW (United Kingdom); Long, Stephanie [Radiological Protection Institute of Ireland, 3 Clonskeagh Square, Clonskeagh Road, Dublin 14, Ireland (United Kingdom); Sleep, Darren [Centre for Ecology and Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP (United Kingdom); Stewart, Charlie [UKAEA (Waste Management Group), Chemical Support Services, D1310/14, Dounreay, Thurso, Caithness, KW14 7TZ (United Kingdom); Walker, Jill [Radiocarbon Dating, The Old Stables, East Lockinge, Wantage, Oxon OX12 8QY (United Kingdom); Warwick, Phil E. [GAU-Radioanalytical, National Oceanography Centre Southampton, European Way, Southampton, SO14 3ZH (United Kingdom)

    2011-10-15

    An intercomparison exercise to determine the {sup 14}C activity concentrations in a range of solid, environmental level materials was conducted between laboratories in the UK. IAEA reference materials, C2, C6 and C7, and an in-house laboratory QA material were dispatched in 2006 to ten laboratories comprising of members of the Analyst Informal Working Group (AIWG) and one other invited party. The laboratories performed the determinations using a number of techniques, and using the results each one was evaluated in terms of levels of precision, sensitivity and limits of detection. The results of the study show that all techniques are capable of successfully analysing {sup 14}C in environmental level materials, however, a shortage of certified environmental reference materials exists. The suitability of the IAEA reference materials and other material for use as reference materials was also assessed.

  3. Determination of carbon-14 in environmental level, solid reference materials

    International Nuclear Information System (INIS)

    An intercomparison exercise to determine the 14C activity concentrations in a range of solid, environmental level materials was conducted between laboratories in the UK. IAEA reference materials, C2, C6 and C7, and an in-house laboratory QA material were dispatched in 2006 to ten laboratories comprising of members of the Analyst Informal Working Group (AIWG) and one other invited party. The laboratories performed the determinations using a number of techniques, and using the results each one was evaluated in terms of levels of precision, sensitivity and limits of detection. The results of the study show that all techniques are capable of successfully analysing 14C in environmental level materials, however, a shortage of certified environmental reference materials exists. The suitability of the IAEA reference materials and other material for use as reference materials was also assessed.

  4. Method of carbon chain extension using novel aldol reaction

    Energy Technology Data Exchange (ETDEWEB)

    Silks, Louis A; Gordon, John C; Wu, Ruilan; Hangson, Susan Kloek

    2013-08-13

    Method of producing C.sub.8-C.sub.15 hydrocarbons comprising providing a ketone starting material; providing an aldol starting material comprising hydroxymethylfurfural; mixing the ketone starting material and the aldol starting material in a reaction in the presence of a proline-containing catalyst selected from the group consisting of Zn(Pro).sub.2, Yb(Pro).sub.2, and combinations thereof, or a catalyst having one of the structures (I), (II) or (III), and in the presence of a solvent, wherein the solvent comprises water and is substantially free of organic solvents, where (I), (II) and (III) respectively are: ##STR00001## where R.sub.1 is a C.sub.1-C.sub.6 alkyl moiety, X=(OH) and n=2. ##STR00002## In (III), X may be CH.sub.2, sulfur or selenium, M may be Zn, Mg, or a lanthanide, and R.sub.1 and R.sub.2 each independently may be a methyl, ethyl, phenyl moiety.

  5. Study of a Dolomitic Aquifer with Carbon-14 and Tritium

    International Nuclear Information System (INIS)

    The Dolomite Series which outcrops over an extensive area of the Transvaal is frequently subdivided into separate groundwater compartments by vertical diabase dykes to form well-defined aquifers which usually overflow in strong springs at the lowest point on the surface. The hydrology of one such compartment has been analysed to provide figures for the aquifer characteristics which can be compared with the results of the isotope data. The recharge rate of the aquifer is found to be 17.7 mm/yr and the storage capacity is about 57 times the annual recharge. Expressions for the age distribution in an idealized model of the aquifer and the age of the water discharging from the spring are derived and used to determine the recharge and capacity from the 14C and tritium data. The initial 14C content of the groundwater varies from 80 to 90% with the result that this isotope is relatively unsuitable for quantitative deductions of recharge etc. Both 14C and tritium show a linear increase in age with depth in accordance with the theory. From the tritium results a recharge rate of 11.5 mm/yr, and a storage capacity of 106 times the annual recharge is deduced. Practically the same results are obtained from the tritium content of the spring water if the initial tritium content of the recharge, extrapolated from the age-depth curve (7 TU), is used and the relationship between average age and apparent age of the discharge employed. (author)

  6. Study of a dolomitic aquifer with carbon-14 and tritium

    International Nuclear Information System (INIS)

    The Dolomite Series which outcrops over an extensive area of the Transvaal is frequently subdivided into separate groundwater compartments by vertical diabase dykes to form well-defined aquifers which usually overflow in strong springs at the lowest point on the surface. The hydrology of one such compartment has been analysed to provide figures for the aquifer characteristics which can be compared with the results of the isotope data. The recharge rate of the aquifer is found to be 17.7 mm/yr and the storage capacity is about 57 times the annual recharge. Expressions for the age distribution in an idealized model of the aquifer and the age of the water discharging from the spring are derived and used to determine the recharge and capacity from the 14C and tritium data. The initial 14C content of the groundwater varies from 80 to 90% with the result that this isotope is relatively unsuitable for quantitative deductions of recharge etc. Both 14C and tritium show a linear increase in age with depth in accordance with the theory. From the tritium results a recharge rate of 11.5 mm/yr, and a storage capacity of 106 times the annual recharge is deduced. Practically the same results are obtained from the tritium content of the spring water if the initial tritium content of the recharge, extrapolated from the age-depth curve (7 TU), is used and the relationship between average age and apparent age of the discharge employed. (author)

  7. The process of dimethyl carbonate to diphenyl carbonate: thermodynamics, reaction kinetics and conceptual process design

    NARCIS (Netherlands)

    Haubrock, Jens

    2007-01-01

    Diphenyl carbonate (DPC) is a precursor in the production of Polycarbonate (PC), a widely employed engineering plastic. To overcome the drawbacks of the traditional PC process - e.g. phosgene as a reactant and methylene chloride as solvent- a new process route starting from Dimethyl carbonate (DMC)

  8. Synthesis of carbon-14 labelled CD 271 (6-[3-(1-adamantyl)-4-methoxyphenyl]-2-naphthoic acid): a potential new agent for dermatology

    International Nuclear Information System (INIS)

    6-[3-(1-Adamantyl)-4-methoxyphenyl]-2-naphthoic acid, a promising new compound for the treatment of disorders of keratinization, has been synthesized in [14C]-labelled form from barium[14C]-carbonate via labelled benzene. Benzene-[U-14C] was converted to 4-bromo-methoxybenzene-[phenyl-U-14C] in six steps. Introduction of the adamantyl ring was carried out using 1-acetoxyadamantane under acid catalysis. 2-(1-Adamantyl)-4-bromo-methoxybenzene-[phenyl-U-14C] was converted to a zincate and coupled with methyl 6-bromo-2-naphthoate using a nickel catalyst. The product of the aryl coupling reaction was then saponified to give 6-[3-(1-adamantyl)-4-methoxyphenyl-[phenyl-U-14C

  9. Characteristics of 14C and 13C of carbonate aerosols in dust storm events in China

    Science.gov (United States)

    Chen, Bing; Jie, Dongmei; Shi, Meinan; Gao, Pan; Shen, Zhenxing; Uchida, Masao; Zhou, Liping; Liu, Kexin; Hu, Ke; Kitagawa, Hiroyuki

    2015-10-01

    In contrast with its decrease in western China deserts, the dust storm event in eastern China, Korea, and Japan shows an increase in frequency. Although the drylands in northeastern China have been recognized as an important dust source, the relative contributions of dust transport from the drylands and deserts are inconclusive, thus the quantification of dust storm sources in downwind area remains a challenge. We measured the 14C and 13C contents in carbonates of dust samples from six sites in China, which were collected for the duration of dust storm events in drylands, deserts, and urban areas. The δ13C of the dryland dust samples considerably varied in a range of - 9.7 to - 5.0‰, which partly overlapped the desert dust carbonate δ13C ranges. The 14C content of the dryland dust carbonates showed a narrow range of 60.9 ± 4.0 (as an average and 1 SD of five samples) percent modern carbon (pMC), indicating the enrichment of modern carbonate. Dust samples in desert regions contained relatively aged carbonates with the depleting 14C showing of 28.8 ± 3.3 pMC. After the long-range transport of the western China desert dust plume, the carbonates collected at the southern China remained the depletion of 14C (33.5 ± 5.3 pMC) as in the desert regions. On the other hand, the samples of dust storm events at the urban areas of eastern China showed an enrichment of 14C contents (46.2 ± 5.0 pMC, n = 7), which might be explained by the stronger contribution of modern-carbonate-rich dryland dust.

  10. Two dimensional model study of atmospheric transport using carbon-14 and strontium-90 as inert tracers

    International Nuclear Information System (INIS)

    This study tests the transport processes in the LLNL two-dimensional chemical-radiative-transport model using recently reanalyzed carbon-14 and strontium-90 data. These radioactive tracers were produced bythe atmospheric nuclear bomb tests of 1952--58 and 1961--62, and they were measured at a few latitudes up to 35 kilometers over the period 1955--1970. Selected horizontal and vertical eddy diffusion coefficients were varied in the model to test their sensitivity to short and long term transpose of carbon-14. A sharp transition of Kzz and Kyy through the tropopause, as opposed to a slow transition between the same limiting values, shows a distinct improvement in the calculated carbon-14 distributions, a distinct improvement in the calculated seasonal and latitudinal distribution of ozone columns (relative to TOMS observations), and a very large difference in the calculated ozone reduction by a possible fleet of High Speed Civil Transports. Calculated northern hemisphere carbon-14 is more sensitive to variation of Kyy than are global ozone columns. Strontium-90 was used to test the LLNL tropopause height at four different latitudes. Starting with the 1960 background distribution of carbon-14, we calculate the input of carbon-14 as the sum of each nuclear test of the 1961--62 series, using two bomb-cloud rise models. With the Seitz bomb-rise formulation in the LLNL model, we find good agreement between calculated and observedcarbon-14 (with noticeable exceptions at the north polar tropopause and the short-term mid-latitude mid-stratosphere) between 1963 and 1970

  11. Heterogeneous reactions of gaseous methanesulfonic acid with calcium carbonate and kaolinite particles

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Heterogeneous reactions of gaseous methanesulfonic acid (MSA) with calcium carbonate (CaCO3) and kaolinite particles at room temperature were investigated using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and ion chromatography (IC).Methanesulfonate (MS-) was identified as the product in the condensed phase,in accordance with the product of the reaction of gaseous MSA with NaCl and sea salt particles.When the concentration of gaseous MSA was 1.34 × 10-13 molecules cm-3,the uptake coefficient was (1.21 ± 0.06) × 10-8 (1) for the reaction of gaseous MSA with CaCO3 and (4.10 ± 0.65) × 10 10 (1) for the reaction with kaolinite.Both uptake coefficients were significantly smaller than those of the reactions of gaseous MSA with NaCl and sea salt particles.

  12. Carboxylic Group Embedded Carbon Balls as a New Supported Catalyst for Hydrogen Economic Reactions.

    Science.gov (United States)

    Bordoloi, Ankur

    2016-03-01

    Carboxylic group functionalized carbon balls have been successfully synthesized by using a facile synthesis method and well characterized with different characterization techniques such as XPS, MAS NMR, SEM, ICP and N2 physi-sorption analysis. The synthesized material has been effectively utilized as novel support to immobilized ruthenium catalyst for hydrogen economic reactions. PMID:27455763

  13. Mechanisms of oxygen reduction reactions for carbon alloy catalysts via first principles molecular dynamics

    International Nuclear Information System (INIS)

    Carbon alloy catalysts (CACs) are one of promising candidates for platinum-substitute cathode catalysts for polymer electrolyte fuel cells. We have investigated possible mechanisms of oxygen reduction reactions (ORRs) for CACs via first-principles-based molecular dynamics simulations. In this contribution, we review possible ORRs at likely catalytic sites of CACs suggested from our simulations. (author)

  14. Photochemical reactions of Am(V) in bicarbonate-carbonate solutions

    International Nuclear Information System (INIS)

    The effect of ultraviolet (UV) radiation on Am(V) in sodium carbonate and bicarbonate solutions of pH 9.00 - 11.40 was studied by spectrophotometry. An Am(IV) + Am(VI) mixture was formed at pH 9 to 10; however, the conversion of Am(V) did not exceed 60 - 70%. The reaction rate order with respect to Am(V) was about 1. A quantum yield for the reaction on photolysis with light of λ = 337 nm was estimated at 0.003. The reaction rate and the conversion of Am(V) were decreased with increasing pH. The reaction started with the absorption of a UV quantum by a carbonate complex of Am(V). Its first step was presumably the electron transfer either from a water molecule to Am(V) in the coordination sphere of the excited carbonate complex of Am(V) or between two Am(V) ions in an excimer involving an excited and an unexcited carbonate complex of Am(V)

  15. Modeling of the peritectic reaction and macro-segregation in casting of low carbon steel

    Science.gov (United States)

    El-Bealy, M.; Fredriksson, H.

    1996-12-01

    Macro-microscopic models have been developed to describe the macrosegregation behavior associated with the peritectic reaction of low carbon steel. The macrosegregation model has been established on the basis of previously published work and experimental data. A microscopic model of a three-phase reaction L+ δ→ γ has been modeled by using Fredriksson’s approach. Four horizontal and unidirectional solidified experimental groups simulating continuous casting have been performed with a low carbon steel containing 0.13 wt pct carbon. The extent of macrosegregation of carbon was determined by wet chemical analysis of millings. It is confirmed, by comparing calculated results with experimental results, that this model successfully predicts the occurrence of macrosegregation. The results indicate that a peritectic reaction which is associated with a high cooling rate generates high thermal contraction and a high tensile strain rate at the peritectic temperature. Therefore, the macrosegregation, particularly at the ingot surface, is very sensitive to the cooling rate, where extremely high positive segregation was observed in the case of a high cooling rate. However, in the case of slow cooling rate, negative segregation was noted. The mechanism of macrosegregation with peritectic reaction is discussed in detail.

  16. Tests of carbon targets for 12C+12C reactions at astrophysical energies

    International Nuclear Information System (INIS)

    As a preliminary step towards measurements of the 12C +12 C reactions at astrophysical energies, we investigate the behaviour of targets under beam bombardment, specifically the quantitative relation between hydrogen and deuterium content of different carbon targets and target temperature. Experiments have taken place at the CIRCE accelerator in Caserta, Italy and preliminary results are presented here

  17. Oxalyl chloride as a practical carbon monoxide source for carbonylation reactions

    DEFF Research Database (Denmark)

    Hansen, Steffen V F; Ulven, Trond

    2015-01-01

    A method for generation of high-quality carbon monoxide by decomposition of oxalyl chloride in an aqueous hydroxide solution is described. The usefulness of the method is demonstrated in the synthesis of heterocycles and for hydroxy-, alkoxy-, amino-, and reductive carbonylation reactions, in sev...

  18. Carbophilic versus thiophilic attack in the reaction of metallated aromates and heteroaromates with carbon disulfide

    NARCIS (Netherlands)

    Verkruijsse, H.D.; Brandsma, L.

    1987-01-01

    Copper(I) halides catalyse the formation of carbodithioates RCSSLi in the reaction of aryl- or heteroaryl-lithium reagents with carbon disulfide. Subsequent addition of methyl iodide gives the dithioesters RCSSCH3 in high yields. Appreciable amounts of the methyl sulfides RSCH3 and tars are obtained

  19. N, S co-doped carbon dots with orange luminescence synthesized through polymerization and carbonization reaction of amino acids

    International Nuclear Information System (INIS)

    Graphical abstract: N, S co-doped CDs with orange luminescence were synthesized through one-pot polymerization and carbonization reactions under hydrothermal conditions, using two different amino acids as raw materials. - Highlights: • N, S co-doped CDs were synthesized by one-pot carbonization reactions, using two different amino acids as raw materials. • The as-obtained N, S co-doped CDs showed unique orange fluorescence under excitation at room temperature. • The products could be applied in the imaging of peritoneal macrophages of mice without any functionalization. - Abstract: For practical application, it is highly desirable to obtain carbon dots (CDs) through environmentally benign synthetic route, using green raw materials. On the other hand, at present, most of CDs reported in the literature showed blue, green and yellow emission. Therefore it is still necessary to develop new strategy to obtain CDs with longer wavelength emission in order to expand their application range. Toward this end, in this study, N, S co-doped CDs were synthesized through one-pot condensation polymerization and carbonization reactions under hydrothermal conditions, using two different amino acids as raw materials. Taking the reaction of L-serine with L-cystine as an example, the as-obtained products were characterized by various techniques such as transmission electron microscopy, elemental analysis, Fourier-transform infrared spectrum, X-ray photoelectron spectra, and so on. Interestingly, N, S co-doped CDs displayed unique orange emission at room temperature. The possible photoluminescence mechanism of N, S co-doped CDs was proposed. Furthermore, the as-synthesized N, S co-doped CDs were directly applied in the imaging of peritoneal macrophages of mice

  20. N, S co-doped carbon dots with orange luminescence synthesized through polymerization and carbonization reaction of amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Ya-Wen [Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, Zhejiang 325027 (China); Ma, De-Kun, E-mail: dkma@wzu.edu.cn [Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, Zhejiang 325027 (China); Wang, Wei; Chen, Jing-Jing; Zhou, Lin; Zheng, Yi-Zhou [Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027 (China); Yu, Kang, E-mail: yukang62@126.com [Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027 (China); Huang, Shao-Ming, E-mail: smhuang@wzu.edu.cn [Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, Zhejiang 325027 (China)

    2015-07-01

    Graphical abstract: N, S co-doped CDs with orange luminescence were synthesized through one-pot polymerization and carbonization reactions under hydrothermal conditions, using two different amino acids as raw materials. - Highlights: • N, S co-doped CDs were synthesized by one-pot carbonization reactions, using two different amino acids as raw materials. • The as-obtained N, S co-doped CDs showed unique orange fluorescence under excitation at room temperature. • The products could be applied in the imaging of peritoneal macrophages of mice without any functionalization. - Abstract: For practical application, it is highly desirable to obtain carbon dots (CDs) through environmentally benign synthetic route, using green raw materials. On the other hand, at present, most of CDs reported in the literature showed blue, green and yellow emission. Therefore it is still necessary to develop new strategy to obtain CDs with longer wavelength emission in order to expand their application range. Toward this end, in this study, N, S co-doped CDs were synthesized through one-pot condensation polymerization and carbonization reactions under hydrothermal conditions, using two different amino acids as raw materials. Taking the reaction of L-serine with L-cystine as an example, the as-obtained products were characterized by various techniques such as transmission electron microscopy, elemental analysis, Fourier-transform infrared spectrum, X-ray photoelectron spectra, and so on. Interestingly, N, S co-doped CDs displayed unique orange emission at room temperature. The possible photoluminescence mechanism of N, S co-doped CDs was proposed. Furthermore, the as-synthesized N, S co-doped CDs were directly applied in the imaging of peritoneal macrophages of mice.

  1. Basalt catalyzed carbonate precipitation reactions using carbon dioxide at low temperatures and low pressures

    Science.gov (United States)

    Petrik-Huff, C.; Finkelstein, D. B.; Mabee, S. B.

    2011-12-01

    Increased attention is being paid to basalts as host formations for the geologic sequestration of anthropogenically produced CO2. Here, we present preliminary results of batch experiments conducted on basalts from the Hartford Basin, the Deerfield and the Holyoke Basalt, to better constrain the optimum conditions to maximize carbon sequestration through the precipitation of carbonate. The purpose of this work is to explore options for CO2 sequestration in a locality where there is a lack of large geologic reservoirs appropriate for storage. In these experiments, 10 grams of 400 micron Deerfield and Holyoke basalt was reacted with deionized water for three hours both at and below supercritical conditions. These experiments showed carbonate precipitation of 15% was consistent at low pressures of CO2 (800 psi) both at high (100 Celsius) and low (20 Celsius) temperatures. These ranges of carbonate precipitation were greatest (15%) when CO2 was at low pressures. Experiments conducted at supercritical conditions precipitated a maximum of 4.7% carbonate. This information is valuable when considering alternative sequestration mechanisms that could be operated adjacent to power generation facilities or more industrial pure sources of CO2. The possibility of low pressure/temperature sequestration reactors to be operated in areas where transport to regional or national sequestration facilities may be cost prohibitive is a parallel course of action that should also be considered. Additionally, it is important to consider how a small ex-situ carbon sequestration project can help increase public acceptance of carbon capture and sequestration.

  2. Mineral carbonation: energy costs of pretreatment options and insights gained from flow loop reaction studies

    International Nuclear Information System (INIS)

    Sequestration of carbon as a stable mineral carbonate has been proposed to mitigate environmental concerns that carbon dioxide may with time escape from its sequestered matrix using alternative sequestration technologies. A method has been developed to prepare stable carbonate products by reacting CO2 with magnesium silicate minerals in aqueous bicarbonate/chloride media at high temperature and pressure. Because this approach is inherently expensive due to slow reaction rates and high capital costs, studies were conducted to improve the reaction rates through mineral pretreatment steps and to cut expenses through improved reactor technology. An overview is given for the estimated cost of the process including sensitivity to grinding and heating as pretreatment options for several mineral feedstocks. The energy costs are evaluated for each pretreatment in terms of net carbon avoided. New studies with a high-temperature, high-pressure flow-loop reactor have yielded information on overcoming kinetic barriers experienced with processing in stirred autoclave reactors. Repeated tests with the flow-loop reactor have yielded insights on wear and failure of system components, on challenges to maintain and measure flow, and for better understanding of the reaction mechanism

  3. Mineral sequestration of carbon dioxide in San Carlos olivine: An atomic level reaction study

    Science.gov (United States)

    Nunez, Ryan

    Since the late 19th century, atmospheric carbon dioxide (CO2) levels have been steadily on the rise. Approximately one third of all human emissions come from fossil fuel power plants. As countries become more dependent on electrical energy and bring on line new power plants, these atmospheric CO2 levels will continue to rise, generating strong environmental concern. Potential avenues to address this problem convert the CO2 from the gaseous phase to a liquid, supercritical fluid, or solid state and store it. Oceans, subsurface reservoirs such as depleted oil fields, and terrestrial carbon pools have all been suggested. The essential problem with all of these possible solutions is the issue of permanency. Mineral sequestration of CO2 is a candidate technology for reducing the amount of anthropogenic CO2 that is being released into the atmosphere. Olivine (e.g. forsterite, Mg2SiO4) is a widely available mineral that reacts with CO2 to form magnesite (MgCO3) and silica (SiO2). Magnesite is capable of immobilizing CO2 over geological time periods. Thus the issue of permanency has been addressed. The most promising mineral sequestration process developed to date is aqueous solution mineral carbonation. The solid/aqueous solution reaction interface provides insight to the mechanisms that govern the carbonation reactivity of olivine. Study of these mechanisms at the atomic level is critically important to facilitate engineering new processes that will enhance the reactivity of olivine with CO2 bearing media and to lower process costs. The study of the olivine carbonation reaction herein can be divided into three separate areas of research. The first area is a comprehensive study of olivine under conditions of electron irradiation. Analyzing radiation damage is critical to the verification and reliability of data collected from the samples using electron beam techniques. The next area of research is the analysis of the reaction layer composition and structure using High

  4. Characteristics study of a system for carbon 14 dating

    International Nuclear Information System (INIS)

    The developing of a radiocarbon dating laboratory, specially built to deal with carbonate samples from underground water, at the Institute de Energia Atomica, required the optimization of a benzene synthetizer, and also of the operative conditions of the liquid scintillator counter, used in sample measurements. An average yield of about 70% was obtained in our benzenic synthesis. If more refined conditions were used, better results could have been obtained, but the reported yield is good enough for our necessities. A comparison of the ages of several shell samples was done between the Geochronology Laboratory, belonging to the Instituto de Geociencias, at Sao Paulo University and our dating laboratory. The agreement between the results was fairly good, according to the precision required

  5. Carbon nanohybrids used as catalysts and emulsifiers for reactions in biphasic aqueous/organic systems

    Institute of Scientific and Technical Information of China (English)

    Daniel E. Resasco

    2014-01-01

    This mini-review summarizes some novel aspects of reactions conducted in aqueous/organic emul-sions stabilized by carbon nanohybrids functionalized with catalytic species. Carbon nanohybrids represent a family of solid catalysts that not only can stabilize water-oil emulsions in the same fash-ion as Pickering emulsions, but also catalyze reactions at the liquid/liquid interface. Several exam-ples are discussed in this mini-review. They include (a) aldol condensation-hydrodeoxygenation tandem reactions catalyzed by basic (MgO) and metal (Pd) catalysts, respectively; (b) Fischer-Tropsch synthesis catalyzed by carbon-nanotube-supported Ru;and (c) emulsion polymerization of styrene for the production of conductive polymer composites. Conducting these reactions in emul-sion generates important advantages, such as increased liquid/liquid interfacial area that conse-quently means faster mass transfer rates of molecules between the two phases, effective separation of products from the reaction mixture by differences in the water-oil solubility, and significant changes in product selectivity that can be adjusted by modifying the emulsion characteristics.

  6. Empirical relation and establishment of shell effects in (, 2) reaction cross-sections at 14 MeV

    Indian Academy of Sciences (India)

    Sneh Lata Goyal; Pratibha Gur

    2009-02-01

    The experimental data for (, 2) reaction cross-sections around 14 MeV neutron energy have been collected from the literature and analysed for the isotopes having 1 ≤ ≤ 82. The empirical relations for the reaction cross-sections have been obtained, which show fairly good fits with the experimental values. The shell effects have been established at magic nucleon numbers for (, 2) reaction cross-sections around 14 MeV neutron energy. The odd–even effects have also been observed as the cross-sections for odd-mass nuclei are higher than their neighbouring even–even nuclei.

  7. Reactions of the Carbon Anode in Alternative Battery and Fuel Cell Configurations

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J F; Krueger, R

    2003-10-01

    A model is formulated by combining carbonate dissociation with pre-existing anode mechanisms involving heterogeneous reaction kinetics. The proposed model accounts for both the observed preponderance of CO{sub 2} evolution and dependence of rate on carbon anode microstructure. Implications of the model for the design of carbon batteries and fuel cells are discussed, and the laboratory cells used in earlier research are described. High coulombic efficiencies for the net reaction C + O{sub 2} = CO{sub 2} require severely limiting the thickness of paste anodes in powder-fed fuel cells while the unreacting surfaces of solid prismatic anodes must be isolated from the CO{sub 2} product atmosphere to prevent Boudouard corrosion, according to C + CO{sub 2} = 2CO.

  8. Carbon fiber/reaction-bonded carbide matrix for composite materials - Manufacture and characterization

    International Nuclear Information System (INIS)

    The processing of self-healing ceramic matrix composites by a short time and low cost process was studied. This process is based on the deposition of fiber dual inter-phases by chemical vapor infiltration and on the densification of the matrix by reactive melt infiltration of silicon. To prevent fibers (ex-PAN carbon fibers) from oxidation in service, a self-healing matrix made of reaction bonded silicon carbide and reaction bonded boron carbide was used. Boron carbide is introduced inside the fiber preform from ceramic suspension whereas silicon carbide is formed by the reaction of liquid silicon with a porous carbon xerogel in the preform. The ceramic matrix composites obtained are near net shape, have a bending stress at failure at room temperature around 300 MPa and have shown their ability to self-healing in oxidizing conditions. (authors)

  9. Source and age of carbon in peatland surface waters: new insights from 14C analysis

    Science.gov (United States)

    Billett, Michael; Garnett, Mark; Dinsmore, Kerry; Leith, Fraser

    2013-04-01

    Peatlands are a significant source of carbon to the aquatic environment which is increasingly being recognised as an important flux pathway (both lateral and vertical) in total landscape carbon budgets. Determining the source and age of the carbon (in its various forms) is a key step to understanding the stability of peatland systems as well as the connectivity between the soil carbon pool and the freshwater environment. Novel analytical and sampling methods using molecular sieves have been developed for (1) within-stream, in situ sampling of CO2 in the field and (2) for the removal/separation of CO2 in the laboratory prior to 14C analysis of CH4. Here we present dual isotope (δ13C and 14C) data from freshwater systems in UK and Finnish peatlands to show that significant differences exist in the source and age of CO2, DOC (dissolved organic carbon) and POC (particulate organic carbon). Individual peatlands clearly differ in terms of their isotopic freshwater signature, suggesting that carbon cycling may be "tighter" in some systems compared to others. We have also measured the isotopic signature of different C species in peatland pipes, which appear to be able to tap carbon from different peat depths. This suggests that carbon cycling and transport within "piped-peatlands" may be more complex than previously thought. Some of our most recent work has focussed on the development of a method to measure the 14C component of CH4 in freshwaters. Initial results suggest that CH4 in peatland streams is significantly older than CO2 and derived from a much deeper source. We have also shown that the age (but not the source) of dissolved CO2 changes over the hydrological year in response to seasonal changes in discharge and temperature. Radiocarbon measurements in the peat-riparian-stream system suggest that a significant degree of connectivity exists in terms of C transport and cycling, although the degree of connectivity differs for individual C species. In summary, 14C

  10. The 14N(p, γ)15O reaction studied at low and high beam energy

    International Nuclear Information System (INIS)

    The Bethe-Weizsaecker cycle consists of a set of nuclear reactions that convert hydrogen into helium and release energy in the stars. It determines the luminosity of low-metal stars at their turn-off from the main-sequence in the Hertzsprung-Russel diagram, so its rate enters the calculation of the globular clusters' age, an independent lower limit on the age of the universe. The cycle contributes less than 1% to our Sun's luminosity, but it produces neutrinos that can in principle be measured on Earth in underground experiments and bring direct information of the physical conditions in the solar core, provided that the nuclear reaction rate is known with sufficient precision. The 14N(p,γ)15O reaction is the slowest reaction of the Bethe-Weizsaecker cycle and establishes its rate. Its cross section is the sum of the contributions by capture to different excited levels and to the ground state in 15O. Recent experiments studied the region of the resonance at Ep = 278 keV. Only one modern data set from an experiment performed in 1987 is available for the high-energy domain. Both energy ranges are needed to constrain the fit of the excitation function in the R-matrix framework and to obtain a reliable extrapolated S-factor at the very low astrophysical energies. The present research work studied the 14N(p,γ)15O reaction in the LUNA (Laboratory for Underground Nuclear Astrophysics) underground facility at three proton energies 0.36, 0.38, 0.40MeV, and in Dresden in the energy range Ep = 0.6 - 2MeV. In both cases, an intense proton beam was sent on solid titanium nitride sputtered targets, and the prompt photons emitted from the reaction were detected with germanium detectors. At LUNA, a composite germanium detector was used. This enabled a measurement with dramatically reduced summing corrections with respect to previous studies. The cross sections for capture to the ground state and to the excited states at 5181, 6172, and 6792 keV in 15O have been determined. An R

  11. Study on the distribution of organic carbon in soil fractions and its reaction potential of binding the pesticides

    Science.gov (United States)

    Chowdhury, Ashim

    2010-05-01

    soil and groundwater conservation. The radio-tracer technology emerged as the latest technology in agriculture, which helps in studying the translocation of pesticide along with the organic matter and furthermore, the distribution of the pesticide in the soil phases. For the elucidation of these relationships and distribution of organic carbon in soil fractions and its reaction potential of binding the pesticides, the present laboratory study was undertaken using 14C-enriched and non labeled maize straw as a source of fresh SOM in different soil fractions vis-à-vis its effect on distribution of 14C-labeled benazolin and non labeled benazolin (a selective, post emergence herbicide) as a xenobiotics throughout the soil system. To determine the turnover of SOM fractionation of top layer of the both the benazolin treated soil column was done followed by determination of 14C content in four different soil phases obtained from fraction, characterization of different phase and identification of the metabolites with TLC, HPLC and GC-MS. The result clearly indicated that where soil columns received non- labeled maize straw and 14C-benazolin as well as 14C-labeled maize straw and nonlabeled benazolin; the unit weight distribution study of radioactivity in benazolin followed the decreasing trend in different phases in following order of electrolyte>colloidal> micro aggregate > sediment phases respectively. The percentage distribution of maize straw (fresh organic matter) was also found highest in electrolyte phase followed the same order as in the case of benazolin. It was observed in phase-wise distribution study that radioactivity either of 14C-maize straw or 14C-benazolin was mostly concentrated in the sediment phase followed by micro aggregate, colloidal and electrolyte phase. From this it was clear that the soil columns, which received maize straw, have bound the pesticide benazolin and hindered the translocation to the lower layers leading to higher percentage of recovered

  12. Carbon-14 as a Tracer of Land-to-Ocean Organic Carbon Transfers in Eight Northeastern US Rivers

    Science.gov (United States)

    Hossler, K.; Bauer, J. E.

    2011-12-01

    Rivers link the terrestrial and ocean carbon cycles, transporting and transforming an aggregate of upstream C exports. We used natural abundance 14C and 13C to identify controls on particulate and dissolved organic carbon (POC and DOC, respectively) for rivers draining eight different watershed subregions in the northeastern US. The rivers presented a range of lithology, land-use and other anthropogenic impacts (e.g., presence of nuclear and fossil-fuel power plants and waste-water treatment plants). POC and DOC δ13C signatures (per sample) ranged from -34 % to -22 % and -28 % to -15 %, respectively; while discharge-weighted means ranged from -29 % to -26 % (POC) and -28 % to -25 % (DOC), reflecting the predominance of C3 vegetation in the region. In contrast, Δ14C signatures were much more variable, ranging from -224 % to +1,230 % for POC and -233 % to +1,960 % for DOC (per sample), and with discharge-weighted means ranging from -160 % to +340 % (POC) and -60 % to +480 % (DOC). Samples depleted in 14C (i.e., Δ14C systems was of organic materials highly enriched in 14C (Δ14C = +163 % to +1,960 %), most likely because of 14C inputs from upstream nuclear power plants. Nuclear reactors were also present in two of the other watersheds, but did not elevate the 14C signatures. For all four watersheds with nuclear reactors, however, radiocarbon inputs likely resulted in underestimation of aged C contributions. Studies utilizing 14C as a tracer for natural and anthropogenic controls on C and organic matter inputs and fluxes, should take into consideration the various and sometimes opposing influences on the integrated signatures.

