WorldWideScience

Sample records for carbon 13

  1. Synthesis of carbon-13-labeled tetradecanoic acids.

    Science.gov (United States)

    Sparrow, J T; Patel, K M; Morrisett, J D

    1983-07-01

    The synthesis of tetradecanoic acid enriched with 13C at carbons 1, 3, or 6 is described. The label at the carbonyl carbon was introduced by treating 1-bromotridecane with K13CN (90% enriched) to form the 13C-labeled nitrile, which upon hydrolysis yielded the desired acid. The [3-13C]tetradecanoic acid was synthesized by alkylation of diethyl sodio-malonate with [1-13C]1-bromododecane; the acid was obtained upon saponification and decarboxylation. The label at the 6 position was introduced by coupling the appropriately labeled alkylcadmium chloride with the half acid chloride methyl ester of the appropriate dioic acid, giving the corresponding oxo fatty acid ester. Formation of the tosylhydrazone of the oxo-ester followed by reduction with sodium cyanoborohydride gave the labeled methyl tetradecanoate which, upon hydrolysis, yielded the desired tetradecanoic acid. All tetradecanoic acids were identical to unlabeled analogs as evaluated by gas-liquid chromatography and infrared or NMR spectroscopy. These labeled fatty acids were used subsequently to prepare the correspondingly labeled diacyl phosphatidylcholines. PMID:6631228

  2. Selective carbon 13 enrichment of side chain carbons of ginkgo lignin traced by carbon 13 nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Although carbon 13 nuclear magnetic resonance spectroscopy (13C-NMR) is widely used in lignin structural studies, serious difficulties are encountered in the assignments of 13C signals because of their extensive overlaps resulting from the complex structure of lignin and of delicate detection of minor structures. To overcome these difficulties, specifically 13C-enriched precursors of lignin biosynthesis, coniferin-[side chain-β-13C] and coniferin-[side chain-γ-13C], were administered to growing stems of ginkgo (Ginkgo biloba). The NMR analysis of the milled wood lignins isolated from the newly formed xylem showed that selective enrichment of specific carbons of protolignin in the cell wall was achieved without seriously disturbing the lignin biosynthesis. The presence of saturated methylene side chains in the protolignin was shown for the first time by this selective enrichment technique in combination with NMR analysis. (authors). 23 refs., 3 figs., 1 tab

  3. Selective carbon 13 enrichment of side chain carbons of ginkgo lignin traced by carbon 13 nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Y. (Nagoya Univ. (Japan). Faculty of Agriculture); Robert, D.R. (CEA Centre d' Etudes de Grenoble, 38 (France). Dept. de Recherche Fondamentale sur la Matiere Condensee); Terashima, N. (Forest Products Lab., Madison, WI (United States))

    Although carbon 13 nuclear magnetic resonance spectroscopy ([sup 13]C-NMR) is widely used in lignin structural studies, serious difficulties are encountered in the assignments of [sup 13]C signals because of their extensive overlaps resulting from the complex structure of lignin and of delicate detection of minor structures. To overcome these difficulties, specifically [sup 13]C-enriched precursors of lignin biosynthesis, coniferin-[side chain-[beta]-[sup 13]C] and coniferin-[side chain-[gamma]-[sup 13]C], were administered to growing stems of ginkgo (Ginkgo biloba). The NMR analysis of the milled wood lignins isolated from the newly formed xylem showed that selective enrichment of specific carbons of protolignin in the cell wall was achieved without seriously disturbing the lignin biosynthesis. The presence of saturated methylene side chains in the protolignin was shown for the first time by this selective enrichment technique in combination with NMR analysis. (authors). 23 refs., 3 figs., 1 tab.

  4. Concomitant oxygen-18 enrichment in commercial carbon-13 labelled urea

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Katsumi; Chiyoda, Takeshi; Kajiwara, Masahiro [Meiji College of Pharmacy, Tokyo (Japan). Dept. of Medicinal Chemistry

    1996-12-01

    By mass spectroscopy, 50-fold oxygen-18 enrichment over natural abundance was observed in commercial {sup 13}C-urea (99 atom % {sup 13}C) synthesized from {sup 13}C-carbon monoxide that had been {sup 13}C-enriched by cryogenic distillation. In contrast, {sup 13}C-urea synthesized from {sup 13}C-potassium cyanide (a {sup 13}C-labelled compound having no oxygen atom) showed the natural abundance level of oxygen-18. (author).

  5. Coastal climate reflected in carbon-13/carbon-12 ratio of organic carbon in varved sediment from Santa Barbara basin

    OpenAIRE

    Schimmelmann, Arndt; Tegner, Mia J.

    1991-01-01

    A 1844-1987 time-series of carbon stable isotope ratios from dated sedimentary total organic carbon from the center of the Santa Barbara basin is compared with historical climate and oceanographic records. Carbon derived from carbon-13-depleted phytoplankton and carbon-13-enriched kelp appear responsible for a large part of the isotopic variance in sedimentary total organic carbon. El Niño/Southern Oscillation events are recorded by the isotopic response of marine organic carbon in sediments.

  6. Carbon-13 NMR spectroscopy of biological systems

    CERN Document Server

    Beckmann, Nicolau

    1995-01-01

    This book is intended to provide an in-depth understanding of 13C NMR as a tool in biological research. 13C NMR has provided unique information concerning complex biological systems, from proteins and nucleic acids to animals and humans. The subjects addressed include multidimensional heteronuclear techniques for structural studies of molecules in the liquid and solid states, the investigation of interactions in model membranes, the elucidation of metabolic pathwaysin vitro and in vivo on animals, and noninvasive metabolic studies performed on humans. The book is a unique mix of NMR methods and biological applications which makes it a convenient reference for those interested in research in this interdisciplinary area of physics, chemistry, biology, and medicine.Key Features* An interdisciplinary text with emphasis on both 13C NMR methodology and the relevant biological and biomedical issues* State-of-the-art 13C NMR techniques are described; Whenever possible, their advantages over other approaches are empha...

  7. Carbon-13 NMR studies of liquid crystals

    International Nuclear Information System (INIS)

    High resolution, proton decoupled 13C nmr are observed for a series of neat nematic liquid crystals, the p-alkoxyazoxybenzenes, and a smectic-A liquid crystal, diethylazoxydibenzoate in a magnetic field of 23 kG. The (uniaxial) order parameters S = less than P2(costheta) greater than are found to be about 0.4 and 0.9 for the nematic and smectic-A phase respectively at the clearing points. The order parameter increases with decreasing temperature in the nematic phase but is constant, or nearly so, with temperature in the smectic-A phase. In the nematic series studied, the ordering exhibits an even-odd alternation along the series and qualitative agreement with a recent theory due to Marcelja is found. In both phases, the spectra show that the molecule rotates rapidly about its long axis. Tentative conclusions about molecular conformational motion and 14N spin relaxation are presented for both nematic and smectic-A phases. In the smectic-A phase, the sample is rotated about an axis perpendicular to H0 and the resulting spectra are dicusssed. The theory of observed chemical shifts in liquid crystals is discussed and equations are derived which relate the nmr spectra of liquid-crystals to the order parameters. A model for the smectic-C phase due to Luz and Meiboom and Doane is described and lineshapes are determined on the basis of this model for special cases. The dependence of the order parameters on the molecular potential which give rise to the various degrees of order in the different liquid crystalline phases is examined. To a good approximation the functional dependence of the order parameters on the molecular potential is shown to be a simple one in the limit of small tilt angle in the smectic-C phase

  8. Anomalous 13C enrichment in modern marine organic carbon

    Science.gov (United States)

    Arthur, M.A.; Dean, W.E.; Claypool, G.E.

    1985-01-01

    Marine organic carbon is heavier isotopically (13C enriched) than most land-plant or terrestrial organic C1. Accordingly, ??13C values of organic C in modern marine sediments are routinely interpreted in terms of the relative proportions of marine and terrestrial sources of the preserved organic matter2,3. When independent geochemical techniques are used to evaluate the source of organic matter in Cretaceous or older rocks, those rocks containing mostly marine organic C are found typically to have lighter (more-negative) ??13C values than rocks containing mostly terrestrial organic C. Here we conclude that marine photosynthesis in mid-Cretaceous and earlier oceans generally resulted in a greater fractionation of C isotopes and produced organic C having lighter ??13C values. Modern marine photosynthesis may be occurring under unusual geological conditions (higher oceanic primary production rates, lower PCO2) that limit dissolved CO2 availability and minimize carbon isotope fractionation4. ?? 1985 Nature Publishing Group.

  9. Isotopic composition of carbon-13 and oxygen-18 from authigenic carbonates, Black Sea region

    Science.gov (United States)

    Logvina, E.; Mazurenko, L.; Prasolov, E.

    2004-05-01

    Several types of authigenic carbonates related to the fluid discharge zones were sampled during the international expeditions onboard R/V "Professor Vodyanitskiy" (56th cruise) and R/V "Professor Logachev" (11th cruise of UNESCO-TTR) in the northwest part of the Black sea. These carbonates are represented as mounds, build-ups and chimney-like structures, cemented sediments, crusts and concretions. The isotope analyses of carbonates were conducted using mass-spectrometer MS-20 in the Laboratory of Isotope Geology (St.Petersburg State University). The obtained values of oxygen-18 varied from +0,6 to -1,9 per mille (up to C0.8 per mille on average). This value is corresponding to normal seawater oxygen-18 value (about 0 per mille); we suspect, that the source of oxygen for carbonate formation is the seawater. The carbonates are characterized by low carbon-13 (from -35,4 to -42,6 per mille) in comparison with normal marine carbonates (about 0 per mille). We have reason to suppose that carbonates associated with fluid venting were formed by light isotopic composition of carbon dioxide (carbon-13 -45 to -52 per mille), which forming under methane microbiologic oxidation with such isotopic composition. This is because of crossing fluid process of carbon dioxide to carbonate with 8~10 degrees temperature carbon became heaver to 10- 11 per mille. The isotopic composition study of carbonate build-ups is of interest because its association with the gas hydrate accumulations is quite often in the gas seeps. This work is financially supported by Russian Foundation for Basic Research, grant 02-05-64346.

  10. Oxygen-18 and carbon-13 in the carbonates of the Salina formation of southwestern Ontario

    Energy Technology Data Exchange (ETDEWEB)

    O' Shea, K.J.; Miles, M.C.; Fritz, P.; Frape, S.K.; Lawson, D.E.

    1988-02-01

    The oxygen and carbon isotopic composition of the carbonates of the Upper Silurian Salina formation of the Michigan Basin was investigated to aid in interpretation of depositional environments. /sup 13/C results indicate that a change from generally anoxic bottom conditions to oxic conditions occurred during deposition of the salt and anhydrite evaporite unit. The lower organic-rich carbonate units were deposited in a shallow-water, evaporitic setting, most likely adjacent to a sabkha-type environment. A positive water balance maintained the anoxic conditions and buffered the carbon isotopes. Above the salt and anhydrite evaporite, the isotopic composition suggests that the development of a similar depositional environment, a sub-aerial prograding sabkha, occurred over wide areas of the basin. /sup 18/O results support the conclusion that Silurian oceans were depleted in /sup 18/O with respect to modern oceans by 5-6%. 56 refs., 13 figs., 4 tabs.

  11. Photopromoted carbonylation of olefins with carbon dioxide and labelling studies with 13CO2 and 13CH3OH

    Institute of Scientific and Technical Information of China (English)

    YIN Jingmei; GAO Dabin; HU Jiehan; ZHOU Guangyun; JIA Yingping; WANG Xiangsheng

    2003-01-01

    Photopromoted carbonylation of olefins with carbon dioxide can be completed in ambient conditions (room temperatures and atmospheric pressure) by Co(OAc)2 catalysis. It was found that in carbonyl carbons of methyl ester of aliphatic acid 50% is from CO2 and the other 50% from CH3OH by labelling experimental with 13CO2 and 13CH3OH.

  12. Synthesis of colchicine and isocolchicine labelled with carbon-11 or carbon-13

    Energy Technology Data Exchange (ETDEWEB)

    Kothari, P.J.; Finn, R.D.; Larson, S.M. [Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    1995-06-01

    The syntheses of isotopically labelled (-)-10-[{sup 11}C/{sup 13}C]-colchicine and (-)-9-[{sup 11}C/{sup 13}C]-isocolchicine have been achieved from the reaction of (-)desmethylcolchicine with [{sup 11}C/{sup 13}C]-iodomethane. The radiolabelled compounds, (-)-10-[{sup 11}C]-colchicine ({sup 11}C-n-colchicine) and (-)-9-[{sup 11}C]-isocolchicine ({sup 11}C-i-colchicine), were isolated by reversed phase HPLC. The total synthesis time was approximately 60 minutes for both radiolabelled compounds with an average specific activity of 240 mCi/{mu}mol calculated to EOB. Utilizing a similar synthetic strategy, we also reported the synthesis of milligram quantities of the carbon-13 enriched compounds and the magnetic resonance signal assignment for (-)-9-[{sup 13}C] isocolchicine. (Author).

  13. High dynamic orientation of protons, deuterons and carbon-13 nuclei

    International Nuclear Information System (INIS)

    The behaviour of hydrogen, deuterium, and carbon-13 nuclear spin systems have been studied in partially deuterated diols, doped with paramagnetic Crsup(V) complexes, between 0.1 and 0.5 K. Experimental evidence is given that the dynamic polarization in such samples comes from a cooling of the electron spin-spin interaction reservoir by off-resonance microwave irradiation; a strong thermal coupling between this reservoir and the nuclear Zeeman reservoirs cools these too, thus changing the polarizations. In a 25 kG magnetic field at a lattice temperature of 0.37 K we reached a common spin temperature for the nuclear Zeeman reservoirs of 1.1 mK in 1,2-propanediol-D6, which corresponds to a proton polarization of 98%, a deuteron polarization of 44%, and a carbon-13 polarization of 52%. A new way of dynamic orientation of the deuteron spin system was found. It allows one to vary the deuteron tensor polarization or alignment independently of its vector polarization. This can be done by slightly off-resonance RF irradiation of the polarized proton system, which cools the proton spin-spin interaction reservoir. It appeared that at the same time the RF field provides a thermal contract between this reservoir and the deuteron quadrupole interaction reservoir, which caused the observed alignment. Values around 60% were reached for some parts of the deuteron spin system, corresponding to a deuteron quadrupole spin temperature of 7 uK. The dependence of the alignment on RF frequency and initial proton polarization as well as thermal mixing rates are in good agreement with quantitative estimates from spin temperature theory. (author)

  14. Structural properties of carbon nanotubes derived from 13C NMR

    KAUST Repository

    Abou-Hamad, E.

    2011-10-10

    We present a detailed experimental and theoretical study on how structural properties of carbon nanotubes can be derived from 13C NMR investigations. Magic angle spinning solid state NMR experiments have been performed on single- and multiwalled carbon nanotubes with diameters in the range from 0.7 to 100 nm and with number of walls from 1 to 90. We provide models on how diameter and the number of nanotube walls influence NMR linewidth and line position. Both models are supported by theoretical calculations. Increasing the diameter D, from the smallest investigated nanotube, which in our study corresponds to the inner nanotube of a double-walled tube to the largest studied diameter, corresponding to large multiwalled nanotubes, leads to a 23.5 ppm diamagnetic shift of the isotropic NMR line position δ. We show that the isotropic line follows the relation δ = 18.3/D + 102.5 ppm, where D is the diameter of the tube and NMR line position δ is relative to tetramethylsilane. The relation asymptotically tends to approach the line position expected in graphene. A characteristic broadening of the line shape is observed with the increasing number of walls. This feature can be rationalized by an isotropic shift distribution originating from different diamagnetic shielding of the encapsulated nanotubes together with a heterogeneity of the samples. Based on our results, NMR is shown to be a nondestructive spectroscopic method that can be used as a complementary method to, for example, transmission electron microscopy to obtain structural information for carbon nanotubes, especially bulk samples.

  15. Water, hydrogen, deuterium, carbon, carbon-13, and oxygen-18 content of selected lunar material

    Science.gov (United States)

    Friedman, I.; O'Neil, J.R.; Adami, L.H.; Gleason, J.D.; Hardcastle, K.

    1970-01-01

    The water content of the breccia is 150 to 455 ppm, with a ??D from -580 to -870 per mil. Hydrogen gas content is 40 to 53 ppm with a ??D of -830 to -970 per mil. The CO2 is 290 to 418 ppm with S 13C = + 2.3 to + 5.1 per mil and ??18O = 14.2 to 19.1 per mil. Non-CO2 carbon is 22 to 100 ppm, ??18C = -6.4 to -23.2 per mil. Lunar dust is 810 ppm H2O (D = 80 ppm) and 188 ppm total carbon (??13C = -17.6 per mil). The 18O analyses of whole rocks range from 5.8 to 6.2 per mil. The temperature of crystallization of type B rocks is 1100?? to 1300??C, based on the oxygen isotope fractionation between coexisting plagioclase and ilmenite.

  16. Carbon-13 nuclear magnetic resonance as a probe of side chain orientation and mobility in carboxymethylated human carbonic anhydrase B

    NARCIS (Netherlands)

    Schoot Uiterkamp, Antonius J.M.; Armitage, Ian M.; Prestegard, James H.; Slomski, John; Coleman, Joseph E.

    1978-01-01

    13C NMR spectra of [1-13C]- and [2-13C]carboxymethyl His-200 human carbonic anhydrase B have been obtained as a function of pH and in the presence and absence of the active site Zn(II) or Cd(II) ion. Chemical shifts of the 1-13C show that the carboxyl is sensitive to two ionization processes, with a

  17. Studying biosphere-atmosphere exchange of CO2 through Carbon-13 stable isotopes

    NARCIS (Netherlands)

    Velde, van der I.R.

    2015-01-01

    Summary Thesis ‘Studying biosphere-atmosphere exchange of CO2 through carbon-13 stable isotopes’ Ivar van der Velde Making predictions of future climate is difficult, mainly due to large uncertainties in the carbon cycle. The rate at which carbon is stored in the oceans and terrestrial b

  18. Proposal to realize a cost breakthrough in carbon-13 production by photochemical separation

    International Nuclear Information System (INIS)

    A cost breakthrough can now be made in photochemical production of the rare stable isotope carbon-13. This cost breakthrough is achieved by CO2 laser infrared multiple-photon dissociation of any of several halocarbons (Freon derivatives) such as CF3Cl, CF3Br, or CF2Cl2. The single-step carbon-13 enrichment factor for this process is approximately 50, yielding 30% pure C-13 in one step, or up to 97% pure C-13 in two steps. A three-fold carbon-13 cost reduction to below $20/gram is expected to be achieved in a small laboratory-scale demonstration facility capable of producing 4 to 8 kg/year of carbon-13, using presently available pulsed CO2 TEA lasers at an average power level of 50 watts. Personnel costs dominate the attainable C-13 production costs in a small photochemical enrichment facility. A price reduction to $2/gm carbon-13 is feasible at carbon-13 production levels of 100 to 1000 kg/year, dominated by the Freon raw material costs

  19. Identification of excitonic phonon sideband by photoluminescence spectroscopy of single-walled carbon-13 nanotubes

    OpenAIRE

    Miyauchi, Yuhei; Maruyama, Shigeo

    2005-01-01

    We have studied photoluminescence (PL) and resonant Raman scatterings of single-walled carbon nanotubes (SWNTs) consisting of carbon-13 (SW13CNTs) synthesized from a small amount of isotopically modified ethanol. There was almost no change in the Raman spectra shape for SW13CNTs except for a downshift of the Raman shift frequency by the square-root of the mass ratio 12/13. By comparing photoluminescence excitation (PLE) spectra of SW13CNTs and normal SWNTs, the excitonic phonon sideband due t...

  20. Staphylococcus aureus Peptidoglycan Tertiary Structure from Carbon-13 Spin Diffusion

    OpenAIRE

    Sharif, Shasad; Singh, Manmilan; Kim, Sung Joon; Schaefer,Jacob

    2009-01-01

    The cell-wall peptidoglycan of Staphylococcus aureus is a heterogeneous, highly cross-linked polymer of unknown tertiary structure. We have partially characterized this structure by measuring spin diffusion from 13C labels in pentaglycyl cross-linking segments to natural-abundance 13C in the surrounding intact cell walls. The measurements were performed using a version of centerband-only detection of exchange (CODEX). The cell walls were isolated from S. aureus grown in media containing [1-13...

  1. Carbon-13 magnetic resonance of hydrocarbons. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Grant, D.M.; Pugmire, R.J.

    1979-01-01

    Several tetralins, tetrahydrophenanthrenes, and dihydroanthracenes were synthesized, /sup 13/C spin-lattice relaxation measurements were carried out on aromatic and hydroaromatic compounds. /sup 13/C chemical shift studies were also conducted on methylated 1,2,3,4-tetrahydronaphthalenes, 1,2,3,4-tetrahydrophenanthrenes, and 9,10-dihydroanthracenes. (DLC)

  2. Drought indicated in carbon-13/carbon-12 ratios of Southwestern tree rings

    International Nuclear Information System (INIS)

    Stomatal closure during periods of moisture deficiency should theoretically lead to elevated 13C/12C ratios as reduction of available CO2 leads to diminished photosynthetic discrimination against 13C in favor of 12C. Stable-carbon isotope ratio chronologies developed from 5-yr tree-ring groups at 17 sites in six southwestern states were tested for a drought relationship by first fitting a spline curve to each chronology to remove the long-term trend and calculating indices as the ratio of actual to spline curve value. The time series of “Del Indices” so developed are significantly correlated with 5-yr mean Palmer Hydrological Drought Indices (post-1930 period) and reconstructed July Palmer Drought Severity Indices from respective areas. Overall, in the period since 1790, the driest pentads were 1900–04 and 1960–64, whereas the wettest were 1980–84 and 1915–19. Maps of drought represented for two pentads seem to be reasonable representations, although spatial correlations of Del Indices with PHDI were generally not significant. These Del Index drought reconstructions may provide a useful measure of past physiological response to drought (stomatal closure), although the present cost of analysis would prevent this from being a routine method. (author)

  3. Natural abundance measurements of 13C indicate increased deep soil carbon mineralization after forest disturbance

    Science.gov (United States)

    Diochon, Amanda; Kellman, Lisa

    2008-07-01

    Northern forest soils represent globally important stores of carbon (C), yet there is no consensus about how they are altered by the widespread practice of harvesting that dominates many forested landscapes. Here we present the first study to systematically investigate the utility of δ 13C and C content depth profiles to infer temporal changes in belowground carbon cycling processes following disturbance in a pure C3 ecosystem. We document carbon concentration and δ 13C depth profile enrichment trends consistent with a kinetic fractionation arising from soil organic carbon (SOC) humification across a northern forest chronosequence (1, 15, 45, 80 and 125+ yrs). Reduced soil C storage that coincided with observed soil profile δ 13C-enrichment patterns which intensified following clearcut harvesting, pointed to losses of SOC in the deeper (>20 cm) mineral soil. This study suggests the δ 13C approach may assist in identifying mechanisms responsible for soil C storage changes in disturbed C3 forest ecosystems.

  4. Spectrally edited 2D 13Csbnd 13C NMR spectra without diagonal ridge for characterizing 13C-enriched low-temperature carbon materials

    Science.gov (United States)

    Johnson, Robert L.; Anderson, Jason M.; Shanks, Brent H.; Fang, Xiaowen; Hong, Mei; Schmidt-Rohr, Klaus

    2013-09-01

    Two robust combinations of spectral editing techniques with 2D 13Csbnd 13C NMR have been developed for characterizing the aromatic components of 13C-enriched low-temperature carbon materials. One method (exchange with protonated and nonprotonated spectral editing, EXPANSE) selects cross peaks of protonated and nearby nonprotonated carbons, while the other technique, dipolar-dephased double-quantum/single-quantum (DQ/SQ) NMR, selects signals of bonded nonprotonated carbons. Both spectra are free of a diagonal ridge, which has many advantages: Cross peaks on the diagonal or of small intensity can be detected, and residual spinning sidebands or truncation artifacts associated with the diagonal ridge are avoided. In the DQ/SQ experiment, dipolar dephasing of the double-quantum coherence removes protonated-carbon signals; this approach also eliminates the need for high-power proton decoupling. The initial magnetization is generated with minimal fluctuation by combining direct polarization, cross polarization, and equilibration by 13C spin diffusion. The dipolar dephased DQ/SQ spectrum shows signals from all linkages between aromatic rings, including a distinctive peak from polycondensed aromatics. In EXPANSE NMR, signals of protonated carbons are selected in the first spectral dimension by short cross polarization combined with dipolar dephasing difference. This removes ambiguities of peak assignment to overlapping signals of nonprotonated and protonated aromatic carbons, e.g. near 125 ppm. Spin diffusion is enhanced by dipolar-assisted rotational resonance. Before detection, Csbnd H dipolar dephasing by gated decoupling is applied, which selects signals of nonprotonated carbons. Thus, only cross peaks due to magnetization originating from protonated C and ending on nearby nonprotonated C are retained. Combined with the chemical shifts deduced from the cross-peak position, this double spectral editing defines the bonding environment of aromatic, COO, and Cdbnd O carbons

  5. In vivo 13 carbon metabolic imaging at 3T with hyperpolarized 13C-1-pyruvate.

    Science.gov (United States)

    Kohler, S J; Yen, Y; Wolber, J; Chen, A P; Albers, M J; Bok, R; Zhang, V; Tropp, J; Nelson, S; Vigneron, D B; Kurhanewicz, J; Hurd, R E

    2007-07-01

    We present for the first time dynamic spectra and spectroscopic images acquired in normal rats at 3T following the injection of (13)C-1-pyruvate that was hyperpolarized by the dynamic nuclear polarization (DNP) method. Spectroscopic sampling was optimized for signal-to-noise ratio (SNR) and for spectral resolution of (13)C-1-pyruvate and its metabolic products (13)C-1-alanine, (13)C-1-lactate, and (13)C-bicarbonate. Dynamic spectra in rats were collected with a temporal resolution of 3 s from a 90-mm axial slab using a dual (1)H-(13)C quadrature birdcage coil to observe the combined effects of metabolism, flow, and T(1) relaxation. In separate experiments, spectroscopic imaging data were obtained during a 17-s acquisition of a 20-mm axial slice centered on the rat kidney region to provide information on the spatial distribution of the metabolites. Conversion of pyruvate to lactate, alanine, and bicarbonate occurred within a minute of injection. Alanine was observed primarily in skeletal muscle and liver, while pyruvate, lactate, and bicarbonate concentrations were relatively high in the vasculature and kidneys. In contrast to earlier work at 1.5 T, bicarbonate was routinely observed in skeletal muscle as well as the kidney and vasculature. PMID:17659629

  6. Carbon-13 magnetic resonance chemical shift additivity relationships of clinically used furocoumarins and furchromones

    International Nuclear Information System (INIS)

    The natural abundance carbon-13 nuclear magnetic resonance spectra of various clinically used furocoumarins and furochromones have been studied. The assignments of carbon chemical shift values were based on the theory of chemical shift, additivity rules, SFORD spectra and model compounds. (author)

  7. Autotrophic carbon budget in coral tissue: a new 13C-based model of photosynthate translocation.

    Science.gov (United States)

    Tremblay, Pascale; Grover, Renaud; Maguer, Jean François; Legendre, Louis; Ferrier-Pagès, Christine

    2012-04-15

    Corals live in symbiosis with dinoflagellates of the genus Symbiodinum. These dinoflagellates translocate a large part of the photosynthetically fixed carbon to the host, which in turn uses it for its own needs. Assessing the carbon budget in coral tissue is a central question in reef studies that still vexes ecophysiologists. The amount of carbon fixed by the symbiotic association can be determined by measuring the rate of photosynthesis, but the amount of carbon translocated by the symbionts to the host and the fate of this carbon are more difficult to assess. In the present study, we propose a novel approach to calculate the budget of autotrophic carbon in the tissue of scleractinian corals, based on a new model and measurements made with the stable isotope (13)C. Colonies of the scleractinian coral Stylophora pistillata were incubated in H(13)CO (-)(3)-enriched seawater, after which the fate of (13)C was followed in the symbionts, the coral tissue and the released particulate organic carbon (i.e. mucus). Results obtained showed that after 15 min, ca. 60% of the carbon fixed was already translocated to the host, and after 48 h, this value reached 78%. However, ca. 48% of the photosynthetically fixed carbon was respired by the symbiotic association, and 28% was released as dissolved organic carbon. This is different from other coral species, where coral tissue after 48 h. Results show that our (13)C-based model could successfully trace the carbon flow from the symbionts to the host, and the photosynthetically acquired carbon lost from the symbiotic association. PMID:22442377

  8. Enhanced biosynthetically directed fractional carbon-13 enrichment of proteins for backbone NMR assignments.

    Science.gov (United States)

    Wenrich, Broc R; Sonstrom, Reilly E; Gupta, Riju A; Rovnyak, David

    2015-11-01

    Routes to carbon-13 enrichment of bacterially expressed proteins include achieving uniform or positionally selective (e.g. ILV-Me, or (13)C', etc.) enrichment. We consider the potential for biosynthetically directed fractional enrichment (e.g. carbon-13 incorporation in the protein less than 100%) for performing routine n-(D)dimensional NMR spectroscopy of proteins. First, we demonstrate an approach to fractional isotope addition where the initial growth media containing natural abundance glucose is replenished at induction with a small amount (e.g. 10%(w/w)u-(13)C-glucose) of enriched nutrient. The approach considered here is to add 10% (e.g. 200mg for a 2g/L culture) u-(13)C-glucose at the induction time (OD600=0.8), resulting in a protein with enhanced (13)C incorporation that gives almost the same NMR signal levels as an exact 20% (13)C sample. Second, whereas fractional enrichment is used for obtaining stereospecific methyl assignments, we find that (13)C incorporation levels no greater than 20%(w/w) yield (13)C and (13)C-(13)C spin pair incorporation sufficient to conduct typical 3D-bioNMR backbone experiments on moderate instrumentation (600 MHz, RT probe). Typical 3D-bioNMR experiments of a fractionally enriched protein yield expected backbone connectivities, and did not show amino acid biases in this work, with one exception. When adding 10% u-(13)C glucose to expression media at induction, there is poor preservation of (13)Cα-(13)Cβ spin pairs in the amino acids ILV, leading to the absence of Cβ signals in HNCACB spectra for ILV, a potentially useful editing effect. Enhanced fractional carbon-13 enrichment provides lower-cost routes to high throughput protein NMR studies, and makes modern protein NMR more cost-accessible.

  9. Simulation of soil organic carbon in different soil size fractions using 13Carbon measurement data

    Science.gov (United States)

    Gottschalk, P.; Bellarby, J.; Chenu, C.; Foereid, B.; Wattenbach, M.; Zingore, S.; Smith, J.

    2009-04-01

    We simulate the soil organic carbon (SOC) dynamics at a chronoseqeunce site in France, using the Rothamsted Carbon model. The site exhibits a transition from C3 plants, dominated by pine forest, to a conventional C4 maize rotation. The different 13C signatures of the forest plants and maize are used to distinguish between the woodland derived carbon (C) and the maize derived C. The model is evaluated against total SOC and C derived from forest and maize, respectively. The SOC dynamics of the five SOC pools of the model, decomposable plant material (DPM), resistant plant material (RPM), biomass, humus and inert C, are also compared to the SOC dynamics measured in different soil size fractions. These fractions are > 50 μm (particulate organic matter), 2-50 μm (silt associated SOC) and 50 μm and the sum of the other pools corresponds well to the SOC measured in the soil size fraction stocks in the first 20 years after land-use change and overestimates the C accumulation of maize C. Several hypotheses were tested to evaluate the simulations. Input data and internal model parameter uncertainties had minor effects on the simulations results. Accounting for erosion and implementing a simple tillage routine did not improve the simulation fit to the data. We therefore hypothesize that a generic process that is not yet explicitly accounted for in the ROTHC model could explain the loss in soil C after land use change. Such a process could be the loss of the physical protection of soil organic matter as would be observed following cultivation of a previously uncultivated soil. Under native conditions a fraction of organic matter is protected in stable soil aggregates. These aggregates are physically disrupted by continuous and repeated cultivation of the soil. The underestimation of SOC loss by the model can be mainly attributed to the slow turnover of the humus pool. This pool was shown to represent mainly the SOC associated with the silt and clay soil fraction. Here, the

  10. A Large Metabolic Carbon Ccontribution to the δ13C Record in Marine Aragonitic Bivalve Shells

    Science.gov (United States)

    Gillikin, D. P.; Lorrain, A.; Dehairs, F.

    2006-12-01

    The stable carbon isotopic signature archived in bivalve shells was originally thought to record the δ13C of seawater dissolved inorganic carbon13C-DIC). However, more recent studies have shown that the incorporation of isotopically light metabolic carbon (M) significantly affects the δ13C signal recorded in biogenic carbonates. To assess the M contribution to Mercenaria mercenaria shells collected in North Carolina, USA, we sampled seawater δ13C-DIC, tissue, hemolymph and shell δ13C. We found up to a 4‰ decrease through ontogeny in shell δ13C in a 23 year old individual. There was no correlation between shell height or age and tissue δ13C. Thus, the ontogenic decrease observed in the shell δ13C could not be attributed to changes in food sources as the animal ages leading to more negative metabolic CO2, since this would require a negative relationship between tissue δ13C and shell height. Hemolymph δ13C, on the other hand, did exhibit a negative relationship with height, but the δ13C values were more positive than expected, indicating that hemolymph may not be a good proxy of extrapallial fluid δ13C. Nevertheless, the hemolymph data indicate that respired CO2 does influence the δ13C of internal fluids and that the amount of respired CO2 is related to the age of the bivalve. The percent metabolic C incorporated into the shell (%M) was significantly higher (up to 37%) than has been found in other bivalve shells, which usually contain less than 10 %M. Attempts to use shell biometrics to predict %M could not explain more than ~60% of the observed variability. Moreover, there were large differences in the %M between different sites. Thus, the metabolic effect on shell δ13C cannot easily be accounted for to allow reliable δ13C-DIC reconstructions. However, there does seem to be a common effect of size, as all sites had indistinguishable slopes between the %M and shell height (+0.19% per mm of shell height).

  11. The Range of 1-3 keV Electrons in Solid Oxygen and Carbon Monoxide

    DEFF Research Database (Denmark)

    Oehlenschlæger, M.; Andersen, H.H.; Schou, Jørgen;

    1985-01-01

    The range of 1-3 keV electrons in films of solid oxygen and carbon monoxide has been measured by a mirror substrate method. The technique used here is identical to the one previously used for range measurements in solid hydrogen and nitrogen. The range in oxygen is slightly shorter than that in...... nitrogen whereas the range in carbon monoxide is about 20% larger than that in the nitrogen....

  12. 13C Incorporation into Signature Fatty Acids as an Assay for Carbon Allocation in Arbuscular Mycorrhiza

    Science.gov (United States)

    Olsson, Pål Axel; van Aarle, Ingrid M.; Gavito, Mayra E.; Bengtson, Per; Bengtsson, Göran

    2005-01-01

    The ubiquitous arbuscular mycorrhizal fungi consume significant amounts of plant assimilated C, but this C flow has been difficult to quantify. The neutral lipid fatty acid 16:1ω5 is a quantitative signature for most arbuscular mycorrhizal fungi in roots and soil. We measured carbon transfer from four plant species to the arbuscular mycorrhizal fungus Glomus intraradices by estimating 13C enrichment of 16:1ω5 and compared it with 13C enrichment of total root and mycelial C. Carbon allocation to mycelia was detected within 1 day in monoxenic arbuscular mycorrhizal root cultures labeled with [13C]glucose. The 13C enrichment of neutral lipid fatty acid 16:1ω5 extracted from roots increased from 0.14% 1 day after labeling to 2.2% 7 days after labeling. The colonized roots usually were more enriched for 13C in the arbuscular mycorrhizal fungal neutral lipid fatty acid 16:1ω5 than for the root specific neutral lipid fatty acid 18:2ω6,9. We labeled plant assimilates by using 13CO2 in whole-plant experiments. The extraradical mycelium often was more enriched for 13C than was the intraradical mycelium, suggesting rapid translocation of carbon to and more active growth by the extraradical mycelium. Since there was a good correlation between 13C enrichment in neutral lipid fatty acid 16:1ω5 and total 13C in extraradical mycelia in different systems (r2 = 0.94), we propose that the total amount of labeled C in intraradical and extraradical mycelium can be calculated from the 13C enrichment of 16:1ω5. The method described enables evaluation of C flow from plants to arbuscular mycorrhizal fungi to be made without extraction, purification and identification of fungal mycelia. PMID:15870350

  13. Characteristics of 14C and 13C of carbonate aerosols in dust storm events in China

    Science.gov (United States)

    Chen, Bing; Jie, Dongmei; Shi, Meinan; Gao, Pan; Shen, Zhenxing; Uchida, Masao; Zhou, Liping; Liu, Kexin; Hu, Ke; Kitagawa, Hiroyuki

    2015-10-01

    In contrast with its decrease in western China deserts, the dust storm event in eastern China, Korea, and Japan shows an increase in frequency. Although the drylands in northeastern China have been recognized as an important dust source, the relative contributions of dust transport from the drylands and deserts are inconclusive, thus the quantification of dust storm sources in downwind area remains a challenge. We measured the 14C and 13C contents in carbonates of dust samples from six sites in China, which were collected for the duration of dust storm events in drylands, deserts, and urban areas. The δ13C of the dryland dust samples considerably varied in a range of - 9.7 to - 5.0‰, which partly overlapped the desert dust carbonate δ13C ranges. The 14C content of the dryland dust carbonates showed a narrow range of 60.9 ± 4.0 (as an average and 1 SD of five samples) percent modern carbon (pMC), indicating the enrichment of modern carbonate. Dust samples in desert regions contained relatively aged carbonates with the depleting 14C showing of 28.8 ± 3.3 pMC. After the long-range transport of the western China desert dust plume, the carbonates collected at the southern China remained the depletion of 14C (33.5 ± 5.3 pMC) as in the desert regions. On the other hand, the samples of dust storm events at the urban areas of eastern China showed an enrichment of 14C contents (46.2 ± 5.0 pMC, n = 7), which might be explained by the stronger contribution of modern-carbonate-rich dryland dust.

  14. Spatiotemporal patterns of carbon-13 in the global surface oceans and the oceanic Suess effect

    NARCIS (Netherlands)

    Gruber, N.; Keeling, C.D.; Bacastow, R.B.; Guenther, P.R.; Lueker, T.J.; Wahlen, M.; Meijer, H.A.J.; Mook, W.G.; Stocker, T.F.

    1999-01-01

    A global synthesis of the C-13/C-12 ratio of dissolved inorganic carbon (DIC) in the surface ocean is attempted by summarizing high-precision data obtained from 1978 to 1997 in all major ocean basins. The data, mainly along transects but including three subtropical time series, are accompanied by si

  15. Triblock Copolymers Based on 1,3-Trimethylene Carbonate and Lactide as Biodegradable Thermoplastic Elastomers

    NARCIS (Netherlands)

    Zhang, Zheng; Grijpma, Dirk W.; Feijen, Jan

    2004-01-01

    Biodegradable triblock copolymers based on 1,3-trimethylene carbonate (TMC) and different lactides (i.e. D,L-lactide(DLLA), L-lactide (LLA), D-lactide (DLA)) designated as poly(DLLA-TMC-DLLA), poly(LLA-TMC-LLA) and poly(DLA-TMC-DLA) were prepared and their mechanical and thermal properties were comp

  16. Soil carbon inventories and d 13C along a moisture gradient in Botswana

    NARCIS (Netherlands)

    Bird, M.I.; Veenendaal, E.M.; Lloyd, J.

    2004-01-01

    We present a study of soil organic carbon (SOC) inventories and d 13C values for 625 soil cores collected from well-drained, coarse-textured soils in eight areas along a 1000 km moisture gradient from Southern Botswana, north into southern Zambia. The spatial distribution of trees and grass in the d

  17. Determination of the δ13C of dissolved inorganic carbon in water; RSIL lab code 1710

    Science.gov (United States)

    Singleton, Glenda L.; Revesz, Kinga; Coplen, Tyler B.

    2012-01-01

    The purpose of the Reston Stable Isotope Laboratory (RSIL) lab code 1710 is to present a method to determine the δ13C of dissolved inorganic carbon (DIC) of water. The DIC of water is precipitated using ammoniacal strontium chloride (SrCl2) solution to form strontium carbonate (SrCO3). The δ13C is analyzed by reacting SrCO3 with 100-percent phosphoric acid (H3PO4) to liberate carbon quantitatively as carbon dioxide (CO2), which is collected, purified by vacuum sublimation, and analyzed by dual inlet isotope-ratio mass spectrometry (DI-IRMS). The DI-IRMS is a DuPont double-focusing mass spectrometer. One ion beam passes through a slit in a forward collector and is collected in the rear collector. The other measurable ion beams are collected in the front collector. By changing the ion-accelerating voltage under computer control, the instrument is capable of measuring mass/charge (m/z) 45 or 46 in the rear collector and m/z 44 and 46 or 44 and 45, respectively, in the front collector. The ion beams from these m/z values are as follows: m/z 44 = CO2 = 12C16O16O, m/z 45 = CO2 = 13C16O16O primarily, and m/z 46 = CO2 = 12C16O18O primarily. The data acquisition and control software calculates δ13C values.

  18. Neoproterozoic diamictite-cap carbonate succession and δ13C chemostratigraphy from eastern Sonora, Mexico

    Science.gov (United States)

    Corsetti, Frank A.; Stewart, John H.; Hagadorn, James W.

    2007-01-01

    Despite the occurrence of Neoproterozoic strata throughout the southwestern U.S. and Sonora, Mexico, glacial units overlain by enigmatic cap carbonates have not been well-documented south of Death Valley, California. Here, we describe in detail the first glaciogenic diamictite and cap carbonate succession from Mexico, found in the Cerro Las Bolas Group. The diamictite is exposed near Sahuaripa, Sonora, and is overlain by a 5 m thick very finely-laminated dolostone with soft sediment folds. Carbon isotopic chemostratigraphy of the finely-laminated dolostone reveals a negative δ13C anomaly (down to − 3.2‰ PDB) characteristic of cap carbonates worldwide. Carbon isotopic values rise to + 10‰ across ∼ 400 m of section in overlying carbonates of the Mina el Mezquite and Monteso Formations. The pattern recorded here is mostly characteristic of post-Sturtian (ca. ≤ 700 Ma), but pre-Marinoan (ca. ≥ 635 Ma) time. However, the Cerro Las Bolas Group shares ambiguity common to most Neoproterozoic successions: it lacks useful radiometric age constraints and biostratigraphically useful fossils, and its δ13C signature is oscillatory and therefore somewhat equivocal.

  19. Toward microtesla MRI of hyperpolarized carbon-13 for real-time metabolic imaging

    CERN Document Server

    Zotev, V S; Savukov, I M; Matlashov, A N; Gómez, J J; Espy, M A

    2009-01-01

    Hyperpolarization of carbon-13 is a promising technique that has enabled MR angiography, perfusion mapping, and real-time metabolic imaging of C-13 labeled organic substances with unprecedented signal-to-noise levels. Because the hyperpolarization is performed outside an MRI scanner (using a special NMR-style hyperpolarizer), high magnetic fields of conventional MRI systems offer little advantage in terms of achievable C-13 polarization. Here we propose an ultimate low-field MRI scanner for imaging hyperpolarized C-13. It uses only microtesla-range magnetic fields and employs SQUID (superconducting quantum interference device) sensors for broadband reception of MRI signals. We present the first images acquired by SQUID-based microtesla MRI with dynamic nuclear polarization (Overhauser enhancement). We also report the first NMR spectra of C-13 at microtesla fields, including spectra of metabolically relevant sodium pyruvate, bicarbonate, and alanine. Our results demonstrate feasibility and potential of the pro...

  20. Kinetic isotope effect of carbon-13 in decarboxylation of phenylpropiolic acid in anhydrous formic acid

    International Nuclear Information System (INIS)

    Carbon-13 kinetic isotope effects in the decarboxylation of phenylpropiolic acid (carboxyl-13C) in formic acid medium and in the decarbonylation of liquid formic acid assisted with phenylpropiolic acid (PPA) and acetophenone (AP) have been studied in the 70-100oC temperature interval. The carboxyl-13C KIEs are in the range 1.0034 at 71.6oC and 1.0047 at 101.2oC respectively. The C-13C KIE, k-12/k-13, in the decarbonylation of liquid formic acid assisted with PPA were found to be of 1.0419 at 71.6oC and 1.0383 at 101.2oC. The C-13 KIE in the decarbonylation of pure formic acid are 1.0464 at 70.2oC and 1.0411 at 98oC respectively. The above experimental results have been discussed and interpreted as indicating that the formation of Cα-H bond preceded by the protonation of triple acetylenic bond of PPA is the rate determining step followed by carbon dioxide splitting. The 13-CO-KIE in the carbon monooxide generation assisted with PPA is much larger than the 13-CO-KIE generated in the presence of phenylacetylene. This shows that the decarboxylation of PPA and decarboxylation of FA are interrelated processes proceeding in the reaction cage. The formic acid involved in the formation of TS is decarbonylating directly avoiding probably largely the formic acid anhydride intermediate formation. (author)

  1. Quantifying the chemical composition of soil organic carbon with solid-state 13C NMR

    Science.gov (United States)

    Baldock, J. A.; Sanderman, J.

    2011-12-01

    The vulnerability of soil organic carbon (SOC) to biological decomposition and mineralisation to CO2 is defined at least partially by its chemical composition. Highly aromatic charcoal-like SOC components are more stable to biological decomposition than other forms of carbon including cellulose. Solid-state 13C NMR has gained wide acceptance as a method capable of defining SOC chemical composition and mathematical fitting processes have been developed to estimate biochemical composition. Obtaining accurate estimates depends on an ability to quantitatively detect all carbon present in a sample. Often little attention has been paid to defining the proportion of organic carbon present in a soil that is observable in solid-state 13C NMR analyses of soil samples. However, if such data is to be used to inform carbon cycling studies, it is critical that quantitative assessments of SOC observability be undertaken. For example, it is now well established that a significant discrimination exists against the detection of the low proton content polyaromatic structures typical of charcoal using cross polarisation 13C NMR analyses. Such discrimination does not exist where direct polarisation analyses are completed. In this study, the chemical composition of SOC as defined by cross polarisation and direct polarisation13C NMR analyses will be compared for Australian soils collected from under a diverse range of agricultural managements and climatic conditions. Results indicate that where significant charcoal C contents exist, it is highly under-represented in the acquired CP spectra. For some soils, a discrimination against alkyl carbon was also evident. The ability to derive correction factors to compensate for such discriminations will be assessed and presented.

  2. Synthesis of carbon-11, fluorine-18, and nitrogen-13 labeled radiotracers for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J.S.; Wolf, A.P.

    1981-01-01

    A number of reviews, many of them recent, have appeared on various aspects of /sup 11/C, /sup 18/F and /sup 13/N-labeled radiotracers. This monograph treats the topic principally from the standpoint of synthetic organic chemistry while keeping in perspective the necessity of integrating the organic chemistry with the design and ultimate application of the radiotracer. Where possible, recent examples from the literature of organic synthesis are introduced to suggest potentially new routes which may be applied to problems in labeling organic molecules with the short-lived positron emitters, carbon-11, fluorine-18, and nitrogen-13. The literature survey of carbon-11, fluorine-18 and nitrogen-13 labeled compounds presented are of particular value to scientists working in this field. Two appendices are also included to provide supplementary general references. A subject index concludes this volume.

  3. Synthesis of carbon-11, fluorine-18, and nitrogen-13 labeled radiotracers for biomedical applications

    International Nuclear Information System (INIS)

    A number of reviews, many of them recent, have appeared on various aspects of 11C, 18F and 13N-labeled radiotracers. This monograph treats the topic principally from the standpoint of synthetic organic chemistry while keeping in perspective the necessity of integrating the organic chemistry with the design and ultimate application of the radiotracer. Where possible, recent examples from the literature of organic synthesis are introduced to suggest potentially new routes which may be applied to problems in labeling organic molecules with the short-lived positron emitters, carbon-11, fluorine-18, and nitrogen-13. The literature survey of carbon-11, fluorine-18 and nitrogen-13 labeled compounds presented are of particular value to scientists working in this field. Two appendices are also included to provide supplementary general references. A subject index concludes this volume

  4. Restorative effect of (5E, 13E)-5,13-Docosadienoic acid on carbon tetrachloride induced oxidative stress in rats

    Institute of Scientific and Technical Information of China (English)

    Anand Thiru; Gokulakrishnan Kannan; Kalaiselvan Ashokan; Velavan Sivanandam

    2012-01-01

    Objective: To evaluate the restorative effect of (5E, 13E)-5,13-Docosadienoic acid on carbon tetrachloride induced oxidative stress in rats. Methods: Wistar strain male albino rats, weighing 180-200 g/bw were selected for the study. Rats were divided into four groups. Group I animals were served as normal control. Group II was administered with corn oil (3 ml/kg, i.p.) as vehicle control. Group III was given single dose (29th day) of CCl4 in corn oil (1:1 v/v, 3 ml/kg, i.p.). Groups IV was treated with (5E, 13E)-5,13-Docosadienoic acid (DA) (6 mg/kg body weight) for 28 days and given single dose of (29th day) CCl4 in corn oil (1:1 v/v, 3 ml/kg, i.p.). Six hours after CCl4 intoxication, the experimental animals were sacrificed. The blood samples were collected. Liver was excised immediately and immersed in physiological saline. Results: The lipid peroxidation was initiated in CCl4 intoxicated rats which is evidenced by thiobarbituric acid (TBARS) and diminution of GSH content in liver. Super oxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), vitamin C and E in CCl4 intoxicated rats retrieved towards near normalcy. After treating with DA which significantly altered (P<0.001) serum marker enzyme level and antioxidant level near normal against CCl4 treated rats. Conclusions: It was observed that the entire variable tested i.e., SOD, CAT, GPx, reduced glutathione, vitamin C and E recorded a significant decline on CCl4 treatment. However, treatment with DA restored the levels to near normal value, suggesting the therapeutic effect of DA to counter the oxidative stress.

  5. Diethers enriched in 13C suggest carbon-limitation at the Lost City Hydrothermal Field

    Science.gov (United States)

    Bradley, A. S.; Hayes, J. M.; Summons, R. E.

    2004-12-01

    Active and inactive carbonate vent structures from the Lost City Hydrothermal Field (LCHF) contain up to 0.6% organic carbon including diverse lipids. Values of δ 13C for total organic carbon (TOC) range from -18.7‰ vs. VPDB at the active, high-temperature vent known as "The Beehive" (90° C), to -3.1‰ at Marker 7 (active, 70° C). Samples with relatively high levels of 13C also contained high amounts of isoprenoidal and nonisoprenoidal diethers. Samples more depleted in 13C lacked or contained low amounts of these diethers. The correlation between high 13C and abundant diethers is supported by compound-specific isotopic analyses. Archaeal and bacterial diethers are enriched in 13C relative to photosynthetically derived marine carbon. The biomarkers sn-2 hydroxyarchaeol, sn-3 hydroxyarchaeol, and dihydroxyarchaeol - considered diagnostic for methane-cycling archaea - had δ values ranging from -8.5 to +4.8‰ . Phylogenetic data confirms the presence at these vents of a single group of methanogens, related to the Methanosarcinales (Schrenk et al., 2004). Diethers with non-isoprenoidal alkyl chains are also present, are of presumed bacterial origin, and may indicated the presence of sulfate-reducing bacteria. Values of δ for these compounds range from -7.3 to +1.0‰ . At the Beehive vent, diether lipids are absent and the TOC is depleted in 13C. Coexistence of isotopically similar hydroxyarchaeols and nonisoprenoidal glycerol diethers is typical of marine, cold-seep environments at which concentrations of H2 are low and methane is oxidized anaerobically. At the LCHF, however, concentrations of H2 in pore waters reach 15 mM (Proskurowski et al., 2003). This H2, produced by serpentinization reactions, drives production (rather than oxidation) of methane. Simultaneously, sulfate-reducing bacteria can flourish as carbon-fixing autotrophs. Under such conditions, carbon may be the limiting substrate, its nearly complete consumption accounting for the enrichment of

  6. Measurement of pion double charge exchange on carbon-13, carbon-14, magnesium-26, and iron-56

    Energy Technology Data Exchange (ETDEWEB)

    Seidl, P.A.

    1985-02-01

    Cross sections for the /sup 13,14/C,/sup 26/Mg,/sup 56/Fe(..pi../sup +/,..pi../sup -/)/sup 13,14/O,/sup 26/Si,/sup 56/Ni reactions were measured with the Energetic Pion Channel and Spectrometer at the Clinton P. Anderson Meson Physics Facility for 120 less than or equal to T/sub ..pi../ less than or equal to 292 MeV and 0 less than or equal to theta less than or equal to 50. The double isobaric analog states (DIAS) are of primary interest. In addition, cross sections for transitions to /sup 14/O(0/sup +/, 5.92 MeV), /sup 14/O(2/sup +/, 7.77 MeV), /sup 56/Ni(gs), /sup 13/O(gs), and /sup 13/O(4.21 MeV) are presented. The /sup 13/O(4.21 MeV) state is postulated to have J/sup ..pi../ = 1/2/sup -/. The data are compared to previously measured double-charge-exchange cross sections on other nuclei, and the systematics of double charge exchange on T greater than or equal to 1 target nuclei leading to the DIAS are studied. Near the ..delta../sub 33/ resonance, cross sections for the DIAS transitions are in disagreement with calculations in which the reaction is treated as sequential charge exchange through the free pion-nucleon amplitude, while for T/sub ..pi../ > 200 MeV the anomalous features of the 164 MeV data are not apparent. This is evidence for significant higher order contributions to the double-charge-exchange amplitude near the reasonable energy. Two theoretical approaches that include two nucleon processes are applied to the DIAS data. 64 references.

  7. Quantifying the metabolic contribution to δ13C of shell carbonate of Arctica islandica: an experimental calibration

    Science.gov (United States)

    Beirne, E. C.; Wanamaker, A. D.

    2010-12-01

    The stable isotopic composition of dissolved inorganic carbon of seawater (δ13CDIC) can provide a powerful means to investigate atmospheric and oceanic carbon dynamics. Records of past δ13CDIC values of seawater, especially from the extratropical oceans, are needed to better understand how recent climate change and anthropogenic activity (namely fossil fuel emissions) have impacted the global carbon cycle. However, long-term reconstructions of marine δ13CDIC are limited (both spatially and temporally) by a lack of suitable proxy archives, which have undergone a rigorous calibration process. Marine mollusks represent a potential δ13CDIC archive given that the primary source of carbon to their shell material is ambient dissolved inorganic carbon. However, interpretation of this archive is confounded by the additional contribution of respired (or metabolic) carbon to the carbon isotope ratio of shell material (δ13Cshell). Although theoretical models predict that less than 10% of δ13Cshell of marine mollusks is attributable to metabolic carbon, several studies have reported significantly larger contributions of respired carbon (CM) to shell material depending upon the species in question, and in some cases, ontogenetic age. Therefore, species-specific calibrations must be conducted to establish metabolic contribution to δ13Cshell at different stages of ontogeny. The central objective of this study was to quantify the metabolic contribution to the shell carbonate of Arctica islandica L., juveniles and adults, to determine the viability of this species as a paleo-δ13CDIC archive. Results will be presented from an 8-month experimental calibration between δ13CDIC and δ13Cshell of the species Arctica islandica. Adults (25 to 55 years old) and juveniles (1mm/month) allowed for the measurement of three distinct growth periods in order to capture seasonal variability in metabolic carbon incorporation. δ13CDIC was measured every two weeks during the course of the

  8. Evaluation of carbon diffusion in heat treatment of H13 tool steel under different atmospheric conditions

    Directory of Open Access Journals (Sweden)

    Maziar Ramezani

    2015-04-01

    Full Text Available Although the cost of the heat treatment process is only a minor portion of the total production cost, it is arguably the most important and crucial stage on the determination of material quality. In the study of the carbon diffusion in H13 steel during austenitization, a series of heat treatment experiments had been conducted under different atmospheric conditions and length of treatment. Four austenitization atmospheric conditions were studied, i.e., heat treatment without atmospheric control, heat treatment with stainless steel foil wrapping, pack carburization heat treatment and vacuum heat treatment. The results showed that stainless steel foil wrapping could restrict decarburization process, resulting in a constant hardness profile as vacuum heat treatment does. However, the tempering characteristic between these two heat treatment methods is different. Results from the gas nitrided samples showed that the thickness and the hardness of the nitrided layer is independent of the carbon content in H13 steel.

  9. Monitoring of liver glycogen synthesis in diabetic patients using carbon-13 MR spectroscopy

    International Nuclear Information System (INIS)

    To investigate the relationship between liver glucose, glycogen, and plasma glucose in diabetic patients, in vivo liver carbon-13 magnetic resonance spectroscopy (13C MRS) with a clinical 3.0 T MR system was performed. Subjects were healthy male volunteers (n = 5) and male type-2 diabetic patients (n = 5). Pre- and during oral glucose tolerance tests (OGTT), 13C MR spectra without proton decoupling were acquired in a monitoring period of over 6 h, and in total seven spectra were obtained from each subject. For OGTT, 75 g of glucose, including 5 g of [1-13C]glucose, was administered. The MR signals of liver [1-13C]glucose and glycogen were detected and their time-course changes were assessed in comparison with the plasma data obtained at screening. The correlations between the fasting plasma glucose level and liver glycogen/glucose rate (Spearman: ρ = -0.68, p 13C MRS can perform noninvasive measurement of glycogen storage/degradation ability in the liver individually and can assist in tailor-made therapy for diabetes. In conclusion, 13C MRS has a potential to become a powerful tool in diagnosing diabetes multilaterally.

  10. Evaluation of carbon diffusion in heat treatment of H13 tool steel under different atmospheric conditions

    OpenAIRE

    Maziar Ramezani; Timotius Pasang; Zhan Chen; Thomas Neitzert; Dominique Au

    2015-01-01

    Although the cost of the heat treatment process is only a minor portion of the total production cost, it is arguably the most important and crucial stage on the determination of material quality. In the study of the carbon diffusion in H13 steel during austenitization, a series of heat treatment experiments had been conducted under different atmospheric conditions and length of treatment. Four austenitization atmospheric conditions were studied, i.e., heat treatment without atmospheric contro...

  11. STUDIES OF MAIN CHAIN DYNAMICS OF FLUORINE-CONTAINING IONOMERS BY CARBON-13 NUCLEAR MAGNETIC RELAXATION

    Institute of Scientific and Technical Information of China (English)

    YANG Yanwu; WANG Dehua; QIU Jianqing; QIAN Baogong; WANG Hongzuo

    1992-01-01

    The carbon-13 spin-spin relaxation times of fluorine-containing ionomers are measured and motional correlation times τ0 and τd are calculated by using VJGM model. The results show that the motions of polymer main chain in ionomers become more difficult with increasing of ionization degree and contents of functional group, and depend on the fine structures and stability of ionic microdomains.

  12. Acceleration of carbon-13 spin-lattice relaxation times in amino acids by electrolytes

    Institute of Scientific and Technical Information of China (English)

    Tian Jinping; Yin Yingwu

    2004-01-01

    A series of amino acids and carboxylic acids were determined by 13C NMR spectroscopy.The results showed that addition of 3M MgCl2 led to the 13C NMR integral area of samples being well proportional to number of carbon atoms that produce the particular signal with reliability over 95%. Measurements of 13C spin-lattice relaxation times (T1's) are reported for a number of amino acids. T1's of all the carbons in amino acids generally tend to decrease with the increase of the concentration of electrolytes, and the presence of magnesium slats is of significant. Carboxylic carbons in amino acids are the most sensitive "acceptor" of the 13C spin-lattice relaxation accelerating effects in electrolytes, and the 13C spin-lattice relaxation accelerating ability of electrolytes is Mg(ClO4)2 >MgCl2 >CaCl2 >NaCl >KCl >LiClO4 >NaOH. In general, T1's of C1 carbons in nonpolar a-amino acids are higher than those in polar and basic a-amino acids both in aqueous and 3M MgCl2 medium. In aliphatic straight-chain amino acids, a-, a-, a-, ai- and a- amino acids, T1's of C1 carbons tend to reduce with the increase of inserted carbon numbers between amino and carboxylic groups compared with Gly. T1's can be decreased even more when amino acids are mixed in 3M MgCl2, but T1's of carbons in amino acids decrease slightly with increase of the concentration of amino acids in 3M MgCl2. The mechanisms of the observed phenomena are discussed in terms of intermolecular interaction and paramagnetic impurity in electrolytes, large contributions of intermolecular interaction which is enhanced in electrolytes concentrate on the incoming "unsaturation" of the primary solvation shell of cations with the increase of electrolytes concentration and complexes formation of amino acids with metal ions. In electrolytes, amino acids are "anchored" to cations and molecule tumbling is slowed down, molecular rigidity is increased and molecular size is "enlarged", all of these are helpful to accelerate

  13. Assessing offsets between the δ13C of sedimentary components and the global exogenic carbon pool across early Paleogene carbon cycle perturbations

    Science.gov (United States)

    Sluijs, Appy; Dickens, Gerald R.

    2012-12-01

    Negative stable carbon isotope excursions (CIEs) across the Paleocene-Eocene thermal maximum (PETM; ˜56 Ma) range between 2‰ and 7‰, even after discounting sections with truncated records. Individual carbon isotope records differ in shape and magnitude from variations in the global exogenic carbon cycle through changes in (1) the relative abundance of mixed components with different δ13C within a measured substrate, (2) isotope fractionation through physiological change, and (3) the isotope composition of the carbon source. All three factors likely influence many early Paleogene δ13C records, especially across the PETM and other hyperthermal events. We apply these concepts to late Paleocene-early Eocene (˜58-52 Ma) records from Lomonosov Ridge, Arctic Ocean. Linear regression analyses show correlations between the δ13C of total organic carbon (TOC) and two proxies for the relative contribution of terrestrial organic components to sediment TOC: the branched and isoprenoid tetraether index and palynomorphs. We use these correlations to subtract the terrestrial component from δ13CTOC and calculate marine organic matter δ13C. The results show that the magnitude of the CIE in δ13CTOC across the PETM is exaggerated relative to the magnitude of the CIE in δ13CMOM by ˜3‰ due to increased contributions of terrestrial organic carbon during the event. Collectively, all carbon isotope records across the PETM and other major climate-carbon cycle perturbations in Earth's history are potentially biased through one or more of the above factors. Indeed, it is highly unlikely that any δ13C record shows the true shape and magnitude of the CIE for the global exogenic carbon cycle. For the PETM, we conclude that CIE in the exogenic carbon cycle is likely CIE.

  14. Temperature-mediated changes in microbial carbon use efficiency and 13C discrimination

    Science.gov (United States)

    Lehmeier, Christoph A.; Ballantyne, Ford, IV; Min, Kyungjin; Billings, Sharon A.

    2016-06-01

    Understanding how carbon dioxide (CO2) flux from ecosystems feeds back to climate warming depends in part on our ability to quantify the efficiency with which microorganisms convert organic carbon (C) into either biomass or CO2. Quantifying ecosystem-level respiratory CO2 losses often also requires assumptions about stable C isotope fractionations associated with the microbial transformation of organic substrates. However, the diversity of organic substrates' δ13C and the challenges of measuring microbial C use efficiency (CUE) in their natural environment fundamentally limit our ability to project ecosystem C budgets in a warming climate. Here, we quantify the effect of temperature on C fluxes during metabolic transformations of cellobiose, a common microbial substrate, by a cosmopolitan microorganism growing at a constant rate. Biomass C specific respiration rate increased by 250 % between 13 and 26.5 °C, decreasing CUE from 77 to 56 %. Biomass C specific respiration rate was positively correlated with an increase in respiratory 13C discrimination from 4.4 to 6.7 ‰ across the same temperature range. This first demonstration of a direct link between temperature, microbial CUE, and associated isotope fluxes provides a critical step towards understanding δ13C of respired CO2 at multiple scales, and towards a framework for predicting future ecosystem C fluxes.

  15. 微波热解法制备的炭涂层对LiNi1/3Mn1/3Co1/3O2性能的影响%Influence of carbon coating prepared by microwave pyrolysis on properties of LiNi1/3Mn1/3Co1/3O2

    Institute of Scientific and Technical Information of China (English)

    韩亚梅; 张正富; 张利波; 彭金辉; 傅梦笔; C.SRINIVASAKANNAN; 杜江

    2013-01-01

    A novel synthesis method of carbon-coated LiNi1/3Mn1/3Co1/3O2 cathode material for lithium-ion battery was reported. The carbon coating was produced from a precursor, glucose, by microwave-pyrolysis method. The prepared powders were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray fluorescence (XRF) and charge/discharge tests. XRD results indicate that the carbon coating does not change the phase structure of LiNi1/3Mn1/3Co1/3O2 material. SEM results show that the surface of spherical carbon-coated material becomes rough. Electrochemical performance results show that the carbon coating can improve the cycling performance of LiNi1/3Mn1/3Co1/3O2. The specific discharge capacity retention of the carbon-coated LiNi1/3Mn1/3Co1/3O2 reached 85.0%−96.0%at the 50th cycle at 0.2C rate, and the specific discharge capacity retention is improved at a high rate.%报道了炭包覆锂离子电池正极材料 LiNi1/3Mn1/3Co1/3O2的新工艺。炭涂层由前驱体葡萄糖通过微波热解而形成。采用X射线粉末衍射(XRD)、扫描电镜、X射线荧光测试和恒流充放电测试来表征所制备的材料。XRD结果表明,炭包覆没有改变LiNi1/3Mn1/3Co1/3O2材料的相结构。SEM结果表明,炭包覆的LiNi1/3Mn1/3Co1/3O2颗粒表面变得粗糙。充放电测试结果显示,炭包覆的 LiNi1/3Mn1/3Co1/3O2的循环性能与未包覆的相比得到提高。炭包覆的LiNi1/3Mn1/3Co1/3O2在0.2C倍率下循环50次的容量保持率由84.8%提升到95.5%,且高倍率下材料的容量保持率得到提高。

  16. Carbon transfer from the host to Tuber melanosporum mycorrhizas and ascocarps followed using a 13C pulse-labeling technique.

    Directory of Open Access Journals (Sweden)

    François Le Tacon

    Full Text Available Truffles ascocarps need carbon to grow, but it is not known whether this carbon comes directly from the tree (heterotrophy or from soil organic matter (saprotrophy. The objective of this work was to investigate the heterotrophic side of the ascocarp nutrition by assessing the allocation of carbon by the host to Tuber melanosporum mycorrhizas and ascocarps. In 2010, a single hazel tree selected for its high truffle (Tuber melanosporum production and situated in the west part of the Vosges, France, was labeled with (13CO2. The transfer of (13C from the leaves to the fine roots and T. melanosporum mycorrhizas was very slow compared with the results found in the literature for herbaceous plants or other tree species. The fine roots primarily acted as a carbon conduit; they accumulated little (13C and transferred it slowly to the mycorrhizas. The mycorrhizas first formed a carbon sink and accumulated (13C prior to ascocarp development. Then, the mycorrhizas transferred (13C to the ascocarps to provide constitutive carbon (1.7 mg of (13C per day. The ascocarps accumulated host carbon until reaching complete maturity, 200 days after the first labeling and 150 days after the second labeling event. This role of the Tuber ascocarps as a carbon sink occurred several months after the end of carbon assimilation by the host and at low temperature. This finding suggests that carbon allocated to the ascocarps during winter was provided by reserve compounds stored in the wood and hydrolyzed during a period of frost. Almost all of the constitutive carbon allocated to the truffles (1% of the total carbon assimilated by the tree during the growing season came from the host.

  17. Composition of Carbon-13 and Nitrogen-15 in Sediments of the Ha Long Bay

    International Nuclear Information System (INIS)

    The Ha Long Bay with beautiful landscape and rich ecosystems is being used by human to develop the economy. The Ha Long Bay is currently affected by human activities causing the sedimentary environment to be much changed. The change of the environment in the Bay was studied using the composition of carbon-13, nitrogen-15 (δ13C, δ15N) and the C/N ratio in sediment of seven cores collected within the Ha Long Bay. In the Ha Long Bay, sedimentary environment receives many source sediment supplies. The north-east of Ha Long bay receives sources from sea, it is characterized by δ13C in sediment from -8.79 to -18.01‰, value δ15N in sediment from 4.36 to 4.73 ‰ and ratio of C/N from 13 to 41, the source organic matter in sediment shows that affected by C4 plant. The centre of Ha Long Bay receives organic source from sea, it is characterized by δ13C in sediment from -16.72 to -21.58 ‰, value δ15N in sediment ranges 4.15 - 5.20 ‰, ratio of C/N in sediment from 7 to 23. The north-west of Ha Long Bay is affected by rivers, it is characterized by δ13C in sediment range from -13.64 to -25.77 ‰, value δ15N in sediment from 2.50 to 4.38 ‰, and ratio C/N from 9 to 19. (author)

  18. A method for the determination of carbon 13 content in glucose and glycerol of blood plasma; Methode pour la determination de la teneur en carbone 13 du glucose et du glycerol dans les plasmas sanguins

    Energy Technology Data Exchange (ETDEWEB)

    Koziet, J. [Centre de Recherche Pernod-Ricard, 94 - Creteil (France)

    1994-12-31

    The coupled gaseous chromatography and isotope ratio mass spectrometry approach was first validated on beet and maize glucose and glycerol aqueous solutions containing variable carbon 13 content. Then human plasma was used to prepare samples where glucose and glycerol were labelled with small amounts of (1.3-{sup 13}C{sub 2})-glycerol and D-(U{sup 13}-C{sub 6})-glucose. The samples are then de-proteinized with acetone before lyophilization and acetylation in order to be able to measure them in the form of acetates. Carbon 13 content evaluation should then take into account the exogenous carbons from the acetyl radicals. This method appears well adapted to the simultaneous metabolic monitoring of glycerol and glucose in the blood plasma. 1 fig., 3 tabs., 5 refs.

  19. Enhancing the Accuracy of Carbonate δ18O and δ13C Measurements by SIMS

    Science.gov (United States)

    Orland, I. J.; Kozdon, R.; Linzmeier, B.; Wycech, J.; Sliwinski, M.; Kitajima, K.; Kita, N.; Valley, J. W.

    2015-12-01

    The precision and accuracy of carbonate δ18O & δ13C analysis by multicollector SIMS is well established if standards match samples in structure and major/minor element chemistry. However, low-T- and bio-carbonates used to construct paleoclimate archives can include complex internal structures and some samples analyzed at WiscSIMS (and other SIMS labs) have a consistent, sample-dependent offset between average SIMS δ18O measurements and bulk δ18O analyses by phosphoric-acid digestion. The offset is typically hydrogen peroxide), for which there is no agreed procedure in conventional bulk analyses. For SIMS analyses, pre-treatments had varied influence on the δ18O value, [16O1H], the concentration of "organic markers" like 12C14N and 31P, and mineralogy (of aragonite samples).

  20. Carbon-13 variations in fluids from the Cerro Prieto geothermal system

    Energy Technology Data Exchange (ETDEWEB)

    Janik, C.J.; Nehring, N.L.; Huebner, M.A.; Truesdell, A.H.

    1982-08-10

    The carbon isotope compositions of CO/sub 2/ in steam from Cerro Prieto production well have been measured for 1977, 1979, and 1982. Variations in the delta/sup 13/C values are caused by production-related changes in the chemical and physical parameters of the geothermal system. In 1977, most CO/sub 2/ in the reservoir was isotopically light (delta/sup 13/C = -6.4 +/- 0.4). Heavier CO/sub 2/ was produced from wells in the center of the field (M5,M26,M27) due to deposition of isotopically light calcite caused by near-well boiling. In 1979 nearly all well showed relatively heavy CO/sub 2/, probably due to expansion of aquifer boiling and calcite precipitation. In 1982, many wells in the central part of the field were shut in. The amount of drawndown decreased and as temperatures and pressures near the wells increased, the boiling zones collapsed. The CO/sub 2/ in the fluid then exchanged with the precipitated calcite and became isotopically lighter. The sensitivity of carbon isotopes to calcite precipitations caused by aquifer boiling and to reequilibration with this deposited calcite upon decrease of boiling suggests use as an indicator of these aquifer processes. Surficial CO/sub 2/ of thermal origin was collected in 1981. Generally, the carbon-13 contents were close to CO/sub 2/ from production wells except for high-temperature mud pots and fumaroles containing isotopically light CO/sub 2/ derived from near surface alteration of organic matter.

  1. Influence of manganese and nickel on properties of low-carbon steels with 13% Cr

    International Nuclear Information System (INIS)

    Studied is the influence of manganese and nickel on mechanical properties and resistance-to-corrosion of the 13% content chromium steels containing 0.1-0.2%C. It is shown that manganese introduction results is the increase of strength characteristics of hardened steels because of delta-ferrite formation suppresion and solid solution strengthening. The delayed cooling during hardening permits to increase ductility and impact strength. Low-carbon 13% content chromium steels alloyed with nickel, molybdenum and aluminium have high heat resistance at temperatures up to 500 deg C due to the precipitation of intermetallics atlading. Chrome-manganese and chrome-nickel steels have a high resistance-to-corrosion in the hardened state in the neutral and weak-acid media

  2. Measurement of soil carbon oxidation state and oxidative ratio by 13C nuclear magnetic resonance

    Science.gov (United States)

    Hockaday, W.C.; Masiello, C.A.; Randerson, J.T.; Smernik, R.J.; Baldock, J.A.; Chadwick, O.A.; Harden, J.W.

    2009-01-01

    The oxidative ratio (OR) of the net ecosystem carbon balance is the ratio of net O2 and CO2 fluxes resulting from photosynthesis, respiration, decomposition, and other lateral and vertical carbon flows. The OR of the terrestrial biosphere must be well characterized to accurately estimate the terrestrial CO2 sink using atmospheric measurements of changing O2 and CO2 levels. To estimate the OR of the terrestrial biosphere, measurements are needed of changes in the OR of aboveground and belowground carbon pools associated with decadal timescale disturbances (e.g., land use change and fire). The OR of aboveground pools can be measured using conventional approaches including elemental analysis. However, measuring the OR of soil carbon pools is technically challenging, and few soil OR data are available. In this paper we test three solid-state nuclear magnetic resonance (NMR) techniques for measuring soil OR, all based on measurements of the closely related parameter, organic carbon oxidation state (Cox). Two of the three techniques make use of a molecular mixing model which converts NMR spectra into concentrations of a standard suite of biological molecules of known C ox. The third technique assigns Cox values to each peak in the NMR spectrum. We assess error associated with each technique using pure chemical compounds and plant biomass standards whose Cox and OR values can be directly measured by elemental analyses. The most accurate technique, direct polarization solid-state 13C NMR with the molecular mixing model, agrees with elemental analyses to ??0.036 Cox units (??0.009 OR units). Using this technique, we show a large natural variability in soil Cox and OR values. Soil Cox values have a mean of -0.26 and a range from -0.45 to 0.30, corresponding to OR values of 1.08 ?? 0.06 and a range from 0.96 to 1.22. We also estimate the OR of the carbon flux from a boreal forest fire. Analysis of soils from nearby intact soil profiles imply that soil carbon losses associated

  3. Experimental validation of environmental controls on the δ13C of Arctica islandica (ocean quahog) shell carbonate

    Science.gov (United States)

    Beirne, Erin C.; Wanamaker, Alan D.; Feindel, Scott C.

    2012-05-01

    The marine bivalve species, Arctica islandica, was reared under experimental conditions for 29 weeks in the Gulf of Maine in order to determine the relationship between the carbon isotope composition of shell carbonate13CS) and ambient seawater dissolved inorganic carbon13CDIC), as well as to approximate the metabolic contribution (CM) to shell material. Three experimental environments were compared: two flow-through tanks (one at ambient seawater conditions, one with a supplemental food source) and an in situ cage. Each environment contained 50 juveniles and 30 adults. Both juvenile (2-3 years) and adult (19-64 years) specimens displayed average percent CM of less than or equal to 10% when using three different proxies of respired carbon: digestive gland, adductor muscle and sediment. Hence, the primary control on δ13CS values is ambient DIC. The relationship between δ13CDIC and δ13CS for 114 individuals used in the study was: δ13C=δ13C-1.0‰(±0.3‰) No ontogenetic effect on δ13CS was observed, and growth rates did not generally impact δ13CS values. Based on the results of this study, shell material derived from the long-lived ocean quahog (A. islandica) constitutes a viable proxy for paleo-DIC from the extratropical Atlantic Ocean.

  4. Long-term steady state 13C labelling to investigate carbon turnover in plant soil systems

    Directory of Open Access Journals (Sweden)

    R. Falcimagne

    2007-03-01

    Full Text Available We have set up a facility allowing steady state 13CO2 labeling of short stature vegetation (12 m2 for several years. 13C labelling is obtained by scrubbing the CO2 from outdoors air with a self-regenerating molecular sieve and by replacing it with 13C depleted (−34.7±0.03‰ fossil-fuel derived CO2 The facility, which comprises 16 replicate mesocosms, allows tracing the fate of photosynthetic carbon in plant-soil systems in natural light and at outdoors temperature. This method was applied during 2 yrs to temperate grassland monoliths (0.5×0.5×0.4 m sampled in a long term grazing experiment. During daytime, the canopy enclosure in each mesocosm was supplied in an open flow (0.67–0.88 volume per minute with modified air (43% scrubbed air and 57% cooled and humidified ambient air at mean CO2 concentration of 425 µmol mol−1 and δ13C of −21.5±0.27‰. Above and belowground CO2 fluxes were continuously monitored. The difference in δ13C between the CO2 at the outlet and at the inlet of each canopy enclosure was not significant (−0.35±0.39‰. Due to mixing with outdoors air, the CO2 concentration at enclosure inlet followed a seasonal cycle, often found in urban areas, where δ13C of CO2 is lower in winter than in summer. Mature C3 grass leaves were sampled monthly in each mesocosm, as well as leave from pot-grown control C4 (Paspalum dilatatum. The mean δ13C of fully labelled C3 and C4 leaves reached −41.4±0.67 and −28.7±0.39‰ respectively. On average, the labelling reduced by 12.7‰ the δ13C of C3 grass leaves. The isotope mass balance technique was used to calculate the fraction of "new" C in the soil organic matter (SOM above 0.2 mm. A first order exponential decay model fitted to "old" C data showed that reducing aboveground disturbance by cutting increased from 22 to 31 months the mean residence time of belowground organic C (>0.2 mm in the top soil.

