WorldWideScience

Sample records for carbon 12 beams

  1. Investigation of industrial-scale carbon dioxide reduction using pulsed electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, G. M.; Apruzese, J. P.; Petrova, Tz. B.; Wolford, M. F. [Plasma Physics Division, Naval Research Laboratory, 4555 Overlook Ave. SW, Washington, DC 20375-5346 (United States)

    2016-03-14

    Carbon dioxide is the most important greenhouse gas contributing to global warming. To help mitigate increasing CO{sub 2} concentrations, we investigate a method of carbon dioxide reduction using high-power electron beams, which can be used on an industrial scale. A series of experiments are conducted in which the reduction of CO{sub 2} is measured for different gas compositions and power deposition rates. An electron beam deposition model is applied to compute reduction rates of CO{sub 2} and energy cost for breaking a CO{sub 2} molecule in flue gas and pure carbon dioxide at atmospheric pressure. For flue gas consisting of 82% N{sub 2}, 6% O{sub 2}, and 12% CO{sub 2}, the calculated energy cost is 85 eV per molecule. In order to dissociate 50% of the CO{sub 2} molecules, beam energy density deposition on the order of 20 J/cm{sup 3} is required. Electron beam irradiation of 12.6 liter gas volume containing 90% CO{sub 2} and 10% CH{sub 4} at beam energy density deposition of 4.2 J/cm{sup 3}, accumulated over 43 shots in a 20 min interval, reduced the CO{sub 2} concentration to 78%. Analogous experiments with a gas mixture containing 11.5% CO{sub 2}, 11.5% CH{sub 4}, and balance of Ar, reduced the CO{sub 2} concentration to below 11% with energy deposition 0.71 J/cm{sup 3}, accumulated over 10 shots in a 5 min interval. The experimental data and the theoretical predictions of CO{sub 2} reduction using pulsed electron beams are in agreement within the experimental error. Other techniques to enhance the removal of CO{sub 2} with pulsed electron beams are also explored, yielding new possible avenues of research.

  2. Ion beam trajectory simulation of carbon isotopes in cyclotron DECY-13

    International Nuclear Information System (INIS)

    Pramudita Anggraita

    2014-01-01

    A simulation on the ion beam trajectories of various carbon isotopes "1"2C, "1"3C, and "1"4C in DECY-13 cyclotron has been carried out using Scilab 5.4.1 software. Calculations in the simulation were carried out in 3 dimensions. The simulation shows trajectory separations, which provide possibility for "1"4C measurement such as in carbon dating at accelerating voltage frequency of about 72 MHz. (author)

  3. Focused ion beam milling of carbon fibres

    International Nuclear Information System (INIS)

    Huson, Mickey G.; Church, Jeffrey S.; Hillbrick, Linda K.; Woodhead, Andrea L.; Sridhar, Manoj; Van De Meene, Allison M.L.

    2015-01-01

    A focused ion beam has been used to mill both individual carbon fibres as well as fibres in an epoxy composite, with a view to preparing flat surfaces for nano-indentation. The milled surfaces have been assessed for damage using scanning probe microscopy nano-indentation and Raman micro-probe analysis, revealing that FIB milling damages the carbon fibre surface and covers surrounding areas with debris of disordered carbon. The debris is detected as far as 100 μm from the milling site. The energy of milling as well as the orientation of the beam was varied and shown to have an effect when assessed by Raman spectroscopy. - Highlights: • Focused ion beam (FIB) milling was used to mill flat surfaces on carbon fibres. • Raman spectroscopy showed amorphous carbon was generated during FIB milling. • The amorphous debris is detected as far as 100 μm from the milling site. • This surface degradation was confirmed by nano-indentation experiments.

  4. Development of stereotactic radiosurgery using carbon beams (carbon-knife)

    Science.gov (United States)

    Keawsamur, Mintra; Matsumura, Akihiko; Souda, Hikaru; Kano, Yosuke; Torikoshi, Masami; Nakano, Takashi; Kanai, Tatsuaki

    2018-02-01

    The aim of this research is to develop a stereotactic-radiosurgery (SRS) technique using carbon beams to treat small intracranial lesions; we call this device the carbon knife. A 2D-scanning method is adapted to broaden a pencil beam to an appropriate size for an irradiation field. A Mitsubishi slow extraction using third order resonance through a rf acceleration system stabilized by a feed-forward scanning beam using steering magnets with a 290 MeV/u initial beam energy was used for this purpose. Ridge filters for spread-out Bragg peaks (SOBPs) with widths of 5 mm, 7.5 mm, and 10 mm were designed to include fluence-attenuation effects. The collimator, which defines field shape, was used to reduce the lateral penumbra. The lateral-penumbra width at the SOBP region was less than 2 mm for the carbon knife. The penumbras behaved almost the same when changing the air gap, but on the other hand, increasing the range-shifter thickness mostly broadened the lateral penumbra. The physical-dose rates were approximate 6 Gy s-1 and 4.5 Gy s-1 for the 10  ×  10 mm2 and 5  ×  5 mm2 collimators, respectively.

  5. Thick-target neutron, gamma-ray, and radionuclide production for protons below 12 MeV on nickel and carbon beam-stops

    International Nuclear Information System (INIS)

    Chadwick, M.B.; Young, P.G.; Wilson, W.B.

    1998-03-01

    Nuclear model calculations using the GNASH code are described for protons below 12 MeV incident on nickel and carbon isotopes, for beam stop design in the Los Alamos Accelerator Production of Tritium Low Energy Demonstration Accelerator (LEDA) project. The GNASH calculations apply Hauser-Feshbach and preequilibrium reaction theories and can make use of pre-calculated direct reaction cross sections to low-lying residual nucleus states. From calculated thin target cross sections, thick target 6.7 MeV and 12 MeV proton-induced production of neutrons, gamma rays, and radionuclides are determined. Emission spectra of the secondary neutrons and gamma rays are also determined. The model calculations are validated through comparisons with experimental thin- and thick-target measurements. The results of this work are being utilized as source terms in MCNP analyses for LEDA

  6. Carbon Fiber Damage in Accelerator Beam

    CERN Document Server

    Sapinski, M; Guerrero, A; Koopman, J; Métral, E

    2009-01-01

    Carbon fibers are commonly used as moving targets in Beam Wire Scanners. Because of their thermomechanical properties they are very resistant to particle beams. Their strength deteriorates with time due to radiation damage and low-cycle thermal fatigue. In case of high intensity beams this process can accelerate and in extreme cases the fiber is damaged during a single scan. In this work a model describing the fiber temperature, thermionic emission and sublimation is discussed. Results are compared with fiber damage test performed on SPS beam in November 2008. In conclusions the limits of Wire Scanner operation on high intensity beams are drawn.

  7. Shunting arc plasma source for pure carbon ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Koguchi, H.; Sakakita, H.; Kiyama, S.; Shimada, T.; Sato, Y.; Hirano, Y. [Energy Technology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2012-02-15

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA/mm{sup 2} at the peak of the pulse.

  8. Shunting arc plasma source for pure carbon ion beam.

    Science.gov (United States)

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse.

  9. A simulation study of a C-shaped in-beam PET system for dose verification in carbon ion therapy

    International Nuclear Information System (INIS)

    Jung An, Su; Beak, Cheol-Ha; Lee, Kisung; Hyun Chung, Yong

    2013-01-01

    The application of hadrons such as carbon ions is being developed for the treatment of cancer. The effectiveness of such a technique is due to the eligibility of charged particles in delivering most of their energy near the end of the range, called the Bragg peak. However, accurate verification of dose delivery is required since misalignment of the hadron beam can cause serious damage to normal tissue. PET scanners can be utilized to track the carbon beam to the tumor by imaging the trail of the hadron-induced positron emitters in the irradiated volume. In this study, we designed and evaluated (through Monte Carlo simulations) an in-beam PET scanner for monitoring patient dose in carbon beam therapy. A C-shaped PET and a partial-ring PET were designed to avoid interference between the PET detectors and the therapeutic carbon beam delivery. Their performance was compared with that of a full-ring PET scanner. The C-shaped, partial-ring, and full-ring scanners consisted of 14, 12, and 16 detector modules, respectively, with a 30.2 cm inner diameter for brain imaging. Each detector module was composed of a 13×13 array of 4.0 mm×4.0 mm×20.0 mm LYSO crystals and four round 25.4 mm diameter PMTs. To estimate the production yield of positron emitters such as 10 C, 11 C, and 15 O, a cylindrical PMMA phantom (diameter, 20 cm; thickness, 20 cm) was irradiated with 170, 290, and 350 AMeV 12 C beams using the GATE code. Phantom images of the three types of scanner were evaluated by comparing the longitudinal profile of the positron emitters, measured along the carbon beam as it passed a simulated positron emitter distribution. The results demonstrated that the development of a C-shaped PET scanner to characterize carbon dose distribution for therapy planning is feasible.

  10. Carbon Fiber Damage in Particle Beam

    CERN Document Server

    Dehning, B; Kroyer, T; Meyer, M; Sapinski, M

    2011-01-01

    Carbon fibers are commonly used as moving targets in beam wire scanners. The heating of the fiber due to energy loss of the particles travelling through is simulated with Geant4. The heating induced by the beam electromagnetic field is estimated with ANSYS. The heat transfer and sublimation processes are modelled. Due to the model nonlinearity, a numerical approach based on discretization of the wire movement is used to solve it for particular beams. Radiation damage to the fiber is estimated with SRIM. The model is tested with available SPS and LEP data and a dedicated damage test on the SPS beam is performed followed by a post-mortem analysis of the wire remnants. Predictions for the LHC beams are made.

  11. Application of ion beams for polymeric carbon based biomaterials

    International Nuclear Information System (INIS)

    Evelyn, A.L.

    2001-01-01

    Ion beams have been shown to be quite suitable for the modification and analysis of carbon based biomaterials. Glassy polymeric carbon (GPC), made from cured phenolic resins, has a high chemical inertness that makes it useful as a biomaterial in medicine for drug delivery systems and for the manufacture of heart valves and other prosthetic devices. Low and high-energy ion beams have been used, with both partially and fully cured phenolic resins, to enhance biological cell/tissue growth on, and to increase tissue adhesion to GPC surfaces. Samples bombarded with energetic ion beams in the keV to MeV range exhibited increased surface roughness, measured using optical microscopy and atomic force microscopy. Ion beams were also used to perform nuclear reaction analyses of GPC encapsulated drugs for use in internal drug delivery systems. The results from the high energy bombardment were more dramatic and are shown in this paper. The interaction of energetic ions has demonstrated the useful application of ion beams to enhance the properties of carbon-based biomaterials

  12. Interaction of the CERN Large Hadron Collider (LHC) Beam with Carbon Collimators

    CERN Document Server

    Schmidt, R; Hoffmann, Dieter H H; Kadi, Y; Shutov, A; Piriz, AR

    2006-01-01

    The LHC will operate at an energy of 7 TeV with a luminosity of 1034cm-2s-1. This requires two beams, each with 2808 bunches. The energy stored in each beam of 362 MJ. In a previous paper the mechanisms causing equipment damage in case of a failure of the machine protection system was discussed, assuming that the entire beam is deflected into a copper target [1, 2]. Another failure scenario is the deflection of beam into carbon material. Carbon collimators and beam absorbers are installed in many locations around the LHC to diffuse or absorb beam losses. Since the collimator jaws are close to the beam, it is very likely that they are hit first when the beam is accidentally deflected. Here we present the results of two-dimensional hydrodynamic simulations of the heating of a solid carbon cylinder irradiated by the LHC beam with nominal parameters, carried out using the BIG-2 computer code [3] while the energy loss of the 7 TeV protons in carbon is calculated using the well known FLUKA code [4]. Our calculation...

  13. Electron beam influence on the carbon contamination of electron irradiated hydroxyapatite thin films

    International Nuclear Information System (INIS)

    Hristu, Radu; Stanciu, Stefan G.; Tranca, Denis E.; Stanciu, George A.

    2015-01-01

    Highlights: • Carbon contamination mechanisms of electron-beam-irradiated hydroxyapatite. • Atomic force microscopy phase imaging used to detect carbon contamination. • Carbon contamination dependence on electron energy, irradiation time, beam current. • Simulation of backscattered electrons confirms the experimental results. - Abstract: Electron beam irradiation which is considered a reliable method for tailoring the surface charge of hydroxyapatite is hindered by carbon contamination. Separating the effects of the carbon contamination from those of irradiation-induced trapped charge is important for a wide range of biological applications. In this work we focus on the understanding of the electron-beam-induced carbon contamination with special emphasis on the influence of the electron irradiation parameters on this phenomenon. Phase imaging in atomic force microscopy is used to evaluate the influence of electron energy, beam current and irradiation time on the shape and size of the resulted contamination patterns. Different processes involved in the carbon contamination of hydroxyapatite are discussed

  14. Inhibition of potential lethal damage repair and related gene expression after carbon-ion beam irradiation to human lung cancer grown in nude mice

    International Nuclear Information System (INIS)

    Yashiro, Tomoyasu; Fujisawa, Takehiko; Koyama-Saegusa, Kumiko; Imai, Takashi; Miyamoto, Tadaaki

    2007-01-01

    Using cultured and nude mouse tumor cells (IA) derived from a human lung cancer, we previously demonstrated their radiosensitivity by focusing attention on the dynamics of tumor clonogens and the early and rapid survival recovery (potential lethal damage repair: PLD repair) occurring after X-ray irradiation. To the authors' knowledge, this is the first study demonstrating gene expression in association with PLD repair after carbon-ion beam or X-ray irradiation to cancer cells. In this study we tried to detect the mechanism of DNA damage and repair of the clonogens after X-ray or carbon-ion beam irradiation. At first, colony assay method was performed after irradiation of 12 Gy of X-ray or 5 Gy of carbon-ion beam to compare the time dependent cell survival of the IA cells after each irradiation pass. Second, to search the genes causing PLD repair after irradiation of X-ray or carbon-ion beam, we evaluated gene expressions by using semi-quantitative RT-PCR with the selected 34 genes reportedly related to DNA repair. The intervals from the irradiation were 0, 6, 12 and 24 hr for colony assay method, and 0, 3, 18 hr for RT-PCR method. From the result of survival assays, significant PLD repair was not observed in carbon-ion beam as compared to X-ray irradiation. The results of RT-PCR were as follows. The gene showing significantly higher expressions after X-ray irradiation than after carbon-ion beam irradiation was PCNA. The genes showing significantly lower expressions after X-ray irradiation rather than after carbon-ion beam irradiation were RAD50, BRCA1, MRE11A, XRCC3, CHEK1, MLH1, CCNB1, CCNB2 and LIG4. We conclude that PCNA could be a likely candidate gene for PLD repair. (author)

  15. Production and characterization of supersonic carbon cluster beams

    International Nuclear Information System (INIS)

    Rohlfing, E.A.; Cox, D.M.; Kaldor, A.

    1984-01-01

    Laser vaporization of a substrate within the throat of a pulsed nozzle is used to generate a supersonic beam of carbon clusters. The neutral cluster beam is probed downstream by UV laser photoionization with time-of-flight mass analysis of the resulting photoions. Using graphite as the substrate, carbon clusters C/sub n/ for n = 1--190 have been produced having a distinctly bimodal cluster size distribution: (i) Both even and odd clusters for C/sub n/, 1 + /sub n/ signals are interpreted on the basis of cluster formation and stability arguments. Ionizing laser power dependences taken at several different photon energies are used to roughly bracket the carbon cluster ionization potentials, and, at high laser intensity, to observe the onset of multiphoton fragmentation. By treating the graphite rod with KOH, a greatly altered carbon cluster distribution with mixed carbon/potassium clusters of formula K 2 C/sub 2n/ is produced

  16. RC T beams strengthened to shear with carbon fiber composites

    Directory of Open Access Journals (Sweden)

    L. A. Spagnolo JR

    Full Text Available This paper presents the experimental data of the behavior of reinforced concrete beams strengthened to shear with carbon fiber composites. The tests were composed of eight T beams, b w=15 cm, h=40 cm, flange width 40 cm, flange height 8 cm, and length 300 cm, divided into two series with the same longitudinal steel reinforcement and a reference beam without strengthening in each series. The beams had two types of arrangement of internal steel stirrups. The test variables were the internal and external geometric ratio of the transverse reinforcement and the mechanical ratio of carbon fiber composites stirrups. All the beams were loaded at two points. The strengthened beams were submitted to a preloading and the strengthening was applied to the cracked beam. All the beams were designed in order to guarantee shear failure, and the ultimate load of the strengthened beams was 36% to 54% greater than the reference beams. The Cracking Sliding Model applied to the strengthened beams was evaluated and showed good agreement with the experimental results.

  17. Selection of carbon beam therapy: biophysical models of carbon beam therapy.

    Science.gov (United States)

    Matsufuji, Naruhiro

    2018-03-01

    Variation in the relative biological effectiveness (RBE) within the irradiation field of a carbon beam makes carbon-ion radiotherapy unique and advantageous in delivering the therapeutic dose to a deep-seated tumor, while sparing surrounding normal tissues. However, it is crucial to consider the RBE, not only in designing the dose distribution during treatment planning, but also in analyzing the clinical response retrospectively. At the National Institute of Radiological Sciences, the RBE model was established based on the response of human salivary gland cells. The response was originally handled with a linear-quadratic model, and later with a microdosimetric kinetic model. Retrospective analysis with a tumor-control probability model of non-small cell cancer treatment revealed a steep dose response in the tumor, and that the RBE of the tumor was adequately estimated using the model. A commonly used normal tissue complication probability model has not yet fully been accountable for the variable RBE of carbon ions; however, analysis of rectum injury after prostate cancer treatment suggested a highly serial-organ structure for the rectum, and a steep dose response similar to that observed for tumors.

  18. Stoichiometric carbon nitride synthesized by ion beam sputtering and post nitrogen ion implantation

    International Nuclear Information System (INIS)

    Valizadeh, R.; Colligon, J.S.; Katardiev, I.V.; Faunce, C.A.; Donnelly, S.E.

    1998-01-01

    Full text: Carbon nitride films have been deposited on Si (100) by ion beam sputtering a vitreous graphite target with nitrogen and argon ions with and without concurrent N2 ion bombardment at room temperature. The sputtering beam energy was 1000 eV and the assisted beam energy was 300 eV with ion / atom arrival ratio ranging from 0.5 to 5. The carbon nitride films were deposited both as single layer directly on silicon substrate and as multilayer between two layers of stoichiometric amorphous silicon nitride and polycrystalline titanium nitride. The deposited films were implanted ex-situ with 30 keV nitrogen ions with various doses ranging from 1E17 to 4E17 ions.cm -2 and 2 GeV xenon ion with a dose of 1E12 ions.cm -2 . The nitrogen concentration of the films was measured with Rutherford Backscattering (RBS), Secondary Neutral Mass Spectrometry (SNMS) and Parallel Electron Energy Loss Spectroscopy (PEELS). The nitrogen concentration for as deposited sample was 34 at% and stoichiometric carbon nitride C 3 N 4 was achieved by post nitrogen implantation of the multi-layered films. Post bombardment of single layer carbon nitride films lead to reduction in the total nitrogen concentration. Carbon K edge structure obtained from PEELS analysis suggested that the amorphous C 3 N 4 matrix was predominantly sp 2 bonded. This was confirmed by Fourier Transforrn Infra-Red Spectroscopy (FTIR) analysis of the single CN layer which showed the nitrogen was mostly bonded with carbon in nitrile (C≡N) and imine (C=N) groups. The microstructure of the film was determined by Transmission Electron Microscopy (TEM) which indicated that the films were amorphous

  19. Bright luminance from silicon dioxide film with carbon nanotube electron beam exposure

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Su Woong; Hong, Ji Hwan; Kang, Jung Su; Callixte, Shikili; Park, Kyu Chang, E-mail: kyupark@khu.ac.kr

    2016-02-15

    We observed the bright bluish-white luminescence with naked eye from carbon nanotube electron beam exposed silicon dioxide (SiO{sub 2}) thin film on Si substrate. The luminescence shows a peak intensity at 2.7 eV (460 nm) with wide spread up to 600 nm after the C-beam exposed on SiO{sub 2} thin film. The C-beam exposure system is composed of carbon nanotube emitters as electron beam source. The brightness strongly depend on the exposure condition. Luminescence characteristic was optimized by C-beam adjustment to observe with the naked eye. The cause of luminescence in the C-beam exposed SiO{sub 2} thin film is analyzed by CL microscopy, FT-IR, AFM and ellipsometer. Decrease of Si–O bonding was observed after C-beam exposure, and this reveals that oxygen deficient defects which are irradiation-sensitive cause 2.7 eV peak of luminescence. - Highlights: • We observed bright luminescence for SiO{sub 2} thin film with naked eye by carbon nanotube electron beam (C-beam) exposure technique. • The bright luminance from C-beam exposed SiO{sub 2} film will open novel silicon optoelectronics.

  20. Multi-pulsed intense electron beam emission from velvet, carbon fibers, carbon nano-tubes and dispenser cathodes

    International Nuclear Information System (INIS)

    Xia Liansheng; Yang Anmin; Chen Yi; Zhang Huang; Liu Xingguang; Li Jin; Jiang Xiaoguo; Zhang Kaizhi; Shi Jinshui; Deng Jianjun; Zhang Linwen

    2010-01-01

    The experimental results of studies of four kinds of cathode emitting intense electron beams are demonstrated under multi-pulsed mode based on an experimental setup including two multi-pulse high voltage sources. The tested cathodes include velvet, carbon fibers, carbon nano-tubes (CNTs) and dispenser cathodes. The results indicate that all four are able to emit multi-pulsed beams. For velvet, carbon fiber and CNTs, the electron induced cathode plasma emission may be the main process and this means that there are differences in beam parameters from pulse to pulse. For dispenser cathodes tested in the experiment, although there is a little difference from pulse to pulse for some reason, thermal-electric field emission may be the main process. (authors)

  1. Intense heavy ion beam-induced effects in carbon-based stripper foils

    Energy Technology Data Exchange (ETDEWEB)

    Kupka, Katharina

    2016-08-15

    Amorphous carbon or carbon-based stripper foils are commonly applied in accelerator technology for electron stripping of ions. At the planned facility for antiproton and ion research (FAIR) at the Helmholtzzentrum fuer Schwerionenforschung (GSI), Darmstadt, thin carbon stripper foils provide an option for directly delivering ions of intermediate charge states to the heavy ion synchrotron, SIS 18, in order to mitigate space charge limitations during high-intensity operation. In case of desired high end-energies in the synchrotron, a second stripping process by a thicker carbon foil provides ions of higher charge states for injection into the SIS18. High beam intensities and a pulsed beam structure as foreseen at FAIR pose new challenges to the stripper foils which experience enhanced degradation by radiation damage, thermal effects, and stress waves. In order to ensure reliable accelerator operation, radiation-hard stripper foils are required. This thesis aims to a better understanding of processes leading to degradation of carbon-based thin foils. Special focus is placed on ion-beam induced structure and physical property changes and on the influence of different beam parameters. Irradiation experiments were performed at the M3-beamline of the universal linear accelerator (UNILAC) at GSI, using swift heavy ion beams with different pulse lengths and repetition rates. Tested carbon foils were standard amorphous carbon stripper foils produced by the GSI target laboratory, as well as commercial amorphous and diamond-like carbon foils and buckypaper foils. Microstructural changes were investigated with various methods such as optical microscopy, scanning electron microscopy (SEM), profilometry and chromatic aberration measurements. For the investigation of structural changes X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, high resolution transmission electron microscopy (HRTEM), in-situ Fourier-transform infrared spectroscopy (FTIR) and small angle X

  2. Intense heavy ion beam-induced effects in carbon-based stripper foils

    International Nuclear Information System (INIS)

    Kupka, Katharina

    2016-08-01

    Amorphous carbon or carbon-based stripper foils are commonly applied in accelerator technology for electron stripping of ions. At the planned facility for antiproton and ion research (FAIR) at the Helmholtzzentrum fuer Schwerionenforschung (GSI), Darmstadt, thin carbon stripper foils provide an option for directly delivering ions of intermediate charge states to the heavy ion synchrotron, SIS 18, in order to mitigate space charge limitations during high-intensity operation. In case of desired high end-energies in the synchrotron, a second stripping process by a thicker carbon foil provides ions of higher charge states for injection into the SIS18. High beam intensities and a pulsed beam structure as foreseen at FAIR pose new challenges to the stripper foils which experience enhanced degradation by radiation damage, thermal effects, and stress waves. In order to ensure reliable accelerator operation, radiation-hard stripper foils are required. This thesis aims to a better understanding of processes leading to degradation of carbon-based thin foils. Special focus is placed on ion-beam induced structure and physical property changes and on the influence of different beam parameters. Irradiation experiments were performed at the M3-beamline of the universal linear accelerator (UNILAC) at GSI, using swift heavy ion beams with different pulse lengths and repetition rates. Tested carbon foils were standard amorphous carbon stripper foils produced by the GSI target laboratory, as well as commercial amorphous and diamond-like carbon foils and buckypaper foils. Microstructural changes were investigated with various methods such as optical microscopy, scanning electron microscopy (SEM), profilometry and chromatic aberration measurements. For the investigation of structural changes X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, high resolution transmission electron microscopy (HRTEM), in-situ Fourier-transform infrared spectroscopy (FTIR) and small angle X

  3. BEAM DYNAMICS STUDIES FOR A COMPACT CARBON ION LINAC FOR THERAPY

    Energy Technology Data Exchange (ETDEWEB)

    Plastun, A.; Mustapha, B.; Nassiri, A.; Ostroumov, P.

    2016-05-01

    Feasibility of an Advanced Compact Carbon Ion Linac (ACCIL) for hadron therapy is being studied at Argonne National Laboratory in collaboration with RadiaBeam Technologies. The 45-meter long linac is designed to deliver 109 carbon ions per second with variable energy from 45 MeV/u to 450 MeV/u. S-band structure provides the acceleration in this range. The carbon beam energy can be adjusted from pulse to pulse, making 3D tumor scanning straightforward and fast. Front end accelerating structures such as RFQ, DTL and coupled DTL are designed to operate at lower frequencies. The design of the linac was accompanied with extensive end-to-end beam dynamics studies which are presented in this paper.

  4. Bending of metal-filled carbon nanotube under electron beam irradiation

    Directory of Open Access Journals (Sweden)

    Abha Misra

    2012-03-01

    Full Text Available Electron beam irradiation induced, bending of Iron filled, multiwalled carbon nanotubes is reported. Bending of both the carbon nanotube and the Iron contained within the core was achieved using two approaches with the aid of a high resolution electron microscope (HRTEM. In the first approach, bending of the nanotube structure results in response to the irradiation of a pristine kink defect site, while in the second approach, disordered sites induce bending by focusing the electron beam on the graphite walls. The HRTEM based in situ observations demonstrate the potential for using electron beam irradiation to investigate and manipulate the physical properties of confined nanoscale structures.

  5. Microdosimetry for a carbon ion beam using track-etched detectors

    International Nuclear Information System (INIS)

    Ambrozova, I.; Ploc, O.; Davidkova, M.; Vondracek, V.; Sefl, M.; Stepan, V.; Pachnerova Brabcova, K.; Incerti, S.

    2015-01-01

    Track-etched detectors (TED) have been used as linear energy transfer (LET) spectrometers in heavy ion beams for many years. LET spectra and depth -dose distribution of a carbon ion beam were measured behind polymethylmethacrylate degraders at Heavy Ion Medical Accelerator in Chiba, Japan. The measurements were performed along monoenergetic beam with energy 290 MeV u -1 in different positions: (1) at beam extraction area, (2) at beginning, (3) maximum and (4) behind the Bragg peak region (0, 117, 147 and 151 mm of water-equivalent depth, respectively). The LET spectra inside and outside of the primary ion beam have been evaluated. TED record only heavy charged particles with LET above 8 -10 keV μm -1 , while electrons and ions with lower LET are not detected. The Geant4 simulation toolkit version 4.9.6.P01 has been used to estimate the contribution of non-detected particles to absorbed dose. Presented results demonstrate the applicability of TED for microdosimetry measurements in therapeutic carbon ion beams. (authors)

  6. Quantitative evaluation of potential irradiation geometries for carbon-ion beam grid therapy.

    Science.gov (United States)

    Tsubouchi, Toshiro; Henry, Thomas; Ureba, Ana; Valdman, Alexander; Bassler, Niels; Siegbahn, Albert

    2018-03-01

    Radiotherapy using grids containing cm-wide beam elements has been carried out sporadically for more than a century. During the past two decades, preclinical research on radiotherapy with grids containing small beam elements, 25 μm-0.7 mm wide, has been performed. Grid therapy with larger beam elements is technically easier to implement, but the normal tissue tolerance to the treatment is decreasing. In this work, a new approach in grid therapy, based on irradiations with grids containing narrow carbon-ion beam elements was evaluated dosimetrically. The aim formulated for the suggested treatment was to obtain a uniform target dose combined with well-defined grids in the irradiated normal tissue. The gain, obtained by crossfiring the carbon-ion beam grids over a simulated target volume, was quantitatively evaluated. The dose distributions produced by narrow rectangular carbon-ion beams in a water phantom were simulated with the PHITS Monte Carlo code. The beam-element height was set to 2.0 cm in the simulations, while the widths varied from 0.5 to 10.0 mm. A spread-out Bragg peak (SOBP) was then created for each beam element in the grid, to cover the target volume with dose in the depth direction. The dose distributions produced by the beam-grid irradiations were thereafter constructed by adding the dose profiles simulated for single beam elements. The variation of the valley-to-peak dose ratio (VPDR) with depth in water was thereafter evaluated. The separation of the beam elements inside the grids were determined for different irradiation geometries with a selection criterion. The simulated carbon-ion beams remained narrow down to the depths of the Bragg peaks. With the formulated selection criterion, a beam-element separation which was close to the beam-element width was found optimal for grids containing 3.0-mm-wide beam elements, while a separation which was considerably larger than the beam-element width was found advantageous for grids containing 0.5-mm

  7. The proliferative response of mouse intestinal crypts during fractionated irradiation of carbon beams

    International Nuclear Information System (INIS)

    Abo, M.; Abe, Y.; Mariya, Y.; Ando, K.

    2000-01-01

    Clonogenic assay of jejunal crypt during carbon beam and X-ray irradiations was performed. Fractionation with top-up dose assay revealed carbon beam irradiations caused more damage than X-ray did. To clarify this problem is urgent. (author)

  8. Enhanced electromagnetic properties of nickel nanoparticiles dispersed carbon fiber via electron beam irradiation

    International Nuclear Information System (INIS)

    Lee, Yeong Ju; Kim, Hyun Bin; Lee, Seung Jun; Kang, Phil Hyun

    2015-01-01

    Carbon fiber has received much attention owing to its properties, including a large surface-to-volume ratio, chemical and thermal stability, high thermal and electrical conductivity, and high mechanical strengths. In particular, magnetic nanopowder dispersed carbon fiber has been attractive in technological applications such as the electrochemical capacitor and electromagnetic wave shielding. In this study, the nickel-oxide-nanoparticle dispersed polyacrylonitrile (PAN) fibers were prepared through an electrospinning method. Electron beam irradiation was carried out with a 2.5 MeV beam energy to stabilize the materials. The samples were then heat treated for stabilization and carbonization. The nanofiber surface was analyzed using a field emission scanning electron microscope (FE-SEM). The crystal structures of the carbon matrix and nickel nanopowders were analysed using X-ray diffraction (XRD). In addition, the magnetic and electrical properties were analyzed using a vibrating sample magnetometer (VSM) and 4 point probe. As the irradiation dose increases, the density of the carbon fiber was increased. In addition, the electrical properties of the carbon fiber improved through electron beam irradiation. This is because the amorphous region of the carbon fiber decreases. This electron beam effect of PAN fibers containing nickel nanoparticles confirmed their potential as a high performance carbon material for various applications

  9. Enhanced electromagnetic properties of nickel nanoparticiles dispersed carbon fiber via electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yeong Ju; Kim, Hyun Bin; Lee, Seung Jun; Kang, Phil Hyun [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2015-02-15

    Carbon fiber has received much attention owing to its properties, including a large surface-to-volume ratio, chemical and thermal stability, high thermal and electrical conductivity, and high mechanical strengths. In particular, magnetic nanopowder dispersed carbon fiber has been attractive in technological applications such as the electrochemical capacitor and electromagnetic wave shielding. In this study, the nickel-oxide-nanoparticle dispersed polyacrylonitrile (PAN) fibers were prepared through an electrospinning method. Electron beam irradiation was carried out with a 2.5 MeV beam energy to stabilize the materials. The samples were then heat treated for stabilization and carbonization. The nanofiber surface was analyzed using a field emission scanning electron microscope (FE-SEM). The crystal structures of the carbon matrix and nickel nanopowders were analysed using X-ray diffraction (XRD). In addition, the magnetic and electrical properties were analyzed using a vibrating sample magnetometer (VSM) and 4 point probe. As the irradiation dose increases, the density of the carbon fiber was increased. In addition, the electrical properties of the carbon fiber improved through electron beam irradiation. This is because the amorphous region of the carbon fiber decreases. This electron beam effect of PAN fibers containing nickel nanoparticles confirmed their potential as a high performance carbon material for various applications.

  10. Carbon beam dosimetry using VIP polymer gel and MRI

    DEFF Research Database (Denmark)

    Kantemiris, I; Petrokokkinos, L; Angelopoulos, A

    2009-01-01

    VIP polymer gel dosimeter was used for Carbon ion beam dosimetry using a 150 MeV/n beam with 10 Gy plateau dose and a SOBP irradiation scheme with 5 Gy Bragg peak dose. The results show a decrease by 8 mm in the expected from Monte Carlo simulation range in water, suggesting that the dosimeter...

  11. Research on carbon fiber–reinforced plastic bumper beam subjected to low-velocity frontal impact

    Directory of Open Access Journals (Sweden)

    Yefa Hu

    2015-06-01

    Full Text Available Lightweight and safety performance of automobiles are two important factors for automobile designs. In this article, a research on lightweight and crashworthiness of automotive bumper has been conducted. The carbon fiber–reinforced plastic bumper beam is considered to replace the traditional high-strength steel one. The low-velocity impact finite element simulations for the above two bumper beams are performed via LS-DYNA. Furthermore, the energy absorption capabilities and dynamic response characteristics of the carbon fiber–reinforced plastic bumper beam are investigated and compared with the steel one. The results show that the carbon fiber–reinforced plastic bumper beam is of the better energy absorption capabilities and dynamic response characteristics than those of the steel one; the weight has decreased remarkably close to 50%. Meanwhile, the effect of lay-up and wall thickness on the crashworthiness of the carbon fiber–reinforced plastic bumper beam under low-velocity impact is also studied in this article to select appropriate design schemes.

  12. Contributions of secondary fragmentation by carbon ion beams in water phantom: Monte Carlo simulation

    International Nuclear Information System (INIS)

    Ying, C K; Bolst, David; Tran, Linh T.; Guatelli, Susanna; Rosenfeld, A. B.; Kamil, W A

    2017-01-01

    Heavy-particle therapy such as carbon ion therapy is currently very popular because of its superior conformality in terms of dose distribution and higher Relative Biological Effectiveness (RBE). However, carbon ion beams produce a complex mixed radiation field, which needs to be fully characterised. In this study, the fragmentation of a 290 MeV/u primary carbon ion beam was studied using the Geant4 Monte Carlo Toolkit. When the primary carbon ion beam interacts with water, secondary light charged particles (H, He, Li, Be, B) and fast neutrons are produced, contributing to the dose, especially after the distal edge of the Bragg peak. (paper)

  13. Modeling the biophysical effects in a carbon beam delivery line by using Monte Carlo simulations

    Science.gov (United States)

    Cho, Ilsung; Yoo, SeungHoon; Cho, Sungho; Kim, Eun Ho; Song, Yongkeun; Shin, Jae-ik; Jung, Won-Gyun

    2016-09-01

    The Relative biological effectiveness (RBE) plays an important role in designing a uniform dose response for ion-beam therapy. In this study, the biological effectiveness of a carbon-ion beam delivery system was investigated using Monte Carlo simulations. A carbon-ion beam delivery line was designed for the Korea Heavy Ion Medical Accelerator (KHIMA) project. The GEANT4 simulation tool kit was used to simulate carbon-ion beam transport into media. An incident energy carbon-ion beam with energy in the range between 220 MeV/u and 290 MeV/u was chosen to generate secondary particles. The microdosimetric-kinetic (MK) model was applied to describe the RBE of 10% survival in human salivary-gland (HSG) cells. The RBE weighted dose was estimated as a function of the penetration depth in the water phantom along the incident beam's direction. A biologically photon-equivalent Spread Out Bragg Peak (SOBP) was designed using the RBE-weighted absorbed dose. Finally, the RBE of mixed beams was predicted as a function of the depth in the water phantom.

  14. Regeneration of used activated carbon by electron beam irradiation

    International Nuclear Information System (INIS)

    Arai, H.; Hosono, M.; Zhu, G.; Miyata, T.

    1992-01-01

    The adsorbing power of granular activated carbons which adsorbed sodium laurylsulfate were most effectively recovered by irradiation of high energy electron beams in nitrogen stream, and the carbon was hardly lost by irradiation. The regeneration was induced mainly by microscopic heating of adsorption sites. Regeneration was also confirmed by adsorption endotherms. Regeneration cost was tentatively evaluated. (author)

  15. Evaluation of w values for carbon beams in air, using a graphite calorimeter.

    Science.gov (United States)

    Sakama, Makoto; Kanai, Tatsuaki; Fukumura, Akifumi; Abe, Kyoko

    2009-03-07

    Despite recent progress in carbon therapy, accurate values for physical data such as the w value in air or stopping power ratios for ionization chamber dosimetry have not been obtained. The absorbed dose to graphite obtained with the graphite calorimeter was compared with that obtained using the ionization chambers following the IAEA protocol in order to evaluate the w values in air for mono-energetic carbon beams of 135, 290, 400 and 430 MeV/n. Two cylindrical chambers (PTW type 30001 and PTW type 30011, Farmer) and two plane-parallel chambers (PTW type 23343, Markus and PTW type 34001, Roos) calibrated by the absorbed dose to graphite and exposure to the (60)Co photon beam were used. The comparisons to our calorimeter measurements revealed that, using the ionization chambers, the absorbed dose to graphite comes out low by 2-6% in this experimental energy range and with these chamber types and calibration methods. In the therapeutic energy range, the w values in air for carbon beams indicated a slight energy dependence; we, however, assumed these values to be constant for practical use because of the large uncertainty and unknown perturbation factors of the ionization chambers. The w values in air of the carbon beams were evaluated to be 35.72 J C(-1) +/- 1.5% in the energy range used in this study. This value is 3.5% larger than that recommended by the IAEA TRS 398 for heavy-ion beams. Using this evaluated result, the absorbed dose to water in the carbon beams would be increased by the same amount.

  16. In silico carbon molecular beam epitaxial growth of graphene on the h-BN substrate: carbon source effect on van der Waals epitaxy

    Science.gov (United States)

    Lee, Jonghoon; Varshney, Vikas; Park, Jeongho; Farmer, Barry L.; Roy, Ajit K.

    2016-05-01

    Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon molecular beam epitaxy (CMBE) techniques using solid carbon sublimation have reported relatively poor quality of the graphene. In this article, the CMBE growth of graphene on the h-BN substrate is numerically studied in order to identify the effect of the carbon source on the quality of the graphene film. The carbon molecular beam generated by the sublimation of solid carbon source materials such as graphite and glassy carbon is mostly composed of atomic carbon, carbon dimers and carbon trimers. Therefore, the graphene film growth becomes a complex process involving various deposition characteristics of a multitude of carbon entities. Based on the study of surface adsorption and film growth characteristics of these three major carbon entities comprising graphite vapour, we report that carbon trimers convey strong traits of vdW epitaxy prone to high quality graphene growth, while atomic carbon deposition is a surface-reaction limited process accompanied by strong chemisorption. The vdW epitaxial behaviour of carbon trimers is found to be substantial enough to nucleate and develop into graphene like planar films within a nanosecond of high flux growth simulation, while reactive atomic carbons tend to impair the structural integrity of the crystalline h-BN substrate upon deposition to form an amorphous interface between the substrate and the growing carbon film. The content of reactive atomic carbons in the molecular beam is suspected to be the primary cause of low quality graphene reported in the literature. A possible optimization of the molecular beam composition towards the synthesis of better quality graphene films is suggested.Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon

  17. Effect of carbon on ion beam mixing of Fe-Ti bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Hirvonen, J.P.; Nastasi, M.; Lappalainen, R.; Sickafus, K. (Los Alamos National Lab., NM (USA); Helsinki Univ. (Finland). Dept. of Physics; Los Alamos National Lab., NM (USA))

    1989-01-01

    The influence of implanted carbon on ion beam mixing of a Fe-Ti system was investigated. Carbon was introduced into bilayer samples by implanting {sup 13}C isotopes. The implantation energies were selected to set the mean range of carbon ions in either the iron or titanium layer. The effect of implanted carbon on 400 keV Ar ion mixing in the temperature range from 0 to 300{degree}C was studied using Rutherford backscattering spectroscopy at the energy of 5 MeV. Changes in carbon concentration profiles were probed utilizing the resonance of the nuclear reaction {sup 13}C(p,{gamma}){sup 14}N at the proton energy of 1.748 MeV. The measurements revealed that mixing was not affected by carbon implanted into the titanium layer. However, carbon in the iron layer remarkably retarded mixing at all temperatures investigated. Significant changes in carbon depth distributions were observed only when the sample with implanted carbon in the iron layer was mixed at 300{degree}C. These results are explained in terms of the enhanced mobility of carbon in an evaporated iron film which allows segregation to the interface. At low temperatures, however, vacancy-carbon interaction in iron may have a contribution to the retarded ion beam mixing. 19 refs., 3 figs.

  18. Improvement of carbon fibre surface properties using electron beam irradiation

    International Nuclear Information System (INIS)

    Eddy Segura Pino; Luci Diva Brocardo Machado; Claudia Giovedi

    2006-01-01

    Carbon fiber-reinforced advance composites have been used for structural applications, mainly due to their mechanical properties, and additional features such as high strength-to-weight ratio, stiffness-to-weight ratio, corrosion resistance and wear properties. The main factor for a good mechanical performance of carbon fiber-reinforced composite is the interfacial interaction between the components that are fiber and polymeric matrix. The greatest challenge is to improve adhesion between components having elasticity modulus which differ by orders of magnitude and furthermore they are immiscible in each other. Another important factor is the sizing material on the carbon fiber, which protects the carbon fiber filaments and must be compatible with the matrix material in order to improve the adhesion process. The interaction of ionizing radiation from electron beam can induce in the irradiated material the formation of very active centers and free radicals. Further evolution of these active species can significantly modify structure and properties not only in the irradiated polymeric matrix but also on the fiber surface. So that, fiber and matrix play an important role in the production of chemical bonds, which promote better adhesion between both materials improving the composite mechanical performance. The aim of this work was to improve the surface properties of the carbon fiber surface using ionizing radiation from an electron beam in order to obtain improvement of the adhesion properties in the resulted composite. Commercial carbon fiber roving of high tensile strength with 12 000 filaments named 12 k, and sizing material of epoxy resin modified by ester groups was studied. EB irradiation has been carried out at the Institute for Nuclear and Energy Research (IPEN) facilities using a 1.5 MeV 37.5 kW Dynamitron electron accelerator model JOB-188. Rovings of carbon fibers with 1.78 g cm -3 density and 0.13 mm thickness were irradiated with 0.555 MeV, 6.43 mA and

  19. Future carbon beams at SPIRAL1 facility: Which method is the most efficient?

    Science.gov (United States)

    Maunoury, L.; Delahaye, P.; Angot, J.; Dubois, M.; Dupuis, M.; Frigot, R.; Grinyer, J.; Jardin, P.; Leboucher, C.; Lamy, T.

    2014-02-01

    Compared to in-flight facilities, Isotope Separator On-Line ones can in principle produce significantly higher radioactive ion beam intensities. On the other hand, they have to cope with delays for the release and ionization which make the production of short-lived isotopes ion beams of reactive and refractory elements particularly difficult. Many efforts are focused on extending the capabilities of ISOL facilities to those challenging beams. In this context, the development of carbon beams is triggering interest [H. Frånberg, M. Ammann, H. W. Gäggeler, and U. Köster, Rev. Sci. Instrum. 77, 03A708 (2006); M. Kronberger, A. Gottberg, T. M. Mendonca, J. P. Ramos, C. Seiffert, P. Suominen, and T. Stora, in Proceedings of the EMIS 2012 [Nucl. Instrum. Methods Phys. Res. B Production of molecular sideband radioisotope beams at CERN-ISOLDE using a Helicon-type plasma ion source (to be published)]: despite its refractory nature, radioactive carbon beams can be produced from molecules (CO or CO2), which can subsequently be broken up and multi-ionized to the required charge state in charge breeders or ECR sources. This contribution will present results of experiments conducted at LPSC with the Phoenix charge breeder and at GANIL with the Nanogan ECR ion source for the ionization of carbon beams in the frame of the ENSAR and EMILIE projects. Carbon is to date the lightest condensable element charge bred with an ECR ion source. Charge breeding efficiencies will be compared with those obtained using Nanogan ECRIS and charge breeding times will be presented as well.

  20. FEM performance of concrete beams reinforced by carbon fiber bars

    Directory of Open Access Journals (Sweden)

    Hasan Hashim

    2018-01-01

    Full Text Available Concrete structures may be vulnerable to harsh environment, reinforcement with Fiber Reinforced Polymer (FRP bars have an increasing acceptance than normal steel. The nature of (FRP bar is (non-corrosive which is very beneficial for increased durability as well as the reinforcement of FRP bar has higher strength than steel bar. FRP usage are being specified more and more by public structural engineers and individual companies as main reinforcement and as strengthening of structures. Steel reinforcement as compared to (FRP reinforcement are decreasingly acceptable for structural concrete reinforcement including precast concrete, cast in place concrete, columns, beams and other components. Carbon Fiber Reinforcement Polymer (CFRP have a very high modulus of elasticity “high modulus” and very high tensile strength. In aerospace industry, CFRP with high modulus are popular among all FRPs because it has a high strength to weight ratio. In this research, a finite element models will be used to represent beams with Carbon Fiber Reinforcement and beams with steel reinforcement. The primary objective of the research is the evaluation of the effect of (CFR on beam reinforcement.

  1. Measurement of characteristic prompt gamma rays emitted from oxygen and carbon in tissue-equivalent samples during proton beam irradiation.

    Science.gov (United States)

    Polf, Jerimy C; Panthi, Rajesh; Mackin, Dennis S; McCleskey, Matt; Saastamoinen, Antti; Roeder, Brian T; Beddar, Sam

    2013-09-07

    The purpose of this work was to characterize how prompt gamma (PG) emission from tissue changes as a function of carbon and oxygen concentration, and to assess the feasibility of determining elemental concentration in tissues irradiated with proton beams. For this study, four tissue-equivalent water-sucrose samples with differing densities and concentrations of carbon, hydrogen, and oxygen were irradiated with a 48 MeV proton pencil beam. The PG spectrum emitted from each sample was measured using a high-purity germanium detector, and the absolute detection efficiency of the detector, average beam current, and delivered dose distribution were also measured. Changes to the total PG emission from (12)C (4.44 MeV) and (16)O (6.13 MeV) per incident proton and per Gray of absorbed dose were characterized as a function of carbon and oxygen concentration in the sample. The intensity of the 4.44 MeV PG emission per incident proton was found to be nearly constant for all samples regardless of their carbon concentration. However, we found that the 6.13 MeV PG emission increased linearly with the total amount (in grams) of oxygen irradiated in the sample. From the measured PG data, we determined that 1.64 × 10(7) oxygen PGs were emitted per gram of oxygen irradiated per Gray of absorbed dose delivered with a 48 MeV proton beam. These results indicate that the 6.13 MeV PG emission from (16)O is proportional to the concentration of oxygen in tissue irradiated with proton beams, showing that it is possible to determine the concentration of oxygen within tissues irradiated with proton beams by measuring (16)O PG emission.

  2. Experimental control of the beam properties of laser-accelerated protons and carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Amin, Munib

    2008-12-15

    The laser generation of energetic high quality beams of protons and heavier ions has opened up the door to a plethora of applications. These beams are usually generated by the interaction of a short pulse high power laser with a thin metal foil target. They could already be applied to probe transient phenomena in plasmas and to produce warm dense matter by isochoric heating. Other applications such as the production of radioisotopes and tumour radiotherapy need further research to be put into practice. To meet the requirements of each application, the properties of the laser-accelerated particle beams have to be controlled precisely. In this thesis, experimental means to control the beam properties of laser-accelerated protons and carbon ions are investigated. The production and control of proton and carbon ion beams is studied using advanced ion source designs: Experiments concerning mass-limited (i.e. small and isolated) targets are conducted. These targets have the potential to increase both the number and the energy of laser-accelerated protons. Therefore, the influence of the size of a plane foil target on proton beam properties is measured. Furthermore, carbon ion sources are investigated. Carbon ions are of particular interest in the production of warm dense matter and in cancer radiotherapy. The possibility to focus carbon ion beams is investigated and a simple method for the production of quasi-monoenergetic carbon ion beams is presented. This thesis also provides an insight into the physical processes connected to the production and the control of laser-accelerated ions. For this purpose, laser-accelerated protons are employed to probe plasma phenomena on laser-irradiated targets. Electric fields evolving on the surface of laser-irradiated metal foils and hollow metal foil cylinders are investigated. Since these fields can be used to displace, collimate or focus proton beams, understanding their temporal and spatial evolution is crucial for the design of

  3. Experimental control of the beam properties of laser-accelerated protons and carbon ions

    International Nuclear Information System (INIS)

    Amin, Munib

    2008-12-01

    The laser generation of energetic high quality beams of protons and heavier ions has opened up the door to a plethora of applications. These beams are usually generated by the interaction of a short pulse high power laser with a thin metal foil target. They could already be applied to probe transient phenomena in plasmas and to produce warm dense matter by isochoric heating. Other applications such as the production of radioisotopes and tumour radiotherapy need further research to be put into practice. To meet the requirements of each application, the properties of the laser-accelerated particle beams have to be controlled precisely. In this thesis, experimental means to control the beam properties of laser-accelerated protons and carbon ions are investigated. The production and control of proton and carbon ion beams is studied using advanced ion source designs: Experiments concerning mass-limited (i.e. small and isolated) targets are conducted. These targets have the potential to increase both the number and the energy of laser-accelerated protons. Therefore, the influence of the size of a plane foil target on proton beam properties is measured. Furthermore, carbon ion sources are investigated. Carbon ions are of particular interest in the production of warm dense matter and in cancer radiotherapy. The possibility to focus carbon ion beams is investigated and a simple method for the production of quasi-monoenergetic carbon ion beams is presented. This thesis also provides an insight into the physical processes connected to the production and the control of laser-accelerated ions. For this purpose, laser-accelerated protons are employed to probe plasma phenomena on laser-irradiated targets. Electric fields evolving on the surface of laser-irradiated metal foils and hollow metal foil cylinders are investigated. Since these fields can be used to displace, collimate or focus proton beams, understanding their temporal and spatial evolution is crucial for the design of

  4. Analytical, Numerical and Experimental Examination of Reinforced Composites Beams Covered with Carbon Fiber Reinforced Plastic

    Science.gov (United States)

    Kasimzade, A. A.; Tuhta, S.

    2012-03-01

    In the article, analytical, numerical (Finite Element Method) and experimental investigation results of beam that was strengthened with fiber reinforced plastic-FRP composite has been given as comparative, the effect of FRP wrapping number to the maximum load and moment capacity has been evaluated depending on this results. Carbon FRP qualitative dependences have been occurred between wrapping number and beam load and moment capacity for repair-strengthen the reinforced concrete beams with carbon fiber. Shown possibilities of application traditional known analysis programs, for the analysis of Carbon Fiber Reinforced Plastic (CFRP) strengthened structures.

  5. Mini-TEPC Microdosimetric Study of Carbon Ion Therapeutic Beams at CNAO

    Science.gov (United States)

    Conte, V.; Colautti, P.; Chiriotti, S.; Moros, D.; Ciocca, M.; Mairani, A.

    2017-09-01

    Mono-energetic carbon ion scanning beams of 195.2 MeV/u at the Italian National Centre for Oncological Hadrontherapy (CNAO) have been used to study the microdosimetric features of an "active" carbon ion beam used in hadrontherapy. A 30x30 mm2 area has been scanned by a 6 mm beam with scanning steps of 2 mm. A mini TEPC of 0.57 mm3 has been used to perform measurements in a water phantom at different depths on the beam axis. The detector small size allowed for measuring, with good spatial resolution, also inside the relatively small Bragg peak region and inside the distal edge, where the radiation quality varies quickly. In spite of the high event rate (up to 105 s-1), no pile-up effects were observed. Results showed that the frequency-mean lineal energy scaled well with the absorbed dose. Moreover, the dose-mean lineal energy itself seemed to be a good descriptor of the radiation quality.

  6. Fabrication of carbon layer coated FE-nanoparticles using an electron beam irradiation

    Science.gov (United States)

    Kim, Hyun Bin; Jeun, Joon Pyo; Kang, Phil Hyun; Oh, Seung-Hwan

    2016-01-01

    A novel synthesis of carbon encapsulated Fe nanoparticles was developed in this study. Fe chloride (III) and polyacrylonitrile (PAN) were used as precursors. The crosslinking of PAN molecules and the nucleation of Fe nanoparticles were controlled by the electron beam irradiation dose. Stabilization and carbonization processes were carried out using a vacuum furnace at 275 °C and 1000 °C, respectively. Micro structures were evaluated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Fe nanoparticles were formed with diameters of 100 nm, and the Fe nanoparticles were encapsulated by carbon layers. As the electron beam irradiation dose increased, it was observed that the particle sizes decreased.

  7. Mutagenic effects of carbon ion beam irradiations on dry Lotus japonicus seeds

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Shanwei [Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhou, Libin, E-mail: libinzhou@impcas.ac.cn [Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000 (China); Li, Wenjian; Du, Yan [Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000 (China); Yu, Lixia; Feng, Hui; Mu, Jinhu [Biophysics Group, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Chen, Yuze [College of Life Science and Technology, Gansu Agricultural University, No. 1 Yingmen Village, Anning District, Lanzhou, Gansu Province 730070 (China)

    2016-09-15

    Carbon ion beam irradiation is a powerful method for creating mutants and has been used in crop breeding more and more. To investigate the effects of carbon ion beams on Lotus japonicus, dry seeds were irradiated by 80 MeV/u carbon ion beam at dosages of 0, 100, 200, 300, 400, 500 and 600 Gy. The germination rate, survival rate and root length of M{sub 1} populations were explored and the dose of 400 Gy was selected as the median lethal dose (LD{sub 50}) for a large-scale mutant screening. Among 2472 M{sub 2} plants, 127 morphological mutants including leaf, stem, flower and fruit phenotypic variation were found, and the mutation frequency was approximately 5.14%. Inter simple sequence repeat (ISSR) assays were utilized to investigate the DNA polymorphism between seven mutants and eight plants without phenotypic variation from M{sub 2} populations. No remarkable differences were detected between these two groups, and the total polymorphic rate was 0.567%.

  8. Ultrafast Melting of Carbon Induced by Intense Proton Beams

    International Nuclear Information System (INIS)

    Pelka, A.; Guenther, M. M.; Harres, K.; Otten, A.; Roth, M.; Gregori, G.; Gericke, D. O.; Vorberger, J.; Glenzer, S. H.; Kritcher, A. L.; Heathcote, R.; Li, B.; Neely, D.; Kugland, N. L.; Niemann, C.; Makita, M.; Riley, D.; Mithen, J.; Schaumann, G.; Schollmeier, M.

    2010-01-01

    Laser-produced proton beams have been used to achieve ultrafast volumetric heating of carbon samples at solid density. The isochoric melting of carbon was probed by a scattering of x rays from a secondary laser-produced plasma. From the scattering signal, we have deduced the fraction of the material that was melted by the inhomogeneous heating. The results are compared to different theoretical approaches for the equation of state which suggests modifications from standard models.

