WorldWideScience

Sample records for carbon 12 reactions

  1. Tests of carbon targets for 12C+12C reactions at astrophysical energies

    International Nuclear Information System (INIS)

    As a preliminary step towards measurements of the 12C +12 C reactions at astrophysical energies, we investigate the behaviour of targets under beam bombardment, specifically the quantitative relation between hydrogen and deuterium content of different carbon targets and target temperature. Experiments have taken place at the CIRCE accelerator in Caserta, Italy and preliminary results are presented here

  2. Study of 16O(12C,α20Ne)α for the investigation of carbon-carbon fusion reaction via the Trojan Horse Method

    Science.gov (United States)

    Rapisarda, G. G.; Spitaleri, C.; Bordeanu, C.; Hons, Z.; Kiss, G. G.; La Cognata, M.; Mrazek, J.; Nita, C.; Pantelica, D.; Petrascu, H.; Pizzone, R. G.; Romano, S.; Szücs, T.; Trache, L.; Tumino, A.; Velisa, G.

    2016-04-01

    Carbon-carbon fusion reaction represents a nuclear process of great interest in astrophysics, since the carbon burning is connected with the third phase of massive stars (M > 8 M⊙) evolution. In spite of several experimental works, carbon-carbon cross section has been measured at energy still above the Gamow window moreover data at low energy present big uncertainty. In this paper we report the results about the study of the 16O(12C,α 20Ne)α reaction as a possible three-body process to investigate 12C(12C,α)20Ne at astrophysical energy via Trojan Horse Method (THM). This study represents the first step of a program of experiments aimed to measure the 12C+12C cross section at astrophysical energy using the THM.

  3. The use of a hydrogen signal in correcting the carbon concentration from 12C(n,n'γ)12C reaction in coal

    International Nuclear Information System (INIS)

    An attempt to use the 2.22 MeV H neutron capture γ-ray as the correcting signal for carbon content measurements is presented. The influence of changes in moisture content on the intensity of 4.43 MeV carbon γ-ray from the 12C(n,n'γ)12C reaction was investigated theoretically using the ANISN multigroup one-dimensional discrete ordinates transport code and the BUGLE-80 (DLC-75) neutron data library, and experimentally by measuring the 4.43 MeV carbon and 2.22 MeV hydrogen γ-ray intensities from a coal sample with added water up to ∼ 23 wt%. A correction formula for carbon γ-ray intensities was arrived at for Janina 118 coal samples using the 2.22 MeV hydrogen γ-ray signal. Further search for a universal formula and error analysis is being undertaken. (author)

  4. Measurement of fragment production DDX of 72 and 144 MeV 12C beam induced reaction on carbon using Bragg Curve Counter

    International Nuclear Information System (INIS)

    Double differential cross section (DDX) data of fragment production for 72 (6 MeV/nucleon) and 144 MeV (12 MeV/nucleon) 12C beam induced reaction on carbon were measured using a Bragg Curve Counter (BCC). The DDX data were obtained for fragments of He, Li, Be, B, C, N and O at 30 degree emission angle. Theoretical calculation using PHITS code with QMD+GEM model represents the DDX well except for components from reactions of direct process and α particle clustering process. (author)

  5. Effects of carbon source and carbon content on electrochemical performances of Li{sub 4}Ti{sub 5}O{sub 12}/C prepared by one-step solid-state reaction

    Energy Technology Data Exchange (ETDEWEB)

    Hu Xuebu [College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610066 (China); Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan 610041 (China); Lin Ziji [China National Quality Supervision and Inspection Center for Alcoholic Beverage Products and Processed Food, Luzhou, Sichuan 646100 (China); Yang Kerun [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan 610041 (China); Hua, Yongjian [China Aviation Lithium Battery Co. Ltd., Luoyang, Henan 471009 (China); Deng Zhenghua, E-mail: zhdeng@cioc.ac.cn [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan 610041 (China)

    2011-05-30

    Highlights: > A simple route to prepare the Li{sub 4}Ti{sub 5}O{sub 12}/C by one-step solid-state reaction. > Carbon source and carbon content are two important factors on the electrochemical performances of Li{sub 4}Ti{sub 5}O{sub 12}/C. > As-prepared Li{sub 4}Ti{sub 5}O{sub 12}/C under optimized conditions shows excellent electrochemical performances. - Abstract: Li{sub 4}Ti{sub 5}O{sub 12}/C composites were synthesized by one-step solid-state reaction method using four commonly used organic compounds or organic polymers as carbon source, i.e., polyacrylate acid (PAA), citric acid (CA), maleic acid (MA) and polyvinyl alcohol (PVA). The physical characteristics of Li{sub 4}Ti{sub 5}O{sub 12}/C composites were investigated by X-ray diffraction, electron microscopy, Raman spectroscopy, particle size distribution and thermogravimetry-derivative thermogravimetry techniques. Their electrochemical properties were characterized by cyclic voltammograms, electrochemical impedance spectra, constant current charge-discharge and rate charge-discharge. These analyses indicated that the carbon source and carbon content have a great effect on the physical and electrochemical performances of Li{sub 4}Ti{sub 5}O{sub 12}/C composites. An ideal carbon source and appropriate carbon content effectively improved the electrical contact between the Li{sub 4}Ti{sub 5}O{sub 12} particles, which enhanced the discharge capacity and rate capability of Li{sub 4}Ti{sub 5}O{sub 12}/C composites. PAA was the best carbon source for the synthesis of Li{sub 4}Ti{sub 5}O{sub 12}/C composites. When the carbon content was 3.49 wt.% (LiOH.H{sub 2}O/PAA molar ratio of 1), as-prepared Li{sub 4}Ti{sub 5}O{sub 12}/C showed the maximum discharge capacity. At 0.2 C, initial capacity of the optimized sample was 168.6 mAh g{sup -1} with capacity loss of 2.8% after 50 cycles. At 8 and 10 C, it showed discharge capacities of 143.5 and 132.7 mAh g{sup -1}, with capacity loss of 8.7 and 9.9% after 50 cycles

  6. Carbon Isotope Fractionation in Reactions of 1,2-Dibromoethane with FeS and Hydrogen Sulfide

    Science.gov (United States)

    EDB (1,2-dibromoethane) is frequently detected at sites impacted by leaded gasoline. In reducing environments, EDB is highly susceptible to abiotic degradation. A study was conducted to evaluate the potential of compound-specific isotope analysis (CSIA) in assessing abiotic degr...

  7. How does the carbon fusion reaction happen in stars?

    International Nuclear Information System (INIS)

    The 12C + 12C fusion reaction is one of the most important reactions in the stellar evolution. Due to its complicated reaction mechanism, there is great uncertainty in the reaction rate which limits our understanding of various stellar objects, such as massive stellar evolution, explosions on neutron stars, and supernovae from accreting white dwarf stars. In this paper, I will review the challenges in the study of carbon burning. I will also report recent results from our studies: 1) an upper limit for the 12C + 12C fusion cross sections, 2) measurement of the 12C + 12C at deep sub-barrier energies, and 3) a new measurement of the 12C(12C, n) reaction. The outlook for the studies of the astrophysical heavy-ion fusion reactions will also be presented

  8. Cascade enzymatic reactions for efficient carbon sequestration.

    Science.gov (United States)

    Xia, Shunxiang; Zhao, Xueyan; Frigo-Vaz, Benjamin; Zheng, Wenyun; Kim, Jungbae; Wang, Ping

    2015-04-01

    Thermochemical processes developed for carbon capture and storage (CCS) offer high carbon capture capacities, but are generally hampered by low energy efficiency. Reversible cascade enzyme reactions are examined in this work for energy-efficient carbon sequestration. By integrating the reactions of two key enzymes of RTCA cycle, isocitrate dehydrogenase and aconitase, we demonstrate that intensified carbon capture can be realized through such cascade enzymatic reactions. Experiments show that enhanced thermodynamic driving force for carbon conversion can be attained via pH control under ambient conditions, and that the cascade reactions have the potential to capture 0.5 mol carbon at pH 6 for each mole of substrate applied. Overall it manifests that the carbon capture capacity of biocatalytic reactions, in addition to be energy efficient, can also be ultimately intensified to approach those realized with chemical absorbents such as MEA. PMID:25708541

  9. $^{12}$C nuclear reaction measurements for hadrontherapy.

    CERN Document Server

    B. Braunn, B; G. Ban, G; J.Colin, J; D. Cussol, D; J.M. Fontbonne, J M; F.R.. Lecolley, F R; C. Pautard, C; Haas, F; Lebhertz, D; Rousseau, M; Stuttge, L; Chevallier, M; Dauvergne, D; Le Foulher, F; Ray, C; Testa, E; Testa, M; Salsac, M D

    2010-01-01

    Hadrontherapy treatments require a very high precision on the dose deposition ( 2.5% and 1-2mm) in order to keep the benefits of the precise ions’ ballistic. The largest uncertainty on the physical dose deposition is due to ion fragmentation. Up to now, the simulation codes are not able to reproduce the fragmentation process with the required precision. To constraint the nuclear models and complete fragmentation cross sections databases; our collaboration has performed an experiment on May 2008 at GANIL with a 95 MeV/u 12C beam. We have measured the fluence, energy and angular distributions of charged fragments and neutrons coming from nuclear reactions of incident 12C on thick water-like PMMA targets. Preliminary comparisons between GEANT4 (G4BinaryLightIonReaction) simulations and experimental data show huge discrepancies.

  10. Reactions on carbon anodes in aluminium electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Eidet, Trygve

    1997-12-31

    The consumption of carbon anodes and energy in aluminium electrolysis is higher than what is required theoretically. This thesis studies the most important of the reactions that consume anode materials. These reactions are the electrochemical anode reaction and the airburn and carboxy reactions. The first part of the thesis deals with the kinetics and mechanism of the electrochemical anode reaction using electrochemical impedance spectroscopy. The second part deals with air and carboxy reactivity of carbon anodes and studies the effects of inorganic impurities on the reactivity of carbon anodes in the aluminium industry. Special attention is given to sulphur since its effect on the carbon gasification is not well understood. Sulphur is always present in anodes, and it is expected that the sulphur content of available anode cokes will increase in the future. It has also been suggested that sulphur poisons catalyzing impurities in the anodes. Other impurities that were investigated are iron, nickel and vanadium, which are common impurities in anodes which have been reported to catalyze carbon gasification. 88 refs., 92 figs., 24 tabs.

  11. Neutrino neutral current reactions in 12C

    Science.gov (United States)

    Parthasarathy, R.; Yesudian, Premkumar

    1985-05-01

    The differential and total cross sections for the nuclear reaction ν μ + 12C (g.s) → 12C ∗ (1 +; T = 1, 15.1 MeV) + νμ are investigated for values of 50 ≤ Eνμ ≤ 300 MeV. An effective Hamiltonian for the above nuclear reaction is constructed from the neutrino-quark neutral current weak interaction, by first constructing the neutrino-nucleon neutral current interaction and then using the impulse approximation along with the non-relativistic reduction procedure. The Weinberg-Salam model is the basis of the calculations. Detailed expressions for the differential cross sections are derived including the nucleon momentum-dependent terms. The numerical results are obtained using the general 1 p-shell wavefunctions of Cohen and Kurath. The sensitivity of the total cross sections to the nuclear models and to the Weinberg angle is studied. The corresponding anti-neutrino reaction is also investigated. The ratio R = (σ Tν μ - σ Toverlineνμ) /(σ Tν μ + σ Toverlineνμ) is found to be independent of the nuclear wavefunctions but very sensitive to the Weinberg angle. Thus this observable can be used to determine the free parameter θw in a nuclear reaction, thereby complementing the studies involving free nucleons. The recoil polarization of the final nucleus 12C ∗(1 +; T = 1, 15.1 MeV) is also studied and its importance is pointed out.

  12. Fusion, resonances and scattering in 12C+12C reaction

    Indian Academy of Sciences (India)

    B Sahu; S K Agarwalla; C S Shastry

    2003-07-01

    The variation of fusion cross-section (fus) with energy in the 12C+12C collision is linked to the underlying resonance phenomenon through the behavior of reaction cross-section (r) of which fus is taken as a part. The calculation of fus is done through an energy-dependent imaginary potential in the optical model potential (OMP). Through dispersion relation, such an imaginary potential gives rise to energy-dependent real potential which is incorporated in the OMP. In our calculation, a form of potential for the nuclear part which has a soft repulsive in-built core is introduced based on similar works done earlier. The calculated results of fus are used to explain the oscillatory structure, astrophysical -factor and the decreasing trend at higher energies of the experimental fus data in the case of 12C+12C system with remarkable success. The potential used for fusion calculation is tested for fitting elastic scattering data at some energies and is found good in forward angles. Further improvement of the fitting of these data is obtained by incorporating a coupling potential in the surface region. About twenty resonances are observed in our calculation in the specific partial waves and some of them are found close to the experimentally identified resonances in 12C+12C reaction. Thus, we provide an integrated and comprehensive analysis of fusion, resonance and scattering data in the best studied case of 12C+12C reaction within the framework of optical potential model.

  13. 12C+12C reactions at astrophysical energies: Tests of targets behaviour under beam bombardment

    International Nuclear Information System (INIS)

    12C(12C,α)20Ne and 12C(12C,p)23Na are the most important reactions during the carbon burning phase in stars. Direct measurements at the relevant astrophysical energy (E=1.5±0.3MeV) are very challenging because of the extremely small cross sections involved and of the high beam-induced background originating from impurities in the targets. In addition, persistent resonant structures at low energies are not well understood and make the extrapolation of the cross section from high energy data very uncertain. As a preliminary step towards the measurements of the 12C(12C,α)20Ne and 12C(12C,p)23Na reactions we intend to investigate the behaviour of targets under beam bombardment, specifically the quantitative measurement of hydrogen and deuterium content of highly pure stable carbon targets in relation to target temperature. Experiments are taking place at the CIRCE accelerator in Caserta, Italy and preliminary results are presented here

  14. Immunoaffinity enrichment and liquid chromatography-selected reaction monitoring mass spectrometry for quantitation of carbonic anhydrase 12 in cultured renal carcinoma cells

    OpenAIRE

    Rafalko, Agnes; Iliopoulos, Othon; Fusaro, Vincent A; Hancock, William; Hincapie, Marina

    2010-01-01

    Liquid chromatography-selected reaction monitoring (LC-SRM) is a highly specific and sensitive mass spectrometry (MS) technique that is widely being applied to selectively qualify and validate candidate markers within complex biological samples. However, in order for LC-SRM methods to take on these attributes, target-specific optimization of sample processing is required, in order to reduce analyte complexity, prior to LC-SRM. In this study, we have developed a targeted platform consisting of...

  15. Reaction of carbon with lanthanide silicides. III

    International Nuclear Information System (INIS)

    The reaction of carbon with Gd5Si3 and Ho5Si3 was studied by arc melting the alloys with carbon and comparing the resultant phases with those identified previously in the Er5Si3 system. Ordering in the structure detected at x = 0.5 and x = 0.95 in Ln5Si3Csub(x) in both these systems is identical with that detected in the erbium system. Lower metal volatility in the gadolinium preparations produces single-phase systems more readily, but above x = 0.5 the carbide Gd15C19 is present in small amounts up to x = 0.95. Results for harndess, hydrolysis product distribution and X-ray and metallographic examination are presented. (Auth.)

  16. Polymorphs calcium carbonate on temperature reaction

    International Nuclear Information System (INIS)

    Calcium carbonate (CaCO3) has three different crystal polymorphs, which are calcite, aragonite and vaterite. In this study, effect of reaction temperature on polymorphs and crystallite structure of CaCO3 was investigated. X-ray powder diffraction (XRD), fourier transform infrared (FTIR), and variable pressure scanning electron microscope (VPSEM) were used to characterize the obtained CaCO3 particles. The obtained results showed that CaCO3 with different crystal and particle structures can be formed by controlling the temperature during the synthesis process

  17. Systematic analysis of reaction cross sections of carbon isotopes

    CERN Document Server

    Horiuchi, W; Kohama, A; Suzuki, Y

    2006-01-01

    We systematically analyze total reaction cross sections of carbon isotopes with N=6--16 on a $^{12}$C target for wide range of incident energy. The intrinsic structure of the carbon isotope is described by a Slater determinant generated from a phenomenological mean-field potential, which reasonably well reproduces the ground state properties for most of the even $N$ isotopes. We need separate studies not only for odd nuclei but also for $^{16}$C and $^{22}$C. The density of the carbon isotope is constructed by eliminating the effect of the center of mass motion. For the calculations of the cross sections, we take two schemes: one is the Glauber approximation, and the other is the eikonal model using a global optical potential. We find that both of the schemes successfully reproduce low and high incident energy data on the cross sections of $^{12}$C, $^{13}$C and $^{16}$C on $^{12}$C. The calculated reaction cross sections of $^{15}$C are found to be considerably smaller than the empirical values observed at l...

  18. Reaction from Dimethyl Carbonate to Diphenyl Carbonate. 1. Experimental Determination of the Chemical Equilibria

    NARCIS (Netherlands)

    Haubrock, J.; Raspe, M.; Versteeg, G.F.; Kooijman, H.A.; Taylor, R.; Hogendoorn, J.A.

    2008-01-01

    New experimental equilibrium data of the reaction of dimethyl carbonate (DMC) and phenol to methyl phenyl carbonate (MPC) and the subsequent disproportion and transesterification reaction of MPC to diphenyl carbonate (DPC) are presented and interpreted in terms of the reaction equilibrium coefficien

  19. 1,2 Migration in Carbenoid and Carbene Reactions

    Institute of Scientific and Technical Information of China (English)

    MA Ming; JIANG Nan; SHI Wei-Feng; WANG Jian-Bo

    2003-01-01

    @@ 1,2-Hydride, 1,2-alkyl and 1,2-aryl migrations are common in free carbene chemistry, and they are also fre quently encountered in the reactions of metal carbenes. In some cases, these migration reactions can compete with the typical reactions of metal carbenes, such as X-H (X = Si, C, O, N, S, etc. ) insertions and cyclopropanations. [1] The 1,2-migration also found synthetic application. An example is the SnCl2-promoted 1,2-hydride migration of α-diazo-β-hydroxy esters, known as Roskamp homologation, which leads to the formation of β-keto esters. [2

  20. Kinetic study of the reaction of uranium with various carbon-containing gases

    International Nuclear Information System (INIS)

    The kinetic study of the reaction U + CO2 and U + CO has been performed by a thermogravimetric method on a spherical uranium powder, in temperature ranges respectively from 460 to 690 deg. C and from 570 to 850 deg. C. The reaction with carbon dioxide leads to uranium dioxide. A carbon deposition takes place at the same time. The global reactions is the result of two reactions: U + 2 CO2 → UO2 + 2 CO U + CO2 → UO2 + C The reaction with carbon monoxide leads to a mixture of dioxide UO2, dicarbide UC2 and free carbon. The main reaction can be written. U + CO → 1/2 UO2 + 1/2 UC2 The free carbon results of the disproportionation of the carbon monoxide. A remarkable separation of the two phases UO2 and UC2 can be observed. A mechanism accounting for the phenomenon has been proposed. The two reactions U + CO2 and U + CO begin with a long germination period, after which, the reaction velocity seems to be limited in both cases by the ionic diffusion of oxygen through the uranium dioxide. (author)

  1. Carbon compounds in the atmosphere and their chemical reactions

    OpenAIRE

    Martišová, Petra

    2013-01-01

    The essay dissert on compounds of carbon in the atmosphere and its reaction. The most important are carbon dioxide, carbon monoxide and methane. Included among important compounds of carbon are volatile organic substances, polycyclic aromatic hydrocarbon and dioxin. Carbon dioxide and methane representing greenhouse gases have also indispensable meaning. As they, together with water vapour, nitrogen monoxide and other gases are causing the major part of greenhouse effect. Primarily because of...

  2. Chemical Reactions of N13 Recoils from the C12 (d, n)N13 Reaction

    International Nuclear Information System (INIS)

    Earlier studies of N13 recoils produced by the nuclear reaction C12 (d, n) N13 in CH4, CH3OH, CCl4, etc. showed that the final radioactive gaseous products were entirely cyanides such as HCN, CH3CN and ClCN. No ammonia or amines were detected. In this study the investigation has been extended to benzene and CF4. In addition reactions of N+ ions with CCl4 and CF4 have been examined in a tandem mass spectrometer. In the case of N13 recoils reacting with benzene HCN was the main product and small amounts of benzonitrile were formed. No aniline or pyridine were produced. This will be contrasted with reported studies in which active nitrogen produced by electrical discharge reacted with benzene. In the case of CF4, the only radioactive product detected was FCN. In both cases polymeric materials were produced on the walls of the reaction vessels. No other products such as NF3 were detected. Studies of the effect of rare gas additives in the case of methanol indicated that ion-molecule reactions were involved at least in part. For this reason, the reactions of N+ ions with CCI4 and CF4 were studied in a tandem mass spectrometer in the bombarding ion energy range from 2 eV to. 200 eV. In this study the relative cross-sections for various ion production were investigated as a function of energy. In addition to ions composed of carbon and chlorine, various nitrogen-containing ions such as NCl+. CNCl+ and CN+ were detected. The shapes of the cross-section curves were such as to indicate complex formation possibly (CCl4N)+, which decomposed to give the product ions. The above complex was not detected directly. (author)

  3. Carbon Isotopic Fractionation During Formation of Macromolecular Organic Grain Coatings via FTT Reactions

    Science.gov (United States)

    Nuth, J. A.; Johnson, N. M.; Elsila-Cook, J.; Kopstein, M.

    2011-01-01

    Observations of carbon isotopic fractionation of various organic compounds found in meteorites may provide useful diagnostic information concerning the environments and mechanisms that were responsible for their formation. Unfortunately, carbon has only two stable isotopes, making interpretation of such observations quite problematic. Chemical reactions can increase or decrease the C-13/C-12 ratio by various amounts, but the final ratio will depend on the total reaction pathway followed from the source carbon to the final product, a path not readily discernable after 4.5 billion years. In 1970 Libby showed that the C-13/C-12 ratios of terrestrial and meteoritic carbon were similar by comparing carbon from the Murchison meteorite to that of terrestrial sediments. More recent studies have shown that the C-13/C-12 ratio of the Earth and meteorites may be considerably enriched in C-13 compared to the ratio observed in the solar wind [2], possibly suggesting that carbon produced via ion-molecule reactions in cold dark clouds could be an important source of terrestrial and meteoritic carbon. However, meteoritic carbon has been subjected to parent body processing that could have resulted in significant changes to the C-13/C-12 ratio originally present while significant variation has been observed in the C-13/C-12 ratio of the same molecule extracted from different terrestrial sources. Again we must conclude that understanding the ratio found in meteorites may be difficult.

  4. Carbon dioxide as a carbon source in organic transformation: carbon-carbon bond forming reactions by transition-metal catalysts.

    OpenAIRE

    Tsuji, Yasushi; Fujihara, Tetsuaki

    2012-01-01

    Recent carbon-carbon bond forming reactions of carbon dioxide with alkenes, alkynes, dienes, aryl zinc compounds, aryl boronic esters, aryl halides, and arenes having acidic C-H bonds are reviewed in which transition-metal catalysts play an important role.

  5. Reaction from Dimethyl Carbonate (DMC) to Diphenyl Carbonate (DPC). 2. Kinetics of the Reactions from DMC via Methyl Phenyl Carbonate to DPC

    NARCIS (Netherlands)

    Haubrock, J.; Wermink, W.; Versteeg, G.F.; Kooijman, H.A.; Taylor, R.; Sint Annaland, M. van; Hogendoorn, J.A.

    2008-01-01

    The kinetics of the reaction of dimethyl carbonate (DMC) and phenol to methyl phenyl carbonate (MPC) and the subsequent disproportion and transesterification reaction of methyl phenyl carbonate (MPC) to diphenyl carbonate (DPC) have been studied. Experiments were carried out in a closed batch reacto

  6. Kinetic study of the reaction of uranium with various carbon-containing gases; Etude cinetique de la reaction sur l'uranium de differents gaz carbones

    Energy Technology Data Exchange (ETDEWEB)

    Feron, G. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1963-09-15

    The kinetic study of the reaction U + CO{sub 2} and U + CO has been performed by a thermogravimetric method on a spherical uranium powder, in temperature ranges respectively from 460 to 690 deg. C and from 570 to 850 deg. C. The reaction with carbon dioxide leads to uranium dioxide. A carbon deposition takes place at the same time. The global reactions is the result of two reactions: U + 2 CO{sub 2} {yields} UO{sub 2} + 2 CO U + CO{sub 2} {yields} UO{sub 2} + C The reaction with carbon monoxide leads to a mixture of dioxide UO{sub 2}, dicarbide UC{sub 2} and free carbon. The main reaction can be written. U + CO {yields} 1/2 UO{sub 2} + 1/2 UC{sub 2} The free carbon results of the disproportionation of the carbon monoxide. A remarkable separation of the two phases UO{sub 2} and UC{sub 2} can be observed. A mechanism accounting for the phenomenon has been proposed. The two reactions U + CO{sub 2} and U + CO begin with a long germination period, after which, the reaction velocity seems to be limited in both cases by the ionic diffusion of oxygen through the uranium dioxide. (author) [French] L'etude cinetique des reactions U sol + CO{sub 2} gaz et U sol + CO gaz a ete effectuee par thermogravirnetrie sur une poudre d'uranium a grains spheriques, les domaines de temperature etudies s'etendant respectivement de 460 a 690 deg. C et de 570 a 850 deg. C. L'action du dioxyde de carbone conduit au dioxyde d'uranium UO{sub 2}; il se produit en meme temps un depot de carbone. La reaction globale resulte des deux reactions: U + 2 CO{sub 2} {yields} UO{sub 2} + 2 CO U + CO{sub 2} {yields} UO{sub 2} + C Le mono-oxyde de carbone conduit a un melange de dioxyde UO{sub 2}, de dicarbure UC{sub 2} et de carbone libre. La reaction principale s'ecrit: U + CO {yields} 1/2 UO{sub 2} + 1/2 UC{sub 2} Le carbone libre provient de la dismutation du mono-oxyde de carbone. On observe une separation remarquable des deux phases UO{sub 2} et UC{sub 2}; un mecanisme

  7. How to identify carbonate rock reactions in concrete

    International Nuclear Information System (INIS)

    This paper summarizes the modern petrographic techniques used to diagnose carbonate rock reactions in concrete. Concrete microbar specimens of the prototype RILEM AAR-5 test, provided by the Austrian Cement Research Institute, and typical Canadian concrete that had undergone alkali-carbonate reaction (ACR) were examined. Scanning electron microscopy, element mapping and quantitative analysis using electron-probe microanalyzer with energy-dispersive spectrometry (EPMA/EDS: around x 2000, <0.1 nA) were made of polished thin sections after completing polarizing microscopy. Dedolomitization produced a myrmekitic texture, composed of spotted brucite (<3 μm) and calcite within the reaction rim, along with a carbonate halo of calcite in the surrounding cement paste. However, no evidence was detected that dedolomitization had produced the expansion cracks in the cement paste, while the classical definition of alkali-carbonate reaction postulates their development. It was found that the alkali-silica reaction (ASR) due to cryptocrystalline quartz hidden in the matrix, always associated with dedolomitization in all the carbonate aggregates tested, was responsible for the expansion of both the laboratory and field concretes, even with the Canadian dolomitic limestone from Kingston, the reference material for alkali-carbonate reaction. It is suggested that the term alkali-carbonate reaction is misleading

  8. Experimental study of the 13C+12C fusion reaction at deep sub-barrier energies

    Science.gov (United States)

    Tudor, D.; Chilug, A. I.; Straticiuc, M.; Trache, L.; Chesneanu, D.; Toma, S.; Ghita, D. G.; Burducea, I.; Margineanu, R.; Pantelica, A.; Gomoiu, C.; Zhang, N. T.; Tang, X.; Li, Y. J.

    2016-04-01

    Heavy-ion fusion reactions between light nuclei such as carbon and oxygen isotopes have been studied because of their significance for a wide variety of stellar burning scenarios. One important stellar reaction is 12C+12C, but it is difficult to measure it in the Gamow window because of very low cross sections and several resonances occurring. Hints can be obtained from the study of 13C+12C reaction. We have measured this process by an activation method for energies down to Ecm=2.5 MeV using 13C beams from the Bucharest 3 MV tandetron and gamma-ray deactivation measurements in our low and ultralow background laboratories, the latter located in a salt mine about 100 km north of Bucharest. Results obtained so far are shown and discussed in connection with the possibility to go even further down in energy and with the interpretation of the reaction mechanism at such deep sub-barrier energies.

  9. Study of the reaction of carbon with atomic oxygen

    International Nuclear Information System (INIS)

    This research thesis reports the study of reactions of carbon when in contact with atomic oxygen in order to have a better understanding of the combustion mechanism. It appears that, at room temperature, oxygen atoms impacting the carbon surface do not all react with this surface (the reaction shock efficiency is very low). At temperatures higher than 200 C, all atoms which reach the surface react with it and the efficiency is much higher. The study of the reaction rate with respect to temperature allows three domains of reaction conditions to be distinguished according to the stability of formed surface oxides. The initial degassing of carbon results in a temporary excitation of the reaction rate, even with atomic oxygen. Whatever is the temperature, reaction is localised at the vicinity of the sample outer surface (this means that the regime is constantly diffusion). The BET surface of carbons does not vary with the reaction. As texture, the structure of the different carbons does not seem to have an influence on the reaction with atomic oxygen. Even though results are obtained in very different temperature ranges (600 C with O2, less than 200 C with atomic oxygen), there is an analogy between some phenomena noticed with atomic oxygen and molecular oxygen: surface oxides play a prevailing role

  10. Aminolysis Reaction of Glycerol Carbonate in Organic and Hydroorganic Medium

    OpenAIRE

    Nohra, Bassam; Candy, Laure; Blanco, Jean-François; Raoul, Yann; Mouloungui, Zephirin

    2012-01-01

    Aminolysis reaction of glycerol carbonate with primary amine in organic and hydroorganic media leads to the formation of two hydroxyurethane isomers and a partial decomposition of glycerol carbonate into glycerol. Aminolysis with a secondary amine promotes the condensation reaction and limits the formation of glycerol. The ratio of α versus β was determined by zgig 13C NMR. This technique permits computing the yield of α and β products in the medium. The quantity of glycerol was determined by...

  11. Friction stir processing on high carbon steel U12

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, S. Yu., E-mail: tsy@ispms.ru; Rubtsov, V. E., E-mail: rvy@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Melnikov, A. G., E-mail: melnikov-ag@tpu.ru [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    Friction stir processing (FSP) of high carbon steel (U12) samples has been carried out using a milling machine and tools made of cemented tungsten carbide. The FSP tool has been made in the shape of 5×5×1.5 mm. The microstructural characterization of obtained stir zone and heat affected zone has been carried out. Microhardness at the level of 700 MPa has been obtained in the stir zone with microstructure consisting of large grains and cementitte network. This high-level of microhardness is explained by bainitic reaction developing from decarburization of austenitic grains during cementite network formation.

  12. Friction stir processing on high carbon steel U12

    International Nuclear Information System (INIS)

    Friction stir processing (FSP) of high carbon steel (U12) samples has been carried out using a milling machine and tools made of cemented tungsten carbide. The FSP tool has been made in the shape of 5×5×1.5 mm. The microstructural characterization of obtained stir zone and heat affected zone has been carried out. Microhardness at the level of 700 MPa has been obtained in the stir zone with microstructure consisting of large grains and cementitte network. This high-level of microhardness is explained by bainitic reaction developing from decarburization of austenitic grains during cementite network formation

  13. Residual carbon detection in barium titanate ceramics by nuclear reaction technique

    International Nuclear Information System (INIS)

    Residual carbon content in BaTiO3 ceramics synthesized by the citric resin route has been evaluated by the 12C(d,p)13C nuclear reaction technique. The C content inside ceramics sintered at 1400oC is about 50 ppm in weight. The surface layer (0.4 μm) exhibits a concentration of several hundreds or thousands ppm with two origins for the detected carbon: atmospheric contamination carbon adsorbed at the surface, which has been roughly evaluated, and material intrinsic carbon: its concentration depends mainly on the sintering conditions, shape of ceramic pieces and sintering temperature. (author)

  14. Effect of Carbon Containing Materials on Pure Carbon Reaction-bonded SiC

    Institute of Scientific and Technical Information of China (English)

    JI Xiaoli; WEI Lei; SUN Feng

    2008-01-01

    Petroleum coke, graphite, gas carbon and lower sulfur carbon black were used to prepare reaction-bonded silicon carbide. The influences of different carbon containing materials on properties of carbonaceous precursors, sintering process, and microstructure of the prepared SiC were researched. The results show that:(1)With the density of carbon containing materials increasing, the porosity of carbonaceous precursors decreases and the infiltrating process of liquid silicon is more difficult.(2)The reaction between carbon containing materials and liquid silicon, the volume effect is more obvious with the density of carbon containing materials increasing.(3)As the carbon containing materials density decreasing, residual carbon in reaction bonded SiC also decreases.

  15. Reactions of carbon cluster ions stored in an RF trap

    International Nuclear Information System (INIS)

    Reactions of carbon cluster ions with O2 were studied by using an RF ion trap in which cluster ions of specific size produced by laser ablation could be stored selectively. Reaction rate constants for positive and negative carbon cluster ions were estimated. In the case of the positive cluster ions, these were consistent with the previous experimental results using FTMS. Negative carbon cluster ions C-n (n=4-8) were much less reactive than positive cluster ions. The CnO- products were seen only in n=4 and 6. (orig.)

  16. Modeling Corrosion Reactions of Steel in a Dilute Carbonate Solution

    Science.gov (United States)

    Eliyan, Faysal Fayez; Alfantazi, Akram

    2016-02-01

    This research models the corrosion reactions of a high-strength steel in an aerated, dilute, carbonate solution during a single-cycle voltammetry. Based on a previous study (Eliyan et al. in J Mater Eng Perform 24(6):1-8, 2015) and a literature survey, the corrosion reactions of the cathodic reduction, anodic dissolution, and passivation, as well as the interfacial interactions and the chemistry of the corrosion products are illustrated in schematics. The paper provides a visual guide on the corrosion reactions for steel in carbonate solutions based on the available mechanistic details that were reported and are still being investigated in literature.

  17. Carbon induced reactions at low incident energies

    International Nuclear Information System (INIS)

    Accurate knowledge of the reactions which occur when two heavy ions interact is of importance in many trans-disciplinary fields, particularly in cancer therapy and space radiation protection. In these cases one needs to know what happens in a natural process to which all possible reaction mechanisms contribute and thus a theoretical calculation, to be really usable, must indeed be able to reproduce large sets of data in wide energy and mass ranges. We show here the results of an analysis of the spectra of intermediate mass fragments produced in the C + Al interaction at 13 MeV/n, both in direct and inverse kinematics, which supplies a very reasonable reproduction of a great number of data providing useful information on the leading reaction mechanisms

  18. Reactions over catalysts confined in carbon nanotubes.

    Science.gov (United States)

    Pan, Xiulian; Bao, Xinhe

    2008-12-21

    We review a new concept for modifying the redox properties of transition metals via confinement within the channels of carbon nanotubes (CNTs), and thus tuning their catalytic performance. Attention is also devoted to novel techniques for homogeneous dispersion of metal nanoparticles inside CNTs since these are essential for optimization of the catalytic activity. PMID:19048128

  19. Kinetics of the reaction between carbon dioxide and tertiary amines

    Energy Technology Data Exchange (ETDEWEB)

    Crooks, J.E.; Donnellan, J.P. (King' s Coll., London (England))

    1990-02-16

    The reaction between carbon dioxide and amines is of great technical importance and has been the subject of many investigations. The authors have shown that the reaction for secondary amines in anhydrous ethanol and in aqueous solution is exclusively second-order in amine and that the zwitterion intermediate postulated by Danckwerts is probably of negligible significance in the mechanism. The reaction with tertiary amines has also been studied, but the data are less controversial. In order to complete their studies of the reactions of carbon dioxide with amines, using their conductimetric stopped-flow apparatus, they have studied this reaction for MDEA (methyldiethanolamine, IUPAC name N-methyl-2,2{prime}-iminodiethanol) and TEA (triethanolamine, IUPAC name 2,2{prime},2{double prime}-nitrilotris(ethanol)).

  20. Carbon-Carbon Cross Coupling Reactions in Ionic Liquids Catalysed by Palladium Metal Nanoparticles

    OpenAIRE

    Martin H. G. Prechtl; Scholten, Jackson D.; Jairton Dupont

    2010-01-01

    A brief summary of selected pioneering and mechanistic contributions in the field of carbon-carbon cross-coupling reactions with palladium nanoparticles (Pd-NPs) in ionic liquids (ILs) is presented. Five exemplary model systems using the Pd-NPs/ILs approach are presented: Heck, Suzuki, Stille, Sonogashira and Ullmann reactions which all have in common the use of ionic liquids as reaction media and the use of palladium nanoparticles as reservoir for the catalytically active palladium species.

  1. The 12C(12C,α)20Ne and 12C(12C,p)23Na reactions at the Gamow peak via the Trojan Horse Method

    Science.gov (United States)

    Tumino, A.; Spitaleri, C.; Cherubini, S.; Guardo, L.; Gulino, M.; Indelicato, I.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Spartá, R.

    2016-05-01

    A measurement of the 12C(14N,α20Ne)2H and 12C(14N,p23Na)2Hreactions has been performed at a 14N beam energy of 30.0 MeV. The experiment aims to explore the extent to which contributing 24Mg excited states can be populated in the quasi-free reaction off the deuteron in 14N. In particular, the 24Mg excitation region explored in the measurement plays a key role in stellar carbon burning whose cross section is commonly determined by extrapolating high-energy fusion data. From preliminary results, α and proton channels are clearly identified. In particular, ground and first excited states of 20Ne and 23Na play a major role.

  2. The 12C(12C,α20Ne and 12C(12C,p23Na reactions at the Gamow peak via the Trojan Horse Method

    Directory of Open Access Journals (Sweden)

    Tumino A.

    2016-01-01

    Full Text Available A measurement of the 12C(14N,α20Ne2H and 12C(14N,p23Na2Hreactions has been performed at a 14N beam energy of 30.0 MeV. The experiment aims to explore the extent to which contributing 24Mg excited states can be populated in the quasi-free reaction off the deuteron in 14N. In particular, the 24Mg excitation region explored in the measurement plays a key role in stellar carbon burning whose cross section is commonly determined by extrapolating high-energy fusion data. From preliminary results, α and proton channels are clearly identified. In particular, ground and first excited states of 20Ne and 23Na play a major role.

  3. Neutrino and antineutrino charge-exchange reactions on 12C

    International Nuclear Information System (INIS)

    We extend the formalism of weak interaction processes, obtaining new expressions for the transition rates, which greatly facilitate numerical calculations, for both neutrino-nucleus reactions and muon capture. Explicit violation of the conserved vector current hypothesis by the Coulomb field, as well as development of a sum-rule approach for inclusive cross sections, has been worked out. We have done a thorough study of exclusive (ground-state) properties of 12B and 12N within the projected quasiparticle random phase approximation (PQRPA). Good agreement with experimental data achieved in this way put into evidence the limitations of the standard RPA and QRPA models, which come from the inability of the RPA to open the p3/2 shell and from the nonconservation of the number of particles in the QRPA. The inclusive neutrino/antineutrino (ν/ν-tilde) reactions 12C(ν,e-)12N and 12C(ν-tilde,e+)12B are calculated within both the PQRPA and the relativistic QRPA. It is found that (i) the magnitudes of the resulting cross sections are close to the sum-rule limit at low energy, but significantly smaller than this limit at high energies, for both ν and ν-tilde; (ii) they increase steadily when the size of the configuration space is augmented, particularly for ν/ν-tilde energies >200 MeV; and (iii) they converge for sufficiently large configuration space and final-state spin. The quasi-elastic 12C(ν,μ-)12N cross section recently measured in the MiniBooNE experiment is briefly discussed. We study the decomposition of the inclusive cross section based on the degree of forbiddenness of different multipoles. A few words are dedicated to the ν/ν-tilde-12C charge-exchange reactions related to astrophysical applications.

  4. Oxidation reaction of pyrolytic carbon coating

    International Nuclear Information System (INIS)

    The behaviour of pyrolytic carbon coatings on commercial grade graphite substrate in oxidizing environment is described. Specimens were examined under sputtering in plasma of oxygen and argon, or in an oxidizing solution of K2CrO7+H3PO4. Specimens of commercial grade graphite (ATJ) were quickly eroded under these conditions, compared to coated specimens. The erosion rate of the coating is dependent on its thickness and on the mean monticules diameter. The coatings disintegrated in the oxidizing environment in three steps: etching of monticules' boundaries; widening of the boundaries or cracking of the coating; falling off the coating. The degree of erosion decreased with increasing mean monticules diameter and increased where the diameter was non-homogeneous. The resistance of the coating to wear- under these oxidizing conditions- can be enhanced by homogenization of the coating and by its deposition in layered films. (author)

  5. Reactions of carbon atoms in pulsed molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Reisler, H. [Univ. of Southern California, Los Angeles (United States)

    1993-12-01

    This research program consists of a broad scope of experiments designed to unravel the chemistry of atomic carbon in its two spin states, P and D, by using well-controlled initial conditions and state-resolved detection of products. Prerequisite to the proposed studies (and the reason why so little is known about carbon atom reactions), is the development of clean sources of carbon atoms. Therefore, in parallel with the studies of its chemistry and reaction dynamics, the authors continuously explore new, state-specific and efficient ways of producing atomic carbon. In the current program, C({sup 3}P) is produced via laser ablation of graphite, and three areas of study are being pursued: (i) exothermic reactions with small inorganic molecules (e.g., O{sub 2}, N{sub 2}O, NO{sub 2}) that can proceed via multiple pathways; (ii) the influence of vibrational and translational energy on endothermic reactions involving H-containing reactants that yield CH products (e.g., H{sub 2}O H{sub 2}CO); (iii) reactions of C({sup 3}P) with free radicals (e.g., HCO, CH{sub 3}O). In addition, the authors plan to develop a source of C({sup 1}D) atoms by exploiting the pyrolysis of diazotetrazole and its salts in the ablation source. Another important goal involves collaboration with theoreticians in order to obtain relevant potential energy surfaces, rationalize the experimental results and predict the roles of translational and vibrational energies.

  6. Lithological influence of aggregate in the alkali-carbonate reaction

    International Nuclear Information System (INIS)

    The reactivity of carbonate rock with the alkali content of cement, commonly called alkali-carbonate reaction (ACR), has been investigated. Alkali-silica reaction (ASR) can also contribute in the alkali-aggregate reaction (AAR) in carbonate rock, mainly due to micro- and crypto-crystalline quartz or clay content in carbonate aggregate. Both ACR and ASR can occur in the same system, as has been also evidenced on this paper. Carbonate aggregate samples were selected using lithological reactivity criteria, taking into account the presence of dedolomitization, partial dolomitization, micro- and crypto-crystalline quartz. Selected rocks include calcitic dolostone with chert (CDX), calcitic dolostone with dedolomitization (CDD), limestone with chert (LX), marly calcitic dolostone with partial dolomitization (CD), high-porosity ferric dolostone with clays (FD). To evaluate the reactivity, aggregates were studied using expansion tests following RILEM AAR-2, AAR-5, a modification using LiOH AAR-5Li was also tested. A complementary study was done using petrographic monitoring with polarised light microscopy on aggregates immersed in NaOH and LiOH solutions after different ages. SEM-EDAX has been used to identify the presence of brucite as a product of dedolomitization. An ACR reaction showed shrinkage of the mortar bars in alkaline solutions explained by induced dedolomitization, while an ASR process typically displayed expansion. Neither shrinkage nor expansion was observed when mortar bars were immersed in solutions of lithium hydroxide. Carbonate aggregate classification with AAR pathology risk has been elaborated based on mechanical behaviours by expansion and shrinkage. It is proposed to be used as a petrographic method for AAR diagnosis to complement the RILEM AAR1 specifically for carbonate aggregate. Aggregate materials can be classified as I (non-reactive), II (potentially reactive), and III (probably reactive), considering induced dedolomitization ACR

  7. Carbon dioxide sequestration via olivine carbonation: Examining the formation of reaction products

    Science.gov (United States)

    King, H. E.; Plümper, O.; Putnis, A.

    2009-04-01

    Due to its abundance and natural ability to sequester CO2, olivine has been proposed as one mineral that could be used in the control of CO2 emissions into the atmosphere (Metz, 2005). Large scale peridotite deposits found in locations such as the Western Gneiss Region in Norway could provide in-situ sites for sequestration or the raw materials for ex-situ mineral carbonation. Determining the conditions under which magnesite (MgCO3) forms most efficiently is crucial to conduct a cost effective process. Understanding the development of secondary minerals is particularly important for in-situ methods as these phases can form passivating layers and affect the host rock porosity. The final solution of flow-through experiments conducted at alkaline pH have been shown to be supersaturated with respect to talc and chrysotile (Giammer et al., 2005), although these phases were not found to have precipitated the formation of a passivating, amorphous silica layer has been observed on reacted olivine surfaces (Bearat et al., 2006). By studying magnesite and other products produced during the carbonation of olivine within Teflon lined steel autoclaves we have begun to form a more comprehensive understanding of how these reactions would proceed during sequestration processes. We have performed batch experiments using carbonated saline solutions in the presence of air or gaseous CO2 from 80 to 200 ˚ C. X-ray powder diffraction was used to identify magnesite within the reaction products. Crystals of magnesite up to 20 m in diameter can be observed on olivine grain surfaces with scanning electron microscopy. Secondary reaction products formed a platy layer on olivine surfaces in reactions above 160 ˚ C and below pH 12. Energy dispersive X-ray analysis of the platy layer revealed an increase in Fe concentration. The macroscopically observable red colouration of the reaction products and Raman spectroscopy indicate that hematite is present in these layers. For experiments with

  8. Pattern Formation and Reaction Textures during Dunite Carbonation

    Science.gov (United States)

    Lisabeth, H. P.; Zhu, W.

    2015-12-01

    Alteration of olivine-bearing rocks by fluids is one of the most pervasive geochemical processes on the surface of the Earth. Serpentinized and/or carbonated ultramafic rocks often exhibit characteristic textures on many scales, from polygonal mesh textures on the grain-scale to onion-skin or kernel patterns on the outcrop scale. Strong disequilibrium between pristine ultramafic rocks and common geological fluids such as water and carbon dioxide leads to rapid reactions and coupled mechanical and chemical feedbacks that manifest as characteristic textures. Textural evolution during metasomatic reactions can control effective reaction rates by modulating dynamic porosity and therefore reactant supply and reactive surface area. We run hydrostatic experiments on thermally cracked dunites saturated with carbon dioxide bearing brine at 15 MPa confining pressure and 150°C to explore the evolution of physical properties and reaction textures as carbon mineralization takes place in the sample. Compaction and permeability reduction are observed throughout experiments. Rates of porosity and permeability changes are sensitive to pore fluid chemistry. After reaction, samples are imaged in 3-dimension (3D) using a dual-beam FIB-SEM. Analysis of the high resolution 3D microstructure shows that permeable, highly porous domains are created by olivine dissolution at a characteristic distance from pre-existing crack surfaces while precipitation of secondary minerals such as serpentine and magnesite is limited largely to the primary void space. The porous dissolution channels provide an avenue for fluid ingress, allow reactions to continue and could lead to progressive hierarchical fracturing. Initial modeling of the system indicates that this texture is the result of coupling between dissolution-precipitation reactions and the local stress state of the sample.

  9. Adverse reactions in treatment with lithium carbonate and haloperidol.

    Science.gov (United States)

    Baastrup, P C; Hollnagel, P; Sorensen, R; Schou, M

    1976-12-01

    Hospital records of 425 patients who had been treated simultaneously with lithium carbonate and haloperidol were examined. Adverse reactions in these patients were the same as in patients given lithium alone or haloperidol alone. None of the patients developed a syndrome resembling that described by others in patients treated with a lithium and haloperidol combination. PMID:1036539

  10. Effects of hydrolysis and carbonization reactions on hydrochar production.

    Science.gov (United States)

    Fakkaew, K; Koottatep, T; Polprasert, C

    2015-09-01

    Hydrothermal carbonization (HTC) is a thermal conversion process which converts wet biomass into hydrochar. In this study, a low-energy HTC process named "Two-stage HTC" comprising of hydrolysis and carbonization stages using faecal sludge as feedstock was developed and optimized. The experimental results indicated the optimum conditions of the two-stage HTC to be; hydrolysis temperature of 170 °C, hydrolysis reaction time of 155 min, carbonization temperature of 215 °C, and carbonization reaction time of 100 min. The hydrolysis reaction time and carbonization temperature had a statistically significant effect on energy content of the produced hydrochar. Energy input of the two-stage HTC was about 25% less than conventional HTC. Energy efficiency of the two-stage HTC for treating faecal sludge was higher than that of conventional HTC and other thermal conversion processes such as pyrolysis and gasification. The two-stage HTC could be considered as a potential technology for treating FS and producing hydrochar. PMID:26051497

  11. 18O + 12C fusion-evaporation reaction

    International Nuclear Information System (INIS)

    A study of the 18O + 12C fusion evaporation reaction has been undertaken for 2 reasons: to make a systematic study of the formation cross section for each individual evaporation residue over a broad excitation energy region in the compound nucleus 30Si:30 to 62 MeV; and to compare all results to fusion-evaporation calculations done in the framework of the Hauser-Feschbach statistical model

  12. Pyrrolidine catalyzed reactions of cyclopentadiene with α,β-unsaturated carbonyl compounds: 1,2- versus 1,4-additions

    OpenAIRE

    Coskun, Necdet; Çetin, Meliha; Gronert, Scott; Ma, Jingxiang; Erden, Ihsan

    2015-01-01

    A systematic study of the reactions of cyclopentadiene with α,β-unsaturated carbonyl compounds in the presence of catalytic pyrrolidine-H2O revealed that the reactions can either proceed with a Michael attack at the β-carbon of enone, or 1,2-addition to the carbonyl, leadingeither to 4-cyclopentadienyl-2-butanones or 6-vinylfulvenes. The former can be isolated and/or converted to the corresponding 1,2-dihydropentalenes with base (or in one-pot at longer reaction times). Substitution pattern o...

  13. Diffusion-reaction compromise the polymorphs of precipitated calcium carbonate

    Institute of Scientific and Technical Information of China (English)

    Han Wang; Wenlai Huang; Yongsheng Han

    2013-01-01

    Diffusion is seldom considered by chemists and materialists in the preparation of materials while it plays an important role in the field of chemical engineering.If we look at crystallization at the atomic level,crystal growth in a solution starts from the diffusion of ions to the growing surface followed by the incorporation of ions into its lattice.Diffusion can be a rate determining step for the growth of crystals.In this paper,we take the crystallization of calcium carbonate as an example to illustrate the microscopic processes of diffusion and reaction and their compromising influence on the morphology of the crystals produced.The diffusion effect is studied in a specially designed three-cell reactor.Experiments show that a decrease of diffusion leads to retardation of supersaturation and the formation of a continuous concentration gradient in the reaction cell,thus promoting the formation of cubic calcite particles.The reaction rate is regulated by temperature.Increase of reaction rate favors the formation of needle-like aragonite particles.When diffusion and reaction play joint roles in the reaction system,their compromise dominates the formation of products,leading to a mixture of cubic and needle-like particles with a controllable ratio.Since diffusion and reaction are universal factors in the preparation of materials,the finding of this paper could be helpful in the controlled synthesis of other materials.

  14. Studying Short-Range Correlations with the ^12C(e,e'pn) Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Subedi, Ramesh

    2007-12-01

    We investigated electron-induced two-nucleon emission from carbon with the goal of being sensitive to and studying short-range correlations using the 12C(e,e'pN) reaction in a triple-coincidence measurement. Two existing high-resolution spectrometers in Hall A at Jefferson Laboratory were used to detect coincident scattered electrons and struck nucleons. A large neutron detector designed and constructed specially for this experiment was used to detect the recoiling neutrons. We performed analysis of the 12C(e,e'pn) reaction, and made direct observation of short-range correlated n-p pairs. From our analysis we conclude that there are 17.9+/-4.5 times more n-p short-range correlated pairs than p-p short-range correlated pairs.

  15. Studying Short-Range Correlations with the 12C(e,e'pn) Reaction

    International Nuclear Information System (INIS)

    We investigated electron-induced two-nucleon emission from carbon with the goal of being sensitive to and studying short-range correlations using the 12C(e,e'pN) reaction in a triple-coincidence measurement. Two existing high-resolution spectrometers in Hall A at Jefferson Laboratory were used to detect coincident scattered electrons and struck nucleons. A large neutron detector designed and constructed specially for this experiment was used to detect the recoiling neutrons. We performed analysis of the 12C(e,e'pn) reaction, and made direct observation of short-range correlated n-p pairs. From our analysis we conclude that there are 17.9+/-4.5 times more n-p short-range correlated pairs than p-p short-range correlated pairs.

  16. Multifragmentation in the 12 GeV proton induced reaction

    International Nuclear Information System (INIS)

    The intermediate mass fragment (IMF) formation in the 12 GeV proton induced reaction on Au target is analyzed by the quantum molecular dynamics model combined with the JAM hadronic cascade model and the non-equilibrated percolation model. We show that the sideward peaked angular distribution of IMF occur in the multifragmentation at very short time scale around 20 fm/c where non-equilibrated features of the residual nucleus fluctuates the nucleon density and fragments in the repulsive Coulomb force are pushed for the sideward direction. (author)

  17. Effective Permeability Change in Wellbore Cement with Carbon Dioxide Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Um, Wooyong; Jung, Hun Bok; Martin, Paul F.; McGrail, B. Peter

    2011-11-01

    Portland cement, a common sealing material for wellbores for geological carbon sequestration was reacted with CO{sub 2} in supercritical, gaseous, and aqueous phases at various pressure and temperature conditions to simulate cement-CO{sub 2} reaction along the wellbore from carbon injection depth to the near-surface. Hydrated Portland cement columns (14 mm diameter x 90 mm length; water-to-cement ratio = 0.33) including additives such as steel coupons and Wallula basalt fragments were reacted with CO{sub 2} in the wet supercritical (the top half) and dissolved (the bottom half) phases under carbon sequestration condition with high pressure (10 MPa) and temperature (50 C) for 5 months, while small-sized hydrated Portland cement columns (7 mm diameter x 20 mm length; water-to-cement ratio = 0.38) were reacted with CO{sub 2} in dissolved phase at high pressure (10 MPa) and temperature (50 C) for 1 month or with wet CO{sub 2} in gaseous phase at low pressure (0.2 MPa) and temperature (20 C) for 3 months. XMT images reveal that the cement reacted with CO{sub 2} saturated groundwater had degradation depth of {approx}1 mm for 1 month and {approx}3.5 mm for 5 month, whereas the degradation was minor with cement exposure to supercritical CO{sub 2}. SEM-EDS analysis showed that the carbonated cement was comprised of three distinct zones; the innermost less degraded zone with Ca atom % > C atom %, the inner degraded zone with Ca atom % {approx} C atom % due to precipitation of calcite, the outer degraded zone with C atom % > Ca atom % due to dissolution of calcite and C-S-H, as well as adsorption of carbon to cement matrix. The outer degraded zone of carbonated cement was porous and fractured because of dissolution-dominated reaction by carbonic acid exposure, which resulted in the increase in BJH pore volume and BET surface area. In contrast, cement-wet CO{sub 2}(g) reaction at low P (0.2 MPa)-T (20 C) conditions for 1 to 3 months was dominated by precipitation of micron

  18. Chemical Reactions in the Processing of Mosi2 + Carbon Compacts

    Science.gov (United States)

    Jacobson, Nathan S.; Lee, Kang N.; Maloy, Stuart A.; Heuer, Arthur H.

    1993-01-01

    Hot-pressing of MoSi2 powders with carbon at high temperatures reduces the siliceous grain boundary phase in the resultant compact. The chemical reactions in this process were examined using the Knudsen cell technique. A 2.3 wt pct oxygen MoSi2 powder and a 0.59 wt pct oxygen MoSi2 powder, both with additions of 2 wt pct carbon, were examined. The reduction of the siliceous grain boundary phase was examined at 1350 K and the resultant P(SiO)/P(CO) ratios interpreted in terms of the SiO(g) and CO(g) isobars on the Si-C-O predominance diagram. The MoSi2 + carbon mixtures were then heated at the hot-pressing temperature of 2100 K. Large weight losses were observed and could be correlated with the formation of a low-melting eutectic and the formation and vaporization of SiC.

  19. Carbon encapsulated magnetic nanoparticles produced by hydrothermal reaction

    Institute of Scientific and Technical Information of China (English)

    Nong Yue He; Ya Fei Guo; Yan Deng; Zhi Fei Wang; Song Li; Hong Na Liu

    2007-01-01

    Carbon encapsulated magnetic nanoparticles (CEMNs) were synthesized by heating an aqueous glucose solution containing FeAu (Au coated Fe nanoparticles) nanoparticles at 160-180 ℃ for 2 h. This novel hydrothermal approach is not only simple but also provides the surface of CEMNs with functional groups like-OH. The formation of carbon encapsulated magnetic nanoparticles was not favored when using pure Fe nanoparticles as cores because of the oxidation of Fe nanoparticles by H2O during the reaction and,therefore, the surfaces of the naked Fe nanoparticles had to be coated by Au shell in advance. TEM, XRD, XPS and VSM measurments characterized that they were uniform carbon spheres containing some embedded Fe-Au nanoparticles, with a saturation of 14.6 emu/g and the size of the typical product is ~350 nm.

  20. Modeling reaction-driven cracking during mineral carbonation in peridotite for CO2 sequestration

    Science.gov (United States)

    Paukert, A. N.; Sonnenthal, E. L.; Matter, J.; Kelemen, P. B.

    2013-12-01

    In situ mineral carbonation in mantle peridotite has been proposed as a mechanism for long-term, environmentally benign CO2 sequestration1,2. This process converts peridotite and CO2 to carbonate minerals, like magnesite, in the subsurface, providing permanent and safe storage of the CO2. The volume that can be sequestered in this manner is an open question as peridotite carbonation involves a positive volume change and peridotite aquifers have limited porosity and permeability to accommodate the addition of solid volume. Conversion of peridotite to magnesite results in a volume increase of ~44%, which will fill the existing pore space and could limit the extent of carbonation by reducing porosity and permeability, clogging fluid flow paths, and armoring the reactive surface area. Alternatively, the force of crystallization and changes in fluid pressure from carbonation could act as driving forces for mechanical deformation and fracture propagation within the peridotite, creating new porosity, permeability, and reactive surface area, allowing carbonation to continue3. Natural examples of peridotite that have been entirely converted to magnesite suggest that reactive cracking from mineral carbonation is possible given the right conditions, such as elevated temperature and pCO2 2. Results will be presented from a reactive transport model that has been developed for peridotite carbonation using TOUGHREACT v.24. This model evaluates water and CO2 flow through peridotite fractured at different scales using a multiple continuum mesh. The effect of fluid flow, chemical reactions, and porosity and permeability feedbacks on carbonation rate and extent are explored, as is the effect of temperature. Peridotite carbonation is exothermic, so the release of heat of reaction could be balanced with the fluid injection temperature to maintain the 185oC conditions that facilitate the fastest carbonation rate2. The effect of fluid temperature and flow rate on the rate of carbonation

  1. Effect of $^{12}C+$ $^{12}C$ Reaction & Convective Mixing on the Progenitor Mass of ONe White Dwarfs

    CERN Document Server

    Halabi, Ghina M

    2014-01-01

    Stars in the mass range ~8 - 12 $M_{\\odot }$ are the most numerous massive stars. This mass range is critical because it may lead to supernova (SN) explosion, so it is important for the production of heavy elements and the chemical evolution of the galaxy. We investigate the critical transition mass ($M_{up}$), which is the minimum initial stellar mass that attains the conditions for hydrostatic carbon burning. Stars of masses < $M_{up}$ evolve to the Asymptotic Giant Branch and then develop CO White Dwarfs, while stars of masses $\\geqslant $ $M_{up}$ ignite carbon in a partially degenerate CO core and form electron degenerate ONe cores. These stars evolve to the Super AGB (SAGB) phase and either become progenitors of ONe White Dwarfs or eventually explode as electron-capture SN (EC-SN). We study the sensitivity of $M_{up}$ to the C-burning reaction rate and to the treatment of convective mixing. In particular, we show the effect of a recent determination of the $^{12}C+$ $^{12}C$ fusion rate, as well as t...

  2. Method for producing bio-fuel that integrates heat from carbon-carbon bond-forming reactions to drive biomass gasification reactions

    Science.gov (United States)

    Cortright, Randy D.; Dumesic, James A.

    2011-01-18

    A low-temperature catalytic process for converting biomass (preferably glycerol recovered from the fabrication of bio-diesel) to synthesis gas (i.e., H.sub.2/CO gas mixture) in an endothermic gasification reaction is described. The synthesis gas is used in exothermic carbon-carbon bond-forming reactions, such as Fischer-Tropsch, methanol, or dimethylether syntheses. The heat from the exothermic carbon-carbon bond-forming reaction is integrated with the endothermic gasification reaction, thus providing an energy-efficient route for producing fuels and chemicals from renewable biomass resources.

  3. Effect of partial carbonation on the cyclic CaO carbonation reaction

    Energy Technology Data Exchange (ETDEWEB)

    Grasa, G.; Abanades, J.C.; Anthony, E.J. [CSIC, Zaragoza (Spain)

    2009-10-15

    CaO particles from the calcination of natural limestones can be used as regenerable solid sorbents in some CO{sub 2} capture systems. Their decay curves in terms of CO{sub 2} capture capacity have been extensively studied in the literature, always in experiments allowing particles to reach their maximum carbonation conversion for a given cycle. However, at the expected operating conditions in a CO{sub 2} capture system using the carbonation reaction, a relevant fraction of the CaO particles will not have time to fully convert in the carbonator reactor. This work investigates if there is any effect on the decay curves when CaO is only partially converted in each cycle. Experiments have been conducted in a thermobalance arranged to interrupt the carbonation reaction in each cycle before the end of the fast reaction period typical in the CaO-CO{sub 2} reaction. It is shown that, after the necessary normalization of results, the effective capacity of the sorbent to absorb CO{sub 2} during particle lifetime in the capture system slightly increases and CaO particles partially converted behave 'younger' than particles fully converted after every calcination. This has beneficial implications for the design of carbonation/calcination loops.

  4. High-temperature and pressure aluminum reactions in carbon dioxide rich post-detonation environments

    International Nuclear Information System (INIS)

    Powdered aluminum is a common additive to energetic materials, but little is understood regarding its reaction rate at very high temperatures and pressures in specific oxidizing gases such as carbon dioxide. Aluminum reaction kinetics in carbon dioxide have been studied in various reaction conditions, but difficulties arise in the more specific study of Al oxidation at the high pressures and temperatures in detonation reactions. To study these reactions, small particle size Al or the inert surrogate, LiF, was added to the energetic material benzotrifuroxan (BTF). BTF is a hydrogen-free material that selectively forms CO2 as the major oxidizing species for post-detonation Al oxidation. High-fidelity PDV measurements were utilized for early wall velocity expansion measurements in 12.7 mm copper cylinders. The JWL equation of state was solved to determine temperature, pressure and energies at specific time periods. A genetic algorithm was used in conjunction with a numerical simulation hydrocode, ALE3D, which enables the elucidation of aluminum reaction extent. By comparison of the Al oxidation with LiF, data indicate that Al oxidation occurs on an extremely fast time scale, beginning and completing between 1 and 25 microseconds. Unconfined, 6.4 mm diameter rate-sticks were also utilized to determine the effect of Al compared to LiF on detonation velocity.

  5. High-temperature and pressure aluminum reactions in carbon dioxide rich post-detonation environments

    Science.gov (United States)

    Tappan, B. C.; Hill, L. G.; Manner, V. W.; Pemberton, S. J.; Lieber, M. A.; Johnson, C. E.; Sanders, V. E.

    2014-05-01

    Powdered aluminum is a common additive to energetic materials, but little is understood regarding its reaction rate at very high temperatures and pressures in specific oxidizing gases such as carbon dioxide. Aluminum reaction kinetics in carbon dioxide have been studied in various reaction conditions, but difficulties arise in the more specific study of Al oxidation at the high pressures and temperatures in detonation reactions. To study these reactions, small particle size Al or the inert surrogate, LiF, was added to the energetic material benzotrifuroxan (BTF). BTF is a hydrogen-free material that selectively forms CO2 as the major oxidizing species for post-detonation Al oxidation. High-fidelity PDV measurements were utilized for early wall velocity expansion measurements in 12.7 mm copper cylinders. The JWL equation of state was solved to determine temperature, pressure and energies at specific time periods. A genetic algorithm was used in conjunction with a numerical simulation hydrocode, ALE3D, which enables the elucidation of aluminum reaction extent. By comparison of the Al oxidation with LiF, data indicate that Al oxidation occurs on an extremely fast time scale, beginning and completing between 1 and 25 microseconds. Unconfined, 6.4 mm diameter rate-sticks were also utilized to determine the effect of Al compared to LiF on detonation velocity.

  6. The Reactions of Hot Fluorine-18 with Gaseous Carbon Tetrafluoride

    International Nuclear Information System (INIS)

    Studies on the reactions of hot Fie atoms with carbon tetrafluoride are reported. Gaseous samples were exposed to the 40-60 MeV (maximum) bremsstrahlung beam of the Yale University Electron Accelerator. The F19 (γ, n) F18 process produces F18 with a kinetic energy of the order of 105-106 eV. These species lose energy by collision and are expected to reach the ''chemical'' energy range (18 atoms. Analysis of products was made using standard radio-gas chromatography techniques. The system was found to be quite sensitive to extraneous radiation damage effects and appropriate precautions were taken. Hot displacement reactions, similar to those observed for hot hydrogen, but much less efficient, were found: F18 + CF4 --> CF3F18 + F, F18 +CF4 --> CF2F18 + (F + F), It was impossible to study the abstraction reaction F18 + CF4 --> CF3 + FF18 directly. However, indirect evidence suggests that it also has a low efficiency. Detailed studies of the effect of moderator on the F18 + CF4 system have been made. The data obtained were analysed by means of the kinetic theory of hot reactions. The system was found to be in accord with this formalism, providing quantitative confirmation of the present interpretation of the results. The carbon tetrafluoride and methane systems provide a basis for some tentative conclusions on the mechanisms of hot fluorine atom reactions. At present it appears that with certain important, but natural, modifications the model first developed for hot hydrogen atoms is applicable

  7. The (K-,p) reaction on C12 at KEK

    CERN Document Server

    Magas, V K; Hirenzaki, S; Oset, E; Ramos, A

    2009-01-01

    We study the (K-,p) reaction on C12 with a kaon beam of 1 GeV momentum, paying a special attention to the region of emitted protons having kinetic energy above 600 MeV, which was used to claim a deep kaon nucleus optical potential [1]. The experiment looks for fast protons emitted from the absorption of in flight kaons by nuclei, but in coincidence with at least one charged particle in the decay counters sandwiching the target. The analysis of the data is done in [1] assuming that the coincidence requirement does not change the shape of the final spectra. However our detailed calculations show that this assumption doesn't hold, and, thus, the final conclusion of this experiment is doubtful. We perform Monte Carlo simulation of this reaction. The advantage of our method with respect to Green's function method used in [1] is that it allows to account not only for quasi-elastic K- p scattering, but also for the other processes which contribute to the proton spectra. We investigated the effect of the multi-scatte...

