WorldWideScience

Sample records for carbon 13

  1. Synthesis of carbon-13-labeled tetradecanoic acids.

    Science.gov (United States)

    Sparrow, J T; Patel, K M; Morrisett, J D

    1983-07-01

    The synthesis of tetradecanoic acid enriched with 13C at carbons 1, 3, or 6 is described. The label at the carbonyl carbon was introduced by treating 1-bromotridecane with K13CN (90% enriched) to form the 13C-labeled nitrile, which upon hydrolysis yielded the desired acid. The [3-13C]tetradecanoic acid was synthesized by alkylation of diethyl sodio-malonate with [1-13C]1-bromododecane; the acid was obtained upon saponification and decarboxylation. The label at the 6 position was introduced by coupling the appropriately labeled alkylcadmium chloride with the half acid chloride methyl ester of the appropriate dioic acid, giving the corresponding oxo fatty acid ester. Formation of the tosylhydrazone of the oxo-ester followed by reduction with sodium cyanoborohydride gave the labeled methyl tetradecanoate which, upon hydrolysis, yielded the desired tetradecanoic acid. All tetradecanoic acids were identical to unlabeled analogs as evaluated by gas-liquid chromatography and infrared or NMR spectroscopy. These labeled fatty acids were used subsequently to prepare the correspondingly labeled diacyl phosphatidylcholines. PMID:6631228

  2. Geometric effects on carbon-13 chemical shifts

    International Nuclear Information System (INIS)

    In the course of our investigations on carbon-13 chemical shifts of tetracyclic dodecanes, we managed to show that a large number of chemical shift differences between members of the series and models provided by bicyclic analogs could be attributed to steric effects. There are examples, however, where this is clearly not the case. In order to investigate apparent anomalies we calculated structures of interest and looked into the relationships between molecular geometry and chemical shifts. As the assignment of some of the key structures in these analysis were made by comparison with model compounds and crucial experiments that could remove ambiguities were missing, we prepared and interpreted two spectra which are presented

  3. Selective carbon 13 enrichment of side chain carbons of ginkgo lignin traced by carbon 13 nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Although carbon 13 nuclear magnetic resonance spectroscopy (13C-NMR) is widely used in lignin structural studies, serious difficulties are encountered in the assignments of 13C signals because of their extensive overlaps resulting from the complex structure of lignin and of delicate detection of minor structures. To overcome these difficulties, specifically 13C-enriched precursors of lignin biosynthesis, coniferin-[side chain-β-13C] and coniferin-[side chain-γ-13C], were administered to growing stems of ginkgo (Ginkgo biloba). The NMR analysis of the milled wood lignins isolated from the newly formed xylem showed that selective enrichment of specific carbons of protolignin in the cell wall was achieved without seriously disturbing the lignin biosynthesis. The presence of saturated methylene side chains in the protolignin was shown for the first time by this selective enrichment technique in combination with NMR analysis. (authors). 23 refs., 3 figs., 1 tab

  4. Selective carbon 13 enrichment of side chain carbons of ginkgo lignin traced by carbon 13 nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Y. (Nagoya Univ. (Japan). Faculty of Agriculture); Robert, D.R. (CEA Centre d' Etudes de Grenoble, 38 (France). Dept. de Recherche Fondamentale sur la Matiere Condensee); Terashima, N. (Forest Products Lab., Madison, WI (United States))

    Although carbon 13 nuclear magnetic resonance spectroscopy ([sup 13]C-NMR) is widely used in lignin structural studies, serious difficulties are encountered in the assignments of [sup 13]C signals because of their extensive overlaps resulting from the complex structure of lignin and of delicate detection of minor structures. To overcome these difficulties, specifically [sup 13]C-enriched precursors of lignin biosynthesis, coniferin-[side chain-[beta]-[sup 13]C] and coniferin-[side chain-[gamma]-[sup 13]C], were administered to growing stems of ginkgo (Ginkgo biloba). The NMR analysis of the milled wood lignins isolated from the newly formed xylem showed that selective enrichment of specific carbons of protolignin in the cell wall was achieved without seriously disturbing the lignin biosynthesis. The presence of saturated methylene side chains in the protolignin was shown for the first time by this selective enrichment technique in combination with NMR analysis. (authors). 23 refs., 3 figs., 1 tab.

  5. Coastal climate reflected in carbon-13/carbon-12 ratio of organic carbon in varved sediment from Santa Barbara basin

    OpenAIRE

    Schimmelmann, Arndt; Tegner, Mia J.

    1991-01-01

    A 1844-1987 time-series of carbon stable isotope ratios from dated sedimentary total organic carbon from the center of the Santa Barbara basin is compared with historical climate and oceanographic records. Carbon derived from carbon-13-depleted phytoplankton and carbon-13-enriched kelp appear responsible for a large part of the isotopic variance in sedimentary total organic carbon. El Niño/Southern Oscillation events are recorded by the isotopic response of marine organic carbon in sediments.

  6. Suitable activated carbon-13 tracer techniques

    International Nuclear Information System (INIS)

    Feasibility and applicability studies of the proton induced gamma ray emission (PIGE) have been performed. The graphite was firstly bombarded at various proton energies to determine gamma ray yield (and, thus, sensitivities) for the reaction of interest. The accuracy for the determination of 13C abundance was checked, and the precision with which this value and ratios 13C/12C may be obtained was established by repetitive analysis samples. The performance of different standards in this determination was assessed. The mathematical treatment was developed for the determination of 13C abundance in tracer studies, and to derive the equations that govern this method of analysis from first principles, to arrive finally at a simple expression by virtue of the observed regularities. The system was calibrated by measuring the gamma ray yield form the 12C (p, γ)13N and 13C(p,γ)14N reaction as a function of known 13C enrichment. Using this experimentally determined calibration curve, unknown materials can be assayed. This technique is applicable to the analysis of samples with 13C enrichments between 0.1% and 90%. The samples of human breath natural samples were analyzed against graphite and Cylinder CO2 standards. Relative standard deviations were 13C abundance, an increase in 13C per cent isotopic abundance from the natural 1.11% (average) to only 1.39% may be ascertained. Finally, PIGE is compared with more classical techniques for analysis of 13C tracer experiments. Ease and speed are important advantages of this technique over mass spectrometry, and its error is compatible with the natural variation of biological results. (9 refs., 11 figs., 9 tabs.)

  7. Carbon-13 NMR spectroscopy of biological systems

    CERN Document Server

    Beckmann, Nicolau

    1995-01-01

    This book is intended to provide an in-depth understanding of 13C NMR as a tool in biological research. 13C NMR has provided unique information concerning complex biological systems, from proteins and nucleic acids to animals and humans. The subjects addressed include multidimensional heteronuclear techniques for structural studies of molecules in the liquid and solid states, the investigation of interactions in model membranes, the elucidation of metabolic pathwaysin vitro and in vivo on animals, and noninvasive metabolic studies performed on humans. The book is a unique mix of NMR methods and biological applications which makes it a convenient reference for those interested in research in this interdisciplinary area of physics, chemistry, biology, and medicine.Key Features* An interdisciplinary text with emphasis on both 13C NMR methodology and the relevant biological and biomedical issues* State-of-the-art 13C NMR techniques are described; Whenever possible, their advantages over other approaches are empha...

  8. Carbon-13 NMR studies of liquid crystals

    International Nuclear Information System (INIS)

    High resolution, proton decoupled 13C nmr are observed for a series of neat nematic liquid crystals, the p-alkoxyazoxybenzenes, and a smectic-A liquid crystal, diethylazoxydibenzoate in a magnetic field of 23 kG. The (uniaxial) order parameters S = less than P2(costheta) greater than are found to be about 0.4 and 0.9 for the nematic and smectic-A phase respectively at the clearing points. The order parameter increases with decreasing temperature in the nematic phase but is constant, or nearly so, with temperature in the smectic-A phase. In the nematic series studied, the ordering exhibits an even-odd alternation along the series and qualitative agreement with a recent theory due to Marcelja is found. In both phases, the spectra show that the molecule rotates rapidly about its long axis. Tentative conclusions about molecular conformational motion and 14N spin relaxation are presented for both nematic and smectic-A phases. In the smectic-A phase, the sample is rotated about an axis perpendicular to H0 and the resulting spectra are dicusssed. The theory of observed chemical shifts in liquid crystals is discussed and equations are derived which relate the nmr spectra of liquid-crystals to the order parameters. A model for the smectic-C phase due to Luz and Meiboom and Doane is described and lineshapes are determined on the basis of this model for special cases. The dependence of the order parameters on the molecular potential which give rise to the various degrees of order in the different liquid crystalline phases is examined. To a good approximation the functional dependence of the order parameters on the molecular potential is shown to be a simple one in the limit of small tilt angle in the smectic-C phase

  9. Anomalous 13C enrichment in modern marine organic carbon

    Science.gov (United States)

    Arthur, M.A.; Dean, W.E.; Claypool, G.E.

    1985-01-01

    Marine organic carbon is heavier isotopically (13C enriched) than most land-plant or terrestrial organic C1. Accordingly, ??13C values of organic C in modern marine sediments are routinely interpreted in terms of the relative proportions of marine and terrestrial sources of the preserved organic matter2,3. When independent geochemical techniques are used to evaluate the source of organic matter in Cretaceous or older rocks, those rocks containing mostly marine organic C are found typically to have lighter (more-negative) ??13C values than rocks containing mostly terrestrial organic C. Here we conclude that marine photosynthesis in mid-Cretaceous and earlier oceans generally resulted in a greater fractionation of C isotopes and produced organic C having lighter ??13C values. Modern marine photosynthesis may be occurring under unusual geological conditions (higher oceanic primary production rates, lower PCO2) that limit dissolved CO2 availability and minimize carbon isotope fractionation4. ?? 1985 Nature Publishing Group.

  10. Soil carbon inventories and carbon-13 on a latitude transect in Siberia

    Czech Academy of Sciences Publication Activity Database

    Bird, M. I.; Šantrůčková, Hana; Arneth, A.; Grigoriev, S.; Gleixner, G.; Kalaschnikov, Y. N.; Lloyd, J.; Schulze, E. D.

    2002-01-01

    Roč. 5, 54B (2002), s. 631-641. ISSN 0280-6509 Institutional research plan: CEZ:AV0Z6066911 Keywords : soil carbon inventories * carbon-13 * Siberia Subject RIV: EH - Ecology, Behaviour Impact factor: 3.196, year: 2002

  11. PEDOGENIC CARBONATE δ13C AND ENVIRONMENTAL PRECIPITATION CONDITIONS

    Directory of Open Access Journals (Sweden)

    Marcella Catoni

    2011-12-01

    Full Text Available Carbon isotopic analysis is a useful tool for investigating paleoenvironments, as the pedogenic carbonate δ13C is related to δ13CSOM and to the proportions of C3/C4 plants. In this work we interpreted the paleoenvironmental conditions at the time of carbonate precipitation in soils formed under different climates and during different geological ages. Samples were taken from a Bk (PR1, Holocene and from two Bkm horizons (PR2 and PR3, Pleistocene. When the mean δ13C plant values and the most plausible paleotemperatures were used in the evaluation, PR1 showed a lower percentage of C4 plants (48% than Pleistocene soils (~53%, in agreement with paleoclimate changes. When instead the δ13C values of current plants were used for PR1, C4 plants ranged from 59 (12°C to 66% (18°C, suggesting two possible interpretations: either plant species changed during the Holocene, or the plant mean values normally used in the literature are not suitable for Pleistocene reconstructions

  12. Carbon-13 NMR characterization of actinyl(VI) carbonate complexes in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D.L.; Hobart, D.E.; Palmer, P.D. [Los Alamos National Lab., NM (United States); Sullivan, J.C. [Argonne National Lab., IL (United States); Stout, B.E. [Cincinnati Univ., OH (United States). Dept. of Chemistry

    1992-07-01

    The uranyl(VI) carbonate system has been re-examined using {sup 13}C NMR of 99.9% {sup 13}C-enriched U{sup VI}O{sub 2} ({sup 13}CO{sub 3}){sub 3}{sup 4{minus}} in millimolar concentrations. By careful control of carbonate ion concentration, we have confirmed the existence of the trimer, and observed dynamic equilibrium between the monomer and the timer. In addition, the ligand exchange reaction between free and coordinated carbonate on Pu{sup VI}O{sub 2}({sup 13}CO{sub 3}){sub 3}{sup 4{minus}} and Am{sup VI}O{sub 2}({sup 13}CO{sub 3}){sub 3}{sup 4{minus}} systems has been examined by variable temperature {sup 13}C NMR line-broadening techniques {sup 13}C NMR line-broadening techniques. A modified Carr-Purcell-Meiboom-Gill NMR pulse sequence was written to allow for experimental determination of ligand exchange parameters for paramagnetic actinide complexes. Preliminary Eyring analysis has provided activation parameters of {Delta}G{sup {double_dagger}}{sub 295} = 56 kJ/M, {Delta}H{sup {double_dagger}} = 38 kJ/M, and {Delta}S{sup {double_dagger}} = {minus}60 J/M-K for the plutonyl triscarbonate system, suggesting an associative transition state for the plutonyl (VI) carbonate complex self-exchange reaction. Experiments for determination of the activation parameters for the americium (VI) carbonate system are in progress.

  13. Production of carbon-13-labeled cadaverine by engineered Corynebacterium glutamicum using carbon-13-labeled methanol as co-substrate.

    Science.gov (United States)

    Leßmeier, Lennart; Pfeifenschneider, Johannes; Carnicer, Marc; Heux, Stephanie; Portais, Jean-Charles; Wendisch, Volker F

    2015-12-01

    Methanol, a one-carbon compound, can be utilized by a variety of bacteria and other organisms as carbon and energy source and is regarded as a promising substrate for biotechnological production. In this study, a strain of non-methylotrophic Corynebacterium glutamicum, which was able to produce the polyamide building block cadaverine as non-native product, was engineered for co-utilization of methanol. Expression of the gene encoding NAD+-dependent methanol dehydrogenase (Mdh) from the natural methylotroph Bacillus methanolicus increased methanol oxidation. Deletion of the endogenous aldehyde dehydrogenase genes ald and fadH prevented methanol oxidation to carbon dioxide and formaldehyde detoxification via the linear formaldehyde dissimilation pathway. Heterologous expression of genes for the key enzymes hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase of the ribulose monophosphate (RuMP) pathway in this strain restored growth in the presence of methanol or formaldehyde, which suggested efficient formaldehyde detoxification involving RuMP key enzymes. While growth with methanol as sole carbon source was not observed, the fate of 13C-methanol added as co-substrate to sugars was followed and the isotopologue distribution indicated incorporation into central metabolites and in vivo activity of the RuMP pathway. In addition, 13C-label from methanol was traced to the secreted product cadaverine. Thus, this synthetic biology approach led to a C. glutamicum strain that converted the non-natural carbon substrate methanol at least partially to the non-native product cadaverine. PMID:26276544

  14. Photopromoted carbonylation of olefins with carbon dioxide and labelling studies with 13CO2 and 13CH3OH

    Institute of Scientific and Technical Information of China (English)

    YIN Jingmei; GAO Dabin; HU Jiehan; ZHOU Guangyun; JIA Yingping; WANG Xiangsheng

    2003-01-01

    Photopromoted carbonylation of olefins with carbon dioxide can be completed in ambient conditions (room temperatures and atmospheric pressure) by Co(OAc)2 catalysis. It was found that in carbonyl carbons of methyl ester of aliphatic acid 50% is from CO2 and the other 50% from CH3OH by labelling experimental with 13CO2 and 13CH3OH.

  15. Synthesis of colchicine and isocolchicine labelled with carbon-11 or carbon-13

    Energy Technology Data Exchange (ETDEWEB)

    Kothari, P.J.; Finn, R.D.; Larson, S.M. [Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    1995-06-01

    The syntheses of isotopically labelled (-)-10-[{sup 11}C/{sup 13}C]-colchicine and (-)-9-[{sup 11}C/{sup 13}C]-isocolchicine have been achieved from the reaction of (-)desmethylcolchicine with [{sup 11}C/{sup 13}C]-iodomethane. The radiolabelled compounds, (-)-10-[{sup 11}C]-colchicine ({sup 11}C-n-colchicine) and (-)-9-[{sup 11}C]-isocolchicine ({sup 11}C-i-colchicine), were isolated by reversed phase HPLC. The total synthesis time was approximately 60 minutes for both radiolabelled compounds with an average specific activity of 240 mCi/{mu}mol calculated to EOB. Utilizing a similar synthetic strategy, we also reported the synthesis of milligram quantities of the carbon-13 enriched compounds and the magnetic resonance signal assignment for (-)-9-[{sup 13}C] isocolchicine. (Author).

  16. Measurement of carbon-13:carbon-12 ratios by Fourier transform infrared spectrometry

    International Nuclear Information System (INIS)

    An approach to the measurement of 13C:12C ratios in isotopically enriched samples is described. The carbon in samples is converted into CO2 gas by either combustion of organic material or acidification of carbonate. The gas is then measured by FTIR spectrometry. When spectra are recorded at 0.25 cm-1 resolution the magnitude of the isotopic shift is such that the areas of 12C and 13C rotational lines of the ν3 vibrational band for CO2 can be measured and the isotopic composition determined by reference to a standard calibration graph. The relative standard deviation at natural abundance is 1.2%, which gives an absolute limit of detection of 0.026 atom-% 13C. Details of the decomposition procedures and a comparison of the results with those obtained by mass spectrometry are also presented. (author)

  17. High dynamic orientation of protons, deuterons and carbon-13 nuclei

    International Nuclear Information System (INIS)

    The behaviour of hydrogen, deuterium, and carbon-13 nuclear spin systems have been studied in partially deuterated diols, doped with paramagnetic Crsup(V) complexes, between 0.1 and 0.5 K. Experimental evidence is given that the dynamic polarization in such samples comes from a cooling of the electron spin-spin interaction reservoir by off-resonance microwave irradiation; a strong thermal coupling between this reservoir and the nuclear Zeeman reservoirs cools these too, thus changing the polarizations. In a 25 kG magnetic field at a lattice temperature of 0.37 K we reached a common spin temperature for the nuclear Zeeman reservoirs of 1.1 mK in 1,2-propanediol-D6, which corresponds to a proton polarization of 98%, a deuteron polarization of 44%, and a carbon-13 polarization of 52%. A new way of dynamic orientation of the deuteron spin system was found. It allows one to vary the deuteron tensor polarization or alignment independently of its vector polarization. This can be done by slightly off-resonance RF irradiation of the polarized proton system, which cools the proton spin-spin interaction reservoir. It appeared that at the same time the RF field provides a thermal contract between this reservoir and the deuteron quadrupole interaction reservoir, which caused the observed alignment. Values around 60% were reached for some parts of the deuteron spin system, corresponding to a deuteron quadrupole spin temperature of 7 uK. The dependence of the alignment on RF frequency and initial proton polarization as well as thermal mixing rates are in good agreement with quantitative estimates from spin temperature theory. (author)

  18. Structural properties of carbon nanotubes derived from 13C NMR

    KAUST Repository

    Abou-Hamad, E.

    2011-10-10

    We present a detailed experimental and theoretical study on how structural properties of carbon nanotubes can be derived from 13C NMR investigations. Magic angle spinning solid state NMR experiments have been performed on single- and multiwalled carbon nanotubes with diameters in the range from 0.7 to 100 nm and with number of walls from 1 to 90. We provide models on how diameter and the number of nanotube walls influence NMR linewidth and line position. Both models are supported by theoretical calculations. Increasing the diameter D, from the smallest investigated nanotube, which in our study corresponds to the inner nanotube of a double-walled tube to the largest studied diameter, corresponding to large multiwalled nanotubes, leads to a 23.5 ppm diamagnetic shift of the isotropic NMR line position δ. We show that the isotropic line follows the relation δ = 18.3/D + 102.5 ppm, where D is the diameter of the tube and NMR line position δ is relative to tetramethylsilane. The relation asymptotically tends to approach the line position expected in graphene. A characteristic broadening of the line shape is observed with the increasing number of walls. This feature can be rationalized by an isotropic shift distribution originating from different diamagnetic shielding of the encapsulated nanotubes together with a heterogeneity of the samples. Based on our results, NMR is shown to be a nondestructive spectroscopic method that can be used as a complementary method to, for example, transmission electron microscopy to obtain structural information for carbon nanotubes, especially bulk samples.

  19. Carbon-13 kinetic isotope effects in CO oxidation by Ag

    International Nuclear Information System (INIS)

    In the catalytic oxidation of carbon monoxide over silver wool the 13C kinetic isotope effects in the 343--453 K temperature range were experimentally determined and the following temperature dependence was found: 100 ln(k12/k13) = (3.398--630/T) ± 0.083. A reaction CO/O2gas mixture of 1:2 ratio was used in a static system with initial pressures ranging from 20 to 40 kPa. Under these conditions the reaction is of order 1 with respect to CO and order 0 with respect to O2 and CO2 pressure. The apparent activation energy is 59.3 ± 1.7 kJ/mol. In the authors theoretical interpretation of the experimental data various geometries of (CO2)* and (CO3)* transition states were applied, and only a (CO2)* with an interbond angle of 110degree and CO stretching force constants of 1,700 and 1,000--1,400 N/m, respectively, with an asymmetric reaction coordinate was found to be acceptable

  20. Water, hydrogen, deuterium, carbon, carbon-13, and oxygen-18 content of selected lunar material

    Science.gov (United States)

    Friedman, I.; O'Neil, J.R.; Adami, L.H.; Gleason, J.D.; Hardcastle, K.

    1970-01-01

    The water content of the breccia is 150 to 455 ppm, with a ??D from -580 to -870 per mil. Hydrogen gas content is 40 to 53 ppm with a ??D of -830 to -970 per mil. The CO2 is 290 to 418 ppm with S 13C = + 2.3 to + 5.1 per mil and ??18O = 14.2 to 19.1 per mil. Non-CO2 carbon is 22 to 100 ppm, ??18C = -6.4 to -23.2 per mil. Lunar dust is 810 ppm H2O (D = 80 ppm) and 188 ppm total carbon (??13C = -17.6 per mil). The 18O analyses of whole rocks range from 5.8 to 6.2 per mil. The temperature of crystallization of type B rocks is 1100?? to 1300??C, based on the oxygen isotope fractionation between coexisting plagioclase and ilmenite.

  1. Carbon dynamics in corn-soybean sequences as estimated from natural carbon-13 abundance

    International Nuclear Information System (INIS)

    Carbon flow in terrestrial ecosystems regulates partitioning between soil organic C (SOC) and atmospheric CO2. Our objectives were to assess SOC dynamics using natural 13C abundance in corn (Zea mays L., a C4 species)-soybean [Glycine max (L.) Merr., a C3 species] sequences. Fifteen treatments of continuous corn, continuous soybean, various sequences of corn and soybean, and fallow were initiated in 1981 at Lamberton, MN, on a Webster clay loam (fine-loamy, mixed, mesic Typic Haplaquoll). In 1991, soil and aboveground shoot samples from all treatments were analyzed for total organic C and delta 13C. Carbon inputs, delta 13C, and SOC were integrated into a two-pool model to evaluate C dynamics of corn and soybean. Total SOC was similar across all treatments after 10 yr; however, differences in soil delta 13C occurred between continuous corn (delta 13C = -17.2 per thous and) and continuous soybean (delta 13C = -18.2 per thousand). Modeled C dynamics showed SOC decay rates of 0.011 yr-1 for C4-derived C and 0.007 yr-1 for C3-derived C, and humification rates of 0.16 yr-1 for corn and 0.11 yr-1 for soybean. Decay and humification rates were slightly lower than those found in other Corn Belt studies. Levels of SOC were predicted to decline an additional 7 to 18% with current C inputs from either corn or soybean, respectively. Annual C additions required for SOC maintenance averaged 5.6 Mg C ha-1, 1.4 to 2.1 times greater than previously reported estimates. Controlled variation in natural 13C abundance in corn-soybean rotations during a 10-yr period adequately traced C dynamics

  2. Carbon-13 nuclear magnetic resonance as a probe of side chain orientation and mobility in carboxymethylated human carbonic anhydrase B

    NARCIS (Netherlands)

    Schoot Uiterkamp, Antonius J.M.; Armitage, Ian M.; Prestegard, James H.; Slomski, John; Coleman, Joseph E.

    1978-01-01

    13C NMR spectra of [1-13C]- and [2-13C]carboxymethyl His-200 human carbonic anhydrase B have been obtained as a function of pH and in the presence and absence of the active site Zn(II) or Cd(II) ion. Chemical shifts of the 1-13C show that the carboxyl is sensitive to two ionization processes, with a

  3. Proposal to realize a cost breakthrough in carbon-13 production by photochemical separation

    International Nuclear Information System (INIS)

    A cost breakthrough can now be made in photochemical production of the rare stable isotope carbon-13. This cost breakthrough is achieved by CO2 laser infrared multiple-photon dissociation of any of several halocarbons (Freon derivatives) such as CF3Cl, CF3Br, or CF2Cl2. The single-step carbon-13 enrichment factor for this process is approximately 50, yielding 30% pure C-13 in one step, or up to 97% pure C-13 in two steps. A three-fold carbon-13 cost reduction to below $20/gram is expected to be achieved in a small laboratory-scale demonstration facility capable of producing 4 to 8 kg/year of carbon-13, using presently available pulsed CO2 TEA lasers at an average power level of 50 watts. Personnel costs dominate the attainable C-13 production costs in a small photochemical enrichment facility. A price reduction to $2/gm carbon-13 is feasible at carbon-13 production levels of 100 to 1000 kg/year, dominated by the Freon raw material costs

  4. Identification of excitonic phonon sideband by photoluminescence spectroscopy of single-walled carbon-13 nanotubes

    OpenAIRE

    Miyauchi, Yuhei; Maruyama, Shigeo

    2005-01-01

    We have studied photoluminescence (PL) and resonant Raman scatterings of single-walled carbon nanotubes (SWNTs) consisting of carbon-13 (SW13CNTs) synthesized from a small amount of isotopically modified ethanol. There was almost no change in the Raman spectra shape for SW13CNTs except for a downshift of the Raman shift frequency by the square-root of the mass ratio 12/13. By comparing photoluminescence excitation (PLE) spectra of SW13CNTs and normal SWNTs, the excitonic phonon sideband due t...

  5. Improved cycling and high rate performance of core-shell LiFe1/3Mn1/3Co1/3PO4/carbon nanocomposites for lithium-ion batteries: Effect of the carbon source

    International Nuclear Information System (INIS)

    Highlights: • We report a fast microwave heating way to prepare LiFe1/3Mn1/3Co1/3PO4/C. • The effects of different carbon sources were discussed in detail. • LiFe1/3Mn1/3Co1/3PO4/BP2000 shows a discharge capacity of 160 mA h g−1 at 0.1 C. • LiFe1/3Mn1/3Co1/3PO4/BP2000 elucidates excellent cyclic stability. • LiFe1/3Mn1/3Co1/3PO4/BP2000 exhibits attractive rate capability. - Abstract: Core-shell type olivine solid solutions, LiFe1/3Mn1/3Co1/3PO4/C, are synthesized via a very simple and rapid microwave heating route with different carbon sources. The obatined LiFe1/3Mn1/3Co1/3PO4/C materials are characterized thoroughly by various analytical techniques such as X-ray diffraction, scanning electron microscopy, transmission electron microscopy and energy-dispersive spectroscopy instrument. The particle sizes and distribution of the carbon layer of BP2000 carbon black coated LiFe1/3Mn1/3Co1/3PO4 (LiFe1/3Mn1/3Co1/3PO4/BP) are more uniform than that obtained from acetylene black (LiFe1/3Mn1/3Co1/3PO4/AB) and Super P (LiFe1/3Mn1/3Co1/3PO4/SP). Moreover, the LiFe1/3Mn1/3Co1/3PO4/BP nanocomposite shows superior electrochemical properties such as high discharge capacity of 160 mA h g−1 at 0.1 C, excellent cyclic stability (143 mA h g−1 at 0.1 C after 30 cycles) and rate capability (76 mAh g−1 at 20 C), which are better than other two samples. Cyclic voltammetric and electrical tests disclose that the Li-ion diffusion, the reversibility of lithium extraction/insertion and electrical conductivity are significantly improved in LiFe1/3Mn1/3Co1/3PO4/BP composite. Electrochemical impedance spectroscopy illustrates that LiFe1/3Mn1/3Co1/3PO4/BP composite electrode possesses low contact and charge-transfer impedances, which can lead to rapid electron transport during the electrochemical lithium insertion/extraction reaction. It is believed that olivine solid solution LiFe1/3Mn1/3Co1/3PO4 decorated with carbon from appropriate carbon source is a promising cathode for

  6. Staphylococcus aureus Peptidoglycan Tertiary Structure from Carbon-13 Spin Diffusion

    OpenAIRE

    Sharif, Shasad; Singh, Manmilan; Kim, Sung Joon; Schaefer,Jacob

    2009-01-01

    The cell-wall peptidoglycan of Staphylococcus aureus is a heterogeneous, highly cross-linked polymer of unknown tertiary structure. We have partially characterized this structure by measuring spin diffusion from 13C labels in pentaglycyl cross-linking segments to natural-abundance 13C in the surrounding intact cell walls. The measurements were performed using a version of centerband-only detection of exchange (CODEX). The cell walls were isolated from S. aureus grown in media containing [1-13...

  7. Carbon-13 magnetic resonance of hydrocarbons. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Grant, D.M.; Pugmire, R.J.

    1979-01-01

    Several tetralins, tetrahydrophenanthrenes, and dihydroanthracenes were synthesized, /sup 13/C spin-lattice relaxation measurements were carried out on aromatic and hydroaromatic compounds. /sup 13/C chemical shift studies were also conducted on methylated 1,2,3,4-tetrahydronaphthalenes, 1,2,3,4-tetrahydrophenanthrenes, and 9,10-dihydroanthracenes. (DLC)

  8. Sc3CH@C80: selective (13)C enrichment of the central carbon atom.

    Science.gov (United States)

    Junghans, Katrin; Rosenkranz, Marco; Popov, Alexey A

    2016-05-01

    Sc3CH@C80 is synthesized and characterized by (1)H, (13)C, and (45)Sc NMR. A large negative chemical shift of the proton, -11.73 ppm in the Ih and -8.79 ppm in the D5h C80 cage isomers, is found. (13)C satellites in the (1)H NMR spectrum enabled indirect determination of the (13)C chemical shift for the central carbon at 173 ± 1 ppm. Intensity of the satellites allowed determination of the (13)C content for the central carbon atom. This unique possibility is applied to analyze the cluster/cage (13)C distribution in mechanistic studies employing either (13)CH4 or (13)C powder to enrich Sc3CH@C80 with (13)C. PMID:27109443

  9. Drought indicated in carbon-13/carbon-12 ratios of Southwestern tree rings

    International Nuclear Information System (INIS)

    Stomatal closure during periods of moisture deficiency should theoretically lead to elevated 13C/12C ratios as reduction of available CO2 leads to diminished photosynthetic discrimination against 13C in favor of 12C. Stable-carbon isotope ratio chronologies developed from 5-yr tree-ring groups at 17 sites in six southwestern states were tested for a drought relationship by first fitting a spline curve to each chronology to remove the long-term trend and calculating indices as the ratio of actual to spline curve value. The time series of “Del Indices” so developed are significantly correlated with 5-yr mean Palmer Hydrological Drought Indices (post-1930 period) and reconstructed July Palmer Drought Severity Indices from respective areas. Overall, in the period since 1790, the driest pentads were 1900–04 and 1960–64, whereas the wettest were 1980–84 and 1915–19. Maps of drought represented for two pentads seem to be reasonable representations, although spatial correlations of Del Indices with PHDI were generally not significant. These Del Index drought reconstructions may provide a useful measure of past physiological response to drought (stomatal closure), although the present cost of analysis would prevent this from being a routine method. (author)

  10. The $^{13}$Carbon footprint of B[e] supergiants

    CERN Document Server

    Liermann, A; Schnurr, O; Fernandes, M Borges

    2010-01-01

    We report on the first detection of $^{13}$C enhancement in two B[e] supergiants in the Large Magellanic Cloud. Stellar evolution models predict the surface abundance in $^{13}$C to strongly increase during main-sequence and post-main sequence evolution of massive stars. However, direct identification of chemically processed material on the surface of B[e] supergiants is hampered by their dense, disk-forming winds, hiding the stars. Recent theoretical computations predict the detectability of enhanced $^{13}$C via the molecular emission in $^{13}$CO arising in the circumstellar disks of B[e] supergiants. To test this potential method and to unambiguously identify a post-main sequence B[e]SG by its $^{13}$CO emission, we have obtained high-quality $K$-band spectra of two known B[e] supergiants in the Large Magellanic Cloud, using the Very Large Telescope's Spectrograph for INtegral Field Observation in the Near-Infrared (VLT/SINFONI). Both stars clearly show the $^{13}$CO band emission, whose strength implies ...

  11. Natural abundance measurements of 13C indicate increased deep soil carbon mineralization after forest disturbance

    Science.gov (United States)

    Diochon, Amanda; Kellman, Lisa

    2008-07-01

    Northern forest soils represent globally important stores of carbon (C), yet there is no consensus about how they are altered by the widespread practice of harvesting that dominates many forested landscapes. Here we present the first study to systematically investigate the utility of δ 13C and C content depth profiles to infer temporal changes in belowground carbon cycling processes following disturbance in a pure C3 ecosystem. We document carbon concentration and δ 13C depth profile enrichment trends consistent with a kinetic fractionation arising from soil organic carbon (SOC) humification across a northern forest chronosequence (1, 15, 45, 80 and 125+ yrs). Reduced soil C storage that coincided with observed soil profile δ 13C-enrichment patterns which intensified following clearcut harvesting, pointed to losses of SOC in the deeper (>20 cm) mineral soil. This study suggests the δ 13C approach may assist in identifying mechanisms responsible for soil C storage changes in disturbed C3 forest ecosystems.

  12. Carbon-13 spin lattice relaxation and photoelectron spectroscopy of some aromatic sulphides and sulphones

    International Nuclear Information System (INIS)

    Carbon-13 NMR spectroscopy and photoelectron spectroscopy have been used to study the electronic structure of symmetric dithienothiophenes and corresponding sulphones. The physical data obtained from both spectroscopic techniques have been interpreted with the aid of quantum mechanical calculations. (Auth.)

  13. Spectrally edited 2D 13Csbnd 13C NMR spectra without diagonal ridge for characterizing 13C-enriched low-temperature carbon materials

    Science.gov (United States)

    Johnson, Robert L.; Anderson, Jason M.; Shanks, Brent H.; Fang, Xiaowen; Hong, Mei; Schmidt-Rohr, Klaus

    2013-09-01

    Two robust combinations of spectral editing techniques with 2D 13Csbnd 13C NMR have been developed for characterizing the aromatic components of 13C-enriched low-temperature carbon materials. One method (exchange with protonated and nonprotonated spectral editing, EXPANSE) selects cross peaks of protonated and nearby nonprotonated carbons, while the other technique, dipolar-dephased double-quantum/single-quantum (DQ/SQ) NMR, selects signals of bonded nonprotonated carbons. Both spectra are free of a diagonal ridge, which has many advantages: Cross peaks on the diagonal or of small intensity can be detected, and residual spinning sidebands or truncation artifacts associated with the diagonal ridge are avoided. In the DQ/SQ experiment, dipolar dephasing of the double-quantum coherence removes protonated-carbon signals; this approach also eliminates the need for high-power proton decoupling. The initial magnetization is generated with minimal fluctuation by combining direct polarization, cross polarization, and equilibration by 13C spin diffusion. The dipolar dephased DQ/SQ spectrum shows signals from all linkages between aromatic rings, including a distinctive peak from polycondensed aromatics. In EXPANSE NMR, signals of protonated carbons are selected in the first spectral dimension by short cross polarization combined with dipolar dephasing difference. This removes ambiguities of peak assignment to overlapping signals of nonprotonated and protonated aromatic carbons, e.g. near 125 ppm. Spin diffusion is enhanced by dipolar-assisted rotational resonance. Before detection, Csbnd H dipolar dephasing by gated decoupling is applied, which selects signals of nonprotonated carbons. Thus, only cross peaks due to magnetization originating from protonated C and ending on nearby nonprotonated C are retained. Combined with the chemical shifts deduced from the cross-peak position, this double spectral editing defines the bonding environment of aromatic, COO, and Cdbnd O carbons

  14. Computational design of organometallic oligomers featuring 1,3-metal-carbon bonding and planar tetracoordinate carbon atoms.

    Science.gov (United States)

    Zhao, Xue-Feng; Yuan, Cai-Xia; Wang, Xiang; Li, Jia-Jia; Wu, Yan-Bo; Wang, Xiaotai

    2016-01-15

    Density functional theory computations (B3LYP) have been used to explore the chemistry of titanium-aromatic carbon "edge complexes" with 1,3-metal-carbon (1,3-MC) bonding between Ti and planar tetracoordinate Cβ . The titanium-coordinated, end-capping chlorides are replaced with OH or SH groups to afford two series of difunctional monomers that can undergo condensation to form oxide- and sulfide-bridged oligomers. The sulfide-linked oligomers have less molecular strain and are more exergonic than the corresponding oxide-linked oligomers. The HOMO-LUMO gap of the oligomers varies with their composition and decreases with growing oligomer chain. This theoretical study is intended to enrich 1,3-MC bonding and planar tetracoordinate carbon chemistry and provide interesting ideas to experimentalists. Organometallic complexes with the TiE2 (E = OH and SH) decoration on the edge of aromatic hydrocarbons have been computationally designed, which feature 1,3-metal-carbon (1,3-MC) bonding between titanium and planar tetracoordinate β-carbon. Condensation of these difunctional monomers by eliminating small molecules (H2O and H2S) produce chain-like oligomers. The HOMO-LUMO gaps of the oligomers decreases with growing oligomer chain, a trend that suggests possible semiconductor properties for oligomers with longer chains. PMID:26399226

  15. A large metabolic carbon contribution to the δ 13C record in marine aragonitic bivalve shells

    Science.gov (United States)

    Gillikin, David P.; Lorrain, Anne; Meng, Li; Dehairs, Frank

    2007-06-01

    It is well known that the incorporation of isotopically light metabolic carbon (C M) significantly affects the stable carbon isotope (δ 13C) signal recorded in biogenic carbonates. This can obscure the record of δ 13C of seawater dissolved inorganic carbon13C DIC) potentially archived in the shell carbonate. To assess the C M contribution to Mercenaria mercenaria shells collected in North Carolina, USA, we sampled seawater δ 13C DIC, tissue, hemolymph and shell δ 13C. All shells showed an ontogenic decrease in shell δ 13C, with as much as a 4‰ decrease over the lifespan of the clam. There was no apparent ontogenic change in food source indicated by soft tissue δ 13C values, therefore a change in the respired δ 13C value cannot be the cause of this decrease. Hemolymph δ 13C, on the other hand, did exhibit a negative relationship with shell height indicating that respired CO 2 does influence the δ 13C value of internal fluids and that the amount of respired CO 2 is related to the size or age of the bivalve. The percent metabolic C incorporated into the shell (%C M) was significantly higher (up to 37%, with a range from 5% to 37%) than has been found in other bivalve shells, which usually contain less than 10%C M. Interestingly, the hemolymph did contain less than 10%C M, suggesting that complex fractionation might occur between hemolymph and calcifying fluids. Simple shell biometrics explained nearly 60% of the observed variability in %C M, however, this is not robust enough to predict %C M for fossil shells. Thus, the metabolic effect on shell δ 13C cannot easily be accounted for to allow reliable δ 13C DIC reconstructions. However, there does seem to be a common effect of size, as all sites had indistinguishable slopes between the %C M and shell height (+0.19% per mm of shell height).

  16. Quantitative analysis of carbon--carbon coupling in the 13C nuclear magnetic resonance spectra of molecules biosynthesized from 13C enriched precursors

    International Nuclear Information System (INIS)

    The quantitative dependence of the intensities of the various multiplet lines arising from 13C-13C nuclear spin coupling as a function of 13C enrichment is considered. Two cases are distinguished, depending on whether or not the enrichment of the interacting carbons is statistically independent. For statistically independent labeling, the splitting is simply related to the enrichment of the various carbons. For cases in which this condition does not hold, the splitting provides a measure of the correlation in the enrichment of interacting carbons. The quantitative analysis of 13C-13C coupling is shown to provide additional information in biosynthetic experiments in which a correlation in the labeling of the substrates is introduced. In contrast to the information which is obtained by looking for the incorporation of a label into a specific position of a biosynthesized molecule, a quantitative analysis of the correlation in the labeling of the product can give information about the direct incorporation of more complex structural units. Three examples are discussed: the glycolysis of glucose to lactate, the biosynthesis of galactosylglycerol by species of red algae, and the use of doubly labeled acetate to study the biosynthetic incorporation of acetate units into more complex molecules. (U.S.)

  17. Carbon-13 magnetic resonance chemical shift additivity relationships of clinically used furocoumarins and furchromones

    International Nuclear Information System (INIS)

    The natural abundance carbon-13 nuclear magnetic resonance spectra of various clinically used furocoumarins and furochromones have been studied. The assignments of carbon chemical shift values were based on the theory of chemical shift, additivity rules, SFORD spectra and model compounds. (author)

  18. In vivo 13 carbon metabolic imaging at 3T with hyperpolarized 13C-1-pyruvate.

    Science.gov (United States)

    Kohler, S J; Yen, Y; Wolber, J; Chen, A P; Albers, M J; Bok, R; Zhang, V; Tropp, J; Nelson, S; Vigneron, D B; Kurhanewicz, J; Hurd, R E

    2007-07-01

    We present for the first time dynamic spectra and spectroscopic images acquired in normal rats at 3T following the injection of (13)C-1-pyruvate that was hyperpolarized by the dynamic nuclear polarization (DNP) method. Spectroscopic sampling was optimized for signal-to-noise ratio (SNR) and for spectral resolution of (13)C-1-pyruvate and its metabolic products (13)C-1-alanine, (13)C-1-lactate, and (13)C-bicarbonate. Dynamic spectra in rats were collected with a temporal resolution of 3 s from a 90-mm axial slab using a dual (1)H-(13)C quadrature birdcage coil to observe the combined effects of metabolism, flow, and T(1) relaxation. In separate experiments, spectroscopic imaging data were obtained during a 17-s acquisition of a 20-mm axial slice centered on the rat kidney region to provide information on the spatial distribution of the metabolites. Conversion of pyruvate to lactate, alanine, and bicarbonate occurred within a minute of injection. Alanine was observed primarily in skeletal muscle and liver, while pyruvate, lactate, and bicarbonate concentrations were relatively high in the vasculature and kidneys. In contrast to earlier work at 1.5 T, bicarbonate was routinely observed in skeletal muscle as well as the kidney and vasculature. PMID:17659629

  19. Autotrophic carbon budget in coral tissue: a new 13C-based model of photosynthate translocation.

    Science.gov (United States)

    Tremblay, Pascale; Grover, Renaud; Maguer, Jean François; Legendre, Louis; Ferrier-Pagès, Christine

    2012-04-15

    Corals live in symbiosis with dinoflagellates of the genus Symbiodinum. These dinoflagellates translocate a large part of the photosynthetically fixed carbon to the host, which in turn uses it for its own needs. Assessing the carbon budget in coral tissue is a central question in reef studies that still vexes ecophysiologists. The amount of carbon fixed by the symbiotic association can be determined by measuring the rate of photosynthesis, but the amount of carbon translocated by the symbionts to the host and the fate of this carbon are more difficult to assess. In the present study, we propose a novel approach to calculate the budget of autotrophic carbon in the tissue of scleractinian corals, based on a new model and measurements made with the stable isotope (13)C. Colonies of the scleractinian coral Stylophora pistillata were incubated in H(13)CO (-)(3)-enriched seawater, after which the fate of (13)C was followed in the symbionts, the coral tissue and the released particulate organic carbon (i.e. mucus). Results obtained showed that after 15 min, ca. 60% of the carbon fixed was already translocated to the host, and after 48 h, this value reached 78%. However, ca. 48% of the photosynthetically fixed carbon was respired by the symbiotic association, and 28% was released as dissolved organic carbon. This is different from other coral species, where coral tissue after 48 h. Results show that our (13)C-based model could successfully trace the carbon flow from the symbionts to the host, and the photosynthetically acquired carbon lost from the symbiotic association. PMID:22442377

  20. Determination of total organic carbon content and delta(13)C in carbonate-rich detrital sediments

    OpenAIRE

    Galy, V; Julien Bouchez; C. France-Lanord;  ,

    2007-01-01

    The determination of total organic carbon content and composition in detrital sediments requires careful removal of their carbonate minerals. In detrital sediments containing large amounts of carbonates, including dolomite, this can only be achieved by liquid acid leaching that may solubilise a significant proportion of the organic carbon. For a set of detrital sediments from the Himalayan system and the Amazon River as well as five geological reference materials, we determined the proportion...

  1. Dissolved inorganic carbon (DIC) and its δ13C in the Ganga (Hooghly) River estuary, India: Evidence of DIC generation via organic carbon degradation and carbonate dissolution

    Digital Repository Service at National Institute of Oceanography (India)

    Samanta, S.; Dalai, T.K.; Pattanaik, J.K.; Rai, S.K.; Mazumdar, A.

    In this study, we present comprehensive data on dissolved Ca, dissolved inorganic carbon (DIC) and its carbon isotope composition (δ13CDIC) of (i) the Ganga (Hooghly) River estuary water sampled during six seasons...

  2. Carbon-13 nuclear magnetic resonance spectroscopy of [1-13C] enriched monosaccharides. Signal assignments and orientational dependence of geminal and vicinal carbon--carbon and carbon--hydrogen spin--spin coupling constants

    International Nuclear Information System (INIS)

    Early assignments of the 13C resonances in the natural abundance 13C NMR spectra of monosaccharides have been reevaluated in light of recent coupling data from the spectra of 13C-1 labeled sugars. The technique of specific 13C enrichment not only identifies the labeled carbon unambiguously but can be used to assign more remote carbon resonances due to scalar carbon-carbon coupling. The pattern of carbon-carbon coupling observed in all of the sugars thus far studied is remarkably constant. In addition to the large (approximately 46 Hz) one-bond coupling between C-1 and C-2, C-3 exhibits a coupling to C-1 only in the β anomer (approximately 4 Hz) while C-5 is coupled to C-1 only in the α anomer (approximately 2 Hz). In addition, C-6 is coupled to C-1 in both anomers and C-4 shows no evidence of coupling to C-1 in any of the sugars examined. These couplings have been used to reassign several resonances and the original assignments are discussed in terms of the predictive rules used for resonance assignments in carbohydrates. The vicinal couplings of C-6 and C-4 to C-1 appear to obey a Karplus-type relationship. The geminal 2J/sub CCC/ and 2J/sub COC/ couplings are discussed in terms of a dihedral angle dependence where the angle is defined by the relative orientations of C-3 or C-5 and the electronegative oxygen substituents on C-1. Additional data on 2J/sub CCH/ couplings involving C-1 and H-2 are also readily obtained with the C-1 labeled sugars

  3. Simulation of soil organic carbon in different soil size fractions using 13Carbon measurement data

    Science.gov (United States)

    Gottschalk, P.; Bellarby, J.; Chenu, C.; Foereid, B.; Wattenbach, M.; Zingore, S.; Smith, J.

    2009-04-01

    We simulate the soil organic carbon (SOC) dynamics at a chronoseqeunce site in France, using the Rothamsted Carbon model. The site exhibits a transition from C3 plants, dominated by pine forest, to a conventional C4 maize rotation. The different 13C signatures of the forest plants and maize are used to distinguish between the woodland derived carbon (C) and the maize derived C. The model is evaluated against total SOC and C derived from forest and maize, respectively. The SOC dynamics of the five SOC pools of the model, decomposable plant material (DPM), resistant plant material (RPM), biomass, humus and inert C, are also compared to the SOC dynamics measured in different soil size fractions. These fractions are > 50 μm (particulate organic matter), 2-50 μm (silt associated SOC) and 50 μm and the sum of the other pools corresponds well to the SOC measured in the soil size fraction stocks in the first 20 years after land-use change and overestimates the C accumulation of maize C. Several hypotheses were tested to evaluate the simulations. Input data and internal model parameter uncertainties had minor effects on the simulations results. Accounting for erosion and implementing a simple tillage routine did not improve the simulation fit to the data. We therefore hypothesize that a generic process that is not yet explicitly accounted for in the ROTHC model could explain the loss in soil C after land use change. Such a process could be the loss of the physical protection of soil organic matter as would be observed following cultivation of a previously uncultivated soil. Under native conditions a fraction of organic matter is protected in stable soil aggregates. These aggregates are physically disrupted by continuous and repeated cultivation of the soil. The underestimation of SOC loss by the model can be mainly attributed to the slow turnover of the humus pool. This pool was shown to represent mainly the SOC associated with the silt and clay soil fraction. Here, the

  4. Analysis of the carbon-13 and proton NMR spectra of bovine chromaffin granules.

    Science.gov (United States)

    Sharp, R R; Richards, E P

    1977-03-29

    Natural abundance carbon-13 and proton NMR spectra of bovine chromaffin granules have been obtained and analyzed using computer simulation techniques. High resolution spectra show the presence of a fluid aqueous phase containing epinephrine, ATP and a random coil protein. The protein spectrum contains unusually intense resonances due to glutamic acid and proline and has been simulated satisfactorily using the known amino acid composition of chromogranin A. The lipid phase of chromaffin granules gives rise to intense, but very broad, resonances in the carbon-13 spectrum. Protons in the lipid phase are also observable as a very rapid component of the proton-free induction decay (T2 approximately equal to 15 microns). Linewidths of the carbon-13 spectra have been used to set upper limits on rotational correlation times and on the motional anisotropy in the aqueous phase. These limits show that the aqueous phase is a simple solution (not a gel) that is isotropic over regions much larger than solute dimensions. No gel transition is observed between -3 and 25 degrees C. The carbon-13 spectra are definitely inconsistent with a lipoprotein matrix model and chromaffin granules previously proposed by Helle and Serck-Hanssen ((1975) Mol. Cell, Biochem. 6, 127-146). Relative carbon-13 intensities of ATP and epinephrine are not consistent with the known 1 : 4 mol ratio of these components. This fact suggests that epinephrine and ATP are not directly complexed in intact chromaffin granules. PMID:849474

  5. Depletion of 13C in lignin and its implications for stable carbon isotope studies

    International Nuclear Information System (INIS)

    Stable carbon isotope compositions of organic matter are now widely used to trace carbon flow in ecosystems, and have been instrumental in shaping current perceptions of the importance of terrestrial vegetation to estuarine and coastal marine environments. A general assumption in these and other studies relying on carbon isotope compositions for source identification of organic matter has been that the major biochemical components of plant tissues are isotopically invariant. We report here large differences between the carbon isotope compositions of the polysaccharide and lignin components of a variety of vascular plants, including the salt-marsh grass Spartina alterniflora, and demonstrate that the carbon isotope composition of Spartina detritus gradually changes during biogeochemical processing as polysaccharides are preferentially removed, leaving a material that is relatively enriched in lignin-derived carbon and depleted in 13C. (author)

  6. Determination of site-specific carbon isotope ratios at natural abundance by carbon-13 nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Caer, V; Trierweiler, M; Martin, G J; Martin, M L

    1991-10-15

    Site-specific natural isotope fractionation of hydrogen studied by deuterium NMR (SNIF-NMR) spectroscopy is a powerful source of information on hydrogen pathways occurring in biosyntheses in natural conditions. The potential of the carbon counterpart of this method has been investigated and compared. Three typical molecular species, ethanol, acetic acid, and vanillin, have been considered. Taking into account the requirements of quantitative 13C NMR, appropriate experimental procedures have been defined and the repeatability and reproducibility of the isotope ratio determinations have been checked in different conditions. It is shown that the carbon version of the SNIF-NMR method is capable of detecting small differences in the carbon-13 content of the ethyl fragment of ethanols from different botanical or synthetic origins. These results are in agreement with mass spectrometry determinations of the overall carbon isotope ratios. Deviations with respect to a statistical distribution of 13C have been detected in the case of acetic acid and vanillin. However, since the method is very sensitive to several kinds of systematic error, only a relative significance can be attached at present to the internal parameters directly accessible. Isotope dilution experiments have also been carried out in order to check the consistency of the results. In the present state of experimental accuracy, the 13C NMR method is of more limited potential than 2H SNIF-NMR spectroscopy. However it may provide complementary information. Moreover it is particularly efficient for detecting and quantifying adulterations that aim to mimic the overall carbon-13 content of a natural compound by adding a selectivity enriched species to a less expensive substrate from a different origin. PMID:1759714

  7. A Large Metabolic Carbon Ccontribution to the δ13C Record in Marine Aragonitic Bivalve Shells

    Science.gov (United States)

    Gillikin, D. P.; Lorrain, A.; Dehairs, F.

    2006-12-01

    The stable carbon isotopic signature archived in bivalve shells was originally thought to record the δ13C of seawater dissolved inorganic carbon13C-DIC). However, more recent studies have shown that the incorporation of isotopically light metabolic carbon (M) significantly affects the δ13C signal recorded in biogenic carbonates. To assess the M contribution to Mercenaria mercenaria shells collected in North Carolina, USA, we sampled seawater δ13C-DIC, tissue, hemolymph and shell δ13C. We found up to a 4‰ decrease through ontogeny in shell δ13C in a 23 year old individual. There was no correlation between shell height or age and tissue δ13C. Thus, the ontogenic decrease observed in the shell δ13C could not be attributed to changes in food sources as the animal ages leading to more negative metabolic CO2, since this would require a negative relationship between tissue δ13C and shell height. Hemolymph δ13C, on the other hand, did exhibit a negative relationship with height, but the δ13C values were more positive than expected, indicating that hemolymph may not be a good proxy of extrapallial fluid δ13C. Nevertheless, the hemolymph data indicate that respired CO2 does influence the δ13C of internal fluids and that the amount of respired CO2 is related to the age of the bivalve. The percent metabolic C incorporated into the shell (%M) was significantly higher (up to 37%) than has been found in other bivalve shells, which usually contain less than 10 %M. Attempts to use shell biometrics to predict %M could not explain more than ~60% of the observed variability. Moreover, there were large differences in the %M between different sites. Thus, the metabolic effect on shell δ13C cannot easily be accounted for to allow reliable δ13C-DIC reconstructions. However, there does seem to be a common effect of size, as all sites had indistinguishable slopes between the %M and shell height (+0.19% per mm of shell height).

  8. The Range of 1-3 keV Electrons in Solid Oxygen and Carbon Monoxide

    DEFF Research Database (Denmark)

    Oehlenschlæger, M.; Andersen, H.H.; Schou, Jørgen; Sørensen, H.

    The range of 1-3 keV electrons in films of solid oxygen and carbon monoxide has been measured by a mirror substrate method. The technique used here is identical to the one previously used for range measurements in solid hydrogen and nitrogen. The range in oxygen is slightly shorter than that in...... nitrogen whereas the range in carbon monoxide is about 20% larger than that in the nitrogen....

  9. The range of 1-3 keV electrons in solid oxygen and carbon monoxide

    International Nuclear Information System (INIS)

    The range of 1-3 keV electrons in films of solid oxygen and carbon monoxide has been measured by a mirror-substrate method. The technique used here is identical to the one previously used for range measurements on solid hydrogen and nitrogen. The range in oxygen is slightly shorter than that in nitrogen whereas the range in carbon monoxide is about 20% larger than that in the nitrogen. (orig.)

  10. The Range of 1-3 keV Electrons in Solid Oxygen and Carbon Monoxide

    DEFF Research Database (Denmark)

    Oehlenschlæger, M.; Andersen, H.H.; Schou, Jørgen;

    1985-01-01

    The range of 1-3 keV electrons in films of solid oxygen and carbon monoxide has been measured by a mirror substrate method. The technique used here is identical to the one previously used for range measurements in solid hydrogen and nitrogen. The range in oxygen is slightly shorter than that in...... nitrogen whereas the range in carbon monoxide is about 20% larger than that in the nitrogen....

  11. Characteristics of 14C and 13C of carbonate aerosols in dust storm events in China

    Science.gov (United States)

    Chen, Bing; Jie, Dongmei; Shi, Meinan; Gao, Pan; Shen, Zhenxing; Uchida, Masao; Zhou, Liping; Liu, Kexin; Hu, Ke; Kitagawa, Hiroyuki

    2015-10-01

    In contrast with its decrease in western China deserts, the dust storm event in eastern China, Korea, and Japan shows an increase in frequency. Although the drylands in northeastern China have been recognized as an important dust source, the relative contributions of dust transport from the drylands and deserts are inconclusive, thus the quantification of dust storm sources in downwind area remains a challenge. We measured the 14C and 13C contents in carbonates of dust samples from six sites in China, which were collected for the duration of dust storm events in drylands, deserts, and urban areas. The δ13C of the dryland dust samples considerably varied in a range of - 9.7 to - 5.0‰, which partly overlapped the desert dust carbonate δ13C ranges. The 14C content of the dryland dust carbonates showed a narrow range of 60.9 ± 4.0 (as an average and 1 SD of five samples) percent modern carbon (pMC), indicating the enrichment of modern carbonate. Dust samples in desert regions contained relatively aged carbonates with the depleting 14C showing of 28.8 ± 3.3 pMC. After the long-range transport of the western China desert dust plume, the carbonates collected at the southern China remained the depletion of 14C (33.5 ± 5.3 pMC) as in the desert regions. On the other hand, the samples of dust storm events at the urban areas of eastern China showed an enrichment of 14C contents (46.2 ± 5.0 pMC, n = 7), which might be explained by the stronger contribution of modern-carbonate-rich dryland dust.

  12. Triblock Copolymers Based on 1,3-Trimethylene Carbonate and Lactide as Biodegradable Thermoplastic Elastomers

    NARCIS (Netherlands)

    Zhang, Zheng; Grijpma, Dirk W.; Feijen, Jan

    2004-01-01

    Biodegradable triblock copolymers based on 1,3-trimethylene carbonate (TMC) and different lactides (i.e. D,L-lactide(DLLA), L-lactide (LLA), D-lactide (DLA)) designated as poly(DLLA-TMC-DLLA), poly(LLA-TMC-LLA) and poly(DLA-TMC-DLA) were prepared and their mechanical and thermal properties were comp

  13. Determination of the δ13C of dissolved inorganic carbon in water; RSIL lab code 1710

    Science.gov (United States)

    Singleton, Glenda L.; Revesz, Kinga; Coplen, Tyler B.

    2012-01-01

    The purpose of the Reston Stable Isotope Laboratory (RSIL) lab code 1710 is to present a method to determine the δ13C of dissolved inorganic carbon (DIC) of water. The DIC of water is precipitated using ammoniacal strontium chloride (SrCl2) solution to form strontium carbonate (SrCO3). The δ13C is analyzed by reacting SrCO3 with 100-percent phosphoric acid (H3PO4) to liberate carbon quantitatively as carbon dioxide (CO2), which is collected, purified by vacuum sublimation, and analyzed by dual inlet isotope-ratio mass spectrometry (DI-IRMS). The DI-IRMS is a DuPont double-focusing mass spectrometer. One ion beam passes through a slit in a forward collector and is collected in the rear collector. The other measurable ion beams are collected in the front collector. By changing the ion-accelerating voltage under computer control, the instrument is capable of measuring mass/charge (m/z) 45 or 46 in the rear collector and m/z 44 and 46 or 44 and 45, respectively, in the front collector. The ion beams from these m/z values are as follows: m/z 44 = CO2 = 12C16O16O, m/z 45 = CO2 = 13C16O16O primarily, and m/z 46 = CO2 = 12C16O18O primarily. The data acquisition and control software calculates δ13C values.

  14. Soil carbon inventories and d 13C along a moisture gradient in Botswana

    NARCIS (Netherlands)

    Bird, M.I.; Veenendaal, E.M.; Lloyd, J.

    2004-01-01

    We present a study of soil organic carbon (SOC) inventories and d 13C values for 625 soil cores collected from well-drained, coarse-textured soils in eight areas along a 1000 km moisture gradient from Southern Botswana, north into southern Zambia. The spatial distribution of trees and grass in the d

  15. Application of carbon-13 and phosphorous-31 NMR to follow phosphinites and rhodium catalysts synthesis

    International Nuclear Information System (INIS)

    Phosphinites and thiophosphites derived from bicyclic and polycyclic strained molecules like norbonanes, endo-endo and endo-exo tetracyclic dodecanes compounds, and their respective cationic Rhodium catalysts, were prepared. Carbon-13 and Phosphorus-31 NMR were used to identify the synthesized compounds. (author)

  16. Neoproterozoic diamictite-cap carbonate succession and δ13C chemostratigraphy from eastern Sonora, Mexico

    Science.gov (United States)

    Corsetti, Frank A.; Stewart, John H.; Hagadorn, James W.

    2007-01-01

    Despite the occurrence of Neoproterozoic strata throughout the southwestern U.S. and Sonora, Mexico, glacial units overlain by enigmatic cap carbonates have not been well-documented south of Death Valley, California. Here, we describe in detail the first glaciogenic diamictite and cap carbonate succession from Mexico, found in the Cerro Las Bolas Group. The diamictite is exposed near Sahuaripa, Sonora, and is overlain by a 5 m thick very finely-laminated dolostone with soft sediment folds. Carbon isotopic chemostratigraphy of the finely-laminated dolostone reveals a negative δ13C anomaly (down to − 3.2‰ PDB) characteristic of cap carbonates worldwide. Carbon isotopic values rise to + 10‰ across ∼ 400 m of section in overlying carbonates of the Mina el Mezquite and Monteso Formations. The pattern recorded here is mostly characteristic of post-Sturtian (ca. ≤ 700 Ma), but pre-Marinoan (ca. ≥ 635 Ma) time. However, the Cerro Las Bolas Group shares ambiguity common to most Neoproterozoic successions: it lacks useful radiometric age constraints and biostratigraphically useful fossils, and its δ13C signature is oscillatory and therefore somewhat equivocal.

  17. Kinetic isotope effect of carbon-13 in decarboxylation of phenylpropiolic acid in anhydrous formic acid

    International Nuclear Information System (INIS)

    Carbon-13 kinetic isotope effects in the decarboxylation of phenylpropiolic acid (carboxyl-13C) in formic acid medium and in the decarbonylation of liquid formic acid assisted with phenylpropiolic acid (PPA) and acetophenone (AP) have been studied in the 70-100oC temperature interval. The carboxyl-13C KIEs are in the range 1.0034 at 71.6oC and 1.0047 at 101.2oC respectively. The C-13C KIE, k-12/k-13, in the decarbonylation of liquid formic acid assisted with PPA were found to be of 1.0419 at 71.6oC and 1.0383 at 101.2oC. The C-13 KIE in the decarbonylation of pure formic acid are 1.0464 at 70.2oC and 1.0411 at 98oC respectively. The above experimental results have been discussed and interpreted as indicating that the formation of Cα-H bond preceded by the protonation of triple acetylenic bond of PPA is the rate determining step followed by carbon dioxide splitting. The 13-CO-KIE in the carbon monooxide generation assisted with PPA is much larger than the 13-CO-KIE generated in the presence of phenylacetylene. This shows that the decarboxylation of PPA and decarboxylation of FA are interrelated processes proceeding in the reaction cage. The formic acid involved in the formation of TS is decarbonylating directly avoiding probably largely the formic acid anhydride intermediate formation. (author)

  18. Quantifying the chemical composition of soil organic carbon with solid-state 13C NMR

    Science.gov (United States)

    Baldock, J. A.; Sanderman, J.

    2011-12-01

    The vulnerability of soil organic carbon (SOC) to biological decomposition and mineralisation to CO2 is defined at least partially by its chemical composition. Highly aromatic charcoal-like SOC components are more stable to biological decomposition than other forms of carbon including cellulose. Solid-state 13C NMR has gained wide acceptance as a method capable of defining SOC chemical composition and mathematical fitting processes have been developed to estimate biochemical composition. Obtaining accurate estimates depends on an ability to quantitatively detect all carbon present in a sample. Often little attention has been paid to defining the proportion of organic carbon present in a soil that is observable in solid-state 13C NMR analyses of soil samples. However, if such data is to be used to inform carbon cycling studies, it is critical that quantitative assessments of SOC observability be undertaken. For example, it is now well established that a significant discrimination exists against the detection of the low proton content polyaromatic structures typical of charcoal using cross polarisation 13C NMR analyses. Such discrimination does not exist where direct polarisation analyses are completed. In this study, the chemical composition of SOC as defined by cross polarisation and direct polarisation13C NMR analyses will be compared for Australian soils collected from under a diverse range of agricultural managements and climatic conditions. Results indicate that where significant charcoal C contents exist, it is highly under-represented in the acquired CP spectra. For some soils, a discrimination against alkyl carbon was also evident. The ability to derive correction factors to compensate for such discriminations will be assessed and presented.

  19. Synthesis of carbon-11, fluorine-18, and nitrogen-13 labeled radiotracers for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, J.S.; Wolf, A.P.

    1981-01-01

    A number of reviews, many of them recent, have appeared on various aspects of /sup 11/C, /sup 18/F and /sup 13/N-labeled radiotracers. This monograph treats the topic principally from the standpoint of synthetic organic chemistry while keeping in perspective the necessity of integrating the organic chemistry with the design and ultimate application of the radiotracer. Where possible, recent examples from the literature of organic synthesis are introduced to suggest potentially new routes which may be applied to problems in labeling organic molecules with the short-lived positron emitters, carbon-11, fluorine-18, and nitrogen-13. The literature survey of carbon-11, fluorine-18 and nitrogen-13 labeled compounds presented are of particular value to scientists working in this field. Two appendices are also included to provide supplementary general references. A subject index concludes this volume.

  20. Synthesis of carbon-11, fluorine-18, and nitrogen-13 labeled radiotracers for biomedical applications

    International Nuclear Information System (INIS)

    A number of reviews, many of them recent, have appeared on various aspects of 11C, 18F and 13N-labeled radiotracers. This monograph treats the topic principally from the standpoint of synthetic organic chemistry while keeping in perspective the necessity of integrating the organic chemistry with the design and ultimate application of the radiotracer. Where possible, recent examples from the literature of organic synthesis are introduced to suggest potentially new routes which may be applied to problems in labeling organic molecules with the short-lived positron emitters, carbon-11, fluorine-18, and nitrogen-13. The literature survey of carbon-11, fluorine-18 and nitrogen-13 labeled compounds presented are of particular value to scientists working in this field. Two appendices are also included to provide supplementary general references. A subject index concludes this volume

  1. Changes of stable isotopes carbon-13 and nitrogen-15 in different tissues of cattle

    International Nuclear Information System (INIS)

    Stable isotope analysis is a potential tool for tracing food origin. The stable carbon and nitrogen isotope composition in different tissues of two varieties of cattle under the same culture condition were investigated. δ 13C and δ15N values of different defatted muscle and crude fat, cattle tail hair, blood, liver and feed were determined by isotope ratio mass spectrometry, and statistical analysis was carried out. The results showed that stable isotopes of carbon and nitrogen composition was not affected by cattle variety; the δ 13C values between different defatted muscle, blood, liver and cattle hair were not significantly different, but δ 15N value in the liver was much higher than other muscle and the δ 13C values didn't show difference among all the crude fat samples. So these results indicated that isotope fractionation in the various tissue was discrepant. (authors)

  2. Restorative effect of (5E, 13E)-5,13-Docosadienoic acid on carbon tetrachloride induced oxidative stress in rats

    Institute of Scientific and Technical Information of China (English)

    Anand Thiru; Gokulakrishnan Kannan; Kalaiselvan Ashokan; Velavan Sivanandam

    2012-01-01

    Objective: To evaluate the restorative effect of (5E, 13E)-5,13-Docosadienoic acid on carbon tetrachloride induced oxidative stress in rats. Methods: Wistar strain male albino rats, weighing 180-200 g/bw were selected for the study. Rats were divided into four groups. Group I animals were served as normal control. Group II was administered with corn oil (3 ml/kg, i.p.) as vehicle control. Group III was given single dose (29th day) of CCl4 in corn oil (1:1 v/v, 3 ml/kg, i.p.). Groups IV was treated with (5E, 13E)-5,13-Docosadienoic acid (DA) (6 mg/kg body weight) for 28 days and given single dose of (29th day) CCl4 in corn oil (1:1 v/v, 3 ml/kg, i.p.). Six hours after CCl4 intoxication, the experimental animals were sacrificed. The blood samples were collected. Liver was excised immediately and immersed in physiological saline. Results: The lipid peroxidation was initiated in CCl4 intoxicated rats which is evidenced by thiobarbituric acid (TBARS) and diminution of GSH content in liver. Super oxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), vitamin C and E in CCl4 intoxicated rats retrieved towards near normalcy. After treating with DA which significantly altered (P<0.001) serum marker enzyme level and antioxidant level near normal against CCl4 treated rats. Conclusions: It was observed that the entire variable tested i.e., SOD, CAT, GPx, reduced glutathione, vitamin C and E recorded a significant decline on CCl4 treatment. However, treatment with DA restored the levels to near normal value, suggesting the therapeutic effect of DA to counter the oxidative stress.

  3. 13C NMR spectroscopy of amorphous hydrogenated carbon and amorphous hydrogenated boron carbide

    International Nuclear Information System (INIS)

    We report the 13C NMR spectrum of amorphous hydrogenated carbon and boron carbide. The amorphous hydrogenated carbon spectra consist primarily of an sp3 line at 40 ppm and an sp2 line at 140 ppm and are in reasonable agreement with the recent theoretical calculations of Mauri, Pfrommer, and Louie, but there are some notable discrepancies. The amorphous hydrogenated boron carbide spectra are very different from those of amorphous hydrogenated carbon, being dominated by one line at 15 ppm. We interpret this line as due to carbon bound in boron carbide icosahedra, because polycrystalline boron carbide with boron carbide icosahedra as the unit cell gives very similar NMR spectra. copyright 1999 The American Physical Society

  4. Comparison of infrared and mass-spectrometric measurements of carbon-13/carbon-12 ratios

    International Nuclear Information System (INIS)

    The delta13C values of 20 breath samples and 10 tank-CO2 samples (delta13C values ranged from -31.3 to +148.9per mille vs PDB) and the CO2 concentrations of three breath samples and 10 tank-CO2 samples were measured with a commercial prototype of a diode-laser i.r. spectrophotometer, MAT I. The results were compared with those obtained by gas-isotope-ratio mass spectrometry and by gas chromatography. Precisions (ssub(x), n=10) of 0.2per mille and 0.6% were calculated for 13C/12C ratios and CO2 concentrations, respectively, using the MAT I system. (author)

  5. Stable Carbon Isotope Ratios for Giant Stars in the Globular Cluster M13

    Science.gov (United States)

    Rhee, Jaehyon; Pilachowski, C. A.

    2013-01-01

    Recently, our paradigm for the formation and evolution of globular clusters has shifted. We now understand that the majority of present-day stars in globular clusters formed as second-generation stars, primarily from the ejecta of first-generation AGB stars, while the majority of first generation, less centrally concentrated stars, have been dynamically lost to the cluster (D'Ercole et al. 2011). This paradigm explains the observed star-to-star variations in the abundances of light element observed in globular clusters, and suggests that the carbon isotope ratio should be similarly differentiated between first and second generation stars. In an effort to verify this scenario, we have recently utilized the Gemini/NIFS to determine carbon isotope abundances (12C and 13C) for 18 giant stars in the globular clusters M13 through medium-resolution (R ˜ 5300) infrared spectroscopy of the first-overtone CO bands near 2.3 μm. Our program stars are distributed from the tip of the RGB to the BLF (the bump in the luminosity function) of M13, and their Na, Mg, and Al abundances are already known from homogeneous data set analysis. Therefore, adding reliable abundances of the stable carbon isotopes to this homogeneous spectroscopic sample permits systematic tests of cluster chemical evolution models. We report preliminary results of the carbon abundance analysis for our NIFS K-band spectra and present an overview of our ongoing effort with other globular clusters.

  6. Measurement of pion double charge exchange on carbon-13, carbon-14, magnesium-26, and iron-56

    International Nuclear Information System (INIS)

    Cross sections for the /sup 13,14/C,26Mg,56Fe(π+,π-)/sup 13,14/O,26Si,56Ni reactions were measured with the Energetic Pion Channel and Spectrometer at the Clinton P. Anderson Meson Physics Facility for 120 less than or equal to T/sub π/ less than or equal to 292 MeV and 0 less than or equal to theta less than or equal to 50. The double isobaric analog states (DIAS) are of primary interest. In addition, cross sections for transitions to 14O(0+, 5.92 MeV), 14O(2+, 7.77 MeV), 56Ni(gs), 13O(gs), and 13O(4.21 MeV) are presented. The 13O(4.21 MeV) state is postulated to have J/sup π/ = 1/2-. The data are compared to previously measured double-charge-exchange cross sections on other nuclei, and the systematics of double charge exchange on T greater than or equal to 1 target nuclei leading to the DIAS are studied. Near the Δ33 resonance, cross sections for the DIAS transitions are in disagreement with calculations in which the reaction is treated as sequential charge exchange through the free pion-nucleon amplitude, while for T/sub π/ > 200 MeV the anomalous features of the 164 MeV data are not apparent. This is evidence for significant higher order contributions to the double-charge-exchange amplitude near the reasonable energy. Two theoretical approaches that include two nucleon processes are applied to the DIAS data. 64 references

  7. Routes And Rates Of Carbon Input In A Temperate Forest Demonstrated By A Large Scale 13C Tracer Experiment

    International Nuclear Information System (INIS)

    The fate of recently assimilated carbon in mature deciduous trees, which are exposed to elevated and 13C depleted CO2, was traced within the Swiss Canopy Crane (SCC) project. Our findings suggest that substantial amounts of carbon are allocated into short living pools. Therefore, increased carbon storage under rising atmospheric CO2 is unlikely. (author)

  8. Monitoring of liver glycogen synthesis in diabetic patients using carbon-13 MR spectroscopy

    International Nuclear Information System (INIS)

    To investigate the relationship between liver glucose, glycogen, and plasma glucose in diabetic patients, in vivo liver carbon-13 magnetic resonance spectroscopy (13C MRS) with a clinical 3.0 T MR system was performed. Subjects were healthy male volunteers (n = 5) and male type-2 diabetic patients (n = 5). Pre- and during oral glucose tolerance tests (OGTT), 13C MR spectra without proton decoupling were acquired in a monitoring period of over 6 h, and in total seven spectra were obtained from each subject. For OGTT, 75 g of glucose, including 5 g of [1-13C]glucose, was administered. The MR signals of liver [1-13C]glucose and glycogen were detected and their time-course changes were assessed in comparison with the plasma data obtained at screening. The correlations between the fasting plasma glucose level and liver glycogen/glucose rate (Spearman: ρ = -0.68, p 13C MRS can perform noninvasive measurement of glycogen storage/degradation ability in the liver individually and can assist in tailor-made therapy for diabetes. In conclusion, 13C MRS has a potential to become a powerful tool in diagnosing diabetes multilaterally.

  9. Evaluation of carbon diffusion in heat treatment of H13 tool steel under different atmospheric conditions

    Directory of Open Access Journals (Sweden)

    Maziar Ramezani

    2015-04-01

    Full Text Available Although the cost of the heat treatment process is only a minor portion of the total production cost, it is arguably the most important and crucial stage on the determination of material quality. In the study of the carbon diffusion in H13 steel during austenitization, a series of heat treatment experiments had been conducted under different atmospheric conditions and length of treatment. Four austenitization atmospheric conditions were studied, i.e., heat treatment without atmospheric control, heat treatment with stainless steel foil wrapping, pack carburization heat treatment and vacuum heat treatment. The results showed that stainless steel foil wrapping could restrict decarburization process, resulting in a constant hardness profile as vacuum heat treatment does. However, the tempering characteristic between these two heat treatment methods is different. Results from the gas nitrided samples showed that the thickness and the hardness of the nitrided layer is independent of the carbon content in H13 steel.

  10. Carbon-13 nuclear magnetic resonance studies of trans-diacido(tetraamine)cobalt(III)

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, G.R.; Johnson, D.W.

    1982-06-01

    Carbon-13 nuclear magnetic resonance spectra of a series of trans-diacido(1,10-diamino-4,7-diazadecane)cobalt(III) complexes (trans-Co(3,2,3-tet)X/sub 2/, X = Br/sup -/, Cl/sup -/, N/sub 3//sup -/, NO/sub 2//sup -/, OAc) and trans-diacido(1,9-diamino-3,7-diazononane)cobalt(III) complexes (trans-Co(2,3,2-tet)X/sub 2/, X = Cl/sup -/, GlyH, /sup -/OAc, NH/sub 3/, NO/sub 2//sup -/) will be discussed. The /sup 13/C chemical shift is found to be linearly dependent on the ligand field strength (estimated from the electronic spectrum) of the axial ligands (X). The shielding of selected carbon atoms within the tetraamine ligand, which has been attributed to the central metal ion, increases with increasing axial ligand field strength.