  9. Analysis of mutagenic effects induced by carbon beams at different LET in a red yeast strain

    International Nuclear Information System (INIS)

    Sun Haining; Wang Jufang; Ma Shuang; Lu Dong; Wu Xin; Li Wenjian

    2011-01-01

    To evaluate inactive and mutagenic effects of carbon beam at different LET, the inactivation cross section and mutation cross section induced by carbon beams of different LET values were investigated in a red yeast strain Rhodotorula glutinis AY 91015. It was found that the maximum inactivation cross section of 4.37μm 2 , which was very close to the average nucleus cross section, was at LET of 120.0 keV/μm. The maximum mutation cross section was at LET of 96.0 keV/μm. Meanwhile, the highest mutagenicity of carbon ion was found around 58.2 keV/μm. It implied that the most efficient LET to induce mutation in survival yeasts was 58.2 keV/μm, which corresponded to energy of 35 MeV/u carbon beam. The most effective carbon beam to induce inactivation and mutation located at different energy region. (authors)

  10. Intense heavy ion beam-induced temperature effects in carbon-based stripper foils

    International Nuclear Information System (INIS)

    Kupka, K.; Tomut, M.; Simon, P.; Hubert, C.; Romanenko, A.; Lommel, B.; Trautmann, C.

    2015-01-01

    At the future FAIR facility, reliably working solid carbon stripper foils are desired for providing intermediate charge states to SIS18. With the expected high beam intensities, the foils experience enhanced degradation and limited lifetime due to severe radiation damage, stress waves, and thermal effects. This work presents systematic measurements of the temperature of different carbon-based stripper foils (amorphous, diamond-like, and carbon-nanotube based) exposed to 4.8 MeV/u U, Bi, and Au beams of different pulse intensities. Thermal and spectroscopic analyses were performed by means of infrared thermography and Fourier transform infrared spectroscopy. The resulting temperature depends on the foil thickness and strongly increases with increasing pulse intensity and repetition rate. (author)

  11. Characterisation of a ultra-miniature counter for microdosimetric measurements in a therapeutic 400 MeV/A carbon beam

    International Nuclear Information System (INIS)

    Endo, S.; Takada, M.; Ishikawa, M.; Hoshi, M.; Uehara, S.; Yamaguchi, H.; Kanai, T.; Matsufji, N.; Shizuma, K.; Onizuka, Y.

    2002-01-01

    Single event spectra of a clinical carbon beam have been measured by an ultra-miniature tissue-equivalent proportional counter (UMC). In order to cover the energy range of the Bragg peak, the incident energy of the carbon beam was degraded by aluminium plates. Single event spectra for carbon-events incident to the UMC were analysed and selected at several carbon energies using thin scintillation counters. It was found that the dose weighted lineal energy distributions have a doublet peak structure due to incident carbon beam and fragment contributions. (author)

  12. Vacuum performance of a carbon fibre cryosorber for the LHC LSS beam screen

    CERN Document Server

    Anashin, V V; Dostovalov, R V; Korotaeva, Z A; Krasnov, A A; Malyshev, O B; Poluboyarov, V A

    2004-01-01

    A new carbon fibre material was developed at the Institute of Solid State Chemistry and Mechanochemistry at the Siberian Branch of the Russian Academy of Science (SB RAS) to meet the large hadron collider (LHC) vacuum chamber. The material must have a large sorbing capacity, a certain pumping speed, a working temperature range between 5 and 20K, a low activation temperature (below room temperature), a certain size in order to fit into the limited space available and it should be easy to mount. The vacuum parameters of the LHC vacuum chamber prototype with a carbon fibre cryosorber mounted onto the beam screen were studied in the beam screen temperature range from 14 to 25K at the Budker Institute of Nuclear Physics SB RAS. This carbon fibre material has shown sufficient sorption capacity for hydrogen at operational temperatures of the beam screen in the LHC long straight sections. It is also very important that this material does not crumble and makes a convenient fixation onto the beam screen in comparison t...

  13. Repair of reinforced concrete beams using carbon fiber reinforced polymer

    Directory of Open Access Journals (Sweden)

    Karzad Abdul Saboor

    2017-01-01

    Full Text Available This research paper is part of an ongoing research on the behaviour of Reinforced Concrete (RC beams retrofitted with Externally Bonded Carbon Fiber Reinforced Polymer (EB-CFRP. A total of 5 large-scale rectangular beams, previously damaged due to shear loading, were repaired and strengthened with EB-CFRP and tested in this study. The major cracks of the damaged beams were injected with epoxy and the beams were wrapped with 2 layers of EB-CFRP discrete strips with 100mm width and 150mm center to center spacing. The beams were instrumented and tested to failure under three points loading in simply supported configuration. The measured test parameters were the beams deflection, maximum load, and the strain in the FRP strips. The failure mode was also observed. The results showed that applying EB-FRP strips increased the shear strength significantly relative to the original shear capacity of the beam. The results demonstrate that the application of EB-FRP strips used in this study is an effective repair method that can be used to repair and strengthen damaged beams.

  14. Engineering catalytic activity via ion beam bombardment of catalyst supports for vertically aligned carbon nanotube growth

    Science.gov (United States)

    Islam, A. E.; Nikolaev, P.; Amama, P. B.; Zakharov, D.; Sargent, G.; Saber, S.; Huffman, D.; Erford, M.; Semiatin, S. L.; Stach, E. A.; Maruyama, B.

    2015-09-01

    Carbon nanotube growth depends on the catalytic activity of metal nanoparticles on alumina or silica supports. The control on catalytic activity is generally achieved by variations in water concentration, carbon feed, and sample placement on a few types of alumina or silica catalyst supports obtained via thin film deposition. We have recently expanded the choice of catalyst supports by engineering inactive substrates like c-cut sapphire via ion beam bombardment. The deterministic control on the structure and chemistry of catalyst supports obtained by tuning the degree of beam-induced damage have enabled better regulation of the activity of Fe catalysts only in the ion beam bombarded areas and hence enabled controllable super growth of carbon nanotubes. A wide range of surface characterization techniques were used to monitor the catalytically active surface engineered via ion beam bombardment. The proposed method offers a versatile way to control carbon nanotube growth in patterned areas and also enhances the current understanding of the growth process. With the right choice of water concentration, carbon feed and sample placement, engineered catalyst supports may extend the carbon nanotube growth yield to a level that is even higher than the ones reported here, and thus offers promising applications of carbon nanotubes in electronics, heat exchanger, and energy storage.

  15. Bulk Cutting of Carbon Nanotubes Using Electron Beam Irradiation

    Science.gov (United States)

    Ziegler, Kirk J. (Inventor); Rauwald, Urs (Inventor); Hauge, Robert H. (Inventor); Schmidt, Howard K. (Inventor); Smalley, Richard E. (Inventor); Kittrell, W. Carter (Inventor); Gu, Zhenning (Inventor)

    2013-01-01

    According to some embodiments, the present invention provides a method for attaining short carbon nanotubes utilizing electron beam irradiation, for example, of a carbon nanotube sample. The sample may be pretreated, for example by oxonation. The pretreatment may introduce defects to the sidewalls of the nanotubes. The method is shown to produces nanotubes with a distribution of lengths, with the majority of lengths shorter than 100 tun. Further, the median length of the nanotubes is between about 20 nm and about 100 nm.

  16. Carbon-ion beam irradiation kills X-ray-resistant p53-null cancer cells by inducing mitotic catastrophe.

    Directory of Open Access Journals (Sweden)

    Napapat Amornwichet

    Full Text Available BACKGROUND AND PURPOSE: To understand the mechanisms involved in the strong killing effect of carbon-ion beam irradiation on cancer cells with TP53 tumor suppressor gene deficiencies. MATERIALS AND METHODS: DNA damage responses after carbon-ion beam or X-ray irradiation in isogenic HCT116 colorectal cancer cell lines with and without TP53 (p53+/+ and p53-/-, respectively were analyzed as follows: cell survival by clonogenic assay, cell death modes by morphologic observation of DAPI-stained nuclei, DNA double-strand breaks (DSBs by immunostaining of phosphorylated H2AX (γH2AX, and cell cycle by flow cytometry and immunostaining of Ser10-phosphorylated histone H3. RESULTS: The p53-/- cells were more resistant than the p53+/+ cells to X-ray irradiation, while the sensitivities of the p53+/+ and p53-/- cells to carbon-ion beam irradiation were comparable. X-ray and carbon-ion beam irradiations predominantly induced apoptosis of the p53+/+ cells but not the p53-/- cells. In the p53-/- cells, carbon-ion beam irradiation, but not X-ray irradiation, markedly induced mitotic catastrophe that was associated with premature mitotic entry with harboring long-retained DSBs at 24 h post-irradiation. CONCLUSIONS: Efficient induction of mitotic catastrophe in apoptosis-resistant p53-deficient cells implies a strong cancer cell-killing effect of carbon-ion beam irradiation that is independent of the p53 status, suggesting its biological advantage over X-ray treatment.

  17. Experimental analysis of reinforced concrete beams strengthened in bending with carbon fiber reinforced polymer

    Directory of Open Access Journals (Sweden)

    M. M. VIEIRA

    Full Text Available The use of carbon fiber reinforced polymer (CFRP has been widely used for the reinforcement of concrete structures due to its practicality and versatility in application, low weight, high tensile strength and corrosion resistance. Some construction companies use CFRP in flexural strengthening of reinforced concrete beams, but without anchor systems. Therefore, the aim of this study is analyze, through an experimental program, the structural behavior of reinforced concrete beams flexural strengthened by CFRP without anchor fibers, varying steel reinforcement and the amount of carbon fibers reinforcement layers. Thus, two groups of reinforced concrete beams were produced with the same geometric feature but with different steel reinforcement. Each group had five beams: one that is not reinforced with CFRP (reference and other reinforced with two, three, four and five layers of carbon fibers. Beams were designed using a computational routine developed in MAPLE software and subsequently tested in 4-point points flexural test up to collapse. Experimental tests have confirmed the effectiveness of the reinforcement, ratifying that beams collapse at higher loads and lower deformation as the amount of fibers in the reinforcing layers increased. However, the increase in the number of layers did not provide a significant increase in the performance of strengthened beams, indicating that it was not possible to take full advantage of strengthening applied due to the occurrence of premature failure mode in the strengthened beams for pullout of the cover that could have been avoided through the use of a suitable anchoring system for CFRP.

  18. Imaging the interphase of carbon fiber composites using transmission electron microscopy: Preparations by focused ion beam, ion beam etching, and ultramicrotomy

    Directory of Open Access Journals (Sweden)

    Wu Qing

    2015-10-01

    Full Text Available Three sample preparation techniques, focused ion beam (FIB, ion beam (IB etching, and ultramicrotomy (UM were used in comparison to analyze the interphase of carbon fiber/epoxy composites using transmission electron microscopy. An intact interphase with a relatively uniform thickness was obtained by FIB, and detailed chemical analysis of the interphase was investigated by electron energy loss spectroscopy. It shows that the interphase region is 200 nm wide with an increasing oxygen-to-carbon ratio from 10% to 19% and an almost constant nitrogen-to-carbon ratio of about 3%. However, gallium implantation of FIB tends to hinder fine structure analysis of the interphase. For IB etching, the interphase region is observed with transition morphology from amorphous resin to nano-crystalline carbon fiber, but the uneven sample thickness brings difficulty for quantitative chemical analysis. Moreover, UM tends to cause damage and/or deformation on the interphase. These results are meaningful for in-depth understanding on the interphase characteristic of carbon fiber composites.

  19. Ion beam analysis of hydrogen retained in carbon nanotubes and carbon films

    International Nuclear Information System (INIS)

    McDaniel, F.D.; Holland, O.W.; Naab, F.U.; Mitchell, L.J.; Dhoubhadel, M.; Duggan, J.L.

    2006-01-01

    Carbon nanotubes (CNTs) are studied as a possible hydrogen storage medium for future energy needs. Typically, hydrogen is stored in the CNTs by exposure of the material to a high-pressure H 2 atmosphere at different temperatures. The maximum hydrogen concentrations stored following this method and measured using ion beam analysis do not exceed 1 wt.%. Introduction of defects by ion irradiation (i.e. implantation) prior to high-pressure H 2 treatment, offers an alternative method to activate H adsorption and enhance the chemisorption of hydrogen. This is a preliminary work where hydrogen was introduced into single-wall nanotubes and carbon films by low-energy (13.6 keV) hydrogen ion implantation. Elastic recoil detection was used to measure the quantity and depth distribution of hydrogen retained in the carbonaceous materials. Results show that there are substantial differences in the measured profiles between the CNT samples and the vitreous carbon. On another hand, only ∼43% of the implanted hydrogen in the CNTs is retained in the region where it should be located according to the SRIM simulations for a solid carbon sample

  20. Digital-image-correlation-based experimental stress analysis of reinforced concrete beams strengthened using carbon composites

    Science.gov (United States)

    Helm, Jeffrey; Kurtz, Stephen

    2005-01-01

    The strengthening of reinforced concrete beams through the use of epoxy-bonded carbon composites has been widely researched in the United States since 1991. Despite the widespread attention of researchers, however, there are no reliable methods of predicting the failure of the repaired and strengthened beams by peeling of the fiber reinforced polymer (FRP) material from the parent concrete. To better understand peeling failure, several investigators have presented analytical work to predict the distribution of stresses along the interface between the FRP and the concrete. Several closed-form solutions can be found in the literature to predict the levels of shear stress present between the bonded composite plate and the parent concrete beam. However, there has been very little experimental verification of these analytical predictions because few experiments on large-scale beams have had sufficient instrumentation to facilitate the comparison. Some experiments have been presented1 in which electrical resistance strain gages were placed along the length of the carbon plate in order to deduce the interfacial shear stress using first differences. This method, though very crude, demonstrated that there are substantial differences between the distributions of interfacial shear stresses in actual repaired beams versus the analytical predictions. This paper presents a new test program in which large-scale carbon-fiber-strengthened reinforced concrete beams are load-tested to failure, while employing digital image correlation (DIC) to record the strains in the carbon fiber plate. Relying on the linear elasticity of carbon fiber, the interfacial shear can be determined and compared with the analytical predictions of the literature. The focus of this paper is the presentation of the experimental shear stress distributions and comparisons of these distributions with previous results available in the literature.

  1. Beam tests of the 12 MHz RFQ RIB injector for ATLAS

    International Nuclear Information System (INIS)

    Clifft, B. E.; Kaye, R. A.; Kedzie, M.; Shepard, K. W.

    1999-01-01

    Beam tests of the ANL 12 MHz Radio-Frequency Quadruple (RFQ), designed for use as the initial element of an injector system for radioactive beams into the existing ATLAS accelerators, are in progress. Recent high-voltage tests of the RFQ without beam achieved the design intervane voltage of 100 kV CW, enabling beam tests with A/q as large as 132 using beams from the ANL Physics Division 4 MV Dynamitron accelerator facility. Although the RFQ was designed for bunched beams, initial tests have been performed with unbunched beams. Experiments with stable, unbunched beams of singly-charged 132 Xe and 84 Kr measured the output beam energy distribution as a function of the RFQ operating voltage. The observed energies are in excellent agreement with numerical beam simulations

  2. Beam tests of the 12 MHz RFQ RIB injector for ATLAS.

    Energy Technology Data Exchange (ETDEWEB)

    Clifft, B. E.; Kaye, R. A.; Kedzie, M.; Shepard, K. W.

    1999-05-06

    Beam tests of the ANL 12 MHz Radio-Frequency Quadruple (RFQ), designed for use as the initial element of an injector system for radioactive beams into the existing ATLAS accelerators, are in progress. Recent high-voltage tests of the RFQ without beam achieved the design intervane voltage of 100 kV CW, enabling beam tests with A/q as large as 132 using beams from the ANL Physics Division 4 MV Dynamitron accelerator facility. Although the RFQ was designed for bunched beams, initial tests have been performed with unbunched beams. Experiments with stable, unbunched beams of singly-charged {sup 132}Xe and {sup 84}Kr measured the output beam energy distribution as a function of the RFQ operating voltage. The observed energies are in excellent agreement with numerical beam simulations.

  3. Improvement of carbon fiber surface properties using electron beam irradiation

    International Nuclear Information System (INIS)

    Pino, E.S.; Machado, L.D.B.; Giovedi, C.

    2007-01-01

    Carbon fiber-reinforced advance composites have been used for structural applications, mainly on account of their mechanical properties. The main factor for a good mechanical performance of carbon fiber-reinforced composite is the interfacial interaction between its components, which are carbon fiber and polymeric matrix. The aim of this study is to improve the surface properties of the carbon fiber using ionizing radiation from an electron beam to obtain better adhesion properties in the resultant composite. EB radiation was applied on the carbon fiber itself before preparing test specimens for the mechanical tests. Experimental results showed that EB irradiation improved the tensile strength of carbon fiber samples. The maximum value in tensile strength was reached using doses of about 250 kGy. After breakage, the morphology aspect of the tensile specimens prepared with irradiated and non-irradiated car- bon fibers were evaluated. SEM micrographs showed modifications on the carbon fiber surface. (authors)

  4. Nanodosimetry in a 12C ion beam using Monte Carlo simulations

    International Nuclear Information System (INIS)

    Hultqvist, M.; Lillhoek, J.-E.; Lindborg, L.; Gudowska, I.; Nikjoo, H.

    2010-01-01

    The dose-mean lineal energy, y-bar D , has been calculated in water for irradiation with 12 C ions with initial energies 290 MeV/u. The y-bar D was evaluated from the energy distributions of carbon and secondary boron ions, and from their energy-dependent y-bar D -values. The energy distributions were obtained from simulations with the Monte Carlo code SHIELD-HIT07 and the energy-dependent y-bar D -values were obtained from ion-track simulations with PITS99 coupled with the electron transport code KURBUC. The ratio of the y-bar D -value determined in the vicinity of the Bragg peak to that calculated in a reference 60 Co γ beam was compared with the corresponding ratio of α-values from the linear-quadratic model used in fractionated radiotherapy, showing a good correlation for an object size of around 10 nm.

  5. A new 1-2 GeV/c separated beam for BNL

    Energy Technology Data Exchange (ETDEWEB)

    Pile, P.H.; Beavis, D.; Brown, R.L.; Chrien, R.; Danby, G.; Jackson, J.; Lazarus, D.M.; Leonhardt, W.; Pearson, C.; Pendzick, A.; Montemurro, P.; Russo, T.; Sandberg, J.; Sawafta, R.; Spataro, C.; Walker, J. (Brookhaven National Lab. Associated Universities, Inc., Upton, NY (United States)); Enge, H.A. (Massachusetts Inst. of Tech., Cambridge, MA (United States))

    1992-09-15

    A 1-2 GeV/c beam line has been constructed at the Brookhaven National Laboratory alternating gradient synchrotron (BNL AGS). The beam line is optimized to deliver an intense clean beam of 1.8 GeV/c negative kaons for an H particle search experiment and incorporates two stages of velocity selection with the magnetic optics corrected to third order. Details of the beam line design as well as results of the commissioning will be discussed. (orig.).

  6. Tumor induction in mice after local irradiation with single doses of either carbon-ion beams or gamma rays.

    Science.gov (United States)

    Ando, Koichi; Koike, Sachiko; Ohmachi, Yasushi; Ando, Yutaka; Kobashi, Gen

    2014-12-01

    To determine the dose-dependent relative biological effectiveness (RBE) for tumor prevalence in mice receiving single localized doses to their right leg of either carbon ions (15, 45 or 75 keV/μm) or 137Cs gamma rays. A total of 1647 female C3H mice were irradiated to their hind legs with a localized dose of either reference gamma rays or 15, 45 or 75 keV/μm carbon-ion beams. Irradiated mice were evaluated for tumors twice a month during their three-year life span, and the dimensions of any tumors found were measured with a caliper. The tumor induction frequency was calculated by Kaplan-Meier analysis. The incidence of tumors from 50 Gy of 45 keV/μm carbon ions was marginally higher than those from 50 Gy of gamma rays. However, 60 Gy of 15 keV/μm carbon ions induced significantly fewer tumors than did gamma rays. RBE values of 0.87 + 0.12, 1.29 + 0.08 or 2.06 + 0.39 for lifetime tumorigenesis were calculated for 15, 45 or 75 keV/μm carbon-ion beams, respectively. Fibrosarcoma predominated, with no Linear Energy Transfer (LET)-dependent differences in the tumor histology. Experiments measuring the late effect of leg skin shrinkage suggested that the carcinogenic damage of 15 keV/μm carbon ions would be less than that of gamma rays. We conclude that patients receiving radiation doses to their normal tissues would face less risk of secondary tumor induction by carbon ions of intermediate LET values compared to equivalent doses of photons.

  7. The CBS-The Most Cost Effective and High Performance Carbon Beam Source Dedicated for a New Generation Cancer Therapy

    CERN Document Server

    Kumada, Masayuki; Leivichev, E B; Parkhomchuk, Vasily; Podgorny, Fedor; Rastigeev, Sergey; Reva, Vladimir B; Skrinsky, Aleksander Nikolayevich; Vostrikov, Vladimir

    2005-01-01

    A Carbon ion beam is a superior tool to x-rays or a proton beam in both physical and biological doses in treating a cancer. A Carbon beam has an advantage in treating radiation resistant and deep-seated tumors. Its radiological effect is of a mitotic independent nature. These features improve hypofractionation, typically reducing the number of irradiations per patient from 35 to a few. It has been shown that a superior QOL(Quality Of Life) therapy is possible by a carbon beam.The only drawback is its high cost. Nevertheless, tens of Prefectures and organizations are eagerly considering the possibility of having a carbon ion therapy facility in Japan. Germany, Austria, Italy, China, Taiwan and Korea also desire to have one.A carbon beam accelerator of moderate cost is about 100 Million USD. With the "CBS" design philosophy, which will be described in this paper, the cost could be factor of 2 or 3 less, while improving its performance more than standard designs. Novel extraction techniques, a new approach to a ...

  8. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions.

    Science.gov (United States)

    Zhang, Rui; Taddei, Phillip J; Fitzek, Markus M; Newhauser, Wayne D

    2010-05-07

    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient's body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. In most cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy.

  9. Dose Response of Alanine Detectors Irradiated with Carbon Ion Beams

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Jäkel, Oliver; Palmans, Hugo

    2011-01-01

    Purpose: The dose response of the alanine detector shows a dependence on particle energy and type, when irradiated with ion beams. The purpose of this study is to investigate the response behaviour of the alanine detector in clinical carbon ion beams and compare the results with model predictions......-dose curves deviate from predictions in the peak region, most pronounced at the distal edge of the peak. Conclusions: The used model and its implementation show a good overall agreement for quasi mono energetic measurements. Deviations in depth-dose measurements are mainly attributed to uncertainties...

  10. Non-invasive monitoring of therapeutic carbon ion beams in a homogeneous phantom by tracking of secondary ions

    Science.gov (United States)

    Gwosch, K.; Hartmann, B.; Jakubek, J.; Granja, C.; Soukup, P.; Jäkel, O.; Martišíková, M.

    2013-06-01

    Radiotherapy with narrow scanned carbon ion beams enables a highly accurate treatment of tumours while sparing the surrounding healthy tissue. Changes in the patient’s geometry can alter the actual ion range in tissue and result in unfavourable changes in the dose distribution. Consequently, it is desired to verify the actual beam delivery within the patient. Real-time and non-invasive measurement methods are preferable. Currently, the only technically feasible method to monitor the delivered dose distribution within the patient is based on tissue activation measurements by means of positron emission tomography (PET). An alternative monitoring method based on tracking of prompt secondary ions leaving a patient irradiated with carbon ion beams has been previously suggested. It is expected to help in overcoming the limitations of the PET-based technique like physiological washout of the beam induced activity, low signal and to allow for real-time measurements. In this paper, measurements of secondary charged particle tracks around a head-sized homogeneous PMMA phantom irradiated with pencil-like carbon ion beams are presented. The investigated energies and beam widths are within the therapeutically used range. The aim of the study is to deduce properties of the primary beam from the distribution of the secondary charged particles. Experiments were performed at the Heidelberg Ion Beam Therapy Center, Germany. The directions of secondary charged particles emerging from the PMMA phantom were measured using an arrangement of two parallel pixelated silicon detectors (Timepix). The distribution of the registered particle tracks was analysed to deduce its dependence on clinically important beam parameters: beam range, width and position. Distinct dependencies of the secondary particle tracks on the properties of the primary carbon ion beam were observed. In the particular experimental set-up used, beam range differences of 1.3 mm were detectable. In addition, variations

  11. Focused-electron-beam-induced processing (FEBIP) for emerging applications in carbon nanoelectronics

    International Nuclear Information System (INIS)

    Fedorov, Andrei G.; Kim, Songkil; Henry, Mathias; Kulkarni, Dhaval; Tsukruk, Vladimir V.

    2014-01-01

    Focused-electron-beam-induced processing (FEBIP), a resist-free additive nanomanufacturing technique, is an actively researched method for ''direct-write'' processing of a wide range of structural and functional nanomaterials, with high degree of spatial and time-domain control. This article attempts to critically assess the FEBIP capabilities and unique value proposition in the context of processing of electronics materials, with a particular emphasis on emerging carbon (i.e., based on graphene and carbon nanotubes) devices and interconnect structures. One of the major hurdles in advancing the carbon-based electronic materials and device fabrication is a disjoint nature of various processing steps involved in making a functional device from the precursor graphene/CNT materials. Not only this multi-step sequence severely limits the throughput and increases the cost, but also dramatically reduces the processing reproducibility and negatively impacts the quality because of possible between-the-step contamination, especially for impurity-susceptible materials such as graphene. The FEBIP provides a unique opportunity to address many challenges of carbon nanoelectronics, especially when it is employed as part of an integrated processing environment based on multiple ''beams'' of energetic particles, including electrons, photons, and molecules. This avenue is promising from the applications' prospective, as such a multi-functional (electron/photon/molecule beam) enables one to define shapes (patterning), form structures (deposition/etching), and modify (cleaning/doping/annealing) properties with locally resolved control on nanoscale using the same tool without ever changing the processing environment. It thus will have a direct positive impact on enhancing functionality, improving quality and reducing fabrication costs for electronic devices, based on both conventional CMOS and emerging carbon (CNT/graphene) materials. (orig.)

  12. Large-angle production of charged pions by 3 GeV/c - 12 GeV/c protons on carbon, copper and tin targets

    CERN Document Server

    Catanesi, M.G.; Ellis, Malcolm; Robbins, S.; Soler, F.J.P.; Gossling, C.; Bunyatov, S.; Krasnoperov, A.; Popov, B.; Serdiouk, V.; Tereschenko, V.; Di Capua, E.; Vidal-Sitjes, G.; Artamonov, A.; Arce, P.; Giani, S.; Gilardoni, S.; Gorbunov, P.; Grant, A.; Grossheim, A.; Gruber, P.; Ivanchenko, V.; Kayis-Topaksu, A.; Panman, J.; Papadopoulos, I.; Pasternak, J.; Tcherniaev, E.; Tsukerman, I.; Veenhof, R.; Wiebusch, C.; Zucchelli, P.; Blondel, A.; Borghi, S.; Campanelli, M.; Morone, M.C.; Prior, G.; Schroeter, R.; Engel, R.; Meurer, C.; Kato, I.; Gastaldi, U.; Mills, G.B.; Graulich, J.S.; Gregoire, G.; Bonesini, M.; Ferri, F.; Paganoni, M.; Paleari, F.; Kirsanov, M.; Bagulya, A.; Grichine, V.; Polukhina, M.; Palladino, V.; Coney, L.; Schmitz, D.; Barr, G.; De Santo, A.; Pattison, C.; Zuber, K.; Bobisut, F.; Gibin, D.; Guglielmi, A.; Mezzetto, M.; Dumarchez, J.; Vannucci, F.; Dore, U.; Orestano, D.; Pastore, F.; Tonazzo, A.; Tortora, L.; Booth, C.; Buttar, C.; Hodgson, P.; howlett, L.; Bogomilov, M.; Chizhov, M.; Kolev, D.; Tsenov, R.; Piperov, Stefan; Temnikov, P.; Apollonio, M.; Chimenti, P.; Giannini, G.; Santin, G.; Burguet-Castell, J.; Cervera-Villanueva, A.; Gomez-Cadenas, J.J.; Martin-Albo, J.; Novella, P.; Sorel, M.; Tornero, A.

    2008-01-01

    A measurement of the double-differential $\\pi^{\\pm}$ production cross-section in proton--carbon, proton--copper and proton--tin collisions in the range of pion momentum $100 \\MeVc \\leq p < 800 \\MeVc$ and angle $0.35 \\rad \\le \\theta <2.15 \\rad$ is presented. The data were taken with the HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 \\GeVc to 12 \\GeVc hitting a target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was done using a small-radius cylindrical time projection chamber (TPC) placed in a solenoidal magnet. An elaborate system of detectors in the beam line ensured the identification of the incident particles. Results are shown for the double-differential cross-sections at four incident proton beam momenta (3 \\GeVc, 5 \\GeVc, 8 \\GeVc and 12 \\GeVc).

  13. Phase aberrations and beam cleanup techniques in carbon-dioxide laser fusion systems

    International Nuclear Information System (INIS)

    Viswanathan, V.K.

    1981-01-01

    This paper describes the various carbon dioxide laser fusion systems at Los Alamos from the point of view of an optical designer. The types of phase aberrations present in these systems, as well as the beam cleanup techniques that can be used to improve the beam optical quality, are discussed. As this is a review article, some previously published results are also used where relevant

  14. Gene-expression profiling after exposure to C-ion beams

    International Nuclear Information System (INIS)

    Saegusa, Kumiko; Furuno, Aki; Ishikawa, Kenichi; Ishikawa, Atsuko; Ohtsuka, Yoshimi; Kawai, Seiko; Imai, Takashi; Nojima, Kumie

    2005-01-01

    It is recognized that carbon-ion beam kills cancer cells more efficiently than X-ray. In this study we have compared cellular gene expression response after carbon-ion beam exposure with that after X-ray exposure. Gene expression profiles of cultured neonatal human dermal fibroblasts (NHDF) at 0, 1, 3, 6, 12, 18, and 24 hr after exposure to 0.1, 2 and 5 Gy of X-ray or carbon-ion beam were obtained using 22K oligonucleotide microarray. N-way ANOVA analysis of whole gene expression data sets selected 960 genes for carbon-ion beam and 977 genes for X-ray, respectively. Interestingly, majority of these genes (91% for carbon-ion beam and 88% for X-ray, respectively) were down regulated. The selected genes were further classified by their dose-dependence or time-dependence of gene expression change (fold change>1.5). It was revealed that genes involved in cell proliferation had tendency to show time-dependent up regulation by carbon-ion beam. Another N-way ANOVA analysis was performed to select 510 genes, and further selection was made to find 70 genes that showed radiation species-dependent gene expression change (fold change>1.25). These genes were then categorized by the K-Mean clustering method into 4 clusters. Each cluster showed tendency to contain genes involved in cell cycle regulation, cell death, responses to stress and metabolisms, respectively. (author)

  15. Anomalous carbon nuclei

    International Nuclear Information System (INIS)

    Gasparian, A.P.

    1984-01-01

    Results are presented from a bubble chamber experiment to search for anomalous mean free path (MFP) phenomena for secondary multicharged fragments (Zsub(f)=5 and 6) of the beam carbon nucleus at 4.2 GeV/c per nucleon. A total of 50000 primary interactions of carbon with propane (C 3 H 8 ) were created. Approximately 6000 beam tragments with charges Zsub(f)=5 and 6 were analyzed in detail to find out an anomalous decrease of MFP. The anomaly is observed only for secondary 12 C nuclei

  16. Geant4 simulation of clinical proton and carbon ion beams for the treatment of ocular melanomas with the full 3-D pencil beam scanning system

    Energy Technology Data Exchange (ETDEWEB)

    Farina, Edoardo; Riccardi, Cristina; Rimoldi, Adele; Tamborini, Aurora [University of Pavia and the INFN section of Pavia, via Bassi 6, 27100 Pavia (Italy); Piersimoni, Pierluigi [Division of Radiation Research, Loma Linda University, Loma Linda, CA 92354 (United States); Ciocca, Mario [Medical Physics Unit, CNAO Foundation, Strada Campeggi 53, 27100 Pavia (Italy)

    2015-07-01

    This work investigates the possibility to use carbon ion beams delivered with active scanning modality, for the treatment of ocular melanomas at the Centro Nazionale di Adroterapia Oncologica (CNAO) in Pavia. The radiotherapy with carbon ions offers many advantages with respect to the radiotherapy with protons or photons, such as a higher relative radio-biological effectiveness (RBE) and a dose release better localized to the tumor. The Monte Carlo (MC) Geant4 10.00 patch-03 toolkit is used to reproduce the complete CNAO extraction beam line, including all the active and passive components characterizing it. The simulation of proton and carbon ion beams and radiation scanned field is validated against CNAO experimental data. For the irradiation study of the ocular melanoma an eye-detector, representing a model of a human eye, is implemented in the simulation. Each element of the eye is reproduced with its chemical and physical properties. Inside the eye-detector a realistic tumor volume is placed and used as the irradiation target. A comparison between protons and carbon ions eye irradiations allows to study possible treatment benefits if carbon ions are used instead of protons. (authors)

  17. Mutational effects of γ-rays and carbon ion beams on Arabidopsis seedlings

    International Nuclear Information System (INIS)

    Yoshihara, Ryohei; Nozawa, Shigeki; Hase, Yoshihiro; Sakamoto, Ayako N.; Narumi, Issay; Hidema, Jun

    2013-01-01

    To assess the mutational effects of radiation on vigorously proliferating plant tissue, the mutation spectrum was analyzed with Arabidopsis seedlings using the plasmid-rescue method. Transgenic plants containing the Escherichia coli rpsL gene were irradiated with γ-rays and carbon ion beams (320-MeV 12 C 6+ ), and mutations in the rpsL gene were analyzed. Mutant frequency increased significantly following irradiation by γ-rays, but not by 320-MeV 12 C 6+ . Mutation spectra showed that both radiations increased the frequency of frameshifts and other mutations, including deletions and insertions, but only γ-rays increased the frequency of total base substitutions. These results suggest that the type of DNA lesions which cause base substitutions were less often induced by 320-MeV 12 C 6+ than by γ-rays in Arabidopsis seedlings. Furthermore, γ-rays never increased the frequencies of G:C to T:A or A:T to C:G transversions, which are caused by oxidized guanine; 320-MeV 12 C 6+ , however, produced a slight increase in both transversions. Instead, γ-rays produced a significant increase in the frequency of G:C to A:T transitions. These results suggest that 8-oxoguanine has little effect on mutagenesis in Arabidopsis cells. (author)

  18. Effects of substrate material on carbon films grown by laser molecular beam epitaxy

    International Nuclear Information System (INIS)

    Liu, M.; Xu, X.Y.; Man, B.Y.; Kong, D.M.; Xu, S.C.

    2012-01-01

    Highlights: ► We prepared tri-layers by laser molecular beam epitaxy (LMBE) on sapphire substrate. ► We found that the formation of the graphene film has a strong relation to the structure and properties of the substrate. ► The different carbon film formation mechanism of the buffer layers can affect the morphology of the film. - Abstract: The carbon thin films were grown on different substrates with different buffer layers by laser molecular beam epitaxy (LMBE) with a high purity graphite carbon target. A UV pulsed KrF excimer laser with a wavelength of 248 nm was used as laser source. The structure, surface morphology and other properties of the carbon thin films were characterized by Raman spectroscopy, transmission electron microscopy (TEM), selected area electron diffraction (SAED) and atomic force microscopy (AFM). The results show that the properties of the carbon thin films and the formation of the graphene film have a strong relation to the structure and properties of the substrate. The substrate with a hexagonal wurtzite structure which is similar to the hexagonal honeycomb structure of the carbon atoms arranged in the graphene is more beneficial for the formation of the graphene thin film. In our experiment conditions, the carbon films grown on sapphire substrates with different buffer layers have an ordered structure and a smooth surface, and form high quality tri-layer graphene films.

  19. Effects of ion beam bombardment of carbon thin films deposited onto tungsten carbide and tool steels

    Energy Technology Data Exchange (ETDEWEB)

    Awazu, Kaoru; Yoshida, Hiroyuki [Industrial Research Inst. of Ishikawa (Japan); Watanabe, Hiroshi [Gakushuin Univ., Tokyo (Japan); Iwaki, Masaya; Guzman, L [RIKEN, Saitama (Japan)

    1992-04-15

    A study was made of the effects of argon ion bombardment of carbon thin films deposited onto WC and tool steels. Carbon thin film deposition was performed at various temperatures ranging from 200degC to 350degC, using C{sub 6}H{sub 6} gas. Argon ion beam bombardment of the films was carried out at an energy of 150 keV with a dose of 1x10{sup 16} ions cm{sup -2}. The hardness and adhesion of the films were measured by means of Knoop hardness and scratch tests respectively. The structure of the carbon films was estimated by laser Raman spectroscopy, and the relations were investigated between the mechanical properties and the structure of the films. The hardness of carbon thin films increases as their deposition temperature decreases; this tendency corresponds to the increase in amorphous structure estimated by Raman spectra. Argon ion bombardment results in constant hardness and fraction of amorphous structure. Argon ion beam bombardment of films prior to additional carbon deposition may cause the adhesion of the subsequently deposited films to improve. It is concluded that argon ion beam bombardment is useful for improving the properties of carbon films deposited onto WC and tool steels. (orig.).

  20. Effects of ion beam bombardment of carbon thin films deposited onto tungsten carbide and tool steels

    International Nuclear Information System (INIS)

    Awazu, Kaoru; Yoshida, Hiroyuki; Watanabe, Hiroshi; Iwaki, Masaya; Guzman, L.

    1992-01-01

    A study was made of the effects of argon ion bombardment of carbon thin films deposited onto WC and tool steels. Carbon thin film deposition was performed at various temperatures ranging from 200degC to 350degC, using C 6 H 6 gas. Argon ion beam bombardment of the films was carried out at an energy of 150 keV with a dose of 1x10 16 ions cm -2 . The hardness and adhesion of the films were measured by means of Knoop hardness and scratch tests respectively. The structure of the carbon films was estimated by laser Raman spectroscopy, and the relations were investigated between the mechanical properties and the structure of the films. The hardness of carbon thin films increases as their deposition temperature decreases; this tendency corresponds to the increase in amorphous structure estimated by Raman spectra. Argon ion bombardment results in constant hardness and fraction of amorphous structure. Argon ion beam bombardment of films prior to additional carbon deposition may cause the adhesion of the subsequently deposited films to improve. It is concluded that argon ion beam bombardment is useful for improving the properties of carbon films deposited onto WC and tool steels. (orig.)

  1. Electron beam processing of carbon fibre reinforced braided composites beams

    International Nuclear Information System (INIS)

    Halasz, L.; Zsigmond, B.; Czvikovszky, T.

    2002-01-01

    Complete text of publication follows. In this paper the possibility of producing a new type carbon fiber reinforced composite is examined by applying braiding, a well-known process of textile technology. The appearance of the new Hungarian carbon fiber with excellent mechanical properties in the market enables the development of newer type carbon fiber reinforced composites in the continuously widening range of engineering applications. Advanced hollow profiles, pipes and other composite products can be manufactured in continuous operation. A new way of composite production of this kind is the manufacturing of reinforcing structure by braiding technology producing a composite with sufficient mechanical properties from this cross directional fabric-like textile structure by impregnation. This manufacturing process can complete the variety of hollow products serving the same purpose as pultrusion or filament winding. This way a profile type framework element with a hollow cross section is manufactured having favorable mechanical properties. Owing to its small mass and high specific strength this product can be applied in dynamically loaded structures e.g. in the automotive industry. For crosslinking of the matrix the method of high-speed electron beam curing has been examined in order to reach continuous operation. The field of use and application of carbon fiber braided structures has a great chance especially in machine engineering and in the automotive industry. The main reason for this is that braiding processes are capable of producing structures having good mechanical properties at a low processing price. The mass of the composite load-bearing structure produced this way is one fifth of the steel product having similar geometry, and its specific mechanical properties are nearly as good as that of the most commonly applied semiproduct and structural component, the welded steel profile

  2. Constructing carbon nanotube junctions by Ar ion beam irradiation

    International Nuclear Information System (INIS)

    Ishaq, Ahmad; Ni Zhichun; Yan Long; Gong Jinlong; Zhu Dezhang

    2010-01-01

    Carbon nanotubes (CNTs) irradiated by Ar ion beams at elevated temperature were studied. The irradiation-induced defects in CNTs are greatly reduced by elevated temperature. Moreover, the two types of CNT junctions, the crossing junction and the parallel junction, were formed. And the CNT networks may be fabricated by the two types of CNT junctions. The formation process and the corresponding mechanism of CNT networks are discussed.

  3. The effect of carbon beam on the survival of hematopoietic stem cells in irradiated mice

    International Nuclear Information System (INIS)

    Tsuboi, Atsushi; Kojima, Eiichi; Tanaka, Kaoru

    1993-01-01

    The new cyclotron for heavy ion radiotherapy will be completed in the very near future at NIRS. High LET radiations having different qualities are known to produce differences in biological effectiveness. It is necessary to determine the biological effectiveness of this new radiation source in both normal and tumor tissues. In this paper, the effects of 200 kVp x-rays and a 135 MeV/u carbon 12 beam on hematopoietic stem cells (CFU-S and GM-CFC) are described. The rationale for this experimental approach is that the sensitivity of hematopoietic stem cells and the committed stem cells to radiation is often the treatment limiting-factor for radiotherapy. (author)

  4. Ohmic contact junction of carbon nanotubes fabricated by in situ electron beam deposition

    International Nuclear Information System (INIS)

    Wang, Y G; Wang, T H; Lin, X W; Dravid, V P

    2006-01-01

    We present experimental evidence of in situ fabrication of multi-walled carbon nanotube junctions via electron beam induced deposition. The tip-to-tip interconnection of the nanotubes involves the alignment of two nanotubes via a piezodriven nanomanipulator and nano-welding by electron beam deposition. Hydrocarbon contamination from the pump oil vapour of the vacuum system of the TEM chamber was used as the solder; this is superior to the already available metallic solders because its composition is identical to the carbon nanotube. The hydrocarbon deposition, with perfect wettability, on the nanotubes establishes strong mechanical binding between the two nanotubes to form an integrated structure. Consequently, the nanotubes cross-linked by the hydrocarbon solder produce good electrical and mechanical connections. The joint dimension was determined by the size of the electron beam, which results in a sound junction with well-defined geometry and the smallest junction size obtained so far. In situ electric measurement showed a linear current-voltage property for the multi-walled nanotube junction

  5. Experiments and FLUKA simulations of $^{12}C$ and $^{16}O$ beams for therapy monitoring by means of in-beam Positron Emission Tomography

    CERN Document Server

    Sommerer,; Ferrari, A

    2007-01-01

    Since 1997 at the experimental C-12 ion therapy facility at Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt, Germany, more than 350 patients have been treated. The therapy is monitored with a dedicated positron emission tomograph, fully integrated into the treatment site. The measured beta+-activity arises from inelastic nuclear interactions between the beam particles an the nuclei of the patients tissue. Because the monitoring is done during the irradiation the method is called in-beam PET. The underlying principle of this monitoring is a comparison between the measured activity and a simulated one. The simulations are presently done by the PETSIM code which is dedicated to C-12 beams. In future ion therapy centers like the Heidelberger Ionenstrahl Therapiezentrum (HIT), Heidelberg, Germany, besides C-12 also proton, $^3$He and O-16 beams will be used for treatment and the therapy will be monitored by means of in-beam PET. Because PETSIM is not extendable to other ions in an easy way, a code capable ...

  6. Beam current transformer (BCT) for experiment WA1/2

    CERN Multimedia

    CERN PhotoLab

    1978-01-01

    In experiment WA1/2, a 400 GeV proton beam from the SPS was directed at a target, downstream of which a hadron line selected, in several narrow momentum bands, a beam of either pi+ and K+ or pi- and K-. These neutrino-parent particles, before entering a 292 m long decay tunnel, passed through a set of 2 BCTs of a design seen here. They measured the hadron intensity (10^10 to 10^11 particles/pulse) with a precision of the order of 1%. There were 2 of them, for enhanced precision and confidence. After the discovery of neutral currents in the Gargamelle-experiment, WA1/2 was the first follow-up, high-precision experiment (Z.Phys.C35, 443-452, 1987 and Z.Phys.C45, 361-379, 1990). See also 7706516X.

  7. The relative biological effectiveness for carbon and oxygen ion beams using the raster-scanning technique in hepatocellular carcinoma cell lines.

    Directory of Open Access Journals (Sweden)

    Daniel Habermehl

    Full Text Available BACKGROUND: Aim of this study was to evaluate the relative biological effectiveness (RBE of carbon (12C and oxygen ion (16O-irradiation applied in the raster-scanning technique at the Heidelberg Ion beam Therapy center (HIT based on clonogenic survival in hepatocellular carcinoma cell lines compared to photon irradiation. METHODS: Four human HCC lines Hep3B, PLC, HepG2 and HUH7 were irradiated with photons, 12C and 16O using a customized experimental setting at HIT for in-vitro trials. Cells were irradiated with increasing physical photon single doses of 0, 2, 4 and 6 Gy and heavy ion-single doses of 0, 0.125, 0.5, 1, 2, 3 Gy (12C and 16O. SOBP-penetration depth and extension was 35 mm +/-4 mm and 36 mm +/-5 mm for carbon ions and oxygen ions respectively. Mean energy level and mean linear energy transfer (LET were 130 MeV/u and 112 keV/um for 12C, and 154 MeV/u and 146 keV/um for 16O. Clonogenic survival was computated and relative biological effectiveness (RBE values were defined. RESULTS: For all cell lines and both particle modalities α- and β-values were determined. As expected, α-values were significantly higher for 12C and 16O than for photons, reflecting a steeper decline of the initial slope of the survival curves for high-LET beams. RBE-values were in the range of 2.1-3.3 and 1.9-3.1 for 12C and 16O, respectively. CONCLUSION: Both irradiation with 12C and 16O using the raster-scanning technique leads to an enhanced RBE in HCC cell lines. No relevant differences between achieved RBE-values for 12C and 16O were found. Results of this work will further influence biological-adapted treatment planning for HCC patients that will undergo particle therapy with 12C or 16O.

  8. Beam tests of the 12 MHz RFQ RIB injector for ATLAS

    International Nuclear Information System (INIS)

    Kaye, R. A.

    1999-01-01

    In recent tests without beam, the Argonne 12 MHz split-coaxial radio-frequency quadruple (RFQ) achieved a cw intervane voltage of more than 100 kV, the design operating voltage for the device. This voltage is sufficient for the RFQ to function as the first stage of a RIB injector for the Argonne Tandem Linear Accelerator System (ATLAS). Previously reported beam dynamics calculations for the structure predict longitudinal emittance growth of only a few keV·ns for beams of mass 132 and above with transverse emittance of 0.27 π mm·mrad (normalized). Such beam quality is not typical of RFQ devices. The work reported here is preparation for tests with beams of mass up to 132. Beam diagnostic stations are being developed to measure the energy gain and beam quality of heavy ions accelerated by the RFQ using the Dynamitron accelerator facility at the ANL Physics Division as the injector. Beam diagnostic development includes provisions for performing the measurements with both a Si charged-particle detector and an electrostatic energy spectrometer system

  9. Biological intercomparison using gut crypt survivals for proton and carbon-ion beams

    International Nuclear Information System (INIS)

    Uzawa, Akiko; Ando, Koichi; Furusawa, Yoshiya

    2007-01-01

    Charged particle therapy depends on biological information for the dose prescription. Relative biological effectiveness or RBE for this requirement could basically be provided by experimental data. As RBE values of protons and carbon ions depend on several factors such as cell/tissue type, biological endpoint, dose and fractionation schedule, a single RBE value could not deal with all different radiosensitivities. However, any biological model with accurate reproducibility is useful for comparing biological effectiveness between different facilities. We used mouse gut crypt survivals as endpoint, and compared the cell killing efficiency of proton beams at three Japanese facilities. Three Linac X-ray machines with 4 and 6 MeV were used as reference beams, and there was only a small variation (coefficient of variance<2%) in biological effectiveness among them. The RBE values of protons relative to Linac X-rays ranged from 1.0 to 1.11 at the middle of a 6-cm SOBP (spread-out Bragg peak) and from 0.96 to 1.01 at the entrance plateau. The coefficient of variance for protons ranged between 4.0 and 5.1%. The biological comparison of carbon ions showed fairly good agreement in that the difference in biological effectiveness between National Institute of Radiological Sciences (NIRS)/ Heavy Ion Medical Accelerator in Chiba (HIMAC) and Gesellschaft fur Schwerionenforschung (GSI)/Heavy Ion Synchrotron (SIS) was 1% for three positions within the 6-cm SOBP. The coefficient of variance was <1.7, <0.6 and <1.6% for proximal, middle and distal SOBP, respectively. We conclude that the inter-institutional variation of biological effectiveness is smaller for carbon ions than protons, and that beam-spreading methods of carbon ions do not critically influence gut crypt survival. (author)

  10. Metabolic effect of streptomyces avermitilis irradiated by ion beam of "1"2C"6"+

    International Nuclear Information System (INIS)

    Wang Shuyang; Chen Jihong; Li Wenjian; Liang Jianping; Liu Jing; Bo Yongheng; Wang Lihua

    2013-01-01

    pH value, mycelium concentration, carbon source and nitrogen metabolism in flask fermentation of the mutant high-producing strain ZJAV-Yl-203 and the original strain ZJAV-A1 have been investigated, in order to show the metabolic effect of avermitilis irradiated by ion beam of "1"2C"6"+. In early stage (48 h) of the fermentation, pH value of the original fermentation was lower than that of the mutant strains. In 96∼196 h of fermentation, the nitrogen utilization in the strains ZJAV-Y1-203 was higher than that in the original strains, its reproductive was fast, and its growing was vigorous. The mycelium concentration of ZJAV-Yl-203 was greater than the original strain, and the pH value of fermentation were stable, so its metabolism was relatively more stable. In 144∼240 h of fermentation, the strain ZJAV-Y1-203 on sugar consumption was less than the original strains. The effect of "1"2C"6"+ ion irradiation on metabolism of Streptomyces avermitilis is conducive to the synthesis of avermectin. (authors)

  11. Structural changes of electron and ion beam-deposited contacts in annealed carbon-based electrical devices.

    Science.gov (United States)

    Batra, Nitin M; Patole, Shashikant P; Abdelkader, Ahmed; Anjum, Dalaver H; Deepak, Francis L; Costa, Pedro M F J

    2015-11-06

    The use of electron and ion beam deposition to make devices containing discrete nanostructures as interconnectors is a well-known nanofabrication process. Classically, one-dimensional materials such as carbon nanotubes (CNTs) have been electrically characterized by resorting to these beam deposition methods. While much attention has been given to the interconnectors, less is known about the contacting electrodes (or leads). In particular, the structure and chemistry of the electrode-interconnector interface is a topic that deserves more attention, as it is critical to understand the device behavior. Here, the structure and chemistry of Pt electrodes, deposited either with electron or ion beams and contacted to a CNT, are analyzed before and after thermally annealing the device in a vacuum. Free-standing Pt nanorods, acting as beam-deposited electrode models, are also characterized pre- and post-annealing. Overall, the as-deposited leads contain a non-negligible amount of amorphous carbon that is consolidated, upon heating, as a partially graphitized outer shell enveloping a Pt core. This observation raises pertinent questions regarding the definition of electrode-nanostructure interfaces in electrical devices, in particular long-standing assumptions of metal-CNT contacts fabricated by direct beam deposition methods.

  12. Structural changes of electron and ion beam-deposited contacts in annealed carbon-based electrical devices

    KAUST Repository

    Batra, Nitin M; Patole, Shashikant P.; Abdelkader, Ahmed; Anjum, Dalaver H.; Deepak, Francis L; Da Costa, Pedro M. F. J.

    2015-01-01

    The use of electron and ion beam deposition to make devices containing discrete nanostructures as interconnectors is a well-known nanofabrication process. Classically, one-dimensional materials such as carbon nanotubes (CNTs) have been electrically characterized by resorting to these beam deposition methods. While much attention has been given to the interconnectors, less is known about the contacting electrodes (or leads). In particular, the structure and chemistry of the electrode–interconnector interface is a topic that deserves more attention, as it is critical to understand the device behavior. Here, the structure and chemistry of Pt electrodes, deposited either with electron or ion beams and contacted to a CNT, are analyzed before and after thermally annealing the device in a vacuum. Free-standing Pt nanorods, acting as beam-deposited electrode models, are also characterized pre- and post-annealing. Overall, the as-deposited leads contain a non-negligible amount of amorphous carbon that is consolidated, upon heating, as a partially graphitized outer shell enveloping a Pt core. This observation raises pertinent questions regarding the definition of electrode–nanostructure interfaces in electrical devices, in particular long-standing assumptions of metal-CNT contacts fabricated by direct beam deposition methods.

  13. Structural changes of electron and ion beam-deposited contacts in annealed carbon-based electrical devices

    KAUST Repository

    Batra, Nitin M

    2015-10-09

    The use of electron and ion beam deposition to make devices containing discrete nanostructures as interconnectors is a well-known nanofabrication process. Classically, one-dimensional materials such as carbon nanotubes (CNTs) have been electrically characterized by resorting to these beam deposition methods. While much attention has been given to the interconnectors, less is known about the contacting electrodes (or leads). In particular, the structure and chemistry of the electrode–interconnector interface is a topic that deserves more attention, as it is critical to understand the device behavior. Here, the structure and chemistry of Pt electrodes, deposited either with electron or ion beams and contacted to a CNT, are analyzed before and after thermally annealing the device in a vacuum. Free-standing Pt nanorods, acting as beam-deposited electrode models, are also characterized pre- and post-annealing. Overall, the as-deposited leads contain a non-negligible amount of amorphous carbon that is consolidated, upon heating, as a partially graphitized outer shell enveloping a Pt core. This observation raises pertinent questions regarding the definition of electrode–nanostructure interfaces in electrical devices, in particular long-standing assumptions of metal-CNT contacts fabricated by direct beam deposition methods.

  14. Role of lattice structure and low temperature resistivity in fast-electron-beam filamentation in carbon

    International Nuclear Information System (INIS)

    Dance, R J; Butler, N M H; Gray, R J; MacLellan, D A; Rusby, D R; Xu, H; Neely, D; McKenna, P; Scott, G G; Robinson, A P L; Zielbauer, B; Bagnoud, V; Desjarlais, M P

    2016-01-01

    The influence of low temperature (eV to tens-of-eV) electrical resistivity on the onset of the filamentation instability in fast-electron transport is investigated in targets comprising of layers of ordered (diamond) and disordered (vitreous) carbon. It is shown experimentally and numerically that the thickness of the disordered carbon layer influences the degree of filamentation of the fast-electron beam. Strong filamentation is produced if the thickness is of the order of 60 μm or greater, for an electron distribution driven by a sub-picosecond, mid-10 20 Wcm −2 laser pulse. It is shown that the position of the vitreous carbon layer relative to the fast-electron source (where the beam current density and background temperature are highest) does not have a strong effect because the resistive filamentation growth rate is high in disordered carbon over a wide range of temperatures up to the Spitzer regime. (paper)

  15. Molecular carbon nitride ion beams for enhanced corrosion resistance of stainless steel

    Science.gov (United States)

    Markwitz, A.; Kennedy, J.

    2017-10-01

    A novel approach is presented for molecular carbon nitride beams to coat stainless surfaces steel using conventional safe feeder gases and electrically conductive sputter targets for surface engineering with ion implantation technology. GNS Science's Penning type ion sources take advantage of the breaking up of ion species in the plasma to assemble novel combinations of ion species. To test this phenomenon for carbon nitride, mixtures of gases and sputter targets were used to probe for CN+ ions for simultaneous implantation into stainless steel. Results from mass analysed ion beams show that CN+ and a variety of other ion species such as CNH+ can be produced successfully. Preliminary measurements show that the corrosion resistance of stainless steel surfaces increased sharply when implanting CN+ at 30 keV compared to reference samples, which is interesting from an application point of view in which improved corrosion resistance, surface engineering and short processing time of stainless steel is required. The results are also interesting for novel research in carbon-based mesoporous materials for energy storage applications and as electrode materials for electrochemical capacitors, because of their high surface area, electrical conductivity, chemical stability and low cost.

  16. Large flexibility of high aspect ratio carbon nanostructures fabricated by electron-beam-induced deposition

    Energy Technology Data Exchange (ETDEWEB)

    Beard, J D; Gordeev, S N, E-mail: jdb28@bath.ac.uk [Department of Physics, University of Bath, Bath BA2 7AY (United Kingdom)

    2010-11-26

    The mechanical properties of free-standing electron beam deposited amorphous carbon structures have been studied using atomic force microscopy. The fabricated carbon blades are found to be extraordinarily flexible, capable of undergoing vertical deflection up to {approx} 75% of their total length without inelastic deformation. The elastic bending modulus of these structures was calculated to be 28 {+-} 10 GPa.

  17. Advanced Electron Beam Ion Sources (EBIS) for 2-nd generation carbon radiotherapy facilities

    CERN Document Server

    Shornikov, A.