  8. Carbon Nanowalls for oxygen reduction reaction in Bio Fuel Cells

    International Nuclear Information System (INIS)

    We report on the usage of Carbon Nanowalls (CNW) synthesized by a PECVD process as electrode material for oxygen reduction reaction (ORR). In order to substitute the platinum based catalysts in fuel cells, graphene is a promising candidate. Carbon Nanowalls are a graphene modification with good accessibility and a controllable morphology. By controlling height and pore size, they can be optimized for different applications. A ID/IG ratio around 2.5 and the SEM images indicate vertical nanocrystallin graphene sheets. Tests with ferrocene as electroactive compound verify CNW suitability as electrode material. Cyclic voltammetry measurements in oxygen saturated PBS prove the catalytic activity of CNW towards ORR. The results support the feasibility of CNW as cathode in Bio Fuel Cells

  9. Study of redox reactions to split water and carbon dioxide

    Science.gov (United States)

    Arifin, Darwin

    The development of carbon-neutral, environmentally-sustainable energy carrier is a technological imperative necessary to mitigate the impact of anthropogenic carbon dioxide on earth's climate. One compelling approach rapidly gaining international attention is the conversion of solar energy into renewable fuels, such as H2 or CO, via a two-step thermochemical cycle driven by concentrated solar power. In accordance with the increased interest in this process, there is a need to better understand the gas splitting chemistry on the metal oxide intermediates encountered in such solar-driven processes. Here we measured the H2 and CO production rates during oxidation by H2O and CO2 in a stagnation flow reactor. Redox cycles were performed over various metal oxide chemistries such as hercynite and ceria based materials that are thermally reduced by laser irradiation. In addition to cycle capacity evaluation, reaction kinetics intrinsic to the materials were extracted using a model-based analytical approach to account for the effects of mixing and dispersion in the reactor. Investigation of the "hercynite chemistry" with raman spectroscopy verifies that, at the surface, the cycle proceeds by stabilizing the reduced and oxidized moieties in two different compounds, which allows the thermal reduction reaction to occur to a greater extent at a temperature 150 °C lower than a similarly prepared CoFe2O4-coated m-ZrO2. Investigation of the ceria cycle shows that the water splitting reaction, in the range of 750 - 950 °C and 20 - 40 vol.% H2O, can best be described by a first-order kinetic model with low apparent activation energy (29 kJ/mol). The carbon dioxide splitting reaction, in the range of 650 - 875 °C and 10 - 40 vol.% CO2, is a more complex surface-mediated phenomena that is controlled by a temperature-dependent surface site blocking mechanism involving adsorbed carbon. Moreover, we find that lattice substitution of ceria with zirconium can increase H2 production by

  10. Sarcoidosis patient: an unexpected reaction to carbonic anhydrase enzyme inhibitor

    OpenAIRE

    Khedr, Yahya A H; Khedr, Abdulla H

    2013-01-01

    Ocular diseases are very common in many of the systemic diseases such as sarcoidosis, and may sometimes be the presenting symptom of the disease. In this case report, we present an unusual reaction of the sarcoid granuloma to carbonic anhydrase enzyme inhibitors (CAIs), which was encountered in a patient with ocular sarcoidosis. This observation was taken after a 2-week interval between a CT scan orbits and an MRI orbits which showed a decrease in size from 4×3×4 cm to 2.5×2.5×2 cm, respectiv...

  11. Nuclear fusion in dense matter: Reaction rate and carbon burning

    CERN Document Server

    Gasques, L R; Aguilera, E F; Beard, M; Chamon, L C; Ring, P; Wiescher, M; Yakovlev, D G

    2005-01-01

    In this paper we analyze the nuclear fusion rate between equal nuclei for all five different nuclear burning regimes in dense matter (two thermonuclear regimes, two pycnonuclear ones, and the intermediate regime). The rate is determined by Coulomb barrier penetration in dense environments and by the astrophysical S-factor at low energies. We evaluate previous studies of the Coulomb barrier problem and propose a simple phenomenological formula for the reaction rate which covers all cases. The parameters of this formula can be varied, taking into account current theoretical uncertainties in the reaction rate. The results are illustrated for the example of the ^{12}C+^{12}C fusion reaction. This reaction is very important for the understanding of nuclear burning in evolved stars, in exploding white dwarfs producing type Ia supernovae, and in accreting neutron stars. The S-factor at stellar energies depends on a reliable fit and extrapolation of the experimental data. We calculate the energy dependence of the S-f...

  12. Resonance analysis of the {sup 12}C,{sup 13}C({alpha},n) reactions and evaluation of neutron yield data of the reaction

    Energy Technology Data Exchange (ETDEWEB)

    Murata, Toru [AITEL Corp., Tokyo (Japan)

    1998-03-01

    The {sup 12}C({alpha},n){sup 15}O reaction and the {sup 13}C({alpha},n){sup 16}O reaction were analyzed with a resonance formula in the incident {alpha}-particle energy range of 1.0 to 16.0 MeV. With the obtained resonance parameters, branching ratios of the emitted neutrons to the several levels of the residual nucleus and their angular distributions were calculated to obtain the energy spectrum of emitted neutrons. Thick target neutron yield of carbon were also calculated and compared with the experimental data. (author)

  13. An analysis of the 12C+12C reaction using a new type of coupling potential

    International Nuclear Information System (INIS)

    Full text: 12C+12C system has been one of the most extensively studied reaction so far and is a subject attracting continuous interest from both theoretical and experimental point of views. Therefore, a large body of data over a wide energy range has been accumulated for this system from the systematic studies. The previous works in the literature clearly show that the standard coupled-channel approach is inadequate to explain the problems of this rection. It can fit neither any of the individual angular distributions nor the 90 deg. elastic scattering excitation function. In our couple-channels (CC) calculations, the interaction between the 12C nuclei is described by a deformed optical potential. The real potential has the square of a Woods-Saxon shape. The imaginary potential has the standard Woods-Saxon volume shape and its depth increases quadratically with energy as: W=-2.69+0.145ELab+0.0009(ELab)2. The 12C nucleus has a static quadrupole deformation and its excitation is described within the rotational model. The empirical deformation parameter, β2=-0.6, is used in these calculations. The limitations of the standard coupled-channels method, on the one hand, and the oblate character of thr 12C and the prolate character of the compound nucleus 24Mg, on the other hand, compelled us to use a new type of coupling potential which is ablate (attractive) when two 12C nuclei are at large distances and prolate (repulsive) when they are at short distances. For the new CC case, the agreement is very good for the elastic scattering, single-2+ and mutual-2+ excitation inelastic scattering data over the whole energy range studied. The theoretical predictions of the magnitudes and the phase of the oscillations for the mutual-2+ excitation inelastic scattering data, which have been the major outstanding problems of the reaction, are in a very good agreement with the empirical values

  14. Functionalized multi-walled carbon nanotubes in an aldol reaction

    Science.gov (United States)

    Chronopoulos, D. D.; Kokotos, C. G.; Karousis, N.; Kokotos, G.; Tagmatarchis, N.

    2015-01-01

    The covalent functionalization of multi-walled carbon nanotubes (MWCNTs) with a proline-based derivative is reported. Initially, MWCNTs were oxidized in order to introduce a large number of carboxylic units on their tips followed by N-tert-butoxycarbonyl-2,2'(ethylenedioxy)bis-(ethylamine) conjugation through an amide bond. Then, a proline derivative bearing a carboxylic terminal moiety at the 4-position was coupled furnishing proline-modified MWCNTs. This new hybrid material was fully characterized by spectroscopic and microscopy means and its catalytic activity in the asymmetric aldol reaction between acetone and 4-nitrobenzaldehyde was evaluated for the first time, showing to proceed almost quantitatively in aqueous media. Furthermore, several amino-modified MWCNTs were prepared and examined in the particular aldol reaction. These new hybrid materials exhibited an enhanced catalytic activity in water, contrasting with the pristine MWCNTs as well as the parent organic molecule, which failed to catalyze the reaction efficiently. Furthermore, the modified MWCNTs proved to catalyze the aldol reaction even after three repetitive cycles. Overall, a green approach for the aldol reaction is presented, where water can be employed as the solvent and modified MWCNTs can be used as catalysts, which can be successfully recovered and reused, while their catalytic activity is retained.The covalent functionalization of multi-walled carbon nanotubes (MWCNTs) with a proline-based derivative is reported. Initially, MWCNTs were oxidized in order to introduce a large number of carboxylic units on their tips followed by N-tert-butoxycarbonyl-2,2'(ethylenedioxy)bis-(ethylamine) conjugation through an amide bond. Then, a proline derivative bearing a carboxylic terminal moiety at the 4-position was coupled furnishing proline-modified MWCNTs. This new hybrid material was fully characterized by spectroscopic and microscopy means and its catalytic activity in the asymmetric aldol reaction

  15. High Resolution Spectroscopy of 12B Hypernuclei by the (e,e'K) Reaction

    Energy Technology Data Exchange (ETDEWEB)

    M. Sarsour

    2002-05-01

    Jefferson Laboratory experiment E89-009 used the reaction (e,e' K+ ) to produce 12/{Lambda}B hypernuclei from a carbon target. The scattered electrons were tagged at 0 degrees to take advantage of the increased virtual photon flux at forward angles, and the electroproduced kaons were also detected at small angles, {approx}3 degrees, to minimize the momentum transfer. To do this, a splitter magnet was used to bend the scattered electrons into an Enge split-pole spectrometer and the kaons into a short orbit spectrometer. In addition to increasing the production rate, tagging the scattered electrons at 0 degrees minimizes the optical aberrations on the focal plane of the Enge split-pole spectrometer. In this experiment, the spectroscopy of the 12/{Lambda}B hypernuclei was studied and excellent energy resolution was achieved, {approx} 918 keV. The differential cross section of the ground state doublet was also calculated.

  16. Reaction between molybdenum and carbon, and several carbides

    International Nuclear Information System (INIS)

    Diffusion couples of molybdenum with carbon and several carbides, i.e. B4C, SiC, TiC, and TaC, respectively, were heated for up to 3.6 x 105 s at various temperatures ranging from 1373 to 2223 K. The couples were then examined for composition, growth rate, structure, and hardness of reaction layers. Main results obtained are as follows: (1) In the Mo-C system, only Mo2C layer was formed at below 1873 K, while two sub- layers consisted of Mo2C and eta (MoC sub(1-x)), respectively, were found at above 1873 K. The activation energy for growth of total layer was 374 kJ/mol. (2) In the Mo-B4C system, two sub-layers consisted of Mo2B and MoB, respectively, with dispersed carbon particles were formed. (3) In the Mo-SiC system, Mo2C layer, including eta (MoC sub(1-x)) phase at high temperature, mixture of Mo2C and Mo3Si2 phases, and Mo3Si2 phase in order from the Mo side were formed. The activation energy for growth of total layer was 477 kJ/mol. (4) In the Mo-TiC system, two kinds of TiC in point of view of free carbon content were used; one is with 0.2% free carbon and the other is with 0.01%. In the Mo-TiC with 0.2% free carbon system, two sub-layers, i.e. relatively thick Mo2C layer and thin (Ti, Mo)C layer, were formed, while in the Mo-TiC with 0.01% free carbon system two thin sub-layers, Mo2C and (Ti, Mo)C, were formed; the Mo2C layer in the latter case was very thin and was not found after short time heating at low temperature. The activation energy for growth of Mo2C layer in the former system was 393 kJ/mol. (5) In the Mo-TaC with 0.02% free carbon system, two thin sub-layers, (Mo, Ta)2C and (Ta, Mo)C, were observed. (6) TEM studies on the interface between Mo (bcc) and Mo2C (hcp) showed that there was the following orientation relation, called as the Burgers relation, between these two phases; (110)sub(Mo)//(0001)sub(Mo2C), sub(Mo)//-0>sub(Mo2C). (author)

  17. An evaluation of the neutron-induced reaction cross sections on carbon from 10 to 20 MeV

    International Nuclear Information System (INIS)

    Available data on the neutron-induced reactions on carbon are reviewed for the energy range from 10 to 20 MeV. Evaluated cross sections obtained at Bruyeres-le-Chatel are discussed. Comparisons with coupled-channel calculations are presented for the total, elastic and inelastic (to the 2+ level) cross sections of 12C

  18. Methods for synthesizing diethyl carbonate from ethanol and supercritical carbon dioxide by one-pot or two-step reactions in the presence of potassium carbonate

    OpenAIRE

    Gasc, Fabien; Thiebaud-Roux, Sophie; Mouloungui, Zephirin

    2009-01-01

    Carbon dioxide sequestration was studied by synthesizing diethyl carbonate (DEC) from ethanol and CO2 under supercritical conditions in the presence of potassium carbonate as a base. The co-reagent was ethyl iodide or a concentrated strong acid. This sequestration reaction occurs in two steps, which were studied separately and in a one-pot reaction. An organic-inorganic carbonate hybrid, potassium ethyl carbonate (PEC) is generated at the end of the first step. This intermediate was character...

  19. An Analysis of the $^{12}$C+$^{12}$C Reaction Using a New Type of Coupling Potential

    CERN Document Server

    Boztosun, I

    2001-01-01

    A new approach has been used to explain the experimental data for the $^{12}$C+$^{12}$C system over a wide energy range in the laboratory system from 32.0 MeV to 126.7 MeV. This new coupled-channels based approach involves replacing the usual first derivative coupling potential by a new, second-derivative coupling potential. This paper first shows and discusses the limitation of the standard coupled-channels theory in the case where one of the nuclei in the reaction is strongly deformed. Then, this new approach is shown to improve consistently the agreement with the experimental data: the elastic scattering, single-2$^{+}$ and mutual-2$^{+}$ excitation inelastic scattering data as well as their 90$^{\\circ}$ elastic and inelastic excitation functions with little energy-dependent potentials. This new approach makes major improvement on all the previous coupled-channels calculations for this system.

  20. Carbon and oxygen isotope separation by plasma chemical reactions in carbon monoxide glow discharge

    International Nuclear Information System (INIS)

    The separation of carbon and oxygen isotopes in CO glow discharge has been studied. The isotope enrichment in the products was measured by quadru-pole mass spectrometer. The reaction yield and empirical formula of solid phase products were determined by the gas-volumetric analysis. The stable products obtained in our experiment are CO2 and solid polymers formed on the discharge wall. The polymer consists of both carbon and oxygen and the oxygen/carbon mole ratio in the polymer is 0.35±0.05. Thi isotope enrichment coefficients show a strong negative dependence on discharge current though the relative reaction yields have an opposite tendency. Consequently, the maximum isotope enrichment coefficients for 13C in wall deposit of 2.31 and for 18O in CO2 of 1.37 are obtained when the discharge current and the reaction yields are minimum in our experimental range. The experimental results of isotope enrichment have been compared with theoretical values estimated by an analytical model of literature. The dilution mechanism of the isotope enrichment of stable products is inferred from the isotopic distributions of 13C and 18O in products and theoretical predictions for isotope enrichment. (author)

  1. Carbon-coated magnetic palladium: applications in partial oxidation of alcohols and coupling reactions.

    Science.gov (United States)

    Magnetic carbon supported Pd catalyst has been synthesized via in situ generation of nanoferrites and incorporation of carbon from renewable cellulose via calcination; catalyst can be used for oxidation of alcohols, amination reaction and arylation of aryl halides (cross coupli...

  2. Radiation induced chemical reaction of carbon monoxide and hydrogen mixture

    International Nuclear Information System (INIS)

    Previous studies of radiation induced chemical reactions of CO-H2 mixture have revealed that the yields of oxygen containing products were larger than those of hydrocarbons. In the present study, methane was added to CO-H2 mixture in order to increase further the yields of the oxygen containing products. The yields of most products except a few products such as formaldehyde increased with the addition of small amount of methane. Especially, the yields of trioxane and tetraoxane gave the maximum values when CO-H2 mixture containing 1 mol% methane was irradiated. When large amounts of methane were added to the mixture, the yields of aldehydes and carboxylic acids having more than two carbon atoms increased, whereas those of trioxane and tetraoxane decreased. From the study at reaction temperature over the range of 200 to 473 K, it was found that the yields of aldehydes and carboxylic acids showed maxima at 323 K. The studies on the effects of addition of cationic scavenger (NH3) and radical scavenger (O2) on the products yields were also carried out on the CO-H2-CH4 mixture. (author)

  3. Complete reaction mechanisms of mercury oxidation on halogenated activated carbon.

    Science.gov (United States)

    Rungnim, Chompoonut; Promarak, Vinich; Hannongbua, Supa; Kungwan, Nawee; Namuangruk, Supawadee

    2016-06-01

    The reaction mechanisms of mercury (Hg) adsorption and oxidation on halogenated activated carbon (AC) have been completely studied for the first time using density functional theory (DFT) method. Two different halogenated AC models, namely X-AC and X-AC-X (X=Cl, Br, I), were adopted. The results revealed that HgX is found to be stable-state on the AC edge since its further desorption from the AC as HgX, or further oxidation to HgX2, are energetically unfavorable. Remarkably, the halide type does not significantly affect the Hg adsorption energy but it strongly affects the activation energy barrier of HgX formation, which obviously increases in the order HgIelimination significantly decreases as I-AC>Br-AC>Cl-AC. Thus, the study of the complete reaction mechanism is essential because the adsorption energy can not be used as a guideline for the rational material design in the halide impregnated AC systems. The activation energy is an important descriptor for the predictions of sorbent reactivity to the Hg oxidation process. PMID:26943019

  4. Synthesis of beta carbon nitride nanosized crystal through mechanochemical reaction

    CERN Document Server

    Yin Long Wei; Liu Yu Xian; Sui Jin Ling; Wang Jing Min

    2003-01-01

    Nanosized beta carbon nitride (beta-C sub 3 N sub 4), of grain size several tens of nanometres, has been synthesized by mechanochemical reaction processing. The low-cost synthetic method developed facilitates the novel and effective synthesis of nanosized crystalline beta-C sub 3 N sub 4 (a = 6.36 A, c = 4.648 A) powders. The graphite powders were first milled to a nanoscale state, then the nanosized graphite powders were milled in an atmosphere of NH sub 3 gas. It was found that nanosized beta-C sub 3 N sub 4 was formed after high-energy ball milling under an NH sub 3 atmosphere. After thermal annealing, the shape of the beta-C sub 3 N sub 4 changes from flake-like to sphere-like. The nanosized beta-C sub 3 N sub 4 formed was characterized by x-ray diffraction, Fourier transformation infrared spectroscopy, and transmission electron microscopy. A solid-gas reaction mechanism was proposed for the formation of nanosized beta-C sub 3 N sub 4 at room temperature induced by mechanochemical activation.

  5. Behavior of shungite carbon in reactions simulating thermal transformations of coal

    Energy Technology Data Exchange (ETDEWEB)

    Grigor' eva, E.N.; Rozhkova, N.N. [Russian Academy of Science, Moscow (Russian Federation)

    2000-07-01

    The catalytic activity of shungite carbon in reactions of model compounds (tetralin and benzyl phenyl ether) simulating thermolysis of coal was studied. The orders, rate constants, and activation energies of reactions were determined.

  6. Synthesis of functionalized poly(ester carbonate) with laminin-derived peptide for promoting neurite outgrowth of PC12 cells.

    Science.gov (United States)

    Xing, Dongming; Ma, Lie; Gao, Changyou

    2014-10-01

    Maleimide-functionalized poly(ester carbonate)s are synthesized by ring-opening copolymerization of furan-maleimide functionalized trimethylene carbonate (FMTMC) with L-lactide and a subsequent retro Diels-Alder reaction. The maleimide groups on poly(ester carbonate)s are amenable to Michael addition with thiol-containing molecules such as 3-mercapto-1-propanol, 2-aminoethanethiol hydrochloride, and mercaptoacetic acid under mild conditions, enabling the formation of biodegradable materials with various functional groups (e.g., hydroxyl, amine, and carboxyl). In particular, the maleimide-functionalized poly(ester carbonate) is clicked with a laminin-derived peptide CQAASIKVAV. In vitro culture of PC12 cells shows that the maleimide-functionalized polymers, especially the CQAASIKVAV-grafted one, could support cell proliferation and neurite outgrowth. The maleimide-functionalized poly(ester carbonate)s provide a versatile platform for diverse functionalization and have comprehensive potential in biomedical engineering. PMID:24962245

  7. "Homeopathic" palladium nanoparticle catalysis of cross carbon-carbon coupling reactions.

    Science.gov (United States)

    Deraedt, Christophe; Astruc, Didier

    2014-02-18

    Catalysis by palladium derivatives is now one of the most important tools in organic synthesis. Whether researchers design palladium nanoparticles (NPs) or nanoparticles occur as palladium complexes decompose, these structures can serve as central precatalysts in common carbon-carbon bond formation. Palladium NPs are also valuable alternatives to molecular catalysts because they do not require costly and toxic ligands. In this Account, we review the role of "homeopathic" palladium catalysts in carbon-carbon coupling reactions. Seminal studies from the groups of Beletskaya, Reetz, and de Vries showed that palladium NPs can catalyze Heck and Suzuki-Miyaura reactions with aryl iodides and, in some cases, aryl bromides at part per million levels. As a result, researchers coined the term "homeopathic" palladium catalysis. Industry has developed large-scale applications of these transformations. In addition, chemists have used Crooks' concept of dendrimer encapsulation to set up efficient nanofilters for Suzuki-Miyaura and selective Heck catalysis, although these transformations required high PdNP loading. With arene-centered, ferrocenyl-terminated dendrimers containing triazolyl ligands in the tethers, we designed several generations of dendrimers to compare their catalytic efficiencies, varied the numbers of Pd atoms in the PdNPs, and examined encapsulation vs stabilization. The catalytic efficiencies achieved "homeopathic" (TON = 540 000) behavior no matter the PdNP size and stabilization type. The TON increased with decreasing the Pd/substrate ratio, which suggested a leaching mechanism. Recently, we showed that water-soluble arene-centered dendrimers with tri(ethylene glycol) (TEG) tethers stabilized PdNPs involving supramolecular dendritic assemblies because of the interpenetration of the TEG branches. Such PdNPs are stable and retain their "homeopathic" catalytic activities for Suzuki-Miyaura reactions for months. (TONs can reach 2.7 × 10(6) at 80 °C for aryl

  8. AMD Calculation of the double differential cross section for nucleon-12C reaction

    International Nuclear Information System (INIS)

    So far at the time of exposure assessment, heavy ions have not been regarded as important, but due to the realization of manned space flight and the cancer treatment using heavy ions, their importance has increased. However, by existing transport calculation code, the information required for evaluating heavy ion exposure, namely double differential cross section for every fragment, is difficult to be obtained. Therefore, by paying attention to antisymmetrized version of molecular dynamics (AMD) which is the simulation method for heavy ion reaction, it was set as the purpose of this research to evaluate its accuracy. In this research, the collision of nucleons with 12C was simulated by AMD method, and the calculation of double differential cross section was carried out. In order to reduce the time for calculation, the incidence of nucleons and the carbon that is one of the compositions of human bodies were selected. The framework of the AMD method, the procedure of calculation by the AMD method and the results of calculation are reported. The calculated value of the double differential cross section of 12C(p,nX) reaction agreed with good accuracy with the experimental value. (K.I.)

  9. Evaluating reaction pathways of hydrothermal abiotic organic synthesis at elevated temperatures and pressures using carbon isotopes

    Science.gov (United States)

    Fu, Qi; Socki, Richard A.; Niles, Paul B.

    2015-04-01

    Experiments were performed to better understand the role of environmental factors on reaction pathways and corresponding carbon isotope fractionations during abiotic hydrothermal synthesis of organic compounds using piston cylinder apparatus at 750 °C and 5.5 kbars. Chemical compositions of experimental products and corresponding carbon isotopic values were obtained by a Pyrolysis-GC-MS-IRMS system. Alkanes (methane and ethane), straight-chain saturated alcohols (ethanol and n-butanol) and monocarboxylic acids (formic and acetic acids) were generated with ethanol being the only organic compound with higher δ13C than CO2. CO was not detected in experimental products owing to the favorable water-gas shift reaction under high water pressure conditions. The pattern of δ13C values of CO2, carboxylic acids and alkanes are consistent with their equilibrium isotope relationships: CO2 > carboxylic acids > alkanes, but the magnitude of the fractionation among them is higher than predicted isotope equilibrium values. In particular, the isotopic fractionation between CO2 and CH4 remained constant at ∼31‰, indicating a kinetic effect during CO2 reduction processes. No "isotope reversal" of δ13C values for alkanes or carboxylic acids was observed, which indicates a different reaction pathway than what is typically observed during Fischer-Tropsch synthesis under gas phase conditions. Under constraints imposed in experiments, the anomalous 13C isotope enrichment in ethanol suggests that hydroxymethylene is the organic intermediate, and that the generation of other organic compounds enriched in 12C were facilitated by subsequent Rayleigh fractionation of hydroxymethylene reacting with H2 and/or H2O. Carbon isotope fractionation data obtained in this study are instrumental in assessing the controlling factors on abiotic formation of organic compounds in hydrothermal systems. Knowledge on how environmental conditions affect reaction pathways of abiotic synthesis of organic

  10. Carbonates in leaching reactions in context of 14C dating

    Science.gov (United States)

    Michalska, Danuta; Czernik, Justyna

    2015-10-01

    Lime mortars as a mixture of binder and aggregate may contain carbon of various origins. If the mortars are made of totally burnt lime, radiocarbon dating of binder yields the real age of building construction. The presence of carbonaceous aggregate has a significant influence on the 14C measurements results and depending on the type of aggregate and fraction they may cause overaging. Another problem, especially in case of hydraulic mortars that continue to be chemically active for a very long time, is the recrystallization usually connected with rejuvenation of the results but also, depending on local geological structures, with so called reservoir effect yielding apparent ages. An attempt in separating the binder from other carbonaceous components successfully was made for samples from Israel by Nawrocka-Michalska et al. (2007). The same preparation procedure, after taking into account the petrographic composition, was used for samples coming from Poland, Nawrocka et al. (2009). To verify the procedure used previously for non-hydraulic samples determination an experimental tests on carbonaceous mortars with crushed bricks from Novae in Bulgaria were made. Additionally, to identify different carbonaceous structures and their morphology, a cathodoluminescence and scanning electron microscope with electron dispersive spectrometer were applied. The crushed bricks and brick dust used in mortars production process have been interpreted as an alternative use to other pozzolanic materials. The reaction between lime and pozzolanic additives take place easily and affects the rate and course of carbonates decomposition in orthophosphric acid, during the samples pretreatment for dating. The composition of the Bulgarian samples together with influence of climate conditions on mortar carbonates do not allow for making straightforward conclusions in chronology context, but gives some new guidelines in terms of hydraulic mortars application for dating. This work has mainly

  11. Metal doped carbon nanoneedles and effect of carbon organization with activity for hydrogen evolution reaction (HER).

    Science.gov (United States)

    Araujo, Rafael A; Rubira, Adley F; Asefa, Tewodros; Silva, Rafael

    2016-02-10

    Cellulose nanowhiskers (CNW) from cotton, was prepared by acid hydrolysis and purified using a size selection process to obtain homogeneous samples with average particle size of 270 nm and 85.5% crystallinity. Purified CNW was used as precursor to carbon nanoneedles (CNN) synthesis. The synthesis of CNN loaded with different metals dopants were carried out by a nanoreactor method and the obtained CNNs applied as electrocatalysts for hydrogen evolution reaction (HER). In the carbon nanoneedles synthesis, Ni, Cu, or Fe worked as graphitization catalyst and the metal were found present as dopants in the final material. The used metal appeared to have direct influence on the degree of organization of the particles and also in the surface density of polar groups. It was evaluated the influence of the graphitic organization on the general properties and nickel was found as the more appropriate metal since it leads to a more organized material and also to a high activity toward HER. PMID:26686184

  12. Studies of reaction mechanism in 12C + 12C system at intermediate energy of 28.7 MeV/N

    International Nuclear Information System (INIS)

    The reaction mechanism in 12C + 12C system at intermediate energy of about 30 MeV/nucleon was studied. The contribution of various reaction mechanisms (inelastic scattering, transfer reactions, compound nucleus reactions, sequential decay following inelastic excitation and transfer) to the total reaction cross section were found. The analysis of inclusive and coincidence spectra shows that sequential fragmentation processes dominate

  13. Reaction in plasma generated in supercritical carbon dioxide

    International Nuclear Information System (INIS)

    The generation of non-thermal plasmas was studied under supercritical conditions. This is interesting in view of both the basic phenomena involved and of potential industrial applications. When supercritical fluids are combined with discharge plasma they develop unique characteristics, including an enhanced chemical reactivity. This is the motivation for investigating the generation of discharge plasma in supercritical CO2. In this study, breakdown voltages were measured in CO2 in order to generate electric discharges in supercritical CO2. The experimental data show that the breakdown voltage increased smoothly up to the intersection points, but beyond these points the rates of increase of the breakdown voltage are different. This phenomenon can be explained with the help of pressure-density curves of carbon dioxide at a constant temperature. In addition, the generated plasma in supercritical CO2 was applied to several chemical reactions. The alpha conversion of tocopherols and transesterification of soybean oil with methanol were investigated. In addition, we explored the possibility of replacing catalysts with plasma in supercritical CO2

  14. Reaction in plasma generated in supercritical carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Goto, M; Sasaki, M; Kiyan, T; Fang, T; Roy, B C; Namihira, T; Akiyama, H; Hara, M [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan)], E-mail: mgoto@kumamoto-u.ac.jp

    2008-07-15

    The generation of non-thermal plasmas was studied under supercritical conditions. This is interesting in view of both the basic phenomena involved and of potential industrial applications. When supercritical fluids are combined with discharge plasma they develop unique characteristics, including an enhanced chemical reactivity. This is the motivation for investigating the generation of discharge plasma in supercritical CO{sub 2}. In this study, breakdown voltages were measured in CO{sub 2} in order to generate electric discharges in supercritical CO{sub 2}. The experimental data show that the breakdown voltage increased smoothly up to the intersection points, but beyond these points the rates of increase of the breakdown voltage are different. This phenomenon can be explained with the help of pressure-density curves of carbon dioxide at a constant temperature. In addition, the generated plasma in supercritical CO{sub 2} was applied to several chemical reactions. The alpha conversion of tocopherols and transesterification of soybean oil with methanol were investigated. In addition, we explored the possibility of replacing catalysts with plasma in supercritical CO{sub 2}.

  15. A Study on Reactions of Carbon-Carbonate Mixture at Elevated Temperature : As an Anode Media of SO-DCFC

    International Nuclear Information System (INIS)

    A direct carbon fuel cell (DCFC) generates electricity directly by converting the chemical energy in coal. In particular, a DCFC system with a solid oxide electrolyte and molten carbonate anode media has been proposed by SRI. In this system, however, there are conflicting effects of temperature, which enhances the ion conductivity of the solid electrolyte and reactivity at the electrodes while causing a stability problem for the anode media. In this study, the effect of temperature on the stability of a carbon-carbonate mixture was investigated experimentally. TGA analysis was conducted under either nitrogen or carbon dioxide ambient for Li2 CO3, K2 CO3, and their mixtures with carbon black. The composition of the exit gas was also monitored during temperature elevation. A simplified reaction model was suggested by considering the decomposition of carbonates and the catalyzed Boudouard reactions. The suggested model could well explain both the measured weight loss of the mixture and the gas formation from it

  16. High-Throughput Screening of the Asymmetric Decarboxylative Alkylation Reaction of Enolate-Stabilized Enol Carbonates

    KAUST Repository

    Stoltz, Brian

    2010-06-14

    The use of high-throughput screening allowed for the optimization of reaction conditions for the palladium-catalyzed asymmetric decarboxylative alkylation reaction of enolate-stabilized enol carbonates. Changing to a non-polar reaction solvent and to an electron-deficient PHOX derivative as ligand from our standard reaction conditions improved the enantioselectivity for the alkylation of a ketal-protected,1,3-diketone-derived enol carbonate from 28% ee to 84% ee. Similar improvements in enantioselectivity were seen for a β-keto-ester derived- and an α-phenyl cyclohexanone-derived enol carbonate.

  17. States of Carbon-12 in the Skyrme Model

    CERN Document Server

    Lau, P H C

    2014-01-01

    The Skyrme model has two Skyrmion solutions of baryon number $12$, with $D_{3h}$ and $D_{4h}$ symmetries. The first has an equilateral triangular shape and the second an extended linear shape, analogous to the triangle and linear chain structures of three alpha particles. We recalculate the moments of inertia of these Skyrmions, and deduce the energies and spins of their quantized rotational excitations. There is a good match with the ground-state band of Carbon-12, and with the recently established rotational band of the Hoyle state. The ratio of the root mean square matter radii also matches the experimental value.

  18. Integral measurement of the 12C(n, p)12B reaction up to 10 GeV

    Science.gov (United States)

    Žugec, P.; Colonna, N.; Bosnar, D.; Ventura, A.; Mengoni, A.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Cortés, G.; Cortés-Giraldo, M. A.; Cosentino, L.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Duran, I.; Eleftheriadis, C.; Ferrari, A.; Finocchiaro, P.; Fraval, K.; Ganesan, S.; García, A. R.; Giubrone, G.; Gómez-Hornillos, M. B.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Gurusamy, P.; Heinitz, S.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Karadimos, D.; Kivel, N.; Kokkoris, M.; Krtička, M.; Kroll, J.; Langer, C.; Lederer, C.; Leeb, H.; Leong, L. S.; Lo Meo, S.; Losito, R.; Manousos, A.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Mendoza, E.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondalaers, W.; Musumarra, A.; Paradela, C.; Pavlik, A.; Perkowski, J.; Plompen, A.; Praena, J.; Quesada, J.; Rauscher, T.; Reifarth, R.; Riego, A.; Roman, F.; Rubbia, C.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Tagliente, G.; Tain, J. L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Versaci, R.; Vermeulen, M. J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T.

    2016-04-01

    The integral measurement of the 12C(n, p)12B reaction was performed at the neutron time-of-flight facility n_TOF at CERN. The total number of 12B nuclei produced per neutron pulse of the n_TOF beam was determined using the activation technique in combination with a time-of-flight technique. The cross section is integrated over the n_TOF neutron energy spectrum from reaction threshold at 13.6MeV to 10GeV. Having been measured up to 1GeV on basis of the 235U(n, f ) reaction, the neutron energy spectrum above 200MeV has been re-evaluated due to the recent extension of the cross section reference for this particular reaction, which is otherwise considered a standard up to 200MeV. The results from the dedicated GEANT4 simulations have been used to evaluate the neutron flux from 1GeV up to 10GeV. The experimental results related to the 12C(n, p)12B reaction are compared with the evaluated cross sections from major libraries and with the predictions of different GEANT4 models, which mostly underestimate the 12B production. On the contrary, a good reproduction of the integral cross section derived from measurements is obtained with TALYS-1.6 calculations, with optimized parameters.

  19. Contribution to the study of reactions induced by a low-energy He3 beam on a C12 target

    International Nuclear Information System (INIS)

    This research thesis reports the study concerning which reaction mode will better describe a nucleus in which the excitation energy is between two extremes. Due to experimental considerations and abilities, this study focuses on light target nuclei and carbon 12. The author describes experimental techniques used for angular distributions (targets, detection system), describes the experimental techniques for activation experiments (experimental set-up, targets, measurement of relative efficient cross section, result analysis, measurement of absolute efficient cross section). The author discusses the experimental results (excitation functions and angular distributions) and the interpretation of elastic scattering results (theoretical background, computation approach, analysis of elastic scattering) and the results of the C12(He3, α)C11 reaction

  20. Carbon catalysis of reactions in the lithium SOCl2 and SO2 systems

    Science.gov (United States)

    Kilroy, W. P.

    1981-01-01

    Certain hazards associated with lithium batteries have delayed widespread acceptance of these power sources. The reactivity of ground lithium carbon mixtures was examined. The effect of carbon types on this reactivity was determined. The basic reaction involved mixtures of lithium and carbon with battery electrolyte. The various parameters that influenced this reactivity included: the nature and freshness of the carbon; the freshness, the purity, and the conductive salt of the electrolyte; and the effect of Teflon or moisture.

  1. Integral measurement of the $^{12}$C(n,p)$^{12}$B reaction up to 10 GeV

    CERN Document Server

    Žugec, P; Bosnar, D; Ventura, A; Mengoni, A; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Brugger, M; Calviani, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Cortés, G; Cortés-Giraldo, M.A; Cosentino, L; Diakaki, M; Domingo-Pardo, C; Dressler, R; Duran, I; Eleftheriadis, C; Ferrari, A; Finocchiaro, P; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Guerrero, C; Gunsing, F; Gurusamy, P; Heinitz, S; Jenkins, D G; Jericha, E; Käppeler, F; Karadimos, D; Kivel, N; Kokkoris, M; Krtička, M; Kroll, J; Langer, C; Lederer, C; Leeb, H; Leong, L S; Meo, S Lo; Losito, R; Manousos, A; Marganiec, J; Martínez, T; Massimi, C; Mastinu, P; Mastromarco, M; Mendoza, E; Milazzo, P M; Mingrone, F; Mirea, M; Mondalaers, W; Musumarra, A; Paradela, C; Pavlik, A; Perkowski, J; Plompen, A; Praena, J; Quesada, J; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Saxena, A; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiß, C; Wright, T

    2016-01-01

    The integral measurement of the $^{12}$C(n,p)$^{12}$B reaction was performed at the neutron time of flight facility n_TOF at CERN. The total number of $^{12}$B nuclei produced per neutron pulse of the n_TOF beam was determined using the activation technique in combination with a time of flight technique. The cross section is integrated over the n_TOF neutron energy spectrum from reaction threshold at 13.6 MeV to 10 GeV. Having been measured up to 1 GeV on basis of the $^{235}$U(n,f) reaction, the neutron energy spectrum above 200 MeV has been reevaluated due to the recent extension of the cross section reference for this particular reaction, which is otherwise considered a standard up to 200 MeV. The results from the dedicated GEANT4 simulations have been used to evaluate the neutron flux from 1 GeV up to 10 GeV. The experimental results related to the $^{12}$C(n,p)$^{12}$B reaction are compared with the evaluated cross sections from major libraries and with the predictions of different GEANT4 models, which m...

  2. Impacts of carbon nanotubes on biochemical reactions: insight into interaction between carbon nanotubes and DNA polymerase enzyme

    OpenAIRE

    Uysal, Ebru; Meral, Yüce; Meral, Yuce; Hasan KURT

    2014-01-01

    Recently, the Polymerase Chain Reaction technique has begun to benefit from nanotechnology. In this paper, effects of carbon nanotubes in the Polymerase Chain Reaction were investigated by Electrophoresis, Circular Dichroism Spectrometry and Dynamic Light Scattering Techniques. The unique ability to amplify low copy number DNA within minutes has made in vitro Polymerase Chain Reaction (PCR) one of the most essential techniques in modern biology. In order to harness this technique to its full ...

  3. Correlation between carbon-carbon bond length and the ease of retro Diels-Alder reaction

    Indian Academy of Sciences (India)

    Sambasivarao Kotha; Shaibal Banerjee; Mobin Shaikh

    2014-09-01

    The bond length between C8-C9 in (1′R,4′S,4a′R,8a′S)-6′,7′-dimethyl-1′,4′,4a′,8a′-tetrahydrospiro [cyclopropane-1,9′-[1,4]methanonaphthalene]-5′,8′-dione is 1.571 (2) Å and between C7-C12 is 1.567 (2) Å which are longer than the corresponding bond length for saturated bicyclic systems (1.531-1.535Å). This paper reports the correlation between bond length and the ease of retro Diels−Alder reaction.

  4. Li4Ti5O12/C composite electrode material synthesized involving conductive carbon precursor for Li-ion battery

    International Nuclear Information System (INIS)

    Li4Ti5O12/C composite was synthesized via a simple solid-state reaction using Super-P-Li conductive carbon black as reaction precursor. The prepared samples were characterized by XRD, SEM, TG and granularity analysis and their electrochemical performance was also investigated in this work. The results showed that the Li4Ti5O12/C composite had a spinel crystal structure and the particle size of the powder was uniformly distributed with an average particle size of 480 nm. The conductive carbon was embedded in the Li4Ti5O12 particles without incorporation in the Li4Ti5O12 crystal lattice during the sintering process. The added Super-P-Li carbon played an important role in improving the electronic conductivity and electrochemical performance of the Li4Ti5O12/C electrode. Compared with raw Li4Ti5O12, the Li4Ti5O12/C composite exhibited higher rate capability and excellent reversibility. The initial discharge capacity of Li4Ti5O12/C composite was 174.5 mAh g-1 at 0.5C and 169.3 mAh g-1 at 1C.

  5. Hybrid direct carbon fuel cells and their reaction mechanisms - a review

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Kammer Hansen, Kent

    2014-01-01

    with carbon capture and storage (CCS) due to the high purity of CO2 emitted in the exhaust gas. Direct carbon (or coal) fuel cells (DCFCs) are directly fed with solid carbon to the anode chamber. The fuel cell converts the carbon at the anode and the oxygen at the cathode into electricity, heat and...... efforts is discussed on the fuel cell stack and system levels. The range of DCFC types can be roughly broken down into four fuel cell types: aqueous hydroxide, molten hydroxide, molten carbonate and solid oxide fuel cells. Emphasis is placed on the electrochemical reactions occurring at the anode and the...... proposed mechanism(s) of these reactions for molten carbonate, solid oxide and hybrid direct carbon fuel cells. Additionally, the criteria of choosing the ‘best’ DCFC technology is explored, including system design (continuous supply of solid fuel), performance (power density, efficiency), environmental...

  6. Studies of reductive elimination reactions to form carbon-oxygen bonds from Pt(IV) complexes.

    Science.gov (United States)

    Williams, B S; Goldberg, K I

    2001-03-21

    The platinum(IV) complexes fac-L(2)PtMe(3)(OR) (L(2) = bis(diphenylphosphino)ethane, o-bis(diphenylphosphino)benzene, R = carboxyl, aryl; L = PMe(3), R = aryl) undergo reductive elimination reactions to form carbon-oxygen bonds and/or carbon-carbon bonds. The carbon-oxygen reductive elimination reaction produces either methyl esters or methyl aryl ethers (anisoles) and L(2)PtMe(2), while the carbon-carbon reductive elimination reaction affords ethane and L(2)PtMe(OR). Choice of reaction conditions allows the selection of either type of coupling over the other. A detailed mechanistic study of the reductive elimination reactions supports dissociation of the OR(-) ligand as the initial step for the C-O bond formation reaction. This is followed by a nucleophilic attack of OR(-) upon a methyl group bound to the Pt(IV) cation to produce the products MeOR and L(2)PtMe(2). C-C reductive elimination proceeds from L(2)PtMe(3)(OR) by initial L (L = PMe(3)) or OR(-) (L(2) = dppe, dppbz) dissociation, followed by C-C coupling from the resulting five-coordinate intermediate. Our studies demonstrate that both C-C and C-O reductive elimination reactions from Pt(IV) are more facile in polar solvents, in the presence of Lewis acids, and for OR(-) groups that contain electron withdrawing substituents. PMID:11456927

  7. High spin levels populated in multinucleon transfer reaction with 480 MeV 12C

    International Nuclear Information System (INIS)

    Two- and three-nucleon stripping reactions induced by 480 MeV 12C have been studied on 12C, 16O, 28Si, 40Ca and 54Fe target nuclei. Discrete levels are fed with cross sections up to 1 mb/sr for d-transfer reactions and one order and two orders of magnitude less for 2p- and 3He-transfer reactions, respectively. These reactions preferentially populate high spin states with stretched configurations. Several spin assignments were known from transfer reactions induced by lighter projectiles at incident energies well above the Coulomb barrier. In the case of two-nucleon transfer reactions, the energy of these states is well reproduced by crude shell model calculations. Such estimates are of use in proposing spins of newly observed states especially as the shapes of the measured angular distributions are independent of the final spin of the residual nucleus

  8. Measurement of carbon-13:carbon-12 ratios by Fourier transform infrared spectrometry

    International Nuclear Information System (INIS)

    An approach to the measurement of 13C:12C ratios in isotopically enriched samples is described. The carbon in samples is converted into CO2 gas by either combustion of organic material or acidification of carbonate. The gas is then measured by FTIR spectrometry. When spectra are recorded at 0.25 cm-1 resolution the magnitude of the isotopic shift is such that the areas of 12C and 13C rotational lines of the ν3 vibrational band for CO2 can be measured and the isotopic composition determined by reference to a standard calibration graph. The relative standard deviation at natural abundance is 1.2%, which gives an absolute limit of detection of 0.026 atom-% 13C. Details of the decomposition procedures and a comparison of the results with those obtained by mass spectrometry are also presented. (author)

  9. The Path of Carbon in Photosynthesis IX. Photosynthesis, Photoreduction, and the Hydrogen-Oxygen-Carbon Dioxide Dark Reaction

    Science.gov (United States)

    Badin, E. J.; Calvin, M.

    1950-02-01

    A comparison of the rates of fixation of Carbon 14 dioxide in algae for the processes of photosynthesis, photoreduction and the hydrogen-oxygen-carbon dioxide dark reaction has been made. For the same series of experiments, rates of incorporation of tracer carbon into the separate soluble components using the radiogram method have been determined. The mechanism of carbon dioxide uptake has been shown to occur via two distinct paths. In all cases studied, essentially the same compounds appear radioactive. The distribution with time, however, differs markedly.

  10. R-matrix analysis of the 12C(α,γ) reaction with inputs from 12C(7Li,t)16O∗ transfer reaction

    International Nuclear Information System (INIS)

    The 12C(α,γ) reaction at 300 keV determines the ratio of 16O to 12C abundance at the end of helium burning in stars. The direct measurement of the cross-section of this reaction is almost impossible with the presently available techniques. Extrapolation of the cross-section or the astrophysical S-factor from higher energy data is presently adopted. There are several direct measurements of the 12C(α,γ) reaction but the lowest energy upto which measurement has been done is only upto 1 MeV. R-matrix extrapolation of the E2 and E1 capture data is complicated by the lack of knowledge of the cluster structure of the 6.92 MeV (2+) and 7.12 MeV (1-) states of 16O. In this paper we report a study of the E2 capture data that is analysed with the ANC of the 6.92 MeV state determined from 12C(7Li,t) alpha transfer measurements

  11. Palladium-catalyzed cross coupling reactions of 4-bromo-6H-1,2-oxazines

    Directory of Open Access Journals (Sweden)

    Reinhold Zimmer

    2009-09-01

    Full Text Available A number of 4-aryl- and 4-alkynyl-substituted 6H-1,2-oxazines 8 and 9 have been prepared in good yields via cross coupling reactions of halogenated precursors 2, which in turn are easily accessible by bromination of 6H-1,2-oxazines 1. Lewis-acid promoted reaction of 1,2-oxazine 9c with 1-hexyne provided alkynyl-substituted pyridine derivative 12 thus demonstrating the potential of this approach for the synthesis of pyridines.

  12. Spin polarization and spin alignment of 12B produced in heavy-ion reactions

    International Nuclear Information System (INIS)

    A series of experimental works carried out by the present authors envisaged the spin polarization of light-mass products 12B as functions of product kinetic energy and reaction Q value. The results so far obtained for the reaction 100Mo (14N,12B) at the incident energies 90, 125 and 200 MeV revealed a systematic trend in Q value dependence of polarization. (orig./AH)

  13. Dilepton spectroscopy at intermediate energies; the carbon - carbon reaction at 1 GeV/A

    International Nuclear Information System (INIS)

    The Physics context of this work is heavy ion collisions at relativistic energies where di-electron provide informations on the produced hot and dense nuclear matter. The experiment is performed by the DiLepton Spectrometer (DLS) Collaboration at the Lawrence Berkeley's Bevalac. After a description of the apparatus, we review the whole program and the main results so far obtained: first evidence of a significant di-electron signal at energies above 1 GeV/A; improvement of the understanding of di-electron production (electromagnetic decays of hadrons, π+π- annihilation and hadronic Bremsstrahlung). The results of p-p, p-d reactions from 1 to 4.9 GeV/A show that hadronic Bremsstrahlung (pp, pn) should be reformulated. Our analysis, optimized on the reaction Carbon-Carbon at 1 GeV/A, has been applied to α-Ca and d-Ca. We have developed two main aspects: improvement of the time resolution (500 ps) in order to eliminate all of the protons. Improvement of the space resolution (300 μ) for better mass resolution, in particular in the ρ region. We obtain the cross section of di-electron production as a function of mass, transverse momentum and rapidity from the C-C, α-Ca and d-Ca reactions at 1 GeV/A. We also compare the cross section for all of the measured systems at 1 GeV/A, including Ca-Ca, and we show a (ApAt)α dependence with α ≅ 1.1. A study of the associated multiplicity has also been performed. Nevertheless, the limited acceptance of the DLS and its poor mass resolution to identify the ρ, ω vector mesons, do not allow to conclude on hadron behaviour in nuclear matter. This point is one of the main goal of the HADES project at GSI (Darmstadt), which we give a brief description of the main features. (authors). 60 refs

  14. Insights into the importance of oxygen functional groups in carbon reactions with oxygen containing gases

    International Nuclear Information System (INIS)

    The role of pore structure of carbon in carbon-related adsorptions and reactions has been extensively investigated. However the studies on the role of surface chemistry of carbon are limited. In this paper, we present the importance of oxygen functional groups in carbon reactions with oxygen-containing gases. It is found that there is a good correlation between the electronic structures and reactivities of carbon edge sites. Zigzag sites are more active in oxygen adsorption because of the unpaired electrons and armchair sites are less active in oxygen adsorption due to the triple character. However, the desorption of semi-quinone oxygen from zigzag sites needs a bond energy ca. 30% higher than that of o-quinone oxygen from armchair edge sites. CO2 and H2O adsorb on carbon surface much less favorably than O2. H2O is first physically adsorbed on the virgin graphite surface followed by chemisorption through oxygen atom approaching the carbon edge site and the movements of two hydrogen atoms to produce H2. The adsorption mechanism of H2O is different from that for CO2, but the final result is quite similar, i.e. producing only semi-quinone oxygen. Based upon the above studies, a new generalized mechanism, as shown in Fig. 1, is developed and can account for all the important kinetic phenomena of carbon-gas reactions. The key point is that in CO2/H2O-carbon reaction only semi-quinone formed; while, in O2-carbon reaction, semi-quinone, o-quinone (at lower pressure), and off-plane epoxy oxygen (at relatively higher pressure) can be formed. This is the main reason for the different reaction kinetics of O2 -carbon reaction and CO2/H2O-carbon reactions as observed experimentally. The oxygen functional groups of carbon can be characterized by XPS, PZC (point of zero charge), IEP (isoelectric point) and TPD (temperature-programmed desorption), which were used in our previous studies. We treated the carbon surface with different acids, finding that HNO3 treatment can

  15. Study of carbon-isotope exchange reactions between potassium cyanide and some carbonates, and their use for obtaining C14-labelled potassium cyanide

    International Nuclear Information System (INIS)

    The authors examine the results of a study on the isotope exchange of potassium cyanide with compounds differing greatly from it both in composition and structure, such as carbonates of alkaline and alkali-earth metals. The carbon-isotope exchange reaction in the KC12N-BaC14O3 system was studied at 600-800oC. The ratio between the components of this system and those given below agreed with the equimolecular ratio. The authors show that at high temperatures complete exchange between these compounds can be secured. The exchange reaction begins when the cyanide melt is formed; later it occurs between the liquid and the solid phases, and its speed increases with temperature; at 800oC it is completed in 2 h. With carbonates of alkali metals the exchange reaction occurs in the melt and is completed at lower temperatures. The authors obtained cyanide-labelled potassium by the following method : (1) The isotope exchange reaction KC12N-BaC14O3 is produced at 800oC in 2 h. (2) The mixture KCN+BaCO3 is separated by extracting the KCN with liquid ammonia in a circulating extractor. By exchanging the equimolecular quantities KCN and BaCO3, potassium cyanide is obtained with a chemical yield of more than 90% and a basic-substance content of 96-97%. By using BaCO3 with a high specific activity (60-70 mc/g), a KCN specific activity of over 80 mc/g may be obtained. The barium carbonate depleted of isotope C14 regenerates after the ammonia extraction without appreciable loss. (author)

  16. Enhanced interfacial properties of carbon fiber composites via aryl diazonium reaction “on water”

    International Nuclear Information System (INIS)

    Highlights: • Carbon fibers are grafted with phenyl amine group via aryl diazonium reaction. • Interfacial shear strength of the carbon fibers increases by 73%. • Tensile strength of the carbon fibers does not decrease distinctly. • Using water as the reaction medium can avoid pollution from organic solvents. • Grafting via aryl diazonium reaction in one step can improve modification efficiency. - Abstract: Polyacrylonitrile-based carbon fibers were functionalized with phenyl amine group via aryl diazonium reaction “on water” to improve their interfacial bonding with resin matrix. Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and scanning electron microscopy were employed to characterize ordered degree, functional groups, chemical states and morphology of carbon fiber surface, respectively. The results showed that phenyl amine groups were grafted on the fiber surface successfully. Mechanical property test results indicated that the aryl diazonium reaction in this paper could improve the interfacial shear strength by 73%, while the tensile strength was down very slightly. Hence aryl diazonium reaction “on water” could be a facile green platform to functionalize carbon fibers for many interesting applications

  17. Carbon reaction with levitated silicon - Experimental and thermodynamic approaches

    Energy Technology Data Exchange (ETDEWEB)

    Beaudhuin, M., E-mail: mickael.beaudhuin@univ-montp2.fr [SIMAP EPM, UMR-CNRS 5266, 1340 rue de la piscine, F-38402 Saint Martin d' Heres Cedex (France); ICGM C2M, UMR-CNRS 5253, Place Eugene Bataillon, Bat 15 CC1504, F-34095 Montpellier Cedex (France); Chichignoud, G.; Bertho, P.; Duffar, T. [SIMAP EPM, UMR-CNRS 5266, 1340 rue de la piscine, F-38402 Saint Martin d' Heres Cedex (France); Lemiti, M. [Universite de Lyon, INL, UMR-CNRS 5270, INSA de Lyon, Bat. 502, 20 Av. Albert Einstein, F-69621 Villeurbanne Cedex (France); Zaidat, K. [SIMAP EPM, UMR-CNRS 5266, 1340 rue de la piscine, F-38402 Saint Martin d' Heres Cedex (France)

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Interaction of methane with levitated silicon at high temperature. Black-Right-Pointing-Pointer Silicon nucleation undercooling decreases when the carbon concentration increases. Black-Right-Pointing-Pointer Experimental and thermodynamical calculation shows remarkable similar behavior. - Abstract: Metallurgical grade silicon (MG-Si) has become a new source of raw material for the photovoltaic industry. The use of this material as an alternative feed stock has however introduced phenomena that are detrimental to both the yield of the manufacturing process and the performance of the photovoltaic cells produced. This is mainly related to the presence of carbon, which precipitates to silicon carbide (SiC) in the ingot. This article focuses on the effect of carbon on silicon nucleation. Statistical experimental results of silicon nucleation are obtained as a function of carbon concentration and are presented and compared to thermodynamic calculations.

  18. Carbon reaction with levitated silicon – Experimental and thermodynamic approaches

    International Nuclear Information System (INIS)

    Highlights: ► Interaction of methane with levitated silicon at high temperature. ► Silicon nucleation undercooling decreases when the carbon concentration increases. ► Experimental and thermodynamical calculation shows remarkable similar behavior. - Abstract: Metallurgical grade silicon (MG-Si) has become a new source of raw material for the photovoltaic industry. The use of this material as an alternative feed stock has however introduced phenomena that are detrimental to both the yield of the manufacturing process and the performance of the photovoltaic cells produced. This is mainly related to the presence of carbon, which precipitates to silicon carbide (SiC) in the ingot. This article focuses on the effect of carbon on silicon nucleation. Statistical experimental results of silicon nucleation are obtained as a function of carbon concentration and are presented and compared to thermodynamic calculations.

  19. Observation of Λ-hypernuclei in the reaction 12C(π+,K+)/sub Λ/12C

    International Nuclear Information System (INIS)

    The observation of Λ-hypernuclear levels in /sub Λ/12C by associated production through the (π+,K+) reaction is reported. Spectrometers used in the measurements are discussed. The /sub Λ/12C excitation energy spectra were recorded at laboratory scattering angles of 5.60, 10.30, and 15.20. The spectra show two major peaks - one attributed to the ground state, and one about 11 MeV higher in excitation. The peak near 11 MeV excitation energy is believed to be almost entirely composed of a multiplet of three J/sup π/ = 2+ states. Relativistic DWBA calculations imply support for the expectation that higher spin states are preferentially populated in the (π+,K+) reaction, compared to the (K-,π-) reaction in which lower spin states are excited. 29 refs., 40 figs

  20. Observation of. lambda. -hypernuclei in the reaction /sup 12/C(. pi. /sup +/,K/sup +/)/sub. lambda. //sup 12/C

    Energy Technology Data Exchange (ETDEWEB)

    Milner, E.C.

    1985-12-01

    The observation of ..lambda..-hypernuclear levels in /sub ..lambda..//sup 12/C by associated production through the (..pi../sup +/,K/sup +/) reaction is reported. Spectrometers used in the measurements are discussed. The /sub ..lambda..//sup 12/C excitation energy spectra were recorded at laboratory scattering angles of 5.6/sup 0/, 10.3/sup 0/, and 15.2/sup 0/. The spectra show two major peaks - one attributed to the ground state, and one about 11 MeV higher in excitation. The peak near 11 MeV excitation energy is believed to be almost entirely composed of a multiplet of three J/sup ..pi../ = 2/sup +/ states. Relativistic DWBA calculations imply support for the expectation that higher spin states are preferentially populated in the (..pi../sup +/,K/sup +/) reaction, compared to the (K/sup -/,..pi../sup -/) reaction in which lower spin states are excited. 29 refs., 40 figs.

  1. Evidence of $\\Xi$ hypernuclear production in the $^{12}C(K^{-},K^{+})^{12}_{\\Xi}Be$ reaction

    CERN Document Server

    Khaustov, G V; Barnes, P D; Bassalleck, B; Berdoz, A R; Biglan, A; Bürger, T; Carman, D S; Chrien, R E; Davis, C A; Fischer, H; Franklin, G B; Franz, J; Gan, L; Ichikawa, A; Iijima, T; Imai, K; Kondo, Y; Koran, P; Landry, M R; Lee, L; Lowe, J; Magahiz, R; May, M; McCrady, R G; Meyer, C A; Merrill, F; Motoba, T; Page, S A; Paschke, K; Pile, P H; Quinn, B; Ramsay, W D; Rusek, A; Sawafta, R; Schmitt, H; Schumacher, R A; Stotzer, R W; Sutter, R J; Takeutchi, F; Van Oers, W T H; Yamamoto, K; Yamamoto, Y; Yosoi, M; Zeps, V J

    2000-01-01

    The E885 collaboration utilized the 1.8 GeV/c K^- beam line at the AGS to accumulate 3 x 10^5 (K^-,K^+) events. Xi hypernuclear states are expected to be produced through the reaction K^- + ^{12}C -> K^+ + ^{12}_{Xi}Be. The measured missing-mass spectrum indicates the existence of a signal below the threshold for free Xi production. Although the resolution was not sufficient to resolve discrete hypernuclear states, the excess of events in the region of missing mass, kinematically inaccessible in free Xi production, is compared to theoretical prediction for ^{12}_{Xi}Be production.

  2. Studies of reaction mechanism in {sup 12}C + {sup 12}C system at intermediate energy of 28.7 MeV/N

    Energy Technology Data Exchange (ETDEWEB)

    Magiera, A. [Inst. of Physics, Jagiellonian Univ., Cracow (Poland)

    1996-12-31

    The reaction mechanism in {sup 12}C + {sup 12}C system at intermediate energy of about 30 MeV/nucleon was studied. The contribution of various reaction mechanisms (inelastic scattering, transfer reactions, compound nucleus reactions, sequential decay following inelastic excitation and transfer) to the total reaction cross section were found. The analysis of inclusive and coincidence spectra shows that sequential fragmentation processes dominate. 100 refs, 45 figs, 1 tab

  3. New Condensation Reaction of β-keto-δ-valerolactones, Carbon Disulfide and Alkyl Halides

    Institute of Scientific and Technical Information of China (English)

    You Ming WANG; Yu Xin LI; Su Hua WANG; Zheng Ming LI

    2004-01-01

    β-Keto-δ-valerolactones, which were obtained by reaction of acetoacetate with aldehydes or ketones, reacted with carbon disulfide, alkyl halides and a new condensation reaction was developed. The structures of the products 3 were confirmed by 1HNMR spectra and elemental analysis.

  4. Analytical evaluation of the solid rocket motor nozzle surface recession by the alumina-carbon reaction

    OpenAIRE

    Matsukawa, Yutaka; Sato, Yutaka; 松川 豊; 佐藤 裕

    2008-01-01

    A theoretical model describing the chemical ablation of a solid rocket motor nozzle ablator by the alumina-carbon reaction is presented. An application of it to a typical solid rocket motor with a graphite nozzle ablator indicates a large influence of the reaction on the nozzle surface recession.

  5. Study of alpha-emitters produced in nuclear reactions induced by 12C a 86 MeV/n on medium and heavy targets

    International Nuclear Information System (INIS)

    The work reported in this research thesis is a result from the very first experiments performed on the new Carbon 12 beam proposed by the CERN synchrotron (20 MeV< E/A<100 MeV). By means of an electrostatic collecting system developed within the laboratory, associated with an α detection device, the author measured the productions, energies, recoil distributions and angular distributions of α emitters produced in nuclear reactions induced by Carbon 12 at 1032 MeV, i.e. 86 MeV/n, on heavy targets ranging from Gadolinium to Uranium. These data and the comparison with results obtained by means of an intra-nuclear cascade model allow the main characteristics of these reactions to be identified. These characteristics will be very interesting for the understanding of phenomena occurring at these energy levels, and for the elaboration of a theoretical model describing the evolution of nuclear reactions

  6. Preparation of hollow carbon nanospheres at low temperature via new reaction route

    International Nuclear Information System (INIS)

    Hollow carbon nanospheres were obtained at 200oC via a new reaction route, by using magnesium, hexachloroethane and aluminum trichloride as starting materials and benzene as solvent. The products were characterized with X-ray diffraction pattern, transmission electron microscope, high-resolution transmission electron microscope images and Raman spectrum. The reaction conditions are easy to be maintained and controlled. They may provide a new method to produce other carbonaceous materials. A possible mechanism of reaction was proposed

  7. Initial reaction between CaO and SO2 under carbonating and non-carbonating conditions

    DEFF Research Database (Denmark)

    Rasmussen, Martin Hagsted; Wedel, Stig; Pedersen, Kim H.;

    2015-01-01

    The initial kinetics of the CaO/SO2 reaction have been investigated for reaction times shorter than 1s and in the temperature interval between 450 and 600°C under both carbonating and non-carbonating conditions (0-20 vol% CO2) to clarify how recirculating CaO influences the emission of SO2 from a...... showed that the CaO conversion with respect to SO2 declined when the CO2 concentration was increased. Under all conditions, larger specific surface areas of CaO gave higher reaction rates with SO2. Higher temperatures had a positive effect on the reaction between SO2 and CaO under non...

  8. A Small-Scale Capsule Test for Investigating the Sodium-Carbon Dioxide Reaction

    International Nuclear Information System (INIS)

    The utilization of modular sodium-to-supercritical CO2 heat exchangers may yield significant improvements for an overall plant energy utilization. The consequences of a failure of the sodium CO2 heat exchanger boundary, however, would involve the blowdown and intermixing of high-pressure CO2 in a sodium pool, causing a pressurization which may threaten the structural integrity of the heat exchanger. Available data seems to indicate that the chemical reaction between sodium and CO2 would likely produce sodium oxides, sodium carbonate, carbon and carbon monoxide. Information on the kinetics of the sodium-CO2 reaction is virtually non-existent

  9. Measurement and calculation of 238U fission reaction rates induced by neutrons reflected by carbon material

    International Nuclear Information System (INIS)

    To check the data of carbon material reflecting neutrons, the distribution of 238U fission reaction rates induced by D-T fusion neutrons reflected by carbon material was measured by using the small depleted uranium fission chamber and the capturing detector. For comparison, 238U fission rates without carbon material was measured too. The combined standard uncertainty of 238U fission reaction rate is 5.1%-6.4%. The measured results are consistent with the calculated ones with MCNP/4A code and ENDF/B-IV library data in the range of the error

  10. A kinetic study of the reaction of water vapor and carbon dioxide on uranium

    International Nuclear Information System (INIS)

    The kinetic study of the reaction of water vapour and carbon dioxide with uranium has been performed by thermogravimetric methods at temperatures between 160 and 410 deg G in the first case, 350 and 1050 deg C in the second: Three sorts of uranium specimens were used: uranium powder, thin evaporated films, and small spheres obtained from a plasma furnace. The experimental results led in the case of water vapour, to a linear rate of reaction controlled by diffusion at the lower temperatures, and by a surface reaction at the upper ones. In the case of carbon dioxide, a parabolic law has been found, controlled by diffusional processes. (author)

  11. Proton and alpha evaporation spectra in low energy 12C and 16O induced reactions

    Indian Academy of Sciences (India)

    E T Mirgle; D R Chakrabarty; V M Datar; Suresh Kumar; A Mitra; H H Oza

    2006-08-01

    Proton and alpha particle spectra have been measured in the 12C+93Nb and 12C+58Ni reactions at E(12C) = 40 and 50 MeV and in the 16O+93Nb reaction at E(16O) = 75 MeV. The spectra are compared with the statistical model calculations. The shapes of the calculated spectra are in agreement with experimental data except for the alpha spectrum in the 12C+93Nb reaction at 40 MeV. The observed evaporation bump is at ∼ 2 MeV lower energy compared to the calculated one. This discrepancy could imply alpha particle emission from a deformed configuration before compound nucleus formation at this near Coulomb barrier beam energy.

  12. REACTION MECHANISMS OF MAGNESIUM SILICATES WITH CARBON DIOXIDE IN MICROWAVE FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    William B. White; Michael R. Silsbee; B. Joe Kearns

    2004-02-18

    The objective of the investigation was to determine whether microwave fields would enhance the reactions of CO{sub 2} with silicates that are relevant to the sequestration of carbon dioxide. Three sets of experiments were conducted. (1) Serpentine and CO{sub 2} were reacted directly at one atmosphere pressure in a microwave furnace. Little reaction was observed. (2) Serpentine was dehydroxylated in a microwave furnace. The reaction was rapid, reaching completion in less than 30 minutes. A detailed investigation of this reaction produced an S-shaped kinetics curve, similar to the kinetics from dehydroxylating serpentine in a resistance furnace, but offset to 100 C lower temperature. This set of experiments clearly demonstrates the effect of microwaves for enhancing reaction kinetics. (3) Reactions of serpentine with alkaline carbonates and in acid solution were carried out in a microwave hydrothermal apparatus. There was a greatly enhanced decomposition of the serpentine in acid solution but, at the temperature and pressure of the reaction chamber (15 bars; 200 C) the carbonates did not react. Overall, microwave fields, as expected, enhance silicate reaction kinetics, but higher CO{sub 2} pressures are needed to accomplish the desired sequestration reactions.