  13. 14C in fractions of dissolved organic carbon in ground water

    International Nuclear Information System (INIS)

    Here we report carbon isotope ratios of fractions of natural organic compounds in ground waters isolated from the Stripa mine (Sweden) and the Milk River aquifer (Alberta, Canada). High-molecular-weight and low-molecular-weight fractions of the organic carbon were characterized and these, along with dissolved inorganic carbon, were analysed for δ13C and 14C. The 14C results suggest that the dissolved organic carbon originates from a combination of soil organic matter and kerogen in the aquifer matrix. The high-molecular-weight fractions show a predominant soil origin, whereas the low-molecular-weight fractions are often strongly influenced by kerogen. (author). 23 refs., 1 fig., 1 tab

  14. Rapid localization of carbon 14-labeled molecules in biological samples by ion mass microscopy

    International Nuclear Information System (INIS)

    We report here on the ability of secondary ion mass spectrometry (SIMS) to provide rapid imaging of the intracellular distribution of 14C-labeled molecules. The validity of this method, using mass discrimination of carbon 14 atoms, was assessed by imaging the distribution of two molecules of well-known metabolism, [14C]-thymidine and [14C]-uridine, incorporated by human fibroblasts in culture. As expected, 14C ion images showed the presence of [14C]-thymidine in the nucleus of dividing cells, whereas [14C]-uridine was present in the cytoplasm as well as the nucleus of all cells, with a large concentration in the nucleoli. The time required to obtain the distribution images with the SMI 300 microscope was less than 6 min, whereas microautoradiography, the classical method for mapping the tissue distribution of 14C-labeled molecules, usually requires exposure times of several months. Secondary ion mass spectrometry using in situ mass discrimination is proposed here as a very sensitive method which permits rapid imaging of the subcellular distribution of molecules labeled with carbon 14

  15. Carbon-14 transfer into rice plants from a continuous atmospheric source: observations and model predictions

    International Nuclear Information System (INIS)

    Carbon-14 (14C) is one of the most important radionuclides from the perspective of dose estimation due to the nuclear fuel cycle. Ten years of monitoring data on 14C in airborne emissions, in atmospheric CO2 and in rice grain collected around the Tokai reprocessing plant (TRP) showed an insignificant radiological effect of the TRP-derived 14C on the public, but suggested a minor contribution of the TRP-derived 14C to atmospheric 14C concentrations, and an influence on 14C concentrations in rice grain at harvest. This paper also summarizes a modelling exercise (the so-called rice scenario of the IAEA's EMRAS program) in which 14C concentrations in air and rice predicted with various models using information on 14C discharge rates, meteorological conditions and so on were compared with observed concentrations. The modelling results showed that simple Gaussian plume models with different assumptions predict monthly averaged 14C concentrations in air well, even for near-field receptors, and also that specific activity and dynamic models were equally good for the prediction of inter-annual changes in 14C concentrations in rice grain. The scenario, however, offered little opportunity for comparing the predictive capabilities of these two types of models because the scenario involved a near-chronic release to the atmosphere. A scenario based on an episodic release and short-term, time-dependent observations is needed to establish the overall confidence in the predictions of environmental 14C models

  16. Study of a method of detection for natural carbon-14 using a liquid scintillator, recent variations in the natural radio-activity due to artificial carbon-14 (1963); Etude d'une methode de detection du carrons 14 naturel, utilisant un scintillateur liquide - variations recentes de l'activite naturelle dues au carbone 14 artificiel (1963)

    Energy Technology Data Exchange (ETDEWEB)

    Leger, C. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-06-15

    Among the various natural isotopes of carbon, a radioactive isotope, carbon-14, is formed by the action of secondary neutrons from cosmic rays on nitrogen in the air. Until 1950, the concentration of this isotope in ordinary carbon underwent weak fluctuations of about 2-3 per cent. The exact measurement of this concentration 6 X 10{sup 12} Ci/gm of carbon, and of its fluctuations, are difficult and in the first part of this report a highly sensitive method is given using a liquid scintillator. Since 1950 this natural activity has shown large fluctuations because of the carbon-14 formed during nuclear explosions, and in the second part, the evolution in France of this specific activity of carbon in the atmosphere and biosphere is examined. In the last part is studied the local increase in carbon activity in the atmosphere around the Saclay site, an increase caused by the carbon-14 given off as C{sup 14}O{sub 2}, by the reactors cooled partially with exterior air. (author) [French] Parmi les differents isotopes naturels du carbone, un isotope radioactif, le carbone 14, est forme par l'action de neutrons secondaires due aux rayons cosmiques sir l'azote de l'air. Jusqu'en 1950, la concentration de cet isotope dans le carbone ordinaire est soumise a des fluctuations de faible amplitude, de l'ordre de 2 a 3 pour cent. Les mesures precises de cette concentration, 6. 10{sup -12} Ci/g de carbone, et de ses fluctuations sont delicates, et dans la premiere partie de ce rapport, on decrit une methode de detection a grande sensibilite utilisant un scintillateur liquide. Depuis 1950, cette activite naturelle subit des fluctuations importantes dues au carbone 14 forme lors des explosions nucleaires, et dans la seconde partie, on examine l'evolution en France de l'activite specifique du carbone de l'atmosphere et ce la biosphere. Dans la derniere partie, on etudie l'accroissement local de l'activite du carbone de l'air aux

  17. High-temperature and pressure aluminum reactions in carbon dioxide rich post-detonation environments

    International Nuclear Information System (INIS)

    Powdered aluminum is a common additive to energetic materials, but little is understood regarding its reaction rate at very high temperatures and pressures in specific oxidizing gases such as carbon dioxide. Aluminum reaction kinetics in carbon dioxide have been studied in various reaction conditions, but difficulties arise in the more specific study of Al oxidation at the high pressures and temperatures in detonation reactions. To study these reactions, small particle size Al or the inert surrogate, LiF, was added to the energetic material benzotrifuroxan (BTF). BTF is a hydrogen-free material that selectively forms CO2 as the major oxidizing species for post-detonation Al oxidation. High-fidelity PDV measurements were utilized for early wall velocity expansion measurements in 12.7 mm copper cylinders. The JWL equation of state was solved to determine temperature, pressure and energies at specific time periods. A genetic algorithm was used in conjunction with a numerical simulation hydrocode, ALE3D, which enables the elucidation of aluminum reaction extent. By comparison of the Al oxidation with LiF, data indicate that Al oxidation occurs on an extremely fast time scale, beginning and completing between 1 and 25 microseconds. Unconfined, 6.4 mm diameter rate-sticks were also utilized to determine the effect of Al compared to LiF on detonation velocity.

  18. High-temperature and pressure aluminum reactions in carbon dioxide rich post-detonation environments

    Science.gov (United States)

    Tappan, B. C.; Hill, L. G.; Manner, V. W.; Pemberton, S. J.; Lieber, M. A.; Johnson, C. E.; Sanders, V. E.

    2014-05-01

    Powdered aluminum is a common additive to energetic materials, but little is understood regarding its reaction rate at very high temperatures and pressures in specific oxidizing gases such as carbon dioxide. Aluminum reaction kinetics in carbon dioxide have been studied in various reaction conditions, but difficulties arise in the more specific study of Al oxidation at the high pressures and temperatures in detonation reactions. To study these reactions, small particle size Al or the inert surrogate, LiF, was added to the energetic material benzotrifuroxan (BTF). BTF is a hydrogen-free material that selectively forms CO2 as the major oxidizing species for post-detonation Al oxidation. High-fidelity PDV measurements were utilized for early wall velocity expansion measurements in 12.7 mm copper cylinders. The JWL equation of state was solved to determine temperature, pressure and energies at specific time periods. A genetic algorithm was used in conjunction with a numerical simulation hydrocode, ALE3D, which enables the elucidation of aluminum reaction extent. By comparison of the Al oxidation with LiF, data indicate that Al oxidation occurs on an extremely fast time scale, beginning and completing between 1 and 25 microseconds. Unconfined, 6.4 mm diameter rate-sticks were also utilized to determine the effect of Al compared to LiF on detonation velocity.

  19. Modeling of Sheath Ion-Molecule Reactions in Plasma Enhanced Chemical Vapor Deposition of Carbon Nanotubes

    Science.gov (United States)

    Hash, David B.; Govindan, T. R.; Meyyappan, M.

    2004-01-01

    In many plasma simulations, ion-molecule reactions are modeled using ion energy independent reaction rate coefficients that are taken from low temperature selected-ion flow tube experiments. Only exothermic or nearly thermoneutral reactions are considered. This is appropriate for plasma applications such as high-density plasma sources in which sheaths are collisionless and ion temperatures 111 the bulk p!asma do not deviate significantly from the gas temperature. However, for applications at high pressure and large sheath voltages, this assumption does not hold as the sheaths are collisional and ions gain significant energy in the sheaths from Joule heating. Ion temperatures and thus reaction rates vary significantly across the discharge, and endothermic reactions become important in the sheaths. One such application is plasma enhanced chemical vapor deposition of carbon nanotubes in which dc discharges are struck at pressures between 1-20 Torr with applied voltages in the range of 500-700 V. The present work investigates The importance of the inclusion of ion energy dependent ion-molecule reaction rates and the role of collision induced dissociation in generating radicals from the feedstock used in carbon nanotube growth.

  20. Vertical transport of carbon-14 into deep-sea food webs

    Science.gov (United States)

    Pearcy, W. G.; Stuiver, Minze

    1983-04-01

    During the years 1973 to 1976 the carbon-14 content was higher in epipelagic and vertically migrating, upper mesopelagic animals (caught between 0 and 500 m) than in lower mesopelagic, bathypelagic, and abyssobenthic animals (500 to 5180 m) in the northeastern Pacific Ocean. Only one species of deep-sea fish had a Δ14C value as high as surface-caught fish. The 14C content of most animals was higher pre-bomb levels, but the relatively low 14C content of most deep-sea animals indicates that the majority of their carbon was not derived directly from a near-surface food chain labeled with bomb carbon. A mean residence time of about 35 y was estimated for the organic carbon pool for abyssobenthic animals based on the relative increase of radiocarbon in surface-dwelling animals since 1967. The results suggest that rapidly sinking particles from surface waters, such as fecal pellets, are not the major source of organic carbon for deep-sea fishes and large benthic invertebrates.

  1. Sampling and monitoring of carbon-14 in gaseous effluents from nuclear facilities

    International Nuclear Information System (INIS)

    This study reviews the possibilities from sampling and monitoring C-14 in gaseous effluents from nuclear facilities. After oxidation of various forms of carbon-14 in the off-gas into CO2 three main processes for trapping are used either separately or in combination. These are sorption, freezing and chemical processes. Absorption in alkaline solutions or solids or molecular sieve adsorption are the most frequently used methods. The main counting methods used are gas proportional counting and liquid scintillation counting

  2. Carbon-14 production compared to oxygen isotope records from Camp Century, Greenland and Devon Island, Canada

    International Nuclear Information System (INIS)

    Carbon-14 production rate variations that are not explainable by geomagnetic changes are thought to be in antiphase with solar activity and as such should be in antiphase with paleotemperature records or proxy temperature histories such as those obtainable from oxygen isotope analyses of ice cores. Oxygen isotope records from Camp Century, Greeland and Devon Island Ice Cap are in phase with each other over thousands of years and in antiphase to the 14C production rate residuals. (Auth.)

  3. Shrinkage Cracking: A mechanism for self-sustaining carbon mineralization reactions in olivine rocks

    Science.gov (United States)

    Zhu, W.; Fusseis, F.; Lisabeth, H. P.; Xing, T.; Xiao, X.; De Andrade, V. J. D.; Karato, S. I.

    2015-12-01

    The hydration and carbonation of olivine results in an up to ~44% increase in solid molar volume, which may choke off of fluid supply and passivate reactive surfaces, thus preventing further carbonation reactions. The carbonation of olivine has ben studied extensively in the laboratory. To date, observations from these experimental studies indicate that carbonation reaction rates generally decrease with time and the extent of carbonation is limited in olivine rocks. Field studies, however, show that 100% hydration and carbonation occur naturally in ultramafic rocks. The disagreement between the laboratory results under controlled conditions and the field observations underlines the lack of understanding of the mechanisms responsible for the self-sustaining carbonation interaction in nature. We developed a state-of-the-art pressurized hydrothermal cell that is transparent to X-rays to characterize the real-time evolution of pore geometry during fluid-rock interaction using in-situ synchrotron-based X-ray microtomography. Through a time series of high-resolution 3-dimensional images, we document the microstructural evolution of a porous olivine aggregate reacting with a sodium bicarbonate solution at elevated pressure and temperature conditions. We observed porosity increases, near constant rate of crystal growth, and pervasive reaction-induced fractures. Based on the nanometer scale tomography data, we propose that shrinkage cracking is the mechanism responsible for producing new reactive surface and keep the carbonation reaction self-sustaining in our experiment. Shrinkage cracks are commonly observed in drying mud ponds, cooling lava flows and ice wedge fields. Stretching of a contracting surface bonded to a substrate of nearly constant dimensions leads to a stress buildup in the surface layer. When the stress exceeds the tensile strength, polygonal cracks develop in the surface layer. In our experiments, the stretching mismatch between the surface and interior of

  4. Effect of Fiber Surface Structure on Interfacial Reaction between Carbon Fiber and Aluminium

    Science.gov (United States)

    Chang, Kuang-Chih; Matsugi, Kazuhiro; Sasaki, Gen; Yanagisawa, Osamu

    Surface structure of carbon fiber and interfacial reaction between fiber and aluminium in carbon fiber reinforced aluminium composites were investigated by high-resolution transmission electron microscopy. Low and high graphitized carbon fiber reinforced pure aluminium composites were prepared by ultrasonic liquid infiltration. Vapor grown carbon nano fiber (VGCF) reinforced pure aluminium composites were prepared by hot-pressing. Heteroatoms, which existed abundantly in the surface of low graphitized carbon fiber, caused carbon lamellar structure in the fiber surface pronounced curvature. VGCF surface structure appeared regular and linear graphitic lamellae. Low graphitized fiber reinforced pure aluminium composites revealed serious interfacial reaction produced crystalline aluminium carbides (Al4C3), compared to composites reinforced by high graphitized fiber. On the other hand, Al4C3 crystalline reactants were not found at the interface of VGCF reinforced pure aluminium composites, but formation of interlayer was observed. In order to promote Al4C3 growth, carbon fiber reinforced composites were heat-treated at 573K and 873K for 1.8ks. Al4C3 interfacial phases in low and high graphitized fiber reinforced aluminium composites grew with the rise in the temperature. The heat-treatment resulted in the formation of non-crystalline Al4C3 interlayer by energy dispersive X-ray spectroscopy analysis of electron microscopy. At high temperature, Al4C3 was not grew and increased merely at the interface between carbon fiber and pure aluminium matrix, and moreover, the formation of new Al4C3 crystal occurred in this interlayer.

  5. Concurrent Formation of Carbon-Carbon Bonds and Functionalized Graphene by Oxidative Carbon-Hydrogen Coupling Reaction.

    Science.gov (United States)

    Morioku, Kumika; Morimoto, Naoki; Takeuchi, Yasuo; Nishina, Yuta

    2016-01-01

    Oxidative C-H coupling reactions were conducted using graphene oxide (GO) as an oxidant. GO showed high selectivity compared with commonly used oxidants such as (diacetoxyiodo) benzene and 2,3-dichloro-5,6-dicyano-p-benzoquinone. A mechanistic study revealed that radical species contributed to the reaction. After the oxidative coupling reaction, GO was reduced to form a material that shows electron conductivity and high specific capacitance. Therefore, this system could concurrently achieve two important reactions: C-C bond formation via C-H transformation and production of functionalized graphene. PMID:27181191

  6. Changes in a coke structure due to reaction with carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Pusz, S.; Majewska, J.; Pilawa, B. [Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, PL-41819 Zabrze (Poland); Krzesinska, M. [Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, PL-41819 Zabrze (Poland); Silesian Technical University, Department of Electron Technology, Institute of Physics, Krzywoustego 2, PL-44100 Gliwice (Poland); Smedowski, L. [Silesian Technical University, Department of Electron Technology, Institute of Physics, Krzywoustego 2, PL-44100 Gliwice (Poland); Kwiecinska, B. [AGH-University of Science and Technology, Aleja Mickiewicza 30, PL-30059 Krakow (Poland)

    2010-04-01

    Technological properties of a coke directly depend on a coke structure, i.e., on carbon matrix (a solid phase in a porous medium) and on pore system. Coke structure is deeply transformed during blast furnace operation and one of the most important factors responsible for that is the CO{sub 2} gasification. The objective of this work was to investigate changes of the physical structure of a coke upon the reaction with carbon dioxide to evaluate the effects of structural transformations on technological properties of a coke. Selected physical parameters of cokes produced in a laboratory scale were carried out prior to and after the reaction with CO{sub 2}. The following physical methods were used for the study: helium gas densitometry, physical adsorption of N{sub 2}, optical microscopy, transmission electron microscopy (TEM), ultrasonic measurements and electron paramagnetic resonance spectroscopy (EPR). The results showed that the reaction with CO{sub 2} distinctly affects the physical structure of coke. Coke solid matrix becomes better ordered, with greater structural units, while development of pore structure consists in the enlargement and coalescence of pores and the increase of specific surface area. Great increase of coke porosity after the reaction with CO{sub 2} seems to be more affecting the final strength and reactivity of coke than the transformation of carbon matrix. (author)

  7. Solid-state reaction between tungsten and hydrogen-containing carbon film at elevated temperature

    International Nuclear Information System (INIS)

    The solid-state reaction between hydrogen-containing carbon and tungsten was studied by means of infrared, Raman, X-ray photoelectron (XPS) and thermal desorption (TDS) spectroscopies. Infrared and Raman spectroscopies revealed that as-prepared hydrogen-containing films were composed of carbon atoms with sp2 and sp3 hybridized orbitals, where hydrogen was bound to carbon as -CH3 and >CH2. Vacuum heating of the carbon films deposited on tungsten caused thermal desorption peaks of hydrogen at about 723 and 1173 K in TDS. The former was accompanied by other desorption of CO, CO2 and hydrocarbons, whereas the latter was evolved with only a minor amount of CO. It was observed by XPS that the W4f peak began to appear at about 773 K, with an increasing surface composition corresponding to tungsten carbide at 1273 K. These observations indicate that a solid-state reaction between the carbon film and tungsten took place extensively above 973 K to yield an intermetallic compound of W2C at 1273 K

  8. Fabrication and characterization of reaction bonded silicon carbide/carbon nanotube composites

    International Nuclear Information System (INIS)

    Carbon nanotubes have generated considerable excitement in the scientific and engineering communities because of their exceptional mechanical and physical properties observed at the nanoscale. Carbon nanotubes possess exceptionally high stiffness and strength combined with high electrical and thermal conductivities. These novel material properties have stimulated considerable research in the development of nanotube-reinforced composites (Thostenson et al 2001 Compos. Sci. Technol. 61 1899, Thostenson et al 2005 Compos. Sci. Technol. 65 491). In this research, novel reaction bonded silicon carbide nanocomposites were fabricated using melt infiltration of silicon. A series of multi-walled carbon nanotube-reinforced ceramic matrix composites (NT-CMCs) were fabricated and the structure and properties were characterized. Here we show that carbon nanotubes are present in the as-fabricated NT-CMCs after reaction bonding at temperatures above 1400 deg. C. Characterization results reveal that a very small volume content of carbon nanotubes, as low as 0.3 volume %, results in a 75% reduction in electrical resistivity of the ceramic composites. A 96% decrease in electrical resistivity was observed for the ceramics with the highest nanotube volume fraction of 2.1%

  9. Preparation and evaluation of the homogeneity of milk as a candidate reference material for carbon-14

    International Nuclear Information System (INIS)

    A pilot project was initiated to study the feasibility of preparing milk as a candidate reference material for 14C near environmental levels. Two materials, MK-B at natural level of 14C and MK-C4 at an elevated level, have been prepared from pasteurized 2% dairy milk. MK-C4 was spiked with an appropriate amount of 14C-methylated casein tracer to achieve the elevated level. Several samples from MK-B and MK-C4 have been analyzed to test the homogeneity of these materials for the distribution of 14C. The samples were combusted in oxygen under 20 atmospheres pressure using a Parr bomb. The 14C concentrations were determined by liquid scintillation counting using Carbo-Sorb/Permafluor E+ cocktail. The results indicate that these materials are homogeneous with respect to 14C concentration even in sub-sample sizes of 0.25 g of the freeze-dried material. The precision of our 14C measurements, as expressed by the % relative standard deviation, is within 5%. The accuracy has been tested by analyzing replicate samples of the IAEA 14C quality assurance materials, C-3 (cellulose) and C-6 (ANU sucrose) and found to be within 3%. The lower limits of detection are 0.08, 0.05 and 0.02 Bq.g-1 of carbon for 20 ml of liquid scintillation mixture (Carbo-Sorb/Permafluor E+ = ∼0.67) loaded with up to 0.4g of carbon from the sample and counted for 3 cycles of 60, 180 and 1000 min each, respectively. Our measurements of 14C specific activities of MK-B and MK-C4 are 0.26 ± 0.01 and 15.3 ± 0.4 Bq.g-1 of carbon, respectively. (author)

  10. Role of Carbon-Addition and Hydrogen-Migration Reactions in Soot Surface Growth.

    Science.gov (United States)

    Zhang, Hong-Bo; Hou, Dingyu; Law, Chung K; You, Xiaoqing

    2016-02-11

    Using density functional theory and master equation modeling, we have studied the kinetics of small unsaturated aliphatic molecules reacting with polycyclic aromatic hydrocarbon (PAH) molecules having a diradical character. We have found that these reactions follow the mechanism of carbon addition and hydrogen migration (CAHM) on both spin-triplet and open-shell singlet potential energy surfaces at a rate that is about ten times those of the hydrogen-abstraction-carbon-addition (HACA) reactions at 1500 K in the fuel-rich postflame region. The results also show that the most active reaction sites are in the center of the zigzag edges of the PAHs. Furthermore, the reaction products are more likely to form straight rather than branched aliphatic side chains in the case of reacting with diacetylene. The computed rate constants are also found to be independent of pressure at conditions of interest in soot formation, and the activation barriers of the CAHM reactions are linearly correlated with the diradical characters. PMID:26799641

  11. Algal C-14 and total carbon metabolisms 2. Experimental observations with the diatom Skeletonema costatum

    DEFF Research Database (Denmark)

    Williams, P.J.L.; Robinson, C.; Søndergaard, M.; Jespersen, A.M.; Bentley, T.L.; Lefevre, D.; Richardson, Katherine; Riemann, B.

    1996-01-01

    Three sets of comparisons of net and gross inorganic carbon assimilation and C-14 uptake were made with an axenic culture of Skeletonema costatum. The comparisons showed that in the physiological window studied (10-20% of the intrinsic generation time and gross photosynthesis/respiration ratios of......2. The conclusion drawn was that over the time scale studied, the C-14 technique was measuring net photosynthesis, consistent with essentially 100% recycling of respiratory CO2. The study has shown that we now possess the basis to make a rigorous analysis of net, gross CO2 fixation and net C-14...

  12. Synthesis of propylene carbonate from urea and propylene glycol over zinc oxide: A homogeneous reaction

    OpenAIRE

    Dengfeng Wang; Xuelan Zhang; Tingting Cheng; Jing Wu; Qijun Xue

    2014-01-01

    In this work, several metal oxides and zinc salts were used to catalyze propylene carbonate (PC) synthesis from urea and propylene glycol (PG). According to the results of catalytic test and characterization, the catalytic pattern of ZnO was different from that of other metal oxides such as CaO, MgO and La2O3, but similar to that of zinc salts. In fact, the leaching of Zn species took place during reaction for ZnO. And ZnO was found to be the precursor of homogenous catalyst for reaction of u...

  13. tert-Butanesulfinamides as Nitrogen Nucleophiles in Carbon-Nitrogen Bond Forming Reactions.

    Science.gov (United States)

    Ramirez Hernandez, Johana; Chemla, Fabrice; Ferreira, Franck; Jackowski, Olivier; Oble, Julie; Perez-Luna, Alejandro; Poli, Giovanni

    2016-01-01

    The use of tert-butanesulfinamides as nitrogen nucleophiles in carbon-nitrogen bond forming reactions is reviewed. This field has grown in the shadow of the general interest in N-tert-butanesulfinyl imines for asymmetric synthesis and occupies now an important place in its own right in the chemistry of the chiral amine reagent tert-butanesulfinamide. This article provides an overview of the area and emphasizes recent contributions wherein the tert-butanesulfinamides act as chiral auxiliaries or perform as nitrogen donors in metal-catalyzed amination reactions. PMID:26931222

  14. 14.7% efficient mesoscopic perovskite solar cells using single walled carbon nanotubes/carbon composite counter electrodes

    Science.gov (United States)

    Li, Hao; Cao, Kun; Cui, Jin; Liu, Shuangshuang; Qiao, Xianfeng; Shen, Yan; Wang, Mingkui

    2016-03-01

    A single walled carbon nanotube (SWCNT) possesses excellent hole conductivity. This work communicates an investigation of perovskite solar cells using a mesoscopic TiO2/Al2O3 structure as a framework in combination with a certain amount of SWCNT-doped graphite/carbon black counter electrode material. The CH3NH3PbI3-based device achieves a power conversion efficiency of 14.7% under AM 1.5G illumination. Detailed investigations show an increased charge collection in this device compared to that without the SWCNT additive.A single walled carbon nanotube (SWCNT) possesses excellent hole conductivity. This work communicates an investigation of perovskite solar cells using a mesoscopic TiO2/Al2O3 structure as a framework in combination with a certain amount of SWCNT-doped graphite/carbon black counter electrode material. The CH3NH3PbI3-based device achieves a power conversion efficiency of 14.7% under AM 1.5G illumination. Detailed investigations show an increased charge collection in this device compared to that without the SWCNT additive. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07347b

  15. Recharge in northern clime calcareous sandy soils: soil water chemical and carbon-14 evolution

    International Nuclear Information System (INIS)

    Chemical analyses were performed on soil water extracted from two cores taken from a sandy calcareous soil near Delhi, Ontario. Calcite saturation is attained within the unsaturated zone over short distances and short periods of time, whereas dolomite undersaturation persists to the groundwater table. The progressive dissolution of dolomite by soil water, within the unsaturated zone, after calcite saturation is reached results in calcite supersaturation. Deposition of iron and manganese oxyhydroxide phases occurs at the carbonate leached/unleached zone boundary. This is a result of soil water neutralization due to carbonate dissolution during infiltration but may also reflect the increased rate of oxidation of dissolved ferrous and manganous ions at higher pH's. The role of bacteria in this process has not been investigated. The depth of the carbonate leached/unleached zone boundary in a calcareous soil has important implications for 14C groundwater dating. The depth of this interface at the study site (= approximately 2 m) does not appear to limit 14C diffusion from the root zone to the depth at which carbonate dissolution occurs. Thus, soil water achieves open system isotopic equilibrium with the soil CO2 gas phase. It is calculated that in soils with similar physical properties to the study soil but with depths of leaching of 5 m or more, complete 14C isotopic equilibration of soil water with soil gas would not occur. Soil water, under these conditions would recharge to the groundwater exhibiting some degree of closed system 14C isotopic evolution. (author)

  16. Pyrrolidine catalyzed reactions of cyclopentadiene with α,β-unsaturated carbonyl compounds: 1,2- versus 1,4-additions

    OpenAIRE

    Coskun, Necdet; Çetin, Meliha; Gronert, Scott; Ma, Jingxiang; Erden, Ihsan

    2015-01-01

    A systematic study of the reactions of cyclopentadiene with α,β-unsaturated carbonyl compounds in the presence of catalytic pyrrolidine-H2O revealed that the reactions can either proceed with a Michael attack at the β-carbon of enone, or 1,2-addition to the carbonyl, leadingeither to 4-cyclopentadienyl-2-butanones or 6-vinylfulvenes. The former can be isolated and/or converted to the corresponding 1,2-dihydropentalenes with base (or in one-pot at longer reaction times). Substitution pattern o...

  17. A potent IκB kinase-β inhibitor labeled with carbon-14 and deuterium.

    Science.gov (United States)

    Latli, Bachir; Eriksson, Magnus; Hrapchak, Matt; Busacca, Carl A; Senanayake, Chris H

    2016-06-30

    3-Amino-4-(1,1-difluoro-propyl)-6-(4-methanesulfonyl-piperidin-1-yl)-thieno[2,3-b]pyridine-2-carboxylic acid amide (1) is a potent IκB Kinase-β (IKK-β) inhibitor. The efficient preparations of this compound labeled with carbon-14 and deuterium are described. The carbon-14 synthesis was accomplished in six radiochemical steps in 25% overall yield. The key transformations were the modified Guareschi-Thorpe condensation of 2-cyano-(14) C-acetamide and a keto-ester followed by chlorination to 2,6-dichloropyridine derivative in one pot. The isolated dichloropyridine was then converted in three steps in one pot to [(14) C]-(1). The carbon-14 labeled (1) was isolated with a specific activity of 54.3 mCi/mmol and radiochemical purity of 99.8%. The deuterium labeled (1) was obtained in eight steps and in 57% overall chemical yield using 4-hydroxypiperidine-2,2,3,3,4,5,5,6,6-(2) H9 . The final three steps of this synthesis were run in one pot. PMID:27073120

  18. Reactions of the inner surface of carbon nanotubes and nanoprotrusion processes imaged at the atomic scale

    Science.gov (United States)

    Chamberlain, Thomas W.; Meyer, Jannik C.; Biskupek, Johannes; Leschner, Jens; Santana, Adriano; Besley, Nicholas A.; Bichoutskaia, Elena; Kaiser, Ute; Khlobystov, Andrei N.

    2011-09-01

    Although the outer surface of single-walled carbon nanotubes (atomically thin cylinders of carbon) can be involved in a wide range of chemical reactions, it is generally thought that the interior surface of nanotubes is unreactive. In this study, we show that in the presence of catalytically active atoms of rhenium inserted into nanotubes, the nanotube sidewall can be engaged in chemical reactions from the inside. Aberration-corrected high-resolution transmission electron microscopy operated at 80 keV allows visualization of the formation of nanometre-sized hollow protrusions on the nanotube sidewall at the atomic level in real time at ambient temperature. Our direct observations and theoretical modelling demonstrate that the nanoprotrusions are formed in three stages: (i) metal-assisted deformation and rupture of the nanotube sidewall, (ii) the fast formation of a metastable asymmetric nanoprotrusion with an open edge and (iii) a slow symmetrization process that leads to a stable closed nanoprotrusion.

  19. Variation of 14C, 137Cs and stable carbon composition in forest soil and its implications

    International Nuclear Information System (INIS)

    In Japan, about 70% of land area is covered by forest. Therefore, forest ecosystem plays a vital role in ultimate fate of radionuclides and carbon cycle in terrestrial environment. Three undisturbed forest soil profiles were collected from Ibaraki Prefecture, Japan. The 137Cs data illustrate that maximum fallout deposition of 137Cs took place around 1964. 14C determination shows that 14C also has peak values in the top 10 cm of the soil profiles ascribed to the highest bomb 14C level in 1960's. The 13C data show that the turnover dynamics of soil organic carbon could be described very well by progressive enrichment values of δ13C. (author)

  20. Sustainable Ways of Combining Reactions and Separations Using Ionic Liquids and Carbon Dioxide

    OpenAIRE

    Kazemi, S.

    2013-01-01

    Traditional chemical processes show shortcomings caused by using volatile organic compounds as solvents during reactions and separations. Therefore, it is necessary to address this issue by moving toward more environmentally friendly processes. This is possible by using less toxic and hazardous solvents, such as ionic liquids and supercritical carbon dioxide (scCO2). Ionic liquids have attracted a lot of attention as potential “green” solvents to replace conventional organic solvents due to t...

  1. Capture cross-section and rate of the 14C(, )15C reaction from the Coulomb dissociation of 15C

    Indian Academy of Sciences (India)

    Shubhchintak; Neelam; R Chatterjee

    2014-10-01

    We calculate the Coulomb dissociation of 15C on a Pb target at 68 MeV/u incident beam energy within the fully quantum mechanical distorted wave Born approximation formalism of breakup reactions. The capture cross-section and the subsequent rate of the 14C(, )15C reaction are calculated from the photodisintegration of 15C, using the principle of detailed balance. Our theoretical model is free from the uncertainties associated with the multipole strength distributions of the projectile.

  2. Photosynthesis and assimilate partitioning characteristics of the coconut palm as observed by carbon-14 labelling

    International Nuclear Information System (INIS)

    A technique was developed on the use of carbon dioxide(carbon-14 labelled) rapid labelling of foliage and to ascertain photosynthesis and partitioning characteristics of labelled assimilate into other parts of the coconut palm. An eight-year-old Tall x Tall young coconut palm growing under field conditions at Bandirippuwa Estate and with six developing bunches , was selected for this study. The labelling was carried out on a bright sunny day and soil was at field capacity. Seventh leaf from the youngest open leaf was used for labelling with 5 mCi of sodium bi carbonate (Carbon-14 labelled). The results revealed that within 24 hours, 60% of the labelled assimilate was partitioned into other parts of the palm and at the end of the seventh day about 18% of the labelled assimilate still remained in the labelled leaf. Among the developing bunches fifth and sixth bunches from the youngest developing bunch received more labelled assimilate than young developing bunches above them. It was revealed that partitioning of assimilate into various ''sinks'' is determined by the developmental stage or activeness of the ''sink''. The proportion of C-14 labelled carbon assimilate, partitioned into developing bunches was substantially low compared to the total amount of labelled carbon fixed by the labelled leaf. Further, it was observed that partitioning of assimilated labelled carbon into the young leaves above, as well as the mature leaves below the labelled leaf. The complex vascular anatomy of the palms could be attributed to this pattern of partitioning of assimilates into upper and lower leaves from the labelled leaf

  3. Reaction mechanisms in the reduction of Winterveld chrome spinel with graphite and carbon

    International Nuclear Information System (INIS)

    The reduction of mixtures of various sizes of gangue-free Winterveld chrome spinel and graphite under an argon atmosphere at 1300 degrees Celsius was studied by use of a recording thermobalance. The partially reduced material was examined by scanning electron microscopy, and the observations were analysed in terms of reaction mechanism. A four-stage sequence was deduced, as follows. In the first stage, the ferric iron is reduced to ferrous iron with no metallization. This stage is inherently variable and is controlled by the random packing of particles of reducing agent round the chromite. The second stage starts with a burst of metal nucleation, which is also inherently variable. This is followed by the reaction of carbon monoxide with the relatively highly reducible oxide at the perimeters of the metal nuclei, and is controlled by the regeneration of carbon monoxide by the Boudouard reaction. The second stage merges into the third, with no change in the form of the product until the removal of iron decreases the reducibility of the remaining oxide to such an extent that the activity of the carbon monoxide is not sufficient for reduction to proceed. Reduction is then accomplished by the carbon dissolved in the reduced metallic product, the rate of reduction being limited by the rate of carburization of the metal. The fourth stage is reached at a reduction of about 50 per cent. In that stage the rate is controlled by the diffusion of chromium ions in the oxide, and the reduced product becomes saturated with carbon as the mixed (Fe,Cr)7C3 carbide

  4. Electrochemical characteristics of vanadium redox reactions on porous carbon electrodes for microfluidic fuel cell applications

    International Nuclear Information System (INIS)

    Microfluidic vanadium redox fuel cells are membraneless and catalyst-free fuel cells comprising a microfluidic channel network with two porous carbon electrodes. The anolyte and catholyte for fuel cell operation are V(II) and V(V) in sulfuric acid based aqueous solution. In the present work, the electrochemical characteristics of the vanadium redox reactions are investigated on commonly used porous carbon paper electrodes and compared to a standard solid graphite electrode as baseline. Half-cell electrochemical impedance spectroscopy is applied to measure the overall ohmic resistance and resistivity of the electrodes. Kinetic parameters for both V(II) and V(V) discharging reactions are extracted from Tafel plots and compared for the different electrodes. Cyclic voltammetry techniques reveal that the redox reactions are irreversible and that the magnitudes of peak current density vary significantly for each electrode. The obtained kinetic parameters for the carbon paper are implemented into a numerical simulation and the results show a good agreement with measured polarization curves from operation of a microfluidic vanadium redox fuel cell employing the same material as flow-through porous electrodes. Recommendations for microfluidic fuel cell design and operation are provided based on the measured trends.

  5. Reservoir-Condition Pore-Scale Imaging of Reaction in Carbonates using Synchrotron Fast Tomography

    Science.gov (United States)

    Menke, H. P.; Andrew, M. G.; Bijeljic, B.; Blunt, M. J.

    2015-12-01

    Carbon capture and storage in carbonate reservoirs is essential for mitigating climate change. Supercritical CO2 mixed with host brine is acidic and can dissolve the surrounding pore structure and change flow dynamics. However, the type, speed, and magnitude of the dissolution are dependent on both the reactive transport properties of the pore-fluid and the intrinsic properties of the rock. Understanding how changes in the pore structure, chemistry, and flow properties affect dissolution is vital for successful predictive modelling both on the pore-scale and for up-scaled reservoir simulations. Reaction in carbonates has been studied at the pore-scale but has never been imaged dynamically in situ. We present an experimental method whereby both lab-based benchtop instruments and 'Pink Beam' synchrotron radiation are used in X-ray microtomography to investigate pore structure changes during supercritical CO2 injection at reservoir conditions. Three types of pure limestone rock with broadly varying rock topology were imaged under the same reservoir conditions. Flow-rate and brine acidity was varied in successive experiments by half an order of magnitude to gain insight into the impact of flow, transport, and physical heterogeneity. The images were binarized and the magnitude of dissolution was identified on a voxel-by-voxel basis to extract pore-by-pore dissolution data. The impact of dissolution on flow characteristics was studied by computing the evolution of the pore-scale velocity fields with a flow solver. We found that increasing rock heterogeneity increased channelized flow [Figure 1] through preferential pathways and that higher flow rate increased total dissolution. Additionally, decreasing reaction rate lowered overall reaction rate and made axial flow less uniform. Experimentally measured reaction rates in real rocks are at least an order of magnitude lower when compared to batch experiments. We provide evidence that this can be due to transport limitations

  6. Nitrogen-Doped Carbon Nanotube and Graphene Materials for Oxygen Reduction Reactions

    Directory of Open Access Journals (Sweden)

    Qiliang Wei

    2015-09-01

    Full Text Available Nitrogen-doped carbon materials, including nitrogen-doped carbon nanotubes (NCNTs and nitrogen-doped graphene (NG, have attracted increasing attention for oxygen reduction reaction (ORR in metal-air batteries and fuel cell applications, due to their optimal properties including excellent electronic conductivity, 4e− transfer and superb mechanical properties. Here, the recent progress of NCNTs- and NG-based catalysts for ORR is reviewed. Firstly, the general preparation routes of these two N-doped carbon-allotropes are introduced briefly, and then a special emphasis is placed on the developments of both NCNTs and NG as promising metal-free catalysts and/or catalyst support materials for ORR. All these efficient ORR electrocatalysts feature a low cost, high durability and excellent performance, and are thus the key factors in accelerating the widespread commercialization of metal-air battery and fuel cell technologies.

  7. Fragment production in 14N+C, Ni, Ho reactions at 35 MeV/nucleon

    International Nuclear Information System (INIS)

    Inclusive fragment production from the collisions of 35 MeV/nucleon 14N with carbon, nickel, and holmium targets has been measured in the angular range of 7-230. The energy spectra of many of the isotopes of Li, Be, B, C and N were determined. In an energy/nucleon representation the spectra at a given angle are similar for all fragments and all targets. The spectra contain contributions mainly from two components, quasielastic and deep inelastic, whose development can be followed as the fragment angle changes. The quasielastic structure, a broad peak, is most pronounced at high fragment energies and at the smaller angles. The deep-inelastic component falls off with fragment energy and becomes dominant at the large angles. The spectra for fragments with 6≤A≤12 were decomposed into these two components. The shape of the quasielastic component is consistent with a two-step model in which an early fragmentation is followed by a subsequent mass pick-up from the participant zone. The maxima and the average energies of the quasielastic distributions and the logarithm of the energy integrated quasielastic yields for the different light isotopes depend approximately linearly on angle for all three targets. The relative isotope yields indicate a slight dependence on the neutron/proton ratio of the target for the quasielastic component and a more pronounced one for the deep-inelastic component. (orig.)