    2016-01-01

    In this work we analyze how advanced Electron Beam Ion Sources (EBIS) can facilitate the progress of carbon therapy facilities. We will demonstrate that advanced ion sources enable operation of 2-nd generation ion beam therapy (IBT) accelerators. These new accelerator concepts with designs dedicated to IBT provide beams better suited for therapy and, are more cost efficient than contemporary IBT facilities. We will give a sort overview of the existing new IBT concepts and focus on those where ion source technology is the limiting factor. We will analyse whether this limitation can be overcome in the near future thanks to ongoing EBIS development.

  18. Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation

    International Nuclear Information System (INIS)

    Yas, M.H.; Samadi, N.

    2012-01-01

    This study deals with free vibrations and buckling analysis of nanocomposite Timoshenko beams reinforced by single-walled carbon nanotubes (SWCNTs) resting on an elastic foundation. The SWCNTs are assumed to be aligned and straight with a uniform layout. Four different carbon nanotubes (CNTs) distributions including uniform and three types of functionally graded distributions of CNTs through the thickness are considered. The rule of mixture is used to describe the effective material properties of the nanocomposite beams. The governing equations are derived through using Hamilton's principle and then solved by using the generalized differential quadrature method (GDQM). Natural frequencies and critical buckling load are obtained for nanocomposite beams with different boundary conditions. Effects of several parameters, such as nanotube volume fraction, foundation stiffness parameters, slenderness ratios, CNTs distribution and boundary conditions on both natural frequency and critical buckling load are investigated. The results indicate that the above-mentioned parameters play a very important role on the free vibrations and buckling characteristics of the beam. Highlights: ► Beams with FG-X distribution have highest fundamental frequency. ► Beams with FG-X distribution have highest critical buckling load. ► Using elastic foundation, lead to increase the natural frequency. ► Using elastic foundation, lead to increase the critical buckling load. ► Increasing CNT volume fraction, lead to increase the natural frequency.

  19. A 5 MV Pelletron accelerator providing {sup 1}H{sup +}, {sup 4}He{sup +}, and {sup 12}C{sup +} beams for underground nuclear astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Reinicke, Stefan; Cowan, Thomas E.; Grieger, Marcel; Ludwig, Felix; Rath, Ferdinand; Roeder, Marko; Takacs, Marcell P.; Wagner, Louis [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Technische Universitaet Dresden (Germany); Bemmerer, Daniel; Junghans, Arnd R.; Mueller, Stefan E.; Rimarzig, Bernd; Schwengner, Ronald; Szuecs, Tamas; Wagner, Andreas [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden (Germany); Reinhardt, Tobias P.; Zuber, Kai [Technische Universitaet Dresden (Germany)

    2016-07-01

    Accelerator-based experiments at the 0.4 MV LUNA underground accelerator at Gran Sasso have enabled great progress for studies of Big Bang and solar fusion reactions. However, to complete the picture of solar fusion reactions and open up helium and carbon burning reactions to study, higher beam energies are required. A 5 MV Pelletron accelerator will be installed in the Felsenkeller underground laboratory in Dresden. It will allow both, tandem mode operations for {sup 12}C{sup +} beams and the use of a radio frequency ion source on the high voltage terminal for {sup 1}H{sup +} and {sup 4}He{sup +} beams. The beam from the RF ion source is fed in with a remotely controlled electrostatic deflector. In addition, a large, ultra-sensitive high-purity germanium detector for offline measurements will be installed at Felsenkeller. The final timeline of the project will be shown, as well as the science case for in-house research and the capabilities available to external scientific users.

  20. Localized surface grafting reactions on carbon nanofibers induced by gamma and e-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Evora, M.C., E-mail: cecilia@ieav.cta.br [Institute for Advanced Studies-IEAV/DCTA, Av. Cel Jose Alberto Albano do Amarante, 1-Putim, 12228-001 São Jose dos Campos, SP (Brazil); Araujo, J.R., E-mail: jraraujo@inmetro.gov.br [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias, RJ (Brazil); Ferreira, E.H.M. [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias, RJ (Brazil); Strohmeier, B.R. [Thermo Fisher Scientific, 5225 Verona Road, Madison, WI 53711 (United States); Silva, L.G.A., E-mail: lgasilva@ipen.br [Institute for Nuclear and Energy Research- IPEN, Av. Prof lineu Prestes, 2242- Cidade Universitaria, 05508-000 SP (Brazil); Achete, C.A. [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias, RJ (Brazil)

    2015-04-30

    Graphical abstract: - Highlights: • Methodology for the functionalization of carbon nanofibers was investigated. • Two radiation sources were used to promote grafting reactions: gamma and electron beam. • We report the optimum inhibitor concentration to achieve the functionalization. • Surface of carbon nanofibers showed an increase of oxygen content after irradiation. • The radiation-induced graphitization did not damage the overall sp{sup 2} structure. - Abstract: Electron beam and gamma-ray irradiation have potential application to modify the carbon fiber nanostructures in order to produce useful defects in the graphitic structure and create reactive sites. In this study, the methodology to functionalize carbon nanofiber (CNF), via a radiation process and using acrylic acid as a source of oxygen functional groups, was investigated. The samples were submitted to a direct grafting radiation process with electron beam and gamma-ray source. Several parameters were changed such as: acrylic acid concentration, radiation dose and percentage of inhibitor necessary to achieve functionalization, with higher percentage of oxygen functional groups on CNF surface, and better dispersion. The better results achieved were when mixing CNF in a solution of acrylic acid with 6% of inhibitor (FeSO{sub 4}·7H{sub 2}O) and irradiated at 100 kGy. The samples were characterized by X-ray photoelectron spectroscopy and the surface composition (atomic%) showed a significant increase of oxygen content for the samples after irradiation. Also, the dispersion of the functionalized CNF in water was stable during months which may be a good indication that the functionalization process of CNF via ionizing radiation was successful.

  1. Localized surface grafting reactions on carbon nanofibers induced by gamma and e-beam irradiation

    International Nuclear Information System (INIS)

    Evora, M.C.; Araujo, J.R.; Ferreira, E.H.M.; Strohmeier, B.R.; Silva, L.G.A.; Achete, C.A.

    2015-01-01

    Graphical abstract: - Highlights: • Methodology for the functionalization of carbon nanofibers was investigated. • Two radiation sources were used to promote grafting reactions: gamma and electron beam. • We report the optimum inhibitor concentration to achieve the functionalization. • Surface of carbon nanofibers showed an increase of oxygen content after irradiation. • The radiation-induced graphitization did not damage the overall sp 2 structure. - Abstract: Electron beam and gamma-ray irradiation have potential application to modify the carbon fiber nanostructures in order to produce useful defects in the graphitic structure and create reactive sites. In this study, the methodology to functionalize carbon nanofiber (CNF), via a radiation process and using acrylic acid as a source of oxygen functional groups, was investigated. The samples were submitted to a direct grafting radiation process with electron beam and gamma-ray source. Several parameters were changed such as: acrylic acid concentration, radiation dose and percentage of inhibitor necessary to achieve functionalization, with higher percentage of oxygen functional groups on CNF surface, and better dispersion. The better results achieved were when mixing CNF in a solution of acrylic acid with 6% of inhibitor (FeSO 4 ·7H 2 O) and irradiated at 100 kGy. The samples were characterized by X-ray photoelectron spectroscopy and the surface composition (atomic%) showed a significant increase of oxygen content for the samples after irradiation. Also, the dispersion of the functionalized CNF in water was stable during months which may be a good indication that the functionalization process of CNF via ionizing radiation was successful

  2. Comparison of Biological Effectiveness of Carbon-Ion Beams in Japan and Germany

    International Nuclear Information System (INIS)

    Uzawa, Akiko; Ando, Koichi; Koike, Sachiko; Furusawa, Yoshiya; Matsumoto, Yoshitaka; Takai, Nobuhiko; Hirayama, Ryoichi; Watanabe, Masahiko; Scholz, Michael; Elsaesser, Thilo; Peschke, Peter

    2009-01-01

    Purpose: To compare the biological effectiveness of 290 MeV/amu carbon-ion beams in Chiba, Japan and in Darmstadt, Germany, given that different methods for beam delivery are used for each. Methods and Materials: Murine small intestine and human salivary gland tumor (HSG) cells exponentially growing in vitro were irradiated with 6-cm width of spread-out Bragg peaks (SOBPs) adjusted to achieve nearly identical beam depth-dose profiles at the Heavy-Ion Medical Accelerator in Chiba, and the SchwerIonen Synchrotron in Darmstadt. Cell kill efficiencies of carbon ions were measured by colony formation for HSG cells and jejunum crypts survival in mice. Cobalt-60 γ rays were used as the reference radiation. Isoeffective doses at given survivals were used for relative biological effectiveness (RBE) calculations and interinstitutional comparisons. Results: Isoeffective D 10 doses (mean ± standard deviation) of HSG cells ranged from 2.37 ± 0.14 Gy to 3.47 ± 0.19 Gy for Chiba and from 2.31 ± 0.11 Gy to 3.66 ± 0.17 Gy for Darmstadt. Isoeffective D 10 doses of gut crypts after single doses ranged from 8.25 ± 0.17 Gy to 10.32 ± 0.14 Gy for Chiba and from 8.27 ± 0.10 Gy to 10.27 ± 0.27 Gy for Darmstadt, whereas isoeffective D 30 doses after three fractionated doses were 9.89 ± 0.17 Gy through 13.70 ± 0.54 Gy and 10.14 ± 0.20 Gy through 13.30 ± 0.41 Gy for Chiba and Darmstadt, respectively. Overall difference of RBE between the two facilities was 0-5% or 3-7% for gut crypt survival or HSG cell kill, respectively. Conclusion: The carbon-ion beams at the National Institute of Radiological Sciences in Chiba, Japan and the Gesellschaft fuer Schwerionenforschung in Darmstadt, Germany are biologically identical after single and daily fractionated irradiation.

  3. Calibration of an analyzing magnet using the 12C(d, p0)13C nuclear reaction with a thick carbon target

    Science.gov (United States)

    Andrade, E.; Canto, C. E.; Rocha, M. F.

    2017-09-01

    The absolute energy of an ion beam produced by an accelerator is usually determined by an electrostatic or magnetic analyzer, which in turn must be calibrated. Various methods for accelerator energy calibration are extensively reported in the literature, like nuclear reaction resonances, neutron threshold, and time of flight, among others. This work reports on a simple method to calibrate the magnet associated to a vertical 5.5 MV Van de Graaff accelerator. The method is based on bombarding with deuteron beams a thick carbon target and measuring with a surface barrier detector the particle energy spectra produced. The analyzer magnetic field is measured for each spectrum and the beam energy is deduced by the best fit of the simulation of the spectrum with the SIMNRA code that includes 12C(d,p0)13C nuclear cross sections.

  4. Research on carbon fiber–reinforced plastic bumper beam subjected to low-velocity frontal impact

    OpenAIRE

    Yefa Hu; Can Liu; Jinguang Zhang; Guoping Ding; Qiong Wu

    2015-01-01

    Lightweight and safety performance of automobiles are two important factors for automobile designs. In this article, a research on lightweight and crashworthiness of automotive bumper has been conducted. The carbon fiber–reinforced plastic bumper beam is considered to replace the traditional high-strength steel one. The low-velocity impact finite element simulations for the above two bumper beams are performed via LS-DYNA. Furthermore, the energy absorption capabilities and dynamic response c...

  5. Carbon nitride films synthesized by NH3-ion-beam-assisted deposition

    International Nuclear Information System (INIS)

    Song, H.W.; Cui, F.Z.; He, X.M.; Li, W.Z.; Li, H.D.

    1994-01-01

    Carbon nitride thin film films have been prepared by NH 3 -ion-beam-assisted deposition with bombardment energies of 200-800 eV at room temperature. These films have been characterized by transmission electron microscopy. Auger electron spectroscopy and x-ray photoelectron spectroscopy for chemical analysis. It was found that the structure of the films varied with the bombardment energy. In the case of 400 eV bombardment, the tiny crystallites immersed on an amorphous matrix were identified to be β-C 3 N 4 . X-ray photoelectron spectroscopy indicated that some carbon atoms and nitrogen atoms form unpolarized covalent bonds in these films. (Author)

  6. Control of Pre-treatment for Carbon Nanotube Synthesis Using Proton Ion Beam Irradiation

    International Nuclear Information System (INIS)

    Kim, Y. H.; Kim, D. W.; Lee, S. M.; Kim, W. J.

    2008-04-01

    The carbon nanotubes are the next generation material in fuel storage system, the gas sensor, the life science sensor or the nano-size transistor, the stiffener and the heat dissipation field. For use at appropriate position in various field, it must be developed that control technique makes carbon nanotubes with high performance synthesized at appropriate location. The density of the carbon nanotube is 1 - 2g/cm3 with aluminum (2 - 3g/cm3) to be light, the elastic modulus is the level where as many of as 30 - 50 times of iron's elastic modulus and thermal conductivity is similar to the diamond, electric conductivity is high as well above the metal. Generally, many researchers have tried to synthesize the carbon nanotubes of mm length unit using the hydrogen and porous substrate, which play a role of more activating the catalyst. The proton beam which consist of H+ was able to directly inject the hydrogen into target materials such as Ni, Co, Fe as well as transfer high activation energy to them. so we were able to carry out feasibility of controlling the porosity of thin film and substrate to synthesize carbon nanotubes. The pre-treatment method of existing which is used generally heat treatment and the ammonia controls has generated island of catalyst which has increased the surface to react the hydrocarbon. However, pre-treatment method of existing caused the random nuclear creation so it was hard to control the island size of catalyst. It was not enough to understand the porous effect against synthesis of carbon nanotubes deduced from altering various substrates. In this report, it is possible investigate how hydrogen and the porous effect influence on growth of carbon nanotubes through controlling the nuclear creation of catalysts directly and the porosity of them using proton beam

  7. Carbon ion beam is more effective to induce cell death in sphere-type A172 human glioblastoma cells compared with X-rays.

    Science.gov (United States)

    Takahashi, Momoko; Hirakawa, Hirokazu; Yajima, Hirohiko; Izumi-Nakajima, Nakako; Okayasu, Ryuichi; Fujimori, Akira

    2014-12-01

    To obtain human glioblastoma cells A172 expressing stem cell-related protein and comparison of radiosensitivity in these cells with X-rays and carbon beam. Human monolayer-type A172 glioblastoma cells were maintained in normal medium with 10% bovine serum. In order to obtain sphere-type A172 cells the medium was replaced with serum-free medium supplemented with growth factors. Both types of A172 cells were irradiated with either X-rays or carbon ion beams and their radiosensitivity was evaluated. Serum-free medium induced expression of stem cell-related proteins in A172 cells along with the neurosphere-like appearance. These sphere-type cells were found resistant to both X-rays and carbon ion beams. Phosphorylation of histone H2A family member X persisted for a longer period in the cells exposed to carbon ion beams than in those exposed to X-rays and it disappeared quicker in the sphere type than in the monolayer type. Relative radioresistance of the sphere type cells was smaller for carbon ion beams than for X-rays. We demonstrated that glioblastoma A172 cells with induced stem cell-related proteins turned resistant to irradiation. Accelerated heavy ion particles may have advantage over X-rays in overcoming the tumor resistance due to cell stemness.

  8. Multi-walled carbon nanotube structural instability with/without metal nanoparticles under electron beam irradiation

    Science.gov (United States)

    Khan, Imran; Huang, Shengli; Wu, Chenxu

    2017-12-01

    The structural transformation of multi-walled carbon nanotubes (MWCNT) under electron beam (e-beam) irradiation at room temperature is studied, with respect to a novel passivation effect due to gold nanoparticles (Au NPs). MWCNT structural evolution induced by energetic e-beam irradiation leads to faster shrinkage, as revealed via in situ transmission electron microscopy, while MWCNT surface modification with Au NPs (Au-MWCNT) slows down the shrinkage by impeding the structural evolution process for a prolonged time under the same irradiation conditions. The new relationship between MWCNT and Au-MWCNT shrinking radii and irradiation time illustrates that the MWCNT shrinkage rate is faster than either theoretical predictions or the same process in Au-MWCNTs. As compared with the outer surface energy (positive curvature), the inner surface energy (negative curvature) of the MWCNT contributes more to the athermal evaporation of tube wall atoms, leading to structural instability and shrinkage under e-beam irradiation. Conversely, Au NPs possess only outer surface energy (positive curvature) compared with the MWCNT. Their presence on MWCNT surfaces retards the dynamics of MWCNT structural evolution by slowing down the evaporation process of carbon atoms, thus restricting Au-MWCNT shrinkage. Au NP interaction and growth evolves athermally on MWCNT surfaces, exhibits increase in their size, and indicates the association of this mechanism with the coalescence induced by e-beam activated electronic excitations. Despite their growth, Au NPs show extreme structural stability, and remain crystalline under prolonged irradiation. It is proposed that the surface energy of MWCNTs and Au NPs, together with e-beam activated soft modes or lattice instability effects, predominantly govern all the above varieties of structural evolution.

  9. Source brightness and useful beam current of carbon nanotubes and other very small emitters

    International Nuclear Information System (INIS)

    Kruit, P.; Bezuijen, M.; Barth, J.E.

    2006-01-01

    The potential application of carbon nanotubes as electron sources in electron microscopes is analyzed. The resolution and probe current that can be obtained from a carbon nanotube emitter in a low-voltage scanning electron microscope are calculated and compared to the state of the art using Schottky electron sources. Many analytical equations for probe-size versus probe-current relations in different parameter regimes are obtained. It is shown that for most carbon nanotube emitters, the gun lens aberrations are larger than the emitters' virtual source size and thus restrict the microscope's performance. The result is that the advantages of the higher brightness of nanotube emitters are limited unless the angular emission current is increased over present day values or the gun lens aberrations are decreased. For some nanotubes with a closed cap, it is known that the emitted electron beam is coherent over the full emission cone. We argue that for such emitters the parameter ''brightness'' becomes meaningless. The influence of phase variations in the electron wave front emitted from such a nanotube emitter on the focusing of the electron beam is analyzed

  10. Three-dimensional ultrashort optical Airy beams in an inhomogeneous medium with carbon nanotubes

    Science.gov (United States)

    Zhukov, Alexander V.; Bouffanais, Roland; Belonenko, Mikhail B.; Dvuzhilov, Ilya S.

    2017-03-01

    In this Letter, we consider the problem of the dynamics of propagation of three-dimensional optical pulses (a.k.a. light bullets) with an Airy profile through a heterogeneous environment of carbon nanotubes. We show numerically that such beams exhibit sustained and stable propagation. Moreover, we demonstrate that by varying the density modulation period of the carbon nanotubes one can indirectly control the pulse velocity, which is a particularly valuable feature for the design and manufacturing of novel pulse delay devices.

  11. Additional transport channel of carbon ions for biological research at the Nuclotron of JINR

    International Nuclear Information System (INIS)

    Yudin, I.P.; Panasik, V.A.; Tyutyunnikov, S.I.

    2011-01-01

    The paper deals with the construction of the 12 C +6 beam transport line for biomedical research at the Nuclotron accelerator complex, JINR. We have studied the scheme and modes of magneto-optical elements of the channel. The results of calculations of the investigated beam transport of carbon ions are presented. The algorithms to control the carbon ion beam in the transportation system are discussed. The choice of the magneto-optical system is motivated. The graphs of the beam envelopes in the channel are given. The scanning control beam functions are considered

  12. Additional transport channel of carbon ions for biological research at the Nuclotron of JINR

    International Nuclear Information System (INIS)

    Yudin, I.P.; Panasik, V.A.; Tyutyunnikov, S.I.

    2012-01-01

    The paper deals with the construction of the beam 12 C +6 transport line for biomedical research at the Nuclotron accelerator complex, JINR. We have studied the scheme and modes of magneto-optical elements of the channel. The results of calculations of the investigated beam transport of carbon ions are presented. The algorithms to control the carbon ion beam in the transportation system are discussed. The choice of the magneto-optical system is motivated. The graphs of the beam envelopes in the channel are given. The scanning control beam functions are considered

  13. Mutation induced with ion beam irradiation in rose

    Energy Technology Data Exchange (ETDEWEB)

    Yamaguchi, H. E-mail: yhiroya@nias.affrc.go.jp; Nagatomi, S.; Morishita, T.; Degi, K.; Tanaka, A.; Shikazono, N.; Hase, Y

    2003-05-01

    The effects of mutation induction by ion beam irradiation on axillary buds in rose were investigated. Axillary buds were irradiated with carbon and helium ion beams, and the solid mutants emerged after irradiation by repeated cutting back. In helium ion irradiation, mutations were observed in plants derived from 9 buds among 56 irradiated buds in 'Orange Rosamini' and in plants derived from 10 buds among 61 irradiated buds in 'Red Minimo'. In carbon ion, mutations were observed in plants derived from 12 buds among 88 irradiated buds in 'Orange Rosamini'. Mutations were induced not only in higher doses but also in lower doses, with which physiological effect by irradiation was hardly observed. Irradiation with both ion beams induced mutants in the number of petals, in flower size, in flower shape and in flower color in each cultivar.

  14. Microdosimetry of proton and carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Liamsuwan, Thiansin [Thailand Institute of Nuclear Technology, Ongkharak, Nakhon Nayok 26120 (Thailand); Hultqvist, Martha [Medical Radiation Physics, Department of Physics, Stockholm University, SE-10691 (Sweden); Lindborg, Lennart; Nikjoo, Hooshang, E-mail: hooshang.nikjoo@ki.se [Radiation Biophysics Group, Department of Oncology-Pathology, Karolinska Institutet, Box 260 SE-17176, Stockholm (Sweden); Uehara, Shuzo [School of Health Sciences, Kyushu University, Fukuoka 812-8581 (Japan)

    2014-08-15

    Purpose: To investigate microdosimetry properties of 160 MeV/u protons and 290 MeV/u{sup 12}C ion beams in small volumes of diameters 10–100 nm. Methods: Energy distributions of primary particles and nuclear fragments in the beams were calculated from simulations with the general purpose code SHIELD-HIT, while energy depositions by monoenergetic ions in nanometer volumes were obtained from the event-by-event Monte Carlo track structure ion code PITS99 coupled with the electron track structure code KURBUC. Results: The results are presented for frequencies of energy depositions in cylindrical targets of diameters 10–100 nm, dose distributionsyd(y) in lineal energy y, and dose-mean lineal energies y{sup ¯}{sub D}. For monoenergetic ions, the y{sup ¯}{sub D} was found to increase with an increasing target size for high-linear energy transfer (LET) ions, but decrease with an increasing target size for low-LET ions. Compared to the depth dose profile of the ion beams, the maximum of the y{sup ¯}{sub D} depth profile for the 160 MeV proton beam was located at ∼0.5 cm behind the Bragg peak maximum, while the y{sup ¯}{sub D} peak of the 290 MeV/u {sup 12}C beam coincided well with the peak of the absorbed dose profile. Differences between the y{sup ¯}{sub D} and dose-averaged linear energy transfer (LET{sub D}) were large in the proton beam for both target volumes studied, and in the {sup 12}C beam for the 10 nm diameter cylindrical volumes. The y{sup ¯}{sub D} determined for 100 nm diameter cylindrical volumes in the {sup 12}C beam was approximately equal to the LET{sub D}. The contributions from secondary particles to the y{sup ¯}{sub D} of the beams are presented, including the contributions from secondary protons in the proton beam and from fragments with atomic number Z = 1–6 in the {sup 12}C beam. Conclusions: The present investigation provides an insight into differences in energy depositions in subcellular-size volumes when irradiated by proton and

  15. Dosimetric consequences of pencil beam width variations in scanned beam particle therapy

    International Nuclear Information System (INIS)

    Chanrion, M A; Ammazzalorso, F; Wittig, A; Engenhart-Cabillic, R; Jelen, U

    2013-01-01

    Scanned ion beam delivery enables the highest degree of target dose conformation attainable in external beam radiotherapy. Nominal pencil beam widths (spot sizes) are recorded during treatment planning system commissioning. Due to changes in the beam-line optics, the actual spot sizes may differ from these commissioning values, leading to differences between planned and delivered dose. The purpose of this study was to analyse the dosimetric consequences of spot size variations in particle therapy treatment plans. For 12 patients with skull base tumours and 12 patients with prostate carcinoma, scanned-beam carbon ion and proton treatment plans were prepared and recomputed simulating spot size changes of (1) ±10% to simulate the typical magnitude of fluctuations, (2) ±25% representing the worst-case scenario and (3) ±50% as a part of a risk analysis in case of fault conditions. The primary effect of the spot size variation was a dose deterioration affecting the target edge: loss of target coverage and broadening of the lateral penumbra (increased spot size) or overdosage and contraction of the lateral penumbra (reduced spot size). For changes ⩽25%, the resulting planning target volume mean 95%-isodose line coverage (CI-95%) deterioration was ranging from negligible to moderate. In some cases changes in the dose to adjoining critical structures were observed. (paper)

  16. Monitoring of Carbon Fiber-Reinforced Old Timber Beams via Strain and Multiresonant Acoustic Emission Sensors

    Directory of Open Access Journals (Sweden)

    Francisco J. Rescalvo

    2018-04-01

    Full Text Available This paper proposes the monitoring of old timber beams with natural defects (knots, grain deviations, fissures and wanes, reinforced using carbon composite materials (CFRP. Reinforcement consisted of the combination of a CFRP laminate strip and a carbon fabric discontinuously wrapping the timber element. Monitoring considered the use and comparison of two types of sensors: strain gauges and multi-resonant acoustic emission (AE sensors. Results demonstrate that: (1 the mechanical behavior of the beams can be considerably improved by means of the use of CFRP (160% in bending load capacity and 90% in stiffness; (2 Acoustic emission sensors provide comparable information to strain gauges. This fact points to the great potential of AE techniques for in-service damage assessment in real wood structures.

  17. Monitoring of Carbon Fiber-Reinforced Old Timber Beams via Strain and Multiresonant Acoustic Emission Sensors.

    Science.gov (United States)

    Rescalvo, Francisco J; Valverde-Palacios, Ignacio; Suarez, Elisabet; Roldán, Andrés; Gallego, Antolino

    2018-04-17

    This paper proposes the monitoring of old timber beams with natural defects (knots, grain deviations, fissures and wanes), reinforced using carbon composite materials (CFRP). Reinforcement consisted of the combination of a CFRP laminate strip and a carbon fabric discontinuously wrapping the timber element. Monitoring considered the use and comparison of two types of sensors: strain gauges and multi-resonant acoustic emission (AE) sensors. Results demonstrate that: (1) the mechanical behavior of the beams can be considerably improved by means of the use of CFRP (160% in bending load capacity and 90% in stiffness); (2) Acoustic emission sensors provide comparable information to strain gauges. This fact points to the great potential of AE techniques for in-service damage assessment in real wood structures.

  18. Behavior of Insulated Carbon-FRP-Strengthened RC Beams Exposed to Fire

    Science.gov (United States)

    Sayin, B.

    2014-09-01

    There are two main approaches to improving the fire resistance of fiber-reinforced polymer (FRP) systems. While the most common method is to protect or insulate the FRP system, an other way is to use fibers and resins with a better fire performance. This paper presents a numerical investigation into the five protection behavior of insulated carbon-fiber-reinforced-polymer (CFRP)-strengthened reinforced concrete (RC) beams. The effects of external loading and thermal expansion of materials at elevated temperatures are taken into consideration in a finite-element model. The validity of the numerical model is demonstrated with results from an existing experimental study on insulated CFRP-strengthened RC beams. Conclusions of this investigation are employed to predict the structural behavior of CFRP-strengthened concrete structures.

  19. DNA damage response signaling in lung adenocarcinoma A549 cells following gamma and carbon beam irradiation.

    Science.gov (United States)

    Ghosh, Somnath; Narang, Himanshi; Sarma, Asitikantha; Krishna, Malini

    2011-11-01

    Carbon beams (5.16MeV/u, LET=290keV/μm) are high linear energy transfer (LET) radiation characterized by higher relative biological effectiveness than low LET radiation. The aim of the current study was to determine the signaling differences between γ-rays and carbon ion-irradiation. A549 cells were irradiated with 1Gy carbon or γ-rays. Carbon beam was found to be three times more cytotoxic than γ-rays despite the fact that the numbers of γ-H2AX foci were same. Percentage of cells showing ATM/ATR foci were more with γ-rays however number of foci per cell were more in case of carbon irradiation. Large BRCA1 foci were found in all carbon irradiated cells unlike γ-rays irradiated cells and prosurvival ERK pathway was activated after γ-rays irradiation but not carbon. The noteworthy finding of this study is the early phase apoptosis induction by carbon ions. In the present study in A549 lung adenocarcinoma, authors conclude that despite activation of same repair molecules such as ATM and BRCA1, differences in low and high LET damage responses might be due to their distinct macromolecular complexes rather than their individual activation and the activation of cytoplasmic pathways such as ERK, whether it applies to all the cell lines need to be further explored. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Chromosome aberrations induced by 135 MeV of carbon and neon beams by PRC

    International Nuclear Information System (INIS)

    Ohara, Hiroshi; Minamihisamatu, Masako; Kanai, Tatsuaki; Eguchi-Kasai, Kiyomi; Itsukaichi, Hiromi; Fukutsu, Kumiko; Yatagai, Fumio; Sato, Kohki.

    1993-01-01

    Radiation-induced chromosome aberration can be an indicator of the radiation lesions in irradiated cells. Many studies on chromosome aberration induced by X-ray and γ - ray have indicated that the dose response of the aberration can be fitted to a quadratic equation, Y = αD + βD 2 , and it becomes linear as the LET of beams increases. The main subject of this study was some quantification of chromosomal aberration induced by 135 MeV/n carbon and neon beams produced by the RRC, the operation of which increasingly became useful for the studies on heavy ion biology. The results will meet with some of the radiobiological features connected to the specific action of charged particles. The materials used, the experimental method and the results are reported. Four curves of the dose response for the production of dicentric and ring types of aberration induced by carbon and neon beams and four different dose average LETs are given. Aberration production rate became higher as LET increased. Chromosome aberration can be quantified as an indicator of radiation lesions in the case of high LET particle radiation. (K.I.)

  1. Single track coincidence measurements of fluorescent and plastic nuclear track detectors in therapeutic carbon beams

    International Nuclear Information System (INIS)

    Osinga, J-M; Jäkel, O; Ambrožová, I; Brabcová, K Pachnerová; Davídková, M; Akselrod, M S; Greilich, S

    2014-01-01

    In this paper we present a method for single track coincidence measurements using two different track detector materials. We employed plastic and fluorescent nuclear track detectors (PNTDs and FNTDs) in the entrance channel of a monoenergetic carbon ion beam covering the therapeutic energy range from 80 to 425 MeV/u. About 99% of all primary particle tracks detected by both detectors were successfully matched, while 1% of the particles were only detected by the FNTDs because of their superior spatial resolution. We conclude that both PNTDs and FNTDs are suitable for clinical carbon beam dosimetry with a detection efficiency of at least 98.82% and 99.83% respectively, if irradiations are performed with low fluence in the entrance channel of the ion beam. The investigated method can be adapted to other nuclear track detectors and offers the possibility to characterize new track detector materials against well-known detectors. Further, by combining two detectors with a restricted working range in the presented way a hybrid-detector system can be created with an extended and optimized working range

  2. Experimental study on fatigue crack propagation rate of RC beam strengthened with carbon fiber laminate

    Science.gov (United States)

    Huang, Peiyan; Liu, Guangwan; Guo, Xinyan; Huang, Man

    2008-11-01

    The experimental research on fatigue crack propagation rate of reinforced concrete (RC) beams strengthened with carbon fiber laminate (CFL) is carried out by MTS system in this paper. The experimental results show that, the main crack propagation on strengthened beam can be summarized into three phases: 1) fast propagation phase; 2) steady propagation and rest phase; 3) unsteady propagation phase. The phase 2-i.e. steady propagation and rest stage makes up about 95% of fatigue life of the strengthened beam. The propagation rate of the main crack, da/dN, in phase 2 can be described by Paris formula, and the constant C and m can be confirmed by the fatigue crack propagation experiments of the RC beams strengthened with CFL under three-point bending loads.

  3. Analysis of the strength and stiffness of timber beams reinforced with carbon fiber and glass fiber

    Directory of Open Access Journals (Sweden)

    Juliano Fiorelli

    2003-06-01

    Full Text Available An experimental analysis of pinewood beams (Pinus caribea var hondurensis reinforced with glass and/or carbon fibers is discussed. The theoretical model employed to calculate the beam's bending strength takes into account the timber's ultimate limit states of tensile strength and failure by compression, considering a model of fragile elastic tension and plastic elastic compression. The validity of the theoretical model is confirmed by a comparison of the theoretical and experimental results, while the efficiency of the fiber reinforcement is corroborated by the increased strength and stiffness of the reinforced timber beams.

  4. Occurrence of particle debris field during focused Ga ion beam milling of glassy carbon

    Energy Technology Data Exchange (ETDEWEB)

    Hu Qin [Centre for Industrial Photonics, Institute for Manufacturing, Department of Engineering, University of Cambridge, Alan Reece Building, 17 Charles Babbage Road, Cambridge, CB3 0FS (United Kingdom); O' Neill, William, E-mail: wo207@eng.cam.ac.uk [Centre for Industrial Photonics, Institute for Manufacturing, Department of Engineering, University of Cambridge, Alan Reece Building, 17 Charles Babbage Road, Cambridge, CB3 0FS (United Kingdom)

    2010-08-01

    To explore the machining characteristics of glassy carbon by focused ion beam (FIB), particles induced by FIB milling on glassy carbon have been studied in the current work. Nano-sized particles in the range of tens of nanometers up to 400 nm can often be found around the area subject to FIB milling. Two ion beam scanning modes - slow single scan and fast repetitive scan - have been tested. Fewer particles are found in single patterns milled in fast repetitive scan mode. For a group of test patterns milled in a sequence, it was found that a greater number of particles were deposited around sites machined early in the sequence. In situ EDX analysis of the particles showed that they were composed of C and Ga. The formation of particles is related to the debris generated at the surrounding areas, the low melting point of gallium used as FIB ion source and the high contact angle of gallium on glassy carbon induces de-wetting of Ga and the subsequent formation of Ga particles. Ultrasonic cleaning can remove over 98% of visible particles. The surface roughness (R{sub a}) of FIB milled areas after cleaning is less than 2 nm.

  5. Occurrence of particle debris field during focused Ga ion beam milling of glassy carbon

    International Nuclear Information System (INIS)

    Hu Qin; O'Neill, William

    2010-01-01

    To explore the machining characteristics of glassy carbon by focused ion beam (FIB), particles induced by FIB milling on glassy carbon have been studied in the current work. Nano-sized particles in the range of tens of nanometers up to 400 nm can often be found around the area subject to FIB milling. Two ion beam scanning modes - slow single scan and fast repetitive scan - have been tested. Fewer particles are found in single patterns milled in fast repetitive scan mode. For a group of test patterns milled in a sequence, it was found that a greater number of particles were deposited around sites machined early in the sequence. In situ EDX analysis of the particles showed that they were composed of C and Ga. The formation of particles is related to the debris generated at the surrounding areas, the low melting point of gallium used as FIB ion source and the high contact angle of gallium on glassy carbon induces de-wetting of Ga and the subsequent formation of Ga particles. Ultrasonic cleaning can remove over 98% of visible particles. The surface roughness (R a ) of FIB milled areas after cleaning is less than 2 nm.

  6. Amorphous track modelling of luminescence detector efficiency in proton and carbon beams

    DEFF Research Database (Denmark)

    Greilich, Steffen; Grzanka, Leszek; Bassler, Niels

    assumptions in a variety of detectors. The library also includes simple particle transportation or can be interfaced to external transport codes. We applied our code to RL and OSL data from fiber-coupled Al2O3:C-detectors in a proton (nominal energies 10 MeV to 60 MeV) and a carbon beam (270 MeV/u). Results...

  7. Quantification of the Relative Biological Effectiveness for Ion Beam Radiotherapy: Direct Experimental Comparison of Proton and Carbon Ion Beams and a Novel Approach for Treatment Planning

    International Nuclear Information System (INIS)

    Elsaesser, Thilo; Weyrather, Wilma K.; Friedrich, Thomas; Durante, Marco; Iancu, Gheorghe; Kraemer, Michael; Kragl, Gabriele; Brons, Stephan; Winter, Marcus; Weber, Klaus-Josef; Scholz, Michael

    2010-01-01

    Purpose: To present the first direct experimental in vitro comparison of the biological effectiveness of range-equivalent protons and carbon ion beams for Chinese hamster ovary cells exposed in a three-dimensional phantom using a pencil beam scanning technique and to compare the experimental data with a novel biophysical model. Methods and Materials: Cell survival was measured in the phantom after irradiation with two opposing fields, thus mimicking the typical patient treatment scenario. The novel biophysical model represents a substantial extension of the local effect model, previously used for treatment planning in carbon ion therapy for more than 400 patients, and potentially can be used to predict effectiveness of all ion species relevant for radiotherapy. A key feature of the new approach is the more sophisticated consideration of spatially correlated damage induced by ion irradiation. Results: The experimental data obtained for Chinese hamster ovary cells clearly demonstrate that higher cell killing is achieved in the target region with carbon ions as compared with protons when the effects in the entrance channel are comparable. The model predictions demonstrate agreement with these experimental data and with data obtained with helium ions under similar conditions. Good agreement is also achieved with relative biological effectiveness values reported in the literature for other cell lines for monoenergetic proton, helium, and carbon ions. Conclusion: Both the experimental data and the new modeling approach are supportive of the advantages of carbon ions as compared with protons for treatment-like field configurations. Because the model predicts the effectiveness for several ion species with similar accuracy, it represents a powerful tool for further optimization and utilization of the potential of ion beams in tumor therapy.

  8. Interfacial enhancement of carbon fiber/nylon 12 composites by grafting nylon 6 to the surface of carbon fiber

    Science.gov (United States)

    Hui, Chen; Qingyu, Cai; Jing, Wu; Xiaohong, Xia; Hongbo, Liu; Zhanjun, Luo

    2018-05-01

    Nylon 6 (PA6) grafted onto carbon fiber (CF) after chemical oxidation treatment was in an attempt to reinforce the mechanical properties of carbon fiber composites. Scanning electronic microscopy (SEM), Fourier transform infrared analysis (FT-IR), X-ray photoelectron spectroscope (XPS) and thermogravimetric analysis (TG) were selected to characterize carbon fibers with different surface treated. Experimental results showed that PA6 was grafted uniformly on the fiber surface through the anionic polymerization. A large number of functional groups were introduced to the fiber surface and the surface roughness was increased. After grafting PA6 on the oxidized carbon fibers, it played an important role on improving the interfacial adhesion between the fibers and the matrix by improving PA12 wettability, increasing chemical bonding and mechanical interlocking. Compared with the desized CF composites, the tensile strength of PA6-CF/PA12 composites was increased by 30.8% from 53.9 MPa to 70.2 MPa. All results indicated that grafting PA6 onto carbon fiber surface was an effective method to enhance the mechanical strength of carbon fiber/nylon 12 composites.

  9. Advanced carbon-based material C60 modification using partially ionized cluster and energetic beams

    International Nuclear Information System (INIS)

    Du Yuancheng; Ren Zhongmin; Ning Zhifeng; Xu Ning; Li Fuming

    1997-01-01

    Two processes have been undertaken using Partially ionized cluster deposition (PICBD) and energetic ion bombardment beams deposition (IBD) respectively. C 60 films deposited by PICBD at V=0 and 65 V, which result in highly textured close-packed structure in orientation (110) and being more polycrystalline respectively, the resistance of C 60 films to oxygen diffusion contamination will be improved. In the case of PICBD, the ionized C 60 soccer-balls molecules in the evaporation beams will be fragmented in collision with the substrate under the elevated accelerating fields Va. As a new synthetic IBD processing, two low energy (400 and 1000 eV) nitrogen ion beams have been used to bombard C 60 films to synthesize the carbon nitride films

  10. BOREAS TGB-12 Isotropic Carbon Dioxide Data over the NSA

    Science.gov (United States)

    Trumbore, Susan; Hall, Forrest G. (Editor); Sundquist, Eric; Winston, Greg; Conrad, Sara K. (Editor)

    2000-01-01

    The BOREAS TGB-12 team made measurements of soil carbon inventories, carbon concentration in soil gases, and rates of soil respiration at several sites to estimate the rates of carbon accumulation and turnover in each of the major vegetation types. This data set contains information on the carbon isotopic content of carbon dioxide sampled from soils in the NSA-OBS, NSA-YJP, and NSA-OJP sites. Data were collected from 14-Nov-1993 to 10-Oct-1996. The data are stored in tabular ASCII files.

  11. Polarized target as analyzer of polarization of particle beam with spin Ssub(B)=1/2

    International Nuclear Information System (INIS)

    Golovin, V.M.; Golubeva, M.B.; Gornushkin, Yu.A.

    1982-01-01

    A possibility of using a polarized target as a target analyzer of beam particle polarization (Ssub(T)=1/2 Psub(T) vector) so that all the components of beam polarization Ssub(B)=1/2 anti Psub(B) should be determined in one experiment, is revealed. A proton polarization target is considered as a polarization target-analyzer. Asub(SK) and Asub(kk) asymmetry tensors are considered for elastic pp and pn scatterings by amplitudes of NN scattering which attain the values of 0.3-0.9 at 95-400 MeV. Asub(kk)(pp) and Asub(sk)(pp) are experimentally measured in the 445-576 MeV range. It is found that their highest absolute values are equal to 0.4-0.5 and 0.2-0.3 respectively. Elastic proton scattering on polarized electrons may be another variant of using polarized target for measuring proton beam polarization. Asub(sk) and Asub(kk) components of asymmetry tensor of elastic pe scattering are graphically presented. A possibility of using a polarized charge with spin I=1/2 as a target-analyzer of particle beam polarization is marked

  12. Advanced stabilization of PAN fibers for fabrication of carbon fibers by e-beam irradiation

    International Nuclear Information System (INIS)

    Jeun, Joon Pyo; Kim, Du Young; Shin, Hye Kyoung; Kang, Phil Hyun; Park, Jung Ki

    2012-01-01

    In recent years, the carbon fiber industry has been growing rapidly to meet the demand from efferent industries such as aerospace, military, turbine blades, light weight cylinders and pressure vessels. Generally, carbon fibers are manufactured by a controlled pyrolysis of stabilized precursor fiber such as polyacrylonitrile (PAN). In the stabilization step, the linear PAN molecules are first converted to cyclic structure. However, cyclization is a very complicated process and there are still differences of opinion on the reaction mechanisms. Photo-induced crosslinking and stabilization of PAN via ion beam, X-ray, gamma ray and UV irradiation has been reported in the literature. However, the process required a long stabilization time. In this work, a new and highly effective method of pretreatment PAN precursor fiber was described. The effect of the e-beam on the stabilization process of the fibers was investigated using differential scanning calorimeter (DSC) and X-ray diffraction (XRD) measurement

  13. Radiation damage and thermal shock response of carbon-fiber-reinforced materials to intense high-energy proton beams

    Directory of Open Access Journals (Sweden)

    N. Simos

    2016-11-01

    Full Text Available A comprehensive study on the effects of energetic protons on carbon-fiber composites and compounds under consideration for use as low-Z pion production targets in future high-power accelerators and low-impedance collimating elements for intercepting TeV-level protons at the Large Hadron Collider has been undertaken addressing two key areas, namely, thermal shock absorption and resistance to irradiation damage. Carbon-fiber composites of various fiber weaves have been widely used in aerospace industries due to their unique combination of high temperature stability, low density, and high strength. The performance of carbon-carbon composites and compounds under intense proton beams and long-term irradiation have been studied in a series of experiments and compared with the performance of graphite. The 24-GeV proton beam experiments confirmed the inherent ability of a 3D C/C fiber composite to withstand a thermal shock. A series of irradiation damage campaigns explored the response of different C/C structures as a function of the proton fluence and irradiating environment. Radiolytic oxidation resulting from the interaction of oxygen molecules, the result of beam-induced radiolysis encountered during some of the irradiation campaigns, with carbon atoms during irradiation with the presence of a water coolant emerged as a dominant contributor to the observed structural integrity loss at proton fluences ≥5×10^{20}  p/cm^{2}. The carbon-fiber composites were shown to exhibit significant anisotropy in their dimensional stability driven by the fiber weave and the microstructural behavior of the fiber and carbon matrix accompanied by the presence of manufacturing porosity and defects. Carbon-fiber-reinforced molybdenum-graphite compounds (MoGRCF selected for their impedance properties in the Large Hadron Collider beam collimation exhibited significant decrease in postirradiation load-displacement behavior even after low dose levels (∼5×10^{18}

  14. BOREAS TGB-12 Soil Carbon Data over the NSA

    Science.gov (United States)

    Trumbore, Susan; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor); Harden, Jennifer; Sundquist, Eric; Winston, Greg

    2000-01-01

    The BOREAS TGB-12 team made measurements of soil carbon inventories, carbon concentration in soil gases, and rates of soil respiration at several sites to estimate the rates of carbon accumulation and turnover in each of the major vegetation types. TGB-12 data sets include soil properties at tower and selected auxiliary sites in the BOREAS NSA and data on the seasonal variations in the radiocarbon content of CO2 in the soil atmosphere at NSA tower sites. The sampling strategies for soils were designed to take advantage of local fire chronosequences, so that the accumulation of C in areas of moss regrowth could be determined. These data are used to calculate the inventory of C and N in moss and mineral soil layers at NSA sites and to determine the rates of input and turnover (using both accumulation since the last stand-killing fire and radiocarbon data). This data set includes physical parameters needed to determine carbon and nitrogen inventory in soils. The data were collected discontinuously from August 1993 to July 1996. The data are stored in tabular ASCII files.

  15. Focused Ion Beam Nanopatterning for Carbon Nanotube Ropes Based Sensor

    Directory of Open Access Journals (Sweden)

    Vera LA FERRARA

    2007-11-01

    Full Text Available Focused Ion Beam (FIB technology has been used to realize electrode patterns for contacting Single Walled Carbon Nanotubes (SWCNTs ropes for chemical gas sensor applications. Two types of transducers, based on a single rope and on bundles, have been realized starting from silicon/Si3N4 substrate. Electrical behaviour, at room temperature, in toxic gas environments, has been investigated and compared to evaluate contribution of a single rope based sensor respect to bundles one. For all the devices, upon exposure to NO2 and NH3, the conductance has been found to increase or decrease respectively. Conductance signal is stronger for sensor based on bundles, but it also evident that response time in NO2 is faster for device based on a single rope. FIB technology offers, then, the possibility to contact easily a single sensitive nanowire, as carbon nanotube rope.

  16. Reprint of: Negative carbon cluster ion beams: New evidence for the special nature of C60

    Science.gov (United States)

    Liu, Y.; O'brien, S. C.; Zhang, Q.; Heath, J. R.; Tittel, F. K.; Curl, R. F.; Kroto, H. W.; Smalley, R. E.

    2013-12-01

    Cold carbon cluster negative ions are formed by supersonic expansion of a plasma created at the nozzle of a supersonic cluster beam source by an excimer laser pulse. The observed distribution of mass peaks for the Cn- ions for n > 40 demonstrates that the evidence previously given for the special stability of neutral C60 and the existence of spheroidal carbon shells cannot be an artifact of the ionization conditions.

  17. Nuclear micro-beam analysis of deuterium distribution in carbon fibre composites for controlled fusion devices

    International Nuclear Information System (INIS)

    Petersson, P.; Kreter, A.; Possnert, G.; Rubel, M.

    2010-01-01

    Probes made of carbon fibre composite NB41 were exposed to deuterium plasmas in the TEXTOR tokamak and in a simulator of plasma-wall interactions, PISCES. The aim was to assess the deuterium retention and its lateral and depth distribution. The analysis was performed by means of D( 3 He, p) 4 He and 12 C( 3 He, p) 14 N nuclear reactions analysis using a standard (1 mm spot) and micro-beam (20 μm resolution). The measurements have revealed non uniform distribution of deuterium atoms in micro-regions: differences by a factor of 3 between the maximum and minimum deuterium concentrations. The differences were associated with the orientation and type of fibres for samples exposed in PICSES. For surface structure in the erosion zone of samples exposed to a tokamak plasma the micro-regions were more complex. Depth profiling has indicated migration of fuel into the bulk of materials.

  18. Nanoscale Soldering of Positioned Carbon Nanotubes using Highly Conductive Electron Beam Induced Gold Deposition

    DEFF Research Database (Denmark)

    Madsen, Dorte Nørgaard; Mølhave, Kristian; Mateiu, Ramona Valentina

    2003-01-01

    We have developed an in-situ method for controlled positioning of carbon nanotubes followed by highly conductive contacting of the nanotubes, using electron beam assisted deposition of gold. The positioning and soldering process takes place inside an Environmental Scanning Electron Microscope (E...... in a carbon matrix. Nanoscale soldering of multi-walled carbon nanotubes (MWNT) onto microelectrodes was achieved by deposition of a conducting gold line across a contact point between nanotube and electrode. The solderings were found to be mechanically stronger than the carbon nanotubes. We have positioned...... MWNTs to bridge the gap between two electrodes, and formed soldering bonds between the tube and each of the electrodes. All nanotube bridges showed ohmic resistances in the range 10-30 kΩ. We observed no increase in resistance after exposing the MWNT bridge to air for days....

  19. Electrochemical impedance spectroscopy on nanostructured carbon electrodes grown by supersonic cluster beam deposition

    International Nuclear Information System (INIS)

    Bettini, Luca Giacomo; Bardizza, Giorgio; Podestà, Alessandro; Milani, Paolo; Piseri, Paolo

    2013-01-01

    Nanostructured porous films of carbon with density of about 0.5 g/cm 3 and 200 nm thickness were deposited at room temperature by supersonic cluster beam deposition (SCBD) from carbon clusters formed in the gas phase. Carbon film surface topography, determined by atomic force microscopy, reveals a surface roughness of 16 nm and a granular morphology arising from the low kinetic energy ballistic deposition regime. The material is characterized by a highly disordered carbon structure with predominant sp2 hybridization as evidenced by Raman spectroscopy. The interface properties of nanostructured carbon electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy employing KOH 1 M solution as aqueous electrolyte. An increase of the double layer capacitance is observed when the electrodes are heat treated in air or when a nanostructured nickel layer deposited by SCBD on top of a sputter deposited film of the same metal is employed as a current collector instead of a plain metallic film. This enhancement is consistent with an improved charge injection in the active material and is ascribed to the modification of the electrical contact at the interface between the carbon and the metal current collector. Specific capacitance values up to 120 F/g have been measured for the electrodes with nanostructured metal/carbon interface.

  20. Electrochemical impedance spectroscopy on nanostructured carbon electrodes grown by supersonic cluster beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bettini, Luca Giacomo; Bardizza, Giorgio; Podesta, Alessandro; Milani, Paolo; Piseri, Paolo, E-mail: piseri@mi.infn.it [Universita degli Studi di Milano, Dipartimento di Fisica and CIMaINa (Italy)

    2013-02-15

    Nanostructured porous films of carbon with density of about 0.5 g/cm{sup 3} and 200 nm thickness were deposited at room temperature by supersonic cluster beam deposition (SCBD) from carbon clusters formed in the gas phase. Carbon film surface topography, determined by atomic force microscopy, reveals a surface roughness of 16 nm and a granular morphology arising from the low kinetic energy ballistic deposition regime. The material is characterized by a highly disordered carbon structure with predominant sp2 hybridization as evidenced by Raman spectroscopy. The interface properties of nanostructured carbon electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy employing KOH 1 M solution as aqueous electrolyte. An increase of the double layer capacitance is observed when the electrodes are heat treated in air or when a nanostructured nickel layer deposited by SCBD on top of a sputter deposited film of the same metal is employed as a current collector instead of a plain metallic film. This enhancement is consistent with an improved charge injection in the active material and is ascribed to the modification of the electrical contact at the interface between the carbon and the metal current collector. Specific capacitance values up to 120 F/g have been measured for the electrodes with nanostructured metal/carbon interface.

  1. Electrochemical impedance spectroscopy on nanostructured carbon electrodes grown by supersonic cluster beam deposition

    Science.gov (United States)

    Bettini, Luca Giacomo; Bardizza, Giorgio; Podestà, Alessandro; Milani, Paolo; Piseri, Paolo

    2013-02-01

    Nanostructured porous films of carbon with density of about 0.5 g/cm3 and 200 nm thickness were deposited at room temperature by supersonic cluster beam deposition (SCBD) from carbon clusters formed in the gas phase. Carbon film surface topography, determined by atomic force microscopy, reveals a surface roughness of 16 nm and a granular morphology arising from the low kinetic energy ballistic deposition regime. The material is characterized by a highly disordered carbon structure with predominant sp2 hybridization as evidenced by Raman spectroscopy. The interface properties of nanostructured carbon electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy employing KOH 1 M solution as aqueous electrolyte. An increase of the double layer capacitance is observed when the electrodes are heat treated in air or when a nanostructured nickel layer deposited by SCBD on top of a sputter deposited film of the same metal is employed as a current collector instead of a plain metallic film. This enhancement is consistent with an improved charge injection in the active material and is ascribed to the modification of the electrical contact at the interface between the carbon and the metal current collector. Specific capacitance values up to 120 F/g have been measured for the electrodes with nanostructured metal/carbon interface.

  2. Effect of carbon content on microstructure and mechanical properties of hot-rolled low carbon 12Cr-Ni stainless steel

    International Nuclear Information System (INIS)

    Zheng, H.; Ye, X.N.; Li, J.D.; Jiang, L.Z.; Liu, Z.Y.; Wang, G.D.; Wang, B.S.

    2010-01-01

    Research highlights: → Hot-rolled ultra low carbon martensite is characterized by dislocation cells substructure. → The formation of dislocation cells is attributed to high Ms and low interstitial atoms content. → Hot-rolled ultra low carbon 12Cr-Ni stainless steel has excellent impact toughness. → Delta ferrite deteriorates the impact toughness of hot-rolled 12Cr-Ni stainless steel. - Abstract: 12Cr-Ni stainless steels containing different carbon contents from 0.004 wt.% to 0.034 wt.% were hot-rolled and air-cooled. Their corresponding microstructures were observed with optical microscope and transmission electron microscope, and the Vickers hardness, tensile and impact tests were also carried out. It was found that the martensitic morphology was significantly influenced by carbon content. The as-received ultra low carbon martensite in the steel containing 0.004 wt.% C is characterized by dislocation cells substructure. The formation of dislocation cells is attributed to high martensite finishing point (above 400 deg. C) and low interstitial atoms content. On the other hand, the martensite in the steel containing 0.034 wt.% C consists mainly of typical martensite laths because of low martensite finishing point and high interstitial atoms content which hinder dislocation motion. Furthermore, carbon content has an evident effect on the mechanical properties of 12Cr-Ni steels. The hardness and strength of the as-received steels increase with an increase in carbon content, but their elongation and impact toughness decrease with the carbon content. The steel containing 0.004 wt.% C has excellent impact toughness due to the ultra low carbon content in the martensite composed of dislocation cells.

  3. Flexural Strength of Carbon Fiber Reinforced Polymer Repaired Cracked Rectangular Hollow Section Steel Beams

    Directory of Open Access Journals (Sweden)

    Tao Chen

    2015-01-01

    Full Text Available The flexural behavior of rectangular hollow section (RHS steel beams with initial crack strengthened externally with carbon fiber reinforced polymer (CFRP plates was studied. Eight specimens were tested under three-point loading to failure. The experimental program included three beams as control specimens and five beams strengthened with CFRP plates with or without prestressing. The load deflection curves were graphed and failure patterns were observed. The yield loads and ultimate loads with or without repairing were compared together with the strain distributions of the CFRP plate. It was concluded that yield loads of cracked beams could be enhanced with repairing. Meanwhile, the ultimate loads were increased to some extent. The effect of repair became significant with the increase of the initial crack depth. The failure patterns of the repaired specimens were similar to those of the control ones. Mechanical clamping at the CFRP plate ends was necessary to avoid premature peeling between the CFRP plate and the steel beam. The stress levels in CFRP plates were relatively low during the tests. The use of prestressing could improve the utilization efficiency of CFRP plates. It could be concluded that the patching repair could be used to restore the load bearing capacity of the deficient steel beams.

  4. The influence of lateral beam profile modifications in scanned proton and carbon ion therapy: a Monte Carlo study

    CERN Document Server

    Parodi, K; Kraemer, M; Sommerer, F; Naumann, J; Mairani, A; Brons, S

    2010-01-01

    Scanned ion beam delivery promises superior flexibility and accuracy for highly conformal tumour therapy in comparison to the usage of passive beam shaping systems. The attainable precision demands correct overlapping of the pencil-like beams which build up the entire dose distribution in the treatment field. In particular, improper dose application due to deviations of the lateral beam profiles from the nominal planning conditions must be prevented via appropriate beam monitoring in the beamline, prior to the entrance in the patient. To assess the necessary tolerance thresholds of the beam monitoring system at the Heidelberg Ion Beam Therapy Center, Germany, this study has investigated several worst-case scenarios for a sensitive treatment plan, namely scanned proton and carbon ion delivery to a small target volume at a shallow depth. Deviations from the nominal lateral beam profiles were simulated, which may occur because of misaligned elements or changes of the beam optic in the beamline. Data have been an...