  5. Synthesis of deleobuvir, a potent hepatitis C virus polymerase inhibitor, and its major metabolites labeled with carbon-13 and carbon-14.

    Science.gov (United States)

    Latli, Bachir; Hrapchak, Matt; Chevliakov, Maxim; Li, Guisheng; Campbell, Scot; Busacca, Carl A; Senanayake, Chris H

    2015-05-30

    Deleobuvir, (2E)-3-(2-{1-[2-(5-bromopyrimidin-2-yl)-3-cyclopentyl-1-methyl-1H-indole-6-carboxamido]cyclobutyl}-1-methyl-1H-benzimidazol-6-yl)prop-2-enoic acid (1), is a non-nucleoside, potent, and selective inhibitor of hepatitis C virus NS5B polymerase. Herein, we describe the detailed synthesis of this compound labeled with carbon-13 and carbon-14. The synthesis of its three major metabolites, namely, the reduced double bond metabolite (2) and the acyl glucuronide derivatives of (1) and (2), is also reported. Aniline-(13) C6 was the starting material to prepare butyl (E)-3-(3-methylamino-4-nitrophenyl-(13) C6 )acrylate [(13) C6 ]-(11) in six steps. This intermediate was then used to obtain [(13) C6 ]-(1) and [(13) C6 ]-(2) in five and four more steps, respectively. For the radioactive synthesis, potassium cyanide-(14) C was used to prepare 1-cylobutylaminoacid [(14) C]-(23) via Buchrer-Bergs reaction. The carbonyl chloride of this acid was then used to access both [(14) C]-(1) and [(14) C]-(2) in four steps. The acyl glucuronide derivatives [(13) C6 ]-(3), [(13) C6 ]-(4) and [(14) C]-(3) were synthesized in three steps from the acids [(13) C6 ]-(1), [(13) C6 ]-(2) and [(14) C]-(1) using known procedures. PMID:25964148

  6. Rapid uplift of the Altiplano revealed through 13C-18O bonds in paleosol carbonates.

    Science.gov (United States)

    Ghosh, Prosenjit; Garzione, Carmala N; Eiler, John M

    2006-01-27

    The elevation of Earth's surface is among the most difficult environmental variables to reconstruct from the geological record. Here we describe an approach to paleoaltimetry based on independent and simultaneous determinations of soil temperatures and the oxygen isotope compositions of soil waters, constrained by measurements of abundances of 13C-18O bonds in soil carbonates. We use this approach to show that the Altiplano plateau in the Bolivian Andes rose at an average rate of 1.03 +/- 0.12 millimeters per year between approximately 10.3 and approximately 6.7 million years ago. This rate is consistent with the removal of dense lower crust and/or lithospheric mantle as the cause of elevation gain.

  7. Investigation on biological properties of tacrolimus-loaded poly(1,3-trimethylene carbonate) in vitro

    International Nuclear Information System (INIS)

    The drug-eluting stents have been regarded as a milestone in inhibiting the restenosis of coronary arteries. However, adverse reactions caused by bare-metal stents and non-biodegradable polymer coatings may result in some clinical problems. In this study, a new tacrolimus-eluting stent coated with biodegradable poly(1,3-trimethylene carbonate) (PTMC) is developed. The structures are characterized by Fourier transform infrared (FTIR) analysis, and the wettability is measured by contact angle assay. The biological behaviors are evaluated by the in vitro platelets adhesion test, APTT test, the human umbilical cord artery smooth muscle cells (HUCASMCs), 4',6-diamidine-2-phenylindole (DAPI) and actin immunofluorescence staining, MTT colorimetric assay. These results show that after blending tacrolimus into PTMC, the anticoagulant behavior is improved, and the adhesion and proliferation of HUCASMCs on samples are inhibited. This work aims to find one kind of surface erosion biodegradable polymers that can be applied as drug-eluting stent coatings.

  8. Investigation on biological properties of tacrolimus-loaded poly(1,3-trimethylene carbonate) in vitro

    Science.gov (United States)

    Hou, Ruixia; Wu, Leigang; Wang, Jin; Huang, Nan

    2010-06-01

    The drug-eluting stents have been regarded as a milestone in inhibiting the restenosis of coronary arteries. However, adverse reactions caused by bare-metal stents and non-biodegradable polymer coatings may result in some clinical problems. In this study, a new tacrolimus-eluting stent coated with biodegradable poly(1,3-trimethylene carbonate) (PTMC) is developed. The structures are characterized by Fourier transform infrared (FTIR) analysis, and the wettability is measured by contact angle assay. The biological behaviors are evaluated by the in vitro platelets adhesion test, APTT test, the human umbilical cord artery smooth muscle cells (HUCASMCs), 4',6-diamidine-2-phenylindole (DAPI) and actin immunofluorescence staining, MTT colorimetric assay. These results show that after blending tacrolimus into PTMC, the anticoagulant behavior is improved, and the adhesion and proliferation of HUCASMCs on samples are inhibited. This work aims to find one kind of surface erosion biodegradable polymers that can be applied as drug-eluting stent coatings.

  9. Dissolved inorganic carbon (DIC) and its δ13C in the Ganga (Hooghly) River estuary, India: Evidence of DIC generation via organic carbon degradation and carbonate dissolution

    Science.gov (United States)

    Samanta, Saumik; Dalai, Tarun K.; Pattanaik, Jitendra K.; Rai, Santosh K.; Mazumdar, Aninda

    2015-09-01

    In this study, we present comprehensive data on dissolved Ca, dissolved inorganic carbon (DIC) and its carbon isotope composition (δ13CDIC) of (i) the Ganga (Hooghly) River estuary water sampled during six seasons of contrasting water discharge over 2 years (2012 and 2013), (ii) shallow groundwater from areas adjacent to the estuary and (iii) industrial effluent water and urban wastewater draining into the estuary. Mass balance calculations indicate that processes other than the conservative mixing of seawater and river water are needed to explain the measured DIC and δ13CDIC. Results of mixing calculations in conjunction with the estimated undersaturated levels of dissolved O2 suggest that biological respiration and organic carbon degradation dominate over biological production in the estuary. An important outcome of this study is that a significant amount of DIC and dissolved Ca is produced within the estuary at salinity ⩾10, particularly during the monsoon period. Based on consideration of mass balance and a strong positive correlation observed between the "excess" DIC and "excess" Ca, we contend that the dominant source of DIC generated within the estuary is carbonate dissolution that is inferred to be operating in conjunction with degradation of organic carbon. Calculations show that groundwater cannot account for the observed "excess" Ca in the high salinity zone. Estimated DIC contributions from anthropogenic activity are minor, and they constitute ca. 2-3% of the river water DIC concentrations. The estimated annual DIC flux from the estuary to the Bay of Bengal is ca. (3-4) × 1012 g, of which ca. 40-50% is generated within the estuary. The monsoon periods account for the majority (ca. 70%) of the annual DIC generation in the estuary. The annual DIC flux from the Hooghly estuary accounts for ca. 1% of the global river DIC flux to the oceans. This is disproportionately higher than the water contribution from the Hooghly River to the oceans, which

  10. Renovação do carbono-13 em figueiras 'Roxo de Valinhos' Carbon-13 turnover in fig trees 'Roxo de Valinhos'

    Directory of Open Access Journals (Sweden)

    Andréa Carvalho da Silva

    2011-06-01

    Full Text Available O objetivo do trabalho foi determinar a taxa de renova��ão do carbono-13 ("turnover", dos diferentes órgãos da figueira 'Roxo de Valinhos'. O experimento foi conduzido no pomar da Faculdade de Ciências Agronômicas, FCA/UNESP, Câmpus de Botucatu-SP. Determinou-se previamente, através das trocas gasosas com um medidor aberto portátil de fotossíntese, IRGA, a principal folha fotossinteticamente ativa. Essa folha foi colocada em uma câmara onde ocorreu a injeção do gás enriquecido. O tempo de enriquecimento da folha foi de 30 minutos. Os tratamentos foram constituídos por sete plantas de figueira, que foram retiradas do solo após: 6; 24; 48; 72; 120; 168 e 360 horas do enriquecimento com 13C, e suas partes seccionadas em: gema apical, folha jovem, folhas adultas (fotossinteticamente ativas, brotações laterais, frutos e ramo. Os resultados obtidos permitiram o estabelecimento da sequência de metabolização do carbono-13 nas partições estudadas: Folhas novas > Frutos > Brotações > Folhas Adultas > Gema Apical > Ramo > Folha marcada. Plantas de figueira 'Roxo de Valinhos' apresentam reciclagem do 13C de 24 horas e um tempo de meia-vida de duração do carbono-13 inferior a 11 horas.The aim of this study was to assess carbon-13 turnover in different organs of the fig tree cultivar 'Roxo de Valinhos'. The experiment was carried out in an orchard at School of Agronomical Sciences, FCA/UNESP, Botucatu Campus, São Paulo State, Brazil. The main photosynthetically active leaf was previously determined based on gas exchanges by means of an open portable photosynthesis system, IRGA. That leaf was placed in a chamber where the enriched gas injection occurred. The leaf enrichment time was 30 minutes. Treatments were constituted of seven fig trees harvested of soil after: 6; 24; 48; 72; 120; 168 and 360 hours of enrichment using 13C, and their parts were sectioned into: apical bud, young leaves, adult leaves (photosynthetically active

  11. An Empirical Assessment of the Risk of Carbon Leakage in Poland - Working Paper No. 08/13,

    International Nuclear Information System (INIS)

    Poland is a particularly carbon intensive economy. This has created concern that it may be particularly exposed to carbon leakage. However, there is an absence of robust and transparent empirical research on carbon leakage risks in Poland. This study aims at filling this gap by assessing the impact of EU climate policy, in particular the EU Emissions Trading Scheme, on Polish industry. With no mitigating measures, a small number of Polish industrial sectors would face significant carbon costs. However, with free allocation, banked surplus allowances and a carbon price of euros 30/ton, only one sector would face direct carbon costs in excess of 5% of operating profits. Three sectors face direct carbon costs in the order of 1-3% of operating profits; three face no direct carbon costs. With direct compensation for indirect carbon costs (electricity price increases), the two most affected sectors would face indirect costs of 3.5 to 5.5% of gross value added with a carbon price of euros 30/ ton. The vast majority of Poland's trade in energy intensive sectors occurs within the EU. It is important to maintain a harmonized climate policy to avoid internal market distortions. There is thus a negligible risk of carbon leakage in Poland under current policy. The mitigating measures in the EU Directive remove the vast majority of direct and indirect carbon costs for Polish industry. EU climate policy can be made more stringent without inducing risks of significant carbon leakage. The current benchmarking system appears to be reasonably effective at not structurally disadvantaging less carbon efficient Member States like Poland. And it is vital to maintaining a harmonized climate policy. Finding a harmonized way to address indirect carbon costs may unlock Polish support for future policy. (authors)

  12. Carbon-13 and oxygen-18 kinetic isotope effects on methanolysis of p-nitrostyrene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Jacober, S.P.; Hanzlik, R.P.

    1986-04-02

    Kinetic isotope effects for the acid- and base-catalyzed methanolysis of (epoxide-/sup 18/O)- and (8-/sup 13/C)-p-nitrostyrene oxide have been measured at 30.0/sup 0/. In acid 94.7% of the reaction occurs at the benzylic carbon, while in base 83.5% occurs at the primary carbon (C(8)). In base the isotope effects kappa/sub 16//kappa/sub 1/( and kappa/sub 1/''/kappa /sub 1/number were 1.035 +/- 0.013 and 1.082 +/- 0.012, while in acid they were 1.012 +/- 0.011 and 0.995 +/- 0.012, respectively. These data complement previously determined deuterium isotope effects for the reaction in base. They suggest a late transition state in base with considerable ring opening via an S/sub N/2 mechanism. However, in acid, the data suggest a somewhat earlier transition state with less ring opening and weaker bonding to the nucleophile than in base.

  13. Phenotyping hepatocellular metabolism using uniformly labeled carbon-13 molecular probes and LC-HRMS stable isotope tracing.

    Science.gov (United States)

    Meissen, John K; Pirman, David A; Wan, Min; Miller, Emily; Jatkar, Aditi; Miller, Russell; Steenwyk, Rick C; Blatnik, Matthew

    2016-09-01

    Metabolite stable isotope tracing is a powerful bioanalytical strategy that has the potential to unravel phenotypic markers of early pharmaceutical efficacy by monitoring enzymatic incorporation of carbon-13 atoms into targeted pathways over time. The practice of probing biological systems with carbon-13 labeled molecules using broad MS-based screens has been utilized for many years in academic laboratories but has had limited application in the pharmaceutical R&D environment. The goal of this work was to establish a LCMS analytical workflow that was capable of monitoring carbon-13 isotope changes in glycolysis, the TCA and urea cycles, and non-essential amino acid metabolism. This work applies a standardized protein precipitation with 80% cold methanol and two distinct reverse-phase ion-pair liquid chromatography methods coupled to either a positive- or negative-ion mode high-resolution accurate mass spectrometry screening method. The data herein combines thousands of single-point peak integrations into a novel metabolite network map as a visualization aid to probe and monitor stable isotope incorporation in murine hepatocytes using uniformly labeled (13)C6 glucose, (13)C3 lactate, and (13)C5 glutamine. This work also demonstrates that nitrogen metabolism may have a large influence on the TCA cycle and gluconeogenic carbon fluxes in hepatocyte cell culture. PMID:27343766

  14. Fractional enrichment of proteins using [2-{sup 13}C]-glycerol as the carbon source facilitates measurement of excited state {sup 13}Cα chemical shifts with improved sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Ahlner, Alexandra; Andresen, Cecilia; Khan, Shahid N. [Linköping University, Division of Chemistry, Department of Physics, Chemistry and Biology (Sweden); Kay, Lewis E. [The University of Toronto, Departments of Molecular Genetics, Biochemistry and Chemistry, One King’s College Circle (Canada); Lundström, Patrik, E-mail: patlu@ifm.liu.se [Linköping University, Division of Chemistry, Department of Physics, Chemistry and Biology (Sweden)

    2015-07-15

    A selective isotope labeling scheme based on the utilization of [2-{sup 13}C]-glycerol as the carbon source during protein overexpression has been evaluated for the measurement of excited state {sup 13}Cα chemical shifts using Carr–Purcell–Meiboom–Gill (CPMG) relaxation dispersion (RD) experiments. As expected, the fractional incorporation of label at the Cα positions is increased two-fold relative to labeling schemes based on [2-{sup 13}C]-glucose, effectively doubling the sensitivity of NMR experiments. Applications to a binding reaction involving an SH3 domain from the protein Abp1p and a peptide from the protein Ark1p establish that accurate excited state {sup 13}Cα chemical shifts can be obtained from RD experiments, with errors on the order of 0.06 ppm for exchange rates ranging from 100 to 1000 s{sup −1}, despite the small fraction of {sup 13}Cα–{sup 13}Cβ spin-pairs that are present for many residue types. The labeling approach described here should thus be attractive for studies of exchanging systems using {sup 13}Cα spin probes.

  15. Characterisation of black carbon-rich samples by 13C solid-state nuclear magnetic resonance

    Science.gov (United States)

    Novotny, Etelvino H.; Hayes, Michael H. B.; Deazevedo, Eduardo R.; Bonagamba, Tito J.

    2006-09-01

    There are difficulties in quantifying and characterising the organic matter (OM) in soils that contain significant amounts of partially oxidised char or charcoal materials. The anthropogenic black carbon (BC), such as that found in the Terra Preta de Índio soils of the Amazon region, is a good example of the OM that is difficult to analyse in such soils. 13C direct polarisation/magic angle spinning (DP/MAS) at high MAS frequency, 1H-13C cross polarisation (CP)/MAS with total suppression of spinning sidebands (TOSS), and chemical shift anisotropy (CSA) filter nuclear magnetic resonance techniques have been applied successfully for quantifying the different components of OM. However, because pyrogenic materials present strong local magnetic susceptibility heterogeneities, the use of CSA-filter and TOSS make the pulse sequences very sensitive to imperfections in the π pulses. In this study, the DP/MAS pulse sequence was replaced by a CP with a radio frequency ramp—variable amplitude CP (VACP)—VACP/MAS pulse sequence, and composite π pulses were used in the CSA-filter and TOSS pulse sequences. In that way, the component functionalities in a humic acid from a BC soil were successfully determined. The spectrometer time needed was greatly decreased by employing this VACP/MAS technique. This development provides an accurate method for characterising BC-rich samples from different origins.

  16. Characterisation of black carbon-rich samples by (13)C solid-state nuclear magnetic resonance.

    Science.gov (United States)

    Novotny, Etelvino H; Hayes, Michael H B; Deazevedo, Eduardo R; Bonagamba, Tito J

    2006-09-01

    There are difficulties in quantifying and characterising the organic matter (OM) in soils that contain significant amounts of partially oxidised char or charcoal materials. The anthropogenic black carbon (BC), such as that found in the Terra Preta de Indio soils of the Amazon region, is a good example of the OM that is difficult to analyse in such soils. (13)C direct polarisation/magic angle spinning (DP/MAS) at high MAS frequency, (1)H-(13)C cross polarisation (CP)/MAS with total suppression of spinning sidebands (TOSS), and chemical shift anisotropy (CSA) filter nuclear magnetic resonance techniques have been applied successfully for quantifying the different components of OM. However, because pyrogenic materials present strong local magnetic susceptibility heterogeneities, the use of CSA-filter and TOSS make the pulse sequences very sensitive to imperfections in the pi pulses. In this study, the DP/MAS pulse sequence was replaced by a CP with a radio frequency ramp--variable amplitude CP (VACP)--VACP/MAS pulse sequence, and composite pi pulses were used in the CSA-filter and TOSS pulse sequences. In that way, the component functionalities in a humic acid from a BC soil were successfully determined. The spectrometer time needed was greatly decreased by employing this VACP/MAS technique. This development provides an accurate method for characterising BC-rich samples from different origins. PMID:16688435

  17. The use of natural abundance carbon-13 to identify and quantify sources of emitted carbon dioxide in a calcareous southern Ontario Luvisolic soil

    Science.gov (United States)

    Wilton, Meaghan

    Three studies Were conducted at the Elora Research Station (ERS) on a Luvisolic soil to investigate the soil inorganic carbon (SIC) and soil organic carbon (SOC) components contributing to the CO2 flux (FC) using natural 13C abundance. SIC contributed to the FC in intact soil incubations. Soil disruption exacerbated the release of CO2 from both pedogenic and lithogenic carbonates. Field and laboratory techniques to obtain the delta13C of respired CO2 (delta13CR) were compared. Short-term deployment of non flow-through non steady-state chambers and the use of the simple two-ended mass balance approach to derive delta 13CR were found acceptable to apply to the ERS site. The delta13CR from a corn field at ERS with a history of multiple C4 and C3 crop rotations was partitioned into SIC and SOC components using two approaches. Root respiration contributed 2% - 64% and carbonates contribute up to 20% to the FC.

  18. Influence of carbon on the giant magnetocaloric effect of LaFe11.7Si1.3

    Institute of Scientific and Technical Information of China (English)

    LI Junqin; LIU Fusheng; AO Weiqin; ZHUANG Yinghong; ZHOU Kaiwen

    2006-01-01

    The influences of carbon on phase formation, Curie temperature, and magnetic entropy change of the NaZn13-type LaFe11.7Si1.3 were investigated. Seven carbon-containing alloys, LaFe11.7Si1.3Cx with x = 0, 0.03, 0.06, 0.10, 0.20, 0.30, and 0.50, respectively, were prepared for this investigation. Experimental results show that addition of a small amount of carbon in LaFe11.7Si1.3 is favorable for the formation of the NaZn13-type structure of LaFe11.7Si1.3Cx. The lattice constant increases with C addition and x increases in the alloy because of the introduction of C as interstitial atoms. The Cu rie temperature of LaFe11.7Si1.3Cx increases from 194 K to 225 K as x increases from 0 to 0.5. Large magnetic entropy changes were observed in these carbon-hontaining alloys LaFe11.7Si1.3Cx because of their first-order structural/magnetic observed in the alloy with x = 0.06. The large magnetic-entropy changes corresponding to low magnetic field change, and the low cost of the material of LaFe11.7Si1.3Cx makes it a promising candidate to be used as magnetic refrigerants in the corresponding temperature range.

  19. Sulfuric acid as an agent of carbonate weathering constrained by δ13C DIC: Examples from Southwest China

    Science.gov (United States)

    Li, Si-Liang; Calmels, Damien; Han, Guilin; Gaillardet, Jérôme; Liu, Cong-Qiang

    2008-06-01

    Rock weathering by carbonic acid is thought to play an important role in the global carbon cycle because it can geologically sequestrate atmospheric CO 2. Current model of carbon cycle evolution usually assumes that carbonic acid is the major weathering agent and that other acids are not important. Here, we use carbon isotopic evidence and water chemistry of springs and rivers from the Beipanjiang River basin (Guizhou Province, Southwest China) to demonstrate that sulfuric acid is also an important agent of rock weathering. The δ13C of dissolved inorganic carbon (DIC) in the water samples ranges from - 13.1‰ to - 2.4‰, and correlates negatively to [HCO 3-]/([Ca 2+] + [Mg 2+]) ratios and positively to [SO 42-]/([Ca 2+] + [Mg 2+]) ratios. These relationships are interpreted as mixing diagrams between two reactions of carbonate weathering, using carbonic acid and sulfuric acid as a proton donor, respectively. Mixing proportions show that around 42% of the divalent cations in the spring water from Guizhou are originated from the interaction between carbonate minerals and sulfuric acid. It is shown that 40% of this sulfuric acid is derived from the atmosphere and has an anthropogenic origin. The remaining 60% are derived from the oxidative weathering of sulfide minerals in sedimentary rocks. Our results show the positive action of sulfuric acid on the chemical weathering of carbonate. Particularly, we show that sulfuric acid generated by coal combustion has increased by almost 20% the weathering rates of carbonate in Southwest China. This is a clear evidence that human activities are changing the weathering rates of rocks and demonstrates a negative feedback on the acidification of the ocean by greenhouse gases. Because of the involvement of sulfuric acid in weathering reactions, 63% of the alkalinity exported by rivers is derived from carbonate, instead of 50% when atmospheric CO 2 is the only acid involved in chemical weathering of carbonate. In the Guizhou

  20. Do-Fluoride "Cryolite By- product Carbon White" Awarded the 13th China Excellent Patent Award%Do-Fluoride "Cryolite By- product Carbon White" Awarded the 13th China Excellent Patent Award

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    On November 4, the results of the 13th China Patent Awards were publicized by the State Intellectual Property Office of the People's Republic of China. The patent of "production method of cryolite by-product carbon white" declared by Henan Province Jiaozuo Do-Fluoride Company was awarded China Excellent Patent Award.

  1. Differentiation of Pigment in Eggs Using Carbon ((13)C/(12)C) and Nitrogen ((15)N/(14)N) Stable Isotopes.

    Science.gov (United States)

    Sun, Feng M; Shi, Guang Y; Wang, Hui W

    2016-07-01

    Consumers prefer natural and healthy food, but artificial pigments are often abused in egg products. The study aimed at differentiating the origin of pigments in eggs by applying the technique of carbon ((13)C/(12)C) and nitrogen ((15)N/(14)N) stable isotope analysis. Five hundred sixty laying hens were randomly distributed into 14 treatments, which were divided into four groups: maize, carophyll red pigment, carophyll yellow pigment, and a mixture of carophyll red and yellow pigments. Eggs were collected and pretreated to determe the values of the Roche Yolk Color Fan (RCF), δ(13)C, and δ(15)N. With increasing maize content, the RCF and δ(13)C values of yolks increased. Moreover, the RCF values in the three pigment groups were significantly influenced by the artificial colors, but δ(13)C values were not significantly different, regardless of the existence of pigment. The δ(15)N values in all treatments did not vary as regularly as the carbon stable isotope. A strong positive correlation was found between RCF and δ(13)C in the maize group, but no such correlation was be observed in the pigment groups. It is concluded that carbon stable isotope ratio analysis (δ(13)C) of the yolk can be used to differentiate the origin of the pigment added to eggs.

  2. Differentiation of Pigment in Eggs Using Carbon ((13)C/(12)C) and Nitrogen ((15)N/(14)N) Stable Isotopes.

    Science.gov (United States)

    Sun, Feng M; Shi, Guang Y; Wang, Hui W

    2016-07-01

    Consumers prefer natural and healthy food, but artificial pigments are often abused in egg products. The study aimed at differentiating the origin of pigments in eggs by applying the technique of carbon ((13)C/(12)C) and nitrogen ((15)N/(14)N) stable isotope analysis. Five hundred sixty laying hens were randomly distributed into 14 treatments, which were divided into four groups: maize, carophyll red pigment, carophyll yellow pigment, and a mixture of carophyll red and yellow pigments. Eggs were collected and pretreated to determe the values of the Roche Yolk Color Fan (RCF), δ(13)C, and δ(15)N. With increasing maize content, the RCF and δ(13)C values of yolks increased. Moreover, the RCF values in the three pigment groups were significantly influenced by the artificial colors, but δ(13)C values were not significantly different, regardless of the existence of pigment. The δ(15)N values in all treatments did not vary as regularly as the carbon stable isotope. A strong positive correlation was found between RCF and δ(13)C in the maize group, but no such correlation was be observed in the pigment groups. It is concluded that carbon stable isotope ratio analysis (δ(13)C) of the yolk can be used to differentiate the origin of the pigment added to eggs. PMID:27302905

  3. Proceedings of the 13th biennial conference on carbon. Extended abstracts and program

    International Nuclear Information System (INIS)

    Properties of carbon are covered including: mechanical and frictional properties; chemical reactivity and surfaces; aerospace applications; carbonization and graphitization; industrial applications; electrical and thermal properties; biomaterials applications; fibers and composites; nuclear applications; activated carbon and adsorption; advances in carbon characterization; and micromechanics and modeling

  4. Proceedings of the 13th biennial conference on carbon. Extended abstracts and program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    Properties of carbon are covered including: mechanical and frictional properties; chemical reactivity and surfaces; aerospace applications; carbonization and graphitization; industrial applications; electrical and thermal properties; biomaterials applications; fibers and composites; nuclear applications; activated carbon and adsorption; advances in carbon characterization; and micromechanics and modeling. (GHT)

  5. Influence of Catalyst and Polymerization Conditions on the Properties of 1,3-Trimethylene Carbonate and ε-Caprolactone Copolymers

    NARCIS (Netherlands)

    Pego, Ana Paula; Zhong, Zhiyuan; Dijkstra, Pieter J.; Grijpma, Dirk W.; Feijen, Jan

    2003-01-01

    The influence of the catalyst/initiator system and polymerization conditions on the microstructure and physical properties of copolymers of equimolar amounts of 1,3-trimethylene carbonate (TMC) and -caprolactone (CL) was studied. Statistical copolymers were prepared in the presence of stannous octoa

  6. STUDY ON THE SEQUENCE STRUCTURE OF SBR BY 13C- NMR METHOD Ⅰ. ASSIGNMENT FOR UNSATURATED CARBONS SPECTRA

    Institute of Scientific and Technical Information of China (English)

    JIAO Shuke; CHEN Xiaonong; HU Liping; YAN Baozhen

    1990-01-01

    The sequence structures of emulsion- processed SBR and solution- processed ( by lithium catalyst )SBR were investigated by 13C- NMR spectroscopy. Seventeen peaks within unsaturated carbon region were recorded under the adopted experimental conditions. Assignments for these peaks were made by empirical- parameter- evaluation method.

  7. STUDY ON THE SEQUENCE STRUCTURE OF SBR BY 13C- NMR METHOD Ⅱ . PEAK ASSIGNMENT FOR ALIPHATIC CARBONS SPECTRA

    Institute of Scientific and Technical Information of China (English)

    JIAO Shuke; CHEN Xiaonong; HU Liping; YAN Baozhen

    1990-01-01

    The study on 13C-NMR spectra of aliphatic carbon region of emulsion-processed and solution-processed ( by lithium catalyst ) SBR was carried out. The assignments for more than thirty odd peaks observed experimentally were made by using " corresponding analysis " method, combined with the empirical parameters reported in literature. The peak intensities were calculated based on Bernoullian statistic assumption.

  8. Synthesis of methyl N-phenyl carbamate from dimethyl carbonate and 1,3-diphenyl urea under mild conditions

    Institute of Scientific and Technical Information of China (English)

    Jun Jie Gao; Hui Quan Li; Yi Zhang

    2007-01-01

    Synthesis of methyl N-phenyl carbamate from dimethyl carbonate and 1,3-diphenyl urea was investigated under atmospheric pressure. The results showed that homogenous catalyst sodium methoxide had the excellent activity to efficiently catalyze the synthesis of methyl N-phenyl carbamate under atmospheric pressure.

  9. Developing high-resolution carbon-13 and silicon-29 MRI of solids in sedimentary rocks

    Science.gov (United States)

    Blum, Robert; Barrett, Sean; Viswanathan, Ravinath; Song, Yi-Qiao

    2014-03-01

    Mapping pore structure and flow properties of sedimentary rock is directly relevant to current challenges in geophysics like carbon sequestration and oil/gas exploration. Such applications require detailed information about both structure and composition of porous rocks. However, existing scanning methods tend to be limited to gathering one or the other type of information. MRI could be used to measure both composition and structure simultaneously, but conventional MRI in such systems, which targets the proton signal of interstitial fluid, is severely limited by signal losses due to magnetic susceptibility inhomogeneity. Our lab has recently made advances in obtaining high spatial resolution (sub-400 μm)3 three-dimensional 31P MRI of bone through use of the quadratic echo line-narrowing sequence (1). In this talk, we describe our current work applying these methods to sedimentary rock, targeting the isotopes 13C and 29Si. We describe the results of characterization of limestone and shale samples, and we discuss our progress with producing MRI of these systems. (1) M. Frey, et al. PNAS 109: 5190 (2012)

  10. Carbon Cycling in Floodplain Ecosystems: Out-Gassing and Photosynthesis Transmit Soil d13C Gradient Through Stream Food Webs

    DEFF Research Database (Denmark)

    Gray, Duncan P.; Harding, Jon S.; Elberling, Bo;

    2011-01-01

    to assess the sources of carbon to spring food webs. Partial pressures of CO2 in upwelling water ranged from 2 to 7 times atmospheric pressure, but rapidly approached equilibrium with the atmosphere downstream commensurate with 13C enrichment of DIC. Speciation modeling and a laboratory out......Natural braided river floodplains typically possess high groundwater–surface water exchange, which is vital to the overall function and structure of these complex ecosystems. Spring-fed streams on the floodplain are also hotspots of benthic invertebrate diversity and productivity. The sources...... of carbon that drive these productive spring-fed systems are not well-known. We conducted field assessments and a manipulation, modeling, and a laboratory experiment to address this issue. Initially d13C values of both dissolved inorganic carbon (DIC) and food-web components of five springs were used...

  11. Seasonal variations of belowground carbon transfer assessed by in situ 13CO2 pulse labelling of trees

    Directory of Open Access Journals (Sweden)

    P. Priault

    2011-02-01

    Full Text Available Soil CO2 efflux is the main source of CO2 from forest ecosystems and it is tightly coupled to the transfer of recent photosynthetic assimilates belowground and their metabolism in roots, mycorrhiza and rhizosphere microorganisms feeding on root-derived exudates. The objectives of our study were to assess patterns of belowground carbon allocation among tree species and along seasons. Pure 13CO2 pulse labelling of the entire crown of three different tree species (beech, oak and pine was carried out at distinct phenological stages. Excess 13C in soil CO2 efflux was tracked using tunable diode laser absorption spectrometry to determine time lags between the start of the labelling and the appearance of 13C in soil CO2 efflux and the amount of 13C allocated to soil CO2 efflux. Isotope composition (δ13C of CO2 respired by fine roots and soil microbes was measured at several occasions after labelling, together with δ13C of bulk root tissue and microbial carbon. Time lags ranged from 0.5 to 1.3 days in beech and oak and were longer in pine (1.6–2.7 days during the active growing season, more than 4 days during the resting season, and the transfer of C to the microbial biomass was as fast as to the fine roots. The amount of 13C allocated to soil CO2 efflux was estimated from a compartment model. Seasonal patterns of carbon allocation to soil CO2 efflux differed markedly between species, with pronounced seasonal variations in pine and beech. In beech, it may reflect competition with other sinks (aboveground growth in late spring and storage in late summer that were not observed in oak.

  12. Biology and air–sea gas exchange controls on the distribution of carbon isotope ratios (δ13C) in the ocean

    OpenAIRE

    A. Schmittner; Gruber, N.; Mix, A. C.; Key, R.M.; Tagliabue, A.; Westberry, T. K.

    2013-01-01

    Analysis of observations and sensitivity experiments with a new three-dimensional global model of stable carbon isotope cycling elucidate the processes that control the distribution of δ13C in the contemporary and preindustrial ocean. Biological fractionation dominates the distribution of δ13CDIC of dissolved inorganic carbon (DIC) due to the sinking of isotopically light δ13C organic matter from the surface into the interior ocean. This process leads to low δ13CDI...

  13. Use of carbon-13 as a population marker for Anopheles arabiensis in a sterile insect technique (SIT context

    Directory of Open Access Journals (Sweden)

    Knols Bart GJ

    2006-01-01

    Full Text Available Abstract Background Monitoring of sterile to wild insect ratios in field populations can be useful to follow the progress in genetic control programmes such as the Sterile Insect Technique (SIT. Of the numerous methods for marking insects most are not suitable for use in mass rearing and mass release. Suitable ones include dye marking, genetic marking and chemical marking. Methods The feasibility of using the stable isotope of carbon, 13C, as a potential chemical marker for Anopheles arabiensis was evaluated in the laboratory. Labeled-13C glucose was incorporated into the larval diet in a powder or liquid form. The contribution of adult sugar feeding to the total mosquito carbon pool and the metabolically active carbon pool was determined by tracing the decline of the enrichment of the adult male mosquito as it switched from a labeled larval diet to an unlabeled adult diet. This decline in the adult was monitored by destructive sampling of the whole mosquito and analyzed using isotope ratio mass spectrometry. Results A two-pool model was used to describe the decline of the 13C-enrichment of adult mosquitoes. The proportion of the total adult carbon pool derived from the adult sugar diet over the life span of mosquitoes was determined and the ratio of structural carbon, with a low turnover rate to metabolically active non-structural carbon was assessed. The uptake and turnover of sugar in the metabolically active fraction suggests that after 3 days >70% of the active fraction carbon is derived from sugar feeding (increasing to >90% by day 7, indicating the high resource demand of male mosquitoes. Conclusion It was possible to "fix" the isotopic label in adult An. arabiensis and to detect the label at an appropriate concentration up to 21 days post-emergence. The optimum labeling treatment would cost around 250 US$ per million mosquitoes. Stable isotope marking may thus aid research on the fate of released insects besides other population

  14. Seasonal variations of belowground carbon transfer assessed by in situ 13CO2 pulse labelling of trees

    Directory of Open Access Journals (Sweden)

    L. Barthes

    2011-05-01

    Full Text Available Soil CO2 efflux is the main source of CO2 from forest ecosystems and it is tightly coupled to the transfer of recent photosynthetic assimilates belowground and their metabolism in roots, mycorrhiza and rhizosphere microorganisms feeding on root-derived exudates. The objective of our study was to assess patterns of belowground carbon allocation among tree species and along seasons. Pure 13CO2 pulse labelling of the entire crown of three different tree species (beech, oak and pine was carried out at distinct phenological stages. Excess 13C in soil CO2 efflux was tracked using tuneable diode laser absorption spectrometry to determine time lags between the start of the labelling and the appearance of 13C in soil CO2 efflux and the amount of 13C allocated to soil CO2 efflux. Isotope composition (δ13C of CO2 respired by fine roots and soil microbes was measured at several occasions after labelling, together with δ13C of bulk root tissue and microbial carbon. Time lags ranged from 0.5 to 1.3 days in beech and oak and were longer in pine (1.6–2.7 days during the active growing season, more than 4 days during the resting season, and the transfer of C to the microbial biomass was as fast as to the fine roots. The amount of 13C allocated to soil CO2 efflux was estimated from a compartment model. It varied between 1 and 21 % of the amount of 13CO2 taken up by the crown, depending on the species and the season. While rainfall exclusion that moderately decreased soil water content did not affect the pattern of carbon allocation to soil CO2 efflux in beech, seasonal patterns of carbon allocation belowground differed markedly between species, with pronounced seasonal variations in pine and beech. In beech, it may reflect competition with the strength of other sinks (aboveground growth in late spring and storage in late summer that were not observed in oak. We report a fast transfer of recent photosynthates to the mycorhizosphere and we conclude that the

  15. Preferential formation of 13C- 18O bonds in carbonate minerals, estimated using first-principles lattice dynamics

    Science.gov (United States)

    Schauble, Edwin A.; Ghosh, Prosenjit; Eiler, John M.

    2006-05-01

    Equilibrium constants for internal isotopic exchange reactions of the type: Ca12C18O16O2+Ca13C16O3↔Ca13C18O16O2+Ca12C16O3 for individual CO 32- groups in the carbonate minerals calcite (CaCO 3), aragonite (CaCO 3), dolomite (CaMg(CO 3) 2), magnesite (MgCO 3), witherite (BaCO 3), and nahcolite (NaHCO 3) are calculated using first-principles lattice dynamics. Calculations rely on density functional perturbation theory (DFPT) with norm-conserving planewave pseudopotentials to determine the vibrational frequencies of isotopically substituted crystals. Our results predict an ˜0.4‰ excess of 13C18O16O22- groups in all studied carbonate minerals at room-temperature equilibrium, relative to what would be expected in a stochastic mixture of carbonate isotopologues with the same bulk 13C/ 12C, 18O/ 16O, and 17O/ 16O ratios. The amount of excess 13C18O16O22- decreases with increasing temperature of equilibration, from 0.5‰ at 0 °C to <0.1‰ at 300 °C, suggesting that measurements of multiply substituted isotopologues of carbonate could be used to infer temperatures of ancient carbonate mineral precipitation and alteration events, even where the δ 18O of coexisting fluids is uncertain. The predicted temperature sensitivity of the equilibrium constant is ˜0.003‰/°C at 25 °C. Estimated equilibrium constants for the formation of 13C18O16O22- are remarkably uniform for the variety of minerals studied, suggesting that temperature calibrations will also be applicable to carbonate minerals not studied here without greatly compromising accuracy. A related equilibrium constant for the reaction: Ca12C18O16O2+Ca12C17O16O2↔Ca12C18O17O16O+Ca12C16O3 in calcite indicates formation of 0.1‰ excess 12C 18O 17O 16O 2- at 25 °C. In a conventional phosphoric acid reaction of carbonate to form CO 2 for mass-spectrometric analysis, molecules derived from 13C18O16O22- dominate (˜96%) the mass 47 signal, and 12C 18O 17O 16O 2- contributes most of the remainder (3%). This suggests

  16. Carbon-13 nuclear magnetic resonance spectroscopic studies of 13CO adsorbed on platinum particles in L-zeolites

    International Nuclear Information System (INIS)

    13CO chemisorbed on platinum particles in L-zeolite has been investigated by static and magic angles spinning NMR spectroscopy. The representative spectra ate composed of a broad asymmetric peak with a center of gravity at 230±30 ppm and a sharp symmetric peak at 124±2 ppm which is tentatively assigned to physisorbed CO2 on inner walls of L-zeolite. Overall, the broad resonance component is similar to our previous results of highly dispersed (80-96%) CO/Pt/silica or CO/Pt/alumina samples, still showing metallic characters. The principal difference is in the first moment value. The broad peak in the spectra is assigned to CO linearly bound to Pt particles in the L-zeolites, and indicates a distribution of isotropic shifts from bonding site to bonding site. The NMR results reported here manifest that the Pt particles inside of the L-zeolites channels are not collectively the same with the ones supported on silica or alumina with similar dispersion in terms of Pt particle shape and/or ordering of Pt atoms in a particle. As a result, Pt particles of CO/Pt/L-zeolite were agglomerated accompanying CO desorption upon annealing. There were no definite changes in the NMR spectra due to differences of exchanged cations. Comparison of our observation on CO/Pt/L-zeolite with Sharma et al.'s reveals that even when the first moment, the linewidth, and the relaxation times of the static spectra and the dispersion measured by chemisorption are similar, the properties of Pt particles can be dramatically different. Therefore, it is essential to take advantage of the strengths of several techniques together in order to interpret data reliably, especially for the highly dispersed samples

  17. Quantifying the roles of ocean circulation and biogeochemistry in governing ocean carbon-13 and atmospheric carbon dioxide at the last glacial maximum

    OpenAIRE

    Tagliabue, A.; L. Bopp; Roche, D. M.; N. Bouttes; J.-C. Dutay; Alkama, R.; Kageyama, M.; Michel, E.; Paillard, D.

    2009-01-01

    We use a state-of-the-art ocean general circulation and biogeochemistry model to examine the impact of changes in ocean circulation and biogeochemistry in governing the change in ocean carbon-13 and atmospheric CO2 at the last glacial maximum (LGM). We examine 5 different realisations of the ocean's overturning circulation produced by a fully coupled atmosphere-ocean model under LGM forcing and suggested changes in the atmospheric deposition of iron and phytoplankton ph...

  18. Direct uptake of organic carbon by grass roots and allocation in leaves and phytoliths: 13C labeling evidence

    Science.gov (United States)

    Alexandre, A.; Balesdent, J.; Cazevieille, P.; Chevassus-Rosset, C.; Signoret, P.; Mazur, J.-C.; Harutyunyan, A.; Doelsch, E.; Basile-Doelsch, I.; Miche, H.; Santos, G. M.

    2015-12-01

    In the rhizosphere, the uptake of low molecular weight carbon (C) and nitrogen (N) by plant roots has been well documented. While organic N uptake relatively to total uptake is important, organic C uptake is supposed to be low relatively to the plant's C budget. Recently, radiocarbon analyses demonstrated that a fraction of C from the soil was occluded in amorphous silica micrometric particles that precipitate in plant cells (phytoliths). Here, we investigated whether and in which extent organic C absorbed by grass roots, under the form of either intact amino acids (AAs) or microbial metabolites, can feed the organic C occluded in phytoliths. For this purpose we added 13C- and 15N-labeled AAs to the silicon-rich hydroponic solution of the grass Festuca arundinacea. The experiment was designed to prevent C leakage from the labeled nutritive solution to the chamber atmosphere. After 14 days of growth, the 13C and 15N enrichments (13C-excess and 15N-excess) in the roots, stems and leaves, and phytoliths, as well as the 13C-excess in AAs extracted from roots and stems and leaves, were quantified relatively to a control experiment in which no labelled AAs were added. The net uptake of 13C derived from the labeled AAs supplied to the nutritive solution (AA-13C) by Festuca arundinacea represented 4.5 % of the total AA-13C supply. AA-13C fixed in the plant represented only 0.13 % of total C. However, the experimental conditions may have underestimated the extent of the process under natural and field conditions. Previous studies showed that 15N and 13C can be absorbed by the roots in several organic and inorganic forms. In the present experiment, the fact that phenylalanine and methionine, that were supplied in high amount to the nutritive solution, were more 13C-enriched than other AAs in the roots and stems and leaves strongly suggested that part of AA-13C was absorbed and translocated in its original AA form. The concentration of AA-13C represented only 0.15 % of the

  19. Seasonal and interannual variability in 13C composition of ecosystem carbon fluxes in the U.S. Southern Great Plains

    OpenAIRE

    Torn, Margaret S.; Sebastien C. Biraud; Still, Christopher J.; Riley, William J; Berry, Joe A.

    2011-01-01

    The δ13C value of terrestrial CO2 fluxes (δbio) provides important information for inverse models of CO2 sources and sinks as well as for studies of vegetation physiology, C3 and C4 vegetation fluxes, and ecosystem carbon residence times. From 2002–2009, we measured atmospheric CO2 concentration and δ13C–CO2 at four heights (2 to 60 m) in the U.S. Southern Great Plains (SGP) and computed δbio weekly. This region has a fine-scale mix of crops (primarily C3 winter wheat) and C4 pasture grasses....

  20. The Effect of Mesoporous Carbon Nitride Modification by Titanium Oxide Nanoparticles on Photocatalytic Degradation of 1,3-Dinitrobenzene

    Directory of Open Access Journals (Sweden)

    Seyyed Ershad Moradi

    2015-11-01

    Full Text Available In the present work, well ordered, mesoporous carbon nitride (MCN sorbent with uniform mesoporous wall, high surface area and pore volume has been fabricated using the simple polymerization reaction between ethylene diamine and carbon tetrachloride in mesoporous silica media, and then modified by TiO2 nanoparticles (Ti-MCN. The structural order and textural properties of the nanoporous materials were studied by XRD, elemental analysis, and nitrogen adsorption–desorption experiments. Photodegradation experiments for 1,3-dinitrobenzene were conducted in batch mode, the Ti-MCN catalysts were found to be more active compared to the free TiO2 nanoparticles for 1,3-dinitrobenzene degradation.

  1. Foliar Carbon Isotope Composition (δ13C) and Water Use Efficiency of Different Populus deltoids Clones Under Water Stress

    Institute of Scientific and Technical Information of China (English)

    Zhao Fengjun; Gao Rongfu; Shen Yingbai; Su Xiaohua; Zhang Bingyu

    2006-01-01

    Foliar carbon isotope composition (δ13C),total dry biomass,and long-term water use efficiency (WUEL)of 12 Populus deltoids clones were studied under water stress in a greenhouse.Total dry biomass of clones decreased greatly,while δ13C increased.Single-element variance analysis in the same water treatment indicated that WUEL difference among clones was significant.Clones J2,J6,J7,J8,and J9 were excellent with high WUEL.Extremely significant δ13C differences among water treatments and clones were revealed by two-element variance analysis.Water proved to be the primary factor affecting δ13C under water stress.It showed that there was a good positive correlation between δ13C and WUEL in the same water treatment,and that a high WUEL always coincided with a high δ13C.δ13C might be a reliable indirect index to estimate WUEL among P.deltoids clones.

  2. Use of carbon-13 as a population marker for Anopheles arabiensis in a sterile insect technique (SIT) context

    OpenAIRE

    Knols Bart GJ; Mayr Leo; Hood-Nowotny Rebecca

    2006-01-01

    Abstract Background Monitoring of sterile to wild insect ratios in field populations can be useful to follow the progress in genetic control programmes such as the Sterile Insect Technique (SIT). Of the numerous methods for marking insects most are not suitable for use in mass rearing and mass release. Suitable ones include dye marking, genetic marking and chemical marking. Methods The feasibility of using the stable isotope of carbon, 13C, as a potential chemical marker for Anopheles arabien...

  3. Tracing carbon fixation in phytoplankton—compound specific and total 13C incorporation rates

    OpenAIRE

    Grosse, J; van Breugel, P; Boschker, H.T.S.

    2015-01-01

    Measurement of total primary production using 13C incorporation is a widely established tool. However, these bulk measurements lack information about the fate of fixed carbon: the production of major cellular compounds (carbohydrates, amino acids, fatty acids, and DNA/RNA) is affected by for instance nutrient availability as their C:N:P requirements differ. Here, we describe an approach to combine established methods in gas chromatography/isotope ratio mass spectrometry (GC/C-IRMS) and recent...

  4. Synthesis of monoketo and monohydroxy eicosanoic acids and esters with substituents at odd–numbered (3-13 carbons

    Directory of Open Access Journals (Sweden)

    HULYA CELIK

    2002-07-01

    Full Text Available In this study, monoketo and monohydroxy eicosanoic acids and their methyl esters with the position of the substituent on odd numbered carbon atoms from 3 to 13 were synthesized with high purity. Furthermore, the semicarbazone and anilide derivatives of the obtained keto acids were prepared. They were characterized by TLC, IR and 1H-NMR spectroscopy and their physical and chemical properties were established.

  5. Biology and air–sea gas exchange controls on the distribution of carbon isotope ratios (δ13C) in the ocean

    OpenAIRE

    A. Schmittner; Gruber, N.; Mix, A. C.; Key, R.M.; Tagliabue, A.; Westberry, T. K.

    2013-01-01

    Analysis of observations and sensitivity experiments with a new three-dimensional global model of stable carbon isotope cycling elucidate processes that control the distribution of δ13C of dissolved inorganic carbon (DIC) in the contemporary and preindustrial ocean. Biological fractionation and the sinking of isotopically light δ13C organic matter from the surface into the interior ocean leads to low δ13CDIC values at depths and in high latitude surface waters and high...

  6. Tracing carbon assimilation in endosymbiotic deep-sea hydrothermal vent Mytilid fatty acids by 13C-fingerprinting

    Directory of Open Access Journals (Sweden)

    F. Dehairs

    2010-05-01

    Full Text Available Bathymodiolus azoricus mussels thrive at Mid-Atlantic Ridge hydrothermal vents, where part of their energy requirements are met via an endosymbiotic association with chemolithotrophic and methanotrophic bacteria. In an effort to describe phenotypic characteristics of the two bacterial endosymbionts and to assess their ability to assimilate CO2, CH4 and multi-carbon compounds, we performed experiments in aquaria using 13C-labeled NaHCO3 (in the presence of H2S, CH4 or amino-acids and traced the incorporation of 13C into total and phospholipid fatty acids (tFA and PLFA, respectively. 14:0, 15:0, 16:1(n-7c+t and 18:1(n-7c+t PLFA were labeled in the presence of H13CO3- (+H2S and 13CH4, while the 12:0 compound became labeled only in the presence of H13CO3− (+H2S. In contrast, the 16:1(n-9, 16:1(n-8 and (n-6, 18:1(n-8c and (n-7, 20:1(n-7 and 18:2(n-7 PLFA were only labeled in the presence of 13CH4. Some of these symbiont-specific fatty acids also appeared to be labeled in mussel gill tFA when incubated with 13C-enriched amino acids, and so were mussel-specific fatty acids such as 22:2(n-7,15. Our results provide experimental evidence for the potential of specific fatty acid markers to distinguish between the two endosymbiotic bacteria, shedding new light on C1 and multi-carbon compound metabolic pathways in B. azoricus and its symbionts.

  7. Use of Position-Specific 13C Isotopomers to Examine Central Carbon Metabolism in the Thermophile 'Thermoflexus hugenholtzii'

    Science.gov (United States)

    Thomas, S.; Tamadonfar, K. O.; Dijkstra, P.; Dodsworth, J. A.; Hedlund, B. P.

    2013-12-01

    'Thermoflexus hugenholtzii' is a member of a newly discovered class of Chloroflexi. It is the dominant microorganism in certain hot springs; however, very little is known about its physiology, and it is unable to grow on defined media. In order to examine central carbon metabolism in 'T. hugenholtzii', the genome was annotated for genes encoding enzymes for central carbon metabolism, revealing complete pathways for glycolysis, the tricarboxylic acid (TCA) cycle, and the pentose phosphate pathway (PPP). Isotope experiments were conducted to test predicted activities by adding position-specific carbon-13 (13C)-labeled metabolites of glucose, pyruvate, acetate, TCA metabolites, and amino acids and measuring the production of 13CO2 during exponential growth. Use of these metabolites demonstrated broad heterotrophic activity of 'T. hugenholtzii,' despite its inability to grow on defined media. Use of glucose-U demonstrated an active glycolytic pathway and pyruvate-1 demonstrated the functioning of the pyruvate oxidation pathway after glycolysis. Use of the TCA cycle intermediates citrate and succinate demonstrated an active TCA cycle. Production of CO2 from alanine and cysteine demonstrated oxidation of amino acids. However, lack of activity on glucose-1 failed to reveal an active PPP suggesting 'T. hugenholtzii' may rely on exogenous sources of pentoses for nucleic acid biosynthesis.

  8. 13C-metabolic flux ratio and novel carbon path analyses confirmed that Trichoderma reesei uses primarily the respirative pathway also on the preferred carbon source glucose

    Directory of Open Access Journals (Sweden)

    Saloheimo Markku

    2009-10-01

    Full Text Available Abstract Background The filamentous fungus Trichoderma reesei is an important host organism for industrial enzyme production. It is adapted to nutrient poor environments where it is capable of producing large amounts of hydrolytic enzymes. In its natural environment T. reesei is expected to benefit from high energy yield from utilization of respirative metabolic pathway. However, T. reesei lacks metabolic pathway reconstructions and the utilization of the respirative pathway has not been investigated on the level of in vivo fluxes. Results The biosynthetic pathways of amino acids in T. reesei supported by genome-level evidence were reconstructed with computational carbon path analysis. The pathway reconstructions were a prerequisite for analysis of in vivo fluxes. The distribution of in vivo fluxes in both wild type strain and cre1, a key regulator of carbon catabolite repression, deletion strain were quantitatively studied by performing 13C-labeling on both repressive carbon source glucose and non-repressive carbon source sorbitol. In addition, the 13C-labeling on sorbitol was performed both in the presence and absence of sophorose that induces the expression of cellulase genes. Carbon path analyses and the 13C-labeling patterns of proteinogenic amino acids indicated high similarity between biosynthetic pathways of amino acids in T. reesei and yeast Saccharomyces cerevisiae. In contrast to S. cerevisiae, however, mitochondrial rather than cytosolic biosynthesis of Asp was observed under all studied conditions. The relative anaplerotic flux to the TCA cycle was low and thus characteristic to respiratory metabolism in both strains and independent of the carbon source. Only minor differences were observed in the flux distributions of the wild type and cre1 deletion strain. Furthermore, the induction of the hydrolytic gene expression did not show altered flux distributions and did not affect the relative amino acid requirements or relative anabolic

  9. Carbon-13 isotope composition of the mean CO2 source in the urban atmosphere of Krakow, southern Poland

    Science.gov (United States)

    Zimnoch, Miroslaw; Jasek, Alina; Rozanski, Kazimierz

    2014-05-01

    Quantification of carbon emissions in urbanized areas constitutes an important part of the current research on the global carbon cycle. As the carbon isotopic composition of atmospheric carbon dioxide can serve as a fingerprint of its origin, systematic observations of δ13CO2 and/or Δ14CO2, combined with atmospheric CO2mixing ratio measurements can be used to better constrain the urban sources of this gas. Nowadays, high precision optical analysers based on absorption of laser radiation in the cavity allow a real-time monitoring of atmospheric CO2 concentration and its 13CO2/12CO2 ratio, thus enabling better quantification of the contribution of different anthropogenic and natural sources of this gas to the local atmospheric CO2load. Here we present results of a 2-year study aimed at quantifying carbon isotopic signature of the mean CO2 source and its seasonal variability in the urban atmosphere of Krakow, southern Poland. The Picarro G2101-i CRDS isotopic analyser system for CO2and 13CO2/12CO2 mixing ratio measurements has been installed at the AGH University of Science and Technology campus in July 2011. Air inlet was located at the top of a 20m tower mounted on the roof of the faculty building (ca. 42m a.g.l.), close to the city centre. While temporal resolution of the analyser is equal 1s, a 2-minute moving average was used for calculations of δ13CO2 and CO2 mixing ratio to reduce measurement uncertainty. The measurements were calibrated against 2 NOAA (National Oceanic and Atmospheric Administration) primary standard tanks for CO2 mixing ratio and 1 JRAC (Jena Reference Air Cylinder) isotope primary standard for δ13C. A Keeling approach based on two-component mass and isotope balance was used to derive daily mean isotopic signatures of local CO2 from individual measurements of δ13CO2 and CO2 mixing ratios. The record covers a 2-year period, from July 2011 to July 2013. It shows a clear seasonal pattern, with less negative and less variable δ13CO2 values

  10. Geochemistry of dissolved inorganic carbon in a Coastal Plain aquifer. 2. Modeling carbon sources, sinks, and δ13C evolution

    Science.gov (United States)

    McMahon, Peter B.; Chapelle, Francis H.

    1991-01-01

    Stable isotope data for dissolved inorganic carbon (DIC), carbonate shell material and cements, and microbial CO2 were combined with organic and inorganic chemical data from aquifer and confining-bed pore waters to construct geochemical reaction models along a flowpath in the Black Creek aquifer of South Carolina. Carbon-isotope fractionation between DIC and precipitating cements was treated as a Rayleigh distillation process. Organic matter oxidation was coupled to microbial fermentation and sulfate reduction. All reaction models reproduced the observed chemical and isotopic compositions of final waters. However, model 1, in which all sources of carbon and electron-acceptors were assumed to be internal to the aquifer, was invalidated owing to the large ratio of fermentation CO2 to respiration CO2 predicted by the model (5–49) compared with measured ratios (two or less). In model 2, this ratio was reduced by assuming that confining beds adjacent to the aquifer act as sources of dissolved organic carbon and sulfate. This assumption was based on measured high concentrations of dissolved organic acids and sulfate in confining-bed pore waters (60–100 μM and 100–380 μM, respectively) relative to aquifer pore waters (from less than 30 μM and 2–80 μM, respectively). Sodium was chosen as the companion ion to organic-acid and sulfate transport from confining beds because it is the predominant cation in confining-bed pore waters. As a result, excessive amounts of Na-for-Ca ion exchange and calcite precipitation (three to four times more cement than observed in the aquifer) were required by model 2 to achieve mass and isotope balance of final water. For this reason, model 2 was invalidated. Agreement between model-predicted and measured amounts of carbonate cement and ratios of fermentation CO2 to respiration CO2 were obtained in a reaction model that assumed confining beds act as sources of DIC, as well as organic acids and sulfate. This assumption was

  11. Specific carbon-13 labelling of leucine residues in human growth hormone

    International Nuclear Information System (INIS)

    Biosynthetic human growth hormone specifically 13C-labelled in the carbonyl positions of all 26 leucine residues has been obtained by recombiant DNA techniques using 13C-labelled leucine and an E. coli strain that requires leucine. It is shown that, on the whole, the labelling is specific with no significant mislabelling as would have been the case had the 13C-labelled leucine been metabolized. (au)

  12. Complementary constraints from carbon (13C) and nitrogen (15N) isotopes on the glacial ocean's soft-tissue biological pump

    Science.gov (United States)

    Schmittner, A.; Somes, C. J.

    2016-06-01

    A three-dimensional, process-based model of the ocean's carbon and nitrogen cycles, including 13C and 15N isotopes, is used to explore effects of idealized changes in the soft-tissue biological pump. Results are presented from one preindustrial control run (piCtrl) and six simulations of the Last Glacial Maximum (LGM) with increasing values of the spatially constant maximum phytoplankton growth rate μmax, which accelerates biological nutrient utilization mimicking iron fertilization. The default LGM simulation, without increasing μmax and with a shallower and weaker Atlantic Meridional Overturning Circulation and increased sea ice cover, leads to 280 Pg more respired organic carbon (Corg) storage in the deep ocean with respect to piCtrl. Dissolved oxygen concentrations in the colder glacial thermocline increase, which reduces water column denitrification and, with delay, nitrogen fixation, thus increasing the ocean's fixed nitrogen inventory and decreasing δ15NNO3 almost everywhere. This simulation already fits sediment reconstructions of carbon and nitrogen isotopes relatively well, but it overestimates deep ocean δ13CDIC and underestimates δ15NNO3 at high latitudes. Increasing μmax enhances Corg and lowers deep ocean δ13CDIC, improving the agreement with sediment data. In the model's Antarctic and North Pacific Oceans modest increases in μmax result in higher δ15NNO3 due to enhanced local nutrient utilization, improving the agreement with reconstructions there. Models with moderately increased μmax fit both isotope data best, whereas large increases in nutrient utilization are inconsistent with nitrogen isotopes although they still fit the carbon isotopes reasonably well. The best fitting models reproduce major features of the glacial δ13CDIC, δ15N, and oxygen reconstructions while simulating increased Corg by 510-670 Pg compared with the preindustrial ocean. These results are consistent with the idea that the soft-tissue pump was more efficient

  13. Combining sap flow meas- urement-based canopy stomatal conductance and 13C discrimination to estimate forest carbon assimilation

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ping; LU Ping; MA Ling; SUN Guchou; RAO Xingquan; CAI Xian; ZENG Xiaoping

    2005-01-01

    The available methods for studying C uptake of forest and their problems in practices are reviewed, and a new approach to combining sap flow and 13C techniques is proposed in this paper. This approach, obtained through strict mathematic derivation, combines sap flow measurement-based canopy stomatal conductance and 13C discrimination to estimate instantaneous carbon assimilation rate of a forest. Namely the mean canopy stomatal conductance (gc) acquired from accurate measurement of sap flux density is integrated with the relationship between 13C discrimination (() and Ci/Ca (intercellular/ambient CO2 concentrations) and with that between Anet (net photosynthetic rate) and gCO2 (stomatal conductance for CO2) so that a new relation between forest C uptake and ( as well as gc is established. It is a new method of such kind for studying the C exchange between forest and atmosphere based on experimental ecology.

  14. A double-quadrature radiofrequency coil design for proton-decoupled carbon-13 magnetic resonance spectroscopy in humans at 7T

    OpenAIRE

    Serés Roig, Eulalia; Magill, Arthur W.; Donati, Guillaume; Meyerspeer, Martin; Xin, Lijing; Ipek, Ozlem; Gruetter, Rolf

    2015-01-01

    Purpose Carbon-13 magnetic resonance spectroscopy (13C-MRS) is challenging because of the inherent low sensitivity of 13C detection and the need for radiofrequency transmission at the 1H frequency while receiving the 13C signal, the latter requiring electrical decoupling of the 13C and 1H radiofrequency channels. In this study, we added traps to the 13C coil to construct a quadrature-13C/quadrature-1H surface coil, with sufficient isolation between channels to allow simultaneous operation at...

  15. Automated determination of the stable carbon isotopic composition (δ13C) of total dissolved inorganic carbon (DIC) and total nonpurgeable dissolved organic carbon (DOC) in aqueous samples: RSIL lab codes 1851 and 1852

    Science.gov (United States)

    Révész, Kinga M.; Doctor, Daniel H.

    2014-01-01

    The purposes of the Reston Stable Isotope Laboratory (RSIL) lab codes 1851 and 1852 are to determine the total carbon mass and the ratio of the stable isotopes of carbon13C) for total dissolved inorganic carbon (DIC, lab code 1851) and total nonpurgeable dissolved organic carbon (DOC, lab code 1852) in aqueous samples. The analysis procedure is automated according to a method that utilizes a total carbon analyzer as a peripheral sample preparation device for analysis of carbon dioxide (CO2) gas by a continuous-flow isotope ratio mass spectrometer (CF-IRMS). The carbon analyzer produces CO2 and determines the carbon mass in parts per million (ppm) of DIC and DOC in each sample separately, and the CF-IRMS determines the carbon isotope ratio of the produced CO2. This configuration provides a fully automated analysis of total carbon mass and δ13C with no operator intervention, additional sample preparation, or other manual analysis. To determine the DIC, the carbon analyzer transfers a specified sample volume to a heated (70 °C) reaction vessel with a preprogrammed volume of 10% phosphoric acid (H3PO4), which allows the carbonate and bicarbonate species in the sample to dissociate to CO2. The CO2 from the reacted sample is subsequently purged with a flow of helium gas that sweeps the CO2 through an infrared CO2 detector and quantifies the CO2. The CO2 is then carried through a high-temperature (650 °C) scrubber reactor, a series of water traps, and ultimately to the inlet of the mass spectrometer. For the analysis of total dissolved organic carbon, the carbon analyzer performs a second step on the sample in the heated reaction vessel during which a preprogrammed volume of sodium persulfate (Na2S2O8) is added, and the hydroxyl radicals oxidize the organics to CO2. Samples containing 2 ppm to 30,000 ppm of carbon are analyzed. The precision of the carbon isotope analysis is within 0.3 per mill for DIC, and within 0.5 per mill for DOC.

  16. Carbon sequestration and estimated carbon credit values as measured using 13C labeling and analysis by an optical breath test analyser

    International Nuclear Information System (INIS)

    Full text: Recent developments in optical systems for breath testing have provided a robust, low-cost option for undertaking 13C analysis. Although these systems were initially developed for breath testing for Helicobacter pylori, they have an enormous potential as a soil science research tool. The relatively low cost of the equipment at US$ 15000-25000 is within the research budgets of most institutes or universities. The simplicity of the mechanisms and optical nature mean that the equipment requires relatively low maintenance and minimal training. Thus methods were developed to prepare soil and plant materials for analysis using the breath test analyser. Results that compare the conventional mass spectrometry methods with the breath test analyser will be presented. In combination with simple 13C-plant-labeling techniques it is possible to devise methods for estimating carbon sequestration under different agronomic management practices within a short time frame. This allows an assessment of the carbon credit value of a particular agronomic practice, which can in turn be used by policy makers for decision-making purposes. For a global understanding of the effect of agricultural practices on the carbon cycle data is required from a range of cropping systems and agro-ecological zones. The method and the approach described will allow collection of hard data within a reasonable time frame. (author)

  17. Carbon sequestration and estimated carbon credit values as measured using 13C labelling and analysis by means of an optical breath test analyser.

    Science.gov (United States)

    Hood, R C; Khan, M; Haque, A; Khadir, M; Bonetto, J P; Syamsul, R; Mayr, L; Heiling, M

    2004-05-01

    Recent developments in optical systems (isotope-selective non-dispersive infrared spectrometry) for breath testing have provided a robust, low-cost option for undertaking (13)C analysis. Although these systems were initially developed for breath testing for Helicobacter pylori, they have an enormous potential as a soil science research tool. The relatively low cost of the equipment, US$15,000-25,000, is within the research budgets of most institutes or universities. The simplicity of the mechanisms and optical nature mean that the equipment requires relatively low maintenance and minimal training. Thus methods were developed to prepare soil and plant materials for analysis using the breath test analyser. Results that compare conventional mass spectrometric methods with the breath test analyser will be presented. In combination with simple (13)C-plant-labeling techniques it is possible to devise methods for estimating carbon sequestration under different agronomic management practices within a short time frame. This enables assessment of the carbon credit value of a particular agronomic practice, which can in turn be used by policy makers for decision-making purposes. For global understanding of the effect of agricultural practices on the carbon cycle, data are required from a range of cropping systems and agro-ecological zones. The method and the approach described will enable collection of hard data within a reasonable time. PMID:14963630

  18. Paleocene-Eocene δ13C of marine and terrestrial organic matter: implications for the magnitude of total organic carbon hyperthermal isotope excursions

    Science.gov (United States)

    Sluijs, A.; Dickens, G. R.

    2011-12-01

    A series of "hyperthermals" occurred during the Late Paleocene and Early Eocene (~58-50 Ma). These transient global warming events were characterized by prominent negative excursions in the stable carbon isotope ratios (δ13C) of carbon-bearing phases, and widespread dissolution of deep-sea carbonate; they were almost certainly geologically brief intervals of rapid and massive injection of 13C-depleted carbon into the combined ocean-atmosphere-biosphere system. However, the carbon masses involved remain the source of considerable debate, in part because the carbon isotope excursions (CIEs) are expressed differently, depending on the substrate analyzed and the location. For example, the CIE across the Paleocene-Eocene Thermal Maximum (PETM; ~56 Ma), now measured in numerous phases at over 100 locations, ranges between 2 - 8 %, even after discounting sections with truncated records. Three factors might cause individual carbon isotope records to differ in shape and magnitude from changes in the global exogenic carbon cycle during hyperthermal events: (i) Changes in the isotope composition of the proximal carbon source (e.g., DIC); (ii) Changes in isotope fractionation through physiological response to ecological change; and (iii) Changes in the relative abundance of components with different δ13C. All three factors likely influence the magnitude of the CIE in many records across hyperthermal events. Here, we discuss how the third factor impacts the δ13C of total organic carbon (TOC) in a shallow marine sequence. Over the past years, bulk organic δ13C, BIT index and palynomorph records have been published for the late Paleocene-early Eocene interval at IODP Hole 4A on Lomonosov Ridge, Arctic Ocean. These records show a long-term -3 % decrease in TOC and a long-term increase in the proportion of marine organic carbon; they also show a rapid -5.5 % CIE in TOC and the proportion of marine organic carbon across the PETM. After correcting for long-term variations in

  19. Tracing carbon assimilation in endosymbiotic deep-sea hydrothermal vent Mytilid fatty acids by 13C-fingerprinting

    Directory of Open Access Journals (Sweden)

    F. Dehairs

    2010-09-01

    Full Text Available Bathymodiolus azoricus mussels thrive at Mid-Atlantic Ridge hydrothermal vents, where part of their energy requirements are met via an endosymbiotic association with chemolithotrophic and methanotrophic bacteria. In an effort to describe phenotypic characteristics of the two bacterial endosymbionts and to assess their ability to assimilate CO2, CH4 and multi-carbon compounds, we performed experiments in aquaria using 13C-labeled NaHCO3 (in the presence of H2S, CH4 or amino-acids and traced the incorporation of 13C into total and phospholipid fatty acids (tFA and PLFA, respectively. 14:0; 15:0; 16:0; 16:1(n − 7c+t; 18:1(n − 13c+t and (n − 7c+t; 20:1(n − 7; 20:2(n − 9,15; 18:3(n − 7 and (n − 5,10,13 PLFA were labeled in the presence of H13CO3− (+H2S and 13CH4, while the 12:0 compound became labeled only in the presence of H13CO3− (+H2S. In contrast, the 17:0; 18:0; 16:1(n − 9; 16:1(n − 8 and (n − 6; 18:1(n − 8; and 18:2(n − 7 PLFA were only labeled in the presence of 13CH4. Some of these symbiont-specific fatty acids also appeared to be labeled in mussel gill tFA when incubated with 13C-enriched amino acids, and so were mussel-specific fatty acids such as 22:2(n − 7,15. Our results provide experimental evidence for the potential of specific fatty acid markers to distinguish between the two endosymbiotic bacteria, shedding new light on C1 and multi-carbon compound metabolic pathways in B. azoricus and its symbionts.

  20. Oxygen-18 and carbon-13 records for the last 14,000 years from lacustrine carbonates of Siling-Co (lake) in the Qinghai-Tibetan Plateau

    Science.gov (United States)

    Morinaga, H.; Itota, C.; Isezaki, N.; Goto, H.; Yaskawa, K.; Kusakabe, M.; Liu, J.; Gu, Z.; Yuan, B.; Cong, S.

    1993-12-01

    To understand paleoenvironmental changes for the central Qinghai-Tibetan plateau, we analyzed stable isotopes of oxygen and carbon from calcium carbonates in a bottom sediment core collected from Siling-Co (lake). Five conventional and two Tandetron Acceleration Mass Spectrometry (TAMS) C-14 dates indicate that the core recovered sediments of the last 14,000 years. Calcium carbonates in the sediments seem to be primary carbonates precipitated chemically in the lake, and not clastic particles from limestones distributed around the lake, because of large variation of isotopic ratios, isotopic covariance since 6,000 yr BP and similarity between dates from total calcium carbonates and organic carbon. Their isotopic composition therefore reflects that of the lake water. We present the following paleoenvironmental history over the last 14,000 years in the central part of the plateau, from secular variations of delta O-18, delta C-13 and CaCO3 content throughout the core: (1) Desiccation was dominant during the latter part of the Last Glacial stage (14,000 to 11,000 yr BP). (2) The Last Glacial stage abruptly terminated at 11,000 yr BP. (3) A temperate and stable climate was dominant from 11,000 to 5,000 yr BP. (4) Climatic conditions fluctuated from 5,000 to the present, including two strong desiccation periods (5,000 to 4,000 yr BP and 3,000 to 2,000 yr BP) and an intermediate period of heavy rainfall (4,000 to 3,000 yr BP). This period is also characterized by a covariant O and C isotopic trend.

  1. Quantitative and mechanistic studies using the oxygen-18 isotope shift in carbon-13 nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mega, T.L.

    1989-01-01

    The {sup 18}O-isotope shift in {sup 13}C NMR spectroscopy was used to study the kinetics of oxygen exchange at the anomeric carbon atoms of several ketoses and aldoses. At 25-26{degree}C and over the pH range from 2 to 10, the relative rates of oxygen exchange for the aldoses studied increased in the following sequence: D-glucose, D-mannose, D-ribose, D-2-deoxyribose. The hydration rates for the open chain forms of the sugars were calculated and the results were analyzed in terms of steric and inductive effects by drawing analogies with the hydration kinetics of simple aldehydes and ketones. Effective molarities associated with ring closure reactions of common monosaccharides are calculated. The position of bond cleavage in the acid-catalyzed hydrolysis of sucrose was elucidated by hydrolyzing the sugar in {sup 18}O-water and assaying the incorporation of {sup 18}O into the several anomeric products using {sup 13}C NMR. Independents supporting experimental evidence was obtained using {sup 1}H NMR. A detailed investigation was made of the complex {sup 13}C NMR spectrum arising from the various {sup 18}O-isotopomers in a solution of {sup 18}O-labeled (1,4-{sup 13}C{sub 2}) succinic acid. The quantitative use of the {sup 18}O isotope shift in {sup 13}C NMR was assessed.

  2. Direct analysis of δ13C and concentration of dissolved organic carbon (DOC) in environmental samples by TOC-IRMS

    Science.gov (United States)

    Kirkels, Frédérique; Cerli, Chiara; Federherr, Eugen; Kalbitz, Karsten

    2014-05-01

    Dissolved organic carbon (DOC) plays an important role in carbon cycling in terrestrial and aquatic systems. Stable isotope analysis (delta 13C) of DOC could provide valuable insights in its origin, fluxes and environmental fate. Precise and routine analysis of delta 13C and DOC concentration are therefore highly desirable. A promising, new system has been developed for this purpose, linking a high-temperature combustion TOC analyzer trough an interface with a continuous flow isotope ratio mass spectrometer (Elementar group, Hanau, Germany). This TOC-IRMS system enables simultaneous stable isotope (bulk delta 13C) and concentration analysis of DOC, with high oxidation efficiency by high-temperature combustion for complex mixtures as natural DOC. To give delta 13C analysis by TOC-IRMS the necessary impulse for broad-scale application, we present a detailed evaluation of its analytical performance for realistic and challenging conditions inclusive low DOC concentrations and environmental samples. High precision (standard deviation, SD predominantly memory effects, no concentration/volume effects and a wide linearity. Low DOC concentrations (highlighted by automated, online analysis, a variable injection volume, high throughput and no extensive maintenance. Sample analysis is simple, using small aliquots and with minimal sample preparation. Further investigations should focus on complex, saline matrices and very low DOC concentrations, to achieve a potential lower limit of 0.2 mgC/L. High-resolution, routine delta 13C analysis of DOC by TOC-IRMS offers opportunities for wide-scale application in terrestrial, freshwater and marine research to elucidate the role of DOC in biogeochemical processes and ecosystem functioning.

  3. Pathway analysis using (13) C-glycerol and other carbon tracers reveals a bipartite metabolism of Legionella pneumophila.

    Science.gov (United States)

    Häuslein, Ina; Manske, Christian; Goebel, Werner; Eisenreich, Wolfgang; Hilbi, Hubert

    2016-04-01

    Amino acids represent the prime carbon and energy source for Legionella pneumophila, a facultative intracellular pathogen, which can cause a life-threatening pneumonia termed Legionnaires' disease. Genome, transcriptome and proteome studies indicate that L. pneumophila also utilizes carbon substrates other than amino acids. We show here that glycerol promotes intracellular replication of L. pneumophila in amoeba or macrophages (but not extracellular growth) dependent on glycerol-3-phosphate dehydrogenase, GlpD. An L. pneumophila mutant strain lacking glpD was outcompeted by wild-type bacteria upon co-infection of amoeba, indicating an important role of glycerol during infection. Isotopologue profiling studies using (13) C-labelled substrates were performed in a novel minimal defined medium, MDM, comprising essential amino acids, proline and phenylalanine. In MDM, L. pneumophila utilized (13) C-labelled glycerol or glucose predominantly for gluconeogenesis and the pentose phosphate pathway, while the amino acid serine was used for energy generation via the citrate cycle. Similar results were obtained for L. pneumophila growing intracellularly in amoeba fed with (13) C-labelled glycerol, glucose or serine. Collectively, these results reveal a bipartite metabolism of L. pneumophila, where glycerol and carbohydrates like glucose are mainly fed into anabolic processes, while serine serves as major energy supply. PMID:26691313

  4. Utilization of carbon 13-labelled stable isotopes for studying drug toxicity on cellular metabolism; Utilisation d`isotopes stables marques au carbone 13 pour etudier la toxicite de drogues au niveau du metabolisme cellulaire

    Energy Technology Data Exchange (ETDEWEB)

    Herve, M.; Wietzerbin, J.; Tran-Dinh, S. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Biologie Cellulaire et Moleculaire

    1994-12-31

    A new approach for studying the effects of two drugs, amphotericine B (AMB), an anti-fungal antibiotic, and 2-deoxy-D-glucose (DG), on the glucose metabolism in brewer yeast cells (Saccharomyces cerevisiae), is presented; AMB interacts with the membrane sterols, inducing formation of pores through which ions and small molecules can pass. DG may enter in the cytosol, where it is phosphoryled by hexokinase into deoxy-D-glucose 6-phosphate (DG6P) which disappears very slowly. DG slows down the glycolysis process and induces the formation of new substances. This paper shows the advantages of utilizing carbon 13-labelled substrates combined to the NMR-13C and NMR-1H techniques. 6 figs., 5 refs.