  8. Physiological conditions and uptake of inorganic carbon-14 by plant roots

    International Nuclear Information System (INIS)

    The uptake of inorganic 14C by bean plant roots was measured. The plants were grown in a nutrient solution culture at pH 6 and a NaH14CO3 tracer was added to the growth medium. Photosynthesis and transpiration were varied by exposing the aerial portions of the plants to different atmospheric CO2 concentrations, humidities and light levels in a cuvette system. Leaf concentrations of 14C were measured at the end of the experiments using liquid scintillation counting. Plant uptake of 14C via the roots was independent of the photosynthetic rate and, in most cases, could be predicted by knowing the transpiration rate and the nutrient solution concentration. However, when a less efficient root-medium aeration system was used, 14C uptake was greater than that predicted using transpiration, a phenomenon observed by other researchers. This contrasted to results of another experiment where the measured uptake of iodine was much slower than that predicted using transpiration. Knowledge of transpiration rates is useful in predicting inorganic carbon uptake via the roots and in estimating 14C transport from contaminated soils to biota. Also, the independence of the uptake from photosynthesis and ambient CO2 concentrations suggests that future increases in atmospheric CO2 concentrations may not have a direct effect on root uptake of soil carbon. (author)

  9. The Development and Application of Two-Chamber Reactors and Carbon Monoxide Precursors for Safe Carbonylation Reactions.

    Science.gov (United States)

    Friis, Stig D; Lindhardt, Anders T; Skrydstrup, Troels

    2016-04-19

    , an array of low-pressure carbonylations were developed applying only near stoichiometric amounts of carbon monoxide. Importantly, carbon isotope variants of the CO precursors, such as (13)COgen, Sila(13)COgen, or even (14)COgen, provide a simple means for performing isotope-labeling syntheses. Finally, the COware applicability has been extended to reactions with other gases, such as hydrogen, CO2, and ethylene including their deuterium and (13)C-isotopically labeled versions where relevant. The COware system has been repeatedly demonstrated to be a valuable reactor for carrying out a wide number of transition metal-catalyzed transformations, and we believe this technology will have a significant place in many organic research laboratories. PMID:26999377

  10. The neighboring effect of isosorbide and its epimers in their reactions with dimethyl carbonate

    Directory of Open Access Journals (Sweden)

    Fabio Aricò

    2014-10-01

    Full Text Available The reactions of isosorbide and its epimers, isomannide and isoidide, with dimethyl carbonate have been herein investigated as easy access to bio-based products by a free-halogen chemistry approach. Isosorbide and its epimers show a different reactivity in bimolecular nucleophilic substitution with dimethyl carbonate (DMC. Carboxymethylation reaction was carried out in the presence of DMC and a weak base resulting in the high-yielding synthesis of dicarboxymethyl derivatives. Isomannide was the most reactive anydro sugar due to the less sterically hindered exo position of the OH groups. On the other hand, methylation of isosorbide and its epimers, conducted in the presence of a strong base and DMC, showed the higher reactivity of the endo hydroxyl group, isoidide being the most reactive epimer. This result has been ascribed to the neighboring effect due to the combination of the oxygen in β-position and the intramolecular hydrogen bond within the anhydro sugar structure. Methylation reactions were also conducted in autoclave at high temperature with the amphoteric catalyst hydrotalcite using DMC as reagent and solvent. In this case, the reactivity of the epimers resulted quite differently with isosorbide being the most reactive reagent possibly as a result of the structure of hydrotalcite comprising of both acidic and basic sites. The neighboring effect was observed with good evidence in these methylation reactions.

  11. Synthesis of propylene carbonate from urea and propylene glycol over zinc oxide: A homogeneous reaction

    Directory of Open Access Journals (Sweden)

    Dengfeng Wang

    2014-11-01

    Full Text Available In this work, several metal oxides and zinc salts were used to catalyze propylene carbonate (PC synthesis from urea and propylene glycol (PG. According to the results of catalytic test and characterization, the catalytic pattern of ZnO was different from that of other metal oxides such as CaO, MgO and La2O3, but similar to that of zinc salts. In fact, the leaching of Zn species took place during reaction for ZnO. And ZnO was found to be the precursor of homogenous catalyst for reaction of urea and PG. Thus, the relationship between the amount of dissolved zinc species and the catalytic performance of employed ZnO was revealed. In addition, a possible reaction mechanism over ZnO was discussed based on the catalytic runs and the characterization of XRD, FTIR, and element analysis.

  12. Multiphase Carbon-14 Transport in a Near-Field-Scale Unsaturated Column of Natural Sediments

    Energy Technology Data Exchange (ETDEWEB)

    D. T. Fox; Mitchell A. Plummer; Larry C. Hull; D. Craig Cooper

    2004-03-01

    Wastes buried at the Subsurface Disposal Area (SDA) of the Idaho National Engineering and Environmental Laboratory include activated metals that release radioactive carbon-14 (14C) as they corrode. To better understand 14C phase partitioning and transport in the SDA sediments, we conducted a series of transport experiments using 14C (radio-labeled sodium carbonate) and nonreactive gas (sulfur hexafluoride) and aqueous (bromide and tritiated water) tracers in a large (2.6-m high by 0.9-m diameter) column of sediments similar to those used as cover material at the SDA. We established steady-state unsaturated flow prior to injecting tracers into the column. Tracer migration was monitored using pore-water and pore-gas samples taken from co-located suction lysimeters and gas ports inserted at ~0.3-m intervals along the column’s length. Measurements of 14C discharged from the sediment to the atmosphere (i.e., 14CO2 flux) indicate a positive correlation between CO2 partial pressure (pCO2) in the column and changes in 14CO2 flux. Though 14CO2 diffusion is expected to be independent of pCO2, changes of pCO2 affect pore water chemistry sufficiently to affect aqueous/gas phase 14C partitioning and consequently 14C2 flux. Pore-water and -gas 14C activity measurements provide an average aqueous/gas partitioning ratio, Kag, of 4.5 (±0.3). This value is consistent with that calculated using standard carbonate equilibrium expressions with measured pH, suggesting the ability to estimate Kag from carbonate equilibrium. One year after the 14C injection, the column was cored and solid-phase 14C activity was measured. The average aqueous/solid partition coefficient, Kd, (1.6 L kg-1) was consistent with those derived from small-scale and short-term batch and column experiments using SDA sediments, suggesting that bench-scale measurements are a valid means of estimating aqueous/solid partitioning at the much larger spatial scale considered in these meso-scale experiments. However

  13. Thermodynamic Data for Geochemical Modeling of Carbonate Reactions Associated with CO2 Sequestration – Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Krupka, Kenneth M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B. Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2010-09-01

    Permanent storage of anthropogenic CO2 in deep geologic formations is being considered as a means to reduce the concentration of atmospheric CO2 and thus its contribution to global climate change. To ensure safe and effective geologic sequestration, numerous studies have been completed of the extent to which the CO2 migrates within geologic formations and what physical and geochemical changes occur in these formations when CO2 is injected. Sophisticated, computerized reservoir simulations are used as part of field site and laboratory CO2 sequestration studies. These simulations use coupled multiphase flow-reactive chemical transport models and/or standalone (i.e., no coupled fluid transport) geochemical models to calculate gas solubility, aqueous complexation, reduction/oxidation (redox), and/or mineral solubility reactions related to CO2 injection and sequestration. Thermodynamic data are critical inputs to modeling geochemical processes. The adequacy of thermodynamic data for carbonate compounds has been identified as an important data requirement for the successful application of these geochemical reaction models to CO2 sequestration. A review of thermodynamic data for CO2 gas and carbonate aqueous species and minerals present in published data compilations and databases used in geochemical reaction models was therefore completed. Published studies that describe mineralogical analyses from CO2 sequestration field and natural analogue sites and laboratory studies were also reviewed to identify specific carbonate minerals that are important to CO2 sequestration reactions and therefore require thermodynamic data. The results of the literature review indicated that an extensive thermodynamic database exists for CO2 and CH4 gases, carbonate aqueous species, and carbonate minerals. Values of ΔfG298° and/or log Kr,298° are available for essentially all of these compounds. However, log Kr,T° or heat capacity values at temperatures above 298 K exist for less than

  14. Functionalized Carbon Nanomaterial Supported Palladium Nano-Catalysts for Electrocatalytic Glucose Oxidation Reaction

    International Nuclear Information System (INIS)

    Highlights: • Glucose oxidation reaction (GOR) catalyzed by Pd on carbon nano-supports. • Polyol reduction used for nano-size Pd catalyst synthesis. • Effect of carbon support’s functionality on nano-Pd GOR catalysis disclosed. • Carboxylated MWCNT found to be the best carbon nano-support. • Peak current density of 5.5 mA cm−2 attained for alkaline GOR. - Abstract: Palladium nanoparticles (nPd) are grown on six carbon nanomaterials with different functionalities by one-pot, high-pH polyol reduction of PdCl2. The nanomaterials include pristine multi-walled carbon nanotubes (pMWCNT), carboxylated MWCNT (cMWCNT), amine-modified MWCNT (nMWCNT), hydroxyl-modified MWCNT (oMWCNT), XC72 carbon black (XC72), and carboxylated graphene (cGraphene). The effects of the carbon functionality on Pd-catalyzed glucose oxidation reaction (GOR) in an alkaline medium are studied. From the experimental data of X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and transmission electron microscopy (TEM), it reveals that nPds with a particle size ranging from 4.5 nm to 7.4 nm are grown on carbon nanomaterials with a weight loading percentage from 11.1% to 18.6%. Cyclic voltammetry (CV), linear sweep voltammetry (LSV), Tafel analysis, and chronoamperomtry (CA) are used to compare the electrochemical active surface area (ECSA), GOR onset potential, GOR peak current density, Tafel slope, poisoning rate, and cycling stability between the six nPd/C electrocatalysts for GOR. It is found that nPd grown on a functionalized carbon nano-support had better GOR performance than that grown on pMWCNT. Compared to nPd/pMWCNT, nPd/cMWCNT shows a 6.2-fold higher peak current density (5.6 mA cm−2) and a 100 mV lower over-potential (-0.55 V vs. Hg/HgO) for GOR. Besides, the data are among the best for nPd-catalyzed GOR reported to date

  15. Carbon-14 in waste packages for spent fuel in a tuff repository

    International Nuclear Information System (INIS)

    Carbon-14 is produced naturally by cosmic ray neutrons in the upper atmosphere. It is also produced in nuclear reactors, in amounts much smaller than the global inventory. About one-third of this is released directly to the atmosphere, and the other two-thirds remains in the spent fuel. Both the Environmental Protection Agency and the Nuclear Regulatory Commission have established limits on release of the 14C in spent fuel. This is of particular concern for the proposed repository in tuff, because of the unsaturated conditions and the consequent possibility of gaseous transport of 14C as CO2. Existing measurements and calculations of the 14C inventory in spent fuel are reviewed. The physical distribution and chemical forms of the 14C are discussed. Available data on the release of 14C from spent fuel in aqueous solutions and in gaseous environments of air, nitrogen, and helium are reviewed. Projected 14C behavior in a tuff repository is described. It is concluded that 14C release measurements from spent fuel into moist air at temperatures both above and below the in situ boiling point of water as well as detailed transport calculations for the tuff geological environment will be needed to determine whether the 10CFR60 and 40CFR191 requirements can be met. 56 refs., 1 tab

  16. Sampling and monitoring of carbon-14 in gaseous effluents from nuclear facilities - a literature survey

    International Nuclear Information System (INIS)

    C-14 compounds produced in the coolant may be released mainly together with off-gas and waste water from the coolant purification and treatment system. In reactors the release of C-14 will occur mainly in gaseous effluents and only a few percent in liquid effluents. Reported releases from BWRs range from 260 to 670 GBq/GW(e) x year and from 90 to 430 GBq/GW(e) x year for PWRs. At BWRs the condenser air ejector contributes the main inplant release pathway, whereas in PWRs the off-gas treatment vents are the main pathway for C-14 release. C-14 sampling methods depend generally on the C-14 being in the form of CO2. The off-gas discharges from BWRs are mainly in the form of CO2 whereas in PWRs a major fraction of the released C-14 is in the form of hydrocarbons or carbon monoxide (generally 80-100%). Sampling systems in PWRs should therefore be equipped with a catalytic oxidizer to convert all C-14 to CO2 before trapping. The purpose of this study is to provide information on the techniques available for sampling and monitoring C-14

  17. Modelling the Environmental Transfer of Tritium and Carbon-14 to Biota and Man. Report of the Tritium and Carbon-14 Working Group of EMRAS Theme 1

    International Nuclear Information System (INIS)

    Hydrogen and carbon are biologically-regulated, essential elements that are highly mobile in the environment and the human body. As isotopes of these elements, tritium and 14C enter freely into water (in the case of tritium), plants, animals and humans. This complex behaviour means that there are substantial uncertainties in the predictions of models that calculate the transfer of tritium and 14C through the environment. The EMRAS Tritium/C14 Working Group (WG) was set up to establish the confidence that can be placed in the predictions of such models, to recommend improved modelling approaches, and to encourage experimental work leading to the development of data sets for model testing. The activities of the WG focused on the assessment of models for organically bound tritium (OBT) formation and translocation in plants and animals, the area where model uncertainties are largest. Environmental 14C models were also addressed because the dynamics of carbon and OBT are similar. The goals of the WG were achieved primarily through nine test scenarios in which model predictions were compared with observations obtained in laboratory or field studies. Seven of the scenarios involved tritium, covering terrestrial and aquatic ecosystems and steady-state and dynamic conditions. The remaining two scenarios concerned 14C, one addressing steady-state concentrations in plants and the other time-dependent concentrations in animals. The WG also considered one model intercomparison exercise involving the calculation of doses following a hypothetical, short-term release of tritium to the atmosphere in a farming area. Finally, the WG discussed the nature of OBT and proposed a definition to promote common understanding and usage within the international tritium community. The models used by the various participants varied in complexity from simple specific activity approaches to dynamic compartment models and process-oriented models, in which the various transfer processes were

  18. Algal C-14 and total carbon metabolisms 2. Experimental observations with the diatom Skeletonema costatum

    DEFF Research Database (Denmark)

    Williams, P.J.L.; Robinson, C.; Søndergaard, M.;

    1996-01-01

    of 2-3), C-14 uptake into the particulate plus the dissolved fractions approximated to net photosynthesis. Rate constants derived from the chemically determined changes were used to parameterize models that accounted for the respiration of photosynthetic products and for the recycling of respiratory CO......2. The conclusion drawn was that over the time scale studied, the C-14 technique was measuring net photosynthesis, consistent with essentially 100% recycling of respiratory CO2. The study has shown that we now possess the basis to make a rigorous analysis of net, gross CO2 fixation and net C-14......Three sets of comparisons of net and gross inorganic carbon assimilation and C-14 uptake were made with an axenic culture of Skeletonema costatum. The comparisons showed that in the physiological window studied (10-20% of the intrinsic generation time and gross photosynthesis/respiration ratios...

  19. A moderator ion exchange model to predict carbon-14 behaviour during operations

    International Nuclear Information System (INIS)

    Carbon-14 emissions from CANDU 6 stations are reduced through the removal of inorganic carbon ions by the ion exchange (IX) columns in the moderator purification system. A model has been developed to simulate the ion exchange behaviour of anions and cations present in the moderator. The model can be used to generate breakthrough curves for IX columns. Results from the program were compared to breakthrough curves generated by a small-scale experimental facility as well as data collected from Wolsong-3 where the IX column remained in service well past the recommended time. In both cases, the breakthrough curves were similar to the collected data. (author)

  20. Distribution of hydrogen peroxide-dependent reaction in a gelatin sample irradiated by carbon ion beam

    International Nuclear Information System (INIS)

    We investigated the amount and distribution of hydrogen peroxide (H2O2) generated in a solid gelatin sample irradiated by heavy ion (carbon) beam. We irradiated the gelatin sample, which contained a nitroxyl radical (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl, TEMPOL), with a 290-MeV/nucleon carbon beam (-128 Gy). To verify the distribution of H2O2 generation in the irradiated sample, we employed both electron paramagnetic resonance (EPR) spectroscopic and magnetic resonance (MR) imaging methods based on H2O2-dependent paramagnetic loss of TEMPOL. We obtained a distribution profile of the H2O2-dependent reaction in the gelatin sample when we irradiated gelatin samples with carbon beams with several different linear energy transfer (LET) values. Because the profiles of oxygen consumption in the gelatin sample measured by L-band EPR oxymetry and of the H2O2-dependent reaction have almost the same shape, the profile of the H2O2-dependent reaction can be used as an estimation of the profile of the generation of H2O2. The H2O2 profile in one intact gelatin sample scanned by 7-tesla MR imaging showed a similar shape as a result of the EPR experiment. We obtained several hundreds of micromolars of H2O2 generated in a gelatin sample irradiated by carbon beam when 200 Gy was given at the surface of the sample. H2O2 distribution was almost flat, with only a slight peak just before the end of the beam. (author)

  1. Sintering uranium oxide in the reaction product of hydrogen-carbon dioxide mixtures

    International Nuclear Information System (INIS)

    Compacted pellets of uranium oxide alone or containing one or more additives such as plutonium dioxide, gadolinium oxide, titanium dioxide, silica, and alumina are heated to 900 to 15990C in the presence of a mixture of hydrogen and carbon dioxide, either alone or with an inert carrier gas and held at the desired temperature in this atmosphere to sinter the pellets. The sintered pellets are then cooled in an atmosphere having an oxygen partial pressure of 10-4 to 10-18 atm of oxygen such as dry hydrogen, wet hydrogen, dry carbon monoxide, wet carbon monoxide, inert gases such as nitrogen, argon, helium, and neon and mixtures of ayny of the foregoing including a mixture of hydrogen and carbon dioxide. The ratio of hydrogen to carbon dioxide in the gas mixture fed to the furnace is controlled to give a ratio of oxygen to uranium atoms in the sintered particles within the range of 1.98:1 to about 2.10:1. The water vapor present in the reaction products in the furnace atmosphere acts as a hydrolysis agent to aid removal of fluoride should such impurity be present in the uranium oxide. (U.S.)

  2. Sulfur-doped carbon nanotubes as catalysts for the oxygen reduction reaction in alkaline medium

    International Nuclear Information System (INIS)

    Based on the unique electronic properties and high surface area of carbon nanotubes as well as the similar electronegativity of sulfur and carbon, a novel electrocatalyst for the oxygen reduction reaction (ORR) was fabricated by directly annealing oxidized carbon nanotubes and p-benzenedithiol in nitrogen. The structural and chemical properties of the resulting sulfur-doped carbon nanotubes (pSCNTs) were investigated using transmission electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. The catalytic activity of the pSCNTs towards ORR in alkaline medium was evaluated using rotating ring disk electrode voltammetry. The as-synthesized pSCNT-900 (annealed at 900 °C) exhibits excellent electrochemical performance towards ORR with an onset potential of –0.082 V (vs Ag/AgCl), a high kinetic current density of 34.6 mA cm−2 at –0.35 V), a dominant four-electron transfer mechanism (n = 3.71 at –0.35 V), as well as excellent methanol tolerance and durability. The results obtained are significant for the development of S-doped carbon-based catalysts for alkaline fuel cells

  3. Polyaniline-Derived Ordered Mesoporous Carbon as an Efficient Electrocatalyst for Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Kai Wan

    2015-06-01

    Full Text Available Nitrogen-doped ordered mesoporous carbon was synthesized by using polyaniline as the carbon source and SBA-15 as the template. The microstructure, composition and electrochemical behavior were extensively investigated by the nitrogen sorption isotherm, X-ray photoelectron spectroscopy, cyclic voltammetry and rotating ring-disk electrode. It is found that the pyrolysis temperature yielded a considerable effect on the pore structure, elemental composition and chemical configuration. The pyrolysis temperature from 800 to 1100 °C yielded a volcano-shape relationship with both the specific surface area and the content of the nitrogen-activated carbon. Electrochemical tests showed that the electrocatalytic activity followed a similar volcano-shape relationship, and the carbon catalyst synthesized at 1000 °C yielded the best performance. The post-treatment in NH3 was found to further increase the specific surface area and to enhance the nitrogen doping, especially the edge-type nitrogen, which favored the oxygen reduction reaction in both acid and alkaline media. The above findings shed light on electrocatalysis and offer more strategies for the controllable synthesis of the doped carbon catalyst.

  4. Evaluating reaction pathways of hydrothermal abiotic organic synthesis at elevated temperatures and pressures using carbon isotopes

    Science.gov (United States)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.

    2015-04-01

    Experiments were performed to better understand the role of environmental factors on reaction pathways and corresponding carbon isotope fractionations during abiotic hydrothermal synthesis of organic compounds using piston cylinder apparatus at 750 °C and 5.5 kbars. Chemical compositions of experimental products and corresponding carbon isotopic values were obtained by a Pyrolysis-GC-MS-IRMS system. Alkanes (methane and ethane), straight-chain saturated alcohols (ethanol and n-butanol) and monocarboxylic acids (formic and acetic acids) were generated with ethanol being the only organic compound with higher δ13C than CO2. CO was not detected in experimental products owing to the favorable water-gas shift reaction under high water pressure conditions. The pattern of δ13C values of CO2, carboxylic acids and alkanes are consistent with their equilibrium isotope relationships: CO2 > carboxylic acids > alkanes, but the magnitude of the fractionation among them is higher than predicted isotope equilibrium values. In particular, the isotopic fractionation between CO2 and CH4 remained constant at ∼31‰, indicating a kinetic effect during CO2 reduction processes. No "isotope reversal" of δ13C values for alkanes or carboxylic acids was observed, which indicates a different reaction pathway than what is typically observed during Fischer-Tropsch synthesis under gas phase conditions. Under constraints imposed in experiments, the anomalous 13C isotope enrichment in ethanol suggests that hydroxymethylene is the organic intermediate, and that the generation of other organic compounds enriched in 12C were facilitated by subsequent Rayleigh fractionation of hydroxymethylene reacting with H2 and/or H2O. Carbon isotope fractionation data obtained in this study are instrumental in assessing the controlling factors on abiotic formation of organic compounds in hydrothermal systems. Knowledge on how environmental conditions affect reaction pathways of abiotic synthesis of organic

  5. Improved study of the /sup 14/O(ed ,p)/sup 17/F reaction at stellar energies

    Energy Technology Data Exchange (ETDEWEB)

    Funck, C.; Grund, B.; Langanke, K.

    1989-01-01

    We have performed a study of the /sup 14/O(ed , p)/sup 17/F reaction at stellar energies within the framework of the Generator Coordinate Method (GCM). Our calculation improves a previous study by enlargement of the model space.

  6. Resonance strength measurement at astrophysical energies: the O-17(p, alpha)N-14 reaction studied via Trojan Horse Method

    Czech Academy of Sciences Publication Activity Database

    Sergi, M. L.; Spitaleri, C.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Rapisarda, G. G.; Mukhamedzhanov, A. M.; Irgaziev, B.; Tang, X. D.; Wiescher, M.; Mrázek, Jaromír; Kroha, Václav

    Vol. 1681. Melville: American Institute of Physics, 2015, s. 050005. (AIP Conference Proceedings). ISBN 978-0-7354-1328-3. ISSN 0094-243X. [3rd International Conference on Nuclear Structure and Dynamics. Portoroz (SI), 14.06.2015-19.06.2015] Institutional support: RVO:61389005 Keywords : thermonuclear reaction rates * cross-section * nucleosynthesis Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  7. Novel application of Leuckart-Wallach reaction for synthesis of tetrahydro-1,4-benzodiazepin-5-ones library.

    Science.gov (United States)

    Lee, Sung-Chan; Park, Seung Bum

    2007-09-28

    A novel and efficient strategy has been developed to synthesize privileged tetrahydro-1,4-benzodiazepines with excellent yields and purities; this synthetic pathway was established by the revitalization of the Leuckart-Wallach (LW) reaction via solid-phase synthesis. PMID:17851604

  8. Application of the Trojan Horse Method to study neutron induced reactions: the O-17(n, alpha)C-14 reaction

    Czech Academy of Sciences Publication Activity Database

    Gulino, M.; Spitaleri, C.; Guardo, G. L.; Lamia, L.; Cherubini, S.; Burjan, Václav; Hons, Zdeněk; Kroha, Václav; La Cognata, M.; Mrázek, Jaromír

    Les Ulis: E D P Sciences, 2014, 07008. ISBN 978-2-7598-1176-2. ISSN 2100-014X. [International Nuclear Physics Conference (INPC 2013). Firenze (IT), 02.06.2013-07.06.2013] R&D Projects: GA MŠk(CZ) LH11001; GA ČR GAP203/10/0310 Institutional support: RVO:61389005 Keywords : cross-section * elements * C-14 Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  9. Electrocatalytic Activity of Carbonized Nanostructured Polyanilines for Oxidation Reactions: Sensing of Nitrite Ions and Ascorbic Acid

    International Nuclear Information System (INIS)

    Highlights: • Carbonized PANIs prepared from various nanostructured PANI precursors • Electroanalytical performances of carbonized PANIs evaluated using voltammetry • Study of carbonized PANIs physico-chemical properties related to electroactivity • The lowest over-potential for NO2− oxidation at c-PANI (+0.87 V vs. SCE) • The lowest over-potential for ascorbic acid oxidation at both c-PANI and c-PANI-SSA - Abstract: A comparative study of the electrocatalytic activity of nitrogen-containing carbon nanomaterials, prepared by the carbonization of nanostructured polyaniline (PANI) salts, for the electrooxidation reactions is presented. Nanostructured PANI salts were synthesized by the oxidative polymerization of aniline with ammonium peroxydisulfate in an aqueous solution in the presence of 5-sulfosalicylic acid (PANI-SSA), 3,5-dinitrosalicylic acid (PANI-DNSA) as well as without added acid (PANI), and subsequently carbonized to c-PANI-SSA, c-PANI-DNSA and c-PANI, respectively. Glassy carbon tip was modified with nanostructured c-PANIs and used for the investigation of sensing of nitrite and ascorbic acid in aqueous solutions as model analytes by linear sweep voltammetry. All three types of the investigated c-PANIs gave excellent response to the nitrite ions and ascorbic acid electrooxidation. The lowest peak potential for nitrite ion oxidation exhibited c-PANI (+0.87 V vs. SCE), and for ascorbic acid oxidation both c-PANI and c-PANI-SSA (ca. + 0.13 V vs. SCE). Electrochemical data were correlated with structural and textural data obtained by Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, elemental and nitrogen sorption analysis

  10. Mechanism and kinetics of the reaction of 1,4-thioxane with O3 in the atmosphere - A theoretical study

    Science.gov (United States)

    Sandhiya, L.; Kolandaivel, P.; Senthilkumar, K.

    2012-02-01

    A theoretical investigation of the atmospheric oxidation of a cyclic organosulfur compound 1,4-thioxane by O3 is performed. The pathways for the reaction of 1,4-thioxane with O3 have been modeled using B3LYP, M06-2X, MPW1K and MP2 level of theories with 6-31G(d,p), 6-311G(d,p) and 6-31+G(d,p) basis sets. The reaction is initiated by the formation of a primary ozonide, followed by a biradical, which on subsequent reactions with other atmospheric species produces hydroxyl radical, hydrogen peroxides and organic peroxides. The results obtained from DFT calculations were subsequently used to perform canonical variational transition-state theory calculations to determine the rate constant. The calculated rate constant is in good agreement with the available experimental data.

  11. The influence of carbon surface chemistry on supported palladium nanoparticles in heterogeneous reactions.

    Science.gov (United States)

    Ding, Yuxiao; Zhang, Liyun; Wu, Kuang-Hsu; Feng, Zhenbao; Shi, Wen; Gao, Qiang; Zhang, Bingsen; Su, Dang Sheng

    2016-10-15

    The surface chemistry of nanocarbon support can tailor chemical properties of precious metal nanoparticle/nanocarbon hybrid catalyst in heterogeneous reactions. We report on modified reduced graphene oxide (rGO) support with ionic liquid-derived carbonaceous surface for palladium nanoparticle (Pd NPs) decoration and their actions in different heterogeneous reactions. The surface chemistry of support materials was characterized in detail, and the influence of which on the formation and distribution of metal particles was further investigated. Three different types of reactions including Suzuki-Miyaura coupling reaction, CO oxidation and phenol reduction were examined in terms of reactivity and selectivity. The roles of substituted nitrogen in graphitic lattice and grafted groups on the carbon surface were exploited. Nitrogen-doping can give rise to changes in electronic properties of supported metals, and the Lewis basicity of the doped nitrogen atoms can favor the adsorption of acidic reactants in phenol reduction. The grafted groups derived a negative impact to the Suzuki-Miyaura coupling reaction, due to the involvement of larger reactant molecules, despite that they could prevent significant sintering of Pd NPs in the CO oxidation. PMID:27442144

  12. Unique Sandwiched Carbon Sheets@Ni-Mn Nanoparticles for Enhanced Oxygen Evolution Reaction.

    Science.gov (United States)

    Zhang, Yan; Zhang, Huijuan; Yang, Jiao; Bai, Yuanjuan; Qiu, Huajun; Wang, Yu

    2016-05-11

    A unique sandwich-like architecture, where Ni-Mn nanoparticles are enveloped in coupled carbon sheets (CS@Ni-Mn), has been successfully fabricated. In the synthesis process, a great quantity of uniform NiMnO3 nanosheets generated by a universal hydrothermal method acts as precursors and templates and the cheap, environmentally friendly and recyclable glucose functions as a green carbon source. Via subsequent hydrothermal reaction and thermal annealing, sandwiched nanocomposites with Ni-Mn nanoparticles embedded inside and carbon sheets encapsulating outside can be massively prepared. The novel sandwich-like CS@Ni-Mn possesses numerous advantages, such as an intrinsic porous feature, large specific surface area, and enhanced electronic conductivity. Moreover, as a promising NiMn-based oxygen evolution reaction (OER) catalyst, the special sandwiched nanostructure demonstrates improved electrochemical properties in 1 M KOH, including a low overpotential of about 250 mV, a modest Tafel slope of 40 mV dec(-1), excellent stability over 2000 cycles, and durability for 40 h. PMID:27101350

  13. Flux of carbon from 14C-enriched leaf litter throughout a forest soil mesocosm

    Energy Technology Data Exchange (ETDEWEB)

    Froberg, Mats J. [Sveriges Lantbruksuniversitet; Hanson, Paul J [ORNL; Trumbore, Susan E. [University of California, Irvine; Swanston, Christopher W. [USFS; Todd Jr, Donald E [ORNL

    2009-01-01

    The role of DOC for the build-up of soil organic carbon pools is still not well known, but it is thought to play a role in the transport of carbon to a greater depth where it becomes more stable. The aim of this study was to elucidate within-year dynamics of carbon transport from litter to the O (Oe and Oa) and A horizons. Mesocosms with constructed soil profiles were used to study dynamics of C transport from 14C-enriched (about 1000 ) leaf litter to the Oe/Oa and A horizons as well as the mineralization of leaf litter. The mesocosms were placed in the field for 17 months during which time fluxes and 14C content of DOC and CO2 were measured. Changes in 14C in leaf litter and bulk soil C pools were also recorded. Significant simultaneous release and immobilization of DOC occurring in both the O and A horizons was hypothesized. Contrary to our hypothesis, DOC released from the labeled Oi horizon was not retained within the Oe/Oa layer. DOC originating in the unlabeled Oe/Oa layer was also released for transport. Extensive retention of DOC occurred in the A horizon. DOC leaching from A horizon consisted of a mix of DOC from different sources, with a main fraction originating in the A horizon and a smaller fraction leached from the overlaying horizons. The C and 14C budget for the litter layer also indicated a surprisingly large amount of carbon with ambient Δ14C-signature to be respired from this layer. Data for this site also suggested significant contributions from throughfall to dissolved organic carbon (DOC) transport into and respiration from the litter layer. The results from this study showed that DOC retentionwas low in the O horizon and therefore not important for the O horizon carbon budget. In the A horizon DOC retention was extensive, but annual DOC input was small compared to C stocks and therefore not important for changes in soil C on an annual timescale.

  14. Microscopic study of the /sup 14/O(. cap alpha. ,p)/sup 17/F reactions at stellar energies

    Energy Technology Data Exchange (ETDEWEB)

    Funck, C.; Langanke, K.

    1988-03-28

    We have studied the /sup 14/O(..cap alpha..,p)/sup 17/F reaction at astrophysically important energies within a microscopic multichannel calculation based on the framework of the generator coordinate method. Our study gives a consistent description of the /sup 18/Ne states close to the ..cap alpha..-threshold as well as of the direct (..cap alpha..,p) reaction process which has not been considered in previous calculations. We find that the /sup 14/O(..cap alpha..,p)/sup 17/F rate at temperatures T less than or equal to 5x10/sup 8/ K is strongly influenced by the 2/sup +/ resonance at E = 30 keV above the ..cap alpha..-threshold and by the direct reaction cross section. At higher temperatures /sup 18/Ne states not present in our model space become important. We have estimated the influence of these resonances on the /sup 14/O(..cap alpha..,p)/sup 17/F rate within the standard formalism developed by Fowler assigning experimentally unknown spins to the states on the basis of a Thomas-Ehrman shift analysis using theoretical and experimental informations on the respective analogue states in /sup 18/O. We find an /sup 14/O(..cap alpha..,p)/sup 17/F rate which is noticeably higher than the rate estimated by Wiescher et al. for T less than or equal to 5x10/sup 8/ K. Both rates are of the same magnitude for T greater than or equal to 10/sup 9/ K. Our estimate predicts that the /sup 14/O(..cap alpha..,p)/sup 17/F rate is compatible to the /sup 15/O(..cap alpha..,..gamma..)/sup 19/Ne rate under nova conditions. For explosive burning on accreting neutron stars our rate allows for a break-out from the CNO cycle via the /sup 14/O(..cap alpha..,p)/sup 17/F reaction.

  15. Synthesis of 1-(4-methylsulfone-phenyl)-5-(4-fluoro-phenyl)-5-[14C]-1,2,3- triazole and 1-(4-sulfonamide-phenyl)-5-(4-fluoro-phenyl)-5-[14C]-1,2,3- triazole as novel carbon-14 anticonvulsant

    International Nuclear Information System (INIS)

    Two 1,2,3-triazole anticonvulsants, 1-(4-methylsulfone-phenyl)-5-(4-fluoro-phenyl)-5-[14C]-1,2,3-triazole and 1-(4-sulfonamide-phenyl)-5-(4- fluoro-phenyl)-5-[14C]-1,2,3-triazole, both labeled with carbon-14 in the 5-position were prepared from para-fluoro-benzonitrile-[cyano-14C]. (author)

  16. On the labelling of insuline and insuline derivatives with tritium and carbon-14

    International Nuclear Information System (INIS)

    Two different labelling methods were investigated. By means of the Wilzbach labelling with diaminosuberoylinsuline the insuline is irreversibly altered. As a second method the reductive methylation was used, in doing so it was possible to distinguish between mono and dimethylated parts of the reaction product by using C-14 labelled formaldehyde. Furthermore four N,N-dimethylated insuline derivatives were isolated with yields of 25 until 35%. By using C-14 and h-3 labelled reagents insuline can be labelled doubly. Moreover N-terminal amino groups could be protected irreversibly with this method. Furthermore structure-function investigations and investigations concerning the insuline metabolism were done. (SPI)

  17. Reexposure and advection of C-14-depleted organic carbon from old deposits at the upper continental slope

    OpenAIRE

    Tesi, Tommaso; Goñi, Miguel A.; Langone, Leonardo; Puig, Pere; Canals, Miquel; Nittrouer, Charles A.; Durrieu De Madron, Xavier; Calafat, Antoni; Palanques, Albert; Heussner, Serge; Davies, Maureen H.; Drexler, Tina M.; Fabres, Joan; Miserocchi, Stefano

    2010-01-01

    Outcrops of old strata at the shelf edge resulting from erosive gravity-driven flows have been globally described on continental margins. The reexposure of old strata allows for the reintroduction of aged organic carbon (OC), sequestered in marine sediments for thousands of years, into the modern carbon cycle. This pool of reworked material represents an additional source of C-14-depleted organic carbon supplied to the ocean, in parallel with the weathering of fossil organic carbon delivered ...

  18. Halogen atom reactions activated by nuclear transformations. Progress report, February 15, 1975--February 14, 1976

    International Nuclear Information System (INIS)

    High energy reactions of halogen atoms or ions, activated by nuclear transformations, are being studied in gaseous, high pressure, and condensed phase saturated and unsaturated hydrocarbons, halomethanes, and other organic systems. Experimental and theoretical data are presented in the following areas: systematics of iodine hot atom reactions in halomethanes, reactions and systematics of iodine reactions with pentene and butene isomers, radiative neutron capture activated reactions of iodine with acetylene, gas to liquid to solid transition in hot atom chemistry, kinetic theory applications of hot atom reactions and the mathematical development of caging reactions, solvent dependence of the stereochemistry of the 38Cl for Cl substitution following 37Cl(n,γ)38Cl in liquid meso and dl-(CHFCl)2. A technique was also developed for the radioassay of Al in urine specimens

  19. Simulation of groundwater flow in the Voltaian (around Tamale) using carbon-14

    International Nuclear Information System (INIS)

    Studying the process of groundwater flow in subsurface systems using numerical simulation has been widely practiced. The purpose of this study was to establish a 2D groundwater flow model for evaluating groundwater resources of the Voltaian Basin (around Tamale) in the Northern Region of Ghana. To understand the rate of abstraction of groundwater in the study area, a finite-element, steady-state groundwater flow model was used to simulate groundwater flow in the aquifer. COMSOL Multiphysics' (FEMLAB) Earth Science Module (ESM) package which is finite element analysis and solver software was used. The radioisotope used in the study was Carbon-14. Three wells were sampled for Carbon-14 concentration and used for the model verification, based on elevation. From the results, groundwater in the study area moves generally from higher to lower hydraulic head along paths perpendicular to the equipotential lines. The groundwater flow paths in the aquifer in the study area indicated that flow is predominantly regional. There was a regional groundwater flow from Kashegu to Nawuni. Kanshegu appears to be recharge area and Nawuni as discharge area. The flow rate obtained using Carbon-14 date was 2.86×10-7 m/s. The overall flow rate obtained from the model simulations was 2.66×10-7 m/s with an error margin of 6%. (author)

  20. Transfer reactions with JENSA: study of the levels in 12N using 14N(p,t)

    Science.gov (United States)

    Chipps, K. A.; Jensa Collaboration

    2015-10-01

    The Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas jet target, recently recommissioned in the ReA3 facility at the NSCL, will provide a state-of-the-art, dense, localized, and pure target of light, gaseous elements for various reaction studies. As one of a series of commissioning physics measurements to demonstrate the benefit of the new Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas jet target for enabling next-generation transfer reaction studies, the 14N(p,t)12N reaction was studied using a pure 300 psig jet of nitrogen, in order to help elucidate the structure of 12N. The experiment and lessons learned for future gas jet transfer reaction measurements will be discussed. Research supported by the U. S. Department of Energy Office of Science and NSF.