  11. Evaluation of carbon diffusion in heat treatment of H13 tool steel under different atmospheric conditions

    OpenAIRE

    Maziar Ramezani; Timotius Pasang; Zhan Chen; Thomas Neitzert; Dominique Au

    2015-01-01

    Although the cost of the heat treatment process is only a minor portion of the total production cost, it is arguably the most important and crucial stage on the determination of material quality. In the study of the carbon diffusion in H13 steel during austenitization, a series of heat treatment experiments had been conducted under different atmospheric conditions and length of treatment. Four austenitization atmospheric conditions were studied, i.e., heat treatment without atmospheric contro...

  12. Hydrothermal carbon from biomass: structural differences between hydrothermal and pyrolyzed carbons via 13C solid state NMR.

    Science.gov (United States)

    Falco, Camillo; Perez Caballero, Fernando; Babonneau, Florence; Gervais, Christel; Laurent, Guillaume; Titirici, Maria-Magdalena; Baccile, Niki

    2011-12-01

    The objective of this paper is to better describe the structure of the hydrothermal carbon (HTC) process and put it in relationship with the more classical pyrolytic carbons. Indeed, despite the low energetic impact and the number of applications described so far for HTC, very little is known about the structure, reaction mechanism, and the way these materials relate to coals. Are HTC and calcination processes equivalent? Are the structures of the processed materials related to each other in any way? Which is the extent of polyaromatic hydrocarbons (PAH) inside HTC? In this work, the effect of hydrothermal treatment and pyrolysis are compared on glucose, a good model carbohydrate; a detailed single-quantum double-quantum (SQ-DQ) solid state (13)C NMR study of the HTC and calcined HTC is used to interpret the spectral region corresponding to the signal of furanic and arene groups. These data are compared to the spectroscopic signatures of calcined glucose, starch, and xylose. A semiquantitative analysis of the (13)C NMR spectra provides an estimation of the furanic-to-arene ratio which varies from 1:1 to 4:1 according to the processing conditions and carbohydrate employed. In addition, we formulate some hypothesis, validated by DFT (density functional theory) modeling associated with (13)C NMR chemical shifts calculations, about the possible furan-rich structural intermediates that occur in the coalification process leading to condensed polyaromatic structures. In combination with a broad parallel study on the HTC processing conditions effect on glucose, cellulose, and raw biomass (Falco, C.; Baccile, N.; Titirici, M.-M. Green Chem., 2011, DOI: 10.1039/C1GC15742F), we propose a broad reaction scheme and in which we show that, through HTC, it is possible to tune the furan-to-arene ratio composing the aromatic core of the produced HTC carbons, which is not possible if calcination is used alone, in the temperature range below 350 °C. PMID:22050004

  13. Short-term carbon and nitrogen cycling in urine patches assessed by combined carbon-13 and nitrogen-15 labelling

    DEFF Research Database (Denmark)

    Ambus, Per; Petersen, S.O.; Soussana, J.F.

    2007-01-01

    ) fuel denitrification activity and N2O production. The study took advantage of carbon-13 pulse labelling the plant tissue combined with application of nitrogen-15 labelled synthetic urine as an attempt to identify the sources of N2O. Over a 6 weeks course, the CO2 evolved in response to urine...... indicating that root death was not a significant source to available C. Nitrous oxide emissions accumulated to 7, 59, 142 and 77 mg N2O-N m(-2), respectively, for control (0N), low urine N (LUN), high urine N (HUN) and high mineral N (HMN) treatments. Pair-wise comparisons indicated that HUN > LUN (P < 0...

  14. Acceleration of carbon-13 spin-lattice relaxation times in amino acids by electrolytes

    Institute of Scientific and Technical Information of China (English)

    Tian Jinping; Yin Yingwu

    2004-01-01

    A series of amino acids and carboxylic acids were determined by 13C NMR spectroscopy.The results showed that addition of 3M MgCl2 led to the 13C NMR integral area of samples being well proportional to number of carbon atoms that produce the particular signal with reliability over 95%. Measurements of 13C spin-lattice relaxation times (T1's) are reported for a number of amino acids. T1's of all the carbons in amino acids generally tend to decrease with the increase of the concentration of electrolytes, and the presence of magnesium slats is of significant. Carboxylic carbons in amino acids are the most sensitive "acceptor" of the 13C spin-lattice relaxation accelerating effects in electrolytes, and the 13C spin-lattice relaxation accelerating ability of electrolytes is Mg(ClO4)2 >MgCl2 >CaCl2 >NaCl >KCl >LiClO4 >NaOH. In general, T1's of C1 carbons in nonpolar a-amino acids are higher than those in polar and basic a-amino acids both in aqueous and 3M MgCl2 medium. In aliphatic straight-chain amino acids, a-, a-, a-, ai- and a- amino acids, T1's of C1 carbons tend to reduce with the increase of inserted carbon numbers between amino and carboxylic groups compared with Gly. T1's can be decreased even more when amino acids are mixed in 3M MgCl2, but T1's of carbons in amino acids decrease slightly with increase of the concentration of amino acids in 3M MgCl2. The mechanisms of the observed phenomena are discussed in terms of intermolecular interaction and paramagnetic impurity in electrolytes, large contributions of intermolecular interaction which is enhanced in electrolytes concentrate on the incoming "unsaturation" of the primary solvation shell of cations with the increase of electrolytes concentration and complexes formation of amino acids with metal ions. In electrolytes, amino acids are "anchored" to cations and molecule tumbling is slowed down, molecular rigidity is increased and molecular size is "enlarged", all of these are helpful to accelerate

  15. Temperature-mediated changes in microbial carbon use efficiency and 13C discrimination

    Science.gov (United States)

    Lehmeier, C. A.; Ballantyne, F., IV; Min, K.; Billings, S. A.

    2015-10-01

    Understanding how carbon dioxide (CO2) flux from soils feeds back to climate warming depends in part on our ability to quantify the efficiency with which microorganisms convert soil organic carbon (C) into either biomass or CO2. Quantifying ecosystem-level respiratory CO2 losses often also requires assumptions about stable C isotope fractionations associated with the microbial transformation of soil organic substrates. However, the diversity of organic substrates' δ13C and the challenges of measuring microbial C use efficiency (CUE) in soils fundamentally limit our ability to project soil, and thus ecosystem, C budgets in a warming climate. Here, we quantify the effect of temperature on C fluxes during metabolic transformations of cellobiose, a common microbial substrate, by a cosmopolitan soil microorganism growing at a constant rate. Specific respiration rate increased by 250 % between 13 and 26.5 °C, decreasing CUE from 77 to 56 %. Specific respiration rate was positively correlated with an increase in respiratory 13C discrimination from 4.4 to 6.7 ‰ across the same temperature range. This first demonstration of a direct link between temperature, microbial CUE and associated isotope fluxes provides a critical step towards understanding δ13C of respired CO2 at multiple scales, and towards a framework for predicting future soil C fluxes.

  16. Temperature-mediated changes in microbial carbon use efficiency and 13C discrimination

    Science.gov (United States)

    Lehmeier, Christoph A.; Ballantyne, Ford, IV; Min, Kyungjin; Billings, Sharon A.

    2016-06-01

    Understanding how carbon dioxide (CO2) flux from ecosystems feeds back to climate warming depends in part on our ability to quantify the efficiency with which microorganisms convert organic carbon (C) into either biomass or CO2. Quantifying ecosystem-level respiratory CO2 losses often also requires assumptions about stable C isotope fractionations associated with the microbial transformation of organic substrates. However, the diversity of organic substrates' δ13C and the challenges of measuring microbial C use efficiency (CUE) in their natural environment fundamentally limit our ability to project ecosystem C budgets in a warming climate. Here, we quantify the effect of temperature on C fluxes during metabolic transformations of cellobiose, a common microbial substrate, by a cosmopolitan microorganism growing at a constant rate. Biomass C specific respiration rate increased by 250 % between 13 and 26.5 °C, decreasing CUE from 77 to 56 %. Biomass C specific respiration rate was positively correlated with an increase in respiratory 13C discrimination from 4.4 to 6.7 ‰ across the same temperature range. This first demonstration of a direct link between temperature, microbial CUE, and associated isotope fluxes provides a critical step towards understanding δ13C of respired CO2 at multiple scales, and towards a framework for predicting future ecosystem C fluxes.

  17. 微波热解法制备的炭涂层对LiNi1/3Mn1/3Co1/3O2性能的影响%Influence of carbon coating prepared by microwave pyrolysis on properties of LiNi1/3Mn1/3Co1/3O2

    Institute of Scientific and Technical Information of China (English)

    韩亚梅; 张正富; 张利波; 彭金辉; 傅梦笔; C.SRINIVASAKANNAN; 杜江

    2013-01-01

    A novel synthesis method of carbon-coated LiNi1/3Mn1/3Co1/3O2 cathode material for lithium-ion battery was reported. The carbon coating was produced from a precursor, glucose, by microwave-pyrolysis method. The prepared powders were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray fluorescence (XRF) and charge/discharge tests. XRD results indicate that the carbon coating does not change the phase structure of LiNi1/3Mn1/3Co1/3O2 material. SEM results show that the surface of spherical carbon-coated material becomes rough. Electrochemical performance results show that the carbon coating can improve the cycling performance of LiNi1/3Mn1/3Co1/3O2. The specific discharge capacity retention of the carbon-coated LiNi1/3Mn1/3Co1/3O2 reached 85.0%−96.0%at the 50th cycle at 0.2C rate, and the specific discharge capacity retention is improved at a high rate.%报道了炭包覆锂离子电池正极材料 LiNi1/3Mn1/3Co1/3O2的新工艺。炭涂层由前驱体葡萄糖通过微波热解而形成。采用X射线粉末衍射(XRD)、扫描电镜、X射线荧光测试和恒流充放电测试来表征所制备的材料。XRD结果表明,炭包覆没有改变LiNi1/3Mn1/3Co1/3O2材料的相结构。SEM结果表明,炭包覆的LiNi1/3Mn1/3Co1/3O2颗粒表面变得粗糙。充放电测试结果显示,炭包覆的 LiNi1/3Mn1/3Co1/3O2的循环性能与未包覆的相比得到提高。炭包覆的LiNi1/3Mn1/3Co1/3O2在0.2C倍率下循环50次的容量保持率由84.8%提升到95.5%,且高倍率下材料的容量保持率得到提高。

  18. Estimation of glucose carbon recycling in children with glycogen storage disease: A 13C NMR study using [U-13C]glucose

    International Nuclear Information System (INIS)

    A stable isotope procedure to estimate hepatic glucose carbon recycling and thereby elucidate the mechanism by which glucose is produced in patients lacking glucose 6-phosphatase is described. A total of 10 studies was performed in children with glycogen storage disease type I (GSD-I) and type III (GSD-III) and control subjects. A primed dose-constant nasogastric infusion of D-[U-13C]glucose or an infusion diluted with nonlabeled glucose solution was administered following different periods of fasting. Hepatic glucose carbon recycling was estimated from 13C NMR spectra. The values obtained for GSD-I patients coincided with the standard [U-13C]glucose dilution curve. These results indicate that the plasma glucose of GSD-I subjects comprises only a mixture of 99% 13C-enriched D-[U-13C]glucose and unlabeled glucose but lacks any recycled glucose. Significantly different glucose carbon recycling values were obtained for two GSD-III patients in comparison to GSD-I patients. The results eliminate a mechanism for glucose production in GSD-I children involving gluconeogenesis. However, glucose release by amylo-1,6-glucosidase activity would result in endogenous glucose production of non-13C-labeled and nonrecycled glucose carbon, as was found in this study. In GSD-III patients gluconeogenesis is suggested as the major route for endogenous glucose synthesis. The contribution of the triose-phosphate pathway in these patients has been determined

  19. Carbon transfer from the host to Tuber melanosporum mycorrhizas and ascocarps followed using a 13C pulse-labeling technique.

    Directory of Open Access Journals (Sweden)

    François Le Tacon

    Full Text Available Truffles ascocarps need carbon to grow, but it is not known whether this carbon comes directly from the tree (heterotrophy or from soil organic matter (saprotrophy. The objective of this work was to investigate the heterotrophic side of the ascocarp nutrition by assessing the allocation of carbon by the host to Tuber melanosporum mycorrhizas and ascocarps. In 2010, a single hazel tree selected for its high truffle (Tuber melanosporum production and situated in the west part of the Vosges, France, was labeled with (13CO2. The transfer of (13C from the leaves to the fine roots and T. melanosporum mycorrhizas was very slow compared with the results found in the literature for herbaceous plants or other tree species. The fine roots primarily acted as a carbon conduit; they accumulated little (13C and transferred it slowly to the mycorrhizas. The mycorrhizas first formed a carbon sink and accumulated (13C prior to ascocarp development. Then, the mycorrhizas transferred (13C to the ascocarps to provide constitutive carbon (1.7 mg of (13C per day. The ascocarps accumulated host carbon until reaching complete maturity, 200 days after the first labeling and 150 days after the second labeling event. This role of the Tuber ascocarps as a carbon sink occurred several months after the end of carbon assimilation by the host and at low temperature. This finding suggests that carbon allocated to the ascocarps during winter was provided by reserve compounds stored in the wood and hydrolyzed during a period of frost. Almost all of the constitutive carbon allocated to the truffles (1% of the total carbon assimilated by the tree during the growing season came from the host.

  20. 13C-enrichment at carbons 8 and 2 of uric acid after 13C-labeled folate dose in man

    International Nuclear Information System (INIS)

    To evaluate folate-dependent carbon incorporation into the purine ring, we measured 13C-enrichment independently at C2 and C8 of urinary uric acid (the final catabolite of purines) in a healthy male after an independent oral dose of [6RS]-5-[13C]-formyltetrahydrofolate ([6RS]-5-H13CO-H4folate) or 10-H13CO-7,8-dihydrofolate (10-H13CO-H2folate). The C2 position was 13C-enriched more than C8 after [6RS]-5-H13CO-H4folate, and C2 was exclusively enriched after 10-H13CO-H2folate. The enrichment of C2 was greater from [6RS]-5-H13CO-H4folate than 10-H13CO-H2folate using equimolar bioactive doses. Our data suggest that formyl C of [6RS]-10-H13CO-H4folate was not equally utilized by glycinamide ribotide transformylase (enriches C8) and aminoimidazolecarboxamide ribotide (AICAR) transformylase (enriches C2), and the formyl C of 10-H13CO-H2folate was exclusively used by AICAR transformylase. 10-HCO-H2folate may function in vivo as the predominant substrate for AICAR transformylase in humans

  1. Soil carbon cycle 13C responses in the decade following bark beetle and girdling disturbance

    Science.gov (United States)

    Maurer, G. E.; Chan, A. M.; Trahan, N. A.; Moore, D. J.; Bowling, D. R.

    2014-12-01

    Recent bark beetle outbreaks in western North America have impacted millions of hectares of conifer forests leading to uncertainty about whether these forests will become new sources of atmospheric CO2. In large part, this depends on whether enhanced respiration from the decomposition of newly dead organic matter will outpace the recovery of ecosystem carbon uptake by the ecosystems. To understand how rapidly conifer forest carbon pools turn over following these disturbances, we examined changes in the isotopic composition of soil respiration (δ13Cresp) following beetle and girdling mortality in two subalpine forests in Colorado, U.S.A. At the beetle-impacted forest δ13Cresp declined by ~1‰ between 3 and 8 years post-disturbance, but recovered in years 9-10. In the girdled forest, deep (<10 cm depth) soil respiration from plots at <1 to 2 years post-girdling was depleted by ~1‰ relative to ungirdled plots, but then gradually increased until there was a significant spike in δ13Cresp at 8-9 years post-girdling. Based on our understanding of isotopic composition in carbon pools and fluxes at these forests, we attribute these changes to removal of recently assimilated C in rhizosphere respiration (1-2 years) followed by the decomposition of litterfall (needles and roots) 8-10 years post-disturbance. Relative to ungirdled plots, there was also a transient enrichment in surface δ13Cresp from plots at <1 to 2 years post-girdling (~0.5‰, not statistically significant) and significant declines in microbial carbon in surface soils in 2-4 year post-girdling plots. Again, based on current understanding, we interpret these to signify the rapid turnover of mycorrhizal and rhizosphere microbial biomass in the 2 years following girdling. A potential confounding factor in this study is that seasonal variation in δ13Cresp was similar in magnitude to changes with time since disturbance and was significantly related to variation in soil temperature and water content.

  2. Isotope separation of carbon-13 by counter-current column with exchange reaction between carbon dioxide and carbamic acid

    International Nuclear Information System (INIS)

    The isotope separation performance of carbon-13 with exchange reaction between CO2 and carbamic acid was studied and some factors for the counter-current column were studied for improving the overall performance. The working fluid for the experiments was a solution of DNBA, (C4H9)2NH, and n-octane mixture. The rate-controlling step of 13C transfer at temperatures higher than 10 deg C was the exchange reaction between carbamic acid and CO2 dissolved by physical absorption. The capacity coefficient of 13C transfer between gas and liquid in the counter-current column was successfully related to the product of three factors: the concentration of carbamic acid, the concentration of CO2 dissolved by physical absorption and the liquid holdup of the column. The liquid holdup was also an important factor. As the holdup increased, the isotope exchange rate and the overall separation factor of the column increased. However, the transient time to equilibrium was much longer. (author)

  3. Composition of Carbon-13 and Nitrogen-15 in Sediments of the Ha Long Bay

    International Nuclear Information System (INIS)

    The Ha Long Bay with beautiful landscape and rich ecosystems is being used by human to develop the economy. The Ha Long Bay is currently affected by human activities causing the sedimentary environment to be much changed. The change of the environment in the Bay was studied using the composition of carbon-13, nitrogen-15 (δ13C, δ15N) and the C/N ratio in sediment of seven cores collected within the Ha Long Bay. In the Ha Long Bay, sedimentary environment receives many source sediment supplies. The north-east of Ha Long bay receives sources from sea, it is characterized by δ13C in sediment from -8.79 to -18.01‰, value δ15N in sediment from 4.36 to 4.73 ‰ and ratio of C/N from 13 to 41, the source organic matter in sediment shows that affected by C4 plant. The centre of Ha Long Bay receives organic source from sea, it is characterized by δ13C in sediment from -16.72 to -21.58 ‰, value δ15N in sediment ranges 4.15 - 5.20 ‰, ratio of C/N in sediment from 7 to 23. The north-west of Ha Long Bay is affected by rivers, it is characterized by δ13C in sediment range from -13.64 to -25.77 ‰, value δ15N in sediment from 2.50 to 4.38 ‰, and ratio C/N from 9 to 19. (author)

  4. One-carbon 13C-labeled synthetic intermediates. Comparison and evaluation of preparative methods

    International Nuclear Information System (INIS)

    Frequently the biggest stumbling block to the synthesis of a structurally complex labeled compound is obtaining the required low molecular weight, structurally simple, isotopic intermediates. Selection of a particular scheme from various alternatives depends on the available capabilities and quantity of product desired, as well as on anticipated future requirements and need for related compounds. Many of the newer reagents for organic synthesis can be applied effectively to isotopic preparations with improvements of yields and simplification of procedures compared to established classical methods. New routes developed for higher molecular weight compounds are sometimes not directly adaptable to the one-carbon analogs, either because of isolation difficulties occasioned by physical properties or by chemical reactivities peculiar to their being first members of homologous series. Various routes for preparation of carbon-13 labeled methanol, formaldehyde, and cyanide are compared

  5. Enhancing the Accuracy of Carbonate δ18O and δ13C Measurements by SIMS

    Science.gov (United States)

    Orland, I. J.; Kozdon, R.; Linzmeier, B.; Wycech, J.; Sliwinski, M.; Kitajima, K.; Kita, N.; Valley, J. W.

    2015-12-01

    The precision and accuracy of carbonate δ18O & δ13C analysis by multicollector SIMS is well established if standards match samples in structure and major/minor element chemistry. However, low-T- and bio-carbonates used to construct paleoclimate archives can include complex internal structures and some samples analyzed at WiscSIMS (and other SIMS labs) have a consistent, sample-dependent offset between average SIMS δ18O measurements and bulk δ18O analyses by phosphoric-acid digestion. The offset is typically hydrogen peroxide), for which there is no agreed procedure in conventional bulk analyses. For SIMS analyses, pre-treatments had varied influence on the δ18O value, [16O1H], the concentration of "organic markers" like 12C14N and 31P, and mineralogy (of aragonite samples).

  6. Carbon-13 solid state NMR studies in the aromatization of residual coals from hydropyrolised cellulose

    International Nuclear Information System (INIS)

    Pure cellulose was pyrolyzed is a fixed-bed reactor under hydrogen pressure (hydropyrolysis). Residual chars were collected and analysed by solid state nmr 13 C (CP-MAS) and elemental. Hydrophyrolysis parameters such as final temperature in the range of 300 to 520 deg C and hydrogen pressure from 5 to 100 atm gave different char samples. CP-MAS spectra were obtained in a BRUKER MSL-100 spectrometer. The results showed that the aromatic and aliphatic fractions had strong dependence with temperature and no influence with pressure. Elemental analysis indicated the carbon content increased more with temperature than the pressure increasing. (author)

  7. Influence of manganese and nickel on properties of low-carbon steels with 13% Cr

    International Nuclear Information System (INIS)

    Studied is the influence of manganese and nickel on mechanical properties and resistance-to-corrosion of the 13% content chromium steels containing 0.1-0.2%C. It is shown that manganese introduction results is the increase of strength characteristics of hardened steels because of delta-ferrite formation suppresion and solid solution strengthening. The delayed cooling during hardening permits to increase ductility and impact strength. Low-carbon 13% content chromium steels alloyed with nickel, molybdenum and aluminium have high heat resistance at temperatures up to 500 deg C due to the precipitation of intermetallics atlading. Chrome-manganese and chrome-nickel steels have a high resistance-to-corrosion in the hardened state in the neutral and weak-acid media

  8. Measurement of soil carbon oxidation state and oxidative ratio by 13C nuclear magnetic resonance

    Science.gov (United States)

    Hockaday, W.C.; Masiello, C.A.; Randerson, J.T.; Smernik, R.J.; Baldock, J.A.; Chadwick, O.A.; Harden, J.W.

    2009-01-01

    The oxidative ratio (OR) of the net ecosystem carbon balance is the ratio of net O2 and CO2 fluxes resulting from photosynthesis, respiration, decomposition, and other lateral and vertical carbon flows. The OR of the terrestrial biosphere must be well characterized to accurately estimate the terrestrial CO2 sink using atmospheric measurements of changing O2 and CO2 levels. To estimate the OR of the terrestrial biosphere, measurements are needed of changes in the OR of aboveground and belowground carbon pools associated with decadal timescale disturbances (e.g., land use change and fire). The OR of aboveground pools can be measured using conventional approaches including elemental analysis. However, measuring the OR of soil carbon pools is technically challenging, and few soil OR data are available. In this paper we test three solid-state nuclear magnetic resonance (NMR) techniques for measuring soil OR, all based on measurements of the closely related parameter, organic carbon oxidation state (Cox). Two of the three techniques make use of a molecular mixing model which converts NMR spectra into concentrations of a standard suite of biological molecules of known C ox. The third technique assigns Cox values to each peak in the NMR spectrum. We assess error associated with each technique using pure chemical compounds and plant biomass standards whose Cox and OR values can be directly measured by elemental analyses. The most accurate technique, direct polarization solid-state 13C NMR with the molecular mixing model, agrees with elemental analyses to ??0.036 Cox units (??0.009 OR units). Using this technique, we show a large natural variability in soil Cox and OR values. Soil Cox values have a mean of -0.26 and a range from -0.45 to 0.30, corresponding to OR values of 1.08 ?? 0.06 and a range from 0.96 to 1.22. We also estimate the OR of the carbon flux from a boreal forest fire. Analysis of soils from nearby intact soil profiles imply that soil carbon losses associated

  9. Preparation and physico-chemical study of nitroxide radicals. Isotopic marking with carbon 13 and deuterium

    International Nuclear Information System (INIS)

    N-t-butyl-N-phenyl nitroxide is obtained by: a) action of t-butyl-magnesium chloride on nitrobenzene, or of phenyl-magnesium bromide on nitro-t-butane, b) oxidation of N-t-butyl-N-phenylhydroxylamine, c) oxidation of N-t-butylaniline. In these latter two cases, it has been possible to isolate the pure radical and to study it using UV, IR and EPR. It decomposes to give N-t-butylaniline and the N-oxide of N-t-butyl-p-quinon-imine. The action of peracids such as p-nitro-perbenzoic or m-chloro-perbenzoic acids on amines or hydroxylamines leads to the formation of stable or unstable nitroxide radicals easily observable by EPR. Finally, with a view to obtaining definite values for the coupling between the free electron of a nitroxide and carbon 13, the preparation of such radicals marked with 13C in the α or β position of the nitroxide function has been carried out. The coupling with an α carbon 13 is negative and does not appear to vary with the spin density on the nitrogen. The interaction with the p nuclei of the nitrogen depends on the nature of the substituents: the two benzyl protons have a hyperfine splitting aH which is always less than that of the ethyl. On the other hand, the 13C coupling is greater in the first case. The usually adopted conformations for the compounds having the carbonyl group cannot account for the observed values of the β couplings. (author)

  10. Biomass Accumulation and Carbon Stocks in 13 Different Clones of Teak (Tectona Grandis Linn. F.) in Odisha, India

    OpenAIRE

    Manoj Kumar Behera; Nilima Priyadarshini Mohapatra

    2015-01-01

    The rate of biomass accumulation and carbon stocks of 13 different clones of Teak in Odisha were studied to identify the promising genotypes suitable for massive clonal plantations in Odisha. ORANP2 produced highest biomass among the 13 clones of teak i.e. 223.72m3/ha, while ORANP1 registered lowest value of 64.05m3/ha in regards to biomass accumulation. The total carbon stock values were found in the range of 32.02-111.86t/ha for 13 different clones of teak. The Mean Annual Increment (MAI) v...

  11. Carbon-13 kinetic isotope effects in the decarbonylations of lactic acid containing 13C at the natural abundance level

    International Nuclear Information System (INIS)

    The 13C kinetic isotope fractionation in the decarbonylation of lactic acid of natural isotopic composition by sulfuric acid has been studied in the temperature range of 20-80 deg C. The 13C(1) isotope separation in the decarbonylation of lactic acid by concentrated sulfuric acid depends strongly on the temperature above 40 deg C. Below this temperature the 13C isotope effect in the decarbonylation of lactic acid by concentrated sulfuric acid is normal similarly as has been found in the decarbonylation of lactic [1-14C] acid. The experimental values of k(12C)/k(13C) ratios of isotopic rate constants for 12C and 13C are close to, but slightly higher than theoretical 13C-kinetic isotope effects calculated (neglecting tunneling) under the asumption that the C(1)-OH bond is broken in the rate-controlling step of the dehydration reaction. Dilution of concentrated sulfuric acid with water up to 1.4 molar (H2O)/(H2SO4) ratio caused the increase of the 13C isotope fractionation from 1.0273 found in concentrated sulfuric acid at 80.5 deg C to 1.0536±0.0008 (at 80.6 deg C). A discussion of the abnormally high temperature dependence of 14C and 13C isotope fractionation in this reaction and the discussion of the problem of relative 14C/13C kinetic isotope effects is given. (author) 18 refs.; 2 tabs

  12. 13 C enrichment by cryogenic distillation of carbon monoxide on experimental pilot plant

    International Nuclear Information System (INIS)

    The isotope 13 C is used in many scientific fields such as: biology, medicine, chemistry and environmental studies. The recent advances in analytical techniques have determined an important demand for this isotope. The most used method for 13 C separation in large quantities is the cryogenic distillation of carbon monoxide at 81 K. The single stage separation factor (α) for 13 C is 1.01 - 1.007 at 70 - 81 K. A 13 C separation plant by cryogenic distillation of CO was built in the Separation Laboratory of ITIM Cluj-Napoca.The carbon monoxide used as a feed gas for the 13 C separation plant was produced by reaction of CO2 with charcoal at 1300 K. CO was purified in a plant which has a reactor filled with Pd/Al2O3 and adsorbers with 5 mA molecular sieve. The purity of the carbon monoxide thus obtained was 99.9%. A cryogenic distillation column was used for high purification and the resulting CO, with less of 10 vol. ppm H2O and CO2, was stored in tanks. The main components of the experimental plant for the distillation of carbon monoxide at 81 K are: the condenser, a cascade with two distillation columns, boilers and thermal insulation. The condenser provides the reflux at the top of the first column by total liquefaction of CO vapours at 81 K. The used refrigerant is liquid nitrogen. The first column is 2.5 m high and 26 mm inside diameter. It is filled with Helipack type packing 2 x 2 x 0.2 mm. The reflux at the bottom of the first column is provided by an electrically heated boiler. The second column, 4.25 m high and 16 mm inside diameter, is filled with Helipack type packing 1.8 x 1.8 x 0.2 mm and has also an electrically heated boiler at the bottom. The columns have several locations for feed lines, sampling lines, pressure and temperature control. Inside the vacuum jacket, the low temperature components were wrapped in multi-layers of aluminized plastic foils, as radiation shields. A vacuum of 10-5 mm Hg was obtained. The purpose of these experiments was to

  13. Experimental cascade for the separation of 13C by cryogenic distillation of carbon monoxide

    International Nuclear Information System (INIS)

    Full text: The stable isotope 13C has multiple applications as compounds labeled for studies in the fields of biology, chemistry, medicine, environment, agro-chemistry, etc. The progress in isotope analysis methodologies increased the interest in producing and using this isotope. The most used method for production of large amounts of 13C is cryogenic distillation of carbon monoxide in a cascade of several stages containing columns of different diameters with packing. Cryogenic distillation uses the differences between vapor pressures of different isotopic species, 12C16O and 13C16O, at temperatures lower than 85 K. This ratio, that is regularly named relative volatility or separation factor α equals 1.01 at 70 K and 1.007 at 81 K. The experiments were performed on experimental device in which columns as high as 7 m are used with inner diameters of 16 and 26 mm, respectively. A cascade consists of two vertical sections, the inner column 26 mm and 2.5 m height and the lower one of 16 mm inner diameter and 4.5 m length, both of them containing Helipack packing. The cooling agent used in the condenser was liquid nitrogen boiling at atmospheric pressure. The boilers were electrically heated at variable power supply. The plant is an automated system controlled by a PC. On this plant a values of HETP between 18.5 and 23 mm were obtained. After a productive experiment of the plant a product of 7.5 at. % of 13C were obtained. The obtained results fit fairly with theoretical calculations. (authors)

  14. Trends of 13C/12C ratios in pinyon tree rings of the American Southwest and the global carbon cycle

    International Nuclear Information System (INIS)

    An accurate atmospheric 13C/12C chronology can provide important constraints to models of the global carbon cycle. Trees accumulate carbon from atmospheric CO2 into growth rings and offer potential for 13C/12C reconstructions, but results have not been reproducible. This paper presents δ13C curves from 5 sites, representing 20 pinyon (Pinus edulis) trees, where cores of 4 trees from each site have been pooled into a composite sample. Isotopic analysis of cellulose in 5-yr ring groups produces curves with a general trend of decreasing δ13C after 1800, but with pronounced short-term fluctuations superimposed upon the trend. Evidence indicates the fluctuations are strongly related to moisture availability (drought). A mean curve of the 5 δ13C chronologies from which the fossil-fuel component is subtracted suggests a substantial biospheric CO2 contribution to the atmosphere since 1800

  15. Use of laser spectroscopy to measure the 13C/12C and 18O/16O compositions of carbonate minerals.

    Science.gov (United States)

    Barker, Shaun L L; Dipple, Gregory M; Dong, Feng; Baer, Douglas S

    2011-03-15

    The stable carbon and oxygen isotope compositions of carbonate minerals are utilized throughout the earth and environmental sciences for various purposes. Here, we demonstrate the first application of a prototype instrument, based on off-axis integrated cavity output laser spectroscopy, to measure the carbon and oxygen isotope composition of CO(2) gas evolved from the acidification of carbonate minerals. The carbon and oxygen isotope ratios were recorded from absorption spectra of (12)C(16)O(16)O, (13)C(16)O(16)O, and (12)C(16)O(18)O in the near-infrared wavelength region. The instrument was calibrated using CaCO(3) minerals with known δ(13)C(VPDB) and δ(18)O(VSMOW) values, which had been previously calibrated by isotope ratio mass spectrometry relative to the international isotopic standards NBS 18 and NBS 19. Individual analyses are demonstrated to have internal precision (1 SE) of better than 0.15‰ for δ(13)C and 0.6‰ for δ(18)O. Analysis of four carbonate standards of known isotopic composition over 2 months, determined using the original instrumental calibration, indicates that analyses are accurate to better than 0.5‰ for both δ(13)C and δ(18)O without application of standard-sample-standard corrections. PMID:21341717

  16. Carbon-13 nuclear magnetic resonance of heterocyclic salts and its precursors

    International Nuclear Information System (INIS)

    The synthesis of 1,2,3,6 - tetrahydro - 1, 1 dimethyl - 3 - oxo - 5 phenylpyridinium bromides containing the substituents: H, Me, Cl, Br, OMe and NO2 is described. The phenacyl bromides (8a-f) were characterized by their melting points and by their I.r. and 1H n.m.r. spectra. Some studies on 13C n.m.r. spectra of the phenacyl bromides (8a-f), the quartenary ammonium salts (7a-f) and the cyclic salts(6a-f) are shown. The effect of substituents on the eletronic structure of these compounds and on the chemical shifts of the different carbon atoms in terms of electronic and steric effects are discussed. (M.J.C.)

  17. Carbon 13 nuclear magnetic resonance spectroscopy of cobalt(III) complexes with flexible tetraamine ligands

    Energy Technology Data Exchange (ETDEWEB)

    Brubaker, G.R.; Johnson, D.W.

    1983-10-01

    Carbon 13 NMR was found to be an extremely sensitive probe of the stereochemistry of this series of diamagnetic ''Werner'' complexes. Our interpretation is based upon two parameters, the donation of electron density to the metal and the steric perturbation required for coordination. The different symmetry of the complexes often permits determination of stereochemistry from the electronic spectrum. In addition, other methods including vibrational spectroscopy and proton NMR, have been used with some success to determine stereochemistry. These methods suffer, however, from a lack of sensitivity, especially in complexes with unsymmetrical ligands. In the course of continuing study of the stereochemistry of six coordinate transition metal complexes, we have investigated a large variety of cobalt(III) complexes with various tetraamine ligands.

  18. Investigation on biological properties of tacrolimus-loaded poly(1,3-trimethylene carbonate) in vitro

    Science.gov (United States)

    Hou, Ruixia; Wu, Leigang; Wang, Jin; Huang, Nan

    2010-06-01

    The drug-eluting stents have been regarded as a milestone in inhibiting the restenosis of coronary arteries. However, adverse reactions caused by bare-metal stents and non-biodegradable polymer coatings may result in some clinical problems. In this study, a new tacrolimus-eluting stent coated with biodegradable poly(1,3-trimethylene carbonate) (PTMC) is developed. The structures are characterized by Fourier transform infrared (FTIR) analysis, and the wettability is measured by contact angle assay. The biological behaviors are evaluated by the in vitro platelets adhesion test, APTT test, the human umbilical cord artery smooth muscle cells (HUCASMCs), 4',6-diamidine-2-phenylindole (DAPI) and actin immunofluorescence staining, MTT colorimetric assay. These results show that after blending tacrolimus into PTMC, the anticoagulant behavior is improved, and the adhesion and proliferation of HUCASMCs on samples are inhibited. This work aims to find one kind of surface erosion biodegradable polymers that can be applied as drug-eluting stent coatings.

  19. Investigation on biological properties of tacrolimus-loaded poly(1,3-trimethylene carbonate) in vitro

    International Nuclear Information System (INIS)

    The drug-eluting stents have been regarded as a milestone in inhibiting the restenosis of coronary arteries. However, adverse reactions caused by bare-metal stents and non-biodegradable polymer coatings may result in some clinical problems. In this study, a new tacrolimus-eluting stent coated with biodegradable poly(1,3-trimethylene carbonate) (PTMC) is developed. The structures are characterized by Fourier transform infrared (FTIR) analysis, and the wettability is measured by contact angle assay. The biological behaviors are evaluated by the in vitro platelets adhesion test, APTT test, the human umbilical cord artery smooth muscle cells (HUCASMCs), 4',6-diamidine-2-phenylindole (DAPI) and actin immunofluorescence staining, MTT colorimetric assay. These results show that after blending tacrolimus into PTMC, the anticoagulant behavior is improved, and the adhesion and proliferation of HUCASMCs on samples are inhibited. This work aims to find one kind of surface erosion biodegradable polymers that can be applied as drug-eluting stent coatings.

  20. An Empirical Assessment of the Risk of Carbon Leakage in Poland - Working Paper No. 08/13,

    International Nuclear Information System (INIS)

    Poland is a particularly carbon intensive economy. This has created concern that it may be particularly exposed to carbon leakage. However, there is an absence of robust and transparent empirical research on carbon leakage risks in Poland. This study aims at filling this gap by assessing the impact of EU climate policy, in particular the EU Emissions Trading Scheme, on Polish industry. With no mitigating measures, a small number of Polish industrial sectors would face significant carbon costs. However, with free allocation, banked surplus allowances and a carbon price of euros 30/ton, only one sector would face direct carbon costs in excess of 5% of operating profits. Three sectors face direct carbon costs in the order of 1-3% of operating profits; three face no direct carbon costs. With direct compensation for indirect carbon costs (electricity price increases), the two most affected sectors would face indirect costs of 3.5 to 5.5% of gross value added with a carbon price of euros 30/ ton. The vast majority of Poland's trade in energy intensive sectors occurs within the EU. It is important to maintain a harmonized climate policy to avoid internal market distortions. There is thus a negligible risk of carbon leakage in Poland under current policy. The mitigating measures in the EU Directive remove the vast majority of direct and indirect carbon costs for Polish industry. EU climate policy can be made more stringent without inducing risks of significant carbon leakage. The current benchmarking system appears to be reasonably effective at not structurally disadvantaging less carbon efficient Member States like Poland. And it is vital to maintaining a harmonized climate policy. Finding a harmonized way to address indirect carbon costs may unlock Polish support for future policy. (authors)

  1. Phenotyping hepatocellular metabolism using uniformly labeled carbon-13 molecular probes and LC-HRMS stable isotope tracing.

    Science.gov (United States)

    Meissen, John K; Pirman, David A; Wan, Min; Miller, Emily; Jatkar, Aditi; Miller, Russell; Steenwyk, Rick C; Blatnik, Matthew

    2016-09-01

    Metabolite stable isotope tracing is a powerful bioanalytical strategy that has the potential to unravel phenotypic markers of early pharmaceutical efficacy by monitoring enzymatic incorporation of carbon-13 atoms into targeted pathways over time. The practice of probing biological systems with carbon-13 labeled molecules using broad MS-based screens has been utilized for many years in academic laboratories but has had limited application in the pharmaceutical R&D environment. The goal of this work was to establish a LCMS analytical workflow that was capable of monitoring carbon-13 isotope changes in glycolysis, the TCA and urea cycles, and non-essential amino acid metabolism. This work applies a standardized protein precipitation with 80% cold methanol and two distinct reverse-phase ion-pair liquid chromatography methods coupled to either a positive- or negative-ion mode high-resolution accurate mass spectrometry screening method. The data herein combines thousands of single-point peak integrations into a novel metabolite network map as a visualization aid to probe and monitor stable isotope incorporation in murine hepatocytes using uniformly labeled (13)C6 glucose, (13)C3 lactate, and (13)C5 glutamine. This work also demonstrates that nitrogen metabolism may have a large influence on the TCA cycle and gluconeogenic carbon fluxes in hepatocyte cell culture. PMID:27343766

  2. Fractional enrichment of proteins using [2-{sup 13}C]-glycerol as the carbon source facilitates measurement of excited state {sup 13}Cα chemical shifts with improved sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Ahlner, Alexandra; Andresen, Cecilia; Khan, Shahid N. [Linköping University, Division of Chemistry, Department of Physics, Chemistry and Biology (Sweden); Kay, Lewis E. [The University of Toronto, Departments of Molecular Genetics, Biochemistry and Chemistry, One King’s College Circle (Canada); Lundström, Patrik, E-mail: patlu@ifm.liu.se [Linköping University, Division of Chemistry, Department of Physics, Chemistry and Biology (Sweden)

    2015-07-15

    A selective isotope labeling scheme based on the utilization of [2-{sup 13}C]-glycerol as the carbon source during protein overexpression has been evaluated for the measurement of excited state {sup 13}Cα chemical shifts using Carr–Purcell–Meiboom–Gill (CPMG) relaxation dispersion (RD) experiments. As expected, the fractional incorporation of label at the Cα positions is increased two-fold relative to labeling schemes based on [2-{sup 13}C]-glucose, effectively doubling the sensitivity of NMR experiments. Applications to a binding reaction involving an SH3 domain from the protein Abp1p and a peptide from the protein Ark1p establish that accurate excited state {sup 13}Cα chemical shifts can be obtained from RD experiments, with errors on the order of 0.06 ppm for exchange rates ranging from 100 to 1000 s{sup −1}, despite the small fraction of {sup 13}Cα–{sup 13}Cβ spin-pairs that are present for many residue types. The labeling approach described here should thus be attractive for studies of exchanging systems using {sup 13}Cα spin probes.

  3. Characterisation of black carbon-rich samples by (13)C solid-state nuclear magnetic resonance.

    Science.gov (United States)

    Novotny, Etelvino H; Hayes, Michael H B; Deazevedo, Eduardo R; Bonagamba, Tito J

    2006-09-01

    There are difficulties in quantifying and characterising the organic matter (OM) in soils that contain significant amounts of partially oxidised char or charcoal materials. The anthropogenic black carbon (BC), such as that found in the Terra Preta de Indio soils of the Amazon region, is a good example of the OM that is difficult to analyse in such soils. (13)C direct polarisation/magic angle spinning (DP/MAS) at high MAS frequency, (1)H-(13)C cross polarisation (CP)/MAS with total suppression of spinning sidebands (TOSS), and chemical shift anisotropy (CSA) filter nuclear magnetic resonance techniques have been applied successfully for quantifying the different components of OM. However, because pyrogenic materials present strong local magnetic susceptibility heterogeneities, the use of CSA-filter and TOSS make the pulse sequences very sensitive to imperfections in the pi pulses. In this study, the DP/MAS pulse sequence was replaced by a CP with a radio frequency ramp--variable amplitude CP (VACP)--VACP/MAS pulse sequence, and composite pi pulses were used in the CSA-filter and TOSS pulse sequences. In that way, the component functionalities in a humic acid from a BC soil were successfully determined. The spectrometer time needed was greatly decreased by employing this VACP/MAS technique. This development provides an accurate method for characterising BC-rich samples from different origins. PMID:16688435

  4. Characterisation of black carbon-rich samples by 13C solid-state nuclear magnetic resonance

    Science.gov (United States)

    Novotny, Etelvino H.; Hayes, Michael H. B.; Deazevedo, Eduardo R.; Bonagamba, Tito J.

    2006-09-01

    There are difficulties in quantifying and characterising the organic matter (OM) in soils that contain significant amounts of partially oxidised char or charcoal materials. The anthropogenic black carbon (BC), such as that found in the Terra Preta de Índio soils of the Amazon region, is a good example of the OM that is difficult to analyse in such soils. 13C direct polarisation/magic angle spinning (DP/MAS) at high MAS frequency, 1H-13C cross polarisation (CP)/MAS with total suppression of spinning sidebands (TOSS), and chemical shift anisotropy (CSA) filter nuclear magnetic resonance techniques have been applied successfully for quantifying the different components of OM. However, because pyrogenic materials present strong local magnetic susceptibility heterogeneities, the use of CSA-filter and TOSS make the pulse sequences very sensitive to imperfections in the π pulses. In this study, the DP/MAS pulse sequence was replaced by a CP with a radio frequency ramp—variable amplitude CP (VACP)—VACP/MAS pulse sequence, and composite π pulses were used in the CSA-filter and TOSS pulse sequences. In that way, the component functionalities in a humic acid from a BC soil were successfully determined. The spectrometer time needed was greatly decreased by employing this VACP/MAS technique. This development provides an accurate method for characterising BC-rich samples from different origins.

  5. 13C/12C and 18O/16O in calcium carbonate-cemented beach sands ('beach rocks')

    International Nuclear Information System (INIS)

    A study of the stable isotope composition (C13/C12 and O18/O16) of the cement and the local groundwater in Itaparica Island (Salvador-Brazil) is carried out to determine the origin of the carbonate cement. For area A, the cement has Δ13C = 9% showing that CO2 in groundwater charged by decay of organic material is the source of carbonate in the cement. Probably comentation occurs during loss of excess CO2 from groundwater as comes into an environment where loss of CO2 is possible . In area B, where the cements contain, on the average Δ18O v=1,3%, the cement is formed from carbonate typical of sea water or a mixture of sea water and fresh water. (Autor)

  6. The use of natural abundance carbon-13 to identify and quantify sources of emitted carbon dioxide in a calcareous southern Ontario Luvisolic soil

    Science.gov (United States)

    Wilton, Meaghan

    Three studies Were conducted at the Elora Research Station (ERS) on a Luvisolic soil to investigate the soil inorganic carbon (SIC) and soil organic carbon (SOC) components contributing to the CO2 flux (FC) using natural 13C abundance. SIC contributed to the FC in intact soil incubations. Soil disruption exacerbated the release of CO2 from both pedogenic and lithogenic carbonates. Field and laboratory techniques to obtain the delta13C of respired CO2 (delta13CR) were compared. Short-term deployment of non flow-through non steady-state chambers and the use of the simple two-ended mass balance approach to derive delta 13CR were found acceptable to apply to the ERS site. The delta13CR from a corn field at ERS with a history of multiple C4 and C3 crop rotations was partitioned into SIC and SOC components using two approaches. Root respiration contributed 2% - 64% and carbonates contribute up to 20% to the FC.

  7. Transformation behavior in low carbon 13% chromium-3% copper stainless steel; Tei C-13%Cr-3%Cu ko no hentai kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Hara, T.; Uemori, R.; Miyasaka, A. [Nippon Steel Corp., Tokyo (Japan)

    2000-10-01

    Martensitic transformation and {gamma} {yields} {alpha} transformation behavior were investigated in low carbon 13% chromium stainless steels containing 2% nickel or 3% copper. The main conclusions are as follows: (1) Hardness of 2% nickel added low carbon 13% chromium steel was independent of cooling rate after hot working at large reduction. Structure of the steel was martensitic even after being subjected to such large reduction of 75%. This result suggests that ferritic transformation was hard to occur under an usual cooling rate because austenite phase was sufficiently stablized by the addition of chromium and nickel. (2) Austenite to ferrite transformation occurred only for the low carbon 13% chromium 3% copper steel without nickel even at the small cooling rate, such as 0.01K/s. This result was mainly attributed to the unstabilization of austenite phase which caused by the precipitation of {epsilon}-Cu. Furthermore, austenite of the steel becomes easy to transform to ferrite due to heavy hot working. This phenomenon was seemed to be caused by the increase in the area of austenite grain boundary owing to recrystallization. Thus, it was considered that the nucleation of {epsilon}-Cu at the grain boundaries promoted ferrite formation. (author)

  8. Carbon-13 and deuterium isotope effects on the catalytic reactions of biotin carboxylase

    International Nuclear Information System (INIS)

    13C and 2H kinetic isotope effects have been used to investigate the mechanism of enzymic biotin carboxylation. /sup D/(V/K) is 0.50 in 80% D2O at pD 8.0 for the forward reaction and 0.57 at pD 8.5 for the phosphorylation of ADP by carbamoyl phosphate. These values approach the theoretical maximum limit for a reaction in which a proton is transferred from a sulfhydryl to a nitrogen or oxygen base. Therefore, it appears that this portion of the reaction is at or near equilibrium. 13(V/K) at pH 8 is 1.007; the small magnitude of this number suggests that the reaction is almost fully committed by the time the carbon-sensitive steps are reached. There does not appear to be a reverse commitment to the reaction under the conditions in which 13(V/K) was determined. A large forward commitment is consistent with the failure to observe positional isotope exchange from the βγ-bridge position to the β-nonbridge position in [18O4]ATP or washout of 18O from the γ-nonbridge positions. Transfer of 18O from bicarbonate to inorganic phosphate in the forward reaction was clearly observed, however. These observations suggest that biotin carboxylase exists in two distinct forms which differ in the protonation states of the two active-site bases, one of which is a sulfhydryl. Only when the sulfhydryl is ionized and the second base protonated can catalysis take place. Carboxylation of biotin is postulated to occur via a pathway in which carboxyphosphate is formed by nucleophilic attack of bicarbonate on ATP. Decarboxylation of carboxyphosphate in the active site generates CO2, which serves to carboxylate the isourea tautomer of biotin that is generated by the removal of the proton on N1' by the ionized sulfhydryl

  9. Do-Fluoride "Cryolite By- product Carbon White" Awarded the 13th China Excellent Patent Award%Do-Fluoride "Cryolite By- product Carbon White" Awarded the 13th China Excellent Patent Award

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    On November 4, the results of the 13th China Patent Awards were publicized by the State Intellectual Property Office of the People's Republic of China. The patent of "production method of cryolite by-product carbon white" declared by Henan Province Jiaozuo Do-Fluoride Company was awarded China Excellent Patent Award.

  10. Differentiation of Pigment in Eggs Using Carbon ((13)C/(12)C) and Nitrogen ((15)N/(14)N) Stable Isotopes.

    Science.gov (United States)

    Sun, Feng M; Shi, Guang Y; Wang, Hui W

    2016-07-01

    Consumers prefer natural and healthy food, but artificial pigments are often abused in egg products. The study aimed at differentiating the origin of pigments in eggs by applying the technique of carbon ((13)C/(12)C) and nitrogen ((15)N/(14)N) stable isotope analysis. Five hundred sixty laying hens were randomly distributed into 14 treatments, which were divided into four groups: maize, carophyll red pigment, carophyll yellow pigment, and a mixture of carophyll red and yellow pigments. Eggs were collected and pretreated to determe the values of the Roche Yolk Color Fan (RCF), δ(13)C, and δ(15)N. With increasing maize content, the RCF and δ(13)C values of yolks increased. Moreover, the RCF values in the three pigment groups were significantly influenced by the artificial colors, but δ(13)C values were not significantly different, regardless of the existence of pigment. The δ(15)N values in all treatments did not vary as regularly as the carbon stable isotope. A strong positive correlation was found between RCF and δ(13)C in the maize group, but no such correlation was be observed in the pigment groups. It is concluded that carbon stable isotope ratio analysis (δ(13)C) of the yolk can be used to differentiate the origin of the pigment added to eggs. PMID:27302905

  11. Proceedings of the 13th biennial conference on carbon. Extended abstracts and program

    International Nuclear Information System (INIS)

    Properties of carbon are covered including: mechanical and frictional properties; chemical reactivity and surfaces; aerospace applications; carbonization and graphitization; industrial applications; electrical and thermal properties; biomaterials applications; fibers and composites; nuclear applications; activated carbon and adsorption; advances in carbon characterization; and micromechanics and modeling

  12. Proceedings of the 13th biennial conference on carbon. Extended abstracts and program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    Properties of carbon are covered including: mechanical and frictional properties; chemical reactivity and surfaces; aerospace applications; carbonization and graphitization; industrial applications; electrical and thermal properties; biomaterials applications; fibers and composites; nuclear applications; activated carbon and adsorption; advances in carbon characterization; and micromechanics and modeling. (GHT)

  13. Carbon sequestration in soil beneath long-term Miscanthus plantations as determined by 13C abundance

    International Nuclear Information System (INIS)

    Miscanthus is a perennial rhizomatous warm-season grass with C4-photosynthesis. It shows considerable production potentials (10-20 t dry matter ha-1) under NW European growth conditions and plantations of Miscanthus are established to provide biomass for energy. The plant senesces in the autumn in response to adverse climatic conditions, but harvest is normally postponed until spring when the biomass is more suitable for combustion. Total pre-harvest and harvest losses may account for as much as two-thirds of autumn standing biomass and these losses provide a significant carbon input to the soil. In this study, we examine soil organic carbon (SOC) storage and turnovers beneath 9 and 16 year old Miscanthus plantations established at Hornum, Denmark (56 deg. 50'N, 09 deg. 26'E). The soil is a loamy sand (Typic Haplumbrept, coarse loamy, mixed, mesic) with a C3 vegetation history. Soil was sampled at 0-20, 20-50 and 50-100 cm depth in the Miscanthus plantations and in two reference sites under C3-plants. The 0-20 cm samples were divided into fine soil (13C/12C ratio. Rhizomes/stubbles accounted for 10.9-12.6 t DM ha-1 and coarse roots for 3.2-3.7 t DM ha-1 at 0-20 cm depth. No rhizomes and coarse roots were observed in the deeper soil layers. Concentrations of SOC were higher at all soil depths under the 16 year old Miscanthus whereas 9 years of Miscanthus and reference sites showed similar SOC concentrations. δ13C in 0-20 cm reference soil averaged -27.6 per mille while soil beneath 9 and 16 year Miscanthus showed -25.6 per mille and -22.8 per mille, respectively. Difference in δ13C between reference and Miscanthus soils was smaller at greater soil depths. SOC inventories at 0-100 cm ranged from 91-92 t C ha-1 in reference and 9 year Miscanthus to 106 t C ha-1 under 16 years of Miscanthus growing. The main part of the SOC was at 0-20 and 20-50 cm soil with 30-40 t C ha-1 in each layer. Although changes in the overall SOC storage were less significant, 13% and 31

  14. Improved characterization of the botanical origin of sugar by carbon-13 SNIF-NMR applied to ethanol.

    Science.gov (United States)

    Thomas, Freddy; Randet, Celia; Gilbert, Alexis; Silvestre, Virginie; Jamin, Eric; Akoka, Serge; Remaud, Gerald; Segebarth, Nicolas; Guillou, Claude

    2010-11-24

    Until now, no analytical method, not even isotopic ones, had been able to differentiate between sugars coming from C4-metabolism plants (cane, maize, etc.) and some crassulacean acid metabolism plants (e.g., pineapple, agave) because in both cases the isotope distributions of the overall carbon-13/carbon-12 and site-specific deuterium/hydrogen isotope ratios are very similar. Following recent advances in the field of quantitative isotopic carbon-13 NMR measurements, a procedure for the analysis of the positional carbon-13/carbon-12 isotope ratios of ethanol derived from the sugars of pineapples and agave using the site-specific natural isotopic fractionation-nuclear magnetic resonance (SNIF-NMR) method is presented. It is shown that reproducible results can be obtained when appropriate analytical conditions are used. When applied to pineapple juice, this new method demonstrates a unique ability to detect cane and maize sugar, which are major potential adulterants, with a detection limit in the order of 15% of the total sugars, which provides an efficient mean of controlling the authenticity of juices made from this specific fruit. When applied to tequila products, this new method demonstrates a unique ability to unambiguously differentiate authentic 100% agave tequila, as well as misto tequila (made from at least 51% agave), from products made from a larger proportion of cane or maize sugar and therefore not complying with the legal definition of tequila. PMID:21028824

  15. Characterization of the recycled EVA copolymer/silica microcomposites by mechanical properties, SEM and solid state carbon-13 NMR

    International Nuclear Information System (INIS)

    The proposal of this work was to characterize the ethylene-co-vinyl acetate reject of the foot wears industry/silica (micrometer scale) composite by Tension Test, Scanning Electronic Microscopy (SEM) and Nuclear Magnetic Resonance (NMR) in solid state carbon-13. (author)

  16. Influence of Catalyst and Polymerization Conditions on the Properties of 1,3-Trimethylene Carbonate and ε-Caprolactone Copolymers

    NARCIS (Netherlands)

    Pego, Ana Paula; Zhong, Zhiyuan; Dijkstra, Pieter J.; Grijpma, Dirk W.; Feijen, Jan

    2003-01-01

    The influence of the catalyst/initiator system and polymerization conditions on the microstructure and physical properties of copolymers of equimolar amounts of 1,3-trimethylene carbonate (TMC) and -caprolactone (CL) was studied. Statistical copolymers were prepared in the presence of stannous octoa

  17. Synthesis of methyl N-phenyl carbamate from dimethyl carbonate and 1,3-diphenyl urea under mild conditions

    Institute of Scientific and Technical Information of China (English)

    Jun Jie Gao; Hui Quan Li; Yi Zhang

    2007-01-01

    Synthesis of methyl N-phenyl carbamate from dimethyl carbonate and 1,3-diphenyl urea was investigated under atmospheric pressure. The results showed that homogenous catalyst sodium methoxide had the excellent activity to efficiently catalyze the synthesis of methyl N-phenyl carbamate under atmospheric pressure.

  18. STUDY ON THE SEQUENCE STRUCTURE OF SBR BY 13C- NMR METHOD Ⅰ. ASSIGNMENT FOR UNSATURATED CARBONS SPECTRA

    Institute of Scientific and Technical Information of China (English)

    JIAO Shuke; CHEN Xiaonong; HU Liping; YAN Baozhen

    1990-01-01

    The sequence structures of emulsion- processed SBR and solution- processed ( by lithium catalyst )SBR were investigated by 13C- NMR spectroscopy. Seventeen peaks within unsaturated carbon region were recorded under the adopted experimental conditions. Assignments for these peaks were made by empirical- parameter- evaluation method.

  19. STUDY ON THE SEQUENCE STRUCTURE OF SBR BY 13C- NMR METHOD Ⅱ . PEAK ASSIGNMENT FOR ALIPHATIC CARBONS SPECTRA

    Institute of Scientific and Technical Information of China (English)

    JIAO Shuke; CHEN Xiaonong; HU Liping; YAN Baozhen

    1990-01-01

    The study on 13C-NMR spectra of aliphatic carbon region of emulsion-processed and solution-processed ( by lithium catalyst ) SBR was carried out. The assignments for more than thirty odd peaks observed experimentally were made by using " corresponding analysis " method, combined with the empirical parameters reported in literature. The peak intensities were calculated based on Bernoullian statistic assumption.

  20. Developing high-resolution carbon-13 and silicon-29 MRI of solids in sedimentary rocks

    Science.gov (United States)

    Blum, Robert; Barrett, Sean; Viswanathan, Ravinath; Song, Yi-Qiao

    2014-03-01

    Mapping pore structure and flow properties of sedimentary rock is directly relevant to current challenges in geophysics like carbon sequestration and oil/gas exploration. Such applications require detailed information about both structure and composition of porous rocks. However, existing scanning methods tend to be limited to gathering one or the other type of information. MRI could be used to measure both composition and structure simultaneously, but conventional MRI in such systems, which targets the proton signal of interstitial fluid, is severely limited by signal losses due to magnetic susceptibility inhomogeneity. Our lab has recently made advances in obtaining high spatial resolution (sub-400 μm)3 three-dimensional 31P MRI of bone through use of the quadratic echo line-narrowing sequence (1). In this talk, we describe our current work applying these methods to sedimentary rock, targeting the isotopes 13C and 29Si. We describe the results of characterization of limestone and shale samples, and we discuss our progress with producing MRI of these systems. (1) M. Frey, et al. PNAS 109: 5190 (2012)

  1. Biology and air–sea gas exchange controls on the distribution of carbon isotope ratios (δ13C) in the ocean

    OpenAIRE

    A. Schmittner; Gruber, N.; Mix, A. C.; Key, R.M.; Tagliabue, A.; Westberry, T. K.

    2013-01-01

    Analysis of observations and sensitivity experiments with a new three-dimensional global model of stable carbon isotope cycling elucidate the processes that control the distribution of δ13C in the contemporary and preindustrial ocean. Biological fractionation dominates the distribution of δ13CDIC of dissolved inorganic carbon (DIC) due to the sinking of isotopically light δ13C organic matter from the surface into the interior ocean. This process leads to low δ13CDI...

  2. Metabolic flux determination using carbon 13 NMR. Application to normal and tumoral cells from central nervous system

    International Nuclear Information System (INIS)

    Carbon 13 NMR constitutes a potent tool to study cellular metabolism by the use of 13C enriched substrates. Analyzes of 13C NMR spectra recorded from acidic cell extracts lead to the evaluation of specific enrichment of various metabolites. On the other hand, the measure of homonuclear 13C-13C spin coupling gives information on the different isotopomers for a given molecule. Mathematical models were different isotopomers for a given molecule. Mathematical models were developed to interpret the NMR data in terms of metabolic fluxes through the metabolic network of interest. Various models established in our laboratory are presented. These models were applied to metabolic studies of cultured central nervous system cells as rat cerebellar astrocytes and granule cells, and the C6 glioma cell line. (authors). 17 refs., 3 figs., 2 tabs

  3. Seasonal variations of belowground carbon transfer assessed by in situ 13CO2 pulse labelling of trees

    Directory of Open Access Journals (Sweden)

    P. Priault

    2011-02-01

    Full Text Available Soil CO2 efflux is the main source of CO2 from forest ecosystems and it is tightly coupled to the transfer of recent photosynthetic assimilates belowground and their metabolism in roots, mycorrhiza and rhizosphere microorganisms feeding on root-derived exudates. The objectives of our study were to assess patterns of belowground carbon allocation among tree species and along seasons. Pure 13CO2 pulse labelling of the entire crown of three different tree species (beech, oak and pine was carried out at distinct phenological stages. Excess 13C in soil CO2 efflux was tracked using tunable diode laser absorption spectrometry to determine time lags between the start of the labelling and the appearance of 13C in soil CO2 efflux and the amount of 13C allocated to soil CO2 efflux. Isotope composition (δ13C of CO2 respired by fine roots and soil microbes was measured at several occasions after labelling, together with δ13C of bulk root tissue and microbial carbon. Time lags ranged from 0.5 to 1.3 days in beech and oak and were longer in pine (1.6–2.7 days during the active growing season, more than 4 days during the resting season, and the transfer of C to the microbial biomass was as fast as to the fine roots. The amount of 13C allocated to soil CO2 efflux was estimated from a compartment model. Seasonal patterns of carbon allocation to soil CO2 efflux differed markedly between species, with pronounced seasonal variations in pine and beech. In beech, it may reflect competition with other sinks (aboveground growth in late spring and storage in late summer that were not observed in oak.

  4. Seasonal variations of belowground carbon transfer assessed by in situ 13CO2 pulse labelling of trees

    Directory of Open Access Journals (Sweden)

    L. Barthes

    2011-05-01

    Full Text Available Soil CO2 efflux is the main source of CO2 from forest ecosystems and it is tightly coupled to the transfer of recent photosynthetic assimilates belowground and their metabolism in roots, mycorrhiza and rhizosphere microorganisms feeding on root-derived exudates. The objective of our study was to assess patterns of belowground carbon allocation among tree species and along seasons. Pure 13CO2 pulse labelling of the entire crown of three different tree species (beech, oak and pine was carried out at distinct phenological stages. Excess 13C in soil CO2 efflux was tracked using tuneable diode laser absorption spectrometry to determine time lags between the start of the labelling and the appearance of 13C in soil CO2 efflux and the amount of 13C allocated to soil CO2 efflux. Isotope composition (δ13C of CO2 respired by fine roots and soil microbes was measured at several occasions after labelling, together with δ13C of bulk root tissue and microbial carbon. Time lags ranged from 0.5 to 1.3 days in beech and oak and were longer in pine (1.6–2.7 days during the active growing season, more than 4 days during the resting season, and the transfer of C to the microbial biomass was as fast as to the fine roots. The amount of 13C allocated to soil CO2 efflux was estimated from a compartment model. It varied between 1 and 21 % of the amount of 13CO2 taken up by the crown, depending on the species and the season. While rainfall exclusion that moderately decreased soil water content did not affect the pattern of carbon allocation to soil CO2 efflux in beech, seasonal patterns of carbon allocation belowground differed markedly between species, with pronounced seasonal variations in pine and beech. In beech, it may reflect competition with the strength of other sinks (aboveground growth in late spring and storage in late summer that were not observed in oak. We report a fast transfer of recent photosynthates to the mycorhizosphere and we conclude that the

  5. Use of carbon-13 as a population marker for Anopheles arabiensis in a sterile insect technique (SIT context

    Directory of Open Access Journals (Sweden)

    Knols Bart GJ

    2006-01-01

    Full Text Available Abstract Background Monitoring of sterile to wild insect ratios in field populations can be useful to follow the progress in genetic control programmes such as the Sterile Insect Technique (SIT. Of the numerous methods for marking insects most are not suitable for use in mass rearing and mass release. Suitable ones include dye marking, genetic marking and chemical marking. Methods The feasibility of using the stable isotope of carbon, 13C, as a potential chemical marker for Anopheles arabiensis was evaluated in the laboratory. Labeled-13C glucose was incorporated into the larval diet in a powder or liquid form. The contribution of adult sugar feeding to the total mosquito carbon pool and the metabolically active carbon pool was determined by tracing the decline of the enrichment of the adult male mosquito as it switched from a labeled larval diet to an unlabeled adult diet. This decline in the adult was monitored by destructive sampling of the whole mosquito and analyzed using isotope ratio mass spectrometry. Results A two-pool model was used to describe the decline of the 13C-enrichment of adult mosquitoes. The proportion of the total adult carbon pool derived from the adult sugar diet over the life span of mosquitoes was determined and the ratio of structural carbon, with a low turnover rate to metabolically active non-structural carbon was assessed. The uptake and turnover of sugar in the metabolically active fraction suggests that after 3 days >70% of the active fraction carbon is derived from sugar feeding (increasing to >90% by day 7, indicating the high resource demand of male mosquitoes. Conclusion It was possible to "fix" the isotopic label in adult An. arabiensis and to detect the label at an appropriate concentration up to 21 days post-emergence. The optimum labeling treatment would cost around 250 US$ per million mosquitoes. Stable isotope marking may thus aid research on the fate of released insects besides other population

  6. Preferential formation of 13C- 18O bonds in carbonate minerals, estimated using first-principles lattice dynamics

    Science.gov (United States)

    Schauble, Edwin A.; Ghosh, Prosenjit; Eiler, John M.

    2006-05-01

    Equilibrium constants for internal isotopic exchange reactions of the type: Ca12C18O16O2+Ca13C16O3↔Ca13C18O16O2+Ca12C16O3 for individual CO 32- groups in the carbonate minerals calcite (CaCO 3), aragonite (CaCO 3), dolomite (CaMg(CO 3) 2), magnesite (MgCO 3), witherite (BaCO 3), and nahcolite (NaHCO 3) are calculated using first-principles lattice dynamics. Calculations rely on density functional perturbation theory (DFPT) with norm-conserving planewave pseudopotentials to determine the vibrational frequencies of isotopically substituted crystals. Our results predict an ˜0.4‰ excess of 13C18O16O22- groups in all studied carbonate minerals at room-temperature equilibrium, relative to what would be expected in a stochastic mixture of carbonate isotopologues with the same bulk 13C/ 12C, 18O/ 16O, and 17O/ 16O ratios. The amount of excess 13C18O16O22- decreases with increasing temperature of equilibration, from 0.5‰ at 0 °C to <0.1‰ at 300 °C, suggesting that measurements of multiply substituted isotopologues of carbonate could be used to infer temperatures of ancient carbonate mineral precipitation and alteration events, even where the δ 18O of coexisting fluids is uncertain. The predicted temperature sensitivity of the equilibrium constant is ˜0.003‰/°C at 25 °C. Estimated equilibrium constants for the formation of 13C18O16O22- are remarkably uniform for the variety of minerals studied, suggesting that temperature calibrations will also be applicable to carbonate minerals not studied here without greatly compromising accuracy. A related equilibrium constant for the reaction: Ca12C18O16O2+Ca12C17O16O2↔Ca12C18O17O16O+Ca12C16O3 in calcite indicates formation of 0.1‰ excess 12C 18O 17O 16O 2- at 25 °C. In a conventional phosphoric acid reaction of carbonate to form CO 2 for mass-spectrometric analysis, molecules derived from 13C18O16O22- dominate (˜96%) the mass 47 signal, and 12C 18O 17O 16O 2- contributes most of the remainder (3%). This suggests

  7. 13C chemical shift anisotropies for carbonate ions in cement minerals and the use of 13C, 27Al and 29Si MAS NMR in studies of Portland cement including limestone additions

    International Nuclear Information System (INIS)

    13C isotropic chemical shifts and chemical shift anisotropy parameters have been determined for a number of inorganic carbonates relevant in cement chemistry from slow-speed 13C MAS or 13C(1H) CP/MAS NMR spectra (9.4 T or 14.1 T) for 13C in natural abundance. The variation in the 13C chemical shift parameters is relatively small, raising some doubts that different carbonate species in Portland cement-based materials may not be sufficiently resolved in 13C MAS NMR spectra. However, it is shown that by combining 13C MAS and 13C(1H) CP/MAS NMR carbonate anions in anhydrous and hydrated phases can be distinguished, thereby providing valuable information about the reactivity of limestone in cement blends. This is illustrated for three cement pastes prepared from an ordinary Portland cement, including 0, 16, and 25 wt.% limestone, and following the hydration for up to one year. For these blends 29Si MAS NMR reveals that the limestone filler accelerates the hydration for alite and also results in a smaller fraction of tetrahedrally coordinated Al incorporated in the C-S-H phase. The latter result is more clearly observed in 27Al MAS NMR spectra of the cement–limestone blends and suggests that dissolved aluminate species in the cement–limestone blends readily react with carbonate ions from the limestone filler, forming calcium monocarboaluminate hydrate. -- Highlights: •13C chemical shift anisotropies for inorganic carbonates from 13C MAS NMR. •Narrow 13C NMR chemical shift range (163–171 ppm) for inorganic carbonates. •Anhydrous and hydrated carbonate species by 13C MAS and 13C(1H) CP/MAS NMR. •Limestone accelerates the hydration for alite in Portland – limestone cements. •Limestone reduces the amount of aluminium incorporated in the C-S-H phase

  8. Carbon-13 kinetic isotope effects in the decarbonylation of lactic acid of natural isotopic composition in phosphoric acid medium

    International Nuclear Information System (INIS)

    The 13C kinetic isotope effect fractionation in the decarbonylation of lactic acid (LA) of natural isotopic composition by concentrated phosphoric acids (PA) and by 85% H3PO4 has been studied in the temperature interval of 60-150 deg C. The values of the 13C(1) isotope effects in the decarbonylation of lactic acid in 100% H3PO4, in pyrophosphoric acid and in more concentrated phosphoric acids are intermediate between the values calculated assuming that the C(1)-OH bond is broken in the rate-controlling step of dehydration and those calculated for rupture of the carbon-carbon bond in the transition state. In the temperature interval of 90-130 deg C the experimental 13C fractionation factors determined in concentrated PA approach quite closely the 13C fractionation corresponding to C(2)-C(1) bond scission. The 13C(1) kinetic isotope effects in the decarbonylation of LA in 85% orthophosphoric acid in the temperature range of 110-150 deg C coincide with the 13C isotope effects calculated assuming that the frequency corresponding to the C(1)-OH vibration is lost in the transition state of decarbonylation. A change of the mechanism of decarbonylation of LA in going from concentrated PA medium to 85% H3PO4 has been suggested. A possible secondary 18O and a primary18O kinetic isotope effect in decarbonylation of lactic acid in phosphoric acids media have been discussed, too. (author) 21 refs.; 3 tabs

  9. Carbon-13 nuclear magnetic resonance spectroscopic studies of 13CO adsorbed on platinum particles in L-zeolites

    International Nuclear Information System (INIS)

    13CO chemisorbed on platinum particles in L-zeolite has been investigated by static and magic angles spinning NMR spectroscopy. The representative spectra ate composed of a broad asymmetric peak with a center of gravity at 230±30 ppm and a sharp symmetric peak at 124±2 ppm which is tentatively assigned to physisorbed CO2 on inner walls of L-zeolite. Overall, the broad resonance component is similar to our previous results of highly dispersed (80-96%) CO/Pt/silica or CO/Pt/alumina samples, still showing metallic characters. The principal difference is in the first moment value. The broad peak in the spectra is assigned to CO linearly bound to Pt particles in the L-zeolites, and indicates a distribution of isotropic shifts from bonding site to bonding site. The NMR results reported here manifest that the Pt particles inside of the L-zeolites channels are not collectively the same with the ones supported on silica or alumina with similar dispersion in terms of Pt particle shape and/or ordering of Pt atoms in a particle. As a result, Pt particles of CO/Pt/L-zeolite were agglomerated accompanying CO desorption upon annealing. There were no definite changes in the NMR spectra due to differences of exchanged cations. Comparison of our observation on CO/Pt/L-zeolite with Sharma et al.'s reveals that even when the first moment, the linewidth, and the relaxation times of the static spectra and the dispersion measured by chemisorption are similar, the properties of Pt particles can be dramatically different. Therefore, it is essential to take advantage of the strengths of several techniques together in order to interpret data reliably, especially for the highly dispersed samples

  10. Direct uptake of organic carbon by grass roots and allocation in leaves and phytoliths: 13C labeling evidence

    Science.gov (United States)

    Alexandre, A.; Balesdent, J.; Cazevieille, P.; Chevassus-Rosset, C.; Signoret, P.; Mazur, J.-C.; Harutyunyan, A.; Doelsch, E.; Basile-Doelsch, I.; Miche, H.; Santos, G. M.

    2015-12-01

    In the rhizosphere, the uptake of low molecular weight carbon (C) and nitrogen (N) by plant roots has been well documented. While organic N uptake relatively to total uptake is important, organic C uptake is supposed to be low relatively to the plant's C budget. Recently, radiocarbon analyses demonstrated that a fraction of C from the soil was occluded in amorphous silica micrometric particles that precipitate in plant cells (phytoliths). Here, we investigated whether and in which extent organic C absorbed by grass roots, under the form of either intact amino acids (AAs) or microbial metabolites, can feed the organic C occluded in phytoliths. For this purpose we added 13C- and 15N-labeled AAs to the silicon-rich hydroponic solution of the grass Festuca arundinacea. The experiment was designed to prevent C leakage from the labeled nutritive solution to the chamber atmosphere. After 14 days of growth, the 13C and 15N enrichments (13C-excess and 15N-excess) in the roots, stems and leaves, and phytoliths, as well as the 13C-excess in AAs extracted from roots and stems and leaves, were quantified relatively to a control experiment in which no labelled AAs were added. The net uptake of 13C derived from the labeled AAs supplied to the nutritive solution (AA-13C) by Festuca arundinacea represented 4.5 % of the total AA-13C supply. AA-13C fixed in the plant represented only 0.13 % of total C. However, the experimental conditions may have underestimated the extent of the process under natural and field conditions. Previous studies showed that 15N and 13C can be absorbed by the roots in several organic and inorganic forms. In the present experiment, the fact that phenylalanine and methionine, that were supplied in high amount to the nutritive solution, were more 13C-enriched than other AAs in the roots and stems and leaves strongly suggested that part of AA-13C was absorbed and translocated in its original AA form. The concentration of AA-13C represented only 0.15 % of the

  11. Seasonal and interannual variability in 13C composition of ecosystem carbon fluxes in the U.S. Southern Great Plains

    OpenAIRE

    Torn, Margaret S.; Sebastien C. Biraud; Still, Christopher J.; Riley, William J; Berry, Joe A.

    2011-01-01

    The δ13C value of terrestrial CO2 fluxes (δbio) provides important information for inverse models of CO2 sources and sinks as well as for studies of vegetation physiology, C3 and C4 vegetation fluxes, and ecosystem carbon residence times. From 2002–2009, we measured atmospheric CO2 concentration and δ13C–CO2 at four heights (2 to 60 m) in the U.S. Southern Great Plains (SGP) and computed δbio weekly. This region has a fine-scale mix of crops (primarily C3 winter wheat) and C4 pasture grasses....

  12. Carbon sequestration and estimated carbon credit values as measured using 13C labeling and analysis by an optical breath test analyser

    International Nuclear Information System (INIS)

    Recent developments in optical systems for breath testing have provided a robust, low cost option for undertaking 13C analysis. Although these systems were initially developed for breath testing for Helicobacter pylori, they have potential as a research tool in soil science and agronomy. The relatively low cost of the equipment at US$ 15000-25000 is within the research budgets of most institutes or universities. The operational simplicity of the optical system means that relatively low maintenance and minimal training are required. Thus methods were developed to prepare soil and plant materials for 13C isotope-ratio analysis using the breath test analyser, and results were compared with conventional isotope-ratio analysis by mass spectrometry. In combination with simple 13C plant labeling techniques it is possible to devise methods for estimating carbon sequestration under different agronomic management practices within a short time frame. This allows an assessment of the carbon credit value of a particular agronomic practice, which can in turn be used by policy makers for decision-making purposes. For a global understanding of the effect of agricultural practices on the carbon cycle data is required from a range of cropping systems and agro-ecological zones. The method and the approach described will allow collection of data within a reasonable time frame. (author)

  13. Foliar Carbon Isotope Composition (δ13C) and Water Use Efficiency of Different Populus deltoids Clones Under Water Stress

    Institute of Scientific and Technical Information of China (English)

    Zhao Fengjun; Gao Rongfu; Shen Yingbai; Su Xiaohua; Zhang Bingyu

    2006-01-01

    Foliar carbon isotope composition (δ13C),total dry biomass,and long-term water use efficiency (WUEL)of 12 Populus deltoids clones were studied under water stress in a greenhouse.Total dry biomass of clones decreased greatly,while δ13C increased.Single-element variance analysis in the same water treatment indicated that WUEL difference among clones was significant.Clones J2,J6,J7,J8,and J9 were excellent with high WUEL.Extremely significant δ13C differences among water treatments and clones were revealed by two-element variance analysis.Water proved to be the primary factor affecting δ13C under water stress.It showed that there was a good positive correlation between δ13C and WUEL in the same water treatment,and that a high WUEL always coincided with a high δ13C.δ13C might be a reliable indirect index to estimate WUEL among P.deltoids clones.