  5. Preparation and physico-chemical study of nitroxide radicals. Isotopic marking with carbon 13 and deuterium; Preparations et etudes physico-chimiques de radicaux nitroxydes. Marquage isotopique au carbone 13 et au deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Chapelet-Letourneux, G. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1967-07-01

    N-t-butyl-N-phenyl nitroxide is obtained by: a) action of t-butyl-magnesium chloride on nitrobenzene, or of phenyl-magnesium bromide on nitro-t-butane, b) oxidation of N-t-butyl-N-phenylhydroxylamine, c) oxidation of N-t-butylaniline. In these latter two cases, it has been possible to isolate the pure radical and to study it using UV, IR and EPR. It decomposes to give N-t-butylaniline and the N-oxide of N-t-butyl-p-quinon-imine. The action of peracids such as p-nitro-perbenzoic or m-chloro-perbenzoic acids on amines or hydroxylamines leads to the formation of stable or unstable nitroxide radicals easily observable by EPR. Finally, with a view to obtaining definite values for the coupling between the free electron of a nitroxide and carbon 13, the preparation of such radicals marked with {sup 13}C in the {alpha} or {beta} position of the nitroxide function has been carried out. The coupling with an {alpha} carbon 13 is negative and does not appear to vary with the spin density on the nitrogen. The interaction with the p nuclei of the nitrogen depends on the nature of the substituents: the two benzyl protons have a hyperfine splitting a{sub H} which is always less than that of the ethyl. On the other hand, the {sup 13}C coupling is greater in the first case. The usually adopted conformations for the compounds having the carbonyl group cannot account for the observed values of the {beta} couplings. (author) [French] Le N-t-butyl-N-phenyl nitroxyde est obtenu par: a) action du chlorure de t-butylmagnesium sur le nitrobenzene, ou du bromure de phenylmagnesium sur le nitro-t-butane, b) oxydation de la N-t-butyl-N-phenylhydroxylamine, c) oxydation de la N-t-butylaniline. Dans ces deux derniers cas, le radical a pu etre isole pur et etudie par UV, IR et RPE. Il se decompose en N-t-butylaniline et N-oxyde de N-t-butyl-p-quinonimine. L'action de peracides (p-nitroperbenzoique ou m-chloroperbenzoique) sur des amines ou des hydroxylamines conduit a des radicaux nitroxydes

  6. Direct uptake of organically derived carbon by grass roots and allocation in leaves and phytoliths: 13C labeling evidence

    Science.gov (United States)

    Alexandre, Anne; Balesdent, Jérôme; Cazevieille, Patrick; Chevassus-Rosset, Claire; Signoret, Patrick; Mazur, Jean-Charles; Harutyunyan, Araks; Doelsch, Emmanuel; Basile-Doelsch, Isabelle; Miche, Hélène; Santos, Guaciara M.

    2016-03-01

    In the rhizosphere, the uptake of low-molecular-weight carbon (C) and nitrogen (N) by plant roots has been well documented. While organic N uptake relative to total uptake is important, organic C uptake is supposed to be low relative to the plant's C budget. Recently, radiocarbon analyses demonstrated that a fraction of C from the soil was occluded in amorphous silica micrometric particles that precipitate in plant cells (phytoliths). Here, we investigated whether and to what extent organically derived C absorbed by grass roots can feed the C occluded in phytoliths. For this purpose we added 13C- and 15N-labeled amino acids (AAs) to the silicon-rich hydroponic solution of the grass Festuca arundinacea. The experiment was designed to prevent C leakage from the labeled nutritive solution to the chamber atmosphere. After 14 days of growth, the 13C and 15N enrichments (13C excess and 15N excess) in the roots, stems and leaves as well as phytoliths were measured relative to a control experiment in which no labeled AAs were added. Additionally, the 13C excess was measured at the molecular level, in AAs extracted from roots and stems and leaves. The net uptake of labeled AA-derived 13C reached 4.5 % of the total AA 13C supply. The amount of AA-derived 13C fixed in the plant was minor but not nil (0.28 and 0.10 % of total C in roots and stems/leaves, respectively). Phenylalanine and methionine that were supplied in high amounts to the nutritive solution were more 13C-enriched than other AAs in the plant. This strongly suggested that part of AA-derived 13C was absorbed and translocated into the plant in its original AA form. In phytoliths, AA-derived 13C was detected. Its concentration was on the same order of magnitude as in bulk stems and leaves (0.15 % of the phytolith C). This finding strengthens the body of evidences showing that part of organic compounds occluded in phytoliths can be fed by C entering the plant through the roots. Although this experiment was done in

  7. Measurement of forest ecosystem-atmosphere exchange of delta-carbon-13--carbon dioxide using Fourier transform infrared spectroscopy and disjunct eddy covariance

    Science.gov (United States)

    Cambaliza, Maria Obiminda L.

    The measurement of the stable isotopic content and isotopic flux of atmospheric carbon dioxide is important for understanding the carbon budget on ecosystem, regional, and global spatial scales. Conventional measurements of the isotopic composition of atmospheric CO2 involve laboratory mass spectrometry analysis of grab samples from the field, which limits the location, collection frequency and throughput of samples. More technologically advanced methods (e.g. tunable diode laser spectroscopy) suffer from interferences with other chemical species. We have developed a new measurement method based on Fourier-transform infrared spectroscopy (FTIR) and disjunct eddy covariance (DEC) for fast, continuous, real-time measurement of the carbon isotopic composition of atmospheric CO2. Molecular absorption is measured in the 2100 to 2500 cm -1 spectral region of the 13CO2 and 12CO2 vibration-rotation bands with concentrations of both isotopologues used to determine delta13C. We demonstrate the capability of this new technique in a managed poplar forest near Boardman, Oregon with measurements during the summers of 2005 and 2006 from a 22-meter tower in a 16-m forest canopy. Long-term calibration using reference gas cylinders yielded field accuracy and precision for the forest measurements of 0.5‰ and 0.8‰, respectively, for the 45-second cycle time between samples. The signature of ecosystem respiration derived from the nighttime vertical profile measurements of CO2-delta13C was --26.6‰, about 2‰ more enriched than the isotopic composition of measured bulk leaf samples from the forest. Ecosystem respired CO 2 was ˜1.6‰ more enriched than soil-respired CO2. A comparison of the FTIR -- DEC total CO2 fluxes against standard eddy covariance measurements showed excellent (10%) agreement. FTIR-DEC measurement of the CO2 isoflux enabled the estimation of the mean carbon isotope ratio of the photosynthetic flux (deltaP). The average deltaP (-24.9‰) was 13C

  8. Effect of Crop cultivation after Mediterranean maquis on soil carbon stock, δ13C spatial distribution and root turnover

    Science.gov (United States)

    Novara, Agata; Gristina, Luciano; Santoro, Antonino; La Mantia, Tommaso

    2013-04-01

    The aim of this work was investigate the effect of land use change on soil organic carbon (SOC) stock and distribution in a Mediterranean succession. A succession composed by natural vegetation, cactus pear crop and olive grove, was selected in Sicily. The land use change from mediterranena maquis (C3 plant) to cactus pear (C4 plant) lead to a SOC decrease of 65% after 28 years of cultivation, and a further decrease of 14% after 7 years since the land use from cactus pear to olive grove (C3 plant). Considering this exchange and decrease as well as the periods after the land use changes we calculated the mean residence time (MRT) of soil C of different age. The MRT of C under Mediterranean maquis was about 142 years, but was 10 years under cactus pear. Total SOC and δ13 C were measured along the soil profile (0-75cm) and in the intra-rows in order to evaluate the distribution of new and old carbon derived and the growth of roots. After measuring of weight of cactus pear root, an approach was developed to estimate the turnover of root biomass. Knowledge of root turnover and carbon input are important to evaluate the correlation between carbon input accumulation and SOC stock in order to study the ability of C sink of soils with different use and managements.

  9. δ13C chemostratigraphy in the upper Tremadocian through lower Katian (Ordovician carbonate succession of the Siljan district, central Sweden

    Directory of Open Access Journals (Sweden)

    Oliver Lehnert

    2014-12-01

    Full Text Available Based on δ13C data from two drillcores recovered from the Siljan district, we present a first continuous carbon isotope record of the upper Tremadocian–lower Katian limestone succession of central Sweden. New names for some isotopic carbon excursions from the Cambrian–Ordovician boundary through the basal Darriwilian are introduced. The Mora 001 core from the western part of the Siljan impact structure ranges through the Lower–Middle Ordovician, whereas the Solberga 1 core from its eastern part ranges through the Middle–lower Upper Ordovician. Upper Tremadocian and Floian units are extremely condensed and include extensive stratigraphic gaps. Multiple hardgrounds, sometimes with minor karstic overprint, imply recurrent periods of erosion and/or non-deposition. Like in other parts of Sweden, the Dapingian and Darriwilian succession is characterized by a relatively complete sedimentary record and low sedimentation rates.

  10. Characterization of alkyl carbon in forest soils by CPMAS 13C NMR spectroscopy and dipolar dephasing

    Science.gov (United States)

    Kogel-Knabner, I.; Hatcher, P.G.

    1989-01-01

    Samples obtained from forest soils at different stages of decomposition were treated sequentially with chloroform/methanol (extraction of lipids), sulfuric acid (hydrolysis), and sodium chlorite (delignification) to enrich them in refractory alkyl carbon. As revealed by NMR spectroscopy, this treatment yielded residues with high contents of alkyl carbon. In the NMR spectra of residues obtained from litter samples, resonances for carbohydrates are also present, indicating that these carbohydrates are tightly bound to the alkyl carbon structures. During decomposition in the soils this resistant carbohydrate fraction is lost almost completely. In the litter samples the alkyl carbon shows a dipolar dephasing behavior indicative of two structural components, a rigid and a more mobile component. As depth and decomposition increase, only the rigid component is observed. This fact could be due to selective degradation of the mobile component or to changes in molecular mobility during decomposition, e.g., because of an increase in cross linking or contact with the mineral matter of the soil.

  11. Identification of aquatically available carbon from algae through solution-state NMR of whole (13)C-labelled cells.

    Science.gov (United States)

    Akhter, Mohammad; Dutta Majumdar, Rudraksha; Fortier-McGill, Blythe; Soong, Ronald; Liaghati-Mobarhan, Yalda; Simpson, Myrna; Arhonditsis, George; Schmidt, Sebastian; Heumann, Hermann; Simpson, André J

    2016-06-01

    Green algae and cyanobacteria are primary producers with profound impact on food web functioning. Both represent key carbon sources and sinks in the aquatic environment, helping modulate the dissolved organic matter balance and representing a potential biofuel source. Underlying the impact of algae and cyanobacteria on an ecosystem level is their molecular composition. Herein, intact (13)C-labelled whole cell suspensions of Chlamydomonas reinhardtii, Chlorella vulgaris and Synechocystis were studied using a variety of 1D and 2D (1)H/(13)C solution-state nuclear magnetic resonance (NMR) spectroscopic experiments. Solution-state NMR spectroscopy of whole cell suspensions is particularly relevant as it identifies species that are mobile (dissolved or dynamic gels), 'aquatically available' and directly contribute to the aquatic carbon pool upon lysis, death or become a readily available food source on consumption. In this study, a wide range of metabolites and structural components were identified within the whole cell suspensions. In addition, significant differences in the lipid/triacylglyceride (TAG) content of green algae and cyanobacteria were confirmed. Mobile species in algae are quite different from those in abundance in 'classic' dissolved organic matter (DOM) indicating that if algae are major contributors to DOM, considerable selective preservation of minor components (e.g. sterols) or biotransformation would have to occur. Identifying the metabolites and dissolved components within algal cells by NMR permits future studies of carbon transfer between species and through the food chain, whilst providing a foundation to better understand the role of algae in the formation of DOM and the sequestration/transformation of carbon in aquatic environments. PMID:27074782

  12. Carbon-13 magnetic relaxation rates or iron (III) complexes of some biogenic amines and parent compounds in aqueous solutions

    International Nuclear Information System (INIS)

    Spin-lattice relaxation rates (R1) from naturally occuring C-13 F.T. N.M.R. spectra of some catecholamines and parent compounds with Iron(III) at pD = 4 were determined in order to elucidate the molecular mechanism underlying their association in aqueous solutions. Complexation was observed only for catecholic ligands. The R1 values were used to calculate iron-carbon scaled distances, and two complexation models were proposed where the catecholic function binds Fe(III) in the first and second coordination spheres respectively. The latter case was shown to be the consistent with the molecular geometries. (orig.)

  13. Carbon dioxide and nitrogen adsorption on cation-exchanged SSZ-13 zeolites.

    Science.gov (United States)

    Pham, Trong D; Liu, Qingling; Lobo, Raul F

    2013-01-15

    Samples of high-silica SSZ-13, ion exchanged with protons and alkali-metal cations Li(+), Na(+), and K(+), were investigated using adsorption isotherms of CO(2) and N(2). The results show that Li-, Na-SSZ-13 have excellent CO(2) capacity at ambient temperature and pressure; in general, Li-SSZ-13 shows the highest capacity for N(2), CO(2) particularly in the low-pressure region. The effect of cation type and Si/Al ratio (6 and 12) on the adsorption properties was investigated through analysis of adsorption isotherms and heats of adsorption. The separation of CO(2) in a flue gas mixture was evaluated for these adsorbents in the pressure swing adsorption and vacuum pressure adsorption processes. PMID:23249267

  14. Investigation on carbon dioxide corrosion behaviour of HP13Cr110 stainless steel in simulated stratum water

    Energy Technology Data Exchange (ETDEWEB)

    Mu, L.J. [School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)], E-mail: mulijunxjtu@126.com; Zhao, W.Z. [School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2010-01-15

    The carbon dioxide corrosion behaviour of HP13Cr110 stainless steel in simulated stratum water is studied by potentiodynamic curve and electrochemical impedance spectroscopy (EIS); the micro-structure and composition of the corrosion scale formed at high-temperature and high-pressure are analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results show that 13Cr stainless steel is in passive state in the stratum water, the passive current density increases and the passive potential region decreases with increasing temperature. The corrosion scale formed at high-temperature and high-pressure is mainly composed of iron/chromium oxides and a little amount of FeCO{sub 3}.

  15. Application of δ13C and δ15N isotopic signatures of organic matter fractions sequentially separated from adjacent arable and forest soils to identify carbon stabilization mechanisms

    OpenAIRE

    Kayler, Z.E.; Kaiser, M; Gessler, A.; Ellerbrock, R. H.; M. Sommer

    2011-01-01

    Identifying the chemical mechanisms behind soil carbon bound in organo-mineral complexes is necessary to determine the degree to which soil organic carbon is stabilized belowground. Analysis of δ13C and δ15N isotopic signatures of stabilized OM fractions along with soil mineral characteristics may yield important information about OM-mineral associations and their processing history. We anlayzed the δ13C and δ15N isotopic signatures from two organic matter (OM) fractio...

  16. Seasonal and interannual variability in 13C composition of ecosystem carbon fluxes in the U.S. Southern Great Plains

    Energy Technology Data Exchange (ETDEWEB)

    Torn, Margaret S. (Lawrence Berkeley National Laboratory and UC Berkeley, Berkeley (United States)), e-mail: mstorn@lbl.gov; Biraud, Sebastien C.; Riley, William J. (Lawrence Berkeley National Laboratory, Earth Sciences Division (United States)); Still, Christopher J. (Univ. of California, Santa Barbara, Geography Dept. (United States)); Berry, Joe A. (Carnegie Institution of Washington, Dept. of Global Ecology (United States))

    2011-04-15

    The delta13C value of terrestrial CO{sub 2} fluxes (delta{sub bio}) provides important information for inverse models of CO{sub 2} sources and sinks as well as for studies of vegetation physiology, C3 and C4 vegetation fluxes, and ecosystem carbon residence times. From 2002-2009, we measured atmospheric CO{sub 2} concentration and delta13C-CO{sub 2} at four heights (2 to 60 m) in the U.S. Southern Great Plains (SGP) and computed delta{sub bio} weekly. This region has a fine-scale mix of crops (primarily C3 winter wheat) and C4 pasture grasses. delta{sub bio} had a large and consistent seasonal cycle of 6.8 per mille. Ensemble monthly mean delta{sub bio} ranged from -25.8 +- 0.4 per mille (+-SE) in March to -20.1 +- 0.4 per mille in July. Thus, C{sub 3} vegetation contributed about 80% of ecosystem fluxes in winter-spring and 50% in summer-fall. In contrast, prairie-soil delta13{sub C} values were about -15 indicating that historically the region was dominated by C{sub 4} vegetation and had more positive deltabio values. Based on a land-surface model, isofluxes (deltabio x NEE) in this region have large seasonal amplitude because deltabio and net ecosystem exchange (NEE) covary. Interannual variability in isoflux was driven by variability in NEE. The large seasonal amplitude in deltabio and isoflux imply that carbon inverse analyses require accurate estimates of land cover and temporally resolved 13CO{sub 2} and CO{sub 2} fluxes

  17. Seasonal and interannual variability in 13C composition of ecosystem carbon fluxes in the U.S. Southern Great Plains

    Science.gov (United States)

    Torn, Margaret S.; Biraud, Sebastien C.; Still, Christopher J.; Riley, William J.; Berry, Joe A.

    2011-04-01

    The δ13C value of terrestrial CO2 fluxes (δbio) provides important information for inverse models of CO2 sources and sinks as well as for studies of vegetation physiology, C3 and C4 vegetation fluxes, and ecosystem carbon residence times. From 2002-2009, we measured atmospheric CO2 concentration and δ13C-CO2 at four heights (2 to 60 m) in the U.S. Southern Great Plains (SGP) and computed δbio weekly. This region has a fine-scale mix of crops (primarily C3 winter wheat) and C4 pasture grasses. δbio had a large and consistent seasonal cycle of 6-8‰. Ensemble monthly mean δbio ranged from -25.8 ± 0.4‰ (±SE) in March to -20.1 ± 0.4‰ in July. Thus, C3 vegetation contributed about 80% of ecosystem fluxes in winter-spring and 50% in summer-fall. In contrast, prairie-soil δ13C values were about -15‰, indicating that historically the region was dominated by C4 vegetation and had more positive δbio values. Based on a land-surface model, isofluxes (δbio× NEE) in this region have large seasonal amplitude because δbio and net ecosystem exchange (NEE) covary. Interannual variability in isoflux was driven by variability in NEE. The large seasonal amplitude in δbio and isoflux imply that carbon inverse analyses require accurate estimates of land cover and temporally resolved 13CO2 and CO2 fluxes.

  18. [Impact of land use change and cultivation measures on soil organic carbon (SOC) and its 13C values].

    Science.gov (United States)

    Meng, Fan-qiao; Kuang, Xing; Du, Zhang-liu; Wu, Wen-liang; Guo, Yan-bin

    2010-08-01

    In Quzhou County, Hebei Province where now intensive farming system is operated, original grassland and farming land under different tillage, crop straw return and fertilization measures were studied using isotope carbon for the analysis of the impact on soil organic carbon (SOC) properties. The research indicated that after change into farmland (34 years), SOC is significantly reduced and for 1 m of soil layer, the scope of reduction is from 13.3%-35% and this decrease happens in 0-40 cm of soil layer. After 8 years of fertilization, SOC can be increased at 0.83 g x kg(-1). No-tillage can significantly increase the SOC especially in 0-10 cm but plough will increase the SOC at 10-15 cm and 15-20 cm. Change of delta13 C of SOC due to land use change mainly happens in 0-20 cm, where input of organic materials from maize stored. In soil layer of 0-5 cm, only maximum 18% of SOC is from crop residues and in 15-20 cm, this percentage is about 5%.

  19. Application of low hysteresis carbon black DZ-13 in bias truck tire%低滞后炭黑DZ-13在载重斜交轮胎中的应用

    Institute of Scientific and Technical Information of China (English)

    林浩; 赵冬梅; 程安仁; 万淑霞

    2009-01-01

    研究低滞后炭黑DZ-13在载重斜交轮胎胎面胶和胎肩胶中的应用.结果表明,与采用炭黑N234或N375补强的硫化胶相比,采用低滞后炭黑DZ-13补强的硫化胶弹性模量和回弹值较大,滚动阻力较低,但撕裂强度和抗湿滑性能较差;低滞后炭黑DZ-13更适合用于胎肩胶.%The application of low hysteresis carbon black DZ-13 in tread compound and shoulder compound of bias truck tire was investigated.The results showed that,compared to the vulcanizate reinforced by carbon black N234 or N375,the vulcanizate reinforced by low hysteresis carbon black DZ-13 possessed higher elastic modulus and rebound value,lower rolling resistance,but it also showed poorer tear strength and wet skid resistance;the low hysteresis carbon black DZ-13 was more suitable for the shoulder compound.

  20. Using Atmospheric δ13C of CO2 observations to link the water and carbon cycles with climate

    Science.gov (United States)

    Alden, C. B.; Miller, J. B.; White, J. W.; Yadav, V.; Michalak, A. M.; Andrews, A. E.; Huang, L.

    2013-12-01

    The ratio of stable carbon isotopes, 13C:12C in atmospheric CO2 (expressed as δ13C) offers unique insights into atmosphere-land CO2 fluxes and the modulating effects of stomatal conductance on this exchange. Photosynthesis discriminates against 13CO2 during uptake. The magnitude of this fractionation is strongly dependent upon ambient CO2 concentrations and water availability, as well as on the mix of C3 and C4 vegetation types. C3 and C4 plants have very different discrimination because of carboxylation pathways, and C3 stomatal conductance varies with water availability because stomata close to reduce transpiration when plants are water stressed. Further, plant stomata respond to ambient CO2 concentrations in order to optimize leaf internal [CO2] while reducing transpirative water loss. Atmospheric δ13C therefore carries information about local and upwind drought conditions and the consequent likelihood of ground-to-atmosphere water transfer via transpiration, and the balance of latent and sensible heat fluxes, as well as about local and upwind distributions of C3 and C4 vegetation and variability therein. δ13C offers a unique lens through which to identify key thresholds and relationships between climate anomalies/change and the modulating climate impacts of plant biosphere response. By unraveling this relationship at local to continental scales, we stand to gain crucial understanding of the drivers of land CO2 uptake variability as well as knowledge of how to predict future climate impacts on the carbon cycle and vice versa. We use a two-step Bayesian inversion model to optimize 1x1 degree and 3-hourly (interpreted at regional and weekly to monthly scales) fields of δ13C of assimilated biomass over North America for the year 2010, using influence functions generated with FLEXPART, driven by National Centers for Environmental Prediction Global Forecast System meteorology. Prior fluxes and fossil fuel, ocean and fire fluxes are from CarbonTracker 2011, and

  1. Validation in an animal model of the carbon 13-labeled mixed triglyceride breath test for the detection of intestinal fat malabsorption

    NARCIS (Netherlands)

    Kalivianakis, M; Elstrodt, J; Havinga, R; Kuipers, F; Stellaard, F; Sauer, PJJ; Vonk, RJ; Verkade, HJ

    1999-01-01

    Objective: To determine, in a rat model of fat malabsorption, the potency of the carbon 13-labeled mixed triglyceride (C-13-MTG) breath test as a noninvasive, patient-friendly replacement for classic fat balance studies, Study design: Comparison of the percentage of Fat absorption, detected by fat b

  2. A 1-3 Piezoelectric Fiber Reinforced Carbon Nanotube Composite Sensor for Crack Monitoring

    Science.gov (United States)

    Makireddi, Sai; Balasubramaniam, Krishnan

    2016-07-01

    A method for the detection of location and size of a crack in simple structures using a nanocomposite sensor is discussed. In the present study, a piezoelectric/single walled carbon nanotube composite sensor is modeled on piezoelectric principle. The effective piezoelectric and dielectric properties of the composite at 0.2 volume fraction loading of single walled carbon nanotubes is determined by micromechanical analysis. By means of these effective properties a piezoelectric sensor has been modeled. The transfer function and bode response of this sensor is investigated. The sensor is fixed at a location on a cantilever beam and the response of the sensor with respect to the size and location of the crack is modeled. The analytical values are compared with ANSYS. It is assumed that there is no slippage between the sensor and the beam surface. The sensor behavior with respect to dynamic loading conditions is also studied. It is ascertained that the relative position of the sensor with respect to crack is crucial and determines the sensitivity of the sensor to detect a crack. Results are presented in the form of voltage output from the sensor at different crack locations and at varying lengths of the crack.

  3. A comparison between shell-based δ13C values from an extratropical setting (Gulf of Maine, USA) and atmospheric δ13C values for intervals of the last millennium: insights on regional hydrography and carbon dynamics

    Science.gov (United States)

    Wanamaker, A. D.; Kreutz, K. J.; Introne, D.; Beirne, E. C.

    2010-12-01

    To explore past changes in carbon dynamics in the Gulf of Maine, and to further evaluate the utility of stable carbon isotope ratios (δ13C) derived from the aragonitic shells of the marine bivalve Arctica islandica in global change studies, we compared annual shell δ13C values (N = 4; total of 333 years) with published atmospheric δ13C data (derived from ice cores [AD 1006 to AD 1978; N = 58 measurements] and instrumental series (AD 1981 to AD 2008; total of 28 years]) for intervals of the last millennium. Both datasets were modeled using an exponential function to highlight the low frequency trends in the data and to facilitate a relevant comparison. From AD 1000 to AD 1800, the modeled atmospheric δ13C series increased by 0.20 ‰ (change = 0.00025 ‰ per year), while modeled shell δ13C series decreased by 0.24 ‰ (change = -0.00030 ‰ per year). From AD 1800 to present, both modeled δ13C datasets decreased substantially due to the admixture of isotopically negative carbon derived from increased fossil fuel emissions. The magnitude of the change during this interval in the atmospheric pool was 2.0 ‰ (rate = - 0.0095 ‰ per year), whereas the change in the shell-based values was 1.1 ‰ (rate = - 0.0052 ‰ per year), approximately half of the change noted in the atmosphere. Remarkably, the rate of change in shell δ13C values during the last 200 years was 17 times faster than the previous 800 years. Although the long-term offset (range 8.9 - 8.5 ‰) between atmospheric and shell δ13C data was not constant from AD 1000 to AD 1800, the converging nature of the modeled data suggest that regional hydrographic conditions within the Gulf of Maine during the last millennium have also influenced the δ13C signature in the shells. We will explore some possible hydrographic mechanisms that might explain the divergence between atmospheric and shell-based δ13C values. Despite the noted difference in the atmospheric and shell-based δ13C records, it appears

  4. The influence of temperature and seawater carbonate saturation state on 13C–18O bond ordering in bivalve mollusks

    Directory of Open Access Journals (Sweden)

    R. A. Eagle

    2013-07-01

    Full Text Available The shells of marine mollusks are widely used archives of past climate and ocean chemistry. Whilst the measurement of mollusk δ18O to develop records of past climate change is a commonly used approach, it has proven challenging to develop reliable independent paleothermometers that can be used to deconvolve the contributions of temperature and fluid composition on molluscan oxygen isotope compositions. Here we investigate the temperature dependence of 13C–18O bond abundance, denoted by the measured parameter Δ47, in shell carbonates of bivalve mollusks and assess its potential to be a useful paleothermometer. We report measurements on cultured specimens spanning a range in water temperatures of 5 to 25 °C, and field collected specimens spanning a range of −1 to 29 °C. In addition we investigate the potential influence of carbonate saturation state on bivalve stable isotope compositions by making measurements on both calcitic and aragonitic specimens that have been cultured in seawater that is either supersaturated or undersaturated with respect to aragonite. We find a robust relationship between Δ47 and growth temperature. We also find that the slope of a linear regression through all the Δ47 data for bivalves plotted against seawater temperature is significantly shallower than previously published inorganic and biogenic carbonate calibration studies produced in our laboratory and go on to discuss the possible sources of this difference. We find that changing seawater saturation state does not have significant effect on the Δ47 of bivalve shell carbonate in two taxa that we examined, and we do not observe significant differences between Δ47-temperature relationships between calcitic and aragonitic taxa.

  5. Response of dissolved inorganic carbon (DIC) and δ13CDIC to changes in climate and land cover in SW China karst catchments

    Science.gov (United States)

    Zhao, Min; Liu, Zaihua; Li, Hong-Chun; Zeng, Cheng; Yang, Rui; Chen, Bo; Yan, Hao

    2015-09-01

    Monthly hydrochemical data and δ13C of dissolved inorganic carbon (DIC) in karst water samples from September 2007 to October 2012 were obtained to reveal the controlling mechanisms on DIC geochemistry and δ13CDIC under different conditions of climate and land cover in three karst catchments: Banzhai, Dengzhanhe and Chenqi, in Guizhou Province, SW China. DIC of karst water at the Banzhai site comes mainly from carbonate dissolution under open system conditions with soil CO2 produced by root respiration and organic carbon decomposition with lowest δ13C values under its dense virgin forest coverage. Weaker carbonate bedrock dissolution due to sparse and thin soil cover results in lower δ13CDIC, pCO2, DIC and EC, and lower cation and anion concentrations. At the Chenqi site, larger soil CO2 input from a thick layer of soil results in high pCO2 and DIC, and low pH, SIc and δ13CDIC in the karst water. At the Dengzhanhe site, a lesser soil CO2 input due to stronger karst rock desertification and strong gypsum dissolution contribute to higher δ13CDIC, high EC and high cation and anion concentrations. Soil CO2 inputs, controlled by biological activity and available soil moisture, carbonate bedrock dissolution, dilution and degassing effects, vary seasonally following rainfall and temperature changes. Consequently, there are seasonal cycles in hydrochemistry and δ13CDIC of the karst water, with high pCO2 and low pH, EC, SIc, and δ13CDIC values in the warm and rainy seasons, and vice versa during the cold and dry seasons. A strongly positive shift (>3‰) in δ13CDIC occurred in the drought year, 2011, indicating that δ13CDIC in groundwater systems can be an effective indicator of environmental and/or climate changes.

  6. Theoretical Proof and Empirical Confirmation of a Continuous Labeling Method Using Naturally 13C-Depleted Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    Weixin Cheng; Feike A. Dijkstra

    2007-01-01

    Continuous isotope labeling and tracing is often needed to study the transformation, movement, and allocation of carbon in plant-soil systems. However, existing labeling methods have numerous limitations. The present study introduces a new continuous labeling method using naturally 13C-depleted CO2. We theoretically proved that a stable level of 13C-CO2 abundance In a labeling chamber can be maintained by controlling the rate of CO2-free air injection and the rate of ambient airflow with coupling of automatic control of CO2 concentration using a CO2 analyzer. The theoretical results were tested and confirmed in a 54 day experiment in a plant growth chamber. This new continuous labeling method avoids the use of radioactive 14C or expensive 13C-enriched CO2 required by existing methods and therefore eliminates issues of radiation safety or unaffordable isotope cost, as well as creating new opportunities for short- or long-term labeling experiments under a controlled environment.

  7. Carbon Dioxide Clusters: (CO_2)_6 to (CO_2)13

    Science.gov (United States)

    McKellar, A. R. W.; Oliaee, J. Norooz; Dehghany, M.; Moazzen-Ahmadi, N.

    2011-06-01

    We recenty reported assignments of specific infrared bands in the CO_2 νb{3} region (˜2350 wn) to (CO_2)_6, (CO_2)_7, (CO_2)_9, (CO_2)10, (CO_2)11, (CO_2)12, and (CO_2)13. Spectra are obtained by direct absorption using a rapid-scan tuneable diode laser spectrometer to probe a pulsed supersonic slit-jet expansion and assignments are facilitated by recent calculations of Takeuchi based on the Murthy potential. (CO_2)_6 is a symmetric top with S_6 point group symmetry which can be thought of as a stack of two planar cyclic trimers. (CO_2)13 is also an S_6 symmetric top, and consists of a single CO_2 monomer surrounded by an slightly distorted icosahedral cage. The remaining clusters are asymmetric tops without symmetry. Here we report additional CO_2 cluster results. Calculations based on the SAPT-s potential indicate that the structure of (CO_2)10 may be slightly different from that given by Takeuchi/Murthy. An additional band is observed for each of (CO_2)13 and (CO_2)10. A feature observed at 2378.2 wn is assigned as a (CO_2)_6 parallel combination band involving the sum of a fundamental and a low-lying intermolecular vibration. Most significantly, two bands are assigned to a second isomer of (CO_2)_6. This is also a symmetric top, but now with S_4 symmetry. The two symmetric hexamer isomers observed spectroscopically correspond well with the lowest energy structures given by both the SAPT-s and Murthy intermolecular potentials. [1] J. Norooz Oliaee, M. Dehgany, N. Moazzen-Ahmadi, and A.R.W. McKellar, Phys. Chem. Chem. Phys. 13, 1297 (2011). [2] H. Takeuchi, J. Phys. Chem. A 107, 5703 (2008); C.S. Murthy, S.F. O'Shea, and I.R. McDonald, Mol. Phys. 50, 531 (1983). [3] R. Bukowski, J. Sadlej, B. Jeziorski, P. Jankowski, K. Szalewicz, S.A. Kucharski, H.L. Williams, and B.M. Rice, J. Chem. Phys. 110, 3785 (1999)

  8. Insights into the coupling of upper ocean-benthic carbon dynamics in the western Arctic Ocean from an isotopic (13C,234Th) perspective

    Institute of Scientific and Technical Information of China (English)

    ZHANG Run; CHEN Min; MA Qiang; CAO Jianping; QIU Yusheng

    2015-01-01

    The coupling of upper ocean-benthic carbon dynamics in the ice-free western Arctic Ocean (the Chukchi Sea and the Canada Basin) was evaluated during the late July–early September 2003 using natural stable (13C) and radioactive (238U-234Th) isotope tracers. POC export flux estimated from234Th/238U disequilibria and dissolved CO2 concentration ([CO2(aq)]) pointed out that the strengthened biological pump in the Chukchi Shelf have significantly lowered [CO2(aq)] and altered the magnitude of isotopic (12C/13C) fractionation during carbon fixation in the surface ocean. Further,d13C signatures of surface sediments (d13Csed) are positively correlated to those of weightedd13CPOC in upper ocean (d13Csed =13.64+1.56×d13CPOC,r2=0.73,p<0.01), suggesting that the POC isotopic signals from upper ocean have been recorded in the sediments, partly due to the rapid export of particles as evidenced by low residence times of the highly particle-reactive234Th from the upper water column. It is suggested that there probably exists an upper ocean-benthic coupling of carbon dynamics, which likely assures the sedimentaryd13C record an indicator of paleo-CO2 in the western Arctic Ocean.

  9. Spatial variability in photosynthetic and heterotrophic activity drives localized δ13C org fluctuations and carbonate precipitation in hypersaline microbial mats.

    Science.gov (United States)

    Houghton, J; Fike, D; Druschel, G; Orphan, V; Hoehler, T M; Des Marais, D J

    2014-11-01

    Modern laminated photosynthetic microbial mats are ideal environments to study how microbial activity creates and modifies carbon and sulfur isotopic signatures prior to lithification. Laminated microbial mats from a hypersaline lagoon (Guerrero Negro, Baja California, Mexico) maintained in a flume in a greenhouse at NASA Ames Research Center were sampled for δ(13) C of organic material and carbonate to assess the impact of carbon fixation (e.g., photosynthesis) and decomposition (e.g., bacterial respiration) on δ(13) C signatures. In the photic zone, the δ(13) C org signature records a complex relationship between the activities of cyanobacteria under variable conditions of CO2 limitation with a significant contribution from green sulfur bacteria using the reductive TCA cycle for carbon fixation. Carbonate is present in some layers of the mat, associated with high concentrations of bacteriochlorophyll e (characteristic of green sulfur bacteria) and exhibits δ(13) C signatures similar to DIC in the overlying water column (-2.0‰), with small but variable decreases consistent with localized heterotrophic activity from sulfate-reducing bacteria (SRB). Model results indicate respiration rates in the upper 12 mm of the mat alter in situ pH and HCO3- concentrations to create both phototrophic CO2 limitation and carbonate supersaturation, leading to local precipitation of carbonate minerals. The measured activity of SRB with depth suggests they variably contribute to decomposition in the mat dependent on organic substrate concentrations. Millimeter-scale variability in the δ(13) C org signature beneath the photic zone in the mat is a result of shifting dominance between cyanobacteria and green sulfur bacteria with the aggregate signature overprinted by heterotrophic reworking by SRB and methanogens. These observations highlight the impact of sedimentary microbial processes on δ(13) C org signatures; these processes need to be considered when attempting to relate

  10. Strong near-infrared carbon in the Type Ia supernova iPTF13ebh

    CERN Document Server

    Hsiao, E Y; Contreras, C; Höflich, P; Sand, D; Marion, G H; Phillips, M M; Stritzinger, M; González-Gaitán, S; Mason, R E; Folatelli, G; Parent, E; Gall, C; Amanullah, R; Anupama, G C; Arcavi, I; Banerjee, D P K; Beletsky, Y; Blanc, G A; Bloom, J S; Brown, P J; Campillay, A; Cao, Y; De Cia, A; Diamond, T; Freedman, W L; Gonzalez, C; Goobar, A; Holmbo, S; Howell, D A; Johansson, J; Kasliwal, M M; Kirshner, R P; Krisciunas, K; Kulkarni, S R; Maguire, K; Milne, P A; Morrell, N; Nugent, P E; Ofek, E O; Osip, D; Palunas, P; Perley, D A; Persson, S E; Piro, A L; Rabus, M; Roth, M; Schiefelbein, J M; Srivastav, S; Sullivan, M; Suntzeff, N B; Surace, J; Woźnia, P R; Yaron, O

    2015-01-01

    We present near-infrared (NIR) time-series spectroscopy, as well as complementary ultraviolet (UV), optical, and NIR data, of the Type Ia supernova (SN Ia) iPTF13ebh, which was discovered within two days from the estimated time of explosion. The first NIR spectrum was taken merely 2.3 days after explosion and may be the earliest NIR spectrum yet obtained of a SN Ia. The most striking features in the spectrum are several NIR C I lines, and the C I {\\lambda}1.0693 {\\mu}m line is the strongest ever observed in a SN Ia. Interestingly, no strong optical C II counterparts were found, even though the optical spectroscopic time series began early and is densely-cadenced. Except at the very early epochs, within a few days from the time of explosion, we show that the strong NIR C I compared to the weaker optical C II appears to be general in SNe Ia. iPTF13ebh is a fast decliner with {\\Delta}m15(B) = 1.79 $\\pm$ 0.01, and its absolute magnitude obeys the linear part of the width-luminosity relation. It is therefore categ...

  11. Insights Into Water-Soluble Organic Aerosol Sources From Carbon-13 Ratios of Size Exclusion Chromatography Fractions

    Science.gov (United States)

    Ruehl, C. R.; Chuang, P. Y.; McCarthy, M. D.

    2008-12-01

    Many sources of organic aerosols have been identified and quantified, and much of this work has used individual (mosty water-insoluble) compounds as tracers of primary sources. However, most organic aerosol cannot be molecularly characterized, and the water-soluble organic carbon (WSOC) in many aerosols is thought to originate from gaseous precursors (i.e., it is secondary in nature). It can therefore be difficult to infer aerosol sources, particularly of background (i.e., aged) aerosols, and of the relatively high-MW component of aerosols. The stable isotope ratios (δ13C) of organic aerosols have been used to distinguish between sources, with lighter values (-30‰ to -25‰) interpreted as having originated from fossil fuel combustion and C4 biogenic emission, and heavier values (-25‰ to - 20‰) indicating a marine or C3 biogenic source. Most published measurements were of either total suspended particulates or PM2.5, however, and it is unknown to what extent these fractions differ from submicron WSOC. We report δ13C for submicron WSOC collected at a variety of sites, ranging from marine to polluted to background continental. Bulk marine organic δ13C ranged from -30.4 to - 27.6‰, slightly lighter than previously published results. This could be due to the elimination of supermicron cellular material or other biogenic primary emissions from the sample. Continental WSOC δ13C ranged from -19.1 to -29.8‰, with heavier values (-19.8 ± 1.0‰) in Oklahoma and lighter values at Great Smoky Mountain National Park in Tennessee (-25.8 ± 2.6‰) and Illinois (-24.5 ± 1.0‰). This likely results from the greater proportional of C3 plant material in the Oklahoma samples. In addition to bulk samples, we used size exclusion chromatography (SEC) to report δ13C of organic aerosols as a function of hydrodynamic diameter. Variability and magnitude of hydrodynamic diameter was greatest at low SEC pH, indicative of the acidic character of submicron WSOC. Tennessee

  12. Creation of hierarchical carbon nanotube assemblies through alternative packing of complementary semi-artificial beta-1,3-glucan/carbon nanotube composites.

    Science.gov (United States)

    Numata, Munenori; Sugikawa, Kouta; Kaneko, Kenji; Shinkai, Seiji

    2008-01-01

    Much attention has been focused on exploiting novel strategies for the creation of hierarchical polymer assemblies by the control of the assembling number or the relative location among neighboring polymers. We here propose a novel strategy toward the creation of "hierarchical" single-walled carbon nanotube (SWNT) architectures by utilizing SWNT composites with cationic or anionic complementary semi-artificial beta-1,3-glucans as "building blocks". These beta-1,3-glucans are known to wrap SWNTs helically, to create one-dimensional superstructural composites. If the cationic composite is neutralized by an anionic composite, a well ordered SWNT-based sheet structure was created. Transmission electron microscopy (TEM) observation revealed that this sheet structure is composed of highly-ordered fibrous assemblies of SWNTs. This suggests that the cationic and anionic composites are tightly packed through electrostatic interactions. Moreover, both of the final assembly structures are readily tunable by adjusting the cation/anion ratio. The self-assembling modulation of functional polymers is associated with the progress in ultimate nanotechnologies, thus enabling us to create numerous functional nanomaterials. We believe, therefore, that the present system will extend the frontier of SWNT research to assembly chemistry including "hierarchical" superstructures. PMID:18200640

  13. Use of 13C Labeled Carbon Tetrachloride to Demonstrate the Transformation to Carbon Dioxide under Anaerobic Conditions in a Continuous Flow Column

    Science.gov (United States)

    Semprini, L.; Azizian, M.

    2012-12-01

    The demonstration of transformation of chlorinated aliphatic compounds (CAHs) in the subsurface is a challenge, especially when the products are carbon dioxide (CO2) and chloride ion. The groundwater contaminant carbon tetrachloride (CT) is of particular interest since a broad range of transformation products can be potentially formed under anaerobic conditions. The ability to demonstrate the transformation of CT to CO2 as a non toxic endproduct, is also of great interest. Results will be presented from a continuous flow column study where 13C labeled CT was used to demonstrate its transformation to CO2. The column was packed with a quartz sand and bioaugmented the Evanite Culture (EV) that is capable of transforming tetrachloroethene (PCE) to ethene. The column was continously fed a synthetic groundwater that was amended with PCE (0.10 mM) and either formate (1.5 mM) or lactate (1.1 mM), which ferments to produce hydrogen (H2) as the ultimate electron donor. Earlier CT transformation studies with the column, in the absence of sulfate reduction, and with formate added as a donor found CT (0.015 mM) was over 98% transformed with about 20% converted to chloroform (CF) (0.003 mM) and with a transient detection of chloromethane (CM). Methane and carbon disulfide, as potential products, were not detected. Neither CT nor CF inhibited the reductive dehalogenation of PCE to ethene. A series of transient studies conducted after these initial CT transformation tests, but in the absence of CT, showed formate remained an effective substrate for maintaining sulfate reduction and PCE transformation. Lactate, which was effectively fermented prior to CT addition, was not effectively fermented, with propionate accumulating as a fermentation product. When lactate was added, PCE was mainly transformed to cis-dichloroethene (cis-DCE) and VC, and sulfate reduction did not occur. In order to restore effective lactate fermentation the column was then bioaugmented with an EV culture that

  14. The Galactic R Coronae Borealis Stars: The C2 Swan Bands, the Carbon Problem, and the 12C/13C Ratio

    Science.gov (United States)

    Hema, B. P.; Pandey, Gajendra; Lambert, David L.

    2012-03-01

    Observed spectra of R Coronae Borealis (RCB) and hydrogen-deficient carbon (HdC) stars are analyzed by synthesizing the C2 Swan bands (1, 0), (0, 0), and (0, 1) using our detailed line list and the Uppsala model atmospheres. The (0, 1) and (0, 0) C2 bands are used to derive the 12C abundance, and the (1, 0) 12C13C band to determine the 12C/13C ratios. The carbon abundance derived from the C2 Swan bands is about the same for the adopted models constructed with different carbon abundances over the range 8.5 (C/He = 0.1%) to 10.5 (C/He = 10%). Carbon abundances derived from C I lines are about a factor of four lower than the carbon abundance of the adopted model atmosphere over the same C/He interval, as reported by Asplund et al., who dubbed the mismatch between adopted and derived C abundance as the "carbon problem." In principle, the carbon abundances obtained from C2 Swan bands and that assumed for the model atmosphere can be equated for a particular choice of C/He that varies from star to star. Then, the carbon problem for C2 bands is eliminated. However, such C/He ratios are in general less than those of the extreme helium stars, the seemingly natural relatives to the RCB and HdC stars. A more likely solution to the C2 carbon problem may lie in a modification of the model atmosphere's temperature structure. The derived carbon abundances and the 12C/13C ratios are discussed in light of the double degenerate and the final flash scenarios.

  15. Land use Effects on Storage, Stability and Structure of Organic Carbon in Soil Density Fractions Revealed by 13C Natural Abundance and CPMAS 13C NMR

    Science.gov (United States)

    Flessa, H.; Helfrich, M.; John, B.; Yamashita, T.; Ludwig, B.

    2004-12-01

    The type of land use and soil cultivation are important factors controlling organic carbon storage (SOC) in soils and they can also influence the relative importance, the structure, and the stability of different SOC pools. The objectives of our study were: i) to quantify the SOC stocks in different density fractions (mineral-associated soil organic matter > 2 g cm-3 (Mineral-SOM), free particulate organic matter soils under different land use (spruce forest, grassland, maize, wheat), ii) to determine the structure of these SOC fractions by CPMAS 13C NMR spectroscopy, and iii) to analyse the stability of these SOC fractions in the maize soil on the basis of the stable isotope composition of SOC. The SOC concentration in the A horizon increased in the order wheat (12.7 g kg-1) soil, the particulate organic matter accounted for 52% of the total SOC content. The chemical structure of the soil organic matter (SOM) was influenced by litter quality, the intensity of litter decomposition and the related production and storage of microbially-derived substances. SOM of the acid forest soil was characterized by large amounts of POM with a high content of spruce litter-derived alkyl C. In the biologically more active grassland and maize soil, litter-derived POM was decomposed more rapidly and SOC stocks were dominated by mineral-associated SOM which contained greater proportions of aryl and carbonyl C. The cultivation of the grassland soil induced enhanced mineralization of POM and in particular of mineral-associated SOM. The faster SOC turnover was associated with a relative accumulation of aromatic and carbonyl C structures in the mineral-bound SOM. In all soils, the free particulate organic matter had a smaller proportion of alkyl C and a larger proportion of O-alkyl C than the particulate organic matter occluded in aggregates. The mean age of the SOM in the density fractions of the maize soil increased with increasing aromaticity in the order free POM (22 yr) humification

  16. Accumulation and δ 13C Composition of Soil Carbon Across a Chronosequence of Dune Complexes at Mono Lake, CA

    Science.gov (United States)

    Aanderud, Z. T.; Shuldman, M. I.; Richards, J. H.

    2004-12-01

    The amount of C sequestered and its permanence in some deserts could be higher than normally appreciated. Limited soil water availability and slow decomposition rates in desert soils may induce the long-term accumulation of soil organic C and coarse woody litter. We inventoried C in soils along a chronosequence of Sarcobatus vermiculatus shrub islands and interspaces at the Mono Basin Ecosystem Research Site, CA. Such shrub-island/interspace dune systems are widespread in basin habitats across the Great Basin Desert. We hypothesized that organic C stores would increase across the chronosequence (48, 84, ˜300, and 1800-3000 years since exposure by lake recession) and that δ 13C values of soil organic C (SOC) would become enriched over time due to isotopic fractionation associated with C mineralization of leaf and root litter. C stores quantified in 0-50 cm soils included: SOC, soil inorganic C (SIC; i.e. carbonates removed by 12 M HCl fumigation), and C in partially decomposed woody and fine litter. The youngest dune system contains at least 13.6 Mg C ha-1 and the oldest contains at least 37.9 Mg C ha-1. Our data suggest slow turnover rates of SOC (C:N ratios ˜10) and substantial accumulation of organic C (coarse litter, fine litter, and SOC) in shrub islands across the chronosequence (islands at the youngest site = 8.0 g kg-1 and islands at the oldest site = 24.0 g kg-1. Large pools of SOC and C in woody debris are potentially protected in this shrub-dominated desert, especially in shrub islands of "old-growth" dune systems. Most of the C in the soil is SIC (94% in youngest dunes to 83% at the oldest dunes). The decrease in SIC proportion as the dune systems age is correlated with a decrease in pH across the chronosequence (10.6 at the youngest site and 9.7 at the oldest site). As dunes age, total soil C isotopic composition shifts from positive δ 13C values (2.8 to 3.6 ‰ ), indicative inorganic processes, to slightly negative values (-1.2 to -3.7 ‰ ) as a

  17. Effects of carbon content and microstructure on corrosion rate of 13% chromium steel in wet CO2 environments; Shitsujun CO2 kankyochu deno 13%Cr ko no fushoku ni oyobosu C ryo to kinzoku soshiki no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Hara, T.; Asahi, H. [Nippon Steel Corp., Tokyo (Japan)

    1998-11-15

    Thirteen percent chromium steel is excellent in corrosion resistance of CO2. A large quantity of 13% chromium steel is used in oil and gas fields where CO2 is produced. Usually, AISI 420 13% chromium steel to which C was added 0.2% is used for an oil field tube. Since AISI 420 steel is tempered, chromium carbide is formed and the effective chromium amount in a parent phase is decreased to deteriorate the corrosion resistance of CO2. Therefore, it is desired to decrease the carbon content as far as possible for improvement of corrosion resistance of CO2. AISI 410 13% chromium steel with a carbon content of 0.1% is difficult to form {delta}-ferrite. It has a problem in manufacturing because the hot working performance is low. In this report, on the basis of AISI 420 13% chromium steel, the effects of composition on CO2 corrosion were investigated using the steel whose carbon content was changed. Ferrite, martensite, and tempered martensite differ in a corrosion rate. The corrosion rate increases in the order of martensite, ferrite, and tempered martensite. The corrosion rate of 13% chromium steel is represented by the product of the corrosion rate of each microstructure and the fraction of it. 11 refs., 12 figs., 2 tabs.

  18. [Distribution characteristics of soil humus fractions stable carbon isotope natural abundance (delta 13C) in paddy field under long-term ridge culture].

    Science.gov (United States)

    Tang, Xiao-hong; Luo, You-jin; Ren, Zhen-jiang; Lü, Jia-ke; Wei, Chao-fu

    2011-04-01

    A 16-year field experiment was conducted in a ridge culture paddy field in the hilly region of Sichuan Basin, aimed to investigate the distribution characteristics of stable carbon isotope natural abundance (delta 13C) in soil humus fractions. The soil organic carbon (SOC) content in the paddy field under different cultivation modes ranked in the order of wide ridge culture > ridge culture > paddy and upland rotation. In soil humus substances (HS), humin (HU) was the main composition, occupying 21% - 30% of the total SOC. In the extracted soil carbon, humic acid (HA) dominated, occupying 17% - 21% of SOC and 38% - 65% of HS. The delta 13C value of SOC ranged from -27.9 per thousand to -25.6 per thousand, and the difference of the delta 13C value between 0-5 cm and 20-40 cm soil layers was about 1.9 per thousand. The delta 13C value of HA under different cultivation modes was 1 per thousand - 2 per thousand lower than that of SOC, and more approached to the delta 13C value of rapeseed and rice residues. As for fulvic acid (FA), its delta 13C value was about 2 per thousand and 4 per thousand higher than that of SOC and HA, respectively. The delta 13C value of HU in plough layer (0-20 cm) and plow layer (20-40 cm) ranged from -23.7 per thousand - -24.9 per thousand and -22.6 per thousand - -24.2 per thousand, respectively, reflecting the admixture of young and old HS. The delta 13C value in various organic carbon fractions was HU>FA>SOC>rapeseed and rice residues>HA. Long-term rice planting benefited the increase of SOC content, and cultivation mode played an important role in affecting the distribution patterns of soil humus delta 13C in plough layer and plow layer.

  19. Crystal structures of 2-methoxyisoindoline-1,3-dione, 1,3-dioxoisoindolin-2-yl methyl carbonate and 1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-2-yl methyl carbonate: three anticonvulsant compounds

    Directory of Open Access Journals (Sweden)

    Fortune Ezemobi

    2014-12-01

    Full Text Available The title compounds, C9H7NO3, (1, C10H7NO5, (2, and C14H9NO5, (3, are three potentially anticonvulsant compounds. Compounds (1 and (2 are isoindoline derivatives and (3 is an isoquinoline derivative. Compounds (2 and (3 crystallize with two independent molecules (A and B in their asymmetric units. In all three cases, the isoindoline and benzoisoquinoline moieties are planar [r.m.s. deviations are 0.021 Å for (1, 0.04 and 0.018 Å for (2, and 0.033 and 0.041 Å for (3]. The substituents attached to the N atom are almost perpendicular to the mean planes of the heterocycles, with dihedral angles of 89.7 (3° for the N—O—Cmethyl group in (1, 71.01 (4 and 80.00 (4° for the N—O—C(=OO—Cmethyl groups in (2, and 75.62 (14 and 74.13 (4° for the same groups in (3. In the crystal of (1, there are unusual intermolecular C=O...C contacts of 2.794 (1 and 2.873 (1 Å present in molecules A and B, respectively. There are also C—H...O hydrogen bonds and π–π interactions [inter-centroid distance = 3.407 (3 Å] present, forming slabs lying parallel to (001. In the crystal of (2, the A and B molecules are linked by C—H...O hydrogen bonds, forming slabs parallel to (10-1, which are in turn linked via a number of π–π interactions [the most significant centroid–centroid distances are 3.4202 (7 and 3.5445 (7 Å], forming a three-dimensional structure. In the crystal of (3, the A and B molecules are linked via C—H...O hydrogen bonds, forming a three-dimensional structure, which is consolidated by π–π interactions [the most significant inter-centroid distances are 3.575 (3 and 3.578 (3 Å].

  20. Biology and air–sea gas exchange controls on the distribution of carbon isotope ratios (δ13C in the ocean

    Directory of Open Access Journals (Sweden)

    A. Schmittner

    2013-05-01

    Full Text Available Analysis of observations and sensitivity experiments with a new three-dimensional global model of stable carbon isotope cycling elucidate the processes that control the distribution of δ13C in the contemporary and preindustrial ocean. Biological fractionation dominates the distribution of δ13CDIC of dissolved inorganic carbon (DIC due to the sinking of isotopically light δ13C organic matter from the surface into the interior ocean. This process leads to low δ13CDIC values at dephs and in high latitude surface waters and high values in the upper ocean at low latitudes with maxima in the subtropics. Air–sea gas exchange provides an important secondary influence due to two effects. First, it acts to reduce the spatial gradients created by biology. Second, the associated temperature dependent fractionation tends to increase (decrease δ13CDIC values of colder (warmer water, which generates gradients that oppose those arising from biology. Our model results suggest that both effects are similarly important in influencing surface and interior δ13CDIC distributions. However, air-sea gas exchange is slow, so biological effect dominate spatial δ13CDIC gradients both in the interior and at the surface, in constrast to conclusions from some previous studies. Analysis of a new synthesis of δ13CDIC measurements from years 1990 to 2005 is used to quantify preformed (δ13Cpre and remineralized (δ13Crem contributions as well as the effects of biology (Δδ13Cbio and air–sea gas exchange (δ13C*. The model reproduces major features of the observed large-scale distribution of δ13CDIC, δ13Cpre, δ13Crem, δ13C*, and Δδ13Cbio. Residual misfits are documented and analyzed. Simulated surface and subsurface δ13CDIC are influenced by details of the ecosystem model formulation. For example, inclusion of a simple parameterization of iron limitation of phytoplankton growth rates and temperature-dependent zooplankton grazing rates improves the agreement

  1. Inlfuence of carbon content on microstructure and mechanical properties of Mn13Cr2 and Mn18Cr2 cast steels

    Institute of Scientific and Technical Information of China (English)

    Lu Dingshan; Liu Zhongyi; Li Wei

    2014-01-01

    In this paper, a comparison study was carried out to investigate the inlfuence of carbon content on the microstructure, hardness, and impact toughness of water-quenched Mn13Cr2 and Mn18Cr2 cast steels. The study results indicate that both steels' water-quenched microstructures are composed of austenite and a smal amount of carbide. The study also found that, when the carbon contents are the same, there is less carbide in Mn18Cr2 steel than in Mn13Cr2 steel. Therefore, the hardness of Mn18Cr2 steel is lower than that of Mn13Cr2 steel but the impact toughness of Mn18Cr2 steel is higher than that of Mn13Cr2 steel. With increasing the carbon content, the hardness increases and the impact toughness decreases in these two kinds of steels, and the impact toughness of Mn18Cr2 steel substantialy exceeds that of Mn13Cr2 steel. Therefore, the water-quenched Mn18Cr2 steel with high carbon content could be applied to relatively high impact abrasive working conditions, while the as-cast Mn18Cr2 steel could be only used under working conditions of relatively low impact abrasive load due to lower impact toughness.

  2. Effects of Ontogeny on δ13C of Plant- and Soil-Respired CO2 and on Respiratory Carbon Fractionation in C3 Herbaceous Species.

    Directory of Open Access Journals (Sweden)

    Yann Salmon

    Full Text Available Knowledge gaps regarding potential ontogeny and plant species identity effects on carbon isotope fractionation might lead to misinterpretations of carbon isotope composition (δ13C of respired CO2, a widely-used integrator of environmental conditions. In monospecific mesocosms grown under controlled conditions, the δ13C of C pools and fluxes and leaf ecophysiological parameters of seven herbaceous species belonging to three functional groups (crops, forage grasses and legumes were investigated at three ontogenetic stages of their vegetative cycle (young foliage, maximum growth rate, early senescence. Ontogeny-related changes in δ13C of leaf- and soil-respired CO2 and 13C/12C fractionation in respiration (ΔR were species-dependent and up to 7‰, a magnitude similar to that commonly measured in response to environmental factors. At plant and soil levels, changes in δ13C of respired CO2 and ΔR with ontogeny were related to changes in plant physiological status, likely through ontogeny-driven changes in the C sink to source strength ratio in the aboveground plant compartment. Our data further showed that lower ΔR values (i.e. respired CO2 relatively less depleted in 13C were observed with decreasing net assimilation. Our findings highlight the importance of accounting for ontogenetic stage and plant community composition in ecological studies using stable carbon isotopes.

  3. Biology and air-sea gas exchange controls on the distribution of carbon isotope ratios (δ13C) in the ocean

    Science.gov (United States)

    Schmittner, A.; Gruber, N.; Mix, A. C.; Key, R. M.; Tagliabue, A.; Westberry, T. K.

    2013-09-01

    Analysis of observations and sensitivity experiments with a new three-dimensional global model of stable carbon isotope cycling elucidate processes that control the distribution of δ13C of dissolved inorganic carbon (DIC) in the contemporary and preindustrial ocean. Biological fractionation and the sinking of isotopically light δ13C organic matter from the surface into the interior ocean leads to low δ13CDIC values at depths and in high latitude surface waters and high values in the upper ocean at low latitudes with maxima in the subtropics. Air-sea gas exchange has two effects. First, it acts to reduce the spatial gradients created by biology. Second, the associated temperature-dependent fractionation tends to increase (decrease) δ13CDIC values of colder (warmer) water, which generates gradients that oppose those arising from biology. Our model results suggest that both effects are similarly important in influencing surface and interior δ13CDIC distributions. However, since air-sea gas exchange is slow in the modern ocean, the biological effect dominates spatial δ13CDIC gradients both in the interior and at the surface, in contrast to conclusions from some previous studies. Calcium carbonate cycling, pH dependency of fractionation during air-sea gas exchange, and kinetic fractionation have minor effects on δ13CDIC. Accumulation of isotopically light carbon from anthropogenic fossil fuel burning has decreased the spatial variability of surface and deep δ13CDIC since the industrial revolution in our model simulations. Analysis of a new synthesis of δ13CDIC measurements from years 1990 to 2005 is used to quantify preformed and remineralized contributions as well as the effects of biology and air-sea gas exchange. The model reproduces major features of the observed large-scale distribution of δ13CDIC as well as the individual contributions and effects. Residual misfits are documented and analyzed. Simulated surface and subsurface δ13CDIC are influenced by

  4. Biology and air–sea gas exchange controls on the distribution of carbon isotope ratios (δ13C in the ocean

    Directory of Open Access Journals (Sweden)

    A. Schmittner

    2013-09-01

    Full Text Available Analysis of observations and sensitivity experiments with a new three-dimensional global model of stable carbon isotope cycling elucidate processes that control the distribution of δ13C of dissolved inorganic carbon (DIC in the contemporary and preindustrial ocean. Biological fractionation and the sinking of isotopically light δ13C organic matter from the surface into the interior ocean leads to low δ13CDIC values at depths and in high latitude surface waters and high values in the upper ocean at low latitudes with maxima in the subtropics. Air–sea gas exchange has two effects. First, it acts to reduce the spatial gradients created by biology. Second, the associated temperature-dependent fractionation tends to increase (decrease δ13CDIC values of colder (warmer water, which generates gradients that oppose those arising from biology. Our model results suggest that both effects are similarly important in influencing surface and interior δ13CDIC distributions. However, since air–sea gas exchange is slow in the modern ocean, the biological effect dominates spatial δ13CDIC gradients both in the interior and at the surface, in contrast to conclusions from some previous studies. Calcium carbonate cycling, pH dependency of fractionation during air–sea gas exchange, and kinetic fractionation have minor effects on δ13CDIC. Accumulation of isotopically light carbon from anthropogenic fossil fuel burning has decreased the spatial variability of surface and deep δ13CDIC since the industrial revolution in our model simulations. Analysis of a new synthesis of δ13CDIC measurements from years 1990 to 2005 is used to quantify preformed and remineralized contributions as well as the effects of biology and air–sea gas exchange. The model reproduces major features of the observed large-scale distribution of δ13CDIC as well as the individual contributions and effects. Residual misfits are documented and analyzed. Simulated surface and subsurface

  5. A spectral line survey in the 2 mm and 1.3 mm windows toward the carbon rich envelope of IRC +10216

    OpenAIRE

    He, J. H.; Dinh-V-Trung; Kwok, S.; Mueller, H. S. P.; Zhang, Y.; T. Hasegawa; Peng, T. C.; Huang, Y C

    2008-01-01

    We present the results of our spectral line surveys in the 2 mm and 1.3 mm windows toward the carbon rich envelope of IRC +10216. Totally 377 lines are detected, among which 360 lines are assigned to 57 known molecules (including 29 rare isotopomers and 2 cyclic isomers). Only 17 weak lines remain unidentified. Rotational lines of isotopomers 13CCH and HN13C are detected for the first time in IRC +10216. The detection of the formaldehyde lines in this star is also confirmed. Possible abundanc...

  6. Estimating groundwater mixing and origin in an overexploited aquifer in Guanajuato, Mexico, using stable isotopes (strontium-87, carbon-13, deuterium and oxygen-18).

    Science.gov (United States)

    Horst, Axel; Mahlknecht, Jürgen; Merkel, Broder J

    2007-12-01

    Stable Isotopes (strontium-87, deuterium and oxygen-18, carbon-13) have been used to reveal different sources of groundwater and mixing processes in the aquifer of the Silao-Romita Valley in the state of Guanajuato, Mexico. Calcite dissolution appeared to be the main process of strontium release leading to relatively equal (87)Sr/(86)Sr ratios of 0.7042-0.7062 throughout the study area which could be confirmed by samples of carbonate rocks having similar Sr ratios (0.7041-0.7073). delta(13)C values (-11.91- -6.87 per thousand VPDB) of groundwaters confirmed the solution of carbonates but indicated furthermore influences of soil-CO(2). Deuterium and (18)O contents showed a relatively narrow range of-80.1- -70.0 per thousand VSMOW and -10.2- -8.8 per thousand, VSMOW, respectively but are affected by evaporation and mixing processes. The use of delta(13)C together with (87)Sr/(86)Sr revealed three possible sources: (i) carbonate-controlled waters showing generally higher Sr-concentrations, (ii) fissure waters with low-strontium contents and (iii) infiltrating water which is characterized by low delta(13)C and (87)Sr/(86)Sr ratios. The third component is affected by evaporation processes taking place before and during infiltration which might be increased by extraction and reinfiltration (irrigation return flow). PMID:18041622

  7. Spatial variability of carbon13C) and nitrogen (δ15N) stable isotope ratios in an Arctic marine food web

    DEFF Research Database (Denmark)

    Hansen, Joan Holst; Hedeholm, Rasmus Berg; Sünksen, Kaj;

    2012-01-01

    Stable isotopes of carbon13C) and nitrogen (δ15N) were used to examine trophic structures in an arctic marine food web at small and large spatial scales. Twelve species, from primary consumers to Greenland shark, were sampled at a large spatial scale near the west and east coasts of Greenland...

  8. Creep-resistant porous structures based on stereo-complex forming triblock copolymers of 1,3-trimethylene carbonate and lactides

    NARCIS (Netherlands)

    Zhang, Zheng; Grijpma, Dirk W.; Feijen, Jan

    2004-01-01

    Stereo-complexes (poly(ST–TMC–ST)) of enantiomeric triblock copolymers based on 1,3-trimethylene carbonate (TMC) and L- or D-lactide (poly(LLA–TMC–LLA) and poly(DLA–TMC–DLA)) were prepared. Films of poly(ST–TMC–ST) could be prepared by solvent casting mixtures of equal amounts of poly(LLA–TMC–LLA) a

  9. Sulfonamide inhibition studies of the β-carbonic anhydrase from the newly discovered bacterium Enterobacter sp. B13.

    Science.gov (United States)

    Eminoğlu, Ayşenur; Vullo, Daniela; Aşık, Aycan; Çolak, Dilşat Nigar; Çanakçı, Sabriye; Beldüz, Ali Osman; Supuran, Claudiu T

    2016-04-01

    The genome of the newly identified bacterium Enterobacter sp. B13 encodes for a β-class carbonic anhydrases (CAs, EC 4.2.1.1), EspCA. This enzyme was recently cloned, and characterized kinetically by this group (J. Enzyme Inhib. Med. Chem. 2016, 31). Here we report an inhibition study with sulfonamides and sulfamates of this enzyme. The best EspCA inhibitors were some sulfanylated sulfonamides with elongated molecules, metanilamide, 4-aminoalkyl-benzenesulfonamides, acetazolamide, and deacetylated methazolamide (KIs in the range of 58.7-96.5nM). Clinically used agents such as methazolamide, ethoxzolamide, dorzolamide, brinzolamide, benzolamide, zonisamide, sulthiame, sulpiride, topiramate and valdecoxib were slightly less effective inhibitors (KIs in the range of 103-138nM). Saccharin, celecoxib, dichlorophenamide and many simple benzenesulfonamides were even less effective as EspCA inhibitors, with KIs in the range of 384-938nM. Identification of effective inhibitors of this bacterial enzyme may lead to pharmacological tools useful for understanding the physiological role(s) of the β-class CAs in bacterial pathogenicity/virulence. PMID:26920803

  10. Biosynthetic control of the natural abundance of carbon 13 at specific positions within fatty acids in Escherichia coli. Evidence regarding the coupling of fatty acid and phospholipid synthesis

    International Nuclear Information System (INIS)

    Stable carbon isotope ratios (13C/12C) at natural abundance levels have been determined for individual carbon atoms in each of the major phospholipid fatty acids of Escherichia coli grown on glucose as the sole carbon source. Two models were constructed for the isotope effects and carbon flow pathways which must be responsible for the observed isotopic fractionations. Both models incorporate a branch in the carbon flow at which fatty acyl-acyl carrier protein (acyl-ACP) is utilized either for complex lipid synthesis or for elongation by fatty acid synthetase. Depletion of carbon 13 in the carboxyl groups of myristic and palmitoleic acids (relative to carbonyl groups in precursor acyl-ACP's) was observed to occur at this branching site. Only one of the models was consistent both with this observation and with the observation that exogenous fatty acids are incorporated into phospholipids but are not elongated. The successful model has free fatty acid as the intermediate product coupling fatty acid biosynthesis to phospholipid synthesis. Essential to this pathway are those reactions catalyzed by thioesterases I and II as well as acyl-ACP synthetase, enzymes whose roles have previously been unknown in vivo

  11. Assessing offsets between the δ13C of sedimentary components and the global exogenic carbon pool across early Paleogene carbon cycle perturbations

    NARCIS (Netherlands)

    Sluijs, A.; Dickens, G.R.

    2012-01-01

    Negative stable carbon isotope excursions (CIEs) across the Paleocene–Eocene thermal maximum (PETM; ∼56 Ma) range between 2‰ and 7‰, even after discounting sections with truncated records. Individual carbon isotope records differ in shape and magnitude from variations in the global exogenic carbon c

  12. The Precise Radio Observation of the 13C Isotopic Fractionation for Carbon Chain Molecule HC3N in the Low-Mass Star Forming Region L1527

    Science.gov (United States)

    Araki, Mitsunori; Takano, Shuro; Sakai, Nami; Yamamoto, Satoshi; Oyama, Takahiro; Kuze, Nobuhiko; Tsukiyama, Koichi

    2016-06-01

    We observed the three 13C isotopic species of HC3N with the high signal-to-noise ratios in L1527 using Green Bank 100 m telescope and Nobeyama 45 m telescope to explore the production scheme of HC3N, where L1527 is the low-mass star forming region in the phase of a warm carbon chain chemistry region. The spectral lines of the J = 5--4, 9--8, 10--9, and 12--11 transitions in the 44-109 GHz region were used to measure isotopic ratios. The abundance of HCCCN was determined from the line intensities of the two weak hyperfine components of the J = 5-4 transition. The isotopic ratios were precisely determined to be 1.00 : 1.01 : 1.35 : 86.4 for [H13CCCN] : [HC13CCN] : [HCC13CN] : [HCCCN]. It was found that the abundance of H13CCCN is equal to that of HC13CCN, and it was implied that HC3N is mainly formed by the reaction schemes via C2H2 and C2H2+ in L1527. This would suggest a universality of dicarbide chemistry producing HC3N irrespective of evolutional phases from a starless dark cloud to a warm carbon chain chemistry region. Sakai, N., Sakai, T., Hirota, T., & Yamamoto, S. 2008, ApJ, 672, 371 Takano, S., Masuda, A., Hirahara, Y., et al. 1998, A&A, 329, 1156

  13. Fate of organic carbon in paddy soils - results of Alisol and Andosol incubation with 13C marker

    Science.gov (United States)

    Winkler, Pauline; Cerli, Chiara; Fiedler, Sabine; Woche, Susanne; Rahayu Utami, Sri; Jahn, Reinhold; Kalbitz, Karsten; Kaiser, Klaus

    2016-04-01

    For a better understanding of organic carbon (OC) decomposition in paddy soils an incubation experiment was performed. Two soil types with contrasting mineralogy (Alisol and Andosol) were exposed to 8 anoxic‒oxic cycles over 1 year. Soils received rice straw marked with 13C (228 ‰) at the beginning of each cycle. A second set of samples without straw addition was used as control. Headspaces of the incubation vessels were regularly analysed for CO2 and CH4. In soil solutions, redox potential, pH, dissolved organic C (DOC), and Fe2+ were measured after each anoxic and each oxic phase. Soils were fractionated by density at the end of the experiment and the different fractions were isotopically analysed. Samples of genuine paddy soils that developed from the test soils were used as reference. During anoxic cycles, soils receiving rice straw released large amounts of CO2 and CH4, indicating strong microbial activity. Consequently, Eh values dropped and pH as well as Fe2+ concentrations increased. Concentrations of DOC were relatively small, indicating either strong consumption and/or strong retention of dissolved organic compounds. During oxic cycles, concentrations of dissolved Fe dropped in both soils while DOC concentrations remained constant in the Alisol and decreased in the Andosol. Density fractionation revealed increased contents of mineral associated OC for the Andosol incubated with straw addition as compared to the parent soil. No changes were found for the Alisol. However, the mineral-associated OC fraction of both soil types contained 13C of the added straw. Hence, fresh organic matter is incorporated while part of the older organic matter has been released or mineralized. The increase in the Andosol might be due to effective binding of fresh OC to minerals and/or stronger retention/preservation of older OC. Both could be explained by the more reactive mineralogy of the Andosol than of the Alisol. XPS analyses of the soils are currently performed and

  14. Chemical weathering and the role of sulfuric and nitric acids in carbonate weathering: Isotopes (13C, 15N, 34S, and 18O) and chemical constraints

    Science.gov (United States)

    Li, Cai; Ji, Hongbing

    2016-05-01

    Multiple isotopes (13C-DIC, 34S and 18O-SO42-, 15N and 18O-NO3-) and water chemistry were used to evaluate weathering rates and associated CO2 consumption by carbonic acid and strong acids (H2SO4 and HNO3) in a typical karst watershed (Wujiang River, Southwest China). The dual sulfate isotopes indicate that sulfate is mainly derived from sulfide oxidation in coal stratum and sulfide-containing minerals, and dual nitrate isotopes indicate that nitrate is mainly derived from soil N and nitrification. The correlation between isotopic compositions and water chemistry suggests that sulfuric and nitric acids, in addition to carbonic acid, are involved in carbonate weathering. The silicate and carbonate weathering rates are 7.2 t km-2 yr-1 and 76 t km-2 yr-1, respectively. In comparison with carbonate weathering rates (43 t km-2 yr-1) by carbonic acid alone, the subsequent increase in rates indicates significant enhancement of weathering when combined with sulfuric and nitric acids. Therefore, the role of sulfuric and nitric acids in the rock weathering should be considered in the global carbon cycle.

  15. Bio-Carbon Accounting for Bio-Oil Co-Processing: 14C and 13C/12C

    Energy Technology Data Exchange (ETDEWEB)

    Mora, Claudia I. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Li, Zhenghua [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vance, Zachary [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-21

    This is a powerpoint presentation on bio-carbon accounting for bio-oil co-processing. Because of the overlapping range in the stable C isotope compositions of fossil oils and biooils from C3-type feedstocks, it is widely thought that stable isotopes are not useful to track renewable carbon during co-production. In contrast, our study demonstrates the utility of stable isotopes to: • capture a record of renewable carbon allocation between FCC products of co-processing • record changes in carbon apportionments due to changes in reactor or feed temperature Stable isotope trends as a function of percent bio-oil in the feed are more pronounced when the δ13C of the bio-oil endmember differs greatly from the VGO (i.e., it has a C4 biomass source–corn stover, switch grass, Miscanthus, sugarcane– versus a C3 biomass source– pine, wheat, rice, potato), but trends on the latter case are significant for endmember differences of just a few permil. The correlation between measured 14C and δ13C may be useful as an alternative to carbon accounting, but the relationship must first be established for different bio-oil sources.

  16. In Situ 13C NMR at Elevated-Pressures and -Temperatures Investigating the Conversion of CO2 to Magnesium and Calcium Carbonate Minerals

    Science.gov (United States)

    Surface, J. A.; Conradi, M. S.; Skemer, P. A.; Hayes, S. E.