  1. The use of barytocalcite for carbon 14 immobilization: One-year leaching behavior

    International Nuclear Information System (INIS)

    The spent nuclear fuel reprocessing process is one of the anthropogenic sources of carbon-14, and since this element is highly mobile in the geosphere, its sequestration is necessary. Several phases and industrial solutions to immobilize this radionuclide have been studied, including the barytocalcite phase BaCa(CO3)2 at 8.08 wt.% of C, which has many advantages such as its low specific volume of carbon. Recently, different options to synthesize this phase have been reported. Here we report on the aqueous durability of barytocalcite, studied for one year with pure water at 30 °C, in order to complete the behavior studies. Unexpected leaching behavior was encountered: it had been supposed that barytocalcite would only leach slowly, but after 1 year, it was no longer present. It appears that its simple CaCO3 and BaCO3 constituents precipitated, though the overall carbon loss was low during the period studied. This research gives a new insight into the behavior of this phase regarding carbon-14 immobilization

  2. Measurement of the carbon 14 activity at natural level in air samples

    International Nuclear Information System (INIS)

    The aim of the study was to measure the carbon 14 activity at natural level in air samples using classical methods of radiochemistry and beta counting. Three different methods have been tested in order to minimise the detection limit. In the three methods, the first step consists in trapping the atmospheric carbon 14 into NaOH (1N) using a bubbling chamber. The atmospheric carbon dioxide reacts with NaOH to form Na2CO3. In the first method the Na2CO3 solution is mixed with a liquid scintillate and is directly analysed by liquid scintillation counting (LSC). The detection limit is approximately 1 Bq/m3 of air samples. The second method consists in evaporating the carbonate solution and then counting the solid residue with a proportional gas circulation counter. The detection limit obtained is lower than the first method (0.4 Bq/m3 of air samples). In the third method, Na2CO3 is precipitated into CaCO3 in presence of CaCl2. CaCO3 is then analysed by LSC. This method appear to be the most appropriate, the detection limit is 0.05 Bq/m3 of air samples. (author)

  3. Relationship between carbon-14 concentrations in atmospheric CO2 and environmental samples

    International Nuclear Information System (INIS)

    Concentration of organically-bound 14C in the tree-ring cellulose of a pine tree grown in Shika-machi (37.1degN, 136.5degE), Ishikawa prefecture, Japan, was measured for the ring-years from 1949 to 1999 and compared with those in several trees from East Asia region reported by other researchers. Temporal variation of organically-bound 14C concentration in the tree-ring cellulose in Shika-machi showed essentially similar variations to those of other reports. However, small difference of Δ14C values was found during the period of 1970-1981 between our data and those of other reports, in addition to the difference during the period of 1963-1967 caused by the so-called latitude dependence of the 14C variations in the northern troposhere. These results suggest that the 14C concentration in atmospheric CO2 was considerably disturbed during the period of 1970-1981, especially in 1970, 1976, and 1978-1981, in the East Asia region. This phenomenon may be interpreted by the possibility of the several times of injections of 14C originated from a series of Chinese thermonuclear bomb tests. Temporal variation of 14C concentration in atmospheric CO2 in Kanazawa city, Ishikawa prefecture, Japan (36.3degN, 136.4degE), was also measured during the period of 1991-1999. An interesting result in comparing 14C concentrations in the tree-ring cellulose with those of atmospheric CO2 is that each of 14C concentrations in a series of tree rings reflected summer means of 14C concentrations in atmospheric CO2. It suggests that the carbon necessary for synthesizing tree-ring cellulose was mainly supplied from atmospheric CO2 in summer season. It is noteworthy that surface soils collected from different sites were found to demonstrate extremely low 14C concentrations than atmospheric CO2. It may be ascribed to the slow exchange rate of carbon between soils and atmospheric CO2. (author)

  4. Chemical Characterization and Removal of Carbon-14 from Irradiated Graphite II - 13023

    International Nuclear Information System (INIS)

    Approximately 250,000 tonnes of irradiated graphite waste exists worldwide and that quantity is expected to increase with decommissioning of Generation II reactors and deployment of Generation IV gas-cooled, graphite moderated reactors. This situation indicates the need for a graphite waste management strategy. Of greatest concern for long-term disposal of irradiated graphite is carbon-14 (C-14), with a half-life of 5730 years. Study of irradiated graphite from some nuclear reactors indicates C-14 is concentrated on the outer 5 mm of the graphite structure. The aim of the research presented last year and updated here is to identify the chemical form of C-14 in irradiated graphite and develop a practical method by which C-14 can be removed. A nuclear-grade graphite, NBG-18, and a high-surface-area graphite foam, POCOFoamR, were exposed to liquid nitrogen (to increase the quantity of C-14 precursor) and neutron-irradiated (1013 neutrons/cm2/s). Finer grained NBG-25 was not exposed to liquid nitrogen prior to irradiation at a neutron flux on the order of 1014 /cm2/s. Characterization of pre- and post-irradiation graphite was conducted to determine the chemical environment and quantity of C-14 and its precursors via the use of surface sensitive characterization techniques. Scanning Electron Microscopy (SEM) was used to evaluate the morphological features of graphite samples. The concentration, chemical composition, and bonding characteristics of C-14 and its precursors were determined through X-ray Photoelectron Spectroscopy (XPS), Time-of-Flight Secondary Ion Mass Spectrometry (SIMS), and Energy Dispersive X-ray Analysis Spectroscopy (EDX). Results of post-irradiation characterization of these materials indicate a variety of surface functional groups containing carbon, oxygen, nitrogen and hydrogen. During thermal treatment, irradiated graphite samples are heated in the presence of an inert carrier gas (with or without oxidant gas), which carries off gaseous products

  5. A study of the levels and distribution of carbon-14 and iodine-129 in the Irish marine and terrestrial environment

    International Nuclear Information System (INIS)

    The Sellafield nuclear fuel reprocessing plant is considered to be the largest single source of global anthropogenic carbon-14 discharge, as well as a substantial source of iodine-129. This study addresses the effects of these releases on the Irish coastal marine environment. In particular, spatial trends in the carbon-14 content of seaweed (Fucus spp.) were assessed by collecting and analysing samples from well-distributed locations around the Irish coastline. Temporal trends were studied by comparing carbon-14 concentrations in present-day samples with levels found in archive material collected at the same locations during research campaigns conducted in the mid-1980s and mid-1990s. Contamination by carbon-14 discharged from Sellafield was most evident in seaweeds from the northeastern Irish coast. This indicates that the pattern of residual currents and, in particular, the south to north transfer of water known to predominate in the Irish Sea, largely controls the spatial distribution of carbon-14 releases. Maximum carbon-14 discharge levels to the marine environment from Sellafield were mirrored by peak concentrations found in seaweed from the mid-1990s and in present-day samples. Concentrations of carbon-14 in seaweed from the west coast of Ireland correspond closely with values measured for seaweeds from the Atlantic coast of northwest Spain and do not appear to be significantly affected by Sellafield discharges

  6. Mass Transfer and Reaction Kinetics in the Carbonization of Magnesium Oxide from Light Calcined Magnesia with Mechanical Force Enhancement

    Institute of Scientific and Technical Information of China (English)

    张焕军; 朱国才

    2004-01-01

    The carbonization of magnesium oxide particles by CO2 was investigated using a stirring mill reactor.The effects of the system temperature, stirring rotation speed, influx rate of CO2 and initial diameter of the magnesium oxide particles on the carbonization process were determined. The results show that the system temperature and the stirring rotation speed are the most significant influencing factors on the carbonization rate. The determination of critical decomposition temperature (CDT) gives the maximum carbonization rate with other conditions fixed. A theoretical model involving mass transfer and reaction kinetics was presented for the carbonization process.The apparent activation energy was calculated to be 32.8kJ·mo1-1. The carbonization process is co-controlled by diffusive mass transfer and chemical reaction. The model fits well with the experimental results.

  7. A synthetic approach to carbon-14 labeled anti-bacterial naphthyridine and quinolone carboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Ekhato, I.V.; Huang, C.C. (Parke, Davis and Co., Ann Arbor, MI (United States))

    1993-09-01

    Labeled versions of (S)-clinafloxacin (1) and two napththyridine carboxylic acid anti-bacterial compounds 2 and 3 which are currently in development were synthesized. Preparations started from hitherto unknown bromo compounds 22 and 10, from which the corresponding [sup 14]C-labeled aromatic carboxylic acids 23 and 12 were generated by metal-halogen exchange followed by carboxylation reaction. Details of these preparations are given. (author).

  8. Spot-free catalysis using gold carbon nanotube & gold graphene composites for hydrogen evolution reaction

    Science.gov (United States)

    Sai Siddhardha, R. S.; Lakshminarayanan, V.; Ramamurthy, Sai Sathish

    2015-08-01

    Hydrogen has been proposed as the green fuel of the future in the wake of depleting fossil fuels. Recently, carbon paste electrodes (CPE) modified with nanomaterials as electrocatalysts have drawn wide attention for hydrogen evolution reaction (HER) in acid medium. The CPEs are advantageous owing to their chemical stability and ease of fabrication. Their applications for HER without any modification, however, are hampered on account of large hydrogen overpotential associated with carbon surface. In the present study, CPE has been modified with novel gold composites as electro-catalysts for HER in acid medium. The nanocomposites have shown ∼100 fold increased current density than unmodified CPE at -0.3 V. Most strikingly for the first time, this study has quantitatively brought out the difference in catalysis between surfactant capped and pristine gold nanoparticles in terms of their application as spot-free catalysts towards hydrogen gas production by electrochemical route.

  9. Physicochemical characteristics, oxidative capacities and cytotoxicities of sulfate-coated, 1,4-NQ-coated and ozone-aged black carbon particles

    Science.gov (United States)

    Li, Qian; Shang, Jing; Liu, Jia; Xu, Weiwei; Feng, Xiang; Li, Rui; Zhu, Tong

    2015-02-01

    Black carbon (BC) particles play important roles in climate change, visibility impairment, atmospheric reaction process, and health effect. The aging processes of BC alter not only atmospheric composition, but also the physicochemical characteristics of BC itself, thus impacting the environment and health effects. Here, three types of BC including sulfate-coated, 1,4-naphthoquinone (1,4-NQ)-coated, and O3-aged BC are presented. The morphologies, structures, extraction components, the amount of water-soluble organic carbon (WSOC) and free radical intensities of the three types of BC particles are examined by transmission electron microscopy, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), ultraviolet-visible spectrophotometry, total organic carbon detector and electron paramagnetic resonance, respectively. Dithiothreitol (DTT) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide assays are utilized to assess the changes in oxidative capacity and cytotoxicity towards murine alveolar macrophage cells. The orders of DTT activities and cytotoxicities of the particles are both arranged as follows: BC/1,4-NQ > BC/O3 > BC > BC/sulfate, mainly because 1,4-NQ owned high oxidative potential and cytotoxicity, while sulfate did not exhibit oxidative capacity and cytotoxicity. The insoluble components of particles contribute most of the total DTT activity, whereas either water or methanol extract is minor contributor. DTT activity was positively correlated with both WSOC content and free radical intensity, with the correlation between DTT activity and WSOC content was stronger than that between DTT activity and free radical intensity.

  10. Rapid Access to Spirocyclized Indolenines via Palladium-Catalyzed Cascade Reactions of Tryptamine Derivatives and Propargyl Carbonate

    OpenAIRE

    Montgomery, Thomas D.; Nibbs, Antoinette E.; Zhu, Ye; Rawal, Viresh H.

    2014-01-01

    We report the intermolecular palladium-catalyzed reaction of tert-butyl propargyl carbonate with tryptamine derivatives or other indole-containing bis-nucleophiles. The reaction proceeds under mild conditions and with low catalyst loadings to afford novel spiroindolenine products in good to high yields.

  11. Palladium on Carbon-Catalyzed Suzuki-Miyaura Coupling Reaction Using an Efficient and Continuous Flow System

    Directory of Open Access Journals (Sweden)

    Tomohiro Hattori

    2015-01-01

    Full Text Available The continuous flow Suzuki-Miyaura reaction between various haloarenes and arylboronic acids was successfully achieved within only ca. 20 s during the single-pass through a cartridge filled with palladium on carbon (Pd/C. No palladium leaching was observed in the collected reaction solution by atomic absorption spectrometry (detection limit: 1 ppm.

  12. Stepwise Quenching of Exciton Fluorescence in Carbon Nanotubes by Single Molecule Reactions

    CERN Document Server

    Cognet, Laurent; Rocha, John-David R; Doyle, Condell D; Tour, James M; Weisman, R Bruce

    2007-01-01

    Single-molecule chemical reactions with individual single-walled carbon nanotubes were observed through near-infrared photoluminescence microscopy. The emission intensity within distinct submicrometer segments of single nanotubes changes in discrete steps after exposure to acid, base, or diazonium reactants. The steps are uncorrelated in space and time, and reflect the quenching of mobile excitons at localized sites of reversible or irreversible chemical attack. Analysis of step amplitudes reveals an exciton diffusional range of about 90 nanometers, independent of nanotube structure. Each exciton visits approximately 104 atomic sites during its lifetime, providing highly efficient sensing of local chemical and physical perturbations.

  13. Hetero-atom doped carbon nanotubes for dye degradation and oxygen reduction reaction

    International Nuclear Information System (INIS)

    We report the synthesis of nitrogen doped vertically aligned multi-walled (MWNCNTs) carbon nanotubes by pyrolysis and its catalytic performance for degradation of methylene blue (MB) dye & oxygen reduction reaction (ORR). The degradation of MB was monitored spectrophotometrically with time. Kinetic studies show the degradation of MB follows a first order kinetic with rate constant k=0.0178 min−1. The present rate constant is better than that reported for various supported/non-supported semiconducting nanomaterials. Further ORR performance in alkaline media makes MWNCNTs a promising cost-effective, fuel crossover tolerance, metal-free, eco-friendly cathode catalyst for direct alcohol fuel cell

  14. Benzyl alcohol oxidation in supercritical carbon dioxide: spectroscopic insight into phase behaviour and reaction mechanism.

    Science.gov (United States)

    Caravati, Matteo; Grunwaldt, Jan-Dierk; Baiker, Alfons

    2005-01-21

    Selective oxidation of benzyl alcohol to benzaldehyde with molecular oxygen over an alumina-supported palladium catalyst was performed with high rate at about 95% selectivity in supercritical carbon dioxide. The experiments in a continuous flow fixed-bed reactor showed that the pressure has a strong influence on the reaction rate. A marked increase of the rate (turnover frequency) from 900 h(-1) to 1800 h(-1) was observed when increasing the pressure from 140 to 150 bar. Video monitoring of the bulk fluid phase behavior and the simultaneous investigation by transmission and attenuated total reflection (ATR) infrared spectroscopy at two positions of the view cell showed that the sharp increase in activity is correlated to a transition from a biphasic to a monophasic reaction mixture. In the single phase region, both oxygen and benzyl alcohol are dissolved in the supercritical CO2 phase, which leads to a reduction of the mass transport resistances (both in the external fluid film and in the catalyst pores) and thus to the high reaction rate measured in the catalytic experiments. The phase transition could be effectively and easily monitored by transmission and ATR-IR spectroscopy despite the small concentration of the dense liquid like phase. Deposition of the Pd/Al2O3 catalyst on the ATR-crystal at the bottom of the view cell allowed to gain insight into the chemical changes and mass transfer processes occurring in the solid/liquid interface region during reaction. Analyzing the shift of the upsilon2 bending mode of CO2 gave information on the fluid composition in and outside the catalyst pores. Moreover, the catalytic reaction could be investigated in situ in this spectroscopic batch reactor cell by monitoring simultaneously the reaction progress, the phase behaviour and the catalytic interface. PMID:19785149

  15. Carbon-13 and deuterium isotope effects on the catalytic reactions of biotin carboxylase

    International Nuclear Information System (INIS)

    13C and 2H kinetic isotope effects have been used to investigate the mechanism of enzymic biotin carboxylation. /sup D/(V/K) is 0.50 in 80% D2O at pD 8.0 for the forward reaction and 0.57 at pD 8.5 for the phosphorylation of ADP by carbamoyl phosphate. These values approach the theoretical maximum limit for a reaction in which a proton is transferred from a sulfhydryl to a nitrogen or oxygen base. Therefore, it appears that this portion of the reaction is at or near equilibrium. 13(V/K) at pH 8 is 1.007; the small magnitude of this number suggests that the reaction is almost fully committed by the time the carbon-sensitive steps are reached. There does not appear to be a reverse commitment to the reaction under the conditions in which 13(V/K) was determined. A large forward commitment is consistent with the failure to observe positional isotope exchange from the βγ-bridge position to the β-nonbridge position in [18O4]ATP or washout of 18O from the γ-nonbridge positions. Transfer of 18O from bicarbonate to inorganic phosphate in the forward reaction was clearly observed, however. These observations suggest that biotin carboxylase exists in two distinct forms which differ in the protonation states of the two active-site bases, one of which is a sulfhydryl. Only when the sulfhydryl is ionized and the second base protonated can catalysis take place. Carboxylation of biotin is postulated to occur via a pathway in which carboxyphosphate is formed by nucleophilic attack of bicarbonate on ATP. Decarboxylation of carboxyphosphate in the active site generates CO2, which serves to carboxylate the isourea tautomer of biotin that is generated by the removal of the proton on N1' by the ionized sulfhydryl

  16. An assessment of the inventory of Carbon-14 in the oceans

    International Nuclear Information System (INIS)

    The oceanic inventory for natural 14C is 19.6x1029 atoms, an estimate similar to those found by other methods. The 14C produced from nuclear weapons (1972) is 550x1026 atoms and 52% was in the oceans. From 1972 to 1985 132x1026 atoms of bomb 14C were added. The nuclear power industry produces 0.5x1026 atoms per year (17% of natural production rate). Most estimates by varying methods indicate an exchange time of carbon from atmosphere to ocean of about seven years or about 22 moles m-2 yr-1 for the surface ocean. The oceanic distribution generally has higher concentrations in low to mid latitudes, and low concentrations in the most southern regions, with the deep ocean retaining levels similar to those before nuclear testing

  17. 14C Activity and Global Carbon Cycle Changes over the Past 50,000 Years

    Science.gov (United States)

    Hughen, K.; Lehman, S.; Southon, J.; Overpeck, J.; Marchal, O.; Herring, C.; Turnbull, J.

    2004-01-01

    A series of 14C measurements in Ocean Drilling Program cores from the tropical Cariaco Basin, which have been correlated to the annual-layer counted chronology for the Greenland Ice Sheet Project 2 (GISP2) ice core, provides a high-resolution calibration of the radiocarbon time scale back to 50,000 years before the present. Independent radiometric dating of events correlated to GISP2 suggests that the calibration is accurate. Reconstructed 14C activities varied substantially during the last glacial period, including sharp peaks synchronous with the Laschamp and Mono Lake geomagnetic field intensity minimal and cosmogenic nuclide peaks in ice cores and marine sediments. Simulations with a geochemical box model suggest that much of the variability can be explained by geomagnetically modulated changes in 14C production rate together with plausible changes in deep-ocean ventilation and the global carbon cycle during glaciation.

  18. Source terms; isolation and radiological consequences of carbon-14 waste in the Swedish SFR repository

    International Nuclear Information System (INIS)

    The source term, isolation capacity, and long-term radiological exposure of 14C from the Swedish underground repository for low and intermediate level waste (SFR) is assessed. The prospective amount of 14C in the repository is assumed to be 5 TBq. Spent ion exchange resins will be the dominant source of 14C. The pore water in the concrete repository is expected to maintain a pH of >10.5 for a period of at least 106 y. The cement matrix of the repository will retain most of the 14CO32- initially present. Bacterial production of CO2 and CH4 from degradation of ion-exchange resins and bitumen may contribute to 14C release to the biosphere. However, CH4 contributes only to a small extent to the overall carbon loss from freshwater ecosystems. The individual doses to local and regional individuals peaked with 5x10-3 and regional individuals peaked with 5x10-3 and 8x10-4 μSv y-1 respectively at about 2.4x104 years. A total leakage of 8.4 GBq of 14C from the repository will cause a total collective dose commitment of 1.1 manSv or 130 manSv TBq-1. (authors)

  19. Theoretical and Experimental Study on Reaction Coupling: Dehydrogenation of Ethylbenzene in the Presence of Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Dehydrogenation of ethylbenzene (EB) to styrene (ST) in the presence of CO2, in which EB dehydrogenation is coupled with the reverse water-gas shift (RWGS), was investigated extensively through both theoretical analysis and experimental characterization. The reaction coupling proved to be superior to the single dehydrogenation in several respects. Thermodynamic analysis suggests that equilibrium conversion of EB can be improved greatly by reaction coupling due to the simultaneous elimination of the hydrogen produced from dehydrogenation. Catalytic tests proved that iron and vanadium supported on activated carbon or Al2O3 with certain promoters are potential catalysts for this coupling process.The catalysts of iron and vanadium are different in the reaction mechanism, although ST yield is always associated with CO2 conversion over various catalysts. The two-step pathway plays an important role in the coupling process over Fe/Al2O3, while the one-step pathway dominates the reaction over V/Al2O3.Coke deposition and deep reduction of active components are the major causes of catalyst deactivation.CO2 can alleviate the catalyst deactivation effectively through preserving the active species at high valence in the coupling process, though it can not suppress the coke deposition.

  20. Evaluating the Catalytic Effects of Carbon Materials on the Photocatalytic Reduction and Oxidation Reactions of TiO2

    International Nuclear Information System (INIS)

    TiO2 composites with seven different carbon materials (activated carbons, graphite, carbon fibers, single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene oxides, and reduced graphene oxides) that are virgin or treated with nitric acid are prepared through an evaporation method. The photocatalytic activities of the as-prepared samples are evaluated in terms of H2 production from aqueous methanol solution (photo-catalytic reduction: PCR) and degradation of aqueous pollutants (phenol, methylene blue, and rhodamine B) (photocatalytic oxidation: PCO) under AM 1.5-light irradiation. Despite varying effects depending on the kinds of carbon materials and their surface treatment, composites typically show enhanced PCR activity with maximum 50 times higher H2 production as compared to bare TiO2. Conversely, the carbon-induced synergy effects on PCO activities are insignificant for all three substrates. Colorimetric quantification of hydroxyl radicals supports the absence of carbon effects. However, platinum deposition on the binary composites displays the enhanced effect on both PCR and PCO reactions. These differing effects of carbon materials on PCR and PCO reactions of TiO2 are discussed in terms of physicochemical properties of carbon materials, coupling states of TiO2/carbon composites, interfacial charge transfers. Various surface characterizations of composites (UV-Vis diffuse reflectance, SEM, FTIR, surface area, electrical conductivity, and photoluminescence) are performed to gain insight on their photocatalytic redox behaviors

  1. Analytical Validation of Accelerator Mass Spectrometry for Pharmaceutical Development: the Measurement of Carbon-14 Isotope Ratio.

    Energy Technology Data Exchange (ETDEWEB)

    Keck, B D; Ognibene, T; Vogel, J S

    2010-02-05

    Accelerator mass spectrometry (AMS) is an isotope based measurement technology that utilizes carbon-14 labeled compounds in the pharmaceutical development process to measure compounds at very low concentrations, empowers microdosing as an investigational tool, and extends the utility of {sup 14}C labeled compounds to dramatically lower levels. It is a form of isotope ratio mass spectrometry that can provide either measurements of total compound equivalents or, when coupled to separation technology such as chromatography, quantitation of specific compounds. The properties of AMS as a measurement technique are investigated here, and the parameters of method validation are shown. AMS, independent of any separation technique to which it may be coupled, is shown to be accurate, linear, precise, and robust. As the sensitivity and universality of AMS is constantly being explored and expanded, this work underpins many areas of pharmaceutical development including drug metabolism as well as absorption, distribution and excretion of pharmaceutical compounds as a fundamental step in drug development. The validation parameters for pharmaceutical analyses were examined for the accelerator mass spectrometry measurement of {sup 14}C/C ratio, independent of chemical separation procedures. The isotope ratio measurement was specific (owing to the {sup 14}C label), stable across samples storage conditions for at least one year, linear over 4 orders of magnitude with an analytical range from one tenth Modern to at least 2000 Modern (instrument specific). Further, accuracy was excellent between 1 and 3 percent while precision expressed as coefficient of variation is between 1 and 6% determined primarily by radiocarbon content and the time spent analyzing a sample. Sensitivity, expressed as LOD and LLOQ was 1 and 10 attomoles of carbon-14 (which can be expressed as compound equivalents) and for a typical small molecule labeled at 10% incorporated with {sup 14}C corresponds to 30 fg

  2. The reaction of carbon disulphide with -haloketones and primary amines in the presence of potassium iodide as catalyst

    Indian Academy of Sciences (India)

    Javad Safaei-Ghomi; Fariba Salimi; Ali Ramazani

    2013-09-01

    A simple, mild and convenient method has been developed for the synthesis of 3,4,5-trialkyl-1,3-thiazole-2(3)-thione derivatives through one pot three-component reaction between a primary amine, carbon disulphide, and -haloketone in the presence of potassium iodide at room temperature conditions. The products were obtained with excellent yield and appropriate reaction times. This reaction represents a rapid and unprecedented route to the described molecules that have biological specifications.

  3. Study of 16O(12C,α20Ne)α for the investigation of carbon-carbon fusion reaction via the Trojan Horse Method

    Science.gov (United States)

    Rapisarda, G. G.; Spitaleri, C.; Bordeanu, C.; Hons, Z.; Kiss, G. G.; La Cognata, M.; Mrazek, J.; Nita, C.; Pantelica, D.; Petrascu, H.; Pizzone, R. G.; Romano, S.; Szücs, T.; Trache, L.; Tumino, A.; Velisa, G.

    2016-04-01

    Carbon-carbon fusion reaction represents a nuclear process of great interest in astrophysics, since the carbon burning is connected with the third phase of massive stars (M > 8 M⊙) evolution. In spite of several experimental works, carbon-carbon cross section has been measured at energy still above the Gamow window moreover data at low energy present big uncertainty. In this paper we report the results about the study of the 16O(12C,α 20Ne)α reaction as a possible three-body process to investigate 12C(12C,α)20Ne at astrophysical energy via Trojan Horse Method (THM). This study represents the first step of a program of experiments aimed to measure the 12C+12C cross section at astrophysical energy using the THM.

  4. Resonance Strength Measurement at Astrophysical Energies: The 17O(p,α14N Reaction Studied via THM

    Directory of Open Access Journals (Sweden)

    Sergi M.L.

    2016-01-01

    Full Text Available In recent years, the Trojan Horse Method (THM has been used to investigate the low-energy cross sections of proton-induced reactions on 17O nuclei, overcoming extrapolation procedures and enhancement effects due to electron screening. We will report on the indirect study of the 17O(p,α14N reaction via the Trojan Horse Method by applying the approach developed for extracting the resonance strength of narrow resonance in the ultralow energy region. The mean value of the strengths obtained in the two measurements was calculated and compared with the direct data available in literature.

  5. Resonance Strength Measurement at Astrophysical Energies: The 17O(p,α)14N Reaction Studied via THM

    Science.gov (United States)

    Sergi, M. L.; Spitaleri, C.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Rapisarda, G. G.; Mukhamedzhanov, A.; Irgaziev, B.; Tang, X. D.; Wischer, M.; Mrazek, J.; Kroha, V.

    2016-05-01

    In recent years, the Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of proton-induced reactions on 17O nuclei, overcoming extrapolation procedures and enhancement effects due to electron screening. We will report on the indirect study of the 17O(p,α)14N reaction via the Trojan Horse Method by applying the approach developed for extracting the resonance strength of narrow resonance in the ultralow energy region. The mean value of the strengths obtained in the two measurements was calculated and compared with the direct data available in literature.

  6. Resonance strength measurement at astrophysical energies: The 17O(p,α)14N reaction studied via Trojan Horse Method

    Science.gov (United States)

    Sergi, M. L.; Spitaleri, C.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Rapisarda, G. G.; Mukhamedzhanov, A.; Irgaziev, B.; Tang, X. D.; Wiescher, M.; Mrazek, J.; Kroha, V.

    2015-10-01

    In recent years, the Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of proton-induced reactions on 17O nuclei, overcoming extrapolation procedures and enhancement effects due to electron screening. We will report on the indirect study of the 17O(p,α)14N reaction via the THM by applying the approach developed for extracting the resonance strength of narrow resonance in the ultralow energy region. Two measurements will be described and the experimental THM cross sections will be shown for both experiments.

  7. Resonance Strength Measurement at Astrophysical Energies: The 17O(p,α)14N Reaction Studied via THM

    OpenAIRE

    Sergi M.L.; Spitaleri C.; La Cognata M.; Lamia L.; Pizzone R.G.; Rapisarda G.G.; Mukhamedzhanov A.; Irgaziev B.; Tang X.D.; Wischer M.; Mrazek J.; Kroha V.

    2016-01-01

    In recent years, the Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of proton-induced reactions on 17O nuclei, overcoming extrapolation procedures and enhancement effects due to electron screening. We will report on the indirect study of the 17O(p,α)14N reaction via the Trojan Horse Method by applying the approach developed for extracting the resonance strength of narrow resonance in the ultralow energy region. The mean value of the strengths obtained in ...

  8. A simultaneous evaluation of neutron induced reaction cross sections for 56Fe at En = 14.1 MeV

    International Nuclear Information System (INIS)

    A simultaneous evaluation of neutron induced reaction (i.e., (n,total), (n,n), (n,non), (n,n'), (n,2n), (n,nα), (n,np), (n,γ), (n,p), (n,d), (n,α), (n,n-em), (n,p-em), (n,d-em) and (n,α-em) reaction) cross sections on 56Fe at En = 14.1 MeV is carried out. The evaluated cross sections are compared with the corresponding measured values and the evaluations for CENDL-2, ENDF/B-6, JEF-2.2, JENDL-3 and BROND-2. (9 tabs., 1 fig)

  9. Resonance strength measurement at astrophysical energies: The 17O(p,α)14N reaction studied via Trojan Horse Method

    International Nuclear Information System (INIS)

    In recent years, the Trojan Horse Method (THM) has been used to investigate the low-energy cross sections of proton-induced reactions on 17O nuclei, overcoming extrapolation procedures and enhancement effects due to electron screening. We will report on the indirect study of the 17O(p,α)14N reaction via the THM by applying the approach developed for extracting the resonance strength of narrow resonance in the ultralow energy region. Two measurements will be described and the experimental THM cross sections will be shown for both experiments

  10. Proportion of biogenic carbon in flue gas by carbon-14 measurement

    International Nuclear Information System (INIS)

    The subject of this project is closely related to EU's emissions trading system and to the current and future monitoring needs therein. The determination of fossil part of emissions originated from various fuels by stack measurements or by laboratory analyses could possibly find users also in other fields outside the ETS (e.g. waste incineration). After the market analysis and preliminary measurements carried out in the previous Biocarbon project this project focused on the development of the sampling method for stack measurements and to the validation of isotope measurements. The results obtained for fossil proportion of the fuel by current methods will be compared to those obtained by isotope measurements. The operation of the sampling system was tested in long period tests in plant conditions. Moreover, the sample preparation methods and isotope measurements were validated by measuring the proportions of biogenic and fossil carbon of known traffic fuel mixtures. The developed service concept can also be utilised as a fraud prevention measure related to the expanding international biofuels-trade. (orig.)

  11. Isotope separation of carbon-13 by counter-current column with exchange reaction between carbon dioxide and carbamic acid

    International Nuclear Information System (INIS)

    The isotope separation performance of carbon-13 with exchange reaction between CO2 and carbamic acid was studied and some factors for the counter-current column were studied for improving the overall performance. The working fluid for the experiments was a solution of DNBA, (C4H9)2NH, and n-octane mixture. The rate-controlling step of 13C transfer at temperatures higher than 10 deg C was the exchange reaction between carbamic acid and CO2 dissolved by physical absorption. The capacity coefficient of 13C transfer between gas and liquid in the counter-current column was successfully related to the product of three factors: the concentration of carbamic acid, the concentration of CO2 dissolved by physical absorption and the liquid holdup of the column. The liquid holdup was also an important factor. As the holdup increased, the isotope exchange rate and the overall separation factor of the column increased. However, the transient time to equilibrium was much longer. (author)

  12. Synthesis of a polycyclic aromatic hydrocarbon marked with carbon-14: (b, d e f) dibenzo-chrysene {sup 14}C-7,14; Synthese d'un hydrocarbure aromatique polycyclique marque au carbone 14: le dibenzo (b, d e f) chrysene {sup 14}C-7,14

    Energy Technology Data Exchange (ETDEWEB)

    Chatelain, G. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    (b, d e f) dibenzo-chrysene C-7,14 has been synthesized from radioactive carbon dioxide and the organic magnesium compound derived from 1,5 dibromo naphthalene. The product has been purified by a very precise series of fractionated chromatographs on alumina having a chromatographic activity. This has necessitated the development of a special technique. (author) [French] Le dibenzo (b, d e f) chrysene 14C-7,14 a ete synthetise au depart de gaz carbonique radioactif et de bis-organomagnesien derive du dibromo-1,5 naphtalene. Le produit a ete purifie par une serie de chromatographies fractionnees sur alumine d'activite chromatographique tres precise. Ceci a fait l'objet d'une mise au point de technique. (auteur)

  13. The first chiral diene-based metal-organic frameworks for highly enantioselective carbon-carbon bond formation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sawano, Takahiro; Ji, Pengfei; McIsaac, Alexandra R.; Lin, Zekai; Abney, Carter W.; Lin, Wenbin [UC

    2016-02-01

    We have designed the first chiral diene-based metal–organic framework (MOF), E₂-MOF, and postsynthetically metalated E₂-MOF with Rh(I) complexes to afford highly active and enantioselective single-site solid catalysts for C–C bond formation reactions. Treatment of E₂-MOF with [RhCl(C₂H₄)₂]₂ led to a highly enantioselective catalyst for 1,4-additions of arylboronic acids to α,β-unsaturated ketones, whereas treatment of E₂-MOF with Rh(acac)(C₂H₄)₂ afforded a highly efficient catalyst for the asymmetric 1,2-additions of arylboronic acids to aldimines. Interestingly, E₂-MOF·Rh(acac) showed higher activity and enantioselectivity than the homogeneous control catalyst, likely due to the formation of a true single-site catalyst in the MOF. E₂-MOF·Rh(acac) was also successfully recycled and reused at least seven times without loss of yield and enantioselectivity.

  14. Validation test for carbon-14 migration and accumulation in a Canadian shield lake

    International Nuclear Information System (INIS)

    This particular BIOMOVS II Technical Report is concerned with modelling the transfer of C-14 through the aquatic food chain following release to a Canadian shield lake. Model performance has been tested against field data supplied by Atomic Energy of Canada Limited. Carbon-14 was added in 1978 to the epilimnion of a small Canadian Shield lake to investigate primary production and carbon dynamics. Data from this experiment were used within BIOMOVS II to provide a validation test, which involved modelling the fate of the C-14 added to the lake. The nature of the spike and the subsequent monitoring allowed the investigation of both short-term processes relevant to evaluation of the impacts of accidental releases as well as longer-term processes relevant to routine release and to solid waste disposal. Four models participated in the scenario: 1) a simple mass balance model of a lake (AECL, Whiteshell Laboratories, Canada); 2) a relatively complex deterministic dynamic compartment model (QuantiSci Ltd.,UK); 3) a complex deterministic model (Studsvik Model A) and a more complex probabilistic model (Studsvik Model B; Studsvik Eco and Safety AB, Sweden). Endpoints were C-14 concentrations in water, sediment and whitefish over a thirteen year period. Each model produced reasonable predictions when compared to the observed data and when uncertainty is taken into consideration. About 0.2 to 0.4% of the initial C-14 inventory to the lakes remained in the water at the end of the study, because of internal recycling of C-14 from sediments. The simple AECL model did not account for this internal recycling of C-14 and, in this respect, its predictions were not as realistic as those of the QuantiSci and Studsvik models for concentrations in water. However, the AECL model predictions for the C-14 inventory remaining in lake sediment were closest to the observed values. Overall, Studsvik Model B was the most accurate in simulating C-14 concentrations in water and in whitefish, but

  15. Effect of denitrifying bacteria on the electrochemical reaction of activated carbon fiber in electrochemical biofilm system

    Institute of Scientific and Technical Information of China (English)

    YING Diwen; JIA Jinping; ZHANG Lehua

    2007-01-01

    An electrochemical-activated denitrifying biofilm system consisting of activated carbon fiber electrodes immobilized with denitrifying bacteria film as cathode was studied.A revised model for an electrochemical-activated denitrifying biofilm was developed and validated by electrochemical analysis of cathodal polarization curves and nitrate consumption rate.The cathodal polarization curve and nitrate consumption rate were introduced to verify the rate of electrochemical reaction and the activity of denitrifying bacteria,respectively.It was shown that the denitrification process effectively strengthened the electrochemical reaction while the electron also intensified denitrification activity.Electron was transferred between electrochemical process and biological process not only by hydrogen molecule but also by new produced active hydrogen atom.Additionally,a parameter of apparent exchange current density was deprived from the cathodal polarization curve with high overpotential,and a new bio-effect current density was defined through statistical analysis,which was linearly dependent to the activity of denitrification bacteria.Activated carbon fiber (ACF) electrode was also found to be more suitable to the electrochemical denitrifying system compared with graphite and platinum.