  14. The Effect of Mesoporous Carbon Nitride Modification by Titanium Oxide Nanoparticles on Photocatalytic Degradation of 1,3-Dinitrobenzene

    Directory of Open Access Journals (Sweden)

    Seyyed Ershad Moradi

    2015-11-01

    Full Text Available In the present work, well ordered, mesoporous carbon nitride (MCN sorbent with uniform mesoporous wall, high surface area and pore volume has been fabricated using the simple polymerization reaction between ethylene diamine and carbon tetrachloride in mesoporous silica media, and then modified by TiO2 nanoparticles (Ti-MCN. The structural order and textural properties of the nanoporous materials were studied by XRD, elemental analysis, and nitrogen adsorption–desorption experiments. Photodegradation experiments for 1,3-dinitrobenzene were conducted in batch mode, the Ti-MCN catalysts were found to be more active compared to the free TiO2 nanoparticles for 1,3-dinitrobenzene degradation.

  15. Biology and air–sea gas exchange controls on the distribution of carbon isotope ratios (δ13C) in the ocean

    OpenAIRE

    A. Schmittner; Gruber, N.; Mix, A. C.; Key, R.M.; Tagliabue, A.; Westberry, T. K.

    2013-01-01

    Analysis of observations and sensitivity experiments with a new three-dimensional global model of stable carbon isotope cycling elucidate processes that control the distribution of δ13C of dissolved inorganic carbon (DIC) in the contemporary and preindustrial ocean. Biological fractionation and the sinking of isotopically light δ13C organic matter from the surface into the interior ocean leads to low δ13CDIC values at depths and in high latitude surface waters and high...

  16. Use of carbon-13 as a population marker for Anopheles arabiensis in a sterile insect technique (SIT) context

    OpenAIRE

    Knols Bart GJ; Mayr Leo; Hood-Nowotny Rebecca

    2006-01-01

    Abstract Background Monitoring of sterile to wild insect ratios in field populations can be useful to follow the progress in genetic control programmes such as the Sterile Insect Technique (SIT). Of the numerous methods for marking insects most are not suitable for use in mass rearing and mass release. Suitable ones include dye marking, genetic marking and chemical marking. Methods The feasibility of using the stable isotope of carbon, 13C, as a potential chemical marker for Anopheles arabien...

  17. High-resolution solid-state carbon-13 nuclear magnetic resonance study of acetaminophen: a common analgesic drug

    OpenAIRE

    Jagannathan, NR

    1987-01-01

    Solid-state 13C-NMR spectra of acetaminophen were obtained by using proton enhancement combined with high-power decoupling and magic angle spinning. The contact time was detd. to obtain a max. signal to noise ratio. The chem. shifts obsd. were assigned to different carbons based on both conventional and nonquaternary suppression NMR spectra. In addn. there were no differences in the solid-state NMR spectra of Crocin and Tylenol tablets (com. brands of acetaminophen), except for the differe...

  18. Coupled transformation of inorganic stable carbon-13 and nitrogen-15 isotopes into higher trophic levels in a eutrophic shallow lake

    International Nuclear Information System (INIS)

    Enclosure and bag experiments were done in a eutrophic shallow lake with simultaneous use of inorganic 13C and 15N isotopes. It was demonstrated that coupled transformation of inorganic carbon and nitrogen can occur into herbivorous zooplankton through phytoplankton. Direct evidence is provided that there is an apparent coupling between photosynthesis and organic nitrogen uptake by phytoplankton during daytime under natural conditions and that the coupling occurs at a constant ratio

  19. Tracing carbon fixation in phytoplankton—compound specific and total 13C incorporation rates

    OpenAIRE

    Grosse, J; van Breugel, P; Boschker, H.T.S.

    2015-01-01

    Measurement of total primary production using 13C incorporation is a widely established tool. However, these bulk measurements lack information about the fate of fixed carbon: the production of major cellular compounds (carbohydrates, amino acids, fatty acids, and DNA/RNA) is affected by for instance nutrient availability as their C:N:P requirements differ. Here, we describe an approach to combine established methods in gas chromatography/isotope ratio mass spectrometry (GC/C-IRMS) and recent...

  20. Tracing carbon assimilation in endosymbiotic deep-sea hydrothermal vent Mytilid fatty acids by 13C-fingerprinting

    Directory of Open Access Journals (Sweden)

    F. Dehairs

    2010-05-01

    Full Text Available Bathymodiolus azoricus mussels thrive at Mid-Atlantic Ridge hydrothermal vents, where part of their energy requirements are met via an endosymbiotic association with chemolithotrophic and methanotrophic bacteria. In an effort to describe phenotypic characteristics of the two bacterial endosymbionts and to assess their ability to assimilate CO2, CH4 and multi-carbon compounds, we performed experiments in aquaria using 13C-labeled NaHCO3 (in the presence of H2S, CH4 or amino-acids and traced the incorporation of 13C into total and phospholipid fatty acids (tFA and PLFA, respectively. 14:0, 15:0, 16:1(n-7c+t and 18:1(n-7c+t PLFA were labeled in the presence of H13CO3- (+H2S and 13CH4, while the 12:0 compound became labeled only in the presence of H13CO3− (+H2S. In contrast, the 16:1(n-9, 16:1(n-8 and (n-6, 18:1(n-8c and (n-7, 20:1(n-7 and 18:2(n-7 PLFA were only labeled in the presence of 13CH4. Some of these symbiont-specific fatty acids also appeared to be labeled in mussel gill tFA when incubated with 13C-enriched amino acids, and so were mussel-specific fatty acids such as 22:2(n-7,15. Our results provide experimental evidence for the potential of specific fatty acid markers to distinguish between the two endosymbiotic bacteria, shedding new light on C1 and multi-carbon compound metabolic pathways in B. azoricus and its symbionts.

  1. 13C-metabolic flux ratio and novel carbon path analyses confirmed that Trichoderma reesei uses primarily the respirative pathway also on the preferred carbon source glucose

    Directory of Open Access Journals (Sweden)

    Saloheimo Markku

    2009-10-01

    Full Text Available Abstract Background The filamentous fungus Trichoderma reesei is an important host organism for industrial enzyme production. It is adapted to nutrient poor environments where it is capable of producing large amounts of hydrolytic enzymes. In its natural environment T. reesei is expected to benefit from high energy yield from utilization of respirative metabolic pathway. However, T. reesei lacks metabolic pathway reconstructions and the utilization of the respirative pathway has not been investigated on the level of in vivo fluxes. Results The biosynthetic pathways of amino acids in T. reesei supported by genome-level evidence were reconstructed with computational carbon path analysis. The pathway reconstructions were a prerequisite for analysis of in vivo fluxes. The distribution of in vivo fluxes in both wild type strain and cre1, a key regulator of carbon catabolite repression, deletion strain were quantitatively studied by performing 13C-labeling on both repressive carbon source glucose and non-repressive carbon source sorbitol. In addition, the 13C-labeling on sorbitol was performed both in the presence and absence of sophorose that induces the expression of cellulase genes. Carbon path analyses and the 13C-labeling patterns of proteinogenic amino acids indicated high similarity between biosynthetic pathways of amino acids in T. reesei and yeast Saccharomyces cerevisiae. In contrast to S. cerevisiae, however, mitochondrial rather than cytosolic biosynthesis of Asp was observed under all studied conditions. The relative anaplerotic flux to the TCA cycle was low and thus characteristic to respiratory metabolism in both strains and independent of the carbon source. Only minor differences were observed in the flux distributions of the wild type and cre1 deletion strain. Furthermore, the induction of the hydrolytic gene expression did not show altered flux distributions and did not affect the relative amino acid requirements or relative anabolic

  2. Carbon-13 isotope composition of the mean CO2 source in the urban atmosphere of Krakow, southern Poland

    Science.gov (United States)

    Zimnoch, Miroslaw; Jasek, Alina; Rozanski, Kazimierz

    2014-05-01

    Quantification of carbon emissions in urbanized areas constitutes an important part of the current research on the global carbon cycle. As the carbon isotopic composition of atmospheric carbon dioxide can serve as a fingerprint of its origin, systematic observations of δ13CO2 and/or Δ14CO2, combined with atmospheric CO2mixing ratio measurements can be used to better constrain the urban sources of this gas. Nowadays, high precision optical analysers based on absorption of laser radiation in the cavity allow a real-time monitoring of atmospheric CO2 concentration and its 13CO2/12CO2 ratio, thus enabling better quantification of the contribution of different anthropogenic and natural sources of this gas to the local atmospheric CO2load. Here we present results of a 2-year study aimed at quantifying carbon isotopic signature of the mean CO2 source and its seasonal variability in the urban atmosphere of Krakow, southern Poland. The Picarro G2101-i CRDS isotopic analyser system for CO2and 13CO2/12CO2 mixing ratio measurements has been installed at the AGH University of Science and Technology campus in July 2011. Air inlet was located at the top of a 20m tower mounted on the roof of the faculty building (ca. 42m a.g.l.), close to the city centre. While temporal resolution of the analyser is equal 1s, a 2-minute moving average was used for calculations of δ13CO2 and CO2 mixing ratio to reduce measurement uncertainty. The measurements were calibrated against 2 NOAA (National Oceanic and Atmospheric Administration) primary standard tanks for CO2 mixing ratio and 1 JRAC (Jena Reference Air Cylinder) isotope primary standard for δ13C. A Keeling approach based on two-component mass and isotope balance was used to derive daily mean isotopic signatures of local CO2 from individual measurements of δ13CO2 and CO2 mixing ratios. The record covers a 2-year period, from July 2011 to July 2013. It shows a clear seasonal pattern, with less negative and less variable δ13CO2 values

  3. Geochemistry of dissolved inorganic carbon in a Coastal Plain aquifer. 2. Modeling carbon sources, sinks, and δ13C evolution

    Science.gov (United States)

    McMahon, Peter B.; Chapelle, Francis H.

    1991-01-01

    Stable isotope data for dissolved inorganic carbon (DIC), carbonate shell material and cements, and microbial CO2 were combined with organic and inorganic chemical data from aquifer and confining-bed pore waters to construct geochemical reaction models along a flowpath in the Black Creek aquifer of South Carolina. Carbon-isotope fractionation between DIC and precipitating cements was treated as a Rayleigh distillation process. Organic matter oxidation was coupled to microbial fermentation and sulfate reduction. All reaction models reproduced the observed chemical and isotopic compositions of final waters. However, model 1, in which all sources of carbon and electron-acceptors were assumed to be internal to the aquifer, was invalidated owing to the large ratio of fermentation CO2 to respiration CO2 predicted by the model (5–49) compared with measured ratios (two or less). In model 2, this ratio was reduced by assuming that confining beds adjacent to the aquifer act as sources of dissolved organic carbon and sulfate. This assumption was based on measured high concentrations of dissolved organic acids and sulfate in confining-bed pore waters (60–100 μM and 100–380 μM, respectively) relative to aquifer pore waters (from less than 30 μM and 2–80 μM, respectively). Sodium was chosen as the companion ion to organic-acid and sulfate transport from confining beds because it is the predominant cation in confining-bed pore waters. As a result, excessive amounts of Na-for-Ca ion exchange and calcite precipitation (three to four times more cement than observed in the aquifer) were required by model 2 to achieve mass and isotope balance of final water. For this reason, model 2 was invalidated. Agreement between model-predicted and measured amounts of carbonate cement and ratios of fermentation CO2 to respiration CO2 were obtained in a reaction model that assumed confining beds act as sources of DIC, as well as organic acids and sulfate. This assumption was

  4. Specific carbon-13 labelling of leucine residues in human growth hormone

    International Nuclear Information System (INIS)

    Biosynthetic human growth hormone specifically 13C-labelled in the carbonyl positions of all 26 leucine residues has been obtained by recombiant DNA techniques using 13C-labelled leucine and an E. coli strain that requires leucine. It is shown that, on the whole, the labelling is specific with no significant mislabelling as would have been the case had the 13C-labelled leucine been metabolized. (au)

  5. Analysis of dissolved organic carbon concentration and 13C isotopic signature by TOC-IRMS - assessment of analytical performance

    Science.gov (United States)

    Kirkels, Frédérique; Cerli, Chiara; Federherr, Eugen; Kalbitz, Karsten

    2013-04-01

    Stable carbon isotopes provide a powerful tool to assess carbon pools and their dynamics. Dissolved organic carbon (DOC) has been recognized to play an important role in ecosystem functioning and carbon cycling and has therefore gained increased research interest. However, direct measurement of 13C isotopic signature of carbon in the dissolved phase is technically challenging particularly using high temperature combustion. Until recently, mainly custom-made systems existed which were modified for coupling of TOC instruments with IRMS for simultaneous assessment of C content and isotopic signature. The variety of coupled systems showed differences in their analytical performances. For analysis of DOC high temperature combustion is recognized as best performing method, owing to its high efficiency of conversion to CO2 also for highly refractory components (e.g. humic, fulvic acids) present in DOC and soil extracts. Therefore, we tested high temperature combustion TOC coupled to IRMS (developed by Elementar Group) for bulk measurements of DOC concentration and 13C signature. The instruments are coupled via an Interface to exchange the carrier gas from O2 to He and to concentrate the derived CO2 for the isotope measurement. Analytical performance of the system was assessed for a variety of organic compounds characterized by different stability and complexity, including humic acid and DOM. We tested injection volumes between 0.2-3 ml, thereby enabling measurement of broad concentration ranges. With an injection volume of 0.5 ml (n=3, preceded by 1 discarded injection), DOC and 13C signatures for concentrations between 5-150 mg C/L were analyzed with high precision (standard deviation (SD) predominantly <0.1‰), good accuracy and linearity (overall SD <0.9‰). For the same settings, slightly higher variation in precision was observed among the lower concentration range and depending upon specific system conditions. Differences in 13C signatures of about 50‰ among

  6. Complementary constraints from carbon (13C) and nitrogen (15N) isotopes on the glacial ocean's soft-tissue biological pump

    Science.gov (United States)

    Schmittner, A.; Somes, C. J.

    2016-06-01

    A three-dimensional, process-based model of the ocean's carbon and nitrogen cycles, including 13C and 15N isotopes, is used to explore effects of idealized changes in the soft-tissue biological pump. Results are presented from one preindustrial control run (piCtrl) and six simulations of the Last Glacial Maximum (LGM) with increasing values of the spatially constant maximum phytoplankton growth rate μmax, which accelerates biological nutrient utilization mimicking iron fertilization. The default LGM simulation, without increasing μmax and with a shallower and weaker Atlantic Meridional Overturning Circulation and increased sea ice cover, leads to 280 Pg more respired organic carbon (Corg) storage in the deep ocean with respect to piCtrl. Dissolved oxygen concentrations in the colder glacial thermocline increase, which reduces water column denitrification and, with delay, nitrogen fixation, thus increasing the ocean's fixed nitrogen inventory and decreasing δ15NNO3 almost everywhere. This simulation already fits sediment reconstructions of carbon and nitrogen isotopes relatively well, but it overestimates deep ocean δ13CDIC and underestimates δ15NNO3 at high latitudes. Increasing μmax enhances Corg and lowers deep ocean δ13CDIC, improving the agreement with sediment data. In the model's Antarctic and North Pacific Oceans modest increases in μmax result in higher δ15NNO3 due to enhanced local nutrient utilization, improving the agreement with reconstructions there. Models with moderately increased μmax fit both isotope data best, whereas large increases in nutrient utilization are inconsistent with nitrogen isotopes although they still fit the carbon isotopes reasonably well. The best fitting models reproduce major features of the glacial δ13CDIC, δ15N, and oxygen reconstructions while simulating increased Corg by 510-670 Pg compared with the preindustrial ocean. These results are consistent with the idea that the soft-tissue pump was more efficient

  7. Combining sap flow meas- urement-based canopy stomatal conductance and 13C discrimination to estimate forest carbon assimilation

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ping; LU Ping; MA Ling; SUN Guchou; RAO Xingquan; CAI Xian; ZENG Xiaoping

    2005-01-01

    The available methods for studying C uptake of forest and their problems in practices are reviewed, and a new approach to combining sap flow and 13C techniques is proposed in this paper. This approach, obtained through strict mathematic derivation, combines sap flow measurement-based canopy stomatal conductance and 13C discrimination to estimate instantaneous carbon assimilation rate of a forest. Namely the mean canopy stomatal conductance (gc) acquired from accurate measurement of sap flux density is integrated with the relationship between 13C discrimination (() and Ci/Ca (intercellular/ambient CO2 concentrations) and with that between Anet (net photosynthetic rate) and gCO2 (stomatal conductance for CO2) so that a new relation between forest C uptake and ( as well as gc is established. It is a new method of such kind for studying the C exchange between forest and atmosphere based on experimental ecology.

  8. A double-quadrature radiofrequency coil design for proton-decoupled carbon-13 magnetic resonance spectroscopy in humans at 7T

    OpenAIRE

    Serés Roig, Eulalia; Magill, Arthur W.; Donati, Guillaume; Meyerspeer, Martin; Xin, Lijing; Ipek, Ozlem; Gruetter, Rolf

    2015-01-01

    Purpose Carbon-13 magnetic resonance spectroscopy (13C-MRS) is challenging because of the inherent low sensitivity of 13C detection and the need for radiofrequency transmission at the 1H frequency while receiving the 13C signal, the latter requiring electrical decoupling of the 13C and 1H radiofrequency channels. In this study, we added traps to the 13C coil to construct a quadrature-13C/quadrature-1H surface coil, with sufficient isolation between channels to allow simultaneous operation at...

  9. Automated determination of the stable carbon isotopic composition (δ13C) of total dissolved inorganic carbon (DIC) and total nonpurgeable dissolved organic carbon (DOC) in aqueous samples: RSIL lab codes 1851 and 1852

    Science.gov (United States)

    Révész, Kinga M.; Doctor, Daniel H.

    2014-01-01

    The purposes of the Reston Stable Isotope Laboratory (RSIL) lab codes 1851 and 1852 are to determine the total carbon mass and the ratio of the stable isotopes of carbon13C) for total dissolved inorganic carbon (DIC, lab code 1851) and total nonpurgeable dissolved organic carbon (DOC, lab code 1852) in aqueous samples. The analysis procedure is automated according to a method that utilizes a total carbon analyzer as a peripheral sample preparation device for analysis of carbon dioxide (CO2) gas by a continuous-flow isotope ratio mass spectrometer (CF-IRMS). The carbon analyzer produces CO2 and determines the carbon mass in parts per million (ppm) of DIC and DOC in each sample separately, and the CF-IRMS determines the carbon isotope ratio of the produced CO2. This configuration provides a fully automated analysis of total carbon mass and δ13C with no operator intervention, additional sample preparation, or other manual analysis. To determine the DIC, the carbon analyzer transfers a specified sample volume to a heated (70 °C) reaction vessel with a preprogrammed volume of 10% phosphoric acid (H3PO4), which allows the carbonate and bicarbonate species in the sample to dissociate to CO2. The CO2 from the reacted sample is subsequently purged with a flow of helium gas that sweeps the CO2 through an infrared CO2 detector and quantifies the CO2. The CO2 is then carried through a high-temperature (650 °C) scrubber reactor, a series of water traps, and ultimately to the inlet of the mass spectrometer. For the analysis of total dissolved organic carbon, the carbon analyzer performs a second step on the sample in the heated reaction vessel during which a preprogrammed volume of sodium persulfate (Na2S2O8) is added, and the hydroxyl radicals oxidize the organics to CO2. Samples containing 2 ppm to 30,000 ppm of carbon are analyzed. The precision of the carbon isotope analysis is within 0.3 per mill for DIC, and within 0.5 per mill for DOC.

  10. Carbon sequestration and estimated carbon credit values as measured using 13C labeling and analysis by an optical breath test analyser

    International Nuclear Information System (INIS)

    Full text: Recent developments in optical systems for breath testing have provided a robust, low-cost option for undertaking 13C analysis. Although these systems were initially developed for breath testing for Helicobacter pylori, they have an enormous potential as a soil science research tool. The relatively low cost of the equipment at US$ 15000-25000 is within the research budgets of most institutes or universities. The simplicity of the mechanisms and optical nature mean that the equipment requires relatively low maintenance and minimal training. Thus methods were developed to prepare soil and plant materials for analysis using the breath test analyser. Results that compare the conventional mass spectrometry methods with the breath test analyser will be presented. In combination with simple 13C-plant-labeling techniques it is possible to devise methods for estimating carbon sequestration under different agronomic management practices within a short time frame. This allows an assessment of the carbon credit value of a particular agronomic practice, which can in turn be used by policy makers for decision-making purposes. For a global understanding of the effect of agricultural practices on the carbon cycle data is required from a range of cropping systems and agro-ecological zones. The method and the approach described will allow collection of hard data within a reasonable time frame. (author)

  11. Carbon sequestration and estimated carbon credit values as measured using 13C labelling and analysis by means of an optical breath test analyser.

    Science.gov (United States)

    Hood, R C; Khan, M; Haque, A; Khadir, M; Bonetto, J P; Syamsul, R; Mayr, L; Heiling, M

    2004-05-01

    Recent developments in optical systems (isotope-selective non-dispersive infrared spectrometry) for breath testing have provided a robust, low-cost option for undertaking (13)C analysis. Although these systems were initially developed for breath testing for Helicobacter pylori, they have an enormous potential as a soil science research tool. The relatively low cost of the equipment, US$15,000-25,000, is within the research budgets of most institutes or universities. The simplicity of the mechanisms and optical nature mean that the equipment requires relatively low maintenance and minimal training. Thus methods were developed to prepare soil and plant materials for analysis using the breath test analyser. Results that compare conventional mass spectrometric methods with the breath test analyser will be presented. In combination with simple (13)C-plant-labeling techniques it is possible to devise methods for estimating carbon sequestration under different agronomic management practices within a short time frame. This enables assessment of the carbon credit value of a particular agronomic practice, which can in turn be used by policy makers for decision-making purposes. For global understanding of the effect of agricultural practices on the carbon cycle, data are required from a range of cropping systems and agro-ecological zones. The method and the approach described will enable collection of hard data within a reasonable time. PMID:14963630

  12. Epidemiology of carbon monoxide gas poisoning deaths in Ardabil city, 2008-13

    Directory of Open Access Journals (Sweden)

    Esmaeil Farzaneh

    2015-04-01

    Full Text Available Background: Carbon monoxide gas is odorless, colorless and toxic which are the most abundant pollutants in the lower atmosphere. Carbon monoxide poisoning is considered as one of the most common causes of mortality in Iran and Ardabil province. This study aimed to investigate the epidemiology of carbon monoxide gas poisoning died patients during 2008 to 2013. Methods: In this descriptive cross-sectional study, with referral to the Ardabil coroner center and poisoning ward of Imam Khomeini hospital, the statistics related to carbon monoxide poisoning died patients have been extracted and entered into the Checklists then analyzed by statistical methods in SPSS.19. Results: The number of deceased in this study was 35 people with a mean age of 33.66 +/- 21.38. Of them, 19 (54.3% were male and 16 (45.7% were female. 85.7 percent of the deceased had been poisoned at home which from them 71.4% died before transaction to hospital. The season winter with 48.6% include the most of cases and the most common vehicle of intoxication was water heater with 48.6%. Conclusion: Carbon monoxide gas poisoning is one of the cases that causes to death of people in Ardabil every year and so promoting public awareness about risks due to Carbon monoxide could have a considerable role in the prevention of poisoning. [Int J Res Med Sci 2015; 3(4.000: 929-932

  13. Atmospheric CO2 level affects plants' carbon use efficiency: insights from a 13C labeling experiment on sunflower stands

    Science.gov (United States)

    Gong, Xiaoying; Schäufele, Rudi; Schnyder, Hans

    2015-04-01

    The increase of atmospheric CO2 concentration has been shown to stimulate plant photosynthesis and (to a lesser extent) growth, thereby acting as a possible sink for the additional atmospheric CO2. However, this effect is dependent on the efficiency with which plants convert atmospheric carbon into biomass carbon, since a considerable proportion of assimilated carbon is returned to the atmosphere via plant respiration. As a core parameter for carbon cycling, carbon use efficiency of plants (CUE, the ratio of net primary production to gross primary production) quantifies the proportion of assimilated carbon that is incorporated into plant biomass. CUE has rarely been assessed based on measurements of complete carbon balance, due to methodological difficulties in measuring respiration rate of plants in light. Moreover, foliar respiration is known to be inhibited in light, thus foliar respiration rate is generally lower in light than in dark. However, this phenomenon, termed as inhibition of respiration in light (IRL), has rarely been assessed at the stand-scale and been incorporated into the calculation of CUE. Therefore, how CUE responses to atmospheric CO2 levels is still not clear. We studied CUE of sunflower stands grown at sub-ambient CO2 level (200 μmol mol-1) and elevated CO2 level (1000 μmol mol-1) using mesocosm-scale gas exchange facilities which enabled continuous measurements of 13CO2/12CO2 exchange. Appling steady-state 13C labeling, fluxes of respiration and photosynthesis in light were separated, and tracer kinetic in respiration was analyzed. This study provides the first data on CUE at a mesocosm-level including respiration in light in different CO2 environments. We found that CUE of sunflower was lower at an elevated CO2 level than at a sub-ambient CO2 level; and the ignorance of IRL lead to erroneous estimations of CUE. Variation in CUE at atmospheric CO2 levels was attributed to several mechanisms. In this study, CO2 enrichment i) affected the

  14. A study on the effect of neighboring protons in proton-coupled spin-lattice relaxation of methylene carbon-13 in n-undecane

    CERN Document Server

    Kim, C

    2002-01-01

    Proton coupled carbon-13 relaxation experiment was performed to investigate the effect of vicinal protons on spin-lattice relaxation of methylene carbon-13 in n-nudecane. A BIRD type pulse sequence was employed as a way to check the validity of describing sup 1 sup 3 CH sub 2 moiety as an isolated AX sub 2 spin system. The results show that the presence of vicinal protons exerts substantial influence on the relaxation of methylene carbon-13, indicating that it is not a very good approximation to treat a methylene moiety as an isolated AX sub 2 spin system.

  15. Tracing carbon assimilation in endosymbiotic deep-sea hydrothermal vent Mytilid fatty acids by 13C-fingerprinting

    Directory of Open Access Journals (Sweden)

    F. Dehairs

    2010-09-01

    Full Text Available Bathymodiolus azoricus mussels thrive at Mid-Atlantic Ridge hydrothermal vents, where part of their energy requirements are met via an endosymbiotic association with chemolithotrophic and methanotrophic bacteria. In an effort to describe phenotypic characteristics of the two bacterial endosymbionts and to assess their ability to assimilate CO2, CH4 and multi-carbon compounds, we performed experiments in aquaria using 13C-labeled NaHCO3 (in the presence of H2S, CH4 or amino-acids and traced the incorporation of 13C into total and phospholipid fatty acids (tFA and PLFA, respectively. 14:0; 15:0; 16:0; 16:1(n − 7c+t; 18:1(n − 13c+t and (n − 7c+t; 20:1(n − 7; 20:2(n − 9,15; 18:3(n − 7 and (n − 5,10,13 PLFA were labeled in the presence of H13CO3− (+H2S and 13CH4, while the 12:0 compound became labeled only in the presence of H13CO3− (+H2S. In contrast, the 17:0; 18:0; 16:1(n − 9; 16:1(n − 8 and (n − 6; 18:1(n − 8; and 18:2(n − 7 PLFA were only labeled in the presence of 13CH4. Some of these symbiont-specific fatty acids also appeared to be labeled in mussel gill tFA when incubated with 13C-enriched amino acids, and so were mussel-specific fatty acids such as 22:2(n − 7,15. Our results provide experimental evidence for the potential of specific fatty acid markers to distinguish between the two endosymbiotic bacteria, shedding new light on C1 and multi-carbon compound metabolic pathways in B. azoricus and its symbionts.

  16. Concentration and delta13C variation of atmospheric carbon dioxide near car traffic routes

    International Nuclear Information System (INIS)

    Results of CO2 concentration and delta13C measurements in the atmospheric air sampled in Cracow and neighbourhood at the points of different influence of automobil exhaust gases are presented. Observed maximum the CO2 concentration at heavy traffic cross-road reached value 419 ppm while delta13C = -9.2%o. The CO2 concentration and delta13C values show correlation for either four sampling points. In the case of domination natural daily fluctuation of CO2 simple mixing model fits very well. Fluctuations determined by anthropogenic CO2 cannot be described by this model indicating different type of correlation. (author)

  17. 31P and 13C-NMR studies of the phosphorus and carbon metabolites in the halotolerant alga, Dunaliella salina

    International Nuclear Information System (INIS)

    The intracellular phosphorus and carbon metabolites in the halotolerant alga Dunaliella salina adapted to different salinities were monitored in living cells by 31P- and 13C-nuclear magnetic resonance (NMR) spectroscopy. The 13C-NMR studies showed that the composition of the visible intracellular carbon metabolites other than glycerol is not significantly affected by the salinity of the growth medium. The T1 relaxation rates of the 13C-glycerol signals in intact cells were enhanced with increasing salinity of the growth medium, in parallel to the expected increase in the intracellular viscosity due to the increase in intracellular glycerol. The 31P-NMR studies showed that cells adapted to the various salinities contained inorganic phosphate, phosphomonoesters, high energy phosphate compounds, and long chain polyphosphates. In addition, cells grown in media containing up to 1 molar NaCl contained tripolyphosphates. The tripolyphosphate content was also controlled by the availability of inorganic phosphate during cell growth. Phosphate-depleted D. salina contained no detectable tripolyphosphate signal. Excess phosphate, however, did not result in the appearance of tripolyphosphate in 31P-NMR spectra of cells adapted to high (>1.5 molar NaCl) salinities

  18. Pathway analysis using (13) C-glycerol and other carbon tracers reveals a bipartite metabolism of Legionella pneumophila.

    Science.gov (United States)

    Häuslein, Ina; Manske, Christian; Goebel, Werner; Eisenreich, Wolfgang; Hilbi, Hubert

    2016-04-01

    Amino acids represent the prime carbon and energy source for Legionella pneumophila, a facultative intracellular pathogen, which can cause a life-threatening pneumonia termed Legionnaires' disease. Genome, transcriptome and proteome studies indicate that L. pneumophila also utilizes carbon substrates other than amino acids. We show here that glycerol promotes intracellular replication of L. pneumophila in amoeba or macrophages (but not extracellular growth) dependent on glycerol-3-phosphate dehydrogenase, GlpD. An L. pneumophila mutant strain lacking glpD was outcompeted by wild-type bacteria upon co-infection of amoeba, indicating an important role of glycerol during infection. Isotopologue profiling studies using (13) C-labelled substrates were performed in a novel minimal defined medium, MDM, comprising essential amino acids, proline and phenylalanine. In MDM, L. pneumophila utilized (13) C-labelled glycerol or glucose predominantly for gluconeogenesis and the pentose phosphate pathway, while the amino acid serine was used for energy generation via the citrate cycle. Similar results were obtained for L. pneumophila growing intracellularly in amoeba fed with (13) C-labelled glycerol, glucose or serine. Collectively, these results reveal a bipartite metabolism of L. pneumophila, where glycerol and carbohydrates like glucose are mainly fed into anabolic processes, while serine serves as major energy supply. PMID:26691313

  19. Preparation and physico-chemical study of nitroxide radicals. Isotopic marking with carbon 13 and deuterium; Preparations et etudes physico-chimiques de radicaux nitroxydes. Marquage isotopique au carbone 13 et au deuterium

    Energy Technology Data Exchange (ETDEWEB)

    Chapelet-Letourneux, G. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1967-07-01

    N-t-butyl-N-phenyl nitroxide is obtained by: a) action of t-butyl-magnesium chloride on nitrobenzene, or of phenyl-magnesium bromide on nitro-t-butane, b) oxidation of N-t-butyl-N-phenylhydroxylamine, c) oxidation of N-t-butylaniline. In these latter two cases, it has been possible to isolate the pure radical and to study it using UV, IR and EPR. It decomposes to give N-t-butylaniline and the N-oxide of N-t-butyl-p-quinon-imine. The action of peracids such as p-nitro-perbenzoic or m-chloro-perbenzoic acids on amines or hydroxylamines leads to the formation of stable or unstable nitroxide radicals easily observable by EPR. Finally, with a view to obtaining definite values for the coupling between the free electron of a nitroxide and carbon 13, the preparation of such radicals marked with {sup 13}C in the {alpha} or {beta} position of the nitroxide function has been carried out. The coupling with an {alpha} carbon 13 is negative and does not appear to vary with the spin density on the nitrogen. The interaction with the p nuclei of the nitrogen depends on the nature of the substituents: the two benzyl protons have a hyperfine splitting a{sub H} which is always less than that of the ethyl. On the other hand, the {sup 13}C coupling is greater in the first case. The usually adopted conformations for the compounds having the carbonyl group cannot account for the observed values of the {beta} couplings. (author) [French] Le N-t-butyl-N-phenyl nitroxyde est obtenu par: a) action du chlorure de t-butylmagnesium sur le nitrobenzene, ou du bromure de phenylmagnesium sur le nitro-t-butane, b) oxydation de la N-t-butyl-N-phenylhydroxylamine, c) oxydation de la N-t-butylaniline. Dans ces deux derniers cas, le radical a pu etre isole pur et etudie par UV, IR et RPE. Il se decompose en N-t-butylaniline et N-oxyde de N-t-butyl-p-quinonimine. L'action de peracides (p-nitroperbenzoique ou m-chloroperbenzoique) sur des amines ou des hydroxylamines conduit a des radicaux nitroxydes

  20. Direct uptake of organically derived carbon by grass roots and allocation in leaves and phytoliths: 13C labeling evidence

    Science.gov (United States)

    Alexandre, Anne; Balesdent, Jérôme; Cazevieille, Patrick; Chevassus-Rosset, Claire; Signoret, Patrick; Mazur, Jean-Charles; Harutyunyan, Araks; Doelsch, Emmanuel; Basile-Doelsch, Isabelle; Miche, Hélène; Santos, Guaciara M.

    2016-03-01

    In the rhizosphere, the uptake of low-molecular-weight carbon (C) and nitrogen (N) by plant roots has been well documented. While organic N uptake relative to total uptake is important, organic C uptake is supposed to be low relative to the plant's C budget. Recently, radiocarbon analyses demonstrated that a fraction of C from the soil was occluded in amorphous silica micrometric particles that precipitate in plant cells (phytoliths). Here, we investigated whether and to what extent organically derived C absorbed by grass roots can feed the C occluded in phytoliths. For this purpose we added 13C- and 15N-labeled amino acids (AAs) to the silicon-rich hydroponic solution of the grass Festuca arundinacea. The experiment was designed to prevent C leakage from the labeled nutritive solution to the chamber atmosphere. After 14 days of growth, the 13C and 15N enrichments (13C excess and 15N excess) in the roots, stems and leaves as well as phytoliths were measured relative to a control experiment in which no labeled AAs were added. Additionally, the 13C excess was measured at the molecular level, in AAs extracted from roots and stems and leaves. The net uptake of labeled AA-derived 13C reached 4.5 % of the total AA 13C supply. The amount of AA-derived 13C fixed in the plant was minor but not nil (0.28 and 0.10 % of total C in roots and stems/leaves, respectively). Phenylalanine and methionine that were supplied in high amounts to the nutritive solution were more 13C-enriched than other AAs in the plant. This strongly suggested that part of AA-derived 13C was absorbed and translocated into the plant in its original AA form. In phytoliths, AA-derived 13C was detected. Its concentration was on the same order of magnitude as in bulk stems and leaves (0.15 % of the phytolith C). This finding strengthens the body of evidences showing that part of organic compounds occluded in phytoliths can be fed by C entering the plant through the roots. Although this experiment was done in

  1. Direct analysis of δ13C and concentration of dissolved organic carbon (DOC) in environmental samples by TOC-IRMS

    Science.gov (United States)

    Kirkels, Frédérique; Cerli, Chiara; Federherr, Eugen; Kalbitz, Karsten

    2014-05-01

    Dissolved organic carbon (DOC) plays an important role in carbon cycling in terrestrial and aquatic systems. Stable isotope analysis (delta 13C) of DOC could provide valuable insights in its origin, fluxes and environmental fate. Precise and routine analysis of delta 13C and DOC concentration are therefore highly desirable. A promising, new system has been developed for this purpose, linking a high-temperature combustion TOC analyzer trough an interface with a continuous flow isotope ratio mass spectrometer (Elementar group, Hanau, Germany). This TOC-IRMS system enables simultaneous stable isotope (bulk delta 13C) and concentration analysis of DOC, with high oxidation efficiency by high-temperature combustion for complex mixtures as natural DOC. To give delta 13C analysis by TOC-IRMS the necessary impulse for broad-scale application, we present a detailed evaluation of its analytical performance for realistic and challenging conditions inclusive low DOC concentrations and environmental samples. High precision (standard deviation, SD predominantly < 0.15 permil) and accuracy (R2 = 0.9997, i.e. comparison TOC-IRMS and conventional EA-IRMS) were achieved by TOC-IRMS for a broad diversity of DOC solutions. This precision is comparable or even slightly better than that typically reported for EA-IRMS systems, and improves previous techniques for δ13C analysis of DOC. Simultaneously, very good precision was obtained for DOC concentration measurements. Assessment of natural abundance and slightly 13C enriched DOC, a wide range of concentrations (0.2-150 mgC/L) and injection volumes (0.05-3 ml), demonstrated good analytical performance with negligible memory effects, no concentration/volume effects and a wide linearity. Low DOC concentrations (< 2 mgC/L), were correctly analyzed without any pre-concentration. Moreover, TOC-IRMS was successfully applied to analyze DOC from diverse terrestrial, freshwater and marine environments (SD < 0.23 permil). In summary, the TOC

  2. Measurement of forest ecosystem-atmosphere exchange of delta-carbon-13--carbon dioxide using Fourier transform infrared spectroscopy and disjunct eddy covariance

    Science.gov (United States)

    Cambaliza, Maria Obiminda L.

    The measurement of the stable isotopic content and isotopic flux of atmospheric carbon dioxide is important for understanding the carbon budget on ecosystem, regional, and global spatial scales. Conventional measurements of the isotopic composition of atmospheric CO2 involve laboratory mass spectrometry analysis of grab samples from the field, which limits the location, collection frequency and throughput of samples. More technologically advanced methods (e.g. tunable diode laser spectroscopy) suffer from interferences with other chemical species. We have developed a new measurement method based on Fourier-transform infrared spectroscopy (FTIR) and disjunct eddy covariance (DEC) for fast, continuous, real-time measurement of the carbon isotopic composition of atmospheric CO2. Molecular absorption is measured in the 2100 to 2500 cm -1 spectral region of the 13CO2 and 12CO2 vibration-rotation bands with concentrations of both isotopologues used to determine delta13C. We demonstrate the capability of this new technique in a managed poplar forest near Boardman, Oregon with measurements during the summers of 2005 and 2006 from a 22-meter tower in a 16-m forest canopy. Long-term calibration using reference gas cylinders yielded field accuracy and precision for the forest measurements of 0.5‰ and 0.8‰, respectively, for the 45-second cycle time between samples. The signature of ecosystem respiration derived from the nighttime vertical profile measurements of CO2-delta13C was --26.6‰, about 2‰ more enriched than the isotopic composition of measured bulk leaf samples from the forest. Ecosystem respired CO 2 was ˜1.6‰ more enriched than soil-respired CO2. A comparison of the FTIR -- DEC total CO2 fluxes against standard eddy covariance measurements showed excellent (10%) agreement. FTIR-DEC measurement of the CO2 isoflux enabled the estimation of the mean carbon isotope ratio of the photosynthetic flux (deltaP). The average deltaP (-24.9‰) was 13C

  3. δ13C chemostratigraphy in the upper Tremadocian through lower Katian (Ordovician carbonate succession of the Siljan district, central Sweden

    Directory of Open Access Journals (Sweden)

    Oliver Lehnert

    2014-12-01

    Full Text Available Based on δ13C data from two drillcores recovered from the Siljan district, we present a first continuous carbon isotope record of the upper Tremadocian–lower Katian limestone succession of central Sweden. New names for some isotopic carbon excursions from the Cambrian–Ordovician boundary through the basal Darriwilian are introduced. The Mora 001 core from the western part of the Siljan impact structure ranges through the Lower–Middle Ordovician, whereas the Solberga 1 core from its eastern part ranges through the Middle–lower Upper Ordovician. Upper Tremadocian and Floian units are extremely condensed and include extensive stratigraphic gaps. Multiple hardgrounds, sometimes with minor karstic overprint, imply recurrent periods of erosion and/or non-deposition. Like in other parts of Sweden, the Dapingian and Darriwilian succession is characterized by a relatively complete sedimentary record and low sedimentation rates.

  4. Radiocarbon, 13C and tritium in water samples from basaltic aquifers and carbonate aquifers on the island of Oahu, Hawaii

    International Nuclear Information System (INIS)

    Principal fresh water aquifers on the subtropical island of Oahu consist of basaltic rocks that are devoid of fossil carbonate minerals. In southern Oahu fresh water occurs as semi-independent basal lenses which float on salt water and are bounded by sedimentary formations along the coast and in valley bottoms. The latter formations contain carbonate aquifers. Fresh water also occurs in dike compartments located in the central parts of the mountains. The radiocarbon content of groundwater recharge on Oahu is between 96 and 100% modern. The 13C concentration associated with fresh groundwater is between -17 and -19 δ per mille PDB and remains constant while such waters reside in, or travel through, basaltic rock aquifers. Radiocarbon and tritium data on basal waters withdrawn by major pumping stations show these waters to have ages between a few decades and several hundred years. Differences in these ages relate systematically to individual pumping rates of the stations, well depths and local lens thickness. (author)

  5. In situ Raman spectroelectrochemical study of 13C labeled fullerene peapods and double walled carbon nanotubes

    Czech Academy of Sciences Publication Activity Database

    Kalbáč, Martin; Kavan, Ladislav; Zukalová, Markéta; Dunsch, L.

    2007-01-01

    Roč. 3, č. 10 (2007), s. 1746-1752. ISSN 1613-6810 R&D Projects: GA AV ČR KJB400400601; GA MŠk LC510 Institutional research plan: CEZ:AV0Z40400503 Keywords : Raman spectroscopy * spectroelectrochemistry * carbon nanotube Subject RIV: CG - Electrochemistry Impact factor: 6.408, year: 2007

  6. Characterization of alkyl carbon in forest soils by CPMAS 13C NMR spectroscopy and dipolar dephasing

    Science.gov (United States)

    Kogel-Knabner, I.; Hatcher, P.G.

    1989-01-01

    Samples obtained from forest soils at different stages of decomposition were treated sequentially with chloroform/methanol (extraction of lipids), sulfuric acid (hydrolysis), and sodium chlorite (delignification) to enrich them in refractory alkyl carbon. As revealed by NMR spectroscopy, this treatment yielded residues with high contents of alkyl carbon. In the NMR spectra of residues obtained from litter samples, resonances for carbohydrates are also present, indicating that these carbohydrates are tightly bound to the alkyl carbon structures. During decomposition in the soils this resistant carbohydrate fraction is lost almost completely. In the litter samples the alkyl carbon shows a dipolar dephasing behavior indicative of two structural components, a rigid and a more mobile component. As depth and decomposition increase, only the rigid component is observed. This fact could be due to selective degradation of the mobile component or to changes in molecular mobility during decomposition, e.g., because of an increase in cross linking or contact with the mineral matter of the soil.

  7. Identification of aquatically available carbon from algae through solution-state NMR of whole (13)C-labelled cells.

    Science.gov (United States)

    Akhter, Mohammad; Dutta Majumdar, Rudraksha; Fortier-McGill, Blythe; Soong, Ronald; Liaghati-Mobarhan, Yalda; Simpson, Myrna; Arhonditsis, George; Schmidt, Sebastian; Heumann, Hermann; Simpson, André J

    2016-06-01

    Green algae and cyanobacteria are primary producers with profound impact on food web functioning. Both represent key carbon sources and sinks in the aquatic environment, helping modulate the dissolved organic matter balance and representing a potential biofuel source. Underlying the impact of algae and cyanobacteria on an ecosystem level is their molecular composition. Herein, intact (13)C-labelled whole cell suspensions of Chlamydomonas reinhardtii, Chlorella vulgaris and Synechocystis were studied using a variety of 1D and 2D (1)H/(13)C solution-state nuclear magnetic resonance (NMR) spectroscopic experiments. Solution-state NMR spectroscopy of whole cell suspensions is particularly relevant as it identifies species that are mobile (dissolved or dynamic gels), 'aquatically available' and directly contribute to the aquatic carbon pool upon lysis, death or become a readily available food source on consumption. In this study, a wide range of metabolites and structural components were identified within the whole cell suspensions. In addition, significant differences in the lipid/triacylglyceride (TAG) content of green algae and cyanobacteria were confirmed. Mobile species in algae are quite different from those in abundance in 'classic' dissolved organic matter (DOM) indicating that if algae are major contributors to DOM, considerable selective preservation of minor components (e.g. sterols) or biotransformation would have to occur. Identifying the metabolites and dissolved components within algal cells by NMR permits future studies of carbon transfer between species and through the food chain, whilst providing a foundation to better understand the role of algae in the formation of DOM and the sequestration/transformation of carbon in aquatic environments. PMID:27074782

  8. Carbon-13 isotopic selectivity in the infrared multiphoton photolysis of CF2Cl2-O2 mixtures

    International Nuclear Information System (INIS)

    The infrared multiphoton chemistry of CF2Cl2-O2 mixtures has been studied at laser frequencies where the product CF2O is highly enriched in carbon-13 yield. Yield enhancements with no loss of isotopic selectivity are attributed to suppression of radical-atom recombination reactions. It is demonstrated that addition of up to 60 Torr of either excess O2 or N2 suppresses a thermal, non-selective channel important at higher fluences. A selectivity factor greater than 30 is observed for 4 Torr CF2Cl2 in the presence of 80 Torr of oxygen

  9. Carbon-13 magnetic relaxation rates or iron (III) complexes of some biogenic amines and parent compounds in aqueous solutions

    International Nuclear Information System (INIS)

    Spin-lattice relaxation rates (R1) from naturally occuring C-13 F.T. N.M.R. spectra of some catecholamines and parent compounds with Iron(III) at pD = 4 were determined in order to elucidate the molecular mechanism underlying their association in aqueous solutions. Complexation was observed only for catecholic ligands. The R1 values were used to calculate iron-carbon scaled distances, and two complexation models were proposed where the catecholic function binds Fe(III) in the first and second coordination spheres respectively. The latter case was shown to be the consistent with the molecular geometries. (orig.)

  10. Temporal δ13C records from bottlenose dolphins (Tursiops truncatus) reflect variation in foraging location and global carbon cycling

    Science.gov (United States)

    Rossman, S. L.; Barros, N. B.; Ostrom, P. H.; Gandhi, H.; Wells, R. S.

    2010-12-01

    With four decades of data on a population of bottlenose dolphins (Tursiops truncatus) resident to Sarasota Bay (SB), The Sarasota Dolphin Research Program offers an unparalleled platform for ground-truthing stable isotope data and exploring bottlenose dolphin ecology in a natural setting. We explored carbon isotope value fidelity to habitat utilization by comparing δ13C data from whole teeth and muscle to the individual dolphin's proclivity towards foraging in seagrass beds based on observational data. We then examined variation in habitat use based on temporal isotope records. Whole tooth protein isotope values do not show a significant correlation with the observed percentage of foraging in seagrass habitat. In contrast, δ13C values from muscle showed a significant positive relationship with the observational data. Differences in the degree of tissue turn over may account for this distinction between tooth and muscle. Dolphin teeth consist of annually deposited layers that are inert once formed. Thus, the isotopic composition of protein in annuli reflect foraging at the time of deposition. In addition to incorporating variation associated with differences in foraging over the lifetime of the individual, whole tooth isotope values are confounded because a disproportionate amount of tooth protein derives from the first few years of life. Given the turnover time of muscle tissue, isotope values reflect diet over the past several months. From 1991 to 2008, muscle δ13C values showed a significant decline, -13.5‰ to -15.1‰.This time period encompasses a state wide net fishing ban (1995) however other factors such as a series of red tide harmful algal blooms, a decline in predators, increases in shallow water boat traffic and an increase in string ray abundance may also contribute to the temporal isotope trend. To examine changes in dolphin foraging habitat further back in time we analyzed the tip of crown of the tooth which records the isotopic signal from the

  11. Application of δ13C and δ15N isotopic signatures of organic matter fractions sequentially separated from adjacent arable and forest soils to identify carbon stabilization mechanisms

    OpenAIRE

    Kayler, Z.E.; Kaiser, M; Gessler, A.; Ellerbrock, R. H.; M. Sommer

    2011-01-01

    Identifying the chemical mechanisms behind soil carbon bound in organo-mineral complexes is necessary to determine the degree to which soil organic carbon is stabilized belowground. Analysis of δ13C and δ15N isotopic signatures of stabilized OM fractions along with soil mineral characteristics may yield important information about OM-mineral associations and their processing history. We anlayzed the δ13C and δ15N isotopic signatures from two organic matter (OM) fractio...

  12. Interactions of 13.6-GeV/nucleon 16O and 28Si with carbon, aluminum, and copper

    International Nuclear Information System (INIS)

    Cross sections for forming 24Na and 18F by the interactions of 13.6-GeV/nucleon 16O and 28Si ions with Al and for forming 24Na in 16O interactions with Cu have been measured relative to the cross section for forming 11C from carbon. The results are generally consistent with energy-independent inclusive cross sections (limiting fragmentation) for heavy ions between ∼2 and 13.6 GeV/nucleon. However, comparison of the heavy-ion data with those for high-energy protons indicates a significantly weaker dependence on projectile size than that predicted by the factorization hypothesis for σC(11C), σAl(18F), and σAl(24Na). The dependence is slightly stronger in the case of σCu(24Na)

  13. Investigation on carbon dioxide corrosion behaviour of HP13Cr110 stainless steel in simulated stratum water

    Energy Technology Data Exchange (ETDEWEB)

    Mu, L.J. [School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)], E-mail: mulijunxjtu@126.com; Zhao, W.Z. [School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2010-01-15

    The carbon dioxide corrosion behaviour of HP13Cr110 stainless steel in simulated stratum water is studied by potentiodynamic curve and electrochemical impedance spectroscopy (EIS); the micro-structure and composition of the corrosion scale formed at high-temperature and high-pressure are analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results show that 13Cr stainless steel is in passive state in the stratum water, the passive current density increases and the passive potential region decreases with increasing temperature. The corrosion scale formed at high-temperature and high-pressure is mainly composed of iron/chromium oxides and a little amount of FeCO{sub 3}.

  14. Carbon dioxide and nitrogen adsorption on cation-exchanged SSZ-13 zeolites.

    Science.gov (United States)

    Pham, Trong D; Liu, Qingling; Lobo, Raul F

    2013-01-15

    Samples of high-silica SSZ-13, ion exchanged with protons and alkali-metal cations Li(+), Na(+), and K(+), were investigated using adsorption isotherms of CO(2) and N(2). The results show that Li-, Na-SSZ-13 have excellent CO(2) capacity at ambient temperature and pressure; in general, Li-SSZ-13 shows the highest capacity for N(2), CO(2) particularly in the low-pressure region. The effect of cation type and Si/Al ratio (6 and 12) on the adsorption properties was investigated through analysis of adsorption isotherms and heats of adsorption. The separation of CO(2) in a flue gas mixture was evaluated for these adsorbents in the pressure swing adsorption and vacuum pressure adsorption processes. PMID:23249267

  15. In vivo studies of pyridine nucleotide metabolism in Escherichia coli and Saccharomyces cerevisiae by carbon-13 NMR spectroscopy

    International Nuclear Information System (INIS)

    Pyridine nucleotide metabolism has been studied in vivo in a prokaryotic (Escherichia coli) and a eukaryotic (Saccharomyces cerevisiae) system cultured in a medium containing carbon-13-labeled nicotinic acid, followed by NMR detection of the labeled organisms. Chemical exchange between oxidized and reduced nucleotides is found to be sufficiently slow on the NMR time scale to permit the observation of separate resonances corresponding to each redox state. The possibility of significant exchange broadening of reduced pyridine nucleotide resonances under some conditions was further evaluated based on comparative NMR studies utilizing organisms cultured in the presence of either [2-13C]nicotinate or [5-13C]nicotinate. Based on these experiments, it was concluded that broadening as a consequence of intermediate exchange is not significant. Although it was initially anticipated that the carbon-13 resonances arising from the di- and triphosphopyridine nucleotide pools could not be distinguished, the absence of observable resonances corresponding to reduced nucleotides in oxygenated yeast and E. coli cells suggests that the NMR method is fairly specific for determining the redox status of the diphosphopyridine nucleotide pool. Studies of the effects of a variety of perturbations including variation of the oxygen supply, addition of ethanol, and addition of the oxidative phosphorylation uncoupler dinitrophenol have been carried out. Dramatic differences in the response of the catabolic reduction charge, CRC = [NADH]/[NADH] + [NAD+], between the yeast and E. coli cells are observed. The CRC values for the yeast undergo large changes in response to these perturbations which are not observed for the bacterial cells. 52 references, 9 figures, 2 tables

  16. Seasonal and interannual variability in 13C composition of ecosystem carbon fluxes in the U.S. Southern Great Plains

    Energy Technology Data Exchange (ETDEWEB)

    Torn, Margaret S. (Lawrence Berkeley National Laboratory and UC Berkeley, Berkeley (United States)), e-mail: mstorn@lbl.gov; Biraud, Sebastien C.; Riley, William J. (Lawrence Berkeley National Laboratory, Earth Sciences Division (United States)); Still, Christopher J. (Univ. of California, Santa Barbara, Geography Dept. (United States)); Berry, Joe A. (Carnegie Institution of Washington, Dept. of Global Ecology (United States))

    2011-04-15

    The delta13C value of terrestrial CO{sub 2} fluxes (delta{sub bio}) provides important information for inverse models of CO{sub 2} sources and sinks as well as for studies of vegetation physiology, C3 and C4 vegetation fluxes, and ecosystem carbon residence times. From 2002-2009, we measured atmospheric CO{sub 2} concentration and delta13C-CO{sub 2} at four heights (2 to 60 m) in the U.S. Southern Great Plains (SGP) and computed delta{sub bio} weekly. This region has a fine-scale mix of crops (primarily C3 winter wheat) and C4 pasture grasses. delta{sub bio} had a large and consistent seasonal cycle of 6.8 per mille. Ensemble monthly mean delta{sub bio} ranged from -25.8 +- 0.4 per mille (+-SE) in March to -20.1 +- 0.4 per mille in July. Thus, C{sub 3} vegetation contributed about 80% of ecosystem fluxes in winter-spring and 50% in summer-fall. In contrast, prairie-soil delta13{sub C} values were about -15 indicating that historically the region was dominated by C{sub 4} vegetation and had more positive deltabio values. Based on a land-surface model, isofluxes (deltabio x NEE) in this region have large seasonal amplitude because deltabio and net ecosystem exchange (NEE) covary. Interannual variability in isoflux was driven by variability in NEE. The large seasonal amplitude in deltabio and isoflux imply that carbon inverse analyses require accurate estimates of land cover and temporally resolved 13CO{sub 2} and CO{sub 2} fluxes

  17. Seasonal and interannual variability in 13C composition of ecosystem carbon fluxes in the U.S. Southern Great Plains

    Science.gov (United States)

    Torn, Margaret S.; Biraud, Sebastien C.; Still, Christopher J.; Riley, William J.; Berry, Joe A.

    2011-04-01

    The δ13C value of terrestrial CO2 fluxes (δbio) provides important information for inverse models of CO2 sources and sinks as well as for studies of vegetation physiology, C3 and C4 vegetation fluxes, and ecosystem carbon residence times. From 2002-2009, we measured atmospheric CO2 concentration and δ13C-CO2 at four heights (2 to 60 m) in the U.S. Southern Great Plains (SGP) and computed δbio weekly. This region has a fine-scale mix of crops (primarily C3 winter wheat) and C4 pasture grasses. δbio had a large and consistent seasonal cycle of 6-8‰. Ensemble monthly mean δbio ranged from -25.8 ± 0.4‰ (±SE) in March to -20.1 ± 0.4‰ in July. Thus, C3 vegetation contributed about 80% of ecosystem fluxes in winter-spring and 50% in summer-fall. In contrast, prairie-soil δ13C values were about -15‰, indicating that historically the region was dominated by C4 vegetation and had more positive δbio values. Based on a land-surface model, isofluxes (δbio× NEE) in this region have large seasonal amplitude because δbio and net ecosystem exchange (NEE) covary. Interannual variability in isoflux was driven by variability in NEE. The large seasonal amplitude in δbio and isoflux imply that carbon inverse analyses require accurate estimates of land cover and temporally resolved 13CO2 and CO2 fluxes.

  18. All-Carbon [3+3] Oxidative Annulations of 1,3-Enynes by Rhodium(III)-Catalyzed C–H Functionalization and 1,4-Migration**

    Science.gov (United States)

    Burns, David J; Best, Daniel; Wieczysty, Martin D; Lam, Hon Wai

    2015-01-01

    1,3-Enynes containing allylic hydrogens cis to the alkyne function as three-carbon components in rhodium(III)-catalyzed, all-carbon [3+3] oxidative annulations to produce spirodialins. The proposed mechanism of these reactions involves the alkenyl-to-allyl 1,4-rhodium(III) migration. PMID:26224377

  19. Using Atmospheric δ13C of CO2 observations to link the water and carbon cycles with climate

    Science.gov (United States)

    Alden, C. B.; Miller, J. B.; White, J. W.; Yadav, V.; Michalak, A. M.; Andrews, A. E.; Huang, L.

    2013-12-01

    The ratio of stable carbon isotopes, 13C:12C in atmospheric CO2 (expressed as δ13C) offers unique insights into atmosphere-land CO2 fluxes and the modulating effects of stomatal conductance on this exchange. Photosynthesis discriminates against 13CO2 during uptake. The magnitude of this fractionation is strongly dependent upon ambient CO2 concentrations and water availability, as well as on the mix of C3 and C4 vegetation types. C3 and C4 plants have very different discrimination because of carboxylation pathways, and C3 stomatal conductance varies with water availability because stomata close to reduce transpiration when plants are water stressed. Further, plant stomata respond to ambient CO2 concentrations in order to optimize leaf internal [CO2] while reducing transpirative water loss. Atmospheric δ13C therefore carries information about local and upwind drought conditions and the consequent likelihood of ground-to-atmosphere water transfer via transpiration, and the balance of latent and sensible heat fluxes, as well as about local and upwind distributions of C3 and C4 vegetation and variability therein. δ13C offers a unique lens through which to identify key thresholds and relationships between climate anomalies/change and the modulating climate impacts of plant biosphere response. By unraveling this relationship at local to continental scales, we stand to gain crucial understanding of the drivers of land CO2 uptake variability as well as knowledge of how to predict future climate impacts on the carbon cycle and vice versa. We use a two-step Bayesian inversion model to optimize 1x1 degree and 3-hourly (interpreted at regional and weekly to monthly scales) fields of δ13C of assimilated biomass over North America for the year 2010, using influence functions generated with FLEXPART, driven by National Centers for Environmental Prediction Global Forecast System meteorology. Prior fluxes and fossil fuel, ocean and fire fluxes are from CarbonTracker 2011, and

  20. Aspartate beta-decarboxylase from Alcaligenes faecalis: carbon-13 kinetic isotope effect and deuterium exchange experiments

    International Nuclear Information System (INIS)

    The authors have measured the 13C kinetic isotope effect at pH 4.0, 5.0, 6.0, and 6.5 and in D2O at pH 5.0 and the rate of D-H exchange of the alpha and beta protons of aspartic acid in D2O at pH 5.0 for the reaction catalyzed by the enzyme aspartate beta-decarboxylase from Alcaligenes faecalis. The 13C kinetic isotope effect, with a value of 1.0099 +/- 0.0002 at pH 5.0, is less than the intrinsic isotope effect for the decarboxylation step, indicating that the decarboxylation step is not entirely rate limiting. The authors have been able to estimate probable values of the relative free energies of the transition states of the enzymatic reaction up to and including the decarboxylation step from the 13C kinetic isotope effect and the rate of D-H exchange of alpha-H. The pH dependence of the kinetic isotope effect reflects the pKa of the pyridine nitrogen of the coenzyme pyridoxal 5'-phosphate but not that of the imine nitrogen. A mechanism is proposed for the exchange of aspartate beta-H that is consistent with the stereochemistry suggested earlier

  1. Aspartate beta-decarboxylase from Alcaligenes faecalis: carbon-13 kinetic isotope effect and deuterium exchange experiments

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, R.M.; O' Leary, M.H.

    1985-03-26

    The authors have measured the /sup 13/C kinetic isotope effect at pH 4.0, 5.0, 6.0, and 6.5 and in D/sub 2/O at pH 5.0 and the rate of D-H exchange of the alpha and beta protons of aspartic acid in D/sub 2/O at pH 5.0 for the reaction catalyzed by the enzyme aspartate beta-decarboxylase from Alcaligenes faecalis. The /sup 13/C kinetic isotope effect, with a value of 1.0099 +/- 0.0002 at pH 5.0, is less than the intrinsic isotope effect for the decarboxylation step, indicating that the decarboxylation step is not entirely rate limiting. The authors have been able to estimate probable values of the relative free energies of the transition states of the enzymatic reaction up to and including the decarboxylation step from the /sup 13/C kinetic isotope effect and the rate of D-H exchange of alpha-H. The pH dependence of the kinetic isotope effect reflects the pKa of the pyridine nitrogen of the coenzyme pyridoxal 5'-phosphate but not that of the imine nitrogen. A mechanism is proposed for the exchange of aspartate beta-H that is consistent with the stereochemistry suggested earlier.

  2. Hydrological budget, carbon sources and biogeochemical processes in Lac Pavin (France): Constraints from δ18O of water and δ13C of dissolved inorganic carbon

    International Nuclear Information System (INIS)

    Lac Pavin (French Massif Central) is a permanently stratified lake: the upper water layers (mixolimnion, from 0 to 60 m depth) are affected by seasonal overturns, whereas the bottom water layers (monimolimnion, from 60 to 90 m depth) remain isolated and are never mixed. Hence, they are capable of storing important quantities of dissolved gases, mainly CO2. With the aim of better constraining the water balance and of gaining new insights into the carbon cycle of Lac Pavin, an isotopic approach is used. The δ18OH2O profiles lead the authors to give a new evaluation of the evaporation flow rate (8 L s-1), and to propose and characterize two sub-surface springs. The sub-surface spring located at the bottom of the lake can be deduced from the 1% isotopic difference between the upper water layers (mean δ18OH2O value: -7.3 per mille ) and the bottom water layers (δ18OH2O=-8.4 per mille ). It is argued that this sub-surface spring has isotopic and chemical characteristics similar to those of the magmatic CO2-rich spring (i.e. Fontaine Goyon, δ18OH2O=-9.4 per mille ), and we calculate its flow rate of 1.6 L s-1. The second sub-surface spring is located around 45 m depth, with a composition close to those of the water surface streams (δ18OH2O13CDIC ∼ +7 per mille ) and 2/3 from the magmatic CO2-rich spring (δ13CDIC ∼ -5 per mille ). Above 80 m depth, the variations in DIC concentrations (ranging from 0.5 to 10 mM) and δ13CDIC values (ranging from -6.5 per mille to 4.4 per mille ) are partly explained by the usual methanotrophy, organic matter oxidation, photosynthesis and CO2 equilibrium with atmosphere. The unusually high δ13CDIC values in the upper water layers (ranging from -6 per mille to 0 per mille ) compared to the expected δ13CDIC values assuming only organic matter oxidation, demonstrate the leakage of 13C-enriched DIC from the bottom water layers of Lac Pavin (δ13CDIC values ranging from -5 per mille to 3 per mille )

  3. Response of dissolved inorganic carbon (DIC) and δ13CDIC to changes in climate and land cover in SW China karst catchments

    Science.gov (United States)

    Zhao, Min; Liu, Zaihua; Li, Hong-Chun; Zeng, Cheng; Yang, Rui; Chen, Bo; Yan, Hao

    2015-09-01

    Monthly hydrochemical data and δ13C of dissolved inorganic carbon (DIC) in karst water samples from September 2007 to October 2012 were obtained to reveal the controlling mechanisms on DIC geochemistry and δ13CDIC under different conditions of climate and land cover in three karst catchments: Banzhai, Dengzhanhe and Chenqi, in Guizhou Province, SW China. DIC of karst water at the Banzhai site comes mainly from carbonate dissolution under open system conditions with soil CO2 produced by root respiration and organic carbon decomposition with lowest δ13C values under its dense virgin forest coverage. Weaker carbonate bedrock dissolution due to sparse and thin soil cover results in lower δ13CDIC, pCO2, DIC and EC, and lower cation and anion concentrations. At the Chenqi site, larger soil CO2 input from a thick layer of soil results in high pCO2 and DIC, and low pH, SIc and δ13CDIC in the karst water. At the Dengzhanhe site, a lesser soil CO2 input due to stronger karst rock desertification and strong gypsum dissolution contribute to higher δ13CDIC, high EC and high cation and anion concentrations. Soil CO2 inputs, controlled by biological activity and available soil moisture, carbonate bedrock dissolution, dilution and degassing effects, vary seasonally following rainfall and temperature changes. Consequently, there are seasonal cycles in hydrochemistry and δ13CDIC of the karst water, with high pCO2 and low pH, EC, SIc, and δ13CDIC values in the warm and rainy seasons, and vice versa during the cold and dry seasons. A strongly positive shift (>3‰) in δ13CDIC occurred in the drought year, 2011, indicating that δ13CDIC in groundwater systems can be an effective indicator of environmental and/or climate changes.

  4. A 1-3 Piezoelectric Fiber Reinforced Carbon Nanotube Composite Sensor for Crack Monitoring

    Science.gov (United States)

    Makireddi, Sai; Balasubramaniam, Krishnan

    2016-02-01

    A method for the detection of location and size of a crack in simple structures using a nanocomposite sensor is discussed. In the present study, a piezoelectric/single walled carbon nanotube composite sensor is modeled on piezoelectric principle. The effective piezoelectric and dielectric properties of the composite at 0.2 volume fraction loading of single walled carbon nanotubes is determined by micromechanical analysis. By means of these effective properties a piezoelectric sensor has been modeled. The transfer function and bode response of this sensor is investigated. The sensor is fixed at a location on a cantilever beam and the response of the sensor with respect to the size and location of the crack is modeled. The analytical values are compared with ANSYS. It is assumed that there is no slippage between the sensor and the beam surface. The sensor behavior with respect to dynamic loading conditions is also studied. It is ascertained that the relative position of the sensor with respect to crack is crucial and determines the sensitivity of the sensor to detect a crack. Results are presented in the form of voltage output from the sensor at different crack locations and at varying lengths of the crack.

  5. Theoretical Proof and Empirical Confirmation of a Continuous Labeling Method Using Naturally 13C-Depleted Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    Weixin Cheng; Feike A. Dijkstra

    2007-01-01

    Continuous isotope labeling and tracing is often needed to study the transformation, movement, and allocation of carbon in plant-soil systems. However, existing labeling methods have numerous limitations. The present study introduces a new continuous labeling method using naturally 13C-depleted CO2. We theoretically proved that a stable level of 13C-CO2 abundance In a labeling chamber can be maintained by controlling the rate of CO2-free air injection and the rate of ambient airflow with coupling of automatic control of CO2 concentration using a CO2 analyzer. The theoretical results were tested and confirmed in a 54 day experiment in a plant growth chamber. This new continuous labeling method avoids the use of radioactive 14C or expensive 13C-enriched CO2 required by existing methods and therefore eliminates issues of radiation safety or unaffordable isotope cost, as well as creating new opportunities for short- or long-term labeling experiments under a controlled environment.

  6. The influence of temperature and seawater carbonate saturation state on 13C–18O bond ordering in bivalve mollusks

    Directory of Open Access Journals (Sweden)

    R. A. Eagle

    2013-07-01

    Full Text Available The shells of marine mollusks are widely used archives of past climate and ocean chemistry. Whilst the measurement of mollusk δ18O to develop records of past climate change is a commonly used approach, it has proven challenging to develop reliable independent paleothermometers that can be used to deconvolve the contributions of temperature and fluid composition on molluscan oxygen isotope compositions. Here we investigate the temperature dependence of 13C–18O bond abundance, denoted by the measured parameter Δ47, in shell carbonates of bivalve mollusks and assess its potential to be a useful paleothermometer. We report measurements on cultured specimens spanning a range in water temperatures of 5 to 25 °C, and field collected specimens spanning a range of −1 to 29 °C. In addition we investigate the potential influence of carbonate saturation state on bivalve stable isotope compositions by making measurements on both calcitic and aragonitic specimens that have been cultured in seawater that is either supersaturated or undersaturated with respect to aragonite. We find a robust relationship between Δ47 and growth temperature. We also find that the slope of a linear regression through all the Δ47 data for bivalves plotted against seawater temperature is significantly shallower than previously published inorganic and biogenic carbonate calibration studies produced in our laboratory and go on to discuss the possible sources of this difference. We find that changing seawater saturation state does not have significant effect on the Δ47 of bivalve shell carbonate in two taxa that we examined, and we do not observe significant differences between Δ47-temperature relationships between calcitic and aragonitic taxa.

  7. Spatial variability in photosynthetic and heterotrophic activity drives localized δ13C org fluctuations and carbonate precipitation in hypersaline microbial mats.

    Science.gov (United States)

    Houghton, J; Fike, D; Druschel, G; Orphan, V; Hoehler, T M; Des Marais, D J

    2014-11-01

    Modern laminated photosynthetic microbial mats are ideal environments to study how microbial activity creates and modifies carbon and sulfur isotopic signatures prior to lithification. Laminated microbial mats from a hypersaline lagoon (Guerrero Negro, Baja California, Mexico) maintained in a flume in a greenhouse at NASA Ames Research Center were sampled for δ(13) C of organic material and carbonate to assess the impact of carbon fixation (e.g., photosynthesis) and decomposition (e.g., bacterial respiration) on δ(13) C signatures. In the photic zone, the δ(13) C org signature records a complex relationship between the activities of cyanobacteria under variable conditions of CO2 limitation with a significant contribution from green sulfur bacteria using the reductive TCA cycle for carbon fixation. Carbonate is present in some layers of the mat, associated with high concentrations of bacteriochlorophyll e (characteristic of green sulfur bacteria) and exhibits δ(13) C signatures similar to DIC in the overlying water column (-2.0‰), with small but variable decreases consistent with localized heterotrophic activity from sulfate-reducing bacteria (SRB). Model results indicate respiration rates in the upper 12 mm of the mat alter in situ pH and HCO3- concentrations to create both phototrophic CO2 limitation and carbonate supersaturation, leading to local precipitation of carbonate minerals. The measured activity of SRB with depth suggests they variably contribute to decomposition in the mat dependent on organic substrate concentrations. Millimeter-scale variability in the δ(13) C org signature beneath the photic zone in the mat is a result of shifting dominance between cyanobacteria and green sulfur bacteria with the aggregate signature overprinted by heterotrophic reworking by SRB and methanogens. These observations highlight the impact of sedimentary microbial processes on δ(13) C org signatures; these processes need to be considered when attempting to relate

  8. Processing of particulate organic carbon associated with secondary-treated pulp and paper mill effluent in intertidal sediments: a 13C pulse-chase experiment.

    Science.gov (United States)

    Oakes, Joanne M; Ross, Donald J; Eyre, Bradley D

    2013-01-01

    To determine the benthic transformation pathways and fate of carbon associated with secondary-treated pulp and paper mill (PPM) effluent, (13)C-labeled activated sludge biomass (ASB) and phytoplankton (PHY) were added, separately, to estuarine intertidal sediments. Over 28 days, (13)C was traced into sediment organic carbon, fauna, seagrass, bacteria, and microphytobenthos and into fluxes of dissolved organic carbon (DOC) and dissolved inorganic carbon (DIC) from inundated sediments, and carbon dioxide (CO2(g)) from exposed sediments. There was greater removal of PHY carbon from sediments (~85% over 28 days) compared to ASB (~75%). Although there was similar (13)C loss from PHY and ASB plots via DIC (58% and 56%, respectively) and CO2(g) fluxes (<1%), DOC fluxes were more important for PHY (41%) than ASB (12%). Faster downward transport and loss suggest that fauna prefer PHY, due to its lability and/or toxins associated with ASB; this may account for different carbon pathways. Secondary-treated PPM effluent has lower oxygen demand than primary-treated effluent, but ASB accumulation may contribute to sediment anoxia, and respiration of ASB and PHY-derived DOC may make the water column more heterotrophic. This highlights the need to optimize secondary-treatment processes to control the quality and quantity of organic carbon associated with PPM effluent. PMID:24261917

  9. Strong near-infrared carbon in the Type Ia supernova iPTF13ebh

    CERN Document Server

    Hsiao, E Y; Contreras, C; Höflich, P; Sand, D; Marion, G H; Phillips, M M; Stritzinger, M; González-Gaitán, S; Mason, R E; Folatelli, G; Parent, E; Gall, C; Amanullah, R; Anupama, G C; Arcavi, I; Banerjee, D P K; Beletsky, Y; Blanc, G A; Bloom, J S; Brown, P J; Campillay, A; Cao, Y; De Cia, A; Diamond, T; Freedman, W L; Gonzalez, C; Goobar, A; Holmbo, S; Howell, D A; Johansson, J; Kasliwal, M M; Kirshner, R P; Krisciunas, K; Kulkarni, S R; Maguire, K; Milne, P A; Morrell, N; Nugent, P E; Ofek, E O; Osip, D; Palunas, P; Perley, D A; Persson, S E; Piro, A L; Rabus, M; Roth, M; Schiefelbein, J M; Srivastav, S; Sullivan, M; Suntzeff, N B; Surace, J; Woźnia, P R; Yaron, O

    2015-01-01

    We present near-infrared (NIR) time-series spectroscopy, as well as complementary ultraviolet (UV), optical, and NIR data, of the Type Ia supernova (SN Ia) iPTF13ebh, which was discovered within two days from the estimated time of explosion. The first NIR spectrum was taken merely 2.3 days after explosion and may be the earliest NIR spectrum yet obtained of a SN Ia. The most striking features in the spectrum are several NIR C I lines, and the C I {\\lambda}1.0693 {\\mu}m line is the strongest ever observed in a SN Ia. Interestingly, no strong optical C II counterparts were found, even though the optical spectroscopic time series began early and is densely-cadenced. Except at the very early epochs, within a few days from the time of explosion, we show that the strong NIR C I compared to the weaker optical C II appears to be general in SNe Ia. iPTF13ebh is a fast decliner with {\\Delta}m15(B) = 1.79 $\\pm$ 0.01, and its absolute magnitude obeys the linear part of the width-luminosity relation. It is therefore categ...

  10. Insights Into Water-Soluble Organic Aerosol Sources From Carbon-13 Ratios of Size Exclusion Chromatography Fractions

    Science.gov (United States)

    Ruehl, C. R.; Chuang, P. Y.; McCarthy, M. D.

    2008-12-01

    Many sources of organic aerosols have been identified and quantified, and much of this work has used individual (mosty water-insoluble) compounds as tracers of primary sources. However, most organic aerosol cannot be molecularly characterized, and the water-soluble organic carbon (WSOC) in many aerosols is thought to originate from gaseous precursors (i.e., it is secondary in nature). It can therefore be difficult to infer aerosol sources, particularly of background (i.e., aged) aerosols, and of the relatively high-MW component of aerosols. The stable isotope ratios (δ13C) of organic aerosols have been used to distinguish between sources, with lighter values (-30‰ to -25‰) interpreted as having originated from fossil fuel combustion and C4 biogenic emission, and heavier values (-25‰ to - 20‰) indicating a marine or C3 biogenic source. Most published measurements were of either total suspended particulates or PM2.5, however, and it is unknown to what extent these fractions differ from submicron WSOC. We report δ13C for submicron WSOC collected at a variety of sites, ranging from marine to polluted to background continental. Bulk marine organic δ13C ranged from -30.4 to - 27.6‰, slightly lighter than previously published results. This could be due to the elimination of supermicron cellular material or other biogenic primary emissions from the sample. Continental WSOC δ13C ranged from -19.1 to -29.8‰, with heavier values (-19.8 ± 1.0‰) in Oklahoma and lighter values at Great Smoky Mountain National Park in Tennessee (-25.8 ± 2.6‰) and Illinois (-24.5 ± 1.0‰). This likely results from the greater proportional of C3 plant material in the Oklahoma samples. In addition to bulk samples, we used size exclusion chromatography (SEC) to report δ13C of organic aerosols as a function of hydrodynamic diameter. Variability and magnitude of hydrodynamic diameter was greatest at low SEC pH, indicative of the acidic character of submicron WSOC. Tennessee

  11. Orbital plasma keyhole welding of 12--13% Cr low carbon martensitic line pipe steels and weld joint corrosion properties

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmeister, H.; Dietrich, S. [Univ. der Bundeswehr Hamburg (Germany); Tystad, M.; Knagenhjelm, H.O.; Andersen, T.R. [Norsk Hydro A/S Porsgrunn (Norway). Forskningssenteret

    1995-10-01

    Based on requirements for more economical pipe laying procedures in the oil and gas industry, the potential of the orbital plasma keyhole process for welding of 12--13% Cr martensitic low carbon steels together with resulting hardness and corrosion properties is investigated. As a result, downhill orbital welding speeds up to 6--7 mm/s at 6--10 mm wall thickness are achieved. For hardness reduction, local postweld heating of 600--700 C at up to 10 min was required. Pitting corrosion resistance of the weld joints was reduced by welding but could be restored by postweld heating above 750--800 C, which, however, might produce hardness levels not satisfying NACE requirements due to formation of untempered martensite.