  5. Mechanical Behavior of Steel Fiber-Reinforced Concrete Beams Bonded with External Carbon Fiber Sheets.

    Science.gov (United States)

    Gribniak, Viktor; Tamulenas, Vytautas; Ng, Pui-Lam; Arnautov, Aleksandr K; Gudonis, Eugenijus; Misiunaite, Ieva

    2017-06-17

    This study investigates the mechanical behavior of steel fiber-reinforced concrete (SFRC) beams internally reinforced with steel bars and externally bonded with carbon fiber-reinforced polymer (CFRP) sheets fixed by adhesive and hybrid jointing techniques. In particular, attention is paid to the load resistance and failure modes of composite beams. The steel fibers were used to avoiding the rip-off failure of the concrete cover. The CFRP sheets were fixed to the concrete surface by epoxy adhesive as well as combined with various configurations of small-diameter steel pins for mechanical fastening to form a hybrid connection. Such hybrid jointing techniques were found to be particularly advantageous in avoiding brittle debonding failure, by promoting progressive failure within the hybrid joints. The use of CFRP sheets was also effective in suppressing the localization of the discrete cracks. The development of the crack pattern was monitored using the digital image correlation method. As revealed from the image analyses, with an appropriate layout of the steel pins, brittle failure of the concrete-carbon fiber interface could be effectively prevented. Inverse analysis of the moment-curvature diagrams was conducted, and it was found that a simplified tension-stiffening model with a constant residual stress level at 90% of the strength of the SFRC is adequate for numerically simulating the deformation behavior of beams up to the debonding of the CFRP sheets.

  6. THI: goal reached with a carbon beam, and some results of beam tests and theoretical studies related to longitudinal space charge effects

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    During the first semester of this year, two tests were devoted to high intensity beams: 1) trying to reach the ultimate goal with a carbon beam and 2) going further into the study of perturbing phenomena. A 1.3 x 10 13 pps 13 C beam was successfully extracted from SSC2 and sustained for 13 hours with an excellent stability. Then, the current was increased to 2 x 10 13 pps with no major problem. Therefore, it is possible from now on to bombard the 2 kW target which is prepared for the production of helium isotopes and subsequent acceleration in the new cyclotron CIME. Both experimental and simulation studies were carried in parallel, in the frame of the last year expertise, in order to get a better knowledge and control of the effect of longitudinal space charge forces. It appears that these effects affect the beam width mostly in SSC2, while a discrepancy between computer simulations and measurements seems to show up concerning the effect of neighbouring bunches. (author)

  7. Transfer-free synthesis of graphene-like atomically thin carbon films on SiC by ion beam mixing technique

    Science.gov (United States)

    Zhang, Rui; Chen, Fenghua; Wang, Jinbin; Fu, Dejun

    2018-03-01

    Here we demonstrate the synthesis of graphene directly on SiC substrates at 900 °C using ion beam mixing technique with energetic carbon cluster ions on Ni/SiC structures. The thickness of 7-8 nm Ni films was evaporated on the SiC substrates, followed by C cluster ion bombarding. Carbon cluster ions C4 were bombarded at 16 keV with the dosage of 4 × 1016 atoms/cm2. After thermal annealing process Ni silicides were formed, whereas C atoms either from the decomposition of the SiC substrates or the implanted contributes to the graphene synthesis by segregating and precipitating process. The limited solubility of carbon atoms in silicides, involving SiC, Ni2Si, Ni5Si2, Ni3Si, resulted in diffusion and precipitation of carbon atoms to form graphene on top of Ni and the interface of Ni/SiC. The ion beam mixing technique provides an attractive production method of a transfer-free graphene growth on SiC and be compatible with current device fabrication.

  8. Electron Cloud in Steel Beam Pipe vs Titanium Nitride Coated and Amorphous Carbon Coated Beam Pipes in Fermilab's Main Injector

    Energy Technology Data Exchange (ETDEWEB)

    Backfish, Michael

    2013-04-01

    This paper documents the use of four retarding field analyzers (RFAs) to measure electron cloud signals created in Fermilab’s Main Injector during 120 GeV operations. The first data set was taken from September 11, 2009 to July 4, 2010. This data set is used to compare two different types of beam pipe that were installed in the accelerator. Two RFAs were installed in a normal steel beam pipe like the rest of the Main Injector while another two were installed in a one meter section of beam pipe that was coated on the inside with titanium nitride (TiN). A second data run started on August 23, 2010 and ended on January 10, 2011 when Main Injector beam intensities were reduced thus eliminating the electron cloud. This second run uses the same RFA setup but the TiN coated beam pipe was replaced by a one meter section coated with amorphous carbon (aC). This section of beam pipe was provided by CERN in an effort to better understand how an aC coating will perform over time in an accelerator. The research consists of three basic parts: (a) continuously monitoring the conditioning of the three different types of beam pipe over both time and absorbed electrons (b) measurement of the characteristics of the surrounding magnetic fields in the Main Injector in order to better relate actual data observed in the Main Injector with that of simulations (c) measurement of the energy spectrum of the electron cloud signals using retarding field analyzers in all three types of beam pipe.

  9. Study of 16O(12C,α20Ne)α for the investigation of carbon-carbon fusion reaction via the Trojan Horse Method

    International Nuclear Information System (INIS)

    Rapisarda, G.G.; Spitaleri, C; Kiss, G.G.; La Cognata, M.; Pizzone, R.G.; Romano, S.; Tumino, A.; Bordeanu, C.; Nita, C.; Pantelica, D.; Petrascu, H.; Velisa, G.; Hons, Z.; Mrazek, J.; Szücs, T.; Trache, L.

    2016-01-01

    Carbon-carbon fusion reaction represents a nuclear process of great interest in astrophysics, since the carbon burning is connected with the third phase of massive stars (M > 8 M ☉ ) evolution. In spite of several experimental works, carbon-carbon cross section has been measured at energy still above the Gamow window moreover data at low energy present big uncertainty. In this paper we report the results about the study of the 16 O( 12 C,α 20 Ne)α reaction as a possible three-body process to investigate 12 C( 12 C,α) 20 Ne at astrophysical energy via Trojan Horse Method (THM). This study represents the first step of a program of experiments aimed to measure the 12 C+ 12 C cross section at astrophysical energy using the THM. (paper)

  10. Optimizing the e-beam profile of a single carbon nanotube field emission device for electric propulsion systems

    Directory of Open Access Journals (Sweden)

    Juliano Fujioka Mologni

    2010-04-01

    Full Text Available Preliminary studies on field emission (FE arrays comprised of carbon nanotubes (CNT as an electron source for electric propulsion system show remarkably promising results. Design parameters for a carbon nanotube (CNT field-emission device operating on triode configuration were numerically simulated and optimized in order to enhance the e-beam focusing quality. An additional focus gate (FG was integrated to the device to control the profile of the emitted e-beam. An axisymmetric finite element model was developed to calculate the electric field distribution on the vacuum region and a modified Fowler-Nordheim (FN equation was used to evaluate the current density emission and the effective emitter area. Afterward, a FE simulation was employed in order to calculate the trajectory of the emitted electrons and define the electron-optical properties of the e-beam. The integration of the FG was fully investigated via computational intelligence techniques. The best performance device according to our simulations presents a collimated e-beam profile that suits well for field emission displays, magnetic field detection and electron microscopy. The automated computational design tool presented in this study strongly benefits the robust design of integrated electron-optical systems for vacuum field emission applications, including electrodynamic tethering and electric propulsion systems.

  11. Delamination of carbon-fiber strengthening layer from concrete beam during deformation (infrared thermography)

    OpenAIRE

    Shardakov, I. N.; Shestakov, A. P.; Bykov, A.A.

    2016-01-01

    Technology of strengthening reinforced concrete structures with composite materials has found wide application. The effectiveness of strengthening of concrete structures with externally bonded reinforcement is supported by a great deal of experimental evidence. However, the problem of serviceability of such structures has not been adequately explored. The present work describes the results of experimental studies on the loadcarrying capacity of concrete beams strengthened with carbon fiber re...

  12. Evaluation of beam delivery and ripple filter design for non-isocentric proton and carbon ion therapy.

    Science.gov (United States)

    Grevillot, L; Stock, M; Vatnitsky, S

    2015-10-21

    This study aims at selecting and evaluating a ripple filter design compatible with non-isocentric proton and carbon ion scanning beam treatment delivery for a compact nozzle. The use of non-isocentric treatments when the patient is shifted as close as possible towards the nozzle exit allows for a reduction in the air gap and thus an improvement in the quality of scanning proton beam treatment delivery. Reducing the air gap is less important for scanning carbon ions, but ripple filters are still necessary for scanning carbon ion beams to reduce the number of energy steps required to deliver homogeneous SOBP. The proper selection of ripple filters also allows a reduction in the possible transverse and depth-dose inhomogeneities that could appear in non-isocentric conditions in particular. A thorough review of existing ripple filter designs over the past 16 years is performed and a design for non-isocentric treatment delivery is presented. A unique ripple filter quality index (QIRiFi) independent of the particle type and energy and representative of the ratio between energy modulation and induced scattering is proposed. The Bragg peak width evaluated at the 80% dose level (BPW80) is proposed to relate the energy modulation of the delivered Bragg peaks and the energy layer step size allowing the production of homogeneous SOBP. Gate/Geant4 Monte Carlo simulations have been validated for carbon ion and ripple filter simulations based on measurements performed at CNAO and subsequently used for a detailed analysis of the proposed ripple filter design. A combination of two ripple filters in a series has been validated for non-isocentric delivery and did not show significant transverse and depth-dose inhomogeneities. Non-isocentric conditions allow a significant reduction in the spot size at the patient entrance (up to 350% and 200% for protons and carbon ions with range shifter, respectively), and therefore in the lateral penumbra in the patients.

  13. Structural and optical properties of 70-keV carbon ion beam synthesized carbon nanoclusters in thermally grown silicon dioxide

    International Nuclear Information System (INIS)

    Poudel, P.R.; Poudel, P.P.; Paramo, J.A.; Strzhemechny, Y.M.; Rout, B.; McDaniel, F.D.

    2015-01-01

    The structural and optical properties of carbon nanoclusters formed in thermally grown silicon dioxide film via the ion beam synthesis process have been investigated. A low-energy (70 keV) carbon ion beam (C - ) at a fluence of 3 x 10 17 atoms/cm 2 was used for implantation into a thermally grown silicon dioxide layer (500 nm thick) on a Si (100) wafer. Several parts of the implanted samples were subsequently annealed in a gas mixture (4 % H 2 + 96 % Ar) at 900 C for different time periods. The as-implanted and annealed samples were characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy, Raman spectroscopy, transmission electron microscopy (TEM), and photoluminescence spectroscopy (PL). The carbon ion implantation depth profile was simulated using a widely used Monte Carlo-based simulation code SRIM-2012. Additionally, the elemental depth profile of the implanted carbon along with host elements of silicon and oxygen were simulated using a dynamic ion-solid interaction code T-DYN, which incorporates the effects of the surface sputtering and gradual change in the elemental composition in the implanted layers due to high-fluence ion implantation. The elemental depth profile obtained from the XPS measurements matches closely to the T-DYN predictions. Raman measurements indicate the formation of graphitic phases in the annealed samples. The graphitic peak (G-peak) was found to be increased with the annealing time duration. In the sample annealed for 10 min, the sizes of the carbon nanoclusters were found to be 1-4 nm in diameter using TEM. The PL measurements at room temperature using a 325-nm laser show broad-band emissions in the ultraviolet to visible range in the as-implanted sample. Intense narrow bands along with the broad bands were observed in the annealed samples. The defects present in the as-grown samples along with carbon ion-induced defect centers in the as-implanted samples are the main contributors to the observed

  14. Structural and optical properties of 70-keV carbon ion beam synthesized carbon nanoclusters in thermally grown silicon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Poudel, P.R. [University of North Texas, Ion Beam Modification and Analysis Laboratory, Department of Physics, Denton, TX (United States); Intel Corporation, Rio Rancho, NM (United States); Poudel, P.P. [University of Kentucky, Department of Chemistry, Lexington, KY (United States); Paramo, J.A.; Strzhemechny, Y.M. [Texas Christian University, Department of Physics and Astronomy, Fort Worth, TX (United States); Rout, B. [University of North Texas, Ion Beam Modification and Analysis Laboratory, Department of Physics, Denton, TX (United States); University of North Texas, Center for Advanced Research and Technology, Denton, TX (United States); McDaniel, F.D. [University of North Texas, Ion Beam Modification and Analysis Laboratory, Department of Physics, Denton, TX (United States)

    2014-09-18

    The structural and optical properties of carbon nanoclusters formed in thermally grown silicon dioxide film via the ion beam synthesis process have been investigated. A low-energy (70 keV) carbon ion beam (C{sup -}) at a fluence of 3 x 10{sup 17} atoms/cm{sup 2} was used for implantation into a thermally grown silicon dioxide layer (500 nm thick) on a Si (100) wafer. Several parts of the implanted samples were subsequently annealed in a gas mixture (4 % H{sub 2} + 96 % Ar) at 900 C for different time periods. The as-implanted and annealed samples were characterized by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy, Raman spectroscopy, transmission electron microscopy (TEM), and photoluminescence spectroscopy (PL). The carbon ion implantation depth profile was simulated using a widely used Monte Carlo-based simulation code SRIM-2012. Additionally, the elemental depth profile of the implanted carbon along with host elements of silicon and oxygen were simulated using a dynamic ion-solid interaction code T-DYN, which incorporates the effects of the surface sputtering and gradual change in the elemental composition in the implanted layers due to high-fluence ion implantation. The elemental depth profile obtained from the XPS measurements matches closely to the T-DYN predictions. Raman measurements indicate the formation of graphitic phases in the annealed samples. The graphitic peak (G-peak) was found to be increased with the annealing time duration. In the sample annealed for 10 min, the sizes of the carbon nanoclusters were found to be 1-4 nm in diameter using TEM. The PL measurements at room temperature using a 325-nm laser show broad-band emissions in the ultraviolet to visible range in the as-implanted sample. Intense narrow bands along with the broad bands were observed in the annealed samples. The defects present in the as-grown samples along with carbon ion-induced defect centers in the as-implanted samples are the main

  15. Stress corrosion cracking tests on electron beam welded carbon steel specimens in carbonate-bicarbonate solution

    International Nuclear Information System (INIS)

    Parkins, R.N.

    1985-04-01

    Stress corrosion cracking tests have been performed on tapered carbon steel test pieces containing electron beam welds with a view to defining susceptibility to such cracking in a carbonate-bicarbonate solution at 90 C and an appropriate electrode potential. The tests involved applying cyclic loads to the specimens and it is shown that the threshold stress for cracking reduces linearly with increase in the magnitude of the cyclic load component. Extrapolation of these trends to zero fluctuating stress indicates static load threshold stresses in the vicinity of the yield stress (i.e. about 300 N/mm 2 for parent plate without a weld, 400 N/mm 2 for specimens with welds on one side only and 600 N/mm 2 for specimens having welds penetrating through the thickness of the specimen). The averages of the maximum crack velocities observed were least for parent plate material and greatest for weld metal, the former being essentially intergranular in morphology and the latter mostly transgranular, with heat affected zone material being intermediate between these extremes. (author)

  16. Over half a century of studying carbon-12

    Science.gov (United States)

    Kokalova Wheldon, Tzany

    2015-09-01

    Carbon-12 is one of the most studied light nuclei yet it continues to surprise and provide a rigorous testing ground for a wide range of physics, from nucleosynthesis models to theories of symmetries. This paper discusses the background motivating the investigations of 12C and summarises the recent results, with an emphasis on collective excitations and the high-energy structure together with possible future directions for this most intriguing of nuclei.

  17. Quantum beats study of the 4He+ beam-carbon foil interaction

    International Nuclear Information System (INIS)

    Denis, A.; Desesquelles, J.

    1979-01-01

    Excitation cross-sections are deduced from the analysis of quantum beats in an electric field for an 4 He + (n=4) ion beam scattering through a thin carbon foil. The population distribution obtained at 1 MeV for 4S, 4P, 4D and 4F levels is in good agreement with a second-order Born approximation calculation of the electronic capture He ++ +C→He + (n=4) + C + . The alignment is found to be negative for P, D and F levels. The coherences Δl=+-1 have been measured, for amplitudes and phases [fr

  18. Vibration of nonuniform carbon nanotube with attached mass via nonlocal Timoshenko beam theory

    International Nuclear Information System (INIS)

    Tang, Hai Li; Shen, Zhi Bin; Li, Dao Kui

    2014-01-01

    This paper studies the vibrational behavior of nonuniform single-walled carbon nanotube (SWCNT) carrying a nanoparticle. A nonuniform cantilever beam with a concentrated mass at the free end is analyzed according to the nonlocal Timoshenko beam theory. A governing equation of a nonuniform SWCNT with attached mass is established. The transfer function method incorporating with the perturbation method is utilized to obtain the resonant frequencies of a vibrating nonlocal cantilever-mass system. The effects of the nonlocal parameter, taper ratio and attached mass on the natural frequencies and frequency shifts are discussed. Obtained results indicate that the sensitivity of the frequency shifts on the attached mass increases when the length-to-diameter ratio decreases. Tapered SWCNT possesses higher fundamental frequencies if the taper ratio becomes larger.

  19. Bending analysis of agglomerated carbon nanotube-reinforced beam resting on two parameters modified Vlasov model foundation

    Science.gov (United States)

    Ghorbanpour Arani, A.; Zamani, M. H.

    2018-06-01

    The present work deals with bending behavior of nanocomposite beam resting on two parameters modified Vlasov model foundation (MVMF), with consideration of agglomeration and distribution of carbon nanotubes (CNTs) in beam matrix. Equivalent fiber based on Eshelby-Mori-Tanaka approach is employed to determine influence of CNTs aggregation on elastic properties of CNT-reinforced beam. The governing equations are deduced using the principle of minimum potential energy under assumption of the Euler-Bernoulli beam theory. The MVMF required the estimation of γ parameter; to this purpose, unique iterative technique based on variational principles is utilized to compute value of the γ and subsequently fourth-order differential equation is solved analytically. Eventually, the transverse displacements and bending stresses are obtained and compared for different agglomeration parameters, various boundary conditions simultaneously and variant elastic foundation without requirement to instate values for foundation parameters.

  20. A study of V79 cell survival after for proton and carbon ion beams as represented by the parameters of Katz' track structure model

    DEFF Research Database (Denmark)

    Grzanka, Leszek; Waligórski, M. P. R.; Bassler, Niels

    different sets of data obtained for the same cell line and different ions, measured at different laboratories, we have fitted model parameters to a set of carbon-irradiated V79 cells, published by Furusawa et al. (2), and to a set of proton-irradiated V79 cells, published by Wouters et al. (3), separately....... We found that values of model parameters best fitted to the carbon data of Furusawa et al. yielded predictions of V79 survival after proton irradiation which did not match the V79 proton data of Wouters et al. Fitting parameters to both sets combined did not improve the accuracy of model predictions...... carbon irradiation. 1. Katz, R., Track structure in radiobiology and in radiation detection. Nuclear Track Detection 2: 1-28 (1978). 2. Furusawa Y. et al. Inactivation of aerobic and hypoxic cells from three different cell lines by accelerated 3He-, 12C- and 20Ne beams. Radiat Res. 2012 Jan; 177...

  1. Three-dimensional ultrashort optical Airy beams in an inhomogeneous medium with carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Zhukov, Alexander V., E-mail: alex.zhukov@outlook.sg [Singapore University of Technology & Design, 8 Somapah Road, 487372 Singapore (Singapore); Bouffanais, Roland [Singapore University of Technology & Design, 8 Somapah Road, 487372 Singapore (Singapore); Belonenko, Mikhail B. [Laboratory of Nanotechnology, Volgograd Institute of Business, 400048 Volgograd (Russian Federation); Volgograd State University, 400062 Volgograd (Russian Federation); Dvuzhilov, Ilya S. [Volgograd State University, 400062 Volgograd (Russian Federation)

    2017-03-11

    In this Letter, we consider the problem of the dynamics of propagation of three-dimensional optical pulses (a.k.a. light bullets) with an Airy profile through a heterogeneous environment of carbon nanotubes. We show numerically that such beams exhibit sustained and stable propagation. Moreover, we demonstrate that by varying the density modulation period of the carbon nanotubes one can indirectly control the pulse velocity, which is a particularly valuable feature for the design and manufacturing of novel pulse delay devices. - Highlights: • Propagation of Airy pulses in CNTs with modulated density. • Light bullets propagate stably. • Influence of Airy parameter is revealed. • Modulation period results in an increase of the pulse velocity.

  2. Mechanical and tribological properties of carbon thin film with tungsten interlayer prepared by Ion beam assisted deposition

    Czech Academy of Sciences Publication Activity Database

    Vlčák, P.; Černý, F.; Tolde, Z.; Sepitka, J.; Gregora, Ivan; Daniš, S.

    2013-01-01

    Roč. 2013, FEB (2013) ISSN 2314-4874 Institutional support: RVO:68378271 Keywords : carbon coatings * ion beam deposition * XRD * nanoindentation Subject RIV: BM - Solid Matter Physics ; Magnetism http://dx.doi.org/10.1155/2013/630156

  3. Differential cross section measurement of elastic scattering 12C(p,p)12C in the astrophysical range of energy

    International Nuclear Information System (INIS)

    Baktibayev, M.K.; Burminskii, V.P.; Burtebaev, N.; Dzazairov -Kakhramanov, V.; Hassan, S.F.; Satpaev, N.K.; Zazulin, D.M.

    2004-01-01

    Full text: The fulfillment of planned works on measurements of differential cross sections of elastic scattering of protons on nuclear 12 C at the energy region of 350†1050 keV suggests the preparation of thin self - supporting carbon target. The self - supporting target is necessary in order to perform investigations in the total angular range. In the future last data will be used in order to determine optical potentials and scattering phases for this nuclear in the energy range of astrophysical interest. There was prepared target layer of the 12 C with natural composition of carbon and of thickness of 17.4 μg/cm 2 . The spraying was conducted in the vacuum evaporation installation (VUP - 4) by an electron bombardment method. Carbon was sprayed on a glass plate with previously deposited of layer salt. After a heating during 12 hours at the temperature of 150 o C the film of carbon was floated from glass plate and self - supporting target has been picked up on the specially prepared target frame. In order to determine thickness of target there was used the resonance chamber, installed in the protons channel of the accelerator RAC - 2 - 1 (INP NNC RK), with the help of which there was measured energy loss of the protons beam during the passage through target, disposed in the central chamber. For this purpose there was used the reaction 27 Al(p,γ) 28 Si with narrow resonance with E R = 992 keV and with detection of gamma-quanta with E γ = 1779 keV. On shift of the resonance E R =992 keV in the reaction 27 Al(p,γ) 28 Si, which takes place owing to protons energy loss in the thickness of carbon film, and using table values of brake quantities S(E p )[MeV·cm 2 /g] [1], there was determined thickness of this fine film. Such the method allows to determine thicknesses of films in the interval of (10 † 100) mcg/cm 2 with the accuracy of not worse than 5%. In the present work there were carried out measurements of angular distributions of cross sections of the

  4. Characterization of electron beam evaporated carbon films and compound formation on titanium and silicon

    International Nuclear Information System (INIS)

    Luthin, J.; Linsmeier, C.

    2001-01-01

    The formation of carbon-based mixed materials is unavoidable on the plasma-facing components (e.g. first wall and divertor) of fusion devices when carbon is used together with other materials. On the surfaces of these components very different conditions with respect to particle and energy impact occur. To predict the mixed material formation under these conditions the precise knowledge of the fundamental mechanisms governing these interactions is essential. In this paper we present the results of carbon interaction with titanium and silicon, as model substances for metallic and covalent carbides, during thermal treatment. To perform basic studies of the reactions of carbon with different elements, thin carbon films are produced by electron beam evaporation on the different substrates under UHV conditions. All measurements for chemical analysis are performed using X-ray photoelectron spectroscopy (XPS). We discuss first the properties of the deposited carbon films. The carbon films are characterized on inert gold surfaces and are compared to bulk graphite. Annealing of the carbon films up to 970 K leads to a transition from a disordered carbon network into a graphitic structure. Preparation of carbon films at room temperature on titanium or silicon leads to a limited carbide formation at the carbon/substrate interface. Carbon deposited in excess of several monolayers is present in elementary form. Annealing of the samples leads to complete carbidization consuming the available carbon in both cases. Titanium reacts to TiC and additional substoichiometric carbide, silicon forms SiC with exact stoichiometry. (orig.)

  5. Ionized carbon investigation (spectroscopic terms, radiative lifetimes) using ion beams

    International Nuclear Information System (INIS)

    Buchet-Poulizac, M.-C.

    1974-01-01

    The spectra of carbon in all its ionization states were studied by the beam-foil technique, from the far ultraviolet (30A) to 6000A. This excitation process gives the spectra of strongly charged ions with great intensity and favours population of the high levels of these ions. It has led to new identifications, mainly in the CIV, CV, and CVI spectra. The results of radiative lifetime measurements are given for many levels of C II, C III, C IV and C V. The chief cause of error on these measurements is the cascade phenomenon. Various methods of decay curve analysis accounting for these processes were examined and showed that lifetime values of precision better than 10% can be obtained. The transition probabilities were estimated from the lifetime measurements whenever possible. The spectra obtained in the laboratory were compared with those observed in the Wolf-Rayet stars of the carbon sequence. The similarities and dissimilarities which appear yield information on the physical conditions prevailing in the atmosphere of these stars [fr

  6. Prestressing Effects on the Performance of Concrete Beams with Near-surface-mounted Carbon-fiber-reinforced Polymer Bars

    Science.gov (United States)

    Hong, Sungnam; Park, Sun-Kyu

    2016-07-01

    The effects of various prestressing levels on the flexural behavior of concrete beams strengthened with prestressed near-surface-mounted (NSM) carbon-fiber-reinforced polymer (CFRP) bars were investigated in this study. Four-point flexural tests up to failure were performed using a total of six strengthened prestressed and nonprestressed concrete beams. The nonprestressed strengthened beam failed by premature debonding at the interface of concrete and the epoxy adhesive, but the prestressed one failed owing due to rupture of the CFRP bar. As the prestressing level of the CFRP bar increased, the cracking and yield loads of the prestressed beams increased, but its effect on their deflections was insignificant. The ultimate load was constant regardless of prestressing level, but the ultimate deflection was almost inversely proportional to the level.

  7. Carbon filament beam profile monitor for high energy proton-antiproton storage rings

    International Nuclear Information System (INIS)

    Evans, L.R.; Shafer, R.E.

    1979-01-01

    The measurement of the evolution of the transverse profile of the stored beams in high energy proton storage rings such as the p-anti p colliders at CERN and at FNAL is of considerable importance. In the present note, a simple monitor is discussed which will allow almost non-destructive measurement of the profile of each individual proton and antiproton bunch separately. It is based on the flying wire technique first used at CEA and more recently at the CPS. A fine carbon filament is passed quickly through the beam, acting as a target for secondary particle production. The flux of secondary particles is measured by two scintillator telescopes, one for protons and one for antiprotons, having an angular acceptance between 30 and 100 mrad. Measurements of secondary particle production performed at FNAL in this angular range show that a very respectable flux can be expected

  8. EXPERIMENTAL EVALUATION OF DOSIMETRIC CHARACTERIZATION OF GAFCHROMIC EBT3 AND EBT-XD FILMS FOR CLINICAL CARBON ION BEAMS.

    Science.gov (United States)

    Yonai, Shunsuke; Arai, Chinatsu; Shimoyama, Kaoru; Fournier-Bidoz, Nathalie

    2018-02-03

    Radiochromic film is a very useful tool for 2D dosimetric measurements in radiotherapy because it is self-developing and has very high-spatial resolution. However, considerable care has to be taken in ion beam radiotherapy owing to the quenching effect of high-linear energy transfer (LET) radiation. In this study, the dose responses of GAFchromic EBT3 and EBT-XD films were experimentally investigated using the clinical carbon ion beam at the Heavy Ion Medical Accelerator in Chiba. Results showed that the relations between absorbed dose and net optical density could be expressed well using an equation proposed by Reinhardt (2015). The quenching effect was evaluated by determining their relative efficiencies for photon irradiation as a function of LET. A correction equation derived in this study allowed the absorbed dose to be determined in the small irradiation field used for carbon ion radiotherapy eye treatments. This study contributes to establishing an absolute dosimetry procedure for heavy ion beams using radiochromic film. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Effect of Carbon Coating on Li4TiO12 of Anode Material for Hybrid Capacitor.

    Science.gov (United States)

    Lee, Jong-Kyu; Lee, Byung-Gwan; Yoon, Jung-Rag

    2015-11-01

    The carbon-coated Li4Ti5O12 of anode material for hybrid capacitor was prepared by controlling carbonization time at 700 degrees C in nitrogen. With increasing of carbonization time, the discharge capacity and capacitance were decreased, while the equivalent series resistance was not changed remarkably. The rate capability and cycle performance of carbon-coated Li4Ti5O12 were larger than that of Li4Ti5O12. Carbon coating improved conductivity as well as Li-ion diffusion, and thus also resulted in good rate capabilities and cycle stability. The effects of carbon coating on the gas generation of hybrid capacitor were also discussed.

  10. Handling of high intensity proton beams at 12 GeV

    International Nuclear Information System (INIS)

    Takasaki, M.; Minakawa, M.; Yamanoi, Y.; Ieiri, M.; Kato, Y.; Ishii, H.; Suzuki, Y.; Suzuki, T.; Tanaka, K.H.

    1990-01-01

    A new counter experimental hall is now being constructed at the KEK (National Laboratory for High Energy Physics, Japan) 12 GeV Proton Synchrotron (KEK-PS). This hall will be completed by the end of 1989, immediately followed by magnet installation. The present report describes the new technical achievements employed at the hall. The most important and essential feature of the equipment is that the beam-handling system is maintenance-free, though in case of need, maintenance should be carried out quickly from a distant location in order to reduce the absorbed dose during the maintenance work. This paper is divided into three parts. The first part outlines the general design concept of the hall, focusing on the handling of high-intensity beams. The second part addresses the development of a quick-disconnect system, focusing on electric power, interlock signals, cooling water, pumping port, and vacuum flange. The third part describes the development of radiation-resistant instruments, focusing on polyimide magnets and cement magnets. (N.K.)

  11. Neoplastic transformation induced by carbon ions.

    Science.gov (United States)

    Bettega, Daniela; Calzolari, Paola; Hessel, Petra; Stucchi, Claudio G; Weyrather, Wilma K

    2009-03-01

    The objective of this experiment was to compare the oncogenic potential of carbon ion beams and conventional photon beams for use in radiotherapy. The HeLa X human skin fibroblast cell line CGL1 was irradiated with carbon ions of three different energies (270, 100, and 11.4 MeV/u). Inactivation and transformation data were compared with those for 15 MeV photons. Inactivation and transformation frequencies for the 270 MeV/u carbon ions were similar to those for 15-MeV photons. The maximal relative biologic effectiveness (RBE(alpha)) values for 100MeV/u and 11.4 MeV/u carbon ions, respectively, were as follows: inactivation, 1.6 +/- 0.2 and 6.7 +/- 0.7; and transformation per surviving cell, 2.5 +/- 0.6 and 12 +/- 3. The curve for dose-transformation per cell at risk exhibited a maximum that was shifted toward lower doses at lower energies. Transformation induction per cell at risk for carbon ions in the entrance channel was comparable to that for photons, whereas for the lower energies, 100 MeV/u and 11 MeV/u, which are representative of the energies delivered to the tumor margins and volume, respectively, the probability of transformation in a single cell was greater than it was for photons. In addition, at isoeffective doses with respect to cell killing, the 11.4-MeV/u beam was more oncogenic than were photons.

  12. Alanine Radiation Detectors in Therapeutic Carbon Ion Beams

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Jäkel, Oliver; Palmans, Hugo

    of the depth dose curves. Solid state detectors, such as diamond detectors, radiochromic films, TLDs and the amino acid alanine are used due to there good spatial resolution. If used in particle beams their response often exhibits a dependence on particle energy and type, so the acquired signal is not always...... proportional to absorbed dose. A model by Hansen and Olsen, based on the Track Structure Theory is available, which can predict the relative efficiency of some detectors, when the particle spectrum is known. For alanine detectors the model was successfully validated by Hansen and Olsen for several ion species...... at energies below 20 MeV/u. We implemented this model in the Monte Carlo code FLUKA. At the GSI heavy ion facility in Darmstadt, Germany, alanine has been irradiated with carbon ions at energies between 88 an 400 MeV/u, which is the energy range used for therapy. The irradiation and the detector response have...

  13. 40 CFR 600.510-12 - Calculation of average fuel economy and average carbon-related exhaust emissions.

    Science.gov (United States)

    2010-07-01

    ... and average carbon-related exhaust emissions. 600.510-12 Section 600.510-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF... Transportation. (iv) [Reserved] (2) Average carbon-related exhaust emissions will be calculated to the nearest...

  14. Two-dimensional thermal simulations of aluminum and carbon ion strippers for experiments at SPIRAL2 using the highest beam intensities

    International Nuclear Information System (INIS)

    Tahir, N.A.; Kim, V.; Lamour, E.; Lomonosov, I.V.; Piriz, A.R.; Rozet, J.P.; Stöhlker, Th.; Sultanov, V.; Vernhet, D.

    2012-01-01

    In this paper we report on two-dimensional numerical simulations of heating of a rotating, wheel shaped target impacted by the full intensity of the ion beam that will be delivered by the SPIRAL2 facility at Caen, France. The purpose of this work is to study heating of solid targets that will be used to strip the fast ions of SPIRAL2 to the required high charge state for the FISIC (Fast Ion–Slow Ion Collision) experiments. Strippers of aluminum with different emissivities and of carbon are exposed to high beam current of different ion species as oxygen, neon and argon. These studies show that carbon, due to its much higher sublimation temperature and much higher emissivity, is more favorable compared to aluminum. For the highest beam intensities, an aluminum stripper does not survive. However, problem of the induced thermal stresses and long term material fatigue needs to be investigated before a final conclusion can be drawn.

  15. High Gradient Accelerating Structures for Carbon Therapy Linac

    Energy Technology Data Exchange (ETDEWEB)

    Kutsaev, Sergey; Agustsson, R.; Faillace, L.; Goel, A.; Mustapha, B.; Nassiri, A.; Ostroumov, P.; Plastun, A.; Savin, E.

    2016-05-01

    Carbon therapy is the most promising among techniques for cancer treatment, as it has demonstrated significant improvements in clinical efficiency and reduced toxicity profiles in multiple types of cancer through much better localization of dose to the tumor volume. RadiaBeam, in collaboration with Argonne National Laboratory, are developing an ultra-high gradient linear accelerator, Advanced Compact Carbon Ion Linac (ACCIL), for the delivery of ion-beams with end-energies up to 450 MeV/u for 12C6+ ions and 250 MeV for protons. In this paper, we present a thorough comparison of standing and travelling wave designs for high gradient S-Band accelerating structures operating with ions at varying velocities, relative to the speed of light, in the range 0.3-0.7. In this paper we will compare these types of accelerating structures in terms of RF, beam dynamics and thermo-mechanical performance.

  16. Conversion from dose-to-graphite to dose-to-water in an 80 MeV/A carbon ion beam.

    Science.gov (United States)

    Rossomme, S; Palmans, H; Shipley, D; Thomas, R; Lee, N; Romano, F; Cirrone, P; Cuttone, G; Bertrand, D; Vynckier, S

    2013-08-21

    Based on experiments and numerical simulations, a study is carried out pertaining to the conversion of dose-to-graphite to dose-to-water in a carbon ion beam. This conversion is needed to establish graphite calorimeters as primary standards of absorbed dose in these beams. It is governed by the water-to-graphite mass collision stopping power ratio and fluence correction factors, which depend on the particle fluence distributions in each of the two media. The paper focuses on the experimental and numerical determination of this fluence correction factor for an 80 MeV/A carbon ion beam. Measurements have been performed in the nuclear physics laboratory INFN-LNS in Catania (Sicily, Italy). The numerical simulations have been made with a Geant4 Monte Carlo code through the GATE simulation platform. The experimental data are in good agreement with the simulated results for the fluence correction factors and are found to be close to unity. The experimental values increase with depth reaching 1.010 before the Bragg peak region. They have been determined with an uncertainty of 0.25%. Different numerical results are obtained depending on the level of approximation made in calculating the fluence correction factors. When considering carbon ions only, the difference between measured and calculated values is maximal just before the Bragg peak, but its value is less than 1.005. The numerical value is close to unity at the surface and increases to 1.005 near the Bragg peak. When the fluence of all charged particles is considered, the fluence correction factors are lower than unity at the surface and increase with depth up to 1.025 before the Bragg peak. Besides carbon ions, secondary particles created due to nuclear interactions have to be included in the analysis: boron ions ((10)B and (11)B), beryllium ions ((7)Be), alpha particles and protons. At the conclusion of this work, we have the conversion of dose-to-graphite to dose-to-water to apply to the response of a graphite

  17. Dosimetric properties of Gafchromic (registered) EBT films in medical carbon ion beams

    International Nuclear Information System (INIS)

    MartisIkova, Maria; Jaekel, Oliver

    2010-01-01

    High spatial resolution is desired for dosimetrical verification of patient plans for radiotherapy treatments employing scanned ion beams. This is provided by Gafchromic EBT film, the ancestor of currently available EBT2 films. In this contribution, dosimetric properties of EBT films were investigated. Measurements of depth response were performed for monoenergetic fields (250 MeV/u) for different ion fluences as well as for an energy-modulated spread-out Bragg peak of 5 x 5 x 5 cm 3 in 10 cm depth. The films were positioned perpendicular to the incoming carbon ion beams. The observed quenching of the response relative to the same dose of photons was quantified by the relative efficiency. In monenenergetic beams, a relative efficiency of about 0.73 was found in the plateau, 0.4 in the peak and 0.55 in the tail region. No dependence of the relative efficiency on the ion fluence was observed well beyond the clinically used levels. This gives a constant peak to plateau ratio, which is about 1.8 times lower than that for the delivered dose. In the spread-out Bragg peak, the relative efficiency was found to decrease from 0.64 to 0.54 toward the distal end. Thus when aiming for a prediction of the film response in mixed ion beams, the efficiency of the film has to be parametrized as a function of the ion type and energy over the whole ion spectrum. In addition, the relative water-equivalent range of EBT films was measured here to be 1.291 ± 0.015.

  18. Radiation biophysical studies with mammalian cells and a modulated carbon ion beam

    International Nuclear Information System (INIS)

    Chapman, J.D.; Blakely, E.A.; Smith, K.C.; Urtasun, R.C.; Lyman, J.T.; Tobias, C.A.

    1978-01-01

    Chinese hamster (V-79) and human kidney (T-1) cells were irradiated in stirred suspensions placed at various positions in the plateau and extended Bragg peak of a 400-MeV/amu carbon ion beam. The range of the ions was modulated by a lead (translational) ridge filter and a brass (spiral) ridge filter designed to produce extended peaks of approximately 4 and 10 cm, respectively. Stationary-phase and G 1 -phase populations of Chinese hamster cells were found to have different absolute radiosensitivities which, in turn, were different from that of asynchronous human kidney cells. The increase in relative biological effectiveness (RBE) observed as carbon ions were slowed down and stopped in water was similar for the three cell populations at doses greater than 400 rad. At lower doses the RBE was greater for the hamster cell populations than for the human kidney cells. The gain in RBE (at the 50% survival level) between the plateaus and the middle region of the extended peaks was approximately 2.0 and 1.7 for the 4- and 10-cm extended peaks, respectively. Oxygen enhancement ratios (OER) were determined at the 10% survival levels with stationary-phase populations of hamster cells. Values of 2.8, 2.65, and 1.65 were obtained for the OER of 220-kV x rays, plateau carbon, and the middle region of the 4-cm carbon peak, respectively. Across the 10-cm carbon peak the OER was found to vary between values of 2.4 to 1.55 from the proximal to distal positions

  19. Study of corrosion behavior of carbon steel under seawater film using the wire beam electrode method

    International Nuclear Information System (INIS)

    Liu, Zaijian; Wang, Wei; Wang, Jia; Peng, Xin; Wang, Yanhua; Zhang, Penghui; Wang, Haijie; Gao, Congjie

    2014-01-01

    Corrosion behavior of carbon steel under seawater film with various thickness was investigated by the wire beam electrode (WBE) method. It was found that the corrosion rate of carbon steel increased significantly under thin seawater film than it was immersed in seawater. The current variation under seawater film indicated that the thickness of diffusion layer of oxygen was about 500 μm, and the maximal current appeared around 40 μm, at which corrosion rate transited from cathodic control to anodic control. The results suggest that WBE method is helpful to study the corrosion process under thin electrolyte film

  20. Integration and evaluation of automated Monte Carlo simulations in the clinical practice of scanned proton and carbon ion beam therapy.

    Science.gov (United States)

    Bauer, J; Sommerer, F; Mairani, A; Unholtz, D; Farook, R; Handrack, J; Frey, K; Marcelos, T; Tessonnier, T; Ecker, S; Ackermann, B; Ellerbrock, M; Debus, J; Parodi, K

    2014-08-21

    Monte Carlo (MC) simulations of beam interaction and transport in matter are increasingly considered as essential tools to support several aspects of radiation therapy. Despite the vast application of MC to photon therapy and scattered proton therapy, clinical experience in scanned ion beam therapy is still scarce. This is especially the case for ions heavier than protons, which pose additional issues like nuclear fragmentation and varying biological effectiveness. In this work, we present the evaluation of a dedicated framework which has been developed at the Heidelberg Ion Beam Therapy Center to provide automated FLUKA MC simulations of clinical patient treatments with scanned proton and carbon ion beams. Investigations on the number of transported primaries and the dimension of the geometry and scoring grids have been performed for a representative class of patient cases in order to provide recommendations on the simulation settings, showing that recommendations derived from the experience in proton therapy cannot be directly translated to the case of carbon ion beams. The MC results with the optimized settings have been compared to the calculations of the analytical treatment planning system (TPS), showing that regardless of the consistency of the two systems (in terms of beam model in water and range calculation in different materials) relevant differences can be found in dosimetric quantities and range, especially in the case of heterogeneous and deep seated treatment sites depending on the ion beam species and energies, homogeneity of the traversed tissue and size of the treated volume. The analysis of typical TPS speed-up approximations highlighted effects which deserve accurate treatment, in contrast to adequate beam model simplifications for scanned ion beam therapy. In terms of biological dose calculations, the investigation of the mixed field components in realistic anatomical situations confirmed the findings of previous groups so far reported only in

  1. Transplantation of ES cells to Parkinson model rat irradiated with carbon ion beam

    International Nuclear Information System (INIS)

    Inaji, Motoki; Okauchi, Takashi; Nagai, Yuji; Nojima, Kumie; Suhara, Tetsuya

    2004-01-01

    The present study was designed to make a new Parkinson disease model using carbon ion beam. In this year, we irradiated right middle forebrain bundle of adult rats with charged carbon particles (290 MeV/nucleon, Mono peak, 150 Gy) and damaged right dopaminergic neurons pathway. To irradiate precisely, rats were set in the stereotactic frame with ear bars which was developed in this year. In 4 weeks after the irradiation, we performed methamphetamine induced rotation test and the autoradiography measurement on dopamine transporter using [ 11 C]PE2I to assess degeneration of dopaminergic neurons in caudate putamen (Cpu). As a result, ipsilateral rotation was observed and the distributions of dopamine transporter in the striatum decreased significantly. These results are similar to those of 6-OHDA lesioned rats, and indicate validity of this model. (author)

  2. TH-C-12A-10: Surface Dose Enhancement Using Novel Hybrid Electron and Photon Low-Z Therapy Beams: Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, C; Parsons, D [Dept of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia (Canada); Robar, J; Kelly, R [Dept of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia (Canada); Dept of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia (Canada); Nova Scotia Cancer Centre, Halifax, NS (Canada)

    2014-06-15

    Purpose: The introduction of the TrueBeam linac platform provides access to an in-air target assembly making it possible to apply novel treatments using multiple target designs. One such novel treatment uses multiple low-Z targets to enhance surface dose replacing the use of synthetic tissue equivalent material (bolus). This treatment technique will decrease the common dosimetric and set up errors prevalent in using physical treatment accessories like bolus. The groundwork for a novel treatment beam used to enhance surface dose to within 80-100% of the dose at dmax by utilizing low-Z (Carbon) targets of various percent CSDA range thickness operated at 2.5–4 MeV used in conjunction with a clinical 6 MV beam is presented herein. Methods: A standard Monte Carlo model of a Varian Clinac accelerator was developed to manufacturers specifications. Simulations were performed using Be, C, AL, and C, as potential low-Z targets, placed in the secondary target position. The results determined C to be the target material of choice. Simulations of 15, 30 and 60% CSDA range C beams were propagated through slab phantoms. The resulting PDDs were weighted and combined with a standard 6 MV treatment beam. Versions of the experimental targets were installed into a 2100C Clinac and the models were validated. Results: Carbon was shown to be the low-Z material of choice for this project. Using combinations of 15, 30, 60% CSDA beams operated at 2.5 and 4 MeV in combination with a standard 6 MV treatment beam the surface dose was shown to be enhanced to within 80–100% the dose at dmax. Conclusion: The modeled low-Z beams were successfully validated using machined versions of the targets. Water phantom measurements and slab phantom simulations show excellent correlation. Patient simulations are now underway to compare the use of bolus with the proposed novel beams. NSERC.

  3. TH-C-12A-10: Surface Dose Enhancement Using Novel Hybrid Electron and Photon Low-Z Therapy Beams: Monte Carlo Simulation

    International Nuclear Information System (INIS)

    Parsons, C; Parsons, D; Robar, J; Kelly, R

    2014-01-01

    Purpose: The introduction of the TrueBeam linac platform provides access to an in-air target assembly making it possible to apply novel treatments using multiple target designs. One such novel treatment uses multiple low-Z targets to enhance surface dose replacing the use of synthetic tissue equivalent material (bolus). This treatment technique will decrease the common dosimetric and set up errors prevalent in using physical treatment accessories like bolus. The groundwork for a novel treatment beam used to enhance surface dose to within 80-100% of the dose at dmax by utilizing low-Z (Carbon) targets of various percent CSDA range thickness operated at 2.5–4 MeV used in conjunction with a clinical 6 MV beam is presented herein. Methods: A standard Monte Carlo model of a Varian Clinac accelerator was developed to manufacturers specifications. Simulations were performed using Be, C, AL, and C, as potential low-Z targets, placed in the secondary target position. The results determined C to be the target material of choice. Simulations of 15, 30 and 60% CSDA range C beams were propagated through slab phantoms. The resulting PDDs were weighted and combined with a standard 6 MV treatment beam. Versions of the experimental targets were installed into a 2100C Clinac and the models were validated. Results: Carbon was shown to be the low-Z material of choice for this project. Using combinations of 15, 30, 60% CSDA beams operated at 2.5 and 4 MeV in combination with a standard 6 MV treatment beam the surface dose was shown to be enhanced to within 80–100% the dose at dmax. Conclusion: The modeled low-Z beams were successfully validated using machined versions of the targets. Water phantom measurements and slab phantom simulations show excellent correlation. Patient simulations are now underway to compare the use of bolus with the proposed novel beams. NSERC

  4. Fabrication of carbon quantum dots with nano-defined position and pattern in one step via sugar-electron-beam writing.

    Science.gov (United States)

    Weng, Yuyan; Li, Zhiyun; Peng, Lun; Zhang, Weidong; Chen, Gaojian

    2017-12-14

    Quantum dots (QDs) are promising materials in nanophotonics, biological imaging, and even quantum computing. Precise positioning and patterning of QDs is a prerequisite for realizing their actual applications. Contrary to the traditional two discrete steps of fabricating and positioning QDs, herein, a novel sugar-electron-beam writing (SEW) method is reported for producing QDs via electron-beam lithography (EBL) that uses a carefully chosen synthetic resist, poly(2-(methacrylamido)glucopyranose) (PMAG). Carbon QDs (CQDs) could be fabricated in situ through electron beam exposure, and the nanoscale position and luminescence intensity of the produced CQDs could be precisely controlled without the assistance of any other fluorescent matter. We have demonstrated that upon combining an electron beam with a glycopolymer, in situ production of CQDs occurs at the electron beam spot center with nanoscale precision at any place and with any patterns, an advancement that we believe will stimulate innovations in future applications.

  5. Comparison Between In-Beam and Offline Positron Emission Tomography Imaging of Proton and Carbon Ion Therapeutic Irradiation at Synchrotron- and Cyclotron-Based Facilities

    International Nuclear Information System (INIS)

    Parodi, Katia; Bortfeld, Thomas; Haberer, Thomas

    2008-01-01

    Purpose: The benefit of using dedicated in-beam positron emission tomography (PET) detectors in the treatment room instead of commercial tomographs nearby is an open question. This work quantitatively compares the measurable signal for in-beam and offline PET imaging, taking into account realistic acquisition strategies at different ion beam facilities. Both scenarios of pulsed and continuous irradiation from synchrotron and cyclotron accelerators are considered, because of their widespread use in most carbon ion and proton therapy centers. Methods and Materials: A mathematical framework is introduced to compare the time-dependent amount and spatial distribution of decays from irradiation-induced isotope production. The latter is calculated with Monte Carlo techniques for real proton treatments of head-and-neck and paraspinal tumors. Extrapolation to carbon ion irradiation is based on results of previous phantom experiments. Biologic clearance is modeled taking into account available data from previous animal and clinical studies. Results: Ratios between the amount of physical decays available for in-beam and offline detection range from 40% to 60% for cyclotron-based facilities, to 65% to 110% (carbon ions) and 94% to 166% (protons) at synchrotron-based facilities, and increase when including biologic clearance. Spatial distributions of decays during irradiation exhibit better correlation with the dose delivery and reduced influence of biologic processes. Conclusions: In-beam imaging can be advantageous for synchrotron-based facilities, provided that efficient PET systems enabling detection of isotope decays during beam extraction are implemented. For very short (<2 min) irradiation times at cyclotron-based facilities, a few minutes of acquisition time after the end of irradiation are needed for counting statistics, thus affecting patient throughput

  6. Fast wire scanner for intense electron beams

    Directory of Open Access Journals (Sweden)

    T. Moore

    2014-02-01

    Full Text Available We have developed a cost-effective, fast rotating wire scanner for use in accelerators where high beam currents would otherwise melt even carbon wires. This new design uses a simple planetary gear setup to rotate a carbon wire, fixed at one end, through the beam at speeds in excess of 20  m/s. We present results from bench tests, as well as transverse beam profile measurements taken at Cornell’s high-brightness energy recovery linac photoinjector, for beam currents up to 35 mA.

  7. Characterization of nanometer-scale porosity in reservoir carbonate rock by focused ion beam-scanning electron microscopy.

    Science.gov (United States)

    Bera, Bijoyendra; Gunda, Naga Siva Kumar; Mitra, Sushanta K; Vick, Douglas

    2012-02-01

    Sedimentary carbonate rocks are one of the principal porous structures in natural reservoirs of hydrocarbons such as crude oil and natural gas. Efficient hydrocarbon recovery requires an understanding of the carbonate pore structure, but the nature of sedimentary carbonate rock formation and the toughness of the material make proper analysis difficult. In this study, a novel preparation method was used on a dolomitic carbonate sample, and selected regions were then serially sectioned and imaged by focused ion beam-scanning electron microscopy. The resulting series of images were used to construct detailed three-dimensional representations of the microscopic pore spaces and analyze them quantitatively. We show for the first time the presence of nanometer-scale pores (50-300 nm) inside the solid dolomite matrix. We also show the degree of connectivity of these pores with micron-scale pores (2-5 μm) that were observed to further link with bulk pores outside the matrix.

  8. Beam test results of the first full-scale prototype of CMS RE 1/2 resistive plate chamber

    International Nuclear Information System (INIS)

    Ying Jun; Ban Yong; Ye Yanlin; Cai Jianxin; Qian Sijin; Wang Quanjin; Liu Hongtao

    2005-01-01

    The authors reported the muon beam test results of the first full-scale prototype of CMS RE 1/2 Resistive Plate Chamber (RPC). The bakelite surface is treated using a special technology without oil to make it smooth enough. The full scale RE 1/2 RPC with honeycomb supporting frame is strong and thin enough to be fitted to the limited space of CMS design for the inner Forward RPC. The muon beam test was performed at CERN Gamma Irradiation Facility (GIF). The detection efficiency of this full scale RPC prototype is >95% even at very high irradiation background. The time resolution (less than 1.2 ns) and spatial resolution are satisfactory for the muon trigger device in future CMS experiments. The noise rate is also calculated and discussed

  9. Tool steel ion beam assisted nitrocarburization

    International Nuclear Information System (INIS)

    Zagonel, L.F.; Alvarez, F.

    2007-01-01

    The nitrocarburization of the AISI-H13 tool steel by ion beam assisted deposition is reported. In this technique, a carbon film is continuously deposited over the sample by the ion beam sputtering of a carbon target while a second ion source is used to bombard the sample with low energy nitrogen ions. The results show that the presence of carbon has an important impact on the crystalline and microstructural properties of the material without modification of the case depth

  10. Crossed molecular beam study of the reaction O(3P) + allene

    Science.gov (United States)

    Schmoltner, A. M.; Huang, S. Y.; Brudzynski, R. J.; Chu, P. M.; Lee, Y. T.

    1993-08-01

    The reaction between ground state (3P) oxygen atoms and allene was studied under single collision conditions using the crossed molecular beams method. Product angular distributions and the translational energy distribution were determined for each channel. Two major reaction channels could be identified unambiguously: the formation of carbon monoxide and ethylene following oxygen atom attack on the central carbon atom, and the formation of allenyloxy (formyl-vinyl) radical and hydrogen atom following oxygen atom attack on the terminal carbon atom. In addition, at least one other reaction channel, which could be identified as the production of vinyl and formyl radicals, occurs. This channel involves the decomposition of acrolein which is formed by the addition of oxygen to the terminal carbon atom, followed by 1,2-hydrogen migration.

  11. Electron beam diagnostics study

    International Nuclear Information System (INIS)

    Garganne, P.

    1989-08-01

    This paper summarizes the results of a study on beam diagnostics, using carbon wire scanners and optical transition radiation (DTR) monitors. The main consideration consists in the material selection, taking their thermal properties and their effect on the beam into account [fr

  12. In-beam PET at high-energy photon beams: a feasibility study

    Science.gov (United States)

    Müller, H.; Enghardt, W.

    2006-04-01

    For radiation therapy with carbon ion beams, either for the stable isotope 12C or for the radioactive one 11C, it has been demonstrated that the β+-activity distribution created or deposited, respectively, within the irradiated volume can be visualized by means of positron emission tomography (PET). The PET images provide valuable information for quality assurance and precision improvement of ion therapy. Dedicated PET scanners have been integrated into treatment sites at the Heavy Ion Medical Accelerator at Chiba (HIMAC), Japan, and the Gesellschaft für Schwerionenforschung (GSI), Germany, to make PET imaging feasible during therapeutic irradiation (in-beam PET). A similar technique may be worthwhile for radiotherapy with high-energy bremsstrahlung. In addition to monitoring the dose delivery process which in-beam PET has been primarily developed for, it may be expected that radiation response of tissue can be detected by means of in-beam PET. We investigate the applicability of PET for treatment control in the case of using bremsstrahlung spectra produced by 15-50 MeV electrons. Target volume activation due to (γ, n) reactions at energies above 20 MeV yields moderate β+-activity levels, which can be employed for imaging. The radiation from positrons produced by pair production is not presently usable because the detectors are overloaded due to the low duty factor of medical electron linear accelerators. However, the degradation of images caused by positron motion between creation and annihilation seems to be tolerable.