  16. A new empirical formula for 14-15 MeV neutron induced (N,P) reaction cross-section

    International Nuclear Information System (INIS)

    In this study we have introduced a new empirical formula by modifying the Levkovskiis formula with the new coefficients for the calculation of (n,p) reaction cross-sections at 14-15 MeV neutron incident energy. The cross sections have been calculated using asymmetry parameter depended on empirical formulas for the incoming energies 14-15 MeV neutron. Levkovskiis formulas have been determined by least-squares method that fit to the experimental cross sections. The measured experimental cross-sections values of the (n, p) reactions are taken from literature. The resulting modified formulas yielded cross sections, representing smaller χ2 deviations from experimental values, and values much closer to unity as compared with the calculation using Levskovskiis original formulas. The results obtained have been discussed and compared with the existing formulas, and found to be well in agreement, when used to correlate the available experimental σ(n,p) data of different nuclei

  17. ATOMIC-LEVEL IMAGING OF CO2 DISPOSAL AS A CARBONATE MINERAL: OPTIMIZING REACTION PROCESS DESIGN; ANNUAL

    International Nuclear Information System (INIS)

    Fossil fuels, especially coal, can support the energy demands of the world for centuries to come, if the environmental problems associated with CO(sub 2) emissions can be overcome. Permanent and safe methods for CO(sub 2) capture and disposal/storage need to be developed. Mineralization of stationary-source CO(sub 2) emissions as carbonates can provide such safe capture and long-term sequestration. Mg-rich lamellar-hydroxide based minerals (e.g., brucite and serpentine) offer a class of widely available, low-cost materials, with intriguing mineral carbonation potential. Carbonation of such materials inherently involves dehydroxylation, which can disrupt the material down to the atomic level. As such, controlled dehydroxylation before and/or during carbonation may provide an important parameter for enhancing carbonation reaction processes. Mg(OH)(sub 2) was chosen as the model material for investigating lamellar hydroxide mineral dehydroxylation/carbonation mechanisms due to (i) its structural and chemical simplicity, (ii) interest in Mg(OH)(sub 2) gas-solid carbonation as a potentially cost-effective CO(sub 2) mineral sequestration process component, and (iii) its structural and chemical similarity to other lamellar-hydroxide-based minerals (e.g., serpentine-based minerals) whose carbonation reaction processes are being explored due to their low-cost CO(sub 2) sequestration potential. Fundamental understanding of the mechanisms that govern dehydroxylation/carbonation processes is essential for cost optimization of any lamellar-hydroxide-based mineral carbonation sequestration process

  18. Interactions of 14C-labeled multi-walled carbon nanotubes with soil minerals in water

    International Nuclear Information System (INIS)

    Carbon nanotubes are often modified to be stable in the aqueous phase by adding extensive hydrophilic surface functional groups. The stability of such CNTs in water with soil or sediment is one critical factor controlling their environmental fate. We conducted a series of experiments to quantitatively assess the association between water dispersed multi-walled carbon nanotubes (MWCNTs) and three soil minerals (kaolinite, smectite, or shale) in aqueous solution under different sodium concentrations. 14C-labeling was used in these experiments to unambiguously quantify MWCNTs. The results showed that increasing ionic strength strongly promoted the removal of MWCNTs from aqueous phase. The removal tendency is inversely correlated with the soil minerals’ surface potential and directly correlated with their hydrophobicity. This removal can be interpreted by the extended Derjaguin–Landau–Verwey–Overbeek (EDLVO) theory especially for kaolinite and smectite. Shale, which contains large and insoluble organic materials, sorbed MWCNTs the most strongly. - Graphical abstract: The stability of multi-walled carbon nanotubes in an aqueous system containing kaolinite, smectite or shale as model soil minerals is investigated using the 14C-labeling technique. Highlights: ► The interactions between MWCNTs and kaolinite, smectite, or shale were probed. ► Surface potential and hydrophobicity of the particles governs their interactions. ► EDLVO can be used to interpret the interactions. ► Insoluble organic materials in shale strongly sorb MWCNTs.

  19. Elucidation of the involvement of p14, a sperm protein during maturation, capacitation and acrosome reaction of caprine spermatozoa.

    Directory of Open Access Journals (Sweden)

    Pinki Nandi

    Full Text Available Mammalian sperm capacitation is an essential prerequisite to fertilization. Although progress is being made in understanding the physiology and biochemistry of capacitation, little has been yet explored about the potential role(s of individual sperm cell protein during this process. Therefore elucidation of the role of different sperm proteins in the process of capacitation might be of great importance to understand the process of fertilization. The present work describes the partial characterization of a 14-kDa protein (p14 detected in goat spermatozoa using an antibody directed against the purified protein. Confocal microscopic analysis reveals that the protein is present in both the intracellular and extracellular regions of the acrosomal and postacrosomal portion of caudal sperm head. Though subcellular localization shows that p14 is mainly cytosolic, however it is also seen to be present in peripheral plasma membrane and soluble part of acrosome. Immuno-localization experiment shows change in the distribution pattern of this protein upon induction of capacitation in sperm cells. Increased immunolabeling in the anterior head region of live spermatozoa is also observed when these cells are incubated under capacitating conditions, whereas most sperm cells challenged with the calcium ionophore A23187 to acrosome react, lose their labeling almost completely. Intracellular distribution of p14 also changes significantly during acrosome reaction. Interestingly, on the other hand the antibody raised against this 14-kDa sperm protein enhances the forward motility of caprine sperm cells. Rose-Bengal staining method shows that this anti-p14 antibody also decreases the number of acrosome reacted cells if incubated with capacitated sperm cells before induction of acrosome reaction. All these results taken together clearly indicate that p14 is intimately involved and plays a critical role in the acrosomal membrane fusion event.

  20. Multipolarity analysis for 14C high-energy resonance populated by (18O,16O) two-neutron transfer reaction

    International Nuclear Information System (INIS)

    The 12C(18O,16O)14C reaction at 84 MeV incident energy has been explored up to high excitation energy of the residual nucleus thanks to the use of the MAGNEX spectrometer to detect the ejectiles. In the region above the two-neutron separation energy, a resonance has been observed at 16.9 MeV. A multipolarity analysis of the cross section angular distribution indicates an L = 0 character for such a transition

  1. Investigation of the systematic dependence of (n,2n) reaction cross sections at 14.5 MeV

    International Nuclear Information System (INIS)

    A new formula for the (n,2n) reaction cross-section estimation at an energy of 14.5 MeV has been obtained. The formula governs accurately an experimental data and better covers isotopic cross-section dependence than proposed by other researchers. As opposed to the others formulae, this one takes into account the difference in cross-sections values for nuclei of different parity. 23 refs., 6 figs., 2 tabs

  2. The 65 keV resonance in the O-17(p,alpha)N-14 thermonuclear reaction

    Czech Academy of Sciences Publication Activity Database

    Sergi, M. L.; Spitaleri, C.; Coc, A.; Mukhamedzhanov, A. M.; Burjan, Václav; Gulino, M.; Hammache, F.; Hons, Zdeněk; Irgaziev, B.; Kiss, G.G.; Kroha, Václav; La Cognata, M.; Lamia, L.; Pizzone, R. G.; de Sereville, N.; Somorjai, E.

    2010-01-01

    Roč. 834, 1-4 (2010), 676C-678C. ISSN 0375-9474. [10th International Conference on Nucleus-Nucleus Collisions (NN2009). Beijing, 16.08.2009-21.08.2009] Institutional research plan: CEZ:AV0Z10480505 Keywords : REACTION-RATES * ENERGIES Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.986, year: 2010

  3. Application of the dose limitation system to the control of carbon-14 releases from heavy-water-moderated reactors

    International Nuclear Information System (INIS)

    Heavy-water-moderated reactors produce substantially more carbon-14 than light-water reactors. Applying the principles of the systems of dose limitation, the paper presents the rationale used for establishing the release limit for effluents containing this nuclide and for the decisions made regarding the effluent treatment in the third nuclear power station in Argentina. Production of carbon-14 in PHWR and the release routes are analysed in the light of the different effluent treatment possibilities. An optimization assessment is presented, taking into account effluent treatment and waste management costs, and the collective effective dose commitment due to the releases. The contribution of present carbon-14 releases to future individual doses is also analysed in the light of an upper bound for the contribution, representing a fraction of the individual dose limits. The paper presents the resulting requirements for the effluent treatment regarding carbon-14 and the corresponding regulatory aspects used in Argentina. (author)

  4. Simulation of carbon cycling, including dissolved organic carbon transport, in forest soil locally enriched with 14C

    Energy Technology Data Exchange (ETDEWEB)

    Tipping, Ed [Lancaster Environment Center; Chamberlain, Paul M. [Lancaster Environment Center; Froberg, Mats J. [Sveriges Lantbruksuniversitet; Hanson, Paul J [ORNL; Jardine, Philip M [ORNL

    2012-01-01

    The DyDOC model was used to simulate organic matter decomposition and dissolved organic matter (DOM) transport in deciduous forest soils at the Oak Ridge Reservation (ORR) in Tennessee, USA. The model application relied on extensive data from the Enriched Background Isotope study (EBIS), which made use of a local atmospheric enrichment of radiocarbon to establish a large-scale manipulation experiment with different inputs of 14C from both above-ground and below-ground litter. The aim of the modelling was to test if the processes that constitute DyDOC can explain the available observations for C dynamics in the ORR. More specifically we used the model to investigate the origins of DOM, its dynamics within the soil profile, and how it contributes to the formation of stable carbon in the mineral soil. The model was first configured to account for water transport through the soil, then observed pools and fluxes of carbon and 14C data were used to fit the model parameters that describe the rates of the metabolic transformations. The soils were described by a thin O-horizon, a 15 cm thick A-horizon and a 45-cm thick B-horizon. Within the thin O-horizon, litter is either converted to CO2 or to a second organic matter pool, which is converted to CO2 at a different rate, both pools being able to produce DOM. The best model performance was obtained by assuming that adsorption of downwardly transported DOM in horizons A and B, followed by further conversion to stable forms, produces mineral-associated carbon pools, while root litter is the source of non-mineral associated carbon, with relatively short residence times. In the simulated steady-state, most carbon entering the O-horizon leaves quickly as CO2, but 17% (46 gC m-2 a-1) is lost as DOC in percolating water. The DOM comprises mainly hydrophobic material, 40% being derived from litter and 60% from older organic matter pools (residence time ~ 10 years). Most of the DOM is converted to CO2 in the mineral soil, over

  5. Regioselective ethyl transfer reactions between diethylzinc and 1,4-dialkyl-1,4-diaza-1,3-butadienes: Synthesis of EtZn[R(Et)NCH=CHNR],

    OpenAIRE

    van Koten, G; Gosselink, J.W.; Jastrzebski, J.T.B.H.; Vrieze, K.

    1982-01-01

    The l/l reaction of diethylzinc with 1,4dialkyl-1,4-diaza-1,3-butadienes (R-DAB = R-N=C(R’)-C(R’)=N-R) below -50°C results in formation of the l/l complex Et*Zn(R-DAB) (R = alkyl), containing o,a-N,N’ chelate bonded R-DAB. Above -50°C these complexes are unstable and undergo selective transfer of an ethyl group from Zn to the adjacent N atom, thus producing the novel species Et%[R(Et)NCR’=CR’NR] in quantitative yield. The proposed monomeric structure consists of a three-coordinate zinc atom b...

  6. Heating Treated Carbon Nanotubes As Highly Active Electrocatalysts for Oxygen Reduction Reaction

    International Nuclear Information System (INIS)

    Graphical abstract: Heating treatment for multi-walled carbon nanotubes in the air introduces abundant structure defects which improve catalytic performances for oxygen reduction reaction (ORR). There is a positive correlation between the defect levels and ORR activities. The product shows better methanol tolerance and long-term durability than commercial Pt/C which makes it applicable in fuel cells. - Abstract: Carbon nanotubes (CNTs) have been widely developed for electrochemical energy conversion and storage devices for replacement of high-cost Pt-based catalysts. In this paper, a simple and convenient method is developed for improving the catalytic activity of CNTs in a controlled way. By simple heating treatment in the air, the multi-walled carbon nanotubes (MWCNTs) change with special morphologies, compositions and abundant defects (denoted as h-CNT). Those defects significantly improve the electrocatalytic performances for oxygen reduction reaction (ORR) which proceeds in a nearly four-electron pathway. The heating conditions have important effects on the structures and defect properties of h-CNTs which show a positive correlation between the defect levels and ORR performances. The small amounts of iron residues originated from nanotube growth and nitrogen doping during heating treatment also contribute to some catalytic activity. The inner walls of h-CNT remain intact during heating treatment and provide sufficient conductivity which facilitates charge transport during ORR. The h-CNT electrocatalyst shows better methanol tolerance and long-term durability than commercial Pt/C in alkaline media which makes it an alternative cathode catalyst in fuel cells

  7. Systematics studies (n, n'p+d) reaction cross sections at 14.5 MeV neutrons energy

    International Nuclear Information System (INIS)

    A new semi-empirical formulae for the calculation of the (n, n,p) and (n, n,p + d) cross section at 14.7 MeV neutron energy are obtained. The pre-equilibrium exciton and evaporation models allow establishing these new formulae by using the Droplet model of Myers and Swiatecki to express the reaction energy Q. The systematics behavior of the different terms of the Droplet model involved in reaction energy expressions was checked individually before choosing the pertinent terms and setting up the formula. Fitting these formulae to the existing cross section data, the adjustable parameters have been determined and the systematics of the (n, n,p + d) and (n, d) reactions have been studied. The predictions of these formulae are compared with those of the existing formulae and with the experimental data and give a better fit to the data than the previous comparable formulae

  8. Observation and analysis of incomplete fusion reactions induced by (12C, 14N, 16O, 22Ne) ions

    International Nuclear Information System (INIS)

    The mechanism of the reactions induced by heavy ions has been studied. The experiments were concerned with incident channels which lead to the formation of intermediate nuclei with atomic mass (6412C, 14N, 16O, 22Ne) as projectiles respectively. The detection of light fragments (2< Z<12) is studied. A three solid-state-detector telescope, with associated electronics is used which allows the separation of reaction products according to their charge. The main features of deep inelastic collisions are discussed: large kinetic energy loss, and important nucleon transfer as a function of the angular detection. The time evolution of the reaction has been studied, then the results are compared with a scattering model suggested by Noremberg. A theoretical calculation based on both classical and statistical approaches giving the total cross-sections for any exit channel has been proposed

  9. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells

    Science.gov (United States)

    Shui, Jianglan; Wang, Min; Du, Feng; Dai, Liming

    2015-01-01

    The availability of low-cost, efficient, and durable catalysts for oxygen reduction reaction (ORR) is a prerequisite for commercialization of the fuel cell technology. Along with intensive research efforts of more than half a century in developing nonprecious metal catalysts (NPMCs) to replace the expensive and scarce platinum-based catalysts, a new class of carbon-based, low-cost, metal-free ORR catalysts was demonstrated to show superior ORR performance to commercial platinum catalysts, particularly in alkaline electrolytes. However, their large-scale practical application in more popular acidic polymer electrolyte membrane (PEM) fuel cells remained elusive because they are often found to be less effective in acidic electrolytes, and no attempt has been made for a single PEM cell test. We demonstrated that rationally designed, metal-free, nitrogen-doped carbon nanotubes and their graphene composites exhibited significantly better long-term operational stabilities and comparable gravimetric power densities with respect to the best NPMC in acidic PEM cells. This work represents a major breakthrough in removing the bottlenecks to translate low-cost, metal-free, carbon-based ORR catalysts to commercial reality, and opens avenues for clean energy generation from affordable and durable fuel cells. PMID:26601132

  10. Effect of different chemical modification of carbon nanotubes for the oxygen reduction reaction in alkaline media

    International Nuclear Information System (INIS)

    The electrochemical reduction of oxygen on chemically modified multi-walled carbon nanotubes (CNTs) electrodes in 1 M KOH solution has been studied using the rotating ring disc electrode (RDE). The surface modification of CNTs has been estimated by XPS and Raman spectroscopy. The effect of different oxygen functionalities on the surface of carbon nanotube for the oxygen reduction reaction (ORR) is considered in terms of the number of electrons (n) involved. Electrochemical studies indicate that in the case of the modification of CNTs with citric acid and diazonium salts the n values were close to two in the measured potential range, and the electrochemical reduction is limited to the production of peroxide as the final product. In the case of the modification of carbon nanotubes with peroxymonosulphuric acid, in the measured potential range, the n value is close to 4 indicating the four-electron pathway for the ORR. By correlating ORR measurements with the XPS analysis, we propose that the increase in electrocatalytic activity towards the ORR, for CNT can be attributed to the increase in C-O groups on the surface of CNTs after modification with peroxymonosulphuric acid

  11. DFT studies for the substituent effect on the diels-alder reaction of 1,4-diaza-1,3-butadienes

    International Nuclear Information System (INIS)

    DFT calculations have been performed on several substituted 1,4-diaza-1,3-butadienes (1,4-DABs) with electron donating and withdrawing groups at the terminal two nitrogens to investigate the reactivity of Diels-Alder reaction with acrolein. The calculated FMO (Frontier Molecular orbital) energies for the optimized 1,4-disubstituted-1,4DABs have been used to explain both normal and inverse electron demand Diels-Alder reactions. It is shown that the electron donating and withdrawing substituents lead to the normal(HOMO diene controlled) and inverse electron demand (LUMO diene controlled) Diels-Alder reactions, respectively

  12. Matrix isolation study of the ozonolysis of 1,3- and 1,4-cyclohexadiene: identification of novel reaction pathways.

    Science.gov (United States)

    Pinelo, Laura; Gudmundsdottir, Anna D; Ault, Bruce S

    2013-05-23

    The ozonolysis reactions of 1,3- and 1,4-cyclohexadiene have been studied using a combination of matrix isolation, infrared spectroscopy, and theoretical calculations. Experimental and theoretical results demonstrate that these reactions predominantly do not follow the long-accepted Criegee mechanism. Rather, the reaction of O3 with 1,4-cyclohexadiene leads to the essentially barrierless formation of benzene, C6H6, and H2O3. These two species are then trapped in the same argon matrix cage and weakly interact to form a molecular complex. There is also evidence for the formation of a small amount of the primary ozonide as a minor product, formed through a transition state that is slightly higher in energy. The reaction of O3 with 1,3-cyclohexadiene follows two pathways, one of which is the Criegee mechanism through a low energy transition state leading to formation of the primary ozonide. In addition, with a similar barrier, ozone abstracts a single hydrogen from C5 while adding to C1, forming a hydroperoxy intermediate. This study presents two of the rare cases in which the Criegee mechanism is not the dominant pathway for the ozonolysis of an alkene as well as the first evidence for dehydrogenation of an alkene by ozone. PMID:23638640

  13. Neutron multiplicity distributions for 30 MeVu 14N reactions with the indicated targets

    International Nuclear Information System (INIS)

    This report contains short papers on the following topics: Heavy ion reactions; nuclear structure and fundamental interactions; nuclear theory; atomic molecular and materials science; and superconducting cyclotron and instrumentation

  14. Neutron multiplicity distributions for 30 MeVu sup 14 N reactions with the indicated targets

    Energy Technology Data Exchange (ETDEWEB)

    1992-06-01

    This report contains short papers on the following topics: Heavy ion reactions; nuclear structure and fundamental interactions; nuclear theory; atomic molecular and materials science; and superconducting cyclotron and instrumentation. (LSP)

  15. Measurements of the Water Vapour, Tritium and Carbon-14 Content of the Middle Stratosphere over Southern England

    OpenAIRE

    Brown, F; Goldsmith, P.; Green, H F; Holt, A.; Parham, A. G.

    2011-01-01

    Measurements of the water vapour, tritium and carbon-14 content of the stratosphere at heights of between 80,000 and 100,000 feet, made over England during the years 1956 to 1960, are described. The tritium and carbon-14 concentrations are greater than those expected from natural production due to the cosmic radiation. The bulk of these two isotopes, at present in the stratosphere, has been injected there during the course of thermonuclear explosions. Mass spectrometric analyses show that t...

  16. Revealing Brown Carbon Chromophores Produced in Reactions of Methylglyoxal with Ammonium Sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Peng; Laskin, Julia; Nizkorodov, Sergey A.; Laskin, Alexander

    2015-12-15

    Atmospheric brown carbon (BrC) is an important contributor to light absorption and climate forcing by aerosols. Reactions between small water-soluble carbonyls and ammonia or amines have been identified as one of the potential pathways of BrC formation. However, detailed chemical characterization of BrC chromophores has been challenging and their formation mechanisms are still poorly understood. Understanding BrC formation is impeded by the lack of suitable methods which can unravel the variability and complexity of BrC mixtures. This study applies high performance liquid chromatography (HPLC) coupled to photodiode array (PDA) detector and high resolution mass spectrometry (HRMS) to investigate optical properties and chemical composition of individual BrC components produced through reactions of methylglyoxal (MG) and ammonium sulfate (AS), both of which are abundant in the atmospheric environment. A direct relationship between optical properties and chemical composition of 30 major BrC chromophores was established. Nearly all of these chromophores are nitrogen-containing compounds that account for >70% of the overall light absorption by the MG+AS system in the 300-500 nm range. These results suggest that reduced-nitrogen organic compounds formed in reactions between atmospheric carbonyls and ammonia/amines are important BrC chromophores. It is also demonstrated that improved separation of BrC chromophores by HPLC will significantly advance understanding of BrC chemistry.

  17. Carbon-sulfur bond-forming reaction catalysed by the radical SAM enzyme HydE.

    Science.gov (United States)

    Rohac, Roman; Amara, Patricia; Benjdia, Alhosna; Martin, Lydie; Ruffié, Pauline; Favier, Adrien; Berteau, Olivier; Mouesca, Jean-Marie; Fontecilla-Camps, Juan C; Nicolet, Yvain

    2016-05-01

    Carbon-sulfur bond formation at aliphatic positions is a challenging reaction that is performed efficiently by radical S-adenosyl-L-methionine (SAM) enzymes. Here we report that 1,3-thiazolidines can act as ligands and substrates for the radical SAM enzyme HydE, which is involved in the assembly of the active site of [FeFe]-hydrogenase. Using X-ray crystallography, in vitro assays and NMR spectroscopy we identified a radical-based reaction mechanism that is best described as the formation of a C-centred radical that concomitantly attacks the sulfur atom of a thioether. To the best of our knowledge, this is the first example of a radical SAM enzyme that reacts directly on a sulfur atom instead of abstracting a hydrogen atom. Using theoretical calculations based on our high-resolution structures we followed the evolution of the electronic structure from SAM through to the formation of S-adenosyl-L-cysteine. Our results suggest that, at least in this case, the widely proposed and highly reactive 5'-deoxyadenosyl radical species that triggers the reaction in radical SAM enzymes is not an isolable intermediate. PMID:27102684

  18. Phosphinocyclodextrins as confining units for catalytic metal centres. Applications to carbon–carbon bond forming reactions

    Directory of Open Access Journals (Sweden)

    Matthieu Jouffroy

    2014-10-01

    Full Text Available The capacity of two cavity-shaped ligands, HUGPHOS-1 and HUGPHOS-2, to generate exclusively singly phosphorus-ligated complexes, in which the cyclodextrin cavity tightly wraps around the metal centre, was explored with a number of late transition metal cations. Both cyclodextrin-derived ligands were assessed in palladium-catalysed Mizoroki–Heck coupling reactions between aryl bromides and styrene on one hand, and the rhodium-catalysed asymmetric hydroformylation of styrene on the other hand. The inability of both chiral ligands to form standard bis(phosphine complexes under catalytic conditions was established by high-pressure NMR studies and shown to have a deep impact on the two carbon–carbon bond forming reactions both in terms of activity and selectivity. For example, when used as ligands in the rhodium-catalysed hydroformylation of styrene, they lead to both high isoselectivity and high enantioselectivity. In the study dealing with the Mizoroki–Heck reactions, comparative tests were carried out with WIDEPHOS, a diphosphine analogue of HUGPHOS-2.

  19. Effect of Reaction Temperature on Carbon Yield and Morphology of CNTs on Copper Loaded Nickel Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hu Ming

    2016-01-01

    Full Text Available This investigation was attempted to introduce carbon nanotubes (CNTs onto surface of copper powders in order to improve heat transfer performance of copper matrix for engineering application of electrical packaging materials. The Ni/MgO catalyst was formed on the copper powders surface by means of codeposition method. CVD technique was executed to fabricate uniform CNTs on copper powders and effect of reaction temperature on the morphology of CNTs was surveyed. The results showed that CNTs products on the copper powder surface were distributed uniformly even if reaction temperature was different. The diameter dimension of CNTs was within the scope of 30~60 nm. Growth behaviors of CNTs by CVD method were considered to be “tip-growth” mechanism. Raman spectra of CNTs proved that intensity ratio of D-band to G-band (ID/IG increased as deposition reaction temperature increased, which implied that order degree of graphitic structure in synthesized CNTs improved.

  20. Determination of the carbon content of domestic farm produces to estimate offsite C-14 ingestion dose

    International Nuclear Information System (INIS)

    The carbon content of grains, leafy and root vegetables, and fruits which the Koreans usually eat were calculated to use in the estimation of offsite C-14 ingestion dose. With the data of food intake per day in the Report on 1998 national health and nutrition survey- dietary intake survey, 5 age-group integrate d intake of the 4 farm produce groups were extracted for food items and the amount. Intake percentage in each food group were taken as food weighing factor for the foods. Carbon content was calculated using protein, fat, and carbohydrate content of the foods, and multiplied by the corresponding food weighing factor to derive the content of the food groups. The calculated carbon content of grains, leafy and root vegetables, and fruits were 39.%, 4.2%, 8.0%, and 5.9% respectively. Grains and fruits were not much different from ODCM for carbon content, but vegetables were higher by 0.7%∼4.5%

  1. Prise en compte du carbone 14 dans le modèle PASIM

    OpenAIRE

    Duclos, Etienne

    2010-01-01

    J'ai effectué mon stage de fin d'étude d'ingénieur ISIMA au sein de l'Institut National de la Recherche Agronomique (INRA), dans l'Unité de Recherche sur l'Ecosystème Prairial (UREP). Mon stage a été effectué en collaboration avec l'Institut de Radioprotection et de Sûreté Nucléaire (IRSN). J'ai été chargé d'ajouter la gestion du carbone 14 au sein de PaSim, modèle de simulation de prairie gérant déjà les flux de carbone et d'azote. Il m'a donc fallu faire la distinction, au...

  2. Final Report: The Impact of Carbonate on Surface Protonation, Electron Transfer and Crystallization Reactions in Iron Oxide Nanoparticles and Colloids

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, David Adams [The University of Alabama

    2013-07-02

    This project addresses key issues of importance in the geochemical behavior of iron oxides and in the geochemical cycling of carbon and iron. For Fe, we are specifically studying the influence of carbonate on electron transfer reactions, solid phase transformations, and the binding of carbonate to reactive sites on the edges of particles. The emphasis on carbonate arises because it is widely present in the natural environment, is known to bind strongly to oxide surfaces, is reactive on the time scales of interest, and has a speciation driven by acid-base reactions. The geochemical behavior of carbonate strongly influences global climate change and CO{sub 2} sequestration technologies. Our goal is to answer key questions with regards to specific site binding, electron transfer reactions, and crystallization reactions of iron oxides that impact both the geochemical cycling of iron and CO{sub 2} species. Our work is focused on the molecular level description of carbonate chemistry in solution including the prediction of isotope fractionation factors. We have also done work on critical atmospheric species.

  3. Experimental and theoretical analysis of the kinetics of the reaction of atomic bromine with 1,4-dioxane.

    Science.gov (United States)

    Giri, Binod Raj; Roscoe, John M; González-García, Núria; Olzmann, Matthias

    2010-01-14

    The rate coefficient for the reaction of atomic bromine with 1,4-dioxane was measured from approximately 300 to 340 K using the relative rate method. Iso-octane and iso-butane were used as reference compounds, and the experiments were made in a bath of argon containing up to 210 Torr of O(2) at total pressures between 200 and 820 Torr. The rate coefficients were not affected by changes in pressure or O(2) concentration over our range of experimental conditions. The ratios of rate coefficients for the reaction of dioxane relative to the reference compound were put on an absolute basis by using the published absolute rate coefficients for the reference reactions. The variation of the experimentally determined rate coefficients with temperature for the reaction of Br with 1,4-dioxane can be given by k(1)(exp)(T) = (1.4 +/- 1.0) x 10(-11)exp[-23.0 +/- 1.8) kJ mol(-1)/(RT)] cm(3) molecule(-1) s(-1). We rationalized our experimental results in terms of transition state theory with molecular data from quantum chemical calculations. Molecular geometries and frequencies were obtained from MP2/aug-cc-pVDZ calculations, and single-point energies of the stationary points were obtained at CCSD(T)/CBS level of theory. The calculations indicate that the 1,4-dioxane + Br reaction proceeds in an overall endothermic addition-elimination mechanism via a number of intermediates. The rate-determining step is a chair-to-boat conformational change of the Br-dioxane adduct. The calculated rate coefficients, given by k(1)(calc)(T) = 5.6 x 10(-11)exp[-26.6 kJ mol(-1)/(RT)] cm(3) molecule(-1) s(-1), are in very good agreement with the experimental values. Comparison with results reported for the reactions of Br with other ethers suggests that this multistep mechanism differs significantly from that for abstraction of hydrogen from other ethers by atomic bromine. PMID:19848396

  4. Localized surface grafting reactions on carbon nanofibers induced by gamma and e-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Evora, M.C., E-mail: cecilia@ieav.cta.br [Institute for Advanced Studies-IEAV/DCTA, Av. Cel Jose Alberto Albano do Amarante, 1-Putim, 12228-001 São Jose dos Campos, SP (Brazil); Araujo, J.R., E-mail: jraraujo@inmetro.gov.br [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias, RJ (Brazil); Ferreira, E.H.M. [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias, RJ (Brazil); Strohmeier, B.R. [Thermo Fisher Scientific, 5225 Verona Road, Madison, WI 53711 (United States); Silva, L.G.A., E-mail: lgasilva@ipen.br [Institute for Nuclear and Energy Research- IPEN, Av. Prof lineu Prestes, 2242- Cidade Universitaria, 05508-000 SP (Brazil); Achete, C.A. [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias, RJ (Brazil)

    2015-04-30

    Graphical abstract: - Highlights: • Methodology for the functionalization of carbon nanofibers was investigated. • Two radiation sources were used to promote grafting reactions: gamma and electron beam. • We report the optimum inhibitor concentration to achieve the functionalization. • Surface of carbon nanofibers showed an increase of oxygen content after irradiation. • The radiation-induced graphitization did not damage the overall sp{sup 2} structure. - Abstract: Electron beam and gamma-ray irradiation have potential application to modify the carbon fiber nanostructures in order to produce useful defects in the graphitic structure and create reactive sites. In this study, the methodology to functionalize carbon nanofiber (CNF), via a radiation process and using acrylic acid as a source of oxygen functional groups, was investigated. The samples were submitted to a direct grafting radiation process with electron beam and gamma-ray source. Several parameters were changed such as: acrylic acid concentration, radiation dose and percentage of inhibitor necessary to achieve functionalization, with higher percentage of oxygen functional groups on CNF surface, and better dispersion. The better results achieved were when mixing CNF in a solution of acrylic acid with 6% of inhibitor (FeSO{sub 4}·7H{sub 2}O) and irradiated at 100 kGy. The samples were characterized by X-ray photoelectron spectroscopy and the surface composition (atomic%) showed a significant increase of oxygen content for the samples after irradiation. Also, the dispersion of the functionalized CNF in water was stable during months which may be a good indication that the functionalization process of CNF via ionizing radiation was successful.

  5. Carbon isotope (14C, 12C) measurements to quantify sources of atmospheric carbon monoxide in urban air

    International Nuclear Information System (INIS)

    Atmospheric air samples were collected during the Winter of 1989-90 in Albuquerque, NM USA, for carbon isotope (14C, 12C) analysis of carbon monoxide (CO). An experimental sample design was prepared to target periods when the concentration of CO exceeds the 9 μL/L (volume fraction), 8 hour National Ambient Air Quality Standard (NAAQS) and during periods of attainment. Sampling sites, time of day, sampling duration, and meteorology were carefully considered so that source impacts be optimal. A balanced sampling factorial design was used to yield maximum information from the constraints imposed; the number of samples was limited by the number of sample canisters available, time, and resources. Carbon isotope measurements of urban air, ''clean-air'' background from Niwot Ridge, Colorado, average (wood) logs and oxygenated-gasolines were used in a 3-source model to calculate the contribution of woodburning to the total atmospheric CO burden in Albuquerque. Results show that the estimated fractional contribution of residential wood combustion (Θ' RWC) ranged from 0 to 0.30 of CO concentrations corrected for ''clean-air'' background. For these same samples, the respective CO concentrations attributed to woodburning range from 0 to 0.90 μmol/mol (mole fraction), well below the NAAQS. In all cases, fossil CO is the predominant source of ambient CO concentrations ranging from 0.96 to 6.34 μmol/mol. A final comment is made on the potential of fossil CO measurements as an indirect tracer of atmospheric benzene, relevant to exposure risk estimates of motor vehicle emissions and occupational health and safety standards. (author). 26 refs, 3 figs, 4 tabs

  6. Tritium- and carbon-14-contents of wines of different vintage from the northern and southern hemisphere

    International Nuclear Information System (INIS)

    The carbon-14 and tritium radioactivity contents of up to 19 vintages of German and Southafrican wines were compared. A similar large dependence of the 14C- and of the 3H-activity in the German wine on the nuclear weapon tests of the years 1962/63 was found out. The radioactivity level is also 1977/78 still essentially higher than before 1950. The Southafrican wines have been influenced considerably less by nuclear explosions. The highest 3H-values were found in the vintage 1963 of the German wine with 5910 pCi/litre and in the vintage 1964 of the Southafrican wine with 510 pCi/litre. (orig.)

  7. Reactions of Hot Cl38 Atoms in Mixtures of Carbon Tetrachloride with Aliphatic Alcohols

    International Nuclear Information System (INIS)

    Investigations of the chemical effects of nuclear reactions in binary systems are expected to yield much useful information. Study of the recoil processes of the halogen derivatives when the second component is suitably chosen and its concentration varied in a wide range might permit inferences to be made on the role and mechanism of the various stabilizing processes. Considering the results obtained with CCl4-Cl2, CCl4-SiCl4, CCl4-C6H6 and CCl4-c-hexane mixtures as well as the energy scavenger property of alcohol, it seemed of interest to study the contribution of the alcohols to the stabilization of hot Cl38. Chemical processes induced by hot Cl38 from the nuclear reaction Cl97 (n, γ)Cl38 were investigated in mixtures of CCl4-ROH (where R = CH3-, C2H5-, C3H7- and (CH3)2CH-). The irradiations were performed in the thermal column of the 2 MW VVRS reactor using rather short exposure times to keep the radiation chemical effects at negligible level. The organic fractions were separated from the inorganic ones by extraction and the former were analysed by gas chromatographic method. Total retention and the yield of the complete set of organic chlorine compounds were determined in terms of alcohol concentration. Some interesting results are that the yield of reaction products in which the OH radical of aliphatic alcohol has been replaced by Cl38 increases with increasing alcohol concentration with a simultaneous decrease in the labelled CCI4 yield and that, in addition to the monochlorine derivates with less carbon atoms than the alcohol molecule, a considerable amount of chloroform is formed with maximum yield at a given alcohol concentration. The relative contributions of the hot and the epithermal stabilization processes of energetic Cl38 and the mechanism of the various reactions are discussed. (author)

  8. First direct measurement of the 11C (α ,p )14N stellar reaction by an extended thick-target method

    Science.gov (United States)

    Hayakawa, S.; Kubono, S.; Kahl, D.; Yamaguchi, H.; Binh, D. N.; Hashimoto, T.; Wakabayashi, Y.; He, J. J.; Iwasa, N.; Kato, S.; Komatsubara, T.; Kwon, Y. K.; Teranishi, T.