  12. Creation of hierarchical carbon nanotube assemblies through alternative packing of complementary semi-artificial beta-1,3-glucan/carbon nanotube composites.

    Science.gov (United States)

    Numata, Munenori; Sugikawa, Kouta; Kaneko, Kenji; Shinkai, Seiji

    2008-01-01

    Much attention has been focused on exploiting novel strategies for the creation of hierarchical polymer assemblies by the control of the assembling number or the relative location among neighboring polymers. We here propose a novel strategy toward the creation of "hierarchical" single-walled carbon nanotube (SWNT) architectures by utilizing SWNT composites with cationic or anionic complementary semi-artificial beta-1,3-glucans as "building blocks". These beta-1,3-glucans are known to wrap SWNTs helically, to create one-dimensional superstructural composites. If the cationic composite is neutralized by an anionic composite, a well ordered SWNT-based sheet structure was created. Transmission electron microscopy (TEM) observation revealed that this sheet structure is composed of highly-ordered fibrous assemblies of SWNTs. This suggests that the cationic and anionic composites are tightly packed through electrostatic interactions. Moreover, both of the final assembly structures are readily tunable by adjusting the cation/anion ratio. The self-assembling modulation of functional polymers is associated with the progress in ultimate nanotechnologies, thus enabling us to create numerous functional nanomaterials. We believe, therefore, that the present system will extend the frontier of SWNT research to assembly chemistry including "hierarchical" superstructures. PMID:18200640

  13. Carbon-13 nuclear magnetic resonance spectroscopic characterization of humic substances from municipal refuse decomposing in a landfill

    International Nuclear Information System (INIS)

    Municipal refuse was disposed of in simulated landfills and left for periods of more than 20 months. Three different 40 m3 systems of disposals were studied, namely (i) where the refuse was compacted, (ii) where it was mixed with sewage sludge and left uncompacted, and (iii) where it was compacted with sewage sludge. At 2, 6, 12 and 20 months, the humic substances were extracted from each system, purified, and characterised by cross-polarisation 13C NMR spectroscopy with 'magic-angle' sample spinning. The areas under the various signals were related to carbon percentages in different structural categories. The aromaticity of the humic acids increased with time of decomposition; those from refuse mixed with sewage sludge were particularly high in phenolic content. A signal at 174 p.p.m., assigned primarily to secondary amide linkages, reached maximum strength after 6 to 12 months decomposition. The carbohydrate contents of the humic acids showed only small variations as decomposition progressed. Polymethylene chains in lipids, particularly for the uncompacted system, accounted for a diminishing fraction of total carbon as time of refuse disposal increased. The spectrum of a soil humic acid showed features similar to those observed in spectra of humic acids derived from refuse, but the signals were less well resolved. 19 refs.; 8 figs.; 3 tabs

  14. Deep, noninvasive imaging and surgical guidance of submillimeter tumors using targeted M13-stabilized single-walled carbon nanotubes.

    Science.gov (United States)

    Ghosh, Debadyuti; Bagley, Alexander F; Na, Young Jeong; Birrer, Michael J; Bhatia, Sangeeta N; Belcher, Angela M

    2014-09-23

    Highly sensitive detection of small, deep tumors for early diagnosis and surgical interventions remains a challenge for conventional imaging modalities. Second-window near-infrared light (NIR2, 950-1,400 nm) is promising for in vivo fluorescence imaging due to deep tissue penetration and low tissue autofluorescence. With their intrinsic fluorescence in the NIR2 regime and lack of photobleaching, single-walled carbon nanotubes (SWNTs) are potentially attractive contrast agents to detect tumors. Here, targeted M13 virus-stabilized SWNTs are used to visualize deep, disseminated tumors in vivo. This targeted nanoprobe, which uses M13 to stably display both tumor-targeting peptides and an SWNT imaging probe, demonstrates excellent tumor-to-background uptake and exhibits higher signal-to-noise performance compared with visible and near-infrared (NIR1) dyes for delineating tumor nodules. Detection and excision of tumors by a gynecological surgeon improved with SWNT image guidance and led to the identification of submillimeter tumors. Collectively, these findings demonstrate the promise of targeted SWNT nanoprobes for noninvasive disease monitoring and guided surgery. PMID:25214538

  15. Accumulation and δ 13C Composition of Soil Carbon Across a Chronosequence of Dune Complexes at Mono Lake, CA

    Science.gov (United States)

    Aanderud, Z. T.; Shuldman, M. I.; Richards, J. H.

    2004-12-01

    The amount of C sequestered and its permanence in some deserts could be higher than normally appreciated. Limited soil water availability and slow decomposition rates in desert soils may induce the long-term accumulation of soil organic C and coarse woody litter. We inventoried C in soils along a chronosequence of Sarcobatus vermiculatus shrub islands and interspaces at the Mono Basin Ecosystem Research Site, CA. Such shrub-island/interspace dune systems are widespread in basin habitats across the Great Basin Desert. We hypothesized that organic C stores would increase across the chronosequence (48, 84, ˜300, and 1800-3000 years since exposure by lake recession) and that δ 13C values of soil organic C (SOC) would become enriched over time due to isotopic fractionation associated with C mineralization of leaf and root litter. C stores quantified in 0-50 cm soils included: SOC, soil inorganic C (SIC; i.e. carbonates removed by 12 M HCl fumigation), and C in partially decomposed woody and fine litter. The youngest dune system contains at least 13.6 Mg C ha-1 and the oldest contains at least 37.9 Mg C ha-1. Our data suggest slow turnover rates of SOC (C:N ratios ˜10) and substantial accumulation of organic C (coarse litter, fine litter, and SOC) in shrub islands across the chronosequence (islands at the youngest site = 8.0 g kg-1 and islands at the oldest site = 24.0 g kg-1. Large pools of SOC and C in woody debris are potentially protected in this shrub-dominated desert, especially in shrub islands of "old-growth" dune systems. Most of the C in the soil is SIC (94% in youngest dunes to 83% at the oldest dunes). The decrease in SIC proportion as the dune systems age is correlated with a decrease in pH across the chronosequence (10.6 at the youngest site and 9.7 at the oldest site). As dunes age, total soil C isotopic composition shifts from positive δ 13C values (2.8 to 3.6 ‰ ), indicative inorganic processes, to slightly negative values (-1.2 to -3.7 ‰ ) as a

  16. Effects of carbon content and microstructure on corrosion rate of 13% chromium steel in wet CO2 environments; Shitsujun CO2 kankyochu deno 13%Cr ko no fushoku ni oyobosu C ryo to kinzoku soshiki no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Hara, T.; Asahi, H. [Nippon Steel Corp., Tokyo (Japan)

    1998-11-15

    Thirteen percent chromium steel is excellent in corrosion resistance of CO2. A large quantity of 13% chromium steel is used in oil and gas fields where CO2 is produced. Usually, AISI 420 13% chromium steel to which C was added 0.2% is used for an oil field tube. Since AISI 420 steel is tempered, chromium carbide is formed and the effective chromium amount in a parent phase is decreased to deteriorate the corrosion resistance of CO2. Therefore, it is desired to decrease the carbon content as far as possible for improvement of corrosion resistance of CO2. AISI 410 13% chromium steel with a carbon content of 0.1% is difficult to form {delta}-ferrite. It has a problem in manufacturing because the hot working performance is low. In this report, on the basis of AISI 420 13% chromium steel, the effects of composition on CO2 corrosion were investigated using the steel whose carbon content was changed. Ferrite, martensite, and tempered martensite differ in a corrosion rate. The corrosion rate increases in the order of martensite, ferrite, and tempered martensite. The corrosion rate of 13% chromium steel is represented by the product of the corrosion rate of each microstructure and the fraction of it. 11 refs., 12 figs., 2 tabs.

  17. Land use Effects on Storage, Stability and Structure of Organic Carbon in Soil Density Fractions Revealed by 13C Natural Abundance and CPMAS 13C NMR

    Science.gov (United States)

    Flessa, H.; Helfrich, M.; John, B.; Yamashita, T.; Ludwig, B.

    2004-12-01

    The type of land use and soil cultivation are important factors controlling organic carbon storage (SOC) in soils and they can also influence the relative importance, the structure, and the stability of different SOC pools. The objectives of our study were: i) to quantify the SOC stocks in different density fractions (mineral-associated soil organic matter > 2 g cm-3 (Mineral-SOM), free particulate organic matter soils under different land use (spruce forest, grassland, maize, wheat), ii) to determine the structure of these SOC fractions by CPMAS 13C NMR spectroscopy, and iii) to analyse the stability of these SOC fractions in the maize soil on the basis of the stable isotope composition of SOC. The SOC concentration in the A horizon increased in the order wheat (12.7 g kg-1) soil, the particulate organic matter accounted for 52% of the total SOC content. The chemical structure of the soil organic matter (SOM) was influenced by litter quality, the intensity of litter decomposition and the related production and storage of microbially-derived substances. SOM of the acid forest soil was characterized by large amounts of POM with a high content of spruce litter-derived alkyl C. In the biologically more active grassland and maize soil, litter-derived POM was decomposed more rapidly and SOC stocks were dominated by mineral-associated SOM which contained greater proportions of aryl and carbonyl C. The cultivation of the grassland soil induced enhanced mineralization of POM and in particular of mineral-associated SOM. The faster SOC turnover was associated with a relative accumulation of aromatic and carbonyl C structures in the mineral-bound SOM. In all soils, the free particulate organic matter had a smaller proportion of alkyl C and a larger proportion of O-alkyl C than the particulate organic matter occluded in aggregates. The mean age of the SOM in the density fractions of the maize soil increased with increasing aromaticity in the order free POM (22 yr) humification

  18. Cyanobacteria as a carbon source for zooplankton in eutrophic Lake Taihu, China, measured by 13C labeling and fatty acid biomarkers

    OpenAIRE

    de Kluijver, A.; Yu, J.L.; Houtekamer, M.; Middelburg, J. J.; Liu, Z.W.

    2012-01-01

    Using a combined stable-isotope and fatty-acid approach, we examined carbon-transfer routes from the cyanobacterium Microcystis to zooplankton in eutrophic Lake Taihu, China. Microcystis is generally considered poor food for zooplankton, and we hypothesized that most Microcystis carbon flows to zooplankton via dissolved organic matter (DOM)-bacteria and detritus-bacteria pathways rather than via direct grazing. The hypothesis was tested by analyzing C-13 isotopes at natural abundance in field...

  19. Biology and air–sea gas exchange controls on the distribution of carbon isotope ratios (δ13C in the ocean

    Directory of Open Access Journals (Sweden)

    A. Schmittner

    2013-05-01

    Full Text Available Analysis of observations and sensitivity experiments with a new three-dimensional global model of stable carbon isotope cycling elucidate the processes that control the distribution of δ13C in the contemporary and preindustrial ocean. Biological fractionation dominates the distribution of δ13CDIC of dissolved inorganic carbon (DIC due to the sinking of isotopically light δ13C organic matter from the surface into the interior ocean. This process leads to low δ13CDIC values at dephs and in high latitude surface waters and high values in the upper ocean at low latitudes with maxima in the subtropics. Air–sea gas exchange provides an important secondary influence due to two effects. First, it acts to reduce the spatial gradients created by biology. Second, the associated temperature dependent fractionation tends to increase (decrease δ13CDIC values of colder (warmer water, which generates gradients that oppose those arising from biology. Our model results suggest that both effects are similarly important in influencing surface and interior δ13CDIC distributions. However, air-sea gas exchange is slow, so biological effect dominate spatial δ13CDIC gradients both in the interior and at the surface, in constrast to conclusions from some previous studies. Analysis of a new synthesis of δ13CDIC measurements from years 1990 to 2005 is used to quantify preformed (δ13Cpre and remineralized (δ13Crem contributions as well as the effects of biology (Δδ13Cbio and air–sea gas exchange (δ13C*. The model reproduces major features of the observed large-scale distribution of δ13CDIC, δ13Cpre, δ13Crem, δ13C*, and Δδ13Cbio. Residual misfits are documented and analyzed. Simulated surface and subsurface δ13CDIC are influenced by details of the ecosystem model formulation. For example, inclusion of a simple parameterization of iron limitation of phytoplankton growth rates and temperature-dependent zooplankton grazing rates improves the agreement

  20. Crystal structures of 2-methoxyisoindoline-1,3-dione, 1,3-dioxoisoindolin-2-yl methyl carbonate and 1,3-dioxo-2,3-dihydro-1H-benzo[de]isoquinolin-2-yl methyl carbonate: three anticonvulsant compounds

    Directory of Open Access Journals (Sweden)

    Fortune Ezemobi

    2014-12-01

    Full Text Available The title compounds, C9H7NO3, (1, C10H7NO5, (2, and C14H9NO5, (3, are three potentially anticonvulsant compounds. Compounds (1 and (2 are isoindoline derivatives and (3 is an isoquinoline derivative. Compounds (2 and (3 crystallize with two independent molecules (A and B in their asymmetric units. In all three cases, the isoindoline and benzoisoquinoline moieties are planar [r.m.s. deviations are 0.021 Å for (1, 0.04 and 0.018 Å for (2, and 0.033 and 0.041 Å for (3]. The substituents attached to the N atom are almost perpendicular to the mean planes of the heterocycles, with dihedral angles of 89.7 (3° for the N—O—Cmethyl group in (1, 71.01 (4 and 80.00 (4° for the N—O—C(=OO—Cmethyl groups in (2, and 75.62 (14 and 74.13 (4° for the same groups in (3. In the crystal of (1, there are unusual intermolecular C=O...C contacts of 2.794 (1 and 2.873 (1 Å present in molecules A and B, respectively. There are also C—H...O hydrogen bonds and π–π interactions [inter-centroid distance = 3.407 (3 Å] present, forming slabs lying parallel to (001. In the crystal of (2, the A and B molecules are linked by C—H...O hydrogen bonds, forming slabs parallel to (10-1, which are in turn linked via a number of π–π interactions [the most significant centroid–centroid distances are 3.4202 (7 and 3.5445 (7 Å], forming a three-dimensional structure. In the crystal of (3, the A and B molecules are linked via C—H...O hydrogen bonds, forming a three-dimensional structure, which is consolidated by π–π interactions [the most significant inter-centroid distances are 3.575 (3 and 3.578 (3 Å].

  1. Carbon flow and trophic structure of an Antarctic coastal benthic community as determined by δ 13C and δ 15N

    Science.gov (United States)

    Gillies, C. L.; Stark, J. S.; Johnstone, G. J.; Smith, S. D. A.

    2012-01-01

    Stable isotopes of carbon and nitrogen were used to determine the different carbon pathways and trophic assemblages amongst coastal benthic fauna of the Windmill Islands, East Antarctica. Macroalgae, pelagic POM, sediment POM and sea ice POM had well-separated δ 13C signatures, which ranged from -36.75‰ for the red alga Phyllophora antarctica, to -10.35‰ for sea ice POM. Consumers were also well separated by δ 13C, ranging from -21.42‰ for the holothurian Staurocucumis sp. up to -7.47‰ for the urchin Sterechinus neumayeri. Analysis of δ 13C and δ 15N revealed distinct groups for suspension feeders, grazer/herbivores and deposit feeders, whilst predators and predator/scavengers showed less grouping. Consumers spanned a δ 15N range of 8.71‰, equivalent to four trophic levels, although δ 15N ratios amongst consumers were continuous, rather than grouped into discrete trophic levels. The study has built a trophic model for the Windmill Islands and summarises three main carbon pathways utilised by the benthos: (1) pelagic POM; (2) macroalgae/epiphytic/benthic diatoms and (3) sediment POM/benthic diatoms. The movement of carbon within the coastal benthic community of the Windmill Islands is considered complex, and stable isotopes of carbon and nitrogen were valuable tools in determining specific feeding guilds and in tracing carbon flow, particularly amongst lower-order consumers.

  2. Effects of Ontogeny on δ13C of Plant- and Soil-Respired CO2 and on Respiratory Carbon Fractionation in C3 Herbaceous Species.

    Science.gov (United States)

    Salmon, Yann; Buchmann, Nina; Barnard, Romain L

    2016-01-01

    Knowledge gaps regarding potential ontogeny and plant species identity effects on carbon isotope fractionation might lead to misinterpretations of carbon isotope composition (δ13C) of respired CO2, a widely-used integrator of environmental conditions. In monospecific mesocosms grown under controlled conditions, the δ13C of C pools and fluxes and leaf ecophysiological parameters of seven herbaceous species belonging to three functional groups (crops, forage grasses and legumes) were investigated at three ontogenetic stages of their vegetative cycle (young foliage, maximum growth rate, early senescence). Ontogeny-related changes in δ13C of leaf- and soil-respired CO2 and 13C/12C fractionation in respiration (ΔR) were species-dependent and up to 7‰, a magnitude similar to that commonly measured in response to environmental factors. At plant and soil levels, changes in δ13C of respired CO2 and ΔR with ontogeny were related to changes in plant physiological status, likely through ontogeny-driven changes in the C sink to source strength ratio in the aboveground plant compartment. Our data further showed that lower ΔR values (i.e. respired CO2 relatively less depleted in 13C) were observed with decreasing net assimilation. Our findings highlight the importance of accounting for ontogenetic stage and plant community composition in ecological studies using stable carbon isotopes. PMID:27010947

  3. Effects of Ontogeny on δ13C of Plant- and Soil-Respired CO2 and on Respiratory Carbon Fractionation in C3 Herbaceous Species.

    Directory of Open Access Journals (Sweden)

    Yann Salmon

    Full Text Available Knowledge gaps regarding potential ontogeny and plant species identity effects on carbon isotope fractionation might lead to misinterpretations of carbon isotope composition (δ13C of respired CO2, a widely-used integrator of environmental conditions. In monospecific mesocosms grown under controlled conditions, the δ13C of C pools and fluxes and leaf ecophysiological parameters of seven herbaceous species belonging to three functional groups (crops, forage grasses and legumes were investigated at three ontogenetic stages of their vegetative cycle (young foliage, maximum growth rate, early senescence. Ontogeny-related changes in δ13C of leaf- and soil-respired CO2 and 13C/12C fractionation in respiration (ΔR were species-dependent and up to 7‰, a magnitude similar to that commonly measured in response to environmental factors. At plant and soil levels, changes in δ13C of respired CO2 and ΔR with ontogeny were related to changes in plant physiological status, likely through ontogeny-driven changes in the C sink to source strength ratio in the aboveground plant compartment. Our data further showed that lower ΔR values (i.e. respired CO2 relatively less depleted in 13C were observed with decreasing net assimilation. Our findings highlight the importance of accounting for ontogenetic stage and plant community composition in ecological studies using stable carbon isotopes.

  4. Biology and air-sea gas exchange controls on the distribution of carbon isotope ratios (δ13C) in the ocean

    Science.gov (United States)

    Schmittner, A.; Gruber, N.; Mix, A. C.; Key, R. M.; Tagliabue, A.; Westberry, T. K.

    2013-09-01

    Analysis of observations and sensitivity experiments with a new three-dimensional global model of stable carbon isotope cycling elucidate processes that control the distribution of δ13C of dissolved inorganic carbon (DIC) in the contemporary and preindustrial ocean. Biological fractionation and the sinking of isotopically light δ13C organic matter from the surface into the interior ocean leads to low δ13CDIC values at depths and in high latitude surface waters and high values in the upper ocean at low latitudes with maxima in the subtropics. Air-sea gas exchange has two effects. First, it acts to reduce the spatial gradients created by biology. Second, the associated temperature-dependent fractionation tends to increase (decrease) δ13CDIC values of colder (warmer) water, which generates gradients that oppose those arising from biology. Our model results suggest that both effects are similarly important in influencing surface and interior δ13CDIC distributions. However, since air-sea gas exchange is slow in the modern ocean, the biological effect dominates spatial δ13CDIC gradients both in the interior and at the surface, in contrast to conclusions from some previous studies. Calcium carbonate cycling, pH dependency of fractionation during air-sea gas exchange, and kinetic fractionation have minor effects on δ13CDIC. Accumulation of isotopically light carbon from anthropogenic fossil fuel burning has decreased the spatial variability of surface and deep δ13CDIC since the industrial revolution in our model simulations. Analysis of a new synthesis of δ13CDIC measurements from years 1990 to 2005 is used to quantify preformed and remineralized contributions as well as the effects of biology and air-sea gas exchange. The model reproduces major features of the observed large-scale distribution of δ13CDIC as well as the individual contributions and effects. Residual misfits are documented and analyzed. Simulated surface and subsurface δ13CDIC are influenced by

  5. Biology and air–sea gas exchange controls on the distribution of carbon isotope ratios (δ13C in the ocean

    Directory of Open Access Journals (Sweden)

    A. Schmittner

    2013-09-01

    Full Text Available Analysis of observations and sensitivity experiments with a new three-dimensional global model of stable carbon isotope cycling elucidate processes that control the distribution of δ13C of dissolved inorganic carbon (DIC in the contemporary and preindustrial ocean. Biological fractionation and the sinking of isotopically light δ13C organic matter from the surface into the interior ocean leads to low δ13CDIC values at depths and in high latitude surface waters and high values in the upper ocean at low latitudes with maxima in the subtropics. Air–sea gas exchange has two effects. First, it acts to reduce the spatial gradients created by biology. Second, the associated temperature-dependent fractionation tends to increase (decrease δ13CDIC values of colder (warmer water, which generates gradients that oppose those arising from biology. Our model results suggest that both effects are similarly important in influencing surface and interior δ13CDIC distributions. However, since air–sea gas exchange is slow in the modern ocean, the biological effect dominates spatial δ13CDIC gradients both in the interior and at the surface, in contrast to conclusions from some previous studies. Calcium carbonate cycling, pH dependency of fractionation during air–sea gas exchange, and kinetic fractionation have minor effects on δ13CDIC. Accumulation of isotopically light carbon from anthropogenic fossil fuel burning has decreased the spatial variability of surface and deep δ13CDIC since the industrial revolution in our model simulations. Analysis of a new synthesis of δ13CDIC measurements from years 1990 to 2005 is used to quantify preformed and remineralized contributions as well as the effects of biology and air–sea gas exchange. The model reproduces major features of the observed large-scale distribution of δ13CDIC as well as the individual contributions and effects. Residual misfits are documented and analyzed. Simulated surface and subsurface

  6. Stable carbon isotope ratio (delta /sup 13/C) of shallow marine bottom sediment as evidence of pollution in Manora channel, Karachi, Pakistan

    International Nuclear Information System (INIS)

    Marine sediments are one of the endpoints for domestic /industrial contaminants from land based sources and provide an archive for tracing pollution record. Contaminated sediment is a significant environmental problem affecting many marine ecosystem. In the present study sediment samples from Manora Channel/Karachi harbour were analyzed for stable isotope composition of inorganic and organic carbon fractions (measured as (delta /sup 13/C) to estimate the land based terrestrial organic matter in the Manora Channel. The principle of this application lies in the fact that delta /sup 13/C values of inorganic carbon (mineral fractions such as calcite, aragonite, dolomite) differs vastly from that of the organic carbon fraction of domestic and/or industrial origin in the sediments. Relatively more depleted delta /sup 13/C (organic) values ranging between - 30.65 to -19.27 - PDB for the organic carbon fraction were found in the Layari river outfall zone. In Manora channel mains enriched values (delta /sup 13/C was found in sediment of Manora lighthouse (-5.0 - PDB) and Pakistan Naval Academy (-11.76 - PDB) while in same zones depleted values of (delta /sup 13/C was found in Bhabba island (-27.31 - PDB), Bhit Island (-26.13 PDB) and Boat Club area (-23.08 PDB) indicating impact of domestic sewage added to the Manora channel from surrounding Islands. (delta /sup 13/C (inorganic) fraction of sediment follow similar trend. In conclusion, this study indicates that the bottom sediments of Karachi Harbour and Layari river outfall zones are mainly polluted with organic waste of domestic origin derived from Layari river. (author)

  7. A spectral line survey in the 2 mm and 1.3 mm windows toward the carbon rich envelope of IRC +10216

    OpenAIRE

    He, J. H.; Dinh-V-Trung; Kwok, S.; Mueller, H. S. P.; Zhang, Y.; T. Hasegawa; Peng, T. C.; Huang, Y C

    2008-01-01

    We present the results of our spectral line surveys in the 2 mm and 1.3 mm windows toward the carbon rich envelope of IRC +10216. Totally 377 lines are detected, among which 360 lines are assigned to 57 known molecules (including 29 rare isotopomers and 2 cyclic isomers). Only 17 weak lines remain unidentified. Rotational lines of isotopomers 13CCH and HN13C are detected for the first time in IRC +10216. The detection of the formaldehyde lines in this star is also confirmed. Possible abundanc...

  8. Magic angle spinning carbon-13 NMR of tobacco mosaic virus. An application of the high-resolution solid-state NMR spectroscopy to very large biological systems.

    OpenAIRE

    Hemminga, M A; Veeman, W.S.; Hilhorst, H.W.M.; Schaafsma, T J

    1981-01-01

    Magic angle spinning 13C NMR was used to study tobacco mosaic virus (TMV) in solution. Well-resolved 13C NMR spectra were obtained, in which several carbon resonances of amino acids of the TMV coat protein subunits that are not observable by conventional high-resolution NMR spectroscopy can be designed. RNA resonance were absent, however, in the magic angle spinning 13C NMR spectra. Since three different binding sites are available for each nucleotide of the RNA, this is probably due to a lin...

  9. Microbially mediated carbon cycling as a control on the δ 13C of sedimentary carbon in eutrophic Lake Mendota (USA): new models for interpreting isotopic excursions in the sedimentary record

    Science.gov (United States)

    Hollander, David J.; Smith, Michael A.

    2001-12-01

    An isotopic study of various carbon phases in eutrophic Lake Mendota (Wisconsin, USA) indicates that the δ 13C composition of sedimentary organic and inorganic carbon has become more negative in response to increasing microbially mediated carbon cycling and processes associated with the intensification of seasonal and long-term eutrophication. Progressive increases in the contributions of isotopically depleted chemoautotrophic and methanotrophic biomass (reflected in the -40 to -90‰ values of hopanols and FAMES), attributed to seasonal and long-term increases in production and expansion of the anaerobic water mass, accounts for carbon isotopic trends towards depleted δ 13C values observed in both seasonal varves and over the past 100 years. Changes in the intensities of certain microbial processes are also evident in the sedimentary geochemical record. During the period of most intense cultural eutrophication, when the oxic-anoxic interface was located close to the surface, methanogenesis/methanotrophy and the oxidation of biogenic methane increased to the extent that significant quantities of 13C-depleted CO 2 were added into the epilimnion. This depleted CO 2 was subsequently utilized by phytoplankton and incorporated into CaCO 3 during biogenically induced calcite precipitation. A comparative study between eutrophic Lakes Mendota and Greifen, further indicate that the extent of nutrient loading in the epilimnion determines whether the δ 13C record of sedimentary organic carbon reflects intensification of microbial processes in the hypolimnion and sediments, or changes in the primary productivity in the photic zone. From this comparison, a series of eutrophication models are developed to describe progressive transitions through thresholds of microbial and eukaryotic productivity and their influence on the δ 13C record of sedimentary carbon. With increasing eutrophication, the models initially predict a negative and then a subsequent positive carbon isotopic

  10. Creep-resistant porous structures based on stereo-complex forming triblock copolymers of 1,3-trimethylene carbonate and lactides

    NARCIS (Netherlands)

    Zhang, Zheng; Grijpma, Dirk W.; Feijen, Jan

    2004-01-01

    Stereo-complexes (poly(ST–TMC–ST)) of enantiomeric triblock copolymers based on 1,3-trimethylene carbonate (TMC) and L- or D-lactide (poly(LLA–TMC–LLA) and poly(DLA–TMC–DLA)) were prepared. Films of poly(ST–TMC–ST) could be prepared by solvent casting mixtures of equal amounts of poly(LLA–TMC–LLA) a

  11. Carbon-13 kinetic isotope effect and its temperature dependence in the decarboxylation of lactic acid of natural isotopic composition with aqueous sulphuric acid

    International Nuclear Information System (INIS)

    Carbon-13 kinetic isotope effect in the decarboxylation of lactic acid of natural isotopic composition in sulphuric acid diluted with water in M(H2O)/M(H2SO4) molar ratio equal to 2.2 has been studied in the temperature range 80-130 C and found to be normal. The absolute values and the temperature dependence of the experimental 13C-K.I.E. are in agreement with the absolute values and the temperature dependence of the theoretical 13C-K.I.E. calculated under the assumption that one frequency corresponding to the carbon-oxygen bound broken in the decarboxylation reaction is lost in the course of activation of lactic acid molecules. The chemical side reactions leading to the abnormal temperature dependence of the carbon-13 and carbon-14 isotope fractionation, observed in the course of decarboxylation of lactic acid in concentrated sulphuric acid, have been suggested. (author). 11 refs, 1 fig., 1 tab

  12. Sulfonamide inhibition studies of the β-carbonic anhydrase from the newly discovered bacterium Enterobacter sp. B13.

    Science.gov (United States)

    Eminoğlu, Ayşenur; Vullo, Daniela; Aşık, Aycan; Çolak, Dilşat Nigar; Çanakçı, Sabriye; Beldüz, Ali Osman; Supuran, Claudiu T

    2016-04-01

    The genome of the newly identified bacterium Enterobacter sp. B13 encodes for a β-class carbonic anhydrases (CAs, EC 4.2.1.1), EspCA. This enzyme was recently cloned, and characterized kinetically by this group (J. Enzyme Inhib. Med. Chem. 2016, 31). Here we report an inhibition study with sulfonamides and sulfamates of this enzyme. The best EspCA inhibitors were some sulfanylated sulfonamides with elongated molecules, metanilamide, 4-aminoalkyl-benzenesulfonamides, acetazolamide, and deacetylated methazolamide (KIs in the range of 58.7-96.5nM). Clinically used agents such as methazolamide, ethoxzolamide, dorzolamide, brinzolamide, benzolamide, zonisamide, sulthiame, sulpiride, topiramate and valdecoxib were slightly less effective inhibitors (KIs in the range of 103-138nM). Saccharin, celecoxib, dichlorophenamide and many simple benzenesulfonamides were even less effective as EspCA inhibitors, with KIs in the range of 384-938nM. Identification of effective inhibitors of this bacterial enzyme may lead to pharmacological tools useful for understanding the physiological role(s) of the β-class CAs in bacterial pathogenicity/virulence. PMID:26920803

  13. Single-walled carbon nanotubes disturbed the immune and metabolic regulation function 13-weeks after a single intratracheal instillation.

    Science.gov (United States)

    Park, Eun-Jung; Hong, Young-Shick; Lee, Byoung-Seok; Yoon, Cheolho; Jeong, Uiseok; Kim, Younghun

    2016-07-01

    Due to their unique physicochemical properties, the potential health effects of single-walled carbon nanotubes (SWCNTs) have attracted continuous attention together with their extensive application. In this study, we aimed to identify local and systemic health effects following pulmonary persistence of SWCNTs. As expected, SWCNTs remained in the lung for 13 weeks after a single intratracheal instillation (50, 100, and 200μg/kg). In the lung, the total number of cells and the percentages of lymphocytes and neutrophils significantly increased at 200μg/kg compared to the control, and the Th1-polarized immune response was induced accompanying enhanced expression of tissue damage-related genes and increased release of chemokines. Additionally, SWCNTs enhanced the expression of antigen presentation-related proteins on the surface of antigen-presenting cells, however, maturation of dendritic cells was inhibited by their persistence. As compared to the control, a significant increase in the percentage of neutrophils and a remarkable decrease of BUN and potassium level were observed in the blood of mice treated with the highest dose. This was accompanied by the down-regulation of the expression of antigen presentation-related proteins on splenocytes. Moreover, protein and glucose metabolism were disturbed with an up-regulation of fatty acid β-oxidation. Taken together, we conclude that SWCNTs may induce adverse health effects by disturbing immune and metabolic regulation functions in the body. Therefore, careful application of SWCNTs is necessary for the enforcement of safety in nano-industries. PMID:27078092

  14. Two diamictites, two cap carbonates, two δ13C excursions, two rifts: The Neoproterozoic Kingston Peak Formation, Death Valley, California

    Science.gov (United States)

    Prave, A. R.

    1999-04-01

    Stratigraphic mapping of the Neoproterozoic glaciogenic Kingston Peak Formation (Death Valley, California) provides evidence for two temporally discrete extensional deformation episodes. These episodes are bracketed by the Sourdough Limestone and Noonday Dolomite, the facies characteristics and δ13C data (ranging between 2.15 and -2.56‰ and -1.88 and -4.86‰, respectively) of which make them equivalent to Sturtian and Varangian age cap carbonates, respectively. This constrains the two extensional episodes along the southwestern margin of Laurentia to ca. 700 Ma and ca. 600 Ma. These observations and data show that the field evidence for mid-Neoproterozoic breakup and the predictions from tectonic subsidence curves for a latest Neoproterozoic breakup are both correct. Thus, Neoproterozoic plate reconstructions must account for two discrete rift episodes separated by 100 m.y. or more. Confining rifting to within the Kingston Peak Formation thereby places the younger Proterozoic rocks of the southwestern Great Basin in the rift to drift tectonic phase.

  15. Priming of soil carbon decomposition in two inner Mongolia grassland soils following sheep dung addition: A study using13C natural abundance approach

    DEFF Research Database (Denmark)

    Ma, Xiuzhi; Ambus, Per; Wang, Shiping;

    2013-01-01

    To investigate the effect of sheep dung on soil carbon (C) sequestration, a 152 days incubation experiment was conducted with soils from two different Inner Mongolian grasslands, i.e. a Leymus chinensis dominated grassland representing the climax community (2.1% organic matter content) and a...... heavily degraded Artemisia frigida dominated community (1.3% organic matter content). Dung was collected from sheep either fed on L. chinensis (C3 plant with δ13C = -26.8‰; dung δ13C = -26.2‰) or Cleistogenes squarrosa (C4 plant with δ13C = -14.6‰; dung δ13C = -15.7‰). Fresh C3 and C4 sheep dung was mixed...

  16. Biosynthetic control of the natural abundance of carbon 13 at specific positions within fatty acids in Escherichia coli. Evidence regarding the coupling of fatty acid and phospholipid synthesis

    International Nuclear Information System (INIS)

    Stable carbon isotope ratios (13C/12C) at natural abundance levels have been determined for individual carbon atoms in each of the major phospholipid fatty acids of Escherichia coli grown on glucose as the sole carbon source. Two models were constructed for the isotope effects and carbon flow pathways which must be responsible for the observed isotopic fractionations. Both models incorporate a branch in the carbon flow at which fatty acyl-acyl carrier protein (acyl-ACP) is utilized either for complex lipid synthesis or for elongation by fatty acid synthetase. Depletion of carbon 13 in the carboxyl groups of myristic and palmitoleic acids (relative to carbonyl groups in precursor acyl-ACP's) was observed to occur at this branching site. Only one of the models was consistent both with this observation and with the observation that exogenous fatty acids are incorporated into phospholipids but are not elongated. The successful model has free fatty acid as the intermediate product coupling fatty acid biosynthesis to phospholipid synthesis. Essential to this pathway are those reactions catalyzed by thioesterases I and II as well as acyl-ACP synthetase, enzymes whose roles have previously been unknown in vivo

  17. Assessing offsets between the δ13C of sedimentary components and the global exogenic carbon pool across early Paleogene carbon cycle perturbations

    NARCIS (Netherlands)

    Sluijs, A.; Dickens, G.R.

    2012-01-01

    Negative stable carbon isotope excursions (CIEs) across the Paleocene–Eocene thermal maximum (PETM; ∼56 Ma) range between 2‰ and 7‰, even after discounting sections with truncated records. Individual carbon isotope records differ in shape and magnitude from variations in the global exogenic carbon c

  18. Backbone dynamics of a model membrane protein: assignment of the carbonyl carbon 13C NMR resonances in detergent-solubilized M13 coat protein

    International Nuclear Information System (INIS)

    The major coat protein of the filamentous bacteriophage M13 is a 50-residue amphiphilic polypeptide which is inserted, as an integral membrane-spanning protein, in the inner membrane of the Escherichia coli host during infection. 13C was incorporated biosynthetically into a total of 23 of the peptide carbonyls using labeled amino acids (alanine, glycine, lysine, phenylalanine, and proline). The structure and dynamics of carbonyl-labeled M13 coat protein were monitored by 13C nuclear magnetic resonance (NMR) spectroscopy. Assignment of many resonances was achieved by using protease digestion, pH titration, or labeling of the peptide bond with both 13C and 15N. The carbonyl region of the natural-abundance 13C NMR spectrum of M13 coat protein in sodium dodecyl sulfate solution shows approximately eight backbone carbonyl resonances with line widths much narrower than the rest. Three of these more mobile residues correspond to assigned peaks (glycine-3, lysine-48, and alanine-49) in the individual amino acid spectra, and another almost certainly arises from glutamic acid-2. A ninth residue, alanine-1, also gives rise to a very narrow carbonyl resonance if the pH is well above or below the pK/sub a/ of the terminal amino group. These data suggest that only about four residues at either end of the protein experience large-amplitude spatial fluctuations; the rest of the molecule is essentially rigid on the time scale of the overall rotational tumbling of the protein-detergent complex. The relative exposure of different regions of detergent-bound protein was monitored by limited digestion with proteinase K. Comparable spectra and digestion patterns were obtained when the protein was solubilized in sodium deoxycholate, suggesting that the coat protein binds both amphiphiles in a similar fashion

  19. Two episodes of 13C-depletion in organic carbon in the latest Permian: Evidence from the terrestrial sequences in northern Xinjiang, China

    Science.gov (United States)

    Cao, Changqun; Wang, Wei; Liu, Lujun; Shen, Shuzhong; Summons, Roger E.

    2008-06-01

    New analyses reveal two intervals of distinctly lower δ13C values in the terrestrial organic matter of Permian-Triassic sequences in northern Xinjiang, China. The younger negative δ13C org spike can be correlated to the conspicuous and sharp δ13C drops both in carbonate carbon and organic carbon near the Permian-Triassic event boundary (PTEB) in the marine section at Meishan. The geochemical correlation criteria are accompanied by a magnetic susceptibility pulse and higher abundances of distinctive, chain-like organic fossil remains of Reduviasporonites. The older negative δ13C org spike originates within a latest Permian regression. Significant changes in organic geochemical proxies are recorded in the equivalent interval of the marine section at Meishan. These include relatively higher concentrations of total organic carbon, isorenieratane, C 14-C 30 aryl isoprenoids and lower ratios of pristane/phytane that, together, indicate the onset of anoxic, euxinic and restricted environments within the photic zone. The massive and widespread oxidation of buried organic matter that induced these euxinic conditions in the ocean would also result in increased concentrations of 13C-depleted atmospheric CO 2. The latest Permian environmental stress marked by the older negative δ13C org episode can be correlated with the distinct changeover of ostracod assemblages and the occurrences of morphological abnormalities of pollen grains. These observations imply that biogeochemical disturbance was manifested on the land at the end of the Permian and that terrestrial organisms responded to it before the main extinction of the marine fauna.

  20. Synchronous negative carbon isotope shifts in marine and terrestrial biomarkers at the onset of the early Aptian oceanic anoxic event 1a: Evidence for the release of 13C-depleted carbon into the atmosphere

    Science.gov (United States)

    van Breugel, Yvonne; Schouten, Stefan; Tsikos, Harilaos; Erba, Elisabetta; Price, Gregory D.; Sinninghe Damsté, Jaap S.

    2007-03-01

    A common feature of records of the early Aptian oceanic anoxic event (OAE) 1a is the sharp negative δ13C excursion displayed in both carbonate and organic matter at the onset of this event. A synchronous negative δ13C excursion has also been noted for terrestrial organic matter. This negative excursion has been attributed to either an injection of 13C-depleted light carbon into the atmosphere or, in case of marine sediments, recycling of 13C-depleted CO2. However, most studies were done on separate cores, and no information on the relative timing of the negative spikes in terrestrial versus marine records has been obtained. Here we examine early Aptian core sections from two geographically distal sites (Italy and the mid-Pacific) to elucidate the causes and relative timing of this negative "spike." At both sites, increased organic carbon (Corg) and decreased bulk carbonate contents characterize the interval recording OAE 1a (variously referred to as the "Selli event"). The organic material within the "Selli level" is immature and of autochthonous origin. Measured δ13C values of marine and terrestrial biomarkers largely covary with those of bulk organic carbon, with lowest values recorded at the base of the organic-rich section. By contrast, sediments enveloping the "Selli level" exhibit very low Corg contents, and their extractable Corg is predominantly of allochthonous origin. Hydrous pyrolysis techniques used to obtain an autochthonous, pre-Selli δ13C value for algal-derived pristane from corresponding sample material yielded a negative δ13C shift of up to 4‰. A negative δ13C shift of similar magnitude was also measured for the terrigenous n-alkanes. The results are collectively best explained by means of a massive, syndepositional, rapid input of 13C-depleted carbon into the atmosphere and surface oceans, likely delivered either via methane produced from the dissociation of sedimentary clathrates or perhaps by widespread thermal metamorphism of Corg

  1. Li1.2Mn0.54Ni0.13Co0.13O2-Encapsulated Carbon Nanofiber Network Cathodes with Improved Stability and Rate Capability for Li-ion Batteries

    Science.gov (United States)

    Ma, Dingtao; Zhang, Peixin; Li, Yongliang; Ren, Xiangzhong

    2015-06-01

    Li1.2Mn0.54Ni0.13Co0.13O2-encapsulated carbon nanofiber network cathode materials were synthesized by a facile electrospinning method. The microstructures, morphologies and electrochemical properties are characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HR-TEM), galvonostatic charge/discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy (EIS), etc. The nanofiber decorated Li1.2Mn0.54Ni0.13Co0.13O2 electrode demonstrated higher coulombic efficiency of 83.5%, and discharge capacity of 263.7 mAh g-1 at 1 C as well as higher stability compared to the pristine particle counterpart. The superior electrochemical performance results from the novel network structure which provides fast transport channels for electrons and lithium ions and the outer carbon acts a protection layer which prevents the inner oxides from reacting with HF in the electrolyte during charge-discharge cycling.

  2. Fate of organic carbon in paddy soils - results of Alisol and Andosol incubation with 13C marker

    Science.gov (United States)

    Winkler, Pauline; Cerli, Chiara; Fiedler, Sabine; Woche, Susanne; Rahayu Utami, Sri; Jahn, Reinhold; Kalbitz, Karsten; Kaiser, Klaus

    2016-04-01

    For a better understanding of organic carbon (OC) decomposition in paddy soils an incubation experiment was performed. Two soil types with contrasting mineralogy (Alisol and Andosol) were exposed to 8 anoxic‒oxic cycles over 1 year. Soils received rice straw marked with 13C (228 ‰) at the beginning of each cycle. A second set of samples without straw addition was used as control. Headspaces of the incubation vessels were regularly analysed for CO2 and CH4. In soil solutions, redox potential, pH, dissolved organic C (DOC), and Fe2+ were measured after each anoxic and each oxic phase. Soils were fractionated by density at the end of the experiment and the different fractions were isotopically analysed. Samples of genuine paddy soils that developed from the test soils were used as reference. During anoxic cycles, soils receiving rice straw released large amounts of CO2 and CH4, indicating strong microbial activity. Consequently, Eh values dropped and pH as well as Fe2+ concentrations increased. Concentrations of DOC were relatively small, indicating either strong consumption and/or strong retention of dissolved organic compounds. During oxic cycles, concentrations of dissolved Fe dropped in both soils while DOC concentrations remained constant in the Alisol and decreased in the Andosol. Density fractionation revealed increased contents of mineral associated OC for the Andosol incubated with straw addition as compared to the parent soil. No changes were found for the Alisol. However, the mineral-associated OC fraction of both soil types contained 13C of the added straw. Hence, fresh organic matter is incorporated while part of the older organic matter has been released or mineralized. The increase in the Andosol might be due to effective binding of fresh OC to minerals and/or stronger retention/preservation of older OC. Both could be explained by the more reactive mineralogy of the Andosol than of the Alisol. XPS analyses of the soils are currently performed and

  3. Revisiting the Laser Dye Styryl-13 As a Reference Near-Infrared Fluorophore: Implications for the Photoluminescence Quantum Yields of Semiconducting Single-Walled Carbon Nanotubes

    Science.gov (United States)

    Stürzl, Ninette; Lebedkin, Sergei; Kappes, Manfred M.

    2009-08-01

    The near-infrared (NIR) polymethine dye Styryl-13 emitting at ˜925 nm has recently been suggested as a reference fluorophore for determining the quantum yield (QY) of the NIR photoluminescence of dispersed single-walled carbon nanotubes (SWNTs). Ju et al. reported the QY for SWNTs to be as high as 20% on the basis of 11% QY for Styryl-13 in methanol (Science 2009, 323, 1319). We directly compared the fluorescence of Styryl-13 and Styryl-20 (emitting at ˜945 nm) with that of the standard fluorophore Rhodamine 6G using a spectrometer with a broad visible-NIR detection range. QYs of 2.0 (4.5) and 0.52 (0.80)% were determined for Styryl-13 and Styryl-20 in methanol (propylene carbonate), respectively. Correspondingly, the above-mentioned photoluminescence efficiency of SWNTs appears to be strongly overestimated. We also discuss singlet oxygen as an alternative NIR reference. A total QY of 1.4% was measured for the emission of singlet oxygen at 1275 nm, as photosensitized by C70 fullerene in air-saturated carbon tetrachloride.

  4. Bio-Carbon Accounting for Bio-Oil Co-Processing: 14C and 13C/12C

    Energy Technology Data Exchange (ETDEWEB)

    Mora, Claudia I. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Li, Zhenghua [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vance, Zachary [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-21

    This is a powerpoint presentation on bio-carbon accounting for bio-oil co-processing. Because of the overlapping range in the stable C isotope compositions of fossil oils and biooils from C3-type feedstocks, it is widely thought that stable isotopes are not useful to track renewable carbon during co-production. In contrast, our study demonstrates the utility of stable isotopes to: • capture a record of renewable carbon allocation between FCC products of co-processing • record changes in carbon apportionments due to changes in reactor or feed temperature Stable isotope trends as a function of percent bio-oil in the feed are more pronounced when the δ13C of the bio-oil endmember differs greatly from the VGO (i.e., it has a C4 biomass source–corn stover, switch grass, Miscanthus, sugarcane– versus a C3 biomass source– pine, wheat, rice, potato), but trends on the latter case are significant for endmember differences of just a few permil. The correlation between measured 14C and δ13C may be useful as an alternative to carbon accounting, but the relationship must first be established for different bio-oil sources.

  5. In Situ 13C NMR at Elevated-Pressures and -Temperatures Investigating the Conversion of CO2 to Magnesium and Calcium Carbonate Minerals

    Science.gov (United States)

    Surface, J. A.; Conradi, M. S.; Skemer, P. A.; Hayes, S. E.

    2013-12-01

    We have constructed specialized NMR hardware to conduct in situ elevated-pressure, elevated-temperature 13C NMR studies of unmixed heterogeneous mixtures of solids, liquids, gases, and supercritical fluids. Specifically, our aim is to monitor CO2 uptake in both ultramafic rocks and in more porous geological materials to understand the mechanisms of chemisorption as a function of temperature, pressure and pH. In this in situ NMR probe, we are able to simulate processes at geologically relevant fluid pressures and temperatures, monitoring the kinetics of CO2 conversion to carbonates. The in situ NMR experiments consist of heterogeneous mixtures of rock, salty brine solution, and moderate pressure CO2 gas at elevated temperatures. The purpose of studying these reactions is to determine efficacy of carbonate formation in various geological reservoirs. Via 13C NMR, we have spectroscopically characterized and quantified the conversion of CO2 to magnesium carbonate and calcium carbonate minerals. When CO2 reacts with the calcium or magnesium in a mineral or rock sample, the 13C chemical shift, linewidth, lineshape, and relaxation times change dramatically. This change can be monitored in situ and provide instantaneous and continuous characterization that maps the chemistry that is taking place. For example, on the pathway to MgCO3 formation, there are a number of phases of Mg(OH)x(H2O)y(CO3)z that are apparent via NMR spectroscopy. We will demonstrate that NMR can be used for quantitative characterization of multiple metastable mineral phases in pure forms and in mixtures. Results are confirmed via powder XRD and Raman spectroscopy of aquo- hydro- carbonato- magnesium species and calcium carbonate species. We also have monitored the 13C spectroscopy to analyze the phase of CO2 (liquid, supercritical, or gas) and its conversion into other forms, such as bicarbonate and carbonate species, providing a "window" into the in situ pH of the reacting system. Reference: 'In Situ

  6. Δ14C and δ13C as tracers of organic carbon in Baltic Sea sediments collected in coastal waters off Lithuania and in the Gotland Deep

    International Nuclear Information System (INIS)

    Signatures of Δ14C and δ13C of total organic carbon in sediments as well as of total lipid extracts and phospholipid-derived fatty acid fractions isolated from the surface (0-3 cm) sediments collected in the Curonian Lagoon and in the open Baltic Sea were studied. An endmember mixing-model approach was applied to estimate relative contributions of the marine and terrestrial inputs to organic carbon in sediments, and to elucidate a possible leakage of chemical warfare agents at the Gotland Deep dumpsite. (author)

  7. Proton And Carbon-13 Nuclear Magnetic Resonance Of Some 4-Amino-3-Alkyl (Aryl)-5-Thio-1,2,4-Triazolines And Their Derivatives

    OpenAIRE

    El Toukhy, Ahmed [احمد الطوخي; Al-Kubaisi, Abdulla H.; Kenawy, Ibrahim

    1991-01-01

    The proton and carbon-13 NMR spectra of some 4-amino-3-alkyl(aryl)-5-thio-1,2,4-triazolines, some 3-alkyl-5-thio- 1,2,4-triazolines and some 4-amino-3-aryl-5-thio-l,2,4-triazoles were measured in DMSO-d6 as solvent. The chemical shift for each proton and carbon in these compounds were assigned. The 'H, chemical shift of N-H protons of the thioamide group and the "C chemical shift of C(3) in the triazolines were found to be sensitive to the substituent R (alkyi or aryl) at C(3), and correlated...

  8. Report on compounds labelled with nitrogen-13 or carbon-11 used in cancer metabolic studies with quantitative two-dimensional scanning and pet tomography

    International Nuclear Information System (INIS)

    The use of compounds labelled with radionuclides of the elements commonly involved in metabolic processes (oxygen, carbon, nitrogen) is becoming important in the non-invasive study of organ and tumour function. The application of compounds labelled with 13N and 11C to the study of amino-acid metabolism and changes in vasculature following chemotherapy and radiation therapy is described. In particular, 13N-labelled L-glutamate has been found to be useful in visualizing a number of human tumours including osteogenic sarcoma, rhabdomyosarcoma, Ewing's sarcoma, malignant fibrous histiocytoma, pineal gland tumours, primitive neuroectodermal tumours, medulloblastoma and several other solid tumours. In patients with bone tumours, changes in 13N-L-glutamate scans during chemotherapy were found to correlate with changes in other clinical parameters, such as serum alkaline phosphatase, histology and 99Tcsup(m)-bone scans, thus indicating that labelled L-glutamate is potentially useful in evaluating the response of solid tumours to chemotherapy. Scans of patients and volunteers using 13N-L-glutamate and 13N-L-valine indicate that the L-amino acids may be useful in studies of metabolic processes in the liver, myocardium and pancreas. Red blood cells, labelled with 11C-carbon monoxide via inhalation of the radioactive gas, have been used to assess changes in tumour vascularity following radiation therapy. Alpha-aminoisobutyric acid labelled with 11C has been synthesized and its distribution in normal and tumour-bearing dogs has been studied. (author)

  9. Acetalization of carbonyl compounds with 2,2,4-trimethyl-1,3-pentanedio catalyzed by novel carbon based solid acid catalyst

    Institute of Scientific and Technical Information of China (English)

    Ling Liu; Yuechang Zhao; Shan Gan; Xuezheng Liang; Jianguo Yang; Mingyuan He

    2008-01-01

    The synthesis of 2, 4-diisopropyl-5,5-dimethyl-1,3-dioxane through the acetalization of isobutyraldehyde with 2, 2,4-trimethyl-1,3-pentanediol (TMPD) catalyzed by the novel carbon based acid was first carried out. High conversion (≥98%) and specific selectivity were obtained using the novel carbon based acid, which kept high activity after it was reused 5 times.Moreover, the catalyst could be used to catalyze the acetalization and ketalization of different aldehydes and ketones with superior yield. The yield of several products was over 90%. The novel heterogeneous catalyst has the distinct advantages of high activity, strikingly simple workup procedure, non-pollution, and reusability, which will contribute to the success of the green process greatly.

  10. Application of δ13C and δ15N isotopic signatures of organic matter fractions sequentially separated from adjacent arable and forest soils to identify carbon stabilization mechanisms

    Science.gov (United States)

    Kayler, Z. E.; Kaiser, M.; Gessler, A.; Ellerbrock, R. H.; Sommer, M.

    2011-03-01

    Identifying the chemical mechanisms behind soil carbon bound in organo-mineral complexes is necessary to determine the degree to which soil organic carbon is stabilized belowground. We used the δ13C and δ15N isotopic signatures from two organic matter (OM) fractions from soil to identify the likely binding mechanisms involved. We used OM fractions hypothesized to contain carbon stabilized through organo-mineral complexes: (1) OM separated chemically with sodium pyrophosphate (OM(PY)) and (2) OM stabilized in microstructures found in the chemical extraction residue (OM(ER)). Furthermore, because the OM fractions were separated from five different soils with paired forest and arable land use histories, we could address the impact of land use change on carbon binding and processing mechanisms within these soils. We used partial least squares regression to analyze patterns in the isotopic signature of OM with established proxies of different binding mechanisms. Parsing soil OM into different fractions is a systematic method of dissection, however, we are primarily interested in how OM is bound in soil as a whole, requiring a means of re-assembly. Thus, we implemented the recent zonal framework described by Kleber et al. (2007) to relate our findings to undisturbed soil. The δ15N signature of OM fractions served as a reliable indicator for microbial processed carbon in both arable and forest land use types. The δ13C signature of OM fractions in arable sites did not correlate well with proxies of soil mineral properties while a consistent pattern of enrichment was seen in the δ13C of OM fractions in the forest sites. We found a significant difference in δ13C of pooled OM fractions between the forest and arable land use type although it was relatively small (<1‰). We found different binding mechanisms predominate in each land use type. The isotopic signatures of OM fractions from arable soils were highly related to the clay and silt size particles amount while

  11. Application of δ13C and δ15N isotopic signatures of organic matter fractions sequentially separated from adjacent arable and forest soils to identify carbon stabilization mechanisms

    Directory of Open Access Journals (Sweden)

    M. Sommer

    2011-03-01

    Full Text Available Identifying the chemical mechanisms behind soil carbon bound in organo-mineral complexes is necessary to determine the degree to which soil organic carbon is stabilized belowground. We used the δ13C and δ15N isotopic signatures from two organic matter (OM fractions from soil to identify the likely binding mechanisms involved. We used OM fractions hypothesized to contain carbon stabilized through organo-mineral complexes: (1 OM separated chemically with sodium pyrophosphate (OM(PY and (2 OM stabilized in microstructures found in the chemical extraction residue (OM(ER. Furthermore, because the OM fractions were separated from five different soils with paired forest and arable land use histories, we could address the impact of land use change on carbon binding and processing mechanisms within these soils. We used partial least squares regression to analyze patterns in the isotopic signature of OM with established proxies of different binding mechanisms. Parsing soil OM into different fractions is a systematic method of dissection, however, we are primarily interested in how OM is bound in soil as a whole, requiring a means of re-assembly. Thus, we implemented the recent zonal framework described by Kleber et al. (2007 to relate our findings to undisturbed soil. The δ15N signature of OM fractions served as a reliable indicator for microbial processed carbon in both arable and forest land use types. The δ13C signature of OM fractions in arable sites did not correlate well with proxies of soil mineral properties while a consistent pattern of enrichment was seen in the δ13C of OM fractions in the forest sites. We found a significant difference in δ13C of pooled OM fractions between the forest and arable land use type although it was relatively small (<1‰. We found different binding mechanisms predominate in each land use type. The isotopic signatures of OM fractions from arable soils were highly related to the clay and silt size particles

  12. Turnover of carbon in the 13C-urea breath test for the detection of Helicobacter pylori infection

    International Nuclear Information System (INIS)

    To obtain a standard protocol for the application of 13C-urea breath test (13C-UBT) analyzed by Isotope Ratio Mass Spectrometer (IRMS) to detect helicobacter pylori infection in the population is necessary to know the behavior of the turnover of 13C during the test in different individuals. The aims of this study was to find out a pattern for the turnover of the 13C in the 13C-UBT, analyzed by IRMS, in patients infected with H. pylori, in a Brazilian population, to define a protocol test application. We found that the isotopic ratio 13C/12C in expired CO2 from patients infected with H. pylori and subjected to 13C-UBT does not follow a single pattern of behavior. However this behavior can be similar in subjects having the same maximum values following an inverse proportional relationship between the maximum value and the time of appearance in the curve. (author)

  13. Late Norian δ13Corg record in the Tethyan realm: New clues on the complex Late Triassic carbon cycle from the Lagonegro Basin (southern Italy)

    Science.gov (United States)

    Zaffani, Mariachiara; Agnini, Claudia; Concheri, Giuseppe; Godfrey, Linda; Katz, Miriam; Maron, Matteo; Rigo, Manuel

    2016-04-01

    The Late Triassic (ca. 237-201 Ma) is characterized by complex and extreme environmental, climatic and biotic changes (e.g.: the break-up of the supercontinent Pangaea; the humid event known as the Carnian Pluvial Event; the End-Triassic mass extinction; the emplacement of the CAMP volcanism). A global δ13Corg curve for the Late Triassic would provide new clues on this perturbed time interval and would have the potential for global correlations. In particular, the few available data from North American successions define the late Norian (ca. 220-206 Ma) as a "chaotic carbon interval", with rapid vacillations of the carbon isotope values paired with low faunal diversity. Our goal is to reconstruct a global δ13Corg profile for the late Norian, as a contribution to the construction of a more complete global carbon isotope curve for the Late Triassic. For this purpose, we analyzed three sections from the Lagonegro Basin (southern Italy), originally located in the western Tethys, on the other side of the supercontinent Pangaea respect to the North America. The obtained δ13Corg profiles show four negative shifts correlatable with those of the North American record, suggesting that these carbon cycle perturbations have a widespread occurrence. These perturbations are associated with negative shifts of the 87Sr/86Sr, indicating that these global δ13Corg and 87Sr/86Sr negative excursions were possibly caused by emplacement of a Large Igneous Province (LIP). The input of volcanogenic CO2 to the atmosphere-ocean system is supported also by the 12C enrichment observed, as well as by the increase of atmospheric pCO2 inferred by different models for the Norian- Rhaetian interval. This Norian magmatic activity may be ascribed to the Angayucham province (Alaska, North America), a large oceanic plateau active ca. 214 Ma ±7 Myr, with an estimated volume comparable to other two Late Triassic LIPs: the Wrangellia and the CAMP.

  14. Investigation of the degradation of 13C-labeled fungal biomass in soil - fate of carbon in a soil bioreactor system

    Science.gov (United States)

    Schweigert, Michael; Fester, Thomas; Miltner, Anja; Kaestner, Matthias

    2015-04-01

    Nutrient balances and degradation processes in boreal forests are mainly influenced by interactions of plant roots and ectomycorrhizal fungi. Plants benefit from nitrogen compounds provided by their symbiotic interaction partner. In return ectomycorrhiza are provided by large amounts of carbon from the plants which is used for the synthesis of hyphal networks in soil and for metabolic activity for nutrient uptake. Therefore, ectomycorrhizal fungi play a major role in ecosystems of boreal forests and are consequently an important sink for carbon by building large amount of mycelia. Recently, it has been shown that microbial biomass residues contribute significantly to soil organic matter formation. This suggests that also residues of ectomycorrhizal fungi may be an important source for soil organic matter formation in forest soils where these fungi are abundant. However, the fate of ectomycorrhizal biomass residues in soils is unknown. We therefore investigated the fate of ectomycorrhizal biomass in soil in a soil bioreactor system to quantify the contribution of this material to soil organic matter formation. As a model organism, we selected Laccaria bicolor, which was labelled by growing the fungus on 13C glucose. The stable isotope-labeled biomass was then homogenized and incubated in a podzol from a typical forest site in Central Germany. The fate of the labeled biomass was traced by analyzing the amount of 13C mineralized and the amount remaining in the soil. The fungal biomass carbon was mineralized rather rapidly during the first 50 days. Then the mineralization rate slowed down, but mineralization continued until the end of the experiment, when approximately 40% of the 13C was mineralized and 60% remained in soil. In addition, we analyzed biomolecules such as fatty acids to trace the incorporation of the L. bicolor-derived biomass carbon into other microorganisms and to identify potential primary consumers of fungal biomass. By these analyses, we found a

  15. Correlation between the carbon isotope composition (δ13 C) of puccinellia ciliata and balansa clover in duel stresses of water logging and salinity (Nacl)

    International Nuclear Information System (INIS)

    Theoretically, plants growing under stress conditions, such as in saline or waterlogged conditions, should behave with 13C02 discrimination and have different δ13C values. Therefore, this experiment was conducted to evaluate the effect of factors such as salinity and hypoxia in affecting delta values of Puccinellia ciliata and Balansa clover (Trifolium michelianum Savi. Var balansae boiss). This study reveals that these two species (C3 plants) behave differently and B. clover has more positive δ13C values (7.6%) compared to P. ciliata. The overall average of δI3C were -28.85 and -26.66 0/00, respectively, for P. ciliata and B. clover. The δI3C values for the shoots and roots of the two species also have different values (more positive values in roots compared to shoots). Water logging and salinity have a significant affect on 13C02 discrimination and, statistically, these effects on δ13C values are significant (ρ I3C would be changed (less discrimination for hypoxia and more for salinity conditions). The combined effects on species and plant parts of water logging and salinity are not statistically insignificant on δ13C values, however, each factor separately has a significant effect on δ13C values. P. ciliata was grown in different seasons (summer and winter) and showed significant differences in δ13C values (by almost 4%). The carbon content (%) of the two species was different, but, were not related to δ13C, respectively

  16. A spectral line survey in the 2 mm and 1.3 mm windows toward the carbon rich envelope of IRC +10216

    CERN Document Server

    He, J H; Kwok, S; Müller, H S P; Zhang, Y; Hasegawa, T; Peng, T C; Huang, Y C

    2008-01-01

    We present the results of our spectral line surveys in the 2 mm and 1.3 mm windows toward the carbon rich envelope of IRC +10216. Totally 377 lines are detected, among which 360 lines are assigned to 57 known molecules (including 29 rare isotopomers and 2 cyclic isomers). Only 17 weak lines remain unidentified. Rotational lines of isotopomers 13CCH and c-13CCCH are detected for the first time in IRC +10216. The detection of the formaldehyde lines in this star is also confirmed. Possible abundance difference among the three 13C substituted isotopic isomers of HC3N is reported. Isotopic ratios of C and O are confirmed to be non-solar while those of S and Si to be nearly solar. Column densities have been estimated for 15 molecular species. Modified spectroscopic parameters have been calculated for NaCN, Na13CN, KCN and SiC2. Transition frequencies from the present observations were used to improve the spectroscopic parameters of Si13CC, 29SiC2 and 30SiC2.

  17. Synthesis of methyl [(chloro-2 ethyl)-3 nitroso-3 Ureido]-3 Didesoxy-2,3 α-D-Arabino-hexopyrannoside labelled with carbon-14 or carbon-13 (CY 233 - SR 90008)

    International Nuclear Information System (INIS)

    CY 233 (Ecomustine or SR 90098) is a new antitumour nitrosourea: it is characterized by a 2-chloroethylnitrosourea substituent on a dideoxycarbohydrate. It has been labelled with 14C on a) the carbonyl group of the urea in four stages starting with 14COCl2, b) the second carbon of the chloroethyl group in four stages starting with [14C] ethanolamine, and c) on the methyl group on the anomeric centre of the carbohydrate in three stages starting with 14CH3OH. The final position was also labelled with 13C starting with 13CH3OH. These differently labelled compounds are suitable for mechanistic studies of antitumour activity. (author)

  18. Organic matter turnover in reservoirs of the Harz Mountains (Germany): evidence from 13C/12C changes in dissolved inorganic carbon

    Science.gov (United States)

    Barth, Johannes A. C.; Nenning, Franziska; van Geldern, Robert; Mader, Michael; Friese, Kurt

    2014-05-01

    The Harz Mountains in Germany host several reservoirs for drinking water and electricity supply, the largest of which is the Rappbode System with its two pre-reservoirs. They are the Hassel and the Rappbode pre-reservoirs that have about the same size. These pre-reservoirs were investigated in a comparative study in order to quantify turnover of dissolved organic carbon (DOC) as a representative for organic matter. The objective was to find out how organic matter turnover in these reservoirs may affect dissolved inorganic carbon (DIC) and related CO2 dynamics. Depth profiles of dissolved organic and inorganic carbon (DOC and DIC) were established together with their carbon stable isotope distributions (expressed as δ13CDIC and δ13CDOC). Our results showed up to 104 % increase of DIC contents by organic matter turnover when calculated via isotope mass balances. This contrasted observations of DIC concentration differences between waters collected at the surface and at 12 m depth. These concentration comparisons showed much less DIC increases, and in some cases even decreases, between surface and bottom waters. Such discrepancies could be explained by formation of CO2 at depths below the photic zone that reached calculated values above 7000 ppmV. Such high CO2 concentrations may have reduced the DIC pool by upwards migration. Despite such a concentration decrease, turnover of organic matter has likely incorporated its isotope signal into the DIC pool. While not all DOC present was transposed to DIC, other forms of organic matter from sediments may also have transferred their isotope ratio on the DIC pool. However, with its stable isotope ratio of -28.5 permille the measured DOC was representative of C3 plants and can be assumed as a proxy for other forms of sedimentary carbon including carbon from pore waters and particulate organic matter. Other carbon turnover, including DOC leaching, increased import to the reservoirs after precipitation events and

  19. Carbon isotopic composition, nitrogen content and inclusion composition of diamonds from the Roberts Victor kimberlite, South Africa: Evidence for 13C depletion in the mantle

    International Nuclear Information System (INIS)

    The mean 13C-content of diamonds containing peridotitic minerals does not differ significantly from those containing sulfides. Diamonds containing eclogitic minerals can be subdivided into two groups based on their carbon isotopic composition: Group-A, and Group-B. The clinopyroxenes occluded by the Group-A diamonds are depleted in SiO2, MgO, and CaO and significantly enriched in Al2O3, FeO, and MnO compared to clinopyroxenes occluded by Group-B diamonds. Carbon in two graphite-diamond eclogites has a mean isotopic composition of -5.31%; in both samples graphite shows a slight enrichment in 13C compared to the coexisting diamond. There is no difference in the C isotopic composition between Type I and Type II diamonds for sulfide and peridotitic minerals occluding diamonds. All Type II diamonds containing eclogitic minerals belong to Group-A. No correlation between N content and C isotopic composition could be established, although a large range in both variables is observed for the sample suite. The composition of eclogitic minerals included in diamonds of low 13C-content differs from that of eclogite xenoliths characterized by 18O-depletions, which have been related to subduction processes. Hence the data available do not suggest a common cause for the depletion of the heavy isotopes of the two elements. The chemical and isotopic characteristics of the suite of diamond samples reflect different mantle environments. Diamonds depleted in 13C(13C = -15 to -16 per mille) come from a region at greater depth than those of 13C contents of -5 to -6 per mille. The source region of the former is characterized by higher Fe, Mn, Al, and lower Mg, Ca, Si, and N contents than that of the latter. (author)

  20. Stable carbon isotope analysis ({delta}{sup 13}C values) of polybrominated diphenyl ethers and their UV-transformation products

    Energy Technology Data Exchange (ETDEWEB)

    Rosenfelder, Natalie; Bendig, Paul [University of Hohenheim, Institute of Food Chemistry (170b), Garbenstr. 28, D-70599 Stuttgart (Germany); Vetter, Walter, E-mail: walter.vetter@uni-hohenheim.de [University of Hohenheim, Institute of Food Chemistry (170b), Garbenstr. 28, D-70599 Stuttgart (Germany)

    2011-10-15

    Polybrominated diphenyl ethers (PBDEs) are frequently detected in food and environmental samples. We used compound specific isotope analysis to determine the {delta}{sup 13}C values of individual PBDEs in two technical mixtures. Within the same technical product (DE-71 or DE-79), BDE congeners were the more depleted in {sup 13}C the higher brominated they were. In contrast, the products of light-induced hydrodebromination of BDE 47 and technical DE-79 were more enriched in {sup 13}C because of more stable bonds between {sup 13}C and bromine. As a result, the {delta}{sup 13}C values of the irradiated solution progressed diametrically compared to those of the technical synthesis. The ratio of the {delta}{sup 13}C values of BDE 47 to BDE 99 and of BDE 99 to BDE 153 are thus suggested as indicators to distinguish native technical products from transformation products. Ratios <1 are typical for native congeners (e.g. in DE-71) while the reversed ratio (>1) is typical of transformation products. - Highlights: > {delta}{sup 13}C values of PBDEs were determined by means of compound specific isotope analysis. > PBDEs in technical mixtures were the more depleted in {sup 13}C the higher they were brominated. > Solutions of individual PBDEs and technical PBDE mixtures were irradiated by UV light. > {delta}{sup 13}C values of irradiated PBDEs and technical PBDEs progressed diametrically. > Ratios of the {delta}{sup 13}C values were used to distinguish native from transformed PBDEs. - Diametrically progressing {delta}{sup 13}C values in technical mixtures and UV-transformation products of DE-79 may be useful for source appointment of PBDEs in environmental samples

  1. Study of carbon nitride compounds synthesised by co-implantation of 13C and 14N in copper at different temperatures

    International Nuclear Information System (INIS)

    Research highlights: → Simultaneous implantation of 13C and 14N in copper were performed to synthesise CNx compounds. → The formation of fullerene-like CNx compounds was highlighted by XPS and TEM. → Only about 20% of the implanted 14N atoms are contained in the FL CxNy structures. → The exceeding of implanted nitrogen precipitates in large N2 gas bubbles. → A growth model for the FL CxNy structures is proposed. - Abstract: Carbon nitride compounds have been synthesised in copper by simultaneous high fluence (1018 at. cm-2) implantation of 13C and 14N ions. During the implantation process, the substrate temperature was maintained at 25, 250, 350 or 450 deg. C. Depth profiles of 13C and 14N were determined using the non-resonant nuclear reactions (NRA) induced by a 1.05 MeV deuteron beam. The retained doses were deduced from NRA measurements and compared to the implanted fluence. The chemical bonds between carbon and nitrogen were studied as a function of depth and temperature by X-ray photoelectron spectroscopy (XPS). The curve fitting of C 1s and N 1s core level photoelectron spectra reveal different types of C-N bonds and show the signature of N2 molecules. The presence of nitrogen gas bubbles in copper was highlighted by mass spectroscopy. The structure of carbon nitride compounds was characterised by transmission electron microscopy (TEM). For that purpose, cross-sectional samples were prepared using a focused ion beam (FIB) system. TEM observations showed the presence of small amorphous carbon nitride 'nano-capsules' and large gas bubbles in copper. Based on our observations, we propose a model for the growth of these nano-objects. Finally, the mechanical properties of the implanted samples were investigated by nano-indentation.

  2. Fluxes and 13C isotopic composition of dissolved carbon and pathways of methanogenesis in a fen soil exposed to experimental drought

    Directory of Open Access Journals (Sweden)

    C. Blodau

    2008-10-01

    Full Text Available Peatlands contain a carbon stock of global concern and significantly contribute to the global methane burden. The impact of drought and rewetting on carbon cycling in peatland ecosystems is thus currently debated. We studied the impact of experimental drought and rewetting on intact monoliths from a temperate fen over a period of ~300 days, using a permanently wet treatment and two treatments undergoing drought for 50 days. In one of the mesocosms, vegetation had been removed. Net production of CH4 was calculated from mass balances in the peat and emission using static chamber measurements. Results were compared to 13C isotope budgets of CO2 and CH4 and energy yields of acetoclastic and hydrogenotrophic methanogenesis. Drought retarded methane production after rewetting for days to weeks and promoted methanotrophic activity. Based on isotope and flux budgets, aerobic soil respiration contributed 32–96% in the wet treatment and 86–99% in the other treatments. Drying and rewetting did not shift methanogenic pathways according to δ13C ratios of CH4 and CO2. Although δ13C ratios indicated a prevalence of hydrogenotrophic methanogenesis, free energies of this process were small and often positive on the horizon scale. This suggests that methane was produced very locally. Fresh plant-derived carbon input apparently supported respiration in the rhizosphere and sustained methanogenesis in the unsaturated zone, according to a 13C-CO2 labelling experiment. The study documents that drying and rewetting in a rich fen soil may have little effect on methanogenic pathways, but result in rapid shifts between methanogenesis and methanotrophy. Such shifts may be promoted by roots and soil heterogeneity, as hydrogenotrophic methanogenesis occurred locally even when conditions were not conducive for this process in the bulk peat.

  3. Seasonal and inter-annual variability in 13C composition of ecosystem carbon fluxes in the U.S. Southern Great Plains

    Energy Technology Data Exchange (ETDEWEB)

    Torn, M.S.; Biraud, S.; Still, C.J.; Riley, W.J.; Berry, J.A.

    2010-09-22

    The {delta}{sup 13}C signature of terrestrial carbon fluxes ({delta}{sub bio}) provides an important constraint for inverse models of CO{sub 2} sources and sinks, insight into vegetation physiology, C{sub 3} and C{sub 4} vegetation productivity, and ecosystem carbon residence times. From 2002-2009, we measured atmospheric CO{sub 2} concentration and {delta}{sup 13}C-CO{sub 2} at four heights (2 to 60 m) in the U.S. Southern Great Plains (SGP) and computed {delta}{sub bio} weekly. This region has a fine-scale mix of crops (primarily C{sub 3} winter wheat) and C{sub 4} pasture grasses. {delta}{sub bio} had a large and consistent seasonal cycle of 6-8{per_thousand}. Ensemble monthly mean {delta}{sub bio} ranged from -25.8 {+-} 0.4{per_thousand} ({+-}SE) in March to -20.1 {+-} 0.4{per_thousand} in July. Thus, C{sub 3} vegetation contributed about 80% of ecosystem fluxes in winter-spring and 50% in summer-fall. In contrast, prairie-soil {delta}{sub 13}C values were about -15{per_thousand}, indicating that historically the region was dominated by C{sub 4} vegetation and had more positive {delta}{sub bio} values. Based on a land-surface model, isofluxes ({delta}{sub bio} x NEE) in this region have large seasonal amplitude because {delta}{sub bio} and net ecosystem exchange (NEE) covary. Interannual variability in isoflux was driven by variability in NEE. The large seasonal amplitude in {delta}{sub bio} and isoflux imply that carbon inverse analyses require accurate estimates of land cover and temporally resolved {sup 13}CO{sub 2} and CO{sub 2} fluxes.