    2013-12-01

    We have constructed specialized NMR hardware to conduct in situ elevated-pressure, elevated-temperature 13C NMR studies of unmixed heterogeneous mixtures of solids, liquids, gases, and supercritical fluids. Specifically, our aim is to monitor CO2 uptake in both ultramafic rocks and in more porous geological materials to understand the mechanisms of chemisorption as a function of temperature, pressure and pH. In this in situ NMR probe, we are able to simulate processes at geologically relevant fluid pressures and temperatures, monitoring the kinetics of CO2 conversion to carbonates. The in situ NMR experiments consist of heterogeneous mixtures of rock, salty brine solution, and moderate pressure CO2 gas at elevated temperatures. The purpose of studying these reactions is to determine efficacy of carbonate formation in various geological reservoirs. Via 13C NMR, we have spectroscopically characterized and quantified the conversion of CO2 to magnesium carbonate and calcium carbonate minerals. When CO2 reacts with the calcium or magnesium in a mineral or rock sample, the 13C chemical shift, linewidth, lineshape, and relaxation times change dramatically. This change can be monitored in situ and provide instantaneous and continuous characterization that maps the chemistry that is taking place. For example, on the pathway to MgCO3 formation, there are a number of phases of Mg(OH)x(H2O)y(CO3)z that are apparent via NMR spectroscopy. We will demonstrate that NMR can be used for quantitative characterization of multiple metastable mineral phases in pure forms and in mixtures. Results are confirmed via powder XRD and Raman spectroscopy of aquo- hydro- carbonato- magnesium species and calcium carbonate species. We also have monitored the 13C spectroscopy to analyze the phase of CO2 (liquid, supercritical, or gas) and its conversion into other forms, such as bicarbonate and carbonate species, providing a "window" into the in situ pH of the reacting system. Reference: 'In Situ

  17. Δ14C and δ13C as tracers of organic carbon in Baltic Sea sediments collected in coastal waters off Lithuania and in the Gotland Deep

    International Nuclear Information System (INIS)

    Signatures of Δ14C and δ13C of total organic carbon in sediments as well as of total lipid extracts and phospholipid-derived fatty acid fractions isolated from the surface (0-3 cm) sediments collected in the Curonian Lagoon and in the open Baltic Sea were studied. An endmember mixing-model approach was applied to estimate relative contributions of the marine and terrestrial inputs to organic carbon in sediments, and to elucidate a possible leakage of chemical warfare agents at the Gotland Deep dumpsite. (author)

  18. Proton And Carbon-13 Nuclear Magnetic Resonance Of Some 4-Amino-3-Alkyl (Aryl)-5-Thio-1,2,4-Triazolines And Their Derivatives

    OpenAIRE

    El Toukhy, Ahmed [احمد الطوخي; Al-Kubaisi, Abdulla H.; Kenawy, Ibrahim

    1991-01-01

    The proton and carbon-13 NMR spectra of some 4-amino-3-alkyl(aryl)-5-thio-1,2,4-triazolines, some 3-alkyl-5-thio- 1,2,4-triazolines and some 4-amino-3-aryl-5-thio-l,2,4-triazoles were measured in DMSO-d6 as solvent. The chemical shift for each proton and carbon in these compounds were assigned. The 'H, chemical shift of N-H protons of the thioamide group and the "C chemical shift of C(3) in the triazolines were found to be sensitive to the substituent R (alkyi or aryl) at C(3), and correlated...

  19. Report on compounds labelled with nitrogen-13 or carbon-11 used in cancer metabolic studies with quantitative two-dimensional scanning and pet tomography

    International Nuclear Information System (INIS)

    The use of compounds labelled with radionuclides of the elements commonly involved in metabolic processes (oxygen, carbon, nitrogen) is becoming important in the non-invasive study of organ and tumour function. The application of compounds labelled with 13N and 11C to the study of amino-acid metabolism and changes in vasculature following chemotherapy and radiation therapy is described. In particular, 13N-labelled L-glutamate has been found to be useful in visualizing a number of human tumours including osteogenic sarcoma, rhabdomyosarcoma, Ewing's sarcoma, malignant fibrous histiocytoma, pineal gland tumours, primitive neuroectodermal tumours, medulloblastoma and several other solid tumours. In patients with bone tumours, changes in 13N-L-glutamate scans during chemotherapy were found to correlate with changes in other clinical parameters, such as serum alkaline phosphatase, histology and 99Tcsup(m)-bone scans, thus indicating that labelled L-glutamate is potentially useful in evaluating the response of solid tumours to chemotherapy. Scans of patients and volunteers using 13N-L-glutamate and 13N-L-valine indicate that the L-amino acids may be useful in studies of metabolic processes in the liver, myocardium and pancreas. Red blood cells, labelled with 11C-carbon monoxide via inhalation of the radioactive gas, have been used to assess changes in tumour vascularity following radiation therapy. Alpha-aminoisobutyric acid labelled with 11C has been synthesized and its distribution in normal and tumour-bearing dogs has been studied. (author)

  20. Acetalization of carbonyl compounds with 2,2,4-trimethyl-1,3-pentanedio catalyzed by novel carbon based solid acid catalyst

    Institute of Scientific and Technical Information of China (English)

    Ling Liu; Yuechang Zhao; Shan Gan; Xuezheng Liang; Jianguo Yang; Mingyuan He

    2008-01-01

    The synthesis of 2, 4-diisopropyl-5,5-dimethyl-1,3-dioxane through the acetalization of isobutyraldehyde with 2, 2,4-trimethyl-1,3-pentanediol (TMPD) catalyzed by the novel carbon based acid was first carried out. High conversion (≥98%) and specific selectivity were obtained using the novel carbon based acid, which kept high activity after it was reused 5 times.Moreover, the catalyst could be used to catalyze the acetalization and ketalization of different aldehydes and ketones with superior yield. The yield of several products was over 90%. The novel heterogeneous catalyst has the distinct advantages of high activity, strikingly simple workup procedure, non-pollution, and reusability, which will contribute to the success of the green process greatly.

  1. Application of δ13C and δ15N isotopic signatures of organic matter fractions sequentially separated from adjacent arable and forest soils to identify carbon stabilization mechanisms

    Directory of Open Access Journals (Sweden)

    M. Sommer

    2011-03-01

    Full Text Available Identifying the chemical mechanisms behind soil carbon bound in organo-mineral complexes is necessary to determine the degree to which soil organic carbon is stabilized belowground. We used the δ13C and δ15N isotopic signatures from two organic matter (OM fractions from soil to identify the likely binding mechanisms involved. We used OM fractions hypothesized to contain carbon stabilized through organo-mineral complexes: (1 OM separated chemically with sodium pyrophosphate (OM(PY and (2 OM stabilized in microstructures found in the chemical extraction residue (OM(ER. Furthermore, because the OM fractions were separated from five different soils with paired forest and arable land use histories, we could address the impact of land use change on carbon binding and processing mechanisms within these soils. We used partial least squares regression to analyze patterns in the isotopic signature of OM with established proxies of different binding mechanisms. Parsing soil OM into different fractions is a systematic method of dissection, however, we are primarily interested in how OM is bound in soil as a whole, requiring a means of re-assembly. Thus, we implemented the recent zonal framework described by Kleber et al. (2007 to relate our findings to undisturbed soil. The δ15N signature of OM fractions served as a reliable indicator for microbial processed carbon in both arable and forest land use types. The δ13C signature of OM fractions in arable sites did not correlate well with proxies of soil mineral properties while a consistent pattern of enrichment was seen in the δ13C of OM fractions in the forest sites. We found a significant difference in δ13C of pooled OM fractions between the forest and arable land use type although it was relatively small (<1‰. We found different binding mechanisms predominate in each land use type. The isotopic signatures of OM fractions from arable soils were highly related to the clay and silt size particles

  2. Application of δ13C and δ15N isotopic signatures of organic matter fractions sequentially separated from adjacent arable and forest soils to identify carbon stabilization mechanisms

    Science.gov (United States)

    Kayler, Z. E.; Kaiser, M.; Gessler, A.; Ellerbrock, R. H.; Sommer, M.

    2011-03-01

    Identifying the chemical mechanisms behind soil carbon bound in organo-mineral complexes is necessary to determine the degree to which soil organic carbon is stabilized belowground. We used the δ13C and δ15N isotopic signatures from two organic matter (OM) fractions from soil to identify the likely binding mechanisms involved. We used OM fractions hypothesized to contain carbon stabilized through organo-mineral complexes: (1) OM separated chemically with sodium pyrophosphate (OM(PY)) and (2) OM stabilized in microstructures found in the chemical extraction residue (OM(ER)). Furthermore, because the OM fractions were separated from five different soils with paired forest and arable land use histories, we could address the impact of land use change on carbon binding and processing mechanisms within these soils. We used partial least squares regression to analyze patterns in the isotopic signature of OM with established proxies of different binding mechanisms. Parsing soil OM into different fractions is a systematic method of dissection, however, we are primarily interested in how OM is bound in soil as a whole, requiring a means of re-assembly. Thus, we implemented the recent zonal framework described by Kleber et al. (2007) to relate our findings to undisturbed soil. The δ15N signature of OM fractions served as a reliable indicator for microbial processed carbon in both arable and forest land use types. The δ13C signature of OM fractions in arable sites did not correlate well with proxies of soil mineral properties while a consistent pattern of enrichment was seen in the δ13C of OM fractions in the forest sites. We found a significant difference in δ13C of pooled OM fractions between the forest and arable land use type although it was relatively small (<1‰). We found different binding mechanisms predominate in each land use type. The isotopic signatures of OM fractions from arable soils were highly related to the clay and silt size particles amount while

  3. Turnover of carbon in the 13C-urea breath test for the detection of Helicobacter pylori infection

    International Nuclear Information System (INIS)

    To obtain a standard protocol for the application of 13C-urea breath test (13C-UBT) analyzed by Isotope Ratio Mass Spectrometer (IRMS) to detect helicobacter pylori infection in the population is necessary to know the behavior of the turnover of 13C during the test in different individuals. The aims of this study was to find out a pattern for the turnover of the 13C in the 13C-UBT, analyzed by IRMS, in patients infected with H. pylori, in a Brazilian population, to define a protocol test application. We found that the isotopic ratio 13C/12C in expired CO2 from patients infected with H. pylori and subjected to 13C-UBT does not follow a single pattern of behavior. However this behavior can be similar in subjects having the same maximum values following an inverse proportional relationship between the maximum value and the time of appearance in the curve. (author)

  4. Synthesizing the Use of Carbon Isotope (14C and 13C) Approaches to Understand Rates and Pathways for Permafrost C Mobilization and Mineralization

    Science.gov (United States)

    Estop-Aragones, C.; Olefeldt, D.; Schuur, E.

    2015-12-01

    To better understand the permafrost carbon (C) feedback it is important to synthesize our current knowledge, and knowledge gaps, of how permafrost thaw can cause in situ mineralization or downstream mobilization of aged soil organic carbon (SOC) and the rate of this release. This potential loss of old SOC may occur via gaseous flux of CO2 and CH4 exchanged between soil and the atmosphere and via waterborne flux as DOC, POC (and their subsequent decomposition and release to the atmosphere). Carbon isotope (14C and 13C) approaches have been used to estimate both rates and pathways for permafrost C mobilization and mineralization. Radiocarbon (14C) has been used to estimate the contribution of aged C to overall respiration or waterborne C export. We aim to contrast results from radiocarbon studies, in order to assess differences between ecosystems (contrasting wet and dry ecosystems), thaw histories (active layer deepening or thermokarst landforms), greenhouse gas considered (CO2 and CH4) and seasons. We propose to also contrast methodologies used for assessing the contribution of aged C to overall C balance, and include studies using 13C data. Biological fractionation of 13C during both uptake and decomposition has been taken advantage of both in order to aid the interpretation of 14C data and on its own to assess sources and mineralization pathways. For example, 13C data has been used to differentiate between CH4 production pathways, and the relative contribution of anaerobic CO2 production to overall respiration. Overall, carbon isotope research is proving highly valuable for our understanding of permafrost C dynamics following thaw, and there is a current need to synthesize the available literature.

  5. Late Norian δ13Corg record in the Tethyan realm: New clues on the complex Late Triassic carbon cycle from the Lagonegro Basin (southern Italy)

    Science.gov (United States)

    Zaffani, Mariachiara; Agnini, Claudia; Concheri, Giuseppe; Godfrey, Linda; Katz, Miriam; Maron, Matteo; Rigo, Manuel

    2016-04-01

    The Late Triassic (ca. 237-201 Ma) is characterized by complex and extreme environmental, climatic and biotic changes (e.g.: the break-up of the supercontinent Pangaea; the humid event known as the Carnian Pluvial Event; the End-Triassic mass extinction; the emplacement of the CAMP volcanism). A global δ13Corg curve for the Late Triassic would provide new clues on this perturbed time interval and would have the potential for global correlations. In particular, the few available data from North American successions define the late Norian (ca. 220-206 Ma) as a "chaotic carbon interval", with rapid vacillations of the carbon isotope values paired with low faunal diversity. Our goal is to reconstruct a global δ13Corg profile for the late Norian, as a contribution to the construction of a more complete global carbon isotope curve for the Late Triassic. For this purpose, we analyzed three sections from the Lagonegro Basin (southern Italy), originally located in the western Tethys, on the other side of the supercontinent Pangaea respect to the North America. The obtained δ13Corg profiles show four negative shifts correlatable with those of the North American record, suggesting that these carbon cycle perturbations have a widespread occurrence. These perturbations are associated with negative shifts of the 87Sr/86Sr, indicating that these global δ13Corg and 87Sr/86Sr negative excursions were possibly caused by emplacement of a Large Igneous Province (LIP). The input of volcanogenic CO2 to the atmosphere-ocean system is supported also by the 12C enrichment observed, as well as by the increase of atmospheric pCO2 inferred by different models for the Norian- Rhaetian interval. This Norian magmatic activity may be ascribed to the Angayucham province (Alaska, North America), a large oceanic plateau active ca. 214 Ma ±7 Myr, with an estimated volume comparable to other two Late Triassic LIPs: the Wrangellia and the CAMP.

  6. Investigation of the degradation of 13C-labeled fungal biomass in soil - fate of carbon in a soil bioreactor system

    Science.gov (United States)

    Schweigert, Michael; Fester, Thomas; Miltner, Anja; Kaestner, Matthias

    2015-04-01

    Nutrient balances and degradation processes in boreal forests are mainly influenced by interactions of plant roots and ectomycorrhizal fungi. Plants benefit from nitrogen compounds provided by their symbiotic interaction partner. In return ectomycorrhiza are provided by large amounts of carbon from the plants which is used for the synthesis of hyphal networks in soil and for metabolic activity for nutrient uptake. Therefore, ectomycorrhizal fungi play a major role in ecosystems of boreal forests and are consequently an important sink for carbon by building large amount of mycelia. Recently, it has been shown that microbial biomass residues contribute significantly to soil organic matter formation. This suggests that also residues of ectomycorrhizal fungi may be an important source for soil organic matter formation in forest soils where these fungi are abundant. However, the fate of ectomycorrhizal biomass residues in soils is unknown. We therefore investigated the fate of ectomycorrhizal biomass in soil in a soil bioreactor system to quantify the contribution of this material to soil organic matter formation. As a model organism, we selected Laccaria bicolor, which was labelled by growing the fungus on 13C glucose. The stable isotope-labeled biomass was then homogenized and incubated in a podzol from a typical forest site in Central Germany. The fate of the labeled biomass was traced by analyzing the amount of 13C mineralized and the amount remaining in the soil. The fungal biomass carbon was mineralized rather rapidly during the first 50 days. Then the mineralization rate slowed down, but mineralization continued until the end of the experiment, when approximately 40% of the 13C was mineralized and 60% remained in soil. In addition, we analyzed biomolecules such as fatty acids to trace the incorporation of the L. bicolor-derived biomass carbon into other microorganisms and to identify potential primary consumers of fungal biomass. By these analyses, we found a

  7. delta 15N and non-carbonate delta 13C values for two petroleum source rock reference materials and a marine sediment reference material

    Science.gov (United States)

    Dennen, Kristin O.; Johnson, Craig A.; Otter, Marshall L.; Silva, Steven R.; Wandless, Gregory A.

    2006-01-01

    Samples of United States Geological Survey (USGS) Certified Reference Materials USGS Devonian Ohio Shale (SDO-1), and USGS Eocene Green River Shale (SGR-1), and National Research Council Canada (NRCC) Certified Marine Sediment Reference Material (PACS-2), were sent for analysis to four separate analytical laboratories as blind controls for organic rich sedimentary rock samples being analyzed from the Red Dog mine area in Alaska. The samples were analyzed for stable isotopes of carbon (delta13Cncc) and nitrogen (delta15N), percent non-carbonate carbon (Wt % Cncc) and percent nitrogen (Wt % N). SDO-1, collected from the Huron Member of the Ohio Shale, near Morehead, Kentucky, and SGR-1, collected from the Mahogany zone of the Green River Formation are petroleum source rocks used as reference materials for chemical analyses of sedimentary rocks. PACS-2 is modern marine sediment collected from the Esquimalt, British Columbia harbor. The results presented in this study are, with the exceptions noted below, the first published for these reference materials. There are published information values for the elemental concentrations of 'organic' carbon (Wt % Corg measured range is 8.98 - 10.4) and nitrogen (Wt % Ntot 0.347 with SD 0.043) only for SDO-1. The suggested values presented here should be considered 'information values' as defined by the NRCC Institute for National Measurement Reference Materials and should be useful for the analysis of 13C, 15N, C and N in organic material in sedimentary rocks.

  8. A spectral line survey in the 2 mm and 1.3 mm windows toward the carbon rich envelope of IRC +10216

    CERN Document Server

    He, J H; Kwok, S; Müller, H S P; Zhang, Y; Hasegawa, T; Peng, T C; Huang, Y C

    2008-01-01

    We present the results of our spectral line surveys in the 2 mm and 1.3 mm windows toward the carbon rich envelope of IRC +10216. Totally 377 lines are detected, among which 360 lines are assigned to 57 known molecules (including 29 rare isotopomers and 2 cyclic isomers). Only 17 weak lines remain unidentified. Rotational lines of isotopomers 13CCH and c-13CCCH are detected for the first time in IRC +10216. The detection of the formaldehyde lines in this star is also confirmed. Possible abundance difference among the three 13C substituted isotopic isomers of HC3N is reported. Isotopic ratios of C and O are confirmed to be non-solar while those of S and Si to be nearly solar. Column densities have been estimated for 15 molecular species. Modified spectroscopic parameters have been calculated for NaCN, Na13CN, KCN and SiC2. Transition frequencies from the present observations were used to improve the spectroscopic parameters of Si13CC, 29SiC2 and 30SiC2.

  9. Organic matter turnover in reservoirs of the Harz Mountains (Germany): evidence from 13C/12C changes in dissolved inorganic carbon

    Science.gov (United States)

    Barth, Johannes A. C.; Nenning, Franziska; van Geldern, Robert; Mader, Michael; Friese, Kurt

    2014-05-01

    The Harz Mountains in Germany host several reservoirs for drinking water and electricity supply, the largest of which is the Rappbode System with its two pre-reservoirs. They are the Hassel and the Rappbode pre-reservoirs that have about the same size. These pre-reservoirs were investigated in a comparative study in order to quantify turnover of dissolved organic carbon (DOC) as a representative for organic matter. The objective was to find out how organic matter turnover in these reservoirs may affect dissolved inorganic carbon (DIC) and related CO2 dynamics. Depth profiles of dissolved organic and inorganic carbon (DOC and DIC) were established together with their carbon stable isotope distributions (expressed as δ13CDIC and δ13CDOC). Our results showed up to 104 % increase of DIC contents by organic matter turnover when calculated via isotope mass balances. This contrasted observations of DIC concentration differences between waters collected at the surface and at 12 m depth. These concentration comparisons showed much less DIC increases, and in some cases even decreases, between surface and bottom waters. Such discrepancies could be explained by formation of CO2 at depths below the photic zone that reached calculated values above 7000 ppmV. Such high CO2 concentrations may have reduced the DIC pool by upwards migration. Despite such a concentration decrease, turnover of organic matter has likely incorporated its isotope signal into the DIC pool. While not all DOC present was transposed to DIC, other forms of organic matter from sediments may also have transferred their isotope ratio on the DIC pool. However, with its stable isotope ratio of -28.5 permille the measured DOC was representative of C3 plants and can be assumed as a proxy for other forms of sedimentary carbon including carbon from pore waters and particulate organic matter. Other carbon turnover, including DOC leaching, increased import to the reservoirs after precipitation events and

  10. Synthesis of methyl [(chloro-2 ethyl)-3 nitroso-3 Ureido]-3 Didesoxy-2,3 α-D-Arabino-hexopyrannoside labelled with carbon-14 or carbon-13 (CY 233 - SR 90008)

    International Nuclear Information System (INIS)

    CY 233 (Ecomustine or SR 90098) is a new antitumour nitrosourea: it is characterized by a 2-chloroethylnitrosourea substituent on a dideoxycarbohydrate. It has been labelled with 14C on a) the carbonyl group of the urea in four stages starting with 14COCl2, b) the second carbon of the chloroethyl group in four stages starting with [14C] ethanolamine, and c) on the methyl group on the anomeric centre of the carbohydrate in three stages starting with 14CH3OH. The final position was also labelled with 13C starting with 13CH3OH. These differently labelled compounds are suitable for mechanistic studies of antitumour activity. (author)

  11. Stable carbon isotope analysis ({delta}{sup 13}C values) of polybrominated diphenyl ethers and their UV-transformation products

    Energy Technology Data Exchange (ETDEWEB)

    Rosenfelder, Natalie; Bendig, Paul [University of Hohenheim, Institute of Food Chemistry (170b), Garbenstr. 28, D-70599 Stuttgart (Germany); Vetter, Walter, E-mail: walter.vetter@uni-hohenheim.de [University of Hohenheim, Institute of Food Chemistry (170b), Garbenstr. 28, D-70599 Stuttgart (Germany)

    2011-10-15

    Polybrominated diphenyl ethers (PBDEs) are frequently detected in food and environmental samples. We used compound specific isotope analysis to determine the {delta}{sup 13}C values of individual PBDEs in two technical mixtures. Within the same technical product (DE-71 or DE-79), BDE congeners were the more depleted in {sup 13}C the higher brominated they were. In contrast, the products of light-induced hydrodebromination of BDE 47 and technical DE-79 were more enriched in {sup 13}C because of more stable bonds between {sup 13}C and bromine. As a result, the {delta}{sup 13}C values of the irradiated solution progressed diametrically compared to those of the technical synthesis. The ratio of the {delta}{sup 13}C values of BDE 47 to BDE 99 and of BDE 99 to BDE 153 are thus suggested as indicators to distinguish native technical products from transformation products. Ratios <1 are typical for native congeners (e.g. in DE-71) while the reversed ratio (>1) is typical of transformation products. - Highlights: > {delta}{sup 13}C values of PBDEs were determined by means of compound specific isotope analysis. > PBDEs in technical mixtures were the more depleted in {sup 13}C the higher they were brominated. > Solutions of individual PBDEs and technical PBDE mixtures were irradiated by UV light. > {delta}{sup 13}C values of irradiated PBDEs and technical PBDEs progressed diametrically. > Ratios of the {delta}{sup 13}C values were used to distinguish native from transformed PBDEs. - Diametrically progressing {delta}{sup 13}C values in technical mixtures and UV-transformation products of DE-79 may be useful for source appointment of PBDEs in environmental samples

  12. An atomic electronegative distance vector and carbon-13 nuclear magnetic resonance chemical shifts of alcohols and alkanes

    Institute of Scientific and Technical Information of China (English)

    LIU, Shu-Shea; XIA, Zhi-Ning; CAI, Shao-Xi; LIU, Yan

    2000-01-01

    A novel atomic electronegative distance vector (AEDV) has been developed to express the chemical environment of various chemically equivalent carbon atoms in alcohols and alkanes.Combining AEDV and γ parameter, four five-parameter Iinear relationship equations of chemical shift for four types of carbon atoms are created by using multiple linear regression.Correlation coefficients are R = 0.9887, 0.9972, 0.9978 and 0.9968 and roots of mean square error are RMS = 0.906, 0.821, 1.091and 1.091of four types of carbons, i.e., type1,2, 3, and 4 for primary, secondary, tertiary, and quaternary carbons, respectively. The stability and prediction capacity for external samples of four models have been tested by cross- validation.

  13. Study of carbon nitride compounds synthesised by co-implantation of 13C and 14N in copper at different temperatures

    International Nuclear Information System (INIS)

    Research highlights: → Simultaneous implantation of 13C and 14N in copper were performed to synthesise CNx compounds. → The formation of fullerene-like CNx compounds was highlighted by XPS and TEM. → Only about 20% of the implanted 14N atoms are contained in the FL CxNy structures. → The exceeding of implanted nitrogen precipitates in large N2 gas bubbles. → A growth model for the FL CxNy structures is proposed. - Abstract: Carbon nitride compounds have been synthesised in copper by simultaneous high fluence (1018 at. cm-2) implantation of 13C and 14N ions. During the implantation process, the substrate temperature was maintained at 25, 250, 350 or 450 deg. C. Depth profiles of 13C and 14N were determined using the non-resonant nuclear reactions (NRA) induced by a 1.05 MeV deuteron beam. The retained doses were deduced from NRA measurements and compared to the implanted fluence. The chemical bonds between carbon and nitrogen were studied as a function of depth and temperature by X-ray photoelectron spectroscopy (XPS). The curve fitting of C 1s and N 1s core level photoelectron spectra reveal different types of C-N bonds and show the signature of N2 molecules. The presence of nitrogen gas bubbles in copper was highlighted by mass spectroscopy. The structure of carbon nitride compounds was characterised by transmission electron microscopy (TEM). For that purpose, cross-sectional samples were prepared using a focused ion beam (FIB) system. TEM observations showed the presence of small amorphous carbon nitride 'nano-capsules' and large gas bubbles in copper. Based on our observations, we propose a model for the growth of these nano-objects. Finally, the mechanical properties of the implanted samples were investigated by nano-indentation.

  14. Fluxes and 13C isotopic composition of dissolved carbon and pathways of methanogenesis in a fen soil exposed to experimental drought

    Directory of Open Access Journals (Sweden)

    C. Blodau

    2008-10-01

    Full Text Available Peatlands contain a carbon stock of global concern and significantly contribute to the global methane burden. The impact of drought and rewetting on carbon cycling in peatland ecosystems is thus currently debated. We studied the impact of experimental drought and rewetting on intact monoliths from a temperate fen over a period of ~300 days, using a permanently wet treatment and two treatments undergoing drought for 50 days. In one of the mesocosms, vegetation had been removed. Net production of CH4 was calculated from mass balances in the peat and emission using static chamber measurements. Results were compared to 13C isotope budgets of CO2 and CH4 and energy yields of acetoclastic and hydrogenotrophic methanogenesis. Drought retarded methane production after rewetting for days to weeks and promoted methanotrophic activity. Based on isotope and flux budgets, aerobic soil respiration contributed 32–96% in the wet treatment and 86–99% in the other treatments. Drying and rewetting did not shift methanogenic pathways according to δ13C ratios of CH4 and CO2. Although δ13C ratios indicated a prevalence of hydrogenotrophic methanogenesis, free energies of this process were small and often positive on the horizon scale. This suggests that methane was produced very locally. Fresh plant-derived carbon input apparently supported respiration in the rhizosphere and sustained methanogenesis in the unsaturated zone, according to a 13C-CO2 labelling experiment. The study documents that drying and rewetting in a rich fen soil may have little effect on methanogenic pathways, but result in rapid shifts between methanogenesis and methanotrophy. Such shifts may be promoted by roots and soil heterogeneity, as hydrogenotrophic methanogenesis occurred locally even when conditions were not conducive for this process in the bulk peat.

  15. Seasonal and inter-annual variability in 13C composition of ecosystem carbon fluxes in the U.S. Southern Great Plains

    Energy Technology Data Exchange (ETDEWEB)

    Torn, M.S.; Biraud, S.; Still, C.J.; Riley, W.J.; Berry, J.A.

    2010-09-22

    The {delta}{sup 13}C signature of terrestrial carbon fluxes ({delta}{sub bio}) provides an important constraint for inverse models of CO{sub 2} sources and sinks, insight into vegetation physiology, C{sub 3} and C{sub 4} vegetation productivity, and ecosystem carbon residence times. From 2002-2009, we measured atmospheric CO{sub 2} concentration and {delta}{sup 13}C-CO{sub 2} at four heights (2 to 60 m) in the U.S. Southern Great Plains (SGP) and computed {delta}{sub bio} weekly. This region has a fine-scale mix of crops (primarily C{sub 3} winter wheat) and C{sub 4} pasture grasses. {delta}{sub bio} had a large and consistent seasonal cycle of 6-8{per_thousand}. Ensemble monthly mean {delta}{sub bio} ranged from -25.8 {+-} 0.4{per_thousand} ({+-}SE) in March to -20.1 {+-} 0.4{per_thousand} in July. Thus, C{sub 3} vegetation contributed about 80% of ecosystem fluxes in winter-spring and 50% in summer-fall. In contrast, prairie-soil {delta}{sub 13}C values were about -15{per_thousand}, indicating that historically the region was dominated by C{sub 4} vegetation and had more positive {delta}{sub bio} values. Based on a land-surface model, isofluxes ({delta}{sub bio} x NEE) in this region have large seasonal amplitude because {delta}{sub bio} and net ecosystem exchange (NEE) covary. Interannual variability in isoflux was driven by variability in NEE. The large seasonal amplitude in {delta}{sub bio} and isoflux imply that carbon inverse analyses require accurate estimates of land cover and temporally resolved {sup 13}CO{sub 2} and CO{sub 2} fluxes.

  16. Statistical analysis of a corrosion inhibitor family on three steel surfaces (duplex, super-13 and carbon) in hydrochloric acid solutions

    International Nuclear Information System (INIS)

    Previous studies have addressed the experimental and theoretical investigation of the inhibition corrosion efficiencies (ICE) of single metal surfaces. Along this line we carried out calculations concerning to 23 compounds on three different single-steel surfaces, duplex, super-13 and the carbon steel in hydrochloric acid (15% w/v) solutions. The overall experiment is composed of 69 results of weight loss ICEs at 60 deg. C for amines, alcohols, thiourea and its derivatives acting as corrosion inhibitors for three steel surfaces. In these studies ICEs were correlated with group and quantum AM1 descriptors through the use of three different statistical methodologies based on calibration and validation of regular and modified OLS and PLS (partial least squares) methods. All calculations have shown better results using weight isoesteric Langmuir adsorption function (WILA function), ln(θM/(1-θ)) or ln Kads, calculated from the weight loss data as the response function. The function -log(i) has been used, as well, on all comparisons. Variables describing the metal were added to the previous set of group and quantum IC variables and several models have been designed to fit the three-steel problem. Simple products of metal and IC variables with 250 (25 x 10) products were tested as model I. Selection of the best variable set was carried out for the calibration and validation procedures and these calculations indicated very few descriptors in common, i.e. each particular selection (calibration or validation) finds its own optimal descriptor set. The overall results showed excellent correlations with R2 values between 0.80 and 0.96 and a Q2 values from 0.75 to 0.93. We are unaware of any similar QSPR study on the steels here studied, and neither the study of such massive amount of data concerning molecular inhibitors on three different steel surfaces. Our best result for the second-order cross-validation descriptor selection employs 29 variables, Y29. The results

  17. Turnover of carbon in the {sup 13}C-urea breath test for the detection of Helicobacter pylori infection

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Vladimir E.; Andreazzi, Mariana; Cury, Caio S.; Bassetto Junior, Carlos A.Z.; Rodrigues, Maria A.M.; Ducatti, Carlos, E-mail: vladimir@ibb.unesp.br, E-mail: ducatti@ibb.unesp.br, E-mail: mariana.andreazazi@gmail.com, E-mail: caiocury@hotmail.com, E-mail: juniorbassett@hotmail.com, E-mail: mariar@fmb.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil)

    2013-07-01

    To obtain a standard protocol for the application of {sup 13}C-urea breath test ({sup 13}C-UBT) analyzed by Isotope Ratio Mass Spectrometer (IRMS) to detect helicobacter pylori infection in the population is necessary to know the behavior of the turnover of {sup 13}C during the test in different individuals. The aims of this study was to find out a pattern for the turnover of the {sup 13}C in the {sup 13}C-UBT, analyzed by IRMS, in patients infected with H. pylori, in a Brazilian population, to define a protocol test application. We found that the isotopic ratio {sup 13}C/{sup 12}C in expired CO{sub 2} from patients infected with H. pylori and subjected to {sup 13}C-UBT does not follow a single pattern of behavior. However this behavior can be similar in subjects having the same maximum values following an inverse proportional relationship between the maximum value and the time of appearance in the curve. (author)

  18. The 'Nuts and Bolts' of 13C NMR Spectroscopy at Elevated-Pressures and -Temperatures for Monitoring In Situ CO2 Conversion to Metal Carbonates

    Science.gov (United States)

    Moore, J. K.; Surface, J. A.; Skemer, P. A.; Conradi, M. S.; Hayes, S. E.

    2013-12-01

    We will present details of newly-constructed specialized NMR designed to conduct in situ elevated-pressure, elevated-temperature 13C NMR studies on unmixed slurries of minerals in the presence of CO2 or other gases. This static probe is capable of achieving 300 bar, 300C conditions, and it is designed to spectroscopically examine 13C signals in mixtures of solids, liquids, gases, and supercritical fluids. Ultimately, our aim is to monitor CO2 uptake in both ultramafic rocks and in more porous geological materials to understand the mechanisms of chemisorption as a function of temperature, pressure and pH. We will give details of the hardware setup, and we will show a variety of static in situ NMR, as well as ex situ 'magic-angle spinning' NMR to show the analyses that are possible of minerals in pure form and in mixtures. In addition, specific NMR pulse sequences, techniques, and modeling will be described in detail. In this in situ NMR probe, we are able to simulate processes at geologically relevant fluid pressures and temperatures, monitoring the kinetics of CO2 conversion to carbonates. The in situ NMR experiments consist of heterogeneous mixtures of rock, salty brine solution, and moderate pressure CO2 gas at elevated temperatures. The purpose of studying these reactions is to determine conditions that affect the efficacy of carbonate formation in various targeted geological reservoirs (i.e., peroditite, or others). Via 13C NMR, we have spectroscopically characterized and quantified the conversion of CO2 to magnesium carbonate and calcium carbonate minerals, including metastable intermediates (such as hydromagnesite, or dypingite in the case of magnesium carbonate species, or vaterite in the case of calcium carbonate species). Such species are distinguishable from a combination of the 13C isotropic chemical shift, the static 13C lineshape, and changes in spin-lattice (T1) relaxation times. We will demonstrate that NMR can be used for quantitative

  19. Observing the Arctic Carbon Feedback: Regional scale methane flux measurements over the Alaskan North Slope using airplane flux observations and in situ measurements of δ13CH4.

    Science.gov (United States)

    Healy, C. E.; Sayres, D. S.; Dobosy, R.; Dumas, E. J.; Munster, J. B.; Kochendorfer, J.; Wilkerson, J.; Baker, B.; Dubey, M. K.; Anderson, J. G.

    2015-12-01

    One of the most powerful positive feedback mechanisms to anthropogenic climate change postulated is the increase in carbon emissions from polar-regions. Warmer temperatures at the poles is predicted to increase the rate of methanogensesis in thawing permafrost soils as well as destabilize the network of arctic marine and terrestrial methane hydrates. Recent estimates put the quantity of organic carbon stored in soils in the northern permafrost zone around 1,700 Pg of C, which is well in excess of the maximum carbon emissions necessary to limit global average temperature increase to only 2 C° (260-410 Pg of C between 2011 and 2100 as CO2). However, many climate models used to forecast changes in average global temperature and inform policy decisions do not take into account arctic carbon feedback. This is largely due in part to the daunting observational challenge presented by observing methane fluxes in the Arctic. An ideal measurement system must be able to distinguish between biological and anthropogenic methane sources, have the ability to cover large spatial ranges, and have the sensitivity to distinguish changes from season to season, and year to year. The FOCAL platform has been engineered to address these challenges and help bridge the gap in spatial coverage between ground based and inverse modelling studies. It consists of a small aircraft equipped with the best atmospheric turbulence (BAT) probe, and gas sensors for in situ measurements of CH4, CO2, δ13CH4, δ13CO2 to make regional scale surface eddy-covariance flux measurements of methane and carbon dioxide as well as their stable isotopologues. We will present data from the initial FOCAL flight series in August 2013 based out of Deadhorse, AK, including CH4 concentration and running flux data, as well as in situ δ13CH4 observations to gain mechanistic insight. With the FOCAL platform we were able to dramatically extend regional coverage of methane flux observations beyond what can normally be observe

  20. Calcium isotope constraints on the marine carbon cycle and CaCO3 deposition during the late Silurian (Ludfordian) positive δ13C excursion

    Science.gov (United States)

    Farkaš, Juraj; Frýda, Jiří; Holmden, Chris

    2016-10-01

    This study investigates calcium isotope variations (δ 44 / 40 Ca) in late Silurian marine carbonates deposited in the Prague Basin (Czech Republic), which records one of the largest positive carbon isotope excursion (CIE) of the entire Phanerozoic, the mid-Ludfordian CIE, which is associated with major climatic changes (abrupt cooling) and global sea-level fluctuations. Our results show that during the onset of the CIE, when δ13 C increases rapidly from ∼0‰ to ∼8.5‰, δ 44 / 40Ca remains constant at about 0.3 ± 0.1 ‰ (relative to NIST 915a), while 87Sr/86Sr in well-preserved carbonates are consistent with a typical Ludfordian seawater composition (ranging from ∼0.70865 to ∼0.70875). Such decoupling between δ13 C and δ 44 / 40Ca trends during the onset of the CIE is consistent with the expected order-of-magnitude difference in the residence times of Ca (∼106yr) and C (∼105yr) in the open ocean, suggesting that the mid-Ludfordian CIE was caused by processes where the biogeochemical pathways of C and Ca in seawater were mechanistically decoupled. These processes may include: (i) near shore methanogenesis and photosynthesis, (ii) changes in oceanic circulation and stratification, and/or (iii) increased production and burial of organic C in the global ocean. The latter, however, is unlikely due to the lack of geological evidence for enhanced organic C burial, and also because of unrealistic parameterization of the ocean C cycle needed to generate the observed CIE over the relatively short time interval. In contrast, higher up in the section where δ13 C shifts back to pre-excursion baseline values, there is a correlated shift to higher δ 44 / 40Ca values. Such coupling of the records of Ca and C isotope changes in this part of the study section is inconsistent with the abovementioned differences in oceanic Ca and C residence times, indicating that the record of δ 44 / 40Ca changes does not faithfully reflect the evolution of the oceanic Ca

  1. Application of solid state silicon-29 and carbon-13 nuclear magnetic resonance spectroscopy to the characterization of inorganic matter-humic complexes in Athabasca oil sands

    International Nuclear Information System (INIS)

    In Athabasca oil sands there is a fraction of non-crystalline solids tightly bound to humic matter. It is believed, that the presence of this fraction, which resists subsequent wetting by water, introduces serious problems in bitumen recovery when using water based processes. In the present work, 29Si and 13C solid state magic angle spinning (MAS) NMR techniques were applied to characterize these solids which were isolated from Athabasca oil sands of estuarine and marine origin. On the basis of 29Si results it is suggested that there is a short-range disorder in these samples. It is also shown that aluminum is present in the nearest-neighbor environment of the silicon atoms, thus demonstrating that these solids are comprised of disordered alumino-silicates (allophanes). 13C CP/MAS NMR spectra of demineralized inorganic matter-humic complexes derived from both estuarine and marine oil sands indicate that the distribution of carbon types in each region of the spectra is similar, with aromatic carbon being the predominant type of carbon

  2. Terrestrial carbon cycle responses to drought and climate stress: New insights using atmospheric observations of CO2 and delta13C

    Science.gov (United States)

    Alden, Caroline B.

    Atmospheric concentrations of carbon dioxide (CO2) continue to rise well into the second decade of the new millennium, in spite of broad-scale human understanding of the impacts of fossil fuel emissions on the earth's climate. Natural sinks for CO2 that are relevant on human time scales---the world's oceans and land biosphere---appear to have kept pace with emissions. The continuously increasing strength of the land biosphere sink for CO2 is surpassing expectations given our understanding of the CO2 fertilization and warming effects on the balance between photosynthesis and respiration, especially in the face of ongoing forest degradation. The climate and carbon cycle links between the atmosphere and land biosphere are not well understood, especially at regional (100 km to 10,000 km) scales. The climate modulating effects of changing plant stomatal conductance in response to temperature and water availability is a key area of uncertainty. Further, the differential response to climate change of C3 and C4 plant functional types is not well known at regional scales. This work outlines the development of a novel application of atmospheric observations of delta13C of CO2 to investigate the links between climate and water and carbon cycling and the integrated responses of C3 and C4 ecosystems to climate variables. A two-step Bayesian batch inversion for 3-hourly, 1x1º CO2 fluxes (step one), and for 3-hourly 1x1º delta13C of recently assimilated carbon (step two) is created here for the first time, and is used to investigate links between regional climate indicators and changes in delta13C of the biosphere. Results show that predictable responses of regional-scale, integrated plant discrimination to temperature, precipitation and relative humidity anomalies can be recovered from atmospheric signals. Model development, synthetic data simulations to test sensitivity, and results for the year 2010 are presented here. This dissertation also includes two other applications

  3. Application of nitrogen and carbon stable isotopes (δ(15N and δ(13C to quantify food chain length and trophic structure.

    Directory of Open Access Journals (Sweden)

    Matthew J Perkins

    Full Text Available Increasingly, stable isotope ratios of nitrogen (δ(15N and carbon (δ(13C are used to quantify trophic structure, though relatively few studies have tested accuracy of isotopic structural measures. For laboratory-raised and wild-collected plant-invertebrate food chains spanning four trophic levels we estimated nitrogen range (NR using δ(15N, and carbon range (CR using δ(13C, which are used to quantify food chain length and breadth of trophic resources respectively. Across a range of known food chain lengths we examined how NR and CR changed within and between food chains. Our isotopic estimates of structure are robust because they were calculated using resampling procedures that propagate variance in sample means through to quantified uncertainty in final estimates. To identify origins of uncertainty in estimates of NR and CR, we additionally examined variation in discrimination (which is change in δ(15N or δ(13C from source to consumer between trophic levels and among food chains. δ(15N discrimination showed significant enrichment, while variation in enrichment was species and system specific, ranged broadly (1.4‰ to 3.3‰, and importantly, propagated variation to subsequent estimates of NR. However, NR proved robust to such variation and distinguished food chain length well, though some overlap between longer food chains infers a need for awareness of such limitations. δ(13C discrimination was inconsistent; generally no change or small significant enrichment was observed. Consequently, estimates of CR changed little with increasing food chain length, showing the potential utility of δ(13C as a tracer of energy pathways. This study serves as a robust test of isotopic quantification of food chain structure, and given global estimates of aquatic food chains approximate four trophic levels while many food chains include invertebrates, our use of four trophic level plant-invertebrate food chains makes our findings relevant for a majority

  4. Changes in carbon uptake and allocation patterns in Quercus robur seedlings in response to elevated CO2 and water stress: an evaluation with 13C labelling

    International Nuclear Information System (INIS)

    A semi-closed (CO2)-C-13 labelling system (1.5% C-13) was used to assess both carbon uptake and allocation within pedunculate oak seedlings (Quercus robur L) grown under ambient (350 vpm) and elevated (700 vpm) atmospheric CO2 concentration ([CO2]) and in either well-watered or droughted conditions. Pulse-chase C-13 labelling data highlighted the direct positive effect of elevated CO2 on photosynthetic carbon acquisition. Consequently, in well-watered conditions, CO2-enriched plants produced 1.52 times more biomass (dry mass at harvest) and 1.33 times more dry root matter (coarse plus fine roots) over the 22-week growing period than plants grown under ambient [CO2]. The root/shoot biomass ratio was decreased both by drought and [CO2], despite lower N concentrations in CO2-enriched plants. However, both long-term and short-term C allocation to fine roots were not altered by CO2, and relative specific allocation (RSA), a parameter expressing sink strength, was hip her in all plant organs under 700 vpm compared to 350 vpm. Results showed that C availability for growth and metabolic processes was greater in fine roots of oaks grown under an elevated CO2 atmosphere irrespective of soil water availability

  5. Solid state 13C NMR and carbon isotope studies of the coupling of primary and secondary productivity in a Florida estuary

    International Nuclear Information System (INIS)

    The mechanisms by which primary producers fuel the growth of secondary consumers (e.g. fish and shell fish) in estuaries is poorly understood at this time. The authors have attempted to quantify the relative importance of detrital vs. planktonic food webs which support mariculture in the Ochlocknee River and Bay in Northwest Florida using stable carbon isotopes and solid state 13C NMR spectroscopy. Due to isotopic fractionation caused by different enzymatic pathways of carbon dioxide uptake, primary producers are imprinted with distinctive 13C/12C isotopic ratios. Stable isotopic ratios are imprints, or signatures, which are passed on to the next higher trophic level (you are what you eat). They have been combining isotopic tracing of food webs in estuaries with characterization of complex macromolecular particulates by cross polarization - magic angle spinning 13C NMR. In this talk they will demonstrate how the combination of these techniques can differentiate the relative importance of terrestrial input of organic matter vs. in situ estuarine production as a food source for estuarine consumers

  6. Application of δ13C and δ15N isotopic signatures of organic matter fractions sequentially separated from adjacent arable and forest soils to identify carbon stabilization mechanisms

    Directory of Open Access Journals (Sweden)

    M. Sommer

    2011-10-01

    Full Text Available Identifying the chemical mechanisms behind soil carbon bound in organo-mineral complexes is necessary to determine the degree to which soil organic carbon is stabilized belowground. Analysis of δ13C and δ15N isotopic signatures of stabilized OM fractions along with soil mineral characteristics may yield important information about OM-mineral associations and their processing history. We anlayzed the δ13C and δ15N isotopic signatures from two organic matter (OM fractions along with soil mineral proxies to identify the likely binding mechanisms involved. We analyzed OM fractions hypothesized to contain carbon stabilized through organo-mineral complexes: (1 OM separated chemically with sodium pyrophosphate (OM(PY and (2 OM occluded in micro-structures found in the chemical extraction residue (OM(ER. Because the OM fractions were separated from five different soils with paired forest and arable land use histories, we could address the impact of land use change on carbon binding and processing mechanisms. We used partial least squares regression to analyze patterns in the isotopic signature of OM with established mineral and chemical proxies indicative for certain binding mechanisms. We found different mechanisms predominate in each land use type. For arable soils, the formation of OM(PY-Ca-mineral associations was identified as an important OM binding mechanism. Therefore, we hypothesize an increased stabilization of microbial processed OM(PY through Ca2+ interactions. In general, we found the forest soils to contain on average 10% more stabilized carbon relative to total carbon stocks, than the agricultural counter part. In forest soils, we found a positive relationship between isotopic signatures of OM(PY and the ratio of soil organic carbon content to soil surface area (SOC/SSA. This indicates that the OM(PY fractions of forest soils represent layers of slower exchange not directly attached to mineral surfaces. From the isotopic composition

  7. A carbon-13 NMR spin-lattice relaxation study of the molecular conformation of the nootropic drug 2-oxopyrrolidin-1-ylacetamide

    Science.gov (United States)

    Baldo, M.; Grassi, A.; Guidoni, L.; Nicolini, M.; Pappalardo, G. C.; Viti, V.

    The spin-lattice relaxation times ( T1) of carbon-13 resonances of the drug 2-oxopyrrolidin- 1-ylacetamide ( 2OPYAC) were determined in CDCl 3 + DMSO and H 2O solutions to investigate the internal conformational flexibility. The measured T1s for the hydrogen-bearing carbon atoms of the 2-pyrrolidone ring fragment were diagnostic of a rigid conformation with respect to the acetamide linked moiety. The model of anisotropic reorientation of a rigid body was used to analyse the measured relaxation data in terms of a single conformation. Owing to the small number of T1 data available the fitting procedure for each of the possible conformations failed. The structure corresponding to the rigid conformation was therefore considered to be the one that is strongly stabilized by internal hydrogen bonding as predicted on the basis of theoretical MO ab initio quantum chemical calculations.

  8. Carbon isotope (δ13C) excursions suggest times of major methane release during the last 14 ka in Fram Strait, the deep-water gateway to the Arctic

    Science.gov (United States)

    Consolaro, C.; Rasmussen, T. L.; Panieri, G.; Mienert, J.; Bünz, S.; Sztybor, K.

    2014-10-01

    We present results from a sediment core collected from a pockmark field on the Vestnesa Ridge (∼80° N) in the eastern Fram Strait. This is the only deep-water gateway to the Arctic, and one of the northernmost marine gas hydrate provinces in the world. Eight 14C AMS dating reveals a detailed chronology for the last 14 ka BP. The δ13C record measured on the benthic foraminiferal species Cassidulina neoteretis shows two distinct intervals with negative values, as low as -4.37‰ in the Bølling-Allerød interstadials and as low as -3.41‰ in the early Holocene. After cleaning procedure designed to remove all authigenic carbonate coatings on benthic foraminiferal tests, the 13C values are still negative (as low as -2.75‰). We have interpreted these negative carbon isotope excursions (CIEs) to record past methane release events, resulting from the incorporation of 13C-depleted carbon from methane emissions into the benthic foraminiferal shells. The CIEs during the Bølling-Allerød interstadials and the early Holocene relate to periods of ocean warming, sea level rise and increased concentrations of methane (CH4) in the atmosphere. CIEs with similar timing have been reported from other areas in the North Atlantic suggesting a regional event. The trigger mechanisms for such regional events remain to be determined. We speculate that sea-level rise and seabed loading due to high sediment supply in combination with increased seismic activity as a result of rapid deglaciation may have triggered the escape of significant amounts of methane to the seafloor and the water column above.

  9. Carbon isotope (δ13C excursions suggest times of major methane release during the last 14 ka in Fram Strait, the deep-water gateway to the Arctic

    Directory of Open Access Journals (Sweden)

    C. Consolaro

    2014-10-01

    Full Text Available We present results from a sediment core collected from a pockmark field on the Vestnesa Ridge (∼80° N in the eastern Fram Strait. This is the only deep-water gateway to the Arctic, and one of the northernmost marine gas hydrate provinces in the world. Eight 14C AMS dating reveals a detailed chronology for the last 14 ka BP. The δ13C record measured on the benthic foraminiferal species Cassidulina neoteretis shows two distinct intervals with negative values, as low as −4.37‰ in the Bølling–Allerød interstadials and as low as −3.41‰ in the early Holocene. After cleaning procedure designed to remove all authigenic carbonate coatings on benthic foraminiferal tests, the 13C values are still negative (as low as −2.75‰. We have interpreted these negative carbon isotope excursions (CIEs to record past methane release events, resulting from the incorporation of 13C-depleted carbon from methane emissions into the benthic foraminiferal shells. The CIEs during the Bølling–Allerød interstadials and the early Holocene relate to periods of ocean warming, sea level rise and increased concentrations of methane (CH4 in the atmosphere. CIEs with similar timing have been reported from other areas in the North Atlantic suggesting a regional event. The trigger mechanisms for such regional events remain to be determined. We speculate that sea-level rise and seabed loading due to high sediment supply in combination with increased seismic activity as a result of rapid deglaciation may have triggered the escape of significant amounts of methane to the seafloor and the water column above.

  10. Oxygène-18, carbone-13, carbone-14 et diatomées dans les quatre carottes du lac Huynamarca (Bolivie) : premiers résultats

    OpenAIRE

    Wirrmann, Denis; Servant Vildary, Simone; Fontes, J.C.

    1982-01-01

    L'étude de géochimie isotopique des carbonates coquilliers de quatre carottes du lac Huynamarca (Bolivie), ainsi que les datations au carbone-14 de quelques échantillons montrent qu'au cours des dix derniers millénaires le bilan hydrologique du lac Titicaca a considérablement varié. Une phase sèche, située entre 3650 et 5325 ans B.P. se traduit par une baisse du niveau du lac d'au moins dix mètres par rapport à l'actuel, avec comme corrolaire l'augmentation de la teneur en sels dissous dans l...

  11. Engineering Studies of a Pilot Plant for Laser Isotope Separation of CARBON-13 by Multiphoton Dissociation of Chlorodifluoromethane

    Science.gov (United States)

    Mehmetli, Bulent Ahmet

    Recent research in laser isotope separation by multiphoton dissociation (LISMPD) of ^{13 }C suggests that an LISMPD commercial process is more economical than the cryogenic CO distillation technology currently used to meet most of the world's ^ {13}C demand. In this dissertation, experimental studies of an engineering process for LISMPD of polyatomic molecules is examined. The experimental results have been obtained by MPD of chlorodifluoromethane (CF_2 HCl) to yield ^{13}C -enriched tetrafluoroethylene rm(C_2F _4). Emphasis is on research leading to the development of a practical chemical plant for the preparation of stable isotopes by this method. The experimental program has achieved the design, construction, and operation of a laboratory-scale ^{13}C separation apparatus and parametric dependences of enrichment factors and dissociated fractions. In this experiment, the reactant gas, industrial grade CF_2HCl, flows continuously along the axis of a stainless steel reaction cell. The beam of a commercial CO_2 TEA laser, delivering up to 3 J/pulse at a single wavelength, is focused into the cell to induce isotope-selective multiphoton dissociation. The ^{13}C-enriched reaction product, rm C_2F_4, is analyzed by mass spectroscopy for its isotopic content. Typical production rates of the setup are about 10 g/year ^{13}C at an enrichment of 15% or 1 g/year at an enrichment of 65%. The results of a detailed cost analysis, which takes into account different reaction conditions and laser types, showed that at production rates of 7,000 kg per year, the cost of ^{13}C can be as low as 4/g. This figure is about an order of magnitude less than the cost of ^13 C obtained by cryogenic distillation of CO. The design, construction, and operation of a CO _2 MOPA (Master Oscillator/ Power Amplifier) laser is proposed because a MOPA combines the advantages of favorable isotope separation reaction conditions of TEA lasers and the cheaper photons of cw discharges. Analytical

  12. A hypersaline microbial mat from the Pacific Atoll Kiritimati: insights into composition and carbon fixation using biomarker analyses and a 13C-labeling approach.

    Science.gov (United States)

    Bühring, S I; Smittenberg, R H; Sachse, D; Lipp, J S; Golubic, S; Sachs, J P; Hinrichs, K-U; Summons, R E

    2009-06-01

    Modern microbial mats are widely recognized as useful analogs for the study of biogeochemical processes relevant to paleoenvironmental reconstruction in the Precambrian. We combined microscopic observations and investigations of biomarker composition to investigate community structure and function in the upper layers of a thick phototrophic microbial mat system from a hypersaline lake on Kiritimati (Christmas Island) in the Northern Line Islands, Republic of Kiribati. In particular, an exploratory incubation experiment with (13)C-labeled bicarbonate was conducted to pinpoint biomarkers from organisms actively fixing carbon. A high relative abundance of the cyanobacterial taxa Aphanocapsa and Aphanothece was revealed by microscopic observation, and cyanobacterial fatty acids and hydrocarbons showed (13)C-uptake in the labeling experiment. Microscopic observations also revealed purple sulfur bacteria (PSB) in the deeper layers. A cyclic C(19:0) fatty acid and farnesol were attributed to this group that was also actively fixing carbon. Background isotopic values indicate Calvin-Benson cycle-based autotrophy for cycC(19:0) and farnesol-producing PSBs. Biomarkers from sulfate-reducing bacteria (SRB) in the top layer of the mat and their (13)C-uptake patterns indicated a close coupling between SRBs and cyanobacteria. Archaeol, possibly from methanogens, was detected in all layers and was especially abundant near the surface where it contained substantial amounts of (13)C-label. Intact glycosidic tetraether lipids detected in the deepest layer indicated other archaea. Large amounts of ornithine and betaine bearing intact polar lipids could be an indicator of a phosphate-limited ecosystem, where organisms that are able to substitute these for phospholipids may have a competitive advantage.

  13. Assessment of the specific absorption rate and calibration of decoupling parameters for proton decoupled carbon-13 MR spectroscopy at 3.0 T

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Moyoko [Biomedical Imaging Group, Photonics Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan)]. E-mail: moyoko-saitou@aist.go.jp; Matsuda, Tsuyoshi [Imaging Application Tech. Center, GE Yokogawa Medical Systems Ltd., Tokyo (Japan); Tropp, James [General Electric Company, CA (United States); Inubushi, Toshiro [Molecular Neuroscience Research Center, Shiga University of Medical Science, Shiga (Japan); Nakai, Toshiharu [Biomedical Imaging Group, Photonics Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan) and Institute of Biomedical Research and Innovation, Kobe (Japan)]. E-mail: t-nakai@aist.go.jp

    2005-08-01

    A strategy for proton decoupled carbon-13 MR spectroscopy ({l_brace}{sup 1}H{r_brace}-{sup 13}C MRS) with a strong static magnetic field (3.0 T) in vivo was investigated. The proton decoupling improves the signal-to-noise ratio, however, the effect of the decoupling power on the human body, especially in strong magnetic fields, should be considered. In order to establish a technique for monitoring the metabolism of glucose in the liver using {l_brace}{sup 1}H{r_brace}-{sup 13}C MRS at 3.0 T, two phantom experiments were performed. To assess whether the decoupling energy conformed to SAR limits defined by the IEC, temperature rises inside an agar gel phantom were monitored during a {l_brace}{sup 1}H{r_brace}-{sup 13}C MRS experiment. Then, the decoupling conditions of a glucose solution phantom were systematically optimized with combinations of decoupling bandwidth and power. The reliability of this procedure was discussed in conjunction with IEC guidelines.

  14. A novel dimethyl sulfoxide/1,3-dioxolane based electrolyte for lithium/carbon fluorides batteries with a high discharge voltage plateau

    International Nuclear Information System (INIS)

    A novel dimethyl sulfoxide/1,3-dioxolane (DMSO/1,3-DO) based electrolyte is proposed for lithium/carbon fluorides (Li/CFx) batteries to enhance the discharge voltage plateau and energy density. Conductivities of the electrolyte of 1 mol L−1 LiBF4/DMSO+1,3-DO with different volume ratios are not identical, which have a maximum of 14.85 mS cm−1. From the tests of galvanostatic discharge, the discharge voltage plateau of the Li/CFx battery with an electrolyte of 1 mol L−1 LiBF4/DMSO+1,3-DO (5:5, v:v) can reach 2.69 V at 0.1 C, delivering a maximum discharge capacity of 831 mAh g−1 and the highest energy density of 2196 Wh kg−1. Compared to Li/CFx batteries with an electrolyte of 1 mol L−1 LiBF4/PC+DME (5:5, v:v), the energy density of Li/CFx batteries with an electrolyte of 1 mol L−1 LiBF4/DMSO+1,3-DO (5:5, v:v) has been improved more than 12%. With the help of XRD, SEM, TEM, EIS, FT-IR and GC-MS analysis, the results of this work suggest that DMSO/1,3-DO based electrolyte can significantly improve the discharge performance of Li/CFx batteries and keep a good electrochemical stability during discharge. The main reason for improvement of discharge performance is decreasing of both the overpotential of electrochemical polarization of CFx cathodes during discharge and the overpotential of ohmic polarization by increasing the ion conductivity of electrolyte

  15. Carbon Metabolism of Soil microorganisms at Low Temperatures: Position-Specific 13C Labeled Glucose Reveals the Story

    Science.gov (United States)

    Apostel, C.; Bore, E. K.; Halicki, S.; Kuzyakov, Y.; Dippold, M.

    2015-12-01

    Metabolic pathway activities at low temperature are not well understood, despite the fact that the processes are relevant for many soils globally and seasonally. To analyze soil metabolism at low temperature, isotopomeres of position-specifically 13C labeled glucose were applied at three temperature levels; +5, -5 -20 oC. In additon, one sterilization treatment with sodium azide at +5 oC was also performed. Soils were incubated for 1, 3 and 10 days while soil samples at -20 oC were additionally sampled after 30 days. The 13C from individual molecule position in respired CO2 was quantifed. Incorporation of 13C in bulk soil, extractable microbial biomass by chloroform fumigation extraction (CFE) and cell membranes of different microbial communities classified by 13C phospholipid fatty acid analysis (PLFA) was carried out. Our 13CO2 data showed a dominance of C-1 respiration at +5 °C for treatments with and without sodium azide, but total respiration for sodium azide inhibited treatments increased by 14%. In contrast, at -5 and -20 oC metabolic behavior showed intermingling of preferential respiration of the glucose C-4 and C-1 positions. Therefore, at +5 °C, pentose phosphate pathway activity is a dominant metabolic pathway used by microorganisms to metabolize glucose. The respiration increase due to NaN3 inhibition was attributed to endoenzymes released from dead organisms that are stabilized at the soil matrix and have access to suitable substrate and co-factors to permit their funtions. Our PLFA analysis showed that incorporation of glucose 13C was higher in Gram negative bacteria than other microbial groups as they are most competitive for LMWOS. Only a limited amount of microbial groups maintained their glucose utilizing activity at -5 and -20 °C and they strongly shifted towards a metabolization of glucose via both glycolysis and pentose phosphate pathways indicating both growth and cellular maintenance. This study revealed a remarkable microbial acitivity

  16. Probabilistic Approach to Determining Unbiased Random-coil Carbon-13 Chemical Shift Values from the Protein Chemical Shift Database

    International Nuclear Information System (INIS)

    We describe a probabilistic model for deriving, from the database of assigned chemical shifts, a set of random coil chemical shift values that are 'unbiased' insofar as contributions from detectable secondary structure have been minimized (RCCSu). We have used this approach to derive a set of RCCSu values for 13Cα and 13Cβ for 17 of the 20 standard amino acid residue types by taking advantage of the known opposite conformational dependence of these parameters. We present a second probabilistic approach that utilizes the maximum entropy principle to analyze the database of 13Cα and 13Cβ chemical shifts considered separately; this approach yielded a second set of random coil chemical shifts (RCCSmax-ent). Both new approaches analyze the chemical shift database without reference to known structure. Prior approaches have used either the chemical shifts of small peptides assumed to model the random coil state (RCCSpeptide) or statistical analysis of chemical shifts associated with structure not in helical or strand conformation (RCCSstruct-stat). We show that the RCCSmax-ent values are strikingly similar to published RCCSpeptide and RCCSstruct-stat values. By contrast, the RCCSu values differ significantly from both published types of random coil chemical shift values. The differences (RCCSpeptide-RCCSu) for individual residue types show a correlation with known intrinsic conformational propensities. These results suggest that random coil chemical shift values from both prior approaches are biased by conformational preferences. RCCSu values appear to be consistent with the current concept of the 'random coil' as the state in which the geometry of the polypeptide ensemble samples the allowed region of (φ,ψ)-space in the absence of any dominant stabilizing interactions and thus represent an improved basis for the detection of secondary structure. Coupled with the growing database of chemical shifts, this probabilistic approach makes it possible to refine

  17. Determination of the δ15N and δ13C of total nitrogen and carbon in solids; RSIL lab code 1832

    Science.gov (United States)

    Revesz, Kinga; Qi, Haiping; Coplan, Tyler B.

    2006-01-01

    The purpose of the Reston Stable Isotope Laboratory (RSIL) lab code 1832 is to determine the δ(15N/14N), abbreviated as δ15N, and the δ(13C/12C), abbreviated as δ13C, of total nitrogen and carbon in a solid sample. A Carlo Erba NC 2500 elemental analyzer (EA) is used to convert total nitrogen and carbon in a solid sample into N2 and CO2 gas. The EA is connected to a continuous flow isotope-ratio mass spectrometer (CF-IRMS), which determines the relative difference in stable nitrogen isotope-amount ratio (15N/14N) of the product N2 gas and the relative difference in stable carbon isotope-amount ratio (13C/12C) of the product CO2 gas. The combustion is quantitative; no isotopic fractionation is involved. Samples are placed in tin capsules and loaded into a Costech Zero Blank Autosampler on the EA. Under computer control, samples then are dropped into a heated reaction tube that contains an oxidant, where combustion takes place in a helium atmosphere containing an excess of oxygen gas. Combustion products are transported by a helium carrier through a reduction furnace to remove excess oxygen and to convert all nitrous oxides into N2 and through a drying tube to remove water. The gas-phase products, mainly CO2 and N2, are separated by a gas chromatograph. The gas is then introduced into the IRMS through a Finnigan MAT (now Thermo Scientific) ConFlo II interface. The Finnigan MAT ConFlo II interface is used for introducing not only sample into the IRMS but also N2 and CO2 reference gases and helium for sample dilution. The flash combustion is quantitative; no isotopic fractionation is involved. The IRMS is a Thermo Scientific Delta V CF-IRMS. It has a universal triple collector, two wide cups with a narrow cup in the middle; it is capable of measuring mass/charge (m/z) 28, 29, 30 or with a magnet current change 44, 45, 46, simultaneously. The ion beams from these m/z values are as follows: m/z 28 = N2 = 14N/14N; m/z 29 = N2 = 14N/15N primarily; m/z 30 = NO = 14N/16O

  18. δ15N, δ13C and radiocarbon in dissolved organic carbon as indicators of environmental change

    International Nuclear Information System (INIS)

    Decomposition, humification, and stabilization of soil organic matter are closely related to the dynamics of dissolved organic matter. Enhanced peat decomposition results in increasing aromatic structures and polycondensation of dissolved organic molecules. Although recent studies support the concept that DOM can serve as an indicator for processes driven by changing environmental processes in soils affecting the C and N cycle (like decomposition and humification) and also permit insight in former conditions some 1000 years ago, it is unknown whether dissolved organic carbon (DOC) and nitrogen (DON) have an equal response to these processes. (author)

  19. 土壤跳虫在碳循环中的作用--13C示踪研究%Role of Collembola in Carbon Transformation--A13C-labelling Study

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    很容易通过呼吸作用释放回到大气,尤其在初期,绝大部分排放的 CO2都源自新 C。土壤跳虫在食物网中的作用明显,对土壤微生物具有显著的调控作用。%Terrestrial carbon cycle is one of the key issues in the world. Soil fauna play essential roles in soil ecosystem which is the largest terrestrial carbon sink. However, both the contributions of soil fauna to carbon transformation and the underlying mechanisms are still unclear. The isotope technology provided an useful method to quantify the key processes in soil food web and material cycling. In this study,13C-labeled leaf litter was used to investigate the effect of the Collembola (Folsomia Candida) on carbon transformation in laboratory microcosms. Three treatments were set up: (1) soil (control, S), (2) soil and labeled litter (SL), and (3) soil, labeled litter and Collembola (SLC). Each treatment has four replicates. These microcosms were destructively sampled on day 7, 21, 63 after the experiment initiation. The results showed that litter-derived C was incorporated into soil biota rapidly. The originalδ13C values of Collembola was -9.91‰±0.08‰, and it reached 522.70‰ after 7 days of incubation indicating that Collembola could efficiently assimilate this newly introduced litter-derived C. Similarly, theδ13C values in PLFAs increased significantly, especially at the initial experimental stage. In addition, the presence of Collembola significantly promoted the PLFAsδ13C suggesting that Collembola could accelerate the microbial assimilation of litter carbon. Unexpectedly, treatment SLC exhibited significantly lowerδ13C values than treatment SL. This may indicate that the presence of Collembola stimulated the release of newly metabolized litter C. Both of the treatments stimulated CO2 flux significantly. By C isotope analysis, over 85% of the mineralized C derived from litter at the initiation state (21 days), demonstrating that new C from fresh litter

  20. Carbon-13 natural abundance signatures of long-chain fatty acids to determinate sediment origin: A case study in northeast Austria

    Science.gov (United States)

    Mabit, Lionel; Gibbs, Max; Meusburger, Katrin; Toloza, Arsenio; Resch, Christian; Klik, Andreas; Swales, Andrew; Alewell, Christine

    2016-04-01

    - Several recently published information from scientific research have highlighted that compound-specific stable isotope (CSSI) signatures of fatty acids (FAs) based on the measurement of carbon-13 natural abundance signatures showed great promises to identify sediment origin. The authors have used this innovative isotopic approach to investigate the sources of sediment in a three hectares Austrian sub-watershed (i.e. Mistelbach). Through a previous study using the Cs-137 technique, Mabit et al. (Geoderma, 2009) reported a local maximum sedimentation rate reaching 20 to 50 t/ha/yr in the lowest part of this watershed. However, this study did not identify the sources. Subsequently, the deposited sediment at its outlet (i.e. the sediment mixture) and representative soil samples from the four main agricultural fields - expected to be the source soils - of the site were investigated. The bulk delta carbon-13 of the samples and two long-chain FAs (i.e. C22:0 and C24:0) allowed the best statistical discrimination. Using two different mixing models (i.e. IsoSource and CSSIAR v1.00) and the organic carbon content of the soil sources and sediment mixture, the contribution of each source has been established. Results suggested that the grassed waterway contributed to at least 50% of the sediment deposited at the watershed outlet. This study, that will require further validation, highlights that CSSI and Cs-137 techniques are complementary as fingerprints and tracers for establishing land sediment redistribution and could provide meaningful information for optimized decision-making by land managers.

  1. Assessment of the effects of dobutamine on myocardial blood flow and oxidative metabolism in normal human subjects using nitrogen-13 ammonia and carbon-11 acetate.

    Science.gov (United States)

    Krivokapich, J; Huang, S C; Schelbert, H R

    1993-06-01

    The dual purposes of this study with positron emission tomography were to measure the effects of dobutamine on myocardial blood flow and oxidative metabolism, and to compare carbon-11 (C-11) acetate versus nitrogen-13 (N-13) ammonia in quantitating flow in normal subjects. Flow was quantitated with N-13 ammonia at rest and at peak dobutamine infusion (40 micrograms/kg/min) in 21 subjects. In 11 subjects, oxidative metabolism was also estimated at rest and peak dobutamine infusion using the clearance rate of C-11 acetate, k mono (min-1). A 2-compartment kinetic model was applied to the early phase of the C-11 acetate data to estimate flow. The rest and peak dobutamine rate-pressure products were 7,318 +/- 1,102 and 19,937 +/- 3,964 beats/min/mm Hg, respectively, and correlated well (r = 0.77) with rest and peak dobutamine flows of 0.77 +/- 0.14 and 2.25 ml/min/g determined using N-13 ammonia as a flow tracer. Rest and dobutamine flows estimated with C-11 acetate were highly correlated with those determined with N-13 ammonia (r = 0.92). k mono increased from 0.05 +/- 0.01 to 0.18 +/- 0.02 min-1, and correlated highly with the increase in flows (r = 0.91) and rate-pressure products (r = 0.94). Thus, the increase in cardiac demand associated with dobutamine is highly correlated with an increase in supply and oxidative metabolism. C-11 acetate is a unique tracer that can be used to image both flow and metabolism simultaneously. PMID:8498380

  2. Losses of soil organic carbon by converting tropical forest to plantations: Assessment of erosion and decomposition by new δ13C approach

    Science.gov (United States)

    Guillaume, Thomas; Muhammad, Damris; Kuzyakov, Yakov

    2015-04-01

    Indonesia lost more tropical forest than all of Brazil in 2012, mainly driven by the rubber, oil palm and timber industries. Nonetheless, the effects of converting forest to oil palm and rubber plantations on soil organic carbon (SOC) stocks remain unclear. We analyzed SOC losses after lowland rainforest conversion to oil palm, intensive rubber and extensive rubber plantations in Jambi province on Sumatra Island. We developed and applied a new δ13C based approach to assess and separate two processes: 1) erosion and 2) decomposition. Carbon contents in the Ah horizon under oil palm and rubber plantations were strongly reduced: up to 70% and 62%, respectively. The decrease was lower under extensive rubber plantations (41%). The C content in the subsoil was similar in the forest and the plantations. We therefore assumed that a shift to higher δ13C values in the subsoil of the plantations corresponds to the losses of the upper soil layer by erosion. Erosion was estimated by comparing the δ13C profiles in the undisturbed soils under forest with the disturbed soils under plantations. The estimated erosion was the strongest in oil palm (35±8 cm) and rubber (33±10 cm) plantations. The 13C enrichment of SOC used as a proxy of its turnover indicates a decrease of SOC decomposition rate in the Ah horizon under oil palm plantations after forest conversion. SOC availability, measured by microbial respiration rate and Fourier Transformed Infrared Spectroscopy, was lower under oil palm plantations. Despite similar trends in C losses and erosion in intensive plantations, our results indicate that microorganisms in oil palm plantations mineralized mainly the old C stabilized prior to conversion, whereas microorganisms under rubber plantations mineralized the fresh C from the litter, leaving the old C pool mainly untouched. Based on the lack of C input from litter, we expect further losses of SOC under oil palm plantations, which therefore are a less sustainable land

  3. Carbonation of C–S–H and C–A–S–H samples studied by {sup 13}C, {sup 27}Al and {sup 29}Si MAS NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sevelsted, Tine F.; Skibsted, Jørgen, E-mail: jskib@chem.au.dk

    2015-05-15

    Synthesized calcium silicate hydrate (C–S–H) samples with Ca/Si ratios of 0.66, 1.0, and 1.5 have been exposed to atmospheric CO{sub 2} at room temperature and high relative humidity and studied after one to 12 weeks. {sup 29}Si NMR reveals that the decomposition of C–S–H caused by carbonation involves two steps and that the decomposition rate decreases with increasing Ca/Si ratio. The first step is a gradual decalcification of the C–S–H where calcium is removed from the interlayer and defect sites in the silicate chains until Ca/Si = 0.67 is reached, ideally corresponding to infinite silicate chains. In the seconds step, calcium from the principal layers is consumed, resulting in the final decomposition of the C–S–H and the formation of an amorphous silica phase composed of Q{sup 3} and Q{sup 4} silicate tetrahedra. The amount of solid carbonates and of carbonate ions in a hydrous environment increases with increasing Ca/Si ratio for the C–S–H, as shown by {sup 13}C NMR. For C–A–S–H samples with Ca/Si = 1.0 and 1.5, {sup 27}Al NMR demonstrates that all aluminium sites associated with the C–S–H are consumed during the carbonation reactions and incorporated mainly as tetrahedral Al(–OSi){sub 4} units in the amorphous silica phase. A small amount of penta-coordinated Al sites has also been identified in the silica phase.

  4. Studies of palaeovegetation changes in the Central Amazon by carbon isotopes (12C, 13C, 14C) of soil organic matter

    International Nuclear Information System (INIS)

    The paper presents carbon isotope data δ13C and 14C on soil organic matter collected along an ecosystem transect in southern Amazon state, north-central Amazon region, that includes three distinct vegetation communities: savannah (Campos de Humaita), a savannah-forest transition and forest (Manaus). The study sites are located along road BR 319. Botanical identification and 13C analysis of modern vegetation in the savannah and forest sites indicate that most of the vegetation is C3 plants, although a few C4 plants are present at Campos de Humaita. The 13C and 14C data for soil organic matter in the Humaita region show that significant vegetation changes have occurred in the past, probably associated with climatic changes. During the early Holocene, forest vegetation extended throughout the study region, including areas occupied today by savannah vegetation. Savannah vegetation expanded at least 2 km into the modern forest ecotone during the middle Holocene, suggesting drier conditions. The last approximately 1000 years appear to indicate a recent expansion of forest vegetation, reflecting a return to a more moist climate. The study illustrates that the transition area between forest and savannah vegetation is quite sensitive to climatic changes, and this region should be the focus of more extensive research related to past climate and vegetation dynamics in the Amazon region. (author)

  5. A report on the inter comparison of isotopic analyses by mass spectrometry for the laser enrichment of carbon-13

    International Nuclear Information System (INIS)

    A method has been standardized for the mass spectral analysis of (13C/12C) ratio in the isotopically enriched C2F4 photoproduct obtained by the CO2 laser photolysis of natural CF2HCI sample. For improving the quality of the spectra as well as enchancing the detection level of the product at very low concentrations, a pre-concentration technique has been developed by gas chromatography. Inter comparison of the results for analyses carried out with two different mass spectrometers, viz., a commercial instrument available at the Land PT Division and an indigenously built one by MS and ES, BARC showed a very good agreement. (author)

  6. Carbon transfer, partitioning and residence time in the plant-soil system: a comparison of two 13CO2 labelling techniques

    Science.gov (United States)

    Studer, M. S.; Siegwolf, R. T. W.; Abiven, S.

    2014-03-01

    Various 13CO2 labelling approaches exist to trace carbon (C) dynamics in plant-soil systems. However, it is not clear if the different approaches yield the same results. Moreover, there is no consistent way of data analysis to date. In this study we compare with the same experimental setup the two main techniques: pulse and continuous labelling. We evaluate how these techniques perform to estimate the C transfer time, the C partitioning along time and the C residence time in different plant-soil compartments. We used identical plant-soil systems (Populus deltoides × nigra, Cambisol soil) to compare the pulse labelling approach (exposure to 99 atom % 13CO2 for three hours, traced for eight days) with a continuous labelling (exposure to 10 atom % 13CO2, traced for 14 days). The experiments were conducted in climate chambers under controlled environmental conditions. Before label addition and at four successive sampling dates, the plant-soil systems were destructively harvested, separated into leaves, petioles, stems, cuttings, roots and soil and soil microbial biomass was extracted. The soil CO2 efflux was sampled throughout the experiment. To model the C dynamics we used an exponential function to describe the 13C signal decline after pulse labelling. For the evaluation of the 13C distribution during the continuous labelling we applied a logistic function. Pulse labelling is best suited to assess the minimum C transfer time from the leaves to other compartments, while continuous labelling can be used to estimate the mean transfer time through a compartment, including short-term storage pools. The C partitioning between the plant-soil compartments obtained was similar for both techniques, but the time of sampling had a large effect: shortly after labelling the allocation into leaves was overestimated and the soil 13CO2 efflux underestimated. The results of belowground C partitioning were consistent for the two techniques only after eight days of labelling, when the

  7. Dating Cactus: Annual and Sub-annual Variations of Oxygen-18, Carbon-13 and Radiocarbon in Spines of a Columnar Cactus, Carnegiea gigantea.

    Science.gov (United States)

    Dettman, D. L.; English, N. B.; Sandquist, D. R.; Williams, D. G.