    2016-06-01

    The 11C(α,p ) 14N reaction is an important α -induced reaction competing with β -limited hydrogen-burning processes in high-temperature explosive stars. We directly measured its reaction cross sections both for the ground-state transition (α ,p0) and the excited-state transitions (α ,p1) and (α ,p2) at relevant stellar energies 1.3-4.5 MeV by an extended thick-target method featuring time of flight for the first time. We revised the reaction rate by numerical integration including the (α ,p1) and (α ,p2) contributions and also low-lying resonances of (α ,p0) using both the present and the previous experimental data which were totally neglected in the previous compilation works. The present total reaction rate lies between the previous (α ,p0) rate and the total rate of the Hauser-Feshbach statistical model calculation, which is consistent with the relevant explosive hydrogen-burning scenarios such as the ν p process.

  9. Equipment for a pyrolytic method of detecting tritium and carbon-14 in food

    International Nuclear Information System (INIS)

    The hydrogen isotope tritium is of main interest in food monitoring because of its special property to permeate metallic material and, thus released, commence exchange reactions. The Federal German Food Research Institute (BFE) has issued a manual for monitoring tritium and C-14 in food, and for the analytical method equipment had to be developed allowing user-friendly, semiautomatic testing. In addition, the pyrolytic method for investigation of biological material, a water purification system, and equipment for preparing water samples for comparison form part of the work under review. The main features of the equipment developed are explained along the instructions given in the manual. (orig./PW)

  10. Up-Scaling Geochemical Reaction Rates for Carbon Dioxide (CO2) in Deep Saline Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Catherine A

    2013-02-28

    Geochemical reactions in deep subsurface environments are complicated by the consolidated nature and mineralogical complexity of sedimentary rocks. Understanding the kinetics of these reactions is critical to our ability to make long-term predictions about subsurface processes such as pH buffering, alteration in rock structure, permeability changes, and formation of secondary precipitates. In this project, we used a combination of experiments and numerical simulation to bridge the gap between our knowledge of these reactions at the lab scale and rates that are meaningful for modeling reactive transport at core scales. The focus is on acid-driven mineral dissolution, which is specifically relevant in the context of CO2-water-rock interactions in geological sequestration of carbon dioxide. The project led to major findings in three areas. First, we modeled reactive transport in pore-network systems to investigate scaling effects in geochemical reaction rates. We found significant scaling effects when CO2 concentrations are high and reaction rates are fast. These findings indicate that the increased acidity associated with geological sequestration can generate conditions for which proper scaling tools are yet to be developed. Second, we used mathematical modeling to investigate the extent to which SO2, if co-injected with CO2, would acidify formation brines. We found that there exist realistic conditions in which the impact on brine acidity will be limited due to diffusion rate-limited SO2 dissolution from the CO2 phase, and the subsequent pH shift may also be limited by the lack of availability of oxidants to produce sulfuric acid. Third, for three Viking sandstones (Alberta sedimentary basin, Canada), we employed backscattered electron microscopy and energy dispersive X-ray spectroscopy to statistically characterize mineral contact with pore space. We determined that for reactive minerals in sedimentary consolidated rocks, abundance alone is not a good predictor of

  11. Analysis and Characterization of Organic Carbon in Early Holocene Wetland Paleosols using Ramped Pyrolysis 14C and Biomarkers

    Science.gov (United States)

    Vetter, L.; Schreiner, K. M.; Fernandez, A.; Rosenheim, B. E.; Tornqvist, T. E.

    2014-12-01

    Radiocarbon analyses are a key tool for quantifying the dynamics of carbon cycling and storage in both modern soils and Quaternary paleosols. Frequently, bulk 14C dates of paleosol organic carbon provide ages older than the time of soil burial, and 14C dates of geochemical fractions such as alkali and acid extracts (operationally defined as humic acids) can provide anomalously old ages when compared to coeval plant macrofossil dates. Ramped pyrolysis radiocarbon analysis of sedimentary organic material has been employed as a tool for investigating 14C age spectra in sediments with multiple organic carbon sources. Here we combine ramped pyrolysis 14C analysis and biomarker analysis (lignin-phenols and other cupric oxide products) to provide information on the source and diagenetic state of the paleosol organic carbon. We apply these techniques to immature early Holocene brackish wetland entisols from three sediment cores in southeastern Louisiana, along with overlying basal peats. Surprisingly, we find narrow 14C age spectra across all thermal aliquots from both paleosols and peats. The weighted bulk 14C ages from paleosols and overlying peats are within analytical error, and are comparable to independently analyzed 14C AMS dates from charcoal fragments and other plant macrofossils from each peat bed. Our results suggest high turnover rates of carbon in soils relative to input of exogenous carbon sources. These data raise broader questions about processes within the active soil and during pedogenesis and burial of paleosols that can effectively homogenize radiocarbon content in soils across the thermochemical spectrum. The concurrence of paleosol and peat 14C ages also suggests that, in the absence of peats with identifiable plant macrofossils, ramped pyrolysis 14C analyses of paleosols may be used to provide ages for sea-level indicators.

  12. Measurement and analysis of Carbon-14 released from pressurized water reactor in Korea

    International Nuclear Information System (INIS)

    Since the amount of Carbon-14 released from pressurized water reactor (PWR) is small and its concentration is low, it is not used as a main monitored nuclide for environmental release in PWR in general. However, the dose conversion coefficient of C-14 in CO2 is relatively high, there is a possibility to overestimate public exposure dose with the assumption that all amount of C-14 is resulted from CO2. Therefore, a monitoring plan should be established to manage the effluent from PWR in safe. This plan consists of (1) specifying the chemical form of C-14 (2) evaluating its effect on environment. The majority of the C-14 released from PWR is in a gaseous form in CO2 and CH4. In order to monitor C-14 in PWR, Korea Hydro and Nuclear Power (KHNP) devised C-14 sampling instrument which can collect CO2 and methane separately. It is composed of three main components, that is, primary CO2 sampler, a methane oxidisation assembly and a secondary CO2 sampler. The primary CO2 sampler has one water bubbler and two NaOH bubblers. The water bubbler prevents the accumulation of NaOH at other bubblers, 2M-NaOH bubblers collect all CO2 in the gas to produce sodium carbonate (Na2CO3). Then the methane oxidisation assembly convert methane and CO to CO2. The catalyst is composed of equal mixture of Alumina with Palladium coating (1.0%) and Platinum coating (0.5%). The temperature of a furnace is maintained 500 .deg. C approximately, to convert CO and methane into CO2. Retaining time of the gas in catalytic is designed to be about 25 seconds to maximize conversion. After the catalytic conversion, the gas is cooled and is passed through the NaOH solution bubblers. The concentration of CO2 and methane at main vent lines in Yonggwang Unit-3 was analyzed using Gas Chromatography in order to evaluate the optimal treatment condition for the sample and estimate the optimal operating time for this device. As a result, the concentration of CO2 was approximately 450 ppm in average and that of

  13. Study of carbon nitride compounds synthesised by co-implantation of 13C and 14N in copper at different temperatures

    International Nuclear Information System (INIS)

    Research highlights: → Simultaneous implantation of 13C and 14N in copper were performed to synthesise CNx compounds. → The formation of fullerene-like CNx compounds was highlighted by XPS and TEM. → Only about 20% of the implanted 14N atoms are contained in the FL CxNy structures. → The exceeding of implanted nitrogen precipitates in large N2 gas bubbles. → A growth model for the FL CxNy structures is proposed. - Abstract: Carbon nitride compounds have been synthesised in copper by simultaneous high fluence (1018 at. cm-2) implantation of 13C and 14N ions. During the implantation process, the substrate temperature was maintained at 25, 250, 350 or 450 deg. C. Depth profiles of 13C and 14N were determined using the non-resonant nuclear reactions (NRA) induced by a 1.05 MeV deuteron beam. The retained doses were deduced from NRA measurements and compared to the implanted fluence. The chemical bonds between carbon and nitrogen were studied as a function of depth and temperature by X-ray photoelectron spectroscopy (XPS). The curve fitting of C 1s and N 1s core level photoelectron spectra reveal different types of C-N bonds and show the signature of N2 molecules. The presence of nitrogen gas bubbles in copper was highlighted by mass spectroscopy. The structure of carbon nitride compounds was characterised by transmission electron microscopy (TEM). For that purpose, cross-sectional samples were prepared using a focused ion beam (FIB) system. TEM observations showed the presence of small amorphous carbon nitride 'nano-capsules' and large gas bubbles in copper. Based on our observations, we propose a model for the growth of these nano-objects. Finally, the mechanical properties of the implanted samples were investigated by nano-indentation.

  14. Electrical and morphological characterization of multiwalled carbon nanotubes functionalized via the Bingel reaction

    Science.gov (United States)

    Brković, Danijela V.; Ivić, Milka L. Avramov; Rakić, Vesna M.; Valentini, Luca; Uskoković, Petar S.; Marinković, Aleksandar D.

    2015-08-01

    Covalent sidewall functionalization of multiwalled carbon nanotubes (MWCNTs) has been performed using two approaches, direct and indirect cycloaddition through diethyl malonate, based on the Bingel reaction. The results revealed that functionalized MWCNTs demonstrated enhanced electrical properties and significantly lower sheet resistance, especially after electric field thermal assisted annealing at 80 °C was performed. The presence of 1,3-dicarbonyl compounds caused the surface of MWCNTs to be more hydrophilic, approachable for the electrolyte and improved the capacitance performance of Au/MWCNTs electrodes. The modified MWCNTs have been incorporated into nanocomposites by using solution mixing method with polyaniline and drop-casting resulting mixture on the paper substrate. The reduction in the sheet resistance with increasing the content of MWCNTs in the prepared nanocomposite films has been achieved.

  15. The influence of experimental setup on the spectroscopy investigation of $^{\\mathrm{14}}$Be by Coulomb breakup reaction

    CERN Document Server

    Song, Yu-Shou; Hu, Li-Yuan; Liu, Hui-Lan; Wu, Hong-Yi

    2015-01-01

    The two-body core+$2n$ cluster structure was implemented to describe the two-neutron halo nucleus $^{\\mathrm{14}}\\mathrm{Be}$, where the core$^{\\mathrm{12}}\\mathrm{Be}$ was assumed inert and at ground state and the dineutron was assumed at pure $2S_0$ state. Based on such a structure the three-body continuum-discretized coupled-channel (CDCC) calculation was successfully used to deal with the $^{\\mathrm{14}}\\mathrm{Be}$ breakup reactions of $^{\\mathrm{14}}\\mathrm{Be}+^{\\mathrm{12}}\\mathrm{C}$ at 68~MeV/nucleon and $^{\\mathrm{14}}\\mathrm{Be}+ $Pb at 35~MeV/nucleon.Consequently, we modeled the kinematically complete measurement experiment of $^{\\mathrm{14}}\\mathrm{Be}$ (35~MeV/nucleon) Coulomb breakup at a lead target with the help of Geant4. From the simulation data the relative energy spectrum was constructed by the invariant mass method and $B(E1)$ spectrum was extracted using virtual photon model. The influence of the target thickness and detector performance on the spectroscopy was investigated.

  16. Mountain scale modeling of transient, coupled gas flow, heat transfer and carbon-14 migration

    International Nuclear Information System (INIS)

    We simulate mountain-scale coupled heat transfer and gas flow at Yucca Mountain. A coupled rock-gas flow and heat transfer model, TGIF2, is used to simulate mountain-scale two-dimensional transient heat transfer and gas flow. The model is first verified against an analytical solution for the problem of an infinite horizontal layer of fluid heated from below. Our numerical results match very well with the analytical solution. Then, we obtain transient temperature and gas flow distributions inside the mountain. These distributions are used by a transient semianalytical particle tracker to obtain carbon-14 travel times for particles starting at different locations within the repository. Assuming that the repository is filled with 30-year-old waste at an initial areal power density of 57 kw/acre, we find that repository temperatures remain above 60 degrees C for more than 10,000 years. Carbon-14 travel times to the surface are mostly less than 1000 years, for particles starting at any time within the first 10,000 years

  17. Metal-Organic Framework Derived Hierarchically Porous Nitrogen-Doped Carbon Nanostructures as Novel Electrocatalyst for Oxygen Reduction Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Shaofang; Zhu, Chengzhou; Zhou, Yazhou; Yang, Guohai; Jeon, Ju Won; Lemmon, John P.; Du, Dan; Nune, Satish K.; Lin, Yuehe

    2015-10-01

    The hierarchically porous nitrogen-doped carbon materials, derived from nitrogen-containing isoreticular metal-organic framework-3 (IRMOF-3) through direct carbonization, exhibited excellent electrocatalytic activity in alkaline solution for oxygen reduction reaction (ORR). This high activity is attributed to the 10 presence of high percentage of quaternary and pyridinic nitrogen, the high surface area as well as good conductivity. When IRMOF-3 was carbonized at 950 °C (CIRMOF-3-950), it showed four-electron reduction pathway for ORR and exhibited better stability (about 78.5% current density was maintained) than platinum/carbon (Pt/C) in the current durability test. In addition, CIRMOF-3-950 presented high selectivity to cathode reactions compared to commercial Pt/C.

  18. The reactions of hydroxyl radicals with 1,4- and 1,3-cyclohexadiene in aqueous solution

    International Nuclear Information System (INIS)

    The reactions of radiolytically generated hydroxyl radicals and H atoms with 1,4- and 1,3-cyclohexadiene were studied by pulse radiolysis and product analysis. Hydrogen abstraction from these substrates by the OH radical yields the cyclohexadienyl radical (ε(310 nm) = 4400 dm3 mol-1 cm-1 from the reaction of the H atom with benzene) with an efficiency of 50% (0.29 μmol J-1) in the case of 1,4-cyclohexadiene and 25% (0.15 μmol J-1) in the case of 1,3-cyclohexadiene as determined by pulse radiolysis. The remaining OH radicals add to the olefin. In 1,4-cyclohexadiene the yield of the resulting adduct radicals has been determined in a steady-state 60Co-γ-irradiation experiment by reducing it with added 1,4-dithiothreitol (DTT) to 4-hydroxycyclohexene. There are two sites of OH radical attack in the case of 1,3-cyclohexadiene, and only the alkyl radical is reduced quantitatively by DTT (G(3-hydroxycyclohexene) = 0.15 μmol J-1). From material balance considerations it is concluded that the allylic radical must be formed with a G value of 0.28 μmol J-1 but largely escapes reduction by DTT (G(4-hydroxycyclohexene) = 0.03 μmol J-1). H atoms add preferentially to the double bonds of 1,4- and 1,3-cyclohexadiene (78% and 93%, respectively), while the O- radical (the basic form of the OH radical) undergoes mainly H-abstraction (92% and 83%, respectively). (orig./EF)

  19. Finite range distorted wave analysis of 139.2 MeV 16O(α, αd)14N reaction

    International Nuclear Information System (INIS)

    Experimental and theoretical studies of cluster knockout reactions has been done for the past several decades to study the cluster structure as well as to yield the cluster spectroscopic factor in light to medium mass nuclei. Similar calculations have been performed for the carbon knockout reactions using carbon beam. The absolute spectroscopic factors obtained from the Finite Range-Distorted Wave Impulse Approximation (FR-DWIA) calculations were found to be consistent with the structure estimates

  20. Si-rich layer formation on olivine surfaces during reaction with water and supercritical carbon dioxide under conditions relevant for geologic carbon storage

    Science.gov (United States)

    Johnson, N. C.; Jackson, A.; Maher, K.; Bird, D. K.; Brown, G. E.

    2013-12-01

    The reaction of Mg-silicate minerals (i.e. olivine) with carbon dioxide (CO2) is a promising method for secure, long-term, geologic carbon storage. Several technical challenges must be overcome before implementing mineral carbonation technology on a large scale, one of which is slow reaction kinetics. This study probes surface reaction limitations of olivine carbonation, specifically the formation of a passivating, Si-rich layer on olivine surfaces upon exposure to water and CO2 under sequestration conditions (elevated temperature and pressure). A series of batch reactions were performed at 60°C and 100 bar CO2 pressure in Dickson-style rocker bombs, varying the length of reaction and the amount of mixing (rocking). The initial aqueous phase was spiked with 29Si. Fluid samples were taken periodically and analyzed for cation content, alkalinity, and dissolved inorganic carbon. At the end of each experiment, the solid products were analyzed with a Sensitive High Resolution Ion Microprobe Reverse Geometry (SHRIMP-RG) in order to measure the amount of 29Si incorporated into the Si-rich layer on reacted olivine grains. We also cut cross sections of reacted grains from each experiment using a Focused Ion Beam (FIB) which were thinned to leaching process. SHRIMP-RG data also imply the presence of a precipitated Si-rich layer on top of a leached Si-rich layer, as the 29Si penetration depth is only 25-65% of the total Si-rich layer thickness. The combination of SHRIMP-RG and FIB/TEM analysis leads us to hypothesize that a Si-rich layer forms quickly on olivine surfaces due to preferential Mg removal from the surface (the traditional 'leached' layer), and as the reaction proceeds, amorphous silica reaches saturation in the fluid and precipitates on surfaces inside the reactor (including olivine grains).

  1. Bio-mass derived mesoporous carbon as superior electrode in all vanadium redox flow battery with multicouple reactions

    Science.gov (United States)

    Ulaganathan, Mani; Jain, Akshay; Aravindan, Vanchiappan; Jayaraman, Sundaramurthy; Ling, Wong Chui; Lim, Tuti Mariana; Srinivasan, Madapusi P.; Yan, Qingyu; Madhavi, Srinivasan

    2015-01-01

    We first report the multi-couple reaction in all vanadium redox flow batteries (VRFB) while using bio-mass (coconut shell) derived mesoporous carbon as electrode. The presence of V3+/V4+ redox couple certainly supplies the additional electrons for the electrochemical reaction and subsequently provides improved electrochemical performance of VRFB system. The efficient electro-catalytic activity of such coconut shell derived high surface area mesoporous carbon is believed for the improved cell performance. Extensive power and electrochemical studies are performed for VRFB application point of view and described in detail.

  2. One-pot synthesis of S-alkyl dithiocarbamates via the reaction of N-tosylhydrazones, carbon disulfide and amines.

    Science.gov (United States)

    Sha, Qiang; Wei, Yun-Yang

    2013-09-14

    A new, convenient and efficient transition metal-free synthesis of S-alkyl dithiocarbamates through one-pot reaction of N-tosylhydrazones, carbon disulfide and amines is reported. Tosylhydrazones derived from various aromatic and aliphatic ketones or aldehydes were tested and gave dithiocarbamates in good to excellent yields. The tosylhydrazones can be generated in situ without isolation, which provides a simpler one-pot method to synthesize dithiocarbamates via the reaction of carbonyl compounds, carbon disulfide and amines in the presence of 4-methylbenzenesulfonohydrazide. PMID:23863979

  3. Method for increasing -SiC yield on solid state reaction of coal fly ash and activated carbon powder

    Indian Academy of Sciences (India)

    Sulardjaka; Jamasri; M W Wildan; Kusnanto

    2011-07-01

    A novel process for increasing -SiC yield on solid state reaction of coal fly ash and micro powder activated carbon powder has been proposed. -SiC powder was synthesized at temperature 1300°C for 2 h under vacuum condition with 1 l/min argon flow. Cycling synthesis process has been developed for increasing -SiC yield on solid state reaction of coal fly ash and activated carbon powder. Synthesized products were analyzed by XRD with Cu-K radiation, FTIR spectrometer and SEM fitted with EDAX. The results show that the amount of relative -SiC is increased with the number of cycling synthesis.

  4. A Pt-free Electrocatalyst Based on Pyrolized Vinazene-Carbon Composite for Oxygen Reduction Reaction

    International Nuclear Information System (INIS)

    The 2-vinyl-4, 5-dicyanoimidazole (Vinazene) was used as a nitrogen precursor to synthesize a promising non-precious metal (NPM) catalyst for oxygen reduction reaction (ORR). Vinazene together with an iron source was impregnated into a carbon matrix and pyrolyzed at 900 °C in N2 atmosphere. The structure of the resulting Fe–N–C nanocomposite was analyzed by X-ray photoelectron spectroscopy, Raman spectroscopy and X-ray diffraction. Both rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE) experiments showed excellent ORR activity for the obtained catalyst with low H2O2 formation (∼3.0%) in 0.1 M KOH. The catalyst was found to be rich in mesoporous structure along with high percentage of pyrrolic-N function with surface area of about 673 m2 g−1 and pore size of 4.2 nm. In addition to its excellent ORR activity, the catalyst showed remarkable tolerance towards methanol oxidation and demonstrates good stability over 10,000 potential cycles (0.6–1.0 V Vs RHE). We believe that this N-rich Vinazene molecule will be beneficial to further development of nitrogen doped carbon electrocatalysts

  5. Reconciling Change in Oi-Horizon Carbon-14 with Mass Loss for an Oak Forest

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Paul J [ORNL; Swanston, Christopher W. [Lawrence Livermore National Laboratory (LLNL); Garten Jr, Charles T [ORNL; Todd Jr, Donald E [ORNL; Trumbore, Susan E. [University of California, Irvine

    2005-01-01

    First-year litter decomposition was estimated for an upland-oak forest ecosystem using enrichment or dilution of the 14C-signature of the Oi-horizon. These isotopically-based mass-loss estimates were contrasted with measured mass-loss rates from past litterbag studies. Mass-loss derived from changes in the 14C-signature of the Oi-horizon suggested mean mass loss over 9 months of 45% which was higher than the corresponding 9-month rate extrapolated from litterbag studies (~35%). Greater mass loss was expected from the isotopic approach because litterbags are known to limit mass loss processes driven by soil macrofauna (e.g., fragmentation and comminution). Although the 14C-isotope approach offers the advantage of being a non-invasive method, it exhibited high variability that undermined its utility as an alternative to routine litterbag mass loss methods. However, the 14C approach measures the residence time of C in the leaf litter, rather than the time it takes for leaves to disappear; hence radiocarbon measures reflect C immobilization and recycling in the microbial pool, and do not necessarily replicate results from litterbag mass loss. The commonly applied two-compartment isotopic mixing model was appropriate for estimating decomposition from isotopic enrichment of near-background soils, but it produced divergent results for isotopic dilution of a multi-layered system with litter cohorts having independent 14C-signatures. This discrepancy suggests that cohort-based models are needed to adequately capture the complex processes involved in carbon transport associated with litter mass-loss. Such models will be crucial for predicting intra- and interannual differences in organic horizon decomposition driven by scenarios of climatic change.

  6. Heteropoly Acid/Nitrogen Functionalized Onion-like Carbon Hybrid Catalyst for Ester Hydrolysis Reactions.

    Science.gov (United States)

    Liu, Wei; Qi, Wei; Guo, Xiaoling; Su, Dangsheng

    2016-02-18

    A novel heteropoly acid (HPA)/nitrogen functionalized onion-like carbon (NOLC) hybrid catalyst was synthesized through supramolecular (electrostatic and hydrogen bond) interactions between the two components. The chemical structure and acid strength of the HPA/NOLC hybrid have been fully characterized by thermogravimetric analysis, IR spectroscopy, X-ray photoelectron spectroscopy, NH3 temperature-programmed desorption and acid-base titration measurements. The proposed method for the fabrication of the HPA/NOLC hybrid catalyst is a universal strategy for different types of HPAs to meet various requirements of acidic or redox catalysis. The hydrophobic environment of NOLC effectively prevents the deactivation of HPA in an aqueous system, and the combination of uniformly dispersed HPA clusters and the synergistic effect between NOLC and HPA significantly promotes its activity in ester hydrolysis reactions, which is higher than that of bare PWA as homogeneous catalyst. The kinetics of the hydrolysis reactions indicate that the aggregation status of the catalyst particles has great influence on the apparent activity. PMID:26606266

  7. Removal of Cr (VI) with wheat-residue derived black carbon: Reaction mechanism and adsorption performance

    International Nuclear Information System (INIS)

    The removal of Cr (VI) from aqueous solutions using black carbon (BC) isolated from the burning residues of wheat straw was investigated as a function of pH, contact time, reaction temperature, supporting electrolyte concentration and analytical initial Cr (VI) concentration in batch studies. The effect of surface properties on the adsorption behavior of Cr (VI) was investigated with scanning electron microscope (SEM) equipped with the energy dispersive X-ray spectroscope (EDS) and Fourier transform-infrared (FTIR) spectroscopy. The removal mechanism of Cr (VI) onto the BC was investigated and the result showed that the adsorption reaction consumed a large amount of protons along the reduction of Cr (VI) to Cr (III). The oxidation of the BC took place concurrently to the chromium reduction and led to the formation of hydroxyl and carboxyl functions. An initial solution pH of 1.0 was most favorable for Cr (VI) removal. The adsorption process followed the pseudo-second order equation and Freundlich isotherm very well. The Cr (VI) adsorption was temperature-dependent and almost independent on the sodium chloride concentrations. The maximum adsorption capacity for Cr (VI) was found at 21.34 mg/g in an acidic medium, which is comparable to other low-cost adsorbents.

  8. Just a Chemical Reaction. The Science Club. Ages 10-14. [CD-ROM].

    Science.gov (United States)

    1999

    This CD-ROM allows students to discover the key factors and major dates in the development of the science of chemistry. It includes 93 scientific concepts, 20 minutes of narration with animation, 14 interactive activities, an illustrated periodic table, a complete Portable Document Format (PDF) user guide, a dictionary explaining over 40 terms, a…

  9. Finite range distorted wave analysis of 101.3 MeV 16O(p, pd)14N* reaction

    International Nuclear Information System (INIS)

    Experimental and theoretical studies of cluster knockout reactions have been progressing for the past several decades. This is to study the cluster structure as well as to yield the cluster spectroscopic factor in the light-medium mass nuclei using quasi-free (p, pα), (α, 2α), (p, pd), (α, αd) type of reactions. The spectroscopic factors deduced from the (α, 2α) reactions are found be almost 100 times larger than expected from the conventional shell model estimates. These values were deduced by comparing the experimental data with the predictions of the conventional Zero Range-Distorted Wave Impulse Approximation (ZR-DWIA) calculations. Analysis using the FR-DWIA formalism has been performed for the 101.3 MeV 16O(p, pd)14N* quasi-free reaction using all-through attractive (A) and an L-dependent attractive plus repulsive core (A+R) (of 2.5 fm) between the p and d potential

  10. A simultaneous evaluation of neutron induced reaction cross sections for 56Fe at En = 14.1 MeV

    International Nuclear Information System (INIS)

    A simultaneous evaluation of neutron induced reaction (i.e., (n,total), (n,n), (n,non), (n,n'), (n,2n), (n,nα), (n,np), (n,γ), (n,p), (n,d), (n,α), (n,n-em), (n,p-em), (n,d-em) and (n,α-em) reaction) cross sections on 56Fe at En = 14.1 MeV is carried out. The evaluated cross sections are compared with the corresponding measured values and the evaluations for CENDL-2, ENDF/B-6, JEF-2.2, JENDL-3 and BROND-2. (author). 27 refs, 1 fig., 8 tabs

  11. Synthesis of carbon C-14 labelled 2-phenyl-4-alpha-alkylaminomethyl-quinolinemethanol: a potential anti-leishmaniasis agent

    Energy Technology Data Exchange (ETDEWEB)

    Wang, T.S.T.; Fawwaz, R.A.; Heertum, R.L.van [Columbia Univ., New York, NY (United States). Coll. of Physicians and Surgeons

    1995-07-01

    Using sodium acetate, [1-{sup 14}C] as a starting material, a total of seven steps were required to synthesize the title compound. This involved acylation of ortho-dichlorobenzene to form dichloroacetophenone, [2-{sup 14}C] (I). The 2-phenyl-4-quinoline carboxylic acid, [2-{sup 14}C] (II) was prepared by the Pfitzinger reaction from (1) and dichloroisatin. Compound 11 was converted to the acid chloride (III) by reaction with SOCl{sub 2} in benzene. Grignard condensation reaction of (III) yielded 4-quinolylmethylketone, [2-{sup 14}C] (IV) which was then converted to the bromomethylketone (V). Compound V was reacted with NaBH{sub 4} to form the ethylene oxide (VI). Alkylation of the oxide yielded the title compound (VII). The overall radiochemical yield was 10.1% and the specific activity was 3.0 mCi/mmol, with a radiochemical purity of >99.5%. (author).

  12. Synthesis of carbon C-14 labelled 2-phenyl-4-alpha-alkylaminomethyl-quinolinemethanol: a potential anti-leishmaniasis agent

    International Nuclear Information System (INIS)

    Using sodium acetate, [1-14C] as a starting material, a total of seven steps were required to synthesize the title compound. This involved acylation of ortho-dichlorobenzene to form dichloroacetophenone, [2-14C] (I). The 2-phenyl-4-quinoline carboxylic acid, [2-14C] (II) was prepared by the Pfitzinger reaction from (1) and dichloroisatin. Compound 11 was converted to the acid chloride (III) by reaction with SOCl2 in benzene. Grignard condensation reaction of (III) yielded 4-quinolylmethylketone, [2-14C] (IV) which was then converted to the bromomethylketone (V). Compound V was reacted with NaBH4 to form the ethylene oxide (VI). Alkylation of the oxide yielded the title compound (VII). The overall radiochemical yield was 10.1% and the specific activity was 3.0 mCi/mmol, with a radiochemical purity of >99.5%. (author)

  13. Assessment of adequacy of pancreatic enzyme replacement with the multiple-phase carbon-14-triolein test

    International Nuclear Information System (INIS)

    The carbon-14-triolein absorption test was used to investigate fat absorption and its response to pancreatic enzyme replacement therapy in 10 men with pancreatic steatorrhoea. Absorption was increased in all, from 1,14 plus minus 1,2% of the dose per hour (group mean plus minus SD) to 2,85 plus minus 2,33% (P less than 0,01) by the simultaneous administration of 8 tablets of enteric-coated pancreatic enzymes (Nutrizym; Merck). In patients with normal or high gastric acid secretion, neutralization of gastric acid with 30 ml magnesium trisilicate had no effect on absorption while the addition of an extract of gastric secretions (Enzynorm; Noristan) to the therapy of the 1 achlorhydric patient improved absorption from 2,2% to 3,81%. The 14C fat test offers a rapid and more acceptable alternative method for determining individual response to pancreatic enzyme replacement therapy than the conventional 72-hour faecal fat excretion measurement. The enteric-coated pancreatin preparation used in this study appears to be optimally effective under conditions of normal gastric acid secretion

  14. Propylene carbonate quantification by its derivative 3,5-diacetyl-1,4-dihydro-2,6-lutidine.

    Science.gov (United States)

    Grizić, Daris; Heimer, Pascal; Vranić, Edina; Imhof, Diana; Lamprecht, Alf

    2016-05-01

    Propylene carbonate (PC) is a non-toxic solvent currently used in various pharmaceutical formulations. Consequently, a simple, cost-effective and most accurate analytical method for the quantification of this optical inert solvent is of major interest. Based on a consecutive three-step reaction 3,5-diacetyl-1,4-dihydro-2,6-lutidine was obtained from PC and used for quantification by either UV and fluorescent detection. Data were compared with results from LC-ESI-MS as a reference method. After using Mandel's test for linearity assessment of the calibration curves, linear fitting was used for LC-ESI-MS and spectrofluorimetry, while a polynomial 3rd order curve fitting was used for spectrophotometry. High intra- and inter-day precision as well as high accuracy were confirmed for all three analytical methods (spectrophotometry, spectrofluorimetry and LC-ESI-MS). The comparison of all three methods was assessed using correlation coefficients and Bland-Altman plots, both showing satisfying results with a high degree of agreement. The new method confirmed its applicability for PC quantification in two formulations, namely a PC-enriched cream and polyester microimplants. This new quantification method for PC is a reliable alternative to highly sophisticated chromatographic methods. PMID:26946012

  15. A kinetic study of the reaction of water vapor and carbon dioxide on uranium; Cinetique de la reaction de la vapeur d'eau et du dioxyde de carbone sur l'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Santon, J.P. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1964-09-15

    The kinetic study of the reaction of water vapour and carbon dioxide with uranium has been performed by thermogravimetric methods at temperatures between 160 and 410 deg G in the first case, 350 and 1050 deg C in the second: Three sorts of uranium specimens were used: uranium powder, thin evaporated films, and small spheres obtained from a plasma furnace. The experimental results led in the case of water vapour, to a linear rate of reaction controlled by diffusion at the lower temperatures, and by a surface reaction at the upper ones. In the case of carbon dioxide, a parabolic law has been found, controlled by diffusional processes. (author) [French] L'etude cinetique de la reaction de la vapeur d'eau et du dioxyde de carbone sur l'uranium a ete entreprise au moyen de methodes thermogravimetriques, dans te premier cas entre 160 et 410 deg C et dans le second entre 350 et 1050 deg C. Le materiau utilise se presentait sous trois formes: poudres, couches minces evaporees et billes obtenues par fusion en chalumeau a plasma. Les resultats experimentaux ont permis de mettre en evidence, dans le cas de la vapeur d'eau, une cinetique lineaire controlee par la diffusion a basse temperature et d'interface a haute temperature. Dans le cas du dioxyde de carbone par contre, on trouve une cinetique parabolique controlee par la diffusion. (auteur)

  16. Fusion Reaction of 16O+14N and Its Implication for the Production of 26Al in Explosive Oxygen Burning

    Institute of Scientific and Technical Information of China (English)

    WANG Peng; PENG Qiu-He; ZHANG Shui-Nai; LUO Xin-Lian

    2006-01-01

    We suggest that the fusion reaction 16 O+14 N may be a new way to produce 26A1 in interstellar medium. Adopting different mixing modes, we investigate the impact on the production of 26Al in explosive oxygen burning and find that the result is extremely sensitive to mixing mechanisms. In some cases, we obtain an encouraging result, for example, the greatest final abundance of 26Al reaches 7.779×10-6, which means that the explosive oxygen burning may be a new origin of 26Al.

  17. The 65 keV resonance in the {sup 17}O(p,alpha){sup 14}N thermonuclear reaction

    Energy Technology Data Exchange (ETDEWEB)

    Sergi, M.L. [Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Metodologie Fisiche e Chimiche per l' Ingegneria, Universita di Catania, Catania (Italy); Centro Siciliano di Fisica Nucleare e Struttura della Materia, Catania (Italy); Spitaleri, C. [Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Metodologie Fisiche e Chimiche per l' Ingegneria, Universita di Catania, Catania (Italy); Coc, A. [CSNSM, UMR 8609, CNRS/IN2P3and Universite Paris Sud 11, Batiment 104, 91405 Orsay Campus (France); Mukhamedzhanov, A. [Cyclotron Institute, Texas A and M University, College Station, TX 77843 (United States); Burjan, S.V. [Nuclear Physics Institute of ASCR Rez near Prague (Czech Republic); Gulino, M. [Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Metodologie Fisiche e Chimiche per l' Ingegneria, Universita di Catania, Catania (Italy); Hammache, F. [IPN, IN2P3-CNRS et Universite de Paris-Sud 11, 91406 Orsay Cedex (France); Hons, Z. [Nuclear Physics Institute of ASCR Rez near Prague (Czech Republic); Irgaziev, B. [GIK Institute of Engineering Sciences and Technology Topi District Swabi NWFP (Pakistan); Kiss, G.G. [Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Metodologie Fisiche e Chimiche per l' Ingegneria, Universita di Catania, Catania (Italy); Kroha, V. [Nuclear Physics Institute of ASCR Rez near Prague (Czech Republic); La Cognata, M. [Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Metodologie Fisiche e Chimiche per l' Ingegneria, Universita di Catania, Catania (Italy); Centro Siciliano di Fisica Nucleare e Struttura della Materia, Catania (Italy); Lamia, L.; Pizzone, R.G. [Laboratori Nazionali del Sud, Catania (Italy); Dipartimento di Metodologie Fisiche e Chimiche per l' Ingegneria, Universita di Catania, Catania (Italy); Sereville, N. de [IPN, IN2P3-CNRS et Universite de Paris-Sud 11, 91406 Orsay Cedex (France); Somorjai, E. [ATOMKI, Debrecen (Hungary)

    2010-03-01

    The indirect measurement of {sup 17}O(p,alpha){sup 14}N cross section was performed by means of the Trojan Horse Method. This approach allowed to investigate the ultra-low energy range (E{sub c.m.}=0-300 keV) relevant for several astrophysics environments, where two resonant levels of {sup 18}F at E{sub c.m.}{sup R}=65 keV and E{sub c.m.}{sup R}=183 keV play a significant role in the reaction rate determination.

  18. Reproducibly creating hierarchical 3D carbon to study the effect of Si surface functionalization on the oxygen reduction reaction

    Science.gov (United States)

    Zeng, Yuze; Flores, Jose F.; Shao, Yu-Cheng; Guo, Jinghua; Chuang, Yi-De; Lu, Jennifer Q.