  4. Effects of air pollutants on the composition of stable carbon isotopes δ13C, of leaves and wood, and on leaf injury

    International Nuclear Information System (INIS)

    Air pollutants are known to cause visible leaf injury as well as impairment of photosynthetic CO2 fixation. Here we evaluate whether the effects on photosynthesis are large enough to cause changes in the relative composition of stable carbon isotopes, δ13C, of plant tissue samples, and, if so, how the changes relate to visual leaf injury. For that purpose, several woody and herbaceous plant species were exposed to SO2 + O3 and SO2 + O3 + NO2 for one month. At the end of the fumigations, the plants were evaluated for visual leaf lesions, and δ13C of leaf tissue was determined. Woody plants generally showed less visual leaf injury and smaller effects on δ13C of pollutant exposure than did herbaceous plants. If δ13C was affected by pollutants, it became, with few exceptions, less negative. The data from the fumigation experiments were consistent with δ13C analyses of whole wood of annual growth rings from two conifer tree species, Pseudotsuga menziesii and Pinus strobus. These trees had been exposed until 1977 to exhaust gases from a gas plant at Lacq, France. Wood of both conifer species formed in the polluted air of 1972 to 1976 had less negative δ13C values than had wood formed in the much cleaner air in 1982 to 1986. No similar, time-dependent differences in δ13C of wood were observed in trees which had been continuously growing in clean air. Our δ13C data from both relatively short-term artificial exposures and long-term natural exposure are consistent with greater stomatal limitation of photosynthesis in polluted air than in clean air

  5. Statistical analysis of a corrosion inhibitor family on three steel surfaces (duplex, super-13 and carbon) in hydrochloric acid solutions

    International Nuclear Information System (INIS)

    Previous studies have addressed the experimental and theoretical investigation of the inhibition corrosion efficiencies (ICE) of single metal surfaces. Along this line we carried out calculations concerning to 23 compounds on three different single-steel surfaces, duplex, super-13 and the carbon steel in hydrochloric acid (15% w/v) solutions. The overall experiment is composed of 69 results of weight loss ICEs at 60 deg. C for amines, alcohols, thiourea and its derivatives acting as corrosion inhibitors for three steel surfaces. In these studies ICEs were correlated with group and quantum AM1 descriptors through the use of three different statistical methodologies based on calibration and validation of regular and modified OLS and PLS (partial least squares) methods. All calculations have shown better results using weight isoesteric Langmuir adsorption function (WILA function), ln(θM/(1-θ)) or ln Kads, calculated from the weight loss data as the response function. The function -log(i) has been used, as well, on all comparisons. Variables describing the metal were added to the previous set of group and quantum IC variables and several models have been designed to fit the three-steel problem. Simple products of metal and IC variables with 250 (25 x 10) products were tested as model I. Selection of the best variable set was carried out for the calibration and validation procedures and these calculations indicated very few descriptors in common, i.e. each particular selection (calibration or validation) finds its own optimal descriptor set. The overall results showed excellent correlations with R2 values between 0.80 and 0.96 and a Q2 values from 0.75 to 0.93. We are unaware of any similar QSPR study on the steels here studied, and neither the study of such massive amount of data concerning molecular inhibitors on three different steel surfaces. Our best result for the second-order cross-validation descriptor selection employs 29 variables, Y29. The results

  6. The 'Nuts and Bolts' of 13C NMR Spectroscopy at Elevated-Pressures and -Temperatures for Monitoring In Situ CO2 Conversion to Metal Carbonates

    Science.gov (United States)

    Moore, J. K.; Surface, J. A.; Skemer, P. A.; Conradi, M. S.; Hayes, S. E.

    2013-12-01

    We will present details of newly-constructed specialized NMR designed to conduct in situ elevated-pressure, elevated-temperature 13C NMR studies on unmixed slurries of minerals in the presence of CO2 or other gases. This static probe is capable of achieving 300 bar, 300C conditions, and it is designed to spectroscopically examine 13C signals in mixtures of solids, liquids, gases, and supercritical fluids. Ultimately, our aim is to monitor CO2 uptake in both ultramafic rocks and in more porous geological materials to understand the mechanisms of chemisorption as a function of temperature, pressure and pH. We will give details of the hardware setup, and we will show a variety of static in situ NMR, as well as ex situ 'magic-angle spinning' NMR to show the analyses that are possible of minerals in pure form and in mixtures. In addition, specific NMR pulse sequences, techniques, and modeling will be described in detail. In this in situ NMR probe, we are able to simulate processes at geologically relevant fluid pressures and temperatures, monitoring the kinetics of CO2 conversion to carbonates. The in situ NMR experiments consist of heterogeneous mixtures of rock, salty brine solution, and moderate pressure CO2 gas at elevated temperatures. The purpose of studying these reactions is to determine conditions that affect the efficacy of carbonate formation in various targeted geological reservoirs (i.e., peroditite, or others). Via 13C NMR, we have spectroscopically characterized and quantified the conversion of CO2 to magnesium carbonate and calcium carbonate minerals, including metastable intermediates (such as hydromagnesite, or dypingite in the case of magnesium carbonate species, or vaterite in the case of calcium carbonate species). Such species are distinguishable from a combination of the 13C isotropic chemical shift, the static 13C lineshape, and changes in spin-lattice (T1) relaxation times. We will demonstrate that NMR can be used for quantitative

  7. Turnover of carbon in the {sup 13}C-urea breath test for the detection of Helicobacter pylori infection

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Vladimir E.; Andreazzi, Mariana; Cury, Caio S.; Bassetto Junior, Carlos A.Z.; Rodrigues, Maria A.M.; Ducatti, Carlos, E-mail: vladimir@ibb.unesp.br, E-mail: ducatti@ibb.unesp.br, E-mail: mariana.andreazazi@gmail.com, E-mail: caiocury@hotmail.com, E-mail: juniorbassett@hotmail.com, E-mail: mariar@fmb.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Botucatu, SP (Brazil)

    2013-07-01

    To obtain a standard protocol for the application of {sup 13}C-urea breath test ({sup 13}C-UBT) analyzed by Isotope Ratio Mass Spectrometer (IRMS) to detect helicobacter pylori infection in the population is necessary to know the behavior of the turnover of {sup 13}C during the test in different individuals. The aims of this study was to find out a pattern for the turnover of the {sup 13}C in the {sup 13}C-UBT, analyzed by IRMS, in patients infected with H. pylori, in a Brazilian population, to define a protocol test application. We found that the isotopic ratio {sup 13}C/{sup 12}C in expired CO{sub 2} from patients infected with H. pylori and subjected to {sup 13}C-UBT does not follow a single pattern of behavior. However this behavior can be similar in subjects having the same maximum values following an inverse proportional relationship between the maximum value and the time of appearance in the curve. (author)

  8. Nature of organic carbon and nitrogen in physically protected organic matter of some Australian soils as revealed by solid-state 13 C and 15 N NMR spectroscopy

    International Nuclear Information System (INIS)

    The 13C and 15N nuclear magnetic resonance (NMR) spectroscopy was applied for characterising the chemical nature of the remaining organic fraction. The 13C NMR spectroscopic comparison of the residues after UV photo-oxidation and the untreated bulk soils revealed a considerable increase in condensed aromatic structures in the residues for 4 of the 5 soils. This behaviour was recently shown to be typical for char-containing soils. In the sample where no char was detectable by NMR spectroscopy, the physically protected carbon consisted of functional groups similar to those observed for the organic matter of the bulk sample, although their relative proportions were altered. The solid-state 15N NMR spectrum from this sample revealed that some peptide structures were able to resist UV photo-oxidation, probably physically protected within the core of micro aggregates. Heterocyclic aromatic nitrogen was not detected in this spectrum, but pyrrolic nitrogen was found to comprise a major fraction of the residues after photo-oxidation of the <53 μm containing soils. Acid hydrolysis of these samples confirmed that some peptide-like material was still present. The identification of a considerable amount of aromatic carbon and nitrogen, assignable to charred material in 4 of the 5 investigated soils, supports previous observations that char largely comprises the inert or passive organic matter pool of many Australian soils. The influence of such material on the carbon and nitrogen dynamics in such soils, however, requires further research. Copyright (2000) CSIRO Australia

  9. Paramagnetic ion binding to amino acids: The structure of the manganese (II)-L-proline complex from carbon-13 relaxation data

    International Nuclear Information System (INIS)

    Carbon-13 longitudinal relaxation times T1 of aqueous solutions of proline at pH = 11 containing 10-4-10-5M manganese(II) perchlorate are measured at 62.86 MHz und 600C. Under these conditions, the Mn2+ cation is bound to three proline molecules in their dibasic form to form the complex [Mn(L-PRO-)3]-. The relaxation of carbons α, β, γ, delta in this complex is shown to be dipolar. The relevant correlation time is rotational tausub(r) = 4.3 x 1011s (at 600C). A method is given to compute the Mn2+-13C distances in the complex from the paramagnetic relaxation rates 1/T1sub(M) of carbons α to delta and an assumed geometry of the proline molecule. The manganes (II) cation may be positioned with respect to each proline ligand, thus determining the structure of the hexacoordinated complex. The sites of coordination are the uncharged nitrogen and one carboxylic oxygen atom of the proline molecules, their distance to the Mn2+ cation are respectively 2.22 and 1.97 A. (orig.)

  10. Low-energy (30 keV) carbon ion induced mutation spectrum in the LacZα gene of M13mp18 double-stranded DNA

    International Nuclear Information System (INIS)

    Double-stranded M13mp18 DNA was irradiated with 30 keV carbon ions in dry state under vacuum to investigate the low-energy heavy ion induced mutation spectra. When the irradiated DNA was used to transfect Escherichia coli JM105, 3.6-5.7-fold increases in mutation frequency were observed, in contrast to the spontaneous group. Sequences of the 92 induced mutants showed that the carbon ions in this study could induce an interesting mutation spectrum in the lacZα gene. One-base mutations (96.8%) and base pair substitutions (56.4%) were predominant, most of which involved G:C base pairs (90.6%), especially G:C → T:A transversions (49.6%) and G:C → A:T transitions (39.6%). This is similar to the spectra induced by γ-rays in the same ds M13, wild type E. coli system. We also found a considerable amount of carbon ion induced one-base deletion (38.5%) and the mutation sites distribution on the target lacZα gene was obviously non-random. We compared this study with previous data employing γ-rays to discuss the possible causes of the mutation spectrum

  11. Application of solid state silicon-29 and carbon-13 nuclear magnetic resonance spectroscopy to the characterization of inorganic matter-humic complexes in Athabasca oil sands

    International Nuclear Information System (INIS)

    In Athabasca oil sands there is a fraction of non-crystalline solids tightly bound to humic matter. It is believed, that the presence of this fraction, which resists subsequent wetting by water, introduces serious problems in bitumen recovery when using water based processes. In the present work, 29Si and 13C solid state magic angle spinning (MAS) NMR techniques were applied to characterize these solids which were isolated from Athabasca oil sands of estuarine and marine origin. On the basis of 29Si results it is suggested that there is a short-range disorder in these samples. It is also shown that aluminum is present in the nearest-neighbor environment of the silicon atoms, thus demonstrating that these solids are comprised of disordered alumino-silicates (allophanes). 13C CP/MAS NMR spectra of demineralized inorganic matter-humic complexes derived from both estuarine and marine oil sands indicate that the distribution of carbon types in each region of the spectra is similar, with aromatic carbon being the predominant type of carbon

  12. Terrestrial carbon cycle responses to drought and climate stress: New insights using atmospheric observations of CO2 and delta13C

    Science.gov (United States)

    Alden, Caroline B.

    Atmospheric concentrations of carbon dioxide (CO2) continue to rise well into the second decade of the new millennium, in spite of broad-scale human understanding of the impacts of fossil fuel emissions on the earth's climate. Natural sinks for CO2 that are relevant on human time scales---the world's oceans and land biosphere---appear to have kept pace with emissions. The continuously increasing strength of the land biosphere sink for CO2 is surpassing expectations given our understanding of the CO2 fertilization and warming effects on the balance between photosynthesis and respiration, especially in the face of ongoing forest degradation. The climate and carbon cycle links between the atmosphere and land biosphere are not well understood, especially at regional (100 km to 10,000 km) scales. The climate modulating effects of changing plant stomatal conductance in response to temperature and water availability is a key area of uncertainty. Further, the differential response to climate change of C3 and C4 plant functional types is not well known at regional scales. This work outlines the development of a novel application of atmospheric observations of delta13C of CO2 to investigate the links between climate and water and carbon cycling and the integrated responses of C3 and C4 ecosystems to climate variables. A two-step Bayesian batch inversion for 3-hourly, 1x1º CO2 fluxes (step one), and for 3-hourly 1x1º delta13C of recently assimilated carbon (step two) is created here for the first time, and is used to investigate links between regional climate indicators and changes in delta13C of the biosphere. Results show that predictable responses of regional-scale, integrated plant discrimination to temperature, precipitation and relative humidity anomalies can be recovered from atmospheric signals. Model development, synthetic data simulations to test sensitivity, and results for the year 2010 are presented here. This dissertation also includes two other applications

  13. Changes in carbon uptake and allocation patterns in Quercus robur seedlings in response to elevated CO2 and water stress: an evaluation with 13C labelling

    International Nuclear Information System (INIS)

    A semi-closed (CO2)-C-13 labelling system (1.5% C-13) was used to assess both carbon uptake and allocation within pedunculate oak seedlings (Quercus robur L) grown under ambient (350 vpm) and elevated (700 vpm) atmospheric CO2 concentration ([CO2]) and in either well-watered or droughted conditions. Pulse-chase C-13 labelling data highlighted the direct positive effect of elevated CO2 on photosynthetic carbon acquisition. Consequently, in well-watered conditions, CO2-enriched plants produced 1.52 times more biomass (dry mass at harvest) and 1.33 times more dry root matter (coarse plus fine roots) over the 22-week growing period than plants grown under ambient [CO2]. The root/shoot biomass ratio was decreased both by drought and [CO2], despite lower N concentrations in CO2-enriched plants. However, both long-term and short-term C allocation to fine roots were not altered by CO2, and relative specific allocation (RSA), a parameter expressing sink strength, was hip her in all plant organs under 700 vpm compared to 350 vpm. Results showed that C availability for growth and metabolic processes was greater in fine roots of oaks grown under an elevated CO2 atmosphere irrespective of soil water availability

  14. Solid state 13C NMR and carbon isotope studies of the coupling of primary and secondary productivity in a Florida estuary

    International Nuclear Information System (INIS)

    The mechanisms by which primary producers fuel the growth of secondary consumers (e.g. fish and shell fish) in estuaries is poorly understood at this time. The authors have attempted to quantify the relative importance of detrital vs. planktonic food webs which support mariculture in the Ochlocknee River and Bay in Northwest Florida using stable carbon isotopes and solid state 13C NMR spectroscopy. Due to isotopic fractionation caused by different enzymatic pathways of carbon dioxide uptake, primary producers are imprinted with distinctive 13C/12C isotopic ratios. Stable isotopic ratios are imprints, or signatures, which are passed on to the next higher trophic level (you are what you eat). They have been combining isotopic tracing of food webs in estuaries with characterization of complex macromolecular particulates by cross polarization - magic angle spinning 13C NMR. In this talk they will demonstrate how the combination of these techniques can differentiate the relative importance of terrestrial input of organic matter vs. in situ estuarine production as a food source for estuarine consumers

  15. A carbon-13 NMR spin-lattice relaxation study of the molecular conformation of the nootropic drug 2-oxopyrrolidin-1-ylacetamide

    Science.gov (United States)

    Baldo, M.; Grassi, A.; Guidoni, L.; Nicolini, M.; Pappalardo, G. C.; Viti, V.

    The spin-lattice relaxation times ( T1) of carbon-13 resonances of the drug 2-oxopyrrolidin- 1-ylacetamide ( 2OPYAC) were determined in CDCl 3 + DMSO and H 2O solutions to investigate the internal conformational flexibility. The measured T1s for the hydrogen-bearing carbon atoms of the 2-pyrrolidone ring fragment were diagnostic of a rigid conformation with respect to the acetamide linked moiety. The model of anisotropic reorientation of a rigid body was used to analyse the measured relaxation data in terms of a single conformation. Owing to the small number of T1 data available the fitting procedure for each of the possible conformations failed. The structure corresponding to the rigid conformation was therefore considered to be the one that is strongly stabilized by internal hydrogen bonding as predicted on the basis of theoretical MO ab initio quantum chemical calculations.

  16. Carbon isotope (δ13C excursions suggest times of major methane release during the last 14 ka in Fram Strait, the deep-water gateway to the Arctic

    Directory of Open Access Journals (Sweden)

    C. Consolaro

    2014-10-01

    Full Text Available We present results from a sediment core collected from a pockmark field on the Vestnesa Ridge (∼80° N in the eastern Fram Strait. This is the only deep-water gateway to the Arctic, and one of the northernmost marine gas hydrate provinces in the world. Eight 14C AMS dating reveals a detailed chronology for the last 14 ka BP. The δ13C record measured on the benthic foraminiferal species Cassidulina neoteretis shows two distinct intervals with negative values, as low as −4.37‰ in the Bølling–Allerød interstadials and as low as −3.41‰ in the early Holocene. After cleaning procedure designed to remove all authigenic carbonate coatings on benthic foraminiferal tests, the 13C values are still negative (as low as −2.75‰. We have interpreted these negative carbon isotope excursions (CIEs to record past methane release events, resulting from the incorporation of 13C-depleted carbon from methane emissions into the benthic foraminiferal shells. The CIEs during the Bølling–Allerød interstadials and the early Holocene relate to periods of ocean warming, sea level rise and increased concentrations of methane (CH4 in the atmosphere. CIEs with similar timing have been reported from other areas in the North Atlantic suggesting a regional event. The trigger mechanisms for such regional events remain to be determined. We speculate that sea-level rise and seabed loading due to high sediment supply in combination with increased seismic activity as a result of rapid deglaciation may have triggered the escape of significant amounts of methane to the seafloor and the water column above.

  17. Dating Cactus: Annual and Sub-annual Variations of Oxygen-18, Carbon-13 and Radiocarbon in Spines of a Columnar Cactus, Carnegiea gigantea.

    Science.gov (United States)

    Dettman, D. L.; English, N. B.; Sandquist, D. R.; Williams, D. G.

    2006-12-01

    We measured δ18O, δ13C and F14C of spines from a long-lived columnar cactus, Carnegiea gigantea (saguaro), to resolve a record of plant physiological responses to annual and sub-annual climate variation in the eastern Sonoran Desert. Spines grow from the apex of the cactus and are arranged serially along the side of the cactus oldest at the base, youngest at the apex. To establish the age of the spine series, we measured F14C of spines collected at 8 different heights from the apex (3.77 m) to the base of a naturally occurring saguaro. These spines yielded fractions of modern carbon (F14C) from 0.9679 and 1.5537, indicating the presence of carbon in spine tissue derived from atmospheric nuclear testing. We used the F14C of spine tissue to calculate the year of spine emergence for each of the 11 spines, assuming minimal re-allocation of stored carbon to growing spines. At the same 8 heights, we interpolated the date of spine emergence from observed height measurements made between 1964 and 2002. A very strong positive correlation (linear regression, r2 = 0.99, P saguaro (between 1.77 and 3.50 m) and representing ~15 years of growth, yielded δ18O variations in spine bulk organic material from 38° to 50° (VSMOW) and in δ13C from ° to 11.5° (VPDB). The δ18O and δ13C values were positively correlated over the entire record (linear regression, r2 = 0.22, P saguaro 30 km distant. Temporal isotopic records from saguaro and potentially other long-lived succulent plants may provide useful high-frequency records of ecological responses to climate variation in desert environments where other such records are lacking.

  18. Determination of organic carbon (%) y δ13 C(0/00) in a Typic Paleudult (Ultisol) of the Araucania Region

    International Nuclear Information System (INIS)

    The use of isotopic techniques had resulted in a great utility for the quantification of the quantity and the origin of the organic C and N that are accumulated in the soil annually. In the same way, its possible to establish the single and complex substrates decomposition rates under natural and controlled conditions, for longer periods after the initial substrate are being metabolized. The relation 13C/12C is measure as δ13C. The C4 species as maize have a δ13C value of -120/00 approximately, whilst the C3 species as wheat and rice have a -260/00 value, approximately. The MOS δ13C relates with the crop type and with the plant C3 to C4 changes, reflecting on a change of the MOS δ13C values. This principle have been used by Balesdent, Mariotti and Guillet, and Accode et al. To investigate and quantification the soil organic matter changes. The objective of this study was to quantify the Oc and delta 13C in a soil Serie Metrenco, Family fine, mesica mixed of the Typic Paleudult (Ultisol) of the IX Region. The δ13C analysis were done in a mass spectrometer (OPTIMA) at the Seibersdorf Laboratories, Vienna, Austria. The OC and particle size fractionation analysis were done at the Agriculture Section of the CCHEN. The research studied the OC amount and the δ13C datas obtained on soil samples in three profiles (up, middle, down) in a slope direction, under a 50 year burn residues traditional management system, to verify the C4 plants presence or absence in the crop rotation. The results showed a big decreased of the δ13C in the profile, meaning that an increase of the 12C in depth, specially in the <50μm fraction has the highest proportion of soil OC. These results indicate the absence of C4 plants in the crop rotation and a high OC percentage in the recalcitrant fraction (AN)

  19. Oxygène-18, carbone-13, carbone-14 et diatomées dans les quatre carottes du lac Huynamarca (Bolivie) : premiers résultats

    OpenAIRE

    Wirrmann, Denis; Servant Vildary, Simone; Fontes, J.C.

    1982-01-01

    L'étude de géochimie isotopique des carbonates coquilliers de quatre carottes du lac Huynamarca (Bolivie), ainsi que les datations au carbone-14 de quelques échantillons montrent qu'au cours des dix derniers millénaires le bilan hydrologique du lac Titicaca a considérablement varié. Une phase sèche, située entre 3650 et 5325 ans B.P. se traduit par une baisse du niveau du lac d'au moins dix mètres par rapport à l'actuel, avec comme corrolaire l'augmentation de la teneur en sels dissous dans l...

  20. A novel dimethyl sulfoxide/1,3-dioxolane based electrolyte for lithium/carbon fluorides batteries with a high discharge voltage plateau

    International Nuclear Information System (INIS)

    A novel dimethyl sulfoxide/1,3-dioxolane (DMSO/1,3-DO) based electrolyte is proposed for lithium/carbon fluorides (Li/CFx) batteries to enhance the discharge voltage plateau and energy density. Conductivities of the electrolyte of 1 mol L−1 LiBF4/DMSO+1,3-DO with different volume ratios are not identical, which have a maximum of 14.85 mS cm−1. From the tests of galvanostatic discharge, the discharge voltage plateau of the Li/CFx battery with an electrolyte of 1 mol L−1 LiBF4/DMSO+1,3-DO (5:5, v:v) can reach 2.69 V at 0.1 C, delivering a maximum discharge capacity of 831 mAh g−1 and the highest energy density of 2196 Wh kg−1. Compared to Li/CFx batteries with an electrolyte of 1 mol L−1 LiBF4/PC+DME (5:5, v:v), the energy density of Li/CFx batteries with an electrolyte of 1 mol L−1 LiBF4/DMSO+1,3-DO (5:5, v:v) has been improved more than 12%. With the help of XRD, SEM, TEM, EIS, FT-IR and GC-MS analysis, the results of this work suggest that DMSO/1,3-DO based electrolyte can significantly improve the discharge performance of Li/CFx batteries and keep a good electrochemical stability during discharge. The main reason for improvement of discharge performance is decreasing of both the overpotential of electrochemical polarization of CFx cathodes during discharge and the overpotential of ohmic polarization by increasing the ion conductivity of electrolyte

  1. Assessment of the specific absorption rate and calibration of decoupling parameters for proton decoupled carbon-13 MR spectroscopy at 3.0 T

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Moyoko [Biomedical Imaging Group, Photonics Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan)]. E-mail: moyoko-saitou@aist.go.jp; Matsuda, Tsuyoshi [Imaging Application Tech. Center, GE Yokogawa Medical Systems Ltd., Tokyo (Japan); Tropp, James [General Electric Company, CA (United States); Inubushi, Toshiro [Molecular Neuroscience Research Center, Shiga University of Medical Science, Shiga (Japan); Nakai, Toshiharu [Biomedical Imaging Group, Photonics Research Institute, National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan) and Institute of Biomedical Research and Innovation, Kobe (Japan)]. E-mail: t-nakai@aist.go.jp

    2005-08-01

    A strategy for proton decoupled carbon-13 MR spectroscopy ({l_brace}{sup 1}H{r_brace}-{sup 13}C MRS) with a strong static magnetic field (3.0 T) in vivo was investigated. The proton decoupling improves the signal-to-noise ratio, however, the effect of the decoupling power on the human body, especially in strong magnetic fields, should be considered. In order to establish a technique for monitoring the metabolism of glucose in the liver using {l_brace}{sup 1}H{r_brace}-{sup 13}C MRS at 3.0 T, two phantom experiments were performed. To assess whether the decoupling energy conformed to SAR limits defined by the IEC, temperature rises inside an agar gel phantom were monitored during a {l_brace}{sup 1}H{r_brace}-{sup 13}C MRS experiment. Then, the decoupling conditions of a glucose solution phantom were systematically optimized with combinations of decoupling bandwidth and power. The reliability of this procedure was discussed in conjunction with IEC guidelines.

  2. Dual isotope (13C-14C) Studies of Water-Soluble Organic Carbon (WSOC) Aerosols in South and East Asia

    OpenAIRE

    Kirillova, Elena N.

    2013-01-01

    Atmospheric aerosols may be emitted directly as particles (primary) or formed from gaseous precursors (secondary) from different natural and anthropogenic sources. The highly populated South and East Asia regions are currently in a phase of rapid economic growth to which high emissions of carbonaceous aerosols are coupled. This leads to generally poor air quality and a substantial impact of anthropogenic aerosols on the regional climate. However, the emissions of different carbon aerosol comp...

  3. INTERVALOS DE INTEGRACIÓN UNIFICADOS PARA LA CARACTERIZACIÓN ESTRUCTURAL DE PETRÓLEOS, CARBONES O SUS FRACCIONES POR RMN 1H Y RMN 13C

    Directory of Open Access Journals (Sweden)

    Avella Eliseo

    2010-09-01

    Full Text Available Con base en la revisión de publicaciones, hechas entre 1972 y 2006, se evidenció que hay imprecisiones en los límites de los intervalos de integración que los autores asignan a las señales en resonancia magnética nuclear (RMN para hacer la caracterización estructural de petróleos, carbones o sus fracciones derivadas, a partir de sus espectros de hidrógeno (RMN 1H o de carbono (RMN 13C. En consecuencia, se determinaron límites unificados para la integración de los espectros RMN 1H y RMN 13C de tales muestras mediante un tratamiento estadístico aplicado a los límites de los intervalos de integración ya publicados. Con esos límites unificados se elaboraron cartas de correlación en RMN útiles para la asignación de la integral en esos intervalos, y aun en otros de menor extensión definidos en función de la intersección entre asignaciones diferentes. Además se plantearon ecuaciones necesarias para establecer la integral atribuible a fragmentos más específicos en un intento por hacer una caracterización estructural más exacta a partir de los espectros RMN de petróleos, carbones o sus fracciones derivadas.

  4. The effect of cesium carbonate on 1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C61 aggregation in films

    International Nuclear Information System (INIS)

    Surface-pressure versus molecular area isotherms, X-ray reflectivity, and X-ray near-total reflection fluorescence were used to study the properties of 1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C61 (PCBM) that was pre-mixed with cesium carbonate and spread as a film at the air-water interface. The pre-mixed PCBM with cesium carbonate demonstrated a strikingly strong effect on the organization of the film. Whereas films formed from pure PCBM solution were rough due to strong inter-molecular interactions, the films formed from the mixture were much smoother. This indicates that the cesium carbonate moderates the inter-molecular interactions among PCBM molecules, hinting that the cesium diffusion observed in inverted organic photovoltaic structures and the likely ensuing ionic Cs-PCBM interaction decrease aggregation tendency of PCBM. This implies that the use of cesium salts affects the morphology of the organic layer and consequently improves the efficiency of these devices

  5. Probabilistic Approach to Determining Unbiased Random-coil Carbon-13 Chemical Shift Values from the Protein Chemical Shift Database

    International Nuclear Information System (INIS)

    We describe a probabilistic model for deriving, from the database of assigned chemical shifts, a set of random coil chemical shift values that are 'unbiased' insofar as contributions from detectable secondary structure have been minimized (RCCSu). We have used this approach to derive a set of RCCSu values for 13Cα and 13Cβ for 17 of the 20 standard amino acid residue types by taking advantage of the known opposite conformational dependence of these parameters. We present a second probabilistic approach that utilizes the maximum entropy principle to analyze the database of 13Cα and 13Cβ chemical shifts considered separately; this approach yielded a second set of random coil chemical shifts (RCCSmax-ent). Both new approaches analyze the chemical shift database without reference to known structure. Prior approaches have used either the chemical shifts of small peptides assumed to model the random coil state (RCCSpeptide) or statistical analysis of chemical shifts associated with structure not in helical or strand conformation (RCCSstruct-stat). We show that the RCCSmax-ent values are strikingly similar to published RCCSpeptide and RCCSstruct-stat values. By contrast, the RCCSu values differ significantly from both published types of random coil chemical shift values. The differences (RCCSpeptide-RCCSu) for individual residue types show a correlation with known intrinsic conformational propensities. These results suggest that random coil chemical shift values from both prior approaches are biased by conformational preferences. RCCSu values appear to be consistent with the current concept of the 'random coil' as the state in which the geometry of the polypeptide ensemble samples the allowed region of (φ,ψ)-space in the absence of any dominant stabilizing interactions and thus represent an improved basis for the detection of secondary structure. Coupled with the growing database of chemical shifts, this probabilistic approach makes it possible to refine

  6. Production of oxygen-15, nitrogen-13 and carbon-11 and of their low molecular weight derivatives for biomedical applications

    International Nuclear Information System (INIS)

    The production and the medical use of the short-lived radioisotopes of the 3 major elements of the biosphere, 13N, 11C and 15O, require the vicinity of a cyclotron, of radiochemistry laboratories and of a suitably equipped medical unit. The methodological and practical aspects of the routine, high efficiency, production of these gases, with the specifications that result from their medical use, are discussed and described. (author)

  7. Phosphorus-31 and carbon-13 nuclear magnetic resonance studies of glucose and xylose metabolism in Candida tropicalis cell suspensions.

    OpenAIRE

    Lohmeier-Vogel, E M; Hahn-Hägerdal, B.; Vogel, H J

    1995-01-01

    The metabolism of glucose and xylose was studied as a function of oxygenation in suspensions of Candida tropicalis by 31P and 13C nuclear magnetic resonance spectroscopy. Both the rate of carbohydrate metabolism and the cytoplasmic pH were independent of the rate of oxygenation in cells metabolizing glucose. However, these two parameters were markedly dependent on the rate of oxygenation in C. tropicalis cells metabolizing xylose. For example, the cytoplasmic pH in fully oxygenated xylose-met...

  8. Carbon-13 natural abundance signatures of long-chain fatty acids to determinate sediment origin: A case study in northeast Austria

    Science.gov (United States)

    Mabit, Lionel; Gibbs, Max; Meusburger, Katrin; Toloza, Arsenio; Resch, Christian; Klik, Andreas; Swales, Andrew; Alewell, Christine

    2016-04-01

    - Several recently published information from scientific research have highlighted that compound-specific stable isotope (CSSI) signatures of fatty acids (FAs) based on the measurement of carbon-13 natural abundance signatures showed great promises to identify sediment origin. The authors have used this innovative isotopic approach to investigate the sources of sediment in a three hectares Austrian sub-watershed (i.e. Mistelbach). Through a previous study using the Cs-137 technique, Mabit et al. (Geoderma, 2009) reported a local maximum sedimentation rate reaching 20 to 50 t/ha/yr in the lowest part of this watershed. However, this study did not identify the sources. Subsequently, the deposited sediment at its outlet (i.e. the sediment mixture) and representative soil samples from the four main agricultural fields - expected to be the source soils - of the site were investigated. The bulk delta carbon-13 of the samples and two long-chain FAs (i.e. C22:0 and C24:0) allowed the best statistical discrimination. Using two different mixing models (i.e. IsoSource and CSSIAR v1.00) and the organic carbon content of the soil sources and sediment mixture, the contribution of each source has been established. Results suggested that the grassed waterway contributed to at least 50% of the sediment deposited at the watershed outlet. This study, that will require further validation, highlights that CSSI and Cs-137 techniques are complementary as fingerprints and tracers for establishing land sediment redistribution and could provide meaningful information for optimized decision-making by land managers.

  9. Assessment of the effects of dobutamine on myocardial blood flow and oxidative metabolism in normal human subjects using nitrogen-13 ammonia and carbon-11 acetate.

    Science.gov (United States)

    Krivokapich, J; Huang, S C; Schelbert, H R

    1993-06-01

    The dual purposes of this study with positron emission tomography were to measure the effects of dobutamine on myocardial blood flow and oxidative metabolism, and to compare carbon-11 (C-11) acetate versus nitrogen-13 (N-13) ammonia in quantitating flow in normal subjects. Flow was quantitated with N-13 ammonia at rest and at peak dobutamine infusion (40 micrograms/kg/min) in 21 subjects. In 11 subjects, oxidative metabolism was also estimated at rest and peak dobutamine infusion using the clearance rate of C-11 acetate, k mono (min-1). A 2-compartment kinetic model was applied to the early phase of the C-11 acetate data to estimate flow. The rest and peak dobutamine rate-pressure products were 7,318 +/- 1,102 and 19,937 +/- 3,964 beats/min/mm Hg, respectively, and correlated well (r = 0.77) with rest and peak dobutamine flows of 0.77 +/- 0.14 and 2.25 ml/min/g determined using N-13 ammonia as a flow tracer. Rest and dobutamine flows estimated with C-11 acetate were highly correlated with those determined with N-13 ammonia (r = 0.92). k mono increased from 0.05 +/- 0.01 to 0.18 +/- 0.02 min-1, and correlated highly with the increase in flows (r = 0.91) and rate-pressure products (r = 0.94). Thus, the increase in cardiac demand associated with dobutamine is highly correlated with an increase in supply and oxidative metabolism. C-11 acetate is a unique tracer that can be used to image both flow and metabolism simultaneously. PMID:8498380

  10. δ15N, δ13C and radiocarbon in dissolved organic carbon as indicators of environmental change

    International Nuclear Information System (INIS)

    Decomposition, humification, and stabilization of soil organic matter are closely related to the dynamics of dissolved organic matter. Enhanced peat decomposition results in increasing aromatic structures and polycondensation of dissolved organic molecules. Although recent studies support the concept that DOM can serve as an indicator for processes driven by changing environmental processes in soils affecting the C and N cycle (like decomposition and humification) and also permit insight in former conditions some 1000 years ago, it is unknown whether dissolved organic carbon (DOC) and nitrogen (DON) have an equal response to these processes. (author)

  11. Complete assignment of the methionyl carbonyl carbon resonance in switch variant anti-dansyl antibodies labeled with (1- sup 13 C)methionine

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Koichi; Matsunaga, C.; Igarashi, Takako; Kim, Hahyung; Odaka, Asano; Shimada, Ichio; Arata, Yoji (Univ. of Tokyo, Hongo (Japan))

    1991-01-01

    A {sup 13}C NMR study is reported of switch variant anti-dansyl antibodies developed by Dangl et al. who had used the fluorescence-activated cell sorter to select and clone these variants. These switch variant antibodies possess the identical V{sub H}, V{sub L}, and C{sub L} domains in conjunction with different heavy chain constant regions. In the present study, switch variant antibodies of IgG1, IgG2a, and IgG2b subclasses were used along with a short-chain IgG2a antibody, in which the entire C{sub H}1 domain is deleted. The switch variant antibodies were specifically labeled with (1-{sup 13}C)methionine by growing hybridoma cells in serum-free medium. Assignments of all the methionyl carbonyl carbon resonances have been completed by using the intact antibodies along with their fragments and recombined proteins in which either heavy or light chain is labeled. A double labeling method has played a crucial role in the process of the spectral assignments. The strategy used for the assignments has been described in detail. In incorporating {sup 15}N-labeled amino acids into the antibodies for the double labeling, isotope dilution caused a serious problem except in the cases of ({alpha}-{sup 15}N)lysine and ({sup 15}N)threonine, both of which cannot become the substrate of transaminases. It was found that {beta}-chloro-L-alanine is most effective in suppressing the isotope scrambling. So far, spectral assignments by the double labeling method have been possible with {sup 15}N-labeled Ala, His, Ile, Lys, Met, Ser, Thr, Tyr, and Val. On the basis of the results of the present {sup 13}C study, possible use of the assigned carbonyl carbon resonances for the elucidation of the structure-function relationship in the antibody system has been briefly discussed.

  12. Losses of soil organic carbon by converting tropical forest to plantations: Assessment of erosion and decomposition by new δ13C approach

    Science.gov (United States)

    Guillaume, Thomas; Muhammad, Damris; Kuzyakov, Yakov

    2015-04-01

    Indonesia lost more tropical forest than all of Brazil in 2012, mainly driven by the rubber, oil palm and timber industries. Nonetheless, the effects of converting forest to oil palm and rubber plantations on soil organic carbon (SOC) stocks remain unclear. We analyzed SOC losses after lowland rainforest conversion to oil palm, intensive rubber and extensive rubber plantations in Jambi province on Sumatra Island. We developed and applied a new δ13C based approach to assess and separate two processes: 1) erosion and 2) decomposition. Carbon contents in the Ah horizon under oil palm and rubber plantations were strongly reduced: up to 70% and 62%, respectively. The decrease was lower under extensive rubber plantations (41%). The C content in the subsoil was similar in the forest and the plantations. We therefore assumed that a shift to higher δ13C values in the subsoil of the plantations corresponds to the losses of the upper soil layer by erosion. Erosion was estimated by comparing the δ13C profiles in the undisturbed soils under forest with the disturbed soils under plantations. The estimated erosion was the strongest in oil palm (35±8 cm) and rubber (33±10 cm) plantations. The 13C enrichment of SOC used as a proxy of its turnover indicates a decrease of SOC decomposition rate in the Ah horizon under oil palm plantations after forest conversion. SOC availability, measured by microbial respiration rate and Fourier Transformed Infrared Spectroscopy, was lower under oil palm plantations. Despite similar trends in C losses and erosion in intensive plantations, our results indicate that microorganisms in oil palm plantations mineralized mainly the old C stabilized prior to conversion, whereas microorganisms under rubber plantations mineralized the fresh C from the litter, leaving the old C pool mainly untouched. Based on the lack of C input from litter, we expect further losses of SOC under oil palm plantations, which therefore are a less sustainable land

  13. Studies of palaeovegetation changes in the Central Amazon by carbon isotopes (12C, 13C, 14C) of soil organic matter

    International Nuclear Information System (INIS)

    The paper presents carbon isotope data δ13C and 14C on soil organic matter collected along an ecosystem transect in southern Amazon state, north-central Amazon region, that includes three distinct vegetation communities: savannah (Campos de Humaita), a savannah-forest transition and forest (Manaus). The study sites are located along road BR 319. Botanical identification and 13C analysis of modern vegetation in the savannah and forest sites indicate that most of the vegetation is C3 plants, although a few C4 plants are present at Campos de Humaita. The 13C and 14C data for soil organic matter in the Humaita region show that significant vegetation changes have occurred in the past, probably associated with climatic changes. During the early Holocene, forest vegetation extended throughout the study region, including areas occupied today by savannah vegetation. Savannah vegetation expanded at least 2 km into the modern forest ecotone during the middle Holocene, suggesting drier conditions. The last approximately 1000 years appear to indicate a recent expansion of forest vegetation, reflecting a return to a more moist climate. The study illustrates that the transition area between forest and savannah vegetation is quite sensitive to climatic changes, and this region should be the focus of more extensive research related to past climate and vegetation dynamics in the Amazon region. (author)

  14. Carbonation of C–S–H and C–A–S–H samples studied by 13C, 27Al and 29Si MAS NMR spectroscopy

    International Nuclear Information System (INIS)

    Synthesized calcium silicate hydrate (C–S–H) samples with Ca/Si ratios of 0.66, 1.0, and 1.5 have been exposed to atmospheric CO2 at room temperature and high relative humidity and studied after one to 12 weeks. 29Si NMR reveals that the decomposition of C–S–H caused by carbonation involves two steps and that the decomposition rate decreases with increasing Ca/Si ratio. The first step is a gradual decalcification of the C–S–H where calcium is removed from the interlayer and defect sites in the silicate chains until Ca/Si = 0.67 is reached, ideally corresponding to infinite silicate chains. In the seconds step, calcium from the principal layers is consumed, resulting in the final decomposition of the C–S–H and the formation of an amorphous silica phase composed of Q3 and Q4 silicate tetrahedra. The amount of solid carbonates and of carbonate ions in a hydrous environment increases with increasing Ca/Si ratio for the C–S–H, as shown by 13C NMR. For C–A–S–H samples with Ca/Si = 1.0 and 1.5, 27Al NMR demonstrates that all aluminium sites associated with the C–S–H are consumed during the carbonation reactions and incorporated mainly as tetrahedral Al(–OSi)4 units in the amorphous silica phase. A small amount of penta-coordinated Al sites has also been identified in the silica phase

  15. Carbonation of C–S–H and C–A–S–H samples studied by {sup 13}C, {sup 27}Al and {sup 29}Si MAS NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sevelsted, Tine F.; Skibsted, Jørgen, E-mail: jskib@chem.au.dk

    2015-05-15

    Synthesized calcium silicate hydrate (C–S–H) samples with Ca/Si ratios of 0.66, 1.0, and 1.5 have been exposed to atmospheric CO{sub 2} at room temperature and high relative humidity and studied after one to 12 weeks. {sup 29}Si NMR reveals that the decomposition of C–S–H caused by carbonation involves two steps and that the decomposition rate decreases with increasing Ca/Si ratio. The first step is a gradual decalcification of the C–S–H where calcium is removed from the interlayer and defect sites in the silicate chains until Ca/Si = 0.67 is reached, ideally corresponding to infinite silicate chains. In the seconds step, calcium from the principal layers is consumed, resulting in the final decomposition of the C–S–H and the formation of an amorphous silica phase composed of Q{sup 3} and Q{sup 4} silicate tetrahedra. The amount of solid carbonates and of carbonate ions in a hydrous environment increases with increasing Ca/Si ratio for the C–S–H, as shown by {sup 13}C NMR. For C–A–S–H samples with Ca/Si = 1.0 and 1.5, {sup 27}Al NMR demonstrates that all aluminium sites associated with the C–S–H are consumed during the carbonation reactions and incorporated mainly as tetrahedral Al(–OSi){sub 4} units in the amorphous silica phase. A small amount of penta-coordinated Al sites has also been identified in the silica phase.

  16. 13C and 17O NMR binding constant studies of uranyl carbonate complexes in near-neutral aqueous solution. Yucca Mountain Project Milestone Report 3351

    International Nuclear Information System (INIS)

    Valuable structural information, much of it unavailable by other methods, can be obtained about complexes in solution through NMR spectroscopy. From chemical shift and intensity measurements of complexed species, NMR can serve as a species-specific structural probe for molecules in solution and can be used to validate thermodynamic constants used in geochemical modeling. Fourier-transform nuclear magnetic resonance (FT-NMR) spectroscopy has been employed to study the speciation of uranium(VI) ions in aqueous carbonate solutions as a function of pH, ionic strength, carbonate concentration, uranium concentration, and temperature. Carbon-13 and oxygen-17 NMR spectroscopy were used to monitor the fractions, and hence thermodynamic binding constants of two different uranyl species U02(CO3)34- and (UO2)3(CO3)66- in aqueous solution. Synthetic buffer solutions were prepared under the ionic strength conditions used in the NMR studies in order to obtain an accurate measure of the hydrogen ion concentration, and a discussion of pH = -log(aH+) versus p[H] = -log[H+] is provided. It is shown that for quantitative studies, the quantity p[H] needs to be used. Fourteen uranium(VI) binding constants recommended by the OECD NEA literature review were corrected to the ionic strengths employed in the NMR study using specific ion interaction theory (SIT), and the predicted species distributions were compared with the actual species observed by multinuclear NMR. Agreement between observed and predicted stability fields is excellent. This establishes the utility of multinuclear NMR as a species-specific tool for the study of the actinide carbonate complexation constants, and serves as a means for validating the recommendations provided by the OECD NEA

  17. A nitrogen fertilization field study of carbon-13 and nitrogen-15 transfers in ectomycorrhizas of Pinus sabiniana.

    Science.gov (United States)

    Albarracín, María Victoria; Six, Johan; Houlton, Benjamin Z; Bledsoe, Caroline S

    2013-12-01

    Ectomycorrhizal (EM) fungi form relationships with higher plants; plants transfer C to fungi, and fungi transfer nutrients to their host. While evidence indicates that this interaction is largely mutualistic, less is known about how nutrient supply and EM associates may alter C and nutrient exchanges, especially in intact plant-soil-microbe systems in the field. In a dual-labeling experiment with N fertilization, we used C and N stable isotopes to examine in situ transfers in EM pine trees in a Pinus sabiniana woodland in northern California. We added (15)NH4SO2 and (13)CO2 to track (13)C transfer from pine needles to EM roots and (15)N transfer from soil to EM roots and pine needles. Transfers of (13)C and (15)N differed with EM morphotype and with N fertilization. The brown morphotype received the least C per unit of N transferred (5:1); in contrast red and gold morphotypes gained more C and transferred less N (17:1 and 25:1, respectively). N fertilization increased N retention by ectomycorrhizas (EMs) but did not increase N transfer from EMs to pine needles. Therefore N fertilization positively affected both nutrient and C gains by EMs, increasing net C flows and N retention in EMs. Our work on intact and native trees/EM associations thereby extends earlier conclusions based on pot studies with young plants and culturable EM fungi; our results support the concept that EM-host relationships depend on species-level differences as well as responses to soil resources such as N. PMID:23912260

  18. Elucidation of intermediate (mobile) and slow (solidlike) protein motions in bovine lens homogenates by carbon-13 NMR spectroscopy

    International Nuclear Information System (INIS)

    The motional dynamics of lens cytoplasmic proteins present in calf lens homogenates were investigated by two 13C nuclear magnetic resonance (NMR) techniques sensitive to molecular motion to further define the organizational differences between the cortex and nucleus. For the study of intermediate (mobile) protein rotational reorientation motion time scales [rotational correlation time (τ0) range of 1-500 ns], the authors employed 13C off-resonance rotating frame spin-lattice relaxation, whereas for the study of slow (solidlike) motions (τ0 ≥ 10 μs) they used the solid-state NMR techniques of dipolar decoupling and cross-polarization. The frequency dependence of the peptide bond carbonyl off-resonance rotating frame spectral intensity ratio of the lens proteins present in native calf nuclear homogenate at 35 degree C indicates the presence of a polydisperse mobile protein fraction with a τ0,eff (mean) value of 57 ns. Lowering the temperature to 1 degree C, a temperature which produces the cold cataract, results in an overall decrease in τ0,eff to 43 ns, suggesting a selective removal of βH-, LM-, and possibly γs-crystallins from the mobile lens protein population. The presence of solidlike or motionally restricted protein species was established by dipolar decoupling and cross-polarization. Comparison of proton dipolar-decoupled and nondecoupled 13C NMR spectra of native cortical homogenate at 20 degree C indicates the absence of significant contributions from slowly tumbling, motionally restricted species. These studies establish the presence of both mobile and solidlike protein phases in calf lens nuclear homogenate, whereas for the native cortical homogenate, within the detection limits of NMR, the protein phase is mobile, except at low temperature where a small fraction of solidlike protein phase is present

  19. A report on the inter comparison of isotopic analyses by mass spectrometry for the laser enrichment of carbon-13

    International Nuclear Information System (INIS)

    A method has been standardized for the mass spectral analysis of (13C/12C) ratio in the isotopically enriched C2F4 photoproduct obtained by the CO2 laser photolysis of natural CF2HCI sample. For improving the quality of the spectra as well as enchancing the detection level of the product at very low concentrations, a pre-concentration technique has been developed by gas chromatography. Inter comparison of the results for analyses carried out with two different mass spectrometers, viz., a commercial instrument available at the Land PT Division and an indigenously built one by MS and ES, BARC showed a very good agreement. (author)

  20. Non-destructive analysis of the oil composition of soybean seeds by natural abundance carbon-13 nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    The signals of fatty acids in the form of triglycerides were observed in the 13C NMR spectrum of an intact soybean seed. The major fatty acid component composition of triglycerides in a soybean seed, which includes linoleic acid, oleic acid and palmitic acid, was estimated by subtracting the spectra of authentic fatty acids from the spectrum of the intact soybean seeds. The fatty acid compositions of seeds of 11 Japanese soybean cultivars and 5 lines bred at the Asian Vegetable Research and Development Center (AVRDC) were estimated by this rapid (within 1hr for one seed) and nondestructive analytical method. (author)

  1. Priming of Soil Carbon Decomposition in Two Inner Mongolia Grassland Soils following Sheep Dung Addition: A Study Using 13C Natural Abundance Approach

    Science.gov (United States)

    Ma, Xiuzhi; Ambus, Per; Wang, Shiping; Wang, Yanfen; Wang, Chengjie

    2013-01-01

    To investigate the effect of sheep dung on soil carbon (C) sequestration, a 152 days incubation experiment was conducted with soils from two different Inner Mongolian grasslands, i.e. a Leymus chinensis dominated grassland representing the climax community (2.1% organic matter content) and a heavily degraded Artemisia frigida dominated community (1.3% organic matter content). Dung was collected from sheep either fed on L. chinensis (C3 plant with δ13C = −26.8‰; dung δ13C = −26.2‰) or Cleistogenes squarrosa (C4 plant with δ13C = −14.6‰; dung δ13C = −15.7‰). Fresh C3 and C4 sheep dung was mixed with the two grassland soils and incubated under controlled conditions for analysis of 13C-CO2 emissions. Soil samples were taken at days 17, 43, 86, 127 and 152 after sheep dung addition to detect the δ13C signal in soil and dung components. Analysis revealed that 16.9% and 16.6% of the sheep dung C had decomposed, of which 3.5% and 2.8% was sequestrated in the soils of L. chinensis and A. frigida grasslands, respectively, while the remaining decomposed sheep dung was emitted as CO2. The cumulative amounts of C respired from dung treated soils during 152 days were 7–8 times higher than in the un-amended controls. In both grassland soils, ca. 60% of the evolved CO2 originated from the decomposing sheep dung and 40% from the native soil C. Priming effects of soil C decomposition were observed in both soils, i.e. 1.4 g and 1.6 g additional soil C kg−1 dry soil had been emitted as CO2 for the L. chinensis and A. frigida soils, respectively. Hence, the net C losses from L. chinensis and A. frigida soils were 0.6 g and 0.9 g C kg−1 soil, which was 2.6% and 7.0% of the total C in L. chinensis and A. frigida grasslands soils, respectively. Our results suggest that grazing of degraded Inner Mongolian pastures may cause a net soil C loss due to the positive priming effect, thereby accelerating soil deterioration. PMID:24236024

  2. Carbon transfer, partitioning and residence time in the plant-soil system: a comparison of two 13CO2 labelling techniques

    Science.gov (United States)

    Studer, M. S.; Siegwolf, R. T. W.; Abiven, S.

    2014-03-01

    Various 13CO2 labelling approaches exist to trace carbon (C) dynamics in plant-soil systems. However, it is not clear if the different approaches yield the same results. Moreover, there is no consistent way of data analysis to date. In this study we compare with the same experimental setup the two main techniques: pulse and continuous labelling. We evaluate how these techniques perform to estimate the C transfer time, the C partitioning along time and the C residence time in different plant-soil compartments. We used identical plant-soil systems (Populus deltoides × nigra, Cambisol soil) to compare the pulse labelling approach (exposure to 99 atom % 13CO2 for three hours, traced for eight days) with a continuous labelling (exposure to 10 atom % 13CO2, traced for 14 days). The experiments were conducted in climate chambers under controlled environmental conditions. Before label addition and at four successive sampling dates, the plant-soil systems were destructively harvested, separated into leaves, petioles, stems, cuttings, roots and soil and soil microbial biomass was extracted. The soil CO2 efflux was sampled throughout the experiment. To model the C dynamics we used an exponential function to describe the 13C signal decline after pulse labelling. For the evaluation of the 13C distribution during the continuous labelling we applied a logistic function. Pulse labelling is best suited to assess the minimum C transfer time from the leaves to other compartments, while continuous labelling can be used to estimate the mean transfer time through a compartment, including short-term storage pools. The C partitioning between the plant-soil compartments obtained was similar for both techniques, but the time of sampling had a large effect: shortly after labelling the allocation into leaves was overestimated and the soil 13CO2 efflux underestimated. The results of belowground C partitioning were consistent for the two techniques only after eight days of labelling, when the

  3. Changing Rule of Carbon-Enriched Zone and Diffusion Behavior of Carbon in Aging 0Cr6Mn13Ni10MoTi/1Cr5Mo Dissimilar Welded Joints

    Institute of Scientific and Technical Information of China (English)

    Zheng LIU; Ligang WANG; Lai WANG

    2004-01-01

    The microstructures, the changing rule of carbon-enriched zone, the diffusion behaviors of elements C and Cr, and the carbide type of 0Cr6Mn13Ni10MoTi/1Cr5Mo dissimilar welded joints after aging at 500℃ for various times and after long-term service in technical practice were investigated by using the optical microscopy, electron probe microanalysis, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results show that in aging 0Cr6Mn13Ni10MoTi/1Cr5Mo dissimilar welded joints, the main carbides are M3C and a few carbides are M7C3 and M23C6. The M3C carbide decomposition and dissolution with increasing aging time or aging temperature and the anti-diffusion of C and Cr cause the decrease and disappearance of the carbon-enriched zone. The results are different from those of the A302/1Cr5Mo dissimilar welded joints in previous studies.

  4. Analysis of carbon and nitrogen co-metabolism in yeast by ultrahigh-resolution mass spectrometry applying {sup 13}C- and {sup 15}N-labeled substrates simultaneously

    Energy Technology Data Exchange (ETDEWEB)

    Blank, Lars M. [TU Dortmund University, Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, Dortmund (Germany); RWTH Aachen University, Institute of Applied Microbiology - iAMB, Aachen Biology and Biotechnology - ABBt, Aachen (Germany); Desphande, Rahul R. [TU Dortmund University, Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, Dortmund (Germany); Michigan State University, Department of Plant Biology, East Lansing, MI (United States); Schmid, Andreas [TU Dortmund University, Laboratory of Chemical Biotechnology, Department of Biochemical and Chemical Engineering, Dortmund (Germany); Hayen, Heiko [Leibniz-Institut fuer Analytische Wissenschaften-ISAS-e.V, Dortmund (Germany); University of Wuppertal, Department of Food Chemistry, Wuppertal (Germany)

    2012-06-15

    Alternative metabolic pathways inside a cell can be deduced using stable isotopically labeled substrates. One prerequisite is accurate measurement of the labeling pattern of targeted metabolites. Experiments are generally limited to the use of single-element isotopes, mainly {sup 13}C. Here, we demonstrate the application of direct infusion nanospray, ultrahigh-resolution Fourier transform ion cyclotron resonance-mass spectrometry (FTICR-MS) for metabolic studies using differently labeled elemental isotopes simultaneously - i.e., {sup 13}C and {sup 15}N - in amino acids of a total protein hydrolysate. The optimized strategy for the analysis of metabolism by a hybrid linear ion trap-FTICR-MS comprises the collection of multiple adjacent selected ion monitoring scans. By limiting both the width of the mass range and the number of ions entering the ICR cell with automated gain control, sensitive measurements of isotopologue distribution were possible without compromising mass accuracy and isotope intensity mapping. The required mass-resolving power of more than 60,000 is only achievable on a routine basis by FTICR and Orbitrap mass spectrometers. Evaluation of the method was carried out by comparison of the experimental data to the natural isotope abundances of selected amino acids and by comparison to GC/MS results obtained from a labeling experiment with {sup 13}C-labeled glucose. The developed method was used to shed light on the complexity of the yeast Saccharomyces cerevisiae carbon-nitrogen co-metabolism by administering both {sup 13}C-labeled glucose and {sup 15}N-labeled alanine. The results indicate that not only glutamate but also alanine acts as an amino donor during alanine and valine synthesis. Metabolic studies using FTICR-MS can exploit new possibilities by the use of multiple-labeled elemental isotopes. (orig.)

  5. Structure determination of a 2''-O(α-D-glucopyranose) isomaltotriose by proton and carbon-13 NMR

    International Nuclear Information System (INIS)

    The glucosyltransferases from Leuconostoc mesenteroides are known to catalyze the transfer of the D-glucosyl group of sucrose onto sugars, commonly named acceptors. We investigated in the present work the transfer of the glucose moiety of sucrose onto isomaltose acceptor catalyzed by the glucosyltransferases from Leuconostoc mesenteroides. Several oligosaccharides were produced, isolated, fractionated by HPLC and characterized. The primary structure of the tetrasaccharide has been determined as that of 2'' -O-(α-D-glucopyranose) isomaltotriose by n.m.r. spectroscopy, using homo-and heteronuclear, shift correlated, two dimensional and n.o.e. difference experiments. This chemical structure was corrobored by 13C spin lattice relaxation time measurements (T1) indicating that internal units B and C are notably less flexible than A and D termini units, C being the less mobile. (authors). 18 refs., 3 figs., 3 tabs

  6. Organic Carbon Delivery to a High Arctic Watershed over the Late Holocene: Insights from Plant Biomarkers and Compound Specific δ13C and Δ14C Measurements

    Science.gov (United States)

    Schreiner, K. M.; Bianchi, T. S.; Eglinton, T. I.; Allison, M. A.

    2012-12-01

    The Colville River in Alaska is the largest river in North America which has a drainage basin that is exclusively underlain by permafrost, and as such provides a unique signal of historical changes in one of the world's most vulnerable areas to climate changes. Additionally, the Colville flows into Simpson's Lagoon, an area of the Alaskan Beaufort coast protected by a barrier island chain, lessening the impacts of Arctic storms and ice grounding on sediment mixing. Cores collected from the Colville river delta in August of 2010 were found to be composed of muddy, organic-rich, well-laminated sediments. The 2.5 to 3 meter length of each core spans about one to two thousand years of Holocene history, including the entire Anthropocene and much of the late Holocene. Two cores were sampled for this data set - one from close to the river mouth, and one from farther east in Simpson's Lagoon. Samples were taken every 2 cm for the entire length of both cores. In order to determine how the amount of terrestrial organic matter input changed over the Holocene, bulk analyses including percent organic carbon, percent nitrogen, and stable carbon isotopic analysis were performed, and biomarkers including lignin-phenols and fatty acids were measured. It was shown that lignin-phenol input is positively correlated with Alaskan North Slope temperature reconstructions. To determine whether the source of this increased terrestrial organic matter input was from fresh vegetation (for example, shrub encroachment onto tundra areas) or aged soil organic matter (potentially due to permafrost thawing and breakdown), selected samples were analyzed for compound-specific δ13C and Δ14C of fatty acids and lignin-phenols. These analyses show significant changes in carbon storage and in terrestrial carbon delivery to the Lagoon over time. These results represent the first fine-scale organic biomarker study in a high Arctic North American Lagoon, and have many implications for the future of carbon

  7. Carbon flux analysis by 13C nuclear magnetic resonance to determine the effect of CO2 on anaerobic succinate production by Corynebacterium glutamicum.

    Science.gov (United States)

    Radoš, Dušica; Turner, David L; Fonseca, Luís L; Carvalho, Ana Lúcia; Blombach, Bastian; Eikmanns, Bernhard J; Neves, Ana Rute; Santos, Helena

    2014-05-01

    Wild-type Corynebacterium glutamicum produces a mixture of lactic, succinic, and acetic acids from glucose under oxygen deprivation. We investigated the effect of CO2 on the production of organic acids in a two-stage process: cells were grown aerobically in glucose, and subsequently, organic acid production by nongrowing cells was studied under anaerobic conditions. The presence of CO2 caused up to a 3-fold increase in the succinate yield (1 mol per mol of glucose) and about 2-fold increase in acetate, both at the expense of l-lactate production; moreover, dihydroxyacetone formation was abolished. The redistribution of carbon fluxes in response to CO2 was estimated by using (13)C-labeled glucose and (13)C nuclear magnetic resonance (NMR) analysis of the labeling patterns in end products. The flux analysis showed that 97% of succinate was produced via the reductive part of the tricarboxylic acid cycle, with the low activity of the oxidative branch being sufficient to provide the reducing equivalents needed for the redox balance. The flux via the pentose phosphate pathway was low (~5%) regardless of the presence or absence of CO2. Moreover, there was significant channeling of carbon to storage compounds (glycogen and trehalose) and concomitant catabolism of these reserves. The intracellular and extracellular pools of lactate and succinate were measured by in vivo NMR, and the stoichiometry (H(+):organic acid) of the respective exporters was calculated. This study shows that it is feasible to take advantage of natural cellular regulation mechanisms to obtain high yields of succinate with C. glutamicum without genetic manipulation. PMID:24610842

  8. Bringing hope to marginal and harsh environments: The use of carbon-13 isotope discrimination technique to evaluate and select food crops adapted to water and salt stress environments

    International Nuclear Information System (INIS)

    Many countries have weather patterns and soil characteristics that place major constraints on food production systems over large tracts of land. Thus a major challenge for making better use of these marginal lands is not only to select appropriate crops but also to evaluate and optimize their adaptability and crop productivity under extreme climatic conditions (high temperatures and low rainfall) or where soils suffer from salinity, acidity or low plant nutrient status. The carbon isotope discrimination technique (using the ratios of different carbon isotopes [12C/13C] in plants) commonly referred to as CID, has been proposed as a possible selection criterion for greater water use efficiency in breeding programmes for water limited and salt stress environments because it provides an integrative assessment of genotypic variation in leaf transpiration efficiency. Although the relationship between CID and water and/or salt stress have been well studied and documented for many crop plants, few studies have looked at the combined effects of salt, water and nutrient stresses on the potential use of this technique to select and evaluate crop plants adapted to harsh environments

  9. Aircraft observation of carbon dioxide at 8-13 km altitude over the western Pacific from 1993 to 1999

    Energy Technology Data Exchange (ETDEWEB)

    Matsueda, H.; Inoue, H.Y.; Ishii, M. [Meteorological Research Inst., Ibaraki-ken (Japan). Geochemical Research Dept.

    2002-01-01

    The spatial and temporal variations of atmospheric CO{sub 2} at 8-13 km from April 1993 to April 1999 were observed by measuring CO{sub 2} mixing ratios in samples collected biweekly from a commercial airliner between Australia and Japan. The CO{sub 2} growth rate showed a considerable inter annual variation, with a maximum of about 3 ppm/yr during late 1997. This variation is related to the EI Nino/Southern Oscillation (ENSO) events. A year-to-year change related to the ENSO events was also found in the latitudinal distribution pattern of the CO{sub 2} annual mean between 30 deg N and 30 deg S. The averaged CO{sub 2} seasonal cycle in the Northern Hemisphere gradually decayed toward the equator, and a relatively complicated variation with a double seasonal maximum appeared in the Southern Hemisphere. A significant yearly change of the seasonal cycle pattern was observed in the Southern Hemisphere. The impact of a tropical biomass-burning injection on the upper tropospheric CO{sub 2} was estimated on the basis of the CO data from the same airliner observation.

  10. Kinetics of absorption of carbon dioxide into aqueous solutions of 2-amino-2-hydroxymethyl-1,3-propanediol

    Energy Technology Data Exchange (ETDEWEB)

    Francis Bougie; Maria C. Iliuta [Laval University, Quebec, PQ (Canada). Chemical Engineering Department

    2009-01-15

    In this work the kinetics of the reaction between CO{sub 2} and a sterically hindered alkanolamine, 2-amino-2-hydroxymethyl-1,3-propanediol (AHPD) were determined at temperatures of 303.15, 313.15 and 323.15 K in a wetted wall column contactor. The AHPD concentration in the aqueous solutions was varied in the range 0.5-2.4 kmol m{sup -3}. The ratio of the diffusivity and Henry's law constant for CO{sub 2} in solutions was estimated by applying the N{sub 2}O analogy and the Higbie penetration theory, using the physical absorption data of CO{sub 2} and N{sub 2}O in water and of N{sub 2}O in amine solutions. Based on the pseudo-first-order for the absorption of CO{sub 2}, the overall pseudo-first-order rate constants were determined from the kinetics measurements. By considering the zwitterion mechanism for the reaction of CO{sub 2} with AHPD, the zwitterion deprotonation and second-order rate constants were calculated. The second-order rate constant, k{sub 2}, was found to be 285, 524, and 1067 m{sup 3} kmol{sup -1} s{sup -1} at 303.15, 313.15, and 323.15 K, respectively.

  11. Relationship between Yield, Carbon Isotope Discrimination (Δ13C) and Water Use Efficiency of Durum Wheat in the Syrian Arab Republic. 3. Simulation Modelling

    International Nuclear Information System (INIS)

    Six durum wheat genotypes were grown at Tel Hadya during the three seasons 2004-2005, 2005-2006 and 2006-2007, and the data were used to calibrate and validate the simulation model SIMWASER. Simulated and measured soil water status and yield production showed very good conformity, and therefore SIMWASER was able to reproduce the water balance of the site in a realistic manner, as well as yield production throughout the season. The validated model was run for the period between 1980 and 2007 for the Tel Hadya site using daily weather data. Also, different genetic scenarios were used regarding different transpiration values. Carbon isotope discrimination (Δ13C) was used as a closely-related surrogate for transpiration at the plant level. The simulated yields showed weak relationships with measured rainfall. However, closer relationships (higher R2) were found between simulated yield and plant transpiration. Moreover, when years were grouped according to rainfall, dry years (rainfall 175 mm), stronger relationships were evident between simulated yield and measured rainfall. The dry years produced much higher yields per unit of rainfall (rainfall use efficiency) compared with the wetter years, ranging between 13 and 90 kg ha-1 mm-1 for the wet and dry years, respectively. The high Δ cultivars transpired more water, had higher yields and therefore had higher water use efficiencies compared with low Δ cultivars. (author)

  12. Traceability of animal byproducts in quail (Coturnix coturnix japonica tissues using carbon (13C/12C and nitrogen (15N/14N stable isotopes

    Directory of Open Access Journals (Sweden)

    C Móri

    2007-12-01

    Full Text Available Consistent information on meat products consumed by the public is essential. The technique of stable isotopes is a powerful tool to recover consumers' confidence, as it allows the detection of animal byproduct residues in poultry meat, particularly in quail meat. This study aimed at checking the presence of poultry byproduct mixtures in quail diets by applying the technique of carbon (13C/12C and nitrogen (15N/14N stable isotopes in quail breast muscle, keel, and tibia. Sixty four one-day-old male quails were obtained from a commercial farm. Birds were housed in an experimental house from one to 42 days of age, and were randomly distributed into 8 experimental treatments, and fed diets containing poultry offal meal (POM, bovine meat and bone meal (MBM or poultry feather meal (PFM, or their mixtures. Four birds per treatment were slaughtered at 42 days of age, and breast (Pectoralis major, keel, and tibia were collected for analyses. The inclusion of animal byproducts in quail diets was detected by 13C e 15N analyses in the tissues of the birds; however, it was not possible to specify which byproducts were used. It was concluded that quail meat can be certified by the technique of stable isotopes.

  13. Enhancing mechanical properties of thermoplastic polyurethane elastomers with 1,3-trimethylene carbonate, epsilon-caprolactone and L-lactide copolymers via soft segment crystallization

    Directory of Open Access Journals (Sweden)

    2011-10-01

    Full Text Available Multiblock thermoplastic polyurethane elastomers based on random and triblock copolymers were synthesized and studied. Dihydroxyl-terminated random copolymers were prepared by ring opening copolymerization of ε-caprolactone (CL and 1,3-trimethylene carbonate (TMC. The triblock copolymers were synthesized by using these random copolymers as macro-initiator for the L-lactide (L-LA blocks. These random and triblock copolymers were further reacted with 1,6-hexamethylene diisocyanate (HMDI and chain extended by 1,4-butanediol (BDO. The polymer structure and chemical composition were characterized by 1H NMR 13C NMR and SEC. Their thermal and mechanical properties were studied by using DSC and Instron microtester. Multiblock polyurethanes based on random PCL-co-PTMC copolymers showed strain recovery improvement with increasing PCL content. However, these polyurethanes were unable to sustain deformation at body temperature due to the melting of PCL crystals and low hard segments content. With the presence of crystallizable PLLA blocks, mechanical properties were improved at body temperature without compromising their good strain recovery.

  14. Pan-Arctic concentrations of mercury and stable isotope ratios of carbon (δ(13)C) and nitrogen (δ(15)N) in marine zooplankton.

    Science.gov (United States)

    Pomerleau, Corinne; Stern, Gary A; Pućko, Monika; Foster, Karen L; Macdonald, Robie W; Fortier, Louis

    2016-05-01

    Zooplankton play a central role in marine food webs, dictating the quantity and quality of energy available to upper trophic levels. They act as "keystone" species in transfer of mercury (Hg) up through the marine food chain. Here, we present the first Pan-Arctic overview of total and monomethylmercury concentrations (THg and MMHg) and stable isotope ratios of carbon (δ(13)C) and nitrogen (δ(15)N) in selected zooplankton species by assembling data collected between 1998 and 2012 from six arctic regions (Laptev Sea, Chukchi Sea, southeastern Beaufort Sea, Canadian Arctic Archipelago, Hudson Bay and northern Baffin Bay). MMHg concentrations in Calanus spp., Themisto spp. and Paraeuchaeta spp. were found to increase with higher δ(15)N and lower δ(13)C. The southern Beaufort Sea exhibited both the highest THg and MMHg concentrations. Biomagnification of MMHg between Calanus spp. and two of its known predators, Themisto spp. and Paraeuchaeta spp., was greatest in the southern Beaufort Sea. Our results show large geographical variations in Hg concentrations and isotopic signatures for individual species related to regional ecosystem features, such as varying water masses and freshwater inputs, and highlight the increased exposure to Hg in the marine food chain of the southern Beaufort Sea. PMID:26874765

  15. Carbon-rich presolar grains from massive stars. Subsolar 12C/13C and 14N/15N ratios and the mystery of 15N

    CERN Document Server

    Pignatari, M; Hoppe, P; Jordan, C J; Gibson, B K; Trappitsch, R; Herwig, F; Fryer, C; Hirschi, R; Timmes, F X

    2015-01-01

    Carbon-rich grains with isotopic anomalies compared to the Sun are found in primitive meteorites. They were made by stars, and carry the original stellar nucleosynthesis signature. Silicon carbide grains of Type X and C, and low-density graphites condensed in the ejecta of core-collapse supernovae. We present a new set of models for the explosive He shell and compare them with the grains showing 12C/13C and 14N/15N ratios lower than solar. In the stellar progenitor H was ingested into the He shell and not fully destroyed before the explosion. Different explosion energies and H concentrations are considered. If the SN shock hits the He-shell region with some H still present, the models can reproduce the C and N isotopic signatures in C-rich grains. Hot-CNO cycle isotopic signatures are obtained, including a large production of 13C and 15N. The short-lived radionuclides 22Na and 26Al are increased by orders of magnitude. The production of radiogenic 22Ne from the decay of 22Na in the He shell might solve the pu...

  16. Transport, compartmentation, and metabolism of homoserine in higher plant cells. Carbon-13- and phosphorus-31-nuclear magnetic resonance studies

    International Nuclear Information System (INIS)

    The transport, compartmentation, and metabolism of homoserine was characterized in two strains of meristematic higher plant cells, the dicotyledonous sycamore (Acer pseudoplatanus) and the monocotyledonous weed Echinochloa colonum. Homoserine is an intermediate in the synthesis of the aspartate-derived amino acids methionine, threonine (Thr), and isoleucine. Using 13C-nuclear magnetic resonance, we showed that homoserine actively entered the cells via a high-affinity proton-symport carrier (K(m) approximately 50-60 micromolar) at the maximum rate of 8 +/- 0.5 micromol h-1 g-1 cell wet weight, and in competition with serine or Thr. We could visualize the compartmentation of homoserine, and observed that it accumulated at a concentration 4 to 5 times higher in the cytoplasm than in the large vacuolar compartment. 31P-nuclear magnetic resonance permitted us to analyze the phosphorylation of homoserine. When sycamore cells were incubated with 100 micromolar homoserine, phosphohomoserine steadily accumulated in the cytoplasmic compartment over 24 h at the constant rate of 0.7 micromol h-1 g-1 cell wet weight, indicating that homoserine kinase was not inhibited in vivo by its product, phosphohomoserine. The rate of metabolism of phosphohomoserine was much lower (0.06 micromol h-1 g-1 cell wet weight) and essentially sustained Thr accumulation. Similarly, homoserine was actively incorporated by E. colonum cells. However, in contrast to what was seen in sycamore cells, large accumulations of Thr were observed, whereas the intracellular concentration of homoserine remained low, and phosphohomoserine did not accumulate. These differences with sycamore cells were attributed to the presence of a higher Thr synthase activity in this strain of monocot cells

  17. Carbon-13 discrimination as a criterion for identifying high water use efficiency wheat cultivars under water deficit conditions

    International Nuclear Information System (INIS)

    During four consecutive years, 20 durum wheat (Triticum durum Desf) and bread wheat (Triticum aestrivum L.) cultivars were grown under rain-fed conditions and supplementary irrigation with the objective of assessing the possibility of using 13C discrimination Δ as a criterion to screen for wheat cultivars that produce high yields and have a better water use efficiency under water deficit conditions. In all four growing season, both treatments were subjected to some water stress which was higher under rain-fed conditions and varied according to the intensity and time of rainfall. During the first growing season, and despite small differences between the two treatments in terms of the amounts of water used, the grain and straw yields as well as Δ were significantly higher in the treatment which received an irrigation at installation than in the one without irrigation. There was substantial genotypic variation in Δ. When both treatments were considered, the total above ground dry matter yield and grain yield were positively correlated with Δ although the correlation coefficient of grain yield versus Δ was not high (**). The data suggest that while a high Δ value may be used as a criterion for selection of cultivars of wheat with potential for high yield and high water use efficiency in wheat under field conditions, caution must be exercised in the selection process as the size of the canopy and the changes in environmental factors mainly soil water content, can result in changes in Δ and the yield of a cultivar. However, Δ of a genotype can also provide valuable information with respect to plant parameters responsible for the control of Δ and this information can be usefully employed in breeding programmes aimed at developing wheat cultivars high in yield and high in water use efficiency, and suitable for cultivation in arid and semi-arid regions of the tropics and sub-tropics. 11 refs, 2 figs, 2 tabs

  18. Structural effects in solvolytic reactions; carbon-13 NMR studies of carbocations†: Effect of increasing electron demand on the carbon-13 NMR shifts in substituted tert-cumyl and 1-aryl-1-cyclopentyl carbocations—correlation of the data by a new set of substituent constants, σC+*†

    OpenAIRE

    Brown, Herbert C.; Kelly, David P.; Periasamy, Mariappan

    1980-01-01

    The cationic carbon substituent chemical shifts (ΔδC+) for nine representative meta-substituted tert-cumyl carbocations are correlated satisfactorily by the σm+ substituent constants (slope ρ+ = -18.18, correlation coefficient r = 0.990). However, the substituent chemical shifts (ΔδC+) for the corresponding para derivatives are not correlated by the σp+ substituent constants. The possibility of developing a set of substituent constants capable of correlating such 13C NMR shifts was examined. ...

  19. The Contribution of the Long-term Carbon Pool to Nighttime Foliage Respiration as Revealed by a Year-long C-13 Labeling Experiment

    Science.gov (United States)

    Smith, M.; Mortazavi, B.; Chanton, J.

    2005-12-01

    Slash pine (Pinus elliottii) saplings were placed in a CO2 enrichment (~500 ppm above ambient) facility for an entire year, starting in June of 2004. The CO2 used for the enrichment, with an isotopic signature of -48‰, allowed us to track the fate of the labeled photosynthate during nighttime respiration experiments once the saplings were removed from the enrichment facility. A set of saplings subject to similar environmental conditions, but not subject to CO2 enrichment, served as controls. Nighttime respiration experiments for the labeled saplings were measured by two methods. The first procedure consisted in determining the isotopic signature of nighttime integrated (sunset to sunrise) foliage respired CO2, while the second procedure consisted in determining the pre-dawn signal. The nighttime integrated signal was determined by enclosing the entire foliage of four labeled saplings in a non-destructive manner in a 300-liter airtight chamber. Initial and final samples were collected at sunset and sunrise for CO2 concentration and 13C determination and a mass balance equation was used to determine the 13C of respired CO2. In the second procedure foliage from four labeled saplings were collected just prior to dawn and placed in a leaf-chamber. Sequential CO2 samples evolved in darkness over a 15 min period were collected for CO2 concentration and 13C determination from which a Keeling plot was constructed to determine the isotopic signature of foliage respired CO2. The isotopic signature of pre-dawn foliage respired CO2 for the control plants was also determined with an identical leaf-chamber system. Immediately after removal from the enrichment facility, the 13C of foliage respired CO2 had a pre-dawn signature of -40.2‰ and a nighttime integrated signal of -44.1‰, while the control plants had a dCf value of -25.8‰ signature. Monitoring of dCf during a 35-day period revealed a non-linear approach in dCf of the labeled plants towards the control dCf values

  20. Combined δ11B, δ13C, and δ18O analyses of coccolithophore calcite constrains the response of coccolith vesicle carbonate chemistry to CO2-induced ocean acidification

    Science.gov (United States)

    Liu, Yi-Wei; Tripati, Robert; Aciego, Sarah; Gilmore, Rosaleen; Ries, Justin

    2016-04-01

    Coccolithophorid algae play a central role in the biological carbon pump, oceanic carbon sequestration, and in marine food webs. It is therefore important to understand the potential impacts of CO2-induced ocean acidification on these organisms. Differences in the regulation of carbonate chemistry, pH, and carbon sources of the intracellular compartments where coccolith formation occurs may underlie the diverse calcification and growth responses to acidified seawater observed in prior experiments. Here we measured stable isotopes of boron (δ11B), carbon13C) and oxygen (δ18O) within coccolith calcite, and δ13C of algal tissue to constrain carbonate system parameters in two strains of Pleurochrysis carterae (P. carterae). The two strains were cultured under variable pCO2, with water temperature, salinity, dissolved inorganic carbon (DIC), and alkalinity monitored. Notably, PIC, POC, and PIC/POC ratio did not vary across treatments, indicating that P. carterae is able to calcify and photosynthesize at relatively constant rates irrespective of pCO2 treatment. The δ11B data indicate that mean pH at the site of coccolith formation did not vary significantly in response to elevated CO2. These results suggest that P. carterae regulates calcifying vesicle pH, even amidst changes in external seawater pH. Furthermore, δ13C and δ18O data suggest that P. carterae may utilize carbon from a single internal DIC pool for both calcification and photosynthesis, and that a greater proportion of dissolved CO2 relative to HCO3‑ enters the internal DIC pool under acidified conditions. These results suggest that P. carterae is able to calcifyand photosynthesize at relatively constant rates across pCO2 treatments by maintaining pH homeostasis at their site of calcification and utilizing a greater proportion of aqueous CO2.