    2006-12-01

    We measured δ18O, δ13C and F14C of spines from a long-lived columnar cactus, Carnegiea gigantea (saguaro), to resolve a record of plant physiological responses to annual and sub-annual climate variation in the eastern Sonoran Desert. Spines grow from the apex of the cactus and are arranged serially along the side of the cactus oldest at the base, youngest at the apex. To establish the age of the spine series, we measured F14C of spines collected at 8 different heights from the apex (3.77 m) to the base of a naturally occurring saguaro. These spines yielded fractions of modern carbon (F14C) from 0.9679 and 1.5537, indicating the presence of carbon in spine tissue derived from atmospheric nuclear testing. We used the F14C of spine tissue to calculate the year of spine emergence for each of the 11 spines, assuming minimal re-allocation of stored carbon to growing spines. At the same 8 heights, we interpolated the date of spine emergence from observed height measurements made between 1964 and 2002. A very strong positive correlation (linear regression, r2 = 0.99, P < 0.0001) between the F14C age of spines and ages determined from direct height measurements was observed, with a two year offset suggesting incorporation of carbon from fossil fuel combustion sources in the Tucson basin. Additionally, spine tips from 97 spines collected serially from the top half of the same saguaro (between 1.77 and 3.50 m) and representing ~15 years of growth, yielded δ18O variations in spine bulk organic material from 38° to 50° (VSMOW) and in δ13C from ° to 11.5° (VPDB). The δ18O and δ13C values were positively correlated over the entire record (linear regression, r2 = 0.22, P < 0.0001). These variations occurred at or near an annual frequency. The most negative δ18O and δ13C values in bulk spine organic material from the naturally occurring cactus were observed in spines grown shortly following the 1983 and 1993 strong El Niño winter precipitation events in Tucson

  8. Changing Rule of Carbon-Enriched Zone and Diffusion Behavior of Carbon in Aging 0Cr6Mn13Ni10MoTi/1Cr5Mo Dissimilar Welded Joints

    Institute of Scientific and Technical Information of China (English)

    Zheng LIU; Ligang WANG; Lai WANG

    2004-01-01

    The microstructures, the changing rule of carbon-enriched zone, the diffusion behaviors of elements C and Cr, and the carbide type of 0Cr6Mn13Ni10MoTi/1Cr5Mo dissimilar welded joints after aging at 500℃ for various times and after long-term service in technical practice were investigated by using the optical microscopy, electron probe microanalysis, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results show that in aging 0Cr6Mn13Ni10MoTi/1Cr5Mo dissimilar welded joints, the main carbides are M3C and a few carbides are M7C3 and M23C6. The M3C carbide decomposition and dissolution with increasing aging time or aging temperature and the anti-diffusion of C and Cr cause the decrease and disappearance of the carbon-enriched zone. The results are different from those of the A302/1Cr5Mo dissimilar welded joints in previous studies.

  9. Analysis of carbon and nitrogen co-metabolism in yeast by ultrahigh-resolution mass spectrometry applying {sup 13}C- and {sup 15}N-labeled substrates simultaneously

    Energy Technology Data Exchange (ETDEWEB)

    Blank, Lars M. [TU Dortmund University, Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, Dortmund (Germany); RWTH Aachen University, Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, Aachen (Germany); Desphande, Rahul R. [TU Dortmund University, Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, Dortmund (Germany); Michigan State University, Department of Plant Biology, East Lansing, MI (United States); Schmid, Andreas [TU Dortmund University, Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, Dortmund (Germany); Hayen, Heiko [Leibniz-Institut fuer Analytische Wissenschaften-ISAS-e.V, Dortmund (Germany); University of Wuppertal, Department of Food Chemistry, Wuppertal (Germany)

    2012-06-15

    Alternative metabolic pathways inside a cell can be deduced using stable isotopically labeled substrates. One prerequisite is accurate measurement of the labeling pattern of targeted metabolites. Experiments are generally limited to the use of single-element isotopes, mainly {sup 13}C. Here, we demonstrate the application of direct infusion nanospray, ultrahigh-resolution Fourier transform ion cyclotron resonance-mass spectrometry (FTICR-MS) for metabolic studies using differently labeled elemental isotopes simultaneously - i.e., {sup 13}C and {sup 15}N - in amino acids of a total protein hydrolysate. The optimized strategy for the analysis of metabolism by a hybrid linear ion trap-FTICR-MS comprises the collection of multiple adjacent selected ion monitoring scans. By limiting both the width of the mass range and the number of ions entering the ICR cell with automated gain control, sensitive measurements of isotopologue distribution were possible without compromising mass accuracy and isotope intensity mapping. The required mass-resolving power of more than 60,000 is only achievable on a routine basis by FTICR and Orbitrap mass spectrometers. Evaluation of the method was carried out by comparison of the experimental data to the natural isotope abundances of selected amino acids and by comparison to GC/MS results obtained from a labeling experiment with {sup 13}C-labeled glucose. The developed method was used to shed light on the complexity of the yeast Saccharomyces cerevisiae carbon-nitrogen co-metabolism by administering both {sup 13}C-labeled glucose and {sup 15}N-labeled alanine. The results indicate that not only glutamate but also alanine acts as an amino donor during alanine and valine synthesis. Metabolic studies using FTICR-MS can exploit new possibilities by the use of multiple-labeled elemental isotopes. (orig.)

  10. Structure determination of a 2''-O(α-D-glucopyranose) isomaltotriose by proton and carbon-13 NMR

    International Nuclear Information System (INIS)

    The glucosyltransferases from Leuconostoc mesenteroides are known to catalyze the transfer of the D-glucosyl group of sucrose onto sugars, commonly named acceptors. We investigated in the present work the transfer of the glucose moiety of sucrose onto isomaltose acceptor catalyzed by the glucosyltransferases from Leuconostoc mesenteroides. Several oligosaccharides were produced, isolated, fractionated by HPLC and characterized. The primary structure of the tetrasaccharide has been determined as that of 2'' -O-(α-D-glucopyranose) isomaltotriose by n.m.r. spectroscopy, using homo-and heteronuclear, shift correlated, two dimensional and n.o.e. difference experiments. This chemical structure was corrobored by 13C spin lattice relaxation time measurements (T1) indicating that internal units B and C are notably less flexible than A and D termini units, C being the less mobile. (authors). 18 refs., 3 figs., 3 tabs

  11. Carbon flux analysis by 13C nuclear magnetic resonance to determine the effect of CO2 on anaerobic succinate production by Corynebacterium glutamicum.

    Science.gov (United States)

    Radoš, Dušica; Turner, David L; Fonseca, Luís L; Carvalho, Ana Lúcia; Blombach, Bastian; Eikmanns, Bernhard J; Neves, Ana Rute; Santos, Helena

    2014-05-01

    Wild-type Corynebacterium glutamicum produces a mixture of lactic, succinic, and acetic acids from glucose under oxygen deprivation. We investigated the effect of CO2 on the production of organic acids in a two-stage process: cells were grown aerobically in glucose, and subsequently, organic acid production by nongrowing cells was studied under anaerobic conditions. The presence of CO2 caused up to a 3-fold increase in the succinate yield (1 mol per mol of glucose) and about 2-fold increase in acetate, both at the expense of l-lactate production; moreover, dihydroxyacetone formation was abolished. The redistribution of carbon fluxes in response to CO2 was estimated by using (13)C-labeled glucose and (13)C nuclear magnetic resonance (NMR) analysis of the labeling patterns in end products. The flux analysis showed that 97% of succinate was produced via the reductive part of the tricarboxylic acid cycle, with the low activity of the oxidative branch being sufficient to provide the reducing equivalents needed for the redox balance. The flux via the pentose phosphate pathway was low (~5%) regardless of the presence or absence of CO2. Moreover, there was significant channeling of carbon to storage compounds (glycogen and trehalose) and concomitant catabolism of these reserves. The intracellular and extracellular pools of lactate and succinate were measured by in vivo NMR, and the stoichiometry (H(+):organic acid) of the respective exporters was calculated. This study shows that it is feasible to take advantage of natural cellular regulation mechanisms to obtain high yields of succinate with C. glutamicum without genetic manipulation. PMID:24610842

  12. Bringing hope to marginal and harsh environments: The use of carbon-13 isotope discrimination technique to evaluate and select food crops adapted to water and salt stress environments

    International Nuclear Information System (INIS)

    Many countries have weather patterns and soil characteristics that place major constraints on food production systems over large tracts of land. Thus a major challenge for making better use of these marginal lands is not only to select appropriate crops but also to evaluate and optimize their adaptability and crop productivity under extreme climatic conditions (high temperatures and low rainfall) or where soils suffer from salinity, acidity or low plant nutrient status. The carbon isotope discrimination technique (using the ratios of different carbon isotopes [12C/13C] in plants) commonly referred to as CID, has been proposed as a possible selection criterion for greater water use efficiency in breeding programmes for water limited and salt stress environments because it provides an integrative assessment of genotypic variation in leaf transpiration efficiency. Although the relationship between CID and water and/or salt stress have been well studied and documented for many crop plants, few studies have looked at the combined effects of salt, water and nutrient stresses on the potential use of this technique to select and evaluate crop plants adapted to harsh environments

  13. Traceability of animal byproducts in quail (Coturnix coturnix japonica tissues using carbon (13C/12C and nitrogen (15N/14N stable isotopes

    Directory of Open Access Journals (Sweden)

    C Móri

    2007-12-01

    Full Text Available Consistent information on meat products consumed by the public is essential. The technique of stable isotopes is a powerful tool to recover consumers' confidence, as it allows the detection of animal byproduct residues in poultry meat, particularly in quail meat. This study aimed at checking the presence of poultry byproduct mixtures in quail diets by applying the technique of carbon (13C/12C and nitrogen (15N/14N stable isotopes in quail breast muscle, keel, and tibia. Sixty four one-day-old male quails were obtained from a commercial farm. Birds were housed in an experimental house from one to 42 days of age, and were randomly distributed into 8 experimental treatments, and fed diets containing poultry offal meal (POM, bovine meat and bone meal (MBM or poultry feather meal (PFM, or their mixtures. Four birds per treatment were slaughtered at 42 days of age, and breast (Pectoralis major, keel, and tibia were collected for analyses. The inclusion of animal byproducts in quail diets was detected by 13C e 15N analyses in the tissues of the birds; however, it was not possible to specify which byproducts were used. It was concluded that quail meat can be certified by the technique of stable isotopes.

  14. Pan-Arctic concentrations of mercury and stable isotope ratios of carbon (δ(13)C) and nitrogen (δ(15)N) in marine zooplankton.

    Science.gov (United States)

    Pomerleau, Corinne; Stern, Gary A; Pućko, Monika; Foster, Karen L; Macdonald, Robie W; Fortier, Louis

    2016-05-01

    Zooplankton play a central role in marine food webs, dictating the quantity and quality of energy available to upper trophic levels. They act as "keystone" species in transfer of mercury (Hg) up through the marine food chain. Here, we present the first Pan-Arctic overview of total and monomethylmercury concentrations (THg and MMHg) and stable isotope ratios of carbon (δ(13)C) and nitrogen (δ(15)N) in selected zooplankton species by assembling data collected between 1998 and 2012 from six arctic regions (Laptev Sea, Chukchi Sea, southeastern Beaufort Sea, Canadian Arctic Archipelago, Hudson Bay and northern Baffin Bay). MMHg concentrations in Calanus spp., Themisto spp. and Paraeuchaeta spp. were found to increase with higher δ(15)N and lower δ(13)C. The southern Beaufort Sea exhibited both the highest THg and MMHg concentrations. Biomagnification of MMHg between Calanus spp. and two of its known predators, Themisto spp. and Paraeuchaeta spp., was greatest in the southern Beaufort Sea. Our results show large geographical variations in Hg concentrations and isotopic signatures for individual species related to regional ecosystem features, such as varying water masses and freshwater inputs, and highlight the increased exposure to Hg in the marine food chain of the southern Beaufort Sea. PMID:26874765

  15. Priming of soil carbon decomposition in two inner Mongolia grassland soils following sheep dung addition: A study using13C natural abundance approach

    DEFF Research Database (Denmark)

    Ma, Xiuzhi; Ambus, Per; Wang, Shiping;

    2013-01-01

    To investigate the effect of sheep dung on soil carbon (C) sequestration, a 152 days incubation experiment was conducted with soils from two different Inner Mongolian grasslands, i.e. a Leymus chinensis dominated grassland representing the climax community (2.1% organic matter content...... with the two grassland soils and incubated under controlled conditions for analysis of 13C-CO2 emissions. Soil samples were taken at days 17, 43, 86, 127 and 152 after sheep dung addition to detect the δ 13C signal in soil and dung components. Analysis revealed that 16.9% and 16.6% of the sheep dung C had...... decomposed, of which 3.5% and 2.8% was sequestrated in the soils of L. chinensis and A. frigida grasslands, respectively, while the remaining decomposed sheep dung was emitted as CO 2. The cumulative amounts of C respired from dung treated soils during 152 days were 7-8 times higher than in the un...

  16. Carbon-rich presolar grains from massive stars. Subsolar 12C/13C and 14N/15N ratios and the mystery of 15N

    CERN Document Server

    Pignatari, M; Hoppe, P; Jordan, C J; Gibson, B K; Trappitsch, R; Herwig, F; Fryer, C; Hirschi, R; Timmes, F X

    2015-01-01

    Carbon-rich grains with isotopic anomalies compared to the Sun are found in primitive meteorites. They were made by stars, and carry the original stellar nucleosynthesis signature. Silicon carbide grains of Type X and C, and low-density graphites condensed in the ejecta of core-collapse supernovae. We present a new set of models for the explosive He shell and compare them with the grains showing 12C/13C and 14N/15N ratios lower than solar. In the stellar progenitor H was ingested into the He shell and not fully destroyed before the explosion. Different explosion energies and H concentrations are considered. If the SN shock hits the He-shell region with some H still present, the models can reproduce the C and N isotopic signatures in C-rich grains. Hot-CNO cycle isotopic signatures are obtained, including a large production of 13C and 15N. The short-lived radionuclides 22Na and 26Al are increased by orders of magnitude. The production of radiogenic 22Ne from the decay of 22Na in the He shell might solve the pu...

  17. Stable Isotope (delta OXYGEN-18, Delta Deuterium, Delta CARBON-13) Dendroclimatological Studies in the Waterloo Region of Southern Ontario, Canada, Between AD 1610 and 1990.

    Science.gov (United States)

    Buhay, William Mark

    Oxygen (delta^{18} O), hydrogen (delta^2H) and carbon (delta^{13}C) isotopes were measured in wood cellulose from elm, white pine and maple trees that grew in southwestern Ontario, Canada. The measured oxygen and hydrogen isotopic data were used for model-based reconstructions of delta^{18}{O}_{meteoric water}, mean annual temperature (MAT) and relative humidity for a period, AD 1610 to 1880, that precedes instrumental records of climate. The carbon isotope measurements were compared with the Cellulose Model inferred climate data to reveal additional environmental information. Modifications made to the Cellulose Model focused on the dynamics of oxygen and hydrogen isotopic fractionation in plants during evapotranspiration and photosynthetic assimilation. For instance, kinetic fractionation of ^{18}O was found to be predictable from theoretical considerations of leaf energy balance and boundary layer dynamics. Kinetic fractionation during evapotranspiration is sensitive to the nature of the boundary layer, which is controlled by leaf size and morphology. Generally, plants with small segmented leaves have a lower component of turbidity in the leaf boundary layer, which results in higher kinetic fractionation values, than do plants having large simple leaves and more turbulent boundary layers. Kinetic ^2H enrichment in plant leaf water can also be rationalized in terms of leaf size and morphology when an apparent temperature-dependent isotope effect, acting in opposition to evaporative enrichment, is taken into account. Accounting for this temperature -dependent isotope effect helps to: (1) reconcile hydrogen kinetic fractionation inconsistencies for different leaves; (2) explain a temperature effect previously attributed to variable biochemical fractionation during cellulose synthesis, and; (3) verify hydrogen biochemical effects in plants. This improved characterization of the oxygen and hydrogen isotopic effects in plants, using the modified Cellulose Model, helped

  18. Combined δ11B, δ13C, and δ18O analyses of coccolithophore calcite constrains the response of coccolith vesicle carbonate chemistry to CO2-induced ocean acidification

    Science.gov (United States)

    Liu, Yi-Wei; Tripati, Robert; Aciego, Sarah; Gilmore, Rosaleen; Ries, Justin

    2016-04-01

    Coccolithophorid algae play a central role in the biological carbon pump, oceanic carbon sequestration, and in marine food webs. It is therefore important to understand the potential impacts of CO2-induced ocean acidification on these organisms. Differences in the regulation of carbonate chemistry, pH, and carbon sources of the intracellular compartments where coccolith formation occurs may underlie the diverse calcification and growth responses to acidified seawater observed in prior experiments. Here we measured stable isotopes of boron (δ11B), carbon13C) and oxygen (δ18O) within coccolith calcite, and δ13C of algal tissue to constrain carbonate system parameters in two strains of Pleurochrysis carterae (P. carterae). The two strains were cultured under variable pCO2, with water temperature, salinity, dissolved inorganic carbon (DIC), and alkalinity monitored. Notably, PIC, POC, and PIC/POC ratio did not vary across treatments, indicating that P. carterae is able to calcify and photosynthesize at relatively constant rates irrespective of pCO2 treatment. The δ11B data indicate that mean pH at the site of coccolith formation did not vary significantly in response to elevated CO2. These results suggest that P. carterae regulates calcifying vesicle pH, even amidst changes in external seawater pH. Furthermore, δ13C and δ18O data suggest that P. carterae may utilize carbon from a single internal DIC pool for both calcification and photosynthesis, and that a greater proportion of dissolved CO2 relative to HCO3- enters the internal DIC pool under acidified conditions. These results suggest that P. carterae is able to calcifyand photosynthesize at relatively constant rates across pCO2 treatments by maintaining pH homeostasis at their site of calcification and utilizing a greater proportion of aqueous CO2.

  19. In vivo carbon-edited detection with proton echo-planar spectroscopic imaging (ICED PEPSI) : [3,4-(CH2)-C-13] glutamate/glutamine tomography in rat brain

    NARCIS (Netherlands)

    Hyder, F; Renken, R; Rothman, DL

    1999-01-01

    A method for in vivo carbon-edited detection with proton echo-planar spectroscopic imaging (ICED PEPSI) is described. This method is composed of an echo-planar based acquisition implemented with C-13-H-1 J editing spectroscopy and is intended for high temporal and spatial resolution in vivo spectros

  20. In situ 13CO2 pulse labelling of field-grown eucalypt trees revealed the effects of potassium nutrition and throughfall exclusion on phloem transport of photosynthetic carbon.

    Science.gov (United States)

    Epron, Daniel; Cabral, Osvaldo Machado Rodrigues; Laclau, Jean-Paul; Dannoura, Masako; Packer, Ana Paula; Plain, Caroline; Battie-Laclau, Patricia; Moreira, Marcelo Zacharias; Trivelin, Paulo Cesar Ocheuze; Bouillet, Jean-Pierre; Gérant, Dominique; Nouvellon, Yann

    2016-01-01

    Potassium (K) is an important limiting factor of tree growth, but little is known of the effects of K supply on the long-distance transport of photosynthetic carbon (C) in the phloem and of the interaction between K fertilization and drought. We pulse-labelled 2-year-old Eucalyptus grandis L. trees grown in a field trial combining K fertilization (+K and -K) and throughfall exclusion (+W and -W), and we estimated the velocity of C transfer by comparing time lags between the uptake of (13)CO2 and its recovery in trunk CO2 efflux recorded at different heights. We also analysed the dynamics of the labelled photosynthates recovered in the foliage and in the phloem sap (inner bark extract). The mean residence time of labelled C in the foliage was short (21-31 h). The time series of (13)C in excess in the foliage was affected by the level of fertilization, whereas the effect of throughfall exclusion was not significant. The velocity of C transfer in the trunk (0.20-0.82 m h(-1)) was twice as high in +K trees than in -K trees, with no significant effect of throughfall exclusion except for one +K -W tree labelled in the middle of the drought season that was exposed to a more pronounced water stress (midday leaf water potential of -2.2 MPa). Our results suggest that besides reductions in photosynthetic C supply and in C demand by sink organs, the lower velocity under K deficiency is due to a lower cross-sectional area of the sieve tubes, whereas an increase in phloem sap viscosity is more likely limiting phloem transport under drought. In all treatments, 10 times less (13)C was recovered in inner bark extracts at the bottom of the trunk when compared with the base of the crown, suggesting that a large part of the labelled assimilates has been exported out of the phloem and replaced by unlabelled C. This supports the 'leakage-retrieval mechanism' that may play a role in maintaining the pressure gradient between source and sink organs required to sustain high

  1. Application of a methane carbon isotope analyzer for the investigation of δ13C of methane emission measured by the automatic chamber method in an Arctic Tundra

    Science.gov (United States)

    Mastepanov, Mikhail; Christensen, Torben

    2014-05-01

    Methane emissions have been monitored by an automatic chamber method in Zackenberg valley, NE Greenland, since 2006 as a part of Greenland Ecosystem Monitoring (GEM) program. During most of the seasons the measurements were carried out from the time of snow melt (June-July) until freezing of the active layer (October-November). Several years of data, obtained by the same method, instrumentation and at exactly the same site, provided a unique opportunity for the analysis of interannual methane flux patterns and factors affecting their temporal variability. The start of the growing season emissions was found to be closely related to a date of snow melt at the site. Despite a large between year variability of this date (sometimes more than a month), methane emission started within a few days after, and was increasing for the next about 30 days. After this peak of emission, it slowly decreased and stayed more or less constant or slightly decreasing during the rest of the growing season (Mastepanov et al., Biogeosciences, 2013). During the soil freezing, a second peak of methane emission was found (Mastepanov et al., Nature, 2008); its amplitude varied a lot between the years, from almost undetectable to comparable with total growing season emissions. Analysis of the multiyear emission patterns (Mastepanov et al., Biogeosciences, 2013) led to hypotheses of different sources for the spring, summer and autumn methane emissions, and multiyear cycles of accumulation and release of these components to the atmosphere. For the further investigation of this it was decided to complement the monitoring system with a methane carbon isotope analyzer (Los Gatos Research, USA). The instrument was installed during 2013 field season and was successfully operating until the end of the measurement campaign (27 October). Detecting both 12C-CH4 and 13C-CH4 concentrations in real time (0.5 Hz) during automatic chamber closure (15 min), the instrument was providing data for determination of

  2. In situ 13CO2 pulse labelling of field-grown eucalypt trees revealed the effects of potassium nutrition and throughfall exclusion on phloem transport of photosynthetic carbon.

    Science.gov (United States)

    Epron, Daniel; Cabral, Osvaldo Machado Rodrigues; Laclau, Jean-Paul; Dannoura, Masako; Packer, Ana Paula; Plain, Caroline; Battie-Laclau, Patricia; Moreira, Marcelo Zacharias; Trivelin, Paulo Cesar Ocheuze; Bouillet, Jean-Pierre; Gérant, Dominique; Nouvellon, Yann

    2016-01-01

    Potassium (K) is an important limiting factor of tree growth, but little is known of the effects of K supply on the long-distance transport of photosynthetic carbon (C) in the phloem and of the interaction between K fertilization and drought. We pulse-labelled 2-year-old Eucalyptus grandis L. trees grown in a field trial combining K fertilization (+K and -K) and throughfall exclusion (+W and -W), and we estimated the velocity of C transfer by comparing time lags between the uptake of (13)CO2 and its recovery in trunk CO2 efflux recorded at different heights. We also analysed the dynamics of the labelled photosynthates recovered in the foliage and in the phloem sap (inner bark extract). The mean residence time of labelled C in the foliage was short (21-31 h). The time series of (13)C in excess in the foliage was affected by the level of fertilization, whereas the effect of throughfall exclusion was not significant. The velocity of C transfer in the trunk (0.20-0.82 m h(-1)) was twice as high in +K trees than in -K trees, with no significant effect of throughfall exclusion except for one +K -W tree labelled in the middle of the drought season that was exposed to a more pronounced water stress (midday leaf water potential of -2.2 MPa). Our results suggest that besides reductions in photosynthetic C supply and in C demand by sink organs, the lower velocity under K deficiency is due to a lower cross-sectional area of the sieve tubes, whereas an increase in phloem sap viscosity is more likely limiting phloem transport under drought. In all treatments, 10 times less (13)C was recovered in inner bark extracts at the bottom of the trunk when compared with the base of the crown, suggesting that a large part of the labelled assimilates has been exported out of the phloem and replaced by unlabelled C. This supports the 'leakage-retrieval mechanism' that may play a role in maintaining the pressure gradient between source and sink organs required to sustain high

  3. Application of (13)C ramp CPMAS NMR with phase-adjusted spinning sidebands (PASS) for the quantitative estimation of carbon functional groups in natural organic matter.

    Science.gov (United States)

    Ikeya, Kosuke; Watanabe, Akira

    2016-01-01

    The composition of carbon (C) functional groups in natural organic matter (NOM), such as dissolved organic matter, soil organic matter, and humic substances, is frequently estimated using solid-state (13)C NMR techniques. A problem associated with quantitative analysis using general cross polarization/magic angle spinning (CPMAS) spectra is the appearance of spinning side bands (SSBs) split from the original center peaks of sp (2) hybridized C species (i.e., aromatic and carbonyl C). Ramp CP/phase-adjusted side band suppressing (PASS) is a pulse sequence that integrates SSBs separately and quantitatively recovers them into their inherent center peaks. In the present study, the applicability of ramp CP/PASS to NOM analysis was compared with direct polarization (DPMAS), another quantitative method but one that requires a long operation time, and/or a ramp CP/total suppression side band (ramp CP/TOSS) technique, a popular but non-quantitative method for deleting SSBs. The test materials were six soil humic acid samples with various known degrees of aromaticity and two fulvic acids. There were no significant differences in the relative abundance of alkyl C, O-alkyl C, and aromatic C between the ramp CP/PASS and DPMAS methods, while the signal intensities corresponding to aromatic C in the ramp CP/TOSS spectra were consistently less than the values obtained in the ramp CP/PASS spectra. These results indicate that ramp CP/PASS can be used to accurately estimate the C composition of NOM samples.

  4. Biomarker and carbon isotope constraints (δ13C, Δ14C) on sources and cycling of particulate organic matter discharged by large Siberian rivers draining permafrost areas

    International Nuclear Information System (INIS)

    Circumpolar permafrost soils store about half of the global soil organic carbon pool. These huge amounts of organic matter (OM) could accumulate due to low temperatures and water saturated soil conditions over the course of millennia. Currently most of this OM remains frozen and therefore does not take part in the active carbon cycle, making permafrost soils a globally important carbon sink. Over the last decades mean annual air temperatures in the Arctic increased stronger than the global mean and this trend is projected to continue. As a result the permafrost carbon pool is under climate pressure possibly creating a positive climate feedback due to the thaw-induced release of greenhouse gases to the atmosphere. Arctic warming will lead to increased annual permafrost thaw depths and Arctic river runoff likely resulting in enhanced mobilization and export of old, previously frozen soil-derived OM. Consequently, the great arctic rivers play an important role in global biogeochemical cycles by connecting the large permafrost carbon pool of their hinterlands with the arctic shelf seas and the Arctic Ocean. The first part of this thesis deals with particulate organic matter (POM) from the Lena Delta and adjacent Buor Khaya Bay. The Lena River in central Siberia is one of the major pathways translocating terrestrial OM from its southernmost reaches near Lake Baikal to the coastal zone of the Laptev Sea. The permafrost soils from the Lena catchment area store huge amounts of pre-aged OM, which is expected to be remobilized due to climate warming. To characterize the composition and vegetation sources of OM discharged by the Lena River, the lignin phenol and carbon isotopic composition (δ13C and Δ14C) in total suspended matter (TSM) from surface waters, surface sediments from the Buor Khaya Bay along with soils from the Lena Delta's first (Holocene) and third terraces (Pleistocene ice complex) were analyzed. The lignin compositions of these samples are consistent

  5. 13Cr系列不锈钢在模拟井下介质中的CO2腐蚀研究%INVESTIGATION ON CARBON DIOXIDE CORROSION PERFORMANCE OF VARIOUS 13Cr STEELS IN SIMULATED STRATUM WATER

    Institute of Scientific and Technical Information of China (English)

    侯赞; 周庆军; 王起江; 张忠铧; 齐慧滨; 王俊

    2012-01-01

    The corrosion behaviour of various 13Cr steels (marked as 13Cr-0, 13Cr1, M13Cr and S13Cr) in the CO2 corrosion environment was investigated by high temperature and high pressure (HTHP) autoclave under conditions of different temperatures, concentrations of Cl ion and partial pressures of CO2 to simulate the downhole surroundings of a certain oil field. Their corrosion scales were observed and analyzed by scanning elec- tron microscope(SEM), energy dispersive spectrometer(EDS), X-ray diffraction(XRD) and X-ray photoelectron spectroscopy(XPS). The results shown that corrosion rates of all steels increased with rising of temperature, concentration of Cl ion and CO2 partial pressure; temperature had the most notable impact on corrosion rates, at a high temperature, the four 13Cr steels exhibited conspicuous differences in corrosion rates; the order of corrosion rates of the four steels was 13Cr-0〉13Cr-1〉M13Cr〉S13Cr. Furthermore, the morphologies and microstructures of corrosion scales on different steels differed significantly from each other.%根据某油田不同井况条件,配制不同井下模拟溶液,用高温高压釜研究了4种不同成分的13Cr马氏体不锈钢在不同温度、Cl^-浓度和CO2分压下的腐蚀行为,对腐蚀性能进行了评价,用SEM,EDS,XRD和XPS等方法对腐蚀产物的形貌与成分进行了观察分析。结果表明,随着温度的升高及Cl^-浓度和CO2分压的增大,13Cr系列不锈钢的腐蚀速率均相应增大,腐蚀速率由高到低的排序为13Cr-0〉13Cr-1〉M13Cr〉S13Cr;其腐蚀产物膜的形貌与结构也有明显差异。

  6. The synthesis of [14C]-3S,4R-4-(4-fluorophenyl)-3-(3,4-methylenedioxyphenoxymethyl) piperidine hydrochloride (BRL 29060A), and mechanistic studies using carbon-13 labelling

    International Nuclear Information System (INIS)

    Paroxetine, BRL 29060A has been labelled with both carbon-14 and carbon-13. Hydroxymethylation of 4-(4-fluorophenyl)-1-methyl-1,2,5,6-tetrahydropyridine, using [14C]formaldehyde, produced an enantiomeric mixture of products which was taken without separation through a multistage sequence. Resolution of the mixture of stereoisomers at the penultimate step gave [14C]BRL 29060A with the required configuration. The overall radiochemical yield was 8%. At some stage in this process, as shown by C-13 labelling studies, scrambling of the label took place to give BRL 29060A with the majority of the label in the C-2 position of the piperidine ring and the remainder at the expected 7-methylene position. Further investigations of this route using carbon-13 as the label are described. When sesamol, (3,4-methylenedioxyphenol) was reacted with the O-benzene sulphonate of -cis-4-(4-fluorophenyl)-3-(hydroxy[13C]methyl-l-methylpiperidine, an inversion of configuration resulted via the previously described 1-aza[3.1.1]bicycloheptane ring system. It is also shown that the corresponding -trans-substituted piperidine, under similar conditions, does not undergo this inversion. (Author)

  7. The synthesis of [[sup 14]C]-3S,4R-4-(4-fluorophenyl)-3-(3,4-methylenedioxyphenoxymethyl) piperidine hydrochloride (BRL 29060A), and mechanistic studies using carbon-13 labelling

    Energy Technology Data Exchange (ETDEWEB)

    Willcocks, K.; Rustidge, D.C.; Tidy, D.J.D. (SmithKline Beecham Pharmaceuticals Research Div., Harlow (United Kingdom)); Barnes, R.D. (SmithKline Beecham Pharmaceuticals Div., Betchworth (United Kingdom). Chemotherapeutic Research Centre)

    1993-01-01

    Paroxetine, BRL 29060A has been labelled with both carbon-14 and carbon-13. Hydroxymethylation of 4-(4-fluorophenyl)-1-methyl-1,2,5,6-tetrahydropyridine, using [[sup 14]C]formaldehyde, produced an enantiomeric mixture of products which was taken without separation through a multistage sequence. Resolution of the mixture of stereoisomers at the penultimate step gave [[sup 14]C]BRL 29060A with the required configuration. The overall radiochemical yield was 8%. At some stage in this process, as shown by C-13 labelling studies, scrambling of the label took place to give BRL 29060A with the majority of the label in the C-2 position of the piperidine ring and the remainder at the expected 7-methylene position. Further investigations of this route using carbon-13 as the label are described. When sesamol, (3,4-methylenedioxyphenol) was reacted with the O-benzene sulphonate of -cis-4-(4-fluorophenyl)-3-(hydroxy[[sup 13]C]methyl-l-methylpiperidine), an inversion of configuration resulted via the previously described 1-aza[3.1.1]bicycloheptane ring system. It is also shown that the corresponding -trans-substituted piperidine, under similar conditions, does not undergo this inversion. (Author).

  8. High resolution {sup 13}C NMR spectra on oriented lipid bilayers: From quantifying the various sources of line broadening to performing 2D experiments with 0.2-0.3 ppm resolution in the carbon dimension

    Energy Technology Data Exchange (ETDEWEB)

    Soubias, O.; Saurel, O.; Reat, V.; Milon, A. [Institut de Pharmacologie et de Biologie Structurale (France)], E-mail: alain.milon@ipbs.fr

    2002-09-15

    {sup 13}C NMR spectra routinely performed on oriented lipid bilayers display linewidth of 1-2 ppm, although T{sub 2} measurements indicate that 0.1-0.2 ppm could be obtained. We have prepared a DMPC - {sup 13}C{sub 4}-cholesterol (7/3) sample, and oriented the lipid bilayers between glass plates so that the bilayer normal makes an angle of 90 deg. (or of the magic angle) with B{sub 0}. We have measured T{sub 2}s, CSAs, and linewidths for the choline {sup 13}C-{gamma}-methyl, the cholesterol-C{sub 4} carbons and the lipid head group phosphorus, at both angles and 313 K. The magnetic field distribution within the sample was calculated using the surface current formalism. The line shapes were simulated as a function of B{sub 0} field inhomogeneities and sample mosaic spread. Both effects contribute to the experimental linewidth. Using three signals of different CSA, we have quantified both contributions and measured the mosaic spread accurately. Direct shimming on a sample signal is essential to obtain sharp resonances and {sup 13}C labelled choline methyl resonance of DMPC is a good candidate for this task. After optimisation of the important parameters (shimming on the choline resonance, mosaic spread of {+-} 0.30 deg.), {sup 13}C linewidth of 0.2-0.3 ppm have been obtained. This newly achieved resolution on bilayers oriented at 90 deg., has allowed to perform two 2D experiments, with a good sensitivity: 2D PELF (correlation of carbon chemical shifts and C-H dipolar couplings) and 2D D-resolved experiment (correlation of carbon chemical shifts and C-C dipolar couplings). A C-C dipolar coupling of 35 {+-} 2 Hz between the choline methyl carbons was determined.

  9. Comparison of the regiospecific distribution from triacylglycerols after chemical and enzymatic interesterification of high oleic sunflower oil and fully hydrogenated high oleic sunflower oil blend by carbon-13 nuclear magnetic resonance.

    Science.gov (United States)

    Lopes, Thiago I B; Ribeiro, Marilene D M M; Ming, Chiu C; Grimaldi, Renato; Gonçalves, Lireny A G; Marsaioli, Anita J

    2016-12-01

    The nutritional and organoleptic attributes of oils can proceed via interesterification of oils blends catalyzed by enzymes or chemicals. Enzymatic interesterification processes are preferred due the regiospecific outcome. Traditionally, monitoring of distribution of fatty acids (FA) in glycerol backbone is performed by enzymatic and chromatographic methods that are time-consuming, involving a series of chemical manipulations employing large volumes of organic solvents. Alternatively, carbon-13 nuclear magnetic resonance ((13)C NMR) is a fast and reliable technique that could be applied to determine the saturated and unsaturated FA distribution of the triacylglycerols (TAGs) present in high oleic sunflower oil (SO) and fully hydrogenated high oleic sunflower oil (HSO) blends and their interesterification products. The enzymatic interesterification was conducted employing the immobilized lipase from Thermomyces lanuginosus (Lipozyme TL IM), the results show that the process was not completely regiospecific at sn-1,3 positions, due to the spontaneous acyl migration from position sn-2 to sn-1,3.

  10. Comparison of the regiospecific distribution from triacylglycerols after chemical and enzymatic interesterification of high oleic sunflower oil and fully hydrogenated high oleic sunflower oil blend by carbon-13 nuclear magnetic resonance.

    Science.gov (United States)

    Lopes, Thiago I B; Ribeiro, Marilene D M M; Ming, Chiu C; Grimaldi, Renato; Gonçalves, Lireny A G; Marsaioli, Anita J

    2016-12-01

    The nutritional and organoleptic attributes of oils can proceed via interesterification of oils blends catalyzed by enzymes or chemicals. Enzymatic interesterification processes are preferred due the regiospecific outcome. Traditionally, monitoring of distribution of fatty acids (FA) in glycerol backbone is performed by enzymatic and chromatographic methods that are time-consuming, involving a series of chemical manipulations employing large volumes of organic solvents. Alternatively, carbon-13 nuclear magnetic resonance ((13)C NMR) is a fast and reliable technique that could be applied to determine the saturated and unsaturated FA distribution of the triacylglycerols (TAGs) present in high oleic sunflower oil (SO) and fully hydrogenated high oleic sunflower oil (HSO) blends and their interesterification products. The enzymatic interesterification was conducted employing the immobilized lipase from Thermomyces lanuginosus (Lipozyme TL IM), the results show that the process was not completely regiospecific at sn-1,3 positions, due to the spontaneous acyl migration from position sn-2 to sn-1,3. PMID:27374579

  11. Catalytic conversion of carbon dioxide into dimethyl carbonate using reduced copper-cerium oxide catalysts as low as 353 K and 1.3 MPa and the reaction mechanism

    Directory of Open Access Journals (Sweden)

    Seiki eWada

    2013-06-01

    Full Text Available Synthesis of dimethyl carbonate (DMC from CO2 and methanol under milder reaction conditions was performed using reduced cerium oxide catalysts and reduced copper-promoted Ce oxide catalysts. Although the conversion of methanol was low (0.005–0.11% for 2 h of reaction, DMC was synthesized as low as 353 K and at total pressure of as low as 1.3 MPa using reduced Cu–CeO2 catalyst (0.5 wt% of Cu. The apparent activation energy was 120 kJ mol–1 and the DMC synthesis rates were proportional to the partial pressure of CO2. An optimum amount of Cu addition to CeO2 was 0.1 wt% for DMC synthesis under the conditions at 393 K and total pressure of 1.3 MPa for 2 h (conversion of methanol: 0.15% due to the compromise of two effects of Cu: the activation of H2 during reduction prior to the kinetic tests and the block (cover of the surface active site. The reduction effects in H2 were monitored through the reduction of Ce4+ sites to Ce3+ based on the shoulder peak intensity at 5727 eV in the Ce L3-edge X-ray absorption near-edge structure (XANES. The Ce3+ content was 10% for reduced CeO2 catalyst whereas it increased to 15% for reduced Cu–CeO2 catalyst (0.5wt% of Cu. Moreover, the content of reduced Ce3+ sites (10% associated with the surface O vacancy (defect sites decreased to 5% under CO2 at 290 K for reduced Cu–CeO2 catalyst (0.1wt% of Cu. The adsorption step of CO2 on the defect sites might be the key step in DMC synthesis and thus the DMC synthesis rate dependence on the partial pressure of CO2 was proportional. Subsequent H atom subtraction steps from methanol at the neighboring surface Lewis base sites should combine two methoxy species to the adsorbed CO2 to form DMC, water, and restore the surface O vacancy.

  12. Catalytic conversion of carbon dioxide into dimethyl carbonate using reduced copper-cerium oxide catalysts as low as 353 K and 1.3 MPa and the reaction mechanism

    Science.gov (United States)

    Wada, Seiki; Oka, Kazuki; Watanabe, Kentaro; Izumi, Yasuo

    2013-06-01

    Synthesis of dimethyl carbonate (DMC) from CO2 and methanol under milder reaction conditions was performed using reduced cerium oxide catalysts and reduced copper-promoted Ce oxide catalysts. Although the conversion of methanol was low (0.005-0.11%) for 2 h of reaction, DMC was synthesized as low as 353 K and at total pressure of as low as 1.3 MPa using reduced Cu-CeO2 catalyst (0.5 wt% of Cu). The apparent activation energy was 120 kJ mol-1 and the DMC synthesis rates were proportional to the partial pressure of CO2. An optimum amount of Cu addition to CeO2 was 0.1 wt% for DMC synthesis under the conditions at 393 K and total pressure of 1.3 MPa for 2 h (conversion of methanol: 0.15%) due to the compromise of two effects of Cu: the activation of H2 during reduction prior to the kinetic tests and the block (cover) of the surface active site. The reduction effects in H2 were monitored through the reduction of Ce4+ sites to Ce3+ based on the shoulder peak intensity at 5727 eV in the Ce L3-edge X-ray absorption near-edge structure (XANES). The Ce3+ content was 10% for reduced CeO2 catalyst whereas it increased to 15% for reduced Cu-CeO2 catalyst (0.5wt% of Cu). Moreover, the content of reduced Ce3+ sites (10%) associated with the surface O vacancy (defect sites) decreased to 5% under CO2 at 290 K for reduced Cu-CeO2 catalyst (0.1wt% of Cu). The adsorption step of CO2 on the defect sites might be the key step in DMC synthesis and thus the DMC synthesis rate dependence on the partial pressure of CO2 was proportional. Subsequent H atom subtraction steps from methanol at the neighboring surface Lewis base sites should combine two methoxy species to the adsorbed CO2 to form DMC, water, and restore the surface O vacancy.

  13. Assessment of carbon allocation and biomass production in a natural stand of the salt marsh plant Spartina anglica using C- 13

    NARCIS (Netherlands)

    Hemminga, M.A.; Huiskes, A.H.L.; Steegstra, M.; Van Soelen, J.

    1996-01-01

    The proportional allocation of photosynthetically fixed carbon to the root and shoot system of salt marsh plants is an important element in the carbon cycle of tidal salt marshes. The commonly applied field methods giving insight on this point are based on successive harvesting of biomass. These met

  14. Partitioning Net Ecosystem Carbon Exchange Into net Assimilation and Respiration With Canopy-scale Isotopic Measurements: an Error Propagation Analysis With Both 13C and 18O Data

    Science.gov (United States)

    Peylin, P.; Ogee, J.; Cuntz, M.; Bariac, T.; Ciais, P.; Brunet, Y.

    2003-12-01

    Stable CO2 isotope measurements are increasingly used to partition the net CO2 exchange between terrestrial ecosystems and the atmosphere in terms of non-foliar respiration (FR) and gross photosynthesis (FA). However the accuracy of the partitioning strongly depends on the isotopic disequilibrium between these two gross fluxes and a rigorous estimation of the errors on FA and FR is needed. In this study we account and propagate uncertainties on all terms in the mass balance equations for total and "labeled" CO2 in order to get precise estimates of the errors on FA and FR. We applied our method to a maritime pine forest in the Southwest of France. Using the δ 13C-CO2 and CO2 measurements, we show that the resulting uncertainty associated to the gross fluxes can be as large as 4 æmol m-2 s-1. In addition, even if we could get more precise estimates of the isoflux and the isotopic signature of FA we show that this error would not be significantly reduced. This is because the isotopic disequilibrium between FA and FR is around 2-3‰ , i.e. the order of magnitude of the uncertainty on the isotopic signature of FR (δ R). With δ 18O-CO2 and CO2 measurements, the uncertainty associated to the gross fluxes lies also around 4 æmol m-2 s-1. On the other hand, it could be dramatically reduced if we were able to get more precise estimates of the CO18O isoflux and the associated discrimination during photosynthesis. This is because the isotopic disequilibrium between FA and FR is large, of the order of 10-15‰ , i.e. much larger than the uncertainty on δ R. The isotopic disequilibrium between FA and FR or the uncertainty on δ R vary among ecosystems and over the year. Our approach may help to choose the best strategy to study the carbon budget of a given ecosystem using stable isotopes.

  15. Annual variation in δ13C values of maize and wheat: Effect on estimates of decadal scale soil carbon turnover

    DEFF Research Database (Denmark)

    Christensen, Bent Tolstrup; Olesen, Jørgen E; Hansen, Elly Møller;

    2011-01-01

    -derived soil C to be based on a fixed δ13C value. Further assumptions are that changes in the initial (time-zero) soil δ13C values are insignificant following conversion to C4-plants. We tested these assumptions by measuring: 1) the δ13C of annual samples of silage maize biomass (C4-plant) and winter......On sites where C4-plants have replaced C3-plants, changes in soil δ13C allow the turnover of C3- and C4-derived C to be separated. Studies of decadal scale turnover of soil C following conversion to C4-plants generally lack δ13C values for previous C4-residue inputs and assume that estimates of C4...... wheat grains (C3-plant) grown during 1988 to 2006, and 2) the δ13C of soil kept under bare fallow during 1956 to 1983. The δ13C of plants was related to climate variables, and the impact of maize δ13C was based on estimates of maize-derived soil C using different approaches to establish the δ13C...

  16. Effect of organic carbon chemistry on sorption of atrazine and metsulfuron-methyl as determined by (13)C-NMR and IR spectroscopy.

    Science.gov (United States)

    Dutta, Anirban; Mandal, Abhishek; Manna, Suman; Singh, S B; Berns, Anne E; Singh, Neera

    2015-10-01

    Soil organic matter (SOM) content is the major soil component affecting pesticide sorption. However, recent studies have highlighted the fact that it is not the total carbon content of the organic matter, but its chemical structure which have a profound effect on the pesticide's sorption. In the present study, sorption of atrazine and metsulfuron-methyl herbicides was studied in four SOM fractions viz. commercial humic acid, commercial lignin, as well as humic acid and humin extracted from a compost. Sorption data was fitted to the Freundlich adsorption equation. In general, the Freundlich slope (1/n) values for both the herbicides were herbicides, showed minimum desorption. Sorption of atrazine was best positively correlated with the alkyl carbon (adjusted R (2) = 0.748) and carbonyl carbon (adjusted R (2) = 0.498) but, their effect was statistically nonsignificant (P = 0.05). Metsulfuron-methyl sorption showed best positive correlation with carbonyl carbon (adjusted R (2) = 0.960; P = 0.05) content. Sorption of both the herbicides showed negative correlation with O/N-alkyl carbon. Correlation of herbicide's sorption with alkyl and carbonyl carbon content of SOM fractions suggested their contribution towards herbicide sorption. But, sorption of metsulfuron-methyl, relatively more polar than atrazine, was mainly governed by the polar groups in SOM. IR spectra showed that H-bonds and charge-transfer bonds between SOM fraction and herbicides probably operated as mechanisms of adsorption. PMID:26353968

  17. (13)Carbon and (15)nitrogen isotopes in autopsy liver tissue samples from Greenlandic Inuit and Danes: consumption of marine versus terrestrial food

    DEFF Research Database (Denmark)

    Milman, N.; Laursen, J.; Mulvad, G.;

    2010-01-01

    . Results: Inuit: median delta C-13 was -21.2 parts per thousand in cellular and -20.0 parts per thousand in connective tissue fractions (P = 001). Median delta N-15 was 10.6 parts per thousand in both cellular and connective tissue fractions. Body mass index was negatively correlated with delta C-13...... in the connective tissue fraction (r(s) = -0.42, P = 0.057). Danes: median delta C-13 was -27.0% in cellular and -24.3% in connective tissue fractions (P = 0.11). Median delta N-15 was 9.5 parts per thousand in cellular and 8.9 parts per thousand in connective tissue fractions (P = 0.5). Inuit had higher delta C-13...

  18. Effect of organic carbon chemistry on sorption of atrazine and metsulfuron-methyl as determined by (13)C-NMR and IR spectroscopy.

    Science.gov (United States)

    Dutta, Anirban; Mandal, Abhishek; Manna, Suman; Singh, S B; Berns, Anne E; Singh, Neera

    2015-10-01

    Soil organic matter (SOM) content is the major soil component affecting pesticide sorption. However, recent studies have highlighted the fact that it is not the total carbon content of the organic matter, but its chemical structure which have a profound effect on the pesticide's sorption. In the present study, sorption of atrazine and metsulfuron-methyl herbicides was studied in four SOM fractions viz. commercial humic acid, commercial lignin, as well as humic acid and humin extracted from a compost. Sorption data was fitted to the Freundlich adsorption equation. In general, the Freundlich slope (1/n) values for both the herbicides were <1. Except for atrazine sorption on commercial humic acid, metsulfuron-methyl was more sorbed. Desorption results suggested that atrazine was more desorbed than metsulfuron-methyl. Lignin, which showed least sorption of both the herbicides, showed minimum desorption. Sorption of atrazine was best positively correlated with the alkyl carbon (adjusted R (2) = 0.748) and carbonyl carbon (adjusted R (2) = 0.498) but, their effect was statistically nonsignificant (P = 0.05). Metsulfuron-methyl sorption showed best positive correlation with carbonyl carbon (adjusted R (2) = 0.960; P = 0.05) content. Sorption of both the herbicides showed negative correlation with O/N-alkyl carbon. Correlation of herbicide's sorption with alkyl and carbonyl carbon content of SOM fractions suggested their contribution towards herbicide sorption. But, sorption of metsulfuron-methyl, relatively more polar than atrazine, was mainly governed by the polar groups in SOM. IR spectra showed that H-bonds and charge-transfer bonds between SOM fraction and herbicides probably operated as mechanisms of adsorption.

  19. Isotopic signatures (13C/12C; 15N/14N) of blue penguin burrow soil invertebrates : carbon sources and trophic relationships

    International Nuclear Information System (INIS)

    Seabird burrows provide a soil environment for processing discards such as feathers and guano, hence constituting a primary interface between the sea and the land. This study involved collection and culturing of soil invertebrates from three blue penguin (Eudyptula minor) burrows, and examined their 13C/12C and 15N/14N isotopic composition in relation to potential burrow resources (terrestrial plant litter, burrow soil, guano, blue penguin feathers). Two taxa (cerylonid beetles and small tineid moth larvae) had a depleted 13C/12C indicative of a level of dependence on C from terrestrial soil. Tineid moth larvae (Monopis crocicapitella and (or) M. ethelella) substantially increased their 13C/12C enrichment during development, implying increasing dependence on marine C. Remaining taxa, both decomposers and predators, had 13C/12C intermediate between guano and feathers. Larval and emergent fleas had the most enriched 13C/12C , indicative of a greater dependence on feather C and the likelihood of co-processing with guano. Pseudoscorpions and histerid beetles had overlapping isotopic enrichments implying competition for prey, but were spatially separated in burrow soil. With their highly enriched 15N/14N and marine 13C/12C, larvae and protonymphs of the histiostomatid mite Myianoetus antipodus stood alone. Blue penguin burrows therefore support a diverse invertebrate fauna that incorporates terrestrial soil as well as varying proportions of the various blue penguin discards. (author). 45 refs., 1 fig., 1 tab.

  20. FINAL REPORT: A Study of the Abundance and 13C/12C Ratio of Atmospheric Carbon Dioxide to Advance the Scientific Understanding of Terrestrial Processes Regulating the GCC

    Energy Technology Data Exchange (ETDEWEB)

    Keeling, R. F.; Piper, S. C.

    2008-12-23

    The main objective of this project was to continue research to develop carbon cycle relationships related to the land biosphere based on remote measurements of atmospheric CO2 concentration and its isotopic composition. The project continued time-series observations of atmospheric carbon dioxide and isotopic composition begun by Charles D. Keeling at remote sites, including Mauna Loa, the South Pole, and eight other sites. The program also included the development of methods for measuring radiocarbon content in the collected CO2 samples and carrying out radiocarbon measurements in collaboration with Tom Guilderson of Lawrence Berkeley National Laboratory (LLNL). The radiocarbon measurements can provide complementary information on carbon exchange rates with the land and oceans and emissions from fossil-fuel burning. Using models of varying complexity, the concentration and isotopic measurements were used to establish estimates of the spatial and temporal variations in the net CO2 exchange with the atmosphere, the storage of carbon in the land and oceans, and variable isotopic discrimination of land plants.

  1. Stable isotope ratio (13C/12C mass spectrometry to evaluate carbon sources and sinks: changes and trends during the decomposition of vegetal debris from eucalyptus clone plantations (NW Spain

    Directory of Open Access Journals (Sweden)

    I. Fernandez

    2014-02-01

    Full Text Available Vegetal debris is known to participate in key soil processes such as the formation of soil organic matter (OM, also being a potential source of greenhouse gases to the atmosphere. However, its contribution to the isotopic composition of both the soil OM and the atmospheric carbon dioxide is not clear yet. Hence, the main objective of the present research is to understand the isotopic 13C changes and trends that take place during the successive biodegradative stages of decomposing soil organic inputs. By incubating bulk plant tissues for several months under laboratory controlled conditions, the kinetics of the CO2 releases and shifts in the 13C natural abundance of the solid residues were investigated using litter samples coming from forest plantations with a different clone (Anselmo: 1st clonal generation attained by morphological selection and Odiel: 2nd clonal generation genetically obtained of Eucalyptus globulus Labill. developed over granitic or schistic bedrocks and located in northwestern Spain. Significant isotopic variations with time were observed, probably due to the isotopically heterogeneous composition of these complex substrates in conjunction with the initial selective consumption of more easily degradable 13C-differentiated compounds during the first stages of the biodegradation, while less available or recalcitrant litter components were decomposed at later stages of biodegradation, generating products that have their own specific isotopic signatures. These results, which significantly differ depending on the type of clone, suggest that caution must be exercised when interpreting carbon isotope studies (at natural abundance levels since perturbations associated with the quality or chemical composition of the organic debris from different terrestrial ecosystems can have an important effect on the carbon stable isotope dynamics.

  2. 13C/Palynological evidence of differential residence times of organic carbon prior to its sedimentation in East African Rift Lakes and peat bogs

    Science.gov (United States)

    Hillaire-Marcel, Claude; Aucour, Anne-Marie; Bonnefille, Raymonde; Riollet, Guy; Vincens, Annie; Williamson, David

    Most terrestrial plants producing large amounts of organic matter in the East African Rift follow the Calvin (C3) photosynthetic pathway. Their end products have δ13C values of ca. -27 ± 2‰ (vs. PDB). On the contrary, most Cyperaceae (notably Cyperus papyrus and C. latifolius) are characterized by higher 13C contents ° 13C = -10.5 ± 1‰ ) in relation to their Hatch and Slack (C4) photosynthetic cycle. In consequence, δ13C values in total organic matter (TOM) from peat bog or lake cores essentially responded to the proportion of detritus from C4-Cyperaceae. Immediate evidence of the development or disappearance of Cyperaceae around lake margins or in peat bogs can be found in pollen assemblages. Lag times between pollen signals and correlative ° 13C shifts in TOM from cores are therefore indicative of the residence time of organic matter prior to its sedimentation. Delayed sedimentation of TOM will result in 14C anomalies which depend on several parameters, most of them being site specific as shown by examples from a peat bog in Burundi and from southern Lake Tanganyika. An independent assessment of the chronology by high resolution paleomagnetic correlations indicates a ca. 1.5 ka apparent 14C age of TOM in Lake Tanganyika at the Pleistocene-Holocene transition.

  3. Summary on Relationship Between Stable Carbon Isotope Composition of Plants and Soil Salinity%植物δ13C与土壤盐分的关系研究综述

    Institute of Scientific and Technical Information of China (English)

    王文文

    2012-01-01

    Stable carbon isotope composition (δ13C) can synthetically reflect the eco-physiological characteristics of plants, and be used to study the relationship between plant and ecological environment. Many studies reported that the change of δ13C value of plants was positively correlated with salinity. Soil salinity changed the 8 C value of C3 plants through affecting their physiological activities, such as stomatal conductance and photosynthesis. The high salinity-induced switch from C3-photosynthesis of some plants to Crassulacean Acid Metabolism or C4-photosynthesis adapted to the adverse environment and changed the δ13 C value of some plant organs, but the δ13C value of whole plants changed slightly. The relationship between 8 C and salinity was influenced by other environmental factors and limited conditions of laboratory experiments, thus it became necessary to broaden the range of salinity, extend the salt treatment time and carry out field experiment.%稳定碳同位素组成(δ13C)综合反映了植物的生理生态特征,可用于研究植物生理与生态环境之间的关系.大多数研究认为植物δ13C值随盐度增加而变重.盐分主要通过影响C3植物叶片气孔传导、光合作用等生理活动,使植物δ13C值发生变化.而有些植物为适应盐分胁迫可能发生光合途径的转换,使C3代谢转换成C4或CAM代谢,导致植物某些器官的δ13C值发生变化,而植株整体δ13C值变化较小.由于植物δ13C与土壤盐分的关系还受其他环境因素的影响以及室内试验的有限性,因此进一步扩大盐度梯度范围,延长盐处理时间以及开展大田试验显得很有必要.

  4. Stopping power of Ni, Ag, Au and Pb for approx. 7 MeV/n α-particles and carbon ions (Z13 proportional deviation from the Bethe formula)

    International Nuclear Information System (INIS)

    In the end of the 1960's, Andersen, Simonsen and Sorensen carried out the measurements of stopping powers of a number of elements for protons, deuterons and α-particles using the calorimetric-compensation technique and showed sone Z13 proportional deviations from the Bethe formula. Recently, Andersen and his co-workers again made the measurements of stopping power of several elements for protons, α-particles and lithium ions in order to perform a more detailed investigation on the deviation from the Bethe formula. To ascertain the Z13 deviation of stopping power for heavier ions, it is desirable to make precise experiments using projectiles more massive than lithium ions, which are almost completely ionized. Recently, we attempted to measure the stopping powers of several metals for approx. 7 MeV/n α-particles and carbon ions, although thus obtained data need a small correction for effective charge. Results are presented and discussed

  5. Direct uptake of organic carbon by grass roots and allocation in leaves and phytoliths: 13C labeling evidence

    OpenAIRE

    Alexandre, A.; Balesdent, J.; P. Cazevieille; C. Chevassus-Rosset; Signoret, P; J.-C. Mazur; Harutyunyan, A.; E. Doelsch; Basile-Doelsch, I.; H. Miche; Santos, G. M.

    2015-01-01

    In the rhizosphere, the uptake of low molecular weight carbon (C) and nitrogen (N) by plant roots has been well documented. While organic N uptake relatively to total uptake is important, organic C uptake is supposed to be low relatively to the plant's C budget. Recently, radiocarbon analyses demonstrated that a fraction of C from the soil was occluded in amorphous silica micrometric particles that precipitate in plant cells (phytoliths). Here, we investigated whether and in...

  6. Chemical structures of swine-manure chars produced under different carbonization conditions investigated by advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy

    Science.gov (United States)

    Two types of swine manure chars, hydrothermally-produced hydrochar and slow-pyrolysis pyrochar, and their raw swine manure solid were characterized using advanced 13C solid-state nuclear magnetic resonance (NMR) spectroscopy. Compared with the parent raw swine manure, both hydrochars and pyrochar di...

  7. Cobalt(III) complexes of [3(5)]adamanzane, 1,5,9,13-tetraazabicyclo[7.7.3]nonadecane. Report of an inert, chelate hydrogen carbonate ion

    DEFF Research Database (Denmark)

    Broge, Louise; Søtofte, Inger; Olsen, Carl Erik;

    2001-01-01

    .H2O (3a). The coordination geometry around the cobalt(III) ion is a distorted octahedron with the inorganic ligands at cis-positions. Complex 2 is the second example of a cobalt(III) complex for which the X-ray structure,sfiows a chelate binding mode of the hydrogen carbonate entity. The pK(a) value...... of the [Co([3(5)]adz)(HCO3)](2+) ion (2) was determined spectrophotometrically to be 0.27 (25 degreesC, I = 5.0 M). The protonation appears to occur at the noncoordinated carbonyl oxygen atom of the carbonate group, with hydrogen bonding to the crystal water molecule. Evidence is presented for this oxygen......-atom as the site of protonation in solution as well. In 5.0 M CF3SO3H a slow reaction of the carbonate complex, quantitatively yielding the [Co([3(5)]adz)(H2O)(2)](3+) ion, was observed. k(obs) 7.9(1) x 10(-6) s(-1) at 25 degreesC....

  8. Carbon Isotope (d13C) in dissolved inorganic carbon and other physical and biogeochemical variables synthesized across the global ocean from February 17, 1991 to February 21, 2005 (NODC Accession 0110496)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Measurements of d13C in DIC were compiled mainly from WOCE and CLIVAR cruises. The dataset also contains other physical and biogeochemical variables.

  9. Laboratory measurement of the 2-centimeter, 2/11/-2/12/ transition of normal formaldehyde and its carbon-13 and oxygen-18 species.

    Science.gov (United States)

    Tucker, K. D.; Tomasevich, G. R.; Thaddeus, P.

    1972-01-01

    Beam-maser spectrometric measurements to an accuracy of about 100 Hz have been conducted of the 2(11)-2(12) transition for the isotopic species of greatest astronomical interest - i.e., H2CO, H2(13)CO, and H2C(18)O. The samples used were not isotopically enriched, monomeric formaldehyde vapors. For these species, all the coupling constants required to calculate the hyperfine structure of any rotational transition have been determined.

  10. Effects of Application of Straw on Organic Carbon in Brown Soil Aggregates by δ13C Method%δ13C法研究秸秆添加对棕壤团聚体有机碳的影响

    Institute of Scientific and Technical Information of China (English)

    顾鑫; 安婷婷; 李双异; 李慧; 汪景宽

    2014-01-01

    将稳定同位素碳(δ13C)标记的玉米秸秆添加入棕壤,在沈阳农业大学试验站进行田间原位培养,研究玉米秸秆添加对棕壤水稳性团聚体分布的影响,探索秸秆腐解过程中水稳性团聚体有机碳动态变化规律.结果表明:玉米秸秆添加不仅促进了棕壤>2 000 μm水稳性团聚体的形成,提高团聚体平均重量直径(MWD),而且显著提高各级团聚体有机碳含量,并随团聚体级别增大而增大.随着培养时间的延长,棕壤的团聚能力逐渐减弱,水稳性大团聚体破碎转变成微团聚体,MWD有所降低.大团聚体中总有机碳、新碳含量均呈下降趋势,微团聚体中总有机碳、新碳含量均呈上升趋势.棕壤总有机碳与团聚体有机碳呈显著的正相关关系(P<0.05).

  11. Trisomy 13

    Science.gov (United States)

    ... artery at birth. There are often signs of congenital heart disease , such as: Abnormal placement of the heart toward ... almost immediately. Most infants with trisomy 13 have congenital heart disease. Complications may include: Breathing difficulty or lack of ...

  12. Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V John V. Vickers Cruise in the Pacific Ocean (WOCE Section P13, NOAA CGC92 Cruise, August 4 - October 21, 1992)

    Energy Technology Data Exchange (ETDEWEB)

    Kozyr, A.

    2001-01-11

    This data documentation discusses the procedures and methods used to measure total carbon dioxide (TCO{sub 2}) and total alkalinity (TALK) at hydrographic stations during the R/V John V. Vickers oceanographic cruise in the Pacific Ocean (Section P13). Conducted as part of the World Ocean Circulation Experiment (WOCE) and the National Oceanic and Atmospheric Administration's Climate and Global Change Program, the cruise began in Los Angeles, California, on August 4, 1992, with a transit line (Leg 0) to Dutch Harbor, Alaska. On August 16, the ship departed Dutch Harbor on Leg 1 of WOCE section P13. On September 15, the R/V John V. Vickers arrived in Kwajalein, Marshall Islands, for emergency repairs, and after 11 days in port departed for Leg 2 of Section P13 on September 26. The cruise ended on October 21 in Noumea, New Caledonia. Measurements made along WOCE Section P13 included pressure, temperature, salinity [measured by a conductivity, temperature, and depth sensor (CTD)], bottle salinity, bottle oxygen, phosphate, nitrate, nitrite, silicate, chlorofluorocarbons (CFC-11, CFC-12), TCO{sub 2} , and TALK. The TCO{sub 2} was measured by coulometry using a Single-Operator Multiparameter Metabolic Analyzer (SOMMA). The overall precision and accuracy of the analyses was {+-}2 {micro}mol/kg. Samples collected for TALK were measured by potentiometric titration; precision was {+-}2 {micro}mol/kg. The CO{sub 2} -related measurements aboard the R/V John V. Vickers were supported by the U.S. Department of Energy. The WOCE Section P13 data set is available free of charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center. The NDP consists of two oceanographic data files, two FORTRAN 90 data-retrieval routine files, a documentation file, and this printed report, which describes the contents and format of all files as well as the procedures and methods used to obtain the data. Instructions on how to access the data are provided.

  13. Constraints on the factors controlling 13C-18O bond abundances in biologically precipitated carbonates from measurements of marine calcifiers cultured at variable temperature, pH, and salinity

    Science.gov (United States)

    Conchas, T. E.; Eagle, R.; Eiler, J. M.; Ries, J. B.; Freitas, P. S.; Hiebenthal, C.; Wanamaker, A. D.; Tripati, A. K.

    2012-12-01

    Marine mollusks and corals are widely used as archives of past climate change; oxygen isotopic composition (δ18O value) of their carbonate minerals is perhaps the most commonly used proxy to reconstruct paleoclimate from these marine calcifiers. However, oxygen isotope paleothermometry of mollusks and corals is complicated by non-equilibrium "vital effects" and variations in seawater pH changes, both of which influence the net fractionation of oxygen isotopes between carbonate and water. Carbonate "clumped isotope" thermometry is an emerging approach that potentially addresses these ambiguities. Here we report measurements of abundance of 13C-18O bonds (described by the measured parameter Δ47) in a variety of marine calcifiers cultured under controlled conditions. Previous studies on biologically precipitated samples such as foraminifera, coccoliths, and corals have shown that Δ47 values are related to calcification temperature with a relationship that is generally similar to inorganic carbonate. However, the influence of effects other than temperature has not been extensively studied and little work has been done to explore the potential for small non-equilibrium effects in cultured specimens that were grown under controlled conditions. In this study, we report δ18O and Δ47 measurements of mollusk specimens that were cultured at several temperatures ranging from 5 to 25°C, as well as different pH and salinity values. We also report data for other marine calcifiers including the temperate coral species Oculina arbuscula and the coralline red algae Neogoniolithon sp., that were cultured at a single temperature but variable pH.

  14. Partitioning net ecosystem carbon exchange into net assimilation and respiration using 13CO2 measurements: A cost-effective sampling strategy

    Science.gov (United States)

    OgéE, J.; Peylin, P.; Ciais, P.; Bariac, T.; Brunet, Y.; Berbigier, P.; Roche, C.; Richard, P.; Bardoux, G.; Bonnefond, J.-M.

    2003-06-01

    The current emphasis on global climate studies has led the scientific community to set up a number of sites for measuring the long-term biosphere-atmosphere net CO2 exchange (net ecosystem exchange, NEE). Partitioning this flux into its elementary components, net assimilation (FA), and respiration (FR), remains necessary in order to get a better understanding of biosphere functioning and design better surface exchange models. Noting that FR and FA have different isotopic signatures, we evaluate the potential of isotopic 13CO2 measurements in the air (combined with CO2 flux and concentration measurements) to partition NEE into FR and FA on a routine basis. The study is conducted at a temperate coniferous forest where intensive isotopic measurements in air, soil, and biomass were performed in summer 1997. The multilayer soil-vegetation-atmosphere transfer model MuSICA is adapted to compute 13CO2 flux and concentration profiles. Using MuSICA as a "perfect" simulator and taking advantage of the very dense spatiotemporal resolution of the isotopic data set (341 flasks over a 24-hour period) enable us to test each hypothesis and estimate the performance of the method. The partitioning works better in midafternoon when isotopic disequilibrium is strong. With only 15 flasks, i.e., two 13CO2 nighttime profiles (to estimate the isotopic signature of FR) and five daytime measurements (to perform the partitioning) we get mean daily estimates of FR and FA that agree with the model within 15-20%. However, knowledge of the mesophyll conductance seems crucial and may be a limitation to the method.

  15. Investigating the effects of perturbations to pgi and eno gene expression on central carbon metabolism in Escherichia coli using 13 C metabolic flux analysis

    Directory of Open Access Journals (Sweden)

    Usui Yuki

    2012-06-01

    Full Text Available Abstract Background It has long been recognized that analyzing the behaviour of the complex intracellular biological networks is important for breeding industrially useful microorganisms. However, because of the complexity of these biological networks, it is currently not possible to obtain all the desired microorganisms. In this study, we constructed a system for analyzing the effect of gene expression perturbations on the behavior of biological networks in Escherichia coli. Specifically, we utilized 13 C metabolic flux analysis (13 C-MFA to analyze the effect of perturbations to the expression levels of pgi and eno genes encoding phosphoglucose isomerase and enolase, respectively on metabolic fluxes. Results We constructed gene expression-controllable E. coli strains using a single-copy mini F plasmid. Using the pgi expression-controllable strain, we found that the specific growth rate correlated with the pgi expression level. 13 C-MFA of this strain revealed that the fluxes for the pentose phosphate pathway and Entner-Doudoroff pathway decreased, as the pgi expression lelvel increased. In addition, the glyoxylate shunt became active when the pgi expression level was almost zero. Moreover, the flux for the glyoxylate shunt increased when the pgi expression level decreased, but was significantly reduced in the pgi-knockout cells. Comparatively, eno expression could not be decreased compared to the parent strain, but we found that increased eno expression resulted in a decreased specific growth rate. 13 C-MFA revealed that the metabolic flux distribution was not altered by an increased eno expression level, but the overall metabolic activity of the central metabolism decreased. Furthermore, to evaluate the impact of perturbed expression of pgi and eno genes on changes in metabolic fluxes in E. coli quantitatively, metabolic sensitivity analysis was performed. As a result, the perturbed expression of pgi gene had a great impact to the

  16. Moss stable isotopes (carbon-13, oxygen-18) and testate amoebae reflect environmental inputs and microclimate along a latitudinal gradient on the Antarctic Peninsula.

    Science.gov (United States)

    Royles, Jessica; Amesbury, Matthew J; Roland, Thomas P; Jones, Glyn D; Convey, Peter; Griffiths, Howard; Hodgson, Dominic A; Charman, Dan J

    2016-07-01

    The stable isotope compositions of moss tissue water (δ(2)H and δ(18)O) and cellulose (δ(13)C and δ(18)O), and testate amoebae populations were sampled from 61 contemporary surface samples along a 600-km latitudinal gradient of the Antarctic Peninsula (AP) to provide a spatial record of environmental change. The isotopic composition of moss tissue water represented an annually integrated precipitation signal with the expected isotopic depletion with increasing latitude. There was a weak, but significant, relationship between cellulose δ(18)O and latitude, with predicted source water inputs isotopically enriched compared to measured precipitation. Cellulose δ(13)C values were dependent on moss species and water content, and may reflect site exposure to strong winds. Testate amoebae assemblages were characterised by low concentrations and taxonomic diversity, with Corythion dubium and Microcorycia radiata types the most cosmopolitan taxa. The similarity between the intra- and inter-site ranges measured in all proxies suggests that microclimate and micro-topographical conditions around the moss surface were important determinants of proxy values. Isotope and testate amoebae analyses have proven value as palaeoclimatic, temporal proxies of climate change, whereas this study demonstrates that variations in isotopic and amoeboid proxies between microsites can be beyond the bounds of the current spatial variability in AP climate. PMID:27003701

  17. Moss stable isotopes (carbon-13, oxygen-18) and testate amoebae reflect environmental inputs and microclimate along a latitudinal gradient on the Antarctic Peninsula.

    Science.gov (United States)

    Royles, Jessica; Amesbury, Matthew J; Roland, Thomas P; Jones, Glyn D; Convey, Peter; Griffiths, Howard; Hodgson, Dominic A; Charman, Dan J

    2016-07-01

    The stable isotope compositions of moss tissue water (δ(2)H and δ(18)O) and cellulose (δ(13)C and δ(18)O), and testate amoebae populations were sampled from 61 contemporary surface samples along a 600-km latitudinal gradient of the Antarctic Peninsula (AP) to provide a spatial record of environmental change. The isotopic composition of moss tissue water represented an annually integrated precipitation signal with the expected isotopic depletion with increasing latitude. There was a weak, but significant, relationship between cellulose δ(18)O and latitude, with predicted source water inputs isotopically enriched compared to measured precipitation. Cellulose δ(13)C values were dependent on moss species and water content, and may reflect site exposure to strong winds. Testate amoebae assemblages were characterised by low concentrations and taxonomic diversity, with Corythion dubium and Microcorycia radiata types the most cosmopolitan taxa. The similarity between the intra- and inter-site ranges measured in all proxies suggests that microclimate and micro-topographical conditions around the moss surface were important determinants of proxy values. Isotope and testate amoebae analyses have proven value as palaeoclimatic, temporal proxies of climate change, whereas this study demonstrates that variations in isotopic and amoeboid proxies between microsites can be beyond the bounds of the current spatial variability in AP climate.

  18. Characterization of high-tannin fractions from humus by carbon-13 cross-polarization and magic-angle spinning nuclear magnetic resonance.

    Science.gov (United States)

    Lorenz, Klaus; Preston, Caroline M

    2002-01-01

    Condensed tannins can be found in various parts of many plants. Unlike lignin there has been little study of their fate as they enter the soil organic matter pool and their influence on nutrient cycling, especially through their protein-binding properties. We extracted and characterized tannin-rich fractions from humus collected in 1998 from a black spruce [Picea mariana (Mill.) Britton et al.] forest in Canada where a previous study (1995) showed high levels (3.8% by weight) of condensed tannins. A reference tannin purified from black spruce needles was characterized by solution 13C nuclear magnetic resonance (NMR) as a pure procyanidin with mainly cis stereochemistry and an average chain length of four to five units. The colorimetric proanthocyanidin (PA) assay, standardized against the black spruce tannin, showed that both extracted humus fractions had higher tannin contents than the original humus (2.84% and 11.17% vs. 0.08%), and accounted for 32% of humus tannin content. Consistent with the results from the chemical assay, the aqueous fraction showed higher tannin signals in the 13C cross-polarization and magic-angle spinning (CPMAS) NMR spectrum than the emulsified one. As both tannin-rich humus fractions were depleted in N and high in structures derived from lignin and cutin, they did not have properties consistent with recaldtrant tannin-protein complexes proposed as a mechanism for N sequestration in humus. Further studies are needed to establish if tannin-protein structures in humus can be detected or isolated, or if tannins contribute to forest management problems observed in these ecosystems by binding to and slowing down the activity of soil enzymes.

  19. Solution (sup13)C Nuclear Magnetic Resonance Spectroscopic Analysis of the Amino Acids of Methanosphaera stadtmanae: Biosynthesis and Origin of One-Carbon Units from Acetate and Carbon Dioxide

    OpenAIRE

    Miller, T L; Chen, X; B. Yan; Bank, S.

    1995-01-01

    We found that general pathways for amino acid synthesis of Methanosphaera stadtmanae, a methanogen that forms CH(inf4) from H(inf2) and methanol, resembled those of methanogens that form CH(inf4) from CO(inf2) or from the methyl group of acetate. We determined the incorporation of (sup14)C-labeled CO(inf2), formate, methanol, methionine, serine, and acetate into cell macromolecules. Labeling of amino acid carbons was determined by solution nuclear magnetic resonance spectroscopy after growth ...

  20. CFT13

    DEFF Research Database (Denmark)

    Carl, Michael; Martinez, Mercedes Garcia; Mesa-Lao, Bartolomé;

    2014-01-01

    This paper describes the most recent dataset that has been added to the CRITT Translation Process Research Database (TPR-DB). Under the name CFT13, this new study contains user activity data (UAD) in the form of key-logging and eye-tracking collected during the second CasMaCat field trial in June...

  1. Relationship between Carbon Isotope Discrimination (Δ13C) and Water Use Efficiency of Durum Wheat int the Syrian Arab Republic. 2. Glasshouse Evaluation

    International Nuclear Information System (INIS)

    A greenhouse pot experiment was conducted to compare transpiration rates of six durum wheat genotypes grown in two soil types, a clay (Tel Hadya) and a sandy clay loam (Breda). Six durum wheat genotypes varying in grain carbon isotope discrimination (Δ), an index to transpiration efficiency, were used. Pots were subjected to controlled and gradual dehydration, with a wet treatment as a control. The transpiration ratio (TR) was calculated as the ratio between daily water loss for each of the pots undergoing gradual dehydration, and the average daily water loss in the wet pots. Then the data were further normalized. The daily fraction of transpirable soil water (FTSW) for each pot was calculated by dividing the difference between daily pot weight and final weight by the overall transpirable soil water (difference between initial and final pot weight). The data were analyzed by plotting normalized transpiration ratio (NTR) against the FTSW using logistic, linear plateau and exponential models. Genotypes differed in transpiration rates during gradual dehydration and between the two soil types for pooled data. A significant relationship was found between dry matter production and threshold values (the point when the transpiration rate starts to be less in the gradual dehydration treatment than in the control treatment). The cultivar Brachoua (which had low grain Δ) recorded the highest dry matter production and the highest threshold value. Significant differences in threshold values were evident between the two soil types. The lowest threshold value was for the cultivar Waha (which had high grain Δ, and consequently had a potentially high transpiration efficiency), indicating a superior ability to extract water at high soil water potentials (when soil is dry). On the other hand, the genotype Brachoua was very sensitive to low soil moisture, and transpiration rates decreased at the beginning of the gradual dehydration. (author)

  2. Voltammetric sensing of bisphenol A based on a single-walled carbon nanotubes/poly{3-butyl-1-[3-(N-pyrrolyl)propyl] imidazolium ionic liquid} composite film modified electrode

    International Nuclear Information System (INIS)

    Highlights: • Single-walled carbon nanotubes (SWCNTs)-ionic liquid (IL) nanocomposite fabrication. • SWCNTs-Poly-IL film modified electrode was prepared and characterized. • Voltammetric behaviors of bisphenol A were investigated thoroughly. • Sensitive voltammetric method for bisphenol A determination was developed. -- Abstract: Using carboxylic acid-functionalized single walled carbon nanotubes (SWCNTs-COO−) as an anion and 3-butyl-1-[3-(N-pyrrolyl)propyl]imidazolium as a cation, a novel SWCNTs-COO-ionic liquid (SWCNTs-COO-IL) nanocomposite was fabricated successfully. The as-prepared SWCNTs-COO-IL nanocomposite was confirmed with transmission electron microscopy, X-ray photoelectron spectroscopy, UV–vis, FTIR and Raman spectroscopy. The SWCNTs-COO-IL nanocomposite was coated onto a glassy carbon electrode surface followed by cyclic voltammetric scanning to fabricate a SWCNTs/poly{3-butyl-1-[3-(N-pyrrolyl)propyl] imidazolium ionic liquid} composite film modified electrode (SWCNTs/Poly-IL/GCE). Scanning electron microscope and electrochemical impedance spectroscopy were used to characterize SWCNTs/Poly-IL/GCE. Electrochemical behaviors of bisphenol A (BPA) at the SWCNTs/Poly-IL/GCE were investigated thoroughly. It was found that an obvious oxidation peak appeared without reduction peak in the reverse scanning, indicating an irreversible electrochemical process. The oxidation peak currents of BPA were linearly related to scan rate in the range of 20–300 mV s−1, suggesting an adsorption controlled process rather than a diffusion controlled process. Differential pulse voltammetry was employed for the voltammetric sensing of BPA. Experimental conditions such as film thickness, pH value, accumulation potential and time that influence the analytical performance of the SWCNTs/Poly-IL/GCE were optimized. Under optimal conditions, the oxidation peak current was linearly related to BPA concentration in the range of 5.0 × 10−9 to 3.0 × 10−5 mol L−1

  3. Molecular indicators for palaeoenvironmental change in a Messinian evaporitic sequence (Vena del Gesso, Italy). II: High-resolution variations in abundances and 13C contents of free and sulphur-bound carbon skeletons in a single marl bed.