  13. Film forming kinetics and reaction mechanism of γ-glycidoxypropyltrimethoxysilane on low carbon steel surfaces

    International Nuclear Information System (INIS)

    The film forming kinetics and reaction mechanism of γ-GPS on low carbon steel surfaces was investigated by FTIR-ATR, AFM, NSS and theoretical calculation method. The results from experimental section indicated that the reaction of γ-GPS on low carbon steel surfaces followed the conventional reaction mechanism, which can be described as reaction (I) (Me (Metal)-OH + HO-Si → Me-O-Si + H2O) and reaction (II) (Si-OH + Si-OH → Si-O-Si + H2O). During film forming process, the formation of Si-O-Fe bond (reaction (I)) exhibited oscillatory phenomenon, the condensation degree of silanol monomers (reaction (II)) increased continuously. The metal hydroxyl density had significant influence on the growth mechanisms and corrosion resisting property of γ-GPS films. The results from theoretical calculation section indicated that the patterns of reaction (I) and reaction (II) were similar, involving a nucleophilic attack on the silicon center. The formation of Si-O-Fe bond (reaction (I)) was kinetically and thermodynamically preferred, which had catalytic effect on its condensation with neighboring silanol monomers (reaction (II)). Our DFT calculations were good consistent with the experimental measurements.

  14. Heterogeneously Catalysed Chemical Reactions in Carbon Dioxide Medium

    DEFF Research Database (Denmark)

    Musko, Nikolai E.

    determination of phase equilibria is very time consuming, expensive, and very often reveals very little information. However, these problems can be overcome when thermodynamic modelling is applied. The Cubic-Plus-Association Equation of State (CPA) was used throughout this study; therefore this model is...... studied. Furthermore, the “one-pot” synthesis with 2-butenal was performed using bifunctional and mixed catalysts. The reactions were studied in different reactor types and reaction conditions were optimised using CPA calculations. Extensive catalyst characterisation was carried out in order to understand...... equilibria of the reaction mixture can make the process economically more feasible. Many different thermodynamic models of different capability and applicability have been applied for this task. The CPA model is an advanced model that accounts for complex interactions between associating molecules like water...

  15. Ultra-Low-Temperature Reactions of Carbon Atoms with Hydrogen Molecules

    CERN Document Server

    Krasnokutski, S A; Renzler, M; Jäger, C; Henning, Th; Scheier, P

    2016-01-01

    The reactions of carbon atoms with dihydrogen have been investigated in liquid helium droplets at $T$ = 0.37 K. A calorimetric technique was applied to monitor the energy released in the reaction. The barrierless reaction between a single carbon atom and a single dihydrogen molecule was detected. Reactions between dihydrogen clusters and carbon atoms have been studied by high-resolution mass spectrometry. The formation of hydrocarbon cations of the type C$_m$H$_n^+$, with $m$ = 1-4 and $n$ = 1-15 was observed. With enhanced concentration of dihydrogen, the mass spectra demonstrated the main "magic" peak assigned to the CH$_5^+$ cation. A simple formation pathway and the high stability of this cation suggest its high abundance in the interstellar medium.

  16. Carbon Isotopic Fractionation in Fischer-Tropsch Type Reactions and Relevance to Meteorite Organics

    Science.gov (United States)

    Johnson, Natasha M; Elsila, Jamie E.; Kopstein, Mickey; Nuth, Joseph A., III

    2012-01-01

    Fischer-Tropsch-Type (FTT) reactions have been hypothesized to contribute to the formation of organic compounds in the early solar system, but it has been difficult to identify a signature of such reactions in meteoritic organics. The work reported here examined whether temperature-dependent carbon isotopic fractionation of FTT reactions might provide such a signature. Analyses of bulk organic deposits resulting from FTT experiments show a slight trend towards lighter carbon isotopic ratios with increasing temperature. It is unlikely, however, that these carbon isotopic signatures could provide definitive provenance for organic compounds in solar system materials produced through FTT reactions, because of the small scale of the observed fractionations and the possibility that signatures from many different temperatures may be present in any specific grain.

  17. Application of Moessbauer Spectroscopy to the Carbon Oxides Hydrogenation Reactions

    International Nuclear Information System (INIS)

    Iron-based catalysts have favorable activity and selectivity properties for the CO and CO2 hydrogenation reactions. Several Fe phases (oxides and carbides) can be present in these catalysts. The interaction of Fe with the other components of the catalyst (support, promoters) can affect the ease of reduction and also its transformation during the reactions. In this work, the relationship between catalytic behavior in the CO and CO2 hydrogenation reactions and the Fe phase composition of fresh and reacted catalysts was studied. Two types of catalysts were tested: a laterite and the other one made of iron supported on alumina, both unpromoted and promoted with K and Mn. Only those Fe species which can be reduced-carburized, by means of a pretreatment or by an in situ transformation under the reaction, seem to be able to perform the CO or CO2 hydrogenation. The reoxidation of the Fe carbide to magnetite was not associated to deactivation. The selectivity seems to be more affected by Fe species difficult to reduce than by magnetite produced by reoxidation

  18. Research of Hydrogen Preparation with Catalytic Steam-Carbon Reaction Driven by Photo-Thermochemistry Process

    Directory of Open Access Journals (Sweden)

    Xiaoqing Zhang

    2013-01-01

    Full Text Available An experiment of hydrogen preparation from steam-carbon reaction catalyzed by K2CO3 was carried out at 700°C, which was driven by the solar reaction system simulated with Xenon lamp. It can be found that the rate of reaction with catalyst is 10 times more than that without catalyst. However, for the catalytic reaction, there is no obvious change for the rate of hydrogen generation with catalyst content range from 10% to 20%. Besides, the conversion efficiency of solar energy to chemical energy is more than 13.1% over that by photovoltaic-electrolysis route. An analysis to the mechanism of catalytic steam-carbon reaction with K2CO3 is given, and an explanation to the nonbalanced [H2]/[CO + 2CO2] is presented, which is a phenomenon usually observed in experiment.

  19. XPS study on the surface reaction of uranium metal with carbon monoxide at 200 degree C

    International Nuclear Information System (INIS)

    The surface reaction of uranium metal with carbon monoxide at 200 degree C has been studied by X-ray photoelectron spectroscopy (XPS). The carbon monoxide adsorption on the surface oxide layer resulted in U4f peak shifting to the lower binding energy and the content of oxygen in the oxide is decreased. O/U radio decreases with increasing the exposure of carbon monoxide to the surface layer. The investigation indicated the surface layer of uranium metal was further reduced in the atmosphere of carbon monoxide at high temperature. (3 refs., 5 figs.)

  20. Reactions between sodium and various carbon bearing compounds

    International Nuclear Information System (INIS)

    The presence of carbon bearing materials in liquid sodium is undesirable because of their ability to carburise stainless steel components. It has been demonstrated for example that carbon taken up by stainless steels can affect their mechanical properties and that thinner sectioned material such as fuel cladding and the tubing of intermediate heat exchanger may be more sensitive to such effects. Generally speaking, there are a number of potential carbon sources in reactor systems. Some of the sources such as the graphite in neutron shield rods, boron carbide in control rods and carbide fuels are part of the reactor designs while others such as oil in mechanical pumps arid 'coupling-fluids' used to inspect plant components are associated with the respective operation arid inspection of the plant. In this paper it is intended to discuss in general terms the way these various compounds behave in liquid sodium and to assess what effect their presence will have on the materials of construction in fast reactor systems. The paper also reviews the chemistry of the environment in relation to the types of carburizing species which may exist in sodium systems

  1. The reaction 12C + 12C at bombarding energies from 5 to 10 MeV per nucleon

    International Nuclear Information System (INIS)

    The reaction 12C + 12C has been studied for energies ranging from ELAB = 60 to 120 MeV. The excitation functions and angular distributions were obtained for the elastic (0+, 0+) and inelastic (2+, 0+), (2+, 2+) channels as well as for the transfer channels of one and two nucleons. For the transfer reactions, the feeding of the final bound states was very selective. Narrow correlated structures were found in the transfer and especially in the elastic and inelastic channels. In this energy range, there appears to be a transition from surface transparency to interference phenomena. The optical model in its simplest form is unable to describe the elastic scattering at large angles. This has been interpreted as a consequence of the coupling between the elastic and inelastic channels which is particularly strong of these energies. 80 refs

  2. Chemical Reactions and Kinetics of the Carbon Monoxide Coupling in the Presence of Hydrogen

    Institute of Scientific and Technical Information of China (English)

    Fandong Meng; Genhui Xu; Zhenhua Li; Pa Du

    2002-01-01

    The chemical reactions and kinetics of the catalytic coupling reaction of carbon monoxide to diethyl oxalate were studied in the presence of hydrogen over a supported palladium catalyst in the gaseous phase at the typical coupling reaction conditions. The experiments were performed in a continuous flow fixed-bed reactor. The results indicated that hydrogen only reacts with ethyl nitrite to form ethanol, and kinetic studies revealed that the rate-determining step is the surface reaction of adsorbed hydrogen and the ethoxy radical (EtO-). A kinetic model is proposed and a comparison of the observed and calculated conversions showed that the rate expressions are of rather high confidence.

  3. Application of the random pore model to the carbonation cyclic reaction

    Energy Technology Data Exchange (ETDEWEB)

    Grasa, G.; Murillo, R.; Alonso, M.; Abanades, J.C. [Institute of Carboquimica, Zaragoza (Spain). Environment & Energy Department

    2009-05-15

    Calcium oxide has been proved to be a suitable sorbent for high temperature CO{sub 2} capture processes based on the cyclic carbonation-calcination reaction. It is important to have reaction rate models that are able to describe the behavior of CaO particles with respect to the carbonation reaction. Fresh calcined lime is known to be a reactive solid toward carbonation, but the average sorbent particle in a CaO-based CO{sub 2} capture system experiences many carbonation-calcination cycles and the reactivity changes with the number of cycles. This study applies the random pore model (RPM) to estimate the intrinsic rate parameters for the carbonation reaction and develops a simple model to calculate particle conversion with time as a function of the number of cycles, partial pressure of CO{sub 2}, and temperature. This version of the RPM model integrates knowledge obtained in earlier works on intrinsic carbonation rates, critical product layer thickness, and pore structure evolution in highly cycled particles.

  4. Effect of temperature on kinetic parameters of decomposition reaction of calcium carbonate

    Institute of Scientific and Technical Information of China (English)

    CHEN Hongwei; CHEN Jiangtao; WEI Riguang; SUO Xinliang

    2013-01-01

    In order to investigate the influence of temperature on behavior of calcium carbonate decomposition,especially on kinetic parameters of the decomposition reaction,the analytically pure calcium carbonate was calcined on a self-built large dose thermogravimetric analyzer.The results indicated that,with an increase in the reaction temperature,the reactivity index of calcium carbonate decomposition increased at stage state while the kinetic parameters decreased at stage state.Moreover,both the reaction indices and the kinetic parameters can be divided into three stages and the temperature turning points in different stages were the same.The phase boundary reaction (cylindrical symmetry) theory was more suitable for calcium carbonate calcination under N2 atmosphere.The change trend of the logarithm of reaction activation with temperature was similar as that of the pre-exponential factor.There existed good liner relationship and kinetic compensation effect between them.The isokinetic temperature of the CaCO3 calcination was 842 ℃ and the reaction rate constant was 0.104 9 min-1 derived by the compensation coefficients.

  5. Reactions of carbon radicals generated by 1,5-transposition of reactive centers

    Directory of Open Access Journals (Sweden)

    ZIVORAD CEKOVIC

    2005-03-01

    Full Text Available Radical intermediates can undergo specific reactions, such as intramolecular rearrangements, i.e., the transpositions of radical centers, which are not known in classical ionic organic reactions. 1,5-Transposition of a radical center to a non-activated carbon atom are of great synthetic importance. It can be successfully applied for the introduction of different functional groups (oxygen, nitrogen, sulfur, halogens onto a carbon atom remote from the present functional group. In addition to functionalization of a remote non-activated carbon atom, the formation of new C-C bonds on the d-carbon atom have also been achieved. 1,5-Transposition of the radical centers takes place from alkoxyl, aminyl and carbon radicals to a remote carbon atom. Relocation of the radical centers preferentially involves 1,5-transfer of a hydrogen atom, although migrations of some other groups are known. The reactions of the carbon radical generated by 1,5-relocation of the radical center are presented and their synthetic applications are reviewed.

  6. Gamma-ray spectroscopy of 12ΛC via the (π+,K+) reaction

    International Nuclear Information System (INIS)

    A γ-ray spectroscopy experiment via the 12C(π+,K+) reaction was carried out at KEK-PS in 2005. The K6 beam line and Superconducting Kaon Spectrometer (SKS) were employed to obtain a missing mass spectrum for 12ΛC. An upgraded germanium detector array, Hyperball2, was introduced to detect γ rays emitted from hypernuclei in coincidence with the (π+,K+) reaction. As a result of further analysis, a γ-ray peak at 6048 keV (preliminary) was newly observed and assigned as the M1 transition from the 6-MeV excited state to the ground state

  7. Aligned carbon nanotube with electro-catalytic activity for oxygen reduction reaction

    Science.gov (United States)

    Liu, Di-Jia; Yang, Junbing; Wang, Xiaoping

    2010-08-03

    A catalyst for an electro-chemical oxygen reduction reaction (ORR) of a bundle of longitudinally aligned carbon nanotubes having a catalytically active transition metal incorporated longitudinally in said nanotubes. A method of making an electro-chemical catalyst for an oxygen reduction reaction (ORR) having a bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes, where a substrate is in a first reaction zone, and a combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into the first reaction zone which is maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is then introduced to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes over the substrate with a catalytically active transition metal incorporated throughout the nanotubes.

  8. Characterization of the major reactions during conversion of lignin to carbon fiber

    Directory of Open Access Journals (Sweden)

    Hendrik Mainka

    2015-10-01

    Full Text Available Lightweight design is an essential part of the overall Volkswagen strategy for reducing the CO2 emissions. The use of carbon fiber offers an enormous lightweight potential. In comparison to steel enabling a mass reduction of up to 70% in automotive parts without a degradation of the functionalities is possible. Today, the use of carbon fiber is limited in mass series applications of the automotive industry by the cost of the conventional C-fiber precursor polyacrylonitrile (PAN. 50% of the cost of a conventional carbon fiber already belongs to the cost of the PAN precursor. Lignin as a precursor for carbon fiber production can realize enormous savings in cost. For qualifying lignin-based carbon fiber for automotive mass production a detailed characterization of this new material is necessary. Therefore, nuclear magnetic resonance spectroscopy and Fourier transform infrared spectroscopy are used. Using the results of these experiments, the major reactions during conversion of lignin to carbon fiber are proposed.

  9. Comparison of two analysis methods for nuclear reaction measurements of 12C +12C interactions at 95 MeV/u for hadrontherapy

    CERN Document Server

    Dudouet, J; Labalme, M; Angélique, J C; Braunn, B; Colin, J; Cussol, D; Finck, Ch; Fontbonne, J M; Guérin, H; Henriquet, P; Krimmer, J; Rousseau, M; Saint-Laurent, M G

    2013-01-01

    During therapeutic treatment with heavier ions like carbon, the beam undergoes nuclear fragmentation and secondary light charged particles, in particular protons and alpha particles, are produced. To estimate the dose deposited into the tumors and the surrounding healthy tissues, the accuracy must be higher than ($\\pm$3% and$\\pm$1 mm). Therefore, measurements are performed to determine the double differential cross section for different reactions. In this paper, the analysis of data from 12C +12C reactions at 95 MeV/u are presented. The emitted particles are detected with \\DeltaEthin-\\DeltaEthick-E telescopes made of a stack of two silicon detectors and a CsI crystal. Two different methods are used to identify the particles. One is based on graphical cuts onto the \\DeltaE-E maps, the second is based on the so-called KaliVeda method using a functional description of \\DeltaE versus E. The results of the two methods will be presented in this paper as well as the comparison between both.

  10. The reaction of carbon with rare earth silicides. I

    International Nuclear Information System (INIS)

    The solubility of carbon and its effect on the D88 structure of Er5Si3 were investigated by X-ray examination, metallography and hardness measurements. Corrosion products arising from attack by water vapour and dilute nitric acid on the carbides were analysed. The addition of carbon to Er5Si3Csub(x) in the range from x=0 to x=2.0 produced complex changes. Solutions with x up to 0.2 expanded the lattice, but between x=0.2 and x=0.8 the expansion was accompanied by the appearance of a superlattice unit cell. At x=0.8 the superstructure became disordered prior to changing to a new superstructure at x=1.0. Two new orthorhombic phases in which there appeared to be some C2sup(n-) dipoles were identified at Er5Si3Csub(1.8) and Er5Si3Csub(2.0). (Auth.)

  11. Heterogeneously Catalysed Aldol Reactions in Supercritical Carbon Dioxide as Innovative and Non-Flammable Reaction Medium

    DEFF Research Database (Denmark)

    Musko, Nikolai; Grunwaldt, Jan-Dierk

    2011-01-01

    preliminary study under the entitled reaction conditions. Small and linear aldehydes, such as propanal, butanal, pentanal and hexanal, react more efficiently than the branched 3-methylbutanal, which is converted much slower. Whereas Amberlyst-15 showed the highest conversion based on the catalyst mass...

  12. Examination of the validity of statistical models for the 12C + 12C fusion reaction at sub-barrier energies

    Science.gov (United States)

    Dahlstrom, Erin

    2011-10-01

    Previous experimental studies of 12C + 12C fusion at sub-barrier energies using gamma spectroscopy have been limited by the use of a single detector. Use of the Gammasphere at the Argonne National Laboratory, however, allows for an array of germanium detectors to pick up the characteristic gamma rays, greatly increasing the information received. These decay products do not give us the total cross section for the fusion reaction though; we rely on statistical models that relate them to how the excited states are originally populated and decay. Using a combination of gamma spectroscopy based on data from the Gammasphere and proton spectroscopy from a recent 12C + 12C fusion experiment at Notre Dame, we tested these statistical models. The initial population of excited states for 23Na predicted by Empire, a standard statistical model for the decay of different 24Mg spins, was compared with the population determined from the gamma and proton spectroscopy. This comparison will potentially help us more accurately predict the spin population of 24Mg, further constraining the fusion reaction theory. Thanks: NSF grants PHY-1068192, PHY-0822648; ND REU.

  13. Carbon content influence on the peritectic reaction path in stainless steels

    Directory of Open Access Journals (Sweden)

    J. Głownia

    2013-01-01

    Full Text Available An important role for the peritectic reaction path in castings of stainless steel play small changes in a carbon content (e.g. from 0,02 to 0,06 % C, at maintaining constant chromium and nickel values. An influence of the carbon content on the peritectic reaction stages constitutes the subject of studies. The calculations of the steel solidification pathways in the four-component system, of a constant chromium and nickel content of 18 % and 9 % – respectively and of various carbon content from 0,01 to 0,06 %, were performed. It was proved by means of the PANDAT program that the carbon concentration increases the Cr segregation and thereby changes the solidification path under actual conditions.

  14. Synthesis and processing of beta silicon carbide powder by silicon - carbon reaction

    International Nuclear Information System (INIS)

    SiC is an important structural ceramic and finds applications in nuclear industry. Processing of SiC ceramic components for such applications require sinter-active beta silicon carbide powders. Various novel methods have been reported for the synthesis of beta SiC powder based on silica - carbon and silicon - carbon reactions. In this research, beta-silicon carbide (β-SiC) was synthesized from the reaction of Si and C. In this research, beta-silicon carbide (β-SiC) was synthesized from the reaction of Si and C. Stoichiometric amount of silicon and petroleum coke having agglomerate size ∼ 5-8μ were planetarily wet mixed, dried, granulated and compacted to reaction specimens

  15. Mechanism of carbon monoxide reactions under high pressure catalyzed by acids and bases

    Energy Technology Data Exchange (ETDEWEB)

    Takezaki, Y.

    1978-05-01

    A review, based mainly on work done at Kyoto University, covers the mechanisms and kinetics of acid-catalyzed carbonylations, including the hydrogen fluoride-catalyzed addition of carbon monoxide to methallyl chloride, the sulfuric acid-catalyzed synthesis of succinic acid from acrylic acid, and the conversion of toluene to p-tolualdehyde in hydrogen fluoride/boron trifluoride by the Gattermann-Koch reaction; and of base-catalyzed reactions, including the production of methyl formate from methanol with 1,8-diazabicyclo (5,4,0)undec-7-ene catalyst and of malonic acid from potassium acetate and potassium carbonate. Graphs, tables, and 34 references.

  16. β-Sialon Produced by Carbon Thermal Nitriding Reaction of Bauxite

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    β-Sialon was produced by carbon thermal nitriding reaction in N2 gas atmosphere when the mixtures of bauxite and anthracite were put into vertical furnace. According to the mass loss of raw materials and the result of X-ray diffration (XRD) of products, the influences of the process parameters on the compositions and relative contents of products, such as the fixed carbon content, the flow of N2, the soaking time and the temperature, were researched.

  17. Study of the 16O(16O,12C)20Ne reaction mechanism by polarization measurements

    International Nuclear Information System (INIS)

    The 16O(16O,12C)20Ne reaction has been studied at beam energies of 68 and 90 MeV. At these energies, this reaction is selective for populating high spin states well known to have a large overlap with α+16O. The angular distributions have been analyzed with an EFR-DWBA code. Good fits are obtained and the resulting relative α particle spectroscopic factors for the 20Ne states are in good agreement with shell model predictions, and with other results from different α transfer reactions. The polarization of the 20Ne has been measured by angular correlations between 12C and 16O (product of the 20Ne decay). As expected from a semi-classical view of the transfer, a strong 20Ne polarization, on an axis perpendicular to the reaction plane has been found. This polarization remains constant on a wide span of 12C angles. Different nuclear reaction models have been tested. With selected potentials, the DWBA predicts a strong polarization in this case of a heavy ion transfer, but not as strong as the one observed in the experiment. Some possible reasons for this difference are indicated

  18. Activated carbon becomes active for oxygen reduction and hydrogen evolution reactions.

    Science.gov (United States)

    Yan, Xuecheng; Jia, Yi; Odedairo, Taiwo; Zhao, Xiaojun; Jin, Zhao; Zhu, Zhonghua; Yao, Xiangdong

    2016-06-21

    We utilized a facile method for creating unique defects in the activated carbon (AC), which makes it highly active for the oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER). The ORR activity of the defective AC (D-AC) is comparable to the commercial Pt/C in alkaline medium, and the D-AC also exhibits excellent HER activity in acidic solution. PMID:27277286

  19. Computational Investigations of Organic Reactions on Graphene, Fullerenes, and Carbon Nanotubes

    OpenAIRE

    Cao, Yang

    2014-01-01

    This dissertation involves explorations of on surfaces and on carbon-based nanomaterials, especially graphene, using quantum chemical calculations. The work evaluates energetics of cycloaddition reactions on different sites of graphene, improving the understanding of graphene chemistry and guiding experiments.Chapter 1 to 3 describes theoretical investigations of 1,3-dipolar cycloadditions, Diels- Alder reactions, (2+2) cycloadditions, (4+4) cycloadditions and non-covalent interactions to gra...

  20. Chemical Reaction Equilibrium in Nanoporous Materials: NO Dimerization Reaction in Carbon Slit Nanopores

    Czech Academy of Sciences Publication Activity Database

    Lísal, Martin; Brennan, J.K.; Smith, W.R.

    2006-01-01

    Roč. 124, č. 6 (2006), s. 64712.1-64712.14. ISSN 0021-9606 R&D Projects: GA ČR(CZ) GA203/05/0725; GA AV ČR(CZ) 1ET400720507; GA AV ČR(CZ) 1ET400720409 Institutional research plan: CEZ:AV0Z40720504 Keywords : nanopore * NO dimerization * reaction Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.166, year: 2006

  1. Probing the 12C-12C and 12C-16O molecular states by radiative capture reactions: present status and future

    International Nuclear Information System (INIS)

    Complete γ-decay in the 12C(12C,γ)24Mg and 12C(16O,γ)28Si reactions has been measured at energies close to the Coulomb Barrier using the DRAGON spectrometer and its associated BGO γ-array at the TRIUMF facility. The experimental data show an important feeding of doorway states around 10-11 MeV in both reactions. Comparisons with simulations allow to extract the full capture cross section and the main spin involved in the process. Different models are confronted to the results: completely statistical, semi-statistical with an unique entrance spin and cluster. The resolution of the BGO enables to eliminate a fully statistical scenario but is not enough to disentangle the two remaining scenarios. It is shown that the future PARIS array composed of the recently developed LaBr3 scintillators will have capabilities to distinguish between these two scenarios. (authors)

  2. 40 CFR 721.524 - Alcohols, C6-12, ethoxylated, reaction product with maleic anhydride.

    Science.gov (United States)

    2010-07-01

    ... product with maleic anhydride. 721.524 Section 721.524 Protection of Environment ENVIRONMENTAL PROTECTION... with maleic anhydride. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alcohols, C6-12, ethoxylated, reaction product with...

  3. Kinetics of reactions of oxidation of carbon by carbon dioxide and water steam at high temperatures and low pressures

    International Nuclear Information System (INIS)

    The first objective of this research thesis was to obtain new and reliable experimental results about the reaction kinetics of the oxidation of carbon by carbon dioxide and water steam, and to avoid some disturbing phenomena, for example and more particularly the appearance of electric discharges beyond 1900 K initiated by the filament thermoelectric emission. The author tried to identify the mechanism of the accelerating effect. It appears that previous experiments had been performed only in these disturbed conditions. At the lowest temperatures, the author highlighted the existence of a surface contamination by the desorption products from the apparatus

  4. Solid-state reactions of hydrogen-containing carbon films with metal substrates

    International Nuclear Information System (INIS)

    Hydrogen-containing carbon films were prepared on tungsten, molybdenum and beryllium as model systems to simulate changes in physiochemical properties of carbon depositing on the inner wall of tokamak, in which carbon tiles are used in combination with two or more plasma facing materials. The properties of the co-existing layers and their solid-state reactions at elevated temperatures were studied by means of infrared, Raman, X-ray photoelectron (XPS), X-ray diffraction (XRD) and thermal desorption (TDS) spectroscopies

  5. Method of carbon chain extension using novel aldol reaction

    Energy Technology Data Exchange (ETDEWEB)

    Silks, Louis A; Gordon, John C; Wu, Ruilan; Hangson, Susan Kloek

    2013-08-13

    Method of producing C.sub.8-C.sub.15 hydrocarbons comprising providing a ketone starting material; providing an aldol starting material comprising hydroxymethylfurfural; mixing the ketone starting material and the aldol starting material in a reaction in the presence of a proline-containing catalyst selected from the group consisting of Zn(Pro).sub.2, Yb(Pro).sub.2, and combinations thereof, or a catalyst having one of the structures (I), (II) or (III), and in the presence of a solvent, wherein the solvent comprises water and is substantially free of organic solvents, where (I), (II) and (III) respectively are: ##STR00001## where R.sub.1 is a C.sub.1-C.sub.6 alkyl moiety, X=(OH) and n=2. ##STR00002## In (III), X may be CH.sub.2, sulfur or selenium, M may be Zn, Mg, or a lanthanide, and R.sub.1 and R.sub.2 each independently may be a methyl, ethyl, phenyl moiety.

  6. The process of dimethyl carbonate to diphenyl carbonate: thermodynamics, reaction kinetics and conceptual process design

    NARCIS (Netherlands)

    Haubrock, Jens

    2007-01-01

    Diphenyl carbonate (DPC) is a precursor in the production of Polycarbonate (PC), a widely employed engineering plastic. To overcome the drawbacks of the traditional PC process - e.g. phosgene as a reactant and methylene chloride as solvent- a new process route starting from Dimethyl carbonate (DMC)

  7. Heterogeneous reactions of gaseous methanesulfonic acid with calcium carbonate and kaolinite particles

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Heterogeneous reactions of gaseous methanesulfonic acid (MSA) with calcium carbonate (CaCO3) and kaolinite particles at room temperature were investigated using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and ion chromatography (IC).Methanesulfonate (MS-) was identified as the product in the condensed phase,in accordance with the product of the reaction of gaseous MSA with NaCl and sea salt particles.When the concentration of gaseous MSA was 1.34 × 10-13 molecules cm-3,the uptake coefficient was (1.21 ± 0.06) × 10-8 (1) for the reaction of gaseous MSA with CaCO3 and (4.10 ± 0.65) × 10 10 (1) for the reaction with kaolinite.Both uptake coefficients were significantly smaller than those of the reactions of gaseous MSA with NaCl and sea salt particles.

  8. Carboxylic Group Embedded Carbon Balls as a New Supported Catalyst for Hydrogen Economic Reactions.

    Science.gov (United States)

    Bordoloi, Ankur

    2016-03-01

    Carboxylic group functionalized carbon balls have been successfully synthesized by using a facile synthesis method and well characterized with different characterization techniques such as XPS, MAS NMR, SEM, ICP and N2 physi-sorption analysis. The synthesized material has been effectively utilized as novel support to immobilized ruthenium catalyst for hydrogen economic reactions. PMID:27455763

  9. Mechanisms of oxygen reduction reactions for carbon alloy catalysts via first principles molecular dynamics

    International Nuclear Information System (INIS)

    Carbon alloy catalysts (CACs) are one of promising candidates for platinum-substitute cathode catalysts for polymer electrolyte fuel cells. We have investigated possible mechanisms of oxygen reduction reactions (ORRs) for CACs via first-principles-based molecular dynamics simulations. In this contribution, we review possible ORRs at likely catalytic sites of CACs suggested from our simulations. (author)

  10. Photochemical reactions of Am(V) in bicarbonate-carbonate solutions

    International Nuclear Information System (INIS)

    The effect of ultraviolet (UV) radiation on Am(V) in sodium carbonate and bicarbonate solutions of pH 9.00 - 11.40 was studied by spectrophotometry. An Am(IV) + Am(VI) mixture was formed at pH 9 to 10; however, the conversion of Am(V) did not exceed 60 - 70%. The reaction rate order with respect to Am(V) was about 1. A quantum yield for the reaction on photolysis with light of λ = 337 nm was estimated at 0.003. The reaction rate and the conversion of Am(V) were decreased with increasing pH. The reaction started with the absorption of a UV quantum by a carbonate complex of Am(V). Its first step was presumably the electron transfer either from a water molecule to Am(V) in the coordination sphere of the excited carbonate complex of Am(V) or between two Am(V) ions in an excimer involving an excited and an unexcited carbonate complex of Am(V)

  11. Modeling of the peritectic reaction and macro-segregation in casting of low carbon steel

    Science.gov (United States)

    El-Bealy, M.; Fredriksson, H.

    1996-12-01

    Macro-microscopic models have been developed to describe the macrosegregation behavior associated with the peritectic reaction of low carbon steel. The macrosegregation model has been established on the basis of previously published work and experimental data. A microscopic model of a three-phase reaction L+ δ→ γ has been modeled by using Fredriksson’s approach. Four horizontal and unidirectional solidified experimental groups simulating continuous casting have been performed with a low carbon steel containing 0.13 wt pct carbon. The extent of macrosegregation of carbon was determined by wet chemical analysis of millings. It is confirmed, by comparing calculated results with experimental results, that this model successfully predicts the occurrence of macrosegregation. The results indicate that a peritectic reaction which is associated with a high cooling rate generates high thermal contraction and a high tensile strain rate at the peritectic temperature. Therefore, the macrosegregation, particularly at the ingot surface, is very sensitive to the cooling rate, where extremely high positive segregation was observed in the case of a high cooling rate. However, in the case of slow cooling rate, negative segregation was noted. The mechanism of macrosegregation with peritectic reaction is discussed in detail.

  12. Oxalyl chloride as a practical carbon monoxide source for carbonylation reactions

    DEFF Research Database (Denmark)

    Hansen, Steffen V F; Ulven, Trond

    2015-01-01

    A method for generation of high-quality carbon monoxide by decomposition of oxalyl chloride in an aqueous hydroxide solution is described. The usefulness of the method is demonstrated in the synthesis of heterocycles and for hydroxy-, alkoxy-, amino-, and reductive carbonylation reactions, in sev...

  13. Carbophilic versus thiophilic attack in the reaction of metallated aromates and heteroaromates with carbon disulfide

    NARCIS (Netherlands)

    Verkruijsse, H.D.; Brandsma, L.

    1987-01-01

    Copper(I) halides catalyse the formation of carbodithioates RCSSLi in the reaction of aryl- or heteroaryl-lithium reagents with carbon disulfide. Subsequent addition of methyl iodide gives the dithioesters RCSSCH3 in high yields. Appreciable amounts of the methyl sulfides RSCH3 and tars are obtained

  14. N, S co-doped carbon dots with orange luminescence synthesized through polymerization and carbonization reaction of amino acids

    International Nuclear Information System (INIS)

    Graphical abstract: N, S co-doped CDs with orange luminescence were synthesized through one-pot polymerization and carbonization reactions under hydrothermal conditions, using two different amino acids as raw materials. - Highlights: • N, S co-doped CDs were synthesized by one-pot carbonization reactions, using two different amino acids as raw materials. • The as-obtained N, S co-doped CDs showed unique orange fluorescence under excitation at room temperature. • The products could be applied in the imaging of peritoneal macrophages of mice without any functionalization. - Abstract: For practical application, it is highly desirable to obtain carbon dots (CDs) through environmentally benign synthetic route, using green raw materials. On the other hand, at present, most of CDs reported in the literature showed blue, green and yellow emission. Therefore it is still necessary to develop new strategy to obtain CDs with longer wavelength emission in order to expand their application range. Toward this end, in this study, N, S co-doped CDs were synthesized through one-pot condensation polymerization and carbonization reactions under hydrothermal conditions, using two different amino acids as raw materials. Taking the reaction of L-serine with L-cystine as an example, the as-obtained products were characterized by various techniques such as transmission electron microscopy, elemental analysis, Fourier-transform infrared spectrum, X-ray photoelectron spectra, and so on. Interestingly, N, S co-doped CDs displayed unique orange emission at room temperature. The possible photoluminescence mechanism of N, S co-doped CDs was proposed. Furthermore, the as-synthesized N, S co-doped CDs were directly applied in the imaging of peritoneal macrophages of mice

  15. N, S co-doped carbon dots with orange luminescence synthesized through polymerization and carbonization reaction of amino acids

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Ya-Wen [Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, Zhejiang 325027 (China); Ma, De-Kun, E-mail: dkma@wzu.edu.cn [Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, Zhejiang 325027 (China); Wang, Wei; Chen, Jing-Jing; Zhou, Lin; Zheng, Yi-Zhou [Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027 (China); Yu, Kang, E-mail: yukang62@126.com [Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027 (China); Huang, Shao-Ming, E-mail: smhuang@wzu.edu.cn [Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, Zhejiang 325027 (China)

    2015-07-01

    Graphical abstract: N, S co-doped CDs with orange luminescence were synthesized through one-pot polymerization and carbonization reactions under hydrothermal conditions, using two different amino acids as raw materials. - Highlights: • N, S co-doped CDs were synthesized by one-pot carbonization reactions, using two different amino acids as raw materials. • The as-obtained N, S co-doped CDs showed unique orange fluorescence under excitation at room temperature. • The products could be applied in the imaging of peritoneal macrophages of mice without any functionalization. - Abstract: For practical application, it is highly desirable to obtain carbon dots (CDs) through environmentally benign synthetic route, using green raw materials. On the other hand, at present, most of CDs reported in the literature showed blue, green and yellow emission. Therefore it is still necessary to develop new strategy to obtain CDs with longer wavelength emission in order to expand their application range. Toward this end, in this study, N, S co-doped CDs were synthesized through one-pot condensation polymerization and carbonization reactions under hydrothermal conditions, using two different amino acids as raw materials. Taking the reaction of L-serine with L-cystine as an example, the as-obtained products were characterized by various techniques such as transmission electron microscopy, elemental analysis, Fourier-transform infrared spectrum, X-ray photoelectron spectra, and so on. Interestingly, N, S co-doped CDs displayed unique orange emission at room temperature. The possible photoluminescence mechanism of N, S co-doped CDs was proposed. Furthermore, the as-synthesized N, S co-doped CDs were directly applied in the imaging of peritoneal macrophages of mice.

  16. Light-particle emission in reactions induced with carbon and oxygen ions

    International Nuclear Information System (INIS)

    Preliminary results are presented from three different experiments in which light particles emitted during the course of heavy-ion-induced reactions have been studied. The common primary motivation for undertaking these studies was to determine the nature and extent of nonequilibrium particle emission. The three experiments involved measurements of energies, angular correlations, and multiplicities of neutrons or alpha particles emitted in coincidence with deeply inelastic products or with evaporation residues produced as follows: neutrons from reactions of 16O with 93Nb at 12.9 MeV/u; alphas produced in the same system; and neutrons produced in 12C reactions with 158Gd and in 13C reactions with 157Gd at about 12.4 MeV/u. 3 figures

  17. Elastic scattering and total reaction cross sections for 8Li+12C

    International Nuclear Information System (INIS)

    Full text: The elastic scattering angular distribution for 8Li on 12C has been measured at ELAB= 23.9 MeV with 8Li radioactive nuclear beam produced by the Radioactive Ion Beams in Brazil facility (RIBRAS). This angular distribution was analysed in terms of optical model with Woods-Saxon and double-folding Sao Paulo potentials. The roles of the breakup and inelastic channels were also investigated with cluster folding and deformed potentials, respectively, through coupled channels calculations. The angular distributions for the proton-transfer 12C(8Li,9Be)11B reaction was also measured at the same energy, simultaneously with the elastic scattering. The spectroscopic factor for the 9Be I 8Li+p> bound system was obtained through DWBA (Distorted-Wave Born Approximation) calculations with the code Fresco, and compared with shell model calculations and other experimental values. The spectroscopic factor obtained was used for normalization of the capture reaction cross section 8Li(p, gamma)9Begs. The depth of the scattered potential obtained was 40,1 +- 1,6 MeV. The astrophysical S-factor curves and the reaction rate for the capture reaction 8Li(p,gamma)9Begs were calculated. Total reaction cross sections for the present system were also extracted from the elastic scattering analysis. A systematic of the reduced reaction cross section obtained from the present and published data on 6;7;8Li isotopes on 12C was performed as a function of energy. (author)

  18. Basalt catalyzed carbonate precipitation reactions using carbon dioxide at low temperatures and low pressures

    Science.gov (United States)

    Petrik-Huff, C.; Finkelstein, D. B.; Mabee, S. B.

    2011-12-01

    Increased attention is being paid to basalts as host formations for the geologic sequestration of anthropogenically produced CO2. Here, we present preliminary results of batch experiments conducted on basalts from the Hartford Basin, the Deerfield and the Holyoke Basalt, to better constrain the optimum conditions to maximize carbon sequestration through the precipitation of carbonate. The purpose of this work is to explore options for CO2 sequestration in a locality where there is a lack of large geologic reservoirs appropriate for storage. In these experiments, 10 grams of 400 micron Deerfield and Holyoke basalt was reacted with deionized water for three hours both at and below supercritical conditions. These experiments showed carbonate precipitation of 15% was consistent at low pressures of CO2 (800 psi) both at high (100 Celsius) and low (20 Celsius) temperatures. These ranges of carbonate precipitation were greatest (15%) when CO2 was at low pressures. Experiments conducted at supercritical conditions precipitated a maximum of 4.7% carbonate. This information is valuable when considering alternative sequestration mechanisms that could be operated adjacent to power generation facilities or more industrial pure sources of CO2. The possibility of low pressure/temperature sequestration reactors to be operated in areas where transport to regional or national sequestration facilities may be cost prohibitive is a parallel course of action that should also be considered. Additionally, it is important to consider how a small ex-situ carbon sequestration project can help increase public acceptance of carbon capture and sequestration.

  19. Mineral carbonation: energy costs of pretreatment options and insights gained from flow loop reaction studies

    International Nuclear Information System (INIS)

    Sequestration of carbon as a stable mineral carbonate has been proposed to mitigate environmental concerns that carbon dioxide may with time escape from its sequestered matrix using alternative sequestration technologies. A method has been developed to prepare stable carbonate products by reacting CO2 with magnesium silicate minerals in aqueous bicarbonate/chloride media at high temperature and pressure. Because this approach is inherently expensive due to slow reaction rates and high capital costs, studies were conducted to improve the reaction rates through mineral pretreatment steps and to cut expenses through improved reactor technology. An overview is given for the estimated cost of the process including sensitivity to grinding and heating as pretreatment options for several mineral feedstocks. The energy costs are evaluated for each pretreatment in terms of net carbon avoided. New studies with a high-temperature, high-pressure flow-loop reactor have yielded information on overcoming kinetic barriers experienced with processing in stirred autoclave reactors. Repeated tests with the flow-loop reactor have yielded insights on wear and failure of system components, on challenges to maintain and measure flow, and for better understanding of the reaction mechanism

  20. Mineral sequestration of carbon dioxide in San Carlos olivine: An atomic level reaction study

    Science.gov (United States)

    Nunez, Ryan

    Since the late 19th century, atmospheric carbon dioxide (CO2) levels have been steadily on the rise. Approximately one third of all human emissions come from fossil fuel power plants. As countries become more dependent on electrical energy and bring on line new power plants, these atmospheric CO2 levels will continue to rise, generating strong environmental concern. Potential avenues to address this problem convert the CO2 from the gaseous phase to a liquid, supercritical fluid, or solid state and store it. Oceans, subsurface reservoirs such as depleted oil fields, and terrestrial carbon pools have all been suggested. The essential problem with all of these possible solutions is the issue of permanency. Mineral sequestration of CO2 is a candidate technology for reducing the amount of anthropogenic CO2 that is being released into the atmosphere. Olivine (e.g. forsterite, Mg2SiO4) is a widely available mineral that reacts with CO2 to form magnesite (MgCO3) and silica (SiO2). Magnesite is capable of immobilizing CO2 over geological time periods. Thus the issue of permanency has been addressed. The most promising mineral sequestration process developed to date is aqueous solution mineral carbonation. The solid/aqueous solution reaction interface provides insight to the mechanisms that govern the carbonation reactivity of olivine. Study of these mechanisms at the atomic level is critically important to facilitate engineering new processes that will enhance the reactivity of olivine with CO2 bearing media and to lower process costs. The study of the olivine carbonation reaction herein can be divided into three separate areas of research. The first area is a comprehensive study of olivine under conditions of electron irradiation. Analyzing radiation damage is critical to the verification and reliability of data collected from the samples using electron beam techniques. The next area of research is the analysis of the reaction layer composition and structure using High

  1. Carbon nanohybrids used as catalysts and emulsifiers for reactions in biphasic aqueous/organic systems

    Institute of Scientific and Technical Information of China (English)

    Daniel E. Resasco

    2014-01-01

    This mini-review summarizes some novel aspects of reactions conducted in aqueous/organic emul-sions stabilized by carbon nanohybrids functionalized with catalytic species. Carbon nanohybrids represent a family of solid catalysts that not only can stabilize water-oil emulsions in the same fash-ion as Pickering emulsions, but also catalyze reactions at the liquid/liquid interface. Several exam-ples are discussed in this mini-review. They include (a) aldol condensation-hydrodeoxygenation tandem reactions catalyzed by basic (MgO) and metal (Pd) catalysts, respectively; (b) Fischer-Tropsch synthesis catalyzed by carbon-nanotube-supported Ru;and (c) emulsion polymerization of styrene for the production of conductive polymer composites. Conducting these reactions in emul-sion generates important advantages, such as increased liquid/liquid interfacial area that conse-quently means faster mass transfer rates of molecules between the two phases, effective separation of products from the reaction mixture by differences in the water-oil solubility, and significant changes in product selectivity that can be adjusted by modifying the emulsion characteristics.

  2. Angular Distribution of the 12C(6He, 7Li)11B Reaction

    Institute of Scientific and Technical Information of China (English)

    LI Er-Tao; LI Zhi-Hong; LI Yun-Ju; YAN Sheng-Quan; BAI Xi-Xiang; GUO Bing; SU Jun; WANG You-Bao; WANG Bao-Xiang; LIAN Gang; ZENG Sheng; FANG Xiao; ZHAO Wei-Juan; LIU Wei-Ping

    2009-01-01

    Angular distribution of the 12C(6He, 7Li)11B transfer reaction is measured with a secondary 6He beam of 36.4 Me V for the first time. The experimental angular distribution is well reproduced by the distorted-wave Born approxima-tion (DWBA) calculation. The success of the present experiment shows that it is feasible to measure one-nucleon transfer reaction on a light nucleus target with the secondary beam facility of the HI-13 tandem accelerator at China Institute of Atomic Energy (CIAE), Beifing.

  3. 16O resonances near 4α threshold through 12C(6Li,d) reaction

    International Nuclear Information System (INIS)

    Several narrow alpha resonant 16O states were detected through the 12C(6Li,d) reaction, in the range of 13.5 to 17.5 MeV of excitation energy. The reaction was measured at a bombarding energy of 25.5 MeV employing the São Paulo Pelletron-Enge-Spectrograph facility and the nuclear emulsion technique. Experimental angular distributions associated with natural parity quasi-bound states around the 4α threshold are presented and compared to DWBA predictions. The upper limit for the resonance widths obtained is near the energy resolution (15 keV)

  4. Binary reaction channels in the 12C+19F and 16O+15N nuclear collisions

    International Nuclear Information System (INIS)

    The 19F on 12C and 15N on 16O reactions are studied not only in order to search for resonances but furthermore to perform a comparative study of binary reaction channels in two collisions leading to the same excitation energies of the composite system. The main feature of the experimental procedure is an exclusive detection of the two fragments in the exit channel using the kinematical coincidence method. Angular distributions and excitation functions of the main binary channels are presented and discussed

  5. Near threshold (γ,π0) reactions for He4 and C12

    Science.gov (United States)

    Barnett, M. G.; Igarashi, R.; Pywell, R. E.; Bergstrom, J. C.

    2008-06-01

    The total cross section and angular distributions for the reaction 4He(γ,π0) from a cryogenic liquid helium target have been measured within 25 MeV of threshold using tagged photons and a large acceptance π0 spectrometer at the Saskatchewan Accelerator Laboratory. The reduced isovector amplitude p3(+) has been determined from the total cross-section measurement using a distorted-wave impulse approximation analysis. Refinements from earlier analytical methods, specifically an improved background event rejection scheme and a corrective tagged photon energy calibration analysis, have also yielded an improved estimate on the p3(+) amplitude for the 12C(γ,π0) reaction explored previously.

  6. Near threshold (γ,π0) reactions for 4He and 12C

    International Nuclear Information System (INIS)

    The total cross section and angular distributions for the reaction 4He(γ,π0) from a cryogenic liquid helium target have been measured within 25 MeV of threshold using tagged photons and a large acceptance π0 spectrometer at the Saskatchewan Accelerator Laboratory. The reduced isovector amplitude p3(+) has been determined from the total cross-section measurement using a distorted-wave impulse approximation analysis. Refinements from earlier analytical methods, specifically an improved background event rejection scheme and a corrective tagged photon energy calibration analysis, have also yielded an improved estimate on the p3(+) amplitude for the 12C(γ,π0) reaction explored previously

  7. Reactions of the Carbon Anode in Alternative Battery and Fuel Cell Configurations

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, J F; Krueger, R

    2003-10-01

    A model is formulated by combining carbonate dissociation with pre-existing anode mechanisms involving heterogeneous reaction kinetics. The proposed model accounts for both the observed preponderance of CO{sub 2} evolution and dependence of rate on carbon anode microstructure. Implications of the model for the design of carbon batteries and fuel cells are discussed, and the laboratory cells used in earlier research are described. High coulombic efficiencies for the net reaction C + O{sub 2} = CO{sub 2} require severely limiting the thickness of paste anodes in powder-fed fuel cells while the unreacting surfaces of solid prismatic anodes must be isolated from the CO{sub 2} product atmosphere to prevent Boudouard corrosion, according to C + CO{sub 2} = 2CO.

  8. Oral administration of IL-12 suppresses anaphylactic reactions in a murine model of peanut hypersensitivity.

    Science.gov (United States)

    Lee, S Y; Huang, C K; Zhang, T F; Schofield, B H; Burks, A W; Bannon, G A; Sampson, H A; Li, X M

    2001-11-01

    There is no satisfactory therapeutic intervention for peanut allergy, which accounts for most life-threatening food allergic reactions. Since IL-12 has been found to inhibit allergic airway responses in a mouse model of asthma and to cure Th2 cytokine-mediated murine schistosomiasis, we hypothesized that IL-12 treatment might also inhibit peanut allergic reactions. Consequently, we investigated the effects of oral IL-12 treatment in a murine model of peanut allergy and found that oral administration of liposome encapsulated rIL-12 could both prevent and reverse peanut hypersensitivity and could reduce histamine release, peanut-specific serum IgE and IgG1, and fecal IgA levels. Oral IL-12 treatment also increased IFN-gamma but did not decrease IL-4 or IL-5 levels. We conclude that oral rIL-12 treatment has therapeutic as well as preventive effects on peanut allergy, which are associated with increased IFN-gamma production. PMID:11683581

  9. Carbon fiber/reaction-bonded carbide matrix for composite materials - Manufacture and characterization

    International Nuclear Information System (INIS)

    The processing of self-healing ceramic matrix composites by a short time and low cost process was studied. This process is based on the deposition of fiber dual inter-phases by chemical vapor infiltration and on the densification of the matrix by reactive melt infiltration of silicon. To prevent fibers (ex-PAN carbon fibers) from oxidation in service, a self-healing matrix made of reaction bonded silicon carbide and reaction bonded boron carbide was used. Boron carbide is introduced inside the fiber preform from ceramic suspension whereas silicon carbide is formed by the reaction of liquid silicon with a porous carbon xerogel in the preform. The ceramic matrix composites obtained are near net shape, have a bending stress at failure at room temperature around 300 MPa and have shown their ability to self-healing in oxidizing conditions. (authors)

  10. Determination of 55Mn(n,γ) reaction cross-section at the neutron energies of 1.12 and 2.12 MeV

    International Nuclear Information System (INIS)

    In the present work, we determine the 55Mn(n,γ)56Mn reaction cross-section at the neutron energies of 1.12 and 2.12 MeV by using the off-line γ-ray spectrometric technique. The (n,γ) reaction cross-section 55Mn as a function of neutron energy was also calculated using nuclear reaction modular code TALYS-1.6 and compared with the present experimental data at 1.12 and 2.12 MeV as well as the literature data at other neutron energies

  11. Modeling of Sheath Ion-Molecule Reactions in Plasma Enhanced Chemical Vapor Deposition of Carbon Nanotubes

    Science.gov (United States)

    Hash, David B.; Govindan, T. R.; Meyyappan, M.

    2004-01-01

    In many plasma simulations, ion-molecule reactions are modeled using ion energy independent reaction rate coefficients that are taken from low temperature selected-ion flow tube experiments. Only exothermic or nearly thermoneutral reactions are considered. This is appropriate for plasma applications such as high-density plasma sources in which sheaths are collisionless and ion temperatures 111 the bulk p!asma do not deviate significantly from the gas temperature. However, for applications at high pressure and large sheath voltages, this assumption does not hold as the sheaths are collisional and ions gain significant energy in the sheaths from Joule heating. Ion temperatures and thus reaction rates vary significantly across the discharge, and endothermic reactions become important in the sheaths. One such application is plasma enhanced chemical vapor deposition of carbon nanotubes in which dc discharges are struck at pressures between 1-20 Torr with applied voltages in the range of 500-700 V. The present work investigates The importance of the inclusion of ion energy dependent ion-molecule reaction rates and the role of collision induced dissociation in generating radicals from the feedstock used in carbon nanotube growth.

  12. Coastal climate reflected in carbon-13/carbon-12 ratio of organic carbon in varved sediment from Santa Barbara basin

    OpenAIRE

    Schimmelmann, Arndt; Tegner, Mia J.

    1991-01-01

    A 1844-1987 time-series of carbon stable isotope ratios from dated sedimentary total organic carbon from the center of the Santa Barbara basin is compared with historical climate and oceanographic records. Carbon derived from carbon-13-depleted phytoplankton and carbon-13-enriched kelp appear responsible for a large part of the isotopic variance in sedimentary total organic carbon. El Niño/Southern Oscillation events are recorded by the isotopic response of marine organic carbon in sediments.

  13. On the decay of compound nuclei following alpha-particle and 12C induced reactions

    International Nuclear Information System (INIS)

    Multiple coincidence rates have been measured using a detector system consisting of a Ge(Li) spectrometer and eight NaI(Tl) or eight liquid scintillators. Reactions induced by α-particles with energies of 51-55 MeV and 118 MeV 12C ions are studied. The data are analysed to give the first and second central moments of the distribution of the number of γ-rays feeding individual levels in the final nuclei. When these numbers are compared to spin distributions calculated with the statistical model code GROGI the relative importance of dipole and quadrupole deexcitation modes can be ascertained. In particular, in the 122Te(α,4n)122Xe reaction the γ-decay prior to the entry into the ground band is well described as a statistical process proceeding to 50% by dipole and 50% by quadrupole radiation. In the 166Er(α,4n)166Yb and 192Os(α,4n)192Pt reactions the relative amount of quadrupole radiation is larger and it seems that the dipole and quadrupole decay takes place via separate cascades. In the 164Dy(12C,7-8n) reactions the average multiplicity is independent of spin, suggesting that the nucleus forgets the spin of the entry state before the process enters into the ground band. In the 176Yb(12C,8n)180Os reaction, finally, the nucleus difinitely retains memory of the entry state during the decay. In this last case the multiplicity measurement is combined with a γ-ray singles measurement to give an average excitation energy prior to the α-decay and the average moment of inertia characterising the decay of the high-spin states. (orig.)

  14. Structure of states in 12Be via the 11Be(d,p) reaction

    International Nuclear Information System (INIS)

    The s-wave neutron fraction of the 0+ levels in 12Be has been investigated for the first time through the 11Be(d,p) transfer reaction using a 5A MeV11Be beam at TRIUMF, Canada. The reaction populated all the known bound states of 12Be. The ground state s-wave spectroscopic factor was determined to be 0.28-0.07+0.03 while that for the long-lived 02+ excited state was 0.73-0.40+0.27. This observation, together with the smaller effective separation energy indicates enhanced probability for an extended density tail beyond the 10Be core for the 02+ excited state compared to the ground state.

  15. Reactions of B/sub 12r/ with aliphatic free radicals: a pulse-radiolysis study

    International Nuclear Information System (INIS)

    The spectra of the intermediates formed in the reactions of B/sub 12r/ with the free radicals Br2-., CO2-., .CH2C(CH3)2OH, .C(CH3)2OH, . CH2CHO, and .CH(OH)CH2OH are reported. The results indicate that Br2-. oxidizes B/sub 12r/ to B/sub 12a/, via an inner-sphere mechanism, and CO2- . reduces B/sub 12r/ to B/sub 12s/. All the aliphatic free radicals studied, .R, react with B/sub 12r/, yielding as the first product a pseudocoenzyme denoted Co/sup III/-R. Co/sup III/-CH2C(CH3)2OH is stable for over a second in the pH range 3 to 10 as is Co/sup III/-CH2CHO. The latter compound hydrolyzes in acid solutions to yield B/sub 12a/ and CH3CHO. Co/sup III/-C(CH3)2OH and Co/sup III/-CH(OH)CH2OH decompose heterolytically to yield mainly B/sub 12s/; a side reaction that probably yields Co/sup III/-H via a β-hydride shift is also observed. The kinetics of decomposition of Co/sup III/-CH(OH)CH2OH in neutral solutions are reported. No water elimination from the latter intermediate occurs. The reasons for the latter observation are discussed. 6 figures

  16. Light particle production in 12C induced reactions at Cern SC Energies

    International Nuclear Information System (INIS)

    The results from the first generation of experiments at the CERN synchrocyclotron with 30A MeV - 85A MeV 12C beams are beginning to manifest the pattern of heavy ion reactions in the region between the binary low energy side and the 'chaotic' high energy side. Results from experiments on the production of p, d, and pi at these energies are presented. (Author)

  17. Measurement of the reaction 12C(νμ,μ-)X near threshold

    International Nuclear Information System (INIS)

    The reaction 12C(νμ,μ-)X has been measured near threshold using a π+ decay-in-flight νμ beam from the Los Alamos Meson Physics Facility and a massive liquid scintillator neutrino detector (LSND). In the energy region 123.7ν-40 cm2} is more than a factor of 2 lower than that predicted by the Fermi-gas model and by a recent random phase approximation calculation

  18. Shrinkage Cracking: A mechanism for self-sustaining carbon mineralization reactions in olivine rocks

    Science.gov (United States)

    Zhu, W.; Fusseis, F.; Lisabeth, H. P.; Xing, T.; Xiao, X.; De Andrade, V. J. D.; Karato, S. I.

    2015-12-01

    The hydration and carbonation of olivine results in an up to ~44% increase in solid molar volume, which may choke off of fluid supply and passivate reactive surfaces, thus preventing further carbonation reactions. The carbonation of olivine has ben studied extensively in the laboratory. To date, observations from these experimental studies indicate that carbonation reaction rates generally decrease with time and the extent of carbonation is limited in olivine rocks. Field studies, however, show that 100% hydration and carbonation occur naturally in ultramafic rocks. The disagreement between the laboratory results under controlled conditions and the field observations underlines the lack of understanding of the mechanisms responsible for the self-sustaining carbonation interaction in nature. We developed a state-of-the-art pressurized hydrothermal cell that is transparent to X-rays to characterize the real-time evolution of pore geometry during fluid-rock interaction using in-situ synchrotron-based X-ray microtomography. Through a time series of high-resolution 3-dimensional images, we document the microstructural evolution of a porous olivine aggregate reacting with a sodium bicarbonate solution at elevated pressure and temperature conditions. We observed porosity increases, near constant rate of crystal growth, and pervasive reaction-induced fractures. Based on the nanometer scale tomography data, we propose that shrinkage cracking is the mechanism responsible for producing new reactive surface and keep the carbonation reaction self-sustaining in our experiment. Shrinkage cracks are commonly observed in drying mud ponds, cooling lava flows and ice wedge fields. Stretching of a contracting surface bonded to a substrate of nearly constant dimensions leads to a stress buildup in the surface layer. When the stress exceeds the tensile strength, polygonal cracks develop in the surface layer. In our experiments, the stretching mismatch between the surface and interior of

  19. Effect of Fiber Surface Structure on Interfacial Reaction between Carbon Fiber and Aluminium

    Science.gov (United States)

    Chang, Kuang-Chih; Matsugi, Kazuhiro; Sasaki, Gen; Yanagisawa, Osamu

    Surface structure of carbon fiber and interfacial reaction between fiber and aluminium in carbon fiber reinforced aluminium composites were investigated by high-resolution transmission electron microscopy. Low and high graphitized carbon fiber reinforced pure aluminium composites were prepared by ultrasonic liquid infiltration. Vapor grown carbon nano fiber (VGCF) reinforced pure aluminium composites were prepared by hot-pressing. Heteroatoms, which existed abundantly in the surface of low graphitized carbon fiber, caused carbon lamellar structure in the fiber surface pronounced curvature. VGCF surface structure appeared regular and linear graphitic lamellae. Low graphitized fiber reinforced pure aluminium composites revealed serious interfacial reaction produced crystalline aluminium carbides (Al4C3), compared to composites reinforced by high graphitized fiber. On the other hand, Al4C3 crystalline reactants were not found at the interface of VGCF reinforced pure aluminium composites, but formation of interlayer was observed. In order to promote Al4C3 growth, carbon fiber reinforced composites were heat-treated at 573K and 873K for 1.8ks. Al4C3 interfacial phases in low and high graphitized fiber reinforced aluminium composites grew with the rise in the temperature. The heat-treatment resulted in the formation of non-crystalline Al4C3 interlayer by energy dispersive X-ray spectroscopy analysis of electron microscopy. At high temperature, Al4C3 was not grew and increased merely at the interface between carbon fiber and pure aluminium matrix, and moreover, the formation of new Al4C3 crystal occurred in this interlayer.

  20. Drought indicated in carbon-13/carbon-12 ratios of Southwestern tree rings

    International Nuclear Information System (INIS)

    Stomatal closure during periods of moisture deficiency should theoretically lead to elevated 13C/12C ratios as reduction of available CO2 leads to diminished photosynthetic discrimination against 13C in favor of 12C. Stable-carbon isotope ratio chronologies developed from 5-yr tree-ring groups at 17 sites in six southwestern states were tested for a drought relationship by first fitting a spline curve to each chronology to remove the long-term trend and calculating indices as the ratio of actual to spline curve value. The time series of “Del Indices” so developed are significantly correlated with 5-yr mean Palmer Hydrological Drought Indices (post-1930 period) and reconstructed July Palmer Drought Severity Indices from respective areas. Overall, in the period since 1790, the driest pentads were 1900–04 and 1960–64, whereas the wettest were 1980–84 and 1915–19. Maps of drought represented for two pentads seem to be reasonable representations, although spatial correlations of Del Indices with PHDI were generally not significant. These Del Index drought reconstructions may provide a useful measure of past physiological response to drought (stomatal closure), although the present cost of analysis would prevent this from being a routine method. (author)

  1. Concurrent Formation of Carbon-Carbon Bonds and Functionalized Graphene by Oxidative Carbon-Hydrogen Coupling Reaction.

    Science.gov (United States)

    Morioku, Kumika; Morimoto, Naoki; Takeuchi, Yasuo; Nishina, Yuta

    2016-01-01

    Oxidative C-H coupling reactions were conducted using graphene oxide (GO) as an oxidant. GO showed high selectivity compared with commonly used oxidants such as (diacetoxyiodo) benzene and 2,3-dichloro-5,6-dicyano-p-benzoquinone. A mechanistic study revealed that radical species contributed to the reaction. After the oxidative coupling reaction, GO was reduced to form a material that shows electron conductivity and high specific capacitance. Therefore, this system could concurrently achieve two important reactions: C-C bond formation via C-H transformation and production of functionalized graphene. PMID:27181191

  2. Changes in a coke structure due to reaction with carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Pusz, S.; Majewska, J.; Pilawa, B. [Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, PL-41819 Zabrze (Poland); Krzesinska, M. [Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, PL-41819 Zabrze (Poland); Silesian Technical University, Department of Electron Technology, Institute of Physics, Krzywoustego 2, PL-44100 Gliwice (Poland); Smedowski, L. [Silesian Technical University, Department of Electron Technology, Institute of Physics, Krzywoustego 2, PL-44100 Gliwice (Poland); Kwiecinska, B. [AGH-University of Science and Technology, Aleja Mickiewicza 30, PL-30059 Krakow (Poland)

    2010-04-01

    Technological properties of a coke directly depend on a coke structure, i.e., on carbon matrix (a solid phase in a porous medium) and on pore system. Coke structure is deeply transformed during blast furnace operation and one of the most important factors responsible for that is the CO{sub 2} gasification. The objective of this work was to investigate changes of the physical structure of a coke upon the reaction with carbon dioxide to evaluate the effects of structural transformations on technological properties of a coke. Selected physical parameters of cokes produced in a laboratory scale were carried out prior to and after the reaction with CO{sub 2}. The following physical methods were used for the study: helium gas densitometry, physical adsorption of N{sub 2}, optical microscopy, transmission electron microscopy (TEM), ultrasonic measurements and electron paramagnetic resonance spectroscopy (EPR). The results showed that the reaction with CO{sub 2} distinctly affects the physical structure of coke. Coke solid matrix becomes better ordered, with greater structural units, while development of pore structure consists in the enlargement and coalescence of pores and the increase of specific surface area. Great increase of coke porosity after the reaction with CO{sub 2} seems to be more affecting the final strength and reactivity of coke than the transformation of carbon matrix. (author)

  3. Molecular-level Simulations of Chemical Reaction Equilibrium for Nitric Oxide Dimerization Reaction in Disordered Nanoporous Carbons

    Czech Academy of Sciences Publication Activity Database

    Lísal, Martin; Cosoli, P.; Smith, W. R.; Jain, S.K.; Gubbins, K.E.

    2008-01-01

    Roč. 272, 1-2 (2008), s. 18-31. ISSN 0378-3812 R&D Projects: GA ČR GA203/08/0094; GA AV ČR 1ET400720409; GA AV ČR 1ET400720507; GA AV ČR KAN400720701; GA AV ČR IAA400720710 Institutional research plan: CEZ:AV0Z40720504 Keywords : nanoporous carbon * adsorption model * remc Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.699, year: 2008

  4. Enhancing the reactivity of 1,2-diphospholes in cycloaddition reactions.

    Science.gov (United States)

    Zagidullin, Almaz; Miluykov, Vasili; Oshchepkova, Elena; Tufatullin, Artem; Kataeva, Olga; Sinyashin, Oleg

    2015-01-01

    Two different approaches have been employed to enhance the reactivity of 1-alkyl-1,2-diphospholes - the introduction of electron-withdrawing groups either at the phosphorus atoms or in the para-position of the arene ring. The alkylation of sodium 1,2-diphospha-3,4,5-triphenylcyclopentadienide with alkyl halides Hal-CH2-R (R = CN, COOEt, OMe, CH2OEt) results in corresponding 1-alkyl-3,4,5-triphenyl-1,2-diphospholes (alkyl = CH2CN (1a), CH2COOEt (1b), CH2OMe (1c), and (CH2)2OEt (1d)), which spontaneously undergo the intermolecular [4 + 2] cycloaddition reactions at room temperature to form the mixture of the cycloadducts, 2a-c, respectively. However the alkylation of sodium 1,2-diphospha-3,4,5-tri(p-fluorophenyl)cyclopentadienide with ethyl iodide leads to stable 1-ethyl-3,4,5-tris(p-fluorophenyl)-1,2-diphosphole (1e), which forms the [4 + 2] cycloadduct 2,3,4,4a,5,6-hexa(p-fluorophenyl)-1-ethyl-1,7,7a-triphospha-4,7-(ethylphosphinidene)indene (2e) only upon heating up to 60 °C. With further heating to 120 °C with N-phenylmaleimide, the cycloadducts 2a-c and 2e undergo the retro-Diels-Alder reaction and form only one product of the [4 + 2] cycloaddition reaction 3a-с, 3e with good yields up to 65%. PMID:25815066

  5. Solid-state reaction between tungsten and hydrogen-containing carbon film at elevated temperature

    International Nuclear Information System (INIS)

    The solid-state reaction between hydrogen-containing carbon and tungsten was studied by means of infrared, Raman, X-ray photoelectron (XPS) and thermal desorption (TDS) spectroscopies. Infrared and Raman spectroscopies revealed that as-prepared hydrogen-containing films were composed of carbon atoms with sp2 and sp3 hybridized orbitals, where hydrogen was bound to carbon as -CH3 and >CH2. Vacuum heating of the carbon films deposited on tungsten caused thermal desorption peaks of hydrogen at about 723 and 1173 K in TDS. The former was accompanied by other desorption of CO, CO2 and hydrocarbons, whereas the latter was evolved with only a minor amount of CO. It was observed by XPS that the W4f peak began to appear at about 773 K, with an increasing surface composition corresponding to tungsten carbide at 1273 K. These observations indicate that a solid-state reaction between the carbon film and tungsten took place extensively above 973 K to yield an intermetallic compound of W2C at 1273 K

  6. Fabrication and characterization of reaction bonded silicon carbide/carbon nanotube composites

    International Nuclear Information System (INIS)

    Carbon nanotubes have generated considerable excitement in the scientific and engineering communities because of their exceptional mechanical and physical properties observed at the nanoscale. Carbon nanotubes possess exceptionally high stiffness and strength combined with high electrical and thermal conductivities. These novel material properties have stimulated considerable research in the development of nanotube-reinforced composites (Thostenson et al 2001 Compos. Sci. Technol. 61 1899, Thostenson et al 2005 Compos. Sci. Technol. 65 491). In this research, novel reaction bonded silicon carbide nanocomposites were fabricated using melt infiltration of silicon. A series of multi-walled carbon nanotube-reinforced ceramic matrix composites (NT-CMCs) were fabricated and the structure and properties were characterized. Here we show that carbon nanotubes are present in the as-fabricated NT-CMCs after reaction bonding at temperatures above 1400 deg. C. Characterization results reveal that a very small volume content of carbon nanotubes, as low as 0.3 volume %, results in a 75% reduction in electrical resistivity of the ceramic composites. A 96% decrease in electrical resistivity was observed for the ceramics with the highest nanotube volume fraction of 2.1%

  7. Role of Carbon-Addition and Hydrogen-Migration Reactions in Soot Surface Growth.

    Science.gov (United States)

    Zhang, Hong-Bo; Hou, Dingyu; Law, Chung K; You, Xiaoqing

    2016-02-11

    Using density functional theory and master equation modeling, we have studied the kinetics of small unsaturated aliphatic molecules reacting with polycyclic aromatic hydrocarbon (PAH) molecules having a diradical character. We have found that these reactions follow the mechanism of carbon addition and hydrogen migration (CAHM) on both spin-triplet and open-shell singlet potential energy surfaces at a rate that is about ten times those of the hydrogen-abstraction-carbon-addition (HACA) reactions at 1500 K in the fuel-rich postflame region. The results also show that the most active reaction sites are in the center of the zigzag edges of the PAHs. Furthermore, the reaction products are more likely to form straight rather than branched aliphatic side chains in the case of reacting with diacetylene. The computed rate constants are also found to be independent of pressure at conditions of interest in soot formation, and the activation barriers of the CAHM reactions are linearly correlated with the diradical characters. PMID:26799641

  8. Synthesis of propylene carbonate from urea and propylene glycol over zinc oxide: A homogeneous reaction

    OpenAIRE

    Dengfeng Wang; Xuelan Zhang; Tingting Cheng; Jing Wu; Qijun Xue

    2014-01-01

    In this work, several metal oxides and zinc salts were used to catalyze propylene carbonate (PC) synthesis from urea and propylene glycol (PG). According to the results of catalytic test and characterization, the catalytic pattern of ZnO was different from that of other metal oxides such as CaO, MgO and La2O3, but similar to that of zinc salts. In fact, the leaching of Zn species took place during reaction for ZnO. And ZnO was found to be the precursor of homogenous catalyst for reaction of u...