  1. Partitioning of carbon sources among functional pools to investigate short-term priming effects of biochar in soil: A (13)C study.

    Science.gov (United States)

    Kerré, Bart; Hernandez-Soriano, Maria C; Smolders, Erik

    2016-03-15

    Biochar sequesters carbon (C) in soils because of its prolonged residence time, ranging from several years to millennia. In addition, biochar can promote indirect C-sequestration by increasing crop yield while, potentially, reducing C-mineralization. This laboratory study was set up to evaluate effects of biochar on C-mineralization with due attention to source appointment by using (13)C isotope signatures. An arable soil (S) (7.9g organic C, OCkg(-1)) was amended (single dose of 10gkg(-1) soil) with dried, grinded maize stover (leaves and stalks), either natural (R) or (13)C enriched (R*), and/or biochar (B/B*) prepared from the maize stover residues (450°C). Accordingly, seven different combinations were set up (S, SR, SB, SR*, SB*, SRB*, SR*B) to trace the source of C in CO2 (180days), dissolved organic-C (115days) and OC in soil aggregate fractions (90days). The application of biochar to soil reduced the mineralization of native soil organic C but the effect on maize stover-C mineralization was not consistent. Biochar application decreased the mineralization of the non-enriched maize stover after 90days, this being consistent with a significant reduction of dissolved organic C concentration from 45 to 18mgL(-1). However, no significant effect was observed for the enriched maize stover, presumably due to differences between the natural and enriched materials. The combined addition of biochar and enriched maize stover significantly increased (twofold) the presence of native soil organic C or maize derived C in the free microaggregate fraction relative to soil added only with stover. Although consistent effects among C sources and biochar materials remains elusive, our outcomes indicate that some biochar products can reduce mineralization and solubilization of other sources of C while promoting their physical protection in soil particles. PMID:26780129

  2. High sensitivity CW-Cavity Ring Down Spectroscopy of five 13CO2 isotopologues of carbon dioxide in the 1.26-1.44 μm region (I): Line positions

    International Nuclear Information System (INIS)

    The absorption spectrum of highly enriched 13C carbon dioxide has been investigated by CW-Cavity Ring Down Spectroscopy with a setup based on fibered distributed feedback (DFB) laser diodes. By using a series of 30 DFB lasers, the CO2 spectrum was recorded in the 7029-7917 cm-1 region with a typical sensitivity of 3x10-10 cm-1. The uncertainty on the determined line positions is on the order of 8x10-4 cm-1. More than 3800 transitions with intensities as low as 1x10-29 cm/molecule were detected and assigned to the 13C16O2, 16O13C17O, 16O13C18O, 17O13C18O and 13C18O2 isotopologues. For comparison, only 104 line positions of 13C16O2 were previously reported in the literature in the considered region. The band-by-band analysis has led to the determination of the rovibrational parameters of a total of 83 bands including 56 bands of the 13C16O2 species. The measured line positions of 13C16O2 and 16O13C18O were found in good agreement with the predictions of the respective effective Hamiltonian (EH) models but the agreement degrades for the minor isotopologues. Several cases of resonance interactions were found and discussed. In the 20033-10002 band of 13C16O2, an anharmonic resonance interaction leads to deviations on the order of 0.05 cm-1 compared to the EH predictions. The existence of interpolyad interactions affecting the non-symmetric isotopologues of carbon dioxide is confirmed by the observation of two occurrences in 16O13C17O and 16O13C18O. The obtained results improve significantly the knowledge of the spectroscopy of the 13C isotopologues of carbon dioxide. They will be valuable to refine the sets of effective Hamiltonian parameters used to generate the CDSD database.

  3. The multiPrep - a new on line system for combined isotopic analysis of deuterium and 18O of water as well as 13C and 18O in individual carbonate samples

    International Nuclear Information System (INIS)

    Classical dual inlet IRMS techniques for the measurement of 18O in water, deuterium in water and 13C and 18O in carbonates have, until now involved the use of analysis dedicated on-line preparation systems or a mix of offline preparation followed by automated analysis

  4. In situ 13CO2 pulse labelling of field-grown eucalypt trees revealed the effects of potassium nutrition and throughfall exclusion on phloem transport of photosynthetic carbon.

    Science.gov (United States)

    Epron, Daniel; Cabral, Osvaldo Machado Rodrigues; Laclau, Jean-Paul; Dannoura, Masako; Packer, Ana Paula; Plain, Caroline; Battie-Laclau, Patricia; Moreira, Marcelo Zacharias; Trivelin, Paulo Cesar Ocheuze; Bouillet, Jean-Pierre; Gérant, Dominique; Nouvellon, Yann

    2016-01-01

    Potassium (K) is an important limiting factor of tree growth, but little is known of the effects of K supply on the long-distance transport of photosynthetic carbon (C) in the phloem and of the interaction between K fertilization and drought. We pulse-labelled 2-year-old Eucalyptus grandis L. trees grown in a field trial combining K fertilization (+K and -K) and throughfall exclusion (+W and -W), and we estimated the velocity of C transfer by comparing time lags between the uptake of (13)CO2 and its recovery in trunk CO2 efflux recorded at different heights. We also analysed the dynamics of the labelled photosynthates recovered in the foliage and in the phloem sap (inner bark extract). The mean residence time of labelled C in the foliage was short (21-31 h). The time series of (13)C in excess in the foliage was affected by the level of fertilization, whereas the effect of throughfall exclusion was not significant. The velocity of C transfer in the trunk (0.20-0.82 m h(-1)) was twice as high in +K trees than in -K trees, with no significant effect of throughfall exclusion except for one +K -W tree labelled in the middle of the drought season that was exposed to a more pronounced water stress (midday leaf water potential of -2.2 MPa). Our results suggest that besides reductions in photosynthetic C supply and in C demand by sink organs, the lower velocity under K deficiency is due to a lower cross-sectional area of the sieve tubes, whereas an increase in phloem sap viscosity is more likely limiting phloem transport under drought. In all treatments, 10 times less (13)C was recovered in inner bark extracts at the bottom of the trunk when compared with the base of the crown, suggesting that a large part of the labelled assimilates has been exported out of the phloem and replaced by unlabelled C. This supports the 'leakage-retrieval mechanism' that may play a role in maintaining the pressure gradient between source and sink organs required to sustain high

  5. Application of a methane carbon isotope analyzer for the investigation of δ13C of methane emission measured by the automatic chamber method in an Arctic Tundra

    Science.gov (United States)

    Mastepanov, Mikhail; Christensen, Torben

    2014-05-01

    Methane emissions have been monitored by an automatic chamber method in Zackenberg valley, NE Greenland, since 2006 as a part of Greenland Ecosystem Monitoring (GEM) program. During most of the seasons the measurements were carried out from the time of snow melt (June-July) until freezing of the active layer (October-November). Several years of data, obtained by the same method, instrumentation and at exactly the same site, provided a unique opportunity for the analysis of interannual methane flux patterns and factors affecting their temporal variability. The start of the growing season emissions was found to be closely related to a date of snow melt at the site. Despite a large between year variability of this date (sometimes more than a month), methane emission started within a few days after, and was increasing for the next about 30 days. After this peak of emission, it slowly decreased and stayed more or less constant or slightly decreasing during the rest of the growing season (Mastepanov et al., Biogeosciences, 2013). During the soil freezing, a second peak of methane emission was found (Mastepanov et al., Nature, 2008); its amplitude varied a lot between the years, from almost undetectable to comparable with total growing season emissions. Analysis of the multiyear emission patterns (Mastepanov et al., Biogeosciences, 2013) led to hypotheses of different sources for the spring, summer and autumn methane emissions, and multiyear cycles of accumulation and release of these components to the atmosphere. For the further investigation of this it was decided to complement the monitoring system with a methane carbon isotope analyzer (Los Gatos Research, USA). The instrument was installed during 2013 field season and was successfully operating until the end of the measurement campaign (27 October). Detecting both 12C-CH4 and 13C-CH4 concentrations in real time (0.5 Hz) during automatic chamber closure (15 min), the instrument was providing data for determination of

  6. In vivo degradation of copolymers prepared from L-lactide, 1,3-trimethylene carbonate and glycolide as coronary stent materials.

    Science.gov (United States)

    Yuan, Yuan; Jin, Xiaoyun; Fan, Zhongyong; Li, Suming; Lu, Zhiqian

    2015-03-01

    A series of high molecular weight polymers were prepared by ring opening polymerization of L-lactide (L-LA), 1,3-trimethylene carbonate (TMC) and glycolide using stannous octoate as catalyst. The resulting polymers were characterized by gel permeation chromatography, (1)H nuclear magnetic resonance, differential scanning calorimeter and tensile tests. All the polymers present high molecular weights. Compared with PLLA and PTLA copolymers, the terpolymers exhibit interesting properties such as improved toughness and lowered crystallinity with only slightly reduced mechanical strength. In vivo degradation was performed by subcutaneous implantation in rats to evaluate the potential of the copolymers as bioresorbable coronary stent material. The results show that all the polymers conserved to a large extent their mechanical properties during the first 90 days, except the strain at break which exhibited a strong decrease. Meanwhile, significant molecular weight decrease and weight loss are detected in the case of terpolymers. Therefore, the PTLGA terpolymers present a good potential for the development of totally bioresorbable coronary stents. PMID:25716020

  7. Modification of Carrier Gas Stream to Improve 13C/12C Isotopic Accuracy in Cavity Ring-Down Spectroscopy-Based Measurements of Low-Concentration Dissolved Carbon Samples

    Science.gov (United States)

    Conaway, C. H.; Morkner, P.; Thomas, B.; Saad, N.

    2013-12-01

    Determining isotopic composition of dissolved organic and inorganic carbon in natural waters is of critical importance to a broad set of scientific objectives. The routine analysis of these sample types can be expensive and in the past has been limited predominantly to laboratories capable of high-precision isotope ratio mass spectrometric analysis. More recently, cavity ring-down spectroscopy (CRDS) has provided an alternative instrumental means for characterizing these samples. One challenge with these types of is that the CRDS can show a non-linear response in d13C at low carbon concentrations (<0.5 mM). Here we present a new approach using a modification of a total organic carbon-cavity ring-down spectroscopy (TOC-CRDS) continuous flow system by adding a background stream of carbon dioxide of known isotopic composition to the CRDS analytical train. The isotopic carbon values generated by the CRDS are then corrected using a two-component isotopic mixing model. This modification is useful in reducing bias towards lighter carbon isotopic values when measuring samples with low carbon concentration, such as natural waters with either dissolved organic or inorganic carbon concentrations of less than 0.5 mM, and does not introduce substantial bias for higher concentration samples.

  8. Biomarker and carbon isotope constraints (δ13C, Δ14C) on sources and cycling of particulate organic matter discharged by large Siberian rivers draining permafrost areas

    International Nuclear Information System (INIS)

    Circumpolar permafrost soils store about half of the global soil organic carbon pool. These huge amounts of organic matter (OM) could accumulate due to low temperatures and water saturated soil conditions over the course of millennia. Currently most of this OM remains frozen and therefore does not take part in the active carbon cycle, making permafrost soils a globally important carbon sink. Over the last decades mean annual air temperatures in the Arctic increased stronger than the global mean and this trend is projected to continue. As a result the permafrost carbon pool is under climate pressure possibly creating a positive climate feedback due to the thaw-induced release of greenhouse gases to the atmosphere. Arctic warming will lead to increased annual permafrost thaw depths and Arctic river runoff likely resulting in enhanced mobilization and export of old, previously frozen soil-derived OM. Consequently, the great arctic rivers play an important role in global biogeochemical cycles by connecting the large permafrost carbon pool of their hinterlands with the arctic shelf seas and the Arctic Ocean. The first part of this thesis deals with particulate organic matter (POM) from the Lena Delta and adjacent Buor Khaya Bay. The Lena River in central Siberia is one of the major pathways translocating terrestrial OM from its southernmost reaches near Lake Baikal to the coastal zone of the Laptev Sea. The permafrost soils from the Lena catchment area store huge amounts of pre-aged OM, which is expected to be remobilized due to climate warming. To characterize the composition and vegetation sources of OM discharged by the Lena River, the lignin phenol and carbon isotopic composition (δ13C and Δ14C) in total suspended matter (TSM) from surface waters, surface sediments from the Buor Khaya Bay along with soils from the Lena Delta's first (Holocene) and third terraces (Pleistocene ice complex) were analyzed. The lignin compositions of these samples are consistent

  9. The synthesis of [14C]-3S,4R-4-(4-fluorophenyl)-3-(3,4-methylenedioxyphenoxymethyl) piperidine hydrochloride (BRL 29060A), and mechanistic studies using carbon-13 labelling

    International Nuclear Information System (INIS)

    Paroxetine, BRL 29060A has been labelled with both carbon-14 and carbon-13. Hydroxymethylation of 4-(4-fluorophenyl)-1-methyl-1,2,5,6-tetrahydropyridine, using [14C]formaldehyde, produced an enantiomeric mixture of products which was taken without separation through a multistage sequence. Resolution of the mixture of stereoisomers at the penultimate step gave [14C]BRL 29060A with the required configuration. The overall radiochemical yield was 8%. At some stage in this process, as shown by C-13 labelling studies, scrambling of the label took place to give BRL 29060A with the majority of the label in the C-2 position of the piperidine ring and the remainder at the expected 7-methylene position. Further investigations of this route using carbon-13 as the label are described. When sesamol, (3,4-methylenedioxyphenol) was reacted with the O-benzene sulphonate of -cis-4-(4-fluorophenyl)-3-(hydroxy[13C]methyl-l-methylpiperidine, an inversion of configuration resulted via the previously described 1-aza[3.1.1]bicycloheptane ring system. It is also shown that the corresponding -trans-substituted piperidine, under similar conditions, does not undergo this inversion. (Author)

  10. The synthesis of [[sup 14]C]-3S,4R-4-(4-fluorophenyl)-3-(3,4-methylenedioxyphenoxymethyl) piperidine hydrochloride (BRL 29060A), and mechanistic studies using carbon-13 labelling

    Energy Technology Data Exchange (ETDEWEB)

    Willcocks, K.; Rustidge, D.C.; Tidy, D.J.D. (SmithKline Beecham Pharmaceuticals Research Div., Harlow (United Kingdom)); Barnes, R.D. (SmithKline Beecham Pharmaceuticals Div., Betchworth (United Kingdom). Chemotherapeutic Research Centre)

    1993-01-01

    Paroxetine, BRL 29060A has been labelled with both carbon-14 and carbon-13. Hydroxymethylation of 4-(4-fluorophenyl)-1-methyl-1,2,5,6-tetrahydropyridine, using [[sup 14]C]formaldehyde, produced an enantiomeric mixture of products which was taken without separation through a multistage sequence. Resolution of the mixture of stereoisomers at the penultimate step gave [[sup 14]C]BRL 29060A with the required configuration. The overall radiochemical yield was 8%. At some stage in this process, as shown by C-13 labelling studies, scrambling of the label took place to give BRL 29060A with the majority of the label in the C-2 position of the piperidine ring and the remainder at the expected 7-methylene position. Further investigations of this route using carbon-13 as the label are described. When sesamol, (3,4-methylenedioxyphenol) was reacted with the O-benzene sulphonate of -cis-4-(4-fluorophenyl)-3-(hydroxy[[sup 13]C]methyl-l-methylpiperidine), an inversion of configuration resulted via the previously described 1-aza[3.1.1]bicycloheptane ring system. It is also shown that the corresponding -trans-substituted piperidine, under similar conditions, does not undergo this inversion. (Author).

  11. Relationship between Carbon Isotope Discrimination (Δ13C) and Water Use Efficiency of Durum Wheat in the Syrian Arab Republic. 1. Field Evaluation

    International Nuclear Information System (INIS)

    Field experiments were conducted over three seasons (2004-2005, 2005-2006 and 2006-2007) using six durum wheat genotypes, similar in phenology, to minimize the genotype x environment (G*E) interaction, but varying in grain carbon isotope discrimination (CID, Δ13C or Δ). The four field sites at Tel Hadya, Breda, Muslmieh and Yahmoul were fully characterized according to environment and soil classification. Plant growth and development were monitored throughout the growing season. Δ was measured for every plot using grain or the 4th fully-expanded leaf. Also, ash and protein contents of grain were analyzed. Radiation use efficiency was measured at Tel Hadya only. Stomatal conductance and resistant as well as canopy temperature was also measured for the different sites and years. Soil water content throughout the growing season was measured at some sites to calculate water use. Variability between sites was mostly related to rainfall, with variability within a site being related to season. Δ was lower at the drier sites and higher at the wettest site, ranging from 12.88 to 16.62 per mille for grain, and 19.97 to 22.57 per mille for the 4th fully-expanded leaf. Positive correlations were found between grain Δ and yields of grain and biomass. The stronger correlations were at the drier sites, whilst at the wettest site (Yahmoul) there was no significant relationship. Δ was also related to ash and protein content. The genotypic variation in Δ (grain and leaf) was substantially independent of season or site. (author)

  12. A surface-eroding poly(1,3-trimethylene carbonate) coating for fully biodegradable magnesium-based stent applications: toward better biofunction, biodegradation and biocompatibility.

    Science.gov (United States)

    Wang, Juan; He, Yonghui; Maitz, Manfred F; Collins, Boyce; Xiong, Kaiqin; Guo, Lisha; Yun, Yeoheung; Wan, Guojiang; Huang, Nan

    2013-11-01

    Biodegradable magnesium-based materials have a high potential for cardiovascular stent applications; however, there exist concerns on corrosion control and biocompatibility. A surface-eroding coating of poly(1,3-trimethylene carbonate) (PTMC) on magnesium (Mg) alloy was studied, and its dynamic degradation behavior, electrochemical corrosion, hemocompatibility and histocompatibility were investigated. The PTMC coating effectively protected the corrosion of the Mg alloy in the dynamic degradation test. The corrosion current density of the PTMC-coated alloy reduced by three orders and one order of magnitude compared to bare and poly(ε-caprolactone) (PCL)-coated Mg alloy, respectively. Static and dynamic blood tests in vitro indicated that significantly fewer platelets were adherent and activated, and fewer erythrocytes attached on the PTMC-coated surface and showed less hemolysis than on the controls. The PTMC coating after 16 weeks' subcutaneous implantation in rats maintained ~55% of its original thickness and presented a homogeneously flat surface demonstrating surface erosion, in contrast to the PCL coated control, which exhibited non-uniform bulk erosion. The Mg alloy coated with PTMC showed less volume reduction and fewer corrosion products as compared to the controls after 52 weeks in vivo. Excessive inflammation, necrosis and hydrogen gas accumulation were not observed. The homogeneous surface erosion of the PTMC coating from exterior to interior (surface-eroding behavior) and its charge neutral degradation products contribute to its excellent protective performance. It is concluded that PTMC is a promising candidate for a surface-eroding coating applied to Mg-based implants. PMID:23467041

  13. Comparison of the regiospecific distribution from triacylglycerols after chemical and enzymatic interesterification of high oleic sunflower oil and fully hydrogenated high oleic sunflower oil blend by carbon-13 nuclear magnetic resonance.

    Science.gov (United States)

    Lopes, Thiago I B; Ribeiro, Marilene D M M; Ming, Chiu C; Grimaldi, Renato; Gonçalves, Lireny A G; Marsaioli, Anita J

    2016-12-01

    The nutritional and organoleptic attributes of oils can proceed via interesterification of oils blends catalyzed by enzymes or chemicals. Enzymatic interesterification processes are preferred due the regiospecific outcome. Traditionally, monitoring of distribution of fatty acids (FA) in glycerol backbone is performed by enzymatic and chromatographic methods that are time-consuming, involving a series of chemical manipulations employing large volumes of organic solvents. Alternatively, carbon-13 nuclear magnetic resonance ((13)C NMR) is a fast and reliable technique that could be applied to determine the saturated and unsaturated FA distribution of the triacylglycerols (TAGs) present in high oleic sunflower oil (SO) and fully hydrogenated high oleic sunflower oil (HSO) blends and their interesterification products. The enzymatic interesterification was conducted employing the immobilized lipase from Thermomyces lanuginosus (Lipozyme TL IM), the results show that the process was not completely regiospecific at sn-1,3 positions, due to the spontaneous acyl migration from position sn-2 to sn-1,3. PMID:27374579

  14. Processing of carbon-fiber-reinforced Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 bulk metallic glass composites

    OpenAIRE

    Kim, C. P.; Busch, R.; Masuhr, A.; Choi-Yim, H.; Johnson, W. L.

    2001-01-01

    Carbon-fiber-reinforced bulk metallic glass composites are produced by infiltrating liquid Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 into carbon fiber bundles with diameter of the individual fiber of 5 mum. Reactive wetting occurs by the formation of a ZrC layer around the fibers. This results in a composite with a homogeneous fiber distribution. The volume fraction of the fibers is about 50% and the density of the composite amounts to 4.0 g/cm(^3).

  15. Two-dimensional NMR studies of staphylococcal nuclease. 2. Sequence-specific assignments of carbon-13 and nitrogen-15 signals from the nuclease H124L-thymidine 3',5'-bisphosphate-Ca2+ ternary complex

    International Nuclear Information System (INIS)

    Samples of staphylococcal nuclease H124L (cloned protein overproduced in Escherichia coli whose sequence is identical with that of the nuclease isolated from the V8 strain of Staphylococcus aureus) were labeled uniformly with carbon-13 (26% ul 13C), uniformly with nitrogen-15 (95% ul 15N), and specifically by incorporating nitrogen-15-labeled leucine ([98% 15N]Leu) or carbon-13-labeled lysine ([26% ul 13C]Lys), arginine ([26% ul 13C]Arg), or methionine ([26% ul 13C]Met). Solutions of the ternary complexes of these analogues (nuclease H124L-pdTp-Ca2+) at pH 5.1 (H2O) or pH 5.5 (2H2O) at 45 degree C were analyzed as appropriate to the labeling pattern by multinuclear two-dimensional (2D) NMR experiments spectrometer fields of 14.09 and 11.74 T. The results have assisted in spin system assignments and in identification of secondary structural elements. Nuclear Overhauser enhancements (NOE's) characteristic of antiparellel β-sheet (dαα NOE's) were observed in the 1H(13C)-SBC-NOE spectrum of the nuclease ternary complex labeled uniformly with 13C. NOE's characteristic of α-helix were observed in the 1H(15N)SBC-NOE spectrum of the complex prepared from protein labeled uniformly with 15N. The assignments obtained from these multinuclear NMR studies have confirmed and extended assignments based on 1H(1H) 2D NMR experiments

  16. Catalytic conversion of carbon dioxide into dimethyl carbonate using reduced copper-cerium oxide catalysts as low as 353 K and 1.3 MPa and the reaction mechanism

    Directory of Open Access Journals (Sweden)

    Seiki eWada

    2013-06-01

    Full Text Available Synthesis of dimethyl carbonate (DMC from CO2 and methanol under milder reaction conditions was performed using reduced cerium oxide catalysts and reduced copper-promoted Ce oxide catalysts. Although the conversion of methanol was low (0.005–0.11% for 2 h of reaction, DMC was synthesized as low as 353 K and at total pressure of as low as 1.3 MPa using reduced Cu–CeO2 catalyst (0.5 wt% of Cu. The apparent activation energy was 120 kJ mol–1 and the DMC synthesis rates were proportional to the partial pressure of CO2. An optimum amount of Cu addition to CeO2 was 0.1 wt% for DMC synthesis under the conditions at 393 K and total pressure of 1.3 MPa for 2 h (conversion of methanol: 0.15% due to the compromise of two effects of Cu: the activation of H2 during reduction prior to the kinetic tests and the block (cover of the surface active site. The reduction effects in H2 were monitored through the reduction of Ce4+ sites to Ce3+ based on the shoulder peak intensity at 5727 eV in the Ce L3-edge X-ray absorption near-edge structure (XANES. The Ce3+ content was 10% for reduced CeO2 catalyst whereas it increased to 15% for reduced Cu–CeO2 catalyst (0.5wt% of Cu. Moreover, the content of reduced Ce3+ sites (10% associated with the surface O vacancy (defect sites decreased to 5% under CO2 at 290 K for reduced Cu–CeO2 catalyst (0.1wt% of Cu. The adsorption step of CO2 on the defect sites might be the key step in DMC synthesis and thus the DMC synthesis rate dependence on the partial pressure of CO2 was proportional. Subsequent H atom subtraction steps from methanol at the neighboring surface Lewis base sites should combine two methoxy species to the adsorbed CO2 to form DMC, water, and restore the surface O vacancy.

  17. Catalytic conversion of carbon dioxide into dimethyl carbonate using reduced copper-cerium oxide catalysts as low as 353 K and 1.3 MPa and the reaction mechanism

    Science.gov (United States)

    Wada, Seiki; Oka, Kazuki; Watanabe, Kentaro; Izumi, Yasuo

    2013-06-01

    Synthesis of dimethyl carbonate (DMC) from CO2 and methanol under milder reaction conditions was performed using reduced cerium oxide catalysts and reduced copper-promoted Ce oxide catalysts. Although the conversion of methanol was low (0.005-0.11%) for 2 h of reaction, DMC was synthesized as low as 353 K and at total pressure of as low as 1.3 MPa using reduced Cu-CeO2 catalyst (0.5 wt% of Cu). The apparent activation energy was 120 kJ mol-1 and the DMC synthesis rates were proportional to the partial pressure of CO2. An optimum amount of Cu addition to CeO2 was 0.1 wt% for DMC synthesis under the conditions at 393 K and total pressure of 1.3 MPa for 2 h (conversion of methanol: 0.15%) due to the compromise of two effects of Cu: the activation of H2 during reduction prior to the kinetic tests and the block (cover) of the surface active site. The reduction effects in H2 were monitored through the reduction of Ce4+ sites to Ce3+ based on the shoulder peak intensity at 5727 eV in the Ce L3-edge X-ray absorption near-edge structure (XANES). The Ce3+ content was 10% for reduced CeO2 catalyst whereas it increased to 15% for reduced Cu-CeO2 catalyst (0.5wt% of Cu). Moreover, the content of reduced Ce3+ sites (10%) associated with the surface O vacancy (defect sites) decreased to 5% under CO2 at 290 K for reduced Cu-CeO2 catalyst (0.1wt% of Cu). The adsorption step of CO2 on the defect sites might be the key step in DMC synthesis and thus the DMC synthesis rate dependence on the partial pressure of CO2 was proportional. Subsequent H atom subtraction steps from methanol at the neighboring surface Lewis base sites should combine two methoxy species to the adsorbed CO2 to form DMC, water, and restore the surface O vacancy.

  18. Glacial- interglacial temperature change based on 13C18O carbonate bond with in fish bone otoliths from Red Sea sediments

    Science.gov (United States)

    Ghosh, P.; Eiler, J.; Feeney, R.

    2006-12-01

    Determining the past record of temperature and salinity of ocean surface waters is essential for understanding past changes in climate, such as those which occur across glacial-interglacial transitions. As a useful proxy, the clumped isotope of CO2 in carbonate (13C18O16O or ?47) from inorganic precipitation experiment has been shown to reflect surface temperature with high degree of confidence (Ghosh et al., 2006). The last glacial cycle was characterized by climate fluctuations, but the extent of any associated changes in global sea level (or, equivalently, ice volume) remains elusive. High stands of sea level can be reconstructed from dated fossil and isotopic analyses of foraminifera and terapods, and these data are complemented by a compilation of global sea-level estimates based on deep-sea oxygen isotope ratios. Salinity derived from the records of oxygen isotopes ratios, however, contains uncertainties due to lack of information about the sea surface temperature change. Here we used combination of clumped isotopes technique and oxygen isotope measurement from fish otoliths (Myctophiformes; lanternfishes) extracted from two piston cores (Ku et al., 1969) (CH-154 and CH-153) to understand the temperature evolution and salinity variation of Red Sea water (300-800m) during the last 70 k.y. We analyzed well preserved unaltered otoliths from 7 different stratigraphic horizons from sediment core CH-154. Our preliminary observation suggests ~20 degree Celsius differences in sea water temperatures between glacial and interglacial time. We showed that the region has experienced fluctuation in climatic and tectonic processes during glacial interglacial time and the otoliths developed within the fishes captured the information about temperature change and salinity variation. Our results indicate a drop in temperature and restricted exchange of water with the open ocean during glaciations. The Red Sea environment was also highly saline even during the interglacial event

  19. Partitioning Net Ecosystem Carbon Exchange Into net Assimilation and Respiration With Canopy-scale Isotopic Measurements: an Error Propagation Analysis With Both 13C and 18O Data

    Science.gov (United States)

    Peylin, P.; Ogee, J.; Cuntz, M.; Bariac, T.; Ciais, P.; Brunet, Y.

    2003-12-01

    Stable CO2 isotope measurements are increasingly used to partition the net CO2 exchange between terrestrial ecosystems and the atmosphere in terms of non-foliar respiration (FR) and gross photosynthesis (FA). However the accuracy of the partitioning strongly depends on the isotopic disequilibrium between these two gross fluxes and a rigorous estimation of the errors on FA and FR is needed. In this study we account and propagate uncertainties on all terms in the mass balance equations for total and "labeled" CO2 in order to get precise estimates of the errors on FA and FR. We applied our method to a maritime pine forest in the Southwest of France. Using the δ 13C-CO2 and CO2 measurements, we show that the resulting uncertainty associated to the gross fluxes can be as large as 4 æmol m-2 s-1. In addition, even if we could get more precise estimates of the isoflux and the isotopic signature of FA we show that this error would not be significantly reduced. This is because the isotopic disequilibrium between FA and FR is around 2-3‰ , i.e. the order of magnitude of the uncertainty on the isotopic signature of FR (δ R). With δ 18O-CO2 and CO2 measurements, the uncertainty associated to the gross fluxes lies also around 4 æmol m-2 s-1. On the other hand, it could be dramatically reduced if we were able to get more precise estimates of the CO18O isoflux and the associated discrimination during photosynthesis. This is because the isotopic disequilibrium between FA and FR is large, of the order of 10-15‰ , i.e. much larger than the uncertainty on δ R. The isotopic disequilibrium between FA and FR or the uncertainty on δ R vary among ecosystems and over the year. Our approach may help to choose the best strategy to study the carbon budget of a given ecosystem using stable isotopes.

  20. Annual variation in δ13C values of maize and wheat: Effect on estimates of decadal scale soil carbon turnover

    DEFF Research Database (Denmark)

    Christensen, Bent Tolstrup; Olesen, Jørgen E; Hansen, Elly Møller;

    2011-01-01

    On sites where C4-plants have replaced C3-plants, changes in soil δ13C allow the turnover of C3- and C4-derived C to be separated. Studies of decadal scale turnover of soil C following conversion to C4-plants generally lack δ13C values for previous C4-residue inputs and assume that estimates of C4...... maize inputs. The δ13C of both maize and wheat decreased with time, but the rate of change and annual variations were considerably larger for wheat than for maize. Maize as well as wheat δ13C was best related to year (probably reflecting a decrease in atmospheric δ13C) and the water balance during the...... centuries, the subtle but consistent changes in plant and soil δ13C need to be accounted for. The variability in δ13C in wheat grains suggest that the use of any fixed δ13C value for C3-residues in estimates of C turnover in soils on which C4-plants have been replaced by C3-plants can be associated with...

  1. Fluxes and 13C isotopic composition of dissolved carbon and pathways of methanogenesis in a fen soil exposed to experimental drought

    OpenAIRE

    Knorr, K.-H.; Glaser, B.; C. Blodau

    2008-01-01

    Peatlands contain a carbon stock of global concern and significantly contribute to the global methane burden. The impact of drought and rewetting on carbon cycling in peatland ecosystems is thus currently debated. We studied the impact of experimental drought and rewetting on intact monoliths from a temperate fen over a period of ~300 days, using a permanently wet treatment and two treatments undergoing drought for 50 days. In one of the mesocosms, vegetation had been remove...

  2. Fluxes and 13C isotopic composition of dissolved carbon and pathways of methanogenesis in a fen soil exposed to experimental drought

    OpenAIRE

    C. Blodau; Glaser, B.; K.-H. Knorr

    2008-01-01

    Peatlands contain a carbon stock of global concern and significantly contribute to the global methane burden. The impact of drought and rewetting on carbon cycling in peatland ecosystems is thus currently debated. We studied the impact of experimental drought and rewetting on intact monoliths from a temperate fen over a period of ~300 days, using a permanently wet treatment and two treatments undergoing drought for 50 days. In one of the mesocosms, vegetation had been removed. Net production ...

  3. Effect of organic carbon chemistry on sorption of atrazine and metsulfuron-methyl as determined by (13)C-NMR and IR spectroscopy.

    Science.gov (United States)

    Dutta, Anirban; Mandal, Abhishek; Manna, Suman; Singh, S B; Berns, Anne E; Singh, Neera

    2015-10-01

    Soil organic matter (SOM) content is the major soil component affecting pesticide sorption. However, recent studies have highlighted the fact that it is not the total carbon content of the organic matter, but its chemical structure which have a profound effect on the pesticide's sorption. In the present study, sorption of atrazine and metsulfuron-methyl herbicides was studied in four SOM fractions viz. commercial humic acid, commercial lignin, as well as humic acid and humin extracted from a compost. Sorption data was fitted to the Freundlich adsorption equation. In general, the Freundlich slope (1/n) values for both the herbicides were herbicides, showed minimum desorption. Sorption of atrazine was best positively correlated with the alkyl carbon (adjusted R (2) = 0.748) and carbonyl carbon (adjusted R (2) = 0.498) but, their effect was statistically nonsignificant (P = 0.05). Metsulfuron-methyl sorption showed best positive correlation with carbonyl carbon (adjusted R (2) = 0.960; P = 0.05) content. Sorption of both the herbicides showed negative correlation with O/N-alkyl carbon. Correlation of herbicide's sorption with alkyl and carbonyl carbon content of SOM fractions suggested their contribution towards herbicide sorption. But, sorption of metsulfuron-methyl, relatively more polar than atrazine, was mainly governed by the polar groups in SOM. IR spectra showed that H-bonds and charge-transfer bonds between SOM fraction and herbicides probably operated as mechanisms of adsorption. PMID:26353968

  4. Isotopic signatures (13C/12C; 15N/14N) of blue penguin burrow soil invertebrates : carbon sources and trophic relationships

    International Nuclear Information System (INIS)

    Seabird burrows provide a soil environment for processing discards such as feathers and guano, hence constituting a primary interface between the sea and the land. This study involved collection and culturing of soil invertebrates from three blue penguin (Eudyptula minor) burrows, and examined their 13C/12C and 15N/14N isotopic composition in relation to potential burrow resources (terrestrial plant litter, burrow soil, guano, blue penguin feathers). Two taxa (cerylonid beetles and small tineid moth larvae) had a depleted 13C/12C indicative of a level of dependence on C from terrestrial soil. Tineid moth larvae (Monopis crocicapitella and (or) M. ethelella) substantially increased their 13C/12C enrichment during development, implying increasing dependence on marine C. Remaining taxa, both decomposers and predators, had 13C/12C intermediate between guano and feathers. Larval and emergent fleas had the most enriched 13C/12C , indicative of a greater dependence on feather C and the likelihood of co-processing with guano. Pseudoscorpions and histerid beetles had overlapping isotopic enrichments implying competition for prey, but were spatially separated in burrow soil. With their highly enriched 15N/14N and marine 13C/12C, larvae and protonymphs of the histiostomatid mite Myianoetus antipodus stood alone. Blue penguin burrows therefore support a diverse invertebrate fauna that incorporates terrestrial soil as well as varying proportions of the various blue penguin discards. (author). 45 refs., 1 fig., 1 tab.

  5. High sensitivity gravimetric sensor made of unidirectional carbon fiber epoxy composite on (1 − x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 single crystal substrate

    International Nuclear Information System (INIS)

    We have derived a general formula for sensitivity optimization of gravimetric sensors and have used it to design a high sensitivity gravimetric sensor using unidirectional carbon fiber epoxy composite (CFEC) waveguide layer on (1 − x)Pb(Zn1/3Nb2/3)O3-xPbTiO3 (PZN-xPT) single crystal substrate with the carbon fibers parallel to the x1 and x2 axes, respectively. The normalized maximum sensitivity (|Smf|λ)max exhibits an increasing tendency with the decrease of (h/λ)opt and the maximum sensitivity (|Smf|λ)max increases with the elastic constant c66E of the piezoelectric substrate material. For the CFEC/[011]c poled PZN-7%PT single crystal sensor configuration, with the carbon fibers parallel to the x1 axis at λ = 24 μm, the maximum sensitivity (|Smf|λ)max can reach as high as 1156 cm2/g, which is about three times that of a traditional SiO2/ST quartz structure gravimetric sensor. The better design selection is to have the carbon fibers parallel to the direction of propagation of Love wave in order to obtain the best sensitivity. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  6. Stable isotope ratio (13C/12C mass spectrometry to evaluate carbon sources and sinks: changes and trends during the decomposition of vegetal debris from eucalyptus clone plantations (NW Spain

    Directory of Open Access Journals (Sweden)

    I. Fernandez

    2014-02-01

    Full Text Available Vegetal debris is known to participate in key soil processes such as the formation of soil organic matter (OM, also being a potential source of greenhouse gases to the atmosphere. However, its contribution to the isotopic composition of both the soil OM and the atmospheric carbon dioxide is not clear yet. Hence, the main objective of the present research is to understand the isotopic 13C changes and trends that take place during the successive biodegradative stages of decomposing soil organic inputs. By incubating bulk plant tissues for several months under laboratory controlled conditions, the kinetics of the CO2 releases and shifts in the 13C natural abundance of the solid residues were investigated using litter samples coming from forest plantations with a different clone (Anselmo: 1st clonal generation attained by morphological selection and Odiel: 2nd clonal generation genetically obtained of Eucalyptus globulus Labill. developed over granitic or schistic bedrocks and located in northwestern Spain. Significant isotopic variations with time were observed, probably due to the isotopically heterogeneous composition of these complex substrates in conjunction with the initial selective consumption of more easily degradable 13C-differentiated compounds during the first stages of the biodegradation, while less available or recalcitrant litter components were decomposed at later stages of biodegradation, generating products that have their own specific isotopic signatures. These results, which significantly differ depending on the type of clone, suggest that caution must be exercised when interpreting carbon isotope studies (at natural abundance levels since perturbations associated with the quality or chemical composition of the organic debris from different terrestrial ecosystems can have an important effect on the carbon stable isotope dynamics.

  7. Cobalt(III) complexes of [3(5)]adamanzane, 1,5,9,13-tetraazabicyclo[7.7.3]nonadecane. Report of an inert, chelate hydrogen carbonate ion

    DEFF Research Database (Denmark)

    Broge, Louise; Søtofte, Inger; Olsen, Carl Erik; Springborg, Johan

    2001-01-01

    .H2O (3a). The coordination geometry around the cobalt(III) ion is a distorted octahedron with the inorganic ligands at cis-positions. Complex 2 is the second example of a cobalt(III) complex for which the X-ray structure,sfiows a chelate binding mode of the hydrogen carbonate entity. The pK(a) value...

  8. Comparison of bulk and compound-specific δ 13C analyses and determination of carbon sources to salt marsh sediments using n-alkane distributions (Maine, USA)

    Science.gov (United States)

    Tanner, Benjamin R.; Uhle, Maria E.; Mora, Claudia I.; Kelley, Joseph T.; Schuneman, Patrick J.; Lane, Chad S.; Allen, Evan S.

    2010-01-01

    Sources of sedimentary organic matter to a Morse River, Maine (USA) salt marsh over the last 3390 ± 60 RCYBP (Radiocarbon Years Before Present) are determined using distribution patterns of n-alkanes, bulk carbon isotopic analysis, and compound-specific carbon isotopic analysis. Marsh foraminiferal counts suggest a ubiquitous presence of high marsh and higher-high marsh deposits (dominated by Trochammina macrescens forma macrescens, Trochammina comprimata, and Trochammina inflata), implying deposition from ˜0.2 m to 0.5 m above mean high water. Distributions of n-alkanes show a primary contribution from higher plants, confirmed by an average chain length value of 27.5 for the core sediments, and carbon preference index values all >3. Many sample depths are dominated by the C 25 alkane. Salicornia depressa and Ruppia maritima have similar n-alkane distributions to many of the salt marsh sediments, and we suggest that one or both of these plants is either an important source to the biomass of the marsh through time, or that another unidentified higher plant source is contributing heavily to the sediment pool. Bacterial degradation or algal inputs to the marsh sediments appear to be minor. Compound-specific carbon isotopic analyses of the C 27 alkane are on average 7.2‰ depleted relative to bulk values, but the two records are strongly correlated ( R2 = 0.89), suggesting that marsh plants dominate the bulk carbon isotopic signal. Our study underscores the importance of using caution when applying mixing models of plant species to salt marsh sediments, especially when relatively few plants are included in the model.

  9. Spatial variability of carbon13C) and nitrogen (δ15N) stable isotope ratios in an Arctic marine food web

    DEFF Research Database (Denmark)

    Hansen, Joan Holst; Hedeholm, Rasmus Berg; Sünksen, Kaj;

    2012-01-01

    Stable isotopes of carbon13C) and nitrogen (δ15N) were used to examine trophic structures in an arctic marine food web at small and large spatial scales. Twelve species, from primary consumers to Greenland shark, were sampled at a large spatial scale near the west and east coasts of Greenland...... illustrate the importance of spatial variability when interpreting trophic structure from stable isotopes......., attributing some of the variation to physical and biological sources. Hence, significant differences in isotopic signatures on both large and small spatial scales were less related to food web structure than to different physical and biological properties of the water masses. Accordingly, the results...

  10. Stopping power of Ni, Ag, Au and Pb for approx. 7 MeV/n α-particles and carbon ions (Z13 proportional deviation from the Bethe formula)

    International Nuclear Information System (INIS)

    In the end of the 1960's, Andersen, Simonsen and Sorensen carried out the measurements of stopping powers of a number of elements for protons, deuterons and α-particles using the calorimetric-compensation technique and showed sone Z13 proportional deviations from the Bethe formula. Recently, Andersen and his co-workers again made the measurements of stopping power of several elements for protons, α-particles and lithium ions in order to perform a more detailed investigation on the deviation from the Bethe formula. To ascertain the Z13 deviation of stopping power for heavier ions, it is desirable to make precise experiments using projectiles more massive than lithium ions, which are almost completely ionized. Recently, we attempted to measure the stopping powers of several metals for approx. 7 MeV/n α-particles and carbon ions, although thus obtained data need a small correction for effective charge. Results are presented and discussed

  11. Isotope dilution studies: determination of carbon-13, nitrogen-15 and deuterium-enriched compounds using capillary gas chromatography-chemical reaction interface/mass spectrometry

    International Nuclear Information System (INIS)

    In addition to the ability of a capillary gas chromatographic-chemical reaction interface/mass spectrometric technique (CRIMS) to detect the presence of 13C, 15N and 2H (D) it can also quantify the level of the enriched substance. To evaluate linearity and detection limits the authors used phenytoin as an example of an unlabeled substance and added various labeled phenytoin analogs. Atom enrichments of 0.3% were detectable for (2,4,5-13C3) phenytoin and 0.06% for (1,3-15N2)labeled phenytoin, each in the presence of 500 ng of unlabeled phenytoin, respectively. For deuterium, enrichment could not be directly determined. However, 1 ng of (ring D10) phenytoin was determined in the presence of 500 ng of unlabeled diethylated phenytoin. CRIMS was found capable of quantifying 13C-, 15N-and D-enriched substances. (author)

  12. 13C-NMR of diterpenes with pimarane skeleton

    International Nuclear Information System (INIS)

    The effect of substituent groups on the chemical shift of carbons using nuclear magnetic resonance spectra of carbon 13 (13C-NMR) is discussed. Diterpenes having pimarane skeleton, isolated from plants of Velloziaceae family are analysed. (ARHC)

  13. delta C-13 Analysis of Mars Analog Carbonates Using Evolved Gas Cavity - Ringdown Spectrometry on the 2010 Arctic Mars Analog Svalbard Expedition (AMASE)

    Science.gov (United States)

    Stern, J. C.; McAdam, A. C.; ten Kate, I. L.; Mahaffy, P. R.; Steele, A.; Amundson, H. E. F.

    2011-01-01

    The 2010 Arctic Mars Analog Svalbard Expedition (AMASE) investigated two distinct geologic settings on Svalbard, using instrumentation and techniques in development for future Mars missions, such as the Mars Science Laboratory (MSL), ExoMars, and Mars Sample Return (MSR). The Sample Analysis at Mars (SAM) instrument suite, which will fly on MSL, was developed at Goddard Space Flight Center (GSFC), together with several partners. SAM consists of a quadrupole mass spectrometer (QMS), a gas chromatograph CGC), and a tunable laser spectrometer (TLS), which all analyze gases created by evolved gas analysis (EGA). The two sites studied represent "biotic" and "abiotic" analogs; the "biotic" site being the Knorringfjell fossil methane seep, and the "abiotic" site being the basaltic Sigurdfjell vent complex. The data presented here represent experiments to measure the carbon isotopic composition of carbonates from these two analogs using evolved gas analysis coupled with a commercial cavity ringdown CO2 isotopic analyzer (Picarro) as a proxy for the TLS on SAM.

  14. Chemical structures of swine-manure chars produced under different carbonization conditions investigated by advanced solid-state 13C nuclear magnetic resonance (NMR) spectroscopy

    Science.gov (United States)

    Two types of swine manure chars, hydrothermally-produced hydrochar and slow-pyrolysis pyrochar, and their raw swine manure solid were characterized using advanced 13C solid-state nuclear magnetic resonance (NMR) spectroscopy. Compared with the parent raw swine manure, both hydrochars and pyrochar di...

  15. Carbon sequestration in soils with annual inputs of maize biomass and maize-derived animal manure: Evidence from 13C abundance

    DEFF Research Database (Denmark)

    Thomsen, Ingrid Kaag; Christensen, Bent Tolstrup

    2010-01-01

    The abundance of 13C was determined over a period of nine years in two soils (LUN, coarse sand; ASK, sandy loam) following their conversion from C3-crops and to the C4-crop silage maize (Zea mays L.). The soils were exposed to identical management and climatic conditions, and were sampled every...

  16. Direct uptake of organic carbon by grass roots and allocation in leaves and phytoliths: 13C labeling evidence

    OpenAIRE

    Alexandre, A.; Balesdent, J.; P. Cazevieille; C. Chevassus-Rosset; Signoret, P; J.-C. Mazur; Harutyunyan, A.; E. Doelsch; Basile-Doelsch, I.; H. Miche; Santos, G. M.

    2015-01-01

    In the rhizosphere, the uptake of low molecular weight carbon (C) and nitrogen (N) by plant roots has been well documented. While organic N uptake relatively to total uptake is important, organic C uptake is supposed to be low relatively to the plant's C budget. Recently, radiocarbon analyses demonstrated that a fraction of C from the soil was occluded in amorphous silica micrometric particles that precipitate in plant cells (phytoliths). Here, we investigated whether and in...

  17. Carbon Isotope (d13C) in dissolved inorganic carbon and other physical and biogeochemical variables synthesized across the global ocean from February 17, 1991 to February 21, 2005 (NODC Accession 0110496)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Measurements of d13C in DIC were compiled mainly from WOCE and CLIVAR cruises. The dataset also contains other physical and biogeochemical variables.

  18. Cobalt(III) complexes of [3(5)]adamanzane, 1,5,9,13-tetraazabicyclo[7.7.3]nonadecane. Report of an inert, chelate hydrogen carbonate ion

    DEFF Research Database (Denmark)

    Broge, Louise; Søtofte, Inger; Olsen, Carl Erik;

    2001-01-01

    Three cobalt(III) complexes of themacrocyclic tetraamine [3(5)]adamanzane (1,5,9,13-tetraazabicyclo[7.7.3]-nonadecane) were isolated as salts. The X-ray crystal structures were solved for the compounds [Co([3(5)]adz)-(CO3)AsF6 (1b), [Co([3(5)]adz)(HCO3)]znBr(4).H2O (2a), and [Co([35]adz)(SO4)]AsF...

  19. High sensitivity Cavity Ring Down spectroscopy of 18O enriched carbon dioxide between 5850 and 7000 cm-1: Part III-Analysis and theoretical modeling of the 12C17O2, 16O12C17O, 17O12C18O, 16O13C17O and 17O13C18O spectra

    CERN Document Server

    Karlovets, E V; Mondelain, D; Kassi, S; Tashkun, S A; Perevalov, V I

    2014-01-01

    More than 19,700 transitions belonging to 11 isotopologues of carbon dioxide have been assigned in the room temperature absorption spectrum of highly 18O enriched carbon dioxide recorded by very high sensitivity CW-Cavity Ring Down spectroscopy between 5851 and 6990 cm-1 (1.71-1.43 \\mum). This third and last report is devoted to the analysis of the bands of five 17O containing isotopologues present at very low concentration in the studied spectra: 16O12C17O, 17O12C18O, 16O13C17O, 17O13C18O and 12C17O2 (627, 728, 637, 738 and 727 in short hand notation). On the basis of the predictions of effective Hamiltonian models, a total of 1759, 1786, 335, 273 and 551 transitions belonging to 24, 24, 5, 4 and 7 bands were rovibrationally assigned for 627, 728, 637, 738 and 727, respectively. For comparison, only five bands were previously measured in the region for the 728 species. All the identified bands belong to the \\deltaP=8 and 9 series of transitions, where P=2V1+V2+3V3 is the polyad number (Vi are vibrational qua...

  20. Applications of cavity ring-down spectroscopy to high precision isotope ratio measurement of 13C/12C in carbon dioxide.

    Science.gov (United States)

    Wahl, Ed H; Fidric, Bernard; Rella, Chris W; Koulikov, Sergei; Kharlamov, Boris; Tan, Sze; Kachanov, Alexander A; Richman, Bruce A; Crosson, Eric R; Paldus, Barbara A; Kalaskar, Shashi; Bowling, David R

    2006-03-01

    Recent measurements of carbon isotopes in carbon dioxide using near-infrared, diode-laser-based cavity ring-down spectroscopy (CRDS) are presented. The CRDS system achieved good precision, often better than 0.2 per thousand, for 4% CO2 concentrations, and also achieved 0.15-0.25 per thousand precision in a 78 min measurement time with cryotrap-based pre-concentration of ambient CO2 concentrations (360 ppmv). These results were obtained with a CRDS system possessing a data rate of 40 ring-downs per second and a loss measurement of 4.0 x 10(-11) cm(-1) Hz(-1/2). Subsequently, the measurement time has been reduced to under 10 min. This standard of performance would enable a variety of high concentration (3-10%) isotopic measurements, such as medical human breath analysis or animal breath experiments. The extension of this ring-down to the 2 microm region would enable isotopic analysis at ambient concentrations, which, combined with the small size, robust design, and potential for frequent measurements at a remote site, make CRDS technology attractive for remote atmospheric measurement applications. PMID:16500752

  1. Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V John V. Vickers Cruise in the Pacific Ocean (WOCE Section P13, NOAA CGC92 Cruise, August 4 - October 21, 1992)

    Energy Technology Data Exchange (ETDEWEB)

    Kozyr, A.

    2001-01-11

    This data documentation discusses the procedures and methods used to measure total carbon dioxide (TCO{sub 2}) and total alkalinity (TALK) at hydrographic stations during the R/V John V. Vickers oceanographic cruise in the Pacific Ocean (Section P13). Conducted as part of the World Ocean Circulation Experiment (WOCE) and the National Oceanic and Atmospheric Administration's Climate and Global Change Program, the cruise began in Los Angeles, California, on August 4, 1992, with a transit line (Leg 0) to Dutch Harbor, Alaska. On August 16, the ship departed Dutch Harbor on Leg 1 of WOCE section P13. On September 15, the R/V John V. Vickers arrived in Kwajalein, Marshall Islands, for emergency repairs, and after 11 days in port departed for Leg 2 of Section P13 on September 26. The cruise ended on October 21 in Noumea, New Caledonia. Measurements made along WOCE Section P13 included pressure, temperature, salinity [measured by a conductivity, temperature, and depth sensor (CTD)], bottle salinity, bottle oxygen, phosphate, nitrate, nitrite, silicate, chlorofluorocarbons (CFC-11, CFC-12), TCO{sub 2} , and TALK. The TCO{sub 2} was measured by coulometry using a Single-Operator Multiparameter Metabolic Analyzer (SOMMA). The overall precision and accuracy of the analyses was {+-}2 {micro}mol/kg. Samples collected for TALK were measured by potentiometric titration; precision was {+-}2 {micro}mol/kg. The CO{sub 2} -related measurements aboard the R/V John V. Vickers were supported by the U.S. Department of Energy. The WOCE Section P13 data set is available free of charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center. The NDP consists of two oceanographic data files, two FORTRAN 90 data-retrieval routine files, a documentation file, and this printed report, which describes the contents and format of all files as well as the procedures and methods used to obtain the data. Instructions on how to access the data are provided.

  2. Constraints on the factors controlling 13C-18O bond abundances in biologically precipitated carbonates from measurements of marine calcifiers cultured at variable temperature, pH, and salinity

    Science.gov (United States)

    Conchas, T. E.; Eagle, R.; Eiler, J. M.; Ries, J. B.; Freitas, P. S.; Hiebenthal, C.; Wanamaker, A. D.; Tripati, A. K.

    2012-12-01

    Marine mollusks and corals are widely used as archives of past climate change; oxygen isotopic composition (δ18O value) of their carbonate minerals is perhaps the most commonly used proxy to reconstruct paleoclimate from these marine calcifiers. However, oxygen isotope paleothermometry of mollusks and corals is complicated by non-equilibrium "vital effects" and variations in seawater pH changes, both of which influence the net fractionation of oxygen isotopes between carbonate and water. Carbonate "clumped isotope" thermometry is an emerging approach that potentially addresses these ambiguities. Here we report measurements of abundance of 13C-18O bonds (described by the measured parameter Δ47) in a variety of marine calcifiers cultured under controlled conditions. Previous studies on biologically precipitated samples such as foraminifera, coccoliths, and corals have shown that Δ47 values are related to calcification temperature with a relationship that is generally similar to inorganic carbonate. However, the influence of effects other than temperature has not been extensively studied and little work has been done to explore the potential for small non-equilibrium effects in cultured specimens that were grown under controlled conditions. In this study, we report δ18O and Δ47 measurements of mollusk specimens that were cultured at several temperatures ranging from 5 to 25°C, as well as different pH and salinity values. We also report data for other marine calcifiers including the temperate coral species Oculina arbuscula and the coralline red algae Neogoniolithon sp., that were cultured at a single temperature but variable pH.

  3. Selective detection of carbon-13, nitrogen-15, and deuterium labeled metabolites by capillary gas chromatography-chemical reaction interface/mass spectrometry

    International Nuclear Information System (INIS)

    We have applied a new chemical reaction interface/mass spectrometer technique (CRIMS) to the selective detection of 13C-, 15N-, and 2H-labeled phenytoin and its metabolites in urine following separation by capillary gas chromatography. The microwave-powered chemical reaction interface converts materials from their original forms into small molecules whose mass spectra serve to identify and quantify the nuclides that make up each analyte. The presence of each element is followed by monitoring the isotopic variants of CO2, NO, or H2 that are produced by the chemical reaction interface. Chromatograms showing only enriched 13C and 15N were produced by subtracting the abundance of naturally occurring isotopes from the observed M + 1 signal. A selective chromatogram of 2H (D) was obtained by measuring HD at m/z 3.0219 with a resolution of 2000. Metabolites representing less than 1.5% of the total labeled compounds could be identified in the chromatogram. Detection limits from urine of 380 pg/mL of a 15N-labeled metabolite, 7 ng/mL of a 13C-labeled metabolite, and 16 ng/mL of a deuterium labeled metabolite were determined at a signal to noise ratio of 2. Depending on the isotope examined, a linear dynamic range of 250-1000 was observed using CRIMS. To identify many of these labeled peaks (metabolites), the chromatographic analysis was repeated with the chemical reaction interface turned off and mass spectra obtained at the retention times found in the CRIMS experiment. CRIMS is a new analytical method that appears to be particularly useful for metabolism studies

  4. Investigating the effects of perturbations to pgi and eno gene expression on central carbon metabolism in Escherichia coli using 13 C metabolic flux analysis

    Directory of Open Access Journals (Sweden)

    Usui Yuki

    2012-06-01

    Full Text Available Abstract Background It has long been recognized that analyzing the behaviour of the complex intracellular biological networks is important for breeding industrially useful microorganisms. However, because of the complexity of these biological networks, it is currently not possible to obtain all the desired microorganisms. In this study, we constructed a system for analyzing the effect of gene expression perturbations on the behavior of biological networks in Escherichia coli. Specifically, we utilized 13 C metabolic flux analysis (13 C-MFA to analyze the effect of perturbations to the expression levels of pgi and eno genes encoding phosphoglucose isomerase and enolase, respectively on metabolic fluxes. Results We constructed gene expression-controllable E. coli strains using a single-copy mini F plasmid. Using the pgi expression-controllable strain, we found that the specific growth rate correlated with the pgi expression level. 13 C-MFA of this strain revealed that the fluxes for the pentose phosphate pathway and Entner-Doudoroff pathway decreased, as the pgi expression lelvel increased. In addition, the glyoxylate shunt became active when the pgi expression level was almost zero. Moreover, the flux for the glyoxylate shunt increased when the pgi expression level decreased, but was significantly reduced in the pgi-knockout cells. Comparatively, eno expression could not be decreased compared to the parent strain, but we found that increased eno expression resulted in a decreased specific growth rate. 13 C-MFA revealed that the metabolic flux distribution was not altered by an increased eno expression level, but the overall metabolic activity of the central metabolism decreased. Furthermore, to evaluate the impact of perturbed expression of pgi and eno genes on changes in metabolic fluxes in E. coli quantitatively, metabolic sensitivity analysis was performed. As a result, the perturbed expression of pgi gene had a great impact to the

  5. Trisomy 13

    Science.gov (United States)

    ... artery at birth. There are often signs of congenital heart disease , such as: Abnormal placement of the heart toward ... almost immediately. Most infants with trisomy 13 have congenital heart disease. Complications may include: Breathing difficulty or lack of ...

  6. Short-term carbon dynamics in a temperate heathland upon six years of exposure to elevated CO2 concentration, drought and warming: Evidence from an in-situ 13CO2 pulse-chase experiment

    Science.gov (United States)

    Ambus, P.; Reinsch, S.; Sárossy, Z.; Egsgaard, H.; Jakobsen, I.; Michelsen, A.; Schmidt, I.; Nielsen, P.

    2013-12-01

    An in-situ 13CO2 pulse-labeling experiment was carried out in a temperate heathland (8 oC MAT, 610 mm MAP) to study the impact on short-term carbon (C) allocation as affected by elevated CO2 concentration (+120 ppm), prolonged summer droughts (ca. -43 mm) and warming (+1 oC). The study was carried out six years after the climate treatments were initiated and took place in the early growing season in May in vegetation dominated by grasses, mainly Deschampsia flexuosa. Newly assimilated C (13C from the pulse-label) was traced into vegetation, soil and soil microorganisms and belowground respiration 1, 2 and 8 days after pulse-labeling. The importance of the microbial community in C utilization was investigated using 13C enrichment patterns in different microbial functional groups on the basis of phospholipid fatty acid (PLFA) profiles. Climate treatments did not affect microorganism abundance in soil or rhizosphere fractions in terms of total PLFA-C concentration. Elevated CO2 significantly reduced the abundance of gram-negative bacteria (17:0cy), but did not affect the abundance of decomposers (fungi and actinomycetes) in rhizosphere fractions. Drought favored the bacterial community in rhizosphere fractions whereas warming reduced the abundance of gram-negative bacteria (19:0cy) and changed the actinomycetes community (10Me16:0, 10Me18:0). Fastest and highest utilization of recently assimilated C was observed in rhizosphere associated gram-negative bacteria followed by gram-positive bacteria. The utilization of recently assimilated C by the microbial community was faster under elevated CO2 conditions compared to ambient. The 13C assimilation by green plant tissue and translocation to roots was significantly reduced by the extended summer drought. Under elevated CO2 conditions we observed an increased amount of 13C in the litter fraction. The assimilation of 13C by vegetation was not changed when the climate factors were applied in combination. The total amount of

  7. Clinical application of dynamic lung imaging by the single breath measurement with carbon-11-labeled CO2, CO and nitrogen-13-labeled N2

    International Nuclear Information System (INIS)

    The single breath measurement with 11CO2, 11CO and 13N-N composed of inhalation system and a coincidence positron camera interfaced with an on-line computer system has been used to evaluated regional pulmonary function in two normal volunteers and four patinets with chronic obstructive pulmonary disease (COPD). In serial images of normal subjects after single inhalation of 11CO2, the appearance time of the heart was within about 10 - 20 seconds and the radioactivity at heart area remained to be relatively high compared with lung fields. However in some patients with COPD, the heart appearance time was delayed and the hypo-ventilated lung area became gradually to be hot during the wash-out phase. The heart appearance time after a inspiration of 11CO was within 10 - 20 seconds in normal subject. In contrast, the appearance time was remarkably prolonged in the patients with disturbance of diffusion capacity. Immediately after single breath of 13N-N in the patient with COPD the well ventilated lung area was revealed as a region of high radioactivity and the distribution of the slow space was showed in the late phase of wash out. These findings should have patho-physiological diagnostic usefullness, especially for the patients with COPD and fibrosing lung disease. (author)

  8. Changes in concentration and (delta) 13C value of dissolved CH4, CO2 and organic carbon in rice paddies under ambient and elevated concentrations of atmospheric CO2

    International Nuclear Information System (INIS)

    Changes in concentration and (delta)13C value of dissolved CH4, CO2 and organic carbon (DOC) in floodwater and soil solution from a Japanese rice paddy were studied under ambient and elevated concentrations of atmospheric CO2 in controlled environment chambers. The concentrations of dissolved CH4 in floodwater increased with rice growth (with some fluctuation), while the concentrations of CO2 remained between 2.9 to 4.4 and 4.2 to 5.8 μg C mL-1 under conditions of ambient and elevated CO2 concentration, respectively. The amount of CH4 dissolved in soil solution under elevated CO2 levels was significantly lower than under ambient CO2 in the tillering stage, implying that the elevated CO2 treatment accelerated CH4 oxidation during the early stage of growth. However, during later stages of growth, production of CH4 increased and the amount of CH4 dissolved in soil solution under elevated CO2 levels was, on average, greater than that under ambient CO2 conditions. Significant correlation existed among the (delta)13C values of dissolved CH4, CO2, and DOC in floodwater (except for the samples taken immediately after pulse feeding with 13C enriched CO2), indicating that the origins and cycling of CH4, CO2 and DOC were related. There were also significant correlations among the (delta)13C values of CH4, CO2 and DOC in the soil solution. The turnover rate of CO2 in soil solution was most rapid in the panicle formation stage of rice growth and that of CH4 fastest in the grain filling stage. (Author)

  9. Solution (sup13)C Nuclear Magnetic Resonance Spectroscopic Analysis of the Amino Acids of Methanosphaera stadtmanae: Biosynthesis and Origin of One-Carbon Units from Acetate and Carbon Dioxide

    OpenAIRE

    Miller, T L; Chen, X; B. Yan; Bank, S.

    1995-01-01

    We found that general pathways for amino acid synthesis of Methanosphaera stadtmanae, a methanogen that forms CH(inf4) from H(inf2) and methanol, resembled those of methanogens that form CH(inf4) from CO(inf2) or from the methyl group of acetate. We determined the incorporation of (sup14)C-labeled CO(inf2), formate, methanol, methionine, serine, and acetate into cell macromolecules. Labeling of amino acid carbons was determined by solution nuclear magnetic resonance spectroscopy after growth ...

  10. High sensitivity Cavity Ring Down spectroscopy of 18O enriched carbon dioxide between 5850 and 7000 cm−1: Part II—Analysis and theoretical modeling of the 12C18O2, 13C18O2 and 16O13C18O spectra

    International Nuclear Information System (INIS)

    More than 19000 transitions belonging to 11 isotopologues of carbon dioxide have been assigned in the room temperature absorption spectrum of highly 18O enriched carbon dioxide recorded by very high sensitivity CW-Cavity Ring Down spectroscopy between 5851 and 6990 cm−1 (1.71–1.43 μm). The line positions were determined with accuracy better than 1×10−3 cm−1 while the absolute line intensities are reported with an uncertainty better than 10%. This second report is devoted to the analysis of the bands of three multiply substituted isotopologues: 12C18O2, 13C18O2 and 16O13C18O (828, 838 and 638 in short hand notation). On the basis of the predictions of effective Hamiltonian models, a total of 2870, 538 and 1375 transitions belonging to 59, 11 and 15 bands were rovibrationnally assigned for 828, 838 and 638, respectively. For comparison, only 11 bands were previously measured by Fourier Transform spectroscopy in the region, for the 828 species. All the identified bands correspond to a ΔP=9 variation of the polyad number (P=2V1+V2+3V3, where Vi are vibrational quantum numbers). The band-by-band analysis has allowed deriving accurate spectroscopic parameters of 81 bands from a fit of the measured line positions. A few resonance perturbations were identified. In particular, the 31113 and 51106 states of 638 belonging to different polyads (P=10 and P=11, respectively) are anharmonically coupled. Using the large set of newly measured line positions and those collected from the literature, the global modeling of the line positions within the effective Hamiltonian approach was performed and a new set of Hamiltonian parameters was obtained for each of the three considered isopotologues. Using a similar approach, the global fits of the obtained intensity values of the ΔP=9 series of transitions were used to derive the corresponding ΔP=9 effective dipole moment parameters of the three considered isotopologues. The obtained results will help to improve the quality

  11. Relationship between Carbon Isotope Discrimination (Δ13C) and Water Use Efficiency of Durum Wheat int the Syrian Arab Republic. 2. Glasshouse Evaluation

    International Nuclear Information System (INIS)

    A greenhouse pot experiment was conducted to compare transpiration rates of six durum wheat genotypes grown in two soil types, a clay (Tel Hadya) and a sandy clay loam (Breda). Six durum wheat genotypes varying in grain carbon isotope discrimination (Δ), an index to transpiration efficiency, were used. Pots were subjected to controlled and gradual dehydration, with a wet treatment as a control. The transpiration ratio (TR) was calculated as the ratio between daily water loss for each of the pots undergoing gradual dehydration, and the average daily water loss in the wet pots. Then the data were further normalized. The daily fraction of transpirable soil water (FTSW) for each pot was calculated by dividing the difference between daily pot weight and final weight by the overall transpirable soil water (difference between initial and final pot weight). The data were analyzed by plotting normalized transpiration ratio (NTR) against the FTSW using logistic, linear plateau and exponential models. Genotypes differed in transpiration rates during gradual dehydration and between the two soil types for pooled data. A significant relationship was found between dry matter production and threshold values (the point when the transpiration rate starts to be less in the gradual dehydration treatment than in the control treatment). The cultivar Brachoua (which had low grain Δ) recorded the highest dry matter production and the highest threshold value. Significant differences in threshold values were evident between the two soil types. The lowest threshold value was for the cultivar Waha (which had high grain Δ, and consequently had a potentially high transpiration efficiency), indicating a superior ability to extract water at high soil water potentials (when soil is dry). On the other hand, the genotype Brachoua was very sensitive to low soil moisture, and transpiration rates decreased at the beginning of the gradual dehydration. (author)

  12. Evidence for shifting environmental conditions in Southwestern France from 33 000 to 15 000 years ago derived from carbon-13 and nitrogen-15 natural abundances in collagen of large herbivores

    Science.gov (United States)

    Drucker, Dorothée G.; Bocherens, Hervé; Billiou, Daniel

    2003-11-01

    A paleoenvironmental reconstruction of terrestrial environments in Southwestern France between 33 and 15 cal kyr BP is provided using δ 13C and δ 15N variations in collagen of three herbivorous mammals. Altogether 161 analyses have been carried out on collagen extracted from skeletal fragments of reindeer, horse and Bos/ Bison from four successive chronological phases covering the end of MOIS 3 and MOIS 2. The δ 13C values of ungulate collagen are clearly separated between the studied species. They are interpreted as reflecting a stable dietary adaptation in a changing environment. The variations of δ 15N values of ungulate collagen are significant, especially between specimens from MOIS 3 and specimens from MOIS 2, with a minimum during the Last Glacial Maximum. This phenomenon seems to reflect changes in the activity of nitrogen cycling processes associated with permafrost development. Carbon and nitrogen isotopic composition of fossil herbivore collagen are worth investigating as paleoecological and paleoenvironmental tracers in Upper Pleistocene periglacial continental contexts.

  13. Voltammetric sensing of bisphenol A based on a single-walled carbon nanotubes/poly{3-butyl-1-[3-(N-pyrrolyl)propyl] imidazolium ionic liquid} composite film modified electrode

    International Nuclear Information System (INIS)

    Highlights: • Single-walled carbon nanotubes (SWCNTs)-ionic liquid (IL) nanocomposite fabrication. • SWCNTs-Poly-IL film modified electrode was prepared and characterized. • Voltammetric behaviors of bisphenol A were investigated thoroughly. • Sensitive voltammetric method for bisphenol A determination was developed. -- Abstract: Using carboxylic acid-functionalized single walled carbon nanotubes (SWCNTs-COO−) as an anion and 3-butyl-1-[3-(N-pyrrolyl)propyl]imidazolium as a cation, a novel SWCNTs-COO-ionic liquid (SWCNTs-COO-IL) nanocomposite was fabricated successfully. The as-prepared SWCNTs-COO-IL nanocomposite was confirmed with transmission electron microscopy, X-ray photoelectron spectroscopy, UV–vis, FTIR and Raman spectroscopy. The SWCNTs-COO-IL nanocomposite was coated onto a glassy carbon electrode surface followed by cyclic voltammetric scanning to fabricate a SWCNTs/poly{3-butyl-1-[3-(N-pyrrolyl)propyl] imidazolium ionic liquid} composite film modified electrode (SWCNTs/Poly-IL/GCE). Scanning electron microscope and electrochemical impedance spectroscopy were used to characterize SWCNTs/Poly-IL/GCE. Electrochemical behaviors of bisphenol A (BPA) at the SWCNTs/Poly-IL/GCE were investigated thoroughly. It was found that an obvious oxidation peak appeared without reduction peak in the reverse scanning, indicating an irreversible electrochemical process. The oxidation peak currents of BPA were linearly related to scan rate in the range of 20–300 mV s−1, suggesting an adsorption controlled process rather than a diffusion controlled process. Differential pulse voltammetry was employed for the voltammetric sensing of BPA. Experimental conditions such as film thickness, pH value, accumulation potential and time that influence the analytical performance of the SWCNTs/Poly-IL/GCE were optimized. Under optimal conditions, the oxidation peak current was linearly related to BPA concentration in the range of 5.0 × 10−9 to 3.0 × 10−5 mol L−1

  14. Molecular indicators for palaeoenvironmental change in a Messinian evaporitic sequence (Vena del Gesso, Italy). II: High-resolution variations in abundances and 13C contents of free and sulphur-bound carbon skeletons in a single marl bed

    Science.gov (United States)

    Kenig, F.; Damste, J. S.; Frewin, N. L.; Hayes, J. M.; De Leeuw, J. W.

    1995-01-01

    The extractable organic matter of 10 immature samples from a marl bed of one evaporitic cycle of the Vena del Gesso sediments (Gessoso-solfifera Fm., Messinian, Italy) was analyzed quantitatively for free hydrocarbons and organic sulphur compounds. Nickel boride was used as a desulphurizing agent to recover sulphur-bound lipids from the polar and asphaltene fractions. Carbon isotopic compositions (delta vs PDB) of free hydrocarbons and of S-bound hydrocarbons were also measured. Relationships between these carbon skeletons, precursor biolipids, and the organisms producing them could then be examined. Concentrations of S-bound lipids and free hydrocarbons and their delta values were plotted vs depth in the marl bed and the profiles were interpreted in terms of variations in source organisms, 13 C contents of the carbon source, and environmentally induced changes in isotopic fractionation. The overall range of delta values measured was 24.7%, from -11.6% for a component derived from green sulphur bacteria (Chlorobiaceae) to -36.3% for a lipid derived from purple sulphur bacteria (Chromatiaceae). Deconvolution of mixtures of components deriving from multiple sources (green and purple sulphur bacteria, coccolithophorids, microalgae and higher plants) was sometimes possible because both quantitative and isotopic data were available and because either the free or S-bound pool sometimes appeared to contain material from a single source. Several free n-alkanes and S-bound lipids appeared to be specific products of upper-water-column primary producers (i.e. algae and cyanobacteria). Others derived from anaerobic photoautotrophs and from heterotrophic protozoa (ciliates), which apparently fed partly on Chlorobiaceae. Four groups of n-alkanes produced by algae or cyanobacteria were also recognized based on systematic variations of abundance and isotopic composition with depth. For hydrocarbons probably derived from microalgae, isotopic variations are well correlated with

  15. Biomarker and carbon isotope constraints (δ{sup 13}C, Δ{sup 14}C) on sources and cycling of particulate organic matter discharged by large Siberian rivers draining permafrost areas

    Energy Technology Data Exchange (ETDEWEB)

    Winterfeld, Maria

    2014-08-15

    Circumpolar permafrost soils store about half of the global soil organic carbon pool. These huge amounts of organic matter (OM) could accumulate due to low temperatures and water saturated soil conditions over the course of millennia. Currently most of this OM remains frozen and therefore does not take part in the active carbon cycle, making permafrost soils a globally important carbon sink. Over the last decades mean annual air temperatures in the Arctic increased stronger than the global mean and this trend is projected to continue. As a result the permafrost carbon pool is under climate pressure possibly creating a positive climate feedback due to the thaw-induced release of greenhouse gases to the atmosphere. Arctic warming will lead to increased annual permafrost thaw depths and Arctic river runoff likely resulting in enhanced mobilization and export of old, previously frozen soil-derived OM. Consequently, the great arctic rivers play an important role in global biogeochemical cycles by connecting the large permafrost carbon pool of their hinterlands with the arctic shelf seas and the Arctic Ocean. The first part of this thesis deals with particulate organic matter (POM) from the Lena Delta and adjacent Buor Khaya Bay. The Lena River in central Siberia is one of the major pathways translocating terrestrial OM from its southernmost reaches near Lake Baikal to the coastal zone of the Laptev Sea. The permafrost soils from the Lena catchment area store huge amounts of pre-aged OM, which is expected to be remobilized due to climate warming. To characterize the composition and vegetation sources of OM discharged by the Lena River, the lignin phenol and carbon isotopic composition (δ{sup 13}C and Δ{sup 14}C) in total suspended matter (TSM) from surface waters, surface sediments from the Buor Khaya Bay along with soils from the Lena Delta's first (Holocene) and third terraces (Pleistocene ice complex) were analyzed. The lignin compositions of these samples are

  16. Synthesis of carbon-13 labelled carbonaceous deposits and their evaluation for potential use as surrogates to better understand the behaviour of the carbon-14-containing deposit present in irradiated PGA graphite

    Science.gov (United States)

    Payne, L.; Walker, S.; Bond, G.; Eccles, H.; Heard, P. J.; Scott, T. B.; Williams, S. J.

    2016-03-01

    The present work has used microwave plasma chemical vapour deposition to generate suitable isotopically labelled carbonaceous deposits on the surface of Pile Grade A graphite for use as surrogates for studying the behaviour of the deposits observed on irradiated graphite extracted from UK Magnox reactors. These deposits have been shown elsewhere to contain an enhanced concentration of 14C compared to the bulk graphite. A combination of Raman spectroscopy, ion beam milling with scanning electron microscopy and secondary ion mass spectrometry were used to determine topography and internal morphology in the formed deposits. Direct comparison was made against deposits found on irradiated graphite samples trepanned from a Magnox reactor core and showed a good similarity in appearance. This work suggests that the microwave plasma chemical vapour deposition technique is of value in producing simulant carbon deposits, being of sufficiently representative morphology for use in non-radioactive surrogate studies of post-disposal behaviour of 14C-containing deposits on some irradiated Magnox reactor graphite.