    2016-06-01

    We report a new method to reproducibly fabricate functional 3D carbon structures directly on a current collector, e.g. stainless steel. The 3D carbon platform is formed by direct growth of upright arrays of carbon nanofiber bundles on a roughened surface of stainless steel via the seed-assisted approach. Each bundle consists of about 30 individual carbon nanofibers with a diameter of 18 nm on average. We have found that this new platform offers adequate structural integrity. As a result, no reduction of the surface area during downstream chemical functionalization was observed. With a fixed and reproducible 3D structure, the effect of the chemistry of the grafted species on the oxygen reduction reaction has been systematically investigated. This investigation reveals for the first time that non-conductive Si with an appropriate electronic structure distorts the carbon electronic structure and consequently enhances ORR electrocatalysis. The strong interface provides excellent electron connectivity according to electrochemical analysis. This highly reproducible and stable 3D platform can serve as a stepping-stone for the investigation of the effect of carbon surface functionalization on electrochemical reactions in general.We report a new method to reproducibly fabricate functional 3D carbon structures directly on a current collector, e.g. stainless steel. The 3D carbon platform is formed by direct growth of upright arrays of carbon nanofiber bundles on a roughened surface of stainless steel via the seed-assisted approach. Each bundle consists of about 30 individual carbon nanofibers with a diameter of 18 nm on average. We have found that this new platform offers adequate structural integrity. As a result, no reduction of the surface area during downstream chemical functionalization was observed. With a fixed and reproducible 3D structure, the effect of the chemistry of the grafted species on the oxygen reduction reaction has been systematically investigated. This

  19. Carbon-14 tracer studies of the secondary reactions in the cracking of hexadecane over zeolite catalysts

    International Nuclear Information System (INIS)

    Results from cracking runs over zeolites using propylene tracer showed that incorporation of radioactivity into other products was not as large as when amorphous silica-alumina was used. (Bordley, J. L., Jr., Doctoral Thesis, Johns Hopkins University, Baltimore, 1972). The values for α, the ratio of the radioactivity of the products per unit volume to the radioactivity of the tracer per unit volume, were only about one-tenth of those for the corresponding products obtained when a standard amorphous silica-alumina (Davison No. 980) catalyst was used. Results from the runs using toluene tracer showed that almost all the radioactivity remained in the toluene on both types of catalysts. Values of α for toluene were as large or larger on the zeolite catalyst than on the standard silica-alumina catalyst

  20. Carbon-14 immobilization via the CO2-Ba(OH)2 hydrate gas-solid reaction

    International Nuclear Information System (INIS)

    For the treatment of an air-based off-gas stream, the use of packed beds of Ba(OH)2.8H2O flakes to remove CO2 has been demonstrated. However, the operating conditions must be maintained between certain upper and lower limits with respect to the partial pressure of water. If the water vapor pressure in the gas is less than the dissociation vapor pressure of Ba(OH)2.8H2O, the bed will deactivate. If the vapor pressure is considerably greater, pressure drop problems will increase with increaseing humidity as the particles curl and degrade. Results have indicted that when operated in the proper regime, the bulk of the increase in pressure drop results from the conversion of Ba(OH)2.8H2O to BaCO3 and not from the hydration of the commercial Ba(OH)2.8H2O (i.e., Ba(OH)2.7.50H2O) to Ba(OH)2.8H2O

  1. Dietary carbon sources of mussels and tubeworms from Galapagos hydrothermal vents determined from tissue 14C activity

    International Nuclear Information System (INIS)

    The results of an investigation of the dietary carbon sources of mussels and tubeworms from Galapagos hydrothermal vents, using data from 14C and 13C/12C ratio measurements in tissues, are reported. It is shown that: (1) filter-feeding organisms in the vent system are directly or indirectly incorporating 'dead' carbon of magmatic origin into their tissues; (2) approximately 25% or less of the dietary carbon available to the mussels is from sedimenting particulate organic carbon fixed photosynthetically at the surface; and (3) mussel tissue is incorporating relatively more 'dead' dissolved inorganic carbon than is mussel shell carbonate in specimens collected at the same location near the vent. (U.K.)

  2. Nitrogen-doped ordered mesoporous carbons synthesized from honey as metal-free catalyst for oxygen reduction reaction

    International Nuclear Information System (INIS)

    Highlights: • Nitrogen-doped ordered mesoporous carbons (N-OMCs) were synthesized from honey. • High electrocatalytic activity toward oxygen reduction at N-OMCs modified electrode. • Metal-free, CH3OH tolerable and long term stable catalyst in fuel cell application. • Honey being nitrogen and carbon sources for other metal-free carbon materials. -- Abstract: In this work, nitrogen-doped ordered mesoporous carbons (N-OMCs) were synthesized by a low cost and simple nanocasting method using SBA-15 as a template and honey as a nitrogen and carbon sources. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), nitrogen adsorption-desorption, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) showed that nitrogen was successfully doped into the framework of ordered mesoporous carbon rods. The N-OMCs with high surface area and ordered structure were used as a metal-free catalyst for oxygen reduction reaction (ORR), which exhibited much better electrocatalytic activity, long-term operation stability and high CH3OH tolerance compared to commercial Pt/C catalysts for ORR in alkaline fuel cell. Moreover, the influence of different amounts of nitrogen formed at different carbonization temperatures in N-OMCs on the ORR activity was researched. Honey as a nitrogen and carbon sources may be applied to various carbon materials for the development of other metal-free efficient materials for applications beyond fuel cells

  3. Non-destructive testing of proteins in single seeds using the 14N(d,p)15N and 14N(d,∝)12C reactions

    International Nuclear Information System (INIS)

    A non-destructive nuclear technique aimed for the analysis of proteins in single seeds using the 14N(d,p)15N and 14N(d,∝)12C reactions is implemented. This work was performed at the ININ's Tandem Van der Graaff facility, using a 6 MeV deuteron beam and a surface barrier solid state detector with its associated electronics for the pulse height analysis of the charged particles backscattered from the samples. Well defined populations of five varieties of wheat, and four of corn were used as samples in order to optimize the experimental conditions for the analysis, these results were compared with those obtained using an analytical chemical method (Kjeldahl). The linear regression coefficient (''r'') obtained from the results of these two methods was: r = 0.9 in the case of wheat, and r = 0.7 in the case of corn, which we consider adequate figures for using the non-destructive nuclear technique as an aid or support in agricultural seed protein improvement programs. In adequate geometrical conditions the analysis per seed can take a few seconds, and the exposure to the germ can be as low as ≅1 Rad. (author)

  4. 10 CFR 30.21 - Radioactive drug: Capsules containing carbon-14 urea for “in vivo” diagnostic use for humans.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Radioactive drug: Capsules containing carbon-14 urea for...: Capsules containing carbon-14 urea for “in vivo” diagnostic use for humans. (a) Except as provided in...-14 urea (allowing for nominal variation that may occur during the manufacturing process) each,...

  5. Platinum Nanoparticles Supported on Nitrobenzene-Functionalized Multiwalled Carbon Nanotube as Efficient Electrocatalysts for Methanol Oxidation Reaction

    International Nuclear Information System (INIS)

    Graphical abstract: Multiwalled carbon nanotube was functionalized with nitrobenzene as a promising support material for Pt-based electrocatalysts (Pt-NB-MWCNT) for methanol oxidation. The as-prepared catalysts have higher electrocatalytic activity in terms of both mass and specific activities, and improved durability for methanol oxidation reaction than as compared to the undoped materials. - Highlights: • Multiwalled carbon nanotube was functionalized with nitrobenzene as a support material for Pt-based electrocatalysts for methanol oxidation. • The electronic properties of carbon nanotubes were modified by the nitrobenzene functionalization. • Nitrobenzene-functionalized electrocatalysts revealing the improved electrocatalytic performance of Pt-NB-MWCNT catalyst for the methanol oxidation reaction. - Abstract: A novel method of molecular covalently functionalized multiwalled carbon nanotube using nitrobenzene group is prepared and used as a promising support material of Pt-based electrocatalysts (denoted as Pt-NB-MWCNT) for methanol oxidation reaction. The physical and chemical characteristics are performed by X-ray powder diffraction, transmission electron microscopy, Raman spectroscopy, thermogravimetric and X-ray photoelectron spectroscopy. The electrocatalytic are evaluated by cyclic voltammetry and chronoamperometry techniques. Compared with the un-functionalized Pt-MWCNT catalyst, Pt-NB-MWCNTs show more uniform particle dispersion, smaller particle size, improved activity and durability for methanol oxidation reaction. The nitrobenzene group is demonstrated to promote the electrocatalytic activity of Pt-MWCNT for methanol oxidation significantly. The results represent a novel approach to functionalize MWCNT in a simple and economic way to prepare efficient electrocatalysts for methanol oxidation

  6. An evaluation of the neutron-induced reaction cross sections on carbon from 10 to 20 MeV

    International Nuclear Information System (INIS)

    Available data on the neutron-induced reactions on carbon are reviewed for the energy range from 10 to 20 MeV. Evaluated cross sections obtained at Bruyeres-le-Chatel are discussed. Comparisons with coupled-channel calculations are presented for the total, elastic and inelastic (to the 2+ level) cross sections of 12C

  7. Microcalorimetric Adsorption of Alumina Oxide Catalysts for Combination of Ethylbenzene dehydrogenation and carbon Dioxide Shift-reaction

    Institute of Scientific and Technical Information of China (English)

    GE Xin; SHEN Jian-yi

    2004-01-01

    Styrene (STY) is now produced industrially in fairly large quantities by the dehydrogenation of ethylbenzene (EB) using promoted iron oxide catalyst with superheated steam.In this case, small amount of carbon dioxide formed as a by-product was known to inhibit the catalytic activity of commercial catalyst. Recently, there have been some reports which carbon dioxide showed positive effects to promote catalytic activities on the reaction over several catalysts.In this study, we attempted to combine the dehydrogenation of EB to STY with the carbon dioxide shift-reaction. The combine reaction (EB + CO2 → STY + H2O + CO) can be considered as one of the ways of using CO2 resources and can yield simultaneously STY and Carbon oxide.Alumina oxide catalysts such as Al2O3, Na2O/Al2O3 and K2O/Al2O3 were prepared by the usual impregnation method with an aqueous solution of NaNO3 and KNO3, and then calcined at 650℃ for 5 h in a stream of air. The reaction condition is 600℃, flow of CO2 38ml/mon and space velocity (EB) 1.28h-1.

  8. Cobalt-Embedded Nitrogen-Rich Carbon Nanotubes Efficiently Catalyze Hydrogen Evolution Reaction at All pH Values

    Czech Academy of Sciences Publication Activity Database

    Zou, X.; Huang, X.; Goswami, A.; Silva, R.; Sathe, B. R.; Mikmeková, Eliška; Asefa, T.

    2014-01-01

    Roč. 53, č. 17 (2014), s. 4372-4376. ISSN 1433-7851 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : carbon nanotubes * cobalt nanoparticles * electrocatalysis * hydrogen evolution reaction * water splitting Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 11.261, year: 2014

  9. Synthesis of high purity single-walled carbon nanotubes from ethanol by catalytic gas flow CVD reactions

    International Nuclear Information System (INIS)

    Highly pure single-walled carbon nanotubes (SWNTs) with their contents >96% of the total products were achieved by chemical vapour deposition gas flow reactions using ethanol as the carbon source. The high purity SWNTs were formed under critically controlled synthesis conditions and by applying a high hydrogen flow, under which the non-catalytic condensation of carbon was completely suppressed. Purification of the products in acid at ambient conditions readily yielded over 99% pure SWNT products, as the only impurities left in the products were iron particles of clean surface. Therefore, the present study demonstrates the full potential of the CVD gas flow reactions in continuous production of high quality SWNTs. Comparable syntheses were conducted using other alcohols in place of ethanol and it was found that high alkyl alcohols like isopropanol and hexanol produced more amorphous carbon while methanol produced no carbon. The high yield growth of SWNTs was attributed greatly to the reaction chemistry of ethanol and the 'right' amount of hydrogen in the system, as discussed

  10. Utilization in rats of 14C-L-lysine-labeled casein browned by amino-carbonyl reaction

    International Nuclear Information System (INIS)

    The investigation was carried out in order to elucidate the reason for the reduction in nutritive value of browned protein, by using labeled casein as a model protein. Goat casein preparation in which lysine residues had been labeled with 14C was browned by amino-carbonyl reaction with glucose at 370C. Browned or non-browned casein was ingested by growing rats by spaced feeding. When the rats ingested the browned casein the experimental group, higher radioactivity was found in TCA-soluble fraction in the small intestine as compared with that in the control group, while radioactivity was scarecely found in feces for 22 hr. Along with absorption delay, considerably high radioactivity was found in urine. The recovery of radioactivity in expired air of rats fed the labeled casein (browned and non-browned) was measured. In the experimental group, expired 14CO2 came out slower than the control group. From these results, it is suggested that the main reason for the reduction in nutritive value by browning reaction may be the formation of a lysine derivative in a protein, which remains in the small intestinal lumen as an absorption-delayed material and is finally excreted in urine. (auth.)

  11. 14CO2-assimilation, translocation of 14C, and 14C-carbonate uptake in different organs of spring barley plants in relation to adult-plant resistance to powdery mildew

    International Nuclear Information System (INIS)

    The cultivar Peruvian of spring barley, which is susceptible at all growth stages, and Asse, which exhibits adult-plant resistance to powdery mildew, were compared in 14CO2 assimilation, distribution of 14C, and 14C-carbonate uptake in different organs of healthy and infected plants. The reduction of 14CO2 assimilation in infected plants at the first and fourth leaf stages was greater in Peruvian than in Asse. In Peruvian, the 14C which was fixed by the infected third leaf of plants with mildew on the lower 3 leaves remained in the third leaves with very little translocation to other parts of the plant. Infection of the lower three leaves at the fourth leaf stage reduced 14CO2 assimilation in noninfected fourth leaves of Asse less than that of Peruvian, but the flow of 14C from the healthy fourth leaves into other plant parts such as leaf sheaths was markedly stimulated in Peruvian compared to Asse. Infection also reduced the uptake of 14C-carbonate by seedling roots, the reduction being greater in Peruvian than Asse. A greater proportion of the 14C absorbed by roots of Asse was translocated to the infected leaves than that of Peruvian. It was concluded that powdery mildew disrupted the normal pattern of photosynthesis and translocation of metabolites in a susceptible cultivar more markedly than in an adult-plant-resistant cultivar of spring barley. (author)

  12. Radial deformation of single-walled carbon nanotubes on quartz substrates and the resultant anomalous diameter-dependent reaction selectivity

    Institute of Scientific and Technical Information of China (English)

    Juan Yang; Yu Liu; Daqi Zhang; Xiao Wang; Ruoming Li; Yan Li

    2015-01-01

    Owing to the unique conjugated structure, the chemical-reaction selectivity of single-walled carbon nanotubes (SWNTs) has attracted great attention. By utilizing the radial deformation of SWNTs caused by the strong interactions with the quartz lattice, we achieve an anomalous diameter-dependent reaction selectivity of quartz lattice-oriented SWNTs in treatment with iodine vapor; this is distinctly different from the widely reported and well accepted higher reaction activity in small-diameter tubes compared to large-diameter tubes. The radial deformation of SWNTs on quartz substrate is verified by detailed Raman spectroscopy and mappings in both G-band and radial breathing mode. Due to the strong interaction between SWNTs and the quartz lattice, large-diameter tubes present a larger degree of radial deformation and more delocalized partial electrons are distributed at certain sidewall sites with high local curvature. It is thus easier for the carbon--carbon bonds at these high-curvature sites on large-diameter tubes to break down during reaction. This anomalous reaction activity offers a novel approach for selective removal of small-band~aD large-diameter tubes.

  13. Simulation Experiments on the Reaction of CH4-CaSO4 and Its Carbon Kinetic Isotope Fractionation

    Institute of Scientific and Technical Information of China (English)

    YueChangtao; LiShuyuan; DingKangle; ZhongNingning

    2005-01-01

    Thermochemical sulfate reduction (TSR) in geological deposits can account for the accumulation of H,S in deep sour gas reservoirs. In this paper, thermal simulation experiments on the reaction of CH4-CaSO4 were carried out using an autoclave at high temperatures and high pressures. The products were characterized with analytical methods including carbon isotope analysis. It is found that the reaction can proceed to produce H2S, H2O and CaCO3 as the main products. Based on the experimental results, the carbon kinetic isotope fractionation was investigated, and the value of Ki(kinetic isotope effect) was calculated. The results obtained in this paper can provide useful information to explain the occurrence of H2S in deep carbonate gas reservoirs.

  14. Energy- and carbon-efficient synthesis of functionalized small molecules in bacteria using non-decarboxylative Claisen condensation reactions.

    Science.gov (United States)

    Cheong, Seokjung; Clomburg, James M; Gonzalez, Ramon

    2016-05-01

    Anabolic metabolism can produce an array of small molecules, but yields and productivities are low owing to carbon and energy inefficiencies and slow kinetics. Catabolic and fermentative pathways, on the other hand, are carbon and energy efficient but support only a limited product range. We used carbon- and energy-efficient non-decarboxylative Claisen condensation reactions and subsequent β-reduction reactions, which can accept a variety of functionalized primers and functionalized extender units and operate in an iterative manner, to synthesize functionalized small molecules. Using different ω- and ω-1-functionalized primers and α-functionalized extender units in combination with various termination pathways, we demonstrate the synthesis of 18 products from 10 classes, including ω-phenylalkanoic, α,ω-dicarboxylic, ω-hydroxy, ω-1-oxo, ω-1-methyl, 2-methyl, 2-methyl-2-enolic and 2,3-dihydroxy acids, β-hydroxy-ω-lactones, and ω-1-methyl alcohols. PMID:27088721

  15. Amorphous Molybdenum Sulfide on Graphene-Carbon Nanotube Hybrids as Highly Active Hydrogen Evolution Reaction Catalysts.

    Science.gov (United States)

    Pham, Kien-Cuong; Chang, Yung-Huang; McPhail, David S; Mattevi, Cecilia; Wee, Andrew T S; Chua, Daniel H C

    2016-03-01

    In this study, we report on the deposition of amorphous molybdenum sulfide (MoSx, with x ≈ 3) on a high specific surface area conductive support of Graphene-Carbon Nanotube hybrids (GCNT) as the Hydrogen Evolution Reaction (HER) catalysts. We found that the high surface area GCNT electrode could support the deposition of MoSx at much higher loadings compared with simple porous carbon paper or flat graphite paper. The morphological study showed that MoSx was successfully deposited on and was in good contact with the GCNT support. Other physical characterization techniques suggested the amorphous nature of the deposited MoSx. With a typical catalyst loading of 3 mg cm(-2), an overpotential of 141 mV was required to obtain a current density of 10 mA cm(-2). A Tafel slope of 41 mV decade(-1) was demonstrated. Both measures placed the MoSx-deposited GCNT electrode among the best performing molybdenum sulfide-based HER catalysts reported to date. The electrode showed a good stability with only a 25 mV increase in overpotential required for a current density of 10 mA cm(-2), after undergoing 500 potential sweeps with vigorous bubbling present. The current density obtained at -0.5 V vs SHE (Standard Hydrogen Electrode potential) decreased less than 10% after the stability test. The deposition of MoSx on high specific surface area conductive electrodes demonstrated to be an efficient method to maximize the catalytic performance toward HER. PMID:26864503

  16. Transmetallation Versus β-Hydride Elimination : The Role of 1,4 Benzoquinone in Chelation-Controlled Arylation Reactions with Arylboronic Acids

    OpenAIRE

    Sköld, Christian; Kleimark, Jonatan; Trejos, Alejandro; Odell, Luke R; Nilsson Lill, Sten O.; Norrby, Per-Ola; Larhed, Mats

    2012-01-01

    AbstractThe formation of an atypical, saturated, diarylated, Heck/Suzuki, domino product produced under oxidative Heck reaction conditions, employing arylboronic acids and a chelating vinyl ether, has been investigated by DFT calculations. The calculations highlight the crucial role of 1,4-benzoquinone (BQ) in the reaction. In addition to its role as an oxidant of palladium, which is necessary to complete the catalytic cycle, this electron-deficient alkene opens up a low-energy reaction pathw...

  17. Science Letters: Nitrogen doping of activated carbon loading Fe2O3 and activity in carbon-nitric oxide reaction

    Institute of Scientific and Technical Information of China (English)

    WAN Xian-kai; ZOU Xue-quan; SHI Hui-xiang; WANG Da-hui

    2007-01-01

    Nitrogen doping of activated carbon loading Fe2O3 was performed by annealing in ammonia, and the activity of the modified carbon for NO reduction was studied in the presence of oxygen. Results show that Fe2O3 enhances the amount of surface oxygen complexes and facilitates nitrogen incorporation in the carbon, especially in the form of pyridinic nitrogen. The modified carbon shows excellent activity for NO reduction in the low temperature regime (<500 ℃) because of the cooperative effect of Fe2O3 and the surface nitrogen species.

  18. In vivo uptake of carbon-14-colchicine for identification of tumor multidrug resistance

    Energy Technology Data Exchange (ETDEWEB)

    Mehta, B.M.; Rosa, E.; Biedler, J.L. [Nuclear Medicine Research Lab., New York, NY (United States)] [and others

    1994-07-01

    A major limitation in the treatment of cancer with natural product chemotherapeutic agents is the development of multidrug resistance (MDR). Multidrug resistance is attributed to enhanced expression of the multidrug resistance gene MDR1. Colchicine (CHC) is known to be one of the MDR drugs. The authors have previously demonstrated that it is possible to distinguish multidrug resistant tumors from the multidrug-sensitive tumors in vivo on the basis of tritium ({sup 3}H) uptake following injection of {sup 3}H-CHC. The present studies were carried out in xenografted animals using {sup 14}C-CHC which may be more indicative of {sup 11}C-labeled CHC distribution with regard to circulating metabolites, since metabolic processes following injection of (ring C, methoxy-{sup 11}C)-CHC may produce significant amounts of circulating 1l-carbon fragments (i.e., methanol and/or formaldehyde). Experiments were carried out at a dose of 2 mg/kg. Activity concentration per injected dose was approximately twice as great in sensitive as in resistant tumors (p < 0.05) at 60 min following intravenous injection of {sup 14}C-CHC. About 75% of total activity was CHC in the sensitive tumors. The findings are further confirmed by the quantitative autoradiographic evaluation of resistant and sensitive tumors. These studies confirm our previous observations that it is possible to noninvasively distinguish multidrug-resistant tumors from sensitive tumors in vivo based on uptake of an injected MDR drug using a{sup 14}C-labeled CHC at the same position and of comparable specific activity to a {sup 11}C-CHC tracer used for PET imaging. 16 refs., 5 figs., 2 tabs.

  19. In situ observation of the reaction of scandium and carbon by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Juarez-Arellano, Erick A., E-mail: eajuarez@unpa.edu.m [Institut fuer Geowissenschaften, Universitaet Frankfurt, Altenhoeferallee 1, 60438 Frankfurt a.M. (Germany); Universidad del Papaloapan, Circuito Central 200, Parque Industrial, Tuxtepec 68301 (Mexico); Winkler, Bjorn [Institut fuer Geowissenschaften, Universitaet Frankfurt, Altenhoeferallee 1, 60438 Frankfurt a.M. (Germany); Vogel, Sven C. [Los Alamos National Laboratory, Lujan Center. Mail Stop H805, Los Alamos, NM 87545 (United States); Senyshyn, Anatoliy [Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universitaet Muenchen, Lichtenbergstr. 1, D-85747 Garching (Germany); Materialwissenschaft, TU Darmstadt, Petersensstr. 23, D-64287 Darmstadt (Germany); Kammler, Daniel R. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Avalos-Borja, Miguel [CNyN, UNAM, A. Postal 2681, Ensenada, B.C. (Mexico)

    2011-01-05

    Research highlights: {yields} Exist two ScC cubic phases with B1-structure type differing in site occupancy of C. {yields} A new orthorhombic scandium carbide phase is formed at 1473(50) K. {yields} The recrystallization of alpha-Sc occurs between 1000 and 1223 K. - Abstract: The formation of scandium carbides by reaction of the elements has been investigated by in situ neutron diffraction up to 1823 K. On heating, the recrystallization of {alpha}-Sc occurs between 1000 and 1223 K. The formation of Sc{sub 2}C and ScC (NaCl-B1 type structure) phases has been detected at 1323 and 1373 K, respectively. The formation of a new orthorhombic scandium carbide phase was observed at 1473(50) K. Once the scandium carbides are formed they are stable upon heating or cooling. No other phases were detected in the present study, in which the system was always carbon saturated. The thermal expansion coefficients of all phases have been determined, they are constant throughout the temperature interval studied.

  20. Competitive surface complexation reactions of sulfate and natural organic carbon on soil

    International Nuclear Information System (INIS)

    The ecological implications of subsurface SO42- loading on nutrient cation leaching, acidification, and the destruction of concrete containers used to store low-level radioactive waste, has been thoroughly addressed. Processes favoring SO42- adsorption by the subsurface matrix tend to alleviate these adverse ecological conditions and this has been investigated to a lesser extent. In this study, the adsorption of SO42 onto several soil types with indigenous SO42- and organic carbon removed, was measured as a function of pH in the presence and absence of added natural organic matter (NOM). Sulfate adsorption was strongly pH dependent and the presence of >2 mg L-1 NOM resulted in a consistent decrease in sulfate adsorption over the pH range 4.5 to 8. The tendency of these soils to adsorb SO42- was related to their large quantity of Fe-oxides and the presence of kaolinite in the 42- was related to their large quantity of Fe-oxides and the presence of kaolinite in the 42- onto positive or neutral surface sites (XOH + H+ + SO42- = XSO4- + H2O) as a inner-sphere complex proved successful in describing the adsorption of sulfate under the experimental conditions. The estimated value of the intrinsic equilibrium constant (K) for the above reaction was of the order 1010 suggesting strong sulfate adsorption. Estimated K values were found to be unaffected by the presence of added NOM. 57 refs., 3 figs., 3 tabs

  1. One-step synthesis of nitrogen-iron coordinated carbon nanotube catalysts for oxygen reduction reaction

    Science.gov (United States)

    Choi, Woongchul; Yang, Gang; Kim, Suk Lae; Liu, Peng; Sue, Hung-Jue; Yu, Choongho

    2016-05-01

    Prohibitively expensive precious metal catalysts for oxygen reduction reaction (ORR) have been one of the major hurdles in a wide use of electrochemical cells. Recent significant efforts to develop precious metal free catalysts have resulted in excellent catalytic activities. However, complicated and time-consuming synthesis processes have negated the cost benefit. Moreover, detailed analysis about catalytically active sites and the role of each element in these high-performance catalysts containing nanomaterials for large surface areas are often lacking. Here we report a facile one-step synthesis method of nitrogen-iron coordinated carbon nanotube (CNT) catalysts without precious metals. Our catalysts show excellent long-term stability and onset ORR potential comparable to those of other precious metal free catalysts, and the maximum limiting current density from our catalysts is larger than that of the Pt-based catalysts. We carry out a series of synthesis and characterization experiments with/without iron and nitrogen in CNT, and identify that the coordination of nitrogen and iron in CNT plays a key role in achieving the excellent catalytic performances. We anticipate our one-step process could be used for mass production of precious metal free electrocatalysts for a wide range of electrochemical cells including fuel cells and metal-air batteries.

  2. Reaction products from the chlorination of seawater. Final report 15 Jul 75-14 Jul 80

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, J.H.; Smith, C.A.; Zika, R.G.

    1981-03-01

    Chemical treatment of natural waters, in particular the use of chlorine as a biocide, modifies the chemistry of these waters in ways that are not fully understood. The research described in this report examined both inorganic and organic reaction products from the chlorination of seawater using a variety of analytical approaches. Some analytical methods in widespread current use underestimate the residual oxidants in chlorinated seawater by as much as 70% depending upon the detail of the procedures. The chlorination of seawater in the presence of light produces substantial quantities of bromate ions which can influence standard analytical procedures and represents an unknown factor in estuarine and coastal waters. The copper complexing capacity of Biscayne Bay, Florida water was found to be substantially reduced with the addition of chlorine. Analysis was made by anodic stripping voltammetry on water samples after successive additions of copper sulfate solution. Laboratory chlorination of water from the intake of the Port Everglades, Florida power plant produces bromoform levels comparable to that found in the plant discharge. These results are in contrast to results reported in the literature for a power plant on the Patuxent estuary in Maryland, so that bromoform production appears to be site-specific. Chloroform extracts of chlorinated Biscayne Bay water are found to contain halogenated compounds which are new and different, and which pose unusual analytical problems. Studies using GC/ECD, GC/MS, HPLC, H NMR, differential pulsed polarography and other techniques on natural extracts and synthesized compounds are reported.

  3. Carbon nanotubes-supported palladium nanoparticles for the Suzuki reaction in supercritical carbon dioxide: A facile method for the synthesis of tetrasubstituted olefins

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A facile and efficient method for the synthesis of tetrasubstituted olefins in supercritical carbon dioxide was developed by using carbon nanotubes-supported palladium nanoparticles (Pd/CNTs) as the catalyst. Compared with common Pd/C, Pd/CNTs could more effectively catalyze the reaction of dibromo-substituted olefins with boronic acids, affording the corresponding tetrasubstituted olefins with moderate to good yields. This environmentally benign route with an easy-to-handle catalyst provides an appealing alternative to the currently available methods.

  4. Carbon-14 immobilization via the Ba(OH)28H2O process

    International Nuclear Information System (INIS)

    The airborne release of 14C from various nuclear facilities has been identified as a potential biohazard due to the long half-life of 14C (5730 yrs) and the ease in which it may be assimilated into the biosphere. At Oak Ridge National Laboratory, technology is under development, as part of the Airborne Waste Management Program, for the removal and immobilization of this radionuclide. Prior studies have indicated that the 14C will likely exist in the oxidized form as CO2 and will contribute slightly to the bulk CO2 concentration of the gas stream, which is airlike in nature (approx. 330 ppMv CO2). The technology under development utilizes the CO2 - Ba(OH)2 8H2O gas-solid reaction with the mode of gas-solid contacting being a fixed bed. The product, BaCO3, possessing excellent thermal and chemical stability, prerequisites for the long-term disposal of nuclear wastes. For optimal process operation, studies have indicated that an operating window of adequate size does exist. When operating within the window, high CO2 removal efficiency (effluent concentrations 99%), and an acceptable pressure drop across the bed (3 kPa/m at 13 cm/s superficial velocity) are possible. This paper will address three areas of experimental investigation. These areas are (1) micro-scale studies on 150-mg samples to provide information concerning surface properties, kinetics, and equilibrium vapor pressures, (2) macro-scale studies on large fixed beds (4.2 kg reactant) to determine the effects of humidity, temperature, and gas flow-rate upon bed pressure drop and CO2 breakthrough, and (3) the design, construction, and initial operation of a pilot unit capable of continuously processing a 34 m3/h (20 ft3/min) air-based gas stream

  5. Nitrogen-doped carbon black as methanol tolerant electrocatalyst for oxygen reduction reaction in direct methanol fuel cells

    International Nuclear Information System (INIS)

    Nitrogen-doped metal free carbon catalysts were prepared via pyrolysis of polyaniline-coated carbon in different ratios with varying nitrogen content. The surface states and surface composition were investigated using XPS (X-ray photoelectron spectroscopy). XPS analysis confirms the presence of pyridinic and pyrollic nitrogen in the carbon network that is responsible for the oxygen reduction activity. The shift in onset potential of oxygen reduction on C:N (1:1) is ∼0.3 V more positive compared to Vulcan carbon, shows improved activity toward oxygen reduction reaction in acidic electrolyte. Hydrodynamic voltammetric studies confirm that the reduction of oxygen follows the 4e− pathway which leads to the formation of water.

  6. The {sup 14}N(p, {gamma}){sup 15}O reaction studied at low and high beam energy

    Energy Technology Data Exchange (ETDEWEB)

    Marta, Michele

    2012-07-01

    The Bethe-Weizsaecker cycle consists of a set of nuclear reactions that convert hydrogen into helium and release energy in the stars. It determines the luminosity of low-metal stars at their turn-off from the main-sequence in the Hertzsprung-Russel diagram, so its rate enters the calculation of the globular clusters' age, an independent lower limit on the age of the universe. The cycle contributes less than 1% to our Sun's luminosity, but it produces neutrinos that can in principle be measured on Earth in underground experiments and bring direct information of the physical conditions in the solar core, provided that the nuclear reaction rate is known with sufficient precision. The {sup 14}N(p,{gamma}){sup 15}O reaction is the slowest reaction of the Bethe-Weizsaecker cycle and establishes its rate. Its cross section is the sum of the contributions by capture to different excited levels and to the ground state in {sup 15}O. Recent experiments studied the region of the resonance at E{sub p} = 278 keV. Only one modern data set from an experiment performed in 1987 is available for the high-energy domain. Both energy ranges are needed to constrain the fit of the excitation function in the R-matrix framework and to obtain a reliable extrapolated S-factor at the very low astrophysical energies. The present research work studied the {sup 14}N(p,{gamma}){sup 15}O reaction in the LUNA (Laboratory for Underground Nuclear Astrophysics) underground facility at three proton energies 0.36, 0.38, 0.40MeV, and in Dresden in the energy range E{sub p} = 0.6 - 2MeV. In both cases, an intense proton beam was sent on solid titanium nitride sputtered targets, and the prompt photons emitted from the reaction were detected with germanium detectors. At LUNA, a composite germanium detector was used. This enabled a measurement with dramatically reduced summing corrections with respect to previous studies. The cross sections for capture to the ground state and to the excited states

  7. Effect of Nonleaving Group on the Reaction Rate and Mechanism: Aminolyses of 4-Nitrophenyl Acetate, Benzoate and Phenyl Carbonate

    International Nuclear Information System (INIS)

    Second-order rate constants have been determined spectrophotometrically for the reaction of phenyl 4- nitrophenyl carbonate with a series of primary amines in H2O containing 20 mol % DMSO at 25.0 .deg. C. The Brφnsted-type plot is linear with a βnuc 0.69 ± 0.04, which is slightly smaller than the βnuc values for the reactions of 4-nitrophenyl acetate (βnuc = 0.82 ± 0.03) and benzoate (βnuc = 0.76 ± 0.01), indicating that the reaction proceeds through a tetrahedral zwitterionic intermediate T±. The carbonate is more reactive than the corresponding acetate and benzoate. The changing Me (or Ph) to PhO has resulted in a decrease in the βnuc value without changing the reaction mechanism but an increase in the reactivity. The electronic effect of the substituent in the nonleaving group appears to be responsible for the enhanced reactivity of the carbonate compared with the corresponding acetate and benzoate

  8. Molecular-level Simulations of Chemical Reaction Equilibrium for Nitric Oxide Dimerization Reaction in Disordered Nanoporous Carbons

    Czech Academy of Sciences Publication Activity Database

    Lísal, Martin; Cosoli, P.; Smith, W. R.; Jain, S.K.; Gubbins, K.E.

    2008-01-01

    Roč. 272, 1-2 (2008), s. 18-31. ISSN 0378-3812 R&D Projects: GA ČR GA203/08/0094; GA AV ČR 1ET400720409; GA AV ČR 1ET400720507; GA AV ČR KAN400720701; GA AV ČR IAA400720710 Institutional research plan: CEZ:AV0Z40720504 Keywords : nanoporous carbon * adsorption model * remc Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.699, year: 2008

  9. Accelerated carbonation using municipal solid waste incinerator bottom ash and cold-rolling wastewater: Performance evaluation and reaction kinetics.

    Science.gov (United States)

    Chang, E-E; Pan, Shu-Yuan; Yang, Liuhanzi; Chen, Yi-Hung; Kim, Hyunook; Chiang, Pen-Chi

    2015-09-01

    Accelerated carbonation of alkaline wastes including municipal solid waste incinerator bottom ash (MSWI-BA) and the cold-rolling wastewater (CRW) was investigated for carbon dioxide (CO2) fixation under different operating conditions, i.e., reaction time, CO2 concentration, liquid-to-solid ratio, particle size, and CO2 flow rate. The MSWI-BA before and after carbonation process were analyzed by the thermogravimetry and differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy equipped with energy dispersive X-ray spectroscopy. The MSWI-BA exhibits a high carbonation conversion of 90.7%, corresponding to a CO2 fixation capacity of 102g perkg of ash. Meanwhile, the carbonation kinetics was evaluated by the shrinking core model. In addition, the effect of different operating parameters on carbonation conversion of MSWI-BA was statistically evaluated by response surface methodology (RSM) using experimental data to predict the maximum carbonation conversion. Furthermore, the amount of CO2 reduction and energy consumption for operating the proposed process in refuse incinerator were estimated. Capsule abstract: CO2 fixation process by alkaline wastes including bottom ash and cold-rolling wastewater was developed, which should be a viable method due to high conversion. PMID:26025583

  10. Experimental study of carbon sequestration reactions controlled by the percolation of CO2-rich brine through peridotites.

    Science.gov (United States)

    Andreani, M; Luquot, L; Gouze, P; Godard, M; Hoisé, E; Gibert, B

    2009-02-15

    Carbonation of ultramafic rocks in geological reservoirs is, in theory, the most efficient way to trap CO2 irreversibly; however, possible feedback effects between carbonation reactions and changes in the reservoir permeability must be considered to realistically assess the efficiency and sustainability of this process. We investigated changes in the hydrodynamic properties of sintered dunite samples by means of percolation experiments, under conditions analogous to that of in situ carbonation. Our results show that carbonation efficiency is controlled by the local renewal of the reactants and the heterogeneity of the pore structure. Preferential flow zones are characterized by the formation of magnetite and of a silica-rich layer at the olivine surfaces, which eventually inhibits olivine dissolution. Conversely, sustainable olivine dissolution together with coprecipitation of magnesite, siderite, and minor Mg-TOT-phyllosilicates, occur in reduced-flow zones. Thus carbonate precipitation only decreases porosity in zones where diffusion-controlled transport is dominant. Consequently, while high flow rates will decrease the carbonation efficiency of the reservoir and low flow rates may reduce the permeability irreversibly close to the injection point, moderate injection rates will ensure a partial carbonation of the rock and maintain the reservoir permeability. PMID:19320184

  11. Formation of brown carbon via reactions of ammonia with secondary organic aerosols from biogenic and anthropogenic precursors

    Science.gov (United States)

    Updyke, Katelyn M.; Nguyen, Tran B.; Nizkorodov, Sergey A.