  9. tert-Butanesulfinamides as Nitrogen Nucleophiles in Carbon-Nitrogen Bond Forming Reactions.

    Science.gov (United States)

    Ramirez Hernandez, Johana; Chemla, Fabrice; Ferreira, Franck; Jackowski, Olivier; Oble, Julie; Perez-Luna, Alejandro; Poli, Giovanni

    2016-01-01

    The use of tert-butanesulfinamides as nitrogen nucleophiles in carbon-nitrogen bond forming reactions is reviewed. This field has grown in the shadow of the general interest in N-tert-butanesulfinyl imines for asymmetric synthesis and occupies now an important place in its own right in the chemistry of the chiral amine reagent tert-butanesulfinamide. This article provides an overview of the area and emphasizes recent contributions wherein the tert-butanesulfinamides act as chiral auxiliaries or perform as nitrogen donors in metal-catalyzed amination reactions. PMID:26931222

  10. Calibration of the KARMEN detector and the analyses of inclusive neutrino reactions with 12C

    International Nuclear Information System (INIS)

    The KARMEN neutrino experiment is taking data at the spallation neutron source ISIS at the Rutherford Appleton Laboratory in England. Its major aims are the search for neutrino oscillations and the investigation of neutrino-induced excitation of nuclei. ISIS provides three different kinds of neutrinos from the π+ decay (νμ) and from the subsequent μ+ decay ( anti νμ,νe). About 99.96% of these charged particles are stopped within the target material before they are decaying. Therefore the neutrinos have well defined energies, determined by the kinematics of the decay at rest. The spectrum includes energies between 0 and 52.8 MeV. The KARMEN detector detects neutrino reactions with 65 m3 of a liquid organic scintillator. In addition the 12C nuclei of the scintillator are used as reaction partner for the observed neutrino nuclei excitation. This thesis includes two parts. The first part describes the calibration of the detector data. Between 1992 and 1994 the concept of the calibration has been completely reworked and newly conceived in large parts. It includes all data, which are mainly composed of energy, position and time signals. The second part investigates neutrino reactions with 12C using a single prong analysis. The evlauation was made with neutrinos from muon decay. It includes the neutral current excitation of the 12C(15.11 MeV) level by anti νμandνe as well as the inclusive charged current excitation to 12N by νe. The cross section of the neutral current excitation has been determined. (orig.)

  11. Reactions of the inner surface of carbon nanotubes and nanoprotrusion processes imaged at the atomic scale

    Science.gov (United States)

    Chamberlain, Thomas W.; Meyer, Jannik C.; Biskupek, Johannes; Leschner, Jens; Santana, Adriano; Besley, Nicholas A.; Bichoutskaia, Elena; Kaiser, Ute; Khlobystov, Andrei N.

    2011-09-01

    Although the outer surface of single-walled carbon nanotubes (atomically thin cylinders of carbon) can be involved in a wide range of chemical reactions, it is generally thought that the interior surface of nanotubes is unreactive. In this study, we show that in the presence of catalytically active atoms of rhenium inserted into nanotubes, the nanotube sidewall can be engaged in chemical reactions from the inside. Aberration-corrected high-resolution transmission electron microscopy operated at 80 keV allows visualization of the formation of nanometre-sized hollow protrusions on the nanotube sidewall at the atomic level in real time at ambient temperature. Our direct observations and theoretical modelling demonstrate that the nanoprotrusions are formed in three stages: (i) metal-assisted deformation and rupture of the nanotube sidewall, (ii) the fast formation of a metastable asymmetric nanoprotrusion with an open edge and (iii) a slow symmetrization process that leads to a stable closed nanoprotrusion.

  12. Velocity Map Imaging Study of Ion-Radical Chemistry: Charge Transfer and Carbon-Carbon Bond Formation in the Reactions of Allyl Radicals with C(.).

    Science.gov (United States)

    Pei, Linsen; Farrar, James M

    2016-08-11

    We present an experimental and computational study of the dynamics of collisions of ground state carbon cations with allyl radicals, C3H5, at a collision energy of 2.2 eV. Charge transfer to produce the allyl cation, C3H5(+), is exoergic by 3.08 eV and proceeds via energy resonance such that the electron transfer occurs without a significant change in nuclear velocities. The products have sufficient energy to undergo the dissociation process C3H5(+) → C3H4(+) + H. Approximately 80% of the reaction products are ascribed to charge transfer, with ∼40% of those products decaying via loss of a hydrogen atom. We also observe products arising from the formation of new carbon-carbon bonds. The experimental velocity space flux distributions for the four-carbon products are symmetric about the centroid of the reactants, providing direct evidence that the products are mediated by formation of a C4H5(+) complex living at least a few rotational periods. The primary four-carbon reaction products are formed by elimination of molecular hydrogen from the C4H5(+) complex. More than 75% of the nascent C4H3(+) products decay by C-H bond cleavage to yield a C4H2(+) species. Quantum chemical calculations at the MP2/6-311+g(d,p) level of theory support the formation of a nonplanar cyclic C4H5(+) adduct that is produced when the p-orbital containing the unpaired electron on C(+) overlaps with the unpaired spin density on the terminal carbon atoms in allyl. Product formation then occurs by 1,2-elimination of molecular hydrogen from the cyclic intermediate to form a planar cyclic C4H3(+) product. The large rearrangement in geometry as the C4H3(+) products are formed is consistent with high vibrational excitation in that product and supports the observation that the majority of those products decay to form the C4H2(+) species. PMID:27434380

  13. Sustainable Ways of Combining Reactions and Separations Using Ionic Liquids and Carbon Dioxide

    OpenAIRE

    Kazemi, S.

    2013-01-01

    Traditional chemical processes show shortcomings caused by using volatile organic compounds as solvents during reactions and separations. Therefore, it is necessary to address this issue by moving toward more environmentally friendly processes. This is possible by using less toxic and hazardous solvents, such as ionic liquids and supercritical carbon dioxide (scCO2). Ionic liquids have attracted a lot of attention as potential “green” solvents to replace conventional organic solvents due to t...

  14. Reaction mechanisms in the reduction of Winterveld chrome spinel with graphite and carbon

    International Nuclear Information System (INIS)

    The reduction of mixtures of various sizes of gangue-free Winterveld chrome spinel and graphite under an argon atmosphere at 1300 degrees Celsius was studied by use of a recording thermobalance. The partially reduced material was examined by scanning electron microscopy, and the observations were analysed in terms of reaction mechanism. A four-stage sequence was deduced, as follows. In the first stage, the ferric iron is reduced to ferrous iron with no metallization. This stage is inherently variable and is controlled by the random packing of particles of reducing agent round the chromite. The second stage starts with a burst of metal nucleation, which is also inherently variable. This is followed by the reaction of carbon monoxide with the relatively highly reducible oxide at the perimeters of the metal nuclei, and is controlled by the regeneration of carbon monoxide by the Boudouard reaction. The second stage merges into the third, with no change in the form of the product until the removal of iron decreases the reducibility of the remaining oxide to such an extent that the activity of the carbon monoxide is not sufficient for reduction to proceed. Reduction is then accomplished by the carbon dissolved in the reduced metallic product, the rate of reduction being limited by the rate of carburization of the metal. The fourth stage is reached at a reduction of about 50 per cent. In that stage the rate is controlled by the diffusion of chromium ions in the oxide, and the reduced product becomes saturated with carbon as the mixed (Fe,Cr)7C3 carbide

  15. Electrochemical characteristics of vanadium redox reactions on porous carbon electrodes for microfluidic fuel cell applications

    International Nuclear Information System (INIS)

    Microfluidic vanadium redox fuel cells are membraneless and catalyst-free fuel cells comprising a microfluidic channel network with two porous carbon electrodes. The anolyte and catholyte for fuel cell operation are V(II) and V(V) in sulfuric acid based aqueous solution. In the present work, the electrochemical characteristics of the vanadium redox reactions are investigated on commonly used porous carbon paper electrodes and compared to a standard solid graphite electrode as baseline. Half-cell electrochemical impedance spectroscopy is applied to measure the overall ohmic resistance and resistivity of the electrodes. Kinetic parameters for both V(II) and V(V) discharging reactions are extracted from Tafel plots and compared for the different electrodes. Cyclic voltammetry techniques reveal that the redox reactions are irreversible and that the magnitudes of peak current density vary significantly for each electrode. The obtained kinetic parameters for the carbon paper are implemented into a numerical simulation and the results show a good agreement with measured polarization curves from operation of a microfluidic vanadium redox fuel cell employing the same material as flow-through porous electrodes. Recommendations for microfluidic fuel cell design and operation are provided based on the measured trends.

  16. Reservoir-Condition Pore-Scale Imaging of Reaction in Carbonates using Synchrotron Fast Tomography

    Science.gov (United States)

    Menke, H. P.; Andrew, M. G.; Bijeljic, B.; Blunt, M. J.

    2015-12-01

    Carbon capture and storage in carbonate reservoirs is essential for mitigating climate change. Supercritical CO2 mixed with host brine is acidic and can dissolve the surrounding pore structure and change flow dynamics. However, the type, speed, and magnitude of the dissolution are dependent on both the reactive transport properties of the pore-fluid and the intrinsic properties of the rock. Understanding how changes in the pore structure, chemistry, and flow properties affect dissolution is vital for successful predictive modelling both on the pore-scale and for up-scaled reservoir simulations. Reaction in carbonates has been studied at the pore-scale but has never been imaged dynamically in situ. We present an experimental method whereby both lab-based benchtop instruments and 'Pink Beam' synchrotron radiation are used in X-ray microtomography to investigate pore structure changes during supercritical CO2 injection at reservoir conditions. Three types of pure limestone rock with broadly varying rock topology were imaged under the same reservoir conditions. Flow-rate and brine acidity was varied in successive experiments by half an order of magnitude to gain insight into the impact of flow, transport, and physical heterogeneity. The images were binarized and the magnitude of dissolution was identified on a voxel-by-voxel basis to extract pore-by-pore dissolution data. The impact of dissolution on flow characteristics was studied by computing the evolution of the pore-scale velocity fields with a flow solver. We found that increasing rock heterogeneity increased channelized flow [Figure 1] through preferential pathways and that higher flow rate increased total dissolution. Additionally, decreasing reaction rate lowered overall reaction rate and made axial flow less uniform. Experimentally measured reaction rates in real rocks are at least an order of magnitude lower when compared to batch experiments. We provide evidence that this can be due to transport limitations

  17. Nitrogen-Doped Carbon Nanotube and Graphene Materials for Oxygen Reduction Reactions

    Directory of Open Access Journals (Sweden)

    Qiliang Wei

    2015-09-01

    Full Text Available Nitrogen-doped carbon materials, including nitrogen-doped carbon nanotubes (NCNTs and nitrogen-doped graphene (NG, have attracted increasing attention for oxygen reduction reaction (ORR in metal-air batteries and fuel cell applications, due to their optimal properties including excellent electronic conductivity, 4e− transfer and superb mechanical properties. Here, the recent progress of NCNTs- and NG-based catalysts for ORR is reviewed. Firstly, the general preparation routes of these two N-doped carbon-allotropes are introduced briefly, and then a special emphasis is placed on the developments of both NCNTs and NG as promising metal-free catalysts and/or catalyst support materials for ORR. All these efficient ORR electrocatalysts feature a low cost, high durability and excellent performance, and are thus the key factors in accelerating the widespread commercialization of metal-air battery and fuel cell technologies.

  18. Isotopic resolution of fission fragments from 238U + 12C transfer and fusion reactions

    International Nuclear Information System (INIS)

    Recent results from an experiment at GANIL, performed to investigate the main properties of fission-fragment yields and energy distributions in different fissioning nuclei as a function of the excitation energy, in a neutron-rich region of actinides, are presented. Transfer reactions in inverse kinematics between a 238U beam and a 12C target produced different actinides, within a range of excitation energy below 30 MeV. These fissioning nuclei are identified by detecting the target-like recoil, and their kinetic and excitation energy are determined from the reconstruction of the transfer reaction. The large-acceptance spectrometer VAMOS was used to identify the mass, atomic number and charge state of the fission fragments in flight. As a result, the characteristics of the fission-fragment isotopic distributions of a variety of neutron-rich actinides are observed for the first time over the complete range of fission fragments. (authors)

  19. Incomplete fusion reactions: a comparison of 12,13C + 159Tb results

    International Nuclear Information System (INIS)

    In case of ICF reactions, besides the formation of a fusion-like nucleus, forward peaked fast α-particles have been observed. However, in recent years the unexpected influence of incomplete fusion over total fusion has been observed at low projectile energies. As such, a program has been undertaken to carry out some conclusive measurements using 13C, 14N and 18O beams on different targets, which may provide a rich data set to understand the underlying dynamics. The present work is the first step in this direction, where, the excitations functions of 12C + 159Tb and 13C + 159Tb (present work) systems at energies ≅ 4-7 MeV/A have been compared to study convincingly the effect of projectile on the reaction dynamics

  20. Investigating 13C +12C reaction by the activation method. Sensitivity tests

    Science.gov (United States)

    Chesneanu, Daniela; Trache, L.; Margineanu, R.; Pantelica, A.; Ghita, D.; Straticiuc, M.; Burducea, I.; Blebea-Apostu, A. M.; Gomoiu, C. M.; Tang, X.

    2015-02-01

    We have performed experiments to check the limits of sensitivity of the activation method using the new 3 MV Tandetron accelerator and the low and ultra-low background laboratories of the "Horia Hulubei" National Institute of Physics and Nuclear Engineering (IFIN-HH). We have used the 12C +13C reaction at beam energies Elab= 6, 7 and 8 MeV. The knowledge of this fusion cross section at deep sub-barrier energies is of interest for astrophysical applications, as it provides an upper limit for the fusion cross section of 12C +12C over a wide energy range. A 13C beam with intensities 0.5-2 particleμA was provided by the accelerator and used to bombard graphite targets, resulting in activation with 24Na from the 12C (13C ,p) reaction. The 1369 and 2754 keV gamma-rays from 24Na de-activation were clearly observed in the spectra obtained in two different laboratories used for measurements at low and ultralow background: one at the surface and one located underground in the Unirea salt mine from Slanic Prahova, Romania. In the underground laboratory, for Elab = 6 MeV we have measured an activity of 0.085 ± 0.011 Bq, corresponding to cross sections of 1-3 nb. This demonstrates that it is possible to measure 12C targets irradiated at lower energies for at least 10 times lower cross sections than before β-γ coincidences will lead us another factor of 10 lower, proving that this installations can be successfully used for nuclear astrophysics measurements.

  1. The neighboring effect of isosorbide and its epimers in their reactions with dimethyl carbonate

    Directory of Open Access Journals (Sweden)

    Fabio Aricò

    2014-10-01

    Full Text Available The reactions of isosorbide and its epimers, isomannide and isoidide, with dimethyl carbonate have been herein investigated as easy access to bio-based products by a free-halogen chemistry approach. Isosorbide and its epimers show a different reactivity in bimolecular nucleophilic substitution with dimethyl carbonate (DMC. Carboxymethylation reaction was carried out in the presence of DMC and a weak base resulting in the high-yielding synthesis of dicarboxymethyl derivatives. Isomannide was the most reactive anydro sugar due to the less sterically hindered exo position of the OH groups. On the other hand, methylation of isosorbide and its epimers, conducted in the presence of a strong base and DMC, showed the higher reactivity of the endo hydroxyl group, isoidide being the most reactive epimer. This result has been ascribed to the neighboring effect due to the combination of the oxygen in β-position and the intramolecular hydrogen bond within the anhydro sugar structure. Methylation reactions were also conducted in autoclave at high temperature with the amphoteric catalyst hydrotalcite using DMC as reagent and solvent. In this case, the reactivity of the epimers resulted quite differently with isosorbide being the most reactive reagent possibly as a result of the structure of hydrotalcite comprising of both acidic and basic sites. The neighboring effect was observed with good evidence in these methylation reactions.

  2. Synthesis of propylene carbonate from urea and propylene glycol over zinc oxide: A homogeneous reaction

    Directory of Open Access Journals (Sweden)

    Dengfeng Wang

    2014-11-01

    Full Text Available In this work, several metal oxides and zinc salts were used to catalyze propylene carbonate (PC synthesis from urea and propylene glycol (PG. According to the results of catalytic test and characterization, the catalytic pattern of ZnO was different from that of other metal oxides such as CaO, MgO and La2O3, but similar to that of zinc salts. In fact, the leaching of Zn species took place during reaction for ZnO. And ZnO was found to be the precursor of homogenous catalyst for reaction of urea and PG. Thus, the relationship between the amount of dissolved zinc species and the catalytic performance of employed ZnO was revealed. In addition, a possible reaction mechanism over ZnO was discussed based on the catalytic runs and the characterization of XRD, FTIR, and element analysis.

  3. Effect of carbon on the Ni catalyzed methane cracking reaction: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jingde; Croiset, Eric; Ricardez–Sandoval, Luis, E-mail: laricard@uwaterloo.ca

    2014-08-30

    Highlights: • Effect of carbon deposition on kinetic properties of methane dissociation is studied. • Existence of surface and subsurface C atoms destabilized CH{sub x} species adsorption. • CH{sub x} activation is hindered with the deposition of C on and in the Ni (1 1 1) surface. - Abstract: To understand the effects of carbon atoms on the Ni catalyzed methane cracking reactions, methane dissociation on clean, surface-carbon-covered, and subsurface-carbon-accumulated Ni(1 1 1) surfaces were investigated using density functional theory (DFT). The results show that the existence of surface and subsurface C atoms destabilized the adsorption of the surface hydrocarbon species when compared to the clean Ni(1 1 1) surface. The projected density state (PDOS) analysis shows that the deposition of C atoms on and into the Ni surface modified the electronic structure of the Ni surface, and thus reduced the catalytic activity of the bonded Ni atoms. Moreover, it was found that the presence carbon atoms increase the CH{sub x} (x = 4–1) species activation barriers especially on the surface carbon covered (1/4 ML) Ni(1 1 1) surface, where CH{sub x} (x = 4–1) species encounter highest energy barrier for dissociation due to the electronic deactivation induced by C-Ni bonding and the strong repulsive carbon -CH{sub x} interaction. The calculations also show that CH{sub x} dissociation barriers are not affected by its neighboring C atom at low surface carbon coverage (1/9 ML). This work can be used to estimate more realistic kinetic parameters for this system.

  4. Effect of carbon on the Ni catalyzed methane cracking reaction: A DFT study

    International Nuclear Information System (INIS)

    Highlights: • Effect of carbon deposition on kinetic properties of methane dissociation is studied. • Existence of surface and subsurface C atoms destabilized CHx species adsorption. • CHx activation is hindered with the deposition of C on and in the Ni (1 1 1) surface. - Abstract: To understand the effects of carbon atoms on the Ni catalyzed methane cracking reactions, methane dissociation on clean, surface-carbon-covered, and subsurface-carbon-accumulated Ni(1 1 1) surfaces were investigated using density functional theory (DFT). The results show that the existence of surface and subsurface C atoms destabilized the adsorption of the surface hydrocarbon species when compared to the clean Ni(1 1 1) surface. The projected density state (PDOS) analysis shows that the deposition of C atoms on and into the Ni surface modified the electronic structure of the Ni surface, and thus reduced the catalytic activity of the bonded Ni atoms. Moreover, it was found that the presence carbon atoms increase the CHx (x = 4–1) species activation barriers especially on the surface carbon covered (1/4 ML) Ni(1 1 1) surface, where CHx (x = 4–1) species encounter highest energy barrier for dissociation due to the electronic deactivation induced by C-Ni bonding and the strong repulsive carbon -CHx interaction. The calculations also show that CHx dissociation barriers are not affected by its neighboring C atom at low surface carbon coverage (1/9 ML). This work can be used to estimate more realistic kinetic parameters for this system

  5. Reaction dynamics of {sup 34-38}Mg projectile with carbon target using Glauber model

    Energy Technology Data Exchange (ETDEWEB)

    Shama, Mahesh K., E-mail: maheshphy82@gmail.com [School of Physics and Material Sciences, Thapar University Patiala-147004 (India); Department of Applied Sciences, Chandigarh Engineering College, Landran Mohali-140307 (India); Panda, R. N. [Department of Physics, ITER, Shiksha O Anusandhan University, Bhubaneswar-751030 (India); Sharma, Manoj K. [School of Physics and Material Sciences, Thapar University Patiala-147004 (India); Patra, S. K. [Institute of Physics, Sachivalaya marg Bhubneswar-751005 (India)

    2015-08-28

    We have studied nuclear reaction cross-sections for {sup 34-38}Mg isotopes as projectile with {sup 12}C target at projectile energy 240AMeV using Glauber model with the conjunction of densities from relativistic mean filed formalism. We found good agreement with the available experimental data. The halo status of {sup 37}Mg is also investigated.

  6. Reaction dynamics of 34-38Mg projectile with carbon target using Glauber model

    International Nuclear Information System (INIS)

    We have studied nuclear reaction cross-sections for 34-38Mg isotopes as projectile with 12C target at projectile energy 240AMeV using Glauber model with the conjunction of densities from relativistic mean filed formalism. We found good agreement with the available experimental data. The halo status of 37Mg is also investigated

  7. RCNP E398 16O,12C(p,p’) experiment: Measurement of the γ-ray emission probability from giant resonances in relation to 16O,12C(ν,ν’) reactions

    International Nuclear Information System (INIS)

    We propose to measure the γ-ray emission probability from excited states above 5 MeV including giant resonance of 16O and 12C as a function of excitation energy in 1-MeV step. Here, we measure both the excitation energy (Ex=5-30MeV) at the forward scattering angles (0°-3°) of the 16O, 12C (p, p’) reaction using Grand-Raiden Spectrometer and the energy of γ-rays (Eγ) using an array of NaI(Tl) counters. The purpose of the experiment is to provide the basic and important information not only for the γ-ray production from primary neutral-current neutrino-oxygen (-carbon) interactions but also for that from the secondary hadronic (neutron-oxygen and -carbon) interactions

  8. RCNP E398 {sup 16}O,{sup 12}C(p,p’) experiment: Measurement of the γ-ray emission probability from giant resonances in relation to {sup 16}O,{sup 12}C(ν,ν’) reactions

    Energy Technology Data Exchange (ETDEWEB)

    Ou, I.; Yamada, Y.; Mori, T.; Yano, T.; Sakuda, M. [Department of Physics, Okayama University, Okayama 700-8530 (Japan); Tamii, A.; Suzuki, T.; Yosoi, M.; Aoi, N.; Ideguchi, E.; Hashimoto, T.; Miki, K.; Ito, T.; Iwamoto, C.; Yamamoto, T. [Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047 (Japan); Akimune, H. [Department of Physics, Konan University, Okamoto 8-9-1, Higashinada, Kobe 658-8501 (Japan)

    2015-05-15

    We propose to measure the γ-ray emission probability from excited states above 5 MeV including giant resonance of {sup 16}O and {sup 12}C as a function of excitation energy in 1-MeV step. Here, we measure both the excitation energy (E{sub x}=5-30MeV) at the forward scattering angles (0°-3°) of the {sup 16}O, {sup 12}C (p, p’) reaction using Grand-Raiden Spectrometer and the energy of γ-rays (E{sub γ}) using an array of NaI(Tl) counters. The purpose of the experiment is to provide the basic and important information not only for the γ-ray production from primary neutral-current neutrino-oxygen (-carbon) interactions but also for that from the secondary hadronic (neutron-oxygen and -carbon) interactions.

  9. Heavy ion identification, complete fusion reaction 20Ne + 12C at 110 MeV

    International Nuclear Information System (INIS)

    Various means of complete evaporation residues identification (E, Z, A) are compared. The experimental set up described uses 'ΔE, magnetic rigidity, time of flight' method. Previsions of performances are confirmed. Isotopic distributions of evaporation residues in the 20Ne + 12C reaction plus energy and angular distributions are in good agreement with compound nucleus statistical model predictions. Ionic charge distributions of the residues between 1.5 MeV/a.m.u and 4 MeV/a.m.u are satisfactorily reproduced by a semi-empirical formula

  10. Thermodynamic Data for Geochemical Modeling of Carbonate Reactions Associated with CO2 Sequestration – Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Krupka, Kenneth M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B. Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2010-09-01

    Permanent storage of anthropogenic CO2 in deep geologic formations is being considered as a means to reduce the concentration of atmospheric CO2 and thus its contribution to global climate change. To ensure safe and effective geologic sequestration, numerous studies have been completed of the extent to which the CO2 migrates within geologic formations and what physical and geochemical changes occur in these formations when CO2 is injected. Sophisticated, computerized reservoir simulations are used as part of field site and laboratory CO2 sequestration studies. These simulations use coupled multiphase flow-reactive chemical transport models and/or standalone (i.e., no coupled fluid transport) geochemical models to calculate gas solubility, aqueous complexation, reduction/oxidation (redox), and/or mineral solubility reactions related to CO2 injection and sequestration. Thermodynamic data are critical inputs to modeling geochemical processes. The adequacy of thermodynamic data for carbonate compounds has been identified as an important data requirement for the successful application of these geochemical reaction models to CO2 sequestration. A review of thermodynamic data for CO2 gas and carbonate aqueous species and minerals present in published data compilations and databases used in geochemical reaction models was therefore completed. Published studies that describe mineralogical analyses from CO2 sequestration field and natural analogue sites and laboratory studies were also reviewed to identify specific carbonate minerals that are important to CO2 sequestration reactions and therefore require thermodynamic data. The results of the literature review indicated that an extensive thermodynamic database exists for CO2 and CH4 gases, carbonate aqueous species, and carbonate minerals. Values of ΔfG298° and/or log Kr,298° are available for essentially all of these compounds. However, log Kr,T° or heat capacity values at temperatures above 298 K exist for less than

  11. Use of 12C(d,p)13C and 16O(d,p)17O reactions

    International Nuclear Information System (INIS)

    The use of nuclear reactions for depth profiling carbon and oxygen in solids is discussed. A general expression for the yield from a nuclear reaction is derived and used to extract depth profiles from the energy spectra by two methods. The first method compares data from a target of unknown composition with a target containing a known concentration of either carbon or oxygen. By dividing the yields from the samples for equal collision energies, a concentration profile within the analyzed sample can be obtained. The second method uses published reaction cross section data to obtain the profile. The (d,p) profiling is demonstrated for carbon in ScD2. A comparison between the two methods is made by extracting carbon profiles in the near surface region of ScD2 samples. Effects due to inaccurate stopping cross section data are described. The technique is discussed for the 16O(d,p) reactions used to profile oxygen along with the effect of interferences from the 2H(d,p)3H reaction and other reactions

  12. Functionalized Carbon Nanomaterial Supported Palladium Nano-Catalysts for Electrocatalytic Glucose Oxidation Reaction

    International Nuclear Information System (INIS)

    Highlights: • Glucose oxidation reaction (GOR) catalyzed by Pd on carbon nano-supports. • Polyol reduction used for nano-size Pd catalyst synthesis. • Effect of carbon support’s functionality on nano-Pd GOR catalysis disclosed. • Carboxylated MWCNT found to be the best carbon nano-support. • Peak current density of 5.5 mA cm−2 attained for alkaline GOR. - Abstract: Palladium nanoparticles (nPd) are grown on six carbon nanomaterials with different functionalities by one-pot, high-pH polyol reduction of PdCl2. The nanomaterials include pristine multi-walled carbon nanotubes (pMWCNT), carboxylated MWCNT (cMWCNT), amine-modified MWCNT (nMWCNT), hydroxyl-modified MWCNT (oMWCNT), XC72 carbon black (XC72), and carboxylated graphene (cGraphene). The effects of the carbon functionality on Pd-catalyzed glucose oxidation reaction (GOR) in an alkaline medium are studied. From the experimental data of X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and transmission electron microscopy (TEM), it reveals that nPds with a particle size ranging from 4.5 nm to 7.4 nm are grown on carbon nanomaterials with a weight loading percentage from 11.1% to 18.6%. Cyclic voltammetry (CV), linear sweep voltammetry (LSV), Tafel analysis, and chronoamperomtry (CA) are used to compare the electrochemical active surface area (ECSA), GOR onset potential, GOR peak current density, Tafel slope, poisoning rate, and cycling stability between the six nPd/C electrocatalysts for GOR. It is found that nPd grown on a functionalized carbon nano-support had better GOR performance than that grown on pMWCNT. Compared to nPd/pMWCNT, nPd/cMWCNT shows a 6.2-fold higher peak current density (5.6 mA cm−2) and a 100 mV lower over-potential (-0.55 V vs. Hg/HgO) for GOR. Besides, the data are among the best for nPd-catalyzed GOR reported to date

  13. Mechanism of ({sup 14}N, {sup 12}B) reactions at intermediate energy leading to large spin-polarization of {sup 12}B

    Energy Technology Data Exchange (ETDEWEB)

    Mitsuoka, Shin-ichi [Osaka Univ., Ibaraki (Japan). Research Center for Nuclear Physics; Shimoda, Tadashi; Miyatake, Hiroari [and others

    1996-05-01

    To study mechanisms of the ({sup 14}N, {sup 12}B) reactions at intermediate energies, double differential cross section and nuclear spin-polarization of the {sup 12}B projectile-like fragments have been measured as a function of longitudinal momentum in the angular range of 0deg - 9deg. Large spin-polarization of the reaction products {sup 12}B has been observed in the {sup 9}Be({sup 14}N, {sup 12}B) reaction at 39.3 MeV/u. The momentum distributions at forward angles exhibit characteristic features which can not be understood by the current projectile fragmentation picture. It is shown that by assuming the existence of direct two-proton transfer process in addition to the fragmentation process, both the cross section and polarization of {sup 12}B fragments are successfully explained. The target and incident energy dependence of the momentum distribution are also explained reasonably. (author)

  14. Resonance strengths in the 14N(p,gamma)15O and 15N(p,alpha gamma)12C reactions

    CERN Document Server

    Marta, Michele; Bemmerer, Daniel; Beyer, Roland; Broggini, Carlo; Caciolli, Antonio; Erhard, Martin; Fülöp, Zsolt; Grosse, Eckart; Gyürky, György; Hannaske, Roland; Junghans, Arnd R; Menegazzo, Roberto; Nair, Chithra; Schwengner, Ronald; Szücs, Tamás; Vezzú, Simone; Wagner, Andreas; Yakorev, Dmitry

    2010-01-01

    The 14N(p,gamma)15O reaction is the slowest reaction of the carbon-nitrogen-oxygen cycle of hydrogen burning in stars. As a consequence, it determines the rate of the cycle. The 15N(p,alpha gamma)12C reaction is frequently used in inverse kinematics for hydrogen depth profiling in materials. The 14N(p,gamma)15O and 15N(p,alpha gamma)12C reactions have been studied simultaneously, using titanium nitride targets of natural isotopic composition and a proton beam. The strengths of the resonances at Ep = 1058 keV in 14N(p,gamma)15O and at Ep = 897 and 430 keV in 15N(p,alpha gamma)12C have been determined with improved precision, relative to the well-known resonance at Ep = 278 keV in 14N(p,gamma)15O. The new recommended values are \\omega\\gamma = 0.352$\\pm$0.018, 362$\\pm$20, and 22.0$\\pm$0.9\\,eV for their respective strengths. In addition, the branching ratios for the decay of the Ep = 1058 keV resonance in 14N(p,gamma)15O have been redetermined. The data reported here should facilitate future studies of off-resona...

  15. The microscopic folding potential describing elastic scattering and astrophysical S factor of 12C + 12C fusion reaction at low energies

    International Nuclear Information System (INIS)

    The 12C + 12C reaction is important to understand the nuclear burning in stellar evolution. In this work, we calculate the 12C + 12C microscopic potential based on the effective nucleon-nucleon (NN) interaction and the wave functions of interaction nuclei. The Optical Model analysis for elastic scattering angular distributions of 12C + 12C system at energies near to the Coulomb barrier agrees well with the experimental data, which makes sure the applicability of our obtained potential. The Barrier Penetration Model (BPM) and WKB approximation are applied to estimate the astrophysical S factor, which is reasonable to measurement results. (author)

  16. Resonant and nonresonant behavior of the heavy-ion reaction 14C + 12C

    International Nuclear Information System (INIS)

    The 14C + 12C reaction has been studied by a kinematic coincidence technique at 13 incident energies ranging from Ec.m.=19.35 to 24.9 MeV. The resonances previously reported from γ-ray yield measurements were observed in the equivalent excitation functions, as well as in the large angle elastic scattering data, of the present measurements. Spin assignments were made to the two resonances in this energy range. These resonances are members of a band with angular momenta several units larger than the grazing values corresponding to 14C and 12C orbiting about each other at a distance significantly outside the strong absorption radius. Other structures which were observed were unrelated to the resonant behavior. (author) 22 refs.; 14 figs

  17. Distribution of hydrogen peroxide-dependent reaction in a gelatin sample irradiated by carbon ion beam

    International Nuclear Information System (INIS)

    We investigated the amount and distribution of hydrogen peroxide (H2O2) generated in a solid gelatin sample irradiated by heavy ion (carbon) beam. We irradiated the gelatin sample, which contained a nitroxyl radical (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl, TEMPOL), with a 290-MeV/nucleon carbon beam (-128 Gy). To verify the distribution of H2O2 generation in the irradiated sample, we employed both electron paramagnetic resonance (EPR) spectroscopic and magnetic resonance (MR) imaging methods based on H2O2-dependent paramagnetic loss of TEMPOL. We obtained a distribution profile of the H2O2-dependent reaction in the gelatin sample when we irradiated gelatin samples with carbon beams with several different linear energy transfer (LET) values. Because the profiles of oxygen consumption in the gelatin sample measured by L-band EPR oxymetry and of the H2O2-dependent reaction have almost the same shape, the profile of the H2O2-dependent reaction can be used as an estimation of the profile of the generation of H2O2. The H2O2 profile in one intact gelatin sample scanned by 7-tesla MR imaging showed a similar shape as a result of the EPR experiment. We obtained several hundreds of micromolars of H2O2 generated in a gelatin sample irradiated by carbon beam when 200 Gy was given at the surface of the sample. H2O2 distribution was almost flat, with only a slight peak just before the end of the beam. (author)

  18. Sintering uranium oxide in the reaction product of hydrogen-carbon dioxide mixtures

    International Nuclear Information System (INIS)

    Compacted pellets of uranium oxide alone or containing one or more additives such as plutonium dioxide, gadolinium oxide, titanium dioxide, silica, and alumina are heated to 900 to 15990C in the presence of a mixture of hydrogen and carbon dioxide, either alone or with an inert carrier gas and held at the desired temperature in this atmosphere to sinter the pellets. The sintered pellets are then cooled in an atmosphere having an oxygen partial pressure of 10-4 to 10-18 atm of oxygen such as dry hydrogen, wet hydrogen, dry carbon monoxide, wet carbon monoxide, inert gases such as nitrogen, argon, helium, and neon and mixtures of ayny of the foregoing including a mixture of hydrogen and carbon dioxide. The ratio of hydrogen to carbon dioxide in the gas mixture fed to the furnace is controlled to give a ratio of oxygen to uranium atoms in the sintered particles within the range of 1.98:1 to about 2.10:1. The water vapor present in the reaction products in the furnace atmosphere acts as a hydrolysis agent to aid removal of fluoride should such impurity be present in the uranium oxide. (U.S.)

  19. Sulfur-doped carbon nanotubes as catalysts for the oxygen reduction reaction in alkaline medium

    International Nuclear Information System (INIS)

    Based on the unique electronic properties and high surface area of carbon nanotubes as well as the similar electronegativity of sulfur and carbon, a novel electrocatalyst for the oxygen reduction reaction (ORR) was fabricated by directly annealing oxidized carbon nanotubes and p-benzenedithiol in nitrogen. The structural and chemical properties of the resulting sulfur-doped carbon nanotubes (pSCNTs) were investigated using transmission electron microscopy, X-ray photoelectron spectroscopy and Raman spectroscopy. The catalytic activity of the pSCNTs towards ORR in alkaline medium was evaluated using rotating ring disk electrode voltammetry. The as-synthesized pSCNT-900 (annealed at 900 °C) exhibits excellent electrochemical performance towards ORR with an onset potential of –0.082 V (vs Ag/AgCl), a high kinetic current density of 34.6 mA cm−2 at –0.35 V), a dominant four-electron transfer mechanism (n = 3.71 at –0.35 V), as well as excellent methanol tolerance and durability. The results obtained are significant for the development of S-doped carbon-based catalysts for alkaline fuel cells

  20. Polyaniline-Derived Ordered Mesoporous Carbon as an Efficient Electrocatalyst for Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Kai Wan

    2015-06-01

    Full Text Available Nitrogen-doped ordered mesoporous carbon was synthesized by using polyaniline as the carbon source and SBA-15 as the template. The microstructure, composition and electrochemical behavior were extensively investigated by the nitrogen sorption isotherm, X-ray photoelectron spectroscopy, cyclic voltammetry and rotating ring-disk electrode. It is found that the pyrolysis temperature yielded a considerable effect on the pore structure, elemental composition and chemical configuration. The pyrolysis temperature from 800 to 1100 °C yielded a volcano-shape relationship with both the specific surface area and the content of the nitrogen-activated carbon. Electrochemical tests showed that the electrocatalytic activity followed a similar volcano-shape relationship, and the carbon catalyst synthesized at 1000 °C yielded the best performance. The post-treatment in NH3 was found to further increase the specific surface area and to enhance the nitrogen doping, especially the edge-type nitrogen, which favored the oxygen reduction reaction in both acid and alkaline media. The above findings shed light on electrocatalysis and offer more strategies for the controllable synthesis of the doped carbon catalyst.

  1. Electrocatalytic Activity of Carbonized Nanostructured Polyanilines for Oxidation Reactions: Sensing of Nitrite Ions and Ascorbic Acid

    International Nuclear Information System (INIS)

    Highlights: • Carbonized PANIs prepared from various nanostructured PANI precursors • Electroanalytical performances of carbonized PANIs evaluated using voltammetry • Study of carbonized PANIs physico-chemical properties related to electroactivity • The lowest over-potential for NO2− oxidation at c-PANI (+0.87 V vs. SCE) • The lowest over-potential for ascorbic acid oxidation at both c-PANI and c-PANI-SSA - Abstract: A comparative study of the electrocatalytic activity of nitrogen-containing carbon nanomaterials, prepared by the carbonization of nanostructured polyaniline (PANI) salts, for the electrooxidation reactions is presented. Nanostructured PANI salts were synthesized by the oxidative polymerization of aniline with ammonium peroxydisulfate in an aqueous solution in the presence of 5-sulfosalicylic acid (PANI-SSA), 3,5-dinitrosalicylic acid (PANI-DNSA) as well as without added acid (PANI), and subsequently carbonized to c-PANI-SSA, c-PANI-DNSA and c-PANI, respectively. Glassy carbon tip was modified with nanostructured c-PANIs and used for the investigation of sensing of nitrite and ascorbic acid in aqueous solutions as model analytes by linear sweep voltammetry. All three types of the investigated c-PANIs gave excellent response to the nitrite ions and ascorbic acid electrooxidation. The lowest peak potential for nitrite ion oxidation exhibited c-PANI (+0.87 V vs. SCE), and for ascorbic acid oxidation both c-PANI and c-PANI-SSA (ca. + 0.13 V vs. SCE). Electrochemical data were correlated with structural and textural data obtained by Raman spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, elemental and nitrogen sorption analysis

  2. Experimental resolution of deuterium and hydrogen depth profiling with the nuclear reactions D(3He,p)α and p(15N,α,γ)12C

    International Nuclear Information System (INIS)

    In this paper well defined test samples are used to show how the analysis depth and the matrix material influence the depth resolution of nuclear reaction analysis. The reaction D(3He,p)α is used to detect deuterium. By covering 10 nm thin deuterated amorphous carbon (a–C:D) films on silicon with tungsten (ZW = 74) and titanium (ZTi = 22) of various thicknesses between 500 nm and 8 μm the influence of the atomic number and the overlayer thickness on the depth resolution is studied. The most probable depth profiles are calculated from the experimental data with the program NRADC, which implements Bayesian statistics. The resulting apparent layer width of the deuterium containing layer broadens with increasing thickness of the coating and this broadening is more pronounced for coatings with higher Z. These apparent layer widths are a measure for the experimentally achievable depth resolution. Their absolute values are in the same range as the theoretical optimum calculated with RESOLNRA. To investigate the depth resolution of the p(15N,α,γ)12C reaction, a 12 nm thin hydrogenated amorphous carbon (a–C:H) film on silicon and a pure tungsten sample are analysed. The width of the instrument function of this method is deduced from the surface hydrogen peak of the pure tungsten sample. The two methods are compared

  3. Complete kinematics study of the p + 11B → 12C reaction

    International Nuclear Information System (INIS)

    New data and preliminary results from an experimental study of the p + 11B reaction are presented. Using proton energies in the range of 167 – 170 keV the 2+ resonance in 12C at an excitation energy of 16.11 MeV was populated. Detecting the emitted a-particles in full kinematics allows us to study 12 C resonances and their properties. In addition to the 3-α break-up of the 16.11 MeV resonance we observe γ-transitions to lower lying resonances. Transitions to the 3− state at 9.64MeV, the 1− state at 10.84 MeV and the 1+ state at 12.71 MeV are clearly seen. The transitions to the 1− state has not been observed previously. In addition we see decays to structures of natural parity at excitation energies around 11-13 MeV. The results illustrate that the indirect detection of γ-decays is an effective technique for studying the low lying resonance spectrum of 12C

  4. Polymerase chain reaction amplification of a GC rich region by adding 1,2 propanediol

    Directory of Open Access Journals (Sweden)

    Zeinab Mousavian

    2014-01-01

    Full Text Available Background : Apolipoprotein E (ApoE is one of the most important carriers of lipids in mammalians. The gene for this lipoprotein (ApoE is located on chromosome 19 which is related with the pathogenesis of some nervous system disease. ApoE gene is identified as a high guanine-cytosine (GC content fragment. Detection and amplification of these templates are extensively laborious and baffling. The aim of this study was to find a practical and feasible method for the amplification of the number of GC rich genes such as ApoE. Materials and Methods: We experimented with simple polymerase chain reaction (PCR, nested PCR and PCR with 1-2 propanediol, dimethylsulfoxide (DMSO, and ethyleneglicol as additive substances to enhance the amplification ApoE gene and used the 40 samples of the human whole blood were collected in test tubes with a pre-treatment of ethylene diaminetetraacetic acid. Results: According to our observations, presence of 1-2 propanediol, DMSO, and ethyleneglicol as additive substances resulted to enhanced amplification of ApoE gene. Addition of 1-2 propanediol showed the best results, caused optimization and revealed more specific and sharp bands. Conclusion: According to our findings 1-2 propanediol are the best organic reagent for improving the amplification of ApoE gene. Optimization procedure for each GC rich sequence is recommended to be performed separately in order to identify which of the additive agent is more efficient and applicable for a particular target.

  5. The influence of carbon surface chemistry on supported palladium nanoparticles in heterogeneous reactions.

    Science.gov (United States)

    Ding, Yuxiao; Zhang, Liyun; Wu, Kuang-Hsu; Feng, Zhenbao; Shi, Wen; Gao, Qiang; Zhang, Bingsen; Su, Dang Sheng

    2016-10-15

    The surface chemistry of nanocarbon support can tailor chemical properties of precious metal nanoparticle/nanocarbon hybrid catalyst in heterogeneous reactions. We report on modified reduced graphene oxide (rGO) support with ionic liquid-derived carbonaceous surface for palladium nanoparticle (Pd NPs) decoration and their actions in different heterogeneous reactions. The surface chemistry of support materials was characterized in detail, and the influence of which on the formation and distribution of metal particles was further investigated. Three different types of reactions including Suzuki-Miyaura coupling reaction, CO oxidation and phenol reduction were examined in terms of reactivity and selectivity. The roles of substituted nitrogen in graphitic lattice and grafted groups on the carbon surface were exploited. Nitrogen-doping can give rise to changes in electronic properties of supported metals, and the Lewis basicity of the doped nitrogen atoms can favor the adsorption of acidic reactants in phenol reduction. The grafted groups derived a negative impact to the Suzuki-Miyaura coupling reaction, due to the involvement of larger reactant molecules, despite that they could prevent significant sintering of Pd NPs in the CO oxidation. PMID:27442144

  6. Reaction behavior between the oxide film of LY12 aluminum alloy and the flux

    Institute of Scientific and Technical Information of China (English)

    薛松柏; 董健; 吕晓春; 顾文华

    2004-01-01

    In this paper, the brazing mechanism of LY12 aluminum alloy at middle range temperature was presented. The CsF-AlF3 non-corrosive flux was utilized to remove the complex oxide film on the surface of LY12 aluminum alloy. The results revealed that the oxide film was removed by the improved CsF-AlF3 flux accompanied with the occurrence of reaction as well as dissolution and the compounds CsF played an important role to remove the oxide film. Actually, the high activity of flux, say, the ability to remove the oxide film, was due to the presence of the compounds, such as NH4F,NH4AlF4 and composite molten salt. The production of HF was the key issue to accelerate the reaction and enhance to eliminate the oxide film by dissolution. It was found that the rare earth element La at small percentage was not enriched at the interface. Moreover, the rare earth fluoride enhanced the dissolution behavior.

  7. Measurement of the 115In(n,γ)116 m In reaction cross-section at the neutron energies of 1.12, 2.12, 3.12 and 4.12 MeV

    Science.gov (United States)

    Lawriniang, Bioletty Mary; Badwar, Sylvia; Ghosh, Reetuparna; Jyrwa, Betylda; Vansola, Vibha; Naik, Haladhara; Goswami, Ashok; Naik, Yeshwant; Datrik, Chandra Shekhar; Gupta, Amit Kumar; Singh, Vijay Pal; Pol, Sudir Shibaji; Subramanyam, Nagaraju Balabenkata; Agarwal, Arun; Singh, Pitambar

    2015-08-01

    The 115In(n,γ)116 m In reaction cross section at neutron energies of 1.12, 2.12, 3.12 and 4.12 MeV was determined by using an activation and off-line γ-ray spectrometric technique. The monoenergetic neutron energies of 1.12 - 4.12 MeV were generated from the 7Li(p,n) reaction by using proton beam with energies of 3 and 4 MeV from the folded tandem ion beam accelerator (FOTIA) at Bhabha Atomic Research Centre (BARC) and with energies of 5 and 6 MeV from the Pelletron facility at Tata Institute of Fundamental Research (TIFR), Mumbai. The 197Au(n,γ)198Au reaction cross-section was used as the neutron flux monitor.The 115In(n,γ)116 m In reaction cross section at neutron energies of 1.12, 2.12, 3.12 and 4.12 MeV was determined by using an activation and off-line γ-ray spectrometric technique. The monoenergetic neutron energies of 1.12 - 4.12 MeV were generated from the 7Li(p,n) reaction by using proton beam with energies of 3 and 4 MeV from the folded tandem ion beam accelerator (FOTIA) at Bhabha Atomic Research Centre (BARC) and with energies of 5 and 6 MeV from the Pelletron facility at Tata Institute of Fundamental Research (TIFR), Mumbai. The 197Au(n,γ)198 Au reaction cross-section was used as the neutron flux monitor. The 115In(n,γ)116 m In reaction cross-sections at neutron energies of 1.12 - 4.12 MeV were compared with the literature data and were found to be in good agreement with one set of data, but not with others. The 115In(n,γ)116 m In cross-section was also calculated theoretically by using the computer code TALYS 1.6 and was found to be slightly lower than the experimental data from the present work and the literature.)198Au reaction cross-section was used as the neutron flux monitor. The 115In(n,γ)116 m In reaction cross-sections at neutron energies of 1.12 - 4.12 MeV were compared with the literature data and were found to be in good agreement with one set of data, but not with others. The 115In(n,γ)116 m In cross-section was also calculated

  8. A Theoretical Investigation on the Reaction Mechanism of the C9H+ 12·Side-chain Decomposition

    Institute of Scientific and Technical Information of China (English)

    CHENG,Xueli; ZHAO,Yanyun; LI,Feng; ZHANG,Dongsheng

    2009-01-01

    n-Phenylpropane cation C9H+·12 serves as a prototype to investigate the reaction mechanisms of alkylbenzene cations.The decomposition reactions of C9H+·12 system have been studied extensively at the B3LYP/6-311 + + G**level with Gaussian 98 program package.All reaction channels were fully investigated with the vibrational mode analysis to confirm the transition states and with electron population analysis to discuss the electron redistribution,and to elucidate the reaction mechanism.The reaction mechanism shows that there is a non-barrier channel of C9H+·12→C7H+7+C2H·5,which is thermodynamically most favorable.

  9. Unique Sandwiched Carbon Sheets@Ni-Mn Nanoparticles for Enhanced Oxygen Evolution Reaction.

    Science.gov (United States)

    Zhang, Yan; Zhang, Huijuan; Yang, Jiao; Bai, Yuanjuan; Qiu, Huajun; Wang, Yu

    2016-05-11

    A unique sandwich-like architecture, where Ni-Mn nanoparticles are enveloped in coupled carbon sheets (CS@Ni-Mn), has been successfully fabricated. In the synthesis process, a great quantity of uniform NiMnO3 nanosheets generated by a universal hydrothermal method acts as precursors and templates and the cheap, environmentally friendly and recyclable glucose functions as a green carbon source. Via subsequent hydrothermal reaction and thermal annealing, sandwiched nanocomposites with Ni-Mn nanoparticles embedded inside and carbon sheets encapsulating outside can be massively prepared. The novel sandwich-like CS@Ni-Mn possesses numerous advantages, such as an intrinsic porous feature, large specific surface area, and enhanced electronic conductivity. Moreover, as a promising NiMn-based oxygen evolution reaction (OER) catalyst, the special sandwiched nanostructure demonstrates improved electrochemical properties in 1 M KOH, including a low overpotential of about 250 mV, a modest Tafel slope of 40 mV dec(-1), excellent stability over 2000 cycles, and durability for 40 h. PMID:27101350

  10. Quasi-bound alpha resonant states populated by the 12C(6Li, d) reaction

    International Nuclear Information System (INIS)

    Full text: The alpha cluster phenomenon in the light nuclei structure has been the subject of a long time investigation since the proposal of the Ikeda diagrams [1]. The main purpose of the research program in progress is the investigation of this phenomenon in (xα) and (xα+n) nuclei through the (6Li, d) alpha transfer reaction [2-4]. Alpha resonant states around the (4α) threshold in the nucleus 16O are the focus of the present contribution. In fact, the importance of these resonances at the elements production in stars is recognized, as primarily pointed out by Hoyle in 12C [6]. The existence of a rotational band with the α +12 C (Hoyle) cluster state structure was recently demonstrated by Ohkubo and Hirabayashi [6]. In order to explore this region of interest, measurements of the 12C(6Li, d)16O reaction up to 17 MeV of excitation at an incident energy of 25.5 MeV, have been performed employing the Sao Paulo Pelletron-Enge Split-Pole facility and the nuclear emulsion detection technique (plates Fuji G6B, 50 μm thick). Spectra associated with six scattering angles, from 5 deg to 29 deg in the laboratory frame, each one 50 cm along the focal surface, were measured. Several narrow resonances with a quasi-bound behavior embedded in the continuum were detected and the resolution of 25 keV allowed for the separation of doublets not resolved before [7,8]. The absolute cross sections and the respective deuteron angular distributions were determined and the analysis is in progress. [1] K. Ikeda et al., Prog. Theor. Phys. Suppl. E 68, 464 (1968); H. Horiuchi, K. Ikeda, and Y. Suzuki, ibid. 44, 225 (1978). [2] M.R.D.Rodrigues et al., in12th International Conference on Nuclear Reaction Mechanism, Varenna, Italy, edited by F. Cerutti and A. Ferrari , CERN Proceedings, 2010-2, pp. 331- 335. [3] T. Borello-Lewin et al., Proceedings of SOTANCP2, Brussels, Belgium 2010, edited by P. Descouvemount et al., Int. J. Mod. Mod. Phys E 20, 1018-1021 (2011). [4] T. Borello-Lewin et

  11. Efficacy of supercritical carbon dioxide for nonthermal inactivation of Escherichia coli K12 in apple cider

    Science.gov (United States)

    This study evaluated the efficacy of a supercritical carbon dioxide (SCCO2) system with a gas-liquid porous metal contactor for eliminating Escherichia coli K12 in apple cider. Pasteurized, preservative-free apple cider was inoculated with E. coli K12 and processed using the SCCO2 system at CO2 conc...

  12. 16,20,21,23O-12C reaction cross sections at 1 GeV/nucleon

    International Nuclear Information System (INIS)

    In the present work, we analyze the reaction cross sections of 16,20,21,23O-12C at 1 GeV/nucleon within the framework of conventional Glauber theory. We analyze the reaction cross section of 16,20,21,23O from 12C at 1 GeV/nucleon using the uncorrelated part of the Glauber amplitude. The inputs needed in the theory are the elementary NN amplitude, and the density distributions for the colliding nuclei

  13. Clustering effect of {sup 12}C fragmentation in p+{sup 12}C, {alpha}+{sup 12}C and {sup 14}N+{sup 12}C reactions

    Energy Technology Data Exchange (ETDEWEB)

    Takemoto, Hiroki; Horiuchi, Hisashi [Kyoto Univ. (Japan). Dept. of Physics; Ono, Akira

    1997-05-01

    In general, self-conjugate 4n-nuclei have anomalous excited states with the excitation energy 10-15 MeV, which are recognized to be generated by the change of the structure from the shell-model-like one into the cluster one due to the activation of the clustering degrees of freedom. In AMD (Antisymmetrized Molecular Dynamics) fermic nature of nucleons is treated exactly, because the wave function of A-body system is antisymmetrized by a Slater determinant. Hence Pauli principle has been fully incorporated in AMD. As a result, it was concluded that the features of {sup 12}C fragmentation are originated from the activation of alpha-cluster degrees of freedom by indicating the excitation energy spectra of {sup 12}C before its breakup at the dynamical stage. Excitation energy spectrum before {sup 12}C breakup into any fragments consists of two components. One distributes in the range 7-15 MeV and the other in the range above 15 MeV. Accordingly, the features is related to those excited states excited states of {sup 12}C that is considered to have the cluster structure. (G.K.)

  14. Metalloradical-Catalyzed Selective 1,2-Rh-H Insertion into the Aliphatic Carbon-Carbon Bond of Cyclooctane

    NARCIS (Netherlands)

    Y.W. Chan; B. de Bruin; K.S. Chan

    2015-01-01

    The selective aliphatic carboncarbon activation of cyclo-octane (c-octane) was achieved via the Rh-II(ttp)-catalyzed 1,2-addition of Rh(ttp)H to give Rh(ttp)(n-octyl) (ttp = tetratolylporphyrinato dianion) in good yield under mild reaction conditions. This mechanism is further supported by DFT calcu

  15. Mass Transfer and Reaction Kinetics in the Carbonization of Magnesium Oxide from Light Calcined Magnesia with Mechanical Force Enhancement

    Institute of Scientific and Technical Information of China (English)

    张焕军; 朱国才

    2004-01-01

    The carbonization of magnesium oxide particles by CO2 was investigated using a stirring mill reactor.The effects of the system temperature, stirring rotation speed, influx rate of CO2 and initial diameter of the magnesium oxide particles on the carbonization process were determined. The results show that the system temperature and the stirring rotation speed are the most significant influencing factors on the carbonization rate. The determination of critical decomposition temperature (CDT) gives the maximum carbonization rate with other conditions fixed. A theoretical model involving mass transfer and reaction kinetics was presented for the carbonization process.The apparent activation energy was calculated to be 32.8kJ·mo1-1. The carbonization process is co-controlled by diffusive mass transfer and chemical reaction. The model fits well with the experimental results.

  16. Spot-free catalysis using gold carbon nanotube & gold graphene composites for hydrogen evolution reaction

    Science.gov (United States)

    Sai Siddhardha, R. S.; Lakshminarayanan, V.; Ramamurthy, Sai Sathish

    2015-08-01

    Hydrogen has been proposed as the green fuel of the future in the wake of depleting fossil fuels. Recently, carbon paste electrodes (CPE) modified with nanomaterials as electrocatalysts have drawn wide attention for hydrogen evolution reaction (HER) in acid medium. The CPEs are advantageous owing to their chemical stability and ease of fabrication. Their applications for HER without any modification, however, are hampered on account of large hydrogen overpotential associated with carbon surface. In the present study, CPE has been modified with novel gold composites as electro-catalysts for HER in acid medium. The nanocomposites have shown ∼100 fold increased current density than unmodified CPE at -0.3 V. Most strikingly for the first time, this study has quantitatively brought out the difference in catalysis between surfactant capped and pristine gold nanoparticles in terms of their application as spot-free catalysts towards hydrogen gas production by electrochemical route.

  17. Rapid Access to Spirocyclized Indolenines via Palladium-Catalyzed Cascade Reactions of Tryptamine Derivatives and Propargyl Carbonate

    OpenAIRE

    Montgomery, Thomas D.; Nibbs, Antoinette E.; Zhu, Ye; Rawal, Viresh H.

    2014-01-01

    We report the intermolecular palladium-catalyzed reaction of tert-butyl propargyl carbonate with tryptamine derivatives or other indole-containing bis-nucleophiles. The reaction proceeds under mild conditions and with low catalyst loadings to afford novel spiroindolenine products in good to high yields.

  18. Palladium on Carbon-Catalyzed Suzuki-Miyaura Coupling Reaction Using an Efficient and Continuous Flow System

    Directory of Open Access Journals (Sweden)

    Tomohiro Hattori

    2015-01-01

    Full Text Available The continuous flow Suzuki-Miyaura reaction between various haloarenes and arylboronic acids was successfully achieved within only ca. 20 s during the single-pass through a cartridge filled with palladium on carbon (Pd/C. No palladium leaching was observed in the collected reaction solution by atomic absorption spectrometry (detection limit: 1 ppm.

  19. Stepwise Quenching of Exciton Fluorescence in Carbon Nanotubes by Single Molecule Reactions

    CERN Document Server

    Cognet, Laurent; Rocha, John-David R; Doyle, Condell D; Tour, James M; Weisman, R Bruce

    2007-01-01

    Single-molecule chemical reactions with individual single-walled carbon nanotubes were observed through near-infrared photoluminescence microscopy. The emission intensity within distinct submicrometer segments of single nanotubes changes in discrete steps after exposure to acid, base, or diazonium reactants. The steps are uncorrelated in space and time, and reflect the quenching of mobile excitons at localized sites of reversible or irreversible chemical attack. Analysis of step amplitudes reveals an exciton diffusional range of about 90 nanometers, independent of nanotube structure. Each exciton visits approximately 104 atomic sites during its lifetime, providing highly efficient sensing of local chemical and physical perturbations.

  20. Hetero-atom doped carbon nanotubes for dye degradation and oxygen reduction reaction

    International Nuclear Information System (INIS)

    We report the synthesis of nitrogen doped vertically aligned multi-walled (MWNCNTs) carbon nanotubes by pyrolysis and its catalytic performance for degradation of methylene blue (MB) dye & oxygen reduction reaction (ORR). The degradation of MB was monitored spectrophotometrically with time. Kinetic studies show the degradation of MB follows a first order kinetic with rate constant k=0.0178 min−1. The present rate constant is better than that reported for various supported/non-supported semiconducting nanomaterials. Further ORR performance in alkaline media makes MWNCNTs a promising cost-effective, fuel crossover tolerance, metal-free, eco-friendly cathode catalyst for direct alcohol fuel cell

  1. Carbon-14 immobilization via the CO2-Ba(OH)2 hydrate gas-solid reaction

    International Nuclear Information System (INIS)

    Although no restrictions have been placed on the release of carbon-14, it has been identified as a potential health hazard due to the ease in which it may be assimilated into the biosphere. The intent of the Carbon-14 Immobilization Program, funded through the Airborne Waste Program Management Office, is to develop and demonstrate a novel process for restricting off-gas releases of carbon-14 from various nuclear facilities. The process utilizes the CO2-Ba(OH)2 hydrate gas-solid reaction to directly remove and immobilize carbon-14. The reaction product, BaCO3, possesses both the thermal and chemical stability desired for long-term waste disposal. The process is capable of providing decontamination factors in excess of 1000 and reactant utilization of greater than 99% in the treatment of high volumetric, airlike (330 ppM CO2) gas streams. For the treatment of an air-based off-gas stream, the use of packed beds of Ba(OH)2.8H2O flakes to remove CO2 has been demonstrated. However, the operating conditions must be maintained between certain upper and lower limits with respect to the partial pressure of water. If the water vapor pressure in the gas is less than the dissociation vapor pressure of Ba(OH)2.8H2O, the bed will deactivate. If the vapor pressure is considerably greater, pressure drop problems will increase with increasing humidity as the particles curl and degrade. Results have indicated that when operated in the proper regime, the bulk of the increase in pressure drop results from the conversion of Ba(OH)2.8H2O to BaCO3 and not from the hydration of the commercial Ba(OH)2.8H2O (i.e. Ba(OH)2.7.50H2O) to Ba(OH)2.8H2O

  2. Benzyl alcohol oxidation in supercritical carbon dioxide: spectroscopic insight into phase behaviour and reaction mechanism.

    Science.gov (United States)

    Caravati, Matteo; Grunwaldt, Jan-Dierk; Baiker, Alfons

    2005-01-21

    Selective oxidation of benzyl alcohol to benzaldehyde with molecular oxygen over an alumina-supported palladium catalyst was performed with high rate at about 95% selectivity in supercritical carbon dioxide. The experiments in a continuous flow fixed-bed reactor showed that the pressure has a strong influence on the reaction rate. A marked increase of the rate (turnover frequency) from 900 h(-1) to 1800 h(-1) was observed when increasing the pressure from 140 to 150 bar. Video monitoring of the bulk fluid phase behavior and the simultaneous investigation by transmission and attenuated total reflection (ATR) infrared spectroscopy at two positions of the view cell showed that the sharp increase in activity is correlated to a transition from a biphasic to a monophasic reaction mixture. In the single phase region, both oxygen and benzyl alcohol are dissolved in the supercritical CO2 phase, which leads to a reduction of the mass transport resistances (both in the external fluid film and in the catalyst pores) and thus to the high reaction rate measured in the catalytic experiments. The phase transition could be effectively and easily monitored by transmission and ATR-IR spectroscopy despite the small concentration of the dense liquid like phase. Deposition of the Pd/Al2O3 catalyst on the ATR-crystal at the bottom of the view cell allowed to gain insight into the chemical changes and mass transfer processes occurring in the solid/liquid interface region during reaction. Analyzing the shift of the upsilon2 bending mode of CO2 gave information on the fluid composition in and outside the catalyst pores. Moreover, the catalytic reaction could be investigated in situ in this spectroscopic batch reactor cell by monitoring simultaneously the reaction progress, the phase behaviour and the catalytic interface. PMID:19785149

  3. Carbon-13 and deuterium isotope effects on the catalytic reactions of biotin carboxylase

    International Nuclear Information System (INIS)

    13C and 2H kinetic isotope effects have been used to investigate the mechanism of enzymic biotin carboxylation. /sup D/(V/K) is 0.50 in 80% D2O at pD 8.0 for the forward reaction and 0.57 at pD 8.5 for the phosphorylation of ADP by carbamoyl phosphate. These values approach the theoretical maximum limit for a reaction in which a proton is transferred from a sulfhydryl to a nitrogen or oxygen base. Therefore, it appears that this portion of the reaction is at or near equilibrium. 13(V/K) at pH 8 is 1.007; the small magnitude of this number suggests that the reaction is almost fully committed by the time the carbon-sensitive steps are reached. There does not appear to be a reverse commitment to the reaction under the conditions in which 13(V/K) was determined. A large forward commitment is consistent with the failure to observe positional isotope exchange from the βγ-bridge position to the β-nonbridge position in [18O4]ATP or washout of 18O from the γ-nonbridge positions. Transfer of 18O from bicarbonate to inorganic phosphate in the forward reaction was clearly observed, however. These observations suggest that biotin carboxylase exists in two distinct forms which differ in the protonation states of the two active-site bases, one of which is a sulfhydryl. Only when the sulfhydryl is ionized and the second base protonated can catalysis take place. Carboxylation of biotin is postulated to occur via a pathway in which carboxyphosphate is formed by nucleophilic attack of bicarbonate on ATP. Decarboxylation of carboxyphosphate in the active site generates CO2, which serves to carboxylate the isourea tautomer of biotin that is generated by the removal of the proton on N1' by the ionized sulfhydryl

  4. A note on the use/determination of relative alpha scattering phases in the 12C(α,γ)16O reaction

    International Nuclear Information System (INIS)

    A new experiment to determine the thermonuclear cross section of the 12C(α,γ)16O reaction has been performed in regular kinematics using an intense α-particle beam. In this experiment a 4π-detector setup has been used for the first time to measure all angles of each γ-angular distribution simultaneously. The 12C targets were isotopically enriched by magnetic separation during implantation. The depth profiles of the implanted carbon in the 12C targets have been determined by Rutherford backscattering for purposes of cross section normalization and absolute determination of the E1- and E2-S-factors. Angular distributions have been measured. From these distributions, astrophysical E1- and E2-S-factor functions vs. energy have been calculated, both of which are indispensable for modelling of this reaction and the extrapolation towards lower energies. The separation of the E1- and E2-S-capture channels has been done both by taking the phase value φ12 as a free parameter and by fixing it using the results of elastic α-particle scattering on 12C in the same energy range. The precision and accuracy of these new measurements make it possible to distinguish between the two methods of analysis. Preliminary values of S-factors extrapolated to 300 keV will be presented. (author)

  5. Theoretical and Experimental Study on Reaction Coupling: Dehydrogenation of Ethylbenzene in the Presence of Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Dehydrogenation of ethylbenzene (EB) to styrene (ST) in the presence of CO2, in which EB dehydrogenation is coupled with the reverse water-gas shift (RWGS), was investigated extensively through both theoretical analysis and experimental characterization. The reaction coupling proved to be superior to the single dehydrogenation in several respects. Thermodynamic analysis suggests that equilibrium conversion of EB can be improved greatly by reaction coupling due to the simultaneous elimination of the hydrogen produced from dehydrogenation. Catalytic tests proved that iron and vanadium supported on activated carbon or Al2O3 with certain promoters are potential catalysts for this coupling process.The catalysts of iron and vanadium are different in the reaction mechanism, although ST yield is always associated with CO2 conversion over various catalysts. The two-step pathway plays an important role in the coupling process over Fe/Al2O3, while the one-step pathway dominates the reaction over V/Al2O3.Coke deposition and deep reduction of active components are the major causes of catalyst deactivation.CO2 can alleviate the catalyst deactivation effectively through preserving the active species at high valence in the coupling process, though it can not suppress the coke deposition.