  13. Ion spectroscopy for improvement of the physical beam model for therapy planning in ion beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Arico, Giulia

    2016-11-23

    Helium and carbon ions enable a more conformal dose distribution, narrower penumbra and higher relative biological effectiveness than photon and proton radiotherapy. However, they may undergo nuclear fragmentation in the patient tissues and the arising secondary fragments affect the delivered biological dose distributions. Currently there is a lack of data regarding ion nuclear fragmentation. One reason is the large size (up to some meters) of the experimental setups required for the investigations. In this thesis a new method is presented, which makes use of versatile pixelated semiconductor detectors (Timepix). This method is based on tracking of single particles and pattern recognition of their signals in the detectors. Measurements were performed at the HIT facility. The mixed radiation field arising from 430 MeV/u carbon ion beams and 221 MeV/u helium ion beams in water and in PMMA targets was investigated. The amounts of primary (carbon or helium) ions detected behind targets with the same water equivalent thickness (WET) were found to be in agreement within the statistical uncertainties. However, more fragments (differences up to 20% in case of H) and narrower lateral particle distributions were measured behind the PMMA than the water targets. The spectra of ions behind tissue surrogates and corresponding water targets with the same WET were analysed. The results obtained with adipose and inner bone surrogates and with the equivalent water phantoms were found to be consistent within the uncertainties. Significant differences in the results were observed in the case of lung and cortical bone surrogates when compared to the water phantoms. The experimental results were compared to FLUKA Monte Carlo simulations. This comparison could contribute to enhance the ion interaction models currently implemented for {sup 12}C and {sup 4}He ion beams.

  14. Development of neutral beam source using electron beam excited plasma

    International Nuclear Information System (INIS)

    Hara, Yasuhiro; Hamagaki, Manabu; Mise, Takaya; Hara, Tamio

    2011-01-01

    A low-energy neutral beam (NB) source, which consists of an electron-beam-excited plasma (EBEP) source and two carbon electrodes, has been developed for damageless etching of ultra-large-scale integrated (ULSI) devices. It has been confirmed that the Ar ion beam energy was controlled by the acceleration voltage and the beam profile had good uniformity over the diameter of 80 mm. Dry etching of a Si wafer at the floating potential has been carried out by Ar NB. Si sputtering yield by an Ar NB clearly depends on the acceleration voltage. This result shows that the NB has been generated through the charge exchange reaction from the ion beam in the process chamber. (author)

  15. PREFACE 12th International Workshop on Slow Positron Beam Techniques

    Science.gov (United States)

    Buckman, Stephen; Sullivan, James; White, Ronald

    2011-01-01

    Preface These proceedings arose from the 12th International Workshop on Slow Positron Beam Techniques (SLOPOS12), which was held on Magnetic Island, North Queensland, Australia, between 1-6th August 2010. Meetings in the SLOPOS series are held (roughly) every three years and have now been held on (almost) all continents, indicating the truly international nature of the field. SLOPOS12 marked the second time that the Workshop had been held in the southern hemisphere, and the first time in Australia. SLOPOS12 attracted 122 delegates from 16 countries. Most encouraging was the attendance of 28 student delegates, and that about half of the overall delegates were early career researchers - a good sign for the future of our field. We also enjoyed the company of more than a dozen partners and families of delegates. In a slight departure from previous SLOPOS meetings, the International Advisory Committee approved a broader scope of scientific topics for inclusion in the program for the 2010 Workshop. This broader scope was intended to capture the applications of positrons in atomic, molecular and biomedical areas and was encapsulated in the byeline for SLOPOS-12: The 12th International Workshop on Slow Positron Beam Techniques for Solids, Surfaces, Atoms and Molecules. The scientific and social program for the meeting ran over 6 days with delegates gathering on Sunday August 1st and departing on August 6th. The scientific program included plenary, invited, contributed and student lectures, the latter being the subject of a student prize. In all there were 53 oral presentations during the week. There were also two poster sessions, with 63 posters exhibited, and a prize was awarded for the best poster by a student delegate. The standard of the student presentations, both oral and posters, was outstanding, so much so that the judging panel recommended an additional number of prizes be awarded. Topics that were the focus of invited presentations and contributed papers at

  16. Structural properties and surface wettability of Cu-containing diamond-like carbon films prepared by a hybrid linear ion beam deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Peng; Sun, Lili; Li, Xiaowei [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Xu, Sheng [Gao Hong Coating Technology Co., Ltd, Huzhou 313000 (China); Ke, Peiling [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wang, Aiying, E-mail: aywang@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2015-06-01

    Cu-containing diamond-like carbon (Cu-DLC) films were deposited on Si/glass substrate by a hybrid ion beam deposition system. The Cu concentration (0.1–39.7 at.%) in the film was controlled by varying the sputtering current. The microstructure and composition of Cu-DLC films were investigated systematically. The surface topography, roughness and surface wettability of the films were also studied. Results indicated that with increasing the Cu concentration, the water contact angle of the films changed from 66.8° for pure carbon film to more than 104.4° for Cu-DLC films with Cu concentration larger than 24.4 at.%. In the hydrophilic region, the polar surface energy decreased from 30.54 mJ/m{sup 2} for pure carbon film to 2.48 mJ/m{sup 2} for the film with Cu 7.0 at.%. - Highlights: • Cu-containing diamond-like carbon (DLC) films were deposited by a hybrid ion beam system. • Cu-containing DLC films exhibited a wide range of water contact angle. • The water contact angles vary with the surface energies and surface roughness.

  17. Proceedings of the workshop on deuteron beam acceleration in the KEK 12 GeV PS

    International Nuclear Information System (INIS)

    Mori, Yoshiharu

    1991-12-01

    The acceleration of atomic nucleus beam with the 12 GeV proton synchrotron in National Laboratory for High Energy Physics (KEK-PS) has been demanded by the experimenters of nuclear physics, and there was the move to concretely realize it at the beginning of 1980, but actually it was not materialized up to now due to various circumstances. The reason that makes the acceleration even in light nuclear beam like deuterons difficult is various, but one is that the acceleration method considered so far particularly in a booster main ring is very complicated. Recently as one of the various proposals made from the viewpoint of the future utilization of the KEK-PS, that of using nuclear beam and the experiment with the PS-collider have been discussed, and the method of accelerating nuclear beam in the PS was reexamined. As the result, together with the technical progress such as ring RF and linear accelerator augmentation, the method with high realization possibility became to be proposed. This proceedings is the report of the first workshop on deutron acceleration held on February 20, 1991, to prepare for the experiment using deuteron beam. (K.I.)

  18. Design and Analysis Methodologies for Inflated Beams

    NARCIS (Netherlands)

    Veldman, S.L.

    2005-01-01

    The central theme of the thesis is bending behaviour of inflated beams. Three different types of beams have been analysed for the bending load case: a straight cylindrical beam made of anisotropic foil material, a conical beam made of an isotropic foil material, and a carbon fibre braided beam. The

  19. Effective source size, radial, angular and energy spread of therapeutic 11C positron emitter beams produced by 12C fragmentation

    Science.gov (United States)

    Lazzeroni, Marta; Brahme, Anders

    2014-02-01

    The use of positron emitter light ion beams in combination with PET (Positron Emission Tomography) and PET-CT (Computed Tomography) imaging could significantly improve treatment verification and dose delivery imaging during radiation therapy. The present study is dedicated to the analysis of the beam quality in terms of the effective source size, as well as radial, angular and energy spread of the 11C ion beam produced by projectile fragmentation of a primary point monodirectional and monoenergetic 12C ion beam in a dedicated range shifter of different materials. This study was performed combining analytical methods describing the transport of particles in matter and the Monte Carlo code SHIELD-HIT+. A high brilliance and production yield of 11C fragments with a small effective source size and emittance is best achieved with a decelerator made of two media: a first liquid hydrogen section of about 20 cm followed by a hydrogen rich section of variable length. The calculated intensity of the produced 11C ion beam ranges from about 5% to 8% of the primary 12C beam intensity depending on the exit energy and the acceptance of the beam transport system. The angular spread is lower than 1 degree for all the materials studied, but the brilliance of the beam is the highest with the proposed mixed decelerator.

  20. Flexural behaviour of partially bonded carbon fibre reinforced polymers strengthened concrete beams: Application to fire protection systems design

    International Nuclear Information System (INIS)

    Firmo, J.P.; Arruda, M.R.T.; Correia, J.R.; Tiago, C.

    2015-01-01

    Highlights: • The mechanical behaviour of partially bonded CFRP strengthened beams was modelled. • Two dimensional non-linear finite element models were developed. • Partially bonded beams can present similar flexural strength to fully bonded ones. • Relations between the bonded length and the strength reduction were proposed. • The proposed relations were used for the design of fire protection systems. - Abstract: Recent fire resistance tests on reinforced concrete (RC) beams strengthened with carbon fibre reinforced polymers (CFRP) laminates showed that it is possible to attain considerable fire endurance provided that thermal insulation is applied at the anchorage zones of the strengthening system. With such protection, although the CFRP laminate prematurely debonds in the central part of the beam, it transforms into a cable fixed at the extremities until one of the anchorage zones loses its bond strength. The main objective of this paper is to propose a simplified methodology for the design of fire protection systems for CFRP strengthened-RC beams, which is based on applying thicker insulation at the anchorage zones (promoting the above mentioned “cable behaviour”) and a thinner one at the current zone (avoiding tensile rupture of the carbon fibres). As a first step towards the validation of this methodology, finite element (FE) models were developed to simulate the flexural behaviour at ambient temperature of full-scale RC beams strengthened with CFRP laminates according to the externally bonded reinforcement (EBR) and near surface mounted (NSM) techniques, in both cases fully or partially bonded (the latter simulating the cable). The FE models were calibrated with results of 4-point bending tests on small-scale beams and then extended for different beam geometries, with spans (L) varying from 2 m to 5 m, in which the influence of the CFRP bonded length (l b ) and the loading type (point or uniformly distributed) on the strength reduction was

  1. Analyzing the effect of carbon fiber reinforced polymer on the crashworthiness of aluminum square hollow beam for crash box application

    Science.gov (United States)

    Raman, R.; Jayanth, K.; Sarkar, I.; Ravi, K.

    2017-11-01

    Crashworthiness of a material is a measure of its ability to absorb energy during a crash. A well-designed crash box is instrumental in protecting the costly vehicle components. A square, hollow, hybrid beam of aluminum/CFRP was subjected to dynamic axial load to analyze the effect of five different lay-up sequences on its crashworthiness. The beam was placed between two plates. Boundary conditions were imposed on them to simulate a frontal body crash test model. Modeling and dynamic analysis of composite structures was done on ABAQUS. Different orientation of carbon fibers varies the crashworthiness of the hybrid beam. Addition of CFRP layer showed clear improvement in specific energy absorption and crush force efficiency compared to pure aluminum beam. Two layers of CFRP oriented at 90° on Aluminum showed 52% increase in CFE.

  2. Effects of main traits of sweet sorghum irradiated by carbon ions

    International Nuclear Information System (INIS)

    Li Wenjian; He Jingyu; Liu Qingfang; Yu Lixia; Dong Xicun

    2009-01-01

    To investigate the influence of carbon ion irradiation on important agronomic characters of sweet sorghum, dry seeds of Sweet Sorghum BJ0601 and BJ0602 were irradiated by 100 MeV/u 12 C +6 ion beam to different doses at Heavy Ion Accelerator National Laboratory in Lanzhou (HIANLL). When matured, the main traits of sweet sorghum were measured. The correlation coefficient of five main agronomic characters, i.e. number of node, plant height, stalk diameter, sugar content and stem weight per plant, were analyzed using the SPSS 13.0 software. The results indicated that the obvious influence of sweet sorghum irradiated by carbon ion beam was observed. In addition, the correlation of main traits was studied. This study may provide rudimental data to select novel variety of sweet sorghum suited for fuel ethanol production. In addition, the average of sugar content of early mutant BJ0601-1 is higher than BJ0601 in M2, and the sugar content of sweet sorghum may be improved by carbon ion beam irradiation. (authors)

  3. Effect of carbon coating on spontaneous C12A7 whisker formation

    Science.gov (United States)

    Zaikovskii, Vladimir I.; Volodin, Alexander M.; Stoyanovskii, Vladimir O.; Cherepanova, Svetlana V.; Vedyagin, Aleksey A.

    2018-06-01

    A carbon nanoreactor concept was applied to study the stabilization effect of carbon shell on phase composition and morphology of dodecacalcium hepta-aluminate Ca12Al14O33. The starting C12A7 powder was obtained using aluminum and calcium hydroxides as precursors. Carbon shell was formed by a chemical vapor deposition of divinyl at 550 °C. After the calcination at 1400 °C, the product was characterized by X-ray diffraction analysis (XRD) and high resolution transmission electron microscopy (HRTEM). It was observed for a first time that spontaneous formation of calcium aluminate whiskers take place under the conditions described. Each whisker consists of a 'head' (globular particle of 0.5 microns in diameter) and a 'tail' (prolonged whisker of few microns in length and 0.1-0.2 microns in diameter). According to HRTEM, the 'head' is characterized with microcrystal lattice of Ca12Al14O33 compound. XRD data show the presence of CaAl2O4 phase traces. The 'head' and 'tail' of the whisker are covered with structured graphene layers of 10 nm and 3 nm, correspondingly.

  4. BOREAS TGB-12 Soil Carbon and Flux Data of NSA-MSA in Raster Format

    Science.gov (United States)

    Hall, Forrest G. (Editor); Knapp, David E. (Editor); Rapalee, Gloria; Davidson, Eric; Harden, Jennifer W.; Trumbore, Susan E.; Veldhuis, Hugo

    2000-01-01

    The BOREAS TGB-12 team made measurements of soil carbon inventories, carbon concentration in soil gases, and rates of soil respiration at several sites. This data set provides: (1) estimates of soil carbon stocks by horizon based on soil survey data and analyses of data from individual soil profiles; (2) estimates of soil carbon fluxes based on stocks, fire history, drain-age, and soil carbon inputs and decomposition constants based on field work using radiocarbon analyses; (3) fire history data estimating age ranges of time since last fire; and (4) a raster image and an associated soils table file from which area-weighted maps of soil carbon and fluxes and fire history may be generated. This data set was created from raster files, soil polygon data files, and detailed lab analysis of soils data that were received from Dr. Hugo Veldhuis, who did the original mapping in the field during 1994. Also used were soils data from Susan Trumbore and Jennifer Harden (BOREAS TGB-12). The binary raster file covers a 733-km 2 area within the NSA-MSA.

  5. Beam generation and planar imaging at energies below 2.40 MeV with carbon and aluminum linear accelerator targets.

    Science.gov (United States)

    Parsons, David; Robar, James L

    2012-07-01

    Recent work has demonstrated improvement of image quality with low-Z linear accelerator targets and energies as low as 3.5 MV. In this paper, the authors lower the incident electron beam energy between 1.90 and 2.35 MeV and assess the improvement of megavoltage planar image quality with the use of carbon and aluminum linear accelerator targets. The bending magnet shunt current was adjusted in a Varian linear accelerator to allow selection of mean electron energy between 1.90 and 2.35 MeV. Linac set points were altered to increase beam current to allow experimental imaging in a practical time frame. Electron energy was determined through comparison of measured and Monte Carlo modeled depth dose curves. Planar image CNR and spatial resolution measurements were performed to quantify the improvement of image quality. Magnitudes of improvement are explained with reference to Monte Carlo generated energy spectra. After modifications to the linac, beam current was increased by a factor greater than four and incident electron energy was determined to have an adjustable range from 1.90 MeV to 2.35 MeV. CNR of cortical bone was increased by a factor ranging from 6.2 to 7.4 and 3.7 to 4.3 for thin and thick phantoms, respectively, compared to a 6 MV therapeutic beam for both aluminum and carbon targets. Spatial resolution was degraded slightly, with a relative change of 3% and 10% at 0.20 lp∕mm and 0.40 lp∕mm, respectively, when reducing energy from 2.35 to 1.90 MV. The percentage of diagnostic x-rays for the beams examined here, ranges from 46% to 54%. It is possible to produce a large fraction of diagnostic energy x-rays by lowering the beam energy below 2.35 MV. By lowering the beam energy to 1.90 MV or 2.35 MV, CNR improves by factors ranging from 3.7 to 7.4 compared to a 6 MV therapy beam, with only a slight degradation of spatial resolution when lowering the energy from 2.35 MV to 1.90 MV.

  6. Crossed-beam reaction of carbon atoms with hydrocarbon molecules. IV. Chemical dynamics of methylpropargyl radical formation, C4H5, from reaction of C(3Pj) with propylene, C3H6 (X1A)

    International Nuclear Information System (INIS)

    Kaiser, R.I.; Stranges, D.; Bevsek, H.M.; Lee, Y.T.; Suits, A.G.

    1997-01-01

    The reaction between ground state carbon atoms and propylene, C 3 H 6 , was studied at average collision energies of 23.3 and 45.0 kJmol -1 using the crossed molecular beam technique. Product angular distributions and time-of-flight spectra of C 4 H 5 at m/e=53 were recorded. Forward-convolution fitting of the data yields a maximum energy release as well as angular distributions consistent with the formation of methylpropargyl radicals. Reaction dynamics inferred from the experimental results suggest that the reaction proceeds on the lowest 3 A surface via an initial addition of the carbon atom to the π-orbital to form a triplet methylcyclopropylidene collision complex followed by ring opening to triplet 1,2-butadiene. Within 0.3 endash 0.6 ps, 1,2-butadiene decomposes through carbon endash hydrogen bond rupture to atomic hydrogen and methylpropargyl radicals. The explicit identification of C 4 H 5 under single collision conditions represents a further example of a carbon endash hydrogen exchange in reactions of ground state carbon with unsaturated hydrocarbons. This versatile machine represents an alternative pathway to build up unsaturated hydrocarbon chains in combustion processes, chemical vapor deposition, and in the interstellar medium. copyright 1997 American Institute of Physics

  7. Neutron yield of thick {sup 12}C and {sup 13}C targets with 20 and 30 MeV deuterons

    Energy Technology Data Exchange (ETDEWEB)

    Lhersonneau, G.; Fadil, M. [GANIL, Caen (France); Malkiewicz, T. [CSC - IT Center for Science Ltd., Espoo (Finland); Gorelov, D.; Sorri, J.; Trzaska, W.H. [University of Jyvaskyla, Department of Physics, Jyvaskyla (Finland); Jones, P.; Ngcobo, P.Z. [iThemba Laboratory for Accelerator Based Science, Western Cape (South Africa)

    2016-12-15

    The neutron yield of thick targets of carbon, natural and enriched in {sup 13}C, bombarded by deuterons of 20 and 30 MeV has been measured by the activation method. The gain with respect to a {sup 12}C target is the same as with protons beams. The yield ratio is about 1.2 only and hardly can justify the use of a {sup 13}C target with deuteron beams. The data, apart from being of interest for the design of facilities where secondary neutron beams are used, provide a test case for calculations where both beam and target have a weakly bound neutron. The MCNPx code version 2.6.0, despite failing to reproduce some details of the experimental distributions, describes their global properties fairly well, especially the relative yields of the {sup 12}C and {sup 13}C targets. (orig.)

  8. Construction of double discharge pulsed electron beam generator and its applications

    International Nuclear Information System (INIS)

    Goektas, H.

    2001-12-01

    Generation of fast pulsed electron beam by superposing DC and pulsed hollow cathode discharge is studied. The electrical characteristics and measurements of the electron beam generator are done dc glow discharge and for the pulsed one. The electron beam current, its density and magnetic field effect, pinch effect, have been studied. The dependence of the electron beam parameters with respect to pressure and magnetic field have been studied. The pulsing effect of the beam is reviewed. By using the generator, micron holes drilling and carbon deposition was done at the laboratory. As a target source for carbon deposition methane gas is used and for Hydrogen-free carbon deposition was graphite

  9. Three-dimensional thermal simulations of thin solid carbon foils for charge stripping of high current uranium ion beams at a proposed new heavy-ion linac at GSI

    Directory of Open Access Journals (Sweden)

    N. A. Tahir

    2014-04-01

    Full Text Available This paper presents an extensive numerical study of heating of thin solid carbon foils by 1.4  MeV/u uranium ion beams to explore the possibility of using such a target as a charge stripper at the proposed new Gesellschaft für Schwerionenforschung high energy heavy–ion linac. These simulations have been carried out using a sophisticated 3D computer code that accounts for physical phenomena that are important in this problem. A variety of beam and target parameters have been considered. The results suggest that within the considered parameter range, the target will be severely damaged by the beam. Thus, a carbon foil stripper does not seem to be a reliable option for the future Gesellschaft für Schwerionenforschung high energy heavy–ion linac, in particular, at FAIR design beam intensities.

  10. Transmission of the Neutral Beam Heating Beams at TJ-II

    International Nuclear Information System (INIS)

    Fuentes Lopez, C.

    2007-01-01

    Neutral beam injection heating has been development for the TJ-II stellarator. The beam has a port-through power between 700-1500 kW and injection energy 40 keV. The sensibility of the injection system to the changes of several parameters is analysed. Beam transmission is limited by losses processes since beam is born into the ions source until is coming into the fusion machine. For the beam transmission optimization several beam diagnostics have been developed. A carbon fiber composite (CFC) target calorimeter has been installed at TJ-II to study in situ the power density distribution of the neutral beams. The thermographic print of the beam can be recorded and analysed in a reliable way due to the highly anisotropic thermal conductivity of the target material. With the combined thermographic and calorimetric measurements it has been possible to determine the power density distribution of the beam. It has been found that a large beam halo is present, which can be explained by the extreme misalignment of the grids. This kind of halo has a deleterious effect on beam transport and must be minimized in order to improve the plasma heating capability of the beams. (Author) 155 refs

  11. Dosimetry auditing procedure with alanine dosimeters for light ion beam therapy

    International Nuclear Information System (INIS)

    Ableitinger, Alexander; Vatnitsky, Stanislav; Herrmann, Rochus; Bassler, Niels; Palmans, Hugo; Sharpe, Peter; Ecker, Swantje; Chaudhri, Naved; Jäkel, Oliver; Georg, Dietmar

    2013-01-01

    Background and purpose: In the next few years the number of facilities providing ion beam therapy with scanning beams will increase. An auditing process based on an end-to-end test (including CT imaging, planning and dose delivery) could help new ion therapy centres to validate their entire logistic chain of radiation delivery. An end-to-end procedure was designed and tested in both scanned proton and carbon ion beams, which may also serve as a dosimetric credentialing procedure for clinical trials in the future. The developed procedure is focused only on physical dose delivery and the validation of the biological dose is out of scope of the current work. Materials and methods: The audit procedure was based on a homogeneous phantom that mimics the dimension of a head (20 × 20 × 21 cm 3 ). The phantom can be loaded either with an ionisation chamber or 20 alanine dosimeters plus 2 radiochromic EBT films. Dose verification aimed at measuring a dose of 10 Gy homogeneously delivered to a virtual-target volume of 8 × 8 × 12 cm 3 . In order to interpret the readout of the irradiated alanine dosimeters additional Monte Carlo simulations were performed to calculate the energy dependent detector response of the particle fluence in the alanine detector. A pilot run was performed with protons and carbon ions at the Heidelberg Ion Therapy facility (HIT). Results: The mean difference of the absolute physical dose measured with the alanine dosimeters compared with the expected dose from the treatment planning system was −2.4 ± 0.9% (1σ) for protons and −2.2 ± 1.1% (1σ) for carbon ions. The measurements performed with the ionisation chamber indicate this slight underdosage with a dose difference of −1.7% for protons and −1.0% for carbon ions. The profiles measured by radiochromic films showed an acceptable homogeneity of about 3%. Conclusions: Alanine dosimeters are suitable detectors for dosimetry audits in ion beam therapy and the presented end-to-end test is

  12. Dosimetry auditing procedure with alanine dosimeters for light ion beam therapy.

    Science.gov (United States)

    Ableitinger, Alexander; Vatnitsky, Stanislav; Herrmann, Rochus; Bassler, Niels; Palmans, Hugo; Sharpe, Peter; Ecker, Swantje; Chaudhri, Naved; Jäkel, Oliver; Georg, Dietmar

    2013-07-01

    In the next few years the number of facilities providing ion beam therapy with scanning beams will increase. An auditing process based on an end-to-end test (including CT imaging, planning and dose delivery) could help new ion therapy centres to validate their entire logistic chain of radiation delivery. An end-to-end procedure was designed and tested in both scanned proton and carbon ion beams, which may also serve as a dosimetric credentialing procedure for clinical trials in the future. The developed procedure is focused only on physical dose delivery and the validation of the biological dose is out of scope of the current work. The audit procedure was based on a homogeneous phantom that mimics the dimension of a head (20 × 20 × 21 cm(3)). The phantom can be loaded either with an ionisation chamber or 20 alanine dosimeters plus 2 radiochromic EBT films. Dose verification aimed at measuring a dose of 10Gy homogeneously delivered to a virtual-target volume of 8 × 8 × 12 cm(3). In order to interpret the readout of the irradiated alanine dosimeters additional Monte Carlo simulations were performed to calculate the energy dependent detector response of the particle fluence in the alanine detector. A pilot run was performed with protons and carbon ions at the Heidelberg Ion Therapy facility (HIT). The mean difference of the absolute physical dose measured with the alanine dosimeters compared with the expected dose from the treatment planning system was -2.4 ± 0.9% (1σ) for protons and -2.2 ± 1.1% (1σ) for carbon ions. The measurements performed with the ionisation chamber indicate this slight underdosage with a dose difference of -1.7% for protons and -1.0% for carbon ions. The profiles measured by radiochromic films showed an acceptable homogeneity of about 3%. Alanine dosimeters are suitable detectors for dosimetry audits in ion beam therapy and the presented end-to-end test is feasible. If further studies show similar results, this dosimetric audit could be

  13. Electron beam irradiation effects on carbon fiber reinforced PEEK composite

    International Nuclear Information System (INIS)

    Sasuga, Tsuneo; Hagiwara, Miyuki; Odajima, Tosikazu; Sakai, Hideo; Nakakura, Toshiyuki; Masutani, Masahiro.

    1987-03-01

    Carbon fiber(CF) reinforced composites, using polyarylether-sulfone (PES) or polyarylether-ether-ketone (PEEK) as matrix material, were prepared and their electron beam irradiation effects were studied on the basis of changes in mechanical and dynamic viscoelastic properties and observation of fracture surfaces. The flexural strength of PES-CF composite decreased to 70 % of the initial strength after the irradiation of 3 MGy and 40 % after 15 MGy. The change in the profile of stress-strain (S-S) curves and fractographic observation by electron microscopy indicated that this composite irradiated with over 3 MGy was fractured by delamination caused by to the degradation of matrix polymer. The mechanical properties of PEEK-CF composite were scarcely decreased even after irradiated up to 180 MGy and this composite showed very high radiation resistance. The change in the profile of S-S curves and fractographic observation showed that this composite fractured due to destruction of fiber in the dose range less than 180 MGy, indicating that PEEK was excellent matrix material used in high radiation field. PEEK-PES-CF composite which was composed of the carbon fibers coated with PES solution showed less radiation resistance compared with PEEK-CF composite; the flexural strength decreased to 85 % of the initial value after the irradiation with 90 MGy. It was revealed from the changes in the profile of S-S curve that the specimen irradiated over 120 MGy was fractured due to not only fiber destruction but delamination. Deterioration mechanism of PEEK-PES-CF composite was studied by dynamic viscoelastic measurements in connection with the damage on matrix-fiber interface. It was suggested that the deterioration in mechanical properties of this composite was caused by the degradation of PES that coated on the surface of the carbon fibers. (author)

  14. Effects of carbon source and carbon content on electrochemical performances of Li{sub 4}Ti{sub 5}O{sub 12}/C prepared by one-step solid-state reaction

    Energy Technology Data Exchange (ETDEWEB)

    Hu Xuebu [College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610066 (China); Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan 610041 (China); Lin Ziji [China National Quality Supervision and Inspection Center for Alcoholic Beverage Products and Processed Food, Luzhou, Sichuan 646100 (China); Yang Kerun [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan 610041 (China); Hua, Yongjian [China Aviation Lithium Battery Co. Ltd., Luoyang, Henan 471009 (China); Deng Zhenghua, E-mail: zhdeng@cioc.ac.cn [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan 610041 (China)

    2011-05-30

    Highlights: > A simple route to prepare the Li{sub 4}Ti{sub 5}O{sub 12}/C by one-step solid-state reaction. > Carbon source and carbon content are two important factors on the electrochemical performances of Li{sub 4}Ti{sub 5}O{sub 12}/C. > As-prepared Li{sub 4}Ti{sub 5}O{sub 12}/C under optimized conditions shows excellent electrochemical performances. - Abstract: Li{sub 4}Ti{sub 5}O{sub 12}/C composites were synthesized by one-step solid-state reaction method using four commonly used organic compounds or organic polymers as carbon source, i.e., polyacrylate acid (PAA), citric acid (CA), maleic acid (MA) and polyvinyl alcohol (PVA). The physical characteristics of Li{sub 4}Ti{sub 5}O{sub 12}/C composites were investigated by X-ray diffraction, electron microscopy, Raman spectroscopy, particle size distribution and thermogravimetry-derivative thermogravimetry techniques. Their electrochemical properties were characterized by cyclic voltammograms, electrochemical impedance spectra, constant current charge-discharge and rate charge-discharge. These analyses indicated that the carbon source and carbon content have a great effect on the physical and electrochemical performances of Li{sub 4}Ti{sub 5}O{sub 12}/C composites. An ideal carbon source and appropriate carbon content effectively improved the electrical contact between the Li{sub 4}Ti{sub 5}O{sub 12} particles, which enhanced the discharge capacity and rate capability of Li{sub 4}Ti{sub 5}O{sub 12}/C composites. PAA was the best carbon source for the synthesis of Li{sub 4}Ti{sub 5}O{sub 12}/C composites. When the carbon content was 3.49 wt.% (LiOH.H{sub 2}O/PAA molar ratio of 1), as-prepared Li{sub 4}Ti{sub 5}O{sub 12}/C showed the maximum discharge capacity. At 0.2 C, initial capacity of the optimized sample was 168.6 mAh g{sup -1} with capacity loss of 2.8% after 50 cycles. At 8 and 10 C, it showed discharge capacities of 143.5 and 132.7 mAh g{sup -1}, with capacity loss of 8.7 and 9.9% after 50 cycles

  15. Two-section linear direct-current accelerator of 1.2 MeV electrons. Mean beam current of 50 mA

    International Nuclear Information System (INIS)

    Alimov, A.S.; Ermakov, D.I.; Ishkhanov, B.S.; Shvedunov, V.I.; Sakharov, V.P.; Trower, W.P.

    2002-01-01

    The theoretical and experimental results, obtained by simulation, creation and start-up of the two-section linear electron accelerator, are presented. The following beam parameters: beam current of 49 mA, mean energy of 1.2 MeV, of 59 kV, normalized emittance of 11 mm mrad are determined on the basis of the data on the beam dynamics simulation and the accelerating structure optimization. Special attention is paid to the choice of the version of the SHF-supply system of the two-section accelerator. The version of the SHF-supply system, based on the sections phasing, operating in the auto-oscillation model by means of the synchronizing signal from the feedback chain of the first section into the feedback chain of the second section, is considered. The electron beam parameters on the accelerator outlet (beam current - 44 mA, beam energy - 1.15 MeV, beam efficiency - 50.6 kW) proved to be close to the simulation results [ru

  16. Ozonation of 1,2-dihydroxybenzene in the presence of activated carbon.

    Science.gov (United States)

    Zaror, C; Soto, G; Valdés, H; Mansilla, H

    2001-01-01

    This work aims at obtaining experimental data on ozonation of 1,2-dihydroxybenzene (DHB) in the presence of activated carbon, with a view to assessing possible changes in its surface chemical structure and adsorption capacity. Experiments were conducted in a 0.5 L reactor, loaded with 2 g Filtrasorb 400 granular activated carbon, and 1-5 mM DHB aqueous solution at pH 2-8. Ozone gas was generated with an Ozocav generator, and fed into the reactor for a given exposure time, in the range 0.5-240 min, at 25 degrees C and 1 atm. After each run, liquid and activated carbon samples were taken for chemical assays. Soluble organic groups present on the active carbon surface were desorbed and analysed by GC-MS and HPLC. Activated carbon chemical surface properties were analysed using TPD, FT-IR, and XPS techniques. Reactions between ozone and adsorbed DHB were shown to be fast, leading to formation of C-6, C-4 and C-2 by-products. Oxygenated surface groups, particularly, COOH and C = O, increased as a result of ozonation.

  17. Light-dark (12:12) cycle of carbon and nitrogen metabolism in Crocosphaera watsonii WH8501: relation to the cell cycle.

    Science.gov (United States)

    Dron, Anthony; Rabouille, Sophie; Claquin, Pascal; Le Roy, Bertrand; Talec, Amélie; Sciandra, Antoine

    2012-04-01

    This study provides with original data sets on the physiology of the unicellular diazotrophic cyanobacterium Crocosphaera watsonii WH8501, maintained in continuous culture in conditions of obligate diazotrophy. Cultures were exposed to a 12:12 light-dark regime, representative of what they experience in nature and where growth is expected to be balanced. Nitrogen and carbon metabolism were monitored at high frequency and their dynamics was compared with the cell cycle. Results reveal a daily cycle in the physiological and biochemical parameters, tightly constrained by the timely decoupled processes of N(2) fixation and carbon acquisition. The cell division rate increased concomitantly to carbon accumulation and peaked 6 h into the light. The carbon content reached a maximum at the end of the light phase. N(2) fixation occurred mostly during the dark period and peaked between 9 and 10 h into the night, while DNA synthesis, reflected by DNA fluorescence, increased until the end of the night. Consequently, cells in G1- and S-phases present a marked decrease in their C:N ratio. Nitrogen acquisition through N(2) fixation exceeded 1.3- to 3-fold the nitrogen requirements for growth, suggesting that important amounts of nitrogen are excreted even under conditions supposed to favour balanced, carbon and nitrogen acquisitions. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  18. Development of a new foil compounded from carbon nanotubes and sputter-deposition carbon

    International Nuclear Information System (INIS)

    Hiroo Hasebe; Hironori Kuboki; Hiroki Okuno; Isao Yamane; Hiroshi Imao; Nobuhisa Fukunishi; Masayuki Kase; Osamu Kamigaito

    2014-01-01

    New carbon-nanotube-sputter-deposition-carbon (CNT-SDC) foils were developed and used in the U beam time at the RIKEN RI Beam Factory (RIBF) from October to December 2011. The lifetimes of these new foils were drastically extended, and stable, high-intensity U beams were successfully provided to users. The lifetime of the CNT-SDC foils was 2-5 C, which was 100 times longer than those of static C-foils previously used. The qualitative analysis of the CNT-SDC foils clearly showed that the CNT structure and bundles were broken by beam irradiation. In addition, it was found that CNT bundles in the CNT-SDC foil were grown after the carbon deposition procedure. This structure was considered to be the reason that the CNT-SDC foils maintain advantages of both CNT and SDC foils. (author)

  19. Conical pinched electron beam diode for intense ion beam source

    International Nuclear Information System (INIS)

    Matsukawa, Yoshinobu; Nakagawa, Yoshiro

    1982-01-01

    For the purpose of improvement of the pinched electron beam diode, the production of an ion beam by a diode with electrodes in a conical shape was studied at low voltage operation (--200 kV). The ion beam is emitted from a small region of the diode apex. The mean ion beam current density near the axis at 12 cm from the diode apex is two or three times that from an usual flat parallel diode with the same dimension and impedance. The brightness and the power brightness at the otigin are 450 MA/cm 2 sr and 0.12 TW/cm 2 sr respectively. (author)

  20. Treatment planning for heavy ion radiotherapy: physical beam model and dose optimization

    International Nuclear Information System (INIS)

    Kraemer, M.; Haberer, T.; Kraft, G.; Schardt, D.; Weber, U.

    2000-09-01

    We describe a novel code system, TRiP, dedicated to the planning of radiotherapy with energetic ions, in particular 12 C. The software is designed to cooperate with three-dimensional active dose shaping devices like the GSI raster scan system. This unique beam delivery system allows to select any combination from a list of 253 individual beam energies, 7 different beam spot sizes and 15 intensity levels. The software includes a beam model adapted to and verified for carbon ions. Inverse planning techniques are implemented in order to obtain a uniform target dose distribution from clinical input data, i.e. CT images and patient contours. This implies the automatic generation of intensity modulated fields of heavy ions with as many as 40000 raster points, where each point corresponds to a specific beam position, energy and particle fluence. This set of data is directly passed to the beam delivery and control system. The treatment planning code is in clinical use since the start of the GSI pilot project in December 1997. To this end 48 patients have been successfully planned and treated. (orig.)

  1. Treatment planning for heavy-ion radiotherapy: physical beam model and dose optimization

    Science.gov (United States)

    Krämer, M.; Jäkel, O.; Haberer, T.; Kraft, G.; Schardt, D.; Weber, U.

    2000-11-01

    We describe a novel code system, TRiP, dedicated to the planning of radiotherapy with energetic ions, in particular 12C. The software is designed to cooperate with three-dimensional active dose shaping devices like the GSI raster scan system. This unique beam delivery system allows us to select any combination from a list of 253 individual beam energies, 7 different beam spot sizes and 15 intensity levels. The software includes a beam model adapted to and verified for carbon ions. Inverse planning techniques are implemented in order to obtain a uniform target dose distribution from clinical input data, i.e. CT images and patient contours. This implies the automatic generation of intensity modulated fields of heavy ions with as many as 40 000 raster points, where each point corresponds to a specific beam position, energy and particle fluence. This set of data is directly passed to the beam delivery and control system. The treatment planning code has been in clinical use since the start of the GSI pilot project in December 1997. Forty-eight patients have been successfully planned and treated.

  2. Determination of absorbed dose to water in a clinical carbon ion beam by means of fluorescent nuclear track detectors, ionization chambers, and water calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Osinga-Blaettermann, Julia-Maria

    2016-12-20

    Until now, dosimetry of carbon ions with ionization chambers has not reached the same level of accuracy as of high-energy photons. This is mainly caused by the threefold higher uncertainty of the k{sub Q,Q{sub 0}}-factor of ionization chambers, which is derived by calculations due to a lack of experimental data. The current thesis comprises two major aims with respect to the dosimetry of carbon ion beams: first, the investigation of the potential of fluorescent nuclear track detectors for fluence-based dosimetry and second, the experimental determination of the k{sub Q,Q{sub 0}}-factor. The direct comparison of fluence- and ionization-based measurements has shown a significant discrepancy of 4.5 %, which re-opened the discussion on the accuracy of calculated k{sub Q,Q{sub 0}}-factors. Therefore, absorbed dose to water measurements by means of water calorimetry have been performed allowing for the direct calibration of ionization chambers and thus for the experimental determination of k{sub Q,Q{sub 0}}. For the first time it could be shown that the experimental determination of k{sub Q,Q{sub 0}} for carbon ion beams is achievable with a standard measurement uncertainty of 0.8 %. This corresponds to a threefold reduction of the uncertainty compared to calculated values and therefore enables to significantly decrease the overall uncertainty related to ionization-based dosimetry of clinical carbon ion beams.

  3. Non-uniform shrinkage of multiple-walled carbon nanotubes under in situ electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lunxiong [South China Normal University, Brain Science Institute, Guangzhou (China); Xiamen University, China-Australia Joint Laboratory for Functional Nanomaterials and Physics Department, Xiamen (China); Su, Jiangbin [Xiamen University, China-Australia Joint Laboratory for Functional Nanomaterials and Physics Department, Xiamen (China); Chang Zhou University, School of Mathematics and Physics, Changzhou (China); Zhu, Xianfang [Xiamen University, China-Australia Joint Laboratory for Functional Nanomaterials and Physics Department, Xiamen (China)

    2016-10-15

    Instability of multiple-walled carbon nanotubes (MWCNTs) was investigated by in situ transmission electron microscopy at room temperature. Specially, the non-uniform shrinkage of tubes was found: The pristine MWCNT shrank preferentially in its axial direction from the most curved free cap end of the tube, but the shrinkage of the tube diameter was offset by the axial shrinkage: For the complex MWCNT, the two inner MWCNTs also preferentially axially shrank from their most curved cap ends and separated from each other. However, for the effect of the radial pressure from the out walls which enveloped the two inner tubes and the tube amorphization, the two inner tubes were extruded to come close to each other and finally touched again. The new ''evaporation'' and ''diffusion'' mechanisms of carbon atoms as driven by the nano-curvature of CNT and the electron beam-induced athermal activation were suggested to explain the above phenomena. (orig.)

  4. Beam Tests of Diamond-Like Carbon Coating for Mitigation of Electron Cloud

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffrey [Fermilab; Backfish, Michael [Fermilab; Kato, Shigeki [KEK, Tsukuba; Tan, Cheng-Yang [Fermilab; Zwaska, Robert [Fermilab

    2017-05-01

    Electron cloud beam instabilities are an important consideration in virtually all high-energy particle accelerators and could pose a formidable challenge to forthcoming high-intensity accelerator upgrades. Our results evaluate the efficacy of a diamond-like carbon (DLC) coating for the mitigation of electron in the Fermilab Main Injector. The interior surface of the beampipe conditions in response to electron bombardment from the electron cloud and we track the change in electron cloud flux over time in the DLC coated beampipe and uncoated stainless steel beampipe. The electron flux is measured by retarding field analyzers placed in a field-free region of the Main Injector. We find the DLC coating reduces the electron cloud signal to roughly 2\\% of that measured in the uncoated stainless steel beampipe.

  5. Study of the time and space distribution of β+ emitters from 80MeV/u carbon ion beam irradiation on PMMA

    International Nuclear Information System (INIS)

    Agodi, C.; Bellini, F.; Cirrone, G.A.P.; Collamati, F.; Cuttone, G.; De Lucia, E.; De Napoli, M.; Di Domenico, A.; Faccini, R.; Ferroni, F.; Fiore, S.; Gauzzi, P.; Iarocci, E.; Marafini, M.; Mattei, I.; Paoloni, A.

    2012-01-01

    Proton and carbon ion therapy is an emerging technique used for the treatment of solid cancers. The monitoring of the dose delivered during such treatments and the on-line knowledge of the Bragg peak position is still a matter of research. A possible technique exploits the collinear 511keV photons produced by positrons annihilation from β + emitters created by the beam. This paper reports rate measurements of the 511keV photons emitted after the interactions of a 80MeV/u fully stripped carbon ion beam at the Laboratori Nazionali del Sud (LNS) of INFN, with a poly-methyl methacrylate target. The time evolution of the β + rate was parametrized and the dominance of 11 C emitters over the other species ( 13 N, 15 O, 14 O) was observed, measuring the fraction of carbon ions activating β + emitters to be (10.3±0.7)×10 -3 . The average depth in the PMMA of the positron annihilation from β + emitters was also measured, D β + =5.3±1.1mm, to be compared to the expected Bragg peak depth D Bragg =11.0±0.5mm obtained from simulations.

  6. A scintillating gas detector for 2D dose measurements in clinical carbon beams.

    Science.gov (United States)

    Seravalli, E; de Boer, M; Geurink, F; Huizenga, J; Kreuger, R; Schippers, J M; van Eijk, C W E; Voss, B

    2008-09-07

    A two-dimensional position sensitive dosimetry system based on a scintillating gas detector has been developed for pre-treatment verification of dose distributions in hadron therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. The primary electrons, created in the detector's sensitive volume by the incoming beam, drift in an electric field towards the GEMs and undergo gas multiplication in the GEM holes. During this process, photons are emitted by the excited Ar/CF4 gas molecules and detected by a mirror-lens-CCD camera system. Since the amount of emitted light is proportional to the dose deposited in the sensitive volume of the detector by the incoming beam, the intensity distribution of the measured light spot is proportional to the 2D hadron dose distribution. For a measurement of a 3D dose distribution, the scintillating gas detector is mounted at the beam exit side of a water-bellows phantom, whose thickness can be varied in steps. In this work, the energy dependence of the output signal of the scintillating gas detector has been verified in a 250 MeV/u clinical 12C ion beam by means of a depth-dose curve measurement. The underestimation of the measured signal at the Bragg peak depth is only 9% with respect to an air-filled ionization chamber. This is much smaller than the underestimation found for a scintillating Gd2O2S:Tb ('Lanex') screen under the same measurement conditions (43%). Consequently, the scintillating gas detector is a promising device for verifying dose distributions in high LET beams, for example to check hadron therapy treatment plans which comprise beams with different energies.

  7. The GLOBE Carbon Project: Integrating the Science of Carbon Cycling and Climate Change into K-12 Classrooms.

    Science.gov (United States)

    Ollinger, S. V.; Silverberg, S.; Albrechtova, J.; Freuder, R.; Gengarelly, L.; Martin, M.; Randolph, G.; Schloss, A.

    2007-12-01

    The global carbon cycle is a key regulator of the Earth's climate and is central to the normal function of ecological systems. Because rising atmospheric CO2 is the principal cause of climate change, understanding how ecosystems cycle and store carbon has become an extremely important issue. In recent years, the growing importance of the carbon cycle has brought it to the forefront of both science and environmental policy. The need for better scientific understanding has led to establishment of numerous research programs, such as the North American Carbon Program (NACP), which seeks to understand controls on carbon cycling under present and future conditions. Parallel efforts are greatly needed to integrate state-of-the-art science on the carbon cycle and its importance to climate with education and outreach efforts that help prepare society to make sound decisions on energy use, carbon management and climate change adaptation. Here, we present a new effort that joins carbon cycle scientists with the International GLOBE Education program to develop carbon cycle activities for K-12 classrooms. The GLOBE Carbon Cycle project is focused on bringing cutting edge research and research techniques in the field of terrestrial ecosystem carbon cycling into the classroom. Students will collect data about their school field site through existing protocols of phenology, land cover and soils as well as new protocols focused on leaf traits, and ecosystem growth and change. They will also participate in classroom activities to understand carbon cycling in terrestrial ecosystems, these will include plant- a-plant experiments, hands-on demonstrations of various concepts, and analysis of collected data. In addition to the traditional GLOBE experience, students will have the opportunity to integrate their data with emerging and expanding technologies including global and local carbon cycle models and remote sensing toolkits. This program design will allow students to explore research

  8. Simulation and dosimetric analysis of protons, 4He ions and 12C ions beams for brain neoplasm therapy

    International Nuclear Information System (INIS)

    Santos, Guilherme M.; Mello, Victor Barreto Braga; Mello Neto, Joao R.T. de

    2016-01-01

    This study aims to simulate protons, 4 He ions and 12 C ions beams, radiating the head of an average-sized man with the purpose of treating a hypothalamic tumor. GEANT4 was used to simulate the head (skin, skull and brain), and the beam, giving their characteristics and also the physical processes involved. The results sought herein are graphs of depth for relative dose for each of the three particles incident on the settings mentioned above. (author)

  9. Carbon Leakage in the Primary Aluminium Sector: What evidence after 6 1/2 years of the EU ETS? - Working Paper No. 2012-12

    International Nuclear Information System (INIS)

    Sartor, Oliver

    2012-02-01

    This paper provides an econometric analysis of the evidence of carbon leakage from the European primary aluminium industry during the first 6 1/2 years of the EU ETS. The findings suggest that while rising electricity prices have played a critical role in reducing the competitiveness of EU primary aluminium smelting in recent years, no evidence of carbon leakage can be detected so far. Other factors, including rising primary energy prices and changes in EU competition law regarding long term contracts, appear to be more important factors explaining the rise in net imports of primary aluminium and the gradual closure of a number of European primary smelters during the past 6 1/2 years. Our results suggest that the carbon leakage debate in this sector may therefore be better seen in terms of not accelerating the decline of the industry in Europe, rather than preventing it, and that any state-aid to the industry to prevent carbon leakage should therefore be applied accordingly. (author)

  10. SU-G-TeP4-12: Individual Beam QA for a Robotic Radiosurgery System Using a Scintillator Cone

    Energy Technology Data Exchange (ETDEWEB)

    McGuinness, C; Descovich, M; Sudhyadhom, A [University of California San Francisco, San Francisco, CA (United States)

    2016-06-15

    Purpose: The targeting accuracy of the Cyberknife system is measured by end-to-end tests delivering multiple isocentric beams to a point in space. While the targeting accuracy of two representative beams can be determined by a Winston-Lutz-type test, no test is available today to determine the targeting accuracy of each clinical beam. We used a scintillator cone to measure the accuracy of each individual beam. Methods: The XRV-124 from Logos Systems Int’l is a scintillator cone with an imaging system that is able to measure individual beam vectors and a resulting error between planned and measured beam coordinates. We measured the targeting accuracy of isocentric and non-isocentric beams for a number of test cases using the Iris and the fixed collimator. The average difference between plan and measured beam position was 0.8–1.2mm across the collimator sizes and plans considered here. The max error for a single beam was 2.5mm for the isocentric plans, and 1.67mm for the non-isocentric plans. The standard deviation of the differences was 0.5mm or less. Conclusion: The CyberKnife System is specified to have an overall targeting accuracy for static targets of less than 0.95mm. In E2E tests using the XRV124 system we measure average beam accuracy between 0.8 to 1.23mm, with maximum of 2.5mm. We plan to investigate correlations between beam position error and robot position, and to quantify the effect of beam position errors on patient specific plans. Martina Descovich has received research support and speaker honoraria from Accuray.

  11. SU-G-TeP4-12: Individual Beam QA for a Robotic Radiosurgery System Using a Scintillator Cone

    International Nuclear Information System (INIS)

    McGuinness, C; Descovich, M; Sudhyadhom, A

    2016-01-01

    Purpose: The targeting accuracy of the Cyberknife system is measured by end-to-end tests delivering multiple isocentric beams to a point in space. While the targeting accuracy of two representative beams can be determined by a Winston-Lutz-type test, no test is available today to determine the targeting accuracy of each clinical beam. We used a scintillator cone to measure the accuracy of each individual beam. Methods: The XRV-124 from Logos Systems Int’l is a scintillator cone with an imaging system that is able to measure individual beam vectors and a resulting error between planned and measured beam coordinates. We measured the targeting accuracy of isocentric and non-isocentric beams for a number of test cases using the Iris and the fixed collimator. The average difference between plan and measured beam position was 0.8–1.2mm across the collimator sizes and plans considered here. The max error for a single beam was 2.5mm for the isocentric plans, and 1.67mm for the non-isocentric plans. The standard deviation of the differences was 0.5mm or less. Conclusion: The CyberKnife System is specified to have an overall targeting accuracy for static targets of less than 0.95mm. In E2E tests using the XRV124 system we measure average beam accuracy between 0.8 to 1.23mm, with maximum of 2.5mm. We plan to investigate correlations between beam position error and robot position, and to quantify the effect of beam position errors on patient specific plans. Martina Descovich has received research support and speaker honoraria from Accuray

  12. Determination of the δ13C of dissolved inorganic carbon in water; RSIL lab code 1710

    Science.gov (United States)

    Singleton, Glenda L.; Revesz, Kinga; Coplen, Tyler B.

    2012-01-01

    The purpose of the Reston Stable Isotope Laboratory (RSIL) lab code 1710 is to present a method to determine the δ13C of dissolved inorganic carbon (DIC) of water. The DIC of water is precipitated using ammoniacal strontium chloride (SrCl2) solution to form strontium carbonate (SrCO3). The δ13C is analyzed by reacting SrCO3 with 100-percent phosphoric acid (H3PO4) to liberate carbon quantitatively as carbon dioxide (CO2), which is collected, purified by vacuum sublimation, and analyzed by dual inlet isotope-ratio mass spectrometry (DI-IRMS). The DI-IRMS is a DuPont double-focusing mass spectrometer. One ion beam passes through a slit in a forward collector and is collected in the rear collector. The other measurable ion beams are collected in the front collector. By changing the ion-accelerating voltage under computer control, the instrument is capable of measuring mass/charge (m/z) 45 or 46 in the rear collector and m/z 44 and 46 or 44 and 45, respectively, in the front collector. The ion beams from these m/z values are as follows: m/z 44 = CO2 = 12C16O16O, m/z 45 = CO2 = 13C16O16O primarily, and m/z 46 = CO2 = 12C16O18O primarily. The data acquisition and control software calculates δ13C values.

  13. Modelling radiation fields of ion beams in tissue-like materials

    International Nuclear Information System (INIS)

    Burigo, Lucas Norberto

    2014-01-01

    lithium beams similar to the one for carbon beam. Well-adjusted biological dose distributions for H-1, He-4, C-12 and O-16 with a very flat spread-out Bragg peak (SOBP) plateau were calculated with MCHIT+MKM; MCHIT+MKM predicts less damage to healthy tissues in the entrance channel for SOBP He-4 and C-12 beams compared to H-1 and O-16 ones. No definitive advantages for oxygen ions with respect to carbon were found.

  14. Interfacial stresses in damaged RC beams strengthened with externally bonded CFRP plate

    International Nuclear Information System (INIS)

    Benrahou, K.H.; Adda bedia, E.A.; Benyoucef, S.; Tounsi, A.; Benguediab, M.

    2006-01-01

    A theoretical method to predict the interfacial stresses in the adhesive layer of damaged reinforced concrete beams strengthened with externally bonded carbon fiber-reinforced polymer (CFRP) plate is presented. The adopted model is developed including the adherend shear deformations by assuming a linear shear stress through the depth of the RC beam [A. Tounsi, Int. J. Solids Struct., in press], while all existing solutions neglect this effect [e.g. S. Benyoucef, A. Tounsi, S.A. Meftah, E.A. Adda Bedia, Compos. Interfaces, in press; S.T. Smith, J.G. Teng, Eng. Struct. 23 (7) (2001) 857-871; T.M. Roberts, Struct. Eng. 67 (12) (1989) 229-233; A. Tounsi, S. Benyoucef, Int. J. Adhes. Adhes., in press; T. Stratford, J. Cadei, Construct. Building Mater. 20 (2006) 34-35]. In addition, in the present study the anisotropic damage model is adopted to describe the damage of the RC beams. It is shown that the damage has a significant effect on the interfacial stresses in FRP-damaged RC beam

  15. Computational modelling of a non-viscous fluid flow in a multi-walled carbon nanotube modelled as a Timoshenko beam

    International Nuclear Information System (INIS)

    Khosravian, N; Rafii-Tabar, H

    2008-01-01

    In the design of nanotube-based fluidic devices, a critical issue is the effect of the induced vibrations in the nanotube arising from the fluid flow, since these vibrations can promote structural instabilities, such as buckling transitions. It is known that the induced resonant frequencies depend on the fluid flow velocity in a significant manner. We have studied, for the first time, the flow of a non-viscous fluid in stubby multi-walled carbon nanotubes, using the Timoshenko classical beam theory to model the nanotubes as a continuum structure. We have obtained the variations of the resonant frequencies with the fluid flow velocity under several experimentally interesting boundary conditions and aspect ratios of the nanotube. The main finding from our work is that, compared to an Euler-Bernoulli classical beam model of a nanotube, the Timoshenko beam predicts the loss of stability at lower fluid flow velocities

  16. Computational modelling of a non-viscous fluid flow in a multi-walled carbon nanotube modelled as a Timoshenko beam

    Energy Technology Data Exchange (ETDEWEB)

    Khosravian, N; Rafii-Tabar, H [Computational Physical Sciences Research Laboratory, Department of Nano-Science, Institute for Research in Fundamental Sciences (IPM), PO Box 19395-5531, Tehran (Iran, Islamic Republic of)], E-mail: rafii-tabar@nano.ipm.ac.ir

    2008-07-09

    In the design of nanotube-based fluidic devices, a critical issue is the effect of the induced vibrations in the nanotube arising from the fluid flow, since these vibrations can promote structural instabilities, such as buckling transitions. It is known that the induced resonant frequencies depend on the fluid flow velocity in a significant manner. We have studied, for the first time, the flow of a non-viscous fluid in stubby multi-walled carbon nanotubes, using the Timoshenko classical beam theory to model the nanotubes as a continuum structure. We have obtained the variations of the resonant frequencies with the fluid flow velocity under several experimentally interesting boundary conditions and aspect ratios of the nanotube. The main finding from our work is that, compared to an Euler-Bernoulli classical beam model of a nanotube, the Timoshenko beam predicts the loss of stability at lower fluid flow velocities.

  17. Application of the in-beam PET therapy monitoring on precision irradiations with helium ions; Anwendung des in-beam PET Therapiemonitorings auf Praezisionsbestrahlungen mit Helium-Ionen

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, F.

    2008-02-19

    The main goal of the present dissertation was to extend the in-beam PET method to new ion types. It was shown that the in-beam PET method can also be applied for {sup 3}He irradiations. For this experiments on a {sup 3}He beam were performed. The activity yield is at equal applied dose about three times larger than at {sup 12}C irradiations. The reachable range resolution is smaller than 1 mm. At the irradiation of an inhomogeneous phantom it was shown that a contrast between different materials is resolvable. From the experimentally determined reaction rates cross sections for the reactions leading to positron emitters were performed. The data taken in the {sup 3}He experiments were compared those obtained in carbon-ion experiments as well as literature data for proton irradiations. A comparison with the calculations of the simulation program SHIELD-HIT was performed. A collection of cross-section models and the established requirements for a simulation program applicable for in-beam PET are preparing for further work.