    Science.gov (United States)

    Kenig, F; Damsté, J S; Frewin, N L; Hayes, J M; De Leeuw, J W

    1995-06-01

    The extractable organic matter of 10 immature samples from a marl bed of one evaporitic cycle of the Vena del Gesso sediments (Gessoso-solfifera Fm., Messinian, Italy) was analyzed quantitatively for free hydrocarbons and organic sulphur compounds. Nickel boride was used as a desulphurizing agent to recover sulphur-bound lipids from the polar and asphaltene fractions. Carbon isotopic compositions (delta vs PDB) of free hydrocarbons and of S-bound hydrocarbons were also measured. Relationships between these carbon skeletons, precursor biolipids, and the organisms producing them could then be examined. Concentrations of S-bound lipids and free hydrocarbons and their delta values were plotted vs depth in the marl bed and the profiles were interpreted in terms of variations in source organisms, 13 C contents of the carbon source, and environmentally induced changes in isotopic fractionation. The overall range of delta values measured was 24.7%, from -11.6% for a component derived from green sulphur bacteria (Chlorobiaceae) to -36.3% for a lipid derived from purple sulphur bacteria (Chromatiaceae). Deconvolution of mixtures of components deriving from multiple sources (green and purple sulphur bacteria, coccolithophorids, microalgae and higher plants) was sometimes possible because both quantitative and isotopic data were available and because either the free or S-bound pool sometimes appeared to contain material from a single source. Several free n-alkanes and S-bound lipids appeared to be specific products of upper-water-column primary producers (i.e. algae and cyanobacteria). Others derived from anaerobic photoautotrophs and from heterotrophic protozoa (ciliates), which apparently fed partly on Chlorobiaceae. Four groups of n-alkanes produced by algae or cyanobacteria were also recognized based on systematic variations of abundance and isotopic composition with depth. For hydrocarbons probably derived from microalgae, isotopic variations are well correlated with

  4. Molecular indicators for palaeoenvironmental change in a Messinian evaporitic sequence (Vena del Gesso, Italy). II: High-resolution variations in abundances and 13C contents of free and sulphur-bound carbon skeletons in a single marl bed

    Science.gov (United States)

    Kenig, F.; Damste, J. S.; Frewin, N. L.; Hayes, J. M.; De Leeuw, J. W.

    1995-01-01

    The extractable organic matter of 10 immature samples from a marl bed of one evaporitic cycle of the Vena del Gesso sediments (Gessoso-solfifera Fm., Messinian, Italy) was analyzed quantitatively for free hydrocarbons and organic sulphur compounds. Nickel boride was used as a desulphurizing agent to recover sulphur-bound lipids from the polar and asphaltene fractions. Carbon isotopic compositions (delta vs PDB) of free hydrocarbons and of S-bound hydrocarbons were also measured. Relationships between these carbon skeletons, precursor biolipids, and the organisms producing them could then be examined. Concentrations of S-bound lipids and free hydrocarbons and their delta values were plotted vs depth in the marl bed and the profiles were interpreted in terms of variations in source organisms, 13 C contents of the carbon source, and environmentally induced changes in isotopic fractionation. The overall range of delta values measured was 24.7%, from -11.6% for a component derived from green sulphur bacteria (Chlorobiaceae) to -36.3% for a lipid derived from purple sulphur bacteria (Chromatiaceae). Deconvolution of mixtures of components deriving from multiple sources (green and purple sulphur bacteria, coccolithophorids, microalgae and higher plants) was sometimes possible because both quantitative and isotopic data were available and because either the free or S-bound pool sometimes appeared to contain material from a single source. Several free n-alkanes and S-bound lipids appeared to be specific products of upper-water-column primary producers (i.e. algae and cyanobacteria). Others derived from anaerobic photoautotrophs and from heterotrophic protozoa (ciliates), which apparently fed partly on Chlorobiaceae. Four groups of n-alkanes produced by algae or cyanobacteria were also recognized based on systematic variations of abundance and isotopic composition with depth. For hydrocarbons probably derived from microalgae, isotopic variations are well correlated with

  5. Synthesis of carbon-13 labelled carbonaceous deposits and their evaluation for potential use as surrogates to better understand the behaviour of the carbon-14-containing deposit present in irradiated PGA graphite

    Science.gov (United States)

    Payne, L.; Walker, S.; Bond, G.; Eccles, H.; Heard, P. J.; Scott, T. B.; Williams, S. J.

    2016-03-01

    The present work has used microwave plasma chemical vapour deposition to generate suitable isotopically labelled carbonaceous deposits on the surface of Pile Grade A graphite for use as surrogates for studying the behaviour of the deposits observed on irradiated graphite extracted from UK Magnox reactors. These deposits have been shown elsewhere to contain an enhanced concentration of 14C compared to the bulk graphite. A combination of Raman spectroscopy, ion beam milling with scanning electron microscopy and secondary ion mass spectrometry were used to determine topography and internal morphology in the formed deposits. Direct comparison was made against deposits found on irradiated graphite samples trepanned from a Magnox reactor core and showed a good similarity in appearance. This work suggests that the microwave plasma chemical vapour deposition technique is of value in producing simulant carbon deposits, being of sufficiently representative morphology for use in non-radioactive surrogate studies of post-disposal behaviour of 14C-containing deposits on some irradiated Magnox reactor graphite.

  6. Biomarker and carbon isotope constraints (δ{sup 13}C, Δ{sup 14}C) on sources and cycling of particulate organic matter discharged by large Siberian rivers draining permafrost areas

    Energy Technology Data Exchange (ETDEWEB)

    Winterfeld, Maria

    2014-08-15

    Circumpolar permafrost soils store about half of the global soil organic carbon pool. These huge amounts of organic matter (OM) could accumulate due to low temperatures and water saturated soil conditions over the course of millennia. Currently most of this OM remains frozen and therefore does not take part in the active carbon cycle, making permafrost soils a globally important carbon sink. Over the last decades mean annual air temperatures in the Arctic increased stronger than the global mean and this trend is projected to continue. As a result the permafrost carbon pool is under climate pressure possibly creating a positive climate feedback due to the thaw-induced release of greenhouse gases to the atmosphere. Arctic warming will lead to increased annual permafrost thaw depths and Arctic river runoff likely resulting in enhanced mobilization and export of old, previously frozen soil-derived OM. Consequently, the great arctic rivers play an important role in global biogeochemical cycles by connecting the large permafrost carbon pool of their hinterlands with the arctic shelf seas and the Arctic Ocean. The first part of this thesis deals with particulate organic matter (POM) from the Lena Delta and adjacent Buor Khaya Bay. The Lena River in central Siberia is one of the major pathways translocating terrestrial OM from its southernmost reaches near Lake Baikal to the coastal zone of the Laptev Sea. The permafrost soils from the Lena catchment area store huge amounts of pre-aged OM, which is expected to be remobilized due to climate warming. To characterize the composition and vegetation sources of OM discharged by the Lena River, the lignin phenol and carbon isotopic composition (δ{sup 13}C and Δ{sup 14}C) in total suspended matter (TSM) from surface waters, surface sediments from the Buor Khaya Bay along with soils from the Lena Delta's first (Holocene) and third terraces (Pleistocene ice complex) were analyzed. The lignin compositions of these samples are

  7. Efeito da glutamina sobre o turnover do carbono (d13C de músculos e vísceras de leitões desmamados: glutamina e turnover de carbono tecidual = Effect of glutamine on carbon (d13C turnover in the muscles and viscera of weaned piglets

    Directory of Open Access Journals (Sweden)

    Fabiana Ribeiro Caldara

    2008-07-01

    Full Text Available O estudo foi conduzido para verificar a influência da glutamina no turnover do carbono em tecidos de leitões. Nove porcas foram cobertas e receberam dietas compostas predominantemente por grãos de plantas do ciclo fotossintético C4 durante gestação e lactação. Aos 21 dias de idade, 48 leitões foram distribuídos aleatoriamente nos tratamentos: T1 = dieta C3, sem suplementação de glutamina, e T2 = dieta C3, suplementada com 1% de glutamina. Nos dias 0, 1, 2, 3, 4, 5, 8, 11, 15, 20, 29 e 46 pós-desmame, foram abatidos dois leitões/tratamento. Amostras dos músculos Psoas major e Masseter, fígado e pâncreas foram coletadas e analisadas quanto à composição em d‰13C e mensurada a substituição do carbono em função do tempo. A glutamina acelerou a substituição do carbono em ambos os músculos, como observado pelos valores de meia-vida (T destes tecidos (T = 51,4 e 21,7 dias para Masseter e 31,5 e 20,3 dias para Psoas major, nos tratamentos sem e com suplementação de glutamina, respectivamente. Os valores de meia-vida do carbono das vísceras indicam que esse aminoácido também acelerou o turnover do carbono nestes órgãos. Os resultados indicam estímulo anabólico da glutamina sobre os tecidos avaliados.The study was carried out to verify the influence of glutamineon carbon turnover in the muscles and viscera of piglets. Nine sows were bred and received diets predominantly composed by grains of C4 photosynthetic cycle plants during gestation and lactation. The piglets were weaned at 21 days of age, and 48 animals were distributed at random in two treatments: T1 = C3 diet, without glutamine supplementation; and T2 = C3 diet, supplemented with 1% glutamine. On days 0, 1, 2, 3, 4, 5, 8, 11, 15, 20, 29 and 46 postweaning, two piglets per treatment were slaughtered. Samples of the Psoas major and Masseter muscles, liver and pancreas were collected and analyzed for d‰13C composition, and carbon turnover was measured as a

  8. 2LiBH{sub 4}–MgH{sub 2}–0.13TiCl{sub 4} confined in nanoporous structure of carbon aerogel scaffold for reversible hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Gosalawit-Utke, Rapee, E-mail: rapee.g@sut.ac.th [Institute of Materials Research, Helmholtz–Zentrum Geesthacht, Geesthacht 21502 (Germany); School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Milanese, Chiara [Pavia Hydrogen Lab, C.S.G.I.-Department of Chemistry-Physical Chemistry Division, University of Pavia, Pavia 27100 (Italy); Javadian, Payam [Center for Energy Materials, iNANO and Department of Chemistry, University of Aarhus, Aarhus C8000 (Denmark); Girella, Alessandro [Pavia Hydrogen Lab, C.S.G.I.-Department of Chemistry-Physical Chemistry Division, University of Pavia, Pavia 27100 (Italy); Laipple, Daniel; Puszkiel, Julián [Institute of Materials Research, Helmholtz–Zentrum Geesthacht, Geesthacht 21502 (Germany); Cattaneo, Alice S.; Ferrara, Chiara [Department of Chemistry-Physical Chemistry Division, University of Pavia, Pavia 27100 (Italy); Wittayakhun, Jatuporn [School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Skibsted, Jørgen; Jensen, Torben R. [Center for Energy Materials, iNANO and Department of Chemistry, University of Aarhus, Aarhus C8000 (Denmark); Marini, Amedeo [Pavia Hydrogen Lab, C.S.G.I.-Department of Chemistry-Physical Chemistry Division, University of Pavia, Pavia 27100 (Italy); Klassen, Thomas; Dornheim, Martin [Institute of Materials Research, Helmholtz–Zentrum Geesthacht, Geesthacht 21502 (Germany)

    2014-06-25

    Highlights: • Nanoconfined 2LiBH{sub 4}–MgH{sub 2}–0.13TiCl{sub 4} was simply prepared by solution impregnation and melt infiltration. • Up to two times faster desorption kinetics as compared with nanoconfined 2LiBH{sub 4}–MgH{sub 2}. • Significant low onset dehydrogenation temperature (T = 140 °C). • New reactive phase formations during de/rehydrogenation. - Abstract: The investigations based on kinetic improvement and reaction mechanisms during melt infiltration, dehydrogenation, and rehydrogenation of nanoconfined 2LiBH{sub 4}–MgH{sub 2}–0.13TiCl{sub 4} in carbon aerogel scaffold (CAS) are proposed. It is found that TiCl{sub 4} and LiBH{sub 4} are successfully nanoconfined in CAS, while MgH{sub 2} proceeds partially. In the same temperature (25–500 °C) and time (0–5 h at constant temperature) ranges nanoconfined 2LiBH{sub 4}–MgH{sub 2}–0.13TiCl{sub 4} dehydrogenates completely 99% of theoretical H{sub 2} storage capacity, while that of nanoconfined 2LiBH{sub 4}–MgH{sub 2} is only 94%. Nanoconfined 2LiBH{sub 4}–MgH{sub 2}–0.13TiCl{sub 4} performs three-step dehydrogenation at 140, 240, and 380 °C. Onset (the first-step) dehydrogenation temperature (140 °C), significantly lower than those of nanoconfined sample of 2LiBH{sub 4}–MgH{sub 2} and 2LiBH{sub 4}–MgH{sub 2}–TiCl{sub 3} (ΔT = 140 and 110 °C, respectively) is in agreement with the decomposition of eutectic LiBH{sub 4}–Mg(BH{sub 4}){sub 2} and lithium–titanium borohydride. For the second and third steps (240 and 380 °C), decompositions of LiBH{sub 4} destabilized by LiCl solvation and MgH{sub 2} are accomplished, respectively. In conclusion, dehydrogenation products are B, Mg, LiH, and TiH. Reversibility of nanoconfined 2LiBH{sub 4}–MgH{sub 2}–0.13TiCl{sub 4} sample is confirmed by the recovery of LiBH{sub 4} after rehydrogenation together with the formation of [B{sub 12}H{sub 12}]{sup −} derivatives. The superior kinetics during the 2nd, 3rd, and 4th

  9. 1-(3-sulfonic acid group) propyl piperidinium dodecylbenzenesulfonic acid applied in carbon dioxide capture%1-(3-磺酸基)丙基哌啶十二烷基苯磺酸在CO2捕集中的应用∗

    Institute of Scientific and Technical Information of China (English)

    李工; 丁嘉; 郭剑桥; 徐小军; 王树立; 余益松

    2015-01-01

    A surface active functional ionic liquid, 1⁃(3⁃sulfonic acid group) propyl piperidinium dodecylbenzenesulfonic acid ([ PIPS] DBSA) was synthesized and characterized by 1H NMR, FTIR, and element analysis. [ PIPS] DBSA was used to promote the formation of carbon dioxide hydrate, and its effect on the temperature and pressure was investigated. Experimental results show that, by comparing 300 mg·L-1 [ PIPS ] DBSA solution with the 700 mg·kg-1 sodium dodecylbenzenesulfonate solution( SDBS) , the phase equilibrium pressure of carbon dioxide hydrate was decreased by 13.60% —14.96% in the range of 4℃ —6℃, and the required time for steady CO2 pressure was reduced by 50 min at 4 ℃. The investigation indicated that [ PIPS] DBSA has a good promotion effect on the formation of cardon dioxide hydrate.%合成了一种具有表面活性功能的离子液体1⁃(3⁃磺酸基)丙基哌啶十二烷基苯磺酸([PIPS]DBSA),采用FT⁃IR,1 H NMR 和元素分析等方法对产物进行表征,并将其用于促进 CO2水合物的生成,考察[ PIPS] DBSA对CO2水合物生成过程中温度和压力的影响.实验表明在温度4℃—6℃时,300 mg·L-1[ PIPS] DBSA溶液中CO2的相平衡压力比700 mg·L-1的十二烷基苯磺酸钠( SDBS)溶液的相平衡压力下降了13�6%—14.96%.在4℃时,300 mg·L-1[ PIPS] DBSA溶液中CO2压力稳定所用的时间与700 mg·L-1 SDBS溶液相比减少了50 min,表明[ PIPS] DBSA对CO2水合物的形成具有良好的促进作用.

  10. Study and validity of {sup 13}C stable carbon isotopic ratio analysis by mass spectrometry and {sup 2}H site-specific natural isotopic fractionation by nuclear magnetic resonance isotopic measurements to characterize and control the authenticity of honey

    Energy Technology Data Exchange (ETDEWEB)

    Cotte, J.F. [Cooperative France Miel, BP 5, 330 Mouchard (France); Casabianca, H. [Service Central d' Analyse, USR 059-CNRS, BP 22, 69390 Vernaison (France); Lheritier, J. [Cooperative France Miel, BP 5, 330 Mouchard (France); Perrucchietti, C. [Service Central d' Analyse, USR 059-CNRS, BP 22, 69390 Vernaison (France); Sanglar, C. [Service Central d' Analyse, USR 059-CNRS, BP 22, 69390 Vernaison (France); Waton, H. [Service Central d' Analyse, USR 059-CNRS, BP 22, 69390 Vernaison (France); Grenier-Loustalot, M.F. [Service Central d' Analyse, USR 059-CNRS, BP 22, 69390 Vernaison (France)]. E-mail: mf.grenier-loustalot@sca.cnrs.fr

    2007-01-16

    Honey samples were analyzed by stable carbon isotopic ratio analysis by mass spectrometry (SCIRA-MS) and site-specific natural isotopic fractionation measured by nuclear magnetic resonance (SNIF-NMR) to first determine their potentials for characterizing the substance and then to combat adulteration. Honey samples from several geographic and botanical origins were analyzed. The {delta} {sup 13}C parameter was not significant for characterizing an origin, while the (D/H){sub I} ratio could be used to differentiate certain single-flower varieties. Application of the official control method of adding a C{sub 4} syrup (AOAC official method 998.12) to our authentic samples revealed anomalies resulting from SCIRA indices that were more negative than -1 per mille (permil). A filtration step was added to the experimental procedure and provided results that were compliant with Natural origin of our honey samples. In addition, spiking with a C{sub 4} syrup could be detected starting at 9-10%. The use of SNIF-NMR is limited by the detection of a syrup spike starting only at 20%, which is far from satisfying.

  11. Study and validity of 13C stable carbon isotopic ratio analysis by mass spectrometry and 2H site-specific natural isotopic fractionation by nuclear magnetic resonance isotopic measurements to characterize and control the authenticity of honey

    International Nuclear Information System (INIS)

    Honey samples were analyzed by stable carbon isotopic ratio analysis by mass spectrometry (SCIRA-MS) and site-specific natural isotopic fractionation measured by nuclear magnetic resonance (SNIF-NMR) to first determine their potentials for characterizing the substance and then to combat adulteration. Honey samples from several geographic and botanical origins were analyzed. The δ 13C parameter was not significant for characterizing an origin, while the (D/H)I ratio could be used to differentiate certain single-flower varieties. Application of the official control method of adding a C4 syrup (AOAC official method 998.12) to our authentic samples revealed anomalies resulting from SCIRA indices that were more negative than -1 per mille (permil). A filtration step was added to the experimental procedure and provided results that were compliant with Natural origin of our honey samples. In addition, spiking with a C4 syrup could be detected starting at 9-10%. The use of SNIF-NMR is limited by the detection of a syrup spike starting only at 20%, which is far from satisfying

  12. Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Knorr Repeat Hydrography Cruise in the Atlantic Ocean: CLIVAR CO2 Sections A20_2003 (22 September-20 October 2003) and A22_2003 (23 October-13 November, 2003)

    Energy Technology Data Exchange (ETDEWEB)

    Kozyr, Alex [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Carbon Dioxide Information Analysis Center

    2008-09-30

    This report presents methods, and analytical and quality control procedures for salinity, oxygen, nutrient, inorganic carbon, organic carbon, chlorofluorocarbon (CFC), and bomb carbon-14 system parameters performed during the A20_2003 and A22_2003 cruises, which took place between September 22 and November 13, 2003, aboard research vessel (R/V) Knorr under the auspices of the National Oceanic and Atmospheric Administration (NOAA) and National Science Foundation (NSF). The R/V Knorr departed Woods Hole, Massachusetts, on September 22 for the Repeat Section A20, and ended this line in Port of Spain, Trinidad, on October 20. The Repeat Section A22 started on October 23 in Port of Spain, Trinidad, and finished on November 13, 2003, in Woods Hole, Massachusetts. The research conducted was one of a series of repeat hydrography sections jointly funded by NOAA and NSF as part of the Climate Variability Program (CLIVAR)/CO2/repeat hydrography/tracer program. Samples were taken from 36 depths at 88 stations on section A20 and 82 stations on section A22. The data presented in this report include the analyses of water samples for total inorganic carbon (TCO2), total alkalinity (TALK), dissolved organic carbon (DOC), CFC, carbon-14, hydrographic, and other chemical measurements.

  13. Using eddy covariance of CO2, 13CO2 and CH4, continuous soil respiration measurements, and PhenoCams to constrain a process-based biogeochemical model for carbon market-funded wetland restoration

    Science.gov (United States)

    Oikawa, P. Y.; Baldocchi, D. D.; Knox, S. H.; Sturtevant, C. S.; Verfaillie, J. G.; Dronova, I.; Jenerette, D.; Poindexter, C.; Huang, Y. W.

    2015-12-01

    We use multiple data streams in a model-data fusion approach to reduce uncertainty in predicting CO2 and CH4 exchange in drained and flooded peatlands. Drained peatlands in the Sacramento-San Joaquin River Delta, California are a strong source of CO2 to the atmosphere and flooded peatlands or wetlands are a strong CO2 sink. However, wetlands are also large sources of CH4 that can offset the greenhouse gas mitigation potential of wetland restoration. Reducing uncertainty in model predictions of annual CO2 and CH4 budgets is critical for including wetland restoration in Cap-and-Trade programs. We have developed and parameterized the Peatland Ecosystem Photosynthesis, Respiration, and Methane Transport model (PEPRMT) in a drained agricultural peatland and a restored wetland. Both ecosystem respiration (Reco) and CH4 production are a function of 2 soil carbon (C) pools (i.e. recently-fixed C and soil organic C), temperature, and water table height. Photosynthesis is predicted using a light use efficiency model. To estimate parameters we use a Markov Chain Monte Carlo approach with an adaptive Metropolis-Hastings algorithm. Multiple data streams are used to constrain model parameters including eddy covariance of CO2, 13CO2 and CH4, continuous soil respiration measurements and digital photography. Digital photography is used to estimate leaf area index, an important input variable for the photosynthesis model. Soil respiration and 13CO2 fluxes allow partitioning of eddy covariance data between Reco and photosynthesis. Partitioned fluxes of CO2 with associated uncertainty are used to parametrize the Reco and photosynthesis models within PEPRMT. Overall, PEPRMT model performance is high. For example, we observe high data-model agreement between modeled and observed partitioned Reco (r2 = 0.68; slope = 1; RMSE = 0.59 g C-CO2 m-2 d-1). Model validation demonstrated the model's ability to accurately predict annual budgets of CO2 and CH4 in a wetland system (within 14% and 1

  14. Partitioning net ecosystem carbon exchange into net assimilation and respiration with canopy-scale isotopic measurements: An error propagation analysis with 13CO2 and CO18O data

    Science.gov (United States)

    OgéE, J.; Peylin, P.; Cuntz, M.; Bariac, T.; Brunet, Y.; Berbigier, P.; Richard, P.; Ciais, P.

    2004-06-01

    Stable CO2 isotope measurements are increasingly used to partition the net CO2 exchange between terrestrial ecosystems and the atmosphere in terms of nonfoliar respiration (FR) and net photosynthesis (FA) in order to better understand the variations of this exchange. However, the accuracy of the partitioning strongly depends on the isotopic disequilibrium between these two gross fluxes, and a rigorous estimation of the errors on FA and FR is needed. In this study, we account for and propagate uncertainties on all terms in the mass balance and isotopic mass balance equations for CO2 in order to get accurate estimates of the errors on FA and FR. We apply our method to a maritime pine forest in the southwest of France. Nighttime Keeling plots are used to estimate the 13C and 18O isotopic signature of FR (δR), and for both isotopes the a priori uncertainty associated with this term is estimated to be around 2‰ at our site. Using δ13C-CO2 and [CO2] measurements, we then show that the uncertainty on instantaneous values of FA and FR can be as large as 4 μmol m-2 s-1. Even if we could get more accurate estimates of the net CO2 flux, the isoflux, and the isotopic signatures of FA and FR, this uncertainty would not be significantly reduced because the isotopic disequilibrium between FA and FR is too small, around 2-3‰. With δ18O-CO2 and [CO2] measurements the uncertainty associated with the gross fluxes lies also around 4 μmol m-2 s-1 but could be dramatically reduced if we were able to get more accurate estimates of the CO18O isoflux and the associated discrimination during photosynthesis. This is because the isotopic disequilibrium between FA and FR is large, of the order of 12-17‰. The isotopic disequilibrium between FA and FR and the uncertainty on δR vary among ecosystems and over the year. Our approach should help to choose the best strategy to study the carbon budget of a given ecosystem using stable isotopes.

  15. Ultra-rapid targeted analysis of 40 drugs of abuse in oral fluid by LC-MS/MS using carbon-13 isotopes of methamphetamine and MDMA to reduce detector saturation.

    Science.gov (United States)

    Di Rago, Matthew; Chu, Mark; Rodda, Luke N; Jenkins, Elizabeth; Kotsos, Alex; Gerostamoulos, Dimitri

    2016-05-01

    The number of oral fluid samples collected by the road policing authority in Victoria, Australia, requiring confirmatory laboratory analysis for drugs proscribed under Victorian legislation (methamphetamine, MDMA and Δ9-tetrahydrocannabinol) has greatly increased in recent years, driving the need for improved analysis techniques to enable expedient results. The aim of this study was to develop an LC-MS/MS-based targeted oral fluid screening technique that covers a broad range of basic and neutral drugs of abuse that can satisfy increased caseload while monitoring other compounds of interest for epidemiological purposes. By combining small sample volume, simple extraction procedure, rapid LC-MS/MS analysis and automated data processing, 40 drugs of abuse including amphetamines, benzodiazepines, cocaine and major metabolites, opioids, cannabinoids and some designer stimulants were separated over 5 min (with an additional 0.5 min re-equilibration time). The analytes were detected using a Sciex® API 4500 Q-Trap LC-MS/MS system with positive ESI in MRM mode monitoring three transitions per analyte. The method was fully validated in accordance with international guidelines and also monitored carbon-13 isotopes of MDMA and MA to reduce detector saturation effects, allowing for confirmation of large concentrations of these compounds without the need for dilution or re-analysis. The described assay has been successfully used for analysis of oral fluid collected as part of law enforcement procedures at the roadside in Victoria, providing forensic results as well as epidemiological prevalence in the population tested. The fast and reliable detection of a broad range of drugs and subsequent automated data processing gives the opportunity for high throughput and fast turnaround times for forensic toxicology.

  16. Ultra-rapid targeted analysis of 40 drugs of abuse in oral fluid by LC-MS/MS using carbon-13 isotopes of methamphetamine and MDMA to reduce detector saturation.

    Science.gov (United States)

    Di Rago, Matthew; Chu, Mark; Rodda, Luke N; Jenkins, Elizabeth; Kotsos, Alex; Gerostamoulos, Dimitri

    2016-05-01

    The number of oral fluid samples collected by the road policing authority in Victoria, Australia, requiring confirmatory laboratory analysis for drugs proscribed under Victorian legislation (methamphetamine, MDMA and Δ9-tetrahydrocannabinol) has greatly increased in recent years, driving the need for improved analysis techniques to enable expedient results. The aim of this study was to develop an LC-MS/MS-based targeted oral fluid screening technique that covers a broad range of basic and neutral drugs of abuse that can satisfy increased caseload while monitoring other compounds of interest for epidemiological purposes. By combining small sample volume, simple extraction procedure, rapid LC-MS/MS analysis and automated data processing, 40 drugs of abuse including amphetamines, benzodiazepines, cocaine and major metabolites, opioids, cannabinoids and some designer stimulants were separated over 5 min (with an additional 0.5 min re-equilibration time). The analytes were detected using a Sciex® API 4500 Q-Trap LC-MS/MS system with positive ESI in MRM mode monitoring three transitions per analyte. The method was fully validated in accordance with international guidelines and also monitored carbon-13 isotopes of MDMA and MA to reduce detector saturation effects, allowing for confirmation of large concentrations of these compounds without the need for dilution or re-analysis. The described assay has been successfully used for analysis of oral fluid collected as part of law enforcement procedures at the roadside in Victoria, providing forensic results as well as epidemiological prevalence in the population tested. The fast and reliable detection of a broad range of drugs and subsequent automated data processing gives the opportunity for high throughput and fast turnaround times for forensic toxicology. PMID:26993306

  17. Carbon isotopes in mollusk shell carbonates

    Science.gov (United States)

    McConnaughey, Ted A.; Gillikin, David Paul

    2008-10-01

    Mollusk shells contain many isotopic clues about calcification physiology and environmental conditions at the time of shell formation. In this review, we use both published and unpublished data to discuss carbon isotopes in both bivalve and gastropod shell carbonates. Land snails construct their shells mainly from respired CO2, and shell δ13C reflects the local mix of C3 and C4 plants consumed. Shell δ13C is typically >10‰ heavier than diet, probably because respiratory gas exchange discards CO2, and retains the isotopically heavier HCO3 -. Respired CO2 contributes less to the shells of aquatic mollusks, because CO2/O2 ratios are usually higher in water than in air, leading to more replacement of respired CO2 by environmental CO2. Fluid exchange with the environment also brings additional dissolved inorganic carbon (DIC) into the calcification site. Shell δ13C is typically a few ‰ lower than ambient DIC, and often decreases with age. Shell δ13C retains clues about processes such as ecosystem metabolism and estuarine mixing. Ca2+ ATPase-based models of calcification physiology developed for corals and algae likely apply to mollusks, too, but lower pH and carbonic anhydrase at the calcification site probably suppress kinetic isotope effects. Carbon isotopes in biogenic carbonates are clearly complex, but cautious interpretation can provide a wealth of information, especially after vital effects are better understood.

  18. Estudio de flujos verticales de carbono y nitrógeno en ambientes acuáticos controlados en la bahía de Knebel, Dinamarca utilizando isótopos estables de nitrógeno y carbono (15N y 13C A study of the vertical flow of carbon and nitrogen in controlled aquatic environments at the Knebel Bay, Denmark, with the use of the stable isotopes of nitrogen and carbon (15N y 13C

    Directory of Open Access Journals (Sweden)

    GIOVANNI DANERI

    2001-09-01

    Full Text Available En este estudio se utilizaron isótopos estables como trazadores para caracterizar y cuantificar el flujo vertical de carbono y nitrógeno. Los experimentos se llevaron a cabo en la bahía de Knebel, Dinamarca (56 08' N, 10 11' E, en dos ambientes acuáticos controlados tipo mesocosmos. La adición de nutrientes inorgánicos estimuló el afloramiento del flagelado no-tóxico Prorocentrum minimum, determinando un comportamiento similar en las mediciones de clorofila a (Clo-a, nitrógeno orgánico particulado (NOP y carbono orgánico particulado (COP en ambos mesocosmos. Bajo condiciones no limitantes de nutrientes inorgánicos existió una baja discriminación isotópica resultando en bajos valores de delta13C en el COP en suspensión y sedimentado. El desfase entre los máximos de NOP, Clo-a y COP así como la rápida asimilación del nitrato adicionado en menos de tres días y una razón C/N variable indican que P. minimum posee una gran habilidad para asimilar nitrógeno inorgánico. La razón C/N alcanzó un mínimo al inicio del experimento, para luego aumentar una vez agotado el nitrato de la columna de agua. El nitrógeno nuevo sedimentado alcanzó un 10 a 11 % del total originalmente adicionado a la columna de agua en la forma de nitrato, sin que se observara una sedimentación masiva de P. minimum durante los días de duración de este experimentoStable isotopes were used as tracers to characterize and quantify the downward flux of carbon and nitrogen. The experiments were conducted in Knebel bay, Denmark (56 08' N, 10 11' E, in two controlled aquatic environments (mesocosm type. The addition of inorganic nutrients to the mesocosms stimulated a bloom of the non-toxic flagellate Prorocentrum minimum. A similar pattern in the concentration of chlorophyll a (Chl-a, particulate organic nitrogen (PON and particulate organic carbon (POC was observed in both mesocosms. The elevated nutrient conditions resulted in low isotopic discrimination

  19. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from time series observations using Bubble type equilibrator for autonomous carbon dioxide (CO2) measurement, Carbon dioxide (CO2) gas analyzer and other instruments from MOORINGS in the North Atlantic Ocean from 2006-07-13 to 2013-07-09 (NODC Accession 0115402)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115402 includes time series data collected from MOORINGS in the North Atlantic Ocean from 2006-07-13 to 2013-07-09 and retrieved during cruise...

  20. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from time series observations using Bubble type equilibrator for autonomous carbon dioxide (CO2) measurement, Carbon dioxide (CO2) gas analyzer and other instruments from the MOORINGS in the North Pacific Ocean from 2007-06-26 to 2011-07-13 (NODC Accession 0100080)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0100080 includes chemical, physical and time series data collected from MOORINGS in the North Pacific Ocean from 2007-06-26 to 2011-07-13. These data...

  1. An unprecedented up-field shift in the 13C NMR spectrum of the carboxyl carbons of the lantern-type dinuclear complex TBA[Ru2(O2CCH3)4Cl2] (TBA+ = tetra(n-butyl)ammonium cation).

    Science.gov (United States)

    Hiraoka, Yuya; Ikeue, Takahisa; Sakiyama, Hiroshi; Guégan, Frédéric; Luneau, Dominique; Gillon, Béatrice; Hiromitsu, Ichiro; Yoshioka, Daisuke; Mikuriya, Masahiro; Kataoka, Yusuke; Handa, Makoto

    2015-08-14

    A large up-field shift (-763 ppm) has been observed for the carboxyl carbons of the dichlorido complex TBA[Ru(2)(O(2)CCH(3))(4)Cl(2)] (TBA(+) = tetra(n-butyl)ammonium cation) in the (13)C NMR spectrum (CD(2)Cl(2) at 25 °C). The DFT calculations showed spin delocalization from the paramagnetic Ru(2)(5+) core to the ligands, in agreement with the large up-field shift.

  2. Carbon classified?

    DEFF Research Database (Denmark)

    Lippert, Ingmar

    2012-01-01

    . Using an actor- network theory (ANT) framework, the aim is to investigate the actors who bring together the elements needed to classify their carbon emission sources and unpack the heterogeneous relations drawn on. Based on an ethnographic study of corporate agents of ecological modernisation over...... a period of 13 months, this paper provides an exploration of three cases of enacting classification. Drawing on ANT, we problematise the silencing of a range of possible modalities of consumption facts and point to the ontological ethics involved in such performances. In a context of global warming...

  3. 油管钢在饱和CO2模拟油田液中的腐蚀行为研究%Corrosion Behavior of Tubing Steel 13Cr in a Simulated Oilfield Liquid with Saturated Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    祝英剑; 刘长宇; 王峰; 黄天杰

    2011-01-01

    The corrosion behavior of 13Cr steel in a simulated oilfield liquid by high temperature and high pressure has been studied by mass-loss method. The results show that the corrosion rate of 13Cr steel reaches a maximum when the pressure is 20 MPa and the temperature is 110 ℃.Chloride ion concentration also influences the corrosion rate of 13Cr steel.%用失重法研究在高温高压下13Cr钢在模拟油田液中的腐蚀行为.结果表明,13Cr钢的腐蚀速率在20 MPa、110℃时达到最大值.且Clˉ浓度对13Cr钢的腐蚀速率存在一定影响.

  4. Dissolved inorganic carbon, total alkalinity, nitrate, phosphate, temperature and other variables collected from time series observations at Heron Island Reef Flat from 2010-06-01 to 2010-12-13 (NODC Accession 0127256)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains carbonate chemistry and environmental parameters data that were collected from a 200-day time series monitoring on the Heron Island...

  5. Carbon dioxide, hydrographic, and chemical data obtained during the R/Vs Roger Revelle and Thomas Thompson repeat hydrography cruises in the Pacific Ocean: CLIVAR CO2 sections P16S-2005 (9 January - 19 February, 2005) and P16N-2006 (13 February - 30 March, 2006)

    Energy Technology Data Exchange (ETDEWEB)

    Kozyr, Alex [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Carbon Dioxide Information Analysis Center; Feely, R. A. [Pacific Marine Environmental Laboratory, NOAA, Seattle, WA (United States); Sabine, C. L. [Pacific Marine Environmental Laboratory, NOAA, Seattle, WA (United States); Millero, F. J. [University of Miami, Miami, FL (United States). Rosenstiel School of Marine and Atmospheric Science; Langdon, C. [University of Miami, Miami, FL (United States). Rosenstiel School of Marine and Atmospheric Science; Dickson, A. G. [Univ. of California, San Diego, CA (United States). Scripps Institution of Oceanography; Fine, R. A. [University of Miami, Miami, FL (United States). Rosenstiel School of Marine and Atmospheric Science; Bullister, J. L. [Pacific Marine Environmental Laboratory, NOAA, Seattle, WA (United States); Hansell, D. A. [University of Miami, Miami, FL (United States). Rosenstiel School of Marine and Atmospheric Science; Carlson, C. A. [Univ. of California, Santa Barbara, CA (United States); Sloyan, B. M. [Woods Hole Oceanographic Institution, Woods Hole, MA (United States); McNichol, A. P. [Woods Hole Oceanographic Institution, Woods Hole, MA (United States); Key, R. M. [Princeton Univ., NJ (United States); Byrne, R. H. [Univ. of South Florida, Tampa, FL (United States); Wanninkhof, R. [Atlantic Oceanographic and Meteorological Laboratory, NOAA, Miami, FL (United States)

    2009-05-01

    This report presents methods, and analytical and quality control procedures for salinity, oxygen, nutrients, total carbon dioxide (TCO2), total alkalinity (TALK), pH, discrete CO2 partial pressure (pCO2), dissolved organic carbon (DOC), chlorofluorocarbons (CFCs), radiocarbon, δ13C, and underway carbon measurements performed during the P16S-2005 (9 January - 19 February 2005) and P16N-2006 (13 February - 30 March, 2006) cruises in the Pacific Ocean. The research vessel (R/V) Roger Revelle departed Papeete, Tahiti, on January 9, 2005 for the Repeat Section P16S, nominally along 150°W, ending in Wellington, New Zealand, on February 19. During this cruise, samples were taken from 36 depths at 111 CTD stations between 16°S and 71°S. The Repeat Section P16N, nominally along 152°W, consisted of two legs. Leg 1 started on February 13, 2006 in Papeete, Tahiti, and finished on March 3, in Honolulu, Hawaii. The R/V Thomas G. Thompson departed Honolulu for Leg 2 on March 10, 2006 and arrived in Kodiak, Alaska, on March 30. During the P16N cruises, samples were taken from 34 or 36 depths at 84 stations between 17°S and 56.28°N. The research conducted on these cruises was part of a series of repeat hydrography sections jointly funded by the National Oceanic and Atmospheric Administration (NOAA) and the National Science Foundation (NSF) as part of the Climate Variability Program (CLIVAR)/CO2 Repeat Hydrography Program. The P16S and P16N data sets are available free of charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center (CDIAC). The NDP consists of the oceanographic data files and this printed documentation, which describes the procedures and methods used to obtain the data.

  6. Electronic structure of new mixed Ti13MC13 nanocrystallites (M = Sc, V, ..., Cu)

    International Nuclear Information System (INIS)

    The electron structure of the series of new Ti13MC13 metal-carbon molecular nanocrystallites is studied through the ab initio self-consistent discrete variation method. The third order metals (Sc, V, ..., Cu) are considered as the M-elements. The regularities of forming the electron structure, chemical bonds, charge distributions and atomic magnetic moments in the Ti13MC13 in dependence on the M-atom type and its position in the source Ti14C13 nanocrystallite are forecasted. The obtained results are compared with the electron states calculations of the 3d-admixtures in the crystalline titanium carbide

  7. Carbon Carbon Composites: An Overview .

    OpenAIRE

    G. Rohini Devi; K. Rama Rao

    1993-01-01

    Carbon carbon composites are a new class of engineering materials that are ceramic in nature but exhibit brittle to pseudoplastic behaviour. Carbon-carbon is a unique all-carbon composite with carbon fibre embeded in carbon matrix and is known as an inverse composite. Due to their excellent thermo-structural properties, carbon-carbon composites are used in specialised application like re-entry nose-tips, leading edges, rocket nozzles, and aircraft brake discs apart from several indust...

  8. Stress-dependent regulation of 13-lipoxygenases and 13-hydroperoxide lyase in olive fruit mesocarp.

    Science.gov (United States)

    Padilla, María N; Hernández, M Luisa; Sanz, Carlos; Martínez-Rivas, José M

    2014-06-01

    The effect of different environmental stresses on the expression and enzyme activity levels of 13-lipoxygenases (13-LOX) and 13-hydroperoxide lyase (13-HPL) and on the volatile compounds synthesized by their sequential action has been studied in the mesocarp tissue of olive fruit from the Picual and Arbequina cultivars. The results showed that temperature, light, wounding and water regime regulate olive 13-LOXs and 13-HPL genes at transcriptional level. Low temperature and wounding brought about an increase in LOX and HPL enzyme activities. A very slight increase in the total content of six straight-chain carbons (C6) volatile compounds was also observed in the case of low temperature and wounding treatments. The physiological roles of 13-LOXs and 13-HPL in the olive fruit stress response are discussed. PMID:24629805

  9. Le δ13C des grains de pollen : intérêt pour l'étude des paléovégétationsCarbon isotopic ratios of pollen: interest for palaeovegetations reconstructions

    Science.gov (United States)

    Descolas-Gros, Chantal; Calleja, Michel; Cour, Pierre; Richard, Paul; Perruchietti, Christiane; Jame, Patrick

    2001-06-01

    δ13C values of pollen grains belonging to different plant species (trees, herbaceous no poaceae, poaceae) were measured. Most of these temperate species are C3 plants with δ13C values between -28.6 ‰ and -21.7 ‰, the C4 plants have more positive values between -15.9 ‰ and -10 ‰. These results corroborate the interest of such measurements to differentiate C4 poaceae from C3 ones. Inside the same genus or the same species data variability is studied. Chemical treatment (acetolysis) of pollen grains induces a lowering of the values. These preliminary results are intended to help calibrate the pollen grains δ13C of modern plants in order to use δ13C of fossil pollen grains to reconstruct palaeovegetation variability responses to climatic factors.

  10. Carbon Carbon Composites: An Overview .

    Directory of Open Access Journals (Sweden)

    G. Rohini Devi

    1993-10-01

    Full Text Available Carbon carbon composites are a new class of engineering materials that are ceramic in nature but exhibit brittle to pseudoplastic behaviour. Carbon-carbon is a unique all-carbon composite with carbon fibre embeded in carbon matrix and is known as an inverse composite. Due to their excellent thermo-structural properties, carbon-carbon composites are used in specialised application like re-entry nose-tips, leading edges, rocket nozzles, and aircraft brake discs apart from several industrial and biomedical applications. The multidirectional carbon-carbon product technology is versatile and offers design flexibility. This paper describes the multidirectional preform and carbon-carbon process technology and research and development activities within the country. Carbon-carbon product experience at DRDL has also been discussed. Development of carbon-carbon brake discs process technology using the liquid impregnation process is described. Further the test results on material characterisation, thermal, mechanical and tribological properties are presented.

  11. Carbon and Carbon Isotope Cycling in the Western Canadian Arctic

    Science.gov (United States)

    Mol, Jacoba; Thomas, Helmuth

    2016-04-01

    Increasing carbon dioxide levels in the atmosphere are having drastic effects on the global oceans. The Arctic Ocean is particularly susceptible to change as warming, sea-ice loss and a weak buffering capacity all influence this complicated semi-enclosed sea. In order to investigate the inorganic carbon system in the Canadian Arctic, water samples were collected in the Beaufort Sea, on the Alaskan shelf, at the Mackenzie river delta, and in Amundsen Gulf during the summer of 2014 and were analyzed for dissolved inorganic carbon (DIC), total alkalinity (TA), DI13C and 18O isotopes. Carbon isotopes are used to investigate the role of biological production on the uptake and transfer of inorganic carbon to depth. A preferential uptake of the lighter 12C relative to the heavier 13C isotope during biological production leads to a fractionation of the 13C/12C isotopes in both the organic matter and the water column. This results in an enrichment of DI13C in the high productivity surface waters and a depletion of DI13C at depth. Physical processes including freshwater input, brine rejection, and water mass mixing are investigated through the measurement of oxygen isotopes. Differences in the carbon system across the study area due to both biological and physical processes are assessed using depth profiles of DI13C and related carbon system parameters.

  12. Main: QELEMENTZMZM13 [PLACE

    Lifescience Database Archive (English)

    Full Text Available maize (Z.m.) ZM13 gene promoter; Found at -107 to -102; Involved in expression enhancing activity; ZM13 is a... maize homolog of tomato LAT52 gene; ZM13 is a pollen-specific maize gene; enhancing; ZM13; LAT52; pollen; maize (Zea mays) AGGTCA ...

  13. Efeito da glutamina sobre o turnover do carbono (δ13C de músculos e vísceras de leitões desmamados: glutamina e turnover de carbono tecidual - DOI: 10.4025/actascianimsci.v30i3.5712 Effect of glutamine on carbon13C turnover in the muscles and viscera of weaned piglets - DOI: 10.4025/actascianimsci.v30i3.5712

    Directory of Open Access Journals (Sweden)

    Evandro Tadeu da Silva

    2008-11-01

    Full Text Available O estudo foi conduzido para verificar a influência da glutamina no turnover do carbono em tecidos de leitões. Nove porcas foram cobertas e receberam dietas compostas predominantemente por grãos de plantas do ciclo fotossintético C4 durante gestação e lactação. Aos 21 dias de idade, 48 leitões foram distribuídos aleatoriamente nos tratamentos: T1 = dieta C3, sem suplementação de glutamina, e T2 = dieta C3, suplementada com 1% de glutamina. Nos dias 0, 1, 2, 3, 4, 5, 8, 11, 15, 20, 29 e 46 pós-desmame, foram abatidos dois leitões/tratamento. Amostras dos músculos Psoas major e Masseter, fígado e pâncreas foram coletadas e analisadas quanto à composição e δ‰13C e mensurada a substituição do carbono em função do tempo. A glutamina acelerou a substituição do carbono em ambos os músculos, como observado pelos valores de meia-vida (T destes tecidos (T = 51,4 e 21,7 dias para Masseter e 31,5 e 20,3 dias para Psoas major, nos tratamentos sem e com suplementação de glutamina, respectivamente. Os valores de meia-vida do carbono das vísceras indicam que esse aminoácido também acelerou o turnover do carbono nestes órgãos. Os resultados indicam estímulo anabólico da glutamina sobre os tecidos avaliados.The study was carried out to verify the influence of glutamine on carbon turnover in the muscles and viscera of piglets. Nine sows were bred and received diets predominantly composed by grains of C4 photosynthetic cycle plants during gestation and lactation. The piglets were weaned at 21 days of age, and 48 animals were distributed at random in two treatments: T1 = C3 diet, without glutamine supplementation; and T2 = C3 diet, supplemented with 1% glutamine. On days 0, 1, 2, 3, 4, 5, 8, 11, 15, 20, 29 and 46 postweaning, two piglets per treatment were slaughtered. Samples of the Psoas major and Masseter muscles, liver and pancreas were collected and analyzed for δ‰13C composition, and carbon turnover was measured as a

  14. Diversion of carbon flux from gibberellin to steviol biosynthesis by over-expressing SrKA13H induced dwarfism and abnormality in pollen germination and seed set behaviour of transgenic Arabidopsis.

    Science.gov (United States)

    Guleria, Praveen; Masand, Shikha; Yadav, Sudesh Kumar

    2015-07-01

    This paper documents the engineering of Arabidopsis thaliana for the ectopic over-expression of SrKA13H (ent-kaurenoic acid-13 hydroxylase) cDNA from Stevia rebaudiana. HPLC analysis revealed the significant accumulation of steviol (1-3 μg g(-1) DW) in two independent transgenic Arabidopsis lines over-expressing SrKA13H compared with the control. Independent of the steviol concentrations detected, both transgenic lines showed similar reductions in endogenous bioactive gibberellins (GA1 and GA4). They possessed phenotypic similarity to gibberellin-deficient mutants. The reduction in endogenous gibberellin content was found to be responsible for dwarfism in the transgenics. The exogenous application of GA3 could rescue the transgenics from dwarfism. The hypocotyl, rosette area, and stem length were all considerably reduced in the transgenics. A noteworthy decrease in pollen viability was noticed and, similarly, a retardation of 60-80% in pollen germination rate was observed. The exogenous application of steviol (0.2, 0.5, and 1.0 μg ml(-1)) did not influence pollen germination efficiency. This has suggested that in planta formation of steviol was not responsible for the observed changes in transgenic Arabidopsis. Further, the seed yield of the transgenics was reduced by 24-48%. Hence, this study reports for the first time that over-expression of SrKA13H cDNA in Arabidopsis has diverted the gibberellin biosynthetic route towards steviol biosynthesis. The Arabidopsis transgenics showed a significant reduction in endogenous gibberellins that might be responsible for the dwarfism, and the abnormal behaviour of pollen germination and seed set.

  15. Diversion of carbon flux from gibberellin to steviol biosynthesis by over-expressing SrKA13H induced dwarfism and abnormality in pollen germination and seed set behaviour of transgenic Arabidopsis.

    Science.gov (United States)

    Guleria, Praveen; Masand, Shikha; Yadav, Sudesh Kumar

    2015-07-01

    This paper documents the engineering of Arabidopsis thaliana for the ectopic over-expression of SrKA13H (ent-kaurenoic acid-13 hydroxylase) cDNA from Stevia rebaudiana. HPLC analysis revealed the significant accumulation of steviol (1-3 μg g(-1) DW) in two independent transgenic Arabidopsis lines over-expressing SrKA13H compared with the control. Independent of the steviol concentrations detected, both transgenic lines showed similar reductions in endogenous bioactive gibberellins (GA1 and GA4). They possessed phenotypic similarity to gibberellin-deficient mutants. The reduction in endogenous gibberellin content was found to be responsible for dwarfism in the transgenics. The exogenous application of GA3 could rescue the transgenics from dwarfism. The hypocotyl, rosette area, and stem length were all considerably reduced in the transgenics. A noteworthy decrease in pollen viability was noticed and, similarly, a retardation of 60-80% in pollen germination rate was observed. The exogenous application of steviol (0.2, 0.5, and 1.0 μg ml(-1)) did not influence pollen germination efficiency. This has suggested that in planta formation of steviol was not responsible for the observed changes in transgenic Arabidopsis. Further, the seed yield of the transgenics was reduced by 24-48%. Hence, this study reports for the first time that over-expression of SrKA13H cDNA in Arabidopsis has diverted the gibberellin biosynthetic route towards steviol biosynthesis. The Arabidopsis transgenics showed a significant reduction in endogenous gibberellins that might be responsible for the dwarfism, and the abnormal behaviour of pollen germination and seed set. PMID:25954046

  16. Nuclear magnetic resonance data of C10H13ITe

    Science.gov (United States)

    Mikhova, B. M.

    This document is part of Part 6 `Organic Metalloid Compounds' of Subvolume D 'Chemical Shifts and Coupling Constants for Carbon-13' of Landolt-Börnstein III/35 'Nuclear Magnetic Resonance Data', Group III 'Condensed Matter'.

  17. The electrochemistry of 13% chromium stainless steel in oilfield brines

    Energy Technology Data Exchange (ETDEWEB)

    Sidorin, Dmitry; Pletcher, Derek [Department of Chemistry, The University of Southampton, Southampton SO17 1BJ (United Kingdom); Hedges, Bill [BP Trinidad Ltd., P.O. Box 714, Port of Spain (Trinidad and Tobago)

    2005-07-25

    The electrochemistry of a 13% Cr stainless steel (API5CT L80-13Cr) in 3% NaCl containing acetate and either acetic acid or carbon dioxide at 333 K is explored using RDE voltammetry. The reduction of proton, carbonic acid and acetic acid occur simultaneously, immediately negative to the corrosion potential. Acetic acid gives a well formed reduction wave and the current densities increase with the equilibrium concentration of acetic acid in the medium; in the plateau region, the reduction is mass transport controlled. Despite this reduction process, the corrosion resistance and passivation current density are independent of the acetic acid concentration. It is confirmed that the 13% Cr stainless steel is much more resistant to corrosion that X65 carbon steel and, unlike the carbon steel, its rate of corrosion does not vary with acetic acid concentration. The properties of the passivating film appear to dominate the behaviour of the 13% Cr stainless steel. (author)

  18. The electrochemistry of 13% chromium stainless steel in oilfield brines

    International Nuclear Information System (INIS)

    The electrochemistry of a 13% Cr stainless steel (API5CT L80-13Cr) in 3% NaCl containing acetate and either acetic acid or carbon dioxide at 333 K is explored using RDE voltammetry. The reduction of proton, carbonic acid and acetic acid occur simultaneously, immediately negative to the corrosion potential. Acetic acid gives a well formed reduction wave and the current densities increase with the equilibrium concentration of acetic acid in the medium; in the plateau region, the reduction is mass transport controlled. Despite this reduction process, the corrosion resistance and passivation current density are independent of the acetic acid concentration. It is confirmed that the 13% Cr stainless steel is much more resistant to corrosion that X65 carbon steel and, unlike the carbon steel, its rate of corrosion does not vary with acetic acid concentration. The properties of the passivating film appear to dominate the behaviour of the 13% Cr stainless steel

  19. Ring chromosome 13

    DEFF Research Database (Denmark)

    Brandt, C A; Hertz, Jens Michael; Petersen, M B;

    1992-01-01

    A stillborn male child with anencephaly and multiple malformations was found to have the karyotype 46,XY,r(13) (p11q21.1). The breakpoint at 13q21.1, determined by high resolution banding, is the most proximal breakpoint ever reported in patients with ring chromosome 13. In situ hybridisation...... with the probe L1.26 confirmed the derivation from chromosome 13 and DNA polymorphism analysis showed maternal origin of the ring chromosome. Our results, together with a review of previous reports of cases with ring chromosome 13 with identified breakpoints, could neither support the theory of distinct clinical...

  20. 13C Tracking after 13CO2 Supply Revealed Diurnal Patterns of Wood Formation in Aspen.

    Science.gov (United States)

    Mahboubi, Amir; Linden, Pernilla; Hedenström, Mattias; Moritz, Thomas; Niittylä, Totte

    2015-06-01

    Wood of trees is formed from carbon assimilated in the photosynthetic tissues. Determining the temporal dynamics of carbon assimilation, subsequent transport into developing wood, and incorporation to cell walls would further our understanding of wood formation in particular and tree growth in general. To investigate these questions, we designed a (13)CO2 labeling system to study carbon transport and incorporation to developing wood of hybrid aspen (Populus tremula × tremuloides). Tracking of (13)C incorporation to wood over a time course using nuclear magnetic resonance spectroscopy revealed diurnal patterns in wood cell wall biosynthesis. The dark period had a differential effect on (13)C incorporation to lignin and cell wall carbohydrates. No (13)C was incorporated into aromatic amino acids of cell wall proteins in the dark, suggesting that cell wall protein biosynthesis ceased during the night. The results show previously unrecognized temporal patterns in wood cell wall biosynthesis, suggest diurnal cycle as a possible cue in the regulation of carbon incorporation to wood, and establish a unique (13)C labeling method for the analysis of wood formation and secondary growth in trees.

  1. Carbon isotope effects in carbonate systems

    Science.gov (United States)

    Deines, Peter

    2004-06-01

    Global carbon cycle models require a complete understanding of the δ 13C variability of the Earth's C reservoirs as well as the C isotope effects in the transfer of the element among them. An assessment of δ 13C changes during CO 2 loss from degassing magmas requires knowledge of the melt-CO 2 carbon isotope fractionation. In order to examine the potential size of this effect for silicate melts of varying composition, 13C reduced partition functions were computed in the temperature range 275 to 4000 K for carbonates of varying bond strengths (Mg, Fe, Mn, Sr, Ba, Pb, Zn, Cd, Li, and Na) and the polymorphs of calcite. For a given cation and a given pressure the 13C content increases with the density of the carbonate structure. For a given structure the tendency to concentrate 13C increases with pressure. The effect of pressure (‰/10 kbar) on the size of the reduced partition function of aragonite varies with temperature; in the pressure range 1 to 10 5 bars the change is given by: Δ 13C p average=-0.01796+0.06635∗ 10 3/T+0.006875∗ 10 6/T2 For calcite III the pressure effect is on average 1.4× larger than that for aragonite at all temperatures. The nature of the cation in a given structure type has a significant effect on the carbon isotope fractionation properties. The tendency to concentrate 13C declines in the series magnesite, aragonite, dolomite, strontianite, siderite, calcite, smithonite, witherite, rhodochrosite, otavite, cerrusite. For divalent cations a general expression for an estimation of the reduced partition function (β) from the reduced mass (μ = [M Cation × M Carbonate]/[M Cation + M Carbonate]) is: 1000 lnβ=(0.032367-0.072563∗ 10 3/T-0.01073∗ 10 6/T2)∗μ-14.003+29.953∗ 10 3/T+9.4610∗ 10 6/T2 For Mg-calcite the 13C content varies with the Mg concentration. The fractionation between Mg-calcite (X = mole fraction of MgCO 3) and calcite is given by: 1000 ln(α MgCalite- Calcite)=[0.013702-0.10957× 10 3/T+1.35940× 10 6/T2

  2. Dynamic carbon allocation significantly changed land carbon sink and carbon pool sizes

    Science.gov (United States)

    Xia, J.; Yuan, W.

    2015-12-01

    The allocation of photosynthate among the plant components (e.g., leaves, stems, and roots) plays an important role in regulating plant growth, competition, and terrestrial carbon cycle. However, the carbon allocation process is still a weak part in the earth system models (ESMs). In this study, the Integrated BIosphere Simulator (IBIS) model coupled with a dynamic carbon allocation model (IBISAL) is used to explore the impact of carbon allocation on the terrestrial carbon cycle. This dynamic carbon allocation model suggests that plants should allocate the largest part of carbon to the plant components which need to capture the most limiting resources, such as light, water and nitrogen. In comparison to the results of original IBIS model using fixed allocation ratios, the net ecosystem productivity, global biomass and soil organic carbon simulated by IBISAL model decreased by13.4% , 9.9% and 20.8%, respectively . The dynamic allocation scheme tends to benefit roots allocation. Because roots had short turnover times, high roots allocation led to the decreases of global carbon sink and carbon pool sizes. The observations showed that the carbon allocation ratios changed with temperature and precipitation. The dynamic carbon allocation model could reproduce this phenomenon correctly. The results show that the dynamic carbon allocation ratios of boreal evergreen forests and C3 grasses are consistent well with the observations. However, the IBISAL, and another three ESMs (i.e., CESM1-BGC, IPSL-CM5A-MR and NorESM1-ME models) adopting dynamic allocation scheme overestimated the stems allocation of tropical forests. This study shows the substantial influences of carbon allocation on the carbon sink and carbon pool sizes. Therefore, improving estimations of carbon allocation by ESMs are an important and effective path to reduce uncertainties in the global carbon cycle simulation and climate change prediction.

  3. Carbon and oxygen isotope microanalysis of carbonate.

    Science.gov (United States)

    Velivetskaya, Tatiana A; Ignatiev, Alexander V; Gorbarenko, Sergey A

    2009-08-30

    Technical modification of the conventional method for the delta(13)C and delta(18)O analysis of 10-30 microg carbonate samples is described. The CO(2) extraction is carried out in vacuum using 105% phosphoric acid at 95 degrees C, and the isotopic composition of CO(2) is measured in a helium flow by gas chromatography/isotope ratio mass spectrometry (GC/IRMS). The feed-motion of samples to the reaction vessel provides sequential dropping of only the samples (without the sample holder) into the acid, preventing the contamination of acid and allowing us to use the same acid to carry out very large numbers of analyses. The high accuracy and high reproducibility of the delta(13)C and delta(18)O analyses were demonstrated by measurements of international standards and comparison of results obtained by our method and by the conventional method. Our method allows us to analyze 10 microg of the carbonate with a standard deviation of +/-0.05 per thousand for delta(13)C and delta(18)O. The method has been used successfully for the analyses of the oxygen and carbon isotopic composition of the planktonic and benthic foraminifera in detailed palaeotemperature reconstructions of the Okhotsk Sea. PMID:19603476

  4. Carbon isotope anomalies in carbonates of the Karelian series

    Science.gov (United States)

    Iudovich, Ia. E.; Makarikhin, V. V.; Medvedev, P. V.; Sukhanov, N. V.

    1990-07-01

    Results are presented on carbon isotope distributions in carbonates of the Karelian complex. A highly anomalous isotopic composition was found in carbonate rocks aged from 2.6 to 1.9 b.y. In the stromatolitic carbonates of the Onega water table, delta-(C-13) reaches a value of +18 percent, while the shungite layer of the Zaonega horizon is characterized by a wide dispersion (from +7.9 to -11.8 percent). These data are in good agreement with the known geochemical boundary (about 2.2 b.y. ago) in the history of the earth.

  5. Uptake of algal carbon and the synthesis of an "essential" fatty acid by Uvigerina ex. gr. semiornata (Foraminifera within the Pakistan margin oxygen minimum zone: evidence from fatty acid biomarker and 13C tracer experiments

    Directory of Open Access Journals (Sweden)

    K. E. Larkin

    2014-01-01

    Full Text Available Foraminifera are an important component of benthic communities in oxygen depleted settings, where they potentially play a~significant role in the processing of organic matter. We tracked the uptake of a 13C-labeled algal food source into individual fatty acids in the benthic foraminiferal species, Uvigerina ex. gr. semiornata, from the Arabian Sea oxygen minimum zone (OMZ. The tracer experiments were conducted on the Pakistan Margin during the late/post monsoon period (August–October 2003. A monoculture of the diatom Thalassiosira weisflogii was 13C-labeled and used to simulate a pulse of phytoplankton in two complementary experiments. A lander system was used for in situ incubations at 140 m and for 2.5 days duration, whilst a laboratory incubation used an oxystat system to maintain ambient dissolved oxygen concentrations. These shipboard experiments were terminated after 5 days. Uptake of diatoms was rapid, with high incorporation of diatom fatty acids into foraminifera after ~2 days in both experiments. Ingestion of the diatom food source was indicated by the increase over time in the quantity of diatom biomarker fatty acids in the foraminifera and by the high percentage of 13C in many of the fatty acids present at the endpoint of both in~situ and laboratory-based experiments. These results indicate that U. ex. gr. semiornata rapidly ingested the diatom food source and that this foraminifera will play an important role in the short-term cycling of organic matter within this OMZ environment. The experiments also suggested that U. ex. gr. semiornata consumed non-labeled bacterial food items, particularly bacteria, and synthesised the polyunsaturated fatty acid 20:4(n-6 de novo. 20:4(n-6 is often abundant in benthic fauna yet its origins and function have remained unclear. This study demonstrates that U. ex. gr. semiornata is capable of de novo synthesis of this "essential fatty acid" and is potentially a major source of this dietary nutrient

  6. Microbially mediated mineral carbonation

    Science.gov (United States)

    Power, I. M.; Wilson, S. A.; Dipple, G. M.; Southam, G.

    2010-12-01

    implemented and economically efficient alternative to other technologies currently under development for mineral sequestration. Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC (2008) Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Current Opinion in Biotechnology, 19, 235-240. Ferris FG, Wiese RG, Fyfe WS (1994) Precipitation of carbonate minerals by microorganisms: Implications of silicate weathering and the global carbon dioxide budget. Geomicrobiology Journal, 12, 1-13. Lackner KS, Wendt CH, Butt DP, Joyce EL, Jr., Sharp DH (1995) Carbon dioxide disposal in carbonate minerals. Energy, 20, 1153-1170. Power IM, Wilson SA, Thom JM, Dipple GM, Gabites JE, Southam G (2009) The hydromagnesite playas of Atlin, British Columbia, Canada: A biogeochemical model for CO2 sequestration. Chemical Geology, 206, 302-316. Thompson JB, Ferris FG (1990) Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water. Geology, 18, 995-998.

  7. Degradation of 1,3-dichloropropene by Pseudomonas cichorii 170

    NARCIS (Netherlands)

    Poelarends, G.J.; Wilkens, M.; Larkin, M.J.; Elsas, van J.D.; Janssen, D.B.

    1998-01-01

    The gram-negative bacterium Pseudomonas cichorii 170, isolated from soil that was repeatedly treated with the nematocide 1,3-dichloropropene, could utilize low concentrations of 1,3-dichloropropene as a sole carbon and energy source. Strain 170 was also able to grow on 3-chloroallyl alcohol, 3- chlo

  8. Degradation of 1,3-dichloropropene by Pseudomonas cichorii 170

    NARCIS (Netherlands)

    Poelarends, Gerrit J.; Wilkens, Marga; Larkin, Michael J.; Elsas, Jan Dirk van; Janssen, Dick B.

    1998-01-01

    The gram-negative bacterium Pseudomonas cichorii 170, isolated from soil that was repeatedly treated with the nematocide 1,3-dichloropropene, could utilize low concentrations of 1,3-dichloropropene as a sole carbon and energy source, Strain 170 was also able to grow on 3-chloroallyl alcohol, 3-chlor

  9. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the NATHANIEL B. PALMER in the South Pacific Ocean from 1997-01-13 to 1997-02-11 (NODC Accession 0116069)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0116069 includes chemical, discrete sample, physical and profile data collected from NATHANIEL B. PALMER in the South Pacific Ocean from 1997-01-13...

  10. Apollo 13 emblem

    Science.gov (United States)

    1969-01-01

    This is the insignia of the Apollo 13 lunar landing mission. Represented in the Apollo 13 emblem is Apollo, the sun god of Greek mythology, symbolizing how the Apollo flights have extended the light of knowledge to all mankind. The Latin phrase Ex Luna, Scientia means 'From the Moon, Knowledge'.

  11. Trisomy 13: Changing Perspectives.

    Science.gov (United States)

    Macias, Gabriel; Riley, Cheryl

    2016-01-01

    The diagnosis of trisomy 13 has been considered incompatible with life. Trisomy 13 is associated with a pattern of congenital anomalies and mental disabilities that make caring for these infants a challenge for both the family and health care professionals. The clinical management of trisomy 13 varies based on the organ systems involved. The current standard of care has been withholding intensive support and providing comfort care. Recent literature suggests there are improved outcomes in infants who receive intensive care at birth. In addition, case reports evaluating older children with trisomy 13 report that, although there are significant intellectual and psychomotor disabilities, these children do meet developmental milestones such as smiling in response to parents, sitting unassisted, and walking with a walker. This case review will include a discussion of the clinical course of an infant born with mosaic trisomy 13 where the parents requested intensive care. PMID:26842537

  12. Trisomy 13: Changing Perspectives.

    Science.gov (United States)

    Macias, Gabriel; Riley, Cheryl

    2016-01-01

    The diagnosis of trisomy 13 has been considered incompatible with life. Trisomy 13 is associated with a pattern of congenital anomalies and mental disabilities that make caring for these infants a challenge for both the family and health care professionals. The clinical management of trisomy 13 varies based on the organ systems involved. The current standard of care has been withholding intensive support and providing comfort care. Recent literature suggests there are improved outcomes in infants who receive intensive care at birth. In addition, case reports evaluating older children with trisomy 13 report that, although there are significant intellectual and psychomotor disabilities, these children do meet developmental milestones such as smiling in response to parents, sitting unassisted, and walking with a walker. This case review will include a discussion of the clinical course of an infant born with mosaic trisomy 13 where the parents requested intensive care.

  13. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of health claims related to carbonate and bicarbonate salts of sodium and potassium and maintenance of normal bone (ID 331, 1402) pursuant to Article 13(1) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    claims in relation to carbonate and bicarbonate salts of sodium and potassium and maintenance of normal bone. The scientific substantiation is based on the information provided by the Member States in the consolidated list of Article 13 health claims and references that EFSA has received from Member....../base balance and bone health” and “bone density/bone health”. The target population is assumed to be the general population. In the context of the proposed wordings, the Panel assumes that the claimed effects refer to the maintenance of normal bone by maintaining acid-base balance. The Panel considers that...... maintenance of normal bone is a beneficial physiological effect. No references were provided from which conclusions could be drawn for the scientific substantiation of the claim. On the basis of the data presented, the Panel concludes that a cause and effect relationship has not been established between the...

  14. Dissolved inorganic carbon, total alkalinity, pH, fugacity of carbon dioxide, and other variables from surface observations using Niskin bottle, flow through pump and other instruments from NOAA Ship Ronald H. Brown in the Gulf of Mexico and East Coast of the United States during the second Gulf of Mexico and East Coast Carbon (GOMECC-2) Cruise from 2012-07-22 to 2012-08-13 (NODC Accession 0117971)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains ocean acidification related data from the the second Gulf of Mexico and East Coast Carbon (GOMECC-2) Cruise on board NOAA Ship Ronald...

  15. PREFACE: RREPS13 and Meghri13

    Science.gov (United States)

    Potylitsyn, Alexander; Karataev, Pavel; Mkrtchyan, Alpik

    2014-05-01

    These Proceedings are published as a recollection of contributions presented at the X International Symposium on "Radiation from Relativistic Electrons in Periodic Structures" (RREPS-13) merged with III International Conference "Electron, Positron, Neutron and X-ray Scattering under External Influences" (Meghri-13), which was held at Lake Sevan, 23-28 September, 2013, Armenia. RREPS-13 and Meghri-13 were co-organized by Tomsk Polytechnic University (Russia) and Institute of Applied Problems of Physics (Armenia). The main goal of the symposium was to bring together the scientists from around the world who work on designs of new radiation sources and their applications. There were 89 participants from 12 countries. The website of the symposium is available at http://rreps.tpu.ru/ The scientific program of the symposium consisted of 8 sections and a satellite Workshop on Terahertz Radiation generation. All papers in these Proceedings refer to one from the following topics: Section 1: General Properties of Radiation from Relativistic Particles Section 2: Transition Radiation Section 3: Parametric X-Radiation Section 4: Diffraction Radiation and Smith-Purcell Effect Section 5: Coherent Bremsstrahlung and Channeling Radiation Section 6: X-Ray Scattering without and by Acoustic Superlattices Section 7: Interaction of Particles Beams with Artificial Structures (Acoustic Superlattices, Metamaterials, etc.) Section 8: Application of Radiation Beams The published papers cover nearly all "hot" topics of current interest on investigations of monochromatic and broadband radiation sources based on accelerators and X-ray tubes. Different mechanisms of radiation emission such as Compton backscattering, Cherenkov radiation, transition radiation, diffraction radiation, Smith-Purcell effect, parametric X-ray were considered in Sections 1, 2, 3, 4 and 5. The problem of control of radiation parameters by external acoustic fields is discussed in Section 6. Several applications of

  16. 26 CFR 13.0-13.3 - [Reserved

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 14 2010-04-01 2010-04-01 false 13.0-13.3 Section 13.0-13.3 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE TAX REFORM ACT OF 1969 §§ 13.0-13.3...

  17. 26 CFR 13.5-13.9 - [Reserved

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 14 2010-04-01 2010-04-01 false 13.5-13.9 Section 13.5-13.9 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) TEMPORARY INCOME TAX REGULATIONS UNDER THE TAX REFORM ACT OF 1969 §§ 13.5-13.9...

  18. Diet control on carbon isotopic composition of land snail shell carbonate

    Institute of Scientific and Technical Information of China (English)

    LIU ZongXiu; GU ZhaoYan; WU NaiQin; XU Bing

    2007-01-01

    Carbon isotope compositions for both the carbonate shells and soft bodies (organic tissue) of living land snails collected mostly from the Loess Plateau, China have been measured. The result shows that δ13C values range from -13.1‰ to -4.3‰ for the aragonite shell samples and from -26.8‰ to -18.0‰ for the soft body samples. Although the shells are enriched in 13C relative to the bodies averagely by 14.2(±0.8)‰, the shell δ13Ca values are closely correlated to the body δ13Corg values, expressed as δ13Ca = 1.021 δ13Corg + 14.38 (R = 0.965; N = 31). This relationship indicates that δ13Ca is primarily a function of the isotopic composition of the snail diets since previous studies have proved that the snail body is the same as their food in carbon isotope composition. In other words, carbon isotope compo-sition of the carbonate shell can be used as a proxy to estimate the dietary 13C abundance of the land snails. The data also support that the 13C enrichment of the carbonate shells results mainly from the equilibrium fractionations between the metabolic CO2, HCO3- in the hemolymph and shell aragonite, and partially from kinetic fractionations when snail shells form during their activity.

  19. Abundance anomaly of the 13C species of CCH

    Science.gov (United States)

    Sakai, N.; Saruwatari, O.; Sakai, T.; Takano, S.; Yamamoto, S.

    2010-03-01

    Aims: We have observed the N = 1-0 lines of CCH and its 13C isotopic species toward a cold dark cloud, TMC-1 and a star-forming region, L1527, to investigate the 13C abundances and formation pathways of CCH. Methods: The observations have been carried out with the IRAM 30 m telescope. Results: We have successfully detected the lines of 13CCH and C13CH toward the both sources and found a significant intensity difference between the two 13C isotopic species. The [C13CH] /[13CCH] abundance ratios are 1.6 ± 0.4 (3σ) and 1.6 ± 0.1 (3σ) for TMC-1 and L1527, respectively. The abundance difference between C13CH and 13CCH means that the two carbon atoms of CCH are not equivalent in the formation pathway. On the other hand, the [CCH]/[C13CH] and [CCH]/[13CCH] ratios are evaluated to be larger than 170 and 250 toward TMC-1, and to be larger than 80 and 135 toward L1527, respectively. Therefore, both of the 13C species are significantly diluted in comparison with the interstellar 12C/13C ratio of 60. The dilution is discussed in terms of a behavior of 13C in molecular clouds.

  20. Carbone-14, carbone-13 et oxygène-18 dans les sédiments carbonatés du lac Titicaca: premières estimations des vitesses de sédimentation et essai de paléoclimatologie

    OpenAIRE

    Fontes, J.C.; Boulangé, Bruno; Rodrigo, L

    1981-01-01

    La précipitation des carbonates se produit et s'est produite dans des conditions voisines de l'équilibre avec l'eau du lac et le CO2 de l'atmosphère. La vitesse moyenne de sédimentation est de l'ordre de 0,5 mm.an-1 au cours du dernier millenaire qui a vu le bilan hydrologique du lac fluctuer assez largement. (Résumé d'auteur)

  1. Carbon footprinting : a classroom exercise

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, H.; Grimm, M. [Arizona State Univ., Tempe (United States). School of Architecture and Landscape Architecture, College of Design

    2009-07-01

    This paper reported on an ongoing initiative at Arizona State University (ASU) to reduce the carbon footprint of buildings on campus. The College of Design and the Global Institute of Sustainability created a graduate level class where students in the fields of architecture, building design, urban planning, and sustainability applied a methodology to determine and improve a building's carbon footprint. Launched in 2008, the project currently has 13 buildings and will be expanded up to 50 buildings by the end of 2009. ASU is initially committing to carbon reduction and eventual carbon neutrality. The project offers students an opportunity to view the impact of their daily behaviours in terms of energy consumption and carbon emissions. The carbon footprinting methodology was used in a classroom setting by graduate students at ASU College of Design and School of Sustainability to determine the carbon footprint of 3 campus buildings. The methodology included an energy consumption analysis of the existing building, the creation of an as-built energy model, and the study of carbon footprint improvement scenarios with the ultimate goal of achieving carbon neutrality. Each improvement scenario was analyzed to determine its effect on overall carbon footprint and annual energy consumption, including electricity and natural gas use. 6 refs., 10 tabs., 4 figs.