  17. 2LiBH4–MgH2–0.13TiCl4 confined in nanoporous structure of carbon aerogel scaffold for reversible hydrogen storage

    International Nuclear Information System (INIS)

    Highlights: • Nanoconfined 2LiBH4–MgH2–0.13TiCl4 was simply prepared by solution impregnation and melt infiltration. • Up to two times faster desorption kinetics as compared with nanoconfined 2LiBH4–MgH2. • Significant low onset dehydrogenation temperature (T = 140 °C). • New reactive phase formations during de/rehydrogenation. - Abstract: The investigations based on kinetic improvement and reaction mechanisms during melt infiltration, dehydrogenation, and rehydrogenation of nanoconfined 2LiBH4–MgH2–0.13TiCl4 in carbon aerogel scaffold (CAS) are proposed. It is found that TiCl4 and LiBH4 are successfully nanoconfined in CAS, while MgH2 proceeds partially. In the same temperature (25–500 °C) and time (0–5 h at constant temperature) ranges nanoconfined 2LiBH4–MgH2–0.13TiCl4 dehydrogenates completely 99% of theoretical H2 storage capacity, while that of nanoconfined 2LiBH4–MgH2 is only 94%. Nanoconfined 2LiBH4–MgH2–0.13TiCl4 performs three-step dehydrogenation at 140, 240, and 380 °C. Onset (the first-step) dehydrogenation temperature (140 °C), significantly lower than those of nanoconfined sample of 2LiBH4–MgH2 and 2LiBH4–MgH2–TiCl3 (ΔT = 140 and 110 °C, respectively) is in agreement with the decomposition of eutectic LiBH4–Mg(BH4)2 and lithium–titanium borohydride. For the second and third steps (240 and 380 °C), decompositions of LiBH4 destabilized by LiCl solvation and MgH2 are accomplished, respectively. In conclusion, dehydrogenation products are B, Mg, LiH, and TiH. Reversibility of nanoconfined 2LiBH4–MgH2–0.13TiCl4 sample is confirmed by the recovery of LiBH4 after rehydrogenation together with the formation of [B12H12]− derivatives. The superior kinetics during the 2nd, 3rd, and 4th cycles of nanoconfined 2LiBH4–MgH2–0.13TiCl4 to the nanoconfined 2LiBH4–MgH2 can be due to the formations of Ti–MgH2 alloys (Mg0.25Ti0.75H2 and Mg6TiH2) during the 1st rehydrogenation

  18. 2LiBH{sub 4}–MgH{sub 2}–0.13TiCl{sub 4} confined in nanoporous structure of carbon aerogel scaffold for reversible hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Gosalawit-Utke, Rapee, E-mail: rapee.g@sut.ac.th [Institute of Materials Research, Helmholtz–Zentrum Geesthacht, Geesthacht 21502 (Germany); School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Milanese, Chiara [Pavia Hydrogen Lab, C.S.G.I.-Department of Chemistry-Physical Chemistry Division, University of Pavia, Pavia 27100 (Italy); Javadian, Payam [Center for Energy Materials, iNANO and Department of Chemistry, University of Aarhus, Aarhus C8000 (Denmark); Girella, Alessandro [Pavia Hydrogen Lab, C.S.G.I.-Department of Chemistry-Physical Chemistry Division, University of Pavia, Pavia 27100 (Italy); Laipple, Daniel; Puszkiel, Julián [Institute of Materials Research, Helmholtz–Zentrum Geesthacht, Geesthacht 21502 (Germany); Cattaneo, Alice S.; Ferrara, Chiara [Department of Chemistry-Physical Chemistry Division, University of Pavia, Pavia 27100 (Italy); Wittayakhun, Jatuporn [School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000 (Thailand); Skibsted, Jørgen; Jensen, Torben R. [Center for Energy Materials, iNANO and Department of Chemistry, University of Aarhus, Aarhus C8000 (Denmark); Marini, Amedeo [Pavia Hydrogen Lab, C.S.G.I.-Department of Chemistry-Physical Chemistry Division, University of Pavia, Pavia 27100 (Italy); Klassen, Thomas; Dornheim, Martin [Institute of Materials Research, Helmholtz–Zentrum Geesthacht, Geesthacht 21502 (Germany)

    2014-06-25

    Highlights: • Nanoconfined 2LiBH{sub 4}–MgH{sub 2}–0.13TiCl{sub 4} was simply prepared by solution impregnation and melt infiltration. • Up to two times faster desorption kinetics as compared with nanoconfined 2LiBH{sub 4}–MgH{sub 2}. • Significant low onset dehydrogenation temperature (T = 140 °C). • New reactive phase formations during de/rehydrogenation. - Abstract: The investigations based on kinetic improvement and reaction mechanisms during melt infiltration, dehydrogenation, and rehydrogenation of nanoconfined 2LiBH{sub 4}–MgH{sub 2}–0.13TiCl{sub 4} in carbon aerogel scaffold (CAS) are proposed. It is found that TiCl{sub 4} and LiBH{sub 4} are successfully nanoconfined in CAS, while MgH{sub 2} proceeds partially. In the same temperature (25–500 °C) and time (0–5 h at constant temperature) ranges nanoconfined 2LiBH{sub 4}–MgH{sub 2}–0.13TiCl{sub 4} dehydrogenates completely 99% of theoretical H{sub 2} storage capacity, while that of nanoconfined 2LiBH{sub 4}–MgH{sub 2} is only 94%. Nanoconfined 2LiBH{sub 4}–MgH{sub 2}–0.13TiCl{sub 4} performs three-step dehydrogenation at 140, 240, and 380 °C. Onset (the first-step) dehydrogenation temperature (140 °C), significantly lower than those of nanoconfined sample of 2LiBH{sub 4}–MgH{sub 2} and 2LiBH{sub 4}–MgH{sub 2}–TiCl{sub 3} (ΔT = 140 and 110 °C, respectively) is in agreement with the decomposition of eutectic LiBH{sub 4}–Mg(BH{sub 4}){sub 2} and lithium–titanium borohydride. For the second and third steps (240 and 380 °C), decompositions of LiBH{sub 4} destabilized by LiCl solvation and MgH{sub 2} are accomplished, respectively. In conclusion, dehydrogenation products are B, Mg, LiH, and TiH. Reversibility of nanoconfined 2LiBH{sub 4}–MgH{sub 2}–0.13TiCl{sub 4} sample is confirmed by the recovery of LiBH{sub 4} after rehydrogenation together with the formation of [B{sub 12}H{sub 12}]{sup −} derivatives. The superior kinetics during the 2nd, 3rd, and 4th

  19. 1-(3-sulfonic acid group) propyl piperidinium dodecylbenzenesulfonic acid applied in carbon dioxide capture%1-(3-磺酸基)丙基哌啶十二烷基苯磺酸在CO2捕集中的应用∗

    Institute of Scientific and Technical Information of China (English)

    李工; 丁嘉; 郭剑桥; 徐小军; 王树立; 余益松

    2015-01-01

    A surface active functional ionic liquid, 1⁃(3⁃sulfonic acid group) propyl piperidinium dodecylbenzenesulfonic acid ([ PIPS] DBSA) was synthesized and characterized by 1H NMR, FTIR, and element analysis. [ PIPS] DBSA was used to promote the formation of carbon dioxide hydrate, and its effect on the temperature and pressure was investigated. Experimental results show that, by comparing 300 mg·L-1 [ PIPS ] DBSA solution with the 700 mg·kg-1 sodium dodecylbenzenesulfonate solution( SDBS) , the phase equilibrium pressure of carbon dioxide hydrate was decreased by 13.60% —14.96% in the range of 4℃ —6℃, and the required time for steady CO2 pressure was reduced by 50 min at 4 ℃. The investigation indicated that [ PIPS] DBSA has a good promotion effect on the formation of cardon dioxide hydrate.%合成了一种具有表面活性功能的离子液体1⁃(3⁃磺酸基)丙基哌啶十二烷基苯磺酸([PIPS]DBSA),采用FT⁃IR,1 H NMR 和元素分析等方法对产物进行表征,并将其用于促进 CO2水合物的生成,考察[ PIPS] DBSA对CO2水合物生成过程中温度和压力的影响.实验表明在温度4℃—6℃时,300 mg·L-1[ PIPS] DBSA溶液中CO2的相平衡压力比700 mg·L-1的十二烷基苯磺酸钠( SDBS)溶液的相平衡压力下降了13�6%—14.96%.在4℃时,300 mg·L-1[ PIPS] DBSA溶液中CO2压力稳定所用的时间与700 mg·L-1 SDBS溶液相比减少了50 min,表明[ PIPS] DBSA对CO2水合物的形成具有良好的促进作用.

  20. Study and validity of 13C stable carbon isotopic ratio analysis by mass spectrometry and 2H site-specific natural isotopic fractionation by nuclear magnetic resonance isotopic measurements to characterize and control the authenticity of honey

    International Nuclear Information System (INIS)

    Honey samples were analyzed by stable carbon isotopic ratio analysis by mass spectrometry (SCIRA-MS) and site-specific natural isotopic fractionation measured by nuclear magnetic resonance (SNIF-NMR) to first determine their potentials for characterizing the substance and then to combat adulteration. Honey samples from several geographic and botanical origins were analyzed. The δ 13C parameter was not significant for characterizing an origin, while the (D/H)I ratio could be used to differentiate certain single-flower varieties. Application of the official control method of adding a C4 syrup (AOAC official method 998.12) to our authentic samples revealed anomalies resulting from SCIRA indices that were more negative than -1 per mille (permil). A filtration step was added to the experimental procedure and provided results that were compliant with Natural origin of our honey samples. In addition, spiking with a C4 syrup could be detected starting at 9-10%. The use of SNIF-NMR is limited by the detection of a syrup spike starting only at 20%, which is far from satisfying

  1. Study and validity of {sup 13}C stable carbon isotopic ratio analysis by mass spectrometry and {sup 2}H site-specific natural isotopic fractionation by nuclear magnetic resonance isotopic measurements to characterize and control the authenticity of honey

    Energy Technology Data Exchange (ETDEWEB)

    Cotte, J.F. [Cooperative France Miel, BP 5, 330 Mouchard (France); Casabianca, H. [Service Central d' Analyse, USR 059-CNRS, BP 22, 69390 Vernaison (France); Lheritier, J. [Cooperative France Miel, BP 5, 330 Mouchard (France); Perrucchietti, C. [Service Central d' Analyse, USR 059-CNRS, BP 22, 69390 Vernaison (France); Sanglar, C. [Service Central d' Analyse, USR 059-CNRS, BP 22, 69390 Vernaison (France); Waton, H. [Service Central d' Analyse, USR 059-CNRS, BP 22, 69390 Vernaison (France); Grenier-Loustalot, M.F. [Service Central d' Analyse, USR 059-CNRS, BP 22, 69390 Vernaison (France)]. E-mail: mf.grenier-loustalot@sca.cnrs.fr

    2007-01-16

    Honey samples were analyzed by stable carbon isotopic ratio analysis by mass spectrometry (SCIRA-MS) and site-specific natural isotopic fractionation measured by nuclear magnetic resonance (SNIF-NMR) to first determine their potentials for characterizing the substance and then to combat adulteration. Honey samples from several geographic and botanical origins were analyzed. The {delta} {sup 13}C parameter was not significant for characterizing an origin, while the (D/H){sub I} ratio could be used to differentiate certain single-flower varieties. Application of the official control method of adding a C{sub 4} syrup (AOAC official method 998.12) to our authentic samples revealed anomalies resulting from SCIRA indices that were more negative than -1 per mille (permil). A filtration step was added to the experimental procedure and provided results that were compliant with Natural origin of our honey samples. In addition, spiking with a C{sub 4} syrup could be detected starting at 9-10%. The use of SNIF-NMR is limited by the detection of a syrup spike starting only at 20%, which is far from satisfying.

  2. Extraction of ultra-traces of lead, chromium and copper using ruthenium nanoparticles loaded on activated carbon and modified with N,N-bis-(α-methylsalicylidene)-2,2-dimethylpropane-1,3-diamine

    International Nuclear Information System (INIS)

    We describe a novel adsorbent for effective extraction of lead(II), chromium(III) and copper(II). It consists of ruthenium nanoparticles loaded on activated carbon that were modified with N,N-bis-(α-methylsalicylidene)-2,2-dimethylpropane-1,3-diamine. The sorbent was applied to solid-phase extraction combined with ionic-liquid based dispersive liquid-liquid microextraction method. The effects of parameters such as amounts of adsorbent, type and volume of elution solvent, type and volume of extraction and dispersing solvents, etc. were evaluated. The ions were then quantified by flame atomic absorption spectrometry. Under the best conditions, limits of detection, linear dynamic ranges and enrichment factors for these ions ranged from 0.02 to 0.09 μg L−1, 0.08 to 45 μg L−1 and 328 to 356, respectively. The results showed that the method, in addition to its sensitivity, selectivity and good enrichment factor, is simple and efficient. It was applied to the determination of the three ions in blood plasma, food (broccoli, coriander and spinach), and in (spiked) samples of tap, spring and river water. (author)

  3. Study and validity of 13C stable carbon isotopic ratio analysis by mass spectrometry and 2H site-specific natural isotopic fractionation by nuclear magnetic resonance isotopic measurements to characterize and control the authenticity of honey.

    Science.gov (United States)

    Cotte, J F; Casabianca, H; Lhéritier, J; Perrucchietti, C; Sanglar, C; Waton, H; Grenier-Loustalot, M F

    2007-01-16

    Honey samples were analyzed by stable carbon isotopic ratio analysis by mass spectrometry (SCIRA-MS) and site-specific natural isotopic fractionation measured by nuclear magnetic resonance (SNIF-NMR) to first determine their potentials for characterizing the substance and then to combat adulteration. Honey samples from several geographic and botanical origins were analyzed. The delta(13)C parameter was not significant for characterizing an origin, while the (D/H)(I) ratio could be used to differentiate certain single-flower varieties. Application of the official control method of adding a C(4) syrup (AOAC official method 998.12) to our authentic samples revealed anomalies resulting from SCIRA indices that were more negative than -1 per thousand (permil). A filtration step was added to the experimental procedure and provided results that were compliant with the natural origin of our honey samples. In addition, spiking with a C(4) syrup could be detected starting at 9-10%. The use of SNIF-NMR is limited by the detection of a syrup spike starting only at 20%, which is far from satisfying. PMID:17386484

  4. Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Knorr Repeat Hydrography Cruise in the Atlantic Ocean: CLIVAR CO2 Sections A20_2003 (22 September-20 October 2003) and A22_2003 (23 October-13 November, 2003)

    Energy Technology Data Exchange (ETDEWEB)

    Kozyr, Alex [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Carbon Dioxide Information Analysis Center

    2008-09-30

    This report presents methods, and analytical and quality control procedures for salinity, oxygen, nutrient, inorganic carbon, organic carbon, chlorofluorocarbon (CFC), and bomb carbon-14 system parameters performed during the A20_2003 and A22_2003 cruises, which took place between September 22 and November 13, 2003, aboard research vessel (R/V) Knorr under the auspices of the National Oceanic and Atmospheric Administration (NOAA) and National Science Foundation (NSF). The R/V Knorr departed Woods Hole, Massachusetts, on September 22 for the Repeat Section A20, and ended this line in Port of Spain, Trinidad, on October 20. The Repeat Section A22 started on October 23 in Port of Spain, Trinidad, and finished on November 13, 2003, in Woods Hole, Massachusetts. The research conducted was one of a series of repeat hydrography sections jointly funded by NOAA and NSF as part of the Climate Variability Program (CLIVAR)/CO2/repeat hydrography/tracer program. Samples were taken from 36 depths at 88 stations on section A20 and 82 stations on section A22. The data presented in this report include the analyses of water samples for total inorganic carbon (TCO2), total alkalinity (TALK), dissolved organic carbon (DOC), CFC, carbon-14, hydrographic, and other chemical measurements.

  5. Carbon Monoxide Information Center

    Medline Plus

    Full Text Available ... Statistics January 07, 2016 Non-Fire Carbon Monoxide Deaths Associated with the Use of Consumer Products 2012 Annual Estimates October 13, 2015 Incidents, Deaths, and In-Depth Investigations Associated with Non-Fire ...

  6. Using eddy covariance of CO2, 13CO2 and CH4, continuous soil respiration measurements, and PhenoCams to constrain a process-based biogeochemical model for carbon market-funded wetland restoration

    Science.gov (United States)

    Oikawa, P. Y.; Baldocchi, D. D.; Knox, S. H.; Sturtevant, C. S.; Verfaillie, J. G.; Dronova, I.; Jenerette, D.; Poindexter, C.; Huang, Y. W.

    2015-12-01

    We use multiple data streams in a model-data fusion approach to reduce uncertainty in predicting CO2 and CH4 exchange in drained and flooded peatlands. Drained peatlands in the Sacramento-San Joaquin River Delta, California are a strong source of CO2 to the atmosphere and flooded peatlands or wetlands are a strong CO2 sink. However, wetlands are also large sources of CH4 that can offset the greenhouse gas mitigation potential of wetland restoration. Reducing uncertainty in model predictions of annual CO2 and CH4 budgets is critical for including wetland restoration in Cap-and-Trade programs. We have developed and parameterized the Peatland Ecosystem Photosynthesis, Respiration, and Methane Transport model (PEPRMT) in a drained agricultural peatland and a restored wetland. Both ecosystem respiration (Reco) and CH4 production are a function of 2 soil carbon (C) pools (i.e. recently-fixed C and soil organic C), temperature, and water table height. Photosynthesis is predicted using a light use efficiency model. To estimate parameters we use a Markov Chain Monte Carlo approach with an adaptive Metropolis-Hastings algorithm. Multiple data streams are used to constrain model parameters including eddy covariance of CO2, 13CO2 and CH4, continuous soil respiration measurements and digital photography. Digital photography is used to estimate leaf area index, an important input variable for the photosynthesis model. Soil respiration and 13CO2 fluxes allow partitioning of eddy covariance data between Reco and photosynthesis. Partitioned fluxes of CO2 with associated uncertainty are used to parametrize the Reco and photosynthesis models within PEPRMT. Overall, PEPRMT model performance is high. For example, we observe high data-model agreement between modeled and observed partitioned Reco (r2 = 0.68; slope = 1; RMSE = 0.59 g C-CO2 m-2 d-1). Model validation demonstrated the model's ability to accurately predict annual budgets of CO2 and CH4 in a wetland system (within 14% and 1

  7. Partitioning net ecosystem carbon exchange into net assimilation and respiration with canopy-scale isotopic measurements: An error propagation analysis with 13CO2 and CO18O data

    Science.gov (United States)

    OgéE, J.; Peylin, P.; Cuntz, M.; Bariac, T.; Brunet, Y.; Berbigier, P.; Richard, P.; Ciais, P.

    2004-06-01

    Stable CO2 isotope measurements are increasingly used to partition the net CO2 exchange between terrestrial ecosystems and the atmosphere in terms of nonfoliar respiration (FR) and net photosynthesis (FA) in order to better understand the variations of this exchange. However, the accuracy of the partitioning strongly depends on the isotopic disequilibrium between these two gross fluxes, and a rigorous estimation of the errors on FA and FR is needed. In this study, we account for and propagate uncertainties on all terms in the mass balance and isotopic mass balance equations for CO2 in order to get accurate estimates of the errors on FA and FR. We apply our method to a maritime pine forest in the southwest of France. Nighttime Keeling plots are used to estimate the 13C and 18O isotopic signature of FR (δR), and for both isotopes the a priori uncertainty associated with this term is estimated to be around 2‰ at our site. Using δ13C-CO2 and [CO2] measurements, we then show that the uncertainty on instantaneous values of FA and FR can be as large as 4 μmol m-2 s-1. Even if we could get more accurate estimates of the net CO2 flux, the isoflux, and the isotopic signatures of FA and FR, this uncertainty would not be significantly reduced because the isotopic disequilibrium between FA and FR is too small, around 2-3‰. With δ18O-CO2 and [CO2] measurements the uncertainty associated with the gross fluxes lies also around 4 μmol m-2 s-1 but could be dramatically reduced if we were able to get more accurate estimates of the CO18O isoflux and the associated discrimination during photosynthesis. This is because the isotopic disequilibrium between FA and FR is large, of the order of 12-17‰. The isotopic disequilibrium between FA and FR and the uncertainty on δR vary among ecosystems and over the year. Our approach should help to choose the best strategy to study the carbon budget of a given ecosystem using stable isotopes.

  8. Ultra-rapid targeted analysis of 40 drugs of abuse in oral fluid by LC-MS/MS using carbon-13 isotopes of methamphetamine and MDMA to reduce detector saturation.

    Science.gov (United States)

    Di Rago, Matthew; Chu, Mark; Rodda, Luke N; Jenkins, Elizabeth; Kotsos, Alex; Gerostamoulos, Dimitri

    2016-05-01

    The number of oral fluid samples collected by the road policing authority in Victoria, Australia, requiring confirmatory laboratory analysis for drugs proscribed under Victorian legislation (methamphetamine, MDMA and Δ9-tetrahydrocannabinol) has greatly increased in recent years, driving the need for improved analysis techniques to enable expedient results. The aim of this study was to develop an LC-MS/MS-based targeted oral fluid screening technique that covers a broad range of basic and neutral drugs of abuse that can satisfy increased caseload while monitoring other compounds of interest for epidemiological purposes. By combining small sample volume, simple extraction procedure, rapid LC-MS/MS analysis and automated data processing, 40 drugs of abuse including amphetamines, benzodiazepines, cocaine and major metabolites, opioids, cannabinoids and some designer stimulants were separated over 5 min (with an additional 0.5 min re-equilibration time). The analytes were detected using a Sciex® API 4500 Q-Trap LC-MS/MS system with positive ESI in MRM mode monitoring three transitions per analyte. The method was fully validated in accordance with international guidelines and also monitored carbon-13 isotopes of MDMA and MA to reduce detector saturation effects, allowing for confirmation of large concentrations of these compounds without the need for dilution or re-analysis. The described assay has been successfully used for analysis of oral fluid collected as part of law enforcement procedures at the roadside in Victoria, providing forensic results as well as epidemiological prevalence in the population tested. The fast and reliable detection of a broad range of drugs and subsequent automated data processing gives the opportunity for high throughput and fast turnaround times for forensic toxicology. PMID:26993306

  9. Carbon isotopes in mollusk shell carbonates

    Science.gov (United States)

    McConnaughey, Ted A.; Gillikin, David Paul

    2008-10-01

    Mollusk shells contain many isotopic clues about calcification physiology and environmental conditions at the time of shell formation. In this review, we use both published and unpublished data to discuss carbon isotopes in both bivalve and gastropod shell carbonates. Land snails construct their shells mainly from respired CO2, and shell δ13C reflects the local mix of C3 and C4 plants consumed. Shell δ13C is typically >10‰ heavier than diet, probably because respiratory gas exchange discards CO2, and retains the isotopically heavier HCO3 -. Respired CO2 contributes less to the shells of aquatic mollusks, because CO2/O2 ratios are usually higher in water than in air, leading to more replacement of respired CO2 by environmental CO2. Fluid exchange with the environment also brings additional dissolved inorganic carbon (DIC) into the calcification site. Shell δ13C is typically a few ‰ lower than ambient DIC, and often decreases with age. Shell δ13C retains clues about processes such as ecosystem metabolism and estuarine mixing. Ca2+ ATPase-based models of calcification physiology developed for corals and algae likely apply to mollusks, too, but lower pH and carbonic anhydrase at the calcification site probably suppress kinetic isotope effects. Carbon isotopes in biogenic carbonates are clearly complex, but cautious interpretation can provide a wealth of information, especially after vital effects are better understood.

  10. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from time series observations using Bubble type equilibrator for autonomous carbon dioxide (CO2) measurement, Carbon dioxide (CO2) gas analyzer and other instruments from the MOORINGS in the North Pacific Ocean from 2007-06-26 to 2011-07-13 (NODC Accession 0100080)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0100080 includes chemical, physical and time series data collected from MOORINGS in the North Pacific Ocean from 2007-06-26 to 2011-07-13. These data...

  11. Partial pressure (or fugacity) of carbon dioxide, salinity and other variables collected from time series observations using Bubble type equilibrator for autonomous carbon dioxide (CO2) measurement, Carbon dioxide (CO2) gas analyzer and other instruments from MOORINGS in the North Atlantic Ocean from 2006-07-13 to 2013-07-09 (NODC Accession 0115402)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NCEI Accession 0115402 includes time series data collected from MOORINGS in the North Atlantic Ocean from 2006-07-13 to 2013-07-09 and retrieved during cruise...

  12. Dissolved inorganic carbon, total alkalinity, nitrate, phosphate, temperature and other variables collected from time series observations at Heron Island Reef Flat from 2010-06-01 to 2010-12-13 (NODC Accession 0127256)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains carbonate chemistry and environmental parameters data that were collected from a 200-day time series monitoring on the Heron Island...

  13. Carbon dioxide, hydrographic, and chemical data obtained during the R/Vs Roger Revelle and Thomas Thompson repeat hydrography cruises in the Pacific Ocean: CLIVAR CO2 sections P16S-2005 (9 January - 19 February, 2005) and P16N-2006 (13 February - 30 March, 2006)

    Energy Technology Data Exchange (ETDEWEB)

    Kozyr, Alex [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Carbon Dioxide Information Analysis Center; Feely, R. A. [Pacific Marine Environmental Laboratory, NOAA, Seattle, WA (United States); Sabine, C. L. [Pacific Marine Environmental Laboratory, NOAA, Seattle, WA (United States); Millero, F. J. [University of Miami, Miami, FL (United States). Rosenstiel School of Marine and Atmospheric Science; Langdon, C. [University of Miami, Miami, FL (United States). Rosenstiel School of Marine and Atmospheric Science; Dickson, A. G. [Univ. of California, San Diego, CA (United States). Scripps Institution of Oceanography; Fine, R. A. [University of Miami, Miami, FL (United States). Rosenstiel School of Marine and Atmospheric Science; Bullister, J. L. [Pacific Marine Environmental Laboratory, NOAA, Seattle, WA (United States); Hansell, D. A. [University of Miami, Miami, FL (United States). Rosenstiel School of Marine and Atmospheric Science; Carlson, C. A. [Univ. of California, Santa Barbara, CA (United States); Sloyan, B. M. [Woods Hole Oceanographic Institution, Woods Hole, MA (United States); McNichol, A. P. [Woods Hole Oceanographic Institution, Woods Hole, MA (United States); Key, R. M. [Princeton Univ., NJ (United States); Byrne, R. H. [Univ. of South Florida, Tampa, FL (United States); Wanninkhof, R. [Atlantic Oceanographic and Meteorological Laboratory, NOAA, Miami, FL (United States)

    2009-05-01

    This report presents methods, and analytical and quality control procedures for salinity, oxygen, nutrients, total carbon dioxide (TCO2), total alkalinity (TALK), pH, discrete CO2 partial pressure (pCO2), dissolved organic carbon (DOC), chlorofluorocarbons (CFCs), radiocarbon, δ13C, and underway carbon measurements performed during the P16S-2005 (9 January - 19 February 2005) and P16N-2006 (13 February - 30 March, 2006) cruises in the Pacific Ocean. The research vessel (R/V) Roger Revelle departed Papeete, Tahiti, on January 9, 2005 for the Repeat Section P16S, nominally along 150°W, ending in Wellington, New Zealand, on February 19. During this cruise, samples were taken from 36 depths at 111 CTD stations between 16°S and 71°S. The Repeat Section P16N, nominally along 152°W, consisted of two legs. Leg 1 started on February 13, 2006 in Papeete, Tahiti, and finished on March 3, in Honolulu, Hawaii. The R/V Thomas G. Thompson departed Honolulu for Leg 2 on March 10, 2006 and arrived in Kodiak, Alaska, on March 30. During the P16N cruises, samples were taken from 34 or 36 depths at 84 stations between 17°S and 56.28°N. The research conducted on these cruises was part of a series of repeat hydrography sections jointly funded by the National Oceanic and Atmospheric Administration (NOAA) and the National Science Foundation (NSF) as part of the Climate Variability Program (CLIVAR)/CO2 Repeat Hydrography Program. The P16S and P16N data sets are available free of charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center (CDIAC). The NDP consists of the oceanographic data files and this printed documentation, which describes the procedures and methods used to obtain the data.

  14. Electronic structure of new mixed Ti13MC13 nanocrystallites (M = Sc, V, ..., Cu)

    International Nuclear Information System (INIS)

    The electron structure of the series of new Ti13MC13 metal-carbon molecular nanocrystallites is studied through the ab initio self-consistent discrete variation method. The third order metals (Sc, V, ..., Cu) are considered as the M-elements. The regularities of forming the electron structure, chemical bonds, charge distributions and atomic magnetic moments in the Ti13MC13 in dependence on the M-atom type and its position in the source Ti14C13 nanocrystallite are forecasted. The obtained results are compared with the electron states calculations of the 3d-admixtures in the crystalline titanium carbide

  15. Abiotic carbonate dissolution traps carbon in a semiarid desert

    Science.gov (United States)

    Fa, Keyu; Liu, Zhen; Zhang, Yuqing; Qin, Shugao; Wu, Bin; Liu, Jiabin

    2016-03-01

    It is generally considered that desert ecosystems release CO2 to the atmosphere, but recent studies in drylands have shown that the soil can absorb CO2 abiotically. However, the mechanisms and exact location of abiotic carbon absorption remain unclear. Here, we used soil sterilization, 13CO2 addition, and detection methods to trace 13C in the soil of the Mu Us Desert, northern China. After 13CO2 addition, a large amount of 13CO2 was absorbed by the sterilised soil, and 13C was found enriched both in the soil gaseous phase and dissolved inorganic carbon (DIC). Further analysis indicated that about 79.45% of the total 13C absorbed by the soil was trapped in DIC, while the amount of 13C in the soil gaseous phase accounted for only 0.22% of the total absorbed 13C. However, about 20.33% of the total absorbed 13C remained undetected. Our results suggest that carbonate dissolution might occur predominately, and the soil liquid phase might trap the majority of abiotically absorbed carbon. It is possible that the trapped carbon in the soil liquid phase leaches into the groundwater; however, further studies are required to support this hypothesis.

  16. Carbon Carbon Composites: An Overview .

    OpenAIRE

    G. Rohini Devi; K. Rama Rao

    1993-01-01

    Carbon carbon composites are a new class of engineering materials that are ceramic in nature but exhibit brittle to pseudoplastic behaviour. Carbon-carbon is a unique all-carbon composite with carbon fibre embeded in carbon matrix and is known as an inverse composite. Due to their excellent thermo-structural properties, carbon-carbon composites are used in specialised application like re-entry nose-tips, leading edges, rocket nozzles, and aircraft brake discs apart from several indust...

  17. Stress-dependent regulation of 13-lipoxygenases and 13-hydroperoxide lyase in olive fruit mesocarp.

    Science.gov (United States)

    Padilla, María N; Hernández, M Luisa; Sanz, Carlos; Martínez-Rivas, José M

    2014-06-01

    The effect of different environmental stresses on the expression and enzyme activity levels of 13-lipoxygenases (13-LOX) and 13-hydroperoxide lyase (13-HPL) and on the volatile compounds synthesized by their sequential action has been studied in the mesocarp tissue of olive fruit from the Picual and Arbequina cultivars. The results showed that temperature, light, wounding and water regime regulate olive 13-LOXs and 13-HPL genes at transcriptional level. Low temperature and wounding brought about an increase in LOX and HPL enzyme activities. A very slight increase in the total content of six straight-chain carbons (C6) volatile compounds was also observed in the case of low temperature and wounding treatments. The physiological roles of 13-LOXs and 13-HPL in the olive fruit stress response are discussed. PMID:24629805

  18. Carbon and Carbon Isotope Cycling in the Western Canadian Arctic

    Science.gov (United States)

    Mol, Jacoba; Thomas, Helmuth

    2016-04-01

    Increasing carbon dioxide levels in the atmosphere are having drastic effects on the global oceans. The Arctic Ocean is particularly susceptible to change as warming, sea-ice loss and a weak buffering capacity all influence this complicated semi-enclosed sea. In order to investigate the inorganic carbon system in the Canadian Arctic, water samples were collected in the Beaufort Sea, on the Alaskan shelf, at the Mackenzie river delta, and in Amundsen Gulf during the summer of 2014 and were analyzed for dissolved inorganic carbon (DIC), total alkalinity (TA), DI13C and 18O isotopes. Carbon isotopes are used to investigate the role of biological production on the uptake and transfer of inorganic carbon to depth. A preferential uptake of the lighter 12C relative to the heavier 13C isotope during biological production leads to a fractionation of the 13C/12C isotopes in both the organic matter and the water column. This results in an enrichment of DI13C in the high productivity surface waters and a depletion of DI13C at depth. Physical processes including freshwater input, brine rejection, and water mass mixing are investigated through the measurement of oxygen isotopes. Differences in the carbon system across the study area due to both biological and physical processes are assessed using depth profiles of DI13C and related carbon system parameters.

  19. Le δ13C des grains de pollen : intérêt pour l'étude des paléovégétationsCarbon isotopic ratios of pollen: interest for palaeovegetations reconstructions

    Science.gov (United States)

    Descolas-Gros, Chantal; Calleja, Michel; Cour, Pierre; Richard, Paul; Perruchietti, Christiane; Jame, Patrick

    2001-06-01

    δ13C values of pollen grains belonging to different plant species (trees, herbaceous no poaceae, poaceae) were measured. Most of these temperate species are C3 plants with δ13C values between -28.6 ‰ and -21.7 ‰, the C4 plants have more positive values between -15.9 ‰ and -10 ‰. These results corroborate the interest of such measurements to differentiate C4 poaceae from C3 ones. Inside the same genus or the same species data variability is studied. Chemical treatment (acetolysis) of pollen grains induces a lowering of the values. These preliminary results are intended to help calibrate the pollen grains δ13C of modern plants in order to use δ13C of fossil pollen grains to reconstruct palaeovegetation variability responses to climatic factors.

  20. Carbon-13 and cadmium-113 nuclear magnetic resonance evidence for a novel transannular oscillation of cadmium(II) in the pendant arm macrocyclic complex (1,4,8,11-tetrakis(2-hydroxyethyl)-1,4,8,11-tetraazacyclotetradecane)cadmium(II)

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, P.; Hounslow, A.M.; Lincoln, S.F. (Univ. of Adelaide, South Australia (Australia)); Keough, R.A.; Wainwright, K.P. (Flinders Univ. of South Australia, Bedford Park (Australia))

    1990-05-16

    A {sup 13}C NMR study of (1,4,8,11-tetrakis(2-hydroxyethyl)-1,4,8,11-tetraazacyclotetradecane)cadmium(II), (Cd(THEC)){sup 2+}, in CD{sub 3}OD shows that the most probable structure for (Cd(THEC)){sup 2+} incorporates the 1,4,8,11-tetraazacyclotetradecane ring in the trans III configuration. In this structure Cd(II) is above the tetraaza plane and is trigonal-prismatically coordinated by four ring nitrogens and two hydroxyethyl pendant arms attached to either end of the same 1,3-diaminopropane moiety. The {sup 13}C CPMAS NMR spectrum of solid (Cd(THEC)){sup 2+} is also consistent with this structure. Dynamic {sup 13}C NMR studies of natural abundance (Cd(THEC)){sup 2+} and of (Cd(THEC)){sup 2+} in which both carbons of each of the hydroxyethyl arms are 99 atom % enriched in {sup 13}C are consistent with a rapid oscillation of Cd(II) through the macrocyclic annulus of THEC. The {sup 13}C-enriched hydroxyethyl arms are characterized by {sup 13}C AB quartets under conditions of slow exchange but show a novel coalescence to a singlet under fast-exchange conditions consistent with the relative chemical shifts of the methylene carbons of the hydroxyethyl arm being reversed when it changes from the mono- to the bidentate coordination state. The pairwise exchange of the hydroxyethyl arm between the monodentate and bidentate environments is characterized by k(298.2 K) = 34,200 {plus minus} 1,800 s{sup {minus}1}, {Delta}H{double dagger} = 44.00 {plus minus} 0.56 kJ mol{sup {minus}1}, and {Delta}S{double dagger} = {minus}10.6 {plus minus} 2.2 J K{sup {minus}1} mol{sup {minus}1}. {sup 13}C and {sup 113}Cd NMR spectra show that intermolecular THEC and Cd(II) exchange on (Cd(THEC)){sup 2+} is a much slower process. 29 refs., 6 figs.

  1. Carbon isotope techniques

    International Nuclear Information System (INIS)

    This book is a hands-on introduction to using carbon isotope tracers in experimental biology and ecology. It is a bench-top reference with protocols for the study of plants, animals, and soils. The 11C, 12C, 13C, and 14C carbon isotopes are considered and standard techniques are described by established authors. The compilation includes the following features: specific, well-established, user-oriented techniques; carbon cycles in plants, animals, soils, air, and water; isotopes in ecological research; examples and sample calculations

  2. Photosynthetic carbon assimilation in C/sub 3/- and C/sub 4/-plants. Tracer experiments using /sup 3/H, /sup 14/C, /sup 13/C and /sup 18/O

    Energy Technology Data Exchange (ETDEWEB)

    Ohhama, Tamiko (Tokyo Univ. (Japan). Inst. of Applied Microbiology)

    1982-09-01

    The photosynthetic mechanisms of plants have become to be well understood by the use of radioactive and stable isotopes. This review included the distribution of /sup 14/C in photosynthetic intermediates by assimilation with /sup 14/CO/sub 2/, resultant CO/sub 2/ receptors, Calvin cycle, C/sub 4/ photosynthetic pathway, differences between the photosynthetic pathway for C/sub 3/-plants and that for C/sub 4/-plants, photorespiration, glycolate pathway, the yield of photosynthetic quanta and the relationship between assimilation with /sup 14/CO/sub 2/ and /sup 13/C values. Reference was made to the photosynthetic mechanism in /sup 13/C-NMR follow-up with /sup 13/CO/sub 2/.

  3. 13 Things That Saved Apollo 13

    Science.gov (United States)

    Woodfill, Jared

    2012-01-01

    Perhaps, the most exciting rescue, terrestrial or extra-terrestrial, is the successful return of the Apollo 13 crew to Earth in April of 1970. The mission s warning system engineer, Jerry Woodfill, who remains a NASA employee after 47 years of government service has examined facets of the rescue for the past 42 years. He will present "13 Things That Saved Apollo 13" from the perspective of his real time experience as well as two score years of study. Many are recent discoveries never before published in mission reports, popular books or documentary and Hollywood movies depicting the rescue.

  4. Molecular characterization of the 1,3-propanediol (1,3-PD) operon of Clostridium butyricum

    OpenAIRE

    Raynaud, Céline; Sarçabal, Patricia; Meynial-Salles, Isabelle; Croux, Christian; Soucaille, Philippe

    2003-01-01

    The genes encoding the 1,3-propanediol (1,3-PD) operon of Clostridium butyricum VPI1718 were characterized from a molecular and a biochemical point of view. This operon is composed of three genes, dhaB1, dhaB2, and dhaT. When grown in a vitamin B12-free mineral medium with glycerol as carbon source, Escherichia coli expressing dhaB1, dhaB2, and dhaT produces 1,3-PD and high glycerol dehydratase and 1,3-PD dehydrogenase activities. dhaB1 and dhaB2 encode, respectively, a new type of glycerol d...

  5. Diversion of carbon flux from gibberellin to steviol biosynthesis by over-expressing SrKA13H induced dwarfism and abnormality in pollen germination and seed set behaviour of transgenic Arabidopsis.

    Science.gov (United States)

    Guleria, Praveen; Masand, Shikha; Yadav, Sudesh Kumar

    2015-07-01

    This paper documents the engineering of Arabidopsis thaliana for the ectopic over-expression of SrKA13H (ent-kaurenoic acid-13 hydroxylase) cDNA from Stevia rebaudiana. HPLC analysis revealed the significant accumulation of steviol (1-3 μg g(-1) DW) in two independent transgenic Arabidopsis lines over-expressing SrKA13H compared with the control. Independent of the steviol concentrations detected, both transgenic lines showed similar reductions in endogenous bioactive gibberellins (GA1 and GA4). They possessed phenotypic similarity to gibberellin-deficient mutants. The reduction in endogenous gibberellin content was found to be responsible for dwarfism in the transgenics. The exogenous application of GA3 could rescue the transgenics from dwarfism. The hypocotyl, rosette area, and stem length were all considerably reduced in the transgenics. A noteworthy decrease in pollen viability was noticed and, similarly, a retardation of 60-80% in pollen germination rate was observed. The exogenous application of steviol (0.2, 0.5, and 1.0 μg ml(-1)) did not influence pollen germination efficiency. This has suggested that in planta formation of steviol was not responsible for the observed changes in transgenic Arabidopsis. Further, the seed yield of the transgenics was reduced by 24-48%. Hence, this study reports for the first time that over-expression of SrKA13H cDNA in Arabidopsis has diverted the gibberellin biosynthetic route towards steviol biosynthesis. The Arabidopsis transgenics showed a significant reduction in endogenous gibberellins that might be responsible for the dwarfism, and the abnormal behaviour of pollen germination and seed set. PMID:25954046

  6. The electrochemistry of 13% chromium stainless steel in oilfield brines

    Energy Technology Data Exchange (ETDEWEB)

    Sidorin, Dmitry; Pletcher, Derek [Department of Chemistry, The University of Southampton, Southampton SO17 1BJ (United Kingdom); Hedges, Bill [BP Trinidad Ltd., P.O. Box 714, Port of Spain (Trinidad and Tobago)

    2005-07-25

    The electrochemistry of a 13% Cr stainless steel (API5CT L80-13Cr) in 3% NaCl containing acetate and either acetic acid or carbon dioxide at 333 K is explored using RDE voltammetry. The reduction of proton, carbonic acid and acetic acid occur simultaneously, immediately negative to the corrosion potential. Acetic acid gives a well formed reduction wave and the current densities increase with the equilibrium concentration of acetic acid in the medium; in the plateau region, the reduction is mass transport controlled. Despite this reduction process, the corrosion resistance and passivation current density are independent of the acetic acid concentration. It is confirmed that the 13% Cr stainless steel is much more resistant to corrosion that X65 carbon steel and, unlike the carbon steel, its rate of corrosion does not vary with acetic acid concentration. The properties of the passivating film appear to dominate the behaviour of the 13% Cr stainless steel. (author)

  7. The electrochemistry of 13% chromium stainless steel in oilfield brines

    International Nuclear Information System (INIS)

    The electrochemistry of a 13% Cr stainless steel (API5CT L80-13Cr) in 3% NaCl containing acetate and either acetic acid or carbon dioxide at 333 K is explored using RDE voltammetry. The reduction of proton, carbonic acid and acetic acid occur simultaneously, immediately negative to the corrosion potential. Acetic acid gives a well formed reduction wave and the current densities increase with the equilibrium concentration of acetic acid in the medium; in the plateau region, the reduction is mass transport controlled. Despite this reduction process, the corrosion resistance and passivation current density are independent of the acetic acid concentration. It is confirmed that the 13% Cr stainless steel is much more resistant to corrosion that X65 carbon steel and, unlike the carbon steel, its rate of corrosion does not vary with acetic acid concentration. The properties of the passivating film appear to dominate the behaviour of the 13% Cr stainless steel

  8. Ring chromosome 13

    DEFF Research Database (Denmark)

    Brandt, C A; Hertz, Jens Michael; Petersen, M B; Vogel, F; Noer, H; Mikkelsen, M

    1992-01-01

    A stillborn male child with anencephaly and multiple malformations was found to have the karyotype 46,XY,r(13) (p11q21.1). The breakpoint at 13q21.1, determined by high resolution banding, is the most proximal breakpoint ever reported in patients with ring chromosome 13. In situ hybridisation with...

  9. Carbon isotope effects in carbonate systems

    Science.gov (United States)

    Deines, Peter

    2004-06-01

    Global carbon cycle models require a complete understanding of the δ 13C variability of the Earth's C reservoirs as well as the C isotope effects in the transfer of the element among them. An assessment of δ 13C changes during CO 2 loss from degassing magmas requires knowledge of the melt-CO 2 carbon isotope fractionation. In order to examine the potential size of this effect for silicate melts of varying composition, 13C reduced partition functions were computed in the temperature range 275 to 4000 K for carbonates of varying bond strengths (Mg, Fe, Mn, Sr, Ba, Pb, Zn, Cd, Li, and Na) and the polymorphs of calcite. For a given cation and a given pressure the 13C content increases with the density of the carbonate structure. For a given structure the tendency to concentrate 13C increases with pressure. The effect of pressure (‰/10 kbar) on the size of the reduced partition function of aragonite varies with temperature; in the pressure range 1 to 10 5 bars the change is given by: Δ 13C p average=-0.01796+0.06635∗ 10 3/T+0.006875∗ 10 6/T2 For calcite III the pressure effect is on average 1.4× larger than that for aragonite at all temperatures. The nature of the cation in a given structure type has a significant effect on the carbon isotope fractionation properties. The tendency to concentrate 13C declines in the series magnesite, aragonite, dolomite, strontianite, siderite, calcite, smithonite, witherite, rhodochrosite, otavite, cerrusite. For divalent cations a general expression for an estimation of the reduced partition function (β) from the reduced mass (μ = [M Cation × M Carbonate]/[M Cation + M Carbonate]) is: 1000 lnβ=(0.032367-0.072563∗ 10 3/T-0.01073∗ 10 6/T2)∗μ-14.003+29.953∗ 10 3/T+9.4610∗ 10 6/T2 For Mg-calcite the 13C content varies with the Mg concentration. The fractionation between Mg-calcite (X = mole fraction of MgCO 3) and calcite is given by: 1000 ln(α MgCalite- Calcite)=[0.013702-0.10957× 10 3/T+1.35940× 10 6/T2

  10. Dynamic carbon allocation significantly changed land carbon sink and carbon pool sizes

    Science.gov (United States)

    Xia, J.; Yuan, W.

    2015-12-01

    The allocation of photosynthate among the plant components (e.g., leaves, stems, and roots) plays an important role in regulating plant growth, competition, and terrestrial carbon cycle. However, the carbon allocation process is still a weak part in the earth system models (ESMs). In this study, the Integrated BIosphere Simulator (IBIS) model coupled with a dynamic carbon allocation model (IBISAL) is used to explore the impact of carbon allocation on the terrestrial carbon cycle. This dynamic carbon allocation model suggests that plants should allocate the largest part of carbon to the plant components which need to capture the most limiting resources, such as light, water and nitrogen. In comparison to the results of original IBIS model using fixed allocation ratios, the net ecosystem productivity, global biomass and soil organic carbon simulated by IBISAL model decreased by13.4% , 9.9% and 20.8%, respectively . The dynamic allocation scheme tends to benefit roots allocation. Because roots had short turnover times, high roots allocation led to the decreases of global carbon sink and carbon pool sizes. The observations showed that the carbon allocation ratios changed with temperature and precipitation. The dynamic carbon allocation model could reproduce this phenomenon correctly. The results show that the dynamic carbon allocation ratios of boreal evergreen forests and C3 grasses are consistent well with the observations. However, the IBISAL, and another three ESMs (i.e., CESM1-BGC, IPSL-CM5A-MR and NorESM1-ME models) adopting dynamic allocation scheme overestimated the stems allocation of tropical forests. This study shows the substantial influences of carbon allocation on the carbon sink and carbon pool sizes. Therefore, improving estimations of carbon allocation by ESMs are an important and effective path to reduce uncertainties in the global carbon cycle simulation and climate change prediction.

  11. Carbon and oxygen isotope microanalysis of carbonate.

    Science.gov (United States)

    Velivetskaya, Tatiana A; Ignatiev, Alexander V; Gorbarenko, Sergey A

    2009-08-30

    Technical modification of the conventional method for the delta(13)C and delta(18)O analysis of 10-30 microg carbonate samples is described. The CO(2) extraction is carried out in vacuum using 105% phosphoric acid at 95 degrees C, and the isotopic composition of CO(2) is measured in a helium flow by gas chromatography/isotope ratio mass spectrometry (GC/IRMS). The feed-motion of samples to the reaction vessel provides sequential dropping of only the samples (without the sample holder) into the acid, preventing the contamination of acid and allowing us to use the same acid to carry out very large numbers of analyses. The high accuracy and high reproducibility of the delta(13)C and delta(18)O analyses were demonstrated by measurements of international standards and comparison of results obtained by our method and by the conventional method. Our method allows us to analyze 10 microg of the carbonate with a standard deviation of +/-0.05 per thousand for delta(13)C and delta(18)O. The method has been used successfully for the analyses of the oxygen and carbon isotopic composition of the planktonic and benthic foraminifera in detailed palaeotemperature reconstructions of the Okhotsk Sea. PMID:19603476

  12. Carbon isotope anomalies in carbonates of the Karelian series

    Science.gov (United States)

    Iudovich, Ia. E.; Makarikhin, V. V.; Medvedev, P. V.; Sukhanov, N. V.

    1990-07-01

    Results are presented on carbon isotope distributions in carbonates of the Karelian complex. A highly anomalous isotopic composition was found in carbonate rocks aged from 2.6 to 1.9 b.y. In the stromatolitic carbonates of the Onega water table, delta-(C-13) reaches a value of +18 percent, while the shungite layer of the Zaonega horizon is characterized by a wide dispersion (from +7.9 to -11.8 percent). These data are in good agreement with the known geochemical boundary (about 2.2 b.y. ago) in the history of the earth.

  13. Microbially mediated mineral carbonation

    Science.gov (United States)

    Power, I. M.; Wilson, S. A.; Dipple, G. M.; Southam, G.

    2010-12-01

    implemented and economically efficient alternative to other technologies currently under development for mineral sequestration. Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC (2008) Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Current Opinion in Biotechnology, 19, 235-240. Ferris FG, Wiese RG, Fyfe WS (1994) Precipitation of carbonate minerals by microorganisms: Implications of silicate weathering and the global carbon dioxide budget. Geomicrobiology Journal, 12, 1-13. Lackner KS, Wendt CH, Butt DP, Joyce EL, Jr., Sharp DH (1995) Carbon dioxide disposal in carbonate minerals. Energy, 20, 1153-1170. Power IM, Wilson SA, Thom JM, Dipple GM, Gabites JE, Southam G (2009) The hydromagnesite playas of Atlin, British Columbia, Canada: A biogeochemical model for CO2 sequestration. Chemical Geology, 206, 302-316. Thompson JB, Ferris FG (1990) Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water. Geology, 18, 995-998.

  14. Uptake of algal carbon and the synthesis of an "essential" fatty acid by Uvigerina ex. gr. semiornata (Foraminifera within the Pakistan margin oxygen minimum zone: evidence from fatty acid biomarker and 13C tracer experiments

    Directory of Open Access Journals (Sweden)

    K. E. Larkin

    2014-01-01

    Full Text Available Foraminifera are an important component of benthic communities in oxygen depleted settings, where they potentially play a~significant role in the processing of organic matter. We tracked the uptake of a 13C-labeled algal food source into individual fatty acids in the benthic foraminiferal species, Uvigerina ex. gr. semiornata, from the Arabian Sea oxygen minimum zone (OMZ. The tracer experiments were conducted on the Pakistan Margin during the late/post monsoon period (August–October 2003. A monoculture of the diatom Thalassiosira weisflogii was 13C-labeled and used to simulate a pulse of phytoplankton in two complementary experiments. A lander system was used for in situ incubations at 140 m and for 2.5 days duration, whilst a laboratory incubation used an oxystat system to maintain ambient dissolved oxygen concentrations. These shipboard experiments were terminated after 5 days. Uptake of diatoms was rapid, with high incorporation of diatom fatty acids into foraminifera after ~2 days in both experiments. Ingestion of the diatom food source was indicated by the increase over time in the quantity of diatom biomarker fatty acids in the foraminifera and by the high percentage of 13C in many of the fatty acids present at the endpoint of both in~situ and laboratory-based experiments. These results indicate that U. ex. gr. semiornata rapidly ingested the diatom food source and that this foraminifera will play an important role in the short-term cycling of organic matter within this OMZ environment. The experiments also suggested that U. ex. gr. semiornata consumed non-labeled bacterial food items, particularly bacteria, and synthesised the polyunsaturated fatty acid 20:4(n-6 de novo. 20:4(n-6 is often abundant in benthic fauna yet its origins and function have remained unclear. This study demonstrates that U. ex. gr. semiornata is capable of de novo synthesis of this "essential fatty acid" and is potentially a major source of this dietary nutrient

  15. Partial pressure (or fugacity) of carbon dioxide, dissolved inorganic carbon, temperature, salinity and other variables collected from discrete sample and profile observations using CTD, bottle and other instruments from the NATHANIEL B. PALMER in the South Pacific Ocean from 1997-01-13 to 1997-02-11 (NODC Accession 0116069)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0116069 includes chemical, discrete sample, physical and profile data collected from NATHANIEL B. PALMER in the South Pacific Ocean from 1997-01-13...

  16. Measurement of the concentration ratio for 13N and 12N isotopes at atmospheric pressure by carbon dioxide absorption of diode laser radiation at ∼2 μm

    International Nuclear Information System (INIS)

    The ratio of 12NO2 and 13CO2 concentrations in the human exhaled air is measured by the method of diode laser spectroscopy using a three-channel optical scheme and multipass cell. Unlike the previous measurements in the spectral range of ∼4.3 μm with a resolved rotational structure at low pressure of selected samples, the present measurements are performed in the range of ∼2 μm, in which weaker absorption bands of CO2 reside. In this case, it is possible to employ lasers and photodetectors operating at room temperature. The thorough simulation of the spectrum with collisional broadening of lines and employment of regression analysis allow one to take measurements at atmospheric pressure with the accuracy of ∼0.04%, which satisfies the requirements to medical diagnostics of ulcers. (laser spectroscopy)

  17. Detrital carbonate peaks on the Labrador shelf, a 13-7 ka template for freshwater forcing from the Hudson Strait outlet of the Laurentide Ice Sheet into the subpolar gyre

    Science.gov (United States)

    Jennings, Anne; Andrews, John; Pearce, Christof; Wilson, Lindsay; Ólfasdótttir, Sædís

    2015-01-01

    The Laurentide Ice Sheet (LIS) was a large, dynamic ice sheet in the early Holocene. The glacial events through Hudson Strait leading to its eventual demise are recorded in the well-dated Labrador shelf core, MD99-2236 from the Cartwright Saddle. We develop a detailed history of the timing of ice-sheet discharge events from the Hudson Strait outlet of the LIS during the Holocene using high-resolution detrital carbonate, ice rafted detritus (IRD), δ18O, and sediment color data. Eight detrital carbonate peaks (DCPs) associated with IRD peaks and light oxygen isotope events punctuate the MD99-2236 record between 11.5 and 8.0 ka. We use the stratigraphy of the DCPs developed from MD99-2236 to select the appropriate ΔR to calibrate the ages of recorded glacial events in Hudson Bay and Hudson Strait such that they match the DCPs in MD99-2236. We associate the eight DCPs with H0, Gold Cove advance, Noble Inlet advance, initial retreat of the Hudson Strait ice stream (HSIS) from Hudson Strait, opening of the Tyrrell Sea, and drainage of glacial lakes Agassiz and Ojibway. The opening of Foxe Channel and retreat of glacial ice from Foxe Basin are represented by a shoulder in the carbonate data. ΔR of 350 years applied to the radiocarbon ages constraining glacial events H0 through the opening of the Tyrell Sea provided the best match with the MD99-2236 DCPs; ΔR values and ages from the literature are used for the younger events. A very close age match was achieved between the 8.2 ka cold event in the Greenland ice cores, DCP7 (8.15 ka BP), and the drainage of glacial lakes Agassiz and Ojibway. Our stratigraphic comparison between the DCPs in MD99-2236 and the calibrated ages of Hudson Strait/Bay deglacial events shows that the retreat of the HSIS, the opening of the Tyrell Sea, and the catastrophic drainage of glacial lakes Agassiz and Ojibway at 8.2 ka are separate events that have been combined in previous estimates of the timing of the 8.2 ka event from marine records

  18. Synthesis and applications of 13C glycerol

    International Nuclear Information System (INIS)

    The authors are currently developing new synthetic routes to the various isotopomers of glycerol. Labeled glycerol is useful for 13C enrichment of biomolecules. However, traditional methods of glycerol synthesis are not easily adapted for isotopic enrichment or have poor overall yields (12-15%). In addition, the use of glycerol for enrichment can be prohibitively expensive and its availability depends on the level of demand. The authors have developed a short de novo synthesis of [U-13C]glycerol from carbon dioxide (∼53% overall yield for four steps) and are currently examining the feasibility of synthesizing site-specific 13C labeled glycerol and dihydroxyacetone (DHA) from methanol and carbon dioxide. The authors have examined the enzymatic conversion of [U-13C]glycerol to glyceraldehyde-3-monophosphate or dihydroxyacetone monophosphate (DHAP) with yields ranging from 25-50% (as determined by NMR spectroscopy). The authors are also pursuing the chemical conversion of 13C labeled DHA to DHAP and the results are presented. Labeled DHAP is a possible enzymatic precursor for both labeled 2-deoxyribose and 2-deoxyribonucleic acids

  19. Apollo 13 emblem

    Science.gov (United States)

    1969-01-01

    This is the insignia of the Apollo 13 lunar landing mission. Represented in the Apollo 13 emblem is Apollo, the sun god of Greek mythology, symbolizing how the Apollo flights have extended the light of knowledge to all mankind. The Latin phrase Ex Luna, Scientia means 'From the Moon, Knowledge'.

  20. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Scientific Opinion on the substantiation of health claims related to carbonate and bicarbonate salts of sodium and potassium and maintenance of normal bone (ID 331, 1402) pursuant to Article 13(1) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    claims in relation to carbonate and bicarbonate salts of sodium and potassium and maintenance of normal bone. The scientific substantiation is based on the information provided by the Member States in the consolidated list of Article 13 health claims and references that EFSA has received from Member....../base balance and bone health” and “bone density/bone health”. The target population is assumed to be the general population. In the context of the proposed wordings, the Panel assumes that the claimed effects refer to the maintenance of normal bone by maintaining acid-base balance. The Panel considers that...... maintenance of normal bone is a beneficial physiological effect. No references were provided from which conclusions could be drawn for the scientific substantiation of the claim. On the basis of the data presented, the Panel concludes that a cause and effect relationship has not been established between the...

  1. Trisomy 13: Changing Perspectives.

    Science.gov (United States)

    Macias, Gabriel; Riley, Cheryl

    2016-01-01

    The diagnosis of trisomy 13 has been considered incompatible with life. Trisomy 13 is associated with a pattern of congenital anomalies and mental disabilities that make caring for these infants a challenge for both the family and health care professionals. The clinical management of trisomy 13 varies based on the organ systems involved. The current standard of care has been withholding intensive support and providing comfort care. Recent literature suggests there are improved outcomes in infants who receive intensive care at birth. In addition, case reports evaluating older children with trisomy 13 report that, although there are significant intellectual and psychomotor disabilities, these children do meet developmental milestones such as smiling in response to parents, sitting unassisted, and walking with a walker. This case review will include a discussion of the clinical course of an infant born with mosaic trisomy 13 where the parents requested intensive care. PMID:26842537

  2. Dissolved inorganic carbon, total alkalinity, pH, fugacity of carbon dioxide, and other variables from surface observations using Niskin bottle, flow through pump and other instruments from the Ronald H. Brown in the Gulf of Mexico and East Coast of the United States during the second Gulf of Mexico and East Coast Carbon (GOMECC-2) Cruise from 2012-07-22 to 2012-08-13 (NODC Accession 0117971)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains ocean acidification related data from the the second Gulf of Mexico and East Coast Carbon (GOMECC-2) Cruise on board the R/V Ronald...

  3. 40 CFR 52.1682 - Control strategy: Carbon monoxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Carbon monoxide. 52...: Carbon monoxide. (a) Approval—The November 13, 1992 revision to the carbon monoxide state implementation... attainment of the National Ambient Air Quality Standard for carbon monoxide through the year 2003....

  4. PREFACE: RREPS13 and Meghri13

    Science.gov (United States)

    Potylitsyn, Alexander; Karataev, Pavel; Mkrtchyan, Alpik

    2014-05-01

    These Proceedings are published as a recollection of contributions presented at the X International Symposium on "Radiation from Relativistic Electrons in Periodic Structures" (RREPS-13) merged with III International Conference "Electron, Positron, Neutron and X-ray Scattering under External Influences" (Meghri-13), which was held at Lake Sevan, 23-28 September, 2013, Armenia. RREPS-13 and Meghri-13 were co-organized by Tomsk Polytechnic University (Russia) and Institute of Applied Problems of Physics (Armenia). The main goal of the symposium was to bring together the scientists from around the world who work on designs of new radiation sources and their applications. There were 89 participants from 12 countries. The website of the symposium is available at http://rreps.tpu.ru/ The scientific program of the symposium consisted of 8 sections and a satellite Workshop on Terahertz Radiation generation. All papers in these Proceedings refer to one from the following topics: Section 1: General Properties of Radiation from Relativistic Particles Section 2: Transition Radiation Section 3: Parametric X-Radiation Section 4: Diffraction Radiation and Smith-Purcell Effect Section 5: Coherent Bremsstrahlung and Channeling Radiation Section 6: X-Ray Scattering without and by Acoustic Superlattices Section 7: Interaction of Particles Beams with Artificial Structures (Acoustic Superlattices, Metamaterials, etc.) Section 8: Application of Radiation Beams The published papers cover nearly all "hot" topics of current interest on investigations of monochromatic and broadband radiation sources based on accelerators and X-ray tubes. Different mechanisms of radiation emission such as Compton backscattering, Cherenkov radiation, transition radiation, diffraction radiation, Smith-Purcell effect, parametric X-ray were considered in Sections 1, 2, 3, 4 and 5. The problem of control of radiation parameters by external acoustic fields is discussed in Section 6. Several applications of

  5. Diet control on carbon isotopic composition of land snail shell carbonate

    Institute of Scientific and Technical Information of China (English)

    LIU ZongXiu; GU ZhaoYan; WU NaiQin; XU Bing

    2007-01-01

    Carbon isotope compositions for both the carbonate shells and soft bodies (organic tissue) of living land snails collected mostly from the Loess Plateau, China have been measured. The result shows that δ13C values range from -13.1‰ to -4.3‰ for the aragonite shell samples and from -26.8‰ to -18.0‰ for the soft body samples. Although the shells are enriched in 13C relative to the bodies averagely by 14.2(±0.8)‰, the shell δ13Ca values are closely correlated to the body δ13Corg values, expressed as δ13Ca = 1.021 δ13Corg + 14.38 (R = 0.965; N = 31). This relationship indicates that δ13Ca is primarily a function of the isotopic composition of the snail diets since previous studies have proved that the snail body is the same as their food in carbon isotope composition. In other words, carbon isotope compo-sition of the carbonate shell can be used as a proxy to estimate the dietary 13C abundance of the land snails. The data also support that the 13C enrichment of the carbonate shells results mainly from the equilibrium fractionations between the metabolic CO2, HCO3- in the hemolymph and shell aragonite, and partially from kinetic fractionations when snail shells form during their activity.

  6. Abundance anomaly of the 13C species of CCH

    Science.gov (United States)

    Sakai, N.; Saruwatari, O.; Sakai, T.; Takano, S.; Yamamoto, S.

    2010-03-01

    Aims: We have observed the N = 1-0 lines of CCH and its 13C isotopic species toward a cold dark cloud, TMC-1 and a star-forming region, L1527, to investigate the 13C abundances and formation pathways of CCH. Methods: The observations have been carried out with the IRAM 30 m telescope. Results: We have successfully detected the lines of 13CCH and C13CH toward the both sources and found a significant intensity difference between the two 13C isotopic species. The [C13CH] /[13CCH] abundance ratios are 1.6 ± 0.4 (3σ) and 1.6 ± 0.1 (3σ) for TMC-1 and L1527, respectively. The abundance difference between C13CH and 13CCH means that the two carbon atoms of CCH are not equivalent in the formation pathway. On the other hand, the [CCH]/[C13CH] and [CCH]/[13CCH] ratios are evaluated to be larger than 170 and 250 toward TMC-1, and to be larger than 80 and 135 toward L1527, respectively. Therefore, both of the 13C species are significantly diluted in comparison with the interstellar 12C/13C ratio of 60. The dilution is discussed in terms of a behavior of 13C in molecular clouds.

  7. Turnover of organic carbon and nitrogen in soil assessed from δ13C and δ15N changes under pasture and cropping practices and estimates of greenhouse gas emissions.

    Science.gov (United States)

    Dalal, Ram C; Thornton, Craig M; Cowie, Bruce A

    2013-11-01

    The continuing clearance of native vegetation for pasture, and especially cropping, is a concern due to declines in soil organic C (SOC) and N, deteriorating soil health, and adverse environment impact such as increased emissions of major greenhouse gases (CO2, N2O and CH4). There is a need to quantify the rates of SOC and N budget changes, and the impact on greenhouse gas emissions from land use change in semi-arid subtropical regions where such data are scarce, so as to assist in developing appropriate management practices. We quantified the turnover rate of SOC from changes in δ(13)C following the conversion of C3 native vegetation to C4 perennial pasture and mixed C3/C4 cereal cropping (wheat/sorghum), as well as δ(15)N changes following the conversion of legume native vegetation to non-legume systems over 23 years. Perennial pasture (Cenchrus ciliaris cv. Biloela) maintained SOC but lost total N by more than 20% in the top 0-0.3m depth of soil, resulting in reduced animal productivity from the grazed pasture. Annual cropping depleted both SOC and total soil N by 34% and 38%, respectively, and resulted in decreasing cereal crop yields. Most of these losses of SOC and total N occurred from the >250 μm fraction of soil. Moreover, this fraction had almost a magnitude higher turnover rates than the 250-53 μm and system. Even then, the pasture system is not considered as a benchmark of agricultural sustainability because of its decreasing productivity in this semi-arid subtropical environment. Introduction of legumes (for N2 fixation) into perennial pastures may arrest the productivity decline of this system. Restoration of SOC in the cropped system will require land use change to perennial ecosystems such as legume-grass pastures or native vegetation. PMID:23721610

  8. Synthesis of carbon-14 and carbon-13 labelled (R)-(-)2[[4-(2,6-di-1-pyrrolidinyl-4-pyrimidinyl)-1-piperazinyl]me thyl]-3,4-dihydro-2,5,7,8-tetramethyl-2H-1-benzopyran-6-ol. [Anti-asthmatic

    Energy Technology Data Exchange (ETDEWEB)

    Ackland, M.J.; Howard, M.R.; Dring, L.G. (Upjohn Laboratories-Europe, Upjohn Ltd., Crawley (United Kingdom)); Jacobsen, E.J.; Secreast, S.L. (Upjohn Co., Kalamazoo, MI (United States))

    1993-01-01

    This paper describes the synthesis and characterisation of 2[[4-(2,6-di-1-pyrrolidinyl-4-pyrimidinyl)-1-piperazinyl]-[[sup 14]C -methyl]-3,4-dihydro-2,5,7,8-tetramethyl-2H-1-benzopyran-6-ol and 2[[4-(2,6-di-1-pyrrolidinyl-4-[[sup 13]C[sub 2

  9. Carbone-14, carbone-13 et oxygène-18 dans les sédiments carbonatés du lac Titicaca: premières estimations des vitesses de sédimentation et essai de paléoclimatologie

    OpenAIRE

    Fontes, J.C.; Boulangé, Bruno; Rodrigo, L

    1981-01-01

    La précipitation des carbonates se produit et s'est produite dans des conditions voisines de l'équilibre avec l'eau du lac et le CO2 de l'atmosphère. La vitesse moyenne de sédimentation est de l'ordre de 0,5 mm.an-1 au cours du dernier millenaire qui a vu le bilan hydrologique du lac fluctuer assez largement. (Résumé d'auteur)

  10. Application of stable carbon isotopes in long term mesocosm studies for carbon cycle investigation

    Science.gov (United States)

    Esposito, Mario

    2016-04-01

    Carbon dioxide (CO2) is an effective greenhouse gas. The Oceans absorb ca. 30% of the anthropogenic CO2 emissions and thereby partly attenuate deleterious climate effects. A consequence of the oceanic CO2 uptake is a decreased seawater pH and planktonic community shifts. The quantification of the anthropogenic perturbation was investigated through stable carbon isotope analysis in three "long term" mesocosm experiments (Sweden 2013, Gran Canaria 2014, Norway 2015) which reproduced near natural ecosystem conditions under both controlled and modified future CO2 level (up to 2000 ppm) scenarios. Parallel measurements of the stable isotope composition of dissolved inorganic carbon13CDIC) dissolved organic carbon13CDOC) and particulate carbon13CTPC) both from the mesocosms water column and sediment traps showed similar trends in all the three experiments. A CO2 response was noticeable in the isotopic dataset, but increased CO2 levels had only a subtle effect on the concentrations of the dissolved and particulate organic carbon pool. Distinctive δ13C signatures of the particulate carbon pool both in the water column and the sediments were detectable for the different CO2 treatments and they were strongly correlated with the δ13CDIC signatures but not with the δ13CDOC pool. The validity of the isotopic data was verified by cross-analyses of multiple substances of known isotopic signatures on a GasBench, Elemental Analyser (EA) and on an in-house TOC-IRMS setup for the analysis of δ13CDIC, δ13CTPC and δ13CDOC, respectively. Results from these mesocosm experiments proved the stable carbon isotope approach to be an effective tool for quantifying the uptake and carbon transfer among the various compartments of the marine carbon system.

  11. Heteronuclear carbon nanotubes: applications to study carbon nanotube growth

    International Nuclear Information System (INIS)

    Full text: Synthesis of heteronuclear carbon nanotubes and their application for a variety of studies is presented. SWCNTs peapods encapsulating highly 13C enriched fullerenes and double wall carbon nanotubes (DWCNTs) based on the peapods were prepared. Raman studies indicate that the inner tubes are highly 13C enriched with no carbon exchange between the two walls during the synthesis. The material enables the straightforward identification of the inner and outer tube vibrational spectra. An inhomogeneous broadening, assigned to the random distribution of 12C and 13C nuclei is observed and is explained by ab initio vibrational analysis. The growth of inner tubes from organic solvents was proven by the use of 13C labeled organic materials such as toluene. The simultaneous encapsulation of fullerenes with the solvents was found crucial as these prevent the solvents from evaporating during the high temperature synthesis of the inner tubes. Nuclear magnetic resonance on the peapods and DWCNTs with highly 13C enriched fullerenes or inner walls proves the significant contrast of the isotope enriched SWCNTs as compared to other carbon phases. The NMR experiment on the DWCNTs yield direct information on the electronic properties of small diameter SWCNTs. The significantly different chemical shift of the inner tubes is related to a curvature effect. Relaxation data on the inner tubes shows a deviation from a Fermi-liquid behavior. (author)

  12. Isotopic fractionation between organic carbon and carbonate carbon in Precambrian banded ironstone series from Brazil

    International Nuclear Information System (INIS)

    37 delta13Csub(org) and 9 delta13Csub(carb) values furnished by argillaceous and carbonate sediments from the Rio das Velhas and Minas Series (Minas Gerais, Brazil) have yielded means of -24.3 +- 3.9 promille [PDB] and -0.9 +- 1.4 promille [PDB], respectively. These results, obtained from a major sedimentary banded ironstone province with an age between 2 and 3 x 109 yr, support previous assumptions that isotopic fractionation between inorganic and organic carbon in Precambrian sediments is about the same as in Phanerozoic rocks. This is consistent with a theoretically expected constancy of the kinetic fractionation factor governing biological carbon fixation and, likewise, with a photosynthetic pedigree of the reduced carbon fraction of Precambrian rocks. (orig.)

  13. Programmed chloroplast destruction during leaf senescence involves 13-lipoxygenase (13-LOX).

    Science.gov (United States)

    Springer, Armin; Kang, ChulHee; Rustgi, Sachin; von Wettstein, Diter; Reinbothe, Christiane; Pollmann, Stephan; Reinbothe, Steffen

    2016-03-22

    Leaf senescence is the terminal stage in the development of perennial plants. Massive physiological changes occur that lead to the shut down of photosynthesis and a cessation of growth. Leaf senescence involves the selective destruction of the chloroplast as the site of photosynthesis. Here, we show that 13-lipoxygenase (13-LOX) accomplishes a key role in the destruction of chloroplasts in senescing plants and propose a critical role of its NH2-terminal chloroplast transit peptide. The 13-LOX enzyme identified here accumulated in the plastid envelope and catalyzed the dioxygenation of unsaturated membrane fatty acids, leading to a selective destruction of the chloroplast and the release of stromal constituents. Because 13-LOX pathway products comprise compounds involved in insect deterrence and pathogen defense (volatile aldehydes and oxylipins), a mechanism of unmolested nitrogen and carbon relocation is suggested that occurs from leaves to seeds and roots during fall. PMID:26969728

  14. Carbon isotopic fractionation in heterotrophic microbial metabolism

    Science.gov (United States)

    Blair, N.; Leu, A.; Munoz, E.; Olsen, J.; Kwong, E.; Des Marais, D.

    1985-01-01

    Differences in the natural-abundance carbon stable isotopic compositions between products from aerobic cultures of Escherichia coli K-12 were measured. Respired CO2 was 3.4 percent depleted in C-13 relative to the glucose used as the carbon source, whereas the acetate was 12.3 percent enriched in C-13. The acetate C-13 enrichment was solely in the carboxyl group. Even though the total cellular carbon was only 0.6 percent depleted in C-13, intracellular components exhibited a significant isotopic heterogeneity. The protein and lipid fractions were -1.1 and -2.7 percent, respectively. Aspartic and glutamic acids were -1.6 and +2.7 percent, respectively, yet citrate was isotopically identical to the glucose. Probable sites of carbon isotopic fractionation include the enzyme, phosphotransacetylase, and the Krebs cycle.

  15. Carbon Research in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Glogar, Petr

    Singapore : World Scientific, 1996 - (Palmer, K.; Marx , D.; Wright, M.), s. 421-425 [Carbon and Carbonaceous Composite Materials: Structure-Property Relationships. Malenovice (CZ), 10.10.1995-13.10.1995

  16. 13. Atmosphere and climate

    International Nuclear Information System (INIS)

    This chapter reports on past and current trends in the major forms of atmospheric pollution and on the relative contributions of the countries of the world to these emissions. It also reports on emissions of carbon dioxide from industrial processes - principally the combustion of fossil fuels - which is the largest single source of greenhouse gases and an appropriate target for initial efforts to limit emissions. Discussions are presented on the following: urban air pollution - sources, trends and effects (particulates, sulfur dioxide, smog and its precursors, indoor air pollution, carbon monoxide, lead); regional air pollution - sources, trends and effects (acid deposition, ground-level ozone, regional responses and emission trends, acceleration of ozone depletion); solutions (cleaning up stationary sources, corporate responsibility movement, reducing vehicle pollution); global climate treaty talks proceed; greenhouse gas emissions; and targets for limiting emissions

  17. Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes.

    OpenAIRE

    Bowling, DR; Pataki, DE; Randerson, JT

    2008-01-01

    Stable carbon isotopes are used extensively to examine physiological, ecological, and biogeochemical processes related to ecosystem, regional, and global carbon cycles and provide information at a variety of temporal and spatial scales. Much is known about the processes that regulate the carbon isotopic composition (delta(13)C) of leaf, plant, and ecosystem carbon pools and of photosynthetic and respiratory carbon dioxide (CO(2)) fluxes. In this review, systematic patterns and mechanisms unde...

  18. The research of a method for determination of total carbon, combination carbon and free carbon in beryllium metal

    International Nuclear Information System (INIS)

    A method for determination of total carbon, combination carbon and free carbon in beryllium metal with LECO CS-344 carbon/sulphur determinant has been studied. Tungsten-copper mixed pellets are used as flux to the determination of total carbon. Ratio of weight of the flux to the sample is greater than 20:1. Good analytical results are got. By this method the relative standard deviation is <10% when the content of total carbon in the range of 0.050%∼0.080% in beryllium. A standard steel sample of carbon is added into beryllium, the recoveries are 94%∼106%. For determination of free carbon, the sample are decomposed with 3 mol/L HCl, filtered and followed determination. By this method the relative standard deviation is ≤10% when the content of free carbon in the range of 0.006%∼0.020% in beryllium. the balance of total carbon and free carbon is equal to combination carbon. The method is used to determine the sample of content of total carbon in the range of 0.050%∼1.00%, free carbon in the range of 0.006%∼0.500% in metal beryllium. (6 refs., 1 fig., 13 tabs.)

  19. Comment: 13 [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available Life Science licensed under CC Attribution2.1 Japan ヒトアイコンの別候補を作成してみました。 ttamura 2008/11/06 17:14:44 ... ...Human Homo sapiens Homo_sapiens_L.png 13.png Taxonomy icon (c) Database Center for

  20. Towards a 13 measurement

    Indian Academy of Sciences (India)

    Kam-Biu Luk

    2012-11-01

    Reactor-based antineutrino experiments hold the promise of providing an unambiguous determination of the neutrino mixing angle 13. At present, Daya Bay, Double Chooz and RENO are such experiments being set up for this purpose. In this paper, the status and prospects of these three initiatives are presented.