  18. Geant4 simulation for a study of a possible use of carbon ions pencil beam for the treatment of ocular melanomas with the active scanning system at CNAO Centre

    International Nuclear Information System (INIS)

    Farina, E.; Piersimoni, P.; Riccardi, C.; Rimoldi, A.; Tamborini, A.; Ciocca, M.

    2015-01-01

    The aim of this work is to validate the Geant4 application reproducing the CNAO (National Centre for Oncological Hadrontherapy) beamline and to study of a possible use of carbon ion pencil beams for the treatment of ocular melanomas at the CNAO Centre. The promising aspect of carbon ions radiotherapy for the treatment of this disease lies in its superior relative radiobiological effectiveness (RBE). The Monte Carlo Geant4 toolkit is used to simulate the complete CNAO extraction beamline, with the active and passive components along it. A human eye modeled detector, including a realistic target tumor volume, is used as target. Cross check with previous studies at CNAO using protons allows comparisons on possible benefits on using such a technique with respect to proton beams. Before the eye-detector irradiation a validation of the Geant4 simulation with CNAO experimental data is carried out with both carbon ions and protons. Important beam parameters such as the transverse FWHM and scanned radiation field 's uniformity are tested within the simulation and compared with experimental measurements at CNAO Centre. The physical processes involved in secondary particles generation by carbon ions and protons in the eye-detector are reproduced to take into account the additional dose to the primary beam given to irradiated eye's tissues. A study of beam shaping is carried out to produce a uniform 3D dose distribution (shaped on the tumor) by the use of a spread out Bragg peak. The eye-detector is then irradiated through a two dimensional transverse beam scan at different depths. In the use case the eye-detector is rotated of an angle of 40 deg. in the vertical direction, in order to mis-align the tumor from healthy tissues in front of it. The treatment uniformity on the tumor in the eye-detector is tested. For a more quantitative description of the deposited dose in the eye-detector and for the evaluation of the ratio between the dose deposited in the tumor and

  19. Geant4 simulation for a study of a possible use of carbon ions pencil beam for the treatment of ocular melanomas with the active scanning system at CNAO Centre

    Energy Technology Data Exchange (ETDEWEB)

    Farina, E. [University of Pavia-Department of Physics, via Bassi 6, 27100 Pavia (Italy); Piersimoni, P. [Division of Radiation Research, Loma Linda University, Loma Linda, CA 92354 (United States); Riccardi, C.; Rimoldi, A.; Tamborini, A. [University of Pavia-Department of Physics, via Bassi 6, 27100 Pavia (Italy); INFN Section of Pavia, via Bassi 6, 27100 Pavia (Italy); Ciocca, M. [Medical Physics Unit, Centro Nazionale di Adroterapia Oncologica - CNAO Foundation, Strada Campeggi 53, 27100 Pavia (Italy)

    2015-07-01

    The aim of this work is to validate the Geant4 application reproducing the CNAO (National Centre for Oncological Hadrontherapy) beamline and to study of a possible use of carbon ion pencil beams for the treatment of ocular melanomas at the CNAO Centre. The promising aspect of carbon ions radiotherapy for the treatment of this disease lies in its superior relative radiobiological effectiveness (RBE). The Monte Carlo Geant4 toolkit is used to simulate the complete CNAO extraction beamline, with the active and passive components along it. A human eye modeled detector, including a realistic target tumor volume, is used as target. Cross check with previous studies at CNAO using protons allows comparisons on possible benefits on using such a technique with respect to proton beams. Before the eye-detector irradiation a validation of the Geant4 simulation with CNAO experimental data is carried out with both carbon ions and protons. Important beam parameters such as the transverse FWHM and scanned radiation field 's uniformity are tested within the simulation and compared with experimental measurements at CNAO Centre. The physical processes involved in secondary particles generation by carbon ions and protons in the eye-detector are reproduced to take into account the additional dose to the primary beam given to irradiated eye's tissues. A study of beam shaping is carried out to produce a uniform 3D dose distribution (shaped on the tumor) by the use of a spread out Bragg peak. The eye-detector is then irradiated through a two dimensional transverse beam scan at different depths. In the use case the eye-detector is rotated of an angle of 40 deg. in the vertical direction, in order to mis-align the tumor from healthy tissues in front of it. The treatment uniformity on the tumor in the eye-detector is tested. For a more quantitative description of the deposited dose in the eye-detector and for the evaluation of the ratio between the dose deposited in the tumor and

  20. Energy loss of /sup 12/C projectiles in different carbon modifications

    International Nuclear Information System (INIS)

    Baek, W.Y.; Both, G.H.; Gassen, D.; Neuwirth, W.; Zielinski, M.

    1987-01-01

    The stopping cross sections of the three carbon modifications diamond, graphite, and glassy carbon are investigated for carbon projectiles of intermediate velocity. The inverted Doppler-shift attenuation method was used as the experimental technique, and it enabled us to measure the ratios of the three stopping cross sections precisely over a wide energy range. For velocities between 3 and 4 times Bohr's velocity the stopping cross sections of graphite and glassy carbon are found to be 1.036 and 1.072 times larger than that of diamond, respectively. These differences are attributed to binding effects. To understand these effects, we have evaluated the mean ionization potentials utilizing the local-plasma approximation for the inner-shell electrons and the dielectric response function for the valence electrons. The theoretical ratios calculated by inserting these potentials into the Bethe-Bloch stopping-power formula agree well with our experimental results. Furthermore, we have obtained a value of 53.3 +- 4.1 fs for the lifetime of the first excited state of the /sup 12/C nucleus

  1. Carbon Incorporation and Anion Dynamics as Synergistic Drivers for Ultrafast Diffusion in Superionic LiCB11H12 and NaCB11H12

    Energy Technology Data Exchange (ETDEWEB)

    Dimitrievska, Mirjana [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Shea, Patrick [Lawrence Livermore National Laboratory; Kweon, Kyoung E. [Lawrence Livermore National Laboratory; Bercx, Marnik [University of Antwerp; Varley, Joel B. [Lawrence Livermore National Laboratory; Tang, Wan Si [National Institute of Standards and Technology; University of Maryland; Skripov, Alexander V. [Ural Division of the Russian Academy of Sciences; Stavila, Vitalie [Sandia National Laboratories; Udovic, Terrence J. [National Institute of Standards and Technology; Wood, Brandon C. [Lawrence Livermore National Laboratory

    2018-02-02

    The disordered phases of LiCB11H12 and NaCB11H12 possess superb superionic conductivities that make them suitable as solid electrolytes. In these materials, cation diffusion correlates with high orientational mobilities of the CB11H12- anions; however, the precise relationship has yet to be demonstrated. In this work, ab initio molecular dynamics and quasielastic neutron scattering are combined to probe anion reorientations and their mechanistic connection to cation mobility over a range of timescales and temperatures. It is found that anions do not rotate freely, but rather transition rapidly between orientations defined by the cation sublattice symmetry. The symmetry-breaking carbon atom in CB11H12- also plays a critical role by perturbing the energy landscape along the instantaneous orientation of the anion dipole, which couples fluctuations in the cation probability density directly to the anion motion. Anion reorientation rates exceed 3 x 1010 s-1, suggesting the underlying energy landscape fluctuates dynamically on diffusion-relevant timescales. Furthermore, carbon is found to modify the orientational preferences of the anions and aid rotational mobility, creating additional symmetry incompatibilities that inhibit ordering. The results suggest that synergy between the anion reorientational dynamics and the carbon-modified cation-anion interaction accounts for the higher ionic conductivity in CB11H12- salts compared with B12H122-.

  2. Secondary radiation measurements for particle therapy applications: charged particles produced by 4He and 12C ion beams in a PMMA target at large angle

    Science.gov (United States)

    Rucinski, A.; Battistoni, G.; Collamati, F.; De Lucia, E.; Faccini, R.; Frallicciardi, P. M.; Mancini-Terracciano, C.; Marafini, M.; Mattei, I.; Muraro, S.; Paramatti, R.; Piersanti, L.; Pinci, D.; Russomando, A.; Sarti, A.; Sciubba, A.; Solfaroli Camillocci, E.; Toppi, M.; Traini, G.; Voena, C.; Patera, V.

    2018-03-01

    Proton and carbon ion beams are used in the clinical practice for external radiotherapy treatments achieving, for selected indications, promising and superior clinical results with respect to x-ray based radiotherapy. Other ions, like \

  3. Treatment of industrial effluents using electron beam accelerator and adsorption with activated carbon. A comparative study

    International Nuclear Information System (INIS)

    Las Casas, Alexandre

    2004-01-01

    Several methods are used In the pollutant removal from Industrial and domestic wastewater. However when the degradation of toxic organic pollutants, mainly the recalcitrant is objectified, the conventional treatments usually do not meet the desirable performance in the elimination or decrease the impact when the effluent are released to the environment what takes to the research of alternative methods that seek the improvement of the efficiency of the wastewater treatment systems jointly employees or separately. This work presents a study of degradation/removal of pollutants organic compounds comparing two methods using radiation from industrial electron beam and granular activated carbon (GAC). The removal efficiency of the pollutants was evaluated and it was verified that the efficiency of adsorption with activated carbon is similar to the radiation method. The obtained results allowed to evaluated the relative costs of these methods. (author)

  4. Structural transformations of carbon chains inside nanotubes

    International Nuclear Information System (INIS)

    Warner, Jamie H.; Ruemmeli, Mark H.; Bachmatiuk, Alicja; Buechner, Bernd

    2010-01-01

    In situ aberration-corrected high-resolution transmission electron microscopy is used to examine the structural transformations of carbon chains that occur in the interior region of carbon nanotubes. We find electron-beam irradiation leads to the formation of two-dimensional carbon structures that are freely mobile inside the nanotube. The inner diameter of the nanotube influences the structural transformations of the carbon chains. As the diameter of the nanotube increases, electron-beam irradiation leads to curling of the chains and eventually the formation of closed looped structures. The closed looped structures evolve into spherical fullerenelike structures that exhibit translational motion inside the nanotubes and also coalesce to form larger nanotube structures. These results demonstrate the use of carbon nanotubes as test tubes for growing small carbon nanotubes within the interior by using only electron-beam irradiation at 80 kV.

  5. The erosion and erosion products of tungsten and carbon based materials bombarded by high energy pulse electron beam

    International Nuclear Information System (INIS)

    Liu Xiang; Zhang Fu; Xu Zengyu; Liu Yong; Yoshida, N.; Noda, N.

    2002-01-01

    In this paper, the erosion behaviors and erosion products of tungsten and some carbon based materials, such as graphite, C/C composite and B 4 C/Cu functionally graded material, were investigated by using a pulse electron beam to simulate the vertical displacement events (VDE) process. The authors will focus on the forms and differences of erosion products among these testing materials, and make clear to their erosion mechanisms

  6. Multipurpose beam pulsing system for the 12UD Pelletron tandem accelerator at the University of Tsukuba

    Energy Technology Data Exchange (ETDEWEB)

    Furuno, Kohei; Fukuchi, Yasuhiko; Kimura, Takashige; Maeoka, Hidenobu; Ishii, Satoshi; Aoki, Takayoshi

    1983-10-01

    A beam pulsing system has been developed for a 12 MV tandem accelerator. The system consists of a pre-acceleration chopper, a klystron buncher and a post-acceleration chopper. The pre-acceleration chopper comprises a slow chopper and a fast travelling-wave chopper. Pulsed beams with widths in the range from 10 ..mu..s to --2 s are obtained with the slow chopper, and the repetition periods can be varied from 70 ..mu..s to 4s. The fast chopper produces ion bursts having widths between 0.05 and 0.8 ..mu..s with a duty factor of --10%. The buncher is operated with the two choppers to obtain beam pulses as narrow as a few nanoseconds. Time-of-flight measurements yielded pulse widths 2-4 ns (FWHM) wide for ions in the mass range 1 <= A <= 28. The ratio of the dark to peak ion current was usually of the order of 10/sup 4/.

  7. Improved ethanol fermentation of a yeast mutant by C-12 ion beam irradiation

    International Nuclear Information System (INIS)

    Lu Dong; Liu Qingfang; Wu Xin; Wang Ying; Wang Jufang; Ma Shuang; Li Wenjian

    2010-01-01

    The yeast Saccharomyces cerevisiae YY was irradiated with 100 MeV/u 12 C 6+ ion beams. After screening,we obtained the mutant strain C03A of high ethanol yield. The influence of fermentation temperature, pH and concentration of sugar on ethanol fermentation were studied. The range analysis and analysis of variance were applied for the result of orthogonal experiments. The optimal ethanol fermentation conditions are: fermentation temperature 35 degree C, pH value 5.0, and sugar concentration 24%. The results of fermentation in the 10 L bioreactor showed that the ethanol fermentation of the mutant strain could be completed in 36 hours, the production of ethanol was to 13.2%(V/V), which means 12 hours faster and 1.6%(V /V) ethanol yield higher than original strain. (authors)

  8. Operation of medical accelerator PATRO at Hyogo Ion Beam Medical Center

    International Nuclear Information System (INIS)

    Itano, A.; Akagi, T.; Higashi, A.; Fukushima, S.; Fujita, A.; Honda, Y.; Isa, H.; Nishikigouri, K.

    2004-01-01

    PATRO (Particle Accelerator for Therapy, Radiology and Oncology) is a medical accelerator facility for hadrontherapy of cancer at Hyogo Ion Beam Medical Center (HIBMC). Beam particles are proton (230 MeV) and carbon (320 MeV/u). After the beam commissioning and the tuning of irradiation system in 2000, we performed the clinical trials with proton and carbon beams from May 2001 until July 2002. We operated the accelerator for about 11,000 hours since the beginning of the beam tuning until the end of the clinical trials and for about 5,000 hours during the clinical trials. No serious troubles happened during the clinical trials. The stability and the reproducibility of the beams were well proved. (author)

  9. Cell survival in carbon beams - comparison of amorphous track model predictions

    DEFF Research Database (Denmark)

    Grzanka, L.; Greilich, S.; Korcyl, M.

    Introduction: Predictions of the radiobiological effectiveness (RBE) play an essential role in treatment planning with heavy charged particles. Amorphous track models ( [1] , [2] , also referred to as track structure models) provide currently the most suitable description of cell survival under i....... Amorphous track modelling of luminescence detector efficiency in proton and carbon beams. 4.Tsuruoka C, Suzuki M, Kanai T, et al. LET and ion species dependence for cell killing in normal human skin fibroblasts. Radiat Res. 2005;163:494-500.......Introduction: Predictions of the radiobiological effectiveness (RBE) play an essential role in treatment planning with heavy charged particles. Amorphous track models ( [1] , [2] , also referred to as track structure models) provide currently the most suitable description of cell survival under ion....... [2] . In addition, a new approach based on microdosimetric distributions is presented and investigated [3] . Material and methods: A suitable software library embrasing the mentioned amorphous track models including numerous submodels with respect to delta-electron range models, radial dose...

  10. Particles beams and applications

    International Nuclear Information System (INIS)

    Uzureau, J.L.

    1996-01-01

    This issue of the ''Chocs'' journal is devoted to particles beams used by the D.A.M. (Direction of Military Applications) and to their applications. The concerned beams are limited to those in an energy range from hundred of Kev to several Gev. Light ions (protons, deuterons, alpha) where it is easy to produce neutrons sources and heavy ions (from carbon to gold). (N.C.). 8 refs., 2 figs

  11. LHC Beam Dump Design Study - Part III : Off-normal operating conditions

    CERN Document Server

    Bruno, L; Ross, M; Sala, P

    2000-01-01

    The LHC beam dump design study has been preliminarily substantiated by energy deposition simulations (Part I) and heat transfer analyses (Part II). The present report is devoted to the abnormal operating conditions induced by a malfunction of the beam diluters. A general approach to the analysis of off-normal operation is presented, which is derived from standard design norms adopted in the nuclear industry. Attention is focused mainly on the carbon core, which is longitudinally split into segments of different density in order to better distribute the deposited energy. The maximum energy density it absorbs decreases by at least 33%, compared to a uniform standard density carbon core. This structure may sustain any partial sweep failure without major damage, up to the ultimate beam intensity and energy. To minimise the risks inherent in a fully unswept beam, a sacrificial graphite mandrel will be placed on the core axis, surrounded by a thick high strength carbon-carbon composite tube. With this arrangement, ...

  12. External Beam Radiotherapy for Clinically Localized Hormone-Refractory Prostate Cancer: Clinical Significance of Nadir Prostate-Specific Antigen Value Within 12 Months

    International Nuclear Information System (INIS)

    Ogawa, Kazuhiko; Nakamura, Katsumasa; Sasaki, Tomonari; Onishi, Hiroshi; Koizumi, Masahiko; Shioyama, Yoshiyuki; Araya, Masayuki; Mukumoto, Nobutaka M.S.; Mitsumori, Michihide; Teshima, Teruki

    2009-01-01

    Purpose: To analyze retrospectively the results of external beam radiotherapy for clinically localized hormone-refractory prostate cancer and investigate the clinical significance of nadir prostate-specific antigen (PSA) value within 12 months (nPSA12) as an early estimate of clinical outcomes after radiotherapy. Methods and Materials: Eighty-four patients with localized hormone-refractory prostate cancer treated with external beam radiotherapy were retrospectively reviewed. The total radiation doses ranged from 30 to 76 Gy (median, 66 Gy), and the median follow-up period for all 84 patients was 26.9 months (range, 2.7-77.3 months). Results: The 3-year actuarial overall survival, progression-free survival (PFS), and local control rates in all 84 patients after radiotherapy were 67%, 61%, and 93%, respectively. Although distant metastases and/or regional lymph node metastases developed in 34 patients (40%) after radiotherapy, local progression was observed in only 5 patients (6%). Of all 84 patients, the median nPSA12 in patients with clinical failure and in patients without clinical failure was 3.1 ng/mL and 0.5 ng/mL, respectively. When dividing patients according to low (<0.5 ng/mL) and high (≥0.5 ng/mL) nPSA12 levels, the 3-year PFS rate in patients with low nPSA12 and in those with high nPSA12 was 96% and 44%, respectively (p < 0.0001). In univariate analysis, nPSA12 and pretreatment PSA value had a significant impact on PFS, and in multivariate analysis nPSA12 alone was an independent prognostic factor for PFS after radiotherapy. Conclusions: External beam radiotherapy had an excellent local control rate for clinically localized hormone-refractory prostate cancer, and nPSA12 was predictive of clinical outcomes after radiotherapy.

  13. Commissioning and experience in stripping, filtering and measuring the 4.2 MeV/u lead ion beam at CERN Linac 3

    International Nuclear Information System (INIS)

    Lasheras, N. Catalan; Crescenti, M.; Vretenar, M.

    1996-01-01

    The new CERN Heavy Ion Linac (Linac3) accelerates a Pb 27+ beam to 4.2 MeV/u. The beam is then stripped to Pb 53+ by a carbon foil, and, after stripping, a 12 m filter line prepares the beam for the injection into the Proton Synchrotron Booster (PSB). The filter line eliminates the unwanted charge states, checks the beam quality (energy, energy spread, transverse emittance and intensity), and finally transports the beam in the lines leading to the PSB. The paper summarises the transverse beam dynamics of the line, and reports on its commissioning, especially focusing on the experiments that led to the stripper choice, and on the measurements performed with a specially developed single pulse multislit emittance device. The operational experience is also reported. (author)

  14. Welding uranium with a multikilowatt, continuous-wave, carbon dioxide laser welder

    International Nuclear Information System (INIS)

    Turner, P.W.; Townsend, A.B.

    1977-01-01

    A 15-kilowatt, continuous-wave carbon dioxide laser was contracted to make partial-penetration welds in 6.35-and 12.7-mm-thick wrought depleted uranium plates. Welding power and speed ranged from 2.3 to 12.9 kilowatts and from 21 to 127 millimeters per second, respectively. Results show that depth-to-width ratios of at least unity are feasible. The overall characteristics of the process indicate it can produce welds resembling those made by the electron-beam welding process

  15. Static and free vibration analysis of carbon nano wires based on Timoshenko beam theory using differential quadrature method

    Directory of Open Access Journals (Sweden)

    Maziar Janghorban

    Full Text Available Static and free vibration analysis of carbon nano wires with rectangular cross section based on Timoshenko beam theory is studied in this research. Differential quadrature method (DQM is employed to solve the governing equations. From the knowledge of author, it is the first time that free vibration of nano wires is investigated. It is also the first time that differential quadrature method is used for bending analysis of nano wires.

  16. Nuclear microprobe characterization of surface hardening by precipitation of chromium carbides after laser beam treatment of a Ni-Cr substrate

    International Nuclear Information System (INIS)

    Mosbah, M.; Gosset, J.; Trocellier, P.; Puig, T.; Cantarel, M.; Condat, M.

    1989-01-01

    Surface treatment by laser provides interesting solutions to the problem of accelerated wear of materials. The aim of the present study is the characterization of chromium carbides rich surface alloys after laser beam melting of a Ni 70 Cr 30 carbon precoated substrate. The carbon profiling of the lasered surface was performed by nuclear microprobe using the 12 C(d,p 0 ) 13 C reaction, Ni and Cr were evaluated by means of PIXE (Particle Induced X Ray Emission). The specificity of the method and the experimental conditions are explained. Wear results are very satisfactory and close to those obtained by injection of chromium carbide powders into the laser beam in the case of a Nimonic alloy: wear rates are divided by two orders of magnitude

  17. Time-resolved ion beam induced charge collection (TRIBICC) in micro-electronics

    International Nuclear Information System (INIS)

    Schoene, H.; Walsh, D.S.; Sexton, F.W.; Doyle, B.L.; Aurand, J.F.; Dodd, P.E.; Flores, R.S.; Wing, N.

    1998-01-01

    The entire current transient induced by single 12 MeV Carbon ions was measured at a 5GHz analog bandwidth. A focused ion micro-beam was used to acquire multiple single ion transients at multiple locations of a single CMOS transistor. The current transients reveal clear and discernible contributions of drift and diffusive charge collection. Transients measured for drain and off-drain ion strikes compare well to 3D DAVINCI calculations. Estimates are presented for the drift assisted funneling charge collection depth

  18. Carbon coated Li4Ti5O12 nanorods as superior anode material for high rate lithium ion batteries

    International Nuclear Information System (INIS)

    Luo, Hongjun; Shen, Laifa; Rui, Kun; Li, Hongsen; Zhang, Xiaogang

    2013-01-01

    Highlights: •A novel approach has been developed to fabricate 1D Li 4 Ti 5 O 12 /C nanorods by a wet-chemical route. •Carbon coating layer effectively restrict the particle growth and enhance electronic conductivity. •The Li 4 Ti 5 O 12 /C nanorods exhibit remarkable rate capability and long cycle life. -- Abstract: We describe a novel approach for the synthesis of carbon coated Li 4 Ti 5 O 12 (Li 4 Ti 5 O 12 /C) nanorods for high rate lithium ion batteries. The carbon coated TiO 2 nanotubes using the glucose as carbon source are first synthesized by hydrothermal treatment. The commercial anatase TiO 2 powder is immersed in KOH sulotion and subsequently transforms into Li 4 Ti 5 O 12 /C in LiOH solution under hydrothermal condition. Field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, nitrogen adsorption/desorption and Raman spectra are performed to characterize their morphologies and structures. Compared with the pristine Li 4 Ti 5 O 12 , one-dimensional (1D) Li 4 Ti 5 O 12 /C nanostructures show much better rate capability and cycling stability. The 1D Li 4 Ti 5 O 12 /C architectures effectively restrict the particle growth and enhance their electronic conductivity, enabling fast ion and electron transport

  19. THE RHIC BEAM ABORT KICKER SYSTEM

    International Nuclear Information System (INIS)

    Hahn, H.

    1999-01-01

    THE ENERGY STORED IN THE RHIC BEAM IS ABOUT 200 KJ PER RING AT DESIGN ENERGY AND INTENSITY. TO PREVENT QUENCHING OF THE SUPERCONDUCTING MAGNETS OR MATERIAL DAMAGE, THE BEAM WILL BE SAFELY DISPOSED OF BY AN INTERNAL BEAM ABORT SYSTEM, WHICH INCLUDES THE KICKER MAGNETS, THE PULSED POWER SUPPLIES, AND THE DUMP ABSORBER. DISPOSAL OF HEAVY IONS, SUCH AS GOLD, IMPOSES DESIGN CONSTRAINTS MORE SEVERE THAN THOSE FOR PROTON BEAMS OF EQUAL INTENSITY. IN ORDER TO MINIMIZE THE THERMAL SHOCK IN THE CARBON-FIBER DUMP BLOCK, THE BUNCHES MUST BE LATERALLY DISPERSED

  20. GPU-accelerated automatic identification of robust beam setups for proton and carbon-ion radiotherapy

    International Nuclear Information System (INIS)

    Ammazzalorso, F; Jelen, U; Bednarz, T

    2014-01-01

    We demonstrate acceleration on graphic processing units (GPU) of automatic identification of robust particle therapy beam setups, minimizing negative dosimetric effects of Bragg peak displacement caused by treatment-time patient positioning errors. Our particle therapy research toolkit, RobuR, was extended with OpenCL support and used to implement calculation on GPU of the Port Homogeneity Index, a metric scoring irradiation port robustness through analysis of tissue density patterns prior to dose optimization and computation. Results were benchmarked against an independent native CPU implementation. Numerical results were in agreement between the GPU implementation and native CPU implementation. For 10 skull base cases, the GPU-accelerated implementation was employed to select beam setups for proton and carbon ion treatment plans, which proved to be dosimetrically robust, when recomputed in presence of various simulated positioning errors. From the point of view of performance, average running time on the GPU decreased by at least one order of magnitude compared to the CPU, rendering the GPU-accelerated analysis a feasible step in a clinical treatment planning interactive session. In conclusion, selection of robust particle therapy beam setups can be effectively accelerated on a GPU and become an unintrusive part of the particle therapy treatment planning workflow. Additionally, the speed gain opens new usage scenarios, like interactive analysis manipulation (e.g. constraining of some setup) and re-execution. Finally, through OpenCL portable parallelism, the new implementation is suitable also for CPU-only use, taking advantage of multiple cores, and can potentially exploit types of accelerators other than GPUs.

  1. GPU-accelerated automatic identification of robust beam setups for proton and carbon-ion radiotherapy

    Science.gov (United States)

    Ammazzalorso, F.; Bednarz, T.; Jelen, U.

    2014-03-01

    We demonstrate acceleration on graphic processing units (GPU) of automatic identification of robust particle therapy beam setups, minimizing negative dosimetric effects of Bragg peak displacement caused by treatment-time patient positioning errors. Our particle therapy research toolkit, RobuR, was extended with OpenCL support and used to implement calculation on GPU of the Port Homogeneity Index, a metric scoring irradiation port robustness through analysis of tissue density patterns prior to dose optimization and computation. Results were benchmarked against an independent native CPU implementation. Numerical results were in agreement between the GPU implementation and native CPU implementation. For 10 skull base cases, the GPU-accelerated implementation was employed to select beam setups for proton and carbon ion treatment plans, which proved to be dosimetrically robust, when recomputed in presence of various simulated positioning errors. From the point of view of performance, average running time on the GPU decreased by at least one order of magnitude compared to the CPU, rendering the GPU-accelerated analysis a feasible step in a clinical treatment planning interactive session. In conclusion, selection of robust particle therapy beam setups can be effectively accelerated on a GPU and become an unintrusive part of the particle therapy treatment planning workflow. Additionally, the speed gain opens new usage scenarios, like interactive analysis manipulation (e.g. constraining of some setup) and re-execution. Finally, through OpenCL portable parallelism, the new implementation is suitable also for CPU-only use, taking advantage of multiple cores, and can potentially exploit types of accelerators other than GPUs.

  2. Protective Sliding Carbon-Based Nanolayers Prepared by Argon or Nitrogen Ion-Beam Assisted Deposition on Ti6Al4V Alloy

    Directory of Open Access Journals (Sweden)

    Petr Vlcak

    2016-01-01

    Full Text Available The microstructure and the surface properties of samples coated by carbon-based nanolayer were investigated in an effort to increase the surface hardness and reduce the coefficient of friction of the Ti6Al4V alloy. Protective carbon-based nanolayers were fabricated by argon or nitrogen ion-beam assisted deposition at ion energy of 700 eV on Ti6Al4V substrates. The Raman spectra indicated that nanolayers had a diamond-like carbon character with sp2 rich bonds. The TiC and TiN compounds formed in the surface area were detected by X-ray diffraction. Nanoscratch tests showed increased adhesion of a carbon-based nanolayer deposited with ion assistance in comparison with a carbon nanolayer deposited without ion assistance. The results showed that argon ion assistance leads to greater nanohardness than a sample coated by a carbon-based nanolayer with nitrogen ion assistance. A more than twofold increase in nanohardness and a more than fivefold decrease in the coefficient of friction were obtained for samples coated by a carbon-based nanolayer with ion assistance, in comparison with the reference sample.

  3. Hydrodynamic Expansion of Pellicles Caused by e-Beam Heating

    CERN Document Server

    Ho, D

    2000-01-01

    Placing a pellicle in front of a x-ray converter target for radiographic applications can confine the backstreaming ions and target plasma to a shorter channel so that the cumulative effect on e-beam focusing is reduced. The pellicle is subject to heating by e-beam since the pellicle is placed upstream of the target. The calculation of the hydrodynamic expansion, caused by the heating, using the radiation hydrodynamics code LASNEX is presented in this report. Calculations show that mylar pellicles disintegrate at the end of a multi-pulse intense e-beam while beryllium and carbon pellicles remain intact. The expansions for the kapton-carbon multi-layered targets are also examined. Hydrodynamic expansions for pellicles with various e-beam spot radii are calculated for DARHT-II beam parameters. All the simulation results indicate that the backstreaming ions can be stopped.

  4. Study of the time and space distribution of {beta}{sup +} emitters from 80MeV/u carbon ion beam irradiation on PMMA

    Energy Technology Data Exchange (ETDEWEB)

    Agodi, C. [Laboratori Nazionali del Sud dell' INFN, Catania (Italy); Bellini, F. [Dipartimento di Fisica, Sapienza Universita di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Cirrone, G.A.P. [Laboratori Nazionali del Sud dell' INFN, Catania (Italy); Collamati, F. [Dipartimento di Fisica, Sapienza Universita di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Cuttone, G. [Laboratori Nazionali del Sud dell' INFN, Catania (Italy); De Lucia, E. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); De Napoli, M. [Laboratori Nazionali del Sud dell' INFN, Catania (Italy); Di Domenico, A.; Faccini, R.; Ferroni, F. [Dipartimento di Fisica, Sapienza Universita di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Fiore, S. [Dipartimento di Fisica, Sapienza Universita di Roma, Roma (Italy); Gauzzi, P. [Dipartimento di Fisica, Sapienza Universita di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Iarocci, E. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Dipartimento di Scienze di Base e Applicate per l' Ingegneria, Sapienza Universita di Roma, Roma (Italy); Marafini, M., E-mail: michela.marafini@roma1.infn.it [Museo Storico della Fisica e Centro Studi e Ricerche ' E. Fermi' , Roma (Italy); Mattei, I. [Dipartimento di Fisica, Roma Tre Universita di Roma, Roma (Italy); Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Paoloni, A. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); and others

    2012-07-15

    Proton and carbon ion therapy is an emerging technique used for the treatment of solid cancers. The monitoring of the dose delivered during such treatments and the on-line knowledge of the Bragg peak position is still a matter of research. A possible technique exploits the collinear 511keV photons produced by positrons annihilation from {beta}{sup +} emitters created by the beam. This paper reports rate measurements of the 511keV photons emitted after the interactions of a 80MeV/u fully stripped carbon ion beam at the Laboratori Nazionali del Sud (LNS) of INFN, with a poly-methyl methacrylate target. The time evolution of the {beta}{sup +} rate was parametrized and the dominance of {sup 11}C emitters over the other species ({sup 13}N, {sup 15}O, {sup 14}O) was observed, measuring the fraction of carbon ions activating {beta}{sup +} emitters to be (10.3{+-}0.7) Multiplication-Sign 10{sup -3}. The average depth in the PMMA of the positron annihilation from {beta}{sup +} emitters was also measured, D{sub {beta}{sup +}}=5.3{+-}1.1mm, to be compared to the expected Bragg peak depth D{sub Bragg}=11.0{+-}0.5mm obtained from simulations.

  5. Neutron scattering investigation of carbon/carbon composites

    International Nuclear Information System (INIS)

    Prem, M.; Krexner, G.; Peterlik, H.

    2005-01-01

    Full text: Carbon/Carbon (C/C) composites, built up from bi-directionally woven fabrics from PAN based carbon fibers, pre-impregnated with phenolic resin followed by pressure curing and carbonization at 1000 o C and a final heat treatment at either 1800 o C or 2400 o C, were investigated by means of small-angle as well as wideangle elastic neutron scattering. Sample orientations arranging the carbon fibers parallel and perpendicular to the incoming beam were examined. Structural features of the composites, i.e. of the fibers as well as the inherently existing pores, are presented and the influence of the heat treatment on the structural properties is discussed. (author)

  6. Optimisation of 12 MeV electron beam simulation using variance reduction technique

    International Nuclear Information System (INIS)

    Jayamani, J; Aziz, M Z Abdul; Termizi, N A S Mohd; Kamarulzaman, F N Mohd

    2017-01-01

    Monte Carlo (MC) simulation for electron beam radiotherapy consumes a long computation time. An algorithm called variance reduction technique (VRT) in MC was implemented to speed up this duration. This work focused on optimisation of VRT parameter which refers to electron range rejection and particle history. EGSnrc MC source code was used to simulate (BEAMnrc code) and validate (DOSXYZnrc code) the Siemens Primus linear accelerator model with the non-VRT parameter. The validated MC model simulation was repeated by applying VRT parameter (electron range rejection) that controlled by global electron cut-off energy 1,2 and 5 MeV using 20 × 10 7 particle history. 5 MeV range rejection generated the fastest MC simulation with 50% reduction in computation time compared to non-VRT simulation. Thus, 5 MeV electron range rejection utilized in particle history analysis ranged from 7.5 × 10 7 to 20 × 10 7 . In this study, 5 MeV electron cut-off with 10 × 10 7 particle history, the simulation was four times faster than non-VRT calculation with 1% deviation. Proper understanding and use of VRT can significantly reduce MC electron beam calculation duration at the same time preserving its accuracy. (paper)

  7. The beam dump tunnels

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    In these images workers are digging the tunnels that will be used to dump the counter-circulating beams. Travelling just a fraction under the speed of light, the beams at the LHC will each carry the energy of an aircraft carrier travelling at 12 knots. In order to dispose of these beams safely, a beam dump is used to extract the beam and diffuse it before it collides with a radiation shielded graphite target.

  8. Deposition and properties of Al-containing diamond-like carbon films by a hybrid ion beam sources

    International Nuclear Information System (INIS)

    Dai Wei; Wang Aiying

    2011-01-01

    Research highlights: → Weak carbide former, Al element, was incorporated into DLC films using a hybrid ion beams system comprising an anode-layer ion source and a magnetron sputtering unit. → The structure disorder of the films tended to decrease with Al atoms doping, which resulted in the distinct reduction of the film internal stress and hardness, but the internal stress dropped faster than the hardness. → The DLC films with low internal stress and high hardness can be acquired by Al incorporation. - Abstract: Metal incorporation is one of the most effective methods for relaxing internal stress in diamond-like carbon (DLC) films. It was reported that the chemical state of the incorporated metal atoms has a significant influence on the film internal stress. The doped atoms embedding in the DLC matrix without bonding with C atoms can reduce the structure disorder of the DLC films through bond angle distortion and thus relax the internal stress of the films. In present paper, Al atoms, which are inert to carbon, were incorporated into the DLC films deposited by a hybrid ion beams system comprising an anode-layer ion source and a magnetron sputtering unit. The film composition, microstructure and atomic bond structure were characterized using X-ray photoelectron spectroscopy, transmission electron microscopy and Raman spectroscopy. The internal stress, mechanical properties and tribogoical behavior were studied as a function of Al concentration using a stress-tester, nanoindentation and ball-on-disc tribo-tester, respectively. The results indicated that the incorporated Al atoms were dissolved in the DLC matrix without bonding with C atoms and the films exhibited the feature of amorphous carbon. The structure disorder of the films tended to decrease with Al atoms incorporation. This resulted in the distinct reduction of the internal stress in the films. All Al-DLC films exhibited a lower friction coefficient compared with pure DLC film. The formation of the

  9. Carbon beams, production and acceleration

    International Nuclear Information System (INIS)

    Belmont M, E.

    1979-01-01

    Installation, test and working conditions of a new negative-ion facility of the Salazar EN tandem are briefly described. Carbon is the material used for the test and the heavy ion stripping phenomenon is reviewed. (author)

  10. Electron beam induced emission from carbon plasmas

    International Nuclear Information System (INIS)

    Whetstone, S.; Kammash, T.

    1989-01-01

    Plasma use as a lasing medium has many potential advantages over conventional techniques including increased power levels and greater wavelength ranges. The basic concept is to heat and then rapidly cool a plasma forcing inversion through bottleneck creation between the recombination reaction populating a given energy level and the subsequent decay processes. Much effort has been devoted to plasmas heated by lasers and pinch devices. The authors are concerned here with electron beam heated plasmas focusing on the CIV 5g-4f transition occurring at 2530 Angstroms. These studies were initiated to provide theoretical support for experiments being performed at the University of Michigan using the Michigan Electron Long-Pulse Beam Accelerator (MELBA)

  11. Modelling the 13C and 12C isotopes of inorganic and organic carbon in the Baltic Sea

    Science.gov (United States)

    Gustafsson, Erik; Mörth, Carl-Magnus; Humborg, Christoph; Gustafsson, Bo G.

    2015-08-01

    In this study, 12C and 13C contents of all carbon containing state variables (dissolved inorganic and organic carbon, detrital carbon, and the carbon content of autotrophs and heterotrophs) have for the first time been explicitly included in a coupled physical-biogeochemical Baltic Sea model. Different processes in the carbon cycling have distinct fractionation values, resulting in specific isotopic fingerprints. Thus, in addition to simulating concentrations of different tracers, our new model formulation improves the possibility to constrain the rates of processes such as CO2 assimilation, mineralization, and air-sea exchange. We demonstrate that phytoplankton production and respiration, and the related air-sea CO2 fluxes, are to a large degree controlling the isotopic composition of organic and inorganic carbon in the system. The isotopic composition is further, but to a lesser extent, influenced by river loads and deep water inflows as well as transformation of terrestrial organic carbon within the system. Changes in the isotopic composition over the 20th century have been dominated by two processes - the preferential release of 12C to the atmosphere in association with fossil fuel burning, and the eutrophication of the Baltic Sea related to increased nutrient loads under the second half of the century.

  12. Hydrogen adsorption in carbon nanostructures compared

    NARCIS (Netherlands)

    Schimmel, H.G.; Nijkamp, M.G.; Kearley, G.J.; Rivera, A.; de Jong, K.P.; Mulder, F.M.

    2004-01-01

    Recent reports continue to suggest high hydrogen storage capacities for some carbon nanostructures due to a stronger interaction between hydrogen and carbon. Here the interaction of hydrogen with activated charcoal, carbon nanofibers, single walled carbon nanotubes (SWNT), and electron beam ‘opened’

  13. Friction stir processing on high carbon steel U12

    Energy Technology Data Exchange (ETDEWEB)

    Tarasov, S. Yu., E-mail: tsy@ispms.ru; Rubtsov, V. E., E-mail: rvy@ispms.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation); Melnikov, A. G., E-mail: melnikov-ag@tpu.ru [National Research Tomsk Polytechnic University, Tomsk, 634050 (Russian Federation)

    2015-10-27

    Friction stir processing (FSP) of high carbon steel (U12) samples has been carried out using a milling machine and tools made of cemented tungsten carbide. The FSP tool has been made in the shape of 5×5×1.5 mm. The microstructural characterization of obtained stir zone and heat affected zone has been carried out. Microhardness at the level of 700 MPa has been obtained in the stir zone with microstructure consisting of large grains and cementitte network. This high-level of microhardness is explained by bainitic reaction developing from decarburization of austenitic grains during cementite network formation.

  14. Development of a radioactive ion beam test stand at LBNL

    International Nuclear Information System (INIS)

    Burke, J.; Freedman, S.J.; Fujikawa, B.; Gough, R.A.; Lyneis, C.M.; Vetter, P.; Wutte, D.; Xie, Z.Q.

    1998-01-01

    For the on-line production of a 14 O + ion beam, an integrated target--transfer line ion source system is now under development at LBNL. 14 O is produced in the form of CO in a high temperature carbon target using a 20 MeV 3 He beam from the LBNL 88'' Cyclotron via the reaction 12 C( 3 He,n) 14 O. The neutral radioactive CO molecules diffuse through an 8 m room temperature stainless steel line from the target chamber into a cusp ion source. The molecules are dissociated, ionized and extracted at energies of 20 to 30 keV and mass separated with a double focusing bending magnet. The different components of the setup are described. The release and transport efficiency for the CO molecules from the target through the transfer line was measured for various target temperatures. The ion beam transport efficiencies and the off-line ion source efficiencies for Ar, O 2 and CO are presented. Ionization efficiencies of 28% for Ar + , 1% for CO, 0.7% for O + , 0.33 for C + have been measured

  15. Evaluation of the relative biological effectiveness of carbon ion beams in the cerebellum using the rat organotypic slice culture system

    International Nuclear Information System (INIS)

    Yoshida, Yukari; Katoh, Hiroyuki; Nakano, Takashi; Suzuki, Yoshiyuki; Al-Jahdari, Wael S.; Shirai, Katsuyuki; Hamada, Nobuyuki; Funayama, Tomoo; Sakashita, Tetsuya; Kobayashi, Yasuhiko

    2012-01-01

    The purpose of this study was to clarify the relative biological effectiveness (RBE) values of carbon ion (C) beams in normal brain tissues, a rat organotypic slice culture system was used. The cerebellum was dissected from 10-day-old Wistar rats, cut parasagittally into approximately 600-μm-thick slices and cultivated using a membrane-based culture system with a liquid-air interface. Slices were irradiated with 140 kV X-rays and 18.3 MeV/amu C-beams (linear energy transfer=108 keV/μm). After irradiation, the slices were evaluated histopathologically using hematoxylin and eosin staining, and apoptosis was quantified using the TdT-mediated dUTP-biotin nick-end labeling (TUNEL) assay. Disorganization of the external granule cell layer (EGL) and apoptosis of the external granule cells (EGCs) were induced within 24 h after exposure to doses of more than 5 Gy from C-beams and X-rays. In the early postnatal cerebellum, morphological changes following exposure to C-beams were similar to those following exposure to X-rays. The RBEs values of C-beams using the EGL disorganization and the EGC TUNEL index endpoints ranged from 1.4 to 1.5. This system represents a useful model for assaying the biological effects of radiation on the brain, especially physiological and time-dependent phenomena. (author)

  16. Impact of substrate temperature on the incorporation of carbon-related defects and mechanism for semi-insulating behavior in GaN grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Armstrong, A.; Poblenz, C.; Green, D.S.; Mishra, U.K.; Speck, J.S.; Ringel, S.A.

    2006-01-01

    The electrical conductivity and deep level spectrum of GaN grown by molecular beam epitaxy and codoped with carbon and silicon were investigated for substrate temperatures T s of 650 and 720 deg. C as a function relative carbon and silicon doping levels. With sufficiently high carbon doping, semi-insulating behavior was observed for films grown at both temperatures, and growth at T s =720 deg. C enhanced the carbon compensation ratio. Similar carbon-related band gap states were observed via deep level optical spectroscopy for films grown at both substrate temperatures. Due to the semi-insulating nature of the films, a lighted capacitance-voltage technique was required to determine individual deep level concentrations. Carbon-related band gap states underwent substantial redistribution between deep level and shallow acceptor configurations with change in T s . In light of a T s dependence for the preferential site of carbon incorporation, a model of semi-insulating behavior in terms of carbon impurity state incorporation mediated by substrate temperature is proposed

  17. New developments of 11C post-accelerated beams for hadron therapy and imaging

    CERN Document Server

    Augusto, R S; Wenander, F; Penescu, L; Orecchia, R; Parodi, K; Ferrari, A; Stora, T

    2016-01-01

    Hadron therapy was first proposed in 1946 and is by now widespread throughout the world, as witnessed with the design and construction of the CNAO, HIT, PROSCAN and MedAustron treatment centres, among others. The clinical interest in hadron therapy lies in the fact that it delivers precision treatment of tumours, exploiting the characteristic shape (the Bragg peak) of the energy deposition in the tissues for charged hadrons. In particular, carbon ion therapy is found to be biologically more effective, with respect to protons, on certain types of tumours. Following an approach tested at NIRS in Japan [1], carbon ion therapy treatments based on 12C could be combined or fully replaced with 11C PET radioactive ions post-accelerated to the same energy. This approach allows providing a beam for treatment and, at the same time, to collect information on the 3D distributions of the implanted ions by PET imaging. The production of 11C ion beams can be performed using two methods. A first one is based on the production...

  18. Fast-scan, beam-profile monitor

    International Nuclear Information System (INIS)

    Waugh, A.F.

    1977-01-01

    A minimodular, data-acquisition system can be used to rapidly interrogate a 45-point matrix of beam-current sampling targets over the 3- x 12-in. rectangular, output beam cross section of a 50-A, neutral-beam ion source. This system, operating at a throughput rate of 12 μs per channel, can make several complete scans during the 10- to 25-ms-duration beam pulse. Data obtained are available in both analog and digital form. The analog signal is used to create an immediately interpretable CRT display of the beam-current density profile that shows how well the source is aimed. The digital data are held in buffer memory until transfer to a minicomputer for software processing and plotting

  19. Modeling of beam customization devices in the pencil-beam splitting algorithm for heavy charged particle radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kanematsu, Nobuyuki, E-mail: nkanemat@nirs.go.jp [Department of Accelerator and Medical Physics, Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555 (Japan); Department of Quantum Science and Energy Engineering, School of Engineering, Tohoku University, 6-6 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579 (Japan)

    2011-03-07

    A broad-beam-delivery system for radiotherapy with protons or ions often employs multiple collimators and a range-compensating filter, which offer complex and potentially useful beam customization. It is however difficult for conventional pencil-beam algorithms to deal with fine structures of these devices due to beam-size growth during transport. This study aims to avoid the difficulty with a novel computational model. The pencil beams are initially defined at the range-compensating filter with angular-acceptance correction for upstream collimation followed by stopping and scattering. They are individually transported with possible splitting near the aperture edge of a downstream collimator to form a sharp field edge. The dose distribution for a carbon-ion beam was calculated and compared with existing experimental data. The penumbra sizes of various collimator edges agreed between them to a submillimeter level. This beam-customization model will be used in the greater framework of the pencil-beam splitting algorithm for accurate and efficient patient dose calculation.

  20. Modeling of beam customization devices in the pencil-beam splitting algorithm for heavy charged particle radiotherapy.

    Science.gov (United States)

    Kanematsu, Nobuyuki

    2011-03-07

    A broad-beam-delivery system for radiotherapy with protons or ions often employs multiple collimators and a range-compensating filter, which offer complex and potentially useful beam customization. It is however difficult for conventional pencil-beam algorithms to deal with fine structures of these devices due to beam-size growth during transport. This study aims to avoid the difficulty with a novel computational model. The pencil beams are initially defined at the range-compensating filter with angular-acceptance correction for upstream collimation followed by stopping and scattering. They are individually transported with possible splitting near the aperture edge of a downstream collimator to form a sharp field edge. The dose distribution for a carbon-ion beam was calculated and compared with existing experimental data. The penumbra sizes of various collimator edges agreed between them to a submillimeter level. This beam-customization model will be used in the greater framework of the pencil-beam splitting algorithm for accurate and efficient patient dose calculation.

  1. Microdosimetry spectra and RBE of 1H, 4He, 7Li and 12C nuclei in water studied with Geant4

    International Nuclear Information System (INIS)

    Burigo, Lucas; Pshenichnov, Igor; Mishustin, Igor; Bleicher, Marcus

    2014-01-01

    A Geant4-based Monte Carlo model for Heavy-Ion Therapy (MCHIT) is used to study radiation fields of 1 H, 4 He, 7 Li and 12 C beams with similar ranges (∼160–180 mm) in water. Microdosimetry spectra are simulated for wall-less and walled Tissue Equivalent Proportional Counters (TEPCs) placed outside or inside a phantom, as in experiments performed, respectively, at NIRS, Japan and GSI, Germany. The impact of fragmentation reactions on microdosimetry spectra is investigated for 4 He, 7 Li and 12 C, and contributions from nuclear fragments of different charge are evaluated for various TEPC positions in the phantom. The microdosimetry spectra measured on the beam axis are well described by MCHIT, in particular, in the vicinity of the Bragg peak. However, the simulated spectra for the walled TEPC far from the beam axis are underestimated. Relative Biological Effectiveness (RBE) of the considered beams is estimated using a modified microdosimetric-kinetic model. Calculations show a similar rise of the RBE up to 2.2–2.9 close to the Bragg peak for helium, lithium and carbon beams compared to the modest values of 1–1.2 at the plateau region. Our results suggest that helium and lithium beams are also promising options for cancer therapy

  2. Production of an accelerated oxygen-14 beam

    International Nuclear Information System (INIS)

    Powell, J.; O'Neil, J.P.; Cerny, Joseph

    2003-01-01

    BEARS is an ongoing project to provide a light-ion radioactive-beam capability at the 88-Inch Cyclotron at LBNL. Light radioactive isotopes are produced at a 10 MeV proton medical cyclotron, transported 350 m via a high-speed gas transport capillary, cryogenically separated, and injected into the 88-Inch Cyclotron's ion source. The first radioactive beam successfully accelerated was carbon-11 and beams of intensity more than 10 8 ions/s have been utilized for experiments. Development of oxygen-14 as the second BEARS beam presented considerable technical challenges, both due to its short half-life of 71 s and the radiation chemistry of oxygen in the target. The usual techniques developed for medical uses of oxygen-15 involve the addition of significant amounts of carrier oxygen, something that would overload the ion source. As a solution, oxygen-14 is produced as water in a carrier-free form, and is chemically converted in two steps to carbon dioxide, a form readily usable by the BEARS. This system has been built and is operational, and initial tests of accelerating an oxygen-14 beam have been performed

  3. Intense beams of light ions

    International Nuclear Information System (INIS)

    Camarcat, Noel

    1985-01-01

    Results of experiments performed in order to accelerate intense beams of light and heavier ions are presented. The accelerating diodes are driven by existing pulsed power generators. Optimization of the generator structure is described in chapter I. Nuclear diagnostics of the accelerated light ion beams are presented in chapter II. Chapter III deals with the physics of intense charged particle beams. The models developed are applied to the calculation of the performances of the ion diodes described in the previous chapters. Chapter IV reports preliminary results on a multiply ionized carbon source driven by a 0.1 TW pulsed power generator. (author) [fr

  4. Beam instability Workshop - plenary sessions

    International Nuclear Information System (INIS)

    2001-01-01

    The purpose of this workshop was to provide a review of the mechanisms of limiting beam instabilities, their cures, including feedback, and beam measurement for synchrotron radiation light sources. 12 plenary sessions took place whose titles are: 1) challenging brilliance and lifetime issues with increasing currents; 2) limiting instabilities in multibunch; 3) experience from high currents in B factories; 4) longitudinal dynamics in high intensity/bunch; 5) Transverse instabilities for high intensity/bunch; 6) working group introduction from ESRF experience; 7) impedance modelling: simulations, minimization; 8) report on the broadband impedance measurements and modelling workshop; 9) feedback systems for synchrotron light sources; 10) beam instabilities diagnostics; 11) harmonic cavities: the pros and cons; and 12) experimental study of fast beam-ion instabilities at PLS. This document gathers the 12 articles that were presented during these sessions

  5. Beam instability Workshop - plenary sessions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The purpose of this workshop was to provide a review of the mechanisms of limiting beam instabilities, their cures, including feedback, and beam measurement for synchrotron radiation light sources. 12 plenary sessions took place whose titles are: 1) challenging brilliance and lifetime issues with increasing currents; 2) limiting instabilities in multibunch; 3) experience from high currents in B factories; 4) longitudinal dynamics in high intensity/bunch; 5) Transverse instabilities for high intensity/bunch; 6) working group introduction from ESRF experience; 7) impedance modelling: simulations, minimization; 8) report on the broadband impedance measurements and modelling workshop; 9) feedback systems for synchrotron light sources; 10) beam instabilities diagnostics; 11) harmonic cavities: the pros and cons; and 12) experimental study of fast beam-ion instabilities at PLS. This document gathers the 12 articles that were presented during these sessions.

  6. THE GALACTIC R CORONAE BOREALIS STARS: THE C2 SWAN BANDS, THE CARBON PROBLEM, AND THE 12C/13C RATIO

    International Nuclear Information System (INIS)

    Hema, B. P.; Pandey, Gajendra; Lambert, David L.

    2012-01-01

    Observed spectra of R Coronae Borealis (RCB) and hydrogen-deficient carbon (HdC) stars are analyzed by synthesizing the C 2 Swan bands (1, 0), (0, 0), and (0, 1) using our detailed line list and the Uppsala model atmospheres. The (0, 1) and (0, 0) C 2 bands are used to derive the 12 C abundance, and the (1, 0) 12 C 13 C band to determine the 12 C/ 13 C ratios. The carbon abundance derived from the C 2 Swan bands is about the same for the adopted models constructed with different carbon abundances over the range 8.5 (C/He = 0.1%) to 10.5 (C/He = 10%). Carbon abundances derived from C I lines are about a factor of four lower than the carbon abundance of the adopted model atmosphere over the same C/He interval, as reported by Asplund et al., who dubbed the mismatch between adopted and derived C abundance as the 'carbon problem'. In principle, the carbon abundances obtained from C 2 Swan bands and that assumed for the model atmosphere can be equated for a particular choice of C/He that varies from star to star. Then, the carbon problem for C 2 bands is eliminated. However, such C/He ratios are in general less than those of the extreme helium stars, the seemingly natural relatives to the RCB and HdC stars. A more likely solution to the C 2 carbon problem may lie in a modification of the model atmosphere's temperature structure. The derived carbon abundances and the 12 C/ 13 C ratios are discussed in light of the double degenerate and the final flash scenarios.

  7. Recirculating Beam Breakup Study for the 12 GeV Upgrade at Jefferson Lab

    International Nuclear Information System (INIS)

    Shin, Ilkyoung; Satogata, Todd; Ahmed, Shahid; Bogacz, Slawomir; Stirbet, Mircea; Wang, Haipeng; Wang, Yan; Yunn, Byung; Bodenstein, Ryan

    2012-01-01

    Two new high gradient C100 cryomodules with a total of 16 new cavities were installed at the end of the CEBAF south linac during the 2011 summer shutdown as part of the 12-GeV upgrade project at Jefferson Lab. We surveyed the higher order modes (HOMs) of these cavities in the Jefferson Lab cryomodule test facility and CEBAF tunnel. We then studied recirculating beam breakup (BBU) in November 2011 to evaluate CEBAF low energy performance, measure transport optics, and evaluate BBU thresholds due to these HOMs. This paper discusses the experiment setup, cavity measurements, machine setup, optics measurements, and lower bounds on BBU thresholds by new cryomodules.

  8. Recirculating Beam Breakup Study for the 12 GeV Upgrade at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Ilkyoung Shin, Todd Satogata, Shahid Ahmed, Slawomir Bogacz, Mircea Stirbet, Haipeng Wang, Yan Wang, Byung Yunn, Ryan Bodenstein

    2012-07-01

    Two new high gradient C100 cryomodules with a total of 16 new cavities were installed at the end of the CEBAF south linac during the 2011 summer shutdown as part of the 12-GeV upgrade project at Jefferson Lab. We surveyed the higher order modes (HOMs) of these cavities in the Jefferson Lab cryomodule test facility and CEBAF tunnel. We then studied recirculating beam breakup (BBU) in November 2011 to evaluate CEBAF low energy performance, measure transport optics, and evaluate BBU thresholds due to these HOMs. This paper discusses the experiment setup, cavity measurements, machine setup, optics measurements, and lower bounds on BBU thresholds by new cryomodules.