  2. Application of stable carbon isotopes in long term mesocosm studies for carbon cycle investigation

    Science.gov (United States)

    Esposito, Mario

    2016-04-01

    Carbon dioxide (CO2) is an effective greenhouse gas. The Oceans absorb ca. 30% of the anthropogenic CO2 emissions and thereby partly attenuate deleterious climate effects. A consequence of the oceanic CO2 uptake is a decreased seawater pH and planktonic community shifts. The quantification of the anthropogenic perturbation was investigated through stable carbon isotope analysis in three "long term" mesocosm experiments (Sweden 2013, Gran Canaria 2014, Norway 2015) which reproduced near natural ecosystem conditions under both controlled and modified future CO2 level (up to 2000 ppm) scenarios. Parallel measurements of the stable isotope composition of dissolved inorganic carbon13CDIC) dissolved organic carbon13CDOC) and particulate carbon13CTPC) both from the mesocosms water column and sediment traps showed similar trends in all the three experiments. A CO2 response was noticeable in the isotopic dataset, but increased CO2 levels had only a subtle effect on the concentrations of the dissolved and particulate organic carbon pool. Distinctive δ13C signatures of the particulate carbon pool both in the water column and the sediments were detectable for the different CO2 treatments and they were strongly correlated with the δ13CDIC signatures but not with the δ13CDOC pool. The validity of the isotopic data was verified by cross-analyses of multiple substances of known isotopic signatures on a GasBench, Elemental Analyser (EA) and on an in-house TOC-IRMS setup for the analysis of δ13CDIC, δ13CTPC and δ13CDOC, respectively. Results from these mesocosm experiments proved the stable carbon isotope approach to be an effective tool for quantifying the uptake and carbon transfer among the various compartments of the marine carbon system.

  3. Programmed chloroplast destruction during leaf senescence involves 13-lipoxygenase (13-LOX).

    Science.gov (United States)

    Springer, Armin; Kang, ChulHee; Rustgi, Sachin; von Wettstein, Diter; Reinbothe, Christiane; Pollmann, Stephan; Reinbothe, Steffen

    2016-03-22

    Leaf senescence is the terminal stage in the development of perennial plants. Massive physiological changes occur that lead to the shut down of photosynthesis and a cessation of growth. Leaf senescence involves the selective destruction of the chloroplast as the site of photosynthesis. Here, we show that 13-lipoxygenase (13-LOX) accomplishes a key role in the destruction of chloroplasts in senescing plants and propose a critical role of its NH2-terminal chloroplast transit peptide. The 13-LOX enzyme identified here accumulated in the plastid envelope and catalyzed the dioxygenation of unsaturated membrane fatty acids, leading to a selective destruction of the chloroplast and the release of stromal constituents. Because 13-LOX pathway products comprise compounds involved in insect deterrence and pathogen defense (volatile aldehydes and oxylipins), a mechanism of unmolested nitrogen and carbon relocation is suggested that occurs from leaves to seeds and roots during fall.

  4. Carbon Sources to Authigenic Carbonate Rock at Chemosynthetic Communities: Lower Slope of the Gulf of Mexico

    Science.gov (United States)

    Sassen, R.; Jung, W.; Zhang, C.; Defreitas, D. A.

    2004-12-01

    Flux of biogenic methane, crude oil and associated hydrocarbon gases occurs from the deep subsurface to the seafloor, water column, and atmosphere of the Gulf of Mexico slope. Chemosynthetic communities occur at sites of relatively high gas flux, frequently with gas hydrate, but always with authigenic carbonate rock \\(ACR\\). ACR contains carbonate carbon derived from microbial hydrocarbon oxidation that geologically sequesters much fossil carbon, perturbing the carbon cycle. ACR was collected using the ALVIN from sites with chemosynthetic communities in Alaminos Canyon, Atwater Valley, and the Florida Escarpment areas at water depths as much as 3.3 km. Bulk δ 13C was measured and carbonate petrology used to identify carbonate cements, normal marine carbonate, and non-carbonate components such as metal oxides and sulfides. ACR is depleted in 13C. However, the δ 13C of major hydrocarbon types is typically more depleted in 13C than the associated ACR. For example, the mean δ 13C of biogenic methane seeps in the Gulf slope is -74.0\\permil PDB but the lightest bulk ACR measured in the study area is -46.6\\permil PDB. Carbonate cements from hydrocarbon oxidation are shown to enclose skeletal remains of chemosynthetic fauna such as mussels, clams, as well as other fauna characterized by normal marine carbonate \\(\\sim 0\\permil PDB\\). The best explanation of why the δ 13C of ACR does not closely correspond to that of the hydrocarbon starting products is that normal marine carbon dilutes the δ 13C from hydrocarbon oxidation and thus affects the bulk isotopic properties of ACR.

  5. Towards a 13 measurement

    Indian Academy of Sciences (India)

    Kam-Biu Luk

    2012-11-01

    Reactor-based antineutrino experiments hold the promise of providing an unambiguous determination of the neutrino mixing angle 13. At present, Daya Bay, Double Chooz and RENO are such experiments being set up for this purpose. In this paper, the status and prospects of these three initiatives are presented.

  6. Comment: 13 [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Life Science licensed under CC Attribution2.1 Japan ヒトアイコンの別候補を作成してみました。 ttamura 2008/11/06 17:14:44 ... ...Human Homo sapiens Homo_sapiens_L.png 13.png Taxonomy icon (c) Database Center for

  7. Carbon isotopic fractionation in heterotrophic microbial metabolism

    Science.gov (United States)

    Blair, N.; Leu, A.; Munoz, E.; Olsen, J.; Kwong, E.; Des Marais, D.

    1985-01-01

    Differences in the natural-abundance carbon stable isotopic compositions between products from aerobic cultures of Escherichia coli K-12 were measured. Respired CO2 was 3.4 percent depleted in C-13 relative to the glucose used as the carbon source, whereas the acetate was 12.3 percent enriched in C-13. The acetate C-13 enrichment was solely in the carboxyl group. Even though the total cellular carbon was only 0.6 percent depleted in C-13, intracellular components exhibited a significant isotopic heterogeneity. The protein and lipid fractions were -1.1 and -2.7 percent, respectively. Aspartic and glutamic acids were -1.6 and +2.7 percent, respectively, yet citrate was isotopically identical to the glucose. Probable sites of carbon isotopic fractionation include the enzyme, phosphotransacetylase, and the Krebs cycle.

  8. The Fate of Carbon in Deciduous Trees

    Energy Technology Data Exchange (ETDEWEB)

    Keel, S.; Koerner, Ch. [University of Basel (Switzerland); Siegwolf, R.T.W.

    2004-03-01

    To study the allocation of recently fixed carbon (photo assimilates) in mature deciduous trees, we apply pulse labelling experiments by enclosing small branches in branch bags with highly {sup 13}C enriched CO{sub 2} (author)

  9. Regional prediction of carbon isotopes in soil carbonates for Asian dust source tracer

    Science.gov (United States)

    Chen, Bing; Cui, Xinjuan; Wang, Yaqiang

    2016-10-01

    Dust particles emitted from deserts and semi-arid lands in northern China cause particulate pollution that increases the burden of disease particularly for urban population in East Asia. The stable carbon isotopes (δ13C) of carbonates in soils and dust aerosols in northern China were investigated. We found that the δ13C of carbonates in surface soils in northern China showed clearly the negative correlation (R2 = 0.73) with Normalized Difference Vegetation Index (NDVI). Using Moderate Resolution Imaging Spectroradiometer (MODIS) satellite-derived NDVI, we predicted the regional distribution of δ13C of soil carbonates in deserts, sandy lands, and steppe areas. The predictions show the mean δ13C of -0.4 ± 0.7‰ in soil carbonates in Taklimakan Desert and Gobi Deserts, and the isotope values decrease to -3.3 ± 1.1‰ in sandy lands. The increase in vegetation coverage depletes 13C in soil carbonates, thus the steppe areas are predicted by the lowest δ13C levels (-8.1 ± 1.7‰). The measurements of atmospheric dust samples at eight sites showed that the Asian dust sources were well assigned by the 13C mapping in surface soils. Predicting 13C in large geographical areas with fine resolution offers a cost-effective tracer to monitor dust emissions from sandy lands and steppe areas which show an increasing role in Asian dust loading driven by climate change and human activities.

  10. The synthesis of [2-13C]2-nitropropane at room temperature and at atmospheric pressure

    NARCIS (Netherlands)

    Jacquemijns M; Zomer G

    1990-01-01

    In this report the synthesis of [2-13C]2-nitropropane at room temperature is described. [2-13C]Acetone was converted into the oxime with hydroxy hydrochloridelamine and sodium carbonate. Treatment with hypobromic acid resulted in 2-13C]2-bromo-2-nitropropane. Hydrogenation with sodium borohydride

  11. Trisomy 13 (Patau Syndrome

    Directory of Open Access Journals (Sweden)

    Masoud Poureisa

    2009-01-01

    Full Text Available "nDescription and Definition: Synonym: patau syndrome with an incidence of 1 in 5000 births, this syndrome is characterized by multiple congenital abnormalities involving virtually every organ system. "nAbnormalities Detectable by Ultrasound "nHoloprosencephaly "nVentriculomegaly "nEnlarged cisterna magna "nMicrocephaly "nAgenesis of the corpus callosum "nCleft lip and palate "nMidface hypoplasia "nCyclopia "nMicrophthalmia "nHypotelorism "nNuchal thickening "nNeural tube defect "nOmphalocele "nEchogenic, enlarged kidneys "nEchoic bowel "nEchogenic chordae tendinaea and single umbilical artery "nCardiac defects "nRadial aplasia "nPolydactyly "nFlexion deformity of the fingers "nMajor Differential Diagnoses "nMeckel-Gruber syndrome (polydactyly, neural tube defects and enlarged echogenic kidneys "nOther diagnostic possibilities vary, depending on the multiple abnormalities present in each affected fetus. "nUltrasound Diagnosis "nPrenatal sonographic detection has been established at as early as 12 weeks' gestation, based on the presence of holoprosencephaly. "nThe sonographic abnormalities (described earlier are easily detectable, owing to the severity of the defects and the multitude of organ systems involved. "nThe sensitivity of sonographic detection of trisomy 13 has been reported to be between 90% and 100% when a complete structural survey (including the heart is accomplished. "nIt is possible, although unusual, for a fetus with trisomy 13 syndome to have a completely normal structural survey in the second trimester. "nHeredity "nThis is an autosomal trisomic syndrome. "nNatural History and Outcome "nMost neonates with trisomy 13 die within hours or days of delivery. Eighty percent of affected babies die within the first month of life. "nOccasionally, survivors are reported; however, these individuals have profound mental retardation, seizures and failure to thrive. "nThose with trisomy 13 mosaicism may have a less severe clinical

  12. The impact of recycling of organic carbon on the stable carbon isotopic composition of dissolved inorganic carbon in a stratified marine system (Kyllaren fjord, Norway)

    NARCIS (Netherlands)

    Breugel, Y. van; Schouten, S.; Paetzel, M.; Nordeide, R.; Sinninghe Damsté, J.S.

    2005-01-01

    A negative carbon isotope shift in sedimentary organic carbon deposited in stratified marine and lacustrine systems has often been inferred to be a consequence of the process of recycling of respired and, therefore, 13C-depleted, dissolved inorganic carbon (DIC) formed from mineralization of descend

  13. Controls on the spatial distribution of oceanic δ13CDIC

    Directory of Open Access Journals (Sweden)

    R. M. Death

    2012-08-01

    Full Text Available We describe the design and evaluation of a large ensemble of coupled climate-carbon cycle simulations with the Earth-system model of intermediate complexity GENIE. This ensemble has been designed for application to a range of carbon cycle questions including utilizing carbon isotope (δ13C proxy records to help constrain the state at the last glacial. Here we evaluate the ensemble by applying it to a transient experiment over the recent industrial era (1858 to 2008 AD. We employ singular vector decomposition and principal component emulation to investigate the spatial modes of ensemble-variability of oceanic dissolved inorganic carbon (DIC δ13C, considering both the spun-up pre-industrial state and the transient change due to the 13C Suess Effect. These analyses allow us to separate the natural and anthropogenic controls on the δ13CDIC distribution. We apply the same dimensionally reduced emulation techniques to consider the drivers of the spatial uncertainty in anthropogenic DIC. We show that the sources of uncertainty governing the uptake of anthropogenic δ13CDIC and DIC are quite distinct. Uncertainty in anthropogenic δ13C uptake is dominated by uncertainties in air-sea gas exchange, which explains 63% of modelled variance. This mode of variability is absent from the ensemble variability in CO2 uptake, which is rather driven by uncertainties in ocean parameters that control mixing of intermediate and surface waters. Although the need to account for air-sea gas exchange is well known, these results suggest that, to leading order, uncertainties in the 13C Suess effect and anthropogenic CO2 ocean-uptake are governed by different processes. This illustrates the difficulties in reconstructing one from the other and furthermore highlights the need for improved spatial coverage of both δ13CDIC and DIC observations to better constrain the ocean sink of anthropogenic CO2.

  14. Porous carbons

    Indian Academy of Sciences (India)

    Satish M Manocha

    2003-02-01

    Carbon in dense as well as porous solid form is used in a variety of applications. Activated porous carbons are made through pyrolysis and activation of carbonaceous natural as well as synthetic precursors. Pyrolysed woods replicate the structure of original wood but as such possess very low surface areas and poor adsorption capacities. On activation, these exhibit increased adsorption volumes of 0.5–0.8 cm3 /gm and surface areas of 700–1800 m2 /gm depending on activation conditions, whether physical or chemical. Former carbons possess mixed pore size distribution while chemically activated carbons predominantly possess micropores. Thus, these carbons can be used for adsorption of wide distributions of molecules from gas to liquid. The molecular adsorption within the pores is due to single layer or multilayer molecule deposition at the pore walls and hence results in different types of adsorption isotherm. On the other hand, activated carbon fibres with controlled microporous structure and surface area in the range of 2500 m2 /gm can be developed by controlled pyrolysis and physical activation of amorphous carbon fibres. Active carbon fibres with unmatchable pore structure and surface characteristics are present and futuristic porous materials for a number of applications from pollution control to energy storage.

  15. Carbon monoxide formation in tomatoes

    Energy Technology Data Exchange (ETDEWEB)

    Gladon, R.J.; Staby, G.L.

    1979-01-01

    Carbon monoxide (CO) is not emanated to any large extent from tomato fruits (Lycopersicon esculentum, Mill. cvs. Rutgers and Ohio MR-13), but is retained within the internal atmosphere. CO is found during all stages of fruit development, but no set pattern of CO concentration is evident.

  16. 1,3-Diphenylisobenzofuran

    Directory of Open Access Journals (Sweden)

    Kristapher E. Fischer

    2008-04-01

    Full Text Available The structure of the title compound, 1,3-diphenyl-2-benzofuran, C20H14O, exhibits a distinct alternation of short [mean 1.361 (3 Å] and long [mean 1.431 (3 Å] C—C bonds around the benzofuran ring system, indicating a predominantly polyene character. Over 60 Diels–Alder adducts of this commercially available furan have been structurally characterized, but this is the first report of the structure of the parent compound.

  17. Carbon recycling in ophiolite-hosted carbonates, Oman-UAE

    Science.gov (United States)

    Stephen, A.; Jenkin, G. R.; Smith, D. J.; Styles, M. T.; Naden, J.; Boyce, A. J.; Bryant, C. L.

    2013-12-01

    Large-scale surface and subsurface freshwater carbonate deposits of probable Quaternary age have formed on the Oman-UAE ophiolite. Here, serpentinisation reactions in ultramafic rocks have produced calcite and magnesite. These carbonates are frequently cited as examples of natural atmospheric CO2 sequestration, but the possibility of carbon recycling has not been addressed. The aim of this study is to assess the degree of atmospheric CO2 being incorporated into carbonates versus that which has been recycled from alternative sources such as soil CO2, or limestones that underlie the ophiolite. This has been determined through δ13C/δ18O, 87Sr/86Sr and 14C analysis of all major carbonate lithofacies identified. Our analyses of modern carbonate crusts forming on the surface of stagnant hyperalkaline (pH >11) waters show highly depleted δ13C and δ18O values (-25.5‰ ×0.5 PDB and -16.8‰ ×0.5 PDB respectively). This depletion has been attributed to a kinetic isotope effect occurring during atmospheric CO2 exchange with Ca(OH)2 hyperalkaline waters [1]. By comparison, inactive travertine deposits show a large range in δ13C (-10.5 to -21.8‰ PDB) which lies on a trajectory from the composition of modern crusts towards bicarbonate fluids in equilibrium with soil CO2. We interpret this trend as being produced by the mixing of different carbon sources, either at the time of formation or during later alteration. Modern carbonates and inactive travertines also have 87Sr/86Sr ratios and Sr concentrations similar to Cretaceous and Tertiary limestones which surround the ophiolite, whilst subsurface veins also display 87Sr/86Sr ratios similar to these Cretaceous limestones. Carbon recycling can also be determined with 14C. Modern atmospheric CO2 has a global average of 105-106% modern 14C (pMC), therefore freshwater carbonates forming solely from atmospheric CO2 would be expected to contain >100 pMC. However, modern carbonates display varied results from 94.5-101.4 p

  18. Does the Shuram δ13C excursion record Ediacaran oxygenation?

    Science.gov (United States)

    Husson, J. M.; Maloof, A. C.; Schoene, B.; Higgins, J. A.

    2013-12-01

    The most negative carbon isotope excursion in Earth history is found in carbonate rocks of the Ediacaran Period (635-542 Ma). Known colloquially as the the 'Shuram' excursion, workers have long noted its tantalizing, broad concordance with the rise of abundant macro-scale fossils in the rock record, variously interpreted as animals, giant protists, macro-algae and lichen, and known as the 'Ediacaran Biota.' Thus, the Shuram excursion has been interpreted by many in the context of a dramatically changing redox state of the Ediacaran oceans - e.g., a result of methane cycling in a low O2 atmosphere, the final destruction of a large pool of recalcitrant dissolved organic carbon (DOC), and the step-wise oxidation of the Ediacaran oceans. More recently, diagenetic interpretations of the Shuram excursion - e.g. sedimentary in-growth of very δ13C depleted authigenic carbonates, meteoric alteration of Ediacaran carbonates, late-stage burial diagenesis - have challenged the various Ediacaran redox models. A rigorous geologic context is required to discriminate between these explanatory models, and determine whether the Shuram excursion can be used to evaluate terminal Neoproterozoic oxygenation. Here, we present chemo-stratigraphic data (δ13C, δ18O, δ44/42Ca and redox sensitive trace element abundances) from 12 measured sections of the Ediacaran-aged Wonoka Formation (Fm.) of South Australia that require a syn-depositional age for the extraordinary range of δ13C values (-12 to +4‰) observed in the formation. In some locations, the Wonoka Fm. is ~700 meters (m) of mixed shelf limestones and siliclastics that record the full 16 ‰ δ13C excursion in a remarkably consistent fashion across 100s of square kilometers of basin area. Fabric-altering diagenesis, where present, occurs at the sub-meter vertical scale, only results in sub-permil offsets in δ13C and cannot be used to explain the full δ13C excursion. In other places, the Wonoka Fm. is host to deep (1 km

  19. The 13 errors.

    Science.gov (United States)

    Flower, J

    1998-01-01

    The reality is that most change efforts fail. McKinsey & Company carried out a fascinating research project on change to "crack the code" on creating and managing change in large organizations. One of the questions they asked--and answered--is why most organizations fail in their efforts to manage change. They found that 80 percent of these failures could be traced to 13 common errors. They are: (1) No winning strategy; (2) failure to make a compelling and urgent case for change; (3) failure to distinguish between decision-driven and behavior-dependent change; (4) over-reliance on structure and systems to change behavior; (5) lack of skills and resources; (6) failure to experiment; (7) leaders' inability or unwillingness to confront how they and their roles must change; (8) failure to mobilize and engage pivotal groups; (9) failure to understand and shape the informal organization; (10) inability to integrate and align all the initiatives; (11) no performance focus; (12) excessively open-ended process; and (13) failure to make the whole process transparent and meaningful to individuals. PMID:10351717

  20. Tensile Properties of Polyimide Composites Incorporating Carbon Nanotubes-Grafted and Polyimide-Coated Carbon Fibers

    Science.gov (United States)

    Naito, Kimiyoshi

    2014-09-01

    The tensile properties and fracture behavior of polyimide composite bundles incorporating carbon nanotubes-grafted (CNT-grafted) and polyimide-coated (PI-coated) high-tensile-strength polyacrylonitrile (PAN)-based (T1000GB), and high-modulus pitch-based (K13D) carbon fibers were investigated. The CNT were grown on the surface of the carbon fibers by chemical vapor deposition. The pyromellitic dianhydride/4,4'-oxydianiline PI nanolayer coating was deposited on the surface of the carbon fiber by high-temperature vapor deposition polymerization. The results clearly demonstrate that CNT grafting and PI coating were effective for improving the Weibull modulus of T1000GB PAN-based and K13D pitch-based carbon fiber bundle composites. In addition, the average tensile strength of the PI-coated T1000GB carbon fiber bundle composites was also higher than that of the as-received carbon fiber bundle composites, while the average tensile strength of the CNT-grafted T1000GB, K13D, and the PI-coated K13D carbon fiber bundle composites was similar to that of the as-received carbon fiber bundle composites.

  1. Carbon Isotope and Isotopomer Fractionation in Cold Dense Cloud Cores

    CERN Document Server

    Furuya, Kenji; Sakai, Nami; Yamamoto, Satoshi

    2011-01-01

    We construct the gas-grain chemical network model which includes carbon isotopes (12C and 13C) with an emphasis on isotopomer-exchange reactions. Temporal variations of molecular abundances, the carbon isotope ratios (12CX/13CX) and the isotopomer ratios (12C13CX/13C12CX) of CCH and CCS in cold dense cloud cores are investigated by numerical calculations. We confirm that the isotope ratios of molecules, both in the gas phase and grain surfaces, are significantly different depending on whether the molecule is formed from the carbon atom (ion) or the CO molecule. Molecules formed from carbon atoms have the CX/13CX ratios greater than the elemental abundance ratio of [12C/13C]. On the other hand, molecules formed from CO molecules have the CX/13CX ratios smaller than the [12C/13C] ratio. We reproduce the observed C13CH/13CCH ratio in TMC-1, if the isotopomer exchange reaction, 13CCH + H C13CH + H + 8.1 K, proceeds with the forward rate coefficient kf > 10^-11 cm3 s-1. However, the C13CS/13CCS ratio is lower tha...

  2. Environmental records of carbon in recent lake sediments

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Based on careful sampling and accurate analysis of recent sediments in Lake Chenghai, this paper discusses the staggered positive/negative correlation between organic carbon (OC) concentration and inorganic carbon (IC) concentration. The result indicates that temperature change, and its induced relative changes are the main factors affecting the relationship between IC concentration, δ13C of carbonate and OC concentration. When temperature and its induced photosynthesis strength change control autochthonous calcite precipitation, OC concentration is positively correlated with IC concentration and δ13C of carbonate. When temperature and its induced physical/chemical changes dominate, OC concentration displays negative correlation with IC concentration and δ13C of carbonate. IC concentration and δ13C of carbonate in sediments of Lake Chenghai are good proxies for climatic warm/cold changes.

  3. Coal structure at reactive sites by sup 1 H- sup 13 C- sup 19 F double cross polarization (DCP)/MAS sup 13 C NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hagaman, E.W.; Woody, M.C. (Oak Ridge National Lab., TN (USA))

    1989-01-01

    The solid state NMR technique, {sup 1}H-{sup 13}C-{sup 31}P double cross polarization (DCP)/MAS {sup 13}C-NMR spectroscopy, uses the direct dipolar interaction between {sup 13}C-{sup 31}P spin pairs in organophosphorus substances to identify the subset of carbons within a spherical volume element of 0.4 nm radius centered on the {sup 31}P atom. In combination with chemical manipulation of coals designed to introduce phosphorus containing functionality into the organic matrix, the NMR experiment becomes a method to examine selectively the carbon bonding network at the reactive sites in the coal. This approach generates a statistical structure description of the coal at the reaction centers in contrast to bulk carbon characterization using conventional {sup 1}H-{sup 13}C CP/MAS {sup 13}C NMR spectroscopy. 3 refs.

  4. Carbon dioxide gasification of carbon black: isotope study of carbonate catalysis

    International Nuclear Information System (INIS)

    Temperature-programmed reaction was used with labeled isotopes (13C and 18O) to study interactions between carbon black and potassium carbonate in pure He and 10% CO2/90% He atmospheres. Catalytic gasification precursor complexes were observed. Carbon and oxygen-bearing carbon surface groups interacted with the carbonate above 500 K to form surface complexes. Between 500 and 950 K, and in the presence of gaseous CO2, the complexes participated in C and O exchange with the gas phase while oxygen atoms within the complexes also exchanged with those on the carbon surface. As the temperature rose, the complexes decomposed, with CO2 the initial product. Decomposition started around 500 K in pure He, and around 950 K in CO2/He. Catalytic gasification began only after decomposition of significant portions of the complexes. Elemental potassium formed, and the active catalyst appears to alternate between being potassium metal and a potassium-oxygen-carbon complex. Potassium carbonate is not part of the catalytic cycle. 20 references, 10 figures

  5. Needles stable carbon isotope composition and traits of Pinus sylvestris var.mongolica in sparse wood grassland in south edge of Keerqin Sandy Land under the conditions of different precipitation%不同降水条件下科尔沁沙地南缘疏林草地樟子松针叶δ13C和叶性状特征

    Institute of Scientific and Technical Information of China (English)

    宋立宁; 朱教君; 李明财; 闫涛; 张金鑫

    2012-01-01

    通过比较不同自然降水年份(极端干旱和极端湿润)19年生疏林草地樟子松的针叶δ13C、比叶面积和干物质含量,结合土壤含水量和地下水埋深,探讨了极端降水对樟子松水分利用的影响.结果表明:干旱年份(2009)樟子松林土壤含水量显著低于湿润年份(2010),但樟子松当年生针叶的δ13C在两年间没有显著差异,且两年相同月份间亦无显著差异;干旱年份当年生针叶的比叶面积显著低于湿润年份,而不同年份间干物质含量的差异不显著.在两种极端降水条件下,樟子松的水分利用效率没有明显变化,主要通过改变当年生针叶的比叶面积来适应降水量的变化.对于地下水埋深高于3.0m的疏林草地樟子松人工林生态系统,极端干旱不会严重影响樟子松的存活和生长.%A comparative study was conducted on the needles stable carbon isotope composition (δ13C) , specific leaf area (SLA) , and dry matter content (DMC) of 19-year-old Pinus sylvestris var. mongolica trees in a sparse wood grassland in the south edge of Keerqin Sandy Land under the conditions of extreme drought and extreme wetness, aimed to understand the water use of Pinus sylvestris under the conditions of extreme precipitation. The soil water content and groundwater level were also measured. In the dry year (2009 ) , the soil water content in the grassland was significantly lower than that in the wet year (2010) , but the δ13C values of the current year-old needles had no significant difference between the two years and between the same months of the two years. The SLA of the current year-old needles was significantly lower in the dry year than in the wet year, but the DMC had no significant difference between the two years. Under the conditions of the two extreme precipitations, the water use efficiency of the trees did not vary remarkably, and the trees could change their needles SLA to adapt the variations of precipitation. For

  6. Carbon isotope fluctuations in Precambrian carbonate sequences of several localities in Brazil

    Directory of Open Access Journals (Sweden)

    SIAL ALCIDES N.

    2000-01-01

    Full Text Available Carbon isotope fluctuations in Precambrian sedimentary carbonates between 2.8 Ga and 0.60 Ga in Brazil are examined in this study. The carbonate facies of the BIF of the 2.8 Ga-old Carajás Formation, state of Pará in northern Brazil, has rather homogeneous delta13C (-5 o/ooPDB, compatible with carbonatization of a silicate protolith by a CO2-rich fluid from mantle degassing. The Paleoproterozoic Gandarela Formation, state of Minas Gerais, displays a narrow delta13C variation (-1.5 to +0.5 o/oo compatible with carbon isotope signatures of carbonates deposited around 2.4 Ga worldwide. The Fecho do Funil Formation has probably recorded the Lomagundi delta13C positive anomaly (+6.4 to +7.1 o/ooPDB. The magnesite-bearing carbonates of the Orós mobile belt, state of Ceará, exhibit carbon isotope fluctuation within the range for carbonates deposited at 1.8 Ga. The C-isotope record of the Frecheirinha Formation, northwestern state of Ceará, shows negative delta13C values in its lower portion (-2 o/oo and positive values up section (+1 to +3 o/oo, which suggests this sequence is a cap carbonate deposited after a glacial event around 0.95 Ga. The Jacoca and Acauã sedimentary carbonate Formations, state of Sergipe, NE Brazil, show carbon isotope fluctuations very similar to each other (average around -5 o/oo, compatible with a deposition around 0.76 Ga. The younger Olho D'Água carbonate Formation, however, also in the state of Sergipe, displays negative delta13C values at the lower portion of the Formation, changing dramatically up section to positive values as high as +10 o/oo, a characteristic compatible with a Sturtian cap carbonate deposited around 0.69 Ga. On the light of the C isotope data discussed in this study, it seems that delta13C fluctuations in Paleoproterozoic carbonates in Brazil are within the range found globally for metasedimentary carbonates of this age. Carbon isotope data proved to be very useful in establishing relative

  7. Nondisjunction studies in trisomy 13

    Energy Technology Data Exchange (ETDEWEB)

    Bugge, M.; Petersen, M.B.; Hallberg, A.

    1994-09-01

    The origin of nondisjunction in trisomy 13 has previously been studied using cytogenetic heteromorphisms and RFLP markers, but it was not possible to determine the origin of the additional chromosome in all cases. We have investigated the parental origin of the additional chromosome in 18 cases of trisomy 13 using the following microsatellites: D13S175, D13S171, D13S155, D13S156, D13S154, D13S173, FLT1, D13S118, D13S120 and D13S71. The 18 cases were 5 prenatal, 12 liveborn and 1 stillborn. The karyotypes were 9 of 47,XX+13, 8 of 47,XY+13 and one of 46,XX,-14+t(13;14). The mean maternal age was 32 years and the mean paternal age was 35 years. In 16 of 18 cases the additional chromosome was of maternal origin. In two cases the markers studied so far were not informative. The addition of more DNA markers will enable the detection of the origin of nondisjunction in all cases and the study of altered recombination associated with nondisjunction, as previously described in trisomy 21 and 47,XXY.

  8. 13.8

    CERN Document Server

    Gribbin, John

    2015-01-01

    The twentieth century gave us two great theories of physics. The general theory of relativity describes the behaviour of very large things; quantum theory the behaviour of very small things. In this landmark book, John Gribbin - one of the best-known writers of popular science over the past 30 years - presents his own version of the Holy Grail of physics, the search that has been going on for decades to find a unified 'Theory of Everything' that combines these ideas into one mathematical package, a single equation that could be printed on a T-shirt, containing the answer to life, the Universe and everything. With his inimitable mixture of science, history and biography, Gribbin shows how - despite scepticism among many physicists - these two great theories are indeed very compatible, and point to a deep truth about the nature of our existence. The answer lies, intriguingly, with the age of the Universe: 13.8 billion years.

  9. /sup 13/C-NMR of diterpenes with rosane skeleton

    Energy Technology Data Exchange (ETDEWEB)

    da Cunha Pinto, A.; Garcez, W.S.; Ficara, M.L.G.; Vasconcelos, T.C.; Pereira, A.L.; Gomes, L.N.L.F.; Frechiani, M.doC.; Patitucci, M.L. (Rio de Janeiro Univ. (Brazil). Nucleo de Pesquisas de Produtos Naturais)

    1982-03-01

    /sup 13/C-NMR data of three diterpenoids with rosane skeleton isolated from Vellozia candida Mikan, and of their oxidated and acetylated derivatives are presented. The main effects caused by small structural differences are discussed and used in the assignment of the chemical shifts of all carbons.

  10. Calcium Carbonate

    Science.gov (United States)

    ... before being swallowed; do not swallow them whole. Drink a full glass of water after taking either the regular or chewable tablets or capsules. Some liquid forms of calcium carbonate must be shaken well before use.Do not ...

  11. Carbon Stars

    Indian Academy of Sciences (India)

    T. Lloyd Evans

    2010-12-01

    In this paper, the present state of knowledge of the carbon stars is discussed. Particular attention is given to issues of classification, evolution, variability, populations in our own and other galaxies, and circumstellar material.

  12. The synthesis of [2-13C]2-nitropropane at room temperature and at atmospheric pressure

    OpenAIRE

    Jacquemijns M; Zomer G

    1990-01-01

    In this report the synthesis of [2-13C]2-nitropropane at room temperature is described. [2-13C]Acetone was converted into the oxime with hydroxy hydrochloridelamine and sodium carbonate. Treatment with hypobromic acid resulted in 2-13C]2-bromo-2-nitropropane. Hydrogenation with sodium borohydride gave [2-13C]2-nitropropane in 14,3% overall yield.

  13. Response of δ13C in plant and soil respiration to a water pulse

    Science.gov (United States)

    Salmon, Y.; Buchmann, N.; Barnard, R. L.

    2011-05-01

    Stable carbon isotopes have been used to assess the coupling between changes in environmental conditions and the response of soil or ecosystem respiration, usually by studying the time-lagged response of δ13C of respired CO2 (δ13CR) to changes in photosynthetic carbon isotope discrimination (Δi). However, the lack of a systematic response of δ13CR to environmental changes in field studies stresses the need to better understand the mechanisms to this response. We experimentally created a wide range of carbon allocation and respiration conditions in Fagus sylvatica mesocosms, by growing saplings under different temperatures and girdling combinations. After a period of drought, a water pulse was applied and the short-term responses of δ13C in soil CO2 efflux (δ13CRsoil) and δ13C in aboveground plant respiration (δ13CRabove) were measured, as well as leaf gas exchange rates and soil microbial biomass δ13C responses. Both δ13CRsoil and δ 13CRabove values of all the trees decreased immediately after the water pulse. These responses were not driven by changes in Δi, but rather by a fast release of C stored in roots and shoots. Changes in δ13CRsoil associated with the water pulse were significantly positively correlated with changes in stomatal conductance, showing a strong impact of the plant component on δ13CRsoil. However, three days after the water pulse in girdled trees, changes in δ13CRsoil were related to changes in microbial biomass δ13C, suggesting that changes in the carbon source respired by soil microorganisms also contributed to the response of δ13CRsoil. Our study shows that improving our mechanistic understanding of the responses of δ13CR to changes in environmental conditions requires the understanding of not only the plant's physiological responses, but also the responses of soil microorganisms and of plant-microbial interactions.

  14. 13 CFR 307.13 - Records and retention.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Records and retention. 307.13 Section 307.13 Business Credit and Assistance ECONOMIC DEVELOPMENT ADMINISTRATION, DEPARTMENT OF COMMERCE ECONOMIC ADJUSTMENT ASSISTANCE INVESTMENTS Special Requirements for Revolving Loan Funds and Use of...

  15. 13 CFR 305.13 - Contract change orders.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Contract change orders. 305.13 Section 305.13 Business Credit and Assistance ECONOMIC DEVELOPMENT ADMINISTRATION, DEPARTMENT OF COMMERCE... all such work will be at the Recipient's risk until EDA completes its review....

  16. RIVERINE INORGANIC CARBON DYNAMICS: OVERVIEW AND PERSPECTIVE

    Institute of Scientific and Technical Information of China (English)

    YAO Guan-rong; GAO Quan-zhou

    2006-01-01

    Inorganic carbon, the great part of the riverine carbon exported to the ocean, plays an important role in the global carbon cycle and ultimately impacts the coupled carbon-climate system. An overview was made on both methods and results of the riverine inorganic carbon researches. In addition to routine in situ survey, measurement and calculation,the direct precipitation method and the gas evolution technique were commonly used to analyze dissolved inorganic carbon in natural water samples. Soil CO2, carbonate minerals and atmospheric CO2 incorporated into riverine inorganic carbon pool via different means, with bicarbonate ion being the dominant component. The concentration of inorganic carbon, the composition of carbon isotopes (δ13C and △14C), and their temporal or spatial variations in the streams were controlled by carbon input, output and changes of carbon biogeochemistry within the riverine system. More accurate flux estimation, better understanding of different influential processes, and quantitative determination of various inputs or outputs need to be well researched in future.

  17. Using Carbon Isotopes in Cenozoic Soil Carbonates to Quantify Primary Productivity from Mid-Latitude Regions

    Science.gov (United States)

    Caves, J. K.; Kramer, S. H.; Ibarra, D. E.; Chamberlain, C. P.

    2015-12-01

    The carbon isotope composition of pedogenic carbonates13Ccarb) from paleosols has been extensively used as a proxy to estimate atmospheric pCO2 over the Phanerozoic. However, a number of other factors - including the concentration of plant-respired CO2 and the isotopic composition of both atmospheric and plant-respired carbon - influence the δ13C of pedogenic carbonates. For example, δ13Ccarb records from the mid-latitudes in central Asia and western North America show increasing trends in δ13Ccarb despite decreasing pCO2 during the late Cenozoic, which suggests that other factors play an important role in determining the isotopic composition of pedogenic carbonates. Instead, we suggest that these records are primarily recording changes in primary productivity rather than changes in atmospheric pCO2 and therefore propose a novel use of paleosol carbonate records to understand paleo-ecosystem dynamics. Here, we compile existing paleosol carbonate records, and present three new records from Wyoming, to estimate soil respiration and primary productivity in western North America during the Paleogene and early Neogene. We observe both an overall increase in δ13Ccarb after the early Eocene, and spatially heterogeneous δ13Ccarb values across western US basins. We combine this δ13Ccarb data with compilations of atmospheric pCO2 to estimate soil respiration and plant productivity. The long-term increase in δ13Ccarb indicates a decrease in plant productivity as conditions became more arid across much of the western US, congruent with both records of regional uplift and of global cooling. Furthermore, significant spatial heterogeneity in δ13Ccarb indicates that regional factors, such as the presence of paleolakes and/or local paleotopography may have provided a second-order control on local and regional productivity. Thus, our results provide a first-order estimate linking changes in primary productivity with regional tectonics and global climatic change.

  18. A simple synthesis of [sup 13]C[sub 6]-labelled flavone and 5-methoxyflavone

    Energy Technology Data Exchange (ETDEWEB)

    Ares, J.J.; Wehmeyer, K.R. (Procter and Gamble Co., Cincinnati, OH (United States))

    1994-07-01

    The [sup 13]C[sub 6]-labelled molecules, flavone and 5-methoxyflavone, with the carbon-13 label at all six carbons of the aromatic B ring, have been prepared for use as internal standards in isotope dilution-mass spectrometry. The key step involves addition of a labelled benzoyl group to the methyl group of a hydroxyacetophenone, forming a 1,3-diketone. Overall yields from [sup 13]C[sub 6]-benzoic acid were 38% for the labelled flavone and 45% for the labelled 5-methoxyflavone. (Author).

  19. 46 CFR Sec. 13 - Insurance.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Insurance. Sec. 13 Section 13 Shipping MARITIME... REPAIRS UNDER NATIONAL SHIPPING AUTHORITY MASTER LUMP SUM REPAIR CONTRACT-NSA-LUMPSUMREP Sec. 13 Insurance... respect to awarded work. Said Article 9 requires that the Contractor shall maintain insurance to...

  20. Image Reconstruction. Chapter 13

    International Nuclear Information System (INIS)

    This chapter discusses how 2‑D or 3‑D images of tracer distribution can be reconstructed from a series of so-called projection images acquired with a gamma camera or a positron emission tomography (PET) system [13.1]. This is often called an ‘inverse problem’. The reconstruction is the inverse of the acquisition. The reconstruction is called an inverse problem because making software to compute the true tracer distribution from the acquired data turns out to be more difficult than the ‘forward’ direction, i.e. making software to simulate the acquisition. There are basically two approaches to image reconstruction: analytical reconstruction and iterative reconstruction. The analytical approach is based on mathematical inversion, yielding efficient, non-iterative reconstruction algorithms. In the iterative approach, the reconstruction problem is reduced to computing a finite number of image values from a finite number of measurements. That simplification enables the use of iterative instead of mathematical inversion. Iterative inversion tends to require more computer power, but it can cope with more complex (and hopefully more accurate) models of the acquisition process

  1. 3, 3‧-sulfonyldipropionitrile: A novel electrolyte additive that can augment the high-voltage performance of LiNi1/3Co1/3Mn1/3O2/graphite batteries

    Science.gov (United States)

    Zheng, Xiangzhen; Huang, Tao; Pan, Ying; Wang, Wenguo; Fang, Guihuang; Ding, Kaining; Wu, Maoxiang

    2016-07-01

    Our study shows that 3, 3‧-sulfonyldipropionitrile (SDPN), as an electrolyte additive, can dramatically enhance the performance of LiNi1/3Co1/3Mn1/3O2/graphite lithium-ion batteries (LIBs) at high voltages (3.0-4.6 V vs. Li/Li+). After adding 0.2 wt% SDPN to the electrolytes; i.-e., 1.0 M LiPF6-EC/DMC/EMC, the capacity for the LiNi1/3Co1/3Mn1/3O2/graphite cell to retain power was significantly increased from 59.5% to 77.3% after only 100 cycles, which shows the promising application of SDPN at higher voltages. Density functional theory calculation results indicate that SDPN had reduced oxidative constancy compared to ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC). The effects of SDPN on cell performance are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS). The testing results indicate that the improvement in cycling activity could be ascribed to the thinner cathode electrolyte interface film originated from SDPN on the LIB using LiNi1/3Co1/3Mn1/3O2, which reduced the interfacial resistance at a high voltage, but also protected the decomposition of electrolytes and suppressed transition metal dissolution.

  2. Two Techniques for Estimating Deglacial Mean-Ocean δ13 C Change from the Same Set of 493 Benthic δ13C Records

    Science.gov (United States)

    Peterson, C. D.; Lisiecki, L. E.; Gebbie, G.

    2013-12-01

    The crux of carbon redistribution over the deglaciation centers on the ocean, where the isotopic signature of terrestrial carbon13C terrestrial carbon = -25‰) is observed as a 0.3-0.7‰ shift in benthic foraminiferal δ13C. Deglacial mean-ocean δ13C estimates vary due to different subsets of benthic δ13C data and different methods of weighting the mean δ13C by volume. Here, we present a detailed 1-to-1 comparison of two methods of calculating mean δ13C change and uncertainty estimates using the same set of 493 benthic Cibicidoides spp. δ13C measurements for the LGM and Late Holocene. The first method divides the ocean into 8 regions, and uses simple line fits to describe the distribution of δ13C data for each timeslice over 0.5-5 km depth. With these line fits, we estimate the δ13C value at 100-meter intervals and weight those estimates by the regional volume at each depth slice. The mean-ocean δ13C is the sum of these volume-weighted regional δ13C estimates and the uncertainty of these mean-ocean δ13C estimates is computed using Monte Carlo simulations. The whole-ocean δ13C change is estimated using extrapolated surface- and deep-ocean δ13C estimates, and an assumed δ13C value for the Southern Ocean. This method yields an estimated LGM-to-Holocene change of 0.38×0.07‰ for 0.5-5km and 0.35×0.16‰ for the whole ocean (Peterson et al., 2013, submitted to Paleoceanography). The second method reconstructs glacial and modern δ13C by combining the same data compilation as above with a steady-state ocean circulation model (Gebbie, 2013, submitted to Paleoceanography). The result is a tracer distribution on a 4-by-4 degree horizontal resolution grid with 23 vertical levels, and an estimate of the distribution's uncertainty that accounts for the distinct modern and glacial water-mass geometries. From both methods, we compare the regional δ13C estimates (0.5-5 km), surface δ13C estimates (0-0.5 km), deep δ13C estimates (>5 km), Southern Ocean

  3. C-13 NMR spectra of natural products part 5 - naphthopyrandiones and naphthofurandiones

    International Nuclear Information System (INIS)

    The synthesis of biologically active naphthoquinones using C-13 NMR is studied. The chemical procedure and aspect of carbon chemical shift used to distinguish between ortho and para quinones is described. (M.J.C.)

  4. Synthesis of triple (13C2, 15N), single (14C), and double (14C2) labeled trimetrexate

    International Nuclear Information System (INIS)

    A method was developed for the synthesis of triple (13C2, 14N) labeled trimetrexate. A method for single carbon-14 labeled synthesis is also described. Modifications of the triple labeled synthesis with carbon-14 produced a doubled carbon-14 labeled trimetrexate. (author)

  5. Carbonate Ion Effects on Coccolith Carbon and Oxygen Isotopes

    Science.gov (United States)

    Ziveri, P.; Probert, I.; Stoll, H. M.

    2006-12-01

    The stable oxygen and carbon isotopic composition of biogenic calcite constitutes one of the primary tools used in paleoceanographic reconstructions. The δ18O of shells of ocean floor microfossils and corals reflects the composition of the paleo-seawater as they use the oxygen to build up their calcite and aragonite shells. The δ13C is used to reconstruct variations in the carbon isotopic composition of dissolved inorganic carbon in the ocean, which is controlled by biological productivity through the removal of isotopically light carbon in organic matter. To be effective and sensitive tools for understanding photic zone processes it is first necessary to understand the various biological fractionations associated with carbonate precipitation. To date, isotopic fractionation models are mainly based on foraminifera and corals but not on coccoliths, tiny plates produced by coccolithophore algae, which are often the most dominant carbonate contributors to pelagic sediments. As photosynthetic organisms, their chemistry can provide a sensitive tool for understanding photic zone processes. Coccoliths may be the most important carbonate phase for geochemical analysis in sediments where foraminifera are less common and/or core material is limited, such as in subpolar regions and for Early Cenozoic and Mesozoic sediments. Here we report experimental results on a common living coccolithophore species showing that the 13C/12C and 18O/16O ratios decrease with the increase of HCO^{3-} (CO32-). The selected species are among the heaviest calcifying extant coccolithophores and are major contributors to present coccolith carbonate export production. Because coccolithophores are photosynthetic organisms that calcify intracellularly in specialized vesicles, the challenge lies in ascertaining how kinetic and thermodynamic processes of isotopic fractionation are linked to cellular carbon "transport" and carbonate precipitation. This is a daunting challenge since studies have not

  6. Quantifying global terrestrial carbon influx and storage as stimulated by an increase in atmospheric carbon dioxide concentration

    OpenAIRE

    Luo, Yiqi

    1997-01-01

    EXTRACT (SEE PDF FOR FULL ABSTRACT): Measurements of spatial and temporal distributions of carbon dioxide concentration and carbon-13/carbon-12 ratio in the atmosphere suggest a strong biospheric carbon sink in terrestrial ecosystems. Quantifying the sink, however, has become an enormous challenge for Earth system scientists because of great uncertainties associated with biological variation and environmental heterogeneity in the ecosystems. This paper presents an approach that uses two d...

  7. Carbon dioxide effects research and assessment program

    International Nuclear Information System (INIS)

    Information about the past and present concentrations of CO2 in the atmosphere and variations in climate can be obtained from measurements of stable isotopes in tree rings; specifically carbon-13, oxygen-18 and deuterium. The analysis of these stable isotopes in tree rings is a relatively new and rapidly developing field. This proceedings volume contains most of the papers presented at the meeting. The first paper gives an overview of the status of carbon-13 research. Papers relating to carbon-13 are in section I and grouped separately from the contributions on carbon-14. Although the meeting was primarily concerned with stable isotopes, all carbon isotopic analysis may be helpful in understanding the carbon-13 record in tree rings. The papers on hydrogen and oxygen isotope studies are in sections II and III respectively. The remaining sections contain papers that consider more than one isotope at a time, general topics related to isotopes, atmospheric changes and tree growth, and methods of isotopic analysis

  8. Terrestrial biosphere changes over the last 120 kyr and their impact on ocean δ 13C

    Directory of Open Access Journals (Sweden)

    B. A. A. Hoogakker

    2015-03-01

    Full Text Available A new global synthesis and biomization of long (>40 kyr pollen-data records is presented, and used with simulations from the HadCM3 and FAMOUS climate models to analyse the dynamics of the global terrestrial biosphere and carbon storage over the last glacial–interglacial cycle. Global modelled (BIOME4 biome distributions over time generally agree well with those inferred from pollen data. The two climate models show good agreement in global net primary productivity (NPP. NPP is strongly influenced by atmospheric carbon dioxide (CO2 concentrations through CO2 fertilization. The combined effects of modelled changes in vegetation and (via a simple model soil carbon result in a global terrestrial carbon storage at the Last Glacial Maximum that is 210–470 Pg C less than in pre-industrial time. Without the contribution from exposed glacial continental shelves the reduction would be larger, 330–960 Pg C. Other intervals of low terrestrial carbon storage include stadial intervals at 108 and 85 ka BP, and between 60 and 65 ka BP during Marine Isotope Stage 4. Terrestrial carbon storage, determined by the balance of global NPP and decomposition, influences the stable carbon isotope composition (δ13C of seawater because terrestrial organic carbon is depleted in 13C. Using a simple carbon-isotope mass balance equation we find agreement in trends between modelled ocean δ13C based on modelled land carbon storage, and palaeo-archives of ocean δ13C, confirming that terrestrial carbon storage variations may be important drivers of ocean δ13C changes.

  9. Carbon isotope fluctuations in Precambrian carbonate sequences of several localities in Brazil

    OpenAIRE

    SIAL ALCIDES N.; FERREIRA VALDEREZ P.; DEALMEIDA AFONSO R.; ROMANO ANTONIO W.; PARENTE CLOVIS V.; DACOSTA MARCONDES L.; SANTOS VICTOR H.

    2000-01-01

    Carbon isotope fluctuations in Precambrian sedimentary carbonates between 2.8 Ga and 0.60 Ga in Brazil are examined in this study. The carbonate facies of the BIF of the 2.8 Ga-old Carajás Formation, state of Pará in northern Brazil, has rather homogeneous delta13C (-5 o/ooPDB), compatible with carbonatization of a silicate protolith by a CO2-rich fluid from mantle degassing. The Paleoproterozoic Gandarela Formation, state of Minas Gerais, displays a narrow delta13C variation (-1.5 to +0.5 o/...

  10. Carbon isotopes in biological carbonates: Respiration and photosynthesis

    Science.gov (United States)

    McConnaughey, T.A.; Burdett, J.; Whelan, J.F.; Paull, C.K.

    1997-01-01

    Respired carbon dioxide is an important constituent in the carbonates of most air breathing animals but is much less important in the carbonates of most aquatic animals. This difference is illustrated using carbon isotope data from freshwater and terrestrial snails, ahermatypic corals, and chemoautotrophic and methanotrophic pelecypods. Literature data from fish otoliths and bird and mammal shell and bone carbonates are also considered. Environmental CO2/O2 ratios appear to be the major controlling variable. Atmospheric CO2/O2 ratios are about thirty times lower than in most natural waters, hence air breathing animals absorb less environmental CO2 in the course of obtaining O2. Tissue CO2 therefore, does not isotopically equilibrate with environmental CO2 as thoroughly in air breathers as in aquatic animals, and this is reflected in skeletal carbonates. Animals having efficient oxygen transport systems, such as vertebrates, also accumulate more respired CO2 in their tissues. Photosynthetic corals calcify mainly during the daytime when photosynthetic CO2 uptake is several times faster than respiratory CO2 release. Photosynthesis, therefore, affects skeletal ??13C more strongly than does respiration. Corals also illustrate how "metabolic" effects on skeletal isotopic composition can be estimated, despite the presence of much larger "kinetic" isotope effects. Copyright ?? 1997 Elsevier Science Ltd.

  11. Biosphere model simulations of interannual variability in terrestrial 13C/12C exchange.

    NARCIS (Netherlands)

    Velde, van der I.R.; Miller, J.B.; Schaefer, K.; Masarie, K.A.; Denning, S.; White, J.W.C.; Krol, M.C.; Peters, W.; Tans, P.P.

    2013-01-01

    Previous studies suggest that a large part of the variability in the atmospheric ratio of (CO2)-C-13/(12)CO(2)originates from carbon exchange with the terrestrial biosphere rather than with the oceans. Since this variability is used to quantitatively partition the total carbon sink, we here investig

  12. Enhanced benthic activity in sandy sublittoral sediments: Evidence from 13C tracer experiments

    DEFF Research Database (Denmark)

    Bühring, Solveig I.; Ehrenhauss, Sandra; Kamp, Anja;

    2006-01-01

    investigated the pathway of settling particulate organic carbon through the benthic food web. The diatom Ditylum brightwellii was labelled with the stable carbon isotope 13C and injected into incubation chambers. On-board incubations lasted 12, 30 and 132 h, while the in situ experiment was incubated for 32 h...

  13. Probing the Isotopic Composition of Surface Waters Across Isotopic Extremes of Cryogenian Carbonates

    Science.gov (United States)

    Bosak, T.; Matys, E. D.; Bird, L. R.; Macdonald, F. A.; Freeman, K. H.

    2012-12-01

    Neoproterozoic carbonate strata record unusually large and positive carbon isotope values (δ13Ccarb from 4 to 10 per mil), and stratigraphically extensive large negative carbon isotope excursions (δ13Ccarb isotopically extreme carbonates in Neoproterozoic successions remain poorly understood. Little is also known about organisms and metabolisms that cycled carbon in these carbonate strata, because they rarely contain well-preserved organic-rich fossils. To better understand the cycling of carbon during the deposition of the 715-635 Ma Tayshir member of the Tsagaan Oloom Formation, Mongolia, we analyzed δ13Cfossil of two types of organic fossils that occur in 13C- enriched carbonates (+ 5 to 9.9 per mil) and within 13C-depleted carbonates of the Tayshir anomaly (-3 to -6 per mil). Because these organic microfossils are remarkably similar to the tests of modern planktonic, herbivorous tintinnid ciliates and benthic macroscopic red algae, respectively, they can be used as tracers of organic matter production in surface waters. Fossil tests were extracted by acid maceration, cleaned and analyzed morphologically and microscopically. Their carbon isotopic composition was measured using a nano-scaled elemental analyzer inlet (nano-EA-IRMS), with ±1 per mil analytical precision. To date, we analyzed 12 samples of 100-150 organic tests, representing 3 different fossiliferous parts of the Tayshir anomaly (δ13Ccarb +5 per mil), respectively. More samples, including those of fossil algae and tests from the carbonate strata overlying the Tayshir anomaly, are currently being analyzed. Initial data reveal a rather constant isotopic composition of organic carbon in fossil tests (δ13Cfossil), with values of -23 ±1 per mil both within 13C-enriched and 13C-depleted carbonates. The isotopic difference between δ13Cfossil and 13C-enriched carbonates is 28 to 30 per mil, suggesting maximal isotopic fractionation by primary producers, and little environmental (or diagenetic

  14. Constraints on the atmospheric CO2 deglacial rise based on its δ13CO2 evolution

    OpenAIRE

    Lourantou, A.; Lavric, J. V.; Köhler, Peter; Barnola, J.-M.; Michel, E.; Paillard, D.; D. Raynaud; Chappellaz, J.

    2009-01-01

    The analysis of air bubbles trapped in polar ice permits the reconstruction of atmospheric evolution of greenhouse gases, such as carbon dioxide (CO2 ), on various timescales. Within this study, the simultaneous analysis of the CO2 mixing ratio and its stable carbon isotope composition (δ 13 CO2 ) over the last two deglaciations allows us to better constrain the global carbon cycle. Based on the different isotopic signatures of the ocean and the terrestrial biosphere (major reservoirs re...

  15. Soft-templated synthesis of mesoporous carbon nanospheres and hollow carbon nanofibers

    Science.gov (United States)

    Cheng, Youliang; Li, Tiehu; Fang, Changqing; Zhang, Maorong; Liu, Xiaolong; Yu, Ruien; Hu, Jingbo

    2013-10-01

    Using coal tar pitch based amphiphilic carbonaceous materials (ACMs) as the precursor and amphiphilic triblock copolymer Plutonic P123 as the only soft template, carbon nanospheres with partially ordered mesopores and hollow carbon nanofibers were synthesized. The concentration of P123, cp, and the mass ratio of P123 to ACM, r, are the key parameters of controlling the shape of the as-prepared products. Mesoporous carbon nanospheres with diameter of 30-150 nm were prepared under the condition of cp = 13.3 g/L and r = 1.2. When cp = 26.7 g/L and r = 2, hollow carbon nanofibers with diameters of 50-200 nm and mesopores/macropores were obtained. Carbon nanospheres and hollow carbon fibers were amorphous materials. The mesoporous carbon nanospheres show good stability in the cyclic voltammograms and their specific capacitance at 10 mV s-1 is 172.1 F/g.

  16. Spectral editing for in vivo 13C magnetic resonance spectroscopy

    Science.gov (United States)

    Xiang, Yun; Shen, Jun

    2012-01-01

    In vivo detection of carboxylic/amide carbons is a promising technique for studying cerebral metabolism and neurotransmission due to the very low RF power required for proton decoupling. In the carboxylic/amide region, however, there is severe spectral overlap between acetate C1 and glutamate C5, complicating studies that use acetate as an astroglia-specific substrate. There are no known in vivo MRS techniques that can spectrally resolve acetate C1 and glutamate C5 singlets. In this study, we propose to spectrally separate acetate C1 and glutamate C5 by a two-step J-editing technique after introducing homonuclear 13C- 13C scalar coupling between carboxylic/amide carbons and aliphatic carbons. By infusing [1,2- 13C 2]acetate instead of [1- 13C]acetate the acetate doublet can be spectrally edited because of the large separation between acetate C2 and glutamate C4 in the aliphatic region. This technique can be applied to studying acetate transport and metabolism in brain in the carboxylic/amide region without spectral interference.

  17. IRMS detection of testosterone manipulated with 13C labeled standards in human urine by removing the labeled 13C

    International Nuclear Information System (INIS)

    Highlights: • 13C labeled testosterone can be used to adjust the isotope ratio of testosterone. • The novel testosterone cannot be detected by the regular IRMS method in doping test. • A method was explored to remove the labeled 13C. • The established method can be used to detect the manipulated testosterone. - Abstract: Isotope ratio mass spectrometry (IRMS) is applied to confirm testosterone (T) abuse by determining the carbon isotope ratios (δ13C value). However, 13C labeled standards can be used to control the δ13C value and produce manipulated T which cannot be detected by the current method. A method was explored to remove the 13C labeled atom at C-3 from the molecule of androsterone (Andro), the metabolite of T in urine, to produce the resultant (A-nor-5α-androstane-2,17-dione, ANAD). The difference in δ13C values between Andro and ANAD (Δδ13CAndro–ANAD, ‰) would change significantly in case manipulated T is abused. Twenty-one volunteers administered T manipulated with different 13C labeled standards. The collected urine samples were analyzed with the established method, and the maximum value of Δδ13CAndro–ANAD post ingestion ranged from 3.0‰ to 8.8‰. Based on the population reference, the cut-off value of Δδ13CAndro–ANAD for positive result was suggested as 1.2‰. The developed method could be used to detect T manipulated with 3-13C labeled standards

  18. Carbon sources supporting benthic mineralization in mangrove and adjacent seagrass sediments (Gazi Bay, Kenya)

    OpenAIRE

    BOUILLON, S; Moens, T.; F. Dehairs

    2004-01-01

    The origin of carbon substrates used by in situ sedimentary bacterial communities was investigated in an intertidal mangrove ecosystem and in adjacent seagrass beds in Gazi bay (Kenya) by δ13C analysis of bacteria-specific PLFA (phospholipid fatty acids) and bulk organic carbon. Export of mangrove-derived organic matter to the adjacent seagrass-covered bay was evident from sedimentary total organic carbon (TOC) and δ13CTOC data. PLFA δ13C data indicate tha...

  19. The 13C bicarbonate method

    DEFF Research Database (Denmark)

    Junghans, Peter; Larsson, Caroline; Jensen, Rasmus Bovbjerg;

    2015-01-01

    We reconsider the principle of the (13)C bicarbonate (NaH(13)CO3) method ((13)C-BM) for the determination of the CO2 production to obtain an estimate of energy expenditure (EE). Its mathematical concept based on a three-compartmental model is related to the [(15)N]glycine end product method. The CO.......07; n = 8; p = .026). We suggest considering the (13)C-BM as a 'stand-alone' method to provide information on the total CO2 production as an index of EE....

  20. Capability of defective graphene-supported Pd13 and Ag13 particles for mercury adsorption

    Science.gov (United States)

    Meeprasert, Jittima; Junkaew, Anchalee; Rungnim, Chompoonut; Kunaseth, Manaschai; Kungwan, Nawee; Promarak, Vinich; Namuangruk, Supawadee

    2016-02-01

    Reactivity of single-vacancy defective graphene (DG) and DG-supported Pdn and Agn (n = 1, 13) for mercury (Hg0) adsorption has been studied using density functional theory calculation. The results show that Pdn binds defective site of DG much stronger than the Agn, while metal nanocluster binds DG stronger than single metal atom. Metal clustering affects the adsorption ability of Pd composite while that of Ag is comparatively less. The binding strength of -8.49 eV was found for Pd13 binding on DG surface, indicating its high stability. Analyses of structure, energy, partial density of states, and d-band center (ɛd) revealed that the adsorbed metal atom or cluster enhances the reactivity of DG toward Hg adsorption. In addition, the Hg adsorption ability of Mn-DG composite is found to be related to the ɛd of the deposited Mn, in which the closer ɛd of Mn to the Fermi level correspond to the higher adsorption strength of Hg on Mn-DG composite. The order of Hg adsorption strength on Mn-DG composite are as follows: Pd13 (-1.68 eV) >> Ag13 (-0.67 eV) ∼ Ag1 (-0.69 eV) > Pd1 (-0.62 eV). Pd13-DG composite is therefore more efficient sorbent for Hg0 removal in terms of high stability and high adsorption reactivity compared to the Ag13. Further design of highly efficient carbon based sorbents should be focused on tailoring the ɛd of deposited metals.

  1. Stable carbon isotope depth profiles and soil organic carbon dynamics in the lower Mississippi Basin

    Science.gov (United States)

    Wynn, J.G.; Harden, J.W.; Fries, T.L.

    2006-01-01

    Analysis of depth trends of 13C abundance in soil organic matter and of 13C abundance from soil-respired CO2 provides useful indications of the dynamics of the terrestrial carbon cycle and of paleoecological change. We measured depth trends of 13C abundance from cropland and control pairs of soils in the lower Mississippi Basin, as well as the 13C abundance of soil-respired CO2 produced during approximately 1-year soil incubation, to determine the role of several candidate processes on the 13C depth profile of soil organic matter. Depth profiles of 13C from uncultivated control soils show a strong relationship between the natural logarithm of soil organic carbon concentration and its isotopic composition, consistent with a model Rayleigh distillation of 13C in decomposing soil due to kinetic fractionation during decomposition. Laboratory incubations showed that initially respired CO 2 had a relatively constant 13C content, despite large differences in the 13C content of bulk soil organic matter. Initially respired CO2 was consistently 13C-depleted with respect to bulk soil and became increasingly 13C-depleted during 1-year, consistent with the hypothesis of accumulation of 13C in the products of microbial decomposition, but showing increasing decomposition of 13C-depleted stable organic components during decomposition without input of fresh biomass. We use the difference between 13C / 12C ratios (calculated as ??-values) between respired CO 2 and bulk soil organic carbon as an index of the degree of decomposition of soil, showing trends which are consistent with trends of 14C activity, and with results of a two-pooled kinetic decomposition rate model describing CO2 production data recorded during 1 year of incubation. We also observed inconsistencies with the Rayleigh distillation model in paired cropland soils and reasons for these inconsistencies are discussed. ?? 2005 Elsevier B.V. All rights reserved.

  2. 13C-contents of bacterial lipids in a shallow sulfidic monomictic lake (Lake Ciso, Spain)

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Hartgers, W.A.; Sliekers, O.; Grimalt, J.O.

    2000-01-01

    Stable carbon isotopic analysis was performed on sedimentary biomarkers of a shallow sulfide-rich monomictic lake, Lake Cisó (NE Spain). Specific biomarkers derived from phototrophic sulfur bacteria in Lake Cisó were considerably depleted in 13C, most likely due to the depleted 13C-content of the di

  3. Controls on the spatial distribution of oceanic δ13CDIC

    Directory of Open Access Journals (Sweden)

    P. B. Holden

    2013-03-01

    Full Text Available We describe the design and evaluation of a large ensemble of coupled climate–carbon cycle simulations with the Earth system model of intermediate complexity GENIE. This ensemble has been designed for application to a range of carbon cycle questions, including the causes of late-Quaternary fluctuations in atmospheric CO2. Here we evaluate the ensemble by applying it to a transient experiment over the recent industrial era (1858 to 2008 AD. We employ singular vector decomposition and principal component emulation to investigate the spatial modes of ensemble variability of oceanic dissolved inorganic carbon (DIC δ13C, considering both the spun-up pre-industrial state and the transient change. These analyses allow us to separate the natural (pre-industrial and anthropogenic controls on the δ13CDIC distribution. We apply the same dimensionally-reduced emulation techniques to consider the drivers of the spatial uncertainty in anthropogenic DIC. We show that the sources of uncertainty related to the uptake of anthropogenic δ13CDIC and DIC are quite distinct. Uncertainty in anthropogenic δ13C uptake is controlled by air–sea gas exchange, which explains 63% of modelled variance. This mode of variability is largely absent from the ensemble variability in CO2 uptake, which is rather driven by uncertainties in thermocline ventilation rates. Although the need to account for air–sea gas exchange is well known, these results suggest that, to leading order, uncertainties in the ocean uptake of anthropogenic 13C and CO2 are governed by very different processes. This illustrates the difficulties in reconstructing one from the other, and furthermore highlights the need for careful targeting of both δ13CDIC and DIC observations to better constrain the ocean sink of anthropogenic CO2.

  4. Carbon storage in Amazonian podzols

    Science.gov (United States)

    Montes, Celia; Lucas, Yves; Pereira, Osvaldo; Merdy, Patricia; Santin, Roberta; Ishida, Débora; du Gardin, Beryl; Melfi, Adolpho

    2014-05-01

    It has recently been discovered that Amazonian podzols may store much larger quantities of carbon than previously thought, particularly in their deep Bh horizons (over 13.6 Pg for Brazilian Amazonia alone [1]). Similarly high carbon stocks are likely to exist in similar climate/soil areas, mainly in Africa and in Borneo. Such carbon stocks raise the problem of their stability in response to changes in land use or climate. Any significant changes in vegetation cover would significantly alter the soil water dynamics, which is likely to affect organic matter turnover in soils. The direction of the change, however, is not clear and is likely to depend on the specific conditions of carbon storage and properties of the soils. It is reasonable to assume that the drying of the Bh horizons of equatorial podzols, which are generally saturated, will lead to an increase in C mineralization, although the extent of this increase has not yet been determined. These unknowns resulted in research programs, granted by the Brazilian FAPESP and the French Région PACA-ARCUS and ANR, dedicated improving estimates of the Amazonian podzol carbon stocks and to an estimate of its mineralisability. Eight test areas were determined from the analysis of remote sensing data in the larger Amazonian podzol region located in the High Rio Negro catchment and studied in detail. Despite the extreme difficulties in carrying out the field work (difficulties in reaching the study sites and extracting the soils), more than a hundred points were sampled. In all podzols the presence of a thick deep Bh was confirmed, sometimes to depths greater than 12 m. The Bh carbon was quantified, indicating that carbon stocks in these podzols are even higher than estimated recently [1]. References 1- Montes, C.R.; Lucas, Y.; Pereira, O.J.R.; Achard, R.; Grimaldi, M.; Mefli, A.J. Deep plant?derived carbon storage in Amazonian podzols. Biogeosciences, 8, 113?120, 2011.

  5. Carbonate precipitation by the thermophilic archaeon Archaeoglobus fulgidus: a model of carbon flow for an ancient microorganism

    Directory of Open Access Journals (Sweden)

    P. Ostrom

    2008-08-01

    Full Text Available Microbial carbonate precipitation experiments were conducted using the archaeon bacteria Archaeoglobus fulgidus to determine chemical and isotopic fractionation of organic and inorganic carbon into mineral phases. Carbonate precipitation was induced in two different experiments using A. fulgidus to determine the relative abundance of organically derived carbon incorporated into carbonate minerals as well as to define any distinct phases or patterns that could be attributed to the precipitation process. One experiment used a medium containing 13C-depleted organic carbon and 13C-enriched inorganic carbon, and the other used a 14C-labeled organic carbon source. Results indicated that 0.9–24.8% organic carbon was incorporated into carbonates precipitated by A. fulgidus and that this process was mediated primarily by pH and CO2 emission from cells. Data showed that the carbon in the CO2 produced from this microorganism is incorporated into carbonates and that the rate at which precipitation occurs and the dynamics of the carbonate precipitation process are strongly mediated by the specific steps involved in the biochemical process for lactate oxidation by A. fulgidus.

  6. Synthesis and applications of {sup 13}C glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Stocking, E.; Khalsa, O.; Martinez, R.A.; Silks, L.A. III [Los Alamos National Laboratory, NM (United States)

    1994-12-01

    Due in part to the use of labeled glycerol for the {sup 13}C enrichment of biomolecules, we are currently developing new synthetic routes to various isotopomers of glycerol. Judging from our experience, traditional methods of glycerol synthesis are not easily adapted for isotopic enrichment and/or have poor overall yields (12 to 15%). Furthermore, the use of glycerol for enrichment can be prohibitively expensive and its availability is limited by the level of demand. We are presently developing a short de novo synthesis of glycerol from carbon dioxide ({approximately}53% overall yield for four steps) and are examining the feasibility of synthesizing site-specific {sup 13}C-labeled glycerol and dihydroxyacetone (DHA) from labeled methanol and carbon dioxide. One application of {sup 13}C glycerol we have examined is enzymatic conversion of glycerol to glyceraldehyde-3-monophosphate or dihydroxyacetone monophosphate (DHAP) with yields ranging from 25 to 50% (as determined by NMR spectroscopy). We are also pursuing the chemical conversion of {sup 13}C-labeled DHA to DHAP. We are especially interested in {sup 13}C-labeled DHAP because we are investigating its use as a chemo-enzymatic precursor for both labeled 2-deoxyribose and 2-deoxyribonucleic acids.

  7. Carbon Isotope Chemistry in Molecular Clouds

    Science.gov (United States)

    Robertson, Amy N.; Willacy, Karen

    2012-01-01

    Few details of carbon isotope chemistry are known, especially the chemical processes that occur in astronomical environments like molecular clouds. Observational evidence shows that the C-12/C-13 abundance ratios vary due to the location of the C-13 atom within the molecular structure. The different abundances are a result of the diverse formation pathways that can occur. Modeling can be used to explore the production pathways of carbon molecules in an effort to understand and explain the chemical evolution of molecular clouds.

  8. MEASUREMENT OF NUMBER AVERAGE MOLECULAR WEIGHT OF STYRENE OLIGOMER BY 13C-NMR METHOD

    Institute of Scientific and Technical Information of China (English)

    Song Wang; Xiao-hu Yan; Rong-shi Cheng

    1999-01-01

    13C-NMR 1H-decoupled spectra of styrene polymers were assigned by comparison with model compounds, then used in measurements of number average molecular weights. The higher limit of an exact determination of the end group signal is less than a molecular weight of 104. For polymer samples with Mn<103, the results obtained from 13C-NMR spectra of saturated carbon region are in excellent agreement with the values determined by 1H-NMR, SEC, and VPO methods, while the results from 13C-NMR spectra of phenyl C-1 carbon region are somewhat higher than the values determined by other methods.

  9. (13C-(13c homonuclear recoupling in solid-state nuclear magnetic resonance at a moderately high magic-angle-spinning frequency.

    Directory of Open Access Journals (Sweden)

    Venus Singh Mithu

    Full Text Available Two-dimensional (13C-(13C correlation experiments are widely employed in structure determination of protein assemblies using solid-state nuclear magnetic resonance. Here, we investigate the process of (13C-(13C magnetisation transfer at a moderate magic-angle-spinning frequency of 30 kHz using some of the prominent second-order dipolar recoupling schemes. The effect of isotropic chemical-shift difference and spatial distance between two carbons and amplitude of radio frequency on (1H channel on the magnetisation transfer efficiency of these schemes is discussed in detail.

  10. Tricyclic flavonoids with 1,3-dithiolium substructure.

    Science.gov (United States)

    Bahrin, Lucian G; Jones, Peter G; Hopf, Henning

    2012-01-01

    The synthesis of new 3-dithiocarbamic flavonoids has been accomplished by the reaction of the corresponding 2-hydroxyaryl dithiocarbamates with aminals. These flavonoids were obtained as a mixture of diastereoisomers, the anti isomer being the major one. The heterocyclization of these compounds provided novel tricyclic flavonoids bearing a 1,3-dithiolium-2-yl ring fused at the 3,4-carbon positions of the benzopyran moiety. PMID:23209535

  11. Tricyclic flavonoids with 1,3-dithiolium substructure

    Directory of Open Access Journals (Sweden)

    Lucian G. Bahrin

    2012-11-01

    Full Text Available The synthesis of new 3-dithiocarbamic flavonoids has been accomplished by the reaction of the corresponding 2-hydroxyaryl dithiocarbamates with aminals. These flavonoids were obtained as a mixture of diastereoisomers, the anti isomer being the major one. The heterocyclization of these compounds provided novel tricyclic flavonoids bearing a 1,3-dithiolium-2-yl ring fused at the 3,4-carbon positions of the benzopyran moiety.

  12. Tricyclic flavonoids with 1,3-dithiolium substructure

    OpenAIRE

    Bahrin, Lucian G.; Jones, Peter G.; Henning Hopf

    2012-01-01

    The synthesis of new 3-dithiocarbamic flavonoids has been accomplished by the reaction of the corresponding 2-hydroxyaryl dithiocarbamates with aminals. These flavonoids were obtained as a mixture of diastereoisomers, the anti isomer being the major one. The heterocyclization of these compounds provided novel tricyclic flavonoids bearing a 1,3-dithiolium-2-yl ring fused at the 3,4-carbon positions of the benzopyran moiety.

  13. Natural (13) C distribution in oil palm (Elaeis guineensis Jacq.) and consequences for allocation pattern.

    Science.gov (United States)

    Lamade, Emmanuelle; Tcherkez, Guillaume; Darlan, Nuzul Hijri; Rodrigues, Rosario Lobato; Fresneau, Chantal; Mauve, Caroline; Lamothe-Sibold, Marlène; Sketriené, Diana; Ghashghaie, Jaleh

    2016-01-01

    Oil palm has now become one of the most important crops, palm oil representing nearly 25% of global plant oil consumption. Many studies have thus addressed oil palm ecophysiology and photosynthesis-based models of carbon allocation have been used. However, there is a lack of experimental data on carbon fixation and redistribution within palm trees, and important C-sinks have not been fully characterized yet. Here, we carried out extensive measurement of natural (13) C-abundance (δ(13) C) in oil palm tissues, including fruits at different maturation stages. We find a (13) C-enrichment in heterotrophic organs compared to mature leaves, with roots being the most (13) C-enriched. The δ(13) C in fruits decreased during maturation, reflecting the accumulation in (13) C-depleted lipids. We further used observed δ(13) C values to compute plausible carbon fluxes using a steady-state model of (13) C-distribution including metabolic isotope effects ((12) v/(13) v). The results suggest that fruits represent a major respiratory loss (≈39% of total tree respiration) and that sink organs such as fruits are fed by sucrose from leaves. That is, glucose appears to be a quantitatively important compound in palm tissues, but computations indicate that it is involved in dynamic starch metabolism rather that C-exchange between organs.

  14. Natural (13) C distribution in oil palm (Elaeis guineensis Jacq.) and consequences for allocation pattern.

    Science.gov (United States)

    Lamade, Emmanuelle; Tcherkez, Guillaume; Darlan, Nuzul Hijri; Rodrigues, Rosario Lobato; Fresneau, Chantal; Mauve, Caroline; Lamothe-Sibold, Marlène; Sketriené, Diana; Ghashghaie, Jaleh

    2016-01-01

    Oil palm has now become one of the most important crops, palm oil representing nearly 25% of global plant oil consumption. Many studies have thus addressed oil palm ecophysiology and photosynthesis-based models of carbon allocation have been used. However, there is a lack of experimental data on carbon fixation and redistribution within palm trees, and important C-sinks have not been fully characterized yet. Here, we carried out extensive measurement of natural (13) C-abundance (δ(13) C) in oil palm tissues, including fruits at different maturation stages. We find a (13) C-enrichment in heterotrophic organs compared to mature leaves, with roots being the most (13) C-enriched. The δ(13) C in fruits decreased during maturation, reflecting the accumulation in (13) C-depleted lipids. We further used observed δ(13) C values to compute plausible carbon fluxes using a steady-state model of (13) C-distribution including metabolic isotope effects ((12) v/(13) v). The results suggest that fruits represent a major respiratory loss (≈39% of total tree respiration) and that sink organs such as fruits are fed by sucrose from leaves. That is, glucose appears to be a quantitatively important compound in palm tissues, but computations indicate that it is involved in dynamic starch metabolism rather that C-exchange between organs. PMID:26228944

  15. Adsorption of NO on the Rh-13, Pd-13, Ir-13, and Pt-13 Clusters: A Density Functional Theory Investigation

    DEFF Research Database (Denmark)

    Piotrowski, Mauricio J.; Piquini, Paulo; Zeng, Zhenhua;

    2012-01-01

    of real catalyst devices. In this study, we report a density functional theory study of the adsorption properties of NO on the TM13 (TM = Rh, Pd, Ir, Pt) clusters employing the projected augmented wave method. We found that the interaction of NO with TM13 is much more complex than that for NO/TM(111......). In particular, for low symmetry TM13 clusters, there is a strong rearrangement of the electronic charge density upon NO adsorption and, as a consequence, the adsorption energy shows a very complex dependence even for adsorption sites with the same local effective coordination. We found a strong enhancement...