  6. Evaluating the Catalytic Effects of Carbon Materials on the Photocatalytic Reduction and Oxidation Reactions of TiO2

    International Nuclear Information System (INIS)

    TiO2 composites with seven different carbon materials (activated carbons, graphite, carbon fibers, single-walled carbon nanotubes, multi-walled carbon nanotubes, graphene oxides, and reduced graphene oxides) that are virgin or treated with nitric acid are prepared through an evaporation method. The photocatalytic activities of the as-prepared samples are evaluated in terms of H2 production from aqueous methanol solution (photo-catalytic reduction: PCR) and degradation of aqueous pollutants (phenol, methylene blue, and rhodamine B) (photocatalytic oxidation: PCO) under AM 1.5-light irradiation. Despite varying effects depending on the kinds of carbon materials and their surface treatment, composites typically show enhanced PCR activity with maximum 50 times higher H2 production as compared to bare TiO2. Conversely, the carbon-induced synergy effects on PCO activities are insignificant for all three substrates. Colorimetric quantification of hydroxyl radicals supports the absence of carbon effects. However, platinum deposition on the binary composites displays the enhanced effect on both PCR and PCO reactions. These differing effects of carbon materials on PCR and PCO reactions of TiO2 are discussed in terms of physicochemical properties of carbon materials, coupling states of TiO2/carbon composites, interfacial charge transfers. Various surface characterizations of composites (UV-Vis diffuse reflectance, SEM, FTIR, surface area, electrical conductivity, and photoluminescence) are performed to gain insight on their photocatalytic redox behaviors

  7. Geometrical aspects of reaction cross sections for {sup 3}He, {sup 4}He and {sup 12}C projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Ingemarsson, A. [Uppsala Univ. (Sweden). Dept. of Radiation Sciences; Lantz, M. [Uppsala Univ. (Sweden). The Svedberg Laboratory

    2003-04-01

    A black-disc model combined with accurate matter densities has been used for an investigation of reaction cross sections for {sup 3}He, {sup 4}He and {sup 12}C projectiles. A simple relation is derived between the energy dependence of the reaction cross sections and the strength of the nucleon-nucleon interaction. A comparison is also made of the reaction cross sections for {sup 3}He and {sup 4}He for six different nuclei {sup 12}C, {sup 16}O, {sup 40}Ca, {sup 58,60}Ni and {sup 208}Pb.

  8. The reaction of carbon disulphide with -haloketones and primary amines in the presence of potassium iodide as catalyst

    Indian Academy of Sciences (India)

    Javad Safaei-Ghomi; Fariba Salimi; Ali Ramazani

    2013-09-01

    A simple, mild and convenient method has been developed for the synthesis of 3,4,5-trialkyl-1,3-thiazole-2(3)-thione derivatives through one pot three-component reaction between a primary amine, carbon disulphide, and -haloketone in the presence of potassium iodide at room temperature conditions. The products were obtained with excellent yield and appropriate reaction times. This reaction represents a rapid and unprecedented route to the described molecules that have biological specifications.

  9. An Analysis of the $^{12}$C+$^{24}$Mg Reaction Using A New Coupling Potential

    CERN Document Server

    Boztosun, I

    2001-01-01

    We introduce a new coupling potential to explain the experimental data for the $^{12}$C+$^{24}$Mg system at numerous energies in the laboratory system from 16.0 MeV to 24.0 MeV. This new coupled-channels based approach involves replacing the usual first derivative coupling potential by a new, second-derivative coupling potential. This paper first shows and discusses the limitation of the standard coupled-channels theory in the case where one of the nuclei in the reaction is strongly deformed. Then, this new approach is shown to improve consistently the agreement with the experimental data and has made major improvement on all the previous coupled-channels calculations for this system.

  10. Reaction mechanism for the symmetric breakup of 24Mg following an interaction with 12C

    International Nuclear Information System (INIS)

    Data on the yield of the symmetric breakup of 24Mg as a function of beam energy are presented and compared with detailed calculations of the energy dependence. The 24Mg states seen in symmetric breakup agree with previously observed breakup states having spin and parities Jπ=4+,(6+),8+. The data allow the variations of yield for indivual states to be judged, as the beam energy is varied. The variation in the yield of the 4+ states is compared in detail with calculations assuming several possible compound nuclear or direct reaction mechanisms. It is concluded that a massive (12C) transfer or a simple statistical compound process are unlikely mechanisms, but that each of several other mechanisms is consistent with the data. ((orig.))

  11. Deformation effects in the 28Si + 12C and 28Si + 28Si reactions

    Indian Academy of Sciences (India)

    C Bhattacharya; M Rousseau; C Beck; V Rauch; R M Freeman; R Nouicer; F Haas; O Dorvaux; K Eddahbi; P Papka; O Stezwski; S Szilner; D Mahboub; A Szanto De Toledo; A Hachem; E Martin; S J Sanders

    2001-07-01

    The possible occurrence of highly deformed configurations is investigated in the 40Ca and 56Ni di-nuclear systems as formed in the 28Si + 12C, 28Si reactions by using the properties of emitted light charged particles. Inclusive as well as exclusive data of the heavy fragments and their associated light charged particles have been collected by using the ICARE charged particle multidetector array. The data are analysed by Monte Carlo CASCADE statistical-model calculations using a consistent set of parameters with spin-dependent level densities. Significant deformation effects at high spin are observed as well as an unexpected large 8Be cluster emission of a binary nature.

  12. Medium Modi cation on Vector Mesons Observed in 12 GeV p + A Reactions

    International Nuclear Information System (INIS)

    The invariant mass spectra of e+e- pairs produced in 12 GeV p+A reactions are measured at the KEK-PS. We observed a significant enhancement over the known hadronic sources on the low-mass side of the ω meson peak. The 95 % C.L. allowed parameter regions for ρ/ω ratio are obtained as ρ/ω < 0.15 and ρ/ω < 0.31 for C and Cu targets, respectively. As for the φ meson, the data obtained with a Cu target revealed a significant excess on the low-mass side of the φ meson peak mainly in the βγφ < 1.25 region

  13. Medium Modi cation on Vector Mesons Observed in 12 GeV p + A Reactions

    Science.gov (United States)

    Naruki, M.; En'yo, H.; Muto, R.; Tabaru, T.; Yokkaichi, S.; Fukao, Y.; Funahashi, H.; Ishino, M.; Kanda, H.; Kitaguchi, M.; Mihara, S.; Miwa, K.; Miyashita, T.; Murakami, T.; Nakura, T.; Sakuma, F.; Togawa, M.; Yamada, S.; Yoshimura, Y.; Chiba, J.; Ieiri, M.; Sasaki, O.; Sekimoto, M.; Tanaka, K. H.; Hamagaki, H.; Kek-Ps E325 Collaboration

    2006-11-01

    The invariant mass spectra of e+e- pairs produced in 12 GeV p+A reactions are measured at the KEK-PS. We observed a significant enhancement over the known hadronic sources on the low-mass side of the ω meson peak. The 95 % C.L. allowed parameter regions for ρ/ω ratio are obtained as ρ/ω < 0.15 and ρ/ω < 0.31 for C and Cu targets, respectively. As for the φ meson, the data obtained with a Cu target revealed a significant excess on the low-mass side of the φ meson peak mainly in the βγφ < 1.25 region.

  14. Site-selective covalent functionalization at interior carbon atoms and on the rim of circumtrindene, a C36H12 open geodesic polyarene

    Directory of Open Access Journals (Sweden)

    Hee Yeon Cho

    2014-04-01

    Full Text Available Circumtrindene (6, C36H12, one of the largest open geodesic polyarenes ever reported, exhibits fullerene-like reactivity at its interior carbon atoms, whereas its edge carbons react like those of planar polycyclic aromatic hydrocarbons (PAHs. The Bingel–Hirsch and Prato reactions – two traditional methods for fullerene functionalization – afford derivatives of circumtrindene with one of the interior 6:6 C=C bonds modified. On the other hand, functionalization on the rim of circumtrindene can be achieved by normal electrophilic aromatic substitution, the most common reaction of planar PAHs. This peripheral functionalization has been used to extend the π-system of the polyarene by subsequent coupling reactions and to probe the magnetic environment of the concave/convex space around the hydrocarbon bowl. For both classes of functionalization, computational results are reported to complement the experimental observations.

  15. Isotope separation of carbon-13 by counter-current column with exchange reaction between carbon dioxide and carbamic acid

    International Nuclear Information System (INIS)

    The isotope separation performance of carbon-13 with exchange reaction between CO2 and carbamic acid was studied and some factors for the counter-current column were studied for improving the overall performance. The working fluid for the experiments was a solution of DNBA, (C4H9)2NH, and n-octane mixture. The rate-controlling step of 13C transfer at temperatures higher than 10 deg C was the exchange reaction between carbamic acid and CO2 dissolved by physical absorption. The capacity coefficient of 13C transfer between gas and liquid in the counter-current column was successfully related to the product of three factors: the concentration of carbamic acid, the concentration of CO2 dissolved by physical absorption and the liquid holdup of the column. The liquid holdup was also an important factor. As the holdup increased, the isotope exchange rate and the overall separation factor of the column increased. However, the transient time to equilibrium was much longer. (author)

  16. Effect of SiO2 on the Preparation and Properties of Pure Carbon Reaction Bonded Silicon Carbide Ceramics

    Institute of Scientific and Technical Information of China (English)

    WU Qi-de; GUO Bing-jian; YAN Yong-gao; ZHAO Xiu-jian; HONG Xiao-lin

    2004-01-01

    Effect of SiO2 content and sintering process on the composition and properties of Pure CarbonReaction Bonded Silicon Carbide (PCRBSC) ceramics prepared with C - SiO2 green body by infiltrating siliconwas presented. The infiltrating mechanism of C - SiO2 preform was also explored. The experimental results indicatethat the shaping pressure increases with the addition of SiO2 to the preform, and the pore size of the body turnedfiner and distributed in a narrower range, which is beneficial to decreasing the residual silicon content in the sin-tered materials and to avoiding shock off, thus increasing the conversion rate of SiC. SiO2 was deoxidized by car-bon at a high temperature and the gaseous SiO and CO produced are the main reason to the crack of the body atan elevated temperature. If the green body is deposited at 1800℃ in vacuum before infiltration crack will not beproduced in the preform and fully dense RBSC can be obtained. The ultimate material has the following properties:a density of3.05-3.12g/cm3 ,a strength of 580±32MPa and a hardness of (HRA)91-92.3.

  17. Hybrid capacitors utilizing halogen-based redox reactions at interface between carbon positive electrode and aqueous electrolytes

    Science.gov (United States)

    Yamazaki, Shigeaki; Ito, Tatsuya; Murakumo, Yuka; Naitou, Masashi; Shimooka, Toshiharu; Yamagata, Masaki; Ishikawa, Masashi

    2016-09-01

    We propose novel hybrid capacitors (HCs) with electrolyte-involved redox reactions of bromide or iodide species by pretreatment of an activated carbon positive electrode. The treatment is simple; impregnation of pores at an activated carbon fiber cloth (ACFC) as a positive electrode with bromine- or iodine-containing water before cell assembly. The treated positive electrode is applied to a HC cell with a non-treated negative electrode of ACFC and its electrochemical performance is investigated by galvanostatic cycling and leakage current tests. Few studies on such "electrolytic" charge storage systems have provided acceptable capacitor performance because of inevitable self-discharge caused by diffusion of charged species form an electrode to the other one through an electrolyte. Nevertheless, our electrolyte-redox-based HCs show excellent performance without undesirable diffusion of charged species. Moreover, the present HC utilizing a bromide redox system fulfills a practical cell voltage of 1.8 V in spite of an aqueous electrolyte system. This high voltage provides excellent energy density, which is 5 times higher than that in a conventional aqueous electric double-layer capacitor (EDLC), and 1.2 times higher even than that in a 2.7 V-class non-aqueous EDLC, while keeping high charge-discharge rate capability.

  18. 1 GeV 12C heavy ion reaction. Study of projectile fragmentation and composite particle formation

    International Nuclear Information System (INIS)

    Interpretation of experimental results obtained in the study of heavy ion reaction of 1 GeV C12 ion beam on 9Be, 12C and 108Ag targets by fragmentation model and composite particle production model is presented. Comparison with results at higher energies and study of a component associated with a very high energy dissipation are treated

  19. Anaerobic reductive dechlorination of tetrachloroethene: how can dual Carbon-Chlorine isotopic measurements help elucidating the underlying reaction mechanism?

    Science.gov (United States)

    Badin, Alice; Buttet, Géraldine; Maillard, Julien; Holliger, Christof; Hunkeler, Daniel

    2014-05-01

    to catalyse PCE reductive dechlorination according to a different mechanism. In another study, an m value of 2.5±0.8 was found for PCE anaerobic dechlorination by a bacterial consortium dominated by species closely related to Desulfitobacterium aromaticivorans strain UKTL (consortia A) [2]. This value is indistinguishable from the one found for PceATCE within a 95% confidence interval although the reductive dehalogenase protein sequence of consortia A is distinctly different from the sequences of our two cultures. This suggests that the reaction mechanism is not related to the similarities between reductive dehalogenases. References 1. Abe, Y., et al., Carbon and Chlorine Isotope Fractionation during Aerobic Oxidation and Reductive Dechlorination of Vinyl Chloride and cis-1,2-Dichloroethene. Environmental Science & Technology, 2009. 43(1): p. 101-107. 2. Wiegert, C., et al., Carbon and Chlorine Isotope Fractionation During Microbial Degradation of Tetra- and Trichloroethene. Environmental Science & Technology, 2013. 47(12): p. 6449-6456.

  20. Effect of denitrifying bacteria on the electrochemical reaction of activated carbon fiber in electrochemical biofilm system

    Institute of Scientific and Technical Information of China (English)

    YING Diwen; JIA Jinping; ZHANG Lehua

    2007-01-01

    An electrochemical-activated denitrifying biofilm system consisting of activated carbon fiber electrodes immobilized with denitrifying bacteria film as cathode was studied.A revised model for an electrochemical-activated denitrifying biofilm was developed and validated by electrochemical analysis of cathodal polarization curves and nitrate consumption rate.The cathodal polarization curve and nitrate consumption rate were introduced to verify the rate of electrochemical reaction and the activity of denitrifying bacteria,respectively.It was shown that the denitrification process effectively strengthened the electrochemical reaction while the electron also intensified denitrification activity.Electron was transferred between electrochemical process and biological process not only by hydrogen molecule but also by new produced active hydrogen atom.Additionally,a parameter of apparent exchange current density was deprived from the cathodal polarization curve with high overpotential,and a new bio-effect current density was defined through statistical analysis,which was linearly dependent to the activity of denitrification bacteria.Activated carbon fiber (ACF) electrode was also found to be more suitable to the electrochemical denitrifying system compared with graphite and platinum.

  1. Study of the 20,22Ne+20,22Ne and 10,12,13,14,15C+12C Fusion Reactions with MUSIC

    Science.gov (United States)

    Avila, M. L.; Rehm, K. E.; Almaraz-Calderon, S.; Carnelli, P. F. F.; DiGiovine, B.; Esbensen, H.; Hoffman, C. R.; Jiang, C. L.; Kay, B. P.; Lai, J.; Nusair, O.; Pardo, R. C.; Santiago-Gonzalez, D.; Talwar, R.; Ugalde, C.

    2016-05-01

    A highly efficient MUlti-Sampling Ionization Chamber (MUSIC) detector has been developed for measurements of fusion reactions. A study of fusion cross sections in the 10,12,13,14,15C+12C and 20,22Ne+20,22Ne systems has been performed at ATLAS. Experimental results and comparison with theoretical predictions are presented. Furthermore, results of direct measurements of the 17O(α, n)20Ne, 23Ne(α, p)26Mg and 23Ne(α, n)26Al reactions will be discussed.

  2. Study of the 20,22Ne+20,22Ne and 10,12,13,14,15C+12C Fusion Reactions with MUSIC

    Directory of Open Access Journals (Sweden)

    Avila M. L.

    2016-01-01

    Full Text Available A highly efficient MUlti-Sampling Ionization Chamber (MUSIC detector has been developed for measurements of fusion reactions. A study of fusion cross sections in the 10,12,13,14,15C+12C and 20,22Ne+20,22Ne systems has been performed at ATLAS. Experimental results and comparison with theoretical predictions are presented. Furthermore, results of direct measurements of the 17O(α, n20Ne, 23Ne(α, p26Mg and 23Ne(α, n26Al reactions will be discussed.

  3. ATOMIC-LEVEL IMAGING OF CO2 DISPOSAL AS A CARBONATE MINERAL: OPTIMIZING REACTION PROCESS DESIGN; ANNUAL

    International Nuclear Information System (INIS)

    Fossil fuels, especially coal, can support the energy demands of the world for centuries to come, if the environmental problems associated with CO(sub 2) emissions can be overcome. Permanent and safe methods for CO(sub 2) capture and disposal/storage need to be developed. Mineralization of stationary-source CO(sub 2) emissions as carbonates can provide such safe capture and long-term sequestration. Mg-rich lamellar-hydroxide based minerals (e.g., brucite and serpentine) offer a class of widely available, low-cost materials, with intriguing mineral carbonation potential. Carbonation of such materials inherently involves dehydroxylation, which can disrupt the material down to the atomic level. As such, controlled dehydroxylation before and/or during carbonation may provide an important parameter for enhancing carbonation reaction processes. Mg(OH)(sub 2) was chosen as the model material for investigating lamellar hydroxide mineral dehydroxylation/carbonation mechanisms due to (i) its structural and chemical simplicity, (ii) interest in Mg(OH)(sub 2) gas-solid carbonation as a potentially cost-effective CO(sub 2) mineral sequestration process component, and (iii) its structural and chemical similarity to other lamellar-hydroxide-based minerals (e.g., serpentine-based minerals) whose carbonation reaction processes are being explored due to their low-cost CO(sub 2) sequestration potential. Fundamental understanding of the mechanisms that govern dehydroxylation/carbonation processes is essential for cost optimization of any lamellar-hydroxide-based mineral carbonation sequestration process

  4. The Heck Reaction Applied to 1,3- and 1,2-Unsaturated Derivatives, a Way towards Molecular Complexity

    OpenAIRE

    Annamaria Deagostino; Cristina Prandi; Silvia Tabasso; Paolo Venturello

    2010-01-01

    This review is an overview of the last ten years’ use of the Mizoroki–Heck coupling applied to 1,2- and 1,3-dienes. Since both these systems form π-allyl palladium intermediates in Pd(0) coupling, they show particular chemical behavior. Many examples of 1,2-dienes Heck reactions are presented. 1,2-Dienes are important substrates because of their high reactivity that makes them useful building blocks for the synthesis of biologically relevant structures.

  5. Heating Treated Carbon Nanotubes As Highly Active Electrocatalysts for Oxygen Reduction Reaction

    International Nuclear Information System (INIS)

    Graphical abstract: Heating treatment for multi-walled carbon nanotubes in the air introduces abundant structure defects which improve catalytic performances for oxygen reduction reaction (ORR). There is a positive correlation between the defect levels and ORR activities. The product shows better methanol tolerance and long-term durability than commercial Pt/C which makes it applicable in fuel cells. - Abstract: Carbon nanotubes (CNTs) have been widely developed for electrochemical energy conversion and storage devices for replacement of high-cost Pt-based catalysts. In this paper, a simple and convenient method is developed for improving the catalytic activity of CNTs in a controlled way. By simple heating treatment in the air, the multi-walled carbon nanotubes (MWCNTs) change with special morphologies, compositions and abundant defects (denoted as h-CNT). Those defects significantly improve the electrocatalytic performances for oxygen reduction reaction (ORR) which proceeds in a nearly four-electron pathway. The heating conditions have important effects on the structures and defect properties of h-CNTs which show a positive correlation between the defect levels and ORR performances. The small amounts of iron residues originated from nanotube growth and nitrogen doping during heating treatment also contribute to some catalytic activity. The inner walls of h-CNT remain intact during heating treatment and provide sufficient conductivity which facilitates charge transport during ORR. The h-CNT electrocatalyst shows better methanol tolerance and long-term durability than commercial Pt/C in alkaline media which makes it an alternative cathode catalyst in fuel cells

  6. Gas-Phase Synthesis of Dimethyl Carbonate from Methanol and Carbon Dioxide Over Co1.5PW12O40 Keggin-Type Heteropolyanion

    Directory of Open Access Journals (Sweden)

    Ahmed Aouissi

    2010-03-01

    Full Text Available The reactivity of Co1.5PW12O40 in the direct synthesis of dimethyl carbonate (DMC from CO2 and CH3OH was investigated. The synthesized catalyst has been characterized by means of FTIR, XRD, TG, and DTA and tested in gas phase under atmospheric pressure. The effects of the reaction temperature, time on stream, and methanol weight hourly space velocity (MWHSV on the conversion and DMC selectivity were investigated. The highest conversion (7.6% and highest DMC selectivity (86.5% were obtained at the lowest temperature used (200 °C. Increasing the space velocity MWHSV increased the selectivity of DMC, but decreased the conversion. A gain of 18.4% of DMC selectivity was obtained when the MWHSV was increased from 0.65 h-1 to 3.2 h-1.

  7. N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells

    Science.gov (United States)

    Shui, Jianglan; Wang, Min; Du, Feng; Dai, Liming

    2015-01-01

    The availability of low-cost, efficient, and durable catalysts for oxygen reduction reaction (ORR) is a prerequisite for commercialization of the fuel cell technology. Along with intensive research efforts of more than half a century in developing nonprecious metal catalysts (NPMCs) to replace the expensive and scarce platinum-based catalysts, a new class of carbon-based, low-cost, metal-free ORR catalysts was demonstrated to show superior ORR performance to commercial platinum catalysts, particularly in alkaline electrolytes. However, their large-scale practical application in more popular acidic polymer electrolyte membrane (PEM) fuel cells remained elusive because they are often found to be less effective in acidic electrolytes, and no attempt has been made for a single PEM cell test. We demonstrated that rationally designed, metal-free, nitrogen-doped carbon nanotubes and their graphene composites exhibited significantly better long-term operational stabilities and comparable gravimetric power densities with respect to the best NPMC in acidic PEM cells. This work represents a major breakthrough in removing the bottlenecks to translate low-cost, metal-free, carbon-based ORR catalysts to commercial reality, and opens avenues for clean energy generation from affordable and durable fuel cells. PMID:26601132

  8. Effect of different chemical modification of carbon nanotubes for the oxygen reduction reaction in alkaline media

    International Nuclear Information System (INIS)

    The electrochemical reduction of oxygen on chemically modified multi-walled carbon nanotubes (CNTs) electrodes in 1 M KOH solution has been studied using the rotating ring disc electrode (RDE). The surface modification of CNTs has been estimated by XPS and Raman spectroscopy. The effect of different oxygen functionalities on the surface of carbon nanotube for the oxygen reduction reaction (ORR) is considered in terms of the number of electrons (n) involved. Electrochemical studies indicate that in the case of the modification of CNTs with citric acid and diazonium salts the n values were close to two in the measured potential range, and the electrochemical reduction is limited to the production of peroxide as the final product. In the case of the modification of carbon nanotubes with peroxymonosulphuric acid, in the measured potential range, the n value is close to 4 indicating the four-electron pathway for the ORR. By correlating ORR measurements with the XPS analysis, we propose that the increase in electrocatalytic activity towards the ORR, for CNT can be attributed to the increase in C-O groups on the surface of CNTs after modification with peroxymonosulphuric acid

  9. Intermediate- and high-energy reactions of uranium with neon and carbon

    International Nuclear Information System (INIS)

    Target fragment production from the interactions of 1.0, 3.0, 4.8, and 12 GeV 12C and 5.0, 8.0, 20, and 42 GeV 20Ne with uranium has been measured using off-line gamma-ray spectroscopic techniques. The experimental charge and mass yield distributions are generally consistent with the concepts of limiting fragmentation and factorization at energies of 3.0 GeV and above. The total projectile kinetic energy was found to be the relevant scaling parameter for the comparison of reactions induced by projectiles of different sizes. Light fragments with mass number less than 60 were found to violate limiting fragmentation, and had excitation functions that were strongly increasing with projectile energy until 8.0 to 12.0 GeV. With the 1.0 GeV 12C beam the pattern of mass yields was quite different from that of all the other reactions, with the normal peak in the fission mass region (80 < A < 145), but with much lower yields below mass number 60 and between mass numbers 145 and 210, indicating that these fragments are formed primarily in very energetic reactions in which large excitation energies are transferred to and significant amounts of mass are removed from the target nucleus. Theoretical predictions of the intra-nuclear cascade, nuclear fireball, and nuclear firestreak models are compared with the experimental results. The intra-nuclear cascade and nuclear firestreak models are both able to predict the general shapes of the experimental distributions, with the exception of the yields for the lightest fragments

  10. Revealing Brown Carbon Chromophores Produced in Reactions of Methylglyoxal with Ammonium Sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Peng; Laskin, Julia; Nizkorodov, Sergey A.; Laskin, Alexander

    2015-12-15

    Atmospheric brown carbon (BrC) is an important contributor to light absorption and climate forcing by aerosols. Reactions between small water-soluble carbonyls and ammonia or amines have been identified as one of the potential pathways of BrC formation. However, detailed chemical characterization of BrC chromophores has been challenging and their formation mechanisms are still poorly understood. Understanding BrC formation is impeded by the lack of suitable methods which can unravel the variability and complexity of BrC mixtures. This study applies high performance liquid chromatography (HPLC) coupled to photodiode array (PDA) detector and high resolution mass spectrometry (HRMS) to investigate optical properties and chemical composition of individual BrC components produced through reactions of methylglyoxal (MG) and ammonium sulfate (AS), both of which are abundant in the atmospheric environment. A direct relationship between optical properties and chemical composition of 30 major BrC chromophores was established. Nearly all of these chromophores are nitrogen-containing compounds that account for >70% of the overall light absorption by the MG+AS system in the 300-500 nm range. These results suggest that reduced-nitrogen organic compounds formed in reactions between atmospheric carbonyls and ammonia/amines are important BrC chromophores. It is also demonstrated that improved separation of BrC chromophores by HPLC will significantly advance understanding of BrC chemistry.

  11. Carbon-sulfur bond-forming reaction catalysed by the radical SAM enzyme HydE.

    Science.gov (United States)

    Rohac, Roman; Amara, Patricia; Benjdia, Alhosna; Martin, Lydie; Ruffié, Pauline; Favier, Adrien; Berteau, Olivier; Mouesca, Jean-Marie; Fontecilla-Camps, Juan C; Nicolet, Yvain

    2016-05-01

    Carbon-sulfur bond formation at aliphatic positions is a challenging reaction that is performed efficiently by radical S-adenosyl-L-methionine (SAM) enzymes. Here we report that 1,3-thiazolidines can act as ligands and substrates for the radical SAM enzyme HydE, which is involved in the assembly of the active site of [FeFe]-hydrogenase. Using X-ray crystallography, in vitro assays and NMR spectroscopy we identified a radical-based reaction mechanism that is best described as the formation of a C-centred radical that concomitantly attacks the sulfur atom of a thioether. To the best of our knowledge, this is the first example of a radical SAM enzyme that reacts directly on a sulfur atom instead of abstracting a hydrogen atom. Using theoretical calculations based on our high-resolution structures we followed the evolution of the electronic structure from SAM through to the formation of S-adenosyl-L-cysteine. Our results suggest that, at least in this case, the widely proposed and highly reactive 5'-deoxyadenosyl radical species that triggers the reaction in radical SAM enzymes is not an isolable intermediate. PMID:27102684

  12. Phosphinocyclodextrins as confining units for catalytic metal centres. Applications to carbon–carbon bond forming reactions

    Directory of Open Access Journals (Sweden)

    Matthieu Jouffroy

    2014-10-01

    Full Text Available The capacity of two cavity-shaped ligands, HUGPHOS-1 and HUGPHOS-2, to generate exclusively singly phosphorus-ligated complexes, in which the cyclodextrin cavity tightly wraps around the metal centre, was explored with a number of late transition metal cations. Both cyclodextrin-derived ligands were assessed in palladium-catalysed Mizoroki–Heck coupling reactions between aryl bromides and styrene on one hand, and the rhodium-catalysed asymmetric hydroformylation of styrene on the other hand. The inability of both chiral ligands to form standard bis(phosphine complexes under catalytic conditions was established by high-pressure NMR studies and shown to have a deep impact on the two carbon–carbon bond forming reactions both in terms of activity and selectivity. For example, when used as ligands in the rhodium-catalysed hydroformylation of styrene, they lead to both high isoselectivity and high enantioselectivity. In the study dealing with the Mizoroki–Heck reactions, comparative tests were carried out with WIDEPHOS, a diphosphine analogue of HUGPHOS-2.

  13. Effect of Reaction Temperature on Carbon Yield and Morphology of CNTs on Copper Loaded Nickel Nanoparticles

    Directory of Open Access Journals (Sweden)

    Hu Ming

    2016-01-01

    Full Text Available This investigation was attempted to introduce carbon nanotubes (CNTs onto surface of copper powders in order to improve heat transfer performance of copper matrix for engineering application of electrical packaging materials. The Ni/MgO catalyst was formed on the copper powders surface by means of codeposition method. CVD technique was executed to fabricate uniform CNTs on copper powders and effect of reaction temperature on the morphology of CNTs was surveyed. The results showed that CNTs products on the copper powder surface were distributed uniformly even if reaction temperature was different. The diameter dimension of CNTs was within the scope of 30~60 nm. Growth behaviors of CNTs by CVD method were considered to be “tip-growth” mechanism. Raman spectra of CNTs proved that intensity ratio of D-band to G-band (ID/IG increased as deposition reaction temperature increased, which implied that order degree of graphitic structure in synthesized CNTs improved.

  14. Optical Potential Parameters for Halo Nucleus System 6He+12C from Transfer Reaction11B (7Li, 6He) 12C

    Institute of Scientific and Technical Information of China (English)

    WU Zhen-Dong; XU Xin-Xing; BAI Chun-Lin; YU Ning; JIA Fei; LIN Cheng-Jian; ZHANG Huan-Qiao; LIU Zu-Hua; YANG Feng; AN Guang-Peng; ZHANG Chun-Lei; ZHANG Gao-Long; JIA Hui-Ming

    2009-01-01

    The optical potential parameters for the halo nucleus system 6He+12 C are extracted from fits to the measured angular distributions of 11B(7 Li, 6He)12C reaction at energies of 18.3 and 28.3 MeV with distorted-wave Born approximation analysis. The characters of the obtained optical potential parameters are basically consistent with the results extracted from the fits to the elastic-scattering angular distributions in the literature.

  15. Nitrogen, carbon, and sulfur isotopic change during heterotrophic (Pseudomonas aureofaciens) and autotrophic (Thiobacillus denitrificans) denitrification reactions.

    Science.gov (United States)

    Hosono, Takahiro; Alvarez, Kelly; Lin, In-Tian; Shimada, Jun

    2015-12-01

    In batch culture experiments, we examined the isotopic change of nitrogen in nitrate (δ(15)NNO3), carbon in dissolved inorganic carbon (δ(13)CDIC), and sulfur in sulfate (δ(34)SSO4) during heterotrophic and autotrophic denitrification of two bacterial strains (Pseudomonas aureofaciens and Thiobacillus denitrificans). Heterotrophic denitrification (HD) experiments were conducted with trisodium citrate as electron donor, and autotrophic denitrification (AD) experiments were carried out with iron disulfide (FeS2) as electron donor. For heterotrophic denitrification experiments, a complete nitrate reduction was accomplished, however bacterial denitrification with T. denitrificans is a slow process in which, after seventy days nitrate was reduced to 40% of the initial concentration by denitrification. In the HD experiment, systematic change of δ(13)CDIC (from -7.7‰ to -12.2‰) with increase of DIC was observed during denitrification (enrichment factor εN was -4.7‰), suggesting the contribution of C of trisodium citrate (δ(13)C=-12.4‰). No SO4(2-) and δ(34)SSO4 changes were observed. In the AD experiment, clear fractionation of δ(13)CDIC during DIC consumption (εC=-7.8‰) and δ(34)SSO4 during sulfur use of FeS2-S (around 2‰), were confirmed through denitrification (εN=-12.5‰). Different pattern in isotopic change between HD and AD obtained on laboratory-scale are useful to recognize the type of denitrification occurring in the field. PMID:26529303

  16. Nitrogen, carbon, and sulfur isotopic change during heterotrophic (Pseudomonas aureofaciens) and autotrophic (Thiobacillus denitrificans) denitrification reactions

    Science.gov (United States)

    Hosono, Takahiro; Alvarez, Kelly; Lin, In-Tian; Shimada, Jun

    2015-12-01

    In batch culture experiments, we examined the isotopic change of nitrogen in nitrate (δ15NNO3), carbon in dissolved inorganic carbon (δ13CDIC), and sulfur in sulfate (δ34SSO4) during heterotrophic and autotrophic denitrification of two bacterial strains (Pseudomonas aureofaciens and Thiobacillus denitrificans). Heterotrophic denitrification (HD) experiments were conducted with trisodium citrate as electron donor, and autotrophic denitrification (AD) experiments were carried out with iron disulfide (FeS2) as electron donor. For heterotrophic denitrification experiments, a complete nitrate reduction was accomplished, however bacterial denitrification with T. denitrificans is a slow process in which, after seventy days nitrate was reduced to 40% of the initial concentration by denitrification. In the HD experiment, systematic change of δ13CDIC (from - 7.7‰ to - 12.2‰) with increase of DIC was observed during denitrification (enrichment factor εN was - 4.7‰), suggesting the contribution of C of trisodium citrate (δ13C = - 12.4‰). No SO42 - and δ34SSO4 changes were observed. In the AD experiment, clear fractionation of δ13CDIC during DIC consumption (εC = - 7.8‰) and δ34SSO4 during sulfur use of FeS2-S (around 2‰), were confirmed through denitrification (εN = - 12.5‰). Different pattern in isotopic change between HD and AD obtained on laboratory-scale are useful to recognize the type of denitrification occurring in the field.

  17. Final Report: The Impact of Carbonate on Surface Protonation, Electron Transfer and Crystallization Reactions in Iron Oxide Nanoparticles and Colloids

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, David Adams [The University of Alabama

    2013-07-02

    This project addresses key issues of importance in the geochemical behavior of iron oxides and in the geochemical cycling of carbon and iron. For Fe, we are specifically studying the influence of carbonate on electron transfer reactions, solid phase transformations, and the binding of carbonate to reactive sites on the edges of particles. The emphasis on carbonate arises because it is widely present in the natural environment, is known to bind strongly to oxide surfaces, is reactive on the time scales of interest, and has a speciation driven by acid-base reactions. The geochemical behavior of carbonate strongly influences global climate change and CO{sub 2} sequestration technologies. Our goal is to answer key questions with regards to specific site binding, electron transfer reactions, and crystallization reactions of iron oxides that impact both the geochemical cycling of iron and CO{sub 2} species. Our work is focused on the molecular level description of carbonate chemistry in solution including the prediction of isotope fractionation factors. We have also done work on critical atmospheric species.

  18. Localized surface grafting reactions on carbon nanofibers induced by gamma and e-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Evora, M.C., E-mail: cecilia@ieav.cta.br [Institute for Advanced Studies-IEAV/DCTA, Av. Cel Jose Alberto Albano do Amarante, 1-Putim, 12228-001 São Jose dos Campos, SP (Brazil); Araujo, J.R., E-mail: jraraujo@inmetro.gov.br [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias, RJ (Brazil); Ferreira, E.H.M. [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias, RJ (Brazil); Strohmeier, B.R. [Thermo Fisher Scientific, 5225 Verona Road, Madison, WI 53711 (United States); Silva, L.G.A., E-mail: lgasilva@ipen.br [Institute for Nuclear and Energy Research- IPEN, Av. Prof lineu Prestes, 2242- Cidade Universitaria, 05508-000 SP (Brazil); Achete, C.A. [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias, RJ (Brazil)

    2015-04-30

    Graphical abstract: - Highlights: • Methodology for the functionalization of carbon nanofibers was investigated. • Two radiation sources were used to promote grafting reactions: gamma and electron beam. • We report the optimum inhibitor concentration to achieve the functionalization. • Surface of carbon nanofibers showed an increase of oxygen content after irradiation. • The radiation-induced graphitization did not damage the overall sp{sup 2} structure. - Abstract: Electron beam and gamma-ray irradiation have potential application to modify the carbon fiber nanostructures in order to produce useful defects in the graphitic structure and create reactive sites. In this study, the methodology to functionalize carbon nanofiber (CNF), via a radiation process and using acrylic acid as a source of oxygen functional groups, was investigated. The samples were submitted to a direct grafting radiation process with electron beam and gamma-ray source. Several parameters were changed such as: acrylic acid concentration, radiation dose and percentage of inhibitor necessary to achieve functionalization, with higher percentage of oxygen functional groups on CNF surface, and better dispersion. The better results achieved were when mixing CNF in a solution of acrylic acid with 6% of inhibitor (FeSO{sub 4}·7H{sub 2}O) and irradiated at 100 kGy. The samples were characterized by X-ray photoelectron spectroscopy and the surface composition (atomic%) showed a significant increase of oxygen content for the samples after irradiation. Also, the dispersion of the functionalized CNF in water was stable during months which may be a good indication that the functionalization process of CNF via ionizing radiation was successful.

  19. Investigation of Proton-Proton Short-Range Correlations via the 12C(e,e'pp) Reaction

    OpenAIRE

    Shneor, R.; Monaghan, P.; Subedi, R.

    2007-01-01

    We investigated simultaneously the 12C(e,e'p) and 12C(e,e'pp) reactions at Q2 = 2 [GeV/c]2, x_B = 1.2, and in an (e,e'p) missing-momentum range from 300 to 600 MeV/c. At these kinematics, with a missing-momentum greater than the Fermi momentum of nucleons in a nucleus and far from the delta excitation, short-range nucleon-nucleon correlations are predicted to dominate the reaction. For(9.5 +/- 2)% of the 12C(e,e'p) events, a recoiling partner proton was observed back-to-back to the 12C(e,e'p)...

  20. Investigation of Proton-Proton Short-Range Correlations via the 12C(e,e'pp) Reaction

    International Nuclear Information System (INIS)

    We investigated simultaneously the 12C(e,e'p) and 12C(e,e'pp) reactions at Q2=2 (GeV/c)2, xB=1.2, and in an (e, e'p) missing-momentum range from 300 to 600 MeV/c. At these kinematics, with a missing momentum greater than the Fermi momentum of nucleons in a nucleus and far from the delta excitation, short-range nucleon-nucleon correlations are predicted to dominate the reaction. For (9.5±2)% of the 12C(e,e'p) events, a recoiling partner proton was observed back-to-back to the 12C(e,e'p) missing-momentum vector, an experimental signature of correlations

  1. Investigation of Proton-Proton Short-Range Correlations via the 12C(e,e'pp) Reaction

    CERN Document Server

    Shneor, R; Subedi, R; al, et

    2007-01-01

    We investigated simultaneously the 12C(e,e'p) and 12C(e,e'pp) reactions at Q2 = 2 [GeV/c]2, x_B = 1.2, and in an (e,e'p) missing-momentum range from 300 to 600 MeV/c. At these kinematics, with a missing-momentum greater than the Fermi momentum of nucleons in a nucleus and far from the delta excitation, short-range nucleon-nucleon correlations are predicted to dominate the reaction. For(9.5 +/- 2)% of the 12C(e,e'p) events, a recoiling partner proton was observed back-to-back to the 12C(e,e'p) missing momentum vector, an experimental signature of correlations.

  2. Investigation of Proton-Proton Short-Range Correlations via the 12C(e,e'pp) Reaction

    Energy Technology Data Exchange (ETDEWEB)

    J. Arrington; H. Benaoum; F. Benmokhtar; P. Bertin; W. Bertozzi; W. Boeglin; J. P. Chen; Seonho Choi; E. Chudakov; E. Cisbani; B. Craver; C. W. de Jager; R. Feuerbach; S. Frullani; F. Garibaldi; O. Gayou; S. Gilad; R. Gilman; O. Glamazdin; J. Gomez; O. Hansen; D. W. Higinbotham; T. Holmstrom; H. Ibrahim; R. Igarashi; E. Jans; X. Jiang; Y. Jiang; L. Kaufman; A. Kelleher; A. Kolarkar; E. Kuchina; G. Kumbartzki; J. J. LeRose; R. Lindgren; N. Liyanage; D. J. Margaziotis; P. Markowitz; S. Marrone; M. Mazouz; R. Michaels; B. Moffit; S. Nanda; C. F. Perdrisat; E. Piasetzky; M. Potokar; V. Punjabi; Y. Qiang; J. Reinhold; B. Reitz; G. Ron; G. Rosner; A. Saha; B. Sawatzky; A. Shahinyan; S. Sirca; K. Slifer; P. Solvignon; V. Sulkosky; N. Thompson; P. E. Ulmer; G. M. Urciuoli; E. Voutier; K. Wang; J. W. Watson

    2007-08-01

    We investigated simultaneously the 12C(e,e'p) and 12C(e,e'pp) reactions at Q2 = 2 [GeV/c]2, x_B = 1.2, and in an (e,e'p) missing-momentum range from 300 to 600 MeV/c. At these kinematics, with a missing-momentum greater than the Fermi momentum of nucleons in a nucleus and far from the delta excitation, short-range nucleon-nucleon correlations are predicted to dominate the reaction. For(9.5 +/- 2)% of the 12C(e,e'p) events, a recoiling partner proton was observed back-to-back to the 12C(e,e'p) missing momentum vector, an experimental signature of correlations.

  3. Investigation of Proton-Proton Short-Range Correlations via the 12C(e,e'pp) Reaction

    International Nuclear Information System (INIS)

    We investigated simultaneously the 12C(e,e'p) and 12C(e,e'pp) reactions at Q2 = 2 [GeV/c]2, xB = 1.2, and in an (e,e'p) missing-momentum range from 300 to 600 MeV/c. At these kinematics, with a missing-momentum greater than the Fermi momentum of nucleons in a nucleus and far from the delta excitation, short-range nucleon-nucleon correlations are predicted to dominate the reaction. For (9.5 +/- 2)% of the 12C(e,e'p) events, a recoiling partner proton was observed back-to-back to the 12C(e,e'p) missing momentum vector, an experimental signature of correlations

  4. The first chiral diene-based metal-organic frameworks for highly enantioselective carbon-carbon bond formation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sawano, Takahiro; Ji, Pengfei; McIsaac, Alexandra R.; Lin, Zekai; Abney, Carter W.; Lin, Wenbin [UC

    2016-02-01

    We have designed the first chiral diene-based metal–organic framework (MOF), E₂-MOF, and postsynthetically metalated E₂-MOF with Rh(I) complexes to afford highly active and enantioselective single-site solid catalysts for C–C bond formation reactions. Treatment of E₂-MOF with [RhCl(C₂H₄)₂]₂ led to a highly enantioselective catalyst for 1,4-additions of arylboronic acids to α,β-unsaturated ketones, whereas treatment of E₂-MOF with Rh(acac)(C₂H₄)₂ afforded a highly efficient catalyst for the asymmetric 1,2-additions of arylboronic acids to aldimines. Interestingly, E₂-MOF·Rh(acac) showed higher activity and enantioselectivity than the homogeneous control catalyst, likely due to the formation of a true single-site catalyst in the MOF. E₂-MOF·Rh(acac) was also successfully recycled and reused at least seven times without loss of yield and enantioselectivity.

  5. Transfer reactions with JENSA: study of the levels in 12N using 14N(p,t)

    Science.gov (United States)

    Chipps, K. A.; Jensa Collaboration

    2015-10-01

    The Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas jet target, recently recommissioned in the ReA3 facility at the NSCL, will provide a state-of-the-art, dense, localized, and pure target of light, gaseous elements for various reaction studies. As one of a series of commissioning physics measurements to demonstrate the benefit of the new Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas jet target for enabling next-generation transfer reaction studies, the 14N(p,t)12N reaction was studied using a pure 300 psig jet of nitrogen, in order to help elucidate the structure of 12N. The experiment and lessons learned for future gas jet transfer reaction measurements will be discussed. Research supported by the U. S. Department of Energy Office of Science and NSF.

  6. Reactions of Hot Cl38 Atoms in Mixtures of Carbon Tetrachloride with Aliphatic Alcohols

    International Nuclear Information System (INIS)

    Investigations of the chemical effects of nuclear reactions in binary systems are expected to yield much useful information. Study of the recoil processes of the halogen derivatives when the second component is suitably chosen and its concentration varied in a wide range might permit inferences to be made on the role and mechanism of the various stabilizing processes. Considering the results obtained with CCl4-Cl2, CCl4-SiCl4, CCl4-C6H6 and CCl4-c-hexane mixtures as well as the energy scavenger property of alcohol, it seemed of interest to study the contribution of the alcohols to the stabilization of hot Cl38. Chemical processes induced by hot Cl38 from the nuclear reaction Cl97 (n, γ)Cl38 were investigated in mixtures of CCl4-ROH (where R = CH3-, C2H5-, C3H7- and (CH3)2CH-). The irradiations were performed in the thermal column of the 2 MW VVRS reactor using rather short exposure times to keep the radiation chemical effects at negligible level. The organic fractions were separated from the inorganic ones by extraction and the former were analysed by gas chromatographic method. Total retention and the yield of the complete set of organic chlorine compounds were determined in terms of alcohol concentration. Some interesting results are that the yield of reaction products in which the OH radical of aliphatic alcohol has been replaced by Cl38 increases with increasing alcohol concentration with a simultaneous decrease in the labelled CCI4 yield and that, in addition to the monochlorine derivates with less carbon atoms than the alcohol molecule, a considerable amount of chloroform is formed with maximum yield at a given alcohol concentration. The relative contributions of the hot and the epithermal stabilization processes of energetic Cl38 and the mechanism of the various reactions are discussed. (author)

  7. The reaction of lithium metal vapor with single walled carbon nanotubes of large diameters

    Czech Academy of Sciences Publication Activity Database

    Kalbáč, Martin; Kavan, Ladislav; Dunsch, L.

    2009-01-01

    Roč. 246, 11-12 (2009), s. 2428-2431. ISSN 0370-1972 R&D Projects: GA AV ČR IAA400400911; GA AV ČR KAN200100801; GA AV ČR IAA400400804; GA ČR GC203/07/J067; GA MŠk LC510 Institutional research plan: CEZ:AV0Z40400503 Keywords : lithium * single walled carbon nanotubes * Raman spectroscopy Subject RIV: CG - Electrochemistry Impact factor: 1.150, year: 2009

  8. Up-Scaling Geochemical Reaction Rates for Carbon Dioxide (CO2) in Deep Saline Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Catherine A

    2013-02-28

    Geochemical reactions in deep subsurface environments are complicated by the consolidated nature and mineralogical complexity of sedimentary rocks. Understanding the kinetics of these reactions is critical to our ability to make long-term predictions about subsurface processes such as pH buffering, alteration in rock structure, permeability changes, and formation of secondary precipitates. In this project, we used a combination of experiments and numerical simulation to bridge the gap between our knowledge of these reactions at the lab scale and rates that are meaningful for modeling reactive transport at core scales. The focus is on acid-driven mineral dissolution, which is specifically relevant in the context of CO2-water-rock interactions in geological sequestration of carbon dioxide. The project led to major findings in three areas. First, we modeled reactive transport in pore-network systems to investigate scaling effects in geochemical reaction rates. We found significant scaling effects when CO2 concentrations are high and reaction rates are fast. These findings indicate that the increased acidity associated with geological sequestration can generate conditions for which proper scaling tools are yet to be developed. Second, we used mathematical modeling to investigate the extent to which SO2, if co-injected with CO2, would acidify formation brines. We found that there exist realistic conditions in which the impact on brine acidity will be limited due to diffusion rate-limited SO2 dissolution from the CO2 phase, and the subsequent pH shift may also be limited by the lack of availability of oxidants to produce sulfuric acid. Third, for three Viking sandstones (Alberta sedimentary basin, Canada), we employed backscattered electron microscopy and energy dispersive X-ray spectroscopy to statistically characterize mineral contact with pore space. We determined that for reactive minerals in sedimentary consolidated rocks, abundance alone is not a good predictor of

  9. Charged current antineutrino reactions from 12C at MiniBooNE energies

    International Nuclear Information System (INIS)

    A study of charged current induced antineutrino interactions from nuclei has been done for the intermediate energy antineutrinos and applied to 12C, relevant for ongoing experiment by MiniBooNE collaboration. The calculations have been done for the quasielastic and inelastic lepton production as well as for the incoherent and the coherent pion production processes. The calculations are done in local density approximation. In the case of the quasielastic reaction the effects of Pauli blocking, Fermi motion effects, renormalization of weak transition strengths in nuclear medium and the Coulomb distortion of the outgoing lepton have been taken into account. For the inelastic processes the calculations have been done in the Δ dominance model and take into account the effect of Pauli blocking, Fermi motion of the nucleon, and renormalization of Δ properties in a nuclear medium. The effect of final state interactions of pions is also taken into account. The numerical results for the total cross sections for the charged current quasielastic scattering and incoherent pion production processes are compared with earlier experimental results available in freon and freon-propane. It is found that nuclear medium effects give strong reduction in the cross sections leading to satisfactory agreement with the available data

  10. Electrical and morphological characterization of multiwalled carbon nanotubes functionalized via the Bingel reaction

    Science.gov (United States)

    Brković, Danijela V.; Ivić, Milka L. Avramov; Rakić, Vesna M.; Valentini, Luca; Uskoković, Petar S.; Marinković, Aleksandar D.

    2015-08-01

    Covalent sidewall functionalization of multiwalled carbon nanotubes (MWCNTs) has been performed using two approaches, direct and indirect cycloaddition through diethyl malonate, based on the Bingel reaction. The results revealed that functionalized MWCNTs demonstrated enhanced electrical properties and significantly lower sheet resistance, especially after electric field thermal assisted annealing at 80 °C was performed. The presence of 1,3-dicarbonyl compounds caused the surface of MWCNTs to be more hydrophilic, approachable for the electrolyte and improved the capacitance performance of Au/MWCNTs electrodes. The modified MWCNTs have been incorporated into nanocomposites by using solution mixing method with polyaniline and drop-casting resulting mixture on the paper substrate. The reduction in the sheet resistance with increasing the content of MWCNTs in the prepared nanocomposite films has been achieved.

  11. Study for the charge symmetric systems, 12C+13N and 12C+13C with the orthogonalized coupled-reaction-channel method

    International Nuclear Information System (INIS)

    The charge-symmetric scattering systems, 12C+13N and 12C+13C have been investigated by using the orthogonalized coupled-reaction-channel (OCRC) method with the basis functions of the elastic, inelastic and transfer channels defined by the single-particle states, 1p1/2, 2s1/2, 1d5/2 and 1d3/2 of the valence nucleon in 13N or 13C. The data of the elastic scattering of 13N on 12C measured by Lienard et al. have been explained consistently with the data of the elastic and inelastic scattering of the 12C+13C system. The CRC effects both on the above systems are very strong, although those on the 12C+13N system are fairly weaker than the 12C+13C system. The role of the highly excited single-particle states 1d3/2 is particularly important in the formation of a specific CRC scheme, i.e., the formation of the covalent molecules due to the hybridization caused by the mixing of the different parity single-particle states. The fusion cross sections of the 12C+13C system at energies below the Coulomb barrier are strongly enhanced as a result of the strong CRC effects as compared with those of the 12C+12C system, while in 12C+13N system the enhancement of the sub-barrier fusion has not been observed. The above absorption mechanism for the 12C+13C system explains the lack of the molecular-resonance phenomena observed in the 12C+12C system. We check the effects of the dipole (E1) transition of the valence nucleon in 13N (and also in 13C) due to the core-core Coulomb interaction in the scattering at sub-barrier energies. The effects are not appreciable. (author)

  12. S-Factor measurement of the 12C(p,γ13N reaction in inverse kinematics

    Directory of Open Access Journals (Sweden)

    Stöckel Klaus

    2015-01-01

    Full Text Available Hydrogen rich solid targets have been developed and produced to investigate the 12C(p, γ13N reaction in inverse kinematics. The SRIM simulation software has been used to determine the parameters for ion implantation in various materials. Nuclear Resonant Reacton Analysis (NRRA with the resonant reaction 15N(p, αγ12C has been carried out to measure the hydrogen content of the produced targets. Measurements of the produced targets at the energy range from Ecm = 577 keV down to Ecm = 191 keV, were performed at the 3-MV Tandetron of Helmholtz-Zentrum Dresden-Rossendorf (HZDR.

  13. Metal-Organic Framework Derived Hierarchically Porous Nitrogen-Doped Carbon Nanostructures as Novel Electrocatalyst for Oxygen Reduction Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Shaofang; Zhu, Chengzhou; Zhou, Yazhou; Yang, Guohai; Jeon, Ju Won; Lemmon, John P.; Du, Dan; Nune, Satish K.; Lin, Yuehe

    2015-10-01

    The hierarchically porous nitrogen-doped carbon materials, derived from nitrogen-containing isoreticular metal-organic framework-3 (IRMOF-3) through direct carbonization, exhibited excellent electrocatalytic activity in alkaline solution for oxygen reduction reaction (ORR). This high activity is attributed to the 10 presence of high percentage of quaternary and pyridinic nitrogen, the high surface area as well as good conductivity. When IRMOF-3 was carbonized at 950 °C (CIRMOF-3-950), it showed four-electron reduction pathway for ORR and exhibited better stability (about 78.5% current density was maintained) than platinum/carbon (Pt/C) in the current durability test. In addition, CIRMOF-3-950 presented high selectivity to cathode reactions compared to commercial Pt/C.

  14. Si-rich layer formation on olivine surfaces during reaction with water and supercritical carbon dioxide under conditions relevant for geologic carbon storage

    Science.gov (United States)

    Johnson, N. C.; Jackson, A.; Maher, K.; Bird, D. K.; Brown, G. E.

    2013-12-01

    The reaction of Mg-silicate minerals (i.e. olivine) with carbon dioxide (CO2) is a promising method for secure, long-term, geologic carbon storage. Several technical challenges must be overcome before implementing mineral carbonation technology on a large scale, one of which is slow reaction kinetics. This study probes surface reaction limitations of olivine carbonation, specifically the formation of a passivating, Si-rich layer on olivine surfaces upon exposure to water and CO2 under sequestration conditions (elevated temperature and pressure). A series of batch reactions were performed at 60°C and 100 bar CO2 pressure in Dickson-style rocker bombs, varying the length of reaction and the amount of mixing (rocking). The initial aqueous phase was spiked with 29Si. Fluid samples were taken periodically and analyzed for cation content, alkalinity, and dissolved inorganic carbon. At the end of each experiment, the solid products were analyzed with a Sensitive High Resolution Ion Microprobe Reverse Geometry (SHRIMP-RG) in order to measure the amount of 29Si incorporated into the Si-rich layer on reacted olivine grains. We also cut cross sections of reacted grains from each experiment using a Focused Ion Beam (FIB) which were thinned to leaching process. SHRIMP-RG data also imply the presence of a precipitated Si-rich layer on top of a leached Si-rich layer, as the 29Si penetration depth is only 25-65% of the total Si-rich layer thickness. The combination of SHRIMP-RG and FIB/TEM analysis leads us to hypothesize that a Si-rich layer forms quickly on olivine surfaces due to preferential Mg removal from the surface (the traditional 'leached' layer), and as the reaction proceeds, amorphous silica reaches saturation in the fluid and precipitates on surfaces inside the reactor (including olivine grains).

  15. Interlaboratory reaction rate program. 12th progress report, November 1976-October 1979

    International Nuclear Information System (INIS)

    The Interlaboratory Reaction Rate UILRR) program is establishing the capability to accurately measure neutron-induced reactions and reaction rates for reactor fuels and materials development programs. The goal for the principal fission reactions, 235U, 238U and 239Pu, is an accuracy to within +- 5% at the 95% confidence level. Accurate measurement of other fission and nonfission reactions is also required, but to a lesser accuracy, between +- 5% and 10% at the 95% confidence level. A secondary program objective is improvement in knowledge of the nuclear parameters involved in the standarization of fuels and materials dosimetry measurements of neutron flux, spectra, fluence and burnup

  16. Interlaboratory reaction rate program. 12th progress report, November 1976-October 1979

    Energy Technology Data Exchange (ETDEWEB)

    Lippincott, E.P.; McElroy, W.N.; Preston, C.C. (comps.)

    1980-09-01

    The Interlaboratory Reaction Rate UILRR) program is establishing the capability to accurately measure neutron-induced reactions and reaction rates for reactor fuels and materials development programs. The goal for the principal fission reactions, /sup 235/U, /sup 238/U and /sup 239/Pu, is an accuracy to within +- 5% at the 95% confidence level. Accurate measurement of other fission and nonfission reactions is also required, but to a lesser accuracy, between +- 5% and 10% at the 95% confidence level. A secondary program objective is improvement in knowledge of the nuclear parameters involved in the standarization of fuels and materials dosimetry measurements of neutron flux, spectra, fluence and burnup.

  17. Bio-mass derived mesoporous carbon as superior electrode in all vanadium redox flow battery with multicouple reactions

    Science.gov (United States)

    Ulaganathan, Mani; Jain, Akshay; Aravindan, Vanchiappan; Jayaraman, Sundaramurthy; Ling, Wong Chui; Lim, Tuti Mariana; Srinivasan, Madapusi P.; Yan, Qingyu; Madhavi, Srinivasan

    2015-01-01

    We first report the multi-couple reaction in all vanadium redox flow batteries (VRFB) while using bio-mass (coconut shell) derived mesoporous carbon as electrode. The presence of V3+/V4+ redox couple certainly supplies the additional electrons for the electrochemical reaction and subsequently provides improved electrochemical performance of VRFB system. The efficient electro-catalytic activity of such coconut shell derived high surface area mesoporous carbon is believed for the improved cell performance. Extensive power and electrochemical studies are performed for VRFB application point of view and described in detail.

  18. One-pot synthesis of S-alkyl dithiocarbamates via the reaction of N-tosylhydrazones, carbon disulfide and amines.

    Science.gov (United States)

    Sha, Qiang; Wei, Yun-Yang

    2013-09-14

    A new, convenient and efficient transition metal-free synthesis of S-alkyl dithiocarbamates through one-pot reaction of N-tosylhydrazones, carbon disulfide and amines is reported. Tosylhydrazones derived from various aromatic and aliphatic ketones or aldehydes were tested and gave dithiocarbamates in good to excellent yields. The tosylhydrazones can be generated in situ without isolation, which provides a simpler one-pot method to synthesize dithiocarbamates via the reaction of carbonyl compounds, carbon disulfide and amines in the presence of 4-methylbenzenesulfonohydrazide. PMID:23863979

  19. Method for increasing -SiC yield on solid state reaction of coal fly ash and activated carbon powder

    Indian Academy of Sciences (India)

    Sulardjaka; Jamasri; M W Wildan; Kusnanto

    2011-07-01

    A novel process for increasing -SiC yield on solid state reaction of coal fly ash and micro powder activated carbon powder has been proposed. -SiC powder was synthesized at temperature 1300°C for 2 h under vacuum condition with 1 l/min argon flow. Cycling synthesis process has been developed for increasing -SiC yield on solid state reaction of coal fly ash and activated carbon powder. Synthesized products were analyzed by XRD with Cu-K radiation, FTIR spectrometer and SEM fitted with EDAX. The results show that the amount of relative -SiC is increased with the number of cycling synthesis.

  20. A Pt-free Electrocatalyst Based on Pyrolized Vinazene-Carbon Composite for Oxygen Reduction Reaction

    International Nuclear Information System (INIS)

    The 2-vinyl-4, 5-dicyanoimidazole (Vinazene) was used as a nitrogen precursor to synthesize a promising non-precious metal (NPM) catalyst for oxygen reduction reaction (ORR). Vinazene together with an iron source was impregnated into a carbon matrix and pyrolyzed at 900 °C in N2 atmosphere. The structure of the resulting Fe–N–C nanocomposite was analyzed by X-ray photoelectron spectroscopy, Raman spectroscopy and X-ray diffraction. Both rotating disk electrode (RDE) and rotating ring-disk electrode (RRDE) experiments showed excellent ORR activity for the obtained catalyst with low H2O2 formation (∼3.0%) in 0.1 M KOH. The catalyst was found to be rich in mesoporous structure along with high percentage of pyrrolic-N function with surface area of about 673 m2 g−1 and pore size of 4.2 nm. In addition to its excellent ORR activity, the catalyst showed remarkable tolerance towards methanol oxidation and demonstrates good stability over 10,000 potential cycles (0.6–1.0 V Vs RHE). We believe that this N-rich Vinazene molecule will be beneficial to further development of nitrogen doped carbon electrocatalysts

  1. Heteropoly Acid/Nitrogen Functionalized Onion-like Carbon Hybrid Catalyst for Ester Hydrolysis Reactions.

    Science.gov (United States)

    Liu, Wei; Qi, Wei; Guo, Xiaoling; Su, Dangsheng

    2016-02-18

    A novel heteropoly acid (HPA)/nitrogen functionalized onion-like carbon (NOLC) hybrid catalyst was synthesized through supramolecular (electrostatic and hydrogen bond) interactions between the two components. The chemical structure and acid strength of the HPA/NOLC hybrid have been fully characterized by thermogravimetric analysis, IR spectroscopy, X-ray photoelectron spectroscopy, NH3 temperature-programmed desorption and acid-base titration measurements. The proposed method for the fabrication of the HPA/NOLC hybrid catalyst is a universal strategy for different types of HPAs to meet various requirements of acidic or redox catalysis. The hydrophobic environment of NOLC effectively prevents the deactivation of HPA in an aqueous system, and the combination of uniformly dispersed HPA clusters and the synergistic effect between NOLC and HPA significantly promotes its activity in ester hydrolysis reactions, which is higher than that of bare PWA as homogeneous catalyst. The kinetics of the hydrolysis reactions indicate that the aggregation status of the catalyst particles has great influence on the apparent activity. PMID:26606266

  2. Removal of Cr (VI) with wheat-residue derived black carbon: Reaction mechanism and adsorption performance

    International Nuclear Information System (INIS)

    The removal of Cr (VI) from aqueous solutions using black carbon (BC) isolated from the burning residues of wheat straw was investigated as a function of pH, contact time, reaction temperature, supporting electrolyte concentration and analytical initial Cr (VI) concentration in batch studies. The effect of surface properties on the adsorption behavior of Cr (VI) was investigated with scanning electron microscope (SEM) equipped with the energy dispersive X-ray spectroscope (EDS) and Fourier transform-infrared (FTIR) spectroscopy. The removal mechanism of Cr (VI) onto the BC was investigated and the result showed that the adsorption reaction consumed a large amount of protons along the reduction of Cr (VI) to Cr (III). The oxidation of the BC took place concurrently to the chromium reduction and led to the formation of hydroxyl and carboxyl functions. An initial solution pH of 1.0 was most favorable for Cr (VI) removal. The adsorption process followed the pseudo-second order equation and Freundlich isotherm very well. The Cr (VI) adsorption was temperature-dependent and almost independent on the sodium chloride concentrations. The maximum adsorption capacity for Cr (VI) was found at 21.34 mg/g in an acidic medium, which is comparable to other low-cost adsorbents.