  1. Estimation of the contribution of soil carbon to paddy rice and soil to rice carbon transfer factor using natural abundances of stable carbon isotopes

    International Nuclear Information System (INIS)

    To obtain the soil-to-rice transfer factor (TF) of carbon-14 (14C), TF of stable carbon was estimated by measuring stable carbon isotope ratios (13C/12C) and total C concentrations in rice grain and associated soil samples collected throughout Japan. Carbon isotope ratios were reported in terms of a δ13C value. By comparing δ13C values for brown rice, white rice and bran, we concluded that white rice was the most suitable part to be used for this estimation because it reflects products from photosynthesis. The δ13C values for white rice and soil showed a weak correlation which may indicate a potential carbon supply from soil to rice. Thus we took a statistical approach to estimate the percent of soil-origin carbon in rice plants. We found that a maximum 1.6% of total carbon in rice plants was from soil under the reasonable assumptions that the carbon fractionation by paddy rice was -19 per mille and δ13C of atmospheric CO2 was -8 per mille. Maximum TF value ranged from 0.05 to 0.5 for stable carbon and the value would also be applicable for 14C because the carbon fractionation effect for 14C would be negligible in carbon transfer. (author)

  2. The synthesis of [2-13C]2-nitropropane at room temperature and at atmospheric pressure

    NARCIS (Netherlands)

    Jacquemijns M; Zomer G

    1990-01-01

    In this report the synthesis of [2-13C]2-nitropropane at room temperature is described. [2-13C]Acetone was converted into the oxime with hydroxy hydrochloridelamine and sodium carbonate. Treatment with hypobromic acid resulted in 2-13C]2-bromo-2-nitropropane. Hydrogenation with sodium borohydride

  3. Carbon-carbon composites based on a polyimide matrix ITA

    Czech Academy of Sciences Publication Activity Database

    Yudin, V. E.; Goikhman, M. Y.; Gribanov, A. V.; Gubanova, G. N.; Kudryavtsev, V. V.; Balík, Karel; Glogar, Petr

    Singapore : World Scientific, 1996 - (Palmer, K.; Marx , D.; Wright, M.), s. 187-197 ISBN 981-02-2801-5. [Carbon and Carbonaceous Composite Materials: Structure-Property Relationships. Malenovice (CZ), 10.10.1995-13.10.1995] R&D Projects: GA ČR GA104/94/1789

  4. Pores and Cracks Analysis of Carbon-Carbon Composites

    Czech Academy of Sciences Publication Activity Database

    Weishauptová, Zuzana; Balík, Karel; Medek, Jiří

    Illinois : World Scientific Publishing Go.Pte.Ltd., 1996 - (Palmer, K.; Marx , D.; Wright, M.), s. 364-370 ISBN 981-02-2801-5. [International Conference on Carbon and Carbonaceous Composite Materials. Malenovice (CZ), 10.10.1995-13.10.1995] R&D Projects: GA ČR GA104/94/1789

  5. Porous carbons

    Indian Academy of Sciences (India)

    Satish M Manocha

    2003-02-01

    Carbon in dense as well as porous solid form is used in a variety of applications. Activated porous carbons are made through pyrolysis and activation of carbonaceous natural as well as synthetic precursors. Pyrolysed woods replicate the structure of original wood but as such possess very low surface areas and poor adsorption capacities. On activation, these exhibit increased adsorption volumes of 0.5–0.8 cm3 /gm and surface areas of 700–1800 m2 /gm depending on activation conditions, whether physical or chemical. Former carbons possess mixed pore size distribution while chemically activated carbons predominantly possess micropores. Thus, these carbons can be used for adsorption of wide distributions of molecules from gas to liquid. The molecular adsorption within the pores is due to single layer or multilayer molecule deposition at the pore walls and hence results in different types of adsorption isotherm. On the other hand, activated carbon fibres with controlled microporous structure and surface area in the range of 2500 m2 /gm can be developed by controlled pyrolysis and physical activation of amorphous carbon fibres. Active carbon fibres with unmatchable pore structure and surface characteristics are present and futuristic porous materials for a number of applications from pollution control to energy storage.

  6. Trisomy 13 (Patau Syndrome

    Directory of Open Access Journals (Sweden)

    Masoud Poureisa

    2009-01-01

    Full Text Available "nDescription and Definition: Synonym: patau syndrome with an incidence of 1 in 5000 births, this syndrome is characterized by multiple congenital abnormalities involving virtually every organ system. "nAbnormalities Detectable by Ultrasound "nHoloprosencephaly "nVentriculomegaly "nEnlarged cisterna magna "nMicrocephaly "nAgenesis of the corpus callosum "nCleft lip and palate "nMidface hypoplasia "nCyclopia "nMicrophthalmia "nHypotelorism "nNuchal thickening "nNeural tube defect "nOmphalocele "nEchogenic, enlarged kidneys "nEchoic bowel "nEchogenic chordae tendinaea and single umbilical artery "nCardiac defects "nRadial aplasia "nPolydactyly "nFlexion deformity of the fingers "nMajor Differential Diagnoses "nMeckel-Gruber syndrome (polydactyly, neural tube defects and enlarged echogenic kidneys "nOther diagnostic possibilities vary, depending on the multiple abnormalities present in each affected fetus. "nUltrasound Diagnosis "nPrenatal sonographic detection has been established at as early as 12 weeks' gestation, based on the presence of holoprosencephaly. "nThe sonographic abnormalities (described earlier are easily detectable, owing to the severity of the defects and the multitude of organ systems involved. "nThe sensitivity of sonographic detection of trisomy 13 has been reported to be between 90% and 100% when a complete structural survey (including the heart is accomplished. "nIt is possible, although unusual, for a fetus with trisomy 13 syndome to have a completely normal structural survey in the second trimester. "nHeredity "nThis is an autosomal trisomic syndrome. "nNatural History and Outcome "nMost neonates with trisomy 13 die within hours or days of delivery. Eighty percent of affected babies die within the first month of life. "nOccasionally, survivors are reported; however, these individuals have profound mental retardation, seizures and failure to thrive. "nThose with trisomy 13 mosaicism may have a less severe clinical

  7. Carbon-14 measurements in aquifers with methane

    International Nuclear Information System (INIS)

    A survey of various groundwater systems indicates that methane is a common trace constituent and occasionally a major carbon species in groundwaters. Thermocatalytic methane had delta13Csub(CH4)>-45 per mille and microbially produced or biogenic methane had delta13Csub(CH4)13C values for the inorganic carbon. Thermocatalytic methane had no apparent effect on the inorganic carbon. Because methanogenesis seriously affects the carbon isotope geochemistry of groundwaters, the correction of raw 14C ages of affected groundwaters must consider these effects. Conceptual models are developed which adjust the 14C activity of the groundwater for the effects of methanogenesis and for the dilution of carbon present during infiltration by simple dissolution of rock carbonate. These preliminary models are applied to groundwaters from the Alliston sand aquifer where methanogenesis has affected most samples. In this system, methanogenic bacteria using organic matter present in the aquifer matrix as substrate have added inorganic carbon to the groundwater which has initiated further carbonate rock dissolution. These processes have diluted the inorganic carbon 14C activity. The adjusted groundwater ages can be explained in terms of the complex hydrogeology of this aquifer, but also indicate that these conceptual models must be more rigorously tested to evaluate their appropriateness. (author)

  8. The (13)Carbon footprint of B[e] supergiants

    Czech Academy of Sciences Publication Activity Database

    Liermann, A.; Kraus, Michaela; Schnurr, O.; Borges Fernandes, M.

    2010-01-01

    Roč. 408, č. 1 (2010), L6-L10. ISSN 0035-8711 R&D Projects: GA ČR GA205/08/0003 Institutional research plan: CEZ:AV0Z10030501 Keywords : circumstellar matter * BE stars * emission line Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.888, year: 2010

  9. Molecular characterization of the 1,3-propanediol (1,3-PD) operon of Clostridium butyricum

    Science.gov (United States)

    Raynaud, Céline; Sarçabal, Patricia; Meynial-Salles, Isabelle; Croux, Christian; Soucaille, Philippe

    2003-01-01

    The genes encoding the 1,3-propanediol (1,3-PD) operon of Clostridium butyricum VPI1718 were characterized from a molecular and a biochemical point of view. This operon is composed of three genes, dhaB1, dhaB2, and dhaT. When grown in a vitamin B12-free mineral medium with glycerol as carbon source, Escherichia coli expressing dhaB1, dhaB2, and dhaT produces 1,3-PD and high glycerol dehydratase and 1,3-PD dehydrogenase activities. dhaB1 and dhaB2 encode, respectively, a new type of glycerol dehydratase and its activator protein. The deduced proteins DhaB1 and DhaB2, with calculated molecular masses of 88,074 and 34,149 Da, respectively, showed no homology with the known glycerol dehydratases that are all B12 dependent but significant similarity with the pyruvate formate lyases and pyruvate formate lyases activating enzymes and their homologues. The 1,158-bp dhaT gene codes for a 1,3-PD dehydrogenase with a calculated molecular mass of 41,558 Da, revealing a high level of identity with other DhaT proteins from natural 1,3-PD producers. The expression of the 1,3-PD operon in C. butyricum is regulated at the transcriptional level, and this regulation seems to involve a two-component signal transduction system DhaAS/DhaA, which may have a similar function to DhaR, a transcriptional regulator found in other natural 1,3-PD producers. The discovery of a glycerol dehydratase, coenzyme B12 independent, should significantly influence the development of an economical vitamin B12-free biological process for the production of 1,3-PD from renewable resources. PMID:12704244

  10. Does the Shuram δ13C excursion record Ediacaran oxygenation?

    Science.gov (United States)

    Husson, J. M.; Maloof, A. C.; Schoene, B.; Higgins, J. A.

    2013-12-01

    The most negative carbon isotope excursion in Earth history is found in carbonate rocks of the Ediacaran Period (635-542 Ma). Known colloquially as the the 'Shuram' excursion, workers have long noted its tantalizing, broad concordance with the rise of abundant macro-scale fossils in the rock record, variously interpreted as animals, giant protists, macro-algae and lichen, and known as the 'Ediacaran Biota.' Thus, the Shuram excursion has been interpreted by many in the context of a dramatically changing redox state of the Ediacaran oceans - e.g., a result of methane cycling in a low O2 atmosphere, the final destruction of a large pool of recalcitrant dissolved organic carbon (DOC), and the step-wise oxidation of the Ediacaran oceans. More recently, diagenetic interpretations of the Shuram excursion - e.g. sedimentary in-growth of very δ13C depleted authigenic carbonates, meteoric alteration of Ediacaran carbonates, late-stage burial diagenesis - have challenged the various Ediacaran redox models. A rigorous geologic context is required to discriminate between these explanatory models, and determine whether the Shuram excursion can be used to evaluate terminal Neoproterozoic oxygenation. Here, we present chemo-stratigraphic data (δ13C, δ18O, δ44/42Ca and redox sensitive trace element abundances) from 12 measured sections of the Ediacaran-aged Wonoka Formation (Fm.) of South Australia that require a syn-depositional age for the extraordinary range of δ13C values (-12 to +4‰) observed in the formation. In some locations, the Wonoka Fm. is ~700 meters (m) of mixed shelf limestones and siliclastics that record the full 16 ‰ δ13C excursion in a remarkably consistent fashion across 100s of square kilometers of basin area. Fabric-altering diagenesis, where present, occurs at the sub-meter vertical scale, only results in sub-permil offsets in δ13C and cannot be used to explain the full δ13C excursion. In other places, the Wonoka Fm. is host to deep (1 km

  11. Evaluation of bioremediation systems utilizing stable carbon isotope analysis

    International Nuclear Information System (INIS)

    Carbon, whether in an organic or inorganic form, is composed primarily of two stable isotopes, carbon-12 and carbon-13. The ratio of carbon-12 to carbon-13 is approximately 99:1. The stable carbon isotope ratios of most natural carbon materials of biological interest range from approximately 0 to -110 per mil (per-thousand) versus the PDB standard. Utilizing stable carbon isotope analysis, it is often possible to determine the source(s) of the liberated carbon dioxide, thereby confirming successful mineralization of the targeted carbon compound(s) and, if the carbon dioxide results from multiple carbon compounds, in what ratio the carbon compounds are mineralized. Basic stable isotope 'theory' recommended sampling procedures and analysis protocols are reviewed. A case study involving fuel oil presented on the application of stable carbon isotope analysis for the monitoring and evaluation of in situ bioremediation. At the site, where a field bioventing study was being conducted, multiple potential sources of carbon dioxide production existed. Additional potential applications of stable carbon isotope analysis for bioremediation evaluation and monitoring are discussed

  12. 40 CFR 52.1132 - Control strategy: Carbon Monoxide.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Carbon Monoxide. 52... strategy: Carbon Monoxide. (a) Approval—On November 13, 1992, the Massachusetts Department of Environmental Protection submitted a revision to the carbon monoxide State Implementation Plan for the 1990 base...

  13. Carbon isotope fluctuations in Precambrian carbonate sequences of several localities in Brazil

    Directory of Open Access Journals (Sweden)

    SIAL ALCIDES N.

    2000-01-01

    Full Text Available Carbon isotope fluctuations in Precambrian sedimentary carbonates between 2.8 Ga and 0.60 Ga in Brazil are examined in this study. The carbonate facies of the BIF of the 2.8 Ga-old Carajás Formation, state of Pará in northern Brazil, has rather homogeneous delta13C (-5 o/ooPDB, compatible with carbonatization of a silicate protolith by a CO2-rich fluid from mantle degassing. The Paleoproterozoic Gandarela Formation, state of Minas Gerais, displays a narrow delta13C variation (-1.5 to +0.5 o/oo compatible with carbon isotope signatures of carbonates deposited around 2.4 Ga worldwide. The Fecho do Funil Formation has probably recorded the Lomagundi delta13C positive anomaly (+6.4 to +7.1 o/ooPDB. The magnesite-bearing carbonates of the Orós mobile belt, state of Ceará, exhibit carbon isotope fluctuation within the range for carbonates deposited at 1.8 Ga. The C-isotope record of the Frecheirinha Formation, northwestern state of Ceará, shows negative delta13C values in its lower portion (-2 o/oo and positive values up section (+1 to +3 o/oo, which suggests this sequence is a cap carbonate deposited after a glacial event around 0.95 Ga. The Jacoca and Acauã sedimentary carbonate Formations, state of Sergipe, NE Brazil, show carbon isotope fluctuations very similar to each other (average around -5 o/oo, compatible with a deposition around 0.76 Ga. The younger Olho D'Água carbonate Formation, however, also in the state of Sergipe, displays negative delta13C values at the lower portion of the Formation, changing dramatically up section to positive values as high as +10 o/oo, a characteristic compatible with a Sturtian cap carbonate deposited around 0.69 Ga. On the light of the C isotope data discussed in this study, it seems that delta13C fluctuations in Paleoproterozoic carbonates in Brazil are within the range found globally for metasedimentary carbonates of this age. Carbon isotope data proved to be very useful in establishing relative

  14. Coal structure at reactive sites by sup 1 H- sup 13 C- sup 19 F double cross polarization (DCP)/MAS sup 13 C NMR spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hagaman, E.W.; Woody, M.C. (Oak Ridge National Lab., TN (USA))

    1989-01-01

    The solid state NMR technique, {sup 1}H-{sup 13}C-{sup 31}P double cross polarization (DCP)/MAS {sup 13}C-NMR spectroscopy, uses the direct dipolar interaction between {sup 13}C-{sup 31}P spin pairs in organophosphorus substances to identify the subset of carbons within a spherical volume element of 0.4 nm radius centered on the {sup 31}P atom. In combination with chemical manipulation of coals designed to introduce phosphorus containing functionality into the organic matrix, the NMR experiment becomes a method to examine selectively the carbon bonding network at the reactive sites in the coal. This approach generates a statistical structure description of the coal at the reaction centers in contrast to bulk carbon characterization using conventional {sup 1}H-{sup 13}C CP/MAS {sup 13}C NMR spectroscopy. 3 refs.

  15. Carbon dioxide gasification of carbon black: isotope study of carbonate catalysis

    International Nuclear Information System (INIS)

    Temperature-programmed reaction was used with labeled isotopes (13C and 18O) to study interactions between carbon black and potassium carbonate in pure He and 10% CO2/90% He atmospheres. Catalytic gasification precursor complexes were observed. Carbon and oxygen-bearing carbon surface groups interacted with the carbonate above 500 K to form surface complexes. Between 500 and 950 K, and in the presence of gaseous CO2, the complexes participated in C and O exchange with the gas phase while oxygen atoms within the complexes also exchanged with those on the carbon surface. As the temperature rose, the complexes decomposed, with CO2 the initial product. Decomposition started around 500 K in pure He, and around 950 K in CO2/He. Catalytic gasification began only after decomposition of significant portions of the complexes. Elemental potassium formed, and the active catalyst appears to alternate between being potassium metal and a potassium-oxygen-carbon complex. Potassium carbonate is not part of the catalytic cycle. 20 references, 10 figures

  16. An Internally Consistent Dataset of δ13C-DIC in the North Atlantic Ocean - NAC13v1

    Science.gov (United States)

    Becker, Meike; Andersen, Nils; Erlenkeuser, Helmut; Humphreys, Matthew. P.; Tanhua, Toste; Körtzinger, Arne

    2016-03-01

    The stable carbon isotope composition of dissolved inorganic carbon13C-DIC) can be used to quantify fluxes within the carbon system. For example, knowing the δ13C-DIC signature of the inorganic carbon pool can help to describe the exchange between ocean and atmosphere as well as the amount of anthropogenic carbon in the water column. The measurements can also be used for evaluating modeled carbon fluxes, for making basin wide estimates, studying seasonal and interannual variability or decadal trends in interior ocean biogeochemistry. For all these purposes, it is not only important to have a sufficient amount of data, but these data must also be internally consistent and of high quality. In this study, we present a δ13C-DIC dataset for the North Atlantic, which has undergone secondary quality control. The data originate from oceanographic research cruises between 1981 and 2012. During a primary quality control step based on simple range tests obviously bad data were flagged. In a second quality control step, biases between measurements from different cruises were quantified through a crossover analysis using nearby data of the respective cruises and absolute values of biased cruises were adjusted in the data product. the crossover analysis was possible for 22 of the 29 cruises in our dataset and adjustments were applied to 10 of these. The internal accuracy of this dataset is 0.017 ‰. The dataset is available via CDIAC at http://cdiac.ornl.gov/oceans/ndp_096/NAC13v1.html, doi: 10.3334/CDIAC/OTG.NAC13v1.

  17. The 13 errors.

    Science.gov (United States)

    Flower, J

    1998-01-01

    The reality is that most change efforts fail. McKinsey & Company carried out a fascinating research project on change to "crack the code" on creating and managing change in large organizations. One of the questions they asked--and answered--is why most organizations fail in their efforts to manage change. They found that 80 percent of these failures could be traced to 13 common errors. They are: (1) No winning strategy; (2) failure to make a compelling and urgent case for change; (3) failure to distinguish between decision-driven and behavior-dependent change; (4) over-reliance on structure and systems to change behavior; (5) lack of skills and resources; (6) failure to experiment; (7) leaders' inability or unwillingness to confront how they and their roles must change; (8) failure to mobilize and engage pivotal groups; (9) failure to understand and shape the informal organization; (10) inability to integrate and align all the initiatives; (11) no performance focus; (12) excessively open-ended process; and (13) failure to make the whole process transparent and meaningful to individuals. PMID:10351717

  18. Needles stable carbon isotope composition and traits of Pinus sylvestris var.mongolica in sparse wood grassland in south edge of Keerqin Sandy Land under the conditions of different precipitation%不同降水条件下科尔沁沙地南缘疏林草地樟子松针叶δ13C和叶性状特征

    Institute of Scientific and Technical Information of China (English)

    宋立宁; 朱教君; 李明财; 闫涛; 张金鑫

    2012-01-01

    通过比较不同自然降水年份(极端干旱和极端湿润)19年生疏林草地樟子松的针叶δ13C、比叶面积和干物质含量,结合土壤含水量和地下水埋深,探讨了极端降水对樟子松水分利用的影响.结果表明:干旱年份(2009)樟子松林土壤含水量显著低于湿润年份(2010),但樟子松当年生针叶的δ13C在两年间没有显著差异,且两年相同月份间亦无显著差异;干旱年份当年生针叶的比叶面积显著低于湿润年份,而不同年份间干物质含量的差异不显著.在两种极端降水条件下,樟子松的水分利用效率没有明显变化,主要通过改变当年生针叶的比叶面积来适应降水量的变化.对于地下水埋深高于3.0m的疏林草地樟子松人工林生态系统,极端干旱不会严重影响樟子松的存活和生长.%A comparative study was conducted on the needles stable carbon isotope composition (δ13C) , specific leaf area (SLA) , and dry matter content (DMC) of 19-year-old Pinus sylvestris var. mongolica trees in a sparse wood grassland in the south edge of Keerqin Sandy Land under the conditions of extreme drought and extreme wetness, aimed to understand the water use of Pinus sylvestris under the conditions of extreme precipitation. The soil water content and groundwater level were also measured. In the dry year (2009 ) , the soil water content in the grassland was significantly lower than that in the wet year (2010) , but the δ13C values of the current year-old needles had no significant difference between the two years and between the same months of the two years. The SLA of the current year-old needles was significantly lower in the dry year than in the wet year, but the DMC had no significant difference between the two years. Under the conditions of the two extreme precipitations, the water use efficiency of the trees did not vary remarkably, and the trees could change their needles SLA to adapt the variations of precipitation. For

  19. Solid state CP/MAS 13C n.m.r. analysis of particle size and density fractions of soil incubated with uniformly labelled 13C-glucose

    International Nuclear Information System (INIS)

    A soil incubated for 34 days in the absence (control) and presence (treated) of uniformly labelled 13C-glucose was dispersed using an ultrasonic probe and fractionated by sedimentation in water and a polytungstate solution of density 2.0 Mg m-3. Solid state CP/MAS 13C n.m.r. (cross polarization/magic angle spinning 13C nuclear magnetic resonance) spectroscopy was used to characterize the chemical structure of the native soil organic carbon and the residual substrate carbon in the fractions of the control and treated soils. To obtain quantitative results it was essential to determine the spin lattice relaxation time in a rotating frame of the individual carbon types in the spectra as the relaxation behaviour of the native organic material in the clay fraction was different from that of the residual substrate carbon. The residual substrate carbon was found to accumulate in predominantly alkyl and O-alkyl structures in both fractions. However, significant amounts of acetal and carboxyl carbon were also observed in the clay fraction. Little if any aromatic or phenolic carbon was synthesized by the soil microorganisms utilizing substrate carbon. Dipolar dephasing CP/MAS 13C n.m.r. experiments were also performed and allowed the proportion of each type of carbon which was protonated and nonprotonated to be estimated. Essentially all of the O-alkyl and acetal carbon, 25-40% of the aromatic carbon and 66-80% of the alkyl carbon was protonated in the fractions isolated from the treated soil. 24 refs., 4 figs., 2 tabs

  20. The synthesis of [2-13C]2-nitropropane at room temperature and at atmospheric pressure

    OpenAIRE

    Jacquemijns M; Zomer G

    1990-01-01

    In this report the synthesis of [2-13C]2-nitropropane at room temperature is described. [2-13C]Acetone was converted into the oxime with hydroxy hydrochloridelamine and sodium carbonate. Treatment with hypobromic acid resulted in 2-13C]2-bromo-2-nitropropane. Hydrogenation with sodium borohydride gave [2-13C]2-nitropropane in 14,3% overall yield.

  1. /sup 13/C-NMR of diterpenes with rosane skeleton

    Energy Technology Data Exchange (ETDEWEB)

    da Cunha Pinto, A.; Garcez, W.S.; Ficara, M.L.G.; Vasconcelos, T.C.; Pereira, A.L.; Gomes, L.N.L.F.; Frechiani, M.doC.; Patitucci, M.L. (Rio de Janeiro Univ. (Brazil). Nucleo de Pesquisas de Produtos Naturais)

    1982-03-01

    /sup 13/C-NMR data of three diterpenoids with rosane skeleton isolated from Vellozia candida Mikan, and of their oxidated and acetylated derivatives are presented. The main effects caused by small structural differences are discussed and used in the assignment of the chemical shifts of all carbons.

  2. Calcium Carbonate

    Science.gov (United States)

    ... before being swallowed; do not swallow them whole. Drink a full glass of water after taking either the regular or chewable tablets or capsules. Some liquid forms of calcium carbonate must be shaken well before use.Do not ...

  3. Carbon Stars

    Indian Academy of Sciences (India)

    T. Lloyd Evans

    2010-12-01

    In this paper, the present state of knowledge of the carbon stars is discussed. Particular attention is given to issues of classification, evolution, variability, populations in our own and other galaxies, and circumstellar material.

  4. Carbon isotope effects associated with aceticlastic methanogenesis

    Science.gov (United States)

    Gelwicks, J. T.; Risatti, J. B.; Hayes, J. M.

    1994-01-01

    The carbon isotope effects associated with synthesis of methane from acetate have been determined for Methanosarcina barkeri 227 and for methanogenic archaea in sediments of Wintergreen Lake, Michigan. At 37 degrees C, the 13C isotope effect for the reaction acetate (methyl carbon) --> methane, as measured in replicate experiments with M. barkeri, was - 21.3% +/- 0.3%. The isotope effect at the carboxyl portion of acetate was essentially equal, indicating participation of both positions in the rate-determining step, as expected for reactions catalyzed by carbon monoxide dehydrogenase. A similar isotope effect, - 19.2% +/- 0.3% was found for this reaction in the natural community (temperature = 20 degrees C). Given these observations, it has been possible to model the flow of carbon to methane within lake sediment communities and to account for carbon isotope compositions of evolving methane. Extension of the model allows interpretation of seasonal fluctuations in 13C contents of methane in other systems.

  5. RIVERINE INORGANIC CARBON DYNAMICS: OVERVIEW AND PERSPECTIVE

    Institute of Scientific and Technical Information of China (English)

    YAO Guan-rong; GAO Quan-zhou

    2006-01-01

    Inorganic carbon, the great part of the riverine carbon exported to the ocean, plays an important role in the global carbon cycle and ultimately impacts the coupled carbon-climate system. An overview was made on both methods and results of the riverine inorganic carbon researches. In addition to routine in situ survey, measurement and calculation,the direct precipitation method and the gas evolution technique were commonly used to analyze dissolved inorganic carbon in natural water samples. Soil CO2, carbonate minerals and atmospheric CO2 incorporated into riverine inorganic carbon pool via different means, with bicarbonate ion being the dominant component. The concentration of inorganic carbon, the composition of carbon isotopes (δ13C and △14C), and their temporal or spatial variations in the streams were controlled by carbon input, output and changes of carbon biogeochemistry within the riverine system. More accurate flux estimation, better understanding of different influential processes, and quantitative determination of various inputs or outputs need to be well researched in future.

  6. 13.8

    CERN Document Server

    Gribbin, John

    2015-01-01

    The twentieth century gave us two great theories of physics. The general theory of relativity describes the behaviour of very large things; quantum theory the behaviour of very small things. In this landmark book, John Gribbin - one of the best-known writers of popular science over the past 30 years - presents his own version of the Holy Grail of physics, the search that has been going on for decades to find a unified 'Theory of Everything' that combines these ideas into one mathematical package, a single equation that could be printed on a T-shirt, containing the answer to life, the Universe and everything. With his inimitable mixture of science, history and biography, Gribbin shows how - despite scepticism among many physicists - these two great theories are indeed very compatible, and point to a deep truth about the nature of our existence. The answer lies, intriguingly, with the age of the Universe: 13.8 billion years.

  7. Black carbon in deep-sea sediments

    OpenAIRE

    Masiello, CA; Druffel, ERM

    1998-01-01

    Black carbon (BC) enters the ocean through aerosol and river deposition. BC makes up 12 to 31 percent of the sedimentary organic carbon (SOC) at two deep ocean sites, and it is 2400 to 13,900 carbon-14 years older than non-BC SOC deposited concurrently. BC is likely older because it is stored in an intermediate reservoir before sedimentary deposition. Possible intermediate pools are oceanic dissolved organic carbon (DOC) and terrestrial soils. If DOC is the intermediate reservoir, then BC is ...

  8. A simple synthesis of [sup 13]C[sub 6]-labelled flavone and 5-methoxyflavone

    Energy Technology Data Exchange (ETDEWEB)

    Ares, J.J.; Wehmeyer, K.R. (Procter and Gamble Co., Cincinnati, OH (United States))

    1994-07-01

    The [sup 13]C[sub 6]-labelled molecules, flavone and 5-methoxyflavone, with the carbon-13 label at all six carbons of the aromatic B ring, have been prepared for use as internal standards in isotope dilution-mass spectrometry. The key step involves addition of a labelled benzoyl group to the methyl group of a hydroxyacetophenone, forming a 1,3-diketone. Overall yields from [sup 13]C[sub 6]-benzoic acid were 38% for the labelled flavone and 45% for the labelled 5-methoxyflavone. (Author).

  9. 3, 3‧-sulfonyldipropionitrile: A novel electrolyte additive that can augment the high-voltage performance of LiNi1/3Co1/3Mn1/3O2/graphite batteries

    Science.gov (United States)

    Zheng, Xiangzhen; Huang, Tao; Pan, Ying; Wang, Wenguo; Fang, Guihuang; Ding, Kaining; Wu, Maoxiang

    2016-07-01

    Our study shows that 3, 3‧-sulfonyldipropionitrile (SDPN), as an electrolyte additive, can dramatically enhance the performance of LiNi1/3Co1/3Mn1/3O2/graphite lithium-ion batteries (LIBs) at high voltages (3.0-4.6 V vs. Li/Li+). After adding 0.2 wt% SDPN to the electrolytes; i.-e., 1.0 M LiPF6-EC/DMC/EMC, the capacity for the LiNi1/3Co1/3Mn1/3O2/graphite cell to retain power was significantly increased from 59.5% to 77.3% after only 100 cycles, which shows the promising application of SDPN at higher voltages. Density functional theory calculation results indicate that SDPN had reduced oxidative constancy compared to ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC). The effects of SDPN on cell performance are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS). The testing results indicate that the improvement in cycling activity could be ascribed to the thinner cathode electrolyte interface film originated from SDPN on the LIB using LiNi1/3Co1/3Mn1/3O2, which reduced the interfacial resistance at a high voltage, but also protected the decomposition of electrolytes and suppressed transition metal dissolution.

  10. Carbon nanotubes: a suitable material for catalytic wet peroxide oxidation of organic pollutants?

    OpenAIRE

    Ribeiro, Rui; Silva, Adrián; Faria, Joaquim; Gomes, Helder

    2012-01-01

    Carbon materials, such as activated carbons (AC), graphite and activated carbon xerogels, have been explored as metal-free catalysts for the catalytic wet peroxide oxidation (CWPO) of bio-refractory organic compounds, such as azo dyes and phenolic compounds [1-3]. At the same time, the application of carbon nanomaterials in catalysis, such as carbon nanotubes (CNT), has grown exponentially [4]. In the present work, commercial multiwalled carbon nanotubes (MWNT) were used in the CWPO of 2-nitr...

  11. Late Carboniferous to Late Permian carbon isotope stratigraphy

    DEFF Research Database (Denmark)

    Buggisch, Werner; Krainer, Karl; Schaffhauser, Maria;

    2015-01-01

    An integrated study of the litho-, bio-, and isotope stratigraphy of carbonates in the Southern Alps was undertaken in order to better constrain δ13C variations during the Late Carboniferous to Late Permian. The presented high resolution isotope curves are based on 1299 δ13Ccarb and 396 δ13Corg...

  12. Carbonate Ion Effects on Coccolith Carbon and Oxygen Isotopes

    Science.gov (United States)

    Ziveri, P.; Probert, I.; Stoll, H. M.

    2006-12-01

    The stable oxygen and carbon isotopic composition of biogenic calcite constitutes one of the primary tools used in paleoceanographic reconstructions. The δ18O of shells of ocean floor microfossils and corals reflects the composition of the paleo-seawater as they use the oxygen to build up their calcite and aragonite shells. The δ13C is used to reconstruct variations in the carbon isotopic composition of dissolved inorganic carbon in the ocean, which is controlled by biological productivity through the removal of isotopically light carbon in organic matter. To be effective and sensitive tools for understanding photic zone processes it is first necessary to understand the various biological fractionations associated with carbonate precipitation. To date, isotopic fractionation models are mainly based on foraminifera and corals but not on coccoliths, tiny plates produced by coccolithophore algae, which are often the most dominant carbonate contributors to pelagic sediments. As photosynthetic organisms, their chemistry can provide a sensitive tool for understanding photic zone processes. Coccoliths may be the most important carbonate phase for geochemical analysis in sediments where foraminifera are less common and/or core material is limited, such as in subpolar regions and for Early Cenozoic and Mesozoic sediments. Here we report experimental results on a common living coccolithophore species showing that the 13C/12C and 18O/16O ratios decrease with the increase of HCO^{3-} (CO32-). The selected species are among the heaviest calcifying extant coccolithophores and are major contributors to present coccolith carbonate export production. Because coccolithophores are photosynthetic organisms that calcify intracellularly in specialized vesicles, the challenge lies in ascertaining how kinetic and thermodynamic processes of isotopic fractionation are linked to cellular carbon "transport" and carbonate precipitation. This is a daunting challenge since studies have not

  13. C-13 NMR spectra of natural products part 5 - naphthopyrandiones and naphthofurandiones

    International Nuclear Information System (INIS)

    The synthesis of biologically active naphthoquinones using C-13 NMR is studied. The chemical procedure and aspect of carbon chemical shift used to distinguish between ortho and para quinones is described. (M.J.C.)

  14. 46 CFR Sec. 13 - Insurance.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 8 2010-10-01 2010-10-01 false Insurance. Sec. 13 Section 13 Shipping MARITIME... REPAIRS UNDER NATIONAL SHIPPING AUTHORITY MASTER LUMP SUM REPAIR CONTRACT-NSA-LUMPSUMREP Sec. 13 Insurance... respect to awarded work. Said Article 9 requires that the Contractor shall maintain insurance to...

  15. Monitoring CO[subscript 2] Fixation Using GC-MS Detection of a [superscript 13]C-Label

    Science.gov (United States)

    Hammond, Daniel G.; Bridgham, April; Reichert, Kara; Magers, Martin

    2010-01-01

    Much of our understanding of metabolic pathways has resulted from the use of chemical and isotopic labels. In this experiment, a heavy isotope of carbon, [superscript 13]C, is used to label the product of the well-known RuBisCO enzymatic reaction. This is a key reaction in photosynthesis that converts inorganic carbon to organic carbon; a process…

  16. Synthesis of triple (13C2, 15N), single (14C), and double (14C2) labeled trimetrexate

    International Nuclear Information System (INIS)

    A method was developed for the synthesis of triple (13C2, 14N) labeled trimetrexate. A method for single carbon-14 labeled synthesis is also described. Modifications of the triple labeled synthesis with carbon-14 produced a doubled carbon-14 labeled trimetrexate. (author)

  17. Image Reconstruction. Chapter 13

    International Nuclear Information System (INIS)

    This chapter discusses how 2‑D or 3‑D images of tracer distribution can be reconstructed from a series of so-called projection images acquired with a gamma camera or a positron emission tomography (PET) system [13.1]. This is often called an ‘inverse problem’. The reconstruction is the inverse of the acquisition. The reconstruction is called an inverse problem because making software to compute the true tracer distribution from the acquired data turns out to be more difficult than the ‘forward’ direction, i.e. making software to simulate the acquisition. There are basically two approaches to image reconstruction: analytical reconstruction and iterative reconstruction. The analytical approach is based on mathematical inversion, yielding efficient, non-iterative reconstruction algorithms. In the iterative approach, the reconstruction problem is reduced to computing a finite number of image values from a finite number of measurements. That simplification enables the use of iterative instead of mathematical inversion. Iterative inversion tends to require more computer power, but it can cope with more complex (and hopefully more accurate) models of the acquisition process

  18. Ultrasound Imaging. Chapter 13

    International Nuclear Information System (INIS)

    In the conventional method of ultrasonography, images are acquired in reflection, or pulse echo, mode. An array of small piezoelectric elements transmits a focused pulse along a specified line of sight known as a scan line. Echoes returning from the tissue are received by the same array, focused via the delay-and-sum beam forming process reviewed in Section 13.2, and demodulated to obtain the magnitude, or envelope, of the echo signal. The scanner measures the arrival time of the echoes relative to the time the pulse was transmitted and maps the arrival time to the distance from the array, using an assumed speed of sound. The earliest ultrasound systems would display the result of a single pulse acquisition in 1-D A-mode (amplitude mode) format by plotting echo magnitude as a function of distance. A 2-D or 3-D B-mode (brightness mode) image is acquired by performing a large number of pulse echo acquisitions, incrementally increasing the scan line direction between each pulse echo operation, to sweep out a 2-D or 3-D field of view (FOV). The term B-mode imaging reflects the fact that the echo magnitude from each point in the FOV is mapped to the grey level, or brightness, of the corresponding pixel in the image

  19. Quantifying global terrestrial carbon influx and storage as stimulated by an increase in atmospheric carbon dioxide concentration

    OpenAIRE

    Luo, Yiqi

    1997-01-01

    EXTRACT (SEE PDF FOR FULL ABSTRACT): Measurements of spatial and temporal distributions of carbon dioxide concentration and carbon-13/carbon-12 ratio in the atmosphere suggest a strong biospheric carbon sink in terrestrial ecosystems. Quantifying the sink, however, has become an enormous challenge for Earth system scientists because of great uncertainties associated with biological variation and environmental heterogeneity in the ecosystems. This paper presents an approach that uses two d...

  20. Predicting outcomes of steady-state 13C isotope tracing experiments with Monte Carlo sampling

    OpenAIRE

    Schellenberger, Jan; Zielinski, Daniel C; Choi, Wing; Madireddi, Sunthosh; Portnoy, Vasiliy; Scott, David A; Reed, Jennifer L.; Osterman, Andrei L.; Palsson, Bernhard ∅

    2012-01-01

    Abstract Background Carbon-13 (13C) analysis is a commonly used method for estimating reaction rates in biochemical networks. The choice of carbon labeling pattern is an important consideration when designing these experiments. We present a novel Monte Carlo algorithm for finding the optimal substrate input label for a particular experimental objective (flux or flux ratio). Unlike previous work, this method does not require assumption of the flux distribution beforehand. Resul...

  1. Predicting outcomes of steady-state 13C isotope tracing experiments using Monte Carlo sampling

    OpenAIRE

    Schellenberger Jan; Zielinski Daniel C; Choi Wing; Madireddi Sunthosh; Portnoy Vasiliy; Scott David A; Reed Jennifer L; Osterman Andrei L; Palsson Bernhard ∅

    2012-01-01

    Abstract Background Carbon-13 (13C) analysis is a commonly used method for estimating reaction rates in biochemical networks. The choice of carbon labeling pattern is an important consideration when designing these experiments. We present a novel Monte Carlo algorithm for finding the optimal substrate input label for a particular experimental objective (flux or flux ratio). Unlike previous work, this method does not require assumption of the flux distribution beforehand. Results Using a large...

  2. Carbon dioxide effects research and assessment program

    International Nuclear Information System (INIS)

    Information about the past and present concentrations of CO2 in the atmosphere and variations in climate can be obtained from measurements of stable isotopes in tree rings; specifically carbon-13, oxygen-18 and deuterium. The analysis of these stable isotopes in tree rings is a relatively new and rapidly developing field. This proceedings volume contains most of the papers presented at the meeting. The first paper gives an overview of the status of carbon-13 research. Papers relating to carbon-13 are in section I and grouped separately from the contributions on carbon-14. Although the meeting was primarily concerned with stable isotopes, all carbon isotopic analysis may be helpful in understanding the carbon-13 record in tree rings. The papers on hydrogen and oxygen isotope studies are in sections II and III respectively. The remaining sections contain papers that consider more than one isotope at a time, general topics related to isotopes, atmospheric changes and tree growth, and methods of isotopic analysis

  3. Carbon particles

    Science.gov (United States)

    Hunt, Arlon J.

    1984-01-01

    A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

  4. Accurate quantitative 13C NMR spectroscopy: repeatability over time of site-specific 13C isotope ratio determination.

    Science.gov (United States)

    Caytan, Elsa; Botosoa, Eliot P; Silvestre, Virginie; Robins, Richard J; Akoka, Serge; Remaud, Gérald S

    2007-11-01

    The stability over time (repeatability) for the determination of site-specific 13C/12C ratios at natural abundance by quantitative 13C NMR spectroscopy has been tested on three probes: enriched bilabeled [1,2-13C2]ethanol; ethanol at natural abundance; and vanillin at natural abundance. It is shown in all three cases that the standard deviation for a series of measurements taken every 2-3 months over periods between 9 and 13 months is equal to or smaller than the standard deviation calculated from 5-10 replicate measurements made on a single sample. The precision which can be achieved using the present analytical 13C NMR protocol is higher than the prerequisite value of 1-2 per thousand for the determination of site-specific 13C/12C ratios at natural abundance (13C-SNIF-NMR). Hence, this technique permits the discrimination of very small variations in 13C/12C ratios between carbon positions, as found in biogenic natural products. This observed stability over time in 13C NMR spectroscopy indicates that further improvements in precision will depend primarily on improved signal-to-noise ratio. PMID:17900175

  5. CarbonSat Constellation

    Science.gov (United States)

    Sun, Wei; Tobehn, Carsten; Ernst, Robert; Bovensmann, Heinrich; Buchwitz, Michael; Burrows, John P.; Notholt, John

    1 Carbon dioxide (CO2) and methane (CH4) are the most important manmade greenhouse gases (GHGs) which are driving global climate change. Currently, the CO2 measurements from the ground observing network are still the main sources of information but due to the limited number of measurement stations the coverage is limited. In addition, CO2 monitoring and trading is often based mainly on bottom-up calculations and an independent top down verification is limited due to the lack of global measurement data with local resolution. The first CO2 and CH4 mapping from SCIAMACHY on ENVISAT shows that satellites add important missing global information. Current GHG measurement satellites (GOSAT)are limited either in spatial or temporal resolution and coverage. These systems have to collect data over a year or even longer to produce global regional fluxes products. Conse-quently global, timely, higher spatial resolution and high accuracy measurement are required for: 1. A good understanding of the CO2 and CH4 sources and sinks for reliable climate predic-tion; and 2. Independent and transparent verification of accountable sources and sinks in supporting Kyoto and upcoming protocols The CarbonSat constellation idea comes out the trade off of resolution and swath width during CarbonSat mission definition studies. In response to the urgent need to support the Kyoto and upcoming protocols, a feasibility study has been carried out. The proposed solution is a constellation of five CarbonSat satellites in 614km LTAN 13:00, which is able to provide global, daily CO2 and CH4 measurement everywhere on the Earth with high spatial resolution 2 × 2 km and low uncertainty lt;2ppm (CO2) and lt;8ppb (CH4). The unique global daily measurement capability significantly increases the number of cloud free measurements, which enables more reliable services associated with reduced uncertainty, e.g. to 0.15ppm (CO2) per month in 10km and even more timely products. The CarbonSat Constellation in

  6. Terrestrial biosphere changes over the last 120 kyr and their impact on ocean δ 13C

    Directory of Open Access Journals (Sweden)

    B. A. A. Hoogakker

    2015-03-01

    Full Text Available A new global synthesis and biomization of long (>40 kyr pollen-data records is presented, and used with simulations from the HadCM3 and FAMOUS climate models to analyse the dynamics of the global terrestrial biosphere and carbon storage over the last glacial–interglacial cycle. Global modelled (BIOME4 biome distributions over time generally agree well with those inferred from pollen data. The two climate models show good agreement in global net primary productivity (NPP. NPP is strongly influenced by atmospheric carbon dioxide (CO2 concentrations through CO2 fertilization. The combined effects of modelled changes in vegetation and (via a simple model soil carbon result in a global terrestrial carbon storage at the Last Glacial Maximum that is 210–470 Pg C less than in pre-industrial time. Without the contribution from exposed glacial continental shelves the reduction would be larger, 330–960 Pg C. Other intervals of low terrestrial carbon storage include stadial intervals at 108 and 85 ka BP, and between 60 and 65 ka BP during Marine Isotope Stage 4. Terrestrial carbon storage, determined by the balance of global NPP and decomposition, influences the stable carbon isotope composition (δ13C of seawater because terrestrial organic carbon is depleted in 13C. Using a simple carbon-isotope mass balance equation we find agreement in trends between modelled ocean δ13C based on modelled land carbon storage, and palaeo-archives of ocean δ13C, confirming that terrestrial carbon storage variations may be important drivers of ocean δ13C changes.

  7. Carbon classified?

    DEFF Research Database (Denmark)

    Lippert, Ingmar

    2012-01-01

    . Using an actor- network theory (ANT) framework, the aim is to investigate the actors who bring together the elements needed to classify their carbon emission sources and unpack the heterogeneous relations drawn on. Based on an ethnographic study of corporate agents of ecological modernisation over a...... corporations construing themselves as able and suitable to manage their emissions, and, additionally, given that the construction of carbon emissions has performative consequences, the underlying practices need to be declassified, i.e. opened for public scrutiny. Hence the paper concludes by arguing for a...

  8. Carbon isotopes in biological carbonates: Respiration and photosynthesis

    Science.gov (United States)

    McConnaughey, T.A.; Burdett, J.; Whelan, J.F.; Paull, C.K.

    1997-01-01

    Respired carbon dioxide is an important constituent in the carbonates of most air breathing animals but is much less important in the carbonates of most aquatic animals. This difference is illustrated using carbon isotope data from freshwater and terrestrial snails, ahermatypic corals, and chemoautotrophic and methanotrophic pelecypods. Literature data from fish otoliths and bird and mammal shell and bone carbonates are also considered. Environmental CO2/O2 ratios appear to be the major controlling variable. Atmospheric CO2/O2 ratios are about thirty times lower than in most natural waters, hence air breathing animals absorb less environmental CO2 in the course of obtaining O2. Tissue CO2 therefore, does not isotopically equilibrate with environmental CO2 as thoroughly in air breathers as in aquatic animals, and this is reflected in skeletal carbonates. Animals having efficient oxygen transport systems, such as vertebrates, also accumulate more respired CO2 in their tissues. Photosynthetic corals calcify mainly during the daytime when photosynthetic CO2 uptake is several times faster than respiratory CO2 release. Photosynthesis, therefore, affects skeletal ??13C more strongly than does respiration. Corals also illustrate how "metabolic" effects on skeletal isotopic composition can be estimated, despite the presence of much larger "kinetic" isotope effects. Copyright ?? 1997 Elsevier Science Ltd.

  9. The carbon is down the hole

    International Nuclear Information System (INIS)

    Each year, about 7.1 billions of tons of carbon are released by human activities and industries, from which 5.5 come from the combustion of fossil fuels and 1.6 is a direct consequence of deforestation. However, less than half of this carbon is kept by the atmosphere in its CO2 form and contributes to the anthropic greenhouse effect. The rest is necessarily absorbed by carbon sinks, some of them located in the oceans and responsible for the disappearing of about 2 billions of tons of carbon, and the others probably located in the continental biosphere and in particular in the vegetal biomass and the organic matter of soils. This additional storage is probably located in the northern hemisphere between 30 deg. N and 60 deg. N. The distinction between the continental and oceanic sinks is made according to the concentration ratios of carbon 12 and carbon 13 isotopes. (J.S.)

  10. Probing the Isotopic Composition of Surface Waters Across Isotopic Extremes of Cryogenian Carbonates

    Science.gov (United States)

    Bosak, T.; Matys, E. D.; Bird, L. R.; Macdonald, F. A.; Freeman, K. H.

    2012-12-01

    Neoproterozoic carbonate strata record unusually large and positive carbon isotope values (δ13Ccarb from 4 to 10 per mil), and stratigraphically extensive large negative carbon isotope excursions (δ13Ccarb red algae, respectively, they can be used as tracers of organic matter production in surface waters. Fossil tests were extracted by acid maceration, cleaned and analyzed morphologically and microscopically. Their carbon isotopic composition was measured using a nano-scaled elemental analyzer inlet (nano-EA-IRMS), with ±1 per mil analytical precision. To date, we analyzed 12 samples of 100-150 organic tests, representing 3 different fossiliferous parts of the Tayshir anomaly (δ13Ccarb +5 per mil), respectively. More samples, including those of fossil algae and tests from the carbonate strata overlying the Tayshir anomaly, are currently being analyzed. Initial data reveal a rather constant isotopic composition of organic carbon in fossil tests (δ13Cfossil), with values of -23 ±1 per mil both within 13C-enriched and 13C-depleted carbonates. The isotopic difference between δ13Cfossil and 13C-enriched carbonates is 28 to 30 per mil, suggesting maximal isotopic fractionation by primary producers, and little environmental (or diagenetic) processing of primary photosynthetic carbon. The carbonates of the Tayshir anomaly preserve two organic materials: matrix or bulk carbon characterized by a δ13Corg that covaries with δ13Ccarb, and a small, but morphologically diagnostic component whose δ13Cfossil values do not covary with δ13Ccarb. The stratigraphic thickness (~ 50 m) and isotopic heterogeneity of the organic matter within the Tayshir anomaly (~ 50 m) suggest a prolonged and large contribution of organic carbon remineralization.

  11. Carbon sources supporting benthic mineralization in mangrove and adjacent seagrass sediments (Gazi Bay, Kenya)

    OpenAIRE

    BOUILLON, S; Moens, T.; F. Dehairs

    2004-01-01

    The origin of carbon substrates used by in situ sedimentary bacterial communities was investigated in an intertidal mangrove ecosystem and in adjacent seagrass beds in Gazi bay (Kenya) by δ13C analysis of bacteria-specific PLFA (phospholipid fatty acids) and bulk organic carbon. Export of mangrove-derived organic matter to the adjacent seagrass-covered bay was evident from sedimentary total organic carbon (TOC) and δ13CTOC data. PLFA δ13C data indicate tha...

  12. Constraints on the atmospheric CO2 deglacial rise based on its δ13CO2 evolution

    OpenAIRE

    Lourantou, A.; Lavric, J. V.; Köhler, Peter; Barnola, J.-M.; Michel, E.; Paillard, D.; D. Raynaud; Chappellaz, J.

    2009-01-01

    The analysis of air bubbles trapped in polar ice permits the reconstruction of atmospheric evolution of greenhouse gases, such as carbon dioxide (CO2 ), on various timescales. Within this study, the simultaneous analysis of the CO2 mixing ratio and its stable carbon isotope composition (δ 13 CO2 ) over the last two deglaciations allows us to better constrain the global carbon cycle. Based on the different isotopic signatures of the ocean and the terrestrial biosphere (major reservoirs re...

  13. Spectral editing for in vivo 13C magnetic resonance spectroscopy

    Science.gov (United States)

    Xiang, Yun; Shen, Jun

    2012-01-01

    In vivo detection of carboxylic/amide carbons is a promising technique for studying cerebral metabolism and neurotransmission due to the very low RF power required for proton decoupling. In the carboxylic/amide region, however, there is severe spectral overlap between acetate C1 and glutamate C5, complicating studies that use acetate as an astroglia-specific substrate. There are no known in vivo MRS techniques that can spectrally resolve acetate C1 and glutamate C5 singlets. In this study, we propose to spectrally separate acetate C1 and glutamate C5 by a two-step J-editing technique after introducing homonuclear 13C- 13C scalar coupling between carboxylic/amide carbons and aliphatic carbons. By infusing [1,2- 13C 2]acetate instead of [1- 13C]acetate the acetate doublet can be spectrally edited because of the large separation between acetate C2 and glutamate C4 in the aliphatic region. This technique can be applied to studying acetate transport and metabolism in brain in the carboxylic/amide region without spectral interference.

  14. IRMS detection of testosterone manipulated with 13C labeled standards in human urine by removing the labeled 13C

    International Nuclear Information System (INIS)

    Highlights: • 13C labeled testosterone can be used to adjust the isotope ratio of testosterone. • The novel testosterone cannot be detected by the regular IRMS method in doping test. • A method was explored to remove the labeled 13C. • The established method can be used to detect the manipulated testosterone. - Abstract: Isotope ratio mass spectrometry (IRMS) is applied to confirm testosterone (T) abuse by determining the carbon isotope ratios (δ13C value). However, 13C labeled standards can be used to control the δ13C value and produce manipulated T which cannot be detected by the current method. A method was explored to remove the 13C labeled atom at C-3 from the molecule of androsterone (Andro), the metabolite of T in urine, to produce the resultant (A-nor-5α-androstane-2,17-dione, ANAD). The difference in δ13C values between Andro and ANAD (Δδ13CAndro–ANAD, ‰) would change significantly in case manipulated T is abused. Twenty-one volunteers administered T manipulated with different 13C labeled standards. The collected urine samples were analyzed with the established method, and the maximum value of Δδ13CAndro–ANAD post ingestion ranged from 3.0‰ to 8.8‰. Based on the population reference, the cut-off value of Δδ13CAndro–ANAD for positive result was suggested as 1.2‰. The developed method could be used to detect T manipulated with 3-13C labeled standards

  15. Capability of defective graphene-supported Pd13 and Ag13 particles for mercury adsorption

    Science.gov (United States)

    Meeprasert, Jittima; Junkaew, Anchalee; Rungnim, Chompoonut; Kunaseth, Manaschai; Kungwan, Nawee; Promarak, Vinich; Namuangruk, Supawadee

    2016-02-01

    Reactivity of single-vacancy defective graphene (DG) and DG-supported Pdn and Agn (n = 1, 13) for mercury (Hg0) adsorption has been studied using density functional theory calculation. The results show that Pdn binds defective site of DG much stronger than the Agn, while metal nanocluster binds DG stronger than single metal atom. Metal clustering affects the adsorption ability of Pd composite while that of Ag is comparatively less. The binding strength of -8.49 eV was found for Pd13 binding on DG surface, indicating its high stability. Analyses of structure, energy, partial density of states, and d-band center (ɛd) revealed that the adsorbed metal atom or cluster enhances the reactivity of DG toward Hg adsorption. In addition, the Hg adsorption ability of Mn-DG composite is found to be related to the ɛd of the deposited Mn, in which the closer ɛd of Mn to the Fermi level correspond to the higher adsorption strength of Hg on Mn-DG composite. The order of Hg adsorption strength on Mn-DG composite are as follows: Pd13 (-1.68 eV) >> Ag13 (-0.67 eV) ∼ Ag1 (-0.69 eV) > Pd1 (-0.62 eV). Pd13-DG composite is therefore more efficient sorbent for Hg0 removal in terms of high stability and high adsorption reactivity compared to the Ag13. Further design of highly efficient carbon based sorbents should be focused on tailoring the ɛd of deposited metals.

  16. Carbon accumulation in arid croplands of northwest China: pedogenic carbonate exceeding organic carbon

    Science.gov (United States)

    Wang, Xiujun; Wang, Jiaping; Xu, Minggang; Zhang, Wenju; Fan, Tinglu; Zhang, Juan

    2015-06-01

    Soil carbonate (SIC) exceeds organic carbon (SOC) greatly in arid lands, thus may be important for carbon sequestration. However, field data for quantifying carbonate accumulation have been lacking. This study aims to improve our understanding of SIC dynamics and its role in carbon sequestration. We analyzed two datasets of SOC and SIC and their 13C compositions , one with over 100 soil samples collected recently from various land uses in the Yanqi Basin, Xinjiang, and the other with 18 archived soil samples from a long-term experiment (LTE) in Pingliang, Gansu. The data from the Yanqi Basin showed that SOC had a significant relationship with SIC and pedogenic carbonate (PIC); converting shrub land to cropland increased PIC stock by 5.2 kg C m-2, which was 3.6 times of that in SOC stock. The data from the LTE showed greater accumulation of PIC (21-49 g C m-2 year-1) than SOC (10-39 g C m-2 year-1) over 0-20 cm. Our study points out that intensive cropping in the arid and semi-arid regions leads to an increase in both SOC and PIC. Increasing SOC through straw organic amendments enhances PIC accumulation in the arid cropland of northwestern China.

  17. 13 CFR 115.13 - Eligibility of Principal.

    Science.gov (United States)

    2010-01-01

    ... Section 115.13 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION SURETY BOND GUARANTEE Provisions for All Surety Bond Guarantees § 115.13 Eligibility of Principal. (a) General eligibility. In order to be eligible for a bond guaranteed by SBA, the Principal must comply with the...

  18. Study of the fusion reaction 13C+13C

    International Nuclear Information System (INIS)

    The fusion reaction 13C+13C has been studied, it must allow, by comparisons with the system 12C+13C already studied to determine how the presence of a supplementary nucleon in the interaction nuclei of the entrance channel affects the energy dependence of the reaction cross section. The reaction 13C+13C has been studied for incident energies E(CM)=3.05 - 6.88 MeV and no resonant structure seems to appear in the coulombian energies. The reaction products are identified by the energy of their gamma transition using a germanium detector situated at zero degree with respect to the incident beam at approximately 1 cm from the target

  19. Carbonate precipitation by the thermophilic archaeon Archaeoglobus fulgidus: a model of carbon flow for an ancient microorganism

    Directory of Open Access Journals (Sweden)

    P. Ostrom

    2008-08-01

    Full Text Available Microbial carbonate precipitation experiments were conducted using the archaeon bacteria Archaeoglobus fulgidus to determine chemical and isotopic fractionation of organic and inorganic carbon into mineral phases. Carbonate precipitation was induced in two different experiments using A. fulgidus to determine the relative abundance of organically derived carbon incorporated into carbonate minerals as well as to define any distinct phases or patterns that could be attributed to the precipitation process. One experiment used a medium containing 13C-depleted organic carbon and 13C-enriched inorganic carbon, and the other used a 14C-labeled organic carbon source. Results indicated that 0.9–24.8% organic carbon was incorporated into carbonates precipitated by A. fulgidus and that this process was mediated primarily by pH and CO2 emission from cells. Data showed that the carbon in the CO2 produced from this microorganism is incorporated into carbonates and that the rate at which precipitation occurs and the dynamics of the carbonate precipitation process are strongly mediated by the specific steps involved in the biochemical process for lactate oxidation by A. fulgidus.

  20. Carbon storage in Amazonian podzols

    Science.gov (United States)

    Montes, Celia; Lucas, Yves; Pereira, Osvaldo; Merdy, Patricia; Santin, Roberta; Ishida, Débora; du Gardin, Beryl; Melfi, Adolpho

    2014-05-01

    It has recently been discovered that Amazonian podzols may store much larger quantities of carbon than previously thought, particularly in their deep Bh horizons (over 13.6 Pg for Brazilian Amazonia alone [1]). Similarly high carbon stocks are likely to exist in similar climate/soil areas, mainly in Africa and in Borneo. Such carbon stocks raise the problem of their stability in response to changes in land use or climate. Any significant changes in vegetation cover would significantly alter the soil water dynamics, which is likely to affect organic matter turnover in soils. The direction of the change, however, is not clear and is likely to depend on the specific conditions of carbon storage and properties of the soils. It is reasonable to assume that the drying of the Bh horizons of equatorial podzols, which are generally saturated, will lead to an increase in C mineralization, although the extent of this increase has not yet been determined. These unknowns resulted in research programs, granted by the Brazilian FAPESP and the French Région PACA-ARCUS and ANR, dedicated improving estimates of the Amazonian podzol carbon stocks and to an estimate of its mineralisability. Eight test areas were determined from the analysis of remote sensing data in the larger Amazonian podzol region located in the High Rio Negro catchment and studied in detail. Despite the extreme difficulties in carrying out the field work (difficulties in reaching the study sites and extracting the soils), more than a hundred points were sampled. In all podzols the presence of a thick deep Bh was confirmed, sometimes to depths greater than 12 m. The Bh carbon was quantified, indicating that carbon stocks in these podzols are even higher than estimated recently [1]. References 1- Montes, C.R.; Lucas, Y.; Pereira, O.J.R.; Achard, R.; Grimaldi, M.; Mefli, A.J. Deep plant?derived carbon storage in Amazonian podzols. Biogeosciences, 8, 113?120, 2011.

  1. Controls on the spatial distribution of oceanic δ13CDIC

    Directory of Open Access Journals (Sweden)

    P. B. Holden

    2013-03-01

    Full Text Available We describe the design and evaluation of a large ensemble of coupled climate–carbon cycle simulations with the Earth system model of intermediate complexity GENIE. This ensemble has been designed for application to a range of carbon cycle questions, including the causes of late-Quaternary fluctuations in atmospheric CO2. Here we evaluate the ensemble by applying it to a transient experiment over the recent industrial era (1858 to 2008 AD. We employ singular vector decomposition and principal component emulation to investigate the spatial modes of ensemble variability of oceanic dissolved inorganic carbon (DIC δ13C, considering both the spun-up pre-industrial state and the transient change. These analyses allow us to separate the natural (pre-industrial and anthropogenic controls on the δ13CDIC distribution. We apply the same dimensionally-reduced emulation techniques to consider the drivers of the spatial uncertainty in anthropogenic DIC. We show that the sources of uncertainty related to the uptake of anthropogenic δ13CDIC and DIC are quite distinct. Uncertainty in anthropogenic δ13C uptake is controlled by air–sea gas exchange, which explains 63% of modelled variance. This mode of variability is largely absent from the ensemble variability in CO2 uptake, which is rather driven by uncertainties in thermocline ventilation rates. Although the need to account for air–sea gas exchange is well known, these results suggest that, to leading order, uncertainties in the ocean uptake of anthropogenic 13C and CO2 are governed by very different processes. This illustrates the difficulties in reconstructing one from the other, and furthermore highlights the need for careful targeting of both δ13CDIC and DIC observations to better constrain the ocean sink of anthropogenic CO2.

  2. 13C- and 1H-ENDOR studies of a phenoxyl type radical

    International Nuclear Information System (INIS)

    13C- and 1H-ENDOR studies on a phenoxyl type radical in fluid solution are reported. The 13C-ENDOR resonance lines are comparable with those of the protons concerning amplitude, linewidth, and optimum experimental conditions. These findings are in contrast to previous ENDOR experiments on other 13C-labelled systems and can be explained by assuming similar hfs anisotropies for carbon-13 and protons in this radical. From saturation measurements the relaxation parameters were determined. The hyperfines couplings are discussed in terms of McLachlan and INDO calculations. For the first time natural abundance 13C-ENDOR measurement have been successful. (orig.) 891 WBU

  3. 13C NMR spectroscopy of methane adsorbed in SAPO-11 molecular sieve

    Science.gov (United States)

    Koskela, Tuomas; Ylihautala, Mika; Vaara, Juha; Jokisaari, Jukka

    1996-10-01

    Static 13C and 13C-{ 1H} NMR spectra of carbon-13 enriched methane ( 13CH 4) adsorbed into SAPO-11 molecular sieve were recorded at variable temperatures. Moreover, the corresponding MAS NMR spectra were measured. These experiments reveal a temperature-dependent, anisotropic and asymmetric 13C nuclear shielding tensor. Ab initio model calculations of methane in the field of a positive point charge suggest that the deformation of the shielding tensor may be related to the interaction between the methane molecule and the charge-compensating protons. A comparison with existing Xe data is made.

  4. Synthesis and applications of {sup 13}C glycerol

    Energy Technology Data Exchange (ETDEWEB)

    Stocking, E.; Khalsa, O.; Martinez, R.A.; Silks, L.A. III [Los Alamos National Laboratory, NM (United States)

    1994-12-01

    Due in part to the use of labeled glycerol for the {sup 13}C enrichment of biomolecules, we are currently developing new synthetic routes to various isotopomers of glycerol. Judging from our experience, traditional methods of glycerol synthesis are not easily adapted for isotopic enrichment and/or have poor overall yields (12 to 15%). Furthermore, the use of glycerol for enrichment can be prohibitively expensive and its availability is limited by the level of demand. We are presently developing a short de novo synthesis of glycerol from carbon dioxide ({approximately}53% overall yield for four steps) and are examining the feasibility of synthesizing site-specific {sup 13}C-labeled glycerol and dihydroxyacetone (DHA) from labeled methanol and carbon dioxide. One application of {sup 13}C glycerol we have examined is enzymatic conversion of glycerol to glyceraldehyde-3-monophosphate or dihydroxyacetone monophosphate (DHAP) with yields ranging from 25 to 50% (as determined by NMR spectroscopy). We are also pursuing the chemical conversion of {sup 13}C-labeled DHA to DHAP. We are especially interested in {sup 13}C-labeled DHAP because we are investigating its use as a chemo-enzymatic precursor for both labeled 2-deoxyribose and 2-deoxyribonucleic acids.

  5. Carbon Isotope Chemistry in Molecular Clouds

    Science.gov (United States)

    Robertson, Amy N.; Willacy, Karen

    2012-01-01

    Few details of carbon isotope chemistry are known, especially the chemical processes that occur in astronomical environments like molecular clouds. Observational evidence shows that the C-12/C-13 abundance ratios vary due to the location of the C-13 atom within the molecular structure. The different abundances are a result of the diverse formation pathways that can occur. Modeling can be used to explore the production pathways of carbon molecules in an effort to understand and explain the chemical evolution of molecular clouds.

  6. Quantification of net carbon flux from plastic greenhouse vegetable cultivation: A full carbon cycle analysis

    International Nuclear Information System (INIS)

    Plastic greenhouse vegetable cultivation (PGVC) has played a vital role in increasing incomes of farmers and expanded dramatically in last several decades. However, carbon budget after conversion from conventional vegetable cultivation (CVC) to PGVC has been poorly quantified. A full carbon cycle analysis was used to estimate the net carbon flux from PGVC systems based on the combination of data from both field observations and literatures. Carbon fixation was evaluated at two pre-selected locations in China. Results suggest that: (1) the carbon sink of PGVC is 1.21 and 1.23 Mg C ha-1 yr-1 for temperate and subtropical area, respectively; (2) the conversion from CVC to PGVC could substantially enhance carbon sink potential by 8.6 times in the temperate area and by 1.3 times in the subtropical area; (3) the expansion of PGVC usage could enhance the potential carbon sink of arable land in China overall. - Highlights: → We used full carbon (C) cycle analysis to estimate the net C flux from cultivation. → The plastic greenhouse vegetable cultivation system in China can act as a C sink. → Intensified agricultural practices can generate C sinks. → Expansion of plastic greenhouse vegetable cultivation can enhance regional C sink. - The conversion from conventional vegetable cultivation to plastic greenhouse vegetable cultivation could substantially enhance carbon sink potential by 8.6 and 1.3 times for temperate and subtropical area, respectively.

  7. LAMPF polarized 13C targets

    International Nuclear Information System (INIS)

    Ethylene glycol, 1-butanol, and toluene highly enriched in 13C have been used at LAMPF to produce dynamically polarized 13C targets for scattering experiments with protons and pions. Preparation of the materials and characteristic properties of these targets are described. 17 refs., 1 fig

  8. Toward explaining the Holocene carbon dioxide and carbon isotope records: Results from transient ocean carbon cycle-climate simulations

    OpenAIRE

    Menviel, L.; F. Joos

    2012-01-01

    [1] The Bern3D model was applied to quantify the mechanisms of carbon cycle changes during the Holocene (last 11,000 years). We rely on scenarios from the literature to prescribe the evolution of shallow water carbonate deposition and of land carbon inventory changes over the glacial termination (18,000 to 11,000 years ago) and the Holocene and modify these scenarios within uncertainties. Model results are consistent with Holocene records of atmospheric CO2 and δ13C as well as the spatiotempo...

  9. MEASUREMENT OF NUMBER AVERAGE MOLECULAR WEIGHT OF STYRENE OLIGOMER BY 13C-NMR METHOD

    Institute of Scientific and Technical Information of China (English)

    Song Wang; Xiao-hu Yan; Rong-shi Cheng

    1999-01-01

    13C-NMR 1H-decoupled spectra of styrene polymers were assigned by comparison with model compounds, then used in measurements of number average molecular weights. The higher limit of an exact determination of the end group signal is less than a molecular weight of 104. For polymer samples with Mn<103, the results obtained from 13C-NMR spectra of saturated carbon region are in excellent agreement with the values determined by 1H-NMR, SEC, and VPO methods, while the results from 13C-NMR spectra of phenyl C-1 carbon region are somewhat higher than the values determined by other methods.

  10. 13C-NMR studies of membrane lipid-protein interactions upon protein heat denaturation

    International Nuclear Information System (INIS)

    Spinach chloroplast membranes were studied by natural abundance carbon-13 nuclear magnetic resonance (13C-NMR) spectroscopy in their normal state and after heat denaturation of membrane proteins. The membrane proteins were denaturated by raising the temperature of the sample to 67degC for 5 minutes. Line-broadening of 13C-NMR resonances arising from the 1st (carbonyl), 7th, 9th and 12th carbon atom of fatty-acyl chains at these locations, obviously caused by changes in interactions between membrane lipids and proteins upon heat denaturation of membrane proteins. (author). 7 refs.; 1 fig

  11. Intercontinental correlation of organic carbon and carbonate stable isotope records: evidence of climate and sea-level change during the Turonian (Cretaceous)

    NARCIS (Netherlands)

    Jarvis, I.; Trabucho-Alexandre, João; Gröcke, D.R.; Uličný, D.; Laurin, J.

    2015-01-01

    Carbon (d13Corg, d13Ccarb) and oxygen (d18Ocarb) isotope records are presented for an expanded Upper Cretaceous (Turonian–Coniacian) hemipelagic succession cored in the central Bohemian Cretaceous Basin, Czech Republic. Geophysical logs, biostratigraphy and stable carbon isotope chemostratigraphy pr

  12. Influence of variable rates of neritic carbonate deposition on atmospheric carbon dioxide and pelagic sediments

    Science.gov (United States)

    Walker, J. C.; Opdyke, B. C.

    1995-01-01

    Short-term imbalances in the global cycle of shallow water calcium carbonate deposition and dissolution may be responsible for much of the observed Pleistocene change in atmospheric carbon dioxide content. However, any proposed changes in the alkalinity balance of the ocean must be reconciled with the sedimentary record of deep-sea carbonates. The possible magnitude of the effect of shallow water carbonate deposition on the dissolution of pelagic carbonate can be tested using numerical simulations of the global carbon cycle. Boundary conditions can be defined by using extant shallow water carbonate accumulation data and pelagic carbonate deposition/dissolution data. On timescales of thousands of years carbonate deposition versus dissolution is rarely out of equilibrium by more than 1.5 x 10(13) mole yr-1. Results indicate that the carbonate chemistry of the ocean is rarely at equilibrium on timescales less than 10 ka. This disequilibrium is probably due to sea level-induced changes in shallow water calcium carbonate deposition/dissolution, an interpretation that does not conflict with pelagic sedimentary data from the central Pacific.

  13. Natural (13) C distribution in oil palm (Elaeis guineensis Jacq.) and consequences for allocation pattern.

    Science.gov (United States)

    Lamade, Emmanuelle; Tcherkez, Guillaume; Darlan, Nuzul Hijri; Rodrigues, Rosario Lobato; Fresneau, Chantal; Mauve, Caroline; Lamothe-Sibold, Marlène; Sketriené, Diana; Ghashghaie, Jaleh

    2016-01-01

    Oil palm has now become one of the most important crops, palm oil representing nearly 25% of global plant oil consumption. Many studies have thus addressed oil palm ecophysiology and photosynthesis-based models of carbon allocation have been used. However, there is a lack of experimental data on carbon fixation and redistribution within palm trees, and important C-sinks have not been fully characterized yet. Here, we carried out extensive measurement of natural (13) C-abundance (δ(13) C) in oil palm tissues, including fruits at different maturation stages. We find a (13) C-enrichment in heterotrophic organs compared to mature leaves, with roots being the most (13) C-enriched. The δ(13) C in fruits decreased during maturation, reflecting the accumulation in (13) C-depleted lipids. We further used observed δ(13) C values to compute plausible carbon fluxes using a steady-state model of (13) C-distribution including metabolic isotope effects ((12) v/(13) v). The results suggest that fruits represent a major respiratory loss (≈39% of total tree respiration) and that sink organs such as fruits are fed by sucrose from leaves. That is, glucose appears to be a quantitatively important compound in palm tissues, but computations indicate that it is involved in dynamic starch metabolism rather that C-exchange between organs. PMID:26228944

  14. Carbon isotope analysis of fossil bone apatite

    International Nuclear Information System (INIS)

    The feasibility of using bone apatite for stable carbon isotope analysis of ancient bone for palaeodietary studies has been the subject of much controversy, and attempts to determine whether isotopic signatures are stable over time have produced contradictory results. We have tested this stability by measuring the δ13C values of chemically treated bone or tooth mineral of herbivores of known diet (browsers), in a temporal series. The results indicate that diagenesis of biogenic carbonates in the mineral over time is unexpectedly limited, and that chemical pretreatment further reduces diagenetic alteration of the biogenic signal. Enough biogenic carbonate remains to distinguish clearly between browsers and grazers, even after 3 million years

  15. Carbon Segregation of Bearing Steel Concasting Billet

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The formation mechanism of “white band” and central carbon segregation of high-carbon Cr bearing steel concasting billets are discussed in this paper. The maximum oxygen content in the steel produced by concasting process was 13x10-6 with an average oxygen content of 9.3x 10-6.Comparison of metallurgical quality and fatigue property between the concasting steel (CC) andingot casting steel (IC) showed that the carbon segregation (C/C0) in former steel was 0.92~1.10and its fatigue life was equal to that of the latter steel.

  16. Tricyclic flavonoids with 1,3-dithiolium substructure.

    Science.gov (United States)

    Bahrin, Lucian G; Jones, Peter G; Hopf, Henning

    2012-01-01

    The synthesis of new 3-dithiocarbamic flavonoids has been accomplished by the reaction of the corresponding 2-hydroxyaryl dithiocarbamates with aminals. These flavonoids were obtained as a mixture of diastereoisomers, the anti isomer being the major one. The heterocyclization of these compounds provided novel tricyclic flavonoids bearing a 1,3-dithiolium-2-yl ring fused at the 3,4-carbon positions of the benzopyran moiety. PMID:23209535

  17. Tricyclic flavonoids with 1,3-dithiolium substructure

    Directory of Open Access Journals (Sweden)

    Lucian G. Bahrin

    2012-11-01

    Full Text Available The synthesis of new 3-dithiocarbamic flavonoids has been accomplished by the reaction of the corresponding 2-hydroxyaryl dithiocarbamates with aminals. These flavonoids were obtained as a mixture of diastereoisomers, the anti isomer being the major one. The heterocyclization of these compounds provided novel tricyclic flavonoids bearing a 1,3-dithiolium-2-yl ring fused at the 3,4-carbon positions of the benzopyran moiety.

  18. Tricyclic flavonoids with 1,3-dithiolium substructure

    OpenAIRE

    Bahrin, Lucian G.; Jones, Peter G.; Henning Hopf

    2012-01-01

    The synthesis of new 3-dithiocarbamic flavonoids has been accomplished by the reaction of the corresponding 2-hydroxyaryl dithiocarbamates with aminals. These flavonoids were obtained as a mixture of diastereoisomers, the anti isomer being the major one. The heterocyclization of these compounds provided novel tricyclic flavonoids bearing a 1,3-dithiolium-2-yl ring fused at the 3,4-carbon positions of the benzopyran moiety.

  19. Light Emission in Silicon from Carbon Nanotubes

    CERN Document Server

    Gaufrès, Etienne; Noury, Adrien; Roux, Xavier Le; Rasigade, Gilles; Beck, Alexandre; Vivien, Laurent

    2015-01-01

    The use of optics in microelectronic circuits to overcome the limitation of metallic interconnects is more and more considered as a viable solution. Among future silicon compatible materials, carbon nanotubes are promising candidates thanks to their ability to emit, modulate and detect light in the wavelength range of silicon transparency. We report the first integration of carbon nanotubes with silicon waveguides, successfully coupling their emission and absorption properties. A complete study of this coupling between carbon nanotubes and silicon waveguides was carried out, which led to the demonstration of the temperature-independent emission from carbon nanotubes in silicon at a wavelength of 1.3 {\\mu}m. This represents the first milestone in the development of photonics based on carbon nanotubes on silicon.

  20. Steam gasification of carbon: Catalyst properties

    Energy Technology Data Exchange (ETDEWEB)

    Falconer, J.L.

    1991-09-16

    This research uses several techniques to measure the concentration of catalyst sites and determine their stoichiometry for the catalyzed gasification of carbon. Both alkali and alkaline earth oxides are effective catalysts for accelerating the gasification rate of coal chars, but only a fraction of the catalyst appears to be in a form that is effective for gasification, and the composition of that catalyst is not established. Transient techniques, with {sup 13}C labeling, are being used to study the surface processes, to measure the concentration of active sites, and to determine the specific reaction rates. We have used secondary ion mass spectroscopy (SIMS) for both high surface area samples of carbon/alkali carbonate mixtures and for model carbon surfaces with deposited alkali atoms. SIMS provides a direct measure of surface combination of these results can provide knowledge of catalyst dispersion and composition, and thus indicate the way to optimally utilize carbon gasification catalysts.