  16. Intercontinental correlation of organic carbon and carbonate stable isotope records: evidence of climate and sea-level change during the Turonian (Cretaceous)

    NARCIS (Netherlands)

    Jarvis, I.; Trabucho-Alexandre, João; Gröcke, D.R.; Uličný, D.; Laurin, J.

    2015-01-01

    Carbon (d13Corg, d13Ccarb) and oxygen (d18Ocarb) isotope records are presented for an expanded Upper Cretaceous (Turonian–Coniacian) hemipelagic succession cored in the central Bohemian Cretaceous Basin, Czech Republic. Geophysical logs, biostratigraphy and stable carbon isotope chemostratigraphy pr

  17. The Geobiology of Weathering: a 13th Hypothesis

    CERN Document Server

    Schwartzman, David

    2015-01-01

    The magnitude of the biotic enhancement of weathering (BEW) has profound implications for the long-term carbon cycle. The BEW ratio is defined as how much faster the silicate weathering carbon sink is under biotic conditions than under abiotic conditions at the same atmospheric pCO2 level and surface temperature. Thus, a 13th hypothesis should be considered in addition to the 12 outlined by Brantley...(2011) regarding the geobiology of weathering: The BEW factor and its evolution over geological time can be inferred from meta-analysis of empirical and theoretical weathering studies. Estimates of the global magnitude of the BEW are presented, drawing from lab, field, watershed data and models of the long-term carbon cycle, with values ranging from one to two orders of magnitude.

  18. Carbon Segregation of Bearing Steel Concasting Billet

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The formation mechanism of “white band” and central carbon segregation of high-carbon Cr bearing steel concasting billets are discussed in this paper. The maximum oxygen content in the steel produced by concasting process was 13x10-6 with an average oxygen content of 9.3x 10-6.Comparison of metallurgical quality and fatigue property between the concasting steel (CC) andingot casting steel (IC) showed that the carbon segregation (C/C0) in former steel was 0.92~1.10and its fatigue life was equal to that of the latter steel.

  19. The thermal evolution indicator of carbonate rocks

    Institute of Scientific and Technical Information of China (English)

    王兆云; 范璞; 程克明

    1995-01-01

    It has been studied by the solid state 13C NMR analysis that the chemical composition and the structure feature of kerogen of carbonate rocks are characteristic of different types and evolution degree. The purpose is to show the evolution degree using the structure parameters of kerogen of carbonate rocks. The detailed analysis of the carbon aromaticity (fa), the hydrogen aromaticity (Ha) and the average aromatic cluster size (Xb) indicates that Xb is the most effective indicator of evolution degree, and it is not influenced by the type and evolution degree of kerogen. The correlation between the average aromatic cluster size and vitrinite reflectance value of kerogen has also been established.

  20. Biosynthetic uniform 13C,15N-labelling of zervamicin IIB. Complete 13C and 15N NMR assignment.

    Science.gov (United States)

    Ovchinnikova, Tatyana V; Shenkarev, Zakhar O; Yakimenko, Zoya A; Svishcheva, Natalia V; Tagaev, Andrey A; Skladnev, Dmitry A; Arseniev, Alexander S

    2003-01-01

    Zervamicin IIB is a member of the alpha-aminoisobutyric acid containing peptaibol antibiotics. A new procedure for the biosynthetic preparation of the uniformly 13C- and 15N-enriched peptaibol is described This compound was isolated from the biomass of the fungus-producer Emericellopsis salmosynnemata strain 336 IMI 58330 obtained upon cultivation in the totally 13C, 15N-labelled complete medium. To prepare such a medium the autolysed biomass and the exopolysaccharides of the obligate methylotrophic bacterium Methylobacillus flagellatus KT were used. This microorganism was grown in totally 13C, 15N-labelled minimal medium containing 13C-methanol and 15N-ammonium chloride as the only carbon and nitrogen sources. Preliminary NMR spectroscopic analysis indicated a high extent of isotope incorporation (> 90%) and led to the complete 13C- and 15N-NMR assignment including the stereospecific assignment of Aib residues methyl groups. The observed pattern of the structurally important secondary chemical shifts of 1H(alpha), 13C=O and 13C(alpha) agrees well with the previously determined structure of zervamicin IIB in methanol solution. PMID:14658801

  1. Controllable fabrication of carbon aerogels

    Institute of Scientific and Technical Information of China (English)

    FENG Ya'ning; MIAO Lei; TANEMURA Sakae; TANEMURA Masaki; SUZUKI Kenzi

    2006-01-01

    Nano-pore carbon aerogels were prepared by the sol-gel polymerization of resorcinol (1,3-dihydroxybenzene)(C6H4(OH)2) with formaldehyde (HCHO) in a slightly basic aqueous solution, followed by super-critical drying under liquid carbon dioxide as super-critical media and carbonization at 700 ℃ under N2 gas atmosphere. The key of the work is to fabricate carbon aerogels with controllable nano-pore structure, which means extremely high surface area and sharp pore size distribution. Aiming to investigate the effects of preparation conditions on the gelation process, the bulk density, and the physical and chemical structure of the resultant carbon aerogels, the molar ratio of R/C (resorcinol to catalyst) and the amount of distilled water were varied, consequently two different sets of samples, with series of R/C ratio and RF/W (Resorcinol-Formaldehyde to water, or the content of reactant) ratio, were prepared. The result of N2 adsorption/desorption experiment at 77 K shows that the pore sizes decreasing from 11.4 down tO2.2 nm with the increasing of the molar ratio of R/C from 100 to 400, and/or, the pore sizes decreasing from 3.8 down to 1.6 nm with the increasing of reactant content from 0.4 to 0.6.

  2. Light Emission in Silicon from Carbon Nanotubes

    CERN Document Server

    Gaufrès, Etienne; Noury, Adrien; Roux, Xavier Le; Rasigade, Gilles; Beck, Alexandre; Vivien, Laurent

    2015-01-01

    The use of optics in microelectronic circuits to overcome the limitation of metallic interconnects is more and more considered as a viable solution. Among future silicon compatible materials, carbon nanotubes are promising candidates thanks to their ability to emit, modulate and detect light in the wavelength range of silicon transparency. We report the first integration of carbon nanotubes with silicon waveguides, successfully coupling their emission and absorption properties. A complete study of this coupling between carbon nanotubes and silicon waveguides was carried out, which led to the demonstration of the temperature-independent emission from carbon nanotubes in silicon at a wavelength of 1.3 {\\mu}m. This represents the first milestone in the development of photonics based on carbon nanotubes on silicon.

  3. 1999 Rose Site 13P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 13P was established off Rose Atoll, American Samoa by Dr. James Maragos, U.S. Fish & Wildlife Service, on August 25, 1999. The site was...

  4. 2004 Rose Site 13P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 13P was established off Rose Atoll, American Samoa by Dr. James Maragos, U.S. Fish & Wildlife Service, on August 25, 1999. The site was...

  5. 2005 Rose Site 13P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 13P was established off Rose Atoll, American Samoa by Dr. James Maragos, U.S. Fish (5) = between meters 4 and 5). Quantitative analysis of the...

  6. 2012 Rose Site 13P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 13P was established off Rose Atoll, American Samoa by Dr. James Maragos, U.S. Fish & Wildlife Service, on August 25, 1999. The site was...

  7. 2006 Rose Site 13P

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Underwater Site 13P was established off Rose Atoll, American Samoa by Dr. James Maragos, U.S. Fish & Wildlife Service, on August 25, 1999. The site was...

  8. Carbonate concretions as a significant component of ancient marine carbon cycles: Insights from paired organic and inorganic carbon isotope analyses of a Cretaceous shale

    Science.gov (United States)

    Loyd, S. J.

    2014-12-01

    Carbonate concretions often occur within fine-grained, organic-rich sedimentary rocks. This association reflects the common production of diagenetic minerals through biologic cycling of organic matter. Chemical analysis of carbonate concretions provides the rare opportunity to explore ancient shallow diagenetic environments, which are inherently transient due to progressive burial but are an integral component of the marine carbon cycle. The late Cretaceous Holz Shale (~80 Ma) contains abundant calcite concretions that exhibit textural and geochemical characteristics indicative of relatively shallow formation (i.e., near the sediment-water interface). Sampled concretions contain between 5.4 and 9.8 wt.% total inorganic carbon (TIC), or ~45 and 82 wt.% CaCO3, compared to host shale values which average ~1.5 wt.% TIC. Organic carbon isotope compositions (δ13Corg) are relatively constant in host and concretion samples ranging from ­-26.3 to -24.0‰ (VPDB). Carbonate carbon isotope compositions (δ13Ccarb) range from -22.5 to -3.4‰, indicating a significant but not entirely organic source of carbon. Concretions of the lower Holz Shale exhibit considerably elevated δ13Ccarb values averaging -4.8‰, whereas upper Holz Shale concretions express an average δ13Ccarb value of -17.0‰. If the remaining carbonate for lower Holz Shale concretions is sourced from marine fluids and/or dissolved marine carbonate minerals (e.g., shells), a simple mass balance indicates that ~28% of concretion carbon was sourced from organic matter and ~72% from late Cretaceous marine inorganic carbon (with δ13C ~ +2.5‰). Upper Holz Shale calculations indicate a ~73% contribution from organic matter and a ~27% contribution from inorganic carbon. When normalized for carbonate, organic contents within the concretions are ~2-13 wt.% enriched compared to host contents. This potentially reflects the protective nature of cementation that acts to limit permeability and chemical destruction of

  9. Allochthonous carbon hypothesis for bulk OM and n-alkane PETM carbon isotope discrepancies

    Science.gov (United States)

    Baczynski, A. A.; McInerney, F. A.; Wing, S. L.; Kraus, M. J.; Fricke, H. C.

    2011-12-01

    The Paleocene-Eocene Thermal Maximum (PETM), a period of abrupt, transient, and large-scale global warming fueled by a large release of isotopically light carbon, is a relevant analogue for episodes of rapid global warming and recovery. The PETM is recorded in pedogenic carbonate, bulk organic matter, and n-alkanes as a prominent negative carbon isotope excursion (CIE) in paleosols exposed in the Bighorn Basin, WY. Here we present a composite stable carbon isotope record from n-alkanes and dispersed soil organic δ13C records from five individual sections that span the PETM in the southeastern Bighorn Basin. Four sections are from a 10km transect in the Cabin Fork area and one section was collected at Sand Creek Divide. These five new dispersed organic carbon (DOC) isotope records are compared to the previously published Polecat Bench (Magioncalda et al. 2004) and Honeycombs (Yans et al. 2006) isotope records. The high-resolution n-alkane curve shows an abrupt, negative shift in δ13C values, an extended CIE body, and a rapid recovery to more positive δ13C values. Although the five DOC records show similarly abrupt negative shifts in δ13C values, the DOC CIEs are compressed, smaller in magnitude, and return to more positive δ13C values more gradually relative to the n-alkane record. Moreover, the stratigraphic thickness of the body of the excursion and the pattern of the recovery phase are not consistent among the five DOC records. We modeled predicted DOC δ13C values from the n-alkane record by applying enrichment factors based on modern plants to the n-alkane δ13C values. The anomaly, difference between the expected and observed DOC δ13C values, was calculated for the PETM records and compared to weight percent carbon and grain size. There is no correlation between pre- and post-PETM anomaly values and grain size or weight percent carbon. PETM anomaly values, however, do trend with both grain size and weight percent carbon. The largest PETM anomaly values

  10. Who's afraid of Section 13?

    International Nuclear Information System (INIS)

    This article discusses the time restrictions of Section 13 of the Federal Power Act and its impact on independent hydroelectric plant project development. The topics of the article include Section 13 history, the Government Accounting Office report findings regarding developers 'banking' of proposed project sites and project construction commencement time limits, and a review of Federal Energy Regulatory Commission data on license applications, licenses granted and completed projects

  11. Carbon isotope composition and its implications of Lower Cretaceous Aptian-Albian shallow water carbonates in the Cuoqin Basin, North Tibet

    Institute of Scientific and Technical Information of China (English)

    ZHU; Jingquan; LI; Yongtie; JIANG; Maosheng; CHEN; Daizha

    2004-01-01

    The δ13C values of Lower Cretaceous Aptian-Albian platform-type carbonates in the Cuoqin Basin, North Tibet vary between 2.48‰ and 5.46‰. The mean value is 3.93‰. The values are not only provided with positive excursion, but also 1.17‰ higher than those of contemporaneous pelagic carbonates which possess pretty high δ13C values. The origin is approached. During the oceanic anoxic events, a great number of organisms were rapidly buried, causing the increase of the δ13C value of oceanic total dissolved carbon (TDC) and generally promoting the values of marine carbonates. After that, owing to the organisms undergoing different isotopic fractionation in the paleo-ocean with stratified structure,δ13C values of shallow sea carbonate were obviously higher than those of pelagic carbonates.

  12. The Photochemical Stability of Carbonates on Mars

    Science.gov (United States)

    Quinn, Richard; Zent, Aaron P.; McKay, Christopher P.

    2006-08-01

    Carbonates, predominately MgCO3, have been spectroscopically identified at a level of 2-5% in martian dust. However, in spite of this observation, and a large number of climate studies that suggest 1 to several bars of CO2 should be sequestered in carbonate rocks, no outcropscale exposures of carbonate have been detected anywhere on Mars to date. To address one hypothesis for this long-standing puzzle, the effect of ultraviolet (UV) light on the stability of calcium carbonate in a simulated martian atmosphere was experimentally investigated. Using 13C-labeled calcite, we found no experimental evidence of the UV photodecomposition of calcium carbonate in a simulated martian atmosphere. Extrapolating the lower limit of detection of our experimental system to an upper limit of carbonate decomposition on Mars yields a quantum efficiency of 3.5 × 10-8 molecules/photon over the wavelength interval of 190-390 nm and a maximum UV photodecomposition rate of 1.2 × 10-13 kg m-2 s-1 from a calcite surface. The maximum loss of bulk calcite due to this process would be 2.5 nm year-1 (Mars year). However, calcite is expected to be thermodynamically stable on the surface of Mars, and potential UV photodecomposition reaction mechanisms indicate that, though calcium carbonate may decompose under vacuum, it would be stable in a CO2 atmosphere. Given the expected stability of carbonate on Mars and our inability to detect carbonate decomposition, we conclude that it is unlikely that the apparent absence of extensive carbonate deposits on the martian surface is due to UV photodecomposition in the current environment.

  13. Organic chemistry of Murchison meteorite: Carbon isotopic fractionation

    Science.gov (United States)

    Yuen, G. U.; Blair, N. E.; Desmarais, D. J.; Cronin, J. R.; Chang, S.

    1986-01-01

    The carbon isotopic composition of individual organic compounds of meteoritic origin remains unknown, as most reported carbon isotopic ratios are for bulk carbon or solvent extractable fractions. The researchers managed to determine the carbon isotopic ratios for individual hydrocarbons and monocarboxylic acids isolated from a Murchison sample by a freeze-thaw-ultrasonication technique. The abundances of monocarboxylic acids and saturated hydrocarbons decreased with increasing carbon number and the acids are more abundant than the hydrocarbon with the same carbon number. For both classes of compounds, the C-13 to C-12 ratios decreased with increasing carbon number in a roughly parallel manner, and each carboxylic acid exhibits a higher isotopic number than the hydrocarbon containing the same number of carbon atoms. These trends are consistent with a kinetically controlled synthesis of higher homologues for lower ones.

  14. Valence neutrons' role in the collisions 13C+12C and 13C+13C

    International Nuclear Information System (INIS)

    The resonant behaviour is not limited to collisions between α-like nuclei: resonance structures have been observed in the direct channels for the 13C+12C and 13C+13C collisions; in the contrary, the resonances observed in the fusion channels are not so pronounced as in the 12C+12C case: the valence neutrons increase the number of reaction channels and the density of states in the states in the compound nuclei, the resonances are therefore 'washed out' and it is difficult to observe them experimentally

  15. Carbon Nanomembranes.

    Science.gov (United States)

    Turchanin, Andrey; Gölzhäuser, Armin

    2016-08-01

    Carbon nanomembranes (CNMs) are synthetic 2D carbon sheets with tailored physical or chemical properties. These depend on the structure, molecular composition, and surroundings on either side. Due to their molecular thickness, they can be regarded as "interfaces without bulk" separating regions of different gaseous, liquid, or solid components and controlling the materials exchange between them. Here, a universal scheme for the fabrication of 1 nm-thick, mechanically stable, functional CNMs is presented. CNMs can be further modified, for example perforated by ion bombardment or chemically functionalized by the binding of other molecules onto the surfaces. The underlying physical and chemical mechanisms are described, and examples are presented for the engineering of complex surface architectures, e.g., nanopatterns of proteins, fluorescent dyes, or polymer brushes. A simple transfer procedure allows CNMs to be placed on various support structures, which makes them available for diverse applications: supports for electron and X-ray microscopy, nanolithography, nanosieves, Janus nanomembranes, polymer carpets, complex layered structures, functionalization of graphene, novel nanoelectronic and nanomechanical devices. To close, the potential of CNMs in filtration and sensorics is discussed. Based on tests for the separation of gas molecules, it is argued that ballistic membranes may play a prominent role in future efforts of materials separation. PMID:27281234

  16. Beyond temperature: Clumped isotope signatures in dissolved inorganic carbon species and the influence of solution chemistry on carbonate mineral composition

    OpenAIRE

    Tripati, Aradhna K.; Hill, Pamela S.; Eagle, Robert A.; Mosenfelder, Jed L.; Tang, Jianwu; Schauble, Edwin A.; Eiler, John M.; Zeebe, Richard E.; Uchikawa, Joji; Coplen, Tyler B.; Ries, Justin B; Henry, Drew

    2015-01-01

    “Clumped-isotope” thermometry is an emerging tool to probe the temperature history of surface and subsurface environments based on measurements of the proportion of ^(13)C and ^(18)O isotopes bound to each other within carbonate minerals in ^(13)C^(18)O^(16)O_2^(2−) groups (heavy isotope “clumps”). Although most clumped isotope geothermometry implicitly presumes carbonate crystals have attained lattice equilibrium (i.e., thermodynamic equilibrium for a mineral, which is independent of solutio...

  17. Trading forest carbon

    Science.gov (United States)

    The nature of carbon in forests is discussed from the perspective of carbon trading. Carbon inventories, specifically in the area of land use and forestry are reviewed for the Pacific Northwest. Carbon turnover in forests is discussed as it relates to carbon sequestration. Scient...

  18. A Marked Gradient in δ13C Values of Clams Mercenaria mercenaria Across a Marine Embayment May Reflect Variations in Ecosystem metabolism

    Science.gov (United States)

    Although stable isotopes of organic carbon13C) are typically used as indicators of terrestrial, intertidal, and offshore organic carbon sources to coastal ecosystems, there is evidence that δ13C values are also sensitive to in situ ecosystem metabolism. To investigate this phe...

  19. Dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the HOKKO MARU in the North Pacific Ocean from 2001-01-13 to 2001-01-18 (NODC Accession 0112338)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112338 includes chemical, discrete sample, physical and profile data collected from HOKKO MARU in the North Pacific Ocean from 2001-01-13 to...

  20. Dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the TANKAI-MARU in the North Pacific Ocean from 2002-03-13 to 2002-03-18 (NODC Accession 0112320)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112320 includes chemical, discrete sample, physical and profile data collected from TANKAI-MARU in the North Pacific Ocean from 2002-03-13 to...

  1. Dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the GAUSS in the North Atlantic Ocean from 1996-06-13 to 1996-06-27 (NODC Accession 0113540)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113540 includes chemical, discrete sample, physical and profile data collected from GAUSS in the North Atlantic Ocean from 1996-06-13 to 1996-06-27...

  2. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the MIRAI in the North Pacific Ocean from 2004-10-13 to 2004-11-08 (NODC Accession 0112262)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112262 includes chemical, discrete sample, physical and profile data collected from MIRAI in the North Pacific Ocean from 2004-10-13 to 2004-11-08...

  3. Dissolved inorganic carbon, pH, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, Coulometer for DIC measurement and other instruments from the MIRAI in the North Pacific Ocean from 2005-09-13 to 2005-10-27 (NODC Accession 0112265)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0112265 includes chemical, discrete sample, physical and profile data collected from MIRAI in the North Pacific Ocean from 2005-09-13 to 2005-10-27...

  4. Dissolved inorganic carbon, alkalinity, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the METEOR in the North Atlantic Ocean from 2004-03-11 to 2004-04-13 (NODC Accession 0113892)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0113892 includes chemical, discrete sample, physical and profile data collected from METEOR in the North Atlantic Ocean from 2004-03-11 to 2004-04-13...

  5. Degradation changes stable carbon isotope depth profiles in palsa peatlands

    Directory of Open Access Journals (Sweden)

    J. P. Krüger

    2014-01-01

    Full Text Available Palsa peatlands are a significant carbon pool in the global carbon cycle and are projected to change by global warming due to accelerated permafrost thaw. Our aim was to use stable carbon isotopes as indicators of palsa degradation. Depth profiles of stable carbon isotopes generally reflect organic matter dynamics in soils with an increase of δ13C values during aerobic decomposition and stable or decreasing δ13C values with depth during anaerobic decomposition. Stable carbon isotope depth profiles of undisturbed and degraded sites of hummocks as well as hollows at three palsa peatlands in northern Sweden were used to investigate the degradation processes. The depth patterns of stable isotopes clearly differ between intact and degraded hummocks at all sites. Erosion and cryoturbation at the degraded sites significantly changes the stable carbon isotope depth profiles. At the intact hummocks the uplifting of peat material by permafrost is indicated by a turning in the δ13C depth trend and this assessment is supported by a change in the C / N ratios. For hollows isotope patterns were less clear, but some hollows and degraded hollows in the palsa peatlands show differences in their stable carbon isotope depth profiles indicating enhanced degradation rates. We conclude that the degradation of palsa peatlands by accelerated permafrost thawing could be identified with stable carbon isotope depth profiles. At intact hummocks δ13C depth patterns display the uplifting of peat material by a change in peat decomposition processes.

  6. Stable carbon isotope biogeochemistry of lakes along a trophic gradient

    NARCIS (Netherlands)

    de Kluijver, A.; Schoon, P.L.; Downing, J.A.; Schouten, S.; Middelburg, J.J.

    2014-01-01

    The stable carbon (C) isotope variability of dissolved inorganic and organic C (DIC and DOC), particulate organic carbon (POC), glucose and polar-lipid derived fatty acids (PLFAs) was studied in a survey of 22 North American oligotrophic to eutrophic lakes. The d13C of different PLFAs were used as p

  7. Corrosion resistance of high-strength modified 13% Cr steel

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, M.; Miyata, Y.; Yamane, Y.; Toyooka, T.; Nakano, Y.; Murase, F. [Kawasaki Steel Corp., Handa, Aichi (Japan)

    1999-08-01

    A new 13% Cr martensitic stainless steel (0.025% C-13% Cr-Ni-Mo) with excellent resistance to carbon dioxide (CO{sub 2}) corrosion and good resistance to sulfide stress cracking (SSC) was developed, and its application limits in oil and gas environments were clarified. The CO{sub 2} corrosion rate of the 13% Cr steels with Ni and Mo was < 0.3 mm/y at 180 C (356 F) in 20% sodium chloride (NaCl). It was less than that of the conventional 13% Cr steel (0.2% C-13% Cr). The corrosion rate of the steel slightly decreased with the increase in Mo and Ni content. The SSC resistance improved with the increase in Mo content. The critical partial pressure of hydrogen sulfide (H{sub 2}S) for the 2% Mo steel was > 0.005 MPa at pH 3.5. Effects of Ni and Cu on SSC were not distinctive for this kind of steel. These results depended upon hydrogen permeability. The critical H{sub 2}S partial pressure for the 110-grade steel was the same as that of the 95-grade steel at pH 4.5 and pH 3.0 and was slightly lower at pH values between 3.0 and 4.5. The new 13% Cr steel proved to have excellent properties in the sweet and slightly sour environments.

  8. Key enzymes catalyzing glycerol to 1,3-propanediol.

    Science.gov (United States)

    Jiang, Wei; Wang, Shizhen; Wang, Yuanpeng; Fang, Baishan

    2016-01-01

    Biodiesel can replace petroleum diesel as it is produced from animal fats and vegetable oils, and it produces about 10 % (w/w) glycerol, which is a promising new industrial microbial carbon, as a major by-product. One of the most potential applications of glycerol is its biotransformation to high value chemicals such as 1,3-propanediol (1,3-PD), dihydroxyacetone (DHA), succinic acid, etc., through microbial fermentation. Glycerol dehydratase, 1,3-propanediol dehydrogenase (1,3-propanediol-oxydoreductase), and glycerol dehydrogenase, which were encoded, respectively, by dhaB, dhaT, and dhaD and with DHA kinase are encompassed by the dha regulon, are the three key enzymes in glycerol bioconversion into 1,3-PD and DHA, and these are discussed in this review article. The summary of the main research direction of these three key enzyme and methods of glycerol bioconversion into 1,3-PD and DHA indicates their potential application in future enzymatic research and industrial production, especially in biodiesel industry. PMID:26966462

  9. NMR experiments for the measurement of proton-proton and carbon-carbon residual dipolar couplings in uniformly labelled oligosaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Pastor, Manuel [Universidad de Santiago de Compostela, Laboratorio Integral de Estructura de Biomoleculas Jose. R. Carracido, Unidade de Resonancia Magnetica, RIAIDT (Spain)], E-mail: mmartin@usc.es; Canales-Mayordomo, Angeles; Jimenez-Barbero, Jesus [Departamento de Estructura y funcion de proteinas, Centro de Investigaciones Biologicas, CSIC (Spain)], E-mail: jjbarbero@cib.csic.es

    2003-08-15

    A 2D-HSQC-carbon selective/proton selective-constant time COSY, 2D-HSQC-(sel C, sel H)-CT COSY experiment, which is applicable to uniformly {sup 13}C isotopically enriched samples (U-{sup 13}C) of oligosaccharides or oligonucleotides is proposed for the measurement of proton-proton RDC in crowded regions of 2D-spectra. In addition, a heteronuclear constant time-COSY experiment, {sup 13}C-{sup 13}C CT-COSY, is proposed for the measurement of one bond carbon-carbon RDC in these molecules. These two methods provide an extension, to U-{sup 13}C molecules, of the original homonuclear constant time-COSY experiment proposed by Tian et al. (1999) for saccharides. The combination of a number of these RDC with NOE data may provide the method of choice to study oligosaccharide conformation in the free and receptor-bound state.

  10. Late Glacial and Holocene Paleoliminology of two temperate lakes inferred from sediment organic 13C chronology

    Indian Academy of Sciences (India)

    N A Lovan; R V Krishnamurthy

    2000-03-01

    The stable carbon isotope (13C) and elemental C/N ratios in Total Organic Carbon (TOC) extracted from radiometrically dated cores from two Midwestern USA lakes were determined to investigate the factors that control these values in temperate lakes. The range of 13C values ( -26 to -32%) and C/N ratios (mean value ∼ 10.8) are typical of values reported for other temperate lake organic matter in this region. In the core from Lake Winnebago, Wisconsin, a negative correlation was seen between the TOC and 13C, which can be interpreted in terms of a re-mixing and consumption of sedimented organic carbon along with rapid equilibration throughout the water column. No correlation was seen between the TOC and 13C in the record from Ladd Lake, Ohio, implying that in this latter lake productivity alone was not a singular process controlling the isotope ratio. Here, it is suggested that equilibrium conditions are maintained such that the DIC of the water is never depleted of aqueous CO2 during high organic production and the resulting 13C of the organic carbon lacks correlation with the TOC. Further, in this lake a fine resolution analysis was carried out which indicated a possible anthropogenic influence on the isotope ratio around times when human settlement (∼ 300 yrs ago) and enhanced agricultural practices ( ∼ 80 yrs ago) were significant. The study shows that carbon isotope studies are useful in paleolimnologic investigations.

  11. Neutral Atomic Carbon in Centers of Galaxies

    OpenAIRE

    Israel, F.P.; Baas, F

    2001-01-01

    We present measurements of the emission from the centers of fifteen spiral galaxies in the 3P1-3P0 [CI] fine-structure transition at 492 GHz. Observed galaxy centers range from quiescent to starburst to active. The intensities of neutral carbon, the J=2-1 transition of 13CO and the J=4-3 transition of 12CO are compared in matched beams. Most galaxy centers emit more strongly in [CI] than in 13CO, completely unlike the situation pertaining to Galactic molecular cloud regions. [CI] intensities ...

  12. USE OF STABLE CARBON ISOTOPE RATIOS OF FATTY ACIDS TO EVALUATE MICROBIAL CARBON SOURCES IN TERRESTRIAL ENVIRONMENTS

    Science.gov (United States)

    We use measurements of the concentration and stable carbon isotopic ratio (D 13C) of individual microbial phospholipid fatty acids (PLFAs) in soils as indicators of live microbial biomass levels and microbial carbon source. We found that intensive sugar cane cultivation leads to ...

  13. Turning Carbon into Cash: Economic Model of Payments for Carbon Sequestration in the Dry Tropical Forest of Coastal Ecuador

    OpenAIRE

    Blare, Trent; Haro-Carrion, Xavier

    2013-01-01

    This paper examines the impact of carbon payments on reforestation in coastal Ecuador. The model estimates that landowners would need to be paid between 13.59 US dollars to 41.81 US dollars per metric ton of carbon in order to be no worse off from reforesting a hectare of her land.

  14. Carbon Farming as a Carbon Negative Technology

    Science.gov (United States)

    Anderson, C.; Laird, D.; Hayes, D. J.

    2015-12-01

    Carbon farms have a pivotal role in national and international efforts to mitigate and adapt to climate change. A carbon farm in its broadest sense is one that reduces greenhouse gas (GHG) emissions or captures and holds carbon in vegetation and soils. Their capacity to remove carbon from the air and store it safely and permanently, while providing additional human and ecosystem benefits, means they could contribute significantly to national efforts to stabilize or reduce GHGs. We examine carbon farms in the context of corn and soybean production agriculture. We illustrate, using Iowa data but with relevance across United States corn and soybean production, the potential for carbon farms to reduce human GHG emissions and sequester carbon permanently at a rate that has meaningful impact on global greenhouse gas concentration. Carbon has been viewed as a next generation cash crop in Iowa for over a decade. The carbon farm perspective, however, goes beyond carbon as cash crop to make carbon the center of an entire farm enterprise. The transformation is possible through slight adjustment crop practices mixed with advances in technology to sequester carbon through biochar. We examine carbon balance of Iowa agriculture given only the combination of slight reduction in fertilizer and sequestration by biochar. We find the following. Iowa carbon farms could turn Iowa agriculture into a carbon sink. The estimated range of GHG reduction by statewide implementation of carbon farms is 19.46 to 90.27 MMt CO2-equivalent (CO2-e), while the current agricultural CO2-e emission estimate is 35.38 MMt CO2-e. Iowa carbon farm GHG reduction would exceed Iowa GHG reduction by wind energy (8.7 MMt CO2-e) and could exceed combined reductions from wind energy and corn grain ethanol (10.7 MMt CO2-e; 19.4 MMt CO2-e combined). In fact, Iowa carbon farms alone could exceed GHG reduction from national corn grain ethanol production (39.6 MMt CO2-e). A carbon price accessible to agricultural

  15. Increased resolution of aromatic cross peaks using alternate {sup 13}C labeling and TROSY

    Energy Technology Data Exchange (ETDEWEB)

    Milbradt, Alexander G. [AstraZeneca Discovery Sciences, Structure and Biophysics UK (United Kingdom); Arthanari, Haribabu [Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology (United States); Takeuchi, Koh [National Institute of Advanced Industrial Science and Technology, Biomedicinal Information Research Center and Molecular Profiling Research Center for Drug Discovery (Japan); Boeszoermenyi, Andras; Hagn, Franz; Wagner, Gerhard, E-mail: gerhard-wagner@hms.harvard.edu [Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology (United States)

    2015-07-15

    For typical globular proteins, contacts involving aromatic side chains would constitute the largest number of distance constraints that could be used to define the structure of proteins and protein complexes based on NOE contacts. However, the {sup 1}H NMR signals of aromatic side chains are often heavily overlapped, which hampers extensive use of aromatic NOE cross peaks. Some of this overlap can be overcome by recording {sup 13}C-dispersed NOESY spectra. However, the resolution in the carbon dimension is rather low due to the narrow dispersion of the carbon signals, large one-bond carbon–carbon (C–C) couplings, and line broadening due to chemical shift anisotropy (CSA). Although it has been noted that the CSA of aromatic carbons could be used in TROSY experiments for enhancing resolution, this has not been used much in practice because of complications arising from large aromatic one-bond C–C couplings, and 3D or 4D carbon dispersed NOESY are typically recorded at low resolution hampering straightforward peak assignments. Here we show that the aromatic TROSY effect can optimally be used when employing alternate {sup 13}C labeling using 2-{sup 13}C glycerol, 2-{sup 13}C pyruvate, or 3-{sup 13}C pyruvate as the carbon source. With the elimination of the strong one-bond C–C coupling, the TROSY effect can easily be exploited. We show that {sup 1}H–{sup 13}C TROSY spectra of alternately {sup 13}C labeled samples can be recorded at high resolution, and we employ 3D NOESY aromatic-TROSY spectra to obtain valuable intramolecular and intermolecular cross peaks on a protein complex.

  16. Long-range transport of continentally-derived particulate carbon in the marine atmosphere: evidence from stable carbon isotope studies

    OpenAIRE

    Cachier, Héléne; BUAT-MÉNARD, PATRICK; Fontugne, Michel; Chesselet, Roger

    2011-01-01

    Since 1979, we have investigated marine and non-marine sources of particulate carbon in the marine atmosphere from measurements of carbon concentration and isotopic composition 13C/12C). Aerosol samples were collected, mostly during the Sea/Air Exchange (SEAREX) Program experiments, in the northern and southern hemispheres (Sargasso Sea, Enewetak Atoll, Peru upwelling, American Samoa, New Zealand, Amsterdam Island). The concentration and the isotopic composition of particulate carbon of marin...

  17. Impact of oceanic circulation changes on atmospheric δ13CO2

    Science.gov (United States)

    Menviel, L.; Mouchet, A.; Meissner, K. J.; Joos, F.; England, M. H.

    2015-11-01

    δ13CO2 measured in Antarctic ice cores provides constraints on oceanic and terrestrial carbon cycle processes linked with millennial-scale changes in atmospheric CO2. However, the interpretation of δ13CO2 is not straightforward. Using carbon isotope-enabled versions of the LOVECLIM and Bern3D models, we perform a set of sensitivity experiments in which the formation rates of North Atlantic Deep Water (NADW), North Pacific Deep Water (NPDW), Antarctic Bottom Water (AABW), and Antarctic Intermediate Water (AAIW) are varied. We study the impact of these circulation changes on atmospheric δ13CO2 as well as on the oceanic δ13C distribution. In general, we find that the formation rates of AABW, NADW, NPDW, and AAIW are negatively correlated with changes in δ13CO2: namely, strong oceanic ventilation decreases atmospheric δ13CO2. However, since large-scale oceanic circulation reorganizations also impact nutrient utilization and the Earth's climate, the relationship between atmospheric δ13CO2 levels and ocean ventilation rate is not unequivocal. In both models atmospheric δ13CO2 is very sensitive to changes in AABW formation rates: increased AABW formation enhances the transport of low δ13C waters to the surface and decreases atmospheric δ13CO2. By contrast, the impact of NADW changes on atmospheric δ13CO2 is less robust and might be model dependent. This results from complex interplay between global climate, carbon cycle, and the formation rate of NADW, a water body characterized by relatively high δ13C.

  18. Net Ecosystem Carbon Flux

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Net Ecosystem Carbon Flux is defined as the year-over-year change in Total Ecosystem Carbon Stock, or the net rate of carbon exchange between an ecosystem and the...

  19. Carbon Monoxide (CO)

    Science.gov (United States)

    ... IAQ) » Carbon Monoxide's Impact on Indoor Air Quality Carbon Monoxide's Impact on Indoor Air Quality On this ... length of exposure. Top of Page Sources of Carbon Monoxide Sources of CO include: unvented kerosene and ...

  20. Carbon Monoxide Poisoning

    Science.gov (United States)

    ... Recommend on Facebook Tweet Share Compartir What is Carbon Monoxide? Carbon monoxide, or “CO,” is an odorless, colorless gas that can kill you. Carbon monoxide detector Where is CO found? CO is ...

  1. Contrasting modes of inorganic carbon acquisition amongst Symbiodinium (Dinophyceae) phylotypes.

    Science.gov (United States)

    Brading, Patrick; Warner, Mark E; Smith, David J; Suggett, David J

    2013-10-01

    Growing concerns over ocean acidification have highlighted the need to critically understand inorganic carbon acquisition and utilization in marine microalgae. Here, we contrast these characteristics for the first time between two genetically distinct dinoflagellate species of the genus Symbiodinium (phylotypes A13 and A20) that live in symbiosis with reef-forming corals. Both phylotypes were grown in continuous cultures under identical environmental conditions. Rubisco was measured using quantitative Western blots, and radioisotopic (14) C uptake was used to characterize light- and total carbon dioxide (TCO2 )-dependent carbon fixation, as well as inorganic carbon species preference and external carbonic anhydrase activity. A13 and A20 exhibited similar rates of carbon fixation despite cellular concentrations of Rubisco being approximately four-fold greater in A13. The uptake of CO2 over HCO3 - was found to support the majority of carbon fixation in both phylotypes. However, A20 was also able to indirectly utilize HCO3 - by first converting it to CO2 via external carbonic anhydrase. These results show that adaptive differences in inorganic carbon acquisition have evolved within the Symbiodinium genus, which thus carries fundamental implications as to how this functionally key genus will respond to ocean acidification, but could also represent a key trait factor that influences their productivity when in hospite of their coral hosts.

  2. Breath analysis of 13CO2 following N-demethylation of 13C-aminopyrine: a measure of liver microsomal function

    International Nuclear Information System (INIS)

    The hepatic microsomal mixed function oxidase enzyme activity has been measured by N-demethylation of 4-dimethyl-14C-aminopyrine (DAP). Analysis of 14CO2 in expired breath has recently been validated in the rat and man as a measure of this function. In the present study we examine the use of DAP labeled with the stable isotope carbon-13, in order to permit broader clinical application of this test by avoiding radiation exposure. Two mg/kg of 86% enriched 13C-DAP were given orally to 4 normal subjects and 5 patients with cholestatic liver disease. All subjects were fasted overnight and studied at rest. Breath samples were collected at 1/2 hour intervals for 3 hours. In all samples the excess of 13CO2 was significantly greater than the variation in baseline after ingestion of unlabeled DAP. In normal subjects the peak production of 13CO2 occurred in the first 1/2 hour sample. Unlabeled DAP (8 mg/kg) clearance from serum correlated with excess 13CO2 production measured in exhaled breath confirming the 14CO2 results. When phenobarbital (180 mg/day) was administered, an increase in exhaled 13CO2 was observed. Measurement of 13CO2 in breath following DAP provides a reproducible clinical measure of microsomal function and drug induction. The use of stable carbon-13 labeled DAP permits measurement of liver microsomal function in patients who cannot receive radioactive labeled DAP

  3. Dissolved oxygen, temperature, salinity, and other variables measured from profile observations using CTD and other instruments from NOAA Ship Ronald H. Brown in the East Coast of the United States and Gulf of Mexico during the second Gulf of Mexico and East Coast Carbon (GOMECC-2) Cruise from 2012-07-24 to 2012-08-13 (NODC Accession 0117943)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The second Gulf of Mexico and East Coast Carbon (GOMECC-2) Cruise on board NOAA Ship Ronald H. Brown from Miami, took place in the Gulf of Mexico and then along the...

  4. Integral Ring Carbon-Carbon Piston

    Science.gov (United States)

    Northam, G. Burton (Inventor)

    1999-01-01

    An improved structure for a reciprocating internal combustion engine or compressor piston fabricate from carbon-carbon composite materials is disclosed. An integral ring carbon-carbon composite piston, disclosed herein, reduces the need for piston rings and for small clearances by providing a small flexible, integral component around the piston that allows for variation in clearance due to manufacturing tolerances, distortion due to pressure and thermal loads, and variations in thermal expansion differences between the piston and cylinder liner.

  5. Carbon dioxide sequestration by mineral carbonation

    OpenAIRE

    Huijgen, W.J.J.

    2007-01-01

    The increasing atmospheric carbon dioxide (CO2) concentration, mainly caused by fossil fuel combustion, has lead to concerns about global warming. A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept behind mineral CO2 sequestration is the mimicking of natural weathering processes in which calcium or magnesium containing minerals react with gaseous CO2 and form solid calcium or magnesium carbonate...

  6. A nova re-accretion model for J-type carbon stars

    OpenAIRE

    S. Sengupta; Izzard, R.G.; Lau, H. H. B.

    2013-01-01

    The J-type carbon (J)-stars constitute 10-15% of the observed carbon stars in both our Galaxy and the Large Magellanic Cloud (LMC). They are characterized by strong 13C absorption bands with low 12C/13C ratios along with other chemical signatures peculiar for typical carbon stars, e.g. a lack of s-process enhancement. Most of the J-stars are dimmer than the N-type carbon stars some of which, by hot-bottom burning, make 13C only in a narrow range of masses. We investigate a binary-star formati...

  7. (13)C-Breath testing in animals: theory, applications, and future directions.

    Science.gov (United States)

    McCue, Marshall D; Welch, Kenneth C

    2016-04-01

    The carbon isotope values in the exhaled breath of an animal mirror the carbon isotope values of the metabolic fuels being oxidized. The measurement of stable carbon isotopes in carbon dioxide is called (13)C-breath testing and offers a minimally invasive method to study substrate oxidation in vivo. (13)C-breath testing has been broadly used to study human exercise, nutrition, and pathologies since the 1970s. Owing to reduced use of radioactive isotopes and the increased convenience and affordability of (13)C-analyzers, the past decade has witnessed a sharp increase in the use of breath testing throughout comparative physiology--especially to answer questions about how and when animals oxidize particular nutrients. Here, we review the practical aspects of (13)C-breath testing and identify the strengths and weaknesses of different methodological approaches including the use of natural abundance versus artificially-enriched (13)C tracers. We critically compare the information that can be obtained using different experimental protocols such as diet-switching versus fuel-switching. We also discuss several factors that should be considered when designing breath testing experiments including extrinsic versus intrinsic (13)C-labelling and different approaches to model nutrient oxidation. We use case studies to highlight the myriad applications of (13)C-breath testing in basic and clinical human studies as well as comparative studies of fuel use, energetics, and carbon turnover in multiple vertebrate and invertebrate groups. Lastly, we call for increased and rigorous use of (13)C-breath testing to explore a variety of new research areas and potentially answer long standing questions related to thermobiology, locomotion, and nutrition.

  8. Carbon Dioxide - Our Common "Enemy"

    Science.gov (United States)

    James, John T.; Macatangay, Ariel

    2009-01-01

    Health effects of brief and prolonged exposure to carbon dioxide continue to be a concern for those of us who manage this pollutant in closed volumes, such as in spacecraft and submarines. In both examples, considerable resources are required to scrub the atmosphere to levels that are considered totally safe for maintenance of crew health and performance. Defining safe levels is not a simple task because of many confounding factors, including: lack of a robust database on human exposures, suspected significant variations in individual susceptibility, variations in the endpoints used to assess potentially adverse effects, the added effects of stress, and the fluid shifts associated with micro-gravity (astronauts only). In 2007 the National Research Council proposed revised Continuous Exposure Guidelines (CEGLs) and Emergency Exposure Guidelines (EEGLs) to the U.S. Navy. Similarly, in 2008 the NASA Toxicology Group, in cooperation with another subcommittee of the National Research Council, revised Spacecraft Maximum Allowable Concentrations (SMACs). In addition, a 1000-day exposure limit was set for long-duration spaceflights to celestial bodies. Herein we examine the rationale for the levels proposed to the U.S. Navy and compare this rationale with the one used by NASA to set its limits. We include a critical review of previous studies on the effects of exposure to carbon dioxide and attempt to dissect out the challenges associated with setting fully-defensible limits. We also describe recent experiences with management of carbon dioxide aboard the International Space Station with 13 persons aboard. This includes the tandem operations of the Russian Vozduk and the U.S. Carbon Dioxide Removal System. A third removal system is present while the station is docked to the Shuttle spacecraft, so our experience includes the lithium hydroxide system aboard Shuttle for the removal of carbon dioxide. We discuss strategies for highly-efficient, regenerable removal of carbon

  9. Carbon Residence Times in Pedogenic Carbonate Pools

    Science.gov (United States)

    Monger, H.; Feng, Y.; Karnjanapiboonwang, A.

    2013-12-01

    Soil carbonate is a huge pool of terrestrial carbon that contains at least 930 to 940 Pg C and has influx rates on the order of 1 to 12 g CaCO3/m2/yr. Such large mass to flux ratios yield long mean residence times for carbon (e.g., 85,000 years)--assuming steady state. Like other global carbon pools, the soil carbonate pool has smaller sub-pools with higher influx rates and shorter mean residence times. For example, pedogenic carbonate in coppice dunes known to have formed since 1858 and carbonate formed on lithic artifacts in soils at archaeology sites suggests mean residence times can be as short as 120 years--again assuming steady state. Harder to assess are efflux rates as CO2 emissions or bicarbonate leaching. Some Bowen-ratio studies have nevertheless found evidence for CO2 emissions resulting from carbonate dissolution, and other studies have found evidence for bicarbonate leaching based on dissolution pipes through calcic horizons using soil morphology studies. Since an understanding of mean residence times are prerequisite for a better understanding of soil carbonate in the global carbon cycle, especially in a scenario of an expanding Aridosphere, more influx and efflux measurements are needed to evaluate the possibility of carbon sequestration by soil carbonate in hyperarid, arid, semiarid, or subhumid soils.

  10. Carbon dioxide sequestration by mineral carbonation

    NARCIS (Netherlands)

    Huijgen, W.J.J.

    2007-01-01

    The increasing atmospheric carbon dioxide (CO2) concentration, mainly caused by fossil fuel combustion, has lead to concerns about global warming. A possible technology that can contribute to the reduction of carbon dioxide emissions is CO2 sequestration by mineral carbonation. The basic concept beh

  11. A molecular organic carbon isotope record of Miocene climate changes

    NARCIS (Netherlands)

    Schoell, M.; Schouten, S.; Sinninghe Damsté, J.S.; Leeuw, J.W. de; Summons, R.E.

    1994-01-01

    The difference in carbon-13 (13C) contents of hopane and sterane biomarkers in the Monterey formation (Naples Beach, California) parallels the Miocene inorganic record of the change in 18O (δ18O), reflecting the Miocene evolution from a well-mixed to a highly stratified photic zone (upper 100 meters

  12. Carbon conversion and metabolic rate in two marine sponges

    NARCIS (Netherlands)

    Koopmans, M.; Van Rijswijk, P.; Martens, D.; Egorova-Zachernyuk, T.A.; Middelburg, J.J.; Wijffels, R.H.

    2011-01-01

    The carbon metabolism of two marine sponges, Haliclona oculata and Dysidea avara, has been studied using a 13C isotope pulse-chase approach. The sponges were fed 13C-labeled diatoms (Skeletonema costatum) for 8 h and they took up between 75 and 85%. At different times, sponges were sampled for total

  13. Nature of Reduced Carbon in Martian Meteorites

    Science.gov (United States)

    Gibson, Everett K., Jr.; McKay, D. S.; Thomas-Keprta, K. L.; Clemett, S. J.; White, L. M.

    2012-01-01

    Martian meteorites provide important information on the nature of reduced carbon components present on Mars throughout its history. The first in situ analyses for carbon on the surface of Mars by the Viking landers yielded disappointing results. With the recognition of Martian meteorites on Earth, investigations have shown carbon-bearing phases exist on Mars. Studies have yielded presence of reduced carbon, carbonates and inferred graphitic carbon phases. Samples ranging in age from the first approximately 4 Ga of Mars history [e.g. ALH84001] to nakhlites with a crystallization age of 1.3 Ga [e.g. Nakhla] with aqueous alteration processes occurring 0.5-0.7 Ga after crystallizaton. Shergottites demonstrate formation ages around 165-500 Ma with younger aqueous alterations events. Only a limited number of the Martian meteorites do not show evidence of significance terrestrial alterations. Selected areas within ALH84001, Nakhla, Yamato 000593 and possibly Tissint are suitable for study of their indigenous reduced carbon bearing phases. Nakhla possesses discrete, well-defined carbonaceous phases present within iddingsite alteration zones. Based upon both isotopic measurements and analysis of Nakhla's organic phases the presence of pre-terrestrial organics is now recognized. The reduced carbon-bearing phases appear to have been deposited during preterrestrial aqueous alteration events that produced clays. In addition, the microcrystalline layers of Nakhla's iddingsite have discrete units of salt crystals suggestive of evaporation processes. While we can only speculate on the origin of these unique carbonaceous structures, we note that the significance of such observations is that it may allow us to understand the role of Martian carbon as seen in the Martian meteorites with obvious implications for astrobiology and the pre-biotic evolution of Mars. In any case, our observations strongly suggest that reduced organic carbon exists as micrometer- size, discrete structures

  14. Carbon dioxide reducing processes; Koldioxidreducerande processer

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, Fredrik

    1999-12-01

    This thesis discusses different technologies to reduce or eliminate the carbon dioxide emissions, when a fossil fuel is used for energy production. Emission reduction can be accomplished by separating the carbon dioxide for storage or reuse. There are three different ways of doing the separation. The carbon dioxide can be separated before the combustion, the process can be designed so that the carbon dioxide can be separated without any energy consumption and costly systems or the carbon dioxide can be separated from the flue gas stream. Two different concepts of separating the carbon dioxide from a combined cycle are compared, from the performance and the economical point of view, with a standard natural gas fired combined cycle where no attempts are made to reduce the carbon dioxide emissions. One concept is to use absorption technologies to separate the carbon dioxide from the flue gas stream. The other concept is based on a semi-closed gas turbine cycle using carbon dioxide as working fluid and combustion with pure oxygen, generated in an air-separating unit. The calculations show that the efficiency (power) drop is smaller for the first concept than for the second, 8.7 % points compared to 13.7 % points, when power is produced. When both heat and power are produced, the relation concerning the efficiency (power) remains. Regarding the overall efficiency (heat and power) the opposite relation is present. A possible carbon dioxide tax must exceed 0.21 SEK/kg CO{sub 2} for it to be profitable to separate carbon dioxide with any of these technologies.

  15. Monitoring electron donor metabolism under variable electron acceptor conditions using 13C-labeled lactate

    Science.gov (United States)

    Bill, M.; Conrad, M. E.; Yang, L.; Beller, H. R.; Brodie, E. L.

    2010-12-01

    Three sets of flow-through columns constructed with aquifer sediment from Hanford (WA) were used to study reduction of Cr(VI) to poorly soluble Cr(III) under denitrifying, sulfate-reducing/fermentative, and iron-reducing conditions with lactate as the electron donor. In order to understand the relationship between electron donors and biomarkers, and to determine the differences in carbon isotope fractionation resulting from different microbial metabolic processes, we monitored the variation in carbon isotopes in dissolved inorganic carbon (DIC), in total organic carbon (TOC), and in lactate, acetate and propionate. The greatest enrichment in 13C in columns was observed under denitrifying conditions. The δ13C of DIC increased by ~1750 to ~2000‰ fifteen days after supplementation of natural abundance lactate with a 13C-labeled lactate tracer (for an influent δ13C of ~2250‰ for the lactate) indicating almost complete oxidation of the electron donor. The denitrifying columns were among the most active columns and had the highest cell counts and the denitrification rate was highly correlated with Cr(VI) reduction rate. δ13C values of DIC ranged from ~540 to ~1170‰ for iron-reducing conditions. The lower enrichment in iron columns was related to the lower biological activity observed with lower yields of RNA and cell numbers in the column effluents. The carbon isotope shift in the sulfate-reducing ~198 to ~1960‰ for sulfate-reducing conditions reflecting the lower levels of the lactate in these columns. Additionally, in two of the sulfate columns, almost complete fermentation of the lactate occurred, producing acetate and propionate with the labeled carbon signature, but relatively smaller amounts of inorganic carbon. For all electron-accepting conditions, TOC yielded similar δ13C values as lactate stock solutions. Differences in C use efficiency, metabolic rate or metabolic pathway contributed to the differing TOC δ13C to DIC δ13C ratios between treatments

  16. Payback time for soil carbon and sugar-cane ethanol

    OpenAIRE

    Mello, F. F. C.; Cerri, C. E. P.,; Davies, C. A.; Holbrook, N M; K. Paustian; Maia, S. M. F.,; Galdos, M. V.,; BERNOUX, MARTIAL,; Cerri, C. C.,

    2014-01-01

    Thee effects of land-use change (LUC) on soil carbon (C) balance has to be taken into account in calculating the CO2 savings attributed to bioenergy crops(1-3). There have been few direct fieldmeasurements that quantify thee effects of LUC on soil C for the most common land-use transitions into sugar cane in Brazil, the world's largest producer(1-3). We quantified the C balance for LUC as a net loss (carbon debt) or net gain (carbon credit) in soil C for sugar-cane expansion in Brazil. We sam...

  17. PS: 10$^{13}$ ppp

    CERN Multimedia

    1975-01-01

    An intensity of 10$^{13}$ protons per pulse was reached in the proton synchrotron (PS) in a test run held on 10 December. This test was a repeat of the one held on 7 November (see December COURIER, p. 423), finishing the year with a new record and achieving the required intensity set out in the PS improvement programme.

  18. 13.LIVER AND BILIARY SYSTEM

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    13.2.Liver cirrhosis and fatty liver930691 Experimental observation of high portal ve-nous resistance in dogs.WANG Weimin,etal.Dept Surg,1st Teach Hosp,Beijing Med Univ,Beijing,100034 Natl Med J China 1993;73(6):349—351.To study the relationship between portal resistanceand formation of portal hypertension,we designed a

  19. DSS 13 microprocessor antenna controller

    Science.gov (United States)

    Gosline, R. M.

    1988-01-01

    A microprocessor-based antenna monitor and control system with multiple CPUs are described. The system was developed as part of the unattended station project for DSS 13 and was enhanced for use by the SETI project. The operational features, hardware, and software designs are described, and a discussion is provided of the major problems encountered.

  20. "Fab 13": The Learning Factory.

    Science.gov (United States)

    Crooks, Steven M.; Eucker, Tom R.

    2001-01-01

    Describes how situated learning theory was employed in the design of Fab 13, a four-day simulation-based learning experience for manufacturing professionals at Intel Corporation. Presents a conceptual framework for understanding situated learning and discusses context, content, anchored instruction, facilitation, scaffolding, collaborating,…

  1. Soil Organic Carbon and Labile Carbon Along a Precipitation Gradient and Their Responses to Some Environmental Changes

    Institute of Scientific and Technical Information of China (English)

    WANG Shu-Ping; ZHOU Guang-Sheng; GAO Su-Hua; GUO Jian-Ping

    2005-01-01

    Based on data from a field survey in 2001 along the Northeast China transect (NECT), a precipitation gradient,and a short-term simulation experiment under ambient CO2 of 350 μmol mol-1 and doubled CO2 of 700 μmol mol-1 with different soil moisture contents of 30%-45%, 45%-60%, and 60%-80% soil water holding capacity, the distribution of soil organic carbon and labile carbon along the NECT, their relationships with precipitation and their responses to CO2 enrichment and soil moisture changes were analyzed. The results indicated that the soil labile carbon along the gradient was significantly related to soil organic carbon (r = 0.993, P < 0.001). The soil labile carbon decreased more rapidly with depth than organic carbon. The soil organic and labile carbon along the gradient decreased with decrease in longitude in both the topsoils and subsoils, and the coefficient of variation for the labile carbon was greater than that for the organic carbon. Both the soil organic carbon and labile carbon had significant linear relationships with precipitation,with the correlation coefficient of soil organic carbon being lower (0.677 at P <0.001) than that of soil labile carbon (0.712 at P < 0.001). In the simulation experiment with doubled and ambient CO2 and different moisture contents, the coefficient of variation for soil organic carbon was only 1.3%, while for soil labile carbon it was 29.7%. With doubled CO2 concentration (700μmol mol-1), soil labile carbon decreased significantly at 45% to 60% of soil moisture content. These indicated that soil labile carbon was relatively more sensitive to environmental changes than soil organic carbon.

  2. Carbon isotopes and water use efficiency in C4 plants.

    Science.gov (United States)

    Ellsworth, Patrick Z; Cousins, Asaph B

    2016-06-01

    Drought is a major agricultural problem worldwide. Therefore, selection for increased water use efficiency (WUE) in food and biofuel crop species will be an important trait in plant breeding programs. The leaf carbon isotopic composition (δ(13)Cleaf) has been suggested to serve as a rapid and effective high throughput phenotyping method for WUE in both C3 and C4 species. This is because WUE, leaf carbon discrimination (Δ(13)Cleaf), and δ(13)Cleaf are correlated through their relationships with intercellular to ambient CO2 partial pressures (Ci/Ca). However, in C4 plants, changing environmental conditions may influence photosynthetic efficiency (bundle-sheath leakiness) and post-photosynthetic fractionation that will potentially alter the relationship between δ(13)Cleaf and Ci/Ca. Here we discuss how these factors influence the relationship between δ(13)Cleaf and WUE, and the potential of using δ(13)Cleaf as a meaningful proxy for WUE.

  3. A gas extraction system for the measurement of carbon dioxide and carbon isotopes in polar ice cores

    International Nuclear Information System (INIS)

    Knowledge of the distribution of Carbon 13 in the glacial ocean, atmosphere, and biosphere is important to understanding the causes of glacial/interglacial changes in atmospheric CO2 levels. Although deep-ocean Carbon 13 values are well-constrained by ocean sediment studies, model-based estimates of changes in the carbon budget for the biosphere and atmosphere vary considerably. Measurement of atmospheric Carbon 13 in CO2 in ice cores will provide additional constraints on this budget and will also improve estimates of changes in the ocean surface layer Carbon 13. Direct measurement of ancient atmospheric Carbon 13 can be accomplished through polar ice core studies. A gas-extraction line for ice cores has been designed and constructed with particular attention to the specific difficulties of measuring Carbon 13 in CO2. The ice is shaved, rather than crushed, to minimize fractionation effects resulting from gas travel through long air-paths in the ice. To minimize the risk of isotopic contamination and fractionation within the vacuum line, CO2 is separated immediately from the air; the CO2 concentration is then measured by a simple pressure/volume comparison rather than by gas chromatography or spectroscopy. Measurements from Greenland ice core samples give an average value of 280±2 ppM CO2 for preindustrial samples, demonstrating that the extraction system gives accurate, precise determinations Of CO2 concentrations. Measurement of δ13C from polar ice samples has not been achieved at this time. However, results on standard air samples demonstrate a precision for δ13C of less than 0.2 per-thousand at the 95% confidence level

  4. RAPID CARBON- ISOTOPE NEGATIVE EXCURSION EVENTS DURING THE PENULTIMATE DEGLACIATION IN WESTERN PACIFIC MARGINAL SEA AREAS AND THEIR ORIGINS%倒数第二次冰消期西太平洋边缘海地区δ13C值快速负偏事件及其成因

    Institute of Scientific and Technical Information of China (English)

    卢苗安; 马宗晋; 陈木宏; 隋淑珍

    2002-01-01

    南海地区NS93-5柱样在倒数第二次冰消期出现浮游有孔虫壳体δ13C值快速负偏(幅度达1.7‰),来自世界各大洋的深海记录和来自北美洲、欧洲、中国等地的陆相记录均指示当时存在大体同步的δ13C值变化表明:倒数第二次冰消期时存在一次全球尺度的δ13C值快速负偏事件,δ13C值在约0.131 MaB.P.达到负偏极值,其负偏幅度多在0.5‰~1‰,局部地区负偏幅度>2‰.当时δ13C值的变化呈突然快速负偏、而后指数曲线状缓慢回返,而且δ13C值的突然快速负偏对应大气甲烷浓度快速增加、全球快速升温及冰盖开始快速消融等特点,表明大洋环流格局的变化引起海底天然气水合物突然失稳分解并释放大量甲烷可能是其直接成因,释放地点推测是在西太平洋边缘海地区.

  5. Site-specific 13C content by quantitative isotopic 13C Nuclear Magnetic Resonance spectrometry: A pilot inter-laboratory study

    International Nuclear Information System (INIS)

    Graphical abstract: -- Highlights: •First ring test on isotopic 13C NMR spectrometry. •Evaluation of the intra- and inter-variability of the NMR spectrometers used. •Definition of a protocol for qualification of the performance of the spectrometer. -- Abstract: Isotopic 13C NMR spectrometry, which is able to measure intra-molecular 13C composition, is of emerging demand because of the new information provided by the 13C site-specific content of a given molecule. A systematic evaluation of instrumental behaviour is of importance to envisage isotopic 13C NMR as a routine tool. This paper describes the first collaborative study of intra-molecular 13C composition by NMR. The main goals of the ring test were to establish intra- and inter-variability of the spectrometer response. Eight instruments with different configuration were retained for the exercise on the basis of a qualification test. Reproducibility at the natural abundance of isotopic 13C NMR was then assessed on vanillin from three different origins associated with specific δ13Ci profiles. The standard deviation was, on average, between 0.9 and 1.2‰ for intra-variability. The highest standard deviation for inter-variability was 2.1‰. This is significantly higher than the internal precision but could be considered good in respect of a first ring test on a new analytical method. The standard deviation of δ13Ci in vanillin was not homogeneous over the eight carbons, with no trend either for the carbon position or for the configuration of the spectrometer. However, since the repeatability for each instrument was satisfactory, correction factors for each carbon in vanillin could be calculated to harmonize the results

  6. Site-specific {sup 13}C content by quantitative isotopic {sup 13}C Nuclear Magnetic Resonance spectrometry: A pilot inter-laboratory study

    Energy Technology Data Exchange (ETDEWEB)

    Chaintreau, Alain; Fieber, Wolfgang; Sommer, Horst [Firmenich SA, Corporate R and D Division, P.O. Box 239, 1211 Geneva 8 (Switzerland); Gilbert, Alexis; Yamada, Keita [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Yoshida, Naohiro [Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503 (Japan); Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Pagelot, Alain [Bruker Biospin SAS, 34 rue de l‘Industrie, 67166 Wissembourg Cedex (France); Moskau, Detlef; Moreno, Aitor [Bruker Biospin AG, Industriestrasse 26, 8117 Fällanden (Switzerland); Schleucher, Jürgen [Department of Medical Biochemistry and Biophysics, Umeå University, S-90187 Umeå (Sweden); Reniero, Fabiano; Holland, Margaret; Guillou, Claude [European Commission, Joint Research Centre – Institute for Health and Consumer Protection, via E. Fermi 2749, I-21027 Ispra (Italy); Silvestre, Virginie; Akoka, Serge [EBSI team, Interdisciplinary Chemistry: Synthesis, Analysis, Modelling (CEISAM), University of Nantes-CNRS UMR 6230, 2 rue de la Houssinière, BP 92208, F-44322 Nantes cedex 3 (France); Remaud, Gérald S., E-mail: gerald.remaud@univ-nantes.fr [EBSI team, Interdisciplinary Chemistry: Synthesis, Analysis, Modelling (CEISAM), University of Nantes-CNRS UMR 6230, 2 rue de la Houssinière, BP 92208, F-44322 Nantes cedex 3 (France)

    2013-07-25

    Graphical abstract: -- Highlights: •First ring test on isotopic {sup 13}C NMR spectrometry. •Evaluation of the intra- and inter-variability of the NMR spectrometers used. •Definition of a protocol for qualification of the performance of the spectrometer. -- Abstract: Isotopic {sup 13}C NMR spectrometry, which is able to measure intra-molecular {sup 13}C composition, is of emerging demand because of the new information provided by the {sup 13}C site-specific content of a given molecule. A systematic evaluation of instrumental behaviour is of importance to envisage isotopic {sup 13}C NMR as a routine tool. This paper describes the first collaborative study of intra-molecular {sup 13}C composition by NMR. The main goals of the ring test were to establish intra- and inter-variability of the spectrometer response. Eight instruments with different configuration were retained for the exercise on the basis of a qualification test. Reproducibility at the natural abundance of isotopic {sup 13}C NMR was then assessed on vanillin from three different origins associated with specific δ{sup 13}C{sub i} profiles. The standard deviation was, on average, between 0.9 and 1.2‰ for intra-variability. The highest standard deviation for inter-variability was 2.1‰. This is significantly higher than the internal precision but could be considered good in respect of a first ring test on a new analytical method. The standard deviation of δ{sup 13}C{sub i} in vanillin was not homogeneous over the eight carbons, with no trend either for the carbon position or for the configuration of the spectrometer. However, since the repeatability for each instrument was satisfactory, correction factors for each carbon in vanillin could be calculated to harmonize the results.

  7. Microwave assisted synthesis of core–shell LiFe{sub 1/3}Mn{sub 1/3}Co{sub 1/3}PO{sub 4}/C nanocomposite cathode for high-performance lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huanhuan [Automotive Engineering Research Institute, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Li, Yunxing [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China); Chen, Long; Jiang, Haobin [Automotive Engineering Research Institute, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Wei, Jinping [Institute of New Energy Material Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071 (China); Wang, Hongbo [China Aviation Lithium Battery Co. Ltd., Luoyang 471003 (China); Wang, Yaping, E-mail: wangyaping@ujs.edu.cn [School of Material Science and Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2014-12-25

    Highlights: • We firstly report a fast microwave heating way to prepare LiFe{sub 1/3}Mn{sub 1/3}Co{sub 1/3}PO{sub 4}/C. • The reversible discharge capacity of LiFe{sub 1/3}Mn{sub 1/3}Co{sub 1/3}PO{sub 4}/C is about 169 mA h g{sup −1}. • LiFe{sub 1/3}Mn{sub 1/3}Co{sub 1/3}PO{sub 4}/C nanocomposite elucidates excellent cyclic stability. • LiFe{sub 1/3}Mn{sub 1/3}Co{sub 1/3}PO{sub 4}/C nanocomposite exhibits attractive rate capability. - Abstract: A microwave assisted method is developed for synthesizing pure LiFe{sub 1/3}Mn{sub 1/3}Co{sub 1/3}PO{sub 4} and LiFe{sub 1/3}Mn{sub 1/3}Co{sub 1/3}PO{sub 4}/C nanocomposite. Olivine LiFe{sub 1/3}Mn{sub 1/3}Co{sub 1/3}PO{sub 4} coated with uniform amorphous carbon film of ∼5 nm in thickness with an average size of ∼200 nm is successfully obtained. Compared with pure LiFe{sub 1/3}Mn{sub 1/3}Co{sub 1/3}PO{sub 4}, LiFe{sub 1/3}Mn{sub 1/3}Co{sub 1/3}PO{sub 4}/C composite presents enhanced electrochemical Li-ion intercalation performances. It exhibits a high discharge capacity of 169 mA h g{sup −1} at 0.1 C (theoretical capacity is 170 mA h g{sup −1}). The capacity retention is 99% after 30 cycles. Furthermore, the capacities are still retained 101 at 5 C and 76 mA h g{sup −1} and 20 C, respectively. Carbon coating can significantly improve the Li-ion diffusion, the reversibility of lithium extraction/insertion and electrical conductivity of LiCo{sub 1/3}Mn{sub 1/3}Fe{sub 1/3}PO{sub 4}.

  8. Understanding Oscillations of the Geological Carbon Cycle

    Science.gov (United States)

    Bachan, A.; Payne, J.; Saltzman, M.; Thomas, E.; Kump, L. R.

    2015-12-01

    The geological cycling of carbon ties together the sedimentary reservoirs with Earth's biosphere and climate. Perturbations to this coupled system are recorded in the carbon isotopic composition of marine limestones (δ13Ccarb). In the past decade numerous intervals of large-amplitude oscillations in δ13Ccarbhave been identified, with a variety of explanations proposed for individual events. Yet, when data spanning the past ~1 Ga are viewed as a whole, it is clear that large-scale oscillations are a common feature of the carbon isotopic record. The ubiquity of oscillations suggests that they may share a single origin rather than having many disparate causes. Here we present a simple two-box model of the geological carbon cycle exhibiting such oscillations: the Carbon-Cycle Oscillator. Analogous to a damped mass-spring system, the burial fluxes of carbonate and phosphate in the model act like friction, whereas P supply and Corg burial act like the restoring force of the spring. When the sensitivities of P supply and Corg burial to the sizes of the C and P reservoirs, respectively, increase above a critical threshold, the model exhibits oscillations upon perturbation. We suggest that intervals with large oscillations in bulk ocean-atmosphere δ13C are characterized by a greater sensitivity of the C:P burial-ratio and ALK:P weathering-ratio to the state of the ocean-atmosphere carbon pool. In addition, moderating of the slope of that dependence in general can account for the observed decrease in the amplitude of oscillations over the past billion years. We hypothesize that factors with a unidirectional trajectory during Earth history (e.g. increased oxygenation of the deep ocean, and evolution of pelagic calcifiers) led to a decrease in the Earth System's gain and increase in its resilience over geologic time, even in the face of continuing perturbations from the solid Earth and extraterrestrial realms.

  9. Recycling and fluxes of carbon gases in a stratified boreal lake following experimental carbon addition

    Directory of Open Access Journals (Sweden)

    H. Nykänen

    2014-11-01

    Full Text Available Partly anoxic stratified humic lakes are important sources of methane (CH4 and carbon dioxide (CO2 to the atmosphere. We followed the fate of CH4 and CO2 in a small boreal stratified lake, Alinen Mustajärvi, during 2007–2009. In 2008 and 2009 the lake received additions of dissolved organic carbon (DOC with stable carbon isotope ratio (δ13C around 16‰ higher than that of local allochthonous DOC. Carbon transformations in the water column were studied by measurements of δ13C of CH4 and of the dissolved inorganic carbon (DIC. Furthermore, CH4 and CO2 production, consumption and emissions were estimated. Methane oxidation was estimated by a diffusion gradient method. The amount, location and δ13C of CH4-derived biomass and CO2 in the water column were estimated from the CH4 oxidation pattern and from measured δ13C of CH4. Release of CH4 and CO2 to the atmosphere increased during the study. Methane production and almost total consumption of CH4 mostly in the anoxic water layers, was equivalent to the input from primary production (PP. δ13C of CH4 and DIC showed that hydrogenotrophic methanogenesis was the main source of CH4 to the water column, and methanogenic processes in general were the reasons for the 13C-enriched DIC at the lake bottom. CH4 and DIC became further 13C-enriched in the anoxic layer of the water column during the years of DOC addition. Even gradient diffusion measurements showed active CH4 oxidation in the anoxic portion of the water column; there was no clear 13C-enrichment of CH4 as generally used to estimate CH4 oxidation strength. Increase in δ13C-CH4 was clear between the metalimnion and epilimnion where the concentration of dissolved CH4 and the oxidation of CH4 were small. Thus, 13C-enrichment of CH4 does not reveal the main location of methanotrophy in a lake having simultaneous anaerobic and aerobic oxidation of CH4. Overall the results show that organic carbon is processed efficiently to CH4 and CO2 and

  10. Recent applications of /sup 13/C NMR spectroscopy to biological systems

    Energy Technology Data Exchange (ETDEWEB)

    Matwiyoff, N.A.

    1981-01-01

    Carbon-13 nuclear magnetic resonance (NMR) spectroscopy, in conjunction with carbon-13 labelling, is a powerful new analytical technique for the study of metabolic pathways and structural components in intact organelles, cells, and tissues. The technique can provide, rapidly and non-destructively, unique information about: the architecture and dynamics of structural components; the nature of the intracellular environment; and metabolic pathways and relative fluxes of individual carbon atoms. With the aid of results recently obtained by us and those reported by a number of other laboratories, the problems and potentialities of the technique will be reviewed with emphasis on: the viscosities of intracellular fluids; the structure and dynamics of the components of membranes; and the primary and secondary metabolic pathways of carbon in microorganisms, plants, and mammalian cells in culture.

  11. Solid State NMR Study of Polystyrene Nanolatex Particles(I) 13C Spin-Lattice Relaxation Time

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    13C spin-lattice relaxtion times for polystyrene nanolatex particles have been investigated. It was found that the dramatic increase at 80℃ annealing temperature is well below the Tg temperature of bulk polystyrene, the increase of relaxation time of aromatic carbons is larger than that of for aliphatic carbons at transition annealing temperature.

  12. Carbon nanoparticles trapped in vivo-similar to carbon nanotubes in time-dependent biodistribution.

    Science.gov (United States)

    Liu, Jia-Hui; Yang, Sheng-Tao; Wang, Xin; Wang, Haifang; Liu, Yamin; Luo, Pengju G; Liu, Yuanfang; Sun, Ya-Ping

    2014-08-27

    Carbon nanoparticles are in all of the carbon nanomaterials that are presently widely pursued for potential bioapplications, but their in vivo biodistribution-related properties are largely unknown. In this work, highly (13)C-enriched carbon nanoparticles were prepared to allow their quantification in biological samples by using isotope-ratio mass spectroscopy. The in vivo biodistribution results are presented and discussed, and also compared with those of the aqueous suspended carbon nanotubes reported previously. The distribution profile and time dependencies are largely similar between the nanoparticles and nanotubes, with results on both suggesting meaningful accumulation in some major organs over an extended period of time. Therefore, the surface modification of carbon nanoparticles, preferably the chemical functionalization of the nanoparticles with biocompatible molecules or species, is desirable or necessary in the pursuit of these nanomaterials for various bioapplications.

  13. Decarboxylation of [1-(13)C]leucine by hydroxyl radicals.

    Science.gov (United States)

    Guitton, J; Tinardon, F; Lamrini, R; Lacan, P; Desage, M; Francina, A

    1998-08-01

    The decarboxylation of [1-13C]leucine by hydroxyl radicals was studied by using gas chromatography-isotope ratio mass spectrometry (GC-IRMS) to follow the production of 13CO2. A Fenton reaction between a (Fe2+)-porphyrin and hydrogen peroxide under aerobic conditions yielded hydroxyl radicals. The decarboxylation rates (VLeu) measured by GC-IRMS were dependent on [1-13C]leucine, porphyrin and hydrogen peroxide concentrations. The 13CO2 production was also dependent on bicarbonate or carbon dioxide added in the reaction medium. Bicarbonate facilitated 13CO2 production, whereas carbon dioxide decreased 13CO2 production. Proton effects on some decarboxylation intermediates could explain bicarbonate or carbon dioxide effects. No effect on the decarboxylation rates was observed in the presence of the classical hydroxyl radicals scavengers dimethyl sulfoxide, mannitol, and uric acid. By contrast, a competitive effect with a strong decrease of the decarboxylation rates was observed in the presence of various amino acids: unlabeled leucine, valine, phenylalanine, cysteine, lysine, and histidine. Two reaction products, methyl-4 oxo-2 pentanoate and methyl-3 butanoate were identified by gas chromatography-mass spectrometry in comparison with standards. The present results suggest that [1-13C]leucine can participate to the coordination sphere of (Fe2+)-porphyrin, with a caged process of the hydroxyl radicals which cannot get out of the coordination sphere. PMID:9680180

  14. From carbon nanotubes to carbon atomic chains

    Science.gov (United States)

    Casillas García, Gilberto; Zhang, Weijia; José-Yacamán, Miguel

    2010-10-01

    Carbyne is a linear allotrope of carbon. It is formed by a linear arrangement of carbon atoms with sp-hybridization. We present a reliable and reproducible experiment to obtain these carbon atomic chains using few-layer-graphene (FLG) sheets and a HRTEM. First the FLG sheets were synthesized from worm-like exfoliated graphite and then drop-casted on a lacey-carbon copper grid. Once in the TEM, two holes are opened near each other in a FLG sheet by focusing the electron beam into a small spot. Due to the radiation, the carbon atoms rearrange themselves between the two holes and form carbon fibers. The beam is concentrated on the carbon fibers in order excite the atoms and induce a tension until multi wall carbon nanotube (MWCNT) is formed. As the radiation continues the MWCNT breaks down until there is only a single wall carbon nanotube (SWCNT). Then, when the SWCNT breaks, an atomic carbon chain is formed, lasts for several seconds under the radiation and finally breaks. This demonstrates the stability of this carbon structure.

  15. 49 CFR 605.13 - Tripper service.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Tripper service. 605.13 Section 605.13..., DEPARTMENT OF TRANSPORTATION SCHOOL BUS OPERATIONS School Bus Agreements § 605.13 Tripper service. The... tripper service....

  16. Late Carboniferous to Late Permian carbon isotope stratigraphy

    DEFF Research Database (Denmark)

    Buggisch, Werner; Krainer, Karl; Schaffhauser, Maria;

    2015-01-01

    . Negative δ13C excursions are related to low-stand deposits and caused by diagenetic processes during subaerial exposure. The comparison with δ13C records from other parts of the world demonstrate that δ13C values are high in most unaltered samples, an overall negative trend during the Permian, as recently...... published, is not obvious and negative excursions related to changes in the carbon isotope composition of the global oceanic carbon pool cannot be confirmed, except for the Permian–Triassic boundary interval....

  17. Study on Modern Plant C-13 in Western China and Its Significance

    Institute of Scientific and Technical Information of China (English)

    张成君; 陈发虎; 金明

    2003-01-01

    Organic carbon isotopic composition (δ 13 C) is one of the important proxies in paleoenvironment studies. In this paper modern plant δ 13C in the arid areas of China and Tibetan Plateau is studied. It is found that most terrestrial plant species in western China are C3 plants with δ 13C values ranging from -32.6‰ to -23.2‰ and only few species are C4 plants with δ