  3. Carbonation of lignite fly ash at ambient T and P in a semi-dry reaction system for CO{sub 2} sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Markus, E-mail: markus.bauer1@uni-bayreuth.de [Department of Hydrology, University of Bayreuth, D-95440 Bayreuth (Germany); Gassen, Niklas [Department of Hydrology, University of Bayreuth, D-95440 Bayreuth (Germany); Stanjek, Helge [Clay and Interface Mineralogy, RWTH Aachen University, D-52072 Aachen (Germany); Peiffer, Stefan [Department of Hydrology, University of Bayreuth, D-95440 Bayreuth (Germany)

    2011-08-15

    Highlights: > The carbonation of lignite fly ash was achieved under semi dry conditions at low temperature and pressure conditions. > Highest CO{sub 2}-uptake was reached for intermediate liquid-to-solid ratios of 0.12-0.18 L kg{sup -1}. > Increasing mixing intensity or pCO{sub 2} caused higher carbonation rates, suggesting limitation by CO{sub 2} supply. > Up to 4.8 mmol CO{sub 2} g{sup -1} were absorbed, corresponding to 53% of the theoretical CO{sub 2} binding capacity of the material. > Both Ca and Mg containing phases were converted into carbonate minerals. - Abstract: The global rise in atmospheric greenhouse gas concentrations calls for practicable solutions to capture CO{sub 2}. In this study, a mineral carbonation process was applied in which CO{sub 2} reacts with alkaline lignite ash and forms stable carbonate solids. In comparison to previous studies, the assays were conducted at low temperatures and pressures and under semi-dry reaction conditions in an 8 L laboratory mixing device. In order to find optimum process conditions the pCO{sub 2} (10-20%), stirring rate (500-3000 rpm) and the liquid to solid ratio (L/S = 0.03-0.36 L kg{sup -1}) were varied. In all experiments a considerable CO{sub 2} uptake from the gas phase was observed. Concurrently the solid phase contents of Ca and Mg (hydr)oxides decreased and CaCO{sub 3} and MgCO{sub 3} fractions increased throughout the experiments, showing that CO{sub 2} was stabilized as a solid carbonate. The carbonation reaction depends on three factors: Dissolution of CO{sub 2} in the liquid phase, mobilization of Ca and Mg from the mineral surface and precipitation of the carbonate solids. Those limitations were found to depend strongly on the variation of the process parameters. Optimum reaction conditions could be found for L/S ratios between 0.12 and 0.18, medium stirring velocities and pCO{sub 2} between 10% and 20%. Maximum CO{sub 2} uptake by the solid phase was 4.8 mmol g{sup -1} after 120 min

  4. A kinetic study of the reaction of water vapor and carbon dioxide on uranium; Cinetique de la reaction de la vapeur d'eau et du dioxyde de carbone sur l'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Santon, J.P. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1964-09-15

    The kinetic study of the reaction of water vapour and carbon dioxide with uranium has been performed by thermogravimetric methods at temperatures between 160 and 410 deg G in the first case, 350 and 1050 deg C in the second: Three sorts of uranium specimens were used: uranium powder, thin evaporated films, and small spheres obtained from a plasma furnace. The experimental results led in the case of water vapour, to a linear rate of reaction controlled by diffusion at the lower temperatures, and by a surface reaction at the upper ones. In the case of carbon dioxide, a parabolic law has been found, controlled by diffusional processes. (author) [French] L'etude cinetique de la reaction de la vapeur d'eau et du dioxyde de carbone sur l'uranium a ete entreprise au moyen de methodes thermogravimetriques, dans te premier cas entre 160 et 410 deg C et dans le second entre 350 et 1050 deg C. Le materiau utilise se presentait sous trois formes: poudres, couches minces evaporees et billes obtenues par fusion en chalumeau a plasma. Les resultats experimentaux ont permis de mettre en evidence, dans le cas de la vapeur d'eau, une cinetique lineaire controlee par la diffusion a basse temperature et d'interface a haute temperature. Dans le cas du dioxyde de carbone par contre, on trouve une cinetique parabolique controlee par la diffusion. (auteur)

  5. Crossed-beam reaction of carbon atoms with hydrocarbon molecules. IV. Chemical dynamics of methylpropargyl radical formation, C{sub 4}H{sub 5}, from reaction of C({sup 3}P{sub j}) with propylene, C{sub 3}H{sub 6} (X{sup 1}A)

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, R.I.; Stranges, D.; Bevsek, H.M.; Lee, Y.T.; Suits, A.G. [Department of Chemistry, University of California, Berkeley, California 94720 (United States)]|[Chemical Sciences Division, Berkeley National Laboratory, Berkeley, California 94720 (United States)

    1997-03-01

    The reaction between ground state carbon atoms and propylene, C{sub 3}H{sub 6}, was studied at average collision energies of 23.3 and 45.0 kJmol{sup {minus}1} using the crossed molecular beam technique. Product angular distributions and time-of-flight spectra of C{sub 4}H{sub 5} at m/e=53 were recorded. Forward-convolution fitting of the data yields a maximum energy release as well as angular distributions consistent with the formation of methylpropargyl radicals. Reaction dynamics inferred from the experimental results suggest that the reaction proceeds on the lowest {sup 3}A surface via an initial addition of the carbon atom to the {pi}-orbital to form a triplet methylcyclopropylidene collision complex followed by ring opening to triplet 1,2-butadiene. Within 0.3{endash}0.6 ps, 1,2-butadiene decomposes through carbon{endash}hydrogen bond rupture to atomic hydrogen and methylpropargyl radicals. The explicit identification of C{sub 4}H{sub 5} under single collision conditions represents a further example of a carbon{endash}hydrogen exchange in reactions of ground state carbon with unsaturated hydrocarbons. This versatile machine represents an alternative pathway to build up unsaturated hydrocarbon chains in combustion processes, chemical vapor deposition, and in the interstellar medium. {copyright} {ital 1997 American Institute of Physics.}

  6. Reproducibly creating hierarchical 3D carbon to study the effect of Si surface functionalization on the oxygen reduction reaction

    Science.gov (United States)

    Zeng, Yuze; Flores, Jose F.; Shao, Yu-Cheng; Guo, Jinghua; Chuang, Yi-De; Lu, Jennifer Q.

    2016-06-01

    We report a new method to reproducibly fabricate functional 3D carbon structures directly on a current collector, e.g. stainless steel. The 3D carbon platform is formed by direct growth of upright arrays of carbon nanofiber bundles on a roughened surface of stainless steel via the seed-assisted approach. Each bundle consists of about 30 individual carbon nanofibers with a diameter of 18 nm on average. We have found that this new platform offers adequate structural integrity. As a result, no reduction of the surface area during downstream chemical functionalization was observed. With a fixed and reproducible 3D structure, the effect of the chemistry of the grafted species on the oxygen reduction reaction has been systematically investigated. This investigation reveals for the first time that non-conductive Si with an appropriate electronic structure distorts the carbon electronic structure and consequently enhances ORR electrocatalysis. The strong interface provides excellent electron connectivity according to electrochemical analysis. This highly reproducible and stable 3D platform can serve as a stepping-stone for the investigation of the effect of carbon surface functionalization on electrochemical reactions in general.We report a new method to reproducibly fabricate functional 3D carbon structures directly on a current collector, e.g. stainless steel. The 3D carbon platform is formed by direct growth of upright arrays of carbon nanofiber bundles on a roughened surface of stainless steel via the seed-assisted approach. Each bundle consists of about 30 individual carbon nanofibers with a diameter of 18 nm on average. We have found that this new platform offers adequate structural integrity. As a result, no reduction of the surface area during downstream chemical functionalization was observed. With a fixed and reproducible 3D structure, the effect of the chemistry of the grafted species on the oxygen reduction reaction has been systematically investigated. This

  7. The kinetics of the O2/CO2 reaction in molten carbonate - Reaction orders for O2 and CO2 on NiO. [in fuel cells

    Science.gov (United States)

    Winnick, J.; Ross, P. N.

    1980-01-01

    The kinetics of the O2/CO2 reaction in molten carbonate is investigated using paste electrolytes and nickel sinter electrodes. A two-step approach to the determination of reaction orders is employed. First, exchange currents at various P(CO2) and P(O2) were measured using the low polarization method. Second, alpha(+) and alpha(-) values were obtained from the slope of the Allen-Hickling plot for current densities low enough so that concentration polarization within the electrode can be neglected. The reaction orders are + 1/4 in CO2 and + 5/8 in O2 in the cathodic direction, and - 3/4 in CO2 and + 1/8 in O2 in the anodic direction.

  8. High resolution spectroscopy of the (Lambda)B-12 hypernucleus produced by the (e,e K+) reaction

    International Nuclear Information System (INIS)

    The first electroproduction experiment of a hypernucleus was undertaken at the Thomas Jefferson National Acceleration Facility. The (e,e'K+) reaction was used on a natC target resulting in the observation of the 12LB hypernucleus. The excitation spectrum is presented and discussed

  9. Present status and perspectives in nuclear astrophysics studies of the 12C(α,γ)16O reaction

    International Nuclear Information System (INIS)

    Present status of the 12C(α,γ)16O cross section knowledge at stellar helium-core burning temperature is presented. Its consequences on the reaction rate uncertainties are discussed considering available models to extrapolate experimental results down to stellar helium-core burning temperature. Some experimental perspectives to reach the desired precision at stellar temperatures are described. (author)

  10. Tandem 1,2-addition/isomerization/oxidative dimerization reactions. Application to the synthesis of tetrahydrofuran lignans

    Czech Academy of Sciences Publication Activity Database

    Jagtap, Pratap; Jahn, Ullrich

    Lisboa : -, 2015 - (Rauter, A.; Martins, A.; Matos, A.; Dias, C.; Xavier, N.; Nunes, R.; Lucas, S.; Cachatra, V.; Paiva, A.; Batista, D.). s. 296 ISBN 978-989-8124-11-1. [ESOC 2015. European Symposium on Organic Chemistry /19./. 12.07.2015-16.07.2015, Lisboa] Institutional support: RVO:61388963 Keywords : tetrahydrofuran lignans * tandem reactions Subject RIV: CC - Organic Chemistry

  11. Vitamin B12: one carbon metabolism, fetal growth and programming for chronic disease.

    Science.gov (United States)

    Rush, E C; Katre, P; Yajnik, C S

    2014-01-01

    This review brings together human and animal studies and reviews that examine the possible role of maternal vitamin B12 (B12) on fetal growth and its programming for susceptibility to chronic disease. A selective literature review was undertaken to identify studies and reviews that investigate these issues, particularly in the context of a vegetarian diet that may be low in B12 and protein and high in carbohydrate. Evidence is accumulating that maternal B12 status influences fetal growth and development. Low maternal vitamin B12 status and protein intake are associated with increased risk of neural tube defect, low lean mass and excess adiposity, increased insulin resistance, impaired neurodevelopment and altered risk of cancer in the offspring. Vitamin B12 is a key nutrient associated with one carbon metabolic pathways related to substrate metabolism, synthesis and stability of nucleic acids and methylation of DNA which regulates gene expression. Understanding of factors regulating maternal-fetal one carbon metabolism and its role in fetal programming of non communicable diseases could help design effective interventions, starting with maternal nutrition before conception. PMID:24219896

  12. Analysis of Neutron Double-Differential Cross Sections for n + 12C Reaction Below 30 MeV

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the light nucleus reaction model (Nucl. Sci. Eng. l33 (1999) 218), four aspects (neutron incident energy region, reaction channel analysis, the renewed level schemes and the optical model parameters) of n+12 C reaction are improved to calculate total outgoing neutron double-differential cross sections with modified LUNF code below 30 MeV. The calculated results agree fairly well with the experimental data at En = 14.1 MeV and 18 MeV. The analysis shows that the pre-equilibrium mechanism, which is exactly considered the conservation of energy, momentum and parity, dominates the whole reaction process. The contribution of the neutron emission from 5He to total energyangular spectra is also considered properly. This modified LUNF code will be a useful tool to set up the file of neutron double-differential cross sections below 30 MeV in the neutron evaluation nuclear data library.

  13. Nitrogen-doped ordered mesoporous carbons synthesized from honey as metal-free catalyst for oxygen reduction reaction

    International Nuclear Information System (INIS)

    Highlights: • Nitrogen-doped ordered mesoporous carbons (N-OMCs) were synthesized from honey. • High electrocatalytic activity toward oxygen reduction at N-OMCs modified electrode. • Metal-free, CH3OH tolerable and long term stable catalyst in fuel cell application. • Honey being nitrogen and carbon sources for other metal-free carbon materials. -- Abstract: In this work, nitrogen-doped ordered mesoporous carbons (N-OMCs) were synthesized by a low cost and simple nanocasting method using SBA-15 as a template and honey as a nitrogen and carbon sources. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), nitrogen adsorption-desorption, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) showed that nitrogen was successfully doped into the framework of ordered mesoporous carbon rods. The N-OMCs with high surface area and ordered structure were used as a metal-free catalyst for oxygen reduction reaction (ORR), which exhibited much better electrocatalytic activity, long-term operation stability and high CH3OH tolerance compared to commercial Pt/C catalysts for ORR in alkaline fuel cell. Moreover, the influence of different amounts of nitrogen formed at different carbonization temperatures in N-OMCs on the ORR activity was researched. Honey as a nitrogen and carbon sources may be applied to various carbon materials for the development of other metal-free efficient materials for applications beyond fuel cells

  14. Nickel-catalyzed cross-coupling reactions of o-carboranyl with aryl iodides: facile synthesis of 1-aryl-o-carboranes and 1,2-diaryl-o-carboranes.

    Science.gov (United States)

    Tang, Cen; Xie, Zuowei

    2015-06-22

    A nickel-catalyzed arylation at the carbon center of o-carborane cages has been developed, thus leading to the preparation of a series of 1-aryl-o-carboranes and 1,2-diaryl-o-carboranes in high yields upon isolation. This method represents the first example of transition metal catalyzed C,C'-diarylation by cross-coupling reactions of o-carboranyl with aryl iodides. PMID:25959849

  15. Original Reaction Sequence of Pb(Yb1/2Nb1/2)O3-PbTiO3: Consequences on Dielectric Properties and Chemical Order

    OpenAIRE

    Charlotte Cochard; Fabienne Karolak; Christine Bogicevic; Orland Guedes; Pierre-Eymeric Janolin

    2015-01-01

    The solid solution [Pb(Yb1/2Nb1/2)O3]1−x-[PbTiO3]x was synthesized with x≤60%, using several high-temperature techniques as well as room-temperature mechanosynthesis. The high-temperature synthesis reveals a reaction path involving the synthesis first of the end-members before the solid solution. The density and dielectric constant measured on the ceramics prepared from these powders indicate the crucial role of the synthesis technique in the subsequent properties. Mechanosynthesis results in...

  16. Platinum Nanoparticles Supported on Nitrobenzene-Functionalized Multiwalled Carbon Nanotube as Efficient Electrocatalysts for Methanol Oxidation Reaction

    International Nuclear Information System (INIS)

    Graphical abstract: Multiwalled carbon nanotube was functionalized with nitrobenzene as a promising support material for Pt-based electrocatalysts (Pt-NB-MWCNT) for methanol oxidation. The as-prepared catalysts have higher electrocatalytic activity in terms of both mass and specific activities, and improved durability for methanol oxidation reaction than as compared to the undoped materials. - Highlights: • Multiwalled carbon nanotube was functionalized with nitrobenzene as a support material for Pt-based electrocatalysts for methanol oxidation. • The electronic properties of carbon nanotubes were modified by the nitrobenzene functionalization. • Nitrobenzene-functionalized electrocatalysts revealing the improved electrocatalytic performance of Pt-NB-MWCNT catalyst for the methanol oxidation reaction. - Abstract: A novel method of molecular covalently functionalized multiwalled carbon nanotube using nitrobenzene group is prepared and used as a promising support material of Pt-based electrocatalysts (denoted as Pt-NB-MWCNT) for methanol oxidation reaction. The physical and chemical characteristics are performed by X-ray powder diffraction, transmission electron microscopy, Raman spectroscopy, thermogravimetric and X-ray photoelectron spectroscopy. The electrocatalytic are evaluated by cyclic voltammetry and chronoamperometry techniques. Compared with the un-functionalized Pt-MWCNT catalyst, Pt-NB-MWCNTs show more uniform particle dispersion, smaller particle size, improved activity and durability for methanol oxidation reaction. The nitrobenzene group is demonstrated to promote the electrocatalytic activity of Pt-MWCNT for methanol oxidation significantly. The results represent a novel approach to functionalize MWCNT in a simple and economic way to prepare efficient electrocatalysts for methanol oxidation

  17. Microcalorimetric Adsorption of Alumina Oxide Catalysts for Combination of Ethylbenzene dehydrogenation and carbon Dioxide Shift-reaction

    Institute of Scientific and Technical Information of China (English)

    GE Xin; SHEN Jian-yi

    2004-01-01

    Styrene (STY) is now produced industrially in fairly large quantities by the dehydrogenation of ethylbenzene (EB) using promoted iron oxide catalyst with superheated steam.In this case, small amount of carbon dioxide formed as a by-product was known to inhibit the catalytic activity of commercial catalyst. Recently, there have been some reports which carbon dioxide showed positive effects to promote catalytic activities on the reaction over several catalysts.In this study, we attempted to combine the dehydrogenation of EB to STY with the carbon dioxide shift-reaction. The combine reaction (EB + CO2 → STY + H2O + CO) can be considered as one of the ways of using CO2 resources and can yield simultaneously STY and Carbon oxide.Alumina oxide catalysts such as Al2O3, Na2O/Al2O3 and K2O/Al2O3 were prepared by the usual impregnation method with an aqueous solution of NaNO3 and KNO3, and then calcined at 650℃ for 5 h in a stream of air. The reaction condition is 600℃, flow of CO2 38ml/mon and space velocity (EB) 1.28h-1.

  18. Cobalt-Embedded Nitrogen-Rich Carbon Nanotubes Efficiently Catalyze Hydrogen Evolution Reaction at All pH Values

    Czech Academy of Sciences Publication Activity Database

    Zou, X.; Huang, X.; Goswami, A.; Silva, R.; Sathe, B. R.; Mikmeková, Eliška; Asefa, T.

    2014-01-01

    Roč. 53, č. 17 (2014), s. 4372-4376. ISSN 1433-7851 R&D Projects: GA MŠk(CZ) LO1212 Institutional support: RVO:68081731 Keywords : carbon nanotubes * cobalt nanoparticles * electrocatalysis * hydrogen evolution reaction * water splitting Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 11.261, year: 2014

  19. Study of the p+{sup 12}C reaction at energies up to 30 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Masahide; Yamamoto, A.; Yoshioka, S. [Kyushu Univ., Fukuoka (Japan)] [and others

    1998-03-01

    Double differential cross sections of charged-particles emitted in the p+{sup 12}C reaction were measured in the energy region from 14 to 26 MeV. The observed continuous components of emitted protons and {alpha}-particles were analyzed by assuming sequential decay of intermediate reaction products and/or simultaneous breakup process. It was found that the three body simultaneous decay, p+{alpha}+{sup 8}Be, and the sequential decay via p+{sup 12}C{sup *}{sub 3-} and {alpha}+{sup 9}B{sub g.s.} are most important in the proton-induced breakup of {sup 12}C for energies up to 30 MeV. (author)

  20. Synthesis of high purity single-walled carbon nanotubes from ethanol by catalytic gas flow CVD reactions

    International Nuclear Information System (INIS)

    Highly pure single-walled carbon nanotubes (SWNTs) with their contents >96% of the total products were achieved by chemical vapour deposition gas flow reactions using ethanol as the carbon source. The high purity SWNTs were formed under critically controlled synthesis conditions and by applying a high hydrogen flow, under which the non-catalytic condensation of carbon was completely suppressed. Purification of the products in acid at ambient conditions readily yielded over 99% pure SWNT products, as the only impurities left in the products were iron particles of clean surface. Therefore, the present study demonstrates the full potential of the CVD gas flow reactions in continuous production of high quality SWNTs. Comparable syntheses were conducted using other alcohols in place of ethanol and it was found that high alkyl alcohols like isopropanol and hexanol produced more amorphous carbon while methanol produced no carbon. The high yield growth of SWNTs was attributed greatly to the reaction chemistry of ethanol and the 'right' amount of hydrogen in the system, as discussed

  1. Comparison of infrared and mass-spectrometric measurements of carbon-13/carbon-12 ratios

    International Nuclear Information System (INIS)

    The delta13C values of 20 breath samples and 10 tank-CO2 samples (delta13C values ranged from -31.3 to +148.9per mille vs PDB) and the CO2 concentrations of three breath samples and 10 tank-CO2 samples were measured with a commercial prototype of a diode-laser i.r. spectrophotometer, MAT I. The results were compared with those obtained by gas-isotope-ratio mass spectrometry and by gas chromatography. Precisions (ssub(x), n=10) of 0.2per mille and 0.6% were calculated for 13C/12C ratios and CO2 concentrations, respectively, using the MAT I system. (author)

  2. Radial deformation of single-walled carbon nanotubes on quartz substrates and the resultant anomalous diameter-dependent reaction selectivity

    Institute of Scientific and Technical Information of China (English)

    Juan Yang; Yu Liu; Daqi Zhang; Xiao Wang; Ruoming Li; Yan Li

    2015-01-01

    Owing to the unique conjugated structure, the chemical-reaction selectivity of single-walled carbon nanotubes (SWNTs) has attracted great attention. By utilizing the radial deformation of SWNTs caused by the strong interactions with the quartz lattice, we achieve an anomalous diameter-dependent reaction selectivity of quartz lattice-oriented SWNTs in treatment with iodine vapor; this is distinctly different from the widely reported and well accepted higher reaction activity in small-diameter tubes compared to large-diameter tubes. The radial deformation of SWNTs on quartz substrate is verified by detailed Raman spectroscopy and mappings in both G-band and radial breathing mode. Due to the strong interaction between SWNTs and the quartz lattice, large-diameter tubes present a larger degree of radial deformation and more delocalized partial electrons are distributed at certain sidewall sites with high local curvature. It is thus easier for the carbon--carbon bonds at these high-curvature sites on large-diameter tubes to break down during reaction. This anomalous reaction activity offers a novel approach for selective removal of small-band~aD large-diameter tubes.

  3. Simulation Experiments on the Reaction of CH4-CaSO4 and Its Carbon Kinetic Isotope Fractionation

    Institute of Scientific and Technical Information of China (English)

    YueChangtao; LiShuyuan; DingKangle; ZhongNingning

    2005-01-01

    Thermochemical sulfate reduction (TSR) in geological deposits can account for the accumulation of H,S in deep sour gas reservoirs. In this paper, thermal simulation experiments on the reaction of CH4-CaSO4 were carried out using an autoclave at high temperatures and high pressures. The products were characterized with analytical methods including carbon isotope analysis. It is found that the reaction can proceed to produce H2S, H2O and CaCO3 as the main products. Based on the experimental results, the carbon kinetic isotope fractionation was investigated, and the value of Ki(kinetic isotope effect) was calculated. The results obtained in this paper can provide useful information to explain the occurrence of H2S in deep carbonate gas reservoirs.

  4. Energy- and carbon-efficient synthesis of functionalized small molecules in bacteria using non-decarboxylative Claisen condensation reactions.

    Science.gov (United States)

    Cheong, Seokjung; Clomburg, James M; Gonzalez, Ramon

    2016-05-01

    Anabolic metabolism can produce an array of small molecules, but yields and productivities are low owing to carbon and energy inefficiencies and slow kinetics. Catabolic and fermentative pathways, on the other hand, are carbon and energy efficient but support only a limited product range. We used carbon- and energy-efficient non-decarboxylative Claisen condensation reactions and subsequent β-reduction reactions, which can accept a variety of functionalized primers and functionalized extender units and operate in an iterative manner, to synthesize functionalized small molecules. Using different ω- and ω-1-functionalized primers and α-functionalized extender units in combination with various termination pathways, we demonstrate the synthesis of 18 products from 10 classes, including ω-phenylalkanoic, α,ω-dicarboxylic, ω-hydroxy, ω-1-oxo, ω-1-methyl, 2-methyl, 2-methyl-2-enolic and 2,3-dihydroxy acids, β-hydroxy-ω-lactones, and ω-1-methyl alcohols. PMID:27088721

  5. Amorphous Molybdenum Sulfide on Graphene-Carbon Nanotube Hybrids as Highly Active Hydrogen Evolution Reaction Catalysts.

    Science.gov (United States)

    Pham, Kien-Cuong; Chang, Yung-Huang; McPhail, David S; Mattevi, Cecilia; Wee, Andrew T S; Chua, Daniel H C

    2016-03-01

    In this study, we report on the deposition of amorphous molybdenum sulfide (MoSx, with x ≈ 3) on a high specific surface area conductive support of Graphene-Carbon Nanotube hybrids (GCNT) as the Hydrogen Evolution Reaction (HER) catalysts. We found that the high surface area GCNT electrode could support the deposition of MoSx at much higher loadings compared with simple porous carbon paper or flat graphite paper. The morphological study showed that MoSx was successfully deposited on and was in good contact with the GCNT support. Other physical characterization techniques suggested the amorphous nature of the deposited MoSx. With a typical catalyst loading of 3 mg cm(-2), an overpotential of 141 mV was required to obtain a current density of 10 mA cm(-2). A Tafel slope of 41 mV decade(-1) was demonstrated. Both measures placed the MoSx-deposited GCNT electrode among the best performing molybdenum sulfide-based HER catalysts reported to date. The electrode showed a good stability with only a 25 mV increase in overpotential required for a current density of 10 mA cm(-2), after undergoing 500 potential sweeps with vigorous bubbling present. The current density obtained at -0.5 V vs SHE (Standard Hydrogen Electrode potential) decreased less than 10% after the stability test. The deposition of MoSx on high specific surface area conductive electrodes demonstrated to be an efficient method to maximize the catalytic performance toward HER. PMID:26864503

  6. Highly vibrationally excited CO generated in a low-temperature chemical reaction between carbon vapor and molecular oxygen

    Science.gov (United States)

    Jans, E.; Frederickson, K.; Yurkovich, M.; Musci, B.; Rich, J. W.; Adamovich, I. V.

    2016-08-01

    A chemical flow reactor is used to study the vibrational population distribution of CO produced by a reaction between carbon vapor generated in an arc discharge and molecular oxygen. The results demonstrate formation of highly vibrationally excited CO, up to vibrational level v = 14, at low temperatures, T = 400-450 K, with population inversion at v = 4-7, in a collision-dominated environment, 15-20 Torr. The average vibrational energy per CO molecule formed by the reaction is 0.6-1.2 eV/molecule, which corresponds to 10-20% of reaction enthalpy. The results show feasibility of development of a new CO chemical laser using carbon vapor and oxygen as reactants.

  7. An interpretation of gross structures in the energy spectra of 12C (16O,α)24Mg reaction

    International Nuclear Information System (INIS)

    Recent studies of the 12C(16O,α)24Mg reaction at E(16O) = 145 Mev have revealed the existence of several broad states with E sub(X)(24Mg) = 20 to 60 MeV. The energies of these states have been taken as evidence that they are members of the 12C + 12C molecular band J sup(π) = (10+) through J sup(π) = (18+). Subsequent investigation of the properties of these states, however, has failed to reveal the expected partial width for 24Mg* → 12C + 12C. It is shown that these states can be interpreted as an extension of the 24Mg Yrast sequence which is populated by the well understood high spin selectivity of α particle evaporation from a 28Si compound nucleus. (Author)

  8. Crystalline and tensile properties of carbon nanotube and graphene reinforced polyamide 12 fibers

    Science.gov (United States)

    Chatterjee, S.; Nüesch, F. A.; Chu, B. T. T.

    2013-02-01

    The influence of carbon nanotubes (CNTs) and graphene nanoplatelets (GnPs) on the structure and mechanical properties of polyamide 12 (PA12) fibers was investigated. As seen from wide-angle X-ray diffraction analysis the crystallinity index increases with incorporation of nanofillers due to nucleation effects. Marked improvement was noted for mechanical properties of the composites with increase in elastic modulus, yield stress and strength of the fibers. The most significant improvement of a factor of 4 could be observed for elastic modulus with the inclusion of 0.5 wt.% GnP. A comparative study was made between the fibers reinforced with CNTs and GnPs.

  9. Fragment emission in reactions of 18.5-GeV 12C ions with complex nuclei

    International Nuclear Information System (INIS)

    The emission of fragments ranging from 24Na to 52Mn in reactions of 18.5 GeV 12C ions with Cu, Ag, Gd, Ta, Au, and U targets has been studied by means of activation techniques. The experiments involved determination of the fragment production cross sections and thick-target recoil properties. The latter were used to obtain mean fragment kinetic energies and values of β/sub parallel to/, the forward velocity component of the struck nucleus (in units of c). The results are compared with similar data for incident protons of the same total kinetic energy. The data may be used to assess the importance of central collisions in fragment production. Such collisions lead to the near total destruction of both interacting nuclei and the resulting fragments are emitted by a system of intermediate rapidity. In such a process, the factorization hypothesis, which has been shown to be valid for target and projectile fragmentation reactions, should not be obeyed. A test for factorization is performed by means of a relation which states that the ratio of the cross sections for producing fragment /sup A/Z in 12C reactions to that for producing the same fragment in proton reactions with the same target is unity, provided both cross sections are reduced by the values of the corresponding total reaction cross sections sigma/sub R/, and evaluated for the same total kinetic energy of the projectile. The results of this comparison for the targets studied are presented and discussed

  10. Studies on 12 V substrate-integrated lead-carbon hybrid ultracapacitors

    Indian Academy of Sciences (India)

    A Banerjee; A K Shukla

    2015-05-01

    A cost-effective 12 V substrate-integrated lead-carbon hybrid ultracapacitor is developed and performance tested. These hybrid ultracapacitors employ flexible-graphite sheets as negative plate currentcollectors that are coated amperometrically with a thin layer of conducting polymer, namely poly-aniline to provide good adhesivity to activated-carbon layer. The positive plate of the hybrid ultracapacitors comprise conventional lead-sheet that is converted electrochemically into a substrate-integrated lead-dioxide electrode. 12 V substrate-integrated lead-carbon hybrid ultracapacitors both in absorbent-glass-mat and polymeric silicagel electrolyte configurations are fabricated and characterized. It is possible to realize 12 V configurations with capacitance values of ∼200 F and ∼300 F, energy densities of ∼1.9 Wh kg−1 and ∼2.5 Wh kg−1 and power densities of ∼2 kW kg−1 and ∼0.8 kW kg−1, respectively, having faradaic-efficiency values of ∼90 % with cycle-life in excess of 100,000 cycles. The effective cost of the mentioned hybrid ultracapacitors is estimated to be about ∼4 US$/Wh as compared to ∼20 US$/Wh for commercially available ultracapacitors.

  11. Hierarchical carbon-coated acanthosphere-like Li4Ti5O12 microspheres for high-power lithium-ion batteries

    Science.gov (United States)

    Sha, Yujing; Xu, Xiaomin; Li, Li; Cai, Rui; Shao, Zongping

    2016-05-01

    In this work, carbon-coated hierarchical acanthosphere-like Li4Ti5O12 microspheres (denoted as AM-LTO) were prepared via a two-step hydrothermal process with low-cost glucose as the organic carbon source. The hierarchical porous microspheres had open structures with diameters of 4-6 μm, which consisted of a bunch of willow leaf-like nanosheets. Each nanosheet was comprised of Li4Ti5O12 nanoparticles that are 20 nm in size and coated by a thin carbon layer. When applied as the anode material for lithium-ion batteries (LIBs), the AM-LTO presented outstanding rate and cycling performance due to its unique morphologies. A high capacity of 145.6 mAh g-1 was achieved for AM-LTO at a rate of 40C (1C = 175 mAh g-1). In contrast, the sample synthesized without glucose as carbon source (denoted as S-LTO) experienced an obvious structural collapse during the hydrothermal reaction and presented a specific capacity of only 67 mAh g-1 at 1C, which further decreased to 14 mAh g-1 at 40C. Further morphological growth of the acanthosphere-like Li4Ti5O12 microspheres and their excellent performance as an anode in LIBs were also discussed in this work.

  12. {sup 16}O resonances near 4α threshold through {sup 12}C({sup 6}Li,d) reaction

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, M. R. D.; Borello-Lewin, T.; Miyake, H.; Horodynski-Matsushigue, L. B.; Duarte, J. L. M.; Rodrigues, C. L.; Faria, P. Neto de [Instituto de Física, Universidade de São Paulo, Caixa Postal 66318, CEP 05314-970, São Paulo, SP (Brazil); Cunsolo, A.; Cappuzzello, F.; Foti, A.; Agodi, C.; Cavallaro, M. [INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, 95125 Catania (Italy); Napoli, M. di; Ukita, G. M. [Faculdade de Psicologia, Universidade de Santo Amaro, R. Prof. Eneas da Siqueira Neto, 340, CEP 04829-300, São Paulo, SP (Brazil)

    2014-11-11

    Several narrow alpha resonant {sup 16}O states were detected through the {sup 12}C({sup 6}Li,d) reaction, in the range of 13.5 to 17.5 MeV of excitation energy. The reaction was measured at a bombarding energy of 25.5 MeV employing the São Paulo Pelletron-Enge-Spectrograph facility and the nuclear emulsion technique. Experimental angular distributions associated with natural parity quasi-bound states around the 4α threshold are presented and compared to DWBA predictions. The upper limit for the resonance widths obtained is near the energy resolution (15 keV)

  13. Multinucleon contributions to the 12C(π+, pp) reaction at 100 and 165 MeV incident pion energies

    International Nuclear Information System (INIS)

    Differential and total cross sections for π+ absorption on 12C are presented at incident pion energies of 100 and 165 MeV. This is the first time that this reaction has been measured with a combination of good energy and angle information over an extensive region of phase space. Results are compared to extensive Monte Carlo simulations in order to investigate the role of two- and multinucleon absorption processes in this nucleus. Signatures of ISI and FSI in the pion absorption process are also investigated, in order to explain the complex reaction mechanism implied by the data. (orig.)

  14. Science Letters: Nitrogen doping of activated carbon loading Fe2O3 and activity in carbon-nitric oxide reaction

    Institute of Scientific and Technical Information of China (English)

    WAN Xian-kai; ZOU Xue-quan; SHI Hui-xiang; WANG Da-hui

    2007-01-01

    Nitrogen doping of activated carbon loading Fe2O3 was performed by annealing in ammonia, and the activity of the modified carbon for NO reduction was studied in the presence of oxygen. Results show that Fe2O3 enhances the amount of surface oxygen complexes and facilitates nitrogen incorporation in the carbon, especially in the form of pyridinic nitrogen. The modified carbon shows excellent activity for NO reduction in the low temperature regime (<500 ℃) because of the cooperative effect of Fe2O3 and the surface nitrogen species.

  15. In situ observation of the reaction of scandium and carbon by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Juarez-Arellano, Erick A., E-mail: eajuarez@unpa.edu.m [Institut fuer Geowissenschaften, Universitaet Frankfurt, Altenhoeferallee 1, 60438 Frankfurt a.M. (Germany); Universidad del Papaloapan, Circuito Central 200, Parque Industrial, Tuxtepec 68301 (Mexico); Winkler, Bjorn [Institut fuer Geowissenschaften, Universitaet Frankfurt, Altenhoeferallee 1, 60438 Frankfurt a.M. (Germany); Vogel, Sven C. [Los Alamos National Laboratory, Lujan Center. Mail Stop H805, Los Alamos, NM 87545 (United States); Senyshyn, Anatoliy [Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universitaet Muenchen, Lichtenbergstr. 1, D-85747 Garching (Germany); Materialwissenschaft, TU Darmstadt, Petersensstr. 23, D-64287 Darmstadt (Germany); Kammler, Daniel R. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Avalos-Borja, Miguel [CNyN, UNAM, A. Postal 2681, Ensenada, B.C. (Mexico)

    2011-01-05

    Research highlights: {yields} Exist two ScC cubic phases with B1-structure type differing in site occupancy of C. {yields} A new orthorhombic scandium carbide phase is formed at 1473(50) K. {yields} The recrystallization of alpha-Sc occurs between 1000 and 1223 K. - Abstract: The formation of scandium carbides by reaction of the elements has been investigated by in situ neutron diffraction up to 1823 K. On heating, the recrystallization of {alpha}-Sc occurs between 1000 and 1223 K. The formation of Sc{sub 2}C and ScC (NaCl-B1 type structure) phases has been detected at 1323 and 1373 K, respectively. The formation of a new orthorhombic scandium carbide phase was observed at 1473(50) K. Once the scandium carbides are formed they are stable upon heating or cooling. No other phases were detected in the present study, in which the system was always carbon saturated. The thermal expansion coefficients of all phases have been determined, they are constant throughout the temperature interval studied.

  16. Competitive surface complexation reactions of sulfate and natural organic carbon on soil

    International Nuclear Information System (INIS)

    The ecological implications of subsurface SO42- loading on nutrient cation leaching, acidification, and the destruction of concrete containers used to store low-level radioactive waste, has been thoroughly addressed. Processes favoring SO42- adsorption by the subsurface matrix tend to alleviate these adverse ecological conditions and this has been investigated to a lesser extent. In this study, the adsorption of SO42 onto several soil types with indigenous SO42- and organic carbon removed, was measured as a function of pH in the presence and absence of added natural organic matter (NOM). Sulfate adsorption was strongly pH dependent and the presence of >2 mg L-1 NOM resulted in a consistent decrease in sulfate adsorption over the pH range 4.5 to 8. The tendency of these soils to adsorb SO42- was related to their large quantity of Fe-oxides and the presence of kaolinite in the 42- was related to their large quantity of Fe-oxides and the presence of kaolinite in the 42- onto positive or neutral surface sites (XOH + H+ + SO42- = XSO4- + H2O) as a inner-sphere complex proved successful in describing the adsorption of sulfate under the experimental conditions. The estimated value of the intrinsic equilibrium constant (K) for the above reaction was of the order 1010 suggesting strong sulfate adsorption. Estimated K values were found to be unaffected by the presence of added NOM. 57 refs., 3 figs., 3 tabs

  17. One-step synthesis of nitrogen-iron coordinated carbon nanotube catalysts for oxygen reduction reaction

    Science.gov (United States)

    Choi, Woongchul; Yang, Gang; Kim, Suk Lae; Liu, Peng; Sue, Hung-Jue; Yu, Choongho

    2016-05-01

    Prohibitively expensive precious metal catalysts for oxygen reduction reaction (ORR) have been one of the major hurdles in a wide use of electrochemical cells. Recent significant efforts to develop precious metal free catalysts have resulted in excellent catalytic activities. However, complicated and time-consuming synthesis processes have negated the cost benefit. Moreover, detailed analysis about catalytically active sites and the role of each element in these high-performance catalysts containing nanomaterials for large surface areas are often lacking. Here we report a facile one-step synthesis method of nitrogen-iron coordinated carbon nanotube (CNT) catalysts without precious metals. Our catalysts show excellent long-term stability and onset ORR potential comparable to those of other precious metal free catalysts, and the maximum limiting current density from our catalysts is larger than that of the Pt-based catalysts. We carry out a series of synthesis and characterization experiments with/without iron and nitrogen in CNT, and identify that the coordination of nitrogen and iron in CNT plays a key role in achieving the excellent catalytic performances. We anticipate our one-step process could be used for mass production of precious metal free electrocatalysts for a wide range of electrochemical cells including fuel cells and metal-air batteries.

  18. Carbon nanotubes-supported palladium nanoparticles for the Suzuki reaction in supercritical carbon dioxide: A facile method for the synthesis of tetrasubstituted olefins

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A facile and efficient method for the synthesis of tetrasubstituted olefins in supercritical carbon dioxide was developed by using carbon nanotubes-supported palladium nanoparticles (Pd/CNTs) as the catalyst. Compared with common Pd/C, Pd/CNTs could more effectively catalyze the reaction of dibromo-substituted olefins with boronic acids, affording the corresponding tetrasubstituted olefins with moderate to good yields. This environmentally benign route with an easy-to-handle catalyst provides an appealing alternative to the currently available methods.

  19. Study of removal of Direct Yellow 12 by cadmium oxide nanowires loaded on activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Ghaedi, Mehrorang, E-mail: m_ghaedi@mail.yu.ac.ir [Chemistry Department, Yasouj University Yasouj 75914-35 (Iran, Islamic Republic of); Sadeghian, Batuol [Chemistry Department, Yasouj University Yasouj 75914-35 (Iran, Islamic Republic of); Kokhdan, Syamak Nasiri, E-mail: syamak.nasiri@yahoo.com [Chemistry Department, Yasouj University Yasouj 75914-35 (Iran, Islamic Republic of); Pebdani, Arezou Amiri [Chemistry Department, Yasouj University Yasouj 75914-35 (Iran, Islamic Republic of); Sahraei, Reza; Daneshfar, Ali; Mihandoost, Asma [Department of Chemistry, University of Ilam, P.O. Box: 65315-516, Ilam (Iran, Islamic Republic of)

    2013-05-01

    In this research, cadmium oxide nanowires loaded on activated carbon (CdO-NW-AC) has been synthesized by a simple procedure and characterized by different techniques such as XRD, SEM and UV–vis spectrometry. This new adsorbent has been efficiently utilized for the removal of the Direct Yellow 12 (DY-12) from wastewater. To obtain maximum DY-12 removal efficiency, the influences of variables such as pH, DY-12 concentration, amount of CdO-NW-AC, contact time, and temperature have been examined and optimized in a batch method. Following the variable optimization, the experimental equilibrium data (at different concentration of DY-12) was fitted to conventional isotherm models such as Langmuir, Freundlich and Tempkin. The applicability of each method is based on the R{sup 2} and error analysis for each model. It was found that the experimental equilibrium data well fitted to the Langmuir isotherm model. The dependency of removal process to time and the experimental data follow second order kinetic model with involvement of intraparticle diffusion model. The negative value of Gibbs's free energy and positive value of adsorption enthalpy show the spontaneous and endothermic nature of adsorption process. - Graphical abstract: Typical FE-SEM image of the CdO nanowires. Highlights: ► Cadmium oxide nanowires loaded on activated carbon was utilized as an adsorbent. ► It was used for the removal of Direct Yellow 12 from aqueous solutions. ► The adsorption of Direct Yellow 12 on this adsorbent is endothermic in nature. ► The adsorption equilibrium data was well described by the Langmuir isotherm model.

  20. Germanomolybdate (GeMo12O404−) Modified Carbon Nanotube Composites for Electrochemical Capacitors

    International Nuclear Information System (INIS)

    Highlights: • GeMo12O404− (GeMo) was deposited onto MWCNT to fabricate capacitive electrodes. • GeMo electrode showed excellent conductivity and 6X the capacitance of bare MWCNT. • GeMo was superimposed with PMo12O403− or SiMo12O404− on dual-layer electrodes. • Dual-layer electrodes showed combination of both molecules and 12X bare capacitance. - Abstract: Keggin type germanomolybdate, GeMo12O404− (GeMo), was deposited onto multi-walled carbon nanotubes (MWCNT) via layer-by-layer (LbL) deposition to form composite electrodes for electrochemical capacitors (ECs). The GeMo composite electrode demonstrated charge storage six times greater than that of the bare MWCNT electrode while maintaining excellent conductivity and cycling stability. GeMo also demonstrated charge storage complementary to that of the commercial Keggin type POMs, PMo12O403− (PMo) and SiMo12O404− (SiMo). Dual-layer coatings superimposing GeMo with either PMo or SiMo showed an additive combination of both active layers, which resulted in cyclic voltammograms (CVs) with overlapping redox features and charge storage twelve times greater than that of the bare MWCNT electrode. Scanning Electron Microscopy (SEM) demonstrated successful single and dual layer coating of POMs on MWCNT with high coverage and uniform surface morphologies

  1. Nitrogen-doped carbon black as methanol tolerant electrocatalyst for oxygen reduction reaction in direct methanol fuel cells

    International Nuclear Information System (INIS)

    Nitrogen-doped metal free carbon catalysts were prepared via pyrolysis of polyaniline-coated carbon in different ratios with varying nitrogen content. The surface states and surface composition were investigated using XPS (X-ray photoelectron spectroscopy). XPS analysis confirms the presence of pyridinic and pyrollic nitrogen in the carbon network that is responsible for the oxygen reduction activity. The shift in onset potential of oxygen reduction on C:N (1:1) is ∼0.3 V more positive compared to Vulcan carbon, shows improved activity toward oxygen reduction reaction in acidic electrolyte. Hydrodynamic voltammetric studies confirm that the reduction of oxygen follows the 4e− pathway which leads to the formation of water.

  2. Effect of Nonleaving Group on the Reaction Rate and Mechanism: Aminolyses of 4-Nitrophenyl Acetate, Benzoate and Phenyl Carbonate

    International Nuclear Information System (INIS)

    Second-order rate constants have been determined spectrophotometrically for the reaction of phenyl 4- nitrophenyl carbonate with a series of primary amines in H2O containing 20 mol % DMSO at 25.0 .deg. C. The Brφnsted-type plot is linear with a βnuc 0.69 ± 0.04, which is slightly smaller than the βnuc values for the reactions of 4-nitrophenyl acetate (βnuc = 0.82 ± 0.03) and benzoate (βnuc = 0.76 ± 0.01), indicating that the reaction proceeds through a tetrahedral zwitterionic intermediate T±. The carbonate is more reactive than the corresponding acetate and benzoate. The changing Me (or Ph) to PhO has resulted in a decrease in the βnuc value without changing the reaction mechanism but an increase in the reactivity. The electronic effect of the substituent in the nonleaving group appears to be responsible for the enhanced reactivity of the carbonate compared with the corresponding acetate and benzoate

  3. Observation and analysis of incomplete fusion reactions induced by (12C, 14N, 16O, 22Ne) ions

    International Nuclear Information System (INIS)

    The mechanism of the reactions induced by heavy ions has been studied. The experiments were concerned with incident channels which lead to the formation of intermediate nuclei with atomic mass (6412C, 14N, 16O, 22Ne) as projectiles respectively. The detection of light fragments (2< Z<12) is studied. A three solid-state-detector telescope, with associated electronics is used which allows the separation of reaction products according to their charge. The main features of deep inelastic collisions are discussed: large kinetic energy loss, and important nucleon transfer as a function of the angular detection. The time evolution of the reaction has been studied, then the results are compared with a scattering model suggested by Noremberg. A theoretical calculation based on both classical and statistical approaches giving the total cross-sections for any exit channel has been proposed

  4. Experimental study of bound states in $^{12}$Be through low-energy $^{11}$Be($d,p$)-transfer reactions

    CERN Document Server

    Johansen, J G; Borge, M J G; Cubero, M; Diriken, J; Elsevier, J; Fraile, L M; Fynbo, H O U; Gaffney, L P; Gernhäuser, R; Jonson, B; Koldste, G T; Konki, J; Kröll, T; Krücken, R; Mücher, D; Nilsson, T; Nowak, K; Pakarinen, J; Pesudo, V; Raabe, R; Riisager, K; Seidlitz, M; Tengblad, O; Törnqvist, H; Voulot, D; Warr, N; Wenander, F; Wimmer, K; De Witte, H

    2013-01-01

    The bound states of $^{12}$Be have been studied through a $^{11}$Be$(d,p)^{12}$Be transfer reaction experiment in inverse kinematics. A 2.8 MeV/u beam of $^{11}$Be was produced using the REX-ISOLDE facility at CERN. The outgoing protons were detected with the T-REX silicon detector array. The MINIBALL germanium array was used to detect $\\gamma$-rays from the excited states in $^{12}$Be. The $\\gamma$-ray detection enabled a clear identification of the four known bound states in $^{12}$Be, and each of the states has been studied individually. Differential cross sections over a large angular range have been extracted. Spectroscopic factors for each of the states have been determined from DWBA calculations and have been compared to previous experimental and theoretical results.

  5. Study of the excited levels of 11C and 12C by the analysis of protons induced reactions

    International Nuclear Information System (INIS)

    The present work is a study of 11 and 12C excited states by reactions of non polarised protons on 10B and 11B. R-matrix analysis of the 10B excitation curves in the range Ep = 0 to 8 MeV was used to establish parameters of 41 levels in 11C. Isobaric multiplets of T = 1/2 and T = 3/2 states in A = 11 nuclei are deduced. Analysis of 11B excitation curves in the Ep = 0.5 to 7.4 MeV range led to parameter values of 60 levels in 12C. T = 1 states in A = 12 isobaric nuclei are discussed

  6. Accelerated carbonation using municipal solid waste incinerator bottom ash and cold-rolling wastewater: Performance evaluation and reaction kinetics.

    Science.gov (United States)

    Chang, E-E; Pan, Shu-Yuan; Yang, Liuhanzi; Chen, Yi-Hung; Kim, Hyunook; Chiang, Pen-Chi

    2015-09-01

    Accelerated carbonation of alkaline wastes including municipal solid waste incinerator bottom ash (MSWI-BA) and the cold-rolling wastewater (CRW) was investigated for carbon dioxide (CO2) fixation under different operating conditions, i.e., reaction time, CO2 concentration, liquid-to-solid ratio, particle size, and CO2 flow rate. The MSWI-BA before and after carbonation process were analyzed by the thermogravimetry and differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy equipped with energy dispersive X-ray spectroscopy. The MSWI-BA exhibits a high carbonation conversion of 90.7%, corresponding to a CO2 fixation capacity of 102g perkg of ash. Meanwhile, the carbonation kinetics was evaluated by the shrinking core model. In addition, the effect of different operating parameters on carbonation conversion of MSWI-BA was statistically evaluated by response surface methodology (RSM) using experimental data to predict the maximum carbonation conversion. Furthermore, the amount of CO2 reduction and energy consumption for operating the proposed process in refuse incinerator were estimated. Capsule abstract: CO2 fixation process by alkaline wastes including bottom ash and cold-rolling wastewater was developed, which should be a viable method due to high conversion. PMID:26025583

  7. Experimental study of carbon sequestration reactions controlled by the percolation of CO2-rich brine through peridotites.

    Science.gov (United States)

    Andreani, M; Luquot, L; Gouze, P; Godard, M; Hoisé, E; Gibert, B

    2009-02-15

    Carbonation of ultramafic rocks in geological reservoirs is, in theory, the most efficient way to trap CO2 irreversibly; however, possible feedback effects between carbonation reactions and changes in the reservoir permeability must be considered to realistically assess the efficiency and sustainability of this process. We investigated changes in the hydrodynamic properties of sintered dunite samples by means of percolation experiments, under conditions analogous to that of in situ carbonation. Our results show that carbonation efficiency is controlled by the local renewal of the reactants and the heterogeneity of the pore structure. Preferential flow zones are characterized by the formation of magnetite and of a silica-rich layer at the olivine surfaces, which eventually inhibits olivine dissolution. Conversely, sustainable olivine dissolution together with coprecipitation of magnesite, siderite, and minor Mg-TOT-phyllosilicates, occur in reduced-flow zones. Thus carbonate precipitation only decreases porosity in zones where diffusion-controlled transport is dominant. Consequently, while high flow rates will decrease the carbonation efficiency of the reservoir and low flow rates may reduce the permeability irreversibly close to the injection point, moderate injection rates will ensure a partial carbonation of the rock and maintain the reservoir permeability. PMID:19320184

  8. Formation of brown carbon via reactions of ammonia with secondary organic aerosols from biogenic and anthropogenic precursors

    Science.gov (United States)

    Updyke, Katelyn M.; Nguyen, Tran B.; Nizkorodov, Sergey A.

    2012-12-01

    Filter samples of secondary organic aerosols (SOA) generated from the ozone (O3)- and hydroxyl radical (OH)-initiated oxidation of various biogenic (isoprene, α-pinene, limonene, α-cedrene, α-humulene, farnesene, pine leaf essential oils, cedar leaf essential oils) and anthropogenic (tetradecane, 1,3,5-trimethylbenzene, naphthalene) precursors were exposed to humid air containing approximately 100 ppb of gaseous ammonia (NH3). Reactions of SOA compounds with NH3 resulted in production of light-absorbing "brown carbon" compounds, with the extent of browning ranging from no observable change (isoprene SOA) to visible change in color (limonene SOA). The aqueous phase reactions with dissolved ammonium (NH4+) salts, such as ammonium sulfate, were equally efficient in producing brown carbon. Wavelength-dependent mass absorption coefficients (MAC) of the aged SOA were quantified by extracting known amounts of SOA material in methanol and recording its UV/Vis absorption spectra. For a given precursor, the OH-generated SOA had systematically lower MAC compared to the O3-generated SOA. The highest MAC values, for brown carbon from SOA resulting from O3 oxidation of limonene and sesquiterpenes, were comparable to MAC values for biomass burning particles but considerably smaller than MAC values for black carbon aerosols. The NH3/NH4+ + SOA brown carbon aerosol may contribute to aerosol optical density in regions with elevated concentrations of NH3 or ammonium sulfate and high photochemical activity.

  9. Comparison of Reactors for Oxygen-Sensitive Reactions: Reductive Dechlorination of Chlorophenols by Vitamin B12s

    OpenAIRE

    Smith, Mark H.; Woods, Sandra L.

    1994-01-01

    Serum bottles are frequently used for studies of reductive dechlorination by vitamin B12, but reducing conditions can be maintained only for several days. This time period is inadequate for evaluating the reductive dechlorination of some slow-reacting aromatic compounds. Sealed glass ampoules maintain reducing conditions for many months, but this method has the disadvantage of disallowing subsampling of the reaction mixture. A glass serum tube was modified for these experiments which not only...

  10. Ground-state correlations in 12C and the mechanism of the (e,e'p) reaction

    International Nuclear Information System (INIS)

    In this thesis the results of an investigation into two aspects of the mechanism of the quasi-elastic (e,e'p) reaction: the interaction between the incident electron and the bound proton and the residual nucleus (final-state interaction (FSI)), are presented and used in the extraction of nuclear-structure information from (e,e'p) measurements on 12C. The experiments were carried out at NIKHEF-K with a high-resolution spectrometer. Two kinds of experiments have been performed on 12C. The first was aimed at obtaining accurate momentum distributions for various final states in 11B. Some special measurements were carried out in order to vary the parameters influencing the FSI. The role of coupled-channels effects in the 12C(e,e'p)11Be reaction is discussed. It is discussed whether some of the weak transitions observed in this reaction, can be associated with knockout from normally unoccupied shell-model orbitals. The second experiment on 12C was devoted to the e-p coupling. These measurements were supplemented with data taken on 6Li. The latter measurement allowed for measuring simultaneously knockout from the relatively dense 4He core and the relatively dilute deuteron. In this way the density dependence of the e-p coupling in the nucleus could be studied. The results of these experiments have been compared to various models that take into account the effect of the nuclear medium upon the e-p coupling. The possible role of charge-exchange and meson-exchange currents in the interpretation of these experiments is also considered. A brief survey of the formalism of the quasi-elastic (e,e'p) reaction is also presented. (author). 196 refs.; 53 figs.; 21 tabs

  11. Back-angle anomaly and coupling between seven reaction channels of 12C+24Mg using algebraic scattering theory

    International Nuclear Information System (INIS)

    We measured six fairly complete angular distributions of elastic, inelastic and α-transfer reactions of the 12C+24Mg system ar Ecm = 25.2 MeV. We performed coupled channels calculations using the Algebraic Scattering Theory with nuclear algebraic potential derived from nuclear phase shifts and using available structure informations for the inelastic coupling strengths. The back angle rise in the elastic cross section is fully explained by the couplings between elastic and transfer channels. (author)

  12. Carbon isotope (14C, 12C) measurements to quantify sources of atmospheric carbon monoxide in urban air

    International Nuclear Information System (INIS)

    Atmospheric air samples were collected during the Winter of 1989-90 in Albuquerque, NM USA, for carbon isotope (14C, 12C) analysis of carbon monoxide (CO). An experimental sample design was prepared to target periods when the concentration of CO exceeds the 9 μL/L (volume fraction), 8 hour National Ambient Air Quality Standard (NAAQS) and during periods of attainment. Sampling sites, time of day, sampling duration, and meteorology were carefully considered so that source impacts be optimal. A balanced sampling factorial design was used to yield maximum information from the constraints imposed; the number of samples was limited by the number of sample canisters available, time, and resources. Carbon isotope measurements of urban air, ''clean-air'' background from Niwot Ridge, Colorado, average (wood) logs and oxygenated-gasolines were used in a 3-source model to calculate the contribution of woodburning to the total atmospheric CO burden in Albuquerque. Results show that the estimated fractional contribution of residential wood combustion (Θ' RWC) ranged from 0 to 0.30 of CO concentrations corrected for ''clean-air'' background. For these same samples, the respective CO concentrations attributed to woodburning range from 0 to 0.90 μmol/mol (mole fraction), well below the NAAQS. In all cases, fossil CO is the predominant source of ambient CO concentrations ranging from 0.96 to 6.34 μmol/mol. A final comment is made on the potential of fossil CO measurements as an indirect tracer of atmospheric benzene, relevant to exposure risk estimates of motor vehicle emissions and occupational health and safety standards. (author). 26 refs, 3 figs, 4 tabs

  13. Superparamagnetic Ironoxide Nanoparticles via Ligand Exchange Reactions: Organic 1,2-Diols as Versatile Building Blocks for Surface Engineering

    Directory of Open Access Journals (Sweden)

    Robert Sachsenhofer

    2008-09-01

    Full Text Available A method for the preparation of ligand-covered superparamagnetic iron oxide nanoparticles via exchange reactions is described. 1,2-diol-ligands are used to provide a stable binding of the terminally modified organic ligands onto the surface of γ-Fe2O3-nanoparticles (r∼4 nm. The 1,2-diol-ligands are equipped with variable terminal functional groups (i.e., hydrogen bonding moieties, azido- bromo-, fluorescent moieties and can be easily prepared via osmium tetroxide-catalyzed 1,2-dihydroxylation reactions of the corresponding terminal alkenes. Starting from octylamine-covered Î��-Fe2O3-nanoparticles, ligand exchange was effected at 50∘C over 24–48 hours, whereupon complete ligand exchange is taking place as proven by thermogravimetric (TGA- and IR-spectroscopic measurements. A detailed kinetic analysis of the ligand exchange reaction was performed via TGA analysis, demonstrating a complete ligand exchange after 24 hours. The method offers a simple approach for the generation of various γ-Fe2O3-nanoparticles with functional organic shells in a one-step procedure.

  14. In situ formation of silicon carbide from the kaolin and carbon reaction: quantification using X-ray diffraction

    International Nuclear Information System (INIS)

    In situ formation of silicon carbide by the reaction between kaolin, as a Si O2 natural mineral precursor, and black carbon was analyzed by X-ray diffraction studies in a temperature range from 1400 to 1700 deg C in an argon atmosphere. X-ray patterns showed that needle like SiC (aspect ratio: 20 to 100) begins to form above 1500 deg C. Samples with stoichiometry carbon contents with respect to silica were synthesized. The quantitative influence of temperature on the SiC-formation was determined. (author)

  15. Energy loss of /sup 12/C projectiles in different carbon modifications

    International Nuclear Information System (INIS)

    The stopping cross sections of the three carbon modifications diamond, graphite, and glassy carbon are investigated for carbon projectiles of intermediate velocity. The inverted Doppler-shift attenuation method was used as the experimental technique, and it enabled us to measure the ratios of the three stopping cross sections precisely over a wide energy range. For velocities between 3 and 4 times Bohr's velocity the stopping cross sections of graphite and glassy carbon are found to be 1.036 and 1.072 times larger than that of diamond, respectively. These differences are attributed to binding effects. To understand these effects, we have evaluated the mean ionization potentials utilizing the local-plasma approximation for the inner-shell electrons and the dielectric response function for the valence electrons. The theoretical ratios calculated by inserting these potentials into the Bethe-Bloch stopping-power formula agree well with our experimental results. Furthermore, we have obtained a value of 53.3 +- 4.1 fs for the lifetime of the first excited state of the /sup 12/C nucleus

  16. Magnetic Carbon Supported Palladium Nanoparticles: An Efficient and Sustainable Catalyst for Hydrogenation Reactions

    Science.gov (United States)

    Magnetic carbon supported Pd catalyst has been synthesized via in situ generation of nanoferrites and incorporation of carbon from renewable cellulose via calcination; the catalyst can be used for the hydrogenation of alkenes and reduction of aryl nitro compounds.

  17. Applications of the water--gas shift reaction. II. Catalytic exchange of deuterium for hydrogen at saturated carbon

    International Nuclear Information System (INIS)

    Previous studies on the homogeneous catalysis of the water-gas shift reaction by metal complexes of groups 6 and 8 had been carried out using aqueous alcoholic solutions of group 8 metal carbonyl complexes made basic with KOH. Substitution of triethylamine (Et3N) for KOH as base and alcohol for solvent led to the discovery that Et3N in the presence of D2O, CO, and Rh6(CO)16 at 1500C undergoes an unusual catalytic exchange of deuterium for hydrogen. A suggested mechanism for this reaction is given and includes activation of hydrogen at a saturated carbon

  18. Enhancing the reactivity of 1,2-diphospholes in cycloaddition reactions

    OpenAIRE

    Almaz Zagidullin; Vasili Miluykov; Elena Oshchepkova; Artem Tufatullin; Olga Kataeva; Oleg Sinyashin

    2015-01-01

    Two different approaches have been employed to enhance the reactivity of 1-alkyl-1,2-diphospholes – the introduction of electron-withdrawing groups either at the phosphorus atoms or in the para-position of the arene ring. The alkylation of sodium 1,2-diphospha-3,4,5-triphenylcyclopentadienide with alkyl halides Hal-CH2-R (R = CN, COOEt, OMe, CH2OEt) results in corresponding 1-alkyl-3,4,5-triphenyl-1,2-diphospholes (alkyl = CH2CN (1a), CH2COOEt (1b), CH2OMe (1c), and (CH2)2OEt (1d)), which spo...

  19. Accelerated carbonation using municipal solid waste incinerator bottom ash and cold-rolling wastewater: Performance evaluation and reaction kinetics

    International Nuclear Information System (INIS)

    Highlights: • Carbonation was performed using CO2, wastewater and bottom ash in a slurry reactor. • A maximum capture capacity of 102 g CO2 per kg BA was achieved at mild conditions. • A maximum carbonation conversion of MSWI-BA was predicted to be 95% by RSM. • The CO2 emission from Bali incinerator could be expected to reduce by 6480 ton/y. • The process energy consumption per ton CO2 captured was estimated to be 180 kW h. - Abstract: Accelerated carbonation of alkaline wastes including municipal solid waste incinerator bottom ash (MSWI-BA) and the cold-rolling wastewater (CRW) was investigated for carbon dioxide (CO2) fixation under different operating conditions, i.e., reaction time, CO2 concentration, liquid-to-solid ratio, particle size, and CO2 flow rate. The MSWI-BA before and after carbonation process were analyzed by the thermogravimetry and differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy equipped with energy dispersive X-ray spectroscopy. The MSWI-BA exhibits a high carbonation conversion of 90.7%, corresponding to a CO2 fixation capacity of 102 g per kg of ash. Meanwhile, the carbonation kinetics was evaluated by the shrinking core model. In addition, the effect of different operating parameters on carbonation conversion of MSWI-BA was statistically evaluated by response surface methodology (RSM) using experimental data to predict the maximum carbonation conversion. Furthermore, the amount of CO2 reduction and energy consumption for operating the proposed process in refuse incinerator were estimated. Capsule abstract: CO2 fixation process by alkaline wastes including bottom ash and cold-rolling wastewater was developed, which should be a viable method due to high conversion

  20. Accelerated carbonation using municipal solid waste incinerator bottom ash and cold-rolling wastewater: Performance evaluation and reaction kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Chang, E-E [Department of Biochemistry, Taipei Medical University, 250 Wu-Hsing Street, Taipei City, Taiwan 110, Taiwan, ROC (China); Pan, Shu-Yuan [Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei City, Taiwan 10673, Taiwan, ROC (China); Yang, Liuhanzi [School of Environment, Tsinghua University, Haidin District, Beijing 100084 (China); Chen, Yi-Hung [Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, 1, Sec. 3, Zhongxiao E. Rd., Taipei City, Taiwan 10608, Taiwan, ROC (China); Kim, Hyunook [Department of Energy and Environmental System Engineering, University of Seoul (Korea, Republic of); Chiang, Pen-Chi, E-mail: pcchiang@ntu.edu.tw [Graduate Institute of Environmental Engineering, National Taiwan University, 71 Chou-Shan Rd., Taipei City, Taiwan 10673, Taiwan, ROC (China)

    2015-09-15

    Highlights: • Carbonation was performed using CO{sub 2}, wastewater and bottom ash in a slurry reactor. • A maximum capture capacity of 102 g CO{sub 2} per kg BA was achieved at mild conditions. • A maximum carbonation conversion of MSWI-BA was predicted to be 95% by RSM. • The CO{sub 2} emission from Bali incinerator could be expected to reduce by 6480 ton/y. • The process energy consumption per ton CO{sub 2} captured was estimated to be 180 kW h. - Abstract: Accelerated carbonation of alkaline wastes including municipal solid waste incinerator bottom ash (MSWI-BA) and the cold-rolling wastewater (CRW) was investigated for carbon dioxide (CO{sub 2}) fixation under different operating conditions, i.e., reaction time, CO{sub 2} concentration, liquid-to-solid ratio, particle size, and CO{sub 2} flow rate. The MSWI-BA before and after carbonation process were analyzed by the thermogravimetry and differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy equipped with energy dispersive X-ray spectroscopy. The MSWI-BA exhibits a high carbonation conversion of 90.7%, corresponding to a CO{sub 2} fixation capacity of 102 g per kg of ash. Meanwhile, the carbonation kinetics was evaluated by the shrinking core model. In addition, the effect of different operating parameters on carbonation conversion of MSWI-BA was statistically evaluated by response surface methodology (RSM) using experimental data to predict the maximum carbonation conversion. Furthermore, the amount of CO{sub 2} reduction and energy consumption for operating the proposed process in refuse incinerator were estimated. Capsule abstract: CO{sub 2} fixation process by alkaline wastes including bottom ash and cold-rolling wastewater was developed, which should be a viable method due to high conversion.

  1. Carboxyl functionalization of carbon fibers via aryl diazonium reaction in molten urea to enhance interfacial shear strength

    Science.gov (United States)

    Wang, Yuwei; Meng, Linghui; Fan, Liquan; Wu, Guangshun; Ma, Lichun; Zhao, Min; Huang, Yudong

    2016-01-01

    Using molten urea as the solvent, carbon fibers were functionalized with carboxylic acid groups via aryl diazonium reaction in 15 min to improve their interfacial bonding with epoxy resin. The surface functionalization was quantified by X-ray photoelectron spectroscopy, which showed that the relative surface coverage of carboxylic acid groups increased from an initial percentage of 3.17-10.41%. Mechanical property test results indicated that the aryl diazonium reaction in this paper could improve the interfacial shear strength by 66%. Meanwhile, the technique did not adopt any pre-oxidation step to produce functional groups prior to grafting and was shown to maintain the tensile strength of the fibers. This methodology provided a rapid, facile and economically viable route to produce covalently functionalized carbon fibers in large quantities with an eco-friendly method.

  2. Boron Doped Multi-walled Carbon Nanotubes as Catalysts for Oxygen Reduction Reaction and Oxygen Evolution Reactionin in Alkaline Media

    International Nuclear Information System (INIS)

    The boron doped multi-walled carbon nanotubes (B-MWCNTs) were synthesized by thermal annealing multi-walled carbon nanotubes (MWCNTs) in the presence of boric acid. The transmission electron microscopy (TEM) and X-ray diffraction (XRD) results revealed that the structure of MWCNTs does not be destroyed during the doping process, and X-ray photoelectron spectroscopy (XPS) analysis demonstrated the boron atoms were successfully doped in the structure of MWCNTs. The electrocatalytic properties of B-MWCNTs are characterized by rotating disk electrode (RDE) methods. The results demonstrated that the B-MWCNTs catalyzed oxygen reduction reaction (ORR) in alkaline media by a 2 + 2 electron pathway and it showed good catalytic activity for oxygen evolution reaction (OER) as well

  3. Nuclear reactions induced by 12C and 40Ar on targets of average and heavy mass at intermediate energies

    International Nuclear Information System (INIS)

    Cross sections mean recoil ranges, isomeric ratios an angular distributions of radioactive α emitters produced in 12C and 40Ar induced reactions on thick medium to heavy targets are presented. Experiments were made on the CERN Synchro Cyclotron (12C at 86 MeV/u), SARA (20 and 30 MeV/u 12C beam) and GANIL (40Ar at 44 MeV/u) facilities. The experimental set up is based on the electrostatic collection in gases, in conjunction with a gas transport system. Experimental results confirm the ''residue corridor'' concept. At 20 and 30 MeV/u of 12C, incomplete fusion and preequilibrium emission are typical features of the reaction. Therefore we developed such an incomplete fusion model, coupled to a preequilibrium and statistical evaporation code which reproduces quite well the cross-section distributions. For the higher incident energies, comparisons between calculations made according to a pure abrasion-ablation model, intranuclear cascade codes and the incomplete fusion picture and experiments are presented

  4. Study of fragmentation cross-sections for 12C+12C reaction at 95 MeV/u and 400 MeV/u for hadron-therapy

    International Nuclear Information System (INIS)

    The hadron-therapy is a radiotherapy method using ions (carbon ions here) instead of the more conventional X-rays for cancer treatment. Deep radioresistant tumour areas, as brain carcinoma for example, can be treated thanks to the specific dose deposition at the end of the ion path. This is an additional method to older classic ones (surgery, X-rays, chemotherapy). Two hadron-therapy centres for treatment and research are planned in France from 2018 (ARCHADE) in order to benefit from the newest progress and to keep improving this method. Carbon ions energy loss in the matter follows the Bethe-Bloch law. The maximum of energy depth is located in a limited area called 'Bragg peak'. By adjusting the beam position and energy, the whole volume of the tumor can be irradiated. Nevertheless, nuclear reactions of carbon ion in tissues generate the production of lighter fragments (H, He, Li etc.) that deposit their energy beyond the Bragg peak. Models implemented in hadron-therapy simulation codes (FLUKA, GEANT4 etc.) cannot reproduce angular distributions of the lighter fragments and energy distributions at the same time. These poor estimations affect the treatment planning systems accuracy that are clinically used. Indeed, a bad estimation of fragmentation process induces a bias in the dose calculation concerning healthy cells beyond the Bragg peak. In order to better constraint models, two experiments based on fragmentation cross-sections measurements have been performed. The first one in may 2011 with a beam at 95 MeV/u (GANIL) in collaboration with the LPC Caen and the second one in august 2011 with a beam at 400 MeV/u (GSI) with the FIRST collaboration. E600 experiment is devoted to the study of carbon ions fragmentation at 95 MeV/u in several thin targets (Au, C, , Ti etc.) corresponding to the basic building blocks of human body. Five telescopes are designed for the fragments detection. Each one is a three-stage detector (2 silicon detectors and one CsI scintillator

  5. Synthesis of graphitic carbon nitride by reaction of melamine and uric acid

    International Nuclear Information System (INIS)

    Highlights: → Graphitic carbon nitrides by CVD of melamine and uric acid on alumina. → The building blocks of carbon nitrides are heptazine nuclei. → Composite particles with alumina core and carbon nitride coating. - Abstract: Graphitic carbon nitrides were synthesized starting from melamine and uric acid. Uric acid was chosen because it thermally decomposes, and reacts with melamine by condensation at temperatures in the range of 400-600 deg. C. The reagents were mixed with alumina and subsequently the samples were treated in an oven under nitrogen flux. Alumina favored the deposition of the graphitic carbon nitrides layers on the exposed surface. This method can be assimilated to an in situ chemical vapor deposition (CVD). Infrared (IR) spectra, as well as X-ray diffraction (XRD) patterns, are in accordance with the formation of a graphitic carbon nitride with a structure based on heptazine blocks. These carbon nitrides exhibit poor crystallinity and a nanometric texture, as shown by transmission electron microscopy (TEM) analysis. The thermal degradation of the graphitic carbon nitride occurs through cyano group formation, and involves the bridging tertiary nitrogen and the bonded carbon, which belongs to the heptazine ring, causing the ring opening and the consequent network destruction as inferred by connecting the IR and X-ray photoelectron spectroscopy (XPS) results. This seems to be an easy and promising route to synthesize graphitic carbon nitrides. Our final material is a composite made of an alumina core covered by carbon nitride layers.