  9. Device Fabrication and Probing of Discrete Carbon Nanostructures

    KAUST Repository

    Batra, Nitin M

    2015-05-06

    Device fabrication on multi walled carbon nanotubes (MWCNTs) using electrical beam lithography (EBL), electron beam induced deposition (EBID), ion beam induced deposition (IBID) methods was carried out, followed by device electrical characterization using a conventional probe station. A four-probe configuration was utilized to measure accurately the electrical resistivity of MWCNTs with similar results obtained from devices fabricated by different methods. In order to reduce the contact resistance of the beam deposited platinum electrodes, single step vacuum thermal annealing was performed. Microscopy and spectroscopy were carried out on the beam deposited electrodes to follow the structural and chemical changes occurring during the vacuum thermal annealing. For the first time, a core-shell type structure was identified on EBID Pt and IBID Pt annealed electrodes and analogous free standing nanorods previously exposed to high temperature. We believe this observation has important implications for transport properties studies of carbon materials. Apart from that, contamination of carbon nanostructure, originating from the device fabrication methods, was also studied. Finally, based on the observations of faster processing time together with higher yield and flexibility for device preparation, we investigated EBID to fabricate devices for other discrete carbon nanostructures.

  10. The Properties of SBR/ENR50 Blend Containing Nanoclay/Carbon Black Dual Filler System Cured by Electron Beam

    Directory of Open Access Journals (Sweden)

    Sima Ahmadi-Shooli

    2017-05-01

    Full Text Available Nanocomposites based on an SBR/ENR50 rubber blend with the blend ratio of 50/50 using Cloisite 15A nanoclay (5 and 10 phr and carbon black (20 phr were prepared by melt mixing process. The rubber compounds were crosslinked by electron beam irradiation process at 50 and 100 kGy doses. A reference sample containing carbon black at 35 phr was prepared using a conventional sulphur curing system. The gel content of the samples was specified using gel fraction measurement. The results showed the maximum gel content for the sample having 5 phr nanoclay and 20 phr carbon black. The dynamic mechanical properties, including the storage modulus, loss modulus, and loss factor, of the nanocomposites were evaluated using dynamic mechanical analysis (DMA tests. The results indicated that, in spite of a well dispersed nanoclay in samples containing 10 phr nanoclay and 20 phr carbon black, a minimum loss factor was observed in the sample containing 5 phr nanoclay and 20 phr carbon black at 100 kGy. On the other hand, the storage modulus of the reference sample was found to be higher than that of the sample with 5 phr nanoclay and 20 phr carbon black. The mechanical properties, including the tensile strength, stress at 100%, 200%, and 300% elongation and the percentage of elongation were measured by a tensile machine. The results showed an increase in tensile strength and the stress at different elongations for a sample with 5 phr nanoclay and 20 phr carbon black compared to the reference sample. In the corresponding SEM images of the samples having nanoclay and carbon black irradiated at 100 kGy a significantly higher surface roughness was observed.

  11. Development of digital reconstructed radiography software at new treatment facility for carbon-ion beam scanning of National Institute of Radiological Sciences.

    Science.gov (United States)

    Mori, Shinichiro; Inaniwa, Taku; Kumagai, Motoki; Kuwae, Tsunekazu; Matsuzaki, Yuka; Furukawa, Takuji; Shirai, Toshiyuki; Noda, Koji

    2012-06-01

    To increase the accuracy of carbon ion beam scanning therapy, we have developed a graphical user interface-based digitally-reconstructed radiograph (DRR) software system for use in routine clinical practice at our center. The DRR software is used in particular scenarios in the new treatment facility to achieve the same level of geometrical accuracy at the treatment as at the imaging session. DRR calculation is implemented simply as the summation of CT image voxel values along the X-ray projection ray. Since we implemented graphics processing unit-based computation, the DRR images are calculated with a speed sufficient for the particular clinical practice requirements. Since high spatial resolution flat panel detector (FPD) images should be registered to the reference DRR images in patient setup process in any scenarios, the DRR images also needs higher spatial resolution close to that of FPD images. To overcome the limitation of the CT spatial resolution imposed by the CT voxel size, we applied image processing to improve the calculated DRR spatial resolution. The DRR software introduced here enabled patient positioning with sufficient accuracy for the implementation of carbon-ion beam scanning therapy at our center.

  12. Graft-copolymerization onto carbon black

    International Nuclear Information System (INIS)

    Nakase, Yoshiaki; Nishii, Masanobu; Kijima, Toshiyuki; Kato, Hiroshi.

    1988-07-01

    Radiation-induced graft copolymerization of vinyl monomer onto carbon black was performed. During the γ-ray- and electron beam-induced polymerization (In-source), or the electron beam post-polymerization, the graft-copolymerization behavior was affected by the kinds of both carbon blacks and monomers, i.e. the smaller the size of carbon black particles, the higher the apparent grafted fraction. Homopolymer in the grafted carbon black samples was washed out by the solvent of the polymer, and the extracted polymer seemed to be dimer or trimer of the used monomer. In the case of the post-polymerization with the pre-irradiation doses of 50 Mrad, homopolymer was hardly observed. The polymer sheets of plastics or rubbers with grafted carbon black had an electrical conductivity unalterable considerably by the heating cycles. The particles of grafted carbon black in the sheet might be kept much more at the surface layer within 100 nm depth than at the inner layer. (author)

  13. New developments of 11C post-accelerated beams for hadron therapy and imaging

    Science.gov (United States)

    Augusto, R. S.; Mendonca, T. M.; Wenander, F.; Penescu, L.; Orecchia, R.; Parodi, K.; Ferrari, A.; Stora, T.

    2016-06-01

    Hadron therapy was first proposed in 1946 and is by now widespread throughout the world, as witnessed with the design and construction of the CNAO, HIT, PROSCAN and MedAustron treatment centres, among others. The clinical interest in hadron therapy lies in the fact that it delivers precision treatment of tumours, exploiting the characteristic shape (the Bragg peak) of the energy deposition in the tissues for charged hadrons. In particular, carbon ion therapy is found to be biologically more effective, with respect to protons, on certain types of tumours. Following an approach tested at NIRS in Japan [1], carbon ion therapy treatments based on 12C could be combined or fully replaced with 11C PET radioactive ions post-accelerated to the same energy. This approach allows providing a beam for treatment and, at the same time, to collect information on the 3D distributions of the implanted ions by PET imaging. The production of 11C ion beams can be performed using two methods. A first one is based on the production using compact PET cyclotrons with 10-20 MeV protons via 14N(p,α)11C reactions following an approach developed at the Lawrence Berkeley National Laboratory [2]. A second route exploits spallation reactions 19F(p,X)11C and 23Na(p,X)11C on a molten fluoride salt target using the ISOL (isotope separation on-line) technique [3]. This approach can be seriously envisaged at CERN-ISOLDE following recent progresses made on 11C+ production [4] and proven post-acceleration of pure 10C3/6+ beams in the REX-ISOLDE linac [5]. Part of the required components is operational in radioactive ion beam facilities or commercial medical PET cyclotrons. The driver could be a 70 MeV, 1.2 mA proton commercial cyclotron, which would lead to 8.1 × 10711C6+ per spill. This intensity is appropriate using 11C ions alone for both imaging and treatment. Here we report on the ongoing feasibility studies of such approach, using the Monte Carlo particle transport code FLUKA [6,7] to simulate

  14. Glass capillary optics for making x-ray beams of 0.1 to 50 microns diameter

    International Nuclear Information System (INIS)

    Bilderback, Donald H.; Fontes, Ernest

    1997-01-01

    We have fabricated a unique computerized glass puller that can make parabolic or elliptically tapered glass capillaries for microbeam x-ray experiments from hollow glass tubing. We have produced optics that work in a single-bounce imaging mode or in a multi-bounce condensing mode. The imaging-mode capillaries have been used to create 20 to 50 micron diameter x-ray beams at 12 keV that are quite useful for imaging diffraction patterns from tiny bundles of carbon and Kevlar fibers. The condensing-mode capillaries are useful for creating submicron diameter beams and show great promise in x-ray fluorescence applications with femtogram sensitivity for patterned Er and Ti dopants diffused into an optically-active lithium niobate wafer

  15. Device Fabrication and Probing of Discrete Carbon Nanostructures

    KAUST Repository

    Batra, Nitin M

    2015-01-01

    Device fabrication on multi walled carbon nanotubes (MWCNTs) using electrical beam lithography (EBL), electron beam induced deposition (EBID), ion beam induced deposition (IBID) methods was carried out, followed by device electrical characterization

  16. Experimental studies of effect of high current pulse electron and carbon ion beams on high temperature Y-Ba-Cu-O, Bi-Ca-Sr-Cu-O superconductors

    International Nuclear Information System (INIS)

    Korenev, S.A.; Sikolenko, V.V.; Chernakova, A.

    1989-01-01

    This work shows the results of the experiment on the effect of high current electron and carbon ion pulse beams irradiation on High-T c superconductors Y-Ba-Cu-O and Bi-Ca-Cu-O in vacuum (P∼5x10 -5 torr). The parameters of electron beam used in the experiment were: E∼100-300 keV, j e ∼10-1000 A/cm 2 , τ) p ∼300ns. The parameters of carbon ions used in the experiment were: E∼100-300keV j i ∼1-60A/cm, τ p ∼300ns. Experiments had shown the threshold electron beam power density for surface melting in adiabatic heat condition for Y-Ba-Cu-O ceramics up to P 0 >or approx. 10 7 W/cm 2 , and for Bi-Ca-Sr-Cu-O ceramics up to P 0 ∼4x10 6 W/cm 2 . Increasing of critical current in ∼2 times was observed in samples with a melting surface layer. The integral resistance of Y-Ba-Cu-O and Bi-Ca-Sr-Cu-O decreased in ∼2-2.5 times for electron beam irradiated samples and in ∼1.25-1.8 times for ion irradiated samples. Amorphization did not take place and stoichiometry remained after such irradiation. 6 refs.; 2 figs.; 1 tab

  17. SU-E-T-755: Timing Characteristics of Proton and Carbon Ion Treatments Using a Synchrotron and Modulated Scanning

    International Nuclear Information System (INIS)

    Zhao, J; Li, Y; Huang, Z; Deng, Y; Sun, L; Moyers, M; Hsi, W; Wu, X

    2015-01-01

    Purpose: The time required to deliver a treatment impacts not only the number of patients that can be treated each day but also the accuracy of delivery due to potential movements of patient tissues. Both macroscopic and microscopic timing characteristics of a beam delivery system were studied to examine their impacts on patient treatments. Methods: 35 patients were treated during a clinical trial to demonstrate safety and efficacy of a Siemens Iontris system prior to receiving approval from the Chinese Food and Drug Administration. The system has a variable cycle time and can provide proton beams from 48 to 221 MeV/n and carbon ions from 86 to 430 MeV/n. A modulated scanning beam delivery technique is used where the beam remains stationary at each spot aiming location and is not turned off while the spot quickly moves from one aiming location to the next. The treatment log files for 28 of the trial patients were analyzed to determine several timing characteristics. Results: The average portal time per target dose was 172.5 s/Gy for protons and 150.7 s/Gy for carbon ions. The maximum delivery time for any portal was less than 300 s. The average dwell time per spot was 12 ms for protons and 3.0 ms for carbon ions. The number of aiming positions per energy layer varied from 1 to 258 for protons and 1 to 621 for carbon ions. The average spill time and cycle time per energy layer were 1.20 and 2.68 s for protons and 0.95 and 4.73 s for carbon ions respectively. For 3 of the patients, the beam was gated on and off to reduce the effects of respiration. Conclusion: For a typical target volume of 153 cc as used in this clinical trial, the portal delivery times were acceptable

  18. Production of an accelerated oxygen-14 beam

    CERN Document Server

    Powell, J; Cerny, J

    2003-01-01

    BEARS is an ongoing project to provide a light-ion radioactive-beam capability at the 88-Inch Cyclotron at LBNL. Light radioactive isotopes are produced at a 10 MeV proton medical cyclotron, transported 350 m via a high-speed gas transport capillary, cryogenically separated, and injected into the 88-Inch Cyclotron's ion source. The first radioactive beam successfully accelerated was carbon-11 and beams of intensity more than 10 sup 8 ions/s have been utilized for experiments. Development of oxygen-14 as the second BEARS beam presented considerable technical challenges, both due to its short half-life of 71 s and the radiation chemistry of oxygen in the target. The usual techniques developed for medical uses of oxygen-15 involve the addition of significant amounts of carrier oxygen, something that would overload the ion source. As a solution, oxygen-14 is produced as water in a carrier-free form, and is chemically converted in two steps to carbon dioxide, a form readily usable by the BEARS. This system has bee...

  19. Investigate of analysis for hydrogen contents in carbon films

    International Nuclear Information System (INIS)

    Yasui, Haruyuki; Hirose, Yukio; Sasaki, Toshihiko; Awazu, Kaoru; Naramoto, Hiroshi

    2001-01-01

    Hydrogen is a very common contaminant in carbon films. It can strongly influences on mechanical, physical and chemical properties of the films. The analysis of hydrogen is therefore a crucial problem to prepare the films with the reproducible property. We were measured two kinds of methods. Ion beam techniques using nuclear reactions are established methods for the quantitative determination of hydrogen concentration. A spectrometer has been constructed for the determination of hydrogen concentrations by detecting 4.43 MeV γ-rays from the resonant nuclear reactions 1 H( 15 N, α γ) 12 C at the 6.385 MeV. And the other measurement of hydrogen is GDOES (Glow Discharge Optical Emission Spectroscopy), with its high sputtering rates, had been used previously for depth profiling analysis of thin films. The depth profiling analysis was carried out at an argon atmosphere by applying an RF of 13.56 MHz. The sampling time interval was 0.1 sec. The detailed hydrogen analysis was made on BCN (Boron Carbonitride) and DLC (Diamond-like Carbon) thin films. The BCN films were prepared by ion beam assisted deposition, in which boron and carbon were deposited by electron beam heating of B 4 C solid and nitrogen was supplied by implantation simultaneously. The DLC films were prepared by HPPC (Hybrid-pulse plasma coating) system. It was a new coating system that we developed which consists fundamentally of plasma CVD (chemical vapor deposition) and ion-mixing. In this paper, we reported the comparison of analysis for hydrogen contents between RNRA and GDOES. (author)

  20. Investigate of analysis for hydrogen contents in carbon films

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Haruyuki; Hirose, Yukio; Sasaki, Toshihiko [Kanazawa Univ., Kanazawa, Ishikawa (Japan); Awazu, Kaoru [Industrial Research Institute of Ishikawa, Kanazawa, Ishikawa (Japan); Naramoto, Hiroshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-07-01

    Hydrogen is a very common contaminant in carbon films. It can strongly influences on mechanical, physical and chemical properties of the films. The analysis of hydrogen is therefore a crucial problem to prepare the films with the reproducible property. We were measured two kinds of methods. Ion beam techniques using nuclear reactions are established methods for the quantitative determination of hydrogen concentration. A spectrometer has been constructed for the determination of hydrogen concentrations by detecting 4.43 MeV {gamma}-rays from the resonant nuclear reactions {sup 1}H({sup 15}N, {alpha} {gamma}){sup 12}C at the 6.385 MeV. And the other measurement of hydrogen is GDOES (Glow Discharge Optical Emission Spectroscopy), with its high sputtering rates, had been used previously for depth profiling analysis of thin films. The depth profiling analysis was carried out at an argon atmosphere by applying an RF of 13.56 MHz. The sampling time interval was 0.1 sec. The detailed hydrogen analysis was made on BCN (Boron Carbonitride) and DLC (Diamond-like Carbon) thin films. The BCN films were prepared by ion beam assisted deposition, in which boron and carbon were deposited by electron beam heating of B{sub 4}C solid and nitrogen was supplied by implantation simultaneously. The DLC films were prepared by HPPC (Hybrid-pulse plasma coating) system. It was a new coating system that we developed which consists fundamentally of plasma CVD (chemical vapor deposition) and ion-mixing. In this paper, we reported the comparison of analysis for hydrogen contents between RNRA and GDOES. (author)

  1. Assessment of adhesive setting time in reinforced concrete beams strengthened with carbon fibre reinforced polymer laminates

    International Nuclear Information System (INIS)

    Fayyadh, Moatasem M.; Abdul Razak, H.

    2012-01-01

    Highlights: ► This study investigated the effect of adhesive setting time on the modal parameters. ► Modal parameters recommend the 18th day as the maturity age of the adhesive. ► Static data recommend 7th day as the maturity age of the adhesive. ► Setting time affects the modal parameters as tool for assessment repaired structures. ► Carrying the modal parameters after 1st day results in 55% loss of the actual improvement. -- Abstract: The strengthened effectiveness and the performance capacity of repaired Reinforced Concrete (RC) structures with Carbon Fibre Reinforced Polymer (CFRP) sheets is dependent on the properties of the adhesive interface layer. Adhesive material requires a specific setting time to achieve the maximum design capacity. Adhesive producer provides technical data which demonstrates the increase with time of the capacity, up to the maximum. The aim of this study is to investigate the effect of the adhesive setting time on the modal parameters as an indication of the effectiveness of CFRP on repaired RC beams. Firstly, datum modal parameters were determined on the undamaged beam and subsequently the parameters were obtained when damaged was induced on the RC beam by application of load until the appearance of the first crack. Finally, the RC beam is repaired with externally bonded CFRP sheets, and modal parameters are once again applied after 0.5, 1, 2, 3, 5, 8, 11, 15 and 18 days. The comparison is made with the data based on half day results in order to monitor the change in the modal parameters corresponding to the adhesive setting time. The modal parameters where used as indicators for the effectiveness of CFRP are affected by the adhesive time as shown in this study. Results are compared with the adhesive technical data provided by the adhesive producer.

  2. Variable electron beam diameter achieved by a titanium oxide/carbon nanotube hetero-structure suitable for nanolithography

    International Nuclear Information System (INIS)

    Abdi, Yaser; Barati, Fatemeh

    2013-01-01

    We report the fabrication of a titanium oxide/carbon nanotube based field emission device suitable for nanolithography and fabrication of transistors. The growth of carbon nanotubes (CNTs) is performed on silicon substrates using a plasma-enhanced chemical vapor deposition method. The vertically grown CNTs are encapsulated by titanium oxide (TiO 2 ) using an atmospheric pressure chemical vapor deposition system. Field emission from the CNTs is realized by mechanical polishing of the prepared structure. Possible applications of such nanostructures as a lithography tool with variable electron beam diameter has been investigated. The obtained results show that a spot size of less than 30 nm can be obtained by applying the proper voltage on TiO 2 surrounding gate. Electrical measurements of the fabricated device confirm the capability of the structure for fabrication of field emission based field effect transistors. By a voltage applied between the gate and the cathode electrode, the emission current from CNTs shows a significant drop, indicating proper control of the gate on the emission current. (paper)

  3. The use of multi-gap resistive plate chambers for in-beam PET in proton and carbon ion therapy

    CERN Document Server

    Watts, David; Sauli, Fabio; Amaldi, Ugo

    2013-01-01

    On-line verification of the delivered dose during proton and carbon ion radiotherapy is currently a very desirable goal for quality assurance of hadron therapy treatment plans. In-beam positron emission tomography (ibPET), which can provide an image of the β+ activity induced in the patient during irradiation, which in turn is correlated to the range of the ion beam, is one of the modalities for achieving this goal. Application to hadron therapy requires that the scanner geometry be modified from that which is used in nuclear medicine. In particular, PET detectors that allow a sub-nanosecond time-of-flight (TOF) registration of the collinear photons have been proposed. Inclusion of the TOF information in PET data leads to more effective PET sensitivity. Considering the challenges inherent in the ibPET technique, namely limited β+ activity and the effect of biological washout due to blood flow, TOF-PET technologies are very attractive. In this context, the TERA Foundation is investigating the use of resistiv...

  4. Crack Identification in CFRP Laminated Beams Using Multi-Resolution Modal Teager–Kaiser Energy under Noisy Environments

    Science.gov (United States)

    Xu, Wei; Cao, Maosen; Ding, Keqin; Radzieński, Maciej; Ostachowicz, Wiesław

    2017-01-01

    Carbon fiber reinforced polymer laminates are increasingly used in the aerospace and civil engineering fields. Identifying cracks in carbon fiber reinforced polymer laminated beam components is of considerable significance for ensuring the integrity and safety of the whole structures. With the development of high-resolution measurement technologies, mode-shape-based crack identification in such laminated beam components has become an active research focus. Despite its sensitivity to cracks, however, this method is susceptible to noise. To address this deficiency, this study proposes a new concept of multi-resolution modal Teager–Kaiser energy, which is the Teager–Kaiser energy of a mode shape represented in multi-resolution, for identifying cracks in carbon fiber reinforced polymer laminated beams. The efficacy of this concept is analytically demonstrated by identifying cracks in Timoshenko beams with general boundary conditions; and its applicability is validated by diagnosing cracks in a carbon fiber reinforced polymer laminated beam, whose mode shapes are precisely acquired via non-contact measurement using a scanning laser vibrometer. The analytical and experimental results show that multi-resolution modal Teager–Kaiser energy is capable of designating the presence and location of cracks in these beams under noisy environments. This proposed method holds promise for developing crack identification systems for carbon fiber reinforced polymer laminates. PMID:28773016

  5. Application of the in-beam PET therapy monitoring on precision irradiations with helium ions

    International Nuclear Information System (INIS)

    Fiedler, F.

    2008-01-01

    The main goal of the present dissertation was to extend the in-beam PET method to new ion types. It was shown that the in-beam PET method can also be applied for 3 He irradiations. For this experiments on a 3 He beam were performed. The activity yield is at equal applied dose about three times larger than at 12 C irradiations. The reachable range resolution is smaller than 1 mm. At the irradiation of an inhomogeneous phantom it was shown that a contrast between different materials is resolvable. From the experimentally determined reaction rates cross sections for the reactions leading to positron emitters were performed. The data taken in the 3 He experiments were compared those obtained in carbon-ion experiments as well as literature data for proton irradiations. A comparison with the calculations of the simulation program SHIELD-HIT was performed. A collection of cross-section models and the established requirements for a simulation program applicable for in-beam PET are preparing for further work

  6. Oxidation of Carbon Nanotubes in an Ionizing Environment.

    Science.gov (United States)

    Koh, Ai Leen; Gidcumb, Emily; Zhou, Otto; Sinclair, Robert

    2016-02-10

    In this work, we present systematic studies on how an illuminating electron beam which ionizes molecular gas species can influence the mechanism of carbon nanotube oxidation in an environmental transmission electron microscope (ETEM). We found that preferential attack of the nanotube tips is much more prevalent than for oxidation in a molecular gas environment. We establish the cumulative electron doses required to damage carbon nanotubes from 80 keV electron beam irradiation in gas versus in high vacuum. Our results provide guidelines for the electron doses required to study carbon nanotubes within or without a gas environment, to determine or ameliorate the influence of the imaging electron beam. This work has important implications for in situ studies as well as for the oxidation of carbon nanotubes in an ionizing environment such as that occurring during field emission.

  7. On the role of CFRP reinforcement for wood beams stiffness

    Science.gov (United States)

    Ianasi, A. C.

    2015-11-01

    In recent years, carbon fiber composites have been increasingly used in different ways in reinforcing structural elements. Specifically, the use of composite materials as a reinforcement for wood beams under bending loads requires paying attention to several aspects of the problem such as the number of the composite layers applied on the wood beams. Study consolidation of composites revealed that they are made by bonding fibrous material impregnated with resin on the surface of various elements, to restore or increase the load carrying capacity (bending, cutting, compression or torque) without significant damage of their rigidity. Fibers used in building applications can be fiberglass, aramid or carbon. Items that can be strengthened are concrete, brick, wood, steel and stone, and in terms of structural beams, walls, columns and floors. This paper describes an experimental study which was designed to evaluate the effect of composite material on the stiffness of the wood beams. It proposes a summary of the fundamental principles of analysis of composite materials and the design and use. The type of reinforcement used on the beams is the carbon fiber reinforced polymer (CFRP) sheet and plates and also an epoxy resin for bonding all the elements. Structural epoxy resins remain the primary choice of adhesive to form the bond to fiber-reinforced plastics and are the generally accepted adhesives in bonded CFRP-wood connections. The advantages of using epoxy resin in comparison to common wood-laminating adhesives are their gap-filling qualities and the low clamping pressures that are required to form the bond between carbon fiber plates or sheets and the wood beams. Mechanical tests performed on the reinforced wood beams showed that CFRP materials may produce flexural displacement and lifting increases of the beams. Observations of the experimental load-displacement relationships showed that bending strength increased for wood beams reinforced with CFRP composite plates

  8. Fatigue behavior of RC T-beams

    Directory of Open Access Journals (Sweden)

    Omar A. Farghal

    2014-09-01

    Full Text Available The objective of this research is to study the fatigue performance of reinforced concrete (RC T-beams strengthened in shear with Carbon Fiber Reinforced Polymer (CFRP composite. Experiments were conducted on RC beams with and without CFRP sheets bonded on their web surfaces and subjected to static and cycling loading. The obtained results showed that the strengthened beams could survive one million cycles of cyclic loading (=50% of maximum static load with no apparent signs of damage (premature failure demonstrating the effectiveness of CFRP strengthening system on extending the fatigue life of structures. Also, for beams having the same geometry, the applied strengthening technique can significantly enhance the cycling load particularly, in case of beams provided with U-jacket sheets. Moreover, although the failure mode for the different beams was a brittle one, the strengthened beams provided with U-jacket sheets approved an acceptable enhancement in the structural ductility.

  9. Rotational Capacity of Reinforced Concrete Beams

    DEFF Research Database (Denmark)

    Ulfkjær, J. P.; Henriksen, M. S.; Brincker, Rune

    1995-01-01

    programme where 120 reinforced concrete beams, 54 plain concrete beams and 324 concrete cylinders are tested. For the reinforced concrete beams four different parar meters are varied. The slenderness is 6, 12 and 18, the beam depth is 100 mm, 200 mm and 400 mm giving nine different geometries, five...

  10. Ion beam techniques for analyzing polymers irradiated by ions

    International Nuclear Information System (INIS)

    Rickards, J.; Zironi, E.P.; Andrade, E.; Dominguez, B.

    1992-01-01

    In the study of the effects of ion beam irradiation of polymers very large doses can be administered in short times. Thousands of MGy can be produced in a small volume of a sample in a few minutes by bombarding with typical ion beam currents. For instance, in an experiment done to observe the effects of 750 keV proton irradiation PVC, using a collimator of 1 mm diameter, 1 μC of charge integration deposits a dose of 50 MGy. The use of ion beams also opens up the possibility of using the same beam for irradiation and for analysis of the effects, using the well known ion beam analysis techniques. PIXE allows the measurement of chlorine in PVC. Polymers containing fluorine can be measured with the resonant nuclear reaction (RNR) technique, which is specific only to certain elements. The amount of hydrogen in the sample and its profile can be obtained using energy recoil detection analysis (ERDA); carbon, oxygen, and nitrogen can be measured and profiled using Rutherford backscattering (RBS) and also using the (d,p) and (d, α) nuclear reactions (NR). Loss of mass is one effect that can be studied using these techniques. It was studied in two different polymers, PVC and CR-39, in order to determine carbon buildup during ion irradiation. It was concluded that carbon builds up following different mechanisms in these two materials, due to the different possibilities of forming volatile compounds. It is also suggested that CR-39 should be a good material for ion beam lithography. (author)

  11. Assessing and ameliorating the influence of the electron beam on carbon nanotube oxidation in environmental transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Ai Leen, E-mail: alkoh@stanford.edu [Stanford Nano Shared Facilities, Stanford University, Stanford, CA 94305 (United States); Sinclair, Robert [Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States)

    2017-05-15

    In this work, we examine how the imaging electron beam can induce damage in carbon nanotubes (CNTs) at varying oxygen gas pressures and electron dose rates using environmental transmission electron microscopy (ETEM). Our studies show that there is a threshold cumulative electron dose which brings about damage in CNTs in oxygen – through removal of their graphitic walls – which is dependent on O{sub 2} pressure, with a 4–5 fold decrease in total electron dose per decade increase at a lower pressure range (10{sup −6} to 10{sup −5} mbar) and approximately 1.3 –fold decrease per decade increase at a higher pressure range (10{sup −3} to 10{sup 0} mbar). However, at a given pressure, damage in CNTs was found to occur even at the lowest dose rate utilized, suggesting the absence of a lower limit for the latter parameter. This study provides guidelines on the cumulative dose required to damage nanotubes in the 10{sup −7} mbar to 10{sup 0} mbar pressure regimes, and discusses the role of electron dose rate and total electron dose on beam-induced CNT degradation experiments. - Highlights: • The electron beam ionizes gas molecules in ETEM and affects experimental outcomes. • Beam-induced damage in CNTs occurs at varying O{sub 2} pressures and electron dose rates. • There is a threshold cumulative dose to damage CNTs which depends on O{sub 2} pressure. • At a given pressure, CNT damage occurs even at the electron dose rate utilized.

  12. Assessing and ameliorating the influence of the electron beam on carbon nanotube oxidation in environmental transmission electron microscopy

    International Nuclear Information System (INIS)

    Koh, Ai Leen; Sinclair, Robert

    2017-01-01

    In this work, we examine how the imaging electron beam can induce damage in carbon nanotubes (CNTs) at varying oxygen gas pressures and electron dose rates using environmental transmission electron microscopy (ETEM). Our studies show that there is a threshold cumulative electron dose which brings about damage in CNTs in oxygen – through removal of their graphitic walls – which is dependent on O_2 pressure, with a 4–5 fold decrease in total electron dose per decade increase at a lower pressure range (10"−"6 to 10"−"5 mbar) and approximately 1.3 –fold decrease per decade increase at a higher pressure range (10"−"3 to 10"0 mbar). However, at a given pressure, damage in CNTs was found to occur even at the lowest dose rate utilized, suggesting the absence of a lower limit for the latter parameter. This study provides guidelines on the cumulative dose required to damage nanotubes in the 10"−"7 mbar to 10"0 mbar pressure regimes, and discusses the role of electron dose rate and total electron dose on beam-induced CNT degradation experiments. - Highlights: • The electron beam ionizes gas molecules in ETEM and affects experimental outcomes. • Beam-induced damage in CNTs occurs at varying O_2 pressures and electron dose rates. • There is a threshold cumulative dose to damage CNTs which depends on O_2 pressure. • At a given pressure, CNT damage occurs even at the electron dose rate utilized.

  13. Electron beam emission and interaction of double-beam gyrotron

    International Nuclear Information System (INIS)

    Singh, Udaybir; Kumar, Anil; Kumar, Nitin; Kumar, Narendra; Pratap, Bhanu; Purohit, L.P.; Sinha, A.K.

    2012-01-01

    Highlights: ► The complete electrical design of electron gun and interaction structure of double-beam gyrotron. ► EGUN code is used for the simulation of electron gun of double-beam gyrotron. ► MAGIC code is used for the simulation of interaction structure of double-beam gyrotron. ► Design validations with other codes. - Abstract: This paper presents the numerical simulation of a double-beam magnetron injection gun (DB-MIG) and beam-wave interaction for 60 GHz, 500 kW gyrotron. The beam-wave interaction calculations, power and frequency growth estimation are performed by using PIC code MAGIC. The maximum output power of 510 kW at 41.5% efficiency, beam currents of 6 A and 12 A, electron beam velocity ratios of 1.41 and 1.25 and beam voltage of 69 kV are estimated. To obtain the design parameters, the DB-MIG with maximum transverse velocity spread less than 5% is designed. The computer simulations are performed by using the commercially available code EGUN and the in-house developed code MIGANS. The simulated results of DB-MIG design obtained by using the EGUN code are also validated with another trajectory code TRAK, which are in good agreement.

  14. Electron beam emission and interaction of double-beam gyrotron

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Udaybir, E-mail: uday.ceeri@gmail.com [Gyrotron Laboratory, Microwave Tube Area, Central Electronics Engineering Research Institute (CEERI), Council of Scientific and Industrial Research (CSIR), Pilani, Rajasthan 333031 (India); Department of Physics, Gurukul Kangri University, Haridwar 249404 (India); Kumar, Anil [Gyrotron Laboratory, Microwave Tube Area, Central Electronics Engineering Research Institute (CEERI), Council of Scientific and Industrial Research (CSIR), Pilani, Rajasthan 333031 (India); Kumar, Nitin, E-mail: nitin_physika@rediffmail.com [Gyrotron Laboratory, Microwave Tube Area, Central Electronics Engineering Research Institute (CEERI), Council of Scientific and Industrial Research (CSIR), Pilani, Rajasthan 333031 (India); Kumar, Narendra; Pratap, Bhanu [Gyrotron Laboratory, Microwave Tube Area, Central Electronics Engineering Research Institute (CEERI), Council of Scientific and Industrial Research (CSIR), Pilani, Rajasthan 333031 (India); Purohit, L.P. [Department of Physics, Gurukul Kangri University, Haridwar 249404 (India); Sinha, A.K., E-mail: aksinha@ceeri.ernet.in [Gyrotron Laboratory, Microwave Tube Area, Central Electronics Engineering Research Institute (CEERI), Council of Scientific and Industrial Research (CSIR), Pilani, Rajasthan 333031 (India)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer The complete electrical design of electron gun and interaction structure of double-beam gyrotron. Black-Right-Pointing-Pointer EGUN code is used for the simulation of electron gun of double-beam gyrotron. Black-Right-Pointing-Pointer MAGIC code is used for the simulation of interaction structure of double-beam gyrotron. Black-Right-Pointing-Pointer Design validations with other codes. - Abstract: This paper presents the numerical simulation of a double-beam magnetron injection gun (DB-MIG) and beam-wave interaction for 60 GHz, 500 kW gyrotron. The beam-wave interaction calculations, power and frequency growth estimation are performed by using PIC code MAGIC. The maximum output power of 510 kW at 41.5% efficiency, beam currents of 6 A and 12 A, electron beam velocity ratios of 1.41 and 1.25 and beam voltage of 69 kV are estimated. To obtain the design parameters, the DB-MIG with maximum transverse velocity spread less than 5% is designed. The computer simulations are performed by using the commercially available code EGUN and the in-house developed code MIGANS. The simulated results of DB-MIG design obtained by using the EGUN code are also validated with another trajectory code TRAK, which are in good agreement.

  15. Ion-beam technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fenske, G.R. [Argonne National Lab., IL (United States)

    1993-01-01

    This compilation of figures and diagrams reviews processes for depositing diamond/diamond-like carbon films. Processes addressed are chemical vapor deposition (HFCVD, PACVD, etc.), plasma vapor deposition (plasma sputtering, ion beam sputtering, evaporation, etc.), low-energy ion implantation, and hybrid processes (biased sputtering, IBAD, biased HFCVD, etc.). The tribological performance of coatings produced by different means is discussed.

  16. Structure and properties of steel case-hardened by non-vacuum electron-beam cladding of carbon fibers

    Science.gov (United States)

    Losinskaya, A. A.; Lozhkina, E. A.; Bardin, A. I.

    2017-12-01

    At the present time, the actual problem of materials science is the increase in the steels performance characteristics. In the paper some mechanical properties of the case-hardened materials received by non-vacuum electron-beam cladding of carbon fibers are determined. The depth of the hardened layers varies from 1.5 to 3 mm. The impact strength of the samples exceeds 50 J/cm2. The wear resistance of the coatings obtained exceeds the properties of steel 20 after cementation and quenching with low tempering. The results of a study of the microhardness of the resulting layers and the microstructure are also given. The hardness of the surface layers exceeds 5700 MPa.

  17. Particle beam technology for control of atomic-bonding state in materials

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Junzo [Kyoto Univ. (Japan). Faculty of Engineering

    1997-03-01

    The atomic-bonding state in materials can be controlled through `kinetic bonding` process by energetic particle beams which have a sufficient atomic kinetic energy. In order to clarify the `kinetic bonding` process the negative-ion beam deposition is considered as an ideal method because the negative ion has no additional active energies. Sputter type heavy negative-ion sources can be used for this purpose. Carbon films prepared by carbon negative-ion beam deposition have a strong dependency of the film properties on ion beam kinetic energy and have a quite high thermal conductivity which is comparable to that of the IIb diamond at a kinetic energy of 50-100 eV/atom. It suggests that new or metastable materials could be formed through the `kinetic bonding` process. Negative-ion beams can also be used for ion implantation, in which charging problems are perfectly reduced. (author)

  18. Laser ablation for the synthesis of carbon nanotubes

    Science.gov (United States)

    Holloway, Brian C.; Eklund, Peter C.; Smith, Michael W.; Jordan, Kevin C.; Shinn, Michelle

    2010-04-06

    Single walled carbon nanotubes are produced in a novel apparatus by the laser-induced ablation of moving carbon target. The laser used is of high average power and ultra-fast pulsing. According to various preferred embodiments, the laser produces an output above about 50 watts/cm.sup.2 at a repetition rate above about 15 MHz and exhibits a pulse duration below about 10 picoseconds. The carbon, carbon/catalyst target and the laser beam are moved relative to one another and a focused flow of "side pumped", preheated inert gas is introduced near the point of ablation to minimize or eliminate interference by the ablated plume by removal of the plume and introduction of new target area for incidence with the laser beam. When the target is moved relative to the laser beam, rotational or translational movement may be imparted thereto, but rotation of the target is preferred.

  19. Laser ablation for the synthesis of carbon nanotubes

    Science.gov (United States)

    Holloway, Brian C. (Inventor); Eklund, Peter C. (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor); Shinn, Michelle (Inventor)

    2012-01-01

    Single walled carbon nanotubes are produced in a novel apparatus by the laser-induced ablation of moving carbon target. The laser used is of high average power and ultra-fast pulsing. According to various preferred embodiments, the laser produces and output above about 50 watts/cm.sup.2 at a repetition rate above about 15 MHz and exhibits a pulse duration below about 10 picoseconds. The carbon, carbon/catalyst target and the laser beam are moved relative to one another and a focused flow of "side pumped", preheated inert gas is introduced near the point of ablation to minimize or eliminate interference by the ablated plume by removal of the plume and introduction of new target area for incidence with the laser beam. When the target is moved relative to the laser beam, rotational or translational movement may be imparted thereto, but rotation of the target is preferred.

  20. Calculation of collective effects and beam lifetimes for the LBL [Lawrence Berkeley Laboratory] 1-2 GeV synchrotron radiation source

    International Nuclear Information System (INIS)

    Chattopadhyay, S.; Zisman, M.S.

    1987-03-01

    In designing a third-generation high brightness synchrotron radiation source, attention must be paid to the various collective effects that can influence beam performance. We report on calculations, performed with the code ZAP, of the bunch length, the transverse emittance and the beam lifetime (from both Touschek and gas scattering) for our 1-2 GeV storage ring. In addition, we estimate the growth times for both longitudinal and transverse coupled bunch instabilities. Bunch lengths of about 20 ps should be obtainable and intrabeam scattering emittance growth is small. For a limiting undulator gap of 1 cm and residual gas pressure of 1n Torr, the beam lifetime is about 5 hours in the single-bunch mode; in the multibunch mode, lifetimes in excess of 6 hours are expected. These results indicate that all performance goals for the facility should be achievable

  1. Prestress Loss of CFL in a Prestressing Process for Strengthening RC Beams

    Directory of Open Access Journals (Sweden)

    Xinyan Guo

    2017-01-01

    Full Text Available A prestressing system was designed to strengthen reinforced concrete (RC beams with prestressed carbon fiber laminate (CFL. During different prestressing processes, prestress loss was measured using strain gauges attached on the surface of CFL along the length direction. The prestress loss was 50–68% of the whole prestress loss, which is typically associated with CFL slipping between the grip anchors. Approximately 20–27% of the prestress loss was caused by the elastic shortening of the RC beam. An analytical model using linear-elastic theory was constructed to calculate the prestress loss caused by CFL slipping between the anchors and the elastic shortening of the strengthened beams. The compared results showed that the analytical model of prestress loss can describe the experimental data well. Methods of reducing the prestress loss were also suggested. Compared to other experiments, the prestressing system proposed by this research group was effective because the maximum percentage of prestress loss was 14.9% and the average prestress loss was 12.5%.

  2. Modification of bamboo surface by irradiation of ion beams

    International Nuclear Information System (INIS)

    Wada, M.; Nishigaito, S.; Flauta, R.; Kasuya, T.

    2003-01-01

    When beams of hydrogen ions, He + and Ar + were irradiated onto bamboo surface, gas release of hydrogen, water, carbon monoxide and carbon dioxide were enhanced. Time evolution of the gas emission showed two peaks corresponding to release of adsorbed gas from the surface by sputtering, and thermal desorption caused by the beam heating. The difference in etched depths between parenchyma lignin and vascular bundles was measured by bombarding bamboo surface with the ion beams in the direction parallel to the vascular bundles. For He + and Ar + , parenchyma lignin was etched more rapidly than vascular bundles, but the difference in etched depth decreased at a larger dose. In the case of hydrogen ion bombardment, vascular bundles were etched faster than parenchyma lignin and the difference in etched depth increased almost in proportion to the dose. The wettability of outer surface of bamboo was improved most effectively by irradiation of a hydrogen ion beam

  3. Flexural strength using Steel Plate, Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) on reinforced concrete beam in building technology

    Science.gov (United States)

    Tarigan, Johannes; Patra, Fadel Muhammad; Sitorus, Torang

    2018-03-01

    Reinforced concrete structures are very commonly used in buildings because they are cheaper than the steel structures. But in reality, many concrete structures are damaged, so there are several ways to overcome this problem, by providing reinforcement with Fiber Reinforced Polymer (FRP) and reinforcement with steel plates. Each type of reinforcements has its advantages and disadvantages. In this study, researchers discuss the comparison between flexural strength of reinforced concrete beam using steel plates and Fiber Reinforced Polymer (FRP). In this case, the researchers use Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) as external reinforcements. The dimension of the beams is 15 x 25 cm with the length of 320 cm. Based on the analytical results, the strength of the beam with CFRP is 1.991 times its initial, GFRP is 1.877 times while with the steel plate is 1.646 times. Based on test results, the strength of the beam with CFRP is 1.444 times its initial, GFRP is 1.333 times while the steel plate is 1.167 times. Based on these test results, the authors conclude that beam with CFRP is the best choice for external reinforcement in building technology than the others.

  4. Failure modes of composite sandwich beams

    OpenAIRE

    Gdoutos E.; Daniel I.M.

    2008-01-01

    A thorough investigation of failure behavior of composite sandwich beams under three-and four-point bending was undertaken. The beams were made of unidirectional carbon/epoxy facings and a PVC closed-cell foam core. The constituent materials were fully characterized and in the case of the foam core, failure envelopes were developed for general two-dimensional states of stress. Various failure modes including facing wrinkling, indentation failure and core failure were observed and compared wit...

  5. Applications of Novel Carbon/AlPO4 Hybrid-Coated H2Ti12O25 as a High-Performance Anode for Cylindrical Hybrid Supercapacitors.

    Science.gov (United States)

    Lee, Jeong-Hyun; Lee, Seung-Hwan

    2016-10-26

    The hybrid supercapacitor using carbon/AlPO 4 hybrid-coated H 2 Ti 12 O 25 /activated carbon is fabricated as a cylindrical cell and investigated against electrochemical performances. The hybrid coating shows that the conductivity for the electron and Li ion is superior and it prevented active material from HF attack. Consequently, carbon/AlPO 4 hybrid-coated H 2 Ti 12 O 25 shows enhanced rate capability and long-term cycle life. Also, the hybrid coating inhibits swelling phenomenon caused by gas generated as decomposition reaction of electrolyte. Therefore, the hybrid supercapacitor using carbon/AlPO 4 hybrid-coated H 2 Ti 12 O 25 /activated carbon can be applied to an energy storage system that requires a long-term life.

  6. 40 CFR 600.208-12 - Calculation of FTP-based and HFET-based fuel economy and carbon-related exhaust emission values...

    Science.gov (United States)

    2010-07-01

    ...-based fuel economy and carbon-related exhaust emission values for a model type. 600.208-12 Section 600... ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1977 and Later...-based and HFET-based fuel economy and carbon-related exhaust emission values for a model type. (a) Fuel...

  7. Nonlinear free vibration analysis of elastically supported carbon nanotube-reinforced composite beam with the thermal environment in non-deterministic framework

    Directory of Open Access Journals (Sweden)

    Chaudhari Virendra Kumar

    2017-01-01

    Full Text Available This paper deals with the investigation of nonlinear free vibration behavior of elastically supported carbon nanotube reinforced composite (CNTRC beam subjected to thermal loading with random system properties. Material properties of each constituent’s material, volume fraction exponent and foundation parameters are considered as uncorrelated Gaussian random input variables. The beam is supported by a Pasternak foundation with Winkler cubic nonlinearity. The higher order shear deformation theory (HSDT with von-Karman non-linearity is used to formulate the governing equation using Hamilton principle. Convergence and validation study is carried out through the comparison with the available results in the literature for authenticity and accuracy of the present approach used in the analysis. First order perturbation technique (FOPT,Second order perturbation technique (SOPT and Monte Carlo simulation (MCS methods are employed to investigate the effect of geometric configuration, volume fraction exponent, foundation parameters, distribution of reinforcement and thermal loading on nonlinear vibration characteristics CNTRC beam.The present work signifies the accurate analysis of vibrational behaviour influences by different random variables. Results are presented in terms of mean, variance (COV and probability density function (PDF for various aforementioned parameters.

  8. Application of electron beam irradiation. 4. Treatment of pollutants by electron beam irradiation

    International Nuclear Information System (INIS)

    Tokunaga, Okihiro; Arai, Hidehiko

    1994-01-01

    Electron beam irradiation is capable of dissolving and removing pollutants, such as sulfur oxides, nitrogen oxides, and organic compounds, by easy production of OH radicals in flue gas and water. This paper deals with current status in the search for techniques for treating flue gas and waste water, using electron beam irradiation. Pilot tests have been conducted during the period 1991-1994 for the treatment of flue gas caused by coal and garbage burning and road tunnels. Firstly, techniques for cleaning flue gas with electron beams are outlined, with special reference to their characteristics and process of research development. Secondly, the application of electron beam irradiation in the treatment of waste water is described in terms of the following: (1) disinfection of sewage, (2) cleaning of water polluted with toxic organic compounds, (3) treatment for eliminating sewage sludge, (4) promotion of sewage sludge sedimentation, (5) disinfection and composting of sewage sludge, and (6) regeneration of activated carbon used for the treatment of waste water. (N.K.)

  9. Effects of ion beam irradiation on adventitious shoot regeneration from in vitro leaf explants of Septennial ionahta

    International Nuclear Information System (INIS)

    Zhou, L.B.; Li, W.J.; Ma, S.; Dong, X.C.; Yu, L.X.; Li, Q.; Zhou, G.M.; Gao, Q.X.

    2006-01-01

    The effects of 960 MeV carbon ion beam and 8 MeV X-ray irradiation on adventitious shoots from in vitro leaf explants of two different Saintpaulia ionahta (Mauve and Indikon) cultivars were studied with regard to tissue increase, shoots differentiation and morphology changes in the shoots. The experimental results showed that the survival fraction of shoot formation for the Mauve and Indikon irradiated with the carbon ion beam at 20 Gy were 0.715 and 0.600, respectively, while those for both the cultivars exposed to the X-ray irradiation at the same dose were 1.000. Relative biological effectiveness (RBE) of Mauve with respect to X-ray was about two. Secondly, the percentage of regenerating explants with malformed shoots in all Mauve regenerating explants irradiated with carbon ion beam at 20 Gy accounted for 49.6%, while that irradiated with the same dose of X-ray irradiation was only 4.7%; as for Saintpaulia ionahta Indikon irradiated with 20 Gy carbon ion beam, the percentage was 43.3%, which was higher than that of X-ray irradiation. Last, many chlorophyll deficient and other varieties of mutants were obtained in this study. Based on the results above, it can be concluded that the effect of mutation induction by carbon ion beam irradiation on the leaf explants of Saintpaulia ionahta is better than that by X-ray irradiation; and the optimal mutagenic dose varies from 20 Gy to 25 Gy for carbon ion beam irradiation

  10. Beam-foil study of neon in the EUV with foils of carbon, silver and gold

    International Nuclear Information System (INIS)

    Demarest, J.A.; Watson, R.L.; Texas A and M Univ., College Station

    1988-01-01

    A beam-foil study of 40 MeV neon was conducted in the EUV with a 1-meter grazing incidence spectrometer configured with a position sensitive microchannel plate detector. A number of new lines of Ne IX, mainly from transitions to n = 3 levels, were detected in the wavelength region covering 50-350 A. Comparison of the spectra obtained using the different foils revealed that the average charge state of the neon projectiles was nearly one unit higher with carbon than with either of the two metals. Measurements of line intensities versus distance from the foils showed that cascade contributions were greatly reduced for the metals. It was also found that n = 3 states of low l were overpopulated relative to a statistical distribution, irrespective of the foil material. (orig.)

  11. Inactive and mutagenic effects induced by carbon beams of different LET values in a red yeast strain

    International Nuclear Information System (INIS)

    Wang Jufang; Lu Dong; Wu Xin; Sun Haining; Ma Shuang; Li Renmin; Li Wenjian

    2010-01-01

    To evaluate biological action of microorganism exposed to charged particles during the long distance space exploration, induction of inactivation and mutation in a red yeast strain Rhodotorula glutinis AY 91015 by carbon beams of different LET values (14.9-120.0 keV μm -1 ) was investigated. It was found that survival curves were exponential, and mutation curves were linear for all LET values. The dependence of inactivation cross section on LET approached saturation near 120.0 keV μm -1 . The mutation cross section saturated when LET was higher than 58.2 keV μm -1 . Meanwhile, the highest RBE i for inactivation located at 120.0 keV μm -1 and the highest RBE m for mutation was at 58.2 keV μm -1 . The experiments imply that the most efficient mutagenic part of the depth dose profile of carbon ion is at the plateau region with intermediate LET value in which energy deposited is high enough to induce mutagenic lesions but too low to induce over kill effect in the yeast cells.

  12. Inactive and mutagenic effects induced by carbon beams of different LET values in a red yeast strain

    Science.gov (United States)

    Wang, Jufang; Lu, Dong; Wu, Xin; Sun, Haining; Ma, Shuang; Li, Renmin; Li, Wenjian

    2010-09-01

    To evaluate biological action of microorganism exposed to charged particles during the long distance space exploration, induction of inactivation and mutation in a red yeast strain Rhodotorula glutinis AY 91015 by carbon beams of different LET values (14.9-120.0 keV μm -1) was investigated. It was found that survival curves were exponential, and mutation curves were linear for all LET values. The dependence of inactivation cross section on LET approached saturation near 120.0 keV μm -1. The mutation cross section saturated when LET was higher than 58.2 keV μm -1. Meanwhile, the highest RBE i for inactivation located at 120.0 keV μm -1 and the highest RBE m for mutation was at 58.2 keV μm -1. The experiments imply that the most efficient mutagenic part of the depth dose profile of carbon ion is at the plateau region with intermediate LET value in which energy deposited is high enough to induce mutagenic lesions but too low to induce over kill effect in the yeast cells.

  13. Three-dimensional micro structured nanocomposite beams by microfluidic infiltration

    International Nuclear Information System (INIS)

    Lebel, L L; Paez, O A; Therriault, D; Aïssa, B; El Khakani, M A

    2009-01-01

    Three-dimensional (3D) micro structured beams reinforced with a single-walled carbon nanotube (C-SWNT)/polymer nanocomposite were fabricated using an approach based on the infiltration of 3D microfluidic networks. The 3D microfluidic network was first fabricated by the direct-write assembly method, which consists of the robotized deposition of fugitive ink filaments on an epoxy substrate, forming thereby a 3D micro structured scaffold. After encapsulating the 3D micro-scaffold structure with an epoxy resin, the fugitive ink was liquefied and removed, resulting in a 3D network of interconnected microchannels. This microfluidic network was then infiltrated by a polymer loaded with C-SWNTs and subsequently cured. Prior to their incorporation in the polymer matrix, the UV-laser synthesized C-SWNTs were purified, functionalized and dispersed into the matrix using a three-roll mixing mill. The final samples consist of rectangular beams having a complex 3D skeleton structure of C-SWNT/polymer nanocomposite fibers, adapted to offer better performance under flexural solicitation. Dynamic mechanical analysis in flexion showed an increase of 12.5% in the storage modulus compared to the resin infiltrated beams. The nanocomposite infiltration of microfluidic networks demonstrated here opens new prospects for the achievement of 3D reinforced micro structures

  14. Beam dynamics and commissioning of low and medium energy H- beam at Linac4

    CERN Document Server

    Satri, Masoomeh Yarmohammadi; Lombardi, Alessandra; Lamehi-Rachti , Mohammad

    The First step of the CERN Large Hadron Collider injectors upgrade (LIU) project is Linac4. It accelerates H- ions to 160 MeV in an 80 m long accelerator housed in a tunnel 12 m underground, presently under construction. It will replace the present 50 MeV proton Linac2 as injector of the proton accelerator complex to increase the LHC luminosity. It consists of a 45 keV RF volume source, a twosolenoid Low Energy Beam Transport (LEBT), a 352.2 MHz Radio Frequency Quadrupole (RFQ) accelerating the beam to 3 MeV, a Medium Energy Beam Transport (MEBT) line. The MEBT houses a fast chopper to selectively remove unwanted micro-bunches in the 352 MHz sequence and avoid losses at capture in the CERN PSB (1 MHz). After chopping, the beam acceleration continues by a 50 MeV Drift Tube Linac (DTL), a 100 MeV Cell-Coupled Drift Tube Linac and a Pi-Mode Structure bringing the beam to the final energy of 160 MeV. Linac4 has been commissioned with a temporary source up to 12 MeV. The beam commissioning stages of Linac4 in LEBT...

  15. Assessment of improved organ at risk sparing for meningioma: Light ion beam therapy as boost versus sole treatment option

    International Nuclear Information System (INIS)

    Mock, Ulrike; Georg, Dietmar; Sölkner, Lukas; Suppan, Christian; Vatnitsky, Stanislav M.; Flechl, Birgit; Mayer, Ramona; Dieckmann, Karin; Knäusl, Barbara

    2014-01-01

    Purpose: To compare photons, protons and carbon ions and their combinations for treatment of atypical and anaplastical skull base meningioma. Material and methods: Two planning target volumes (PTV initial /PTV boost ) were delineated for 10 patients (prescribed doses 50 Gy(RBE) and 10 Gy(RBE)). Plans for intensity modulated photon (IMXT), proton (IMPT) and carbon ion therapy ( 12 C) were generated assuming a non-gantry scenario for particles. The following combinations were compared: IMXT + IMXT/IMPT/ 12 C; IMPT + IMPT/ 12 C; and 12 C + 12 C. Plan quality was evaluated by target conformity and homogeneity (CI, HI), V 95% , D 2% and D 50% and dose-volume-histogram (DVH) parameters for organs-at-risk (OAR). If dose escalation was possible, it was performed until OAR tolerance levels were reached. Results: CI was worst for IMXT. HI < 0.05 ± 0.01 for 12 C was significantly better than for IMXT. For all treatment options dose escalation above 60 Gy(RBE) was possible for four patients, but impossible for six patients. Compared to IMXT + IMXT, ion beam therapy showed an improved sparing for most OARs, e.g. using protons and carbon ions D 50% was reduced by more than 50% for the ipsilateral eye and the brainstem. Conclusion: Highly conformal IMPT and 12 C plans could be generated with a non-gantry scenario. Improved OAR sparing favors both sole 12 C and/or IMPT plans

  16. Electron source with a carbon-fibrous cathode for radiation-technology accelerator

    International Nuclear Information System (INIS)

    Korenev, S.A.

    1994-01-01

    The paper analyses the circuit of a full operating voltage electron source which is a direct-action electron accelerator. The electron source consists of a power supply, high-voltage multiplier-rectifier, vacuum planar diode, vacuum system and control system. The vacuum electron diode contains an autoemission carbon-fibrous cathode and beryllium foil strip anode. The results of measurements of emission characteristics of alumosilicate and carbon-fibrous cathodes are presented. The investigations into test electron source show that it can be used as a basis for creating an electron accelerator which will be capable of generating 1 MW electron beams of 1-2 MeV energy and 1 A current. 3 refs., 1 fig., 1 tab

  17. Calcium carbonate as a possible dosimeter for high irradiation doses

    International Nuclear Information System (INIS)

    Negron M, A.; Ramos B, S.; Camargo R, C.; Uribe, R. M.; Gomez V, V.; Kobayashi, K.