    2012-12-01

    Filter samples of secondary organic aerosols (SOA) generated from the ozone (O3)- and hydroxyl radical (OH)-initiated oxidation of various biogenic (isoprene, α-pinene, limonene, α-cedrene, α-humulene, farnesene, pine leaf essential oils, cedar leaf essential oils) and anthropogenic (tetradecane, 1,3,5-trimethylbenzene, naphthalene) precursors were exposed to humid air containing approximately 100 ppb of gaseous ammonia (NH3). Reactions of SOA compounds with NH3 resulted in production of light-absorbing "brown carbon" compounds, with the extent of browning ranging from no observable change (isoprene SOA) to visible change in color (limonene SOA). The aqueous phase reactions with dissolved ammonium (NH4+) salts, such as ammonium sulfate, were equally efficient in producing brown carbon. Wavelength-dependent mass absorption coefficients (MAC) of the aged SOA were quantified by extracting known amounts of SOA material in methanol and recording its UV/Vis absorption spectra. For a given precursor, the OH-generated SOA had systematically lower MAC compared to the O3-generated SOA. The highest MAC values, for brown carbon from SOA resulting from O3 oxidation of limonene and sesquiterpenes, were comparable to MAC values for biomass burning particles but considerably smaller than MAC values for black carbon aerosols. The NH3/NH4+ + SOA brown carbon aerosol may contribute to aerosol optical density in regions with elevated concentrations of NH3 or ammonium sulfate and high photochemical activity.

  12. Diffusion-type model of the global carbon cycle for the estimation of dose to the world population from releases of carbon-14 to the atmosphere

    International Nuclear Information System (INIS)

    A nonlinear dynamic model of the exchange of carbon among the atmosphere, terrestrial biosphere, and ocean is described and applied to estimating the radiation dose to the world's population from the release of 14C to the atmosphere from the nuclear power industry. A computer implementation of the model, written in the IBM Continuous System Modeling Program III (CSMP III) simulation language, is presented. The model treats the ocean as a diffusive medium with respect to vertical transport of carbon, and the nonlinear variation of CO2 partial pressure with the total inorganic carbon concentration in surface waters is taken into account in calculating the transfer rate from ocean to atmosphere. Transfers between the atmosphere and terrestrial biosphere are represented by nonlinear equations which consider CO2 fertilization and impose a constraint on the ultimate total carbon mass in the biosphere

  13. Analysis of LMD data of core coming from Ta(15C, 14C+n)Ta Coulomb breakup reaction

    International Nuclear Information System (INIS)

    It is well established fact that the neutron-halo nucleus is a loosely bound exotic nuclear state where in the valence neutron is found mostly at a much larger distance from the remaining core. The development of radioactive ion beams (RI) has provided a great opportunity to explore various peculiar properties of such nuclear systems. Consequently lots of efforts have been made on theoretical and experimental fronts to understand the exotic features of halo nuclei. One of the clear manifestations of exotic properties of isotopes lying near neutron drip line is the loss of magicity and the tendency to posses prolate deformation. In this conference contribution, we study Ta(15C, 14C+n)Ta Coulomb breakup reaction with a special emphasis on the study of effects of deformation and to investigate the possibility of occupying d-orbital by valence neutron in 15 C

  14. Semi-empirical systematics of (n, p) reaction cross sections for 14.5 MeV neutrons

    International Nuclear Information System (INIS)

    A new semi-empirical formula for the calculation of the (n, p) cross section at 14.5 MeV neutron energy is obtained. Derived from the evaporation statistical model, the new formula includes five parameters and shows for the first time a strong dependence of the (n, p) cross section on terms of the parameter (2Z-1)/A. Fitting this formula to the existing cross section data on 161 nuclei with 40≤A≤209, the adjustable parameters have been determined and the systematics of the (n, p) reaction have been studied. The predictions of this formula are compared with those of the existing formulae and with the experimental data. The formula with five parameters is found to give a better fit to the data than the previous comparable formulae

  15. A highly efficient electrocatalyst for oxygen reduction reaction: phosphorus and nitrogen co-doped hierarchically ordered porous carbon derived from an iron-functionalized polymer.

    Science.gov (United States)

    Deng, Chengwei; Zhong, Hexiang; Li, Xianfeng; Yao, Lan; Zhang, Huamin

    2016-01-21

    Heteroatom-doped carbon materials have shown respectable activity for the oxygen reduction reaction (ORR) in alkaline media. However, the performances of these materials are not satisfactory for energy conversion devices, such as fuel cells. Here, we demonstrate a new type of phosphorus and nitrogen co-doped hierarchically ordered porous carbon (PNHOPC) derived from an iron-functionalized mesoporous polymer through an evaporation-induced self-assembly process that simultaneously combines the carbonization and nitrogen doping processes. The soft template and the nitrogen doping process facilitate the formation of the hierarchically ordered structure for the PNHOPC. The catalyst possesses a large surface area (1118 cm(2) g(-1)) and a pore volume of 1.14 cm(3) g(-1). Notably, it exhibits excellent ORR catalytic performance, superior stability and methanol tolerance in acidic electrolytes, thus making the catalyst promising for fuel cells. The correlations between the unique pore structure and the nitrogen and phosphorus configuration of the catalysts with high catalytic activity are thoroughly investigated. PMID:26692228

  16. Incorporation of Pt, Ru and Pt-Ru nanoparticles into ordered mesoporous carbons for efficient oxygen reduction reaction in alkaline media

    International Nuclear Information System (INIS)

    Ordered mesoporous carbon, volume-doped up to 3 w.% with Pt, Ru and Pt-Ru nanoparticles was synthesized by evaporation-induced self-assembly method, under acidic conditions. The content of incorporated metal was determined by EDX analysis. The X-ray diffractometry confirmed the existence of highly dispersed metallic phases in doped samples. Specific surface area was determined by N2-physisorption measurements to range between 452 and 545 m2 g−1. Raman spectroscopy of investigated materials indicated highly disordered carbon structure with crystallite sizes around 1.4 nm. In a form of thin-layer electrode on glassy carbon support, in 0.1 M KOH solution, the prepared materials displayed high activity toward oxygen reduction reaction (ORR) in alkaline media, with onset potentials more positive than −0.10 V vs. SCE. The kinetics of O2 reduction was found to be affected by both the specific surface area and the concentration of metal dopants. The ethanol tolerance of (Pt, Ru)-doped OMCs was found to be higher than that of common Pt/C ORR catalysts. Presented study provides a new route for the synthesis of active and selective ORR catalysts in alkaline media, being competitive with, or superior to, the existing ones in terms of performance and price

  17. In situ formation of silicon carbide from the kaolin and carbon reaction: quantification using X-ray diffraction

    International Nuclear Information System (INIS)

    In situ formation of silicon carbide by the reaction between kaolin, as a Si O2 natural mineral precursor, and black carbon was analyzed by X-ray diffraction studies in a temperature range from 1400 to 1700 deg C in an argon atmosphere. X-ray patterns showed that needle like SiC (aspect ratio: 20 to 100) begins to form above 1500 deg C. Samples with stoichiometry carbon contents with respect to silica were synthesized. The quantitative influence of temperature on the SiC-formation was determined. (author)

  18. Carbon-14 dating of a mummy from 'Caverna da Babilonia', Rio Novo Country, south of Minas Gerais (MG, Brazil)

    International Nuclear Information System (INIS)

    The vegetable fibers of a cloth wrapping a mummy of a woman, found in 'Caverna da Babilonia' (MG, Brazil), were dated with carbon-14. There is strong evidence that it is a pre-colombian mummym since the age of the sample is 600 + - 80 years (1σ). (C.L.B.)

  19. Magnetic Carbon Supported Palladium Nanoparticles: An Efficient and Sustainable Catalyst for Hydrogenation Reactions

    Science.gov (United States)

    Magnetic carbon supported Pd catalyst has been synthesized via in situ generation of nanoferrites and incorporation of carbon from renewable cellulose via calcination; the catalyst can be used for the hydrogenation of alkenes and reduction of aryl nitro compounds.

  20. Applications of the water--gas shift reaction. II. Catalytic exchange of deuterium for hydrogen at saturated carbon

    International Nuclear Information System (INIS)

    Previous studies on the homogeneous catalysis of the water-gas shift reaction by metal complexes of groups 6 and 8 had been carried out using aqueous alcoholic solutions of group 8 metal carbonyl complexes made basic with KOH. Substitution of triethylamine (Et3N) for KOH as base and alcohol for solvent led to the discovery that Et3N in the presence of D2O, CO, and Rh6(CO)16 at 1500C undergoes an unusual catalytic exchange of deuterium for hydrogen. A suggested mechanism for this reaction is given and includes activation of hydrogen at a saturated carbon

  1. Cross sections for 13.5-14.7 MeV neutron induced reactions on palladium isotopes

    CERN Document Server

    Kong Xiang Zhong; Wang Yong; Yang Jing Kan

    1999-01-01

    Cross sections for (n, p), (n, alpha) and (n, 2n) reactions have been measured on palladium isotopes at 13.5-14.7 MeV using the activation technique. Data are reported for the following reactions: sup 1 sup 0 sup 2 Pd(n, p) sup 1 sup 0 sup 2 sup m Rh, sup 1 sup 0 sup 2 Pd(n, p) sup 1 sup 0 sup 2 sup g Rh, sup 1 sup 0 sup 5 Pd(n, p) sup 1 sup 0 sup 5 Rh, sup 1 sup 0 sup 6 Pd(n, p) sup 1 sup 0 sup 6 Rh; sup 1 sup 0 sup 6 Pd(n, alpha) sup 1 sup 0 sup 3 Ru, sup 1 sup 0 sup 8 Pd(n, alpha) sup 1 sup 0 sup 5 Ru; sup 1 sup 0 sup 2 Pd(n, 2n) sup 1 sup 0 sup 1 Pd and sup 1 sup 1 sup 0 Pd(n, 2n) sup 1 sup 0 sup 9 Pd.

  2. Energy relaxation and mass transfer occuring in the reactions 14N+27Al and 40Ar+27Al

    International Nuclear Information System (INIS)

    The different mechanisms occuring in the two reactions 14N(100 MeV) + 27Al and 40Ar(340 MeV) + 27Al have been investigated. The experiments were performed on the isochronous cyclotron of Grenoble and the Alice facility of the IPN Orsay Laboratory respectively and in the first case both light and heavy products were detected, using a solid state detectors telescope and a ΔE ionisation chamber telescope. The fusion process has been first investigated. The experimental fusion cross sections have been compared with theoretical values and the data have been then analysed with a multidimensional potential calculation, taking into account the following three parameters the neck parameters, and the mass assymmetry of the entrance channel. Such a study stresses the great part of the cross section taken by peripheral interactions. In a second part energy dissipation has been analysed by looking at the correlation with the variance of the charge distributions. The different steps of the reaction have been studied in the frame of a diffusion mode. Considerable energy damping has been found to occur in the approach phase, which can not be explained by a simple Fokker Planck diffusion calculation. Indeed such a behaviour can be interpreted as a local equilibration phase followed by diffusive phenomena. Theoretical improvements in that direction give in that respect a better agreement

  3. The theoretical analysis of the reaction N14 (p,) C11 at E 20.5 45 MeV

    International Nuclear Information System (INIS)

    The experimental angular distributions of the reaction N14 (p, )C11 leading to the ground and first three excited states in C11 at incident energies ranged from 20.5 to 45 MeV are examined and compared together. The examination and comparison processes show that, most of the angular distributions of the present reaction have the characteristics of the direct nuclear reactions. This leads to use the semi-microscopic DWBA-theory and the Kurath-Millener's SU(3) spectroscopic factor amplitudes for the transferred triton in the theoretical analysis of the lower four C11-states g. s. (3/2- ;1/2); 1.99 (1/2- ;1/2); 4.319 (5/2- ;1/2) and 4..804 MeV (3/2- ;1/2). The analysis process shows excellent fitting between the experimental angular distributions and the DWBA-theory's predictions for the four states. Coincidences are obtained between the theoretical spectroscopic factors (S) and both of experimental- and theoretical forward integrated cross-section values at Ep = 41 MeV. The values and orders of experimental excitation energies for the four investigated C11-states are also in good agreement with the corresponding theoretical values and their orders. Such coincidences between theoretical- and experimental data can be considered as a test and it is a success for the Kurath-Millener's spectroscopic-factors and also for the Cohen-Kurath wave-functions itself and their accuracy and model of calculations

  4. Release of (14)C-labelled carbon nanotubes from polycarbonate composites.

    Science.gov (United States)

    Rhiem, Stefan; Barthel, Anne-Kathrin; Meyer-Plath, Asmus; Hennig, Michael P; Wachtendorf, Volker; Sturm, Heinz; Schäffer, Andreas; Maes, Hanna M

    2016-08-01

    Waste disposal of carbon nanotube (CNT) containing products is expected to be the most important pathway for release of CNTs into the environment. In the present work, the use of radiolabelled CNTs ((14)C-CNT) for polycarbonate polymer nanocomposites with 1 wt% (14)C-CNT content allowed for the first time to quantify and differentiate the CNT release according to the type of impact along the materials' ageing history. After an initial exposure of the nanocomposite by solar-like irradiation, further environmental impacts were applied to composite material. They aimed at mimicking disposal site conditions that may induce further ageing effects and CNT release. This study included shaking in water, rapid temperature changes, soaking in humic acid solution as well as waste water effluent, and, finally, gentle mechanical abrasion. All ageing impacts were applied sequentially, both on pristine (control) and on solar-irradiated nanocomposites. All experiments were accompanied by absolute quantification of radioactive release as well as chemical and morphological analyses of the nanocomposite surfaces using infra-red (IR) spectroscopy, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The morphological analysis showed that spectral irradiation can uncover CNT networks on the outer nanocomposite surface layers by polymer degradation. After having subjected the solar-irradiated nanocomposite to all studied disposal site effect, the total radioactive release was quantified to amount to 64 mg CNT/m(2), whereas only 0.8 mg CNT/m(2) were found for the un-irradiated control sample. Solar degradation of polymers was thus found to significantly increase the propensity of the studied polymer nanocomposites to release CNTs during ageing effects at the product's end-of-life typical for disposal sites. PMID:27194367

  5. Distribution of {delta}{sup 14}C in western North Pacific and tracing carbons of human origin

    Energy Technology Data Exchange (ETDEWEB)

    Aramaki, Takafumi; Mizushima, Toshihiko; Togawa, Orihiko [Japan Atomic Energy Research Inst., Mutsu, Aomori (Japan). Mutsu Establishment; Watanabe, Shuichi; Tsunogai, Shizuo [Hokkaido Univ., Sapporo (Japan); Kuji, Tomoyuki [Japan marine Sience Fundation, Mutsu, Aomori (Japan)

    2001-02-01

    Seawater were collected at six points, 0deg to 48degN around 165degE. Dissolved inorganic carbonates was reduced into graphite. The ratio C-11/C-12 was measured by the accelerator mass analyzer. {sup 14}C concentration was calculated from {delta}{sup 13}C value calculated from the {sup 13}C/{sup 12}C ratio. {sup 14}C resulting from the nuclear weapon test was calculated by comparing estimated {sup 14}C and real {sup 14}C concentration. It was compared with that in 1970s. {sup 14}Cbomb has dissolved into North Pacific Intermediate Water in Arctic latitude, which has moved to Mid-latitude. (A. Yamamoto)

  6. Carbon and Oxygen Isotopic Stratigraphy of Mesoproterozoic Carbonate Sequences (1.6–1.4 Ga from Yanshan in North China

    Directory of Open Access Journals (Sweden)

    Kuang Hongwei

    2011-01-01

    Full Text Available In Yanshan, located in the northern part of North China, Mesoproterozoic carbonate sequences (1.6–1.4 Ga form a 10, 000 m thick succession in an aulacogen basin. Carbon and oxygen isotope (δ13O and δ18O, resp. data were obtained from 110 carbonate samples across three sections of these Mesoproterozoic deposits. From the early to late Mesoproterozoic, low negative values of δ13O appear, followed by low positive variation and then a stable increase. An abrupt decrease in δ13O values, with subsequent rapid increase, is found at the end of the Mesoproterozoic. During the whole Mesoproterozoic, δ18O shows a mainly negative trend and occasional highly negative isotopic shifts (from lower to upper deposits. Whole-rock carbon and oxygen isotopic compositions and profiles must be studied to provide a paleogeochemical record that can be associated with paleocean sedimentary environments, temperature, biological productivity, and sea-level fluctuations. Results of the present study correlate well with other international carbon and oxygen isotope profiles, suggesting that a global marine geochemical system existed during the interval of 1.6–1.4 Ga under a globally united tectonic, sedimentary, and geochemical background.

  7. Carbon-14 immobilization via the Ba(OH)2.8H2O process

    International Nuclear Information System (INIS)

    The airborne release of 4C from varous nuclear facilities has been identified as a potential biohazard due to the long half-life of 14C (5730 y) and the ease with which it may be assimilated into the biosphere. At ORNL, technology has been developed for the removal and immobilization of this radionuclide. Prior studies have indicated that 14C will likely exist in the oxidized form as CO2 and will contribute slightly to the bulk CO2 concentration of the gas stream, which is airlike in nature (approx. 330 ppmv CO2). The technology that has been developed utilizes the CO2-Ba(OH)2.8H2O gas-solid reaction with the mode of gas-solid contacting being a fixed bed. The product, BaCO3, possesses excellent thermal and chemical stability, prerequisites for the long-term disposal of nuclear wastes. For optimal process operation, studies have indicated that an operating window of adequate size does exist. When operating within the window, high CO2 removal efficiency (effluent concentrations 99%), and an acceptable pressure drop across the bed (3 kPa/m at a superficial velocity of 13 cm/s) are possible. This paper addresses three areas of experimental investigation: (1) microscale studies on 150-mg samples to provide information concerning surface properties, kinetics, and equilibrium vapor pressures; (2) macroscale studies on large fixed beds (4.2 kg of reactant) to determine the effects of humidity, temperature, and gas flow rate upon bed pressure drop and CO2 breakthrough; and (3) design, construction, and initial operation of a pilot unit capable of continuously processing a 34-m3/h (20-ft3/min) air-based gas stream

  8. Multimolecular tracers of terrestrial carbon transfer across the pan-Arctic: 14C characteristics of sedimentary carbon components and their environmental controls

    Science.gov (United States)

    Feng, Xiaojuan; Gustafsson, Örjan; Holmes, R. Max; Vonk, Jorien E.; Dongen, Bart E.; Semiletov, Igor P.; Dudarev, Oleg V.; Yunker, Mark B.; Macdonald, Robie W.; Wacker, Lukas; Montluçon, Daniel B.; Eglinton, Timothy I.

    2015-11-01

    Distinguishing the sources, ages, and fate of various terrestrial organic carbon (OC) pools mobilized from heterogeneous Arctic landscapes is key to assessing climatic impacts on the fluvial release of carbon from permafrost. Through molecular 14C measurements, including novel analyses of suberin- and/or cutin-derived diacids (DAs) and hydroxy fatty acids (FAs), we compared the radiocarbon characteristics of a comprehensive suite of terrestrial markers (including plant wax lipids, cutin, suberin, lignin, and hydroxy phenols) in the sedimentary particles from nine major arctic and subarctic rivers in order to establish a benchmark assessment of the mobilization patterns of terrestrial OC pools across the pan-Arctic. Terrestrial lipids, including suberin-derived longer-chain DAs (C24,26,28), plant wax FAs (C24,26,28), and n-alkanes (C27,29,31), incorporated significant inputs of aged carbon, presumably from deeper soil horizons. Mobilization and translocation of these "old" terrestrial carbon components was dependent on nonlinear processes associated with permafrost distributions. By contrast, shorter-chain (C16,18) DAs and lignin phenols (as well as hydroxy phenols in rivers outside eastern Eurasian Arctic) were much more enriched in 14C, suggesting incorporation of relatively young carbon supplied by runoff processes from recent vegetation debris and surface layers. Furthermore, the radiocarbon content of terrestrial markers is heavily influenced by specific OC sources and degradation status. Overall, multitracer molecular 14C analysis sheds new light on the mobilization of terrestrial OC from arctic watersheds. Our findings of distinct ages for various terrestrial carbon components may aid in elucidating fate of different terrestrial OC pools in the face of increasing arctic permafrost thaw.

  9. Accelerated carbonation using municipal solid waste incinerator bottom ash and cold-rolling wastewater: Performance evaluation and reaction kinetics

    International Nuclear Information System (INIS)

    Highlights: • Carbonation was performed using CO2, wastewater and bottom ash in a slurry reactor. • A maximum capture capacity of 102 g CO2 per kg BA was achieved at mild conditions. • A maximum carbonation conversion of MSWI-BA was predicted to be 95% by RSM. • The CO2 emission from Bali incinerator could be expected to reduce by 6480 ton/y. • The process energy consumption per ton CO2 captured was estimated to be 180 kW h. - Abstract: Accelerated carbonation of alkaline wastes including municipal solid waste incinerator bottom ash (MSWI-BA) and the cold-rolling wastewater (CRW) was investigated for carbon dioxide (CO2) fixation under different operating conditions, i.e., reaction time, CO2 concentration, liquid-to-solid ratio, particle size, and CO2 flow rate. The MSWI-BA before and after carbonation process were analyzed by the thermogravimetry and differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy equipped with energy dispersive X-ray spectroscopy. The MSWI-BA exhibits a high carbonation conversion of 90.7%, corresponding to a CO2 fixation capacity of 102 g per kg of ash. Meanwhile, the carbonation kinetics was evaluated by the shrinking core model. In addition, the effect of different operating parameters on carbonation conversion of MSWI-BA was statistically evaluated by response surface methodology (RSM) using experimental data to predict the maximum carbonation conversion. Furthermore, the amount of CO2 reduction and energy consumption for operating the proposed process in refuse incinerator were estimated. Capsule abstract: CO2 fixation process by alkaline wastes including bottom ash and cold-rolling wastewater was developed, which should be a viable method due to high conversion

  10. Accelerated carbonation using municipal solid waste incinerator bottom ash and cold-rolling wastewater: Performance evaluation and reaction kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Chang, E-E [Department of Biochemistry, Taipei Medical University, 250 Wu-Hsing Street, Taipei City, Taiwan 110, Taiwan, ROC (China); Pan, Shu-Yuan [Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei City, Taiwan 10673, Taiwan, ROC (China); Yang, Liuhanzi [School of Environment, Tsinghua University, Haidin District, Beijing 100084 (China); Chen, Yi-Hung [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei City, Taiwan 10608, Taiwan, ROC (China); Kim, Hyunook [Department of Energy and Environmental System Engineering, University of Seoul (Korea, Republic of); Chiang, Pen-Chi, E-mail: pcchiang@ntu.edu.tw [Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei City, Taiwan 10673, Taiwan, ROC (China)

    2015-09-15

    Highlights: • Carbonation was performed using CO{sub 2}, wastewater and bottom ash in a slurry reactor. • A maximum capture capacity of 102 g CO{sub 2} per kg BA was achieved at mild conditions. • A maximum carbonation conversion of MSWI-BA was predicted to be 95% by RSM. • The CO{sub 2} emission from Bali incinerator could be expected to reduce by 6480 ton/y. • The process energy consumption per ton CO{sub 2} captured was estimated to be 180 kW h. - Abstract: Accelerated carbonation of alkaline wastes including municipal solid waste incinerator bottom ash (MSWI-BA) and the cold-rolling wastewater (CRW) was investigated for carbon dioxide (CO{sub 2}) fixation under different operating conditions, i.e., reaction time, CO{sub 2} concentration, liquid-to-solid ratio, particle size, and CO{sub 2} flow rate. The MSWI-BA before and after carbonation process were analyzed by the thermogravimetry and differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy equipped with energy dispersive X-ray spectroscopy. The MSWI-BA exhibits a high carbonation conversion of 90.7%, corresponding to a CO{sub 2} fixation capacity of 102 g per kg of ash. Meanwhile, the carbonation kinetics was evaluated by the shrinking core model. In addition, the effect of different operating parameters on carbonation conversion of MSWI-BA was statistically evaluated by response surface methodology (RSM) using experimental data to predict the maximum carbonation conversion. Furthermore, the amount of CO{sub 2} reduction and energy consumption for operating the proposed process in refuse incinerator were estimated. Capsule abstract: CO{sub 2} fixation process by alkaline wastes including bottom ash and cold-rolling wastewater was developed, which should be a viable method due to high conversion.

  11. Carboxyl functionalization of carbon fibers via aryl diazonium reaction in molten urea to enhance interfacial shear strength

    Science.gov (United States)

    Wang, Yuwei; Meng, Linghui; Fan, Liquan; Wu, Guangshun; Ma, Lichun; Zhao, Min; Huang, Yudong

    2016-01-01

    Using molten urea as the solvent, carbon fibers were functionalized with carboxylic acid groups via aryl diazonium reaction in 15 min to improve their interfacial bonding with epoxy resin. The surface functionalization was quantified by X-ray photoelectron spectroscopy, which showed that the relative surface coverage of carboxylic acid groups increased from an initial percentage of 3.17-10.41%. Mechanical property test results indicated that the aryl diazonium reaction in this paper could improve the interfacial shear strength by 66%. Meanwhile, the technique did not adopt any pre-oxidation step to produce functional groups prior to grafting and was shown to maintain the tensile strength of the fibers. This methodology provided a rapid, facile and economically viable route to produce covalently functionalized carbon fibers in large quantities with an eco-friendly method.

  12. Boron Doped Multi-walled Carbon Nanotubes as Catalysts for Oxygen Reduction Reaction and Oxygen Evolution Reactionin in Alkaline Media

    International Nuclear Information System (INIS)

    The boron doped multi-walled carbon nanotubes (B-MWCNTs) were synthesized by thermal annealing multi-walled carbon nanotubes (MWCNTs) in the presence of boric acid. The transmission electron microscopy (TEM) and X-ray diffraction (XRD) results revealed that the structure of MWCNTs does not be destroyed during the doping process, and X-ray photoelectron spectroscopy (XPS) analysis demonstrated the boron atoms were successfully doped in the structure of MWCNTs. The electrocatalytic properties of B-MWCNTs are characterized by rotating disk electrode (RDE) methods. The results demonstrated that the B-MWCNTs catalyzed oxygen reduction reaction (ORR) in alkaline media by a 2 + 2 electron pathway and it showed good catalytic activity for oxygen evolution reaction (OER) as well

  13. Importance of sequential two-step transfer process in a ΔS = 1 and ΔT = 1 inelastic transition of 14N(p, p')14N reaction

    International Nuclear Information System (INIS)

    Differential cross sections and vector analyzing powers for 14N(p, p') and 14N(p, d) reactions have been measured at E sub(p) = 21.0 MeV to elucidate the reaction mechanism and the effective interaction for the ΔS = ΔT = 1 transition in 14N(p, p') 14N(2.31 MeV) reaction. The data are analyzed in terms of finite-range distorted wave Borm approximation (DWBA) which include direct, knock-on exchange and (p, d)(d, p') two-step processes. Shell model wave functions of Cohen and Kurath are used. The data for the first excited state is reasonably well explained by introducing two-step process. The two-step process explains half of the experimental intensity. Moreover vector analyzing power can hardly be explained without introducing this two-step process. Vector analyzing power of protons leading to the second excited state in 14N is better explained by introducing macroscopic calculation. The data for 14N(p, d)13N(gs) reaction are well explained by a suitable choice of deuteron optical potential. Knock-on exchange contribution is relatively small. Importance of this two-step process for ΔS = ΔT = 1 transition is discussed up to 40 MeV. (author)

  14. Optimization of liquid scintillation counting techniques for the determination of carbon-14 in environmental samples

    International Nuclear Information System (INIS)

    The goal of this work was to optimize the liquid scintillation counting techniques for the determination of 14C in stack effluent gases and in environmental samples such as biological and air samples. Carbon-14 activities in most environmental samples were measured with the direct CO2 absorption method. The highest figures of merit were found through the variation of Carbosorb E and Permafluor V ratio, and measurement windows. The best condition was an 1:1 volume ratio. Average 2.35 g of CO2 was reproducibly absorbed in the 20 ml mixture within 40 minutes. The counting efficiency determined by repeated analysis of NIST oxalic acid standard and the background count rate were measured to be 58.8±1.4% and 1.88±0.06 cpm, respectively, in case of saturated solution. The correction curves of counting efficiency for partially saturated solutions and for saturated solutions with quenching were prepared, respectively. The overall uncertainty of the sample specific activity for near background levels was estimated to be about 7% for 4 hours counting at 95% confidence level. Stack effluent gas samples were measured by a gel suspension counting method. After precipitation of CO2 in the form of BaCO3, 140 mg of which was mixed with 6 ml H2O and 12 ml of Instagel XF. The counting efficiency was measured to be 71.5±1.7% and the typical sensitivity of this technique was about 510 mBq/m3 for a 100 min count at a background count rate of 4.7 cpm. For the benzene counting method measurements were performed with a mixture of 3 ml benzene and 1 ml of scintillation cocktail (5 g of butyl-PBD in 100 ml of scintillation-grade toluene) in a low potassium 7 ml borosilicate glass vial. The counting efficiency and the background count rate were measured to be 64.3±1.0% and 0.51±0.05 cpm, respectively. The long-term stability of samples has been checked for all the counting techniques over a two week period, during which no apparent change in counting efficiency and background level was

  15. Synthesis of graphitic carbon nitride by reaction of melamine and uric acid

    International Nuclear Information System (INIS)

    Highlights: → Graphitic carbon nitrides by CVD of melamine and uric acid on alumina. → The building blocks of carbon nitrides are heptazine nuclei. → Composite particles with alumina core and carbon nitride coating. - Abstract: Graphitic carbon nitrides were synthesized starting from melamine and uric acid. Uric acid was chosen because it thermally decomposes, and reacts with melamine by condensation at temperatures in the range of 400-600 deg. C. The reagents were mixed with alumina and subsequently the samples were treated in an oven under nitrogen flux. Alumina favored the deposition of the graphitic carbon nitrides layers on the exposed surface. This method can be assimilated to an in situ chemical vapor deposition (CVD). Infrared (IR) spectra, as well as X-ray diffraction (XRD) patterns, are in accordance with the formation of a graphitic carbon nitride with a structure based on heptazine blocks. These carbon nitrides exhibit poor crystallinity and a nanometric texture, as shown by transmission electron microscopy (TEM) analysis. The thermal degradation of the graphitic carbon nitride occurs through cyano group formation, and involves the bridging tertiary nitrogen and the bonded carbon, which belongs to the heptazine ring, causing the ring opening and the consequent network destruction as inferred by connecting the IR and X-ray photoelectron spectroscopy (XPS) results. This seems to be an easy and promising route to synthesize graphitic carbon nitrides. Our final material is a composite made of an alumina core covered by carbon nitride layers.

  16. The history of ironware in Japan revealed by the AMS-carbon 14 age method

    International Nuclear Information System (INIS)

    This paper focuses on the influence what the AMS-carbon 14 age method attains to the history of the iron in the Japanese Islands. The research team in National Museum of Japanese History makes a clear that the Yayoi period began in 10 Cen. cal BC. However, there was a problem in this. It is iron. If the Yayoi period has started in the 10th Cen. BC, it means that the ironware in Japanese Islands had spread early rather than it spreads in China. The research team reexamined the ironware excavated from Magarita site in the Fukuoka Pref. considered to be the oldest ironware in Japan. Consequently, the excavation situation was indefinite and it turned out that we cannot specify the time to belong. Furthermore, 36 ironwares in the initial and early Yayoi were also already found by that time cannot be specified except for two points. Therefore, it turned out that Japanese ironware appeared in the 3rd century of B.C. What does this mean? Although it had been thought that the beginning of agriculture in Japan and the appearance of ironware were simultaneous, it turned out that agriculture has appeared early about in 700 years. Therefore, it became clear that agriculture of Japan started at the Stone Age. (author)

  17. Automatic counting and recording unit used for dating by the carbon 14 method

    International Nuclear Information System (INIS)

    A description is given of the unit used by the 'Centre Scientifique de Monaco' for low-level beta counting and fitted for radioactive dating by the Carbon 14 method. Built entirely by the laboratory in 1964, on the basis of electronic techniques then recent, it has worked without failure since that time. The proportional counter, its high-voltage negative supply, and the counting chains with visual and printing records are detailed by means of 38 figures which reproduce the counter and the electronic circuits. These are contained in two standard 5 U.I structures. The low-voltage power supply of the whole unit is carried out by plus 12 volts and minus 12 volts storage batteries, buffered on a charger connected on the 110 V alternative line. The proportional counter described is filled with CO2 under one atmosphere pressure and permits the dating of carbonaceous samples with a maximum of 30.000 + 1.000 years (background 3.96 c.p.m. ) within a moderate time (72 hours). (authors)

  18. Protective effect of application of carbon nanoparticles in thyroid cancer surgery and evaluation of inflammatory stress reaction degree

    Institute of Scientific and Technical Information of China (English)

    Qing-Sheng Zheng; Jun-Zheng Li; Wei-Xiong Hong; Jiao-Yuan Xu; Si-Yi Zhang

    2015-01-01

    Objective:To study the protective effect of application of carbon nanoparticles in thyroid cancer surgery and its influence on inflammatory stress reaction degree.Methods:Patients who received thyroid cancer surgery in our hospital from June 2013 to June 2014 were chosen for study and randomly divided into conventional group and nano-carbon group. Then contents of thyroid cancer related malignant molecules, pro-inflammation cytokines and inflammation inhibiting factors in serum were detected.Results:(1) Malignant molecules: compared with conventional group, mRNA levels of Wip1, gal-3, SATB1, LSD1, GDF-15 and TBX2 in serum of nano-carbon group were lower; (2) Inflammation inhibiting factors: compared with conventional group, serum MFG-E8 and Omentin-1 levels of nano-carbon group were higher; (3) Pro-inflammation cytokines: compared with conventional group, serum MIP-1, SGK-1 and β-EP levels of nano-carbon group were lower.Conclusion: Application of carbon nanoparticles in thyroid cancer surgery is helpful to reduce operative damage to thyroid tissue, prevent release of malignant biological molecules into bloodstream and relieve inflammatory response; it’s an ideal surgical method for thyroid cancer.

  19. The FLUORINE-17(PROTON, PHOTON)NEON-18 and Oxygen -14(ALPHA Particle, PROTON)FLUORINE-17 Reaction Rates and the Structure of NEON-18 (NEON-18, FLUORINE-17, Oxygen -14, Astrophysical Hydrogen Burning)

    Science.gov (United States)

    Hahn, Kevin Insik

    1993-01-01

    The 14O(alpha,p) 17F and ^ {17}F(p,gamma)18Ne reactions play crucial roles in the advanced stages of astrophysical hydrogen burning. The ^{14 }O(alpha,p)^ {17}F(p,gamma) ^ {18}Ne(beta^+nu) 18F(p,alpha)^ {15}O reaction sequence can provide a path around the relatively slow positron decay of 14O in the HCNO cycle, while the similar reaction sequence, ^{14 }O(alpha ,p) 17F(p,gamma)^ {18}Ne(beta ^+nu) 18F(p,gamma)^ {19}Ne, can provide an alternate path from the HCNO cycle to the rp-process. The 17F(p,gamma)18Ne reaction rate could provide the principal source of 18O. Under some astrophysical conditions, the ^{14 }O(alpha,p)^ {17}F reaction is expected to compete with the 15O(alpha, gamma)19Ne reaction in providing a path through which nuclei involved in the HCNO cycle can be transformed into heavier nuclei with Z >= 10.. In order to better determine the rates of these two reactions, we measured the properties of the resonances in 18Ne; the excitation energies, the spins, and the partial and total widths of the relevant resonances. By comparing the previously observed states in 18Ne to the well-studied isospin mirror nucleus, ^{18 }O, it is clear that there are a number of missing levels in 18Ne in the region rm Ex > 4 MeV. These missing states in ^ {18}Ne could be important in determining the 17F(p, gamma)18rm Ne and 14O(alpha ,p)17F reaction rates. We have studied the ^{12 }C(12C,^6He)^{18 }Ne, 20rm Ne(p{,}t)18Ne, and 16O(^3He{, }n)18Ne reactions to measure new nuclear structure information of ^{18 }Ne. From our experiments, we have the following major results: (a) an evidence of the 3^+ Funck et al. and Wiescher et al. have based on theoretical predictions and incomplete experimental information about the level structure of 18 Ne in the energy region of rm E_ {x} > 5.0 MeV. On the basis of the nuclear structure information for 18 Ne measured in our experiments, we have improved the calculation of the ^{14 }O(alpha,p)17F reaction rate.

  20. Electrocatalytic oxygen evolution reaction at a FeNi composite on a carbon nanofiber matrix in alkaline media

    Institute of Scientific and Technical Information of China (English)

    Xianghua An; Dongyoon Shin; Joey D. Ocon; Jae Kwang Lee; Young-il Son; Jaeyoung Lee

    2014-01-01

    Non-noble metals such as Fe and Ni have comparable electrocatalytic activity and stability to that of Ir and Ru in an oxygen evolution reaction (OER). In this study, we synthesized carbon nanofibers with embedded FeNi composites (FeNi-CNFs) as OER electrocatalysts by a facile route comprising electrospinning and the pyrolysis of a mixture of metal precursors and a polymer solution. FeNi-CNFs demonstrated catalytic activity and stability that were better than that of 20 wt%Ir on Vulcan carbon black in oxidizing water to produce oxygen in an alkaline media. Physicochemical and electrochemical characterization revealed that Fe and Ni had synergistic roles that enhanced OER activity by the uniform formation and widening of pores in the carbon structure, while the CNF matrix also contributed to the increased stability of the catalyst.