  6. Protective effect of application of carbon nanoparticles in thyroid cancer surgery and evaluation of inflammatory stress reaction degree

    Institute of Scientific and Technical Information of China (English)

    Qing-Sheng Zheng; Jun-Zheng Li; Wei-Xiong Hong; Jiao-Yuan Xu; Si-Yi Zhang

    2015-01-01

    Objective:To study the protective effect of application of carbon nanoparticles in thyroid cancer surgery and its influence on inflammatory stress reaction degree.Methods:Patients who received thyroid cancer surgery in our hospital from June 2013 to June 2014 were chosen for study and randomly divided into conventional group and nano-carbon group. Then contents of thyroid cancer related malignant molecules, pro-inflammation cytokines and inflammation inhibiting factors in serum were detected.Results:(1) Malignant molecules: compared with conventional group, mRNA levels of Wip1, gal-3, SATB1, LSD1, GDF-15 and TBX2 in serum of nano-carbon group were lower; (2) Inflammation inhibiting factors: compared with conventional group, serum MFG-E8 and Omentin-1 levels of nano-carbon group were higher; (3) Pro-inflammation cytokines: compared with conventional group, serum MIP-1, SGK-1 and β-EP levels of nano-carbon group were lower.Conclusion: Application of carbon nanoparticles in thyroid cancer surgery is helpful to reduce operative damage to thyroid tissue, prevent release of malignant biological molecules into bloodstream and relieve inflammatory response; it’s an ideal surgical method for thyroid cancer.

  7. Electron transfer. 93. Further reactions of transition-metal-center oxidants with vitamin B12s (Cob(I)alamin)

    International Nuclear Information System (INIS)

    Vitamin B12s (cob(I)alamin) reduces europium(III), titanium(IV) (TiO(C2O4)22-), and uranium(VI) in aqueous solution. These oxidants undergo one-electron changes, leading in each case to the cobalt product cob(II)alamin (B12r). The reduction of Eu3+, which is inhibited by TES buffer, but not by glycine, is outer sphere. Its limiting specific rate (1 x 102 M-1 s-1), incorporated in the Marcus treatment, yields a B12s,B12r self-exchange rate of 104.8±0.5 M-1 s-1. Reductions of TiO(C2O4)22- are accelerated by H+ and by acetic acid. Kinetic patterns suggest three competing reaction paths involving varying degrees of protonation of the Ti(IV) center or its association with acetic acid. The very rapid reduction of U(VI) (k = 4 x 106 M-1 s-1) yields U(V) in several buffering media, even when B12s is taken in excess. The much slower conversion of U(V) to U(IV), although thermodynamically favored, appears to be retarded by the extensive reorganization of the coordination sphere of oxo-bound U(V) that must accompany its acceptance of an additional electron. The observed specific rate for the B12s-U(VI) reaction is in reasonable agreement, in the framework of the Marcus formalism, with reported values of the formal potential and the self-exchange rate for U(V,VI). 37 references, 4 tables

  8. Electrocatalytic oxygen evolution reaction at a FeNi composite on a carbon nanofiber matrix in alkaline media

    Institute of Scientific and Technical Information of China (English)

    Xianghua An; Dongyoon Shin; Joey D. Ocon; Jae Kwang Lee; Young-il Son; Jaeyoung Lee

    2014-01-01

    Non-noble metals such as Fe and Ni have comparable electrocatalytic activity and stability to that of Ir and Ru in an oxygen evolution reaction (OER). In this study, we synthesized carbon nanofibers with embedded FeNi composites (FeNi-CNFs) as OER electrocatalysts by a facile route comprising electrospinning and the pyrolysis of a mixture of metal precursors and a polymer solution. FeNi-CNFs demonstrated catalytic activity and stability that were better than that of 20 wt%Ir on Vulcan carbon black in oxidizing water to produce oxygen in an alkaline media. Physicochemical and electrochemical characterization revealed that Fe and Ni had synergistic roles that enhanced OER activity by the uniform formation and widening of pores in the carbon structure, while the CNF matrix also contributed to the increased stability of the catalyst.

  9. Platinum and platinum-ruthenium nanoparticles supported on ordered mesoporous carbon and their electrocatalytic performance for fuel cell reactions

    Energy Technology Data Exchange (ETDEWEB)

    Ding Jie [Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong SAR, Hong Kong (China); Chan, K.-Y. [Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong SAR, Hong Kong (China)]. E-mail: hrsccky@hku.hk; Ren, Jiawen [Department of Chemistry, University of Hong Kong, Pokfulam Road, Hong Kong SAR, Hong Kong (China); Xiao Fengshou [State Key Laboratory of Inorganic Synthesis and Preparative Chemistry and College of Chemistry, Jilin University, Changchun 130023 (China)

    2005-05-20

    Highly ordered meso-porous carbon, denoted CMK-3 was synthesized by using mesoporous silicates, SBA-15 as the starting templating materials. The ordered mesoporous carbon was loaded with platinum and platinum-ruthenium nanoparticles using alternative synthesis techniques. The metal loaded ordered mesoporous carbon powders were characterized by transmission electron microscopy (HRTEM), energy dispersive X-ray analysis (EDX), X-ray diffraction, and nitrogen adsorption isotherm experiments. Micrometer-scale and centimeter-scale electrodes containing the mesocarbon/nanometal electrocatalysts were tested for some typical fuel cell reactions. While the nanometal/mesocarbon catalysts have well-defined and uniform properties in the nanometer scale, they have mixed electrocatalytic performance. A synthesized Pt/mesocarbon electrocatalyst outperformed a commercial electrocatalyst for oxygen reduction on a gas-diffusion electrode. The Pt-Ru/mesocarbon electrocatalyst synthesized, however, was not as effective for methanol oxidation.

  10. Platinum and platinum-ruthenium nanoparticles supported on ordered mesoporous carbon and their electrocatalytic performance for fuel cell reactions

    Energy Technology Data Exchange (ETDEWEB)

    Jie Ding; Kwong Yu Chan; Jiawen Ren [Hong Kong Univ. (China). Dept. of Chemistry; Feng Shou Xiao [Jilin Univ., Changchun (China). State Key Lab. of Inorganic Synthesis and Preparative Chemistry

    2005-05-20

    Highly ordered meso-porous carbon, denoted CMK-3 was synthesized by using mesoporous silicates, SBA-15 as the starting templating materials. The ordered mesoporous carbon was loaded with platinum and platinum-ruthenium nanoparticles using alternative synthesis techniques. The metal loaded ordered mesoporous carbon powders were characterized by transmission electron microscopy (HRTEM), energy dispersive X-ray analysis (EDX), X-ray diffraction, and nitrogen adsorption isotherm experiments. Micrometer-scale and centimeter-scale electrodes containing the mesocarbon/nanometal electrocatalysts were tested for some typical fuel cell reactions. While the nanometal/mesocarbon catalysts have well-defined and uniform properties in the nanometer scale, they have mixed electrocatalytic performance. A synthesized Pt/mesocarbon electrocatalyst outperformed a commercial electrocatalyst for oxygen reduction on a gas-diffusion electrode. The Pt-Ru/mesocarbon electrocatalyst synthesized, however, was not as effective for methanol oxidation. (Author)

  11. Platinum and platinum-ruthenium nanoparticles supported on ordered mesoporous carbon and their electrocatalytic performance for fuel cell reactions

    International Nuclear Information System (INIS)

    Highly ordered meso-porous carbon, denoted CMK-3 was synthesized by using mesoporous silicates, SBA-15 as the starting templating materials. The ordered mesoporous carbon was loaded with platinum and platinum-ruthenium nanoparticles using alternative synthesis techniques. The metal loaded ordered mesoporous carbon powders were characterized by transmission electron microscopy (HRTEM), energy dispersive X-ray analysis (EDX), X-ray diffraction, and nitrogen adsorption isotherm experiments. Micrometer-scale and centimeter-scale electrodes containing the mesocarbon/nanometal electrocatalysts were tested for some typical fuel cell reactions. While the nanometal/mesocarbon catalysts have well-defined and uniform properties in the nanometer scale, they have mixed electrocatalytic performance. A synthesized Pt/mesocarbon electrocatalyst outperformed a commercial electrocatalyst for oxygen reduction on a gas-diffusion electrode. The Pt-Ru/mesocarbon electrocatalyst synthesized, however, was not as effective for methanol oxidation

  12. Original Reaction Sequence of Pb(Yb1/2Nb1/2O3-PbTiO3: Consequences on Dielectric Properties and Chemical Order

    Directory of Open Access Journals (Sweden)

    Charlotte Cochard

    2015-01-01

    Full Text Available The solid solution [Pb(Yb1/2Nb1/2O3]1−x-[PbTiO3]x was synthesized with x≤60%, using several high-temperature techniques as well as room-temperature mechanosynthesis. The high-temperature synthesis reveals a reaction path involving the synthesis first of the end-members before the solid solution. The density and dielectric constant measured on the ceramics prepared from these powders indicate the crucial role of the synthesis technique in the subsequent properties. Mechanosynthesis results in ceramics with higher density and dielectric constant. Identical optimized sintering conditions were then applied to all investigated compositions and the resulting dielectric properties and chemical orders were compared. All polar orders (antiferroelectricity, ferroelectricity, and relaxor behavior were evidenced. The 1 : 1 chemical order on the B-site of Pb(Yb1/2Nb1/2O3 results in the formation of a double perovskite Pb2YbNbO6, and the superstructures in the X-ray diagrams signing the existence of this order persist up to 30% PbTiO3. The underlying mechanism for substitution of Yb or Nb by Ti is presented.

  13. Oxygen reduction reactions of the thermostable bilirubin oxidase from Bacillus pumilus on mesoporous carbon-cryogel electrodes

    International Nuclear Information System (INIS)

    This study demonstrates the bioelectrocatalytic reactions of a new bilirubin oxidase (BOD) from Bacillus pumilus on a mesoporous carbon cryogel (CCG) electrode, in the presence and absence of a mediator. BOD, physically adsorbed on the mesoporous matrix of a CCG electrode, allowed a direct electron transfer (DET) from the carbon electrode to the type I copper site of the enzyme. The current from the dioxygen reduction reaction (ORR), catalyzed by BOD, depended on the temperature and pH of the electrolyte. The mediated ORR catalyzed by BOD on CCG electrode was also investigated using osmium based redox polymers. The catalytic current on the CCG electrode modified with 0.2 mg cm−2 of hydrogel consisting of an enzyme, a redox polymer and a cross linker, was 1.8 mA cm−2, which was almost five times higher than that on a flat glassy carbon electrode for the same hydrogel composition and loading. The catalytic current linearly increased with the total amount of hydrogel on the porous carbon electrode while the catalytic current on the flat electrode was indifferent to the loading

  14. Measurement of the total reaction cross section for interactions between heavy ions (application to the system 12C+12C at 112MeV)

    International Nuclear Information System (INIS)

    The total reaction cross-section σsub(R) for interactions between heavy ions is predicted to decrease rapidly with the energy of the incident projectile over the energy range 10 MeV/A - 100 MeV/A. We present here an experimental met σsub(R) to test the model based predictions. The method consists in counting the number of all incoming projectiles and the number of out going projectiles that did not interact with the target. The difference between these two numbers corresponds to the number of particles that reacted with the target nuclei and is therefore proportional to σsub(R). Values of σsub(R) have been measured for the system 12C + 12C at two incident energies of 112 MeV and 996 MeV. The results of 1444 +- 70 (112 MeV) and 994 +- 50 (996 MeV) show a total reaction cross-section decreasing with energy as predicted from the Glauber model and optical model fits to elastic scattering

  15. Nitrogen-containing mesoporous carbon cathode for lithium-oxygen batteries: The influence of Nitrogen on oxygen reduction reaction

    International Nuclear Information System (INIS)

    Graphical abstract: The direct effect of nitrogen content and various nitrogen species on oxygen reduction reaction (ORR) activities in nonaqueous Li-O2 batteries are systematically investigated. Mesoporous carbon (MC) with various nitrogen species is prepared through heat treatment of N-containing precursor under different temperature. The effect of the heat treatment temperature on the performance of carbon materials in Li-O2 battery is investigated. The bonding state of nitrogen atoms is found to have a significant effect on the ORR activity. The ORR activity in Li-O2 battery is proved to be dependent on the quaternary N content while the total N content in the carbon material does not play a crucial role in the ORR process. - Highlights: • The role of various N in ORR for Li-O2 battery was investigated. • The total N content does not play an important role in the ORR process. • The ORR activity in Li-O2 battery is dependent on the quaternary N content. - Abstract: The direct effect of nitrogen content and various nitrogen species on oxygen reduction reaction (ORR) activities in non-aqueous lithium-oxygen (Li-O2) batteries are systematically investigated. Mesoporous carbon (MC) with various nitrogen species is prepared through heat treatment of N-containing precursor under different temperature. The effect of the heat treatment temperature on the performance of carbon materials in Li-O2 battery is investigated. The bonding state of nitrogen atoms is found to have a significant effect on the ORR activity. The ORR activity in Li-O2 battery is proved to be dependent on the quaternary N content while the total N content in the carbon material does not play a crucial role in the ORR process

  16. Competition of sulphation and carbonation reactions during looping cycles for CO2 capture by CaO-based sorbents.

    Science.gov (United States)

    Manovic, Vasilije; Anthony, Edward J

    2010-03-25

    Two types of sorbents are investigated here (natural limestone and highly reactive calcium aluminate pellets) to elucidate their reactivity in terms of sulphation and carbonation and determine the resulting effect on looping cycles for CO(2) capture. The sorbents are tested in a thermogravimetric analyzer (TGA) apparatus using typical synthetic flue gas mixtures containing 15% CO(2) and various concentrations of SO(2). The sulphation and carbonation conversions were determined during sulphation/carbonation/calcination cycles. The sorbent morphology and its changes were determined by means of a scanning electron microscope (SEM). The results showed that sulphation, that is, the formation of CaSO(4) at the sorbent surface, is a cumulative process with increasing numbers of reaction cycles, which hinders sorbent ability to capture CO(2). In the case of high sorbent reactivity, as determined by its morphology, the unfavorable effect of sulphation is more pronounced. Unfortunately, any increase in the temperature in the carbonation stage accelerates sulphation more than carbonation as a result of higher activation energy for the sulphation reaction. The SEM analyses showed that although sulphation and carbonation occur during cycles involving calcination, an unreacted core/partially sulphated shell sorbent particle pattern is formed. The main outcomes of this research indicate that special attention should be paid to the sulphation when more reactive and more expensive, synthetic CaO-based sorbents are used for CO(2) capture looping cycles. Desulphurization of flue gas before CO(2) capture appears to be essential because CO(2) looping cycles are so strongly affected by the presence of SO(2). PMID:20050624

  17. Effect of carbon content on microstructure and mechanical properties of hot-rolled low carbon 12Cr-Ni stainless steel

    International Nuclear Information System (INIS)

    Research highlights: → Hot-rolled ultra low carbon martensite is characterized by dislocation cells substructure. → The formation of dislocation cells is attributed to high Ms and low interstitial atoms content. → Hot-rolled ultra low carbon 12Cr-Ni stainless steel has excellent impact toughness. → Delta ferrite deteriorates the impact toughness of hot-rolled 12Cr-Ni stainless steel. - Abstract: 12Cr-Ni stainless steels containing different carbon contents from 0.004 wt.% to 0.034 wt.% were hot-rolled and air-cooled. Their corresponding microstructures were observed with optical microscope and transmission electron microscope, and the Vickers hardness, tensile and impact tests were also carried out. It was found that the martensitic morphology was significantly influenced by carbon content. The as-received ultra low carbon martensite in the steel containing 0.004 wt.% C is characterized by dislocation cells substructure. The formation of dislocation cells is attributed to high martensite finishing point (above 400 deg. C) and low interstitial atoms content. On the other hand, the martensite in the steel containing 0.034 wt.% C consists mainly of typical martensite laths because of low martensite finishing point and high interstitial atoms content which hinder dislocation motion. Furthermore, carbon content has an evident effect on the mechanical properties of 12Cr-Ni steels. The hardness and strength of the as-received steels increase with an increase in carbon content, but their elongation and impact toughness decrease with the carbon content. The steel containing 0.004 wt.% C has excellent impact toughness due to the ultra low carbon content in the martensite composed of dislocation cells.

  18. Investigation of carbon-coated lithiated Li4+xTi5O12/C for lithium-ion batteries

    International Nuclear Information System (INIS)

    Highlights: • Lithiated Li4+xTi5O12/C with pre-stored active Li ions has been synthesized. • The first-cycle coulombic efficiency of Li4+xTi5O12/C is over 100%. • Li4+xTi5O12/C displays excellent cyclic stability and capacity retention. • TiO2 nanoparticles and carbon coating are necessary for formation of Li4+xTi5O12/C. - Abstract: Carbon-coated Li4Ti5O12 and lithiated Li4+xTi5O12 anode materials have been synthesized using nanosized anatase TiO2 and commercial TiO2 with mixed structure as Ti sources, respectively. Microstructural investigation indicates that Li4Ti5O12 and Li4+xTi5O12 are covered by amorphous carbon layers with thickness of 2–3 nm. Their electrochemical performance has been evaluated, which indicates that an amount of active Li ions have been pre-stored in the Li4+xTi5O12 lattice during solid-state synthesis, resulting in its first-cycle coulombic efficiency over 100%. Further, Li4+xTi5O12/C exhibits higher cyclic capacities than Li4Ti5O12/C at different current density. The reversible charge capacity retention of Li4+xTi5O12/C reaches 98.5% after 100 cycles, which indicates that Li4+xTi5O12/C is promising candidate anode material for long lifetime lithium-ion batteries. The formation mechanism of Li4+xTi5O12/C has been discussed, in which the nanosized anatase TiO2 with high chemical activity and the carbon coating play key roles for the formation of Li4+xTi5O12/C

  19. INFLUENCE OF ELEVATED ATMOSPHERIC CARBON DIOXIDE ON THE ACTIVITY OF THE MEHLER REACTION IN THE MARINE CYANOBACTERIUM TRICHODESMIUM

    Czech Academy of Sciences Publication Activity Database

    Klepetář, Jiří; Grígel, Juraj; Kasalický, Vojtěch; Levitan, O.; Berman-Frank, I.; Prášil, Ondřej

    Pau : Verlag, 2006, s. 136-136. [International Symposium on phototrophic prokaryotes /12./. Pau (FR), 27.08.2006-01.09.2006] R&D Projects: GA MŠk 1P05ME824; GA MŽP SL/1/6/04 Institutional research plan: CEZ:AV0Z50200510 Keywords : trichodesmium * mehler reaction Subject RIV: EE - Microbiology, Virology

  20. Enhanced electrochemical performance of Li4Ti5O12 as anode material for lithium-ion batteries with different carbons as support

    International Nuclear Information System (INIS)

    Nano-Li4Ti5O12/carbon composites with various structures are designed using tetrabutyl titanate as a precursor via a facile in situ liquid deposition method in the presence of three different carbons (multiwalled carbon nanotubes, spherical conductive carbon black super-P and ordered macroporous carbon). The nano-Li4Ti5O12/carbon composites with various morphologies are formed depending on the carbon matrixes used. The Li4Ti5O12 particles obtained are approximately 100 nm in size and homogeneously dispersed in different carbon matrixes. It is found that the structures of the carbon matrixes have a close relation to the discharge capacities of the composites. At the discharge current density of 875 mA g−1, the discharge capacities of nano-Li4Ti5O12/carbon composites with 10 wt% carbon are 138.6, 120.8 and 120.9 mAh g−1 for carbon nanotubes, super-P and porous carbon as the carbon supports, respectively. The nano-Li4Ti5O12/carbon using carbon nanotubes as support exhibits superior performance with large reversible capacity, excellent cycle stability and good rate capability. Capacity retention of 99% can be maintained after 100 cycles, suggesting its promising potential as anode materials. - Highlights: • Li4Ti5O12/carbon nanocomposites are designed using different carbons as supports. • Li4Ti5O12 particles formed on carbon matrix are fine and homogeneous. • Aggregation and growth of Li4Ti5O12 particles are inhibited. • The Li4Ti5O12/carbon nanocomposites exhibit superior electrochemical performance

  1. Selective alpha particle decay of /sup 12/C + /sup 12/C resonances to excited /sup 20/Ne rotational bands observed in the /sup 12/C(/sup 12/C,. cap alpha. ) /sup 20/Ne reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ledoux, R.J.; Ordonez, C.E.; Bechara, M.J.; Al-Juwair, H.A.; Lavelle, G.; Cosman, E.R.

    1984-09-01

    Excitation functions of the /sup 12/C(/sup 12/C, ..cap alpha..)/sup 20/Ne reaction were measured at Theta/sub lab/ = 7.5/sup 0/ between E/sub c.m./ = 14-40 MeV and angular distributions were measured from E/sub c.m./ = 17.8 to 20.6 MeV. Summed yields reveal prominent intermediate structure resonances over the entire range which correlate well to resonances previously observed in elastic data. The resonances show enhanced decays to excited rotational bands in /sup 20/Ne with reduced widths comparable to those for the elastic channel and an order of magnitude greater than those for the /sup 20/Ne ground state band. A discussion is given of the resonances as shape-isomeric states in a shell model secondary minimum in /sup 24/Mg, and of the selective alpha decay as being transitions to states of related configuration in /sup 20/Ne.

  2. Selective alpha particle decay of /sup 12/C+ /sup 12/C resonances to excited /sup 20/Ne rotational bands observed in the /sup 12/C(/sup 12/C,. cap alpha. ) /sup 20/Ne reaction

    Energy Technology Data Exchange (ETDEWEB)

    Ledoux, R.J.; Ordoez, C.E.; Bechara, M.J.; Al-Juwair, H.A.; Lavelle, G.; Cosman, E.R.

    1984-09-01

    Excitation functions of the /sup 12/C(/sup 12/C,..cap alpha..) /sup 20/Ne reaction were measured at theta/sub lab/ = 7.5/sup 0/ between E/sub c.m./ = 14--40 MeV and angular distributions were measured from E/sub c.m./ = 17.8 to 20.6 MeV. Summed yields reveal prominent intermediate structure resonances over the entire range which correlate well to resonances previously observed in elastic data. The resonances show enhanced decays to excited rotational bands in /sup 20/Ne with reduced widths comparable to those for the elastic channel and an order of magnitude greater than those for the /sup 20/Ne ground state band. A discussion is given of the resonances as shape-isomeric states in a shell model secondary minimum in /sup 24/Mg, and of the selective alpha decay as being transitions to states of related configuration in /sup 20/Ne.

  3. A photochemical model for the carbon-rich planet WASP-12b

    CERN Document Server

    Kopparapu, Ravi kumar; Zahnle, Kevin J

    2011-01-01

    The hot Jupiter WASP-12b is a heavily irradiated exoplanet in a short period orbit around a G0-star with twice the metallicity of the Sun. A recent thermochemical equilibrium analysis based on Spitzer and ground-based infrared observations suggests that the presence of $\\ch4$ in its atmosphere and the lack of $\\h2o$ features can only be explained if the carbon-to-oxygen ratio in the planet's atmosphere is much greater than the solar ratio ($\\ctoo = 0.54$). Here, we use a 1-D photochemical model to study the effect of disequilibrium chemistry on the observed abundances of $\\h2o, \\com, \\co2$ and $\\ch4$ in the WASP-12b atmosphere. We consider two cases: one with solar $\\ctoo$ and another with $\\ctoo = 1.08$. The solar case predicts that $\\h2o$ and $\\com$ are more abundant than $\\co2$ and $\\ch4$, as expected, whereas the high $\\ctoo$ model shows that $\\com$, C$_{2}$H$_{2}$ and HCN are more abundant. This indicates that the extra carbon from the high $\\ctoo$ model is in hydrocarbon species. $\\h2o$ photolysis is th...

  4. Study of the Nuclear Transparency in $\\alpha$ + A Reactions at Energies $\\geq$ 12 GeV/nucleon

    CERN Multimedia

    2002-01-01

    The question about transparency is crucial for heavy ion reaction studies. If the transparency is low at 10-15 GeV per nucleon then very large baryon densities can be achieved in this energy range, maybe enough to produce quark-gluon plasma in U+U collisions. We propose to measure, event by event, pseudo-rapidity and multiplicity distributions of singly charged relativistic particles (@b~$>$~0.7) globally and in selected regions of rapidity as well as multiplicities of recoiling protons (30-400~Me charged nuclear fragments. These studies will explore general features of @a+A reactions at energies @$>$~12~GeV/nucleon. The main goal of the experiment is to measure the transparency of nuclear matter in this energy range. The detector will be nuclear emulsion.

  5. Examination of reaction of brain tissue and PC-12 cells to HEMA-EMA copolymer

    Czech Academy of Sciences Publication Activity Database

    Karbanová, J.; Mokrý, J.; Lukáš, Jaromír; Palečková, Věra

    Hradec Králové : Universita Karlova, Lékařská fakulta v Hradci Králové, 1999. s. -. [Vědecká konference /4./. 08.12.1999, Hradec Králové] R&D Projects: GA ČR GA304/98/0267 Subject RIV: FH - Neurology

  6. Quasielastic and inelastic neutrino reactions in $^{12}C$ at K2K energies

    CERN Document Server

    Athar, M Sajjad; Singh, S K

    2008-01-01

    In this paper, we present the results of a study made for the effect of nuclear medium in the charged current induced quasielastic lepton production(CCQE) and the incoherent and coherent one pion production (CC1$\\pi^+$)processes from $^{12}C$ in the $\

  7. Study of 12Be using the 11Be(9Be,8Be) transfer reaction at TRIUMF ISAC-II

    Science.gov (United States)

    Braid, Ryan; Sarazin, Fred; TIGRESS Collaboration; (PCB)2 Collaboration

    2015-10-01

    Recent results at TRIUMF and NSCL have called into question the structure of 12Be, therefore another look at this nucleus is desirable. The structure is important information for theoretical models, since it constrains the mechanism that produces parity inversion in 11Be. The 12Be structure was probed in July 2014 using the (PCB)2 array (Printed Circuit Board Based Charged Particle) inside TIGRESS (TRIUMF - ISAC Gamma Ray Escape Suppressed Spectrometer) at TRIUMF using the 11Be(9Be,8Be)12Be reaction at 55 MeV in inverse kinematics. A second set of data at 30 MeV was collected. This reaction has numerous advantages over the traditional (d,p) method, foremost of which is the 8Be --> 2 α breakup since it allows for very clean identification and tagging. Additionally, TIGRESS will allow precise γ-tagging for the excited states. The initial data and analysis will be presented in this talk. This work is partially supported by the US Department of Energy through Grant/Contract No. DE-FG03-93ER40789 (Colorado School of Mines).

  8. Comparing carbon nanotubes and graphene nanoplatelets as reinforcements in polyamide 12 composites

    Science.gov (United States)

    Chatterjee, S.; Nüesch, F. A.; Chu, B. T. T.

    2011-07-01

    We investigate the influence of nanofillers including carbon nanotubes (CNTs) and graphene nanoplatelets on a thermoplastic engineering polymer, polyamide 12 (PA12). The comparison between these two important nanofillers as to how they influence the structure and properties of the polymer is systematically studied. The polymer-nanofiller composites were prepared using a twin-screw micro-extruder and the composite was thereafter hot pressed into thin films. The structure (using wide angle x-ray diffraction and differential scanning calorimetry) and properties (through tensile testing and conductivity measurement) of the thin films have been investigated. The composites incorporating surfactant showed the best CNT distribution and dispersion, causing an improvement of up to 80% in the toughness modulus over pure PA12. Electrical percolation could also be achieved at nanofiller concentrations of 1 to 2 wt%. In this study we observed that CNT fillers bring about more pronounced improvements in PA12 compared to graphene nanoplatelets, as far as mechanical and electrical properties are concerned.

  9. Comparing carbon nanotubes and graphene nanoplatelets as reinforcements in polyamide 12 composites

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, S; Nueesch, F A; Chu, B T T, E-mail: bryan.chu@empa.ch [EMPA, Laboratory for Functional Polymers, Swiss Federal Laboratories for Materials Science and Technology (Switzerland)

    2011-07-08

    We investigate the influence of nanofillers including carbon nanotubes (CNTs) and graphene nanoplatelets on a thermoplastic engineering polymer, polyamide 12 (PA12). The comparison between these two important nanofillers as to how they influence the structure and properties of the polymer is systematically studied. The polymer-nanofiller composites were prepared using a twin-screw micro-extruder and the composite was thereafter hot pressed into thin films. The structure (using wide angle x-ray diffraction and differential scanning calorimetry) and properties (through tensile testing and conductivity measurement) of the thin films have been investigated. The composites incorporating surfactant showed the best CNT distribution and dispersion, causing an improvement of up to 80% in the toughness modulus over pure PA12. Electrical percolation could also be achieved at nanofiller concentrations of 1 to 2 wt%. In this study we observed that CNT fillers bring about more pronounced improvements in PA12 compared to graphene nanoplatelets, as far as mechanical and electrical properties are concerned.

  10. Modeling intermediates in carbon monoxide coupling reactions using cyclooctatetraene thorium derivatives

    International Nuclear Information System (INIS)

    The interaction of carbon monoxide with organo-actinides has recently been shown experimentally, particularly by Cloke and co-workers, to result in coupling to give the oligomeric anions CnOn2- (n = 2, 3, 4). In order to model possible intermediates in reactions of this type, we have used density functional theory to explore the systems (C8H8)Th(CO)n (n = 1 to 5) and (C8H8)2Th2(CO)n (n = 2 to 7) related to the known 'thorocene', (η8 -C8H8)2Th. Thorium was chosen as the actinide for this work since its chemistry almost entirely involves the single diamagnetic +4 oxidation state. All of the binuclear (C8H8)2Th2(CO)n structures found in this work have long Th-Th distances ranging from 4.4 to 5.0 Angstroms suggesting the absence of direct Th-Th bonds. Two (C8H8)2Th2(CO)2 isomers of similar energies in which the two CO groups have coupled to form trans and cis isomers of a bridging η4 -μ-C2O2 ligand are low energy structures. These bridging η4-μ-C2O2 ligands exhibit ultralow ν(CO) frequencies around 1000 cm-1 indicating strong back donation of thorium d and f electrons into C-O antibonding orbitals. Most of the carbonyl richer (C8H8)2Th2(CO)n (n = 3 to 7) structures are derived from one of these basic (C8H8)2Th2(CO)2 structures by addition of terminal CO groups. An exception is the lowest energy (C8H8)2Th2(CO)4 structure which has C4v symmetry with four equivalent separate ν2 -μ-CO groups bridging the thorium atoms. The thermochemistry of these systems suggest (C8H8)Th(CO)4 and (C8H8)2Th2(CO)n (n = 2, 4) to be the most promising synthetic objectives, which are potentially obtainable by reductive carbonylation of the known (C8H8)ThCl2. (authors)

  11. Irrelevance of Carbon Monoxide Poisoning in the Methanol Oxidation Reaction on a PtRu Electrocatalyst.

    Science.gov (United States)

    Chen, De-Jun; Tong, YuYe J

    2015-08-01

    Based on detailed in situ attenuated total-reflection-surface-enhanced IR reflection absorption spectroscopy (ATR-SEIRAS) studies of the methanol oxidation reaction (MOR) on Ru/Pt thin film and commercial Johnson-Matthey PtRu/C, a revised MOR enhancement mechanism is proposed in which CO on Pt sites is irrelevant but instead Pt-Ru boundary sites catalyze the oxygen insertion reaction that leads to the formation of formate and enhances the direct reaction pathway. PMID:26148459

  12. Dispersion quality of amine functionalized multiwall carbon nanotubes plays critical roles in polymerase chain reaction enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Yuce, Meral, E-mail: meralyuce@sabanciuniv.edu; Budak, Hikmet [Sabanci University, Nanotechnology Research and Application Centre (Turkey)

    2014-12-15

    Impact of dispersion quality of NH{sub 2}-MWCNTs (13–18 nm in diameter with a length between 1 and 12 µm, >99 % purity) in the amplification efficiency of a random DNA oligonucleotide library (96 bp) was investigated. Amplification yield in the presence of non-filtered NH{sub 2}-MWCNT dispersion, filtered NH{sub 2}-MWCNT dispersion and surface-attached NH{sub 2}-MWCNTs was explored, and physical interactions between NH{sub 2}-MWCNTs and major PCR reagents including DNA template, wild type Taq DNA polymerase enzyme and primers were determined using high resolution polyacrylamide gel electrophoresis, dynamic light scattering, UV–Vis-NIR spectroscopy and scanning electron microscopy techniques. The results revealed that presence of NH{sub 2}-MWCNT dispersion which was sonicated, centrifuged and filtered, enhanced the total PCR efficiency up to 70 % while the presence of NH{sub 2}-MWCNT only centrifuged after sonication, inhibited the reaction significantly at similar concentrations. Furthermore, the NH{sub 2}-MWCNTs coupled covalently onto magnetic microspheres, contributed for the specificity enhancement whilst decreasing the amplification efficiency by 30 % at the maximum concentration, which suggests a removable enhancement system for sensitive applications. On the other hand, the relative hydrodynamic size distribution measurements displayed a clear difference between the filtered NH{sub 2} and non-filtered NH{sub 2}-MWCNT water dispersions, which justifies the inhibition of the amplification by the non-filtered NH{sub 2}-MWCNTs containing big agglomerates and bundles. Finally, we demonstrated that major PCR components adsorb onto the NH{sub 2}-MWCNTs with diverse affinities, and maintain their functions after adsorption, which provides a good framework to further develop tunable NH{sub 2}-MWCNT-carriers to be utilized in various nanobiotechnology and material science applications.

  13. Effect of carbon on wettability and interface reaction between melt superalloy and ceramic material

    OpenAIRE

    Chen Xiaoyan; Zhou Yizhou; Jin Tao; Sun Xiaofeng

    2014-01-01

    Effect of C on wettability and interface reaction between a nickel based superalloy and ceramic material was investigated by using a sessile drop method. It was found that the content of C in the alloy is able to influence the wettability and interface reaction. Alloys with C content lower than 0.1wt.% are stable on ceramic material and no interface reaction generates at the alloy-ceramic interface. However, when C content is higher than 0.1wt.%, the interface reaction occurs and the wetting ...

  14. The chemistry of subcritical water reactions of a hardwood derived lignin and lignin model compounds with nitrogen, hydrogen, carbon monoxide and carbon dioxide

    Science.gov (United States)

    Hill Bembenic, Meredith A.

    collected solids from the CO reactions appeared to be the most reacted (i.e., the most changed from the unreacted lignin) according to solid state 13C-NMR analysis, and the widest variety of products (methoxy-substituted phenolic compounds) were obtained when using CO according to GC/MS analysis. Therefore, reactions with CO were completed that varied the initial reaction pressure (300, 500 and 800 psi) in order to elucidate the effects of CO pressure. Similar conversion (≈54--58%) and DCM-soluble liquid product yields (≈53--62%) were obtained for the different pressure reactions, but the reactions with an initial pressure of 500 psi had the greatest change in aromaticity from the unreacted lignin. Additional reactions between Organosolv lignin and H2O with CO (initial pressure of 500 psi) were conducted where the reaction time was varied (15, 30 and 60 min.) to determine the effect of reaction time. Longer reaction time (60 min.) appeared to inhibit conversion to low molecular weight compounds (i.e., conversion and DCM-soluble yields were lower at ≈53% and ≈28%, respectively). Solid state 13C-NMR of collected residues also showed that there are losses in carbons representative of both guaiacyl and syringyl components as reaction time increases, which may indicate that methoxy groups are being cleaved or the products are reacting with each other (i.e., repolymerization) to form high molecular weight compounds as reaction time is increased. The role of H2O and the gases during the baseline reactions and the expanded CO reactions is not intuitive based on the results, so reactions with lignin model compounds (i.e., aromatic aldehydes represented by vanillin and syringaldehyde, aromatic ketones represented by acetovanillone and acetosyringone, and aromatic ethers represented by dibenzyl ether and 2-phenethyl phenyl ether) were completed to study this. From these results, the suggested reaction pathway of Organosolv lignin reactions in subcritical H2O with and without

  15. Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures.

    Science.gov (United States)

    Zhu, Chengzhou; Li, He; Fu, Shaofang; Du, Dan; Lin, Yuehe

    2016-02-01

    Developing a low cost, highly active, durable cathode towards an oxygen reduction reaction (ORR) is one of the high-priority research directions for commercialization of low-temperature polymer electrolyte membrane fuel cells (PEMFCs). However, the electrochemical performance of PEMFCs is still hindered by the high cost and insufficient durability of the traditional Pt-based cathode catalysts. Under these circumstances, the search for efficient alternatives to replace Pt for constructing highly efficient nonprecious metal catalysts (NPMCs) has been growing intensively and has received great interest. Combining with the compositional effects, the accurate design of NPMCs with 3D porous nanostructures plays a significant role in further enhancing ORR performance. These 3D porous architectures are able to provide higher specific surface areas and larger pore volumes, not only maximizing the availability of electron transfer within the nanosized electrocatalyst surface area but also providing better mass transport of reactants to the electrocatalyst. In this Tutorial Review, we focus on the rational design and synthesis of different 3D porous carbon-based nanomaterials, such as heteroatom-doped carbon, metal-nitrogen-carbon nanostructures and a series of carbon/nonprecious metal-based hybrids. More importantly, their enhanced ORR performances are also demonstrated by virtue of their favorably porous morphologies and compositional effects. Finally, the future trends and perspectives for the highly efficient porous NPMCs regarding the material design are discussed, with an emphasis on substantial development of advanced carbon-based NPMCs for ORR in the near future. PMID:26658546

  16. Chrystal structure properties of Al-doped Li4Ti5O12 synthesized by solid state reaction method

    International Nuclear Information System (INIS)

    This research aim is to analyze the effect of Aluminum (Al) doping in the structural properties of Al-doped Li4Ti5O12 as anode in lithium ion battery. Al-doped Li4Ti5O12 powders were synthesized by solid state reaction method. LiOH.H2O, TiO2, and Al2O3 were raw materials. These materials were milled for 15 h, calcined at temperature of 750oC and sintered at temperature of 800oC. Mole percentage of doping Al (x) was varied at x=0; x=0.025; and x =0.05. Al-doped Li4Ti5O12 powders were synthesized by solid state reaction method. X-ray diffraction was employed to determine the structure of Li4Ti5O12. The PDXL software was performed on the x-ray diffraction data to estimate the phase percentage, the lattice parameter, the unit cell volume, and the crystal density. Al-doped Li4Ti5O12 has cubic crystal structure. Al-doping at x=0 and x=0.025 does not change the phase as Li4Ti5O12 while at x=0.050 the phase changes to the LiTiAlO4. The diffraction patterns show that the angle shifted to the right as the increase of x which indicated that Al substitute Ti site. Percentage of Li4Ti5O12 phase at x=0 and x=0.025 was 97.8% and 96.8%, respectively. However, the lattice parameters, the unit cell volume, and the crystal density does not change significantly at x=0; x=0.025; and x=0.050. Based on the percentage of Li4Ti5O12 phase, the Al-doped Li at x=0 and x=0.025 is promising as a lithium battery anode

  17. Study of Reaction Mechanism in the Interaction 86 MeV/A $^{12}$C with Heavy Targets

    CERN Multimedia

    2002-01-01

    Using the thin target-thin catcher techniques and the off-line analysis of the activities induced in the irradiated foils by means of singles and coincidences spectra recorded with Ge(Li) @g-rays and Si X-rays detectors, we will measure: 1) The target fragment mass and charge distribution from the interact 2) 86 MeV/A |1|2C with silver, tin and gold. 3) The target fragment average kinetic energy. 4) The target fragment angular and differential kinetic energy distributions. These measurements should allow us to better understand the heavy ion reaction mechanisms at intermediate energy.

  18. The pp → pp π+π- reaction at primary impulses of 12 and 24 GeV/c

    International Nuclear Information System (INIS)

    The author has studied the pp → ppπ+π- reaction at primary impulses of 12 to 24 GeV/c. He has obtained the mass spectra of the pπ+π- system which show evidence for diffractive production of a N*(1470) resonance together with superpositions of further resonance-like structures. Furthermore the decay of the pπ+π- system is studied by means of a momentum analysis of the decay angular distributions. Finally a partial wave analysis is performed. (HSI)

  19. Carbon coated Li4Ti5O12 nanorods as superior anode material for high rate lithium ion batteries

    International Nuclear Information System (INIS)

    Highlights: •A novel approach has been developed to fabricate 1D Li4Ti5O12/C nanorods by a wet-chemical route. •Carbon coating layer effectively restrict the particle growth and enhance electronic conductivity. •The Li4Ti5O12/C nanorods exhibit remarkable rate capability and long cycle life. -- Abstract: We describe a novel approach for the synthesis of carbon coated Li4Ti5O12 (Li4Ti5O12/C) nanorods for high rate lithium ion batteries. The carbon coated TiO2 nanotubes using the glucose as carbon source are first synthesized by hydrothermal treatment. The commercial anatase TiO2 powder is immersed in KOH sulotion and subsequently transforms into Li4Ti5O12/C in LiOH solution under hydrothermal condition. Field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, nitrogen adsorption/desorption and Raman spectra are performed to characterize their morphologies and structures. Compared with the pristine Li4Ti5O12, one-dimensional (1D) Li4Ti5O12/C nanostructures show much better rate capability and cycling stability. The 1D Li4Ti5O12/C architectures effectively restrict the particle growth and enhance their electronic conductivity, enabling fast ion and electron transport

  20. Study and realization of heavy ion detectors. Application to the reaction 12C+24Mg

    International Nuclear Information System (INIS)

    The present study deals with elastic and inelastic scattering of 24 to 44 MeV center of mass 24Mg ions by 12C. The Strasbourg Q3D magnetic spectrograph has been used to measure the 1800 c.m. scattering cross-sections in detecting the corresponding recoiling ions at THETAsub(Lab) = 00. Statistical fluctuations are probably present. The 1,5 m long position sensitive focal plan hybride counter is described

  1. Measurement of 4He(12C,16O)γ Reaction in Inverse Kinematics

    International Nuclear Information System (INIS)

    A cross section measurement employing a direct 16O detection method for the reaction energies from Ecm = 2.4 to 0.7 MeV is planned at Kyushu University Tandem Laboratory. To perform this experiment and to obtain quantitative information about the cross section to within an error of 10%, we have developed several instruments, including a blow-in type windowless gas target and a ionization chamber. A target thickness of 24 × 3.9 Torr cm was achieved using the developed gas target. The particle identification was successfully performed by using the energy deposit in the ionization chamber. Experiments were performed at Ecm = 2.4 and 1.5 MeV using the developed instruments and the cross sections were obtained. (author)

  2. A Prospective Study of Adverse Drug Reactions in 1 Month–12 Years Old Pediatric Patients

    Directory of Open Access Journals (Sweden)

    Asawari Raut

    2015-03-01

    Full Text Available Adequate controlled clinical trials in pediatric population, especially in oncology and vaccinations are still insufficient due to ethical considerations. Certain conditions in children in general and in Indian children in particular, suggested the need for Adverse Drug Reaction (ADR monitoring. Thus this study was aimed to investigate the incidence of ADRs in pediatric populations. A prospective spontaneous reporting study was conducted over a period of six months from October 2012 to March 2013 in pediatric inpatients ward of Bharati Hospital in Pune. Reported ADRs were assessed for its causality by using WHO causality assessment scale, and its severity by using Hart wig Severity Scale. A total of 107 suspected ADRs were reported and evaluated from 54 patients, showing an overall incidence of 4.75%. Incidence rate of ADRs during hospitalization was 4.13%, while ADRs induced hospitalization was 0.62%. The gastrointestinal system (48.59% was the most affected, and antibiotics was the most common the drug class associated to ADRs. In term of causality, 55.14% of the reactions were classified as possible, while in term of severity, 64.49% were classified as moderate. Most patients (60.75% recovered from the incidence. Although the prevalence and severity of ADRs in pediatrics populations is reported to be higher than those of in adults, the incidence of ADRs in our study was only 4.75% which is lower than those of reported in adults, this may due to the spontaneous reporting system that used in this study.

  3. Photochemical Reaction of 7,12-Dimethylbenz[a]anthracene (DMBA and Formation of DNA Covalent Adducts

    Directory of Open Access Journals (Sweden)

    Peter P. Fu

    2005-04-01

    Full Text Available DMBA, 7,12-dimethylbenz[a]anthracene, is a widely studied polycyclic aromatic hydrocarbon that has long been recognized as a probable human carcinogen. It has been found that DMBA is phototoxic in bacteria as well as in animal or human cells and photomutagenic in Salmonella typhimurium strain TA102. This article tempts to explain the photochemistry and photomutagenicity mechanism. Light irradiation converts DMBA into several photoproducts including benz[a]anthracene-7,12-dione, 7-hydroxy-12-keto-7-methylbenz[a]anthracene, 7,12-epidioxy-7,12-dihydro-DMBA, 7-hydroxymethyl-12-methylbenz[a]anthracene and 12-hydroxymethyl-7-methylbenz[a]anthracene. Structures of these photoproducts have been identified by either comparison with authentic samples or by NMR/MS. At least four other photoproducts need to be assigned. Photo-irradiation of DMBA in the presence of calf thymus DNA was similarly conducted and light-induced DMBA-DNA adducts were analyzed by 32P-postlabeling/TLC, which indicates that multiple DNA adducts were formed. This indicates that formation of DNA adducts might be the source of photomutagenicity of DMBA. Metabolites obtained from the metabolism of DMBA by rat liver microsomes were reacted with calf thymus DNA and the resulting DNA adducts were analyzed by 32P-postlabeling/TLC under identical conditions. Comparison of the DNA adduct profiles indicates that the DNA adducts formed from photo-irradiation are different from the DNA adducts formed due to the reaction of DMBA metabolites with DNA. These results suggest that photo-irradiation of DMBA can lead to genotoxicity through activation pathways different from those by microsomal metabolism of DMBA.

  4. Cobalt nanoparticles embedded in N-doped carbon as an efficient bifunctional electrocatalyst for oxygen reduction and evolution reactions

    Science.gov (United States)

    Su, Yunhe; Zhu, Yihua; Jiang, Hongliang; Shen, Jianhua; Yang, Xiaoling; Zou, Wenjian; Chen, Jianding; Li, Chunzhong

    2014-11-01

    Cobalt based catalysts are promising bifunctional electrocatalysts for both oxygen reduction and oxygen evolution reactions (ORR and OER) in unitized regenerative fuel cells (URFCs) operating with alkaline electrolytes. Here we report a hybrid composite of cobalt nanoparticles embedded in nitrogen-doped carbon (Co/N-C) via a solvothermal carbonization strategy. With the synergistic effect arising from the N-doped carbon and cobalt nanoparticles in the composite, the Co/N-C hybrid catalyst exhibits highly efficient bifunctional catalytic activity and excellent stability toward both ORR and OER. The ΔE (oxygen electrode activity parameter for judging the overall electrocatalytic activity of a bifunctional electrocatalyst) value for Co/N-C is 0.859 V, which is smaller than those of Pt/C and most of the non-precious metal catalysts in previous studies. Furthermore, the Co/N-C composite also shows better bifunctional catalytic activity than its oxidative counterparts, which could be attributed to the high specific surface area and the efficient charge transfer ability of the composite, as well as the good synergistic effect between N-doped carbon and the Co nanoparticles in the Co/N-C composite.Cobalt based catalysts are promising bifunctional electrocatalysts for both oxygen reduction and oxygen evolution reactions (ORR and OER) in unitized regenerative fuel cells (URFCs) operating with alkaline electrolytes. Here we report a hybrid composite of cobalt nanoparticles embedded in nitrogen-doped carbon (Co/N-C) via a solvothermal carbonization strategy. With the synergistic effect arising from the N-doped carbon and cobalt nanoparticles in the composite, the Co/N-C hybrid catalyst exhibits highly efficient bifunctional catalytic activity and excellent stability toward both ORR and OER. The ΔE (oxygen electrode activity parameter for judging the overall electrocatalytic activity of a bifunctional electrocatalyst) value for Co/N-C is 0.859 V, which is smaller than those

  5. Carbon reaction and diffusion on Ni(111), Ni(100), and Fe(110): Kinetic parameters from x-ray photoelectron spectroscopy and density functional theory analysis

    International Nuclear Information System (INIS)

    This paper investigates the reactivity of elemental carbon films deposited from the vapor phase with Fe and Ni substrates at room temperature. X-ray photoelectron spectroscopy (XPS) measurements are presented as a method for evaluating kinetic reaction data. Carbon films are deposited on different surface orientations representing geometries from a dense atom packing as in fcc (111) to an open surface structure as in fcc (100). During annealing experiments several reactions are observed (carbon subsurface diffusion, carbide formation, carbide decomposition, and graphite ordering). These reactions and the respective kinetic parameters are analyzed and quantified by XPS measurements performed while annealing at elevated temperatures (620-820 K). The resulting activation barriers for carbon subsurface diffusion are compared with calculated values using the density functional theory. The determined kinetic parameters are used to reproduce the thermal behavior of carbon films on nickel surfaces

  6. Wastage-resistant characteristics of 12Cr steel tube material. Small leak sodium-water reaction test

    International Nuclear Information System (INIS)

    In the water leak accident of a steam generator designed for a sodium cooled reactor in the Feasibility Study, the localization of tube failure propagation by using an advanced water leak detector will be required from the viewpoints of the safety and economical efficiency of the plant. So far, the conventional knowledge and analytical tools have been used in the investigation and evaluation of water leak phenomenon; nevertheless, there was neither test data nor the study of quantitative evaluation on the corrosion behavior, so-called wastage-resistant characteristics, of 12Cr steel tube material in sodium-water reactions. Wastage tests for the 12Cr steel tube material were conducted in small water leaks by use of the Sodium-Water Reaction Test Rig (SWAT-1R), and the data of wastage rate were obtained in the parameter of water leak rate under the constant sodium temperature and distance between leak and target tubes. The test results lead to the following conclusions: (1) The wastage-resistibility of 12Cr steel is 1.6 times greater than that of 9Cr steel and is 2.7 times greater than that of 2.25Cr-1Mo steel. (2)The wastage-resistibility of 12Cr steel increases in smaller water leaks; especially in water leak rates of 1 g/sec or less, it is more excellent than that of SUS321 stainless steel used as Monju superheater tube material. (3) Based on the correlation of wastage rate for the 9Cr steel, the correlation for the 12Cr steel has been obtained to be used for the evaluation of tube failure propagation. As the correlation of wastage rate for the 12Cr steel is based on the correlation for the 9Cr steel, it gives enough conservatism in smaller water leaks. To serve in accurately evaluating the tube failure propagation in smaller water leaks, it is necessary to obtain new correlation of wastage rate for the 12Cr steel based on the data in the wide range of water leak rates. (author)

  7. Flow characteristics and reaction properties of carbon dioxide in microtubules and porous media

    Institute of Scientific and Technical Information of China (English)

    ZHAO RenBao; YUE XiangAn; WU Ya Hong; XU ShaoLiang; WANG Fei; HOU YongLi

    2008-01-01

    Carbon dioxide reacts with porous media while flowing through them enhancing their permeability. Its flow behavior as well as the permeability enhancement effects were studied in synthetic cores, natural cores and microtubes with an inner diameter of 5 μm. The results show that the permeability of H2O-saturated cores (containing carbonate ingredients) was enhanced by increasing the injection volume of a CO2-H2O solution. This enhancement is attributable to carbon dioxide's corrosion, which is justified by SEM scanning. The same phenomenon occurs with a CO2-H2O solution in microtubes, but for a different reason. The gas flow velocity of carbon dioxide in microtubes was approximately 100% aster than that of nitrogen because of the scale and the squeezing effects. Carbon dioxide molecules dissolved in water accelerate the diffusion rate of water molecules within the boundary layer, which in turn diminishes the thickness of the water film and enlarges the effective pore size. This flow behavior facilitates the injection of carbon dioxide into low-permeability reservoirs for oil-displacement and formation energy buildup purposes. This behavior also increases the potential for carbon dioxide channeling or release from the formation.

  8. Transition metal/nitrogen dual-doped mesoporous graphene-like carbon nanosheets for the oxygen reduction and evolution reactions.

    Science.gov (United States)

    Liu, Xiaobo; Amiinu, Ibrahim Saana; Liu, Shaojun; Cheng, Kun; Mu, Shichun

    2016-07-21

    The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) have been considered as a key step in energy conversion processes. Here, a novel and simple Mg(OH)2 nanocasting method is adopted to fabricate Co and N co-doped porous graphene-like carbon nanosheets (Co@N-PGCS) by using chitosan as both carbon and N sources. The as-obtained Co@N-PGCS shows a mesopore-dominated structure as well as a high specific surface area (1716 cm(2) g(-1)). As a bifunctional electrocatalyst towards both the ORR and OER, it shows favorable ORR performance compared with the commercial Pt/C catalyst with an onset potential of -0.075 V and a half-wave potential of -0.151 V in 0.1 M KOH solutions. Furthermore, it also displays considerable OER properties compared with commercial IrO2. The effective catalytic activity could originate from the introduction of transition metal species and few-layer mesoporous carbon structures. PMID:27341409

  9. Reaction mechanisms in 12C(γ,pp) near 200 MeV

    International Nuclear Information System (INIS)

    Inclusive 12C(γ,pp) cross sections have been measured with tagged photons in the range Eγ=187 endash 227 MeV using the Saskatchewan-Alberta Large Acceptance Detector (SALAD). The large angular acceptance allowed the measurement of noncoplanar pp emission. The cross sections were compared to a Monte Carlo intranuclear cascade calculation. Agreement was reasonable for the shapes of the cross sections but the calculated total cross section was 3.9 times larger than the data. copyright 1996 The American Physical Society

  10. Synthesis and infrared spectra of alkaline earth metal carbonates formed by the reaction of metal salts with urea at high temperature

    Indian Academy of Sciences (India)

    S M Teleb; D El-Sayed Nassr; E M Nour

    2004-12-01

    The metal carbonate, MCO3 (M = Ca, Sr and Ba), was synthesized by a novel method of reacting aqueous solution of each of Ca2+, Sr2+ and Ba2+ salts with urea at high temperature, ∼ 80°C. The reaction products were characterized through elemental analysis and infrared spectra. The infrared spectra of the products are the same as those of the corresponding commercially obtained carbonates. A general reaction describing the formation of MCO3 is proposed.

  11. Chemical behaviour of Pu and Am: Hydrolysis reaction in brine solutions, carbonate complexation, α-radiolysis, humate complexation and speciation

    International Nuclear Information System (INIS)

    The chemical behaviour of transuranic elements (Pu and Am) has been investigated in saline solution of different NaCl concentrations in the near neutral pH range. Important reactions considered are hydrolysis, carbonate complexation, redox reaction, alpha-radiolysis, colloid generation and humate complexation. Hydrolysis reactions are studied for Pu(VI) in 3.6 M NaCl and for Am(III) in 0.1 M and 0.6 M NaCl solution, whereas carbonate complexation of Pu(IV) and Am(III) is investigated in HCO3-/CO32- solution of varying pH. Consequences of alpha-radiolysis in NaCl solution are thoroughly analysed as for the Eh change due to Cl- oxidation and the oxidation of Pu(IV) and Am(III). In groundwaters colloid generation of Am(III), particularly pseudocolloids, is characterized and correlated with the concentration of humic substances. Humate complexation under discussion deals mainly with the stabilization of Am(III) in a given groundwater through its colloid generation. (orig.)

  12. Efficient Cycloaddition Reaction of Carbon Dioxide with Epoxide by Rhodamine Based Catalyst Under 1 atm Pressure

    International Nuclear Information System (INIS)

    Rhodamine B (RhB) and rhodamine 6G (Rh6G) were employed as catalysts for the synthesis of cyclic carbonate from carbon dioxide and epoxide. It turned out that the catalytic activity of Rh6G was nearly 29 times higher than that of RhB at 1 atm pressure, 90 .deg. C. Furthermore, the catalytic efficiency of RhB and Rh6G was greatly enhanced with triethylamine as co-catalyst. Under the optimized conditions, the best isolated yield (93%) of cyclic carbonate was achieved without organic solvent and metal component

  13. Antioxidants Inhibit Formation of 3-Monochloropropane-1,2-diol Esters in Model Reactions.

    Science.gov (United States)

    Li, Chang; Jia, Hanbing; Shen, Mingyue; Wang, Yuting; Nie, Shaoping; Chen, Yi; Zhou, Yongqiang; Wang, Yuanxing; Xie, Mingyong

    2015-11-11

    The capacities of six antioxidants to inhibit the formation of 3-monochloropropane-1,2 diol (3-MCPD) esters were examined in this study. Inhibitory capacities of the antioxidants were investigated both in chemical models containing the precursors (tripalmitoyl glycerol, 1,2-dipalmitoyl-sn-glycerol, monopalmitoyl glycerol, and sodium chloride) of 3-MCPD esters and in oil models (rapeseed oil and sodium chloride). Six antioxidants, butylated hydroxytoluene (BHT), butylated hydroxy anisole (BHA), tert-butyl hydroquinone (TBHQ), propyl gallate (PG), L-ascorbyl palmitate (AP), and α-tocopherol (VE), were found to exhibit inhibiting capacities on 3-MCPD ester formation both in chemical models and in oil models. TBHQ provided the highest inhibitory capacity both in chemical models and in oil models; 44% of 3-MCPD ester formation was inhibited in the presence of TBHQ (66 mg/kg of oil) after heating of rapeseed oil at 230 °C for 30 min, followed by PG and AP. BHT, BHA, and VE appeared to have weaker inhibitory abilities in both models. VE exhibited the lowest inhibition rate; 22% of 3-MCPD esters were inhibited in the presence of VE (172 mg/kg of oil) after heating of rapeseed oil at 230 °C for 30 min. In addition, the inhibition rates of PG and VE decreased dramatically with an increase in temperature or heating time. The results suggested that some antioxidants, such as TBHQ, PG, and AP, could be the potential inhibitors of 3-MCPD esters in practice. PMID:26478126

  14. Reaction Mechanism for Direct Proton Transfer from Carbonic Acid to a Strong Base in Aqueous Solution II: Solvent Coordinate-Dependent Reaction Path.

    Science.gov (United States)

    Daschakraborty, Snehasis; Kiefer, Philip M; Miller, Yifat; Motro, Yair; Pines, Dina; Pines, Ehud; Hynes, James T

    2016-03-10

    The protonation of methylamine base CH3NH2 by carbonic acid H2CO3 within a hydrogen (H)-bonded complex in aqueous solution was studied via Car-Parrinello dynamics in the preceding paper (Daschakraborty, S.; Kiefer, P. M.; Miller, Y.; Motro, Y.; Pines, D.; Pines, E.; Hynes, J. T. J. Phys. Chem. B 2016, DOI: 10.1021/acs.jpcb.5b12742 ). Here some important further details of the reaction path are presented, with specific emphasis on the water solvent's role. The overall reaction is barrierless and very rapid, on an ∼100 fs time scale, with the proton transfer (PT) event itself being very sudden (ion pair, stabilizing it by establishment of equilibrium solvation. The solvent water's short time scale ∼120 fs response to the incipient ion pair formation is primarily associated with librational modes and H-bond compression of water molecules around the carboxylate anion and the protonated base. This is consistent with this stabilization involving significant increase in H-bonding of hydration shell waters to the negatively charged carboxylate group oxygens' (especially the former H2CO3 donor oxygen) and the nitrogen of the positively charged protonated base's NH3(+). PMID:26876428

  15. Double-step processes in the 12C(p,d)11C reaction at 45 MeV

    International Nuclear Information System (INIS)

    12C(p,d)11C pick-up reaction was performed with a 45 MeV proton beam. A 130keV energy resolution was obtained and angular distributions of nine of the ten first levels of 11C have been extracted within a large angular range. Assuming only neutron direct transfert, the strong relative excitation of high spin levels cannot be reproduced by a DWBA analysis. The double-step process assumption seems to be verified by a systematical analysis of the (p,d) reaction mechanisms. This analysis is done in the coupled-channel formalism for the five first negative parity states of 11C. The 3/2- ground state is essentially populated by the direct transfer of a Psub(3/2) neutron. The contribution of a double-step process, via the 2+ inelastic excitation of 12C, is important for the four other states. A mechanism which assumes a deuteron inelastic scattering on the 11C final nucleus after the neutron transfer cannot be neglected and improves the fits when it is taken into account

  16. Ion exchange reactions in interaction of basic zirconium sulfate with sodium carbonate solution

    International Nuclear Information System (INIS)

    Basic zirconium sulfates, extracted from basic zirconium chloride solution and zirconium disulfate solution, as well as products of their interaction with sodium carbonate solution, which was exposed and not exposed to hydrolysis, were investigated by chemical and NMR spectroscopy methods. It has been established that the process of interaction of the basic zirconium sulfate with sodium carbonate solutions sulfatocarbonatozicrconates and carbonatozirconates of sodium are sequentially formed. In this case carbonate groups, due to different strenght of addition of hydroxogroups in initial basic sulfates, substitute either SOsub(h)sup(2)-)- groups and H2O or SO42--and OH--groups, and sodium ions substitute H3O+-groups. Carbonate groups, if they have substituted sulfato- or hydroxogroup, during hydrolysis of carbonatozirconates are splitted out to a less degree

  17. On the water promoted reaction of titanium isopropoxide with carbon dioxide

    OpenAIRE

    Ghosh, Rajshekhar; Nethaji, Munirathinam; Samuelson, Ashoka G

    2003-01-01

    Insertion of carbon dioxide into titanium isopropoxide takes place only in the presence of trace quantities of water to give an isopropyl carbonato cluster which has been crystallographically characterised.

  18. Transition Metal Catalyzed Reactions for Forming Carbon–Oxygen and Carbon–Carbon Bonds

    DEFF Research Database (Denmark)

    Sølvhøj, Amanda Birgitte

    Dehydrogenative ester formation with a ruthenium NHC complex A new atom-economical methodology for synthesizing esters by the dehydrogenative coupling of primary alcohols was developed. The reaction is catalyzed by the ruthenium N-heterocyclic carbene complex RuCl2(IiPr)(p-cymene). By screening the...... alcohols could be used as substrates, but the yields were generally poor due to decarbonylation of the substrate as a considerable side reaction. Some preliminary mechanistic investigations were performed. The results of these confirmed that the reaction is indeed dehydrogenative with the liberation of two...

  19. Thermal reaction of the ionic liquid 1,2-dimethyl-(3-aminoethyl) imidazolium tetrafluoroborate: a kinetic and theoretical study.

    Science.gov (United States)

    Zhou, Xinming; Cao, Bobo; Liu, Shuangyue; Sun, Xuejun; Zhu, Xiao; Fu, Hu

    2016-06-01

    Since the thermal stabilities of ionic liquids (ILs) are of significance for their application, an amine-functionalized IL 1,2-dimethyl-(3-aminoethyl) imidazolium tetrafluoroborate [aEMMIM][BF4] was chosen to study thermal decomposition mechanisms via the methods of FT-IR, (1)H NMR, TGA, TGA-MS and density functional theory (DFT) calculations. Theoretical and experimental results indicated that amine-functionalization reduces the thermal stability of [aEMMIM][BF4] compared to its non-functionalized counterpart. Moreover, we found that [aEMMIM][BF4] follows a unimolecular nucleophilic substitution (SN1) decomposition (98.8 %), whereas the bimolecular nucleophilic substitution (SN2) decomposition (1.2 %) is unfavorable. The SN1 and SN2 reactions were fully optimized at B3LYP/6-311++G(d,p) level, and the energies of reactant (R), intermediates (IM), transition state (TS) and product (P) were obtained and analyzed by reaction mechanism. The energy of the intermediate is higher than that of the reactants by 18.92 kJ mol(-1), and the energy of the TS is higher than that of the IM by 155.23 kJ mol(-1). This result indicates that the IM are also more stable than the P2 product, thus the reaction is endothermic. The chemical nature of the covalent and hydrogen bonds was analyzed by vibrational modes analysis (VMA), nature bond orbital (NBO) and the theory of atoms in molecules (AIM). Graphical Abstract Proposed thermal decomposition of [aEMMIM][BF4] via unimolecular ( SN1) and bimolecular( SN2) nucleophilic substitution mechanisms. The electrostatic potential surface (ESP) of the transition state illustrates that hydrogen bonds are generated when [BF4](-) is close to [aEMMIM](+), and SN1 decomposition is much favorable than SN2 decomposition. PMID:27188725

  20. Preparation of tantalum carbide films by reaction of electrolytic carbon coating with the tantalum substrate

    OpenAIRE

    Massot, Laurent; Chamelot, Pierre; Taxil, Pierre

    2006-01-01

    This article demonstrates that coatings of tantalum carbide can be obtained by electrodeposition of carbon in molten fluorides on a tantalum substrate as an alternative to the CVD process. The structural characteristics of the carbon deposited by the electrolytic route lead to a high reactivity of this element towards a tantalum cathode to produce tantalum carbide. Mutual reactivity was shown to be enhanced if tantalum plate is replaced by an electrodeposited layer of tantalum, where th...

  1. In vivo MRI biocompatibility evaluation of functionalized carbon fibers in reaction with soft tissues

    OpenAIRE

    Prokić B.B.; Bačić G.; Prokić B.; Kalijadis Ana; Todorović Vera; Puškaš Nela; Vidojević D.; Laušević Mila; Laušević Z.

    2012-01-01

    In modern medicine implants are very important and so is their design and choice of materials. Almost equally important is the choice of imaging technique used to in vivo monitor their fate and biocompatibility. The aim of this study was to evaluate the ability of magnetic resonance imaging (MRI) in monitoring the biocompatibility of two newly designed carbon fibers. We have analyzed the interaction of surface functionalized carbon fibers (basic and acidic)...

  2. Study on the Reaction Mechanism for Carbon Dioxide Reforming of Methane over supported Nickel Catalyst

    Institute of Scientific and Technical Information of China (English)

    Ling QIAN; Zi Feng YAN

    2003-01-01

    The adsorption and dissociation of methane and carbon dioxide for reforming on nickelcatalyst were extensively investigated by TPSR and TPD experiments. It showed that thedecomposition of methane results in the formation of at least three kinds of surface carbon specieson supported nickel catalyst, while CO2 adsorbed on the catalyst weakly and only existed in onekind of adsorption state. Then the mechanism of interaction between the species dissociatedfrom CH4 and CO2 during reforming was proposed.

  3. Characterization of the major reactions during conversion of lignin to carbon fiber

    OpenAIRE

    Hendrik Mainka; Liane Hilfert; Sabine Busse; Frank Edelmann; Edgar Haak; Axel S. Herrmann

    2015-01-01

    Lightweight design is an essential part of the overall Volkswagen strategy for reducing the CO2 emissions. The use of carbon fiber offers an enormous lightweight potential. In comparison to steel enabling a mass reduction of up to 70% in automotive parts without a degradation of the functionalities is possible. Today, the use of carbon fiber is limited in mass series applications of the automotive industry by the cost of the conventional C-fiber precursor polyacrylonitrile (PAN). 50% of the c...

  4. 12 Years of NPK Addition Diminishes Carbon Sink Potential of a Nutrient Limited Peatland

    Science.gov (United States)

    Larmola, T.; Bubier, J. L.; Juutinen, S.; Moore, T. R.

    2011-12-01

    Peatlands store about a third of global soil carbon. Our aim was to study whether the vegetation feedbacks of nitrogen (N) deposition lead to stronger carbon sink or source in a nutrient limited peatland ecosystem. We investigated vegetation structure and ecosystem CO2 exchange at Mer Bleue Bog, Canada, that has been fertilized for 7-12 years. We have applied 5 and 20 times ambient annual wet N deposition (0.8 g N m-2) with or without phosphorus (P) and potassium (K). Gross photosynthesis, ecosystem respiration and net CO2 exchange (NEE) were measured weekly during the growing season using chamber technique. Under the highest N(PK) treatments, the light saturated photosynthesis (PSmax) was reduced by 20-30% compared to the control treatment, whereas under moderate N and PK additions PSmax slightly increased or was similar to the control. The ecosystem respiration showed similar trends among the treatments, but changes in the rates were less pronounced. High nutrient additions led to up to 65% lower net CO2 uptake than that in the control: In the NPK plots with cumulative N additions of 70, 19, and 0 g N m-2, the daytime NEE in May-July 2011 averaged 0.8 (se. 0.3), 2.0 (se. 0.4), and 2.4 (se. 0.3) μmol m-2 s-1, respectively. In the N only plots with cumulative N additions of 45, 19, and 0 g N m-2, the daytime NEE in May-July 2011 averaged 0.8 (se. 0.2), 2.6 (se. 0.4), and 1.8 (se. 0.3) μmol m-2 s-1, respectively. The reduced plant photosynthetic capacity and diminished carbon sink potential in the highest nutrient treatments correlated with the loss of peat mosses and were not compensated for by the increased vascular plant biomass that has mainly been allocated to woody shrub stems.

  5. Quasi-bound alpha resonant states populated by the {sup 12}C({sup 6}Li, d) reaction

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, M.R.D.; Borello-Lewin, T.; Miyake, H.; Horodynski-Matsushigue, L.B.; Duarte, J.L.M.; Rodrigues, C.L.; Souza, M.A. [Universidade de Sao Paulo (IF/USP), SP (Brazil). Inst. de Fisica; Cunsolo, A.; Cappuzzello, F.; Foti, A.; Agodi, C.; Cavallaro, M. [Istituto Nazionale di Fisica Nucleare (LNS/INFN), Catania (Italy). Lab. Nazionali del Sud; Ukita, G.M. [Universidade de Santo Amaro (UNISA), Sao Paulo, SP (Brazil). Faculdade de Psicologia

    2012-07-01

    Full text: The alpha cluster phenomenon in the light nuclei structure has been the subject of a long time investigation since the proposal of the Ikeda diagrams [1]. The main purpose of the research program in progress is the investigation of this phenomenon in (x{alpha}) and (x{alpha}+n) nuclei through the ({sup 6}Li, d) alpha transfer reaction [2-4]. Alpha resonant states around the (4{alpha}) threshold in the nucleus {sup 16}O are the focus of the present contribution. In fact, the importance of these resonances at the elements production in stars is recognized, as primarily pointed out by Hoyle in {sup 12}C [6]. The existence of a rotational band with the {alpha} +{sup 12} C (Hoyle) cluster state structure was recently demonstrated by Ohkubo and Hirabayashi [6]. In order to explore this region of interest, measurements of the {sup 12}C({sup 6}Li, d){sup 16}O reaction up to 17 MeV of excitation at an incident energy of 25.5 MeV, have been performed employing the Sao Paulo Pelletron-Enge Split-Pole facility and the nuclear emulsion detection technique (plates Fuji G6B, 50 {mu}m thick). Spectra associated with six scattering angles, from 5 deg to 29 deg in the laboratory frame, each one 50 cm along the focal surface, were measured. Several narrow resonances with a quasi-bound behavior embedded in the continuum were detected and the resolution of 25 keV allowed for the separation of doublets not resolved before [7,8]. The absolute cross sections and the respective deuteron angular distributions were determined and the analysis is in progress. [1] K. Ikeda et al., Prog. Theor. Phys. Suppl. E 68, 464 (1968); H. Horiuchi, K. Ikeda, and Y. Suzuki, ibid. 44, 225 (1978). [2] M.R.D.Rodrigues et al., in12th International Conference on Nuclear Reaction Mechanism, Varenna, Italy, edited by F. Cerutti and A. Ferrari , CERN Proceedings, 2010-2, pp. 331- 335. [3] T. Borello-Lewin et al., Proceedings of SOTANCP2, Brussels, Belgium 2010, edited by P. Descouvemount et al., Int. J

  6. Co/CoO nanoparticles immobilized on Co-N-doped carbon as trifunctional electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions.

    Science.gov (United States)

    Zhang, Xian; Liu, Rongrong; Zang, Yipeng; Liu, Guoqiang; Wang, Guozhong; Zhang, Yunxia; Zhang, Haimin; Zhao, Huijun

    2016-05-21

    Co/CoO nanoparticles immobilized on Co-N-doped carbon were successfully developed using shrimp-shell derived N-doped carbon nanodots as precursors by a combined approach of polymerization and pyrolysis, as electrocatalysts exhibiting trifunctional catalytic activities toward oxygen reduction, oxygen evolution and hydrogen evolution reactions and high performance in rechargeable zinc-air batteries. PMID:27056374

  7. A study of the reactions of C+ and O+ with carbon dioxide

    International Nuclear Information System (INIS)

    Crossed ion neutral beam techniques have been employed to investigate the reactions C++CO2→CO++CO, O++CO2→O+CO+2, and O++CO2→ O+2+CO. Cross sections for the first reaction have been obtained in the ion energy range from 0.5--25 eV, while for the second process the range of measurement was 0.5--500 eV. Signals attributed to the third reaction could only be detected at ion energies less than 0.5 eV. Both ion--molecule reactions exhibit an energy dependence which falls off with increasing interaction energy faster than the 1/v dependence often found for such processes. The charge transfer process, which is endothermic by approximately 0.15 eV, is observed to have a finite cross section at the lowest ion energy employed

  8. Evaluation of carbon-supported Pt and Pd nanoparticles for the hydrogen evolution reaction in PEM water electrolysers

    Science.gov (United States)

    Grigoriev, S. A.; Millet, P.; Fateev, V. N.

    Carbon-supported Pt and Pd nanoparticles (CSNs) were synthesized and electrochemically characterized in view of potential application in proton exchange membrane (PEM) water electrolysers. Electroactive metallic nanoparticles were obtained by chemical reduction of precursor salts adsorbed to the surface of Vulcan XC-72 carbon carrier, using ethylene glycol as initial reductant and with final addition of formaldehyde. CSNs were then coated over the surface of electron-conducting working electrodes using an alcoholic solution of perfluorinated polymer. Their electrocatalytic activities with regard to the hydrogen evolution reaction (HER) were measured in sulfuric acid solution using cyclic voltammetry, and in a PEM cell during water electrolysis. Results obtained show that palladium can be advantageously used as an alternative electrocatalyst to platinum for the HER in PEM water electrolysers. Developed electrocatalysts could also be used in PEM fuel cells.

  9. Carbon-coated MoS2 nanosheets as highly efficient electrocatalysts for the hydrogen evolution reaction

    Science.gov (United States)

    Dou, Shuo; Wu, Jianghong; Tao, Li; Shen, Anli; Huo, Jia; Wang, Shuangyin

    2016-01-01

    As a green and highly efficient energy resource, hydrogen (H2) has attracted much attention in recent years. Electrochemical water splitting is an economic process to generate H2. MoS2 is a promising candidate to replace traditional Pt-based electrocatalysts for the hydrogen evolution reaction (HER) under acidic conditions. But low electrical conductivity is one of bottlenecks for the large-scale application of MoS2. In this work, a carbon-coated MoS2 hybrid electrocatalyst was prepared with a chemical vapour deposition (CVD) approach to improve the electrical conductivity of MoS2. In addition to the surface-coating carbon, a small graphene-like layer could also be inserted into the interlayers of MoS2 during the CVD process which resulted in more active sites being exposed in MoS2. Enhanced electrical conductivity and more exposed active sites lead to excellent HER activity.

  10. Nitrogen-modified carbon-based catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, Nalini P.; Li, Xuguang; Nallathambi, Vijayadurda; Kumaraguru, Swaminatha P.; Colon-Mercado, Hector; Wu, Gang; Lee, Jong-Won; Popov, Branko N. [Center for Electrochemical Engineering, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2009-03-01

    Nitrogen-modified carbon-based catalysts for oxygen reduction were synthesized by modifying carbon black with nitrogen-containing organic precursors. The electrocatalytic properties of catalysts were studied as a function of surface pre-treatments, nitrogen and oxygen concentrations, and heat-treatment temperatures. On the optimum catalyst, the onset potential for oxygen reduction is approximately 0.76 V (NHE) and the amount of hydrogen peroxide produced at 0.5 V (NHE) is approximately 3% under our experimental conditions. The characterization studies indicated that pyridinic and graphitic (quaternary) nitrogens may act as active sites of catalysts for oxygen reduction reaction. In particular, pyridinic nitrogen, which possesses one lone pair of electrons in addition to the one electron donated to the conjugated {pi} bond, facilitates the reductive oxygen adsorption. (author)

  11. In situ catalyzed Boudouard reaction of coal char for solid oxide-based carbon fuel cells with improved performance

    International Nuclear Information System (INIS)

    Highlights: • Industrial coal char was used as a fuel for solid oxide-based carbon fuel cells. • The Boudouard reactivity of coal char is higher than that of a commercial activated carbon. • The mineral matter in coal char has a catalytic effect on the Boudouard reaction. • Added catalysts and the inherent catalysts synergetically improved cell output. - Abstract: The use of industrial coal char as a fuel source for an anode-supported solid oxide-based carbon fuel cell (SO-CFC) with a yttrium-stabilized zirconia electrolyte and La0.8Sr0.2MnO3 cathode was investigated. Both the Boudouard reactivity and electrochemical performance of the coal char samples are higher than those of activated carbon samples under the same conditions. The inherent catalytic activity of the metal species (FemOn, CaO, etc.) in the coal char mineral matter leads to good cell performance, even in the absence of an external catalyst. For example, the peak power density of a cell fueled with pure coal char is 100 mW cm−2 at 850 °C, and that of a cell fueled with coal char impregnated with an FemOn-alkaline metal oxide catalyst is 204 mW cm−2. These results suggest that using coal char as the fuel in SO-CFCs might be an attractive way to utilize abundant coal resources cleanly and efficiently, providing an alternative for future power generation

  12. Reaction Mechanism and Kinetics of Aqueous Solutions of Primary and Secondary Alkanolamines and Carbon Dioxide

    OpenAIRE

    BAVBEK, Olgac; ALPER, Erdoğan

    1999-01-01

    The mechanism and kinetics of the reaction between aqueous solutions of CO2 and the alkanolamines 1-amino-2-propanol, 3-amino-1-propanol,2-methyl aminoethanol and 2-ethyl aminoethanol were investigated using a stopped flow technique. It was found that the reaction orders according to power law kinetics were between 1.1 and 2.0, depending on the alkanolamine and the concentration ranges investigated. This fractional order was therefore considered to be further evidence that carbamate ...

  13. Light-dark (12:12) cycle of carbon and nitrogen metabolism in Crocosphaera watsonii WH8501: relation to the cell cycle.

    Science.gov (United States)

    Dron, Anthony; Rabouille, Sophie; Claquin, Pascal; Le Roy, Bertrand; Talec, Amélie; Sciandra, Antoine

    2012-04-01

    This study provides with original data sets on the physiology of the unicellular diazotrophic cyanobacterium Crocosphaera watsonii WH8501, maintained in continuous culture in conditions of obligate diazotrophy. Cultures were exposed to a 12:12 light-dark regime, representative of what they experience in nature and where growth is expected to be balanced. Nitrogen and carbon metabolism were monitored at high frequency and their dynamics was compared with the cell cycle. Results reveal a daily cycle in the physiological and biochemical parameters, tightly constrained by the timely decoupled processes of N(2) fixation and carbon acquisition. The cell division rate increased concomitantly to carbon accumulation and peaked 6 h into the light. The carbon content reached a maximum at the end of the light phase. N(2) fixation occurred mostly during the dark period and peaked between 9 and 10 h into the night, while DNA synthesis, reflected by DNA fluorescence, increased until the end of the night. Consequently, cells in G1- and S-phases present a marked decrease in their C:N ratio. Nitrogen acquisition through N(2) fixation exceeded 1.3- to 3-fold the nitrogen requirements for growth, suggesting that important amounts of nitrogen are excreted even under conditions supposed to favour balanced, carbon and nitrogen acquisitions. PMID:22188053

  14. Morphology-Controllable Synthesis of Cobalt Telluride Branched Nanostructures on Carbon Fiber Paper as Electrocatalysts for Hydrogen Evolution Reaction.

    Science.gov (United States)

    Wang, Ke; Ye, Zhiguo; Liu, Chenqi; Xi, Dan; Zhou, Chongjian; Shi, Zhongqi; Xia, Hongyan; Liu, Guiwu; Qiao, Guanjun

    2016-02-10

    Cobalt telluride branched nanostructures on carbon fiber paper (CFP) with two different morphologies were synthesized via solution-based conversion reaction. Both the CoTe2 with nanodendrite and CoTe with nanosheet morphologies on the CoTe2 nanotube (CoTe2 NDs/CoTe2 NTs and CoTe NSs/CoTe2 NTs) supported by CFP exhibit high activities toward hydrogen evolution reaction (HER). Particularly, the CoTe NSs/CoTe2 NTs only require an overpotential of 230.0 mV to deliver the current density of 100 mA cm(-2) in acid solution. After cycling for 5000 cycles or 20 h continual electrolysis, only a small performance loss is observed. PMID:26809181

  15. Synthesis of Al4SiC4 powders from kaolin grog, aluminum and carbon black by carbothermal reaction

    International Nuclear Information System (INIS)

    In this paper, the synthesis of Al4SiC4 used as natural oxide materials by carbothermal reduction was investigated in order to explore the synthesis route with low costs. The samples were calcined by using kaolin grog, aluminum and carbon black as raw materials with the selected proportion at the temperature from 1500 to 1800 ° C for 2 hours under flow argon atmosphere. The phase composition of reaction products were determined by X-ray diffraction. The microstructure and elemental composition of different phases were observed and identified by scanning electron microscopy and energy dispersive spectroscopy. The mechanism of reaction processing was discussed. The results show that Al4SiC4 powders composed of hexagonal plate-like particulates with various sizes and the thickness of less than 20 μm are obtained when the temperature reaches 1800 °C

  16. Up-Scaling Geochemical Reaction Rates for Carbon Dioxide (CO2) in Deep Saline Aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Lindquist, W Brent

    2009-03-03

    The overall goal of the project was to bridge the gap between our knowledge of small-scale geochemical reaction rates and reaction rates meaningful for modeling transport at core scales. The working hypothesis was that reaction rates, determined from laboratory measurements based upon reactions typically conducted in well mixed batch reactors using pulverized reactive media may be significantly changed in in situ porous media flow due to rock microstructure heterogeneity. Specifically we hypothesized that, generally, reactive mineral surfaces are not uniformly accessible to reactive fluids due to the random deposition of mineral grains and to the variation in flow rates within a pore network. Expected bulk reaction rates would therefore have to be correctly up-scaled to reflect such heterogeneity. The specific objective was to develop a computational tool that integrates existing measurement capabilities with pore-scale network models of fluid flow and reactive transport. The existing measurement capabilities to be integrated consisted of (a) pore space morphology, (b) rock mineralogy, and (c) geochemical reaction rates. The objective was accomplished by: (1) characterizing sedimentary sandstone rock morphology using X-ray computed microtomography, (2) mapping rock mineralogy using back-scattered electron microscopy (BSE), X-ray dispersive spectroscopy (EDX) and CMT, (3) characterizing pore-accessible reactive mineral surface area, and (4) creating network models to model acidic CO{sub 2} saturated brine injection into the sandstone rock samples.

  17. A prediction model for concrete carbonation based on coupled CO²-H²O-ions transfers and chemical reactions

    OpenAIRE

    Thiery, M.; DANGLA, P; Villain, G.; Platret, G.

    2005-01-01

    It is a recognized fact that steel corrosion reduces the serviceability and safety performance of reinforced concrete. Usually high alkaline conditions in concrete lead to the formation of a passive layer at the steel surface. However the natural diffusion of the atmospheric carbon dioxide (CO²) into the concrete induces a decrease of the pore water pH value after reactions with hydrates such as portlandite Ca(OH)² and calcium silicate hydrates C-S-H. Under low-pH conditions, the passive laye...

  18. A DFT study on the mechanism of palladium-catalyzed divergent reactions of 1,6-enyne carbonates

    Indian Academy of Sciences (India)

    Xing Hui Zhang; Zhi Yuan Geng; Teng Niu; Ke Tai Wang

    2015-03-01

    The reaction mechanisms of palladium-catalyzed divergent reactions of 1,6-enyne carbonates have been investigated using DFT calculations at the B3LYP/6-31G(d,p) (LanL2DZ for Pd) level. Solvent effects on these reactions have been considered by the polarizable continuum model (PCM) for the solvent (DMF). The formation of vinylidenepyridines and vinylidenepyrrolidines were generated through 5-exo-dig cyclization or 6-endo-dig cyclization. Our calculation results suggested the following: (i) The first step of the whole cycle is the rate-determining step, which causes allenic palladium intermediate through two plausible pathways. This intermediate provides the corresponding products and releases the palladium catalyst by a subsequent hydrogen transfer and elimination process. (ii) For the catalyst CH3OPdH, the reaction could occur through two possible pathways, but 5-exo-dig cyclization is favoured over 6-endo-dig cyclization. However, when the hydrogen atom is substituted with a phenyl group, the energy barriers for 5-exo-dig cyclization or 6-endo-dig cyclization become relatively high, 18.0–28.5 kcal/mol. The computational results provide good explanation for the experimental observations.

  19. $\\rho/\\omega$ properties from dilepton spectra in $p A$ reactions at 12 GeV

    CERN Document Server

    Bratkovskaya, E L

    2002-01-01

    The dilepton production from $pC$ and $pCu$ collisions at $T_{lab}=12$ GeV is calculated using the semi-classical BUU transport model, that includes the off-shell propagation of vector mesons nonperturbatively and calculates the width of the vector mesons dynamically. It is found that the collisional broadening of the vector meson width and dropping vector meson masses lead to a small enhancement of the dilepton yield below the $\\omega$ meson mass pole in $p Cu$ collisions compared to $p C$, which is, however, not sufficient to explain the enhanced production of dileptons as observed in the experiment by the KEK-PS E325 collaboration. It is argued that such in-medium effects are expected to be small due to kinematical reasons -- the dominant part of vector mesons shine dileptons and decay outside the nucleus due to the finite formation time for $\\rho$ and $\\omega$ mesons, which is large by Lorentz covariance since the produced vector mesons move with high velocity relative to the target nucleus.

  20. Non-Enzymatic-Browning-Reaction: A Versatile Route for Production of Nitrogen-Doped Carbon Dots with Tunable Multicolor Luminescent Display

    OpenAIRE

    Weili Wei; Can Xu; Li Wu; Jiasi Wang; Jinsong Ren; Xiaogang Qu

    2014-01-01

    The non-enzymatic browning, namely Maillard reaction is commonly invoked to account for abiotic chemical transformations of organic matter. Here we report a new reaction pathway via the Maillard reaction to systematically synthesize a series of nitrogen-doped carbon dots (C-dots) with superhigh quantum yield (QY) and tunable multicolor luminescent displayment. The starting materials are glucose and the serial amino acid analogues which allow systemically controlling luminescent and physicoche...

  1. Chemical behaviour of plutonium in natural, aquatic systems: Hydrolysis, carbonate complexation and redox reactions

    International Nuclear Information System (INIS)

    In order to clear up the geochemical behaviour of plutonium and its migration mechanisms in groundwater, hydrolysis, redox behaviour, compound formation in carbonate solutions and colloid formation were examined in groundwater conditions, i.e. at pH values between 5 and 8 and at redox potentials of between -300 and +700 mV. Solubility measurements, spectroscopic processes (UV, VIS, IR spectroscopy and laser induced photoacoustic spectroscopy) and electrochemical processes (cyclic voltammetry, differential pulse polarography) are used as methods of investigation. The hydrolysis constants of Pu IV and Pu VI and the solubility product of Pu (OH)4 were determined and hydrolysis products of divalent and trivalent type are described. From solubility experiments, the stability constants for Pu (IV) carbonate compounds and the solubility product for the carbonate system of stable bodies of Pu (OH)2 CO3 were calculated. Using absorption spectroscopy, the disproportionate kinetics of Pu (V) in carbonate was determined at various pH values. A slow, but continuous, reduction in Pu (VI) was found in carbonate solution, which was derived from radiolytic effects. The speed of this auto-reduction was determined, depending on various experimental parameters. (orig./RB)

  2. Measurement of Fragment Production Cross Sections in the $^{12}$C+$^{12}$C and $^{12}$C+$^{197}$Au Reactions at 62 $A$ MeV for Hadrontherapy and Space Radiation Protection

    CERN Document Server

    Tropea, S; Agodi, C; Blancato, A A; Bondì, M; Cappuzzello, F; Carbone, D; Cavallaro, M; Cirrone, G A P; Cuttone, G; Giacoppo, F; Nicolosi, D; Pandola, L; Raciti, G; Rapisarda, E; Romano, F; Sardina, D; Scuderi, V; Sfienti, C

    2014-01-01

    Over the last twenty years, there has been a renewed interest in nuclear fragmentation studies for both hadrontherapy applications and space radiation protection. In both fields, fragmentation cross sections are needed to predict the effects of the ions nuclear interactions within the patient’s and the astronaut’s body. Indeed, the Monte Carlo codes used in planning tumor treatments and space missions must be tuned and validated by experimental data. However, only a limited set of fragmentation cross sections are available in literature, especially at Fermi energies. Therefore, we have studied the production of secondary fragments in the 12 C+ 12 C and 12 C+ 197 Au reactions at 62 A MeV. In this work, the measured 4 He cross sections angular distributions at four selected angles are presented and compared.

  3. Suppression of interfacial reactions between Li4Ti5O12 electrode and electrolyte solution via zinc oxide coating

    International Nuclear Information System (INIS)

    Graphical abstract: The Li4Ti5O12 (LTO) based batteries have severe gassing behavior due to the strong interfacial reactions between LTO and the electrolyte solution, which hampers the practical application of LTO in high power LIBs. The ZnO coating on LTO particles as a barrier layer can effectively suppress the interfacial reactions between LTO and the electrolyte solution. Simultaneously, the ZnO coating significantly reduces the charge-transfer resistance and increases the lithium ion diffusion coefficient, which leads to great improvement of rate and cyclic performance of LTO electrode. - Highlights: • A ZnO coating layer was constructed on the LTO particles by a chemical process as a barrier layer between LTO and surrounding electrolyte solution. • The ZnO coating can effectively stabilize the electrode/electrolyte interface and suppress interfacial reactions between LTO and electrolyte solution. • The ZnO coating can improve the electronic conductivity and lithium ion diffusion coefficient, which contributes to a great improvement in cyclic and high rate capabilities of LTO electrode. • The ZnO coating on LTO may be an effective method to solve the gassing behavior of LTO based battery and promote its wide application in lithium ion power battery. - Abstract: Li4Ti5O12 (LTO) based batteries have severe gassing behavior during charge/discharge and storage process. The interfacial reactions between LTO and electrolyte solution may be the main reason. In this work, the LTO spinel particles are modified with ZnO coating using a chemical process to reduce the surface reactivity of LTO particles. Results show that the ZnO coating can effectively stabilize the electrode/electrolyte interface and suppress the formation of a solid electrolyte interface (SEI) film. Simultaneously, this ZnO modification can improve the electronic conductivity and lithium ion diffusion coefficient, which contributes to a great improvement in cyclic and high rate capabilities of

  4. Electrochemical activity and durability of platinum nanoparticles supported on ordered mesoporous carbons for oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shou-Heng [Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei 10617 (China); Chiang, Chien-Chang; Wu, Min-Tsung; Liu, Shang-Bin [Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei 10617 (China); Department of Chemistry, National Taiwan Normal University, Taipei 11677 (China)

    2010-08-15

    A facile procedure for synthesizing platinum nanoparticles (NPs) studded in ordered mesoporous carbons (Pt-OMCs) based on the organic-organic self-assembly (one-pot) approach is reported. These Pt-OMCs, which can be easily fabricated with controllable Pt loading, were found to possess high surface areas, highly accessible and stable active sites and superior electrocatalytic properties pertinent as cathode catalysts for hydrogen-oxygen fuel cells. The enhanced catalytic activity and durability observed for the Pt-OMC electrocatalysts are attributed to the strengthened interactions between the Pt catalyst and the mesoporous carbon that effectively precludes migration and/or agglomeration of Pt NPs on the carbon support. (author)

  5. Laser induced and controlled chemical reaction of carbon monoxide and hydrogen

    Science.gov (United States)

    du Plessis, Anton; Strydom, Christien A.; Uys, Hermann; Botha, Lourens R.

    2011-11-01

    Bimolecular chemical reaction control of gaseous CO and H2 at room temperature and atmospheric pressure, without any catalyst, using shaped femtosecond laser pulses is presented. High intensity laser radiation applied to a reaction cell facilitates non-resonant bond breakage and the formation of a range of ions, which can then react to form new products. Stable reaction products are measured after irradiation of a reaction cell, using time of flight mass spectroscopy. Bond formation of C-O, C-C, and C-H bonds is demonstrated as CO2+, C2H2+, CH+, and CH3+ were observed in the time of flight mass spectrum of the product gas, analyzed after irradiation. The formation of CO2 is shown to be dependent on laser intensity, irradiation time, and on the presence of H2 in the reaction cell. Using negatively chirped laser pulses more C-O bond formation takes place as compared to more C-C bond formation for unchirped pulses.

  6. Effect of carbon on wettability and interface reaction between melt superalloy and ceramic material

    Directory of Open Access Journals (Sweden)

    Chen Xiaoyan

    2014-01-01

    Full Text Available Effect of C on wettability and interface reaction between a nickel based superalloy and ceramic material was investigated by using a sessile drop method. It was found that the content of C in the alloy is able to influence the wettability and interface reaction. Alloys with C content lower than 0.1wt.% are stable on ceramic material and no interface reaction generates at the alloy-ceramic interface. However, when C content is higher than 0.1wt.%, the interface reaction occurs and the wetting angle decreases quickly. The product of interface reaction is discontinuous and composed of 9Al2O3 ⋅Cr2O3. Such result indicates that Cr in the alloy is impossible to react with the ceramic material and form Cr2O3 without the assistance of C. It is suggested that C in the alloy deoxidizes SiO2 in the ceramic material and produces SiO and CO. SiO is unstable and it can release active O atom at the interface. Cr at the interface combines with free O atom and forms Cr2O3. Al2O3 in the ceramic material and Cr2O3 finally forms 9Al2O3 ⋅Cr2O3.

  7. Ab initio molecular dynamics simulation study of successive hydrogenation reactions of carbon monoxide producing methanol

    Science.gov (United States)

    Pham, Thi Nu; Ono, Shota; Ohno, Kaoru

    2016-04-01

    Doing ab initio molecular dynamics simulations, we demonstrate a possibility of hydrogenation of carbon monoxide producing methanol step by step. At first, the hydrogen atom reacts with the carbon monoxide molecule at the excited state forming the formyl radical. Formaldehyde was formed after adding one more hydrogen atom to the system. Finally, absorption of two hydrogen atoms to formaldehyde produces methanol molecule. This study is performed by using the all-electron mixed basis approach based on the time dependent density functional theory within the adiabatic local density approximation for an electronic ground-state configuration and the one-shot GW approximation for an electronic excited state configuration.

  8. Synthesis of Polyaniline (PANI) in Nano-Reaction Field of Cellulose Nanofiber (CNF), and Carbonization

    OpenAIRE

    Yuki Kaitsuka; Noriko Hayashi; Tomoko Shimokawa; Eiji Togawa; Hiromasa Goto

    2016-01-01

    Polymerization of aniline in the presence of cellulose nano-fiber (CNF) is carried out. We used dried CNF, CNF suspension, and CNF treated by enzyme and ultra-sonification to obtain polyaniline (PANI)/CNF as a synthetic polymer/natural nano-polymer composite. The polymerization proceeds on the surface of CNF as a nano-reaction field. Resultant composites show extended effective π-conjugation length because CNF as a reaction field in molecular level produced polymer with expanded coil structur...

  9. Supercritical carbon dioxide as an innovative reaction medium for selective oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Loeker, F.; Leitner, W. [Max-Planck-Institut fuer Kohlenforschung, Muelheim an der Ruhr (Germany)

    1998-12-31

    Although the catalytic efficiency of all catalytic oxidation processes studied in scCO{sub 2} up to now is far from being satisfactory, the principle possibility to carry out such reactions in this medium is clearly evident. Future research in our group will be directed towards the development of homogeneous and heterogeneous catalysts that are adopted to the special requirements of both the oxidation process and the supercritical reaction medium. Preliminary results from these studies regarding the epoxidation of olefins with molecular oxygen as oxidant will be presented on the conference poster. (orig.)

  10. Nitrogen and Sulfur Co-doped Mesoporous Carbon Materials as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction

    International Nuclear Information System (INIS)

    Nitrogen and sulfur co-doped mesoporous carbon materials are synthesized by pyrolyzing FeSO4 + poly(ethyleneimine) + template SiO2 mixture at a high temperature without additional dopant precursors. For post-treatment, acid leaching is used to remove the metal, and the heat-treatment is tailored to optimize the catalytic activity of the catalysts toward the oxygen reduction reaction (ORR) in acidic solution. Scanning electron microscopy, X-ray diffraction, low-temperature N2 adsorption, X-ray photoelectron spectroscopy and inductively coupled plasma are used to characterize the catalysts' morphologies, structures, and compositions. Rotating disk electrode and rotating ring-disk electrode techniques are employed to quantitatively obtain the ORR kinetic constants and determine the reaction mechanisms. The ORR activity is highly improved by reheating the catalyst after H2SO4 leaching with improved half-wave potential of 0.68 V vs. RHE, and ORR electron number larger than 3.76. Moreover, increasing the catalyst loading of 800 μg cm−2 exhibits only ∼36 mV deviation from Pt/C. It is believed that the synergetic effect between the Fe-, N- and S-containing active sites and the modified carbon matrix structure due to H2SO4 leaching and reheating should make contribution to the high ORR activity

  11. Recent Advances in Carbon Supported Metal Nanoparticles Preparation for Oxygen Reduction Reaction in Low Temperature Fuel Cells

    Directory of Open Access Journals (Sweden)

    Yaovi Holade

    2015-03-01

    Full Text Available The oxygen reduction reaction (ORR is the oldest studied and most challenging of the electrochemical reactions. Due to its sluggish kinetics, ORR became the major contemporary technological hurdle for electrochemists, as it hampers the commercialization of fuel cell (FC technologies. Downsizing the metal particles to nanoscale introduces unexpected fundamental modifications compared to the corresponding bulk state. To address these fundamental issues, various synthetic routes have been developed in order to provide more versatile carbon-supported low platinum catalysts. Consequently, the approach of using nanocatalysts may overcome the drawbacks encountered in massive materials for energy conversion. This review paper aims at summarizing the recent important advances in carbon-supported metal nanoparticles preparation from colloidal methods (microemulsion, polyol, impregnation, Bromide Anion Exchange… as cathode material in low temperature FCs. Special attention is devoted to the correlation of the structure of the nanoparticles and their catalytic properties. The influence of the synthesis method on the electrochemical properties of the resulting catalysts is also discussed. Emphasis on analyzing data from theoretical models to address the intrinsic and specific electrocatalytic properties, depending on the synthetic method, is incorporated throughout. The synthesis process-nanomaterials structure-catalytic activity relationships highlighted herein, provide ample new rational, convenient and straightforward strategies and guidelines toward more effective nanomaterials design for energy conversion.

  12. Surface-oxidized carbon black as a catalyst for the water oxidation and alcohol oxidation reactions.

    Science.gov (United States)

    Suryanto, Bryan H R; Zhao, Chuan

    2016-05-11

    Carbon black (CB) is popularly used as a catalyst support for metal/metal oxide nanoparticles due to its large surface area, excellent conductivity and stability. Herein, we show that surface oxidized CB itself, after acidic treatment and electrochemical oxidation, exhibits significant catalytic activity for the electrochemical oxidation of water and alcohols. PMID:27097802

  13. Improved determination of the astrophysical S(0) factor of the 15N(p,α)12C reaction

    International Nuclear Information System (INIS)

    We present new improved R matrix fits of direct data and indirect Trojan Horse data for the 15N(p,α)12C reaction and provide a more accurate recommended value of S(0)=73.0±5.0 MeV b from direct Redder data [A. Redder et al., Z. Phys. A 305, 325 (1982)] and S(0)=70.0±13.5 MeV b from the Trojan Horse data [M. La Cognata et al., Phys. Rev. C 76, 065804 (2007)]. We also analyze a recent fit by Barker [F. C. Barker, Phys. Rev. C 78, 044611 (2008)] and demonstrate that when all the uncertainties are taken into account, our results overlap with his. We also provide a fit of the Trojan Horse data that properly takes into account finite residual energy resolution of the data.

  14. State in solution, structure and regioselectivities of reactions of lithium derivatives of 1-(2-methoxyphenyl)-3,3-diphenylpropyne

    International Nuclear Information System (INIS)

    Spectrophotometric study of the derivative of 1-(2-methoxyphenyl)-3,3-diphenylpropyne reveals that in diethyl ether it exists as contact ion pairs (CIP's). In THF the solvent separated ion pairs (SSIP's) are predominant in the accordance with spectrophotometric and 13C NMR data. Regioselectivities of reactions of the lithium derivative under study with ethyl halides in diethyl ether, THF and hexamethyphosphoramide, with benzyl chloride in two first solvents, and with methanol in THF were investigated. The protonation with methanol was shown to proceed exclusively at the allenic center (C-1) while the ethylation and especially the benzylation were shown to proceed predominantly at the propargylic center (C-3). Regioselectivities of the ethylation at the propargylic center of both the SSIP's in THF and the CIP's in diethyl ether were found to grow with the increase of the hardness of the ethylating agent

  15. Influence of surface passivation and water content on mineral reactions in unsaturated porous media: Implications for brucite carbonation and CO2 sequestration

    Science.gov (United States)

    Harrison, Anna L.; Dipple, Gregory M.; Power, Ian M.; Mayer, K. Ulrich

    2015-01-01

    The evolution of mineral reactive surface area is an important control on the progress of carbon mineralization reactions that sequester anthropogenic CO2. Dry conditions in unsaturated porous media and the passivation of reactive surface area by secondary phase precipitation complicate predictions of reactive surface during carbon mineralization reactions. Unsaturated brucite [Mg(OH)2] bearing column experiments were used to evaluate the effects of water saturation and hydrous Mg-carbonate precipitation on reaction of brucite with 10% CO2 gas streams at ambient conditions. We demonstrate that a lack of available water severely limits reaction progress largely due to the requirement of water as a reactant to form hydrated Mg-carbonates. The precipitation of a poorly crystalline carbonate phase in the early stages of the reaction does not significantly hinder brucite dissolution, as the carbonate coating remains sufficiently permeable. It is postulated that the conversion of this phase to substantially less porous, crystalline nesquehonite [MgCO3·3H2O] results in passivation of the brucite surface. Although a mechanistic model describing the passivating effect of nesquehonite remains elusive, reactive transport modeling using MIN3P-DUSTY confirms that conventional geometric surface area update models do not adequately reproduce observed reaction progress during brucite carbonation, while an empirically based model accounting for surface passivation is able to capture the transient evolution of CO2 uptake. Both water limits and surface passivation effects may limit the efficiency of CO2 sequestration efforts that rely on the conversion of mafic and ultramafic rock to carbonate minerals.

  16. Study of the Particle Production in $^{12}$C Induced Heavy Ion Reactions at 86 MeV/N

    CERN Multimedia

    2002-01-01

    The aim of this experiment is to study various characteristics of light and heavy particle production in |1|2C induced reactions if possible over the whole unexplored energy region 50-86~MeV/N. In particular we want to investigate how the correlations in the multiparticle events can help us to distinguish bet existing models. \\\\ \\\\ Two-proton large-angle correlations and correlations between two heavier (Z~=~1 or 2) particles are studied with scintillator +~NaI and range telescopes, complemented with a 24 telescope scintillator wall for projectile fragments. Thereby we receive information about the reaction plane and the impact parameter in coincidence with the two-particle correlation spectra. Small @Dp correlations can also be studied. The inclusive @p|+ and @p|- production has been followed far below the nucleon-nucleon threshold. Pions are thereby identified from @DE-E correlations and the @p|+ decay in plastic range telescopes. These results are now followed up by @p-projectile fragment and @p-p correlat...

  17. Absolute hydrogen depth profiling using the resonant $^{1}$H($^{15}$N,$\\alpha\\gamma$)$^{12}$C nuclear reaction

    CERN Document Server

    Reinhardt, Tobias P; Bemmerer, Daniel; Stöckel, Klaus; Wagner, Louis

    2016-01-01

    Resonant nuclear reactions are a powerful tool for the determination of the amount and profile of hydrogen in thin layers of material. Usually, this tool requires the use of a standard of well-known composition. The present work, by contrast, deals with standard-less hydrogen depth profiling. This approach requires precise nuclear data, e.g. on the widely used $^{1}$H($^{15}$N,$\\alpha\\gamma$)$^{12}$C reaction, resonant at 6.4\\,MeV $^{15}$N beam energy. Here, the strongly anisotropic angular distribution of the emitted $\\gamma$-rays from this resonance has been re-measured, resolving a previous discrepancy. Coefficients of (0.38$\\pm$0.04) and (0.80$\\pm$0.04) have been deduced for the second and fourth order Legendre polynomials, respectively. In addition, the resonance strength has been re-evaluated to (25.0$\\pm$1.5)\\,eV, 10\\% higher than previously reported. A simple working formula for the hydrogen concentration is given for cases with known $\\gamma$-ray detection efficiency. Finally, the absolute approach i...

  18. Absolute hydrogen depth profiling using the resonant 1H(15N, αγ)12C nuclear reaction

    Science.gov (United States)

    Reinhardt, Tobias P.; Akhmadaliev, Shavkat; Bemmerer, Daniel; Stöckel, Klaus; Wagner, Louis

    2016-08-01

    Resonant nuclear reactions are a powerful tool for the determination of the amount and profile of hydrogen in thin layers of material. Usually, this tool requires the use of a standard of well-known composition. The present work, by contrast, deals with standard-less hydrogen depth profiling. This approach requires precise nuclear data, e.g. on the widely used 1 H(15 N, αγ)12 C reaction, resonant at 6.4 MeV 15 N beam energy. Here, the strongly anisotropic angular distribution of the emitted γ -rays from this resonance has been re-measured, resolving a previous discrepancy. Coefficients of (0.38 ± 0.04) and (0.80 ± 0.04) have been deduced for the second and fourth order Legendre polynomials, respectively. In addition, the resonance strength has been re-evaluated to (25.0 ± 1.5) eV, 10% higher than previously reported. A simple working formula for the hydrogen concentration is given for cases with known γ -ray detection efficiency. Finally, the absolute approach is illustrated using two examples.

  19. Hypernuclear production cross section in the reaction of 6Li + 12C at 2A GeV

    Directory of Open Access Journals (Sweden)

    C. Rappold

    2015-07-01

    Full Text Available Hypernuclear production cross sections have been deduced for the first time with induced reaction of heavy ion beam on fixed target and by means of the invariant mass method by the HypHI Collaboration exploiting the reaction of 6Li + 12C at 2A GeV or sNN=2.70 GeV. A production cross section of 3.9±1.4 μb for 3ΛH and of 3.1±1.0 μb for 4ΛH respectively in the projectile rapidity region was inferred as well as the total production cross section of the Λ hyperon was measured and found to be equal to 1.7±0.8 mb. A global fit based on a Bayesian approach was performed in order to include and propagate statistical and systematic uncertainties. Production ratios of 3ΛH/4ΛH, 3ΛH/Λ and 4ΛH/Λ were included in the inference procedure. The strangeness population factors S3 and S4 of 3ΛH and 4ΛH respectively were extracted. In addition, the multiplicities of the Λ hyperon, 3ΛH, and 4ΛH together with the rapidity and transversal momentum density distributions of the observed hypernuclei were extracted and reported.

  20. The Development and Application of Two-Chamber Reactors and Carbon Monoxide Precursors for Safe Carbonylation Reactions.

    Science.gov (United States)

    Friis, Stig D; Lindhardt, Anders T; Skrydstrup, Troels

    2016-04-19

    Low molecular weight gases (e.g., carbon monoxide, hydrogen, and ethylene) represent vital building blocks for the construction of a wide array of organic molecules. Whereas experimental organic chemists routinely handle solid and liquid reagents, the same is not the case for gaseous reagents. Synthetic transformations employing such reagents are commonly conducted under pressure in autoclaves or under atmospheric pressure with a balloon setup, which necessitates either specialized equipment or potentially hazardous and nonrecommended installations. Other safety concerns associated with gaseous reagents may include their toxicity and flammability and, with certain gases, their inability to be detected by human senses. Despite these significant drawbacks, industrial processes apply gaseous building blocks regularly due to their low cost and ready availability but nevertheless under a strictly controlled manner. Carbon monoxide (CO) fits with all the parameters for being a gas of immense industrial importance but with severe handling restrictions due to its inherent toxicity and flammability. In academia, as well as research and development laboratories, CO is often avoided because of these safety issues, which is a limitation for the development of new carbonylation reactions. With our desire to address the handling of CO in a laboratory setting, we designed and developed a two-chamber reactor (COware) for the controlled delivery and utilization of stoichiometric amounts of CO for Pd-catalyzed carbonylation reactions. In addition to COware, two stable and solid CO-releasing molecules (COgen and SilaCOgen) were developed, both of which release CO upon activation by either Pd catalysis or fluoride addition, respectively. The unique combination of COware with either COgen or SilaCOgen provides a simple reactor setup enabling synthetic chemists to easily perform safe carbonylation chemistry without the need for directly handling the gaseous reagent. With this technology

  1. Study of Target Fragmentation in the Interaction of 86 MeV/A $^{12}$Carbon with Tantalum, Bismuth and Uranium

    CERN Multimedia

    2002-01-01

    Using radiochemical techniques we will ; a)~~measure the target fragment mass and charge distributions from the interaction of 86~MeV/A |1|2C with Ta, Bi and U; ; b)~~measure the target fragment forward momentum and average kinetic energy using the thick target-thick catcher technique for the above reactions; and ; c)~~measure the target fragment angular and differential energy distributions using thin target-thin catcher techniques for the reactions with Ta and U. \\\\ \\\\ These measurements should allow us to better characterize the transition between low energy and realistic heavy ion reaction mechanisms.

  2. Kinetic and mechanistic studies on the reaction of the vitamin B12 complex aquacobalamin with the HNO donor Angeli's salt: Angeli's salt and HNO react with aquacobalamin.

    Science.gov (United States)

    Subedi, Harishchandra; Hassanin, Hanaa A; Brasch, Nicola E

    2014-02-01

    We report the first studies on the reaction between an HNO donor compound and vitamin B12 complexes. Kinetic and mechanistic studies have been carried out on the reaction between the vitamin B12 derivative aquacobalamin (H2OCbl(+)/HOCbl; pKa = 7.8) and the HNO donor Angeli's salt. Studies were carried out with aquacobalamin in excess, since nitrite also reacts with aquacobalamin to form nitrocobalamin (NO2Cbl). At pH 10.80 the reaction instead switches predominantly to a mechanism in which spontaneous decomposition of Angeli's salt to give HNO and nitrite becomes the rate-determining step, followed by the rapid reaction between aquacobalamin and HNO/NO(-) to again give NOCbl. Both reactions proceed with a 1:1 stoichiometry and formation of nitrite is confirmed using the Griess assay. PMID:24437629

  3. Investigation of the red mud catalytic activity in carbon monoxide reaction decomposition

    OpenAIRE

    Кириченко, Алексей Геннадьевич; Колесник, Дмитрий Николаевич

    2011-01-01

    The process of iron carburization using СО-contaning gas as a catalyst red mud is investigated. Determined the catalytic activity of red mud in the decomposition reaction of CO. The effect of red mud addition to iron ore materials to improve their recoverability and carburization

  4. Modular, Catalytic Enantioselective Construction of Quaternary Carbon Stereocenters by Sequential Cross-Coupling Reactions.

    Science.gov (United States)

    Potter, Bowman; Edelstein, Emma K; Morken, James P

    2016-07-01

    The catalytic Suzuki-Miyaura cross-coupling with chiral γ,γ-disubstituted allylboronates in the presence of RuPhos ligand occurs with high regioselectivity and enantiospecificity, furnishing nonracemic compounds with quaternary centers. Mechanistic experiments suggest that the reaction occurs by transmetalation with allyl migration, followed by rapid reductive elimination. PMID:27310927

  5. Sustainable Ways of Combining Reactions and Separations Using Ionic Liquids and Carbon Dioxide

    NARCIS (Netherlands)

    Kazemi, S.

    2013-01-01

    Traditional chemical processes show shortcomings caused by using volatile organic compounds as solvents during reactions and separations. Therefore, it is necessary to address this issue by moving toward more environmentally friendly processes. This is possible by using less toxic and hazardous solv

  6. Carbon Leakage in the Primary Aluminium Sector: What evidence after 6 1/2 years of the EU ETS? - Working Paper No. 2012-12

    International Nuclear Information System (INIS)

    This paper provides an econometric analysis of the evidence of carbon leakage from the European primary aluminium industry during the first 6 1/2 years of the EU ETS. The findings suggest that while rising electricity prices have played a critical role in reducing the competitiveness of EU primary aluminium smelting in recent years, no evidence of carbon leakage can be detected so far. Other factors, including rising primary energy prices and changes in EU competition law regarding long term contracts, appear to be more important factors explaining the rise in net imports of primary aluminium and the gradual closure of a number of European primary smelters during the past 6 1/2 years. Our results suggest that the carbon leakage debate in this sector may therefore be better seen in terms of not accelerating the decline of the industry in Europe, rather than preventing it, and that any state-aid to the industry to prevent carbon leakage should therefore be applied accordingly. (author)

  7. Experimental study of bound states in 12Be through low-energy 11Be(d,p)-transfer reactions

    DEFF Research Database (Denmark)

    Johansen, Jacob S.; Bildstein, V.; Borge, M. J. G.;

    2013-01-01

    The bound states of 12Be have been studied through a 11Be(d,p)12Be transfer reaction experiment in inverse kinematics. A 2.8 MeV/u beam of 11Be was produced using the REX-ISOLDE facility at CERN. The outgoing protons were detected with the T-REX silicon detector array. The MINIBALL germanium arra...

  8. Electrophysiological Monitoring in Patients With Tumors of the Skull Base Treated by Carbon-12 Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Carozzo, Simone [Department of Neuroscience, Ophthalmology, and Genetics, University of Genova, Genova (Italy); Schardt, Dieter [Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Narici, Livio [Department of Physics, University of Rome Tor Vergata, Rome (Italy); Combs, Stephanie E.; Debus, Jürgen [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany); Sannita, Walter G., E-mail: wgs@dism.unige.it [Department of Neuroscience, Ophthalmology, and Genetics, University of Genova, Genova (Italy); Department of Psychiatry, State University of New York, Stony Brook, New York (United States)

    2013-03-15

    Purpose: To report the results of short-term electrophysiologic monitoring of patients undergoing {sup 12}C therapy for the treatment of skull chordomas and chondrosarcomas unsuitable for radical surgery. Methods and Materials: Conventional electroencephalogram (EEG) and retinal and cortical electrophysiologic responses to contrast stimuli were recorded from 30 patients undergoing carbon ion radiation therapy, within a few hours before the first treatment and after completion of therapy. Methodologies and procedures were compliant with the guidelines of the International Federation for Clinical Neurophysiology and International Society for Clinical Electrophysiology of Vision. Results: At baseline, clinical signs were reported in 56.6% of subjects. Electrophysiologic test results were abnormal in 76.7% (EEG), 78.6% (cortical evoked potentials), and 92.8% (electroretinogram) of cases, without correlation with neurologic signs, tumor location, or therapy plan. Results on EEG, but not electroretinograms and cortical responses, were more often abnormal in patients with reported clinical signs. Abnormal EEG results and retinal/cortical responses improved after therapy in 40% (EEG), 62.5% (cortical potentials), and 70% (electroretinogram) of cases. Results on EEG worsened after therapy in one-third of patients whose recordings were normal at baseline. Conclusions: The percentages of subjects whose EEG results improved or worsened after therapy and the improvement of retinal/cortical responses in the majority of patients are indicative of a limited or negligible (and possibly transient) acute central nervous system toxicity of carbon ion therapy, with a significant beneficial effect on the visual pathways. Research on large samples would validate electrophysiologic procedures as a possible independent test for central nervous system toxicity and allow investigation of the correlation with clinical signs; repeated testing over time after therapy would demonstrate, and may

  9. Enhancement of delayed hypersensitivity inflammatory reactions in guinea pig skin by 12(R)-hydroxy-5,8,14-eicosatrienoic acid.

    Science.gov (United States)

    Conners, M S; Schwartzman, M L; Quan, X; Heilman, E; Chauhan, K; Falck, J R; Godfrey, H P

    1995-01-01

    Delayed-type hypersensitivity (DTH) reactions are initiated by sensitized T cells. Their progression is dependent upon the local release of various autacoids, including cytokines and eicosanoids, by T cells, infiltrating inflammatory cells, and resident tissue cells. 12(R)-hydroxy-5,8,14-eicosatrienoic acid [12(R)-HETrE], an eicosanoid produced by skin and cornea, possesses potent proinflammatory properties at picomolar concentrations including vasodilation, increase in membrane permeability, neutrophil chemotaxis, and angiogenesis. Because DTH reactions are associated with many of these same phenomena, we examined the effect of 12(R)-HETrE and related 12-hydroxyeicosanoids on the expression of DTH to purified protein derivative of tuberculin in sensitized guinea pigs. In the absence of purified protein derivative of tuberculin, none of the eicosanoids evoked erythema or edema after intradermal injection at doses up to 100 pmol. When injected together with purified protein derivative of tuberculin, 12(R)-hydroxy-5,8,10,14-eicosatetraenoic acid [12(R)-HETE], but not its enantiomer 12(S)-HETE, significantly inhibited macroscopic expression of delayed reactivity (erythema) only at the highest dose tested, 10 pmol. In contrast, 12(R)-HETrE significantly enhanced expression of DTH at doses between 1 fmol and 1 pmol (50% and 30% increases above control, respectively). Its stereoisomer, 12(S)-HETrE, did not enhance DTH at any tested dose, but was able to block the activity of 12(R)-HETrE when injected simultaneously. Enhancement or inhibition of visible skin responses was not associated with qualitative or quantitative changes in cellular infiltrates at the reaction site. 12(R)-HETrE had no effect on the nonimmunologic inflammatory skin reaction induced by phorbol myristate acetate, suggesting selectivity toward DTH. We conclude that 12(R)-HETrE enhances DTH via a yet to be determined mechanism and that its stereoisomer, 12(S)-HETrE, may be a useful antagonist for

  10. Synthesis of a highly active carbon-supported Ir-V/C catalyst for the hydrogen oxidation reaction in PEMFC

    Energy Technology Data Exchange (ETDEWEB)

    Li, B.; Qiao, J.; Yang, D.; Lv, H.; Zheng, J.; Ma, J. [Tongji Univ., Shanghai (China). School of Automotive Studies, Clean Energy Automotive Engineering Center; Zhang, J.; Wang, H. [National Research Council, Vancouver, BC (Canada). Inst. for Fuel Cell Innovation

    2009-07-01

    Non-platinum catalysts are interesting candidates for use in fuel cell systems, particularly for long-term consideration. Iridium-based catalysts such as IrSn, IrOx and IrCo have very good corrosion resistance, electrical conductivity, and resistance to carbon monoxide poisoning. They also have platinum-like behaviour for the chemisorptions of hydrogen and oxygen. The Ir-based catalysts are also less expensive than platinum. In this study, carbon-supported Ir and Ir-V nanoclusters were synthesized via an ethylene glycol (EG) method using IrCl3 and NH4 VO3 as the Ir and V precursors. The nanoparticle catalysts were characterized by X-ray diffraction (XRD) and high resolution transmission electron microscope (TEM). These carbon-supported catalysts had better characteristic for hydrogen oxidation reaction. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques were used to characterize the electrochemical properties of fuel cells by applying Ir/C and Ir-V/C as anode catalysts. According to the discharge characteristics of the fuel cell, the Ir/C and Ir-V/C catalysts affected the performance of electrocatalysts considerably. In this experiment, the catalyst Ir-V/C at 40 wt per cent exhibited the best catalytic activity to hydrogen oxidation reaction. A cell performance of 20 wt per cent higher than that for commercially available Pt/C catalysts was achieved. In addition, there was no significant deterioration in performance of the fuel cell following a 100 hour fuel cell life test at a constant current density of 1000 mA/cm{sup 2} in H{sub 2}/O{sub 2} conditions. 3 refs., 2 figs.

  11. Active Sites Implanted Carbon Cages in Core-Shell Architecture: Highly Active and Durable Electrocatalyst for Hydrogen Evolution Reaction.

    Science.gov (United States)

    Zhang, Huabin; Ma, Zuju; Duan, Jingjing; Liu, Huimin; Liu, Guigao; Wang, Tao; Chang, Kun; Li, Mu; Shi, Li; Meng, Xianguang; Wu, Kechen; Ye, Jinhua

    2016-01-26

    Low efficiency and poor stability are two major challenges we encounter in the exploration of non-noble metal electrocatalysts for the hydrogen evolution reaction (HER) in both acidic and alkaline environment. Herein, the hybrid of cobalt encapsulated by N, B codoped ultrathin carbon cages (Co@BCN) is first introduced as a highly active and durable nonprecious metal electrocatalysts for HER, which is constructed by a bottom-up approach using metal organic frameworks (MOFs) as precursor and self-sacrificing template. The optimized catalyst exhibited remarkable electrocatalytic performance for hydrogen production from both both acidic and alkaline media. Stability investigation reveals the overcoating of carbon cages can effectively avoid the corrosion and oxidation of the catalyst under extreme acidic and alkaline environment. Electrochemical active surface area (EASA) evaluation and density functional theory (DFT) calculations revealed that the synergetic effect between the encapsulated cobalt nanoparticle and the N, B codoped carbon shell played the fundamental role in the superior HER catalytic performance. PMID:26649629

  12. Light charged-particle production in 96 MeV neutron-induced reactions on carbon and oxygen

    International Nuclear Information System (INIS)

    In recent years, an increasing number of applications involving fast neutrons have been developed or are under consideration, e.g. radiation treatment of cancer, neutron dosimetry at commercial aircraft altitudes, soft-error effects in computer memories, accelerator-driven transmutation of nuclear waste and energy production and determination of the response of neutron detectors. Data on light-ion production in light nuclei such as carbon, nitrogen and oxygen are particularly important in calculations of dose distributions in human tissue for radiation therapy at neutron beams, and for dosimetry of high-energy neutrons produced by high-energy cosmic radiation interacting with nuclei (nitrogen and oxygen) in the atmosphere. When studying neutron dose effects, it is especially important to consider carbon and oxygen, since they are, by weight, the most abundant elements in human tissue. Preliminary experimental double-differential cross sections of inclusive light-ion (p, d, t, 3He and α) production in carbon induced by 96-MeV neutrons have been presented. Energy spectra were measured at eight laboratory angles: 20, 40, 60, 80, 100, 120, 140 and 160 deg.. Measurements were performed at The Svedberg Laboratory (TSL), Uppsala, using the dedicated MEDLEY experimental setup. The authors have earlier reported experimental double-differential cross sections of inclusive light-ion production in oxygen. In this paper, the deduced kerma coefficients for oxygen has been presented and compared with reaction model calculations. (authors)

  13. Enhanced catalysis of the electrochemical hydrogen evolution reaction using composites of molybdenum-based compounds, gold nanoparticles and carbon.

    Science.gov (United States)

    Joshi, Ubisha; Lee, Jing; Giordano, Cristina; Malkhandi, Souradip; Yeo, Boon Siang

    2016-08-21

    Molybdenum nitride has been recently reported to interact synergistically with gold to show an enhanced activity for the electrochemical hydrogen evolution reaction (2H(+) + 2e(-)→ H2, HER). In this work, we elucidated the roles of nitrogen, carbon, molybdenum and gold on this observed phenomenon. Composites of Mo-based compounds, carbon black (black pearl 2000) and/or Au nanoparticles (AuNP) were prepared, and their activities for the HER in a 0.5 M H2SO4 electrolyte were measured using linear sweep voltammetry. We show and discuss here for the first time that, while the presence of carbon is necessary for the synergy phenomenon, the nitrogen atoms present in the compounds play no apparent role in this synergy. In fact, all the compounds containing Mo, namely Mo2N, MoB and metallic Mo(0), exhibited extensive synergy with Au for the HER. A hypothesis for the enhanced catalysis of H2 evolution by the mixed metal composites is proposed and discussed. PMID:27424516

  14. Effect of reaction environments on the reactivity of PCB (2-chlorobiphenyl) over activated carbon impregnated with palladized iron

    International Nuclear Information System (INIS)

    Reactive activated carbon (RAC) impregnated with palladized iron nanoparticles has been developed to treat polychlorinated biphenyls (PCBs). In this study, we evaluated the effects of various reaction environments on the adsorption-mediated dechlorination of 2-chlorobiphenyl (2-ClBP) in the RAC system. The results were discussed in close connection to the implementation issue of the RAC system for the remediation of contaminated sites with PCBs. Adsorption event of 2-ClBP onto RAC limited the overall performance under condition with a 2-ClBP/RAC mass ratio of less than 1.0 x 10-4 above which dechlorination of 2-ClBP adsorbed to RAC was the reaction rate-determining step. Acidic and basic conditions were harmful to 2-ClBP adsorption and iron stability while neutral pH showed the highest adsorption-promoted dechlorination of 2-ClBP and negligible metal leaching. Coexisting natural organic matter (NOM) slightly inhibited 2-ClBP adsorption onto RAC due to the partial partitioning of 2-ClBP into NOM in the liquid phase while the 2-ClBP absorbed into NOM, which also tended to adsorb onto RAC, was less available for the dechlorination reaction. Common anions slowed down 2-ClBP adsorption but adsorbed 2-ClBP was almost simultaneously dechlorinated. Some exceptions included strong inhibitory effect of carbonate species on 2-ClBP adsorption and severe detrimental effect of sulfite on 2-ClBP dechlorination. Results on treatment of 2-ClBP spiked to actual sediment supernatants implied site-specific reactivity of RAC.

  15. a Study of Fusion-Fission in the ARGON-36 + Carbon -12 System.

    Science.gov (United States)

    Farrar, Kelly Allen, Jr.

    The ^{36}Ar + ^{12}C reaction at E_{lab} = 187.7 MeV has been used to populate the ^{48}Cr system at an excitation energy of 59.6 MeV. Cross sections to the A = 6, 7 and A = 9-24 decay channels have been measured and found to be consistent with fission from a fully-equilibrated compound nucleus. High-resolution mutual-excitation-energy spectra were obtained through a particle-particle coincidence measurement for the {^{14 }Mg} + {^{14}Mg} and {^{20}Ne} + {^{28}Si} exit channels. The peaks observed in these spectra at high energies were found to correspond directly to peaks seen in similar spectra obtained from an earlier measurement using the ^{24}Mg + ^{24}Mg reaction to reach the same ^{48}Cr system at an excitation energy of 59.4 MeV. The mutual excitation spectrum for the ^{24}Mg + ^{24}Mg exit channel was compared with a spectrum obtained from a calculation based on the transition-state model for light nuclei. The experimental and observed spectra were in good agreement suggesting that the observed structure can be explained in terms of a simple statistical decay picture. A particle-particle -gamma measurement was also made and the results were used to study the specific mutual excitations involved in the excitation energy peaks. It was found that the peaks are not dominated by single, mutual excitations. The results overall tend to confirm the conclusion that the source of the structure seen in the mutual-excitation spectrum at high energy is the result of a statistical population of energy levels as determined by the spin-weighting of the available phase space.

  16. Synthesis and reaction of 16-electron CptRh halfsandwich complexes containing 1,2-dichalcogenolate carborane ligands

    Institute of Scientific and Technical Information of China (English)

    KONG Qingan; JIN Guoxin; CAI Shuyi; WENG Linhong

    2003-01-01

    The reactions of [CptRhCl((-Cl)]2 (1) (Cpt = tBu2C5H3) with Li2E2C2B10H10 (E = S, Se) lead to the green 16-electron dichalcogenolate complexes CptRh(E2C2B10H10) [E = S(2a), Se(2b)]. The 16-electron complexes 2a and 2b can take up two-electron donor ligands such as tert-butyl isonitrile and carbon monoxide to give the 18-electron dichalcogenolate derivatives Cpt(L)(E2C2B10H10) [L = tBuNC, E = S(3a), Se(3b); L = CO, E = S(4a), Se(4b)]. The molecular structures of complexes 2a and 3a were determined by X-ray crystal structure analysis. The molecular structure of 16- electron complex 2a shows the pseudoaromatic system in IrSe2C2 five numbered ring.

  17. Preparation of carbon nitride fine powder by laser induced gas-phase reactions

    Science.gov (United States)

    Alexandrescu, R.; Huisken, F.; Pugna, G.; Crunteanu, A.; Petcu, S.; Cojocaru, S.; Cireasa, R.; Morjan, I.

    We present the possibility of carbon nitride fine powder synthesis by sensitized laser pyrolysis of acethylene/nitrous oxide/ammonia mixtures. The powders were analyzed using X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and IR transmission measurements. It was found that nitrogen was incorporated in powders and that in the carbon-nitrogen phases formed, the presence of the triple bonded C≡N was not detected. The majority of X-ray diffraction data suggests the presence of a mixture of the predicted α- and β-C3N4 structure, with an α-C3N4-like form being prevalent. The powders were found to be slightly contaminated by SF6 sensitizer products. Our results suggest that by improving the experimental parameters this contamination might be reduced and that the laser pyrolysis method offers possibilities for production of CxNy materials, with controlled composition.

  18. Use of laser spectroscopy to measure the 13C/12C and 18O/16O compositions of carbonate minerals.

    Science.gov (United States)

    Barker, Shaun L L; Dipple, Gregory M; Dong, Feng; Baer, Douglas S

    2011-03-15

    The stable carbon and oxygen isotope compositions of carbonate minerals are utilized throughout the earth and environmental sciences for various purposes. Here, we demonstrate the first application of a prototype instrument, based on off-axis integrated cavity output laser spectroscopy, to measure the carbon and oxygen isotope composition of CO(2) gas evolved from the acidification of carbonate minerals. The carbon and oxygen isotope ratios were recorded from absorption spectra of (12)C(16)O(16)O, (13)C(16)O(16)O, and (12)C(16)O(18)O in the near-infrared wavelength region. The instrument was calibrated using CaCO(3) minerals with known δ(13)C(VPDB) and δ(18)O(VSMOW) values, which had been previously calibrated by isotope ratio mass spectrometry relative to the international isotopic standards NBS 18 and NBS 19. Individual analyses are demonstrated to have internal precision (1 SE) of better than 0.15‰ for δ(13)C and 0.6‰ for δ(18)O. Analysis of four carbonate standards of known isotopic composition over 2 months, determined using the original instrumental calibration, indicates that analyses are accurate to better than 0.5‰ for both δ(13)C and δ(18)O without application of standard-sample-standard corrections. PMID:21341717

  19. Measurement of the 12C(e,e′p)11B two-body breakup reaction at high missing momentum

    International Nuclear Information System (INIS)

    The five-fold differential cross section for the 12C(e,e′p)11B reaction was determined over a missing momentum range of 200–400 MeV c−1, in a kinematics regime with xB>1 and Q2=2.0 (GeV c−1)2. A comparison of the results with previous lower missing momentum data and with theoretical models are presented. The extracted distorted momentum distribution is shown to be consistent with previous data and extends the range of available data up to 400 MeV c−1. The theoretical calculations are from two very different approaches, one mean field and the other short range correlated; yet for this system the two approaches show striking agreement with the data and each other up to a missing momentum value of 325 MeV c−1. For larger momenta, the calculations diverge which is likely due to the factorization approximation used in the short range approach. (paper)

  20. Ambiguities of the Rate of Oxygen Formation During Stellar Helium Burning in the 12C(a,g) Reaction

    CERN Document Server

    Gai, Moshe

    2013-01-01

    The rate of oxygen formation determines the C/O ratio during stellar helium burning. It is the single most important nuclear input of stellar evolution theory including the evolution of Type II and Type Ia supernova. Yet the low energy cross section of the fusion of 4He + 12C denoted as the 12C(a,g)16O reaction still remains uncertain after forty years of extensive work. We analyze and critically review the most recent measurements of complete angular distributions of the outgoing gamma-rays at very low energies (Ecm > 1.0 MeV). Our analysis of the angular distribution measured with the EUROGAM/GANDI arrays lead us to conclude considerably larger error bars than published hence they are excluded from the current sample of "world data". We show that the current sample of "world data" of the measured E2 cross section factors below 1.7 MeV cluster to two distinct groups that lead to two distinct extrapolations of SE2(300) ~ 60 or ~ 154 keVb. We point to a much neglected discrepancy between the measured E1-E2 pha...