    2014-08-01

    The aim of this work is to analyze the interactions of 5 MeV electron beam radiation and a 290 MeV/u Carbon beam with calcium carbonate (powder) at 298 K and at different irradiation doses, for the potential use of calcium carbonate as a high-dose dosimeter. The irradiation doses with the electron beam were from 0.015 to 9 MGy, and with Carbon beam from 1.5 kGy to 8 kGy. High-energy radiation induces the formation of free radicals in solid calcium carbonate that can be detected and measured by electron paramagnetic resonance (EPR). An increase of the EPR response for some of the free radicals produced in the sample was observed as a function of the irradiation dose. The response of one of the radicals decreased with the dose. These measurements are reproducible; the preparation of the sample is simple and inexpensive; and the signal is stable for several months. The response curves show that the dosimeter tends to saturate at 10 MGy. Based on these properties, we propose this chemical compound as a high-dose dosimeter, mainly for electron irradiation. (author)

  18. Calcium carbonate as a possible dosimeter for high irradiation doses

    Energy Technology Data Exchange (ETDEWEB)

    Negron M, A.; Ramos B, S.; Camargo R, C. [UNAM, Instituto de Ciencias Nucleares, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Uribe, R. M. [Kent State University, College of Technology, Kent OH (United States); Gomez V, V. [UNAM, Instituto de Quimica, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Kobayashi, K., E-mail: negron@nucleares.unam.mx [Yokohama National University (Japan)

    2014-08-15

    The aim of this work is to analyze the interactions of 5 MeV electron beam radiation and a 290 MeV/u Carbon beam with calcium carbonate (powder) at 298 K and at different irradiation doses, for the potential use of calcium carbonate as a high-dose dosimeter. The irradiation doses with the electron beam were from 0.015 to 9 MGy, and with Carbon beam from 1.5 kGy to 8 kGy. High-energy radiation induces the formation of free radicals in solid calcium carbonate that can be detected and measured by electron paramagnetic resonance (EPR). An increase of the EPR response for some of the free radicals produced in the sample was observed as a function of the irradiation dose. The response of one of the radicals decreased with the dose. These measurements are reproducible; the preparation of the sample is simple and inexpensive; and the signal is stable for several months. The response curves show that the dosimeter tends to saturate at 10 MGy. Based on these properties, we propose this chemical compound as a high-dose dosimeter, mainly for electron irradiation. (author)

  19. ATA diagnostic beam dump conceptual design

    International Nuclear Information System (INIS)

    1981-09-01

    A diagnostic beam dump, able to withstand 72,000 pulses (10 kA, 50 MeV/pulse) per shift was designed and analyzed. The analysis shows that the conceptual beam dump design consisting of 80 vitreous carbon plate-foam elements is able to withstand the thermal and mechanical stresses generated. X-rays produced by bremsstrahlung are absorbed by a three element copper plate-foam x-ray absorber. Cooling between bursts of electron pulses is provided by pressurized helium

  20. High rate performance of the carbon encapsulated Li4Ti5O12 for lithium ion battery

    Directory of Open Access Journals (Sweden)

    Qi Cheng

    Full Text Available Li4Ti5O12 (LTO is attractive alternative anode material with excellent cyclic performance and high rate after coating modifications of the conductive materials. Anatase TiO2 and glucose were applied of the synthesis of the carbon coated LTO (C@LTO. XRD results showed that all the major diffractions from the spinel structure of LTO can be found in the C@LTO such as (111, (311, (400 but there are no observations of the Carbon diffraction peaks. Electrochemical Impedance Spectroscopy (EIS data shows C@LTO resistance was nearly half of the LTO value. Rate performance showed that capacity of C@LTO was higher than that of the pure LTO from 0.1 C, 0.2 C, 1 C, 2 C, 5 C and 10 C, which indicates that this is a promising approach to prepare the high performance LTO anode. Keywords: Li-ion batteries, Rate performance, Carbon materials, Li4Ti5O12 anode

  1. Carbon coated Li{sub 4}Ti{sub 5}O{sub 12} nanorods as superior anode material for high rate lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hongjun; Shen, Laifa; Rui, Kun; Li, Hongsen; Zhang, Xiaogang, E-mail: azhangxg@nuaa.edu.cn

    2013-09-25

    Highlights: •A novel approach has been developed to fabricate 1D Li{sub 4}Ti{sub 5}O{sub 12}/C nanorods by a wet-chemical route. •Carbon coating layer effectively restrict the particle growth and enhance electronic conductivity. •The Li{sub 4}Ti{sub 5}O{sub 12}/C nanorods exhibit remarkable rate capability and long cycle life. -- Abstract: We describe a novel approach for the synthesis of carbon coated Li{sub 4}Ti{sub 5}O{sub 12} (Li{sub 4}Ti{sub 5}O{sub 12}/C) nanorods for high rate lithium ion batteries. The carbon coated TiO{sub 2} nanotubes using the glucose as carbon source are first synthesized by hydrothermal treatment. The commercial anatase TiO{sub 2} powder is immersed in KOH sulotion and subsequently transforms into Li{sub 4}Ti{sub 5}O{sub 12}/C in LiOH solution under hydrothermal condition. Field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, nitrogen adsorption/desorption and Raman spectra are performed to characterize their morphologies and structures. Compared with the pristine Li{sub 4}Ti{sub 5}O{sub 12}, one-dimensional (1D) Li{sub 4}Ti{sub 5}O{sub 12}/C nanostructures show much better rate capability and cycling stability. The 1D Li{sub 4}Ti{sub 5}O{sub 12}/C architectures effectively restrict the particle growth and enhance their electronic conductivity, enabling fast ion and electron transport.

  2. Premature beam dumps in 2011

    CERN Document Server

    Albert, Markus

    2012-01-01

    The statistical analysis of all non-programmed beam dumps during the 2011 proton run is presented. The selection criteria of fills that got considered were that the beam intensity of each of the two beams exceeded at least 1e12 particles per beam in order to exclude all probe beam dumps and most of the MPS test dumps. A distribution of beam dump causes by system is shown, as well as the time it took to re-establish injection after a non-programmed dump for fills which made it into STABLE BEAMS. This was done in an attempt to evaluate the cost of those non-programmed dumps in terms of time.

  3. Application of Beam Diagnostics for Intense Heavy Ion Beams at the GSI UNILAC

    CERN Document Server

    Barth, W; Glatz, J; Groening, L; Richter, S; Yaramishev, S

    2003-01-01

    With the new High Current Injector (HSI) of the GSI UNILAC the beam pulse intensity had been increased by approximately two orders of magnitudes. The HSI was mounted and commissioned in 1999; since this time the UNILAC serves as an injector for the synchrotron SIS, especially for high uranium intensities. Considering the high beam power of up to 1250 kW and the short stopping range for the UNILAC beam energies (≤12 MeV/u), accelerator components could be destroyed, even during a single beam pulse. All diagnostic elements had to be replaced preferably by non-destructive devices. The beam current is mainly measured by beam transformers instead of Faraday cups, beam positions are measured with segmented capacitive pick-ups and secondary beam monitors instead of profile harps. The 24 installed pick-ups are also used to measure intensities, widths and phase of the bunches, as well beam energies by evaluating pick-ups at different positions. The residual gas ionization monitors allow on-line measurements ...

  4. The effective synthesis of Insoluble sulfur using electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Daejin; Yu, Kookhyun [Dongguk Univ., Seoul (Korea, Republic of)

    2013-07-01

    Vulcanization is process that formed crosslinking by Insoluble sulfur between linear structure of rubber polymer. Recently, Synthesis of Insoluble sulfur is used Thermal polymerization using about 250 {approx} 300 .deg. C and extraction process is used carbon disulfide(CS2) for separation between soluble sulfur and insoluble sulfur. But this process isn't environmental, economical and safety. This research was focus on developing of insoluble sulfur synthesis process using electron beam. This new process is using under the 140 .deg. C. Because of that, explosion risk is decrease, environmental and economical factor is increased. The sulfur can be melt by increase temperature or made solution using carbon disulfide. And electron beam is irradiated melting sulfur or sulfur solution. After irradiation, The high purity insoluble sulfur can be obtained by separation with carbon disulfide.

  5. Hierarchical carbon-coated acanthosphere-like Li4Ti5O12 microspheres for high-power lithium-ion batteries

    Science.gov (United States)

    Sha, Yujing; Xu, Xiaomin; Li, Li; Cai, Rui; Shao, Zongping

    2016-05-01

    In this work, carbon-coated hierarchical acanthosphere-like Li4Ti5O12 microspheres (denoted as AM-LTO) were prepared via a two-step hydrothermal process with low-cost glucose as the organic carbon source. The hierarchical porous microspheres had open structures with diameters of 4-6 μm, which consisted of a bunch of willow leaf-like nanosheets. Each nanosheet was comprised of Li4Ti5O12 nanoparticles that are 20 nm in size and coated by a thin carbon layer. When applied as the anode material for lithium-ion batteries (LIBs), the AM-LTO presented outstanding rate and cycling performance due to its unique morphologies. A high capacity of 145.6 mAh g-1 was achieved for AM-LTO at a rate of 40C (1C = 175 mAh g-1). In contrast, the sample synthesized without glucose as carbon source (denoted as S-LTO) experienced an obvious structural collapse during the hydrothermal reaction and presented a specific capacity of only 67 mAh g-1 at 1C, which further decreased to 14 mAh g-1 at 40C. Further morphological growth of the acanthosphere-like Li4Ti5O12 microspheres and their excellent performance as an anode in LIBs were also discussed in this work.

  6. Microscopical investigation of cellular effects of 135 MeV/amu carbon along the path of the beam

    International Nuclear Information System (INIS)

    Furuse, Masako; Soga, Fuminori; Matsumoto, Shinji

    1993-01-01

    The difference in biological effects are normally described by the concept of RBE. However, the RBE values depend on the LET along a trajectory and also on complicated parameters such as the distribution of the energy deposition due to the difference in the spread of secondary electrons perpendicular to a beam axis. The authors are interested in the use of a biological dosimeter of microorganisms which can directly compare biological effects such as survival level. The survival rate of yeast cells was tested for this purpose with a carbon beam at 135 MeV/amu from the RIKEN ring cyclotron. The haploid cells of a wild type and a radiation sensitive mutant were used. Yeast is a simple eukaryote, and it has been used as the test organism especially for the studies on the relation between DNA double-strand breaks and cell killing. The materials used, the experimental method and the results are reported. The survival data of the wild type and the radiation sensitive mutant at stationary and log phases were obtained, and the values were used for the RBE estimation. The resistance seemed due to the action of enzymatic repair mechanism. (K.I.)

  7. Free vibration of a single-walled carbon nanotube containing a fluid flow using the Timoshenko beam model

    International Nuclear Information System (INIS)

    Chang, W.-J.; Lee, H.-L.

    2009-01-01

    The flexural vibration of the fluid-conveying single-walled carbon nanotube (SWCNT) is derived by the Timoshenko beam model, including rotary inertia and transverse shear deformation. The effects of the flow velocity and the aspect ratio of length to diameter on the vibration frequency and mode shape of the SWCNT are analyzed. Results show that the effects of rotary inertia and transverse shear deformation result in a reduction of the vibration frequencies, especially for higher modes of vibration and short nanotubes. The frequency is also compared with the previous study based on Euler beam model. In addition, if the ratio of length to diameter increased to 60, the influence of the shear deformation and rotary inertia on the mode shape and the resonant frequencies can be neglected. However, the influence is very obvious when the ratio decreased to 20. As the flow velocity of the fluid increases in the vicinity of 2π, the SWCNT reveals the divergence instability. It regains stability when the flow velocity reaches about 9. As the velocity increases further, the SWCNT undergoes a coupled-mode flutter and results in a larger amplitude

  8. Facile Synthesis of Carbon-Coated Spinel Li4Ti5O12/Rutile-TiO2 Composites as an Improved Anode Material in Full Lithium-Ion Batteries with LiFePO4@N-Doped Carbon Cathode.

    Science.gov (United States)

    Wang, Ping; Zhang, Geng; Cheng, Jian; You, Ya; Li, Yong-Ke; Ding, Cong; Gu, Jiang-Jiang; Zheng, Xin-Sheng; Zhang, Chao-Feng; Cao, Fei-Fei

    2017-02-22

    The spinel Li 4 Ti 5 O 12 /rutile-TiO 2 @carbon (LTO-RTO@C) composites were fabricated via a hydrothermal method combined with calcination treatment employing glucose as carbon source. The carbon coating layer and the in situ formed rutile-TiO 2 can effectively enhance the electric conductivity and provide quick Li + diffusion pathways for Li 4 Ti 5 O 12 . When used as an anode material for lithium-ion batteries, the rate capability and cycling stability of LTO-RTO@C composites were improved in comparison with those of pure Li 4 Ti 5 O 12 or Li 4 Ti 5 O 12 /rutile-TiO 2 . Moreover, the potential of approximately 1.8 V rechargeable full lithium-ion batteries has been achieved by utilizing an LTO-RTO@C anode and a LiFePO 4 @N-doped carbon cathode.

  9. Formation of tin-tin oxide core–shell nanoparticles in the composite SnO{sub 2−x}/nitrogen-doped carbon nanotubes by pulsed ion beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Korusenko, P.M., E-mail: korusenko@obisp.oscsbras.ru [Omsk Scientific Center, Siberian Branch of the Russian Academy of Sciences, Karl Marx avenue 15, 644040 Omsk (Russian Federation); Nesov, S.N.; Bolotov, V.V.; Povoroznyuk, S.N. [Omsk Scientific Center, Siberian Branch of the Russian Academy of Sciences, Karl Marx avenue 15, 644040 Omsk (Russian Federation); Pushkarev, A.I. [National Research Tomsk Polytechnic University, Lenin Ave. 2a, 634028 Tomsk (Russian Federation); Ivlev, K.E. [Omsk Scientific Center, Siberian Branch of the Russian Academy of Sciences, Karl Marx avenue 15, 644040 Omsk (Russian Federation); Smirnov, D.A. [St. Petersburg State University, Lieutenant Shmidt Emb. 11, 198504 St. Petersburg (Russian Federation); Institute of Solid State Physics, Dresden University of Technology, D-01069 Dresden (Germany)

    2017-03-01

    Highlights: • Original method the formation of core–shell structures by pulsed ion beam is proposed. • The composite SnO{sub 2−x}/N-MWCNTs was irradiated by pulsed ion beam. • Morphology and electronic structure of the irradiated composite were characterized. • The formation of Sn−SnO{sub x} core–shell nanoparticles after irradiation was observed. - Abstract: The complex methods of transmission electron microscopy, energy dispersive X-ray analysis, and X-ray photoelectron spectroscopy were used to investigate the changes in the morphology, phase composition, and electronic structure of the composite SnO{sub 2−x}/nitrogen-doped multiwalled carbon nanotubes (SnO{sub 2−x}/N-MWCNTs) irradiated with the pulsed ion beam of nanosecond duration. The irradiation of the composite SnO{sub 2−x}/N-MWCNTs leads to the formation of nanoparticles with the core–shell structure on the surface of CNTs with a sharp interfacial boundary. It has been established that the “core” is a metal tin (Sn{sup 0}) with a typical size of 5–35 nm, and the “shell” is a thin amorphous layer (2–6 nm) consisting of nonstoichiometric tin oxide with a low oxygen content. The “core–shell” structure Sn−SnO{sub x} is formed due to the process of heating and evaporation of SnO{sub 2−x} under the effect of the ion beam, followed by vapor deposition on the surface of carbon nanotubes.

  10. Helium ion beam induced growth of hammerhead AFM probes

    NARCIS (Netherlands)

    Nanda, G.; Veldhoven, E. van; Maas, D.J.; Sadeghian Marnani, H.; Alkemade, P.F.A.

    2015-01-01

    The authors report the direct-write growth of hammerhead atomic force microscope (AFM) probes by He+ beam induced deposition of platinum-carbon. In order to grow a thin nanoneedle on top of a conventional AFM probe, the authors move a focused He+ beam during exposure to a PtC precursor gas. In the

  11. Study of removal of Direct Yellow 12 by cadmium oxide nanowires loaded on activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Ghaedi, Mehrorang, E-mail: m_ghaedi@mail.yu.ac.ir [Chemistry Department, Yasouj University Yasouj 75914-35 (Iran, Islamic Republic of); Sadeghian, Batuol [Chemistry Department, Yasouj University Yasouj 75914-35 (Iran, Islamic Republic of); Kokhdan, Syamak Nasiri, E-mail: syamak.nasiri@yahoo.com [Chemistry Department, Yasouj University Yasouj 75914-35 (Iran, Islamic Republic of); Pebdani, Arezou Amiri [Chemistry Department, Yasouj University Yasouj 75914-35 (Iran, Islamic Republic of); Sahraei, Reza; Daneshfar, Ali; Mihandoost, Asma [Department of Chemistry, University of Ilam, P.O. Box: 65315-516, Ilam (Iran, Islamic Republic of)

    2013-05-01

    In this research, cadmium oxide nanowires loaded on activated carbon (CdO-NW-AC) has been synthesized by a simple procedure and characterized by different techniques such as XRD, SEM and UV–vis spectrometry. This new adsorbent has been efficiently utilized for the removal of the Direct Yellow 12 (DY-12) from wastewater. To obtain maximum DY-12 removal efficiency, the influences of variables such as pH, DY-12 concentration, amount of CdO-NW-AC, contact time, and temperature have been examined and optimized in a batch method. Following the variable optimization, the experimental equilibrium data (at different concentration of DY-12) was fitted to conventional isotherm models such as Langmuir, Freundlich and Tempkin. The applicability of each method is based on the R{sup 2} and error analysis for each model. It was found that the experimental equilibrium data well fitted to the Langmuir isotherm model. The dependency of removal process to time and the experimental data follow second order kinetic model with involvement of intraparticle diffusion model. The negative value of Gibbs's free energy and positive value of adsorption enthalpy show the spontaneous and endothermic nature of adsorption process. - Graphical abstract: Typical FE-SEM image of the CdO nanowires. Highlights: ► Cadmium oxide nanowires loaded on activated carbon was utilized as an adsorbent. ► It was used for the removal of Direct Yellow 12 from aqueous solutions. ► The adsorption of Direct Yellow 12 on this adsorbent is endothermic in nature. ► The adsorption equilibrium data was well described by the Langmuir isotherm model.

  12. Acceleration of 14C beams in electrostatic accelerators

    International Nuclear Information System (INIS)

    Rowton, L.J.; Tesmer, J.R.

    1981-01-01

    Operational problems in the production and acceleration of 14 C beams for nuclear structure research in Los Alamos National Laboratory's Van de Graaff accelerators are discussed. Methods for the control of contamination in ion sources, accelerators and personnel are described. Sputter source target fabrication techniques and the relative beam production efficiencies of various types of bound particulate carbon sputter source targets are presented

  13. XPS study of the ultrathin a-C:H films deposited onto ion beam nitrided AISI 316 steel

    International Nuclear Information System (INIS)

    Meskinis, S.; Andrulevicius, M.; Kopustinskas, V.; Tamulevicius, S.

    2005-01-01

    Effects of the steel surface treatment by nitrogen ion beam and subsequent deposition of the diamond-like carbon (hydrogenated amorphous carbon (a-C:H) and nitrogen doped hydrogenated amorphous carbon (a-CN x :H)) films were investigated by means of the X-ray photoelectron spectroscopy (XPS). Experimental results show that nitrogen ion beam treatment of the AISI 316 steel surface even at room temperature results in the formation of the Cr and Fe nitrides. Replacement of the respective metal oxides by the nitrides takes place. Formation of the C-N bonds was observed for both ultrathin a-C:H and ultrathin a-CN x :H layers deposited onto the nitrided steel. Some Fe and/or Cr nitrides still were presented at the interface after the film deposition, too. Increased adhesion between the steel substrate and hydrogenated amorphous carbon layer after the ion beam nitridation was explained by three main factors. The first two is steel surface deoxidisation/passivation by nitrogen as a result of the ion beam treatment. The third one is carbon nitride formation at the nitrided steel-hydrogenated amorphous carbon (or a-CN x :H) film interface

  14. Cellular and molecular radiobiology of heavy-ion beams

    International Nuclear Information System (INIS)

    Tobias, C.A.; Blakely, E.A.; Ngo, F.Q.H.; Roots, R.J.; Yang, T.C.H.; Chang, P.Y.; Lommel, L.; Craise, L.M.; Yezzi, M.J.

    1982-01-01

    Accelerated heavy particles are candidates for use in cancer radiotherapy, and the major goal of our program has been to characterize the biological potential of Bevalac beams for this purpose. Relative biological effectiveness (RBE) values and oxygen enhancement ratio (OER) properties of monoenergetic carbon, neon, and argon beams with initial energies of several hundred MeV/u have been measured as a function of residual range. Bevalac beams with Bragg peaks modified to encompass tumors of various sizes have also been studied using cultured cells in vitro

  15. Hyperspherical functions and quantum-mechanical three-body problem with application to carbon 12

    International Nuclear Information System (INIS)

    Letz, H.

    1975-01-01

    In this work a system of three identical particles (bosons) interacting by a particular two-body force is discussed. Using the complete set of the hyperspherical functions (K-harmonics), analytical expressions for eigenvalues and wave functions of the stationary states are found. The numerical evaluation gives a level sequence for a definite pair of potential parameters similar to that of the nucleus carbon 12

  16. Experimental assessment of out-of-field dose components in high energy electron beams used in external beam radiotherapy.

    Science.gov (United States)

    Alabdoaburas, Mohamad M; Mege, Jean-Pierre; Chavaudra, Jean; Bezin, Jérémi Vũ; Veres, Atilla; de Vathaire, Florent; Lefkopoulos, Dimitri; Diallo, Ibrahima

    2015-11-08

    The purpose of this work was to experimentally investigate the out-of-field dose in a water phantom, with several high energy electron beams used in external beam radiotherapy (RT). The study was carried out for 6, 9, 12, and 18 MeV electron beams, on three different linear accelerators, each equipped with a specific applicator. Measurements were performed in a water phantom, at different depths, for different applicator sizes, and off-axis distances up to 70 cm from beam central axis (CAX). Thermoluminescent powder dosimeters (TLD-700) were used. For given cases, TLD measurements were compared to EBT3 films and parallel-plane ionization chamber measurements. Also, out-of-field doses at 10 cm depth, with and without applicator, were evaluated. With the Siemens applicators, a peak dose appears at about 12-15 cm out of the field edge, at 1 cm depth, for all field sizes and energies. For the Siemens Primus, with a 10 × 10 cm(²) applicator, this peak reaches 2.3%, 1%, 0.9% and 1.3% of the maximum central axis dose (Dmax) for 6, 9, 12 and 18 MeV electron beams, respectively. For the Siemens Oncor, with a 10 × 10 cm(²) applicator, this peak dose reaches 0.8%, 1%, 1.4%, and 1.6% of Dmax for 6, 9, 12, and 14 MeV, respectively, and these values increase with applicator size. For the Varian 2300C/D, the doses at 12.5 cm out of the field edge are 0.3%, 0.6%, 0.5%, and 1.1% of Dmax for 6, 9, 12, and 18 MeV, respectively, and increase with applicator size. No peak dose is evidenced for the Varian applicator for these energies. In summary, the out-of-field dose from electron beams increases with the beam energy and the applicator size, and decreases with the distance from the beam central axis and the depth in water. It also considerably depends on the applicator types. Our results can be of interest for the dose estimations delivered in healthy tissues outside the treatment field for the RT patient, as well as in studies exploring RT long-term effects.

  17. Flexure Behavior of Hybrid Continuous Deep Beam Strengthened by Carbon Fiber Reinforced Polymer

    Directory of Open Access Journals (Sweden)

    Hayder M.K.Al-Mutairee

    2017-08-01

    Full Text Available This study present an experimental investigation for overall flexure behavior of reinforced concrete continuous deep beams (RCCDB made of hybrid concrete, normal strength concrete (NSC and high strength concrete (HSC at different location and percentage. The experimental work includes testing of sixteen specimens of RCCDB under two points loads. The effects of HSC layer thickness and CFRP on strength of RCCDB had been studied. The experimental results showed that the strengthening of RCCDB by HSC layer from top is better than from bottom, where the increment in the ultimate flexural strength increased by (14,21,27% for top strengthening and (12,15,13% for bottom strengthening for (25,50,75% thickness of total depth of beam respectively. The optimal strengthening of RCCDB by HSC layer at top was of 25%. The results also proved that the strengthening of hybrid RCCDB by (10,15cm CFRP strip at the bottom for flexure gave increment in the ultimate strength by (32, 29% respectively, and the strengthening by CFRP strip for flexure at the bottom is better than at top for hybrid RCCDB. The shear strengthening of hybrid RCCDB increases the ultimate strength by 23.4% and 13.8% if the strengthening has O and U shape respectively

  18. Transmission of the Neutral Beam Heating Beams at TJ-II; Transmision del Haz de Neutros de Calentamiento en TJ-II

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes Lopez, C

    2007-09-27

    Neutral beam injection heating has been development for the TJ-II stellarator. The beam has a port-through power between 700-1500 kW and injection energy 40 keV. The sensibility of the injection system to the changes of several parameters is analysed. Beam transmission is limited by losses processes since beam is born into the ions source until is coming into the fusion machine. For the beam transmission optimization several beam diagnostics have been developed. A carbon fiber composite (CFC) target calorimeter has been installed at TJ-II to study in situ the power density distribution of the neutral beams. The thermographic print of the beam can be recorded and analysed in a reliable way due to the highly anisotropic thermal conductivity of the target material. With the combined thermographic and calorimetric measurements it has been possible to determine the power density distribution of the beam. It has been found that a large beam halo is present, which can be explained by the extreme misalignment of the grids. This kind of halo has a deleterious effect on beam transport and must be minimized in order to improve the plasma heating capability of the beams. (Author) 155 refs.

  19. Channeling implantation of high energy carbon ions in a diamond crystal: Determination of the induced crystal amorphization

    Science.gov (United States)

    Erich, M.; Kokkoris, M.; Fazinić, S.; Petrović, S.

    2018-02-01

    This work reports on the induced diamond crystal amorphization by 4 MeV carbon ions implanted in the 〈1 0 0〉 oriented crystal and its determination by application of RBS/C and EBS/C techniques. The spectra from the implanted samples were recorded for 1.2, 1.5, 1.75 and 1.9 MeV protons. For the two latter ones the strong resonance of the nuclear elastic scattering 12C(p,p0)12C at 1.737 MeV was explored. The backscattering channeling spectra were successfully fitted and the ion beam induced crystal amorphization depth profile was determined using a phenomenological approach, which is based on the properly defined Gompertz type dechanneling functions for protons in the 〈1 0 0〉 diamond crystal channels and the introduction of the concept of ion beam amorphization, which is implemented through our newly developed computer code CSIM.

  20. Development of high intensity beam handling system, 4

    International Nuclear Information System (INIS)

    Yamanoi, Yutaka; Tanaka, Kazuhiro; Minakawa, Michifumi

    1992-01-01

    We have constructed the new counter experimental hall at the KEK 12 GeV Proton Synchrotron (KEK-PS) in order to handle high intensity primary proton beams of up to 1x10 3 pps (protons per second), which is one order of magnitude greater than the present beam intensity of the KEK-PS, 1x10 12 pps. New technologies for handling high-intensity beams have, then, been developed and employed in the construction of the new hall. A part of our R/D work on handling high intensity beams will be reported. (author)

  1. Cell killing and chromosomal aberration induced by heavy-ion beams in cultured human tumor cells

    International Nuclear Information System (INIS)

    Takakura, K.; Funada, A.; Mohri, M.; Lee, R.; Aoki, M.; Furusawa, Y.; Gotoh, E.

    2003-01-01

    Full text: To clarify the relation between cell death and chromosomal aberration in cultured human tumor cells irradaited with heavy-ion beams. The analyses were carried out on the basis of the linear energy transfer (LET) values of heavy ion beams as radiation source. Exponentially growing human tumor cells, Human Salivary Gland Tumor cells (HSG cells), were irradiated with various high energy heavy ions, such as 13 keV/micrometer carbon (C) ions as low LET charged particle radiation source, 120 keV/ micrometer carbon (C) ions and 440 keV/micrometer iron (Fe) ions as high LET charged particle radiation sources.The cell death was analysed by the colony formation method, and the chromosomal aberration and its repairing kinetics was analysed by prematurely chromosome condensation method (PCC method) using calyculin A. Chromatid-type breaks, isochromatid breaks and exchanges were scored for the samples from the cells keeping with various incubation time after irradiation. The LET dependence of the cell death was similar to that of the chromosome exchange formation after 12 hours incubation. A maximum peak was around 120 keV/micrometer. However it was not similar to the LET dependence of isochromatid breaks or chromatid breaks after 12 hours incubation. These results suggest that the exchanges formed in chromosome after irradiation should be one of essential causes to lead the cell death. The different quality of induced chromosome damage between high-LET and low-LET radiation was also shown. About 89 % and 88 % chromatid breaks induced by X rays and 13 keV/micrometer C ions were rejoined within 12 hours of post-irradiation, though only 71% and 58 % of chromatid breaks induced by 120 keV/micrometer C ions and 440 keV/micrometer Fe ions were rejoined within 12 hours of post-irradiation

  2. Omega spectrometer ready for SPS beams

    CERN Multimedia

    CERN PhotoLab

    1977-01-01

    Two different beams arrive into the Omega magnet: - a tagged photon beam for a charm search - experiment WA4 by the Bonn-CERN-Daresbury-Ecole Polytechnique-Glasgow-Lancaster-Manchester-Orsay-Sheffield Collaboration; - a separated hadron beam, at first for a beam-dump experiment - WA12 by the Birmingham-CERN-Ecole Polytechnique-MPI, Munich-Neuchâtel Collaboration. Beams of either negative or positive pions or kaons, protons or antiprotons, all at an energy around 40 GeV were made to impinge on a copper target where a shower of hadrons was produced and, on occasion, two muons which before detection passed through an iron absorber (not visible here). WA12 was completed in February 1977. At the centre, on top of the superconducting magnet, the hut containing the TV cameras, These observe the particle events occurring in the spark chambers in the magnet below.

  3. Measurement of the elastic cross section for positive pions on carbon at 142 MeV

    International Nuclear Information System (INIS)

    Oyer, A.T.

    1976-12-01

    A measurement of the elastic cross section dsigma/dΩ was made for the reaction π + + 12 C → π + + 12 C with 142 MeV pions at ten angles ranging from 35 to 85 0 in the laboratory. This experiment was done at the Los Alamos Meson Physics Facility. A double focusing magnetic spectrometer observed a cylindrical styrofoam target. The resulting momentum spectra were recorded by an array of nineteen totally depleted surface barrier detectors located at the spectrometer's focal plane. The spectra from the styrofoam were composed of peaks representing proton elastic, carbon elastic, carbon inelastic, and carbon quasi-elastic channels. A function made of Gaussians representing the two body channels and a distribution representing the quasi-elastic channel was fit to the data using a nonlinear least squares algorithm. The ratio of the carbon elastic to proton elastic cross sections was calculated from the areas of the corresponding Gaussians and then multiplied by the proton elastic cross section of Bugg et al eliminating several sources of systematic errors such as beam normalization. The differential cross sections were found to have the usual diffraction structure with a forward peak and a minimum near 55 0 . Finally, the carbon elastic cross sections were compared to similar π - + 12 C cross sections of Binon et al using the optical model

  4. Measurement of the elastic cross section for positive pions on carbon at 142 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Oyer, A.T.

    1976-12-01

    A measurement of the elastic cross section dsigma/d..cap omega.. was made for the reaction ..pi../sup +/ + /sup 12/C ..-->.. ..pi../sup +/ + /sup 12/C with 142 MeV pions at ten angles ranging from 35 to 85/sup 0/ in the laboratory. This experiment was done at the Los Alamos Meson Physics Facility. A double focusing magnetic spectrometer observed a cylindrical styrofoam target. The resulting momentum spectra were recorded by an array of nineteen totally depleted surface barrier detectors located at the spectrometer's focal plane. The spectra from the styrofoam were composed of peaks representing proton elastic, carbon elastic, carbon inelastic, and carbon quasi-elastic channels. A function made of Gaussians representing the two body channels and a distribution representing the quasi-elastic channel was fit to the data using a nonlinear least squares algorithm. The ratio of the carbon elastic to proton elastic cross sections was calculated from the areas of the corresponding Gaussians and then multiplied by the proton elastic cross section of Bugg et al eliminating several sources of systematic errors such as beam normalization. The differential cross sections were found to have the usual diffraction structure with a forward peak and a minimum near 55/sup 0/. Finally, the carbon elastic cross sections were compared to similar ..pi../sup -/ + /sup 12/C cross sections of Binon et al using the optical model.

  5. Measurement of the elastic cross section for positive pions on carbon at 142 MeV

    International Nuclear Information System (INIS)

    Oyer, A.T.

    1976-01-01

    A measurement of the elastic cross section dsigma/dOMEGA was made for the reaction π + + 12 C yields π + + 12 C with 142 MeV pions at ten angles ranging from 35 to 85 0 in the laboratory. This experiment was done at the Los Alamos Meson Physics Facility. A double focusing magnetic spectrometer observed a cylindrical styrofoam target. The resulting momentum spectra were recorded by an array of nineteen totally depleted surface barrier detectors located at the spectrometers focal plane. The spectra from the styrofoam were composed of peaks representing proton elastic, carbon elastic, carbon inelastic and carbon quasi-elastic channels. A function made of Gaussians representing the two body channels and a distribution representing the quasi-elastic channel was fit to the data using a nonlinear least squares algorithm. The ratio of the carbon elastic to proton elastic cross sections was calculated from the areas of the corresponding Gaussians and then multiplied by the proton elastic cross section of Bugg et al., eliminating several sources of systematic errors such as beam normalization. The differential cross sections were found to have the usual diffraction structure with a forward peak and a minimum near 55 0 . Finally, the carbon elastic cross sections were compared to similar π - + 12 C cross sections of Binon et al., using the optical model

  6. Flying wire beam profile monitor at the J-PARC MR

    International Nuclear Information System (INIS)

    Igarashi, Susumu; Arakawa, Dai; Hashimoto, Yoshinori; Teshima, Masaki; Toyama, Takeshi; Hanamura, Kotoku

    2008-01-01

    A flying wire beam profile monitor has been assembled and installed at the main ring of the Japan Proton Accelerator Research Complex. The monitor is to measure the horizontal beam profile using a carbon fiber of 7 μmφ. The fiber crosses the beam with the speed of 10 m/s. Secondary particles from the beam-wire scattering is detected using a scintillation counter. The scintillator signal as a function of the wire position is to be reconstructed as a beam profile. The high scanning speed and the minimum material are necessary for the accurate beam profile measurement. The monitor has been operated in the beam commissioning run of the main ring. The beam profile data have been successfully acquired after the reduction of the beam background. (author)

  7. Carbon nanostructure formation driven by energetic particles

    International Nuclear Information System (INIS)

    Zhu Zhiyuan; Gong Jinlong; Zhu Dezhang

    2006-01-01

    Carbon nanostructures, especially carbon nanotubes (CNTs), have been envisaged to be the building blocks of a variety of nanoscale devices and materials. The inherent nanometer-size and ability of being either metallic or semiconductive of CNTs lead to their application in nanoelectronics. Excellent mechanical characteristics of CNTs suggest their use as structural reinforcements. However, to fully exploit the potential applications, effective means of tailoring CNT properties must be developed. Irradiation of materials with energetic particles beams (ions and electrons) is a standard and important tool for modifying material properties. Irradiation makes it possible to dope the samples, to create local amorphous region or vice versa, recrystallize the lattice and even drive a phase transition. In this paper, we report our results of (1) phase transfromation from carbon nanotubes to nanocrystalline diamond driven by hydrogen plasma, (2) onion-like nanostructure from carbon nanotubes driven by ion beams of several tens keV, and (3) amorphous carbon nanowire network formation by ion beam irradiation. Structural phase transformation from multiwalled carbon nanotubes to nanocrystalline diamond by hydrogen plasma post-treatment was carried out. Ultrahigh equivalent diamond nucleation density of more than 1011 nuclei/cm 2 was obtained. The diamond formation and growth mechanisms were proposed to be the consequence of the formation of sp3 bonded amorphous carbon clusters. The hydrogen chemisorption on curved graphite network and the energy deposited on CNTs by continuous impingement of activated molecular or atomic hydrogen are responsible for the formation of amorphous carbon matrix. Diamond nucleates and grows in the way similar to that of diamond chemical vapor deposition processes on amorphous carbon films. Furthermore, single crystalline diamond nanorods of 4-8 nm in diameter and up to 200 nm in length have been successfully synthesized by hydrogen plasma post

  8. First negative ion beam measurement by the Short-Time Retractable Instrumented Kalorimeter Experiment (STRIKE)

    Science.gov (United States)

    Serianni, G.; De Muri, M.; Muraro, A.; Veltri, P.; Bonomo, F.; Chitarin, G.; Pasqualotto, R.; Pavei, M.; Rizzolo, A.; Valente, M.; Franzen, P.; Ruf, B.; Schiesko, L.

    2014-02-01

    The Source for Production of Ion of Deuterium Extracted from Rf plasma (SPIDER) test facility is under construction in Padova to optimise the operation of the beam source of ITER neutral beam injectors. The SPIDER beam will be characterised by the instrumented calorimeter STRIKE, whose main components are one-directional carbon-fibre-carbon-composite tiles. A small-scale version of the entire system has been employed in the BAvarian Test MAchine for Negative ions (BATMAN) testbed by arranging two prototype tiles in the vertical direction. The paper presents a description of the mini-STRIKE system and of the data analysis procedures, as well as some results concerning the BATMAN beam under varying operating conditions.

  9. First negative ion beam measurement by the Short-Time Retractable Instrumented Kalorimeter Experiment (STRIKE)

    International Nuclear Information System (INIS)

    Serianni, G.; De Muri, M.; Veltri, P.; Bonomo, F.; Chitarin, G.; Pasqualotto, R.; Pavei, M.; Rizzolo, A.; Valente, M.; Muraro, A.; Franzen, P.; Ruf, B.; Schiesko, L.

    2014-01-01

    The Source for Production of Ion of Deuterium Extracted from Rf plasma (SPIDER) test facility is under construction in Padova to optimise the operation of the beam source of ITER neutral beam injectors. The SPIDER beam will be characterised by the instrumented calorimeter STRIKE, whose main components are one-directional carbon-fibre-carbon-composite tiles. A small-scale version of the entire system has been employed in the BAvarian Test MAchine for Negative ions (BATMAN) testbed by arranging two prototype tiles in the vertical direction. The paper presents a description of the mini-STRIKE system and of the data analysis procedures, as well as some results concerning the BATMAN beam under varying operating conditions

  10. First negative ion beam measurement by the Short-Time Retractable Instrumented Kalorimeter Experiment (STRIKE)

    Energy Technology Data Exchange (ETDEWEB)

    Serianni, G., E-mail: gianluigi.serianni@igi.cnr.it; De Muri, M.; Veltri, P.; Bonomo, F.; Chitarin, G.; Pasqualotto, R.; Pavei, M.; Rizzolo, A.; Valente, M. [Consorzio RFX, Euratom-ENEA association, Corso Stati Uniti 4, 35127 Padova (Italy); Muraro, A. [Istituto di Fisica del Plasma, Associazione EURATOM-ENEA-CNR, Milano (Italy); Franzen, P.; Ruf, B.; Schiesko, L. [Max-Planck-Institut für Plasmaphysik, D-85748 Garching bei München (Germany)

    2014-02-15

    The Source for Production of Ion of Deuterium Extracted from Rf plasma (SPIDER) test facility is under construction in Padova to optimise the operation of the beam source of ITER neutral beam injectors. The SPIDER beam will be characterised by the instrumented calorimeter STRIKE, whose main components are one-directional carbon-fibre-carbon-composite tiles. A small-scale version of the entire system has been employed in the BAvarian Test MAchine for Negative ions (BATMAN) testbed by arranging two prototype tiles in the vertical direction. The paper presents a description of the mini-STRIKE system and of the data analysis procedures, as well as some results concerning the BATMAN beam under varying operating conditions.

  11. Carbon K-edge spectra of carbonate minerals.

    Science.gov (United States)

    Brandes, Jay A; Wirick, Sue; Jacobsen, Chris

    2010-09-01

    Carbon K-edge X-ray spectroscopy has been applied to the study of a wide range of organic samples, from polymers and coals to interstellar dust particles. Identification of carbonaceous materials within these samples is accomplished by the pattern of resonances in the 280-320 eV energy region. Carbonate minerals are often encountered in the study of natural samples, and have been identified by a distinctive resonance at 290.3 eV. Here C K-edge and Ca L-edge spectra from a range of carbonate minerals are presented. Although all carbonates exhibit a sharp 290 eV resonance, both the precise position of this resonance and the positions of other resonances vary among minerals. The relative strengths of the different carbonate resonances also vary with crystal orientation to the linearly polarized X-ray beam. Intriguingly, several carbonate minerals also exhibit a strong 288.6 eV resonance, consistent with the position of a carbonyl resonance rather than carbonate. Calcite and aragonite, although indistinguishable spectrally at the C K-edge, exhibited significantly different spectra at the Ca L-edge. The distinctive spectral fingerprints of carbonates provide an identification tool, allowing for the examination of such processes as carbon sequestration in minerals, Mn substitution in marine calcium carbonates (dolomitization) and serpentinization of basalts.

  12. Carbon K-edge Spectra of Carbonate Minerals

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, J.; Wirick, S; Jacobsen, C

    2010-01-01

    Carbon K-edge X-ray spectroscopy has been applied to the study of a wide range of organic samples, from polymers and coals to interstellar dust particles. Identification of carbonaceous materials within these samples is accomplished by the pattern of resonances in the 280-320 eV energy region. Carbonate minerals are often encountered in the study of natural samples, and have been identified by a distinctive resonance at 290.3 eV. Here C K-edge and Ca L-edge spectra from a range of carbonate minerals are presented. Although all carbonates exhibit a sharp 290 eV resonance, both the precise position of this resonance and the positions of other resonances vary among minerals. The relative strengths of the different carbonate resonances also vary with crystal orientation to the linearly polarized X-ray beam. Intriguingly, several carbonate minerals also exhibit a strong 288.6 eV resonance, consistent with the position of a carbonyl resonance rather than carbonate. Calcite and aragonite, although indistinguishable spectrally at the C K-edge, exhibited significantly different spectra at the Ca L-edge. The distinctive spectral fingerprints of carbonates provide an identification tool, allowing for the examination of such processes as carbon sequestration in minerals, Mn substitution in marine calcium carbonates (dolomitization) and serpentinization of basalts.

  13. Role of carbon impurities on the surface morphology evolution of tungsten under high dose helium ion irradiation

    International Nuclear Information System (INIS)

    Al-Ajlony, A.; Tripathi, J.K.; Hassanein, A.

    2015-01-01

    The effect of carbon impurities on the surface evolution (e.g., fuzz formation) of tungsten (W) surface during 300 eV He ions irradiation was studied. Several tungsten samples were irradiated by He ion beam with a various carbon ions percentage. The presence of minute carbon contamination within the He ion beam was found to be effective in preventing the fuzz formation. At higher carbon concentration, the W surface was found to be fully covered with a thick graphitic layer on the top of tungsten carbide (WC) layer that cover the sample surface. Lowering the ion beam carbon percentage was effective in a significant reduction in the thickness of the surface graphite layer. Under these conditions the W surface was also found to be immune for the fuzz formation. The effect of W fuzz prevention by the WC formation on the sample surface was more noticeable when the He ion beam had much lower carbon (C) ions content (0.01% C). In this case, the fuzz formation was prevented on the vast majority of the W sample surface, while W fuzz was found in limited and isolated areas. The W surface also shows good resistance to morphology evolution when bombarded by high flux of pure H ions at 900 °C. - Highlights: • Reporting formation of W nanostructure (fuzz) due to low energy He ion beam irradiation. • The effect of adding various percentage of carbon impurity to the He ion beam on the trend of W fuzz formation was studied. • Mitigation of W fuzz formation due to addition of small percentage of carbon to the He ion beam is reported. • The formation of long W nanowires due to He ion beam irradiation mixed with 0.01% carbon ions is reported.

  14. Carbon budget over 12 years in a production crop under temperate climate

    Science.gov (United States)

    Buysse, Pauline; Bodson, Bernard; Debacq, Alain; De Ligne, Anne; Heinesch, Bernard; Manise, Tanguy; Moureaux, Christine; Aubinet, Marc

    2017-04-01

    Carbon dioxide (CO2) exchanges between crops and the atmosphere are influenced by both climatic and crop management drivers. The investigated crop, situated at the Lonzée Terrestrial Observatory (LTO, candidate ICOS site) in Belgium and managed for more than 70 years using conventional farming practices, was monitored over three complete sugar beet (or maize)/winter wheat/potato/winter wheat rotation cycles from 2004 to 2016. Continuous eddy-covariance measurements and regular biomass samplings were performed in order to obtain the daily and seasonal Net Ecosystem Exchange (NEE), Gross Primary Productivity, Total Ecosystem Respiration, Net Primary Productivity, and Net Biome Production (NBP). Meteorological data and crop management practices were also recorded. The main objectives were to analyze the CO2 flux responses to climatic drivers and to establish the C budget of the cropland. Crop type significantly influenced the measured CO2 fluxes. In addition to crop season duration, which had an obvious impact on cumulated NEE values for each crop type, the CO2 flux response to photosynthetic photon flux density, vapor pressure deficit and temperature differed between crop types, while no significant response to soil water content was observed in any of them. Besides, a significant positive relationship between crop residue amount and ecosystem respiration was observed. Over the 12 years, NEE was negative (-4.34 ± 0.21 kg C m-2) but NBP was positive (1.05 ± 0.30 kg C m-2), i.e. as soon as all lateral carbon fluxes - dominated by carbon exportation - are included in the budget, the site behaves as a carbon source. Intercrops were seen to play a major role in the carbon budget, being mostly due to the long time period it represented (59 % of the 12 year time period). An in-depth analysis of intercrop periods and, more specifically, growing cover crops (mustard in the case of our study), is developed in a companion poster (ref. abstract EGU2017-12216, session SSS9

  15. Surface plasmon observed for carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Bursill, L A; Stadelmann, P A [Ecole Polytechnique Federale, Lausanne (Switzerland); Peng, J L; Prawer, S [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1994-12-31

    This paper presents parallel electron energy loss spectra (PEELS) results, obtained for individual carbon nanotubes, using nanoprobe techniques (1-2 nm diameter electron beam), energy resolution 0.5 eV and collection times of 4-25 sec. The aim was to use a nanoprobe to compare PEELS spectra from different parts of a tube, in order to search for variations in sp{sup 2}/sp{sup 3} bonding ratios as well as to look for orientation dependent plasmon and core-loss phenomena. It also seemed interesting to compare results for nanotubes with those for other varieties of graphitized carbons. The most interesting result so far was the appearance of a 15 eV plasmon peak, which appeared only for tubes containing {<=} about 12 graphite-like layers. This peak did not shift significantly with tube size. A low-loss peaks at 6 eV of variable relative intensity was also observed this peak was relatively very weak for amorphous tubes; it appears to be characteristic of graphite-like layers, as found for nanotubes and, of course, graphite itself. This paper is restricted to discussion of the low-loss results. The experimental techniques are first described, including some details of the methods which may be used to disperse and support sooty carbons for high-resolution transmission electron microscopy. The results are then presented, followed by an interpretation of all the low-loss PEELS results, including those of the other authors. 14 refs., 2 figs.

  16. New developments of {sup 11}C post-accelerated beams for hadron therapy and imaging

    Energy Technology Data Exchange (ETDEWEB)

    Augusto, R.S., E-mail: r.s.augusto@cern.ch [European Organization for Nuclear Research – CERN, 1211 Geneva 23 (Switzerland); Ludwig Maximilians – University of Munich, Munich (Germany); Mendonca, T.M.; Wenander, F. [European Organization for Nuclear Research – CERN, 1211 Geneva 23 (Switzerland); Penescu, L. [MedAustron GmbH, Wiener Neustadt (Austria); Orecchia, R. [CNAO – Centro Nazionale di Adroterapia Oncologica per il trattamento dei tumori, Pavia (Italy); Parodi, K. [Ludwig Maximilians – University of Munich, Munich (Germany); Ferrari, A.; Stora, T. [European Organization for Nuclear Research – CERN, 1211 Geneva 23 (Switzerland)

    2016-06-01

    Hadron therapy was first proposed in 1946 and is by now widespread throughout the world, as witnessed with the design and construction of the CNAO, HIT, PROSCAN and MedAustron treatment centres, among others. The clinical interest in hadron therapy lies in the fact that it delivers precision treatment of tumours, exploiting the characteristic shape (the Bragg peak) of the energy deposition in the tissues for charged hadrons. In particular, carbon ion therapy is found to be biologically more effective, with respect to protons, on certain types of tumours. Following an approach tested at NIRS in Japan [1], carbon ion therapy treatments based on {sup 12}C could be combined or fully replaced with {sup 11}C PET radioactive ions post-accelerated to the same energy. This approach allows providing a beam for treatment and, at the same time, to collect information on the 3D distributions of the implanted ions by PET imaging. The production of {sup 11}C ion beams can be performed using two methods. A first one is based on the production using compact PET cyclotrons with 10–20 MeV protons via {sup 14}N(p,α){sup 11}C reactions following an approach developed at the Lawrence Berkeley National Laboratory [2]. A second route exploits spallation reactions {sup 19}F(p,X){sup 11}C and {sup 23}Na(p,X){sup 11}C on a molten fluoride salt target using the ISOL (isotope separation on-line) technique [3]. This approach can be seriously envisaged at CERN-ISOLDE following recent progresses made on {sup 11}C{sup +} production [4] and proven post-acceleration of pure {sup 10}C{sup 3/6+} beams in the REX-ISOLDE linac [5]. Part of the required components is operational in radioactive ion beam facilities or commercial medical PET cyclotrons. The driver could be a 70 MeV, 1.2 mA proton commercial cyclotron, which would lead to 8.1 × 10{sup 711}C{sup 6+} per spill. This intensity is appropriate using {sup 11}C ions alone for both imaging and treatment. Here we report on the ongoing feasibility

  17. Polarimeters for the AGS polarized-proton beam

    Energy Technology Data Exchange (ETDEWEB)

    Crabb, D.G.; Bonner, B.; Buchanan, J.

    1983-01-01

    This report describes the three polarimeters which will be used to measure the beam polarization at the AGS polarized beam facility. The beam polarization will be measured before injection into the AGS, during acceleration, and after extraction from the AGS. The 200-MeV polarimeter uses scintillation-counter telescopes to measure the asymmetry in p-carbon inclusive scattering. The internal polarimeter can measure the beam polarization at up to five selected times during acceleration. A continuously spooled nylon filament is swung into the beam at the appropriate time and the asymmetry in pp elastic scattering measured by two scintillation-counter telescopes. This is a relative polarimeter which can be calibrated by the absolute external polarimeter located in the D extracted-beam line. This polarimeter uses scintillation counters in two double-arm magnetic spectrometers to measure clearly the asymmetry in pp elastic scattering from a liquid hydrogen target. The specific features and operation of each polarimeter will be discussed.

  18. Polarimeters for the AGS polarized-proton beam

    International Nuclear Information System (INIS)

    Crabb, D.G.; Bonner, B.; Buchanan, J.

    1983-01-01

    This report describes the three polarimeters which will be used to measure the beam polarization at the AGS polarized beam facility. The beam polarization will be measured before injection into the AGS, during acceleration, and after extraction from the AGS. The 200-MeV polarimeter uses scintillation-counter telescopes to measure the asymmetry in p-carbon inclusive scattering. The internal polarimeter can measure the beam polarization at up to five selected times during acceleration. A continuously spooled nylon filament is swung into the beam at the appropriate time and the asymmetry in pp elastic scattering measured by two scintillation-counter telescopes. This is a relative polarimeter which can be calibrated by the absolute external polarimeter located in the D extracted-beam line. This polarimeter uses scintillation counters in two double-arm magnetic spectrometers to measure clearly the asymmetry in pp elastic scattering from a liquid hydrogen target. The specific features and operation of each polarimeter will be discussed

  19. Commissioning status of the decelerator test beam line in CTF3

    CERN Document Server

    Adli, E; Lillestol, R; Olvegaard, M; Syratchev, I; Carrillo, D; Toral, F; Faus-Golfe, A; Garcia-Garrigos, J J; Kubyshin, Y; Montoro, G

    2010-01-01

    The CLIC Test Facility (CTF3) at CERN was constructed by the CTF3 collaboration to study the feasibility of the concepts for a compact linear collider. The test beam line (TBL) recently added to the CTF3 machine was designed to study the CLIC decelerator beam dynamics and 12 GHz power production. The beam line consists of a FODO lattice with high precision BPM’s and quadrupoles on movers for precise beam alignment. A total of 16 Power Extraction and Transfer Structures (PETS) will be installed in between the quadrupoles to extract 12 GHz power from the drive beam provided by the CTF3 machine. The CTF3 drive beam with a bunch-train length of 140 ns, 12 GHz bunch repetition frequency and an average current over the train of up to 28 A will be injected into the test beam line. Each PETS structure will produce 135 MW of 12 GHz power at nominal current. The beam will have lost more than 50 % of its initial energy of 150 MeV at the end of the beam line and will contain particles with energies between 65 MeV and 1...

  20. First beam in Linac4 DTL

    CERN Multimedia

    Katarina Anthony

    2014-01-01

    Following the installation of the Linac4 Drift Tube Linac (DTL) earlier this summer (see here), the first DTL tank saw beams at 12 MeV on 5 August.   Transverse emittance measured at 12 MeV after the DTL tank1 using a temporary slit-and-grid emittance device. You never forget your first beam. That was especially true for the Linac4 DTL team, as it followed years of design, construction and vigorous testing. "We performed countless measurements of the geometry, vacuum and magnet polarisation of the DTL tanks while we were in the workshop," says Suitbert Ramberger, project engineer for the Linac4 DTL. "Add that preparation to the excellent RF conditioning that we carried out in the weeks before the beam tests and I was confident that the acceleration with beam would fully meet expectations!" Indeed it did. Beam commissioning tests ran until 21 August and found the DTL operating with nominal transmission. This successful run has confirmed the innovative design ...

  1. Insight into effects of graphene in Li4Ti5O12/carbon composite with high rate capability as anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Ding, Y.; Li, G.R.; Xiao, C.W.; Gao, X.P.

    2013-01-01

    Li 4 Ti 5 O 12 /carbon composites have shown promising high rate capability as anode materials for lithium ion batteries. In this paper, unique effects of graphene in Li 4 Ti 5 O 12 /carbon composites on electrochemical performances are focused by means of comparing Li 4 Ti 5 O 12 /graphene with Li 4 Ti 5 O 12 /conductive carbon black (CCB) and Li 4 Ti 5 O 12 . The investigated anode materials are synthesized by a facile hydrothermal method. The amount of graphene or CCB in the Li 4 Ti 5 O 12 /carbon composites is about 3 wt% measured by thermogravimetric (TG) analysis. X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show that Li 4 Ti 5 O 12 /graphene consists of small sized Li 4 Ti 5 O 12 nanocrystals supported on graphene nanosheets, while Li 4 Ti 5 O 12 /CCB comprises Li 4 Ti 5 O 12 nanocrystal aggregates coated nearly by graphited carbon. The electrochemical performances of these samples as anode materials for lithium ion batteries are investigated by galvanostatic charge–discharge method. Li 4 Ti 5 O 12 /graphene provides a superior rate capability. At the high current density of 1600 mA g −1 , the reversible capacity after 200 cycles is still more than 120 mAh g −1 , which is about 40% higher than that of Li 4 Ti 5 O 12 /CCB. Cyclic voltammetry (CV) demonstrates that stronger pseudocapacitive effect occurs on Li 4 Ti 5 O 12 /graphene than on Li 4 Ti 5 O 12 /CCB. This derived from the structure features that graphene-supported small Li 4 Ti 5 O 12 nanocrystals provide more surface active sites for the lithium ion insertion/extraction. The strong pseudocapacitive effect is responsible for the improvements of capacity and high-rate capability. Further, electrochemical impedance spectra (EIS) show that Li 4 Ti 5 O 12 /graphene electrode have lower charge transfer resistance and smaller diffusion impedance, indicating the obvious advantages in electrode kinetics over Li 4 Ti 5 O 12 and Li 4 Ti 5 O 12

  2. Electronic Switch in the Carbon-Centered [Re12CS17(CN6] n−Nanocluster

    Directory of Open Access Journals (Sweden)

    Gabuda SP

    2009-01-01

    Full Text Available Abstract An abrupt change in internuclear Re–Re distances between {Re6} subunits in the carbon-centered [Re12μ6-CS17(CN6] n−complexes caused by the change of the oxidation state (n = 6, 8 is first theoretically shown to be possibly controlled by an external electric field.13C NMR signal is shown to change over ~400 ppm (~37G for μ6-C atom together withn. Thereby, the metal cluster [Re12μ6-CS17(CN6] n−can be considered as a perspective model of a molecular switch.

  3. Inactive and mutagenic effects induced by carbon beams of different LET values in a red yeast strain

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jufang, E-mail: jufangwang@impcas.ac.c [Institute of Modern Physics, Chinese Academy of Sciences, Nanchang Road No. 509, Lanzhou 730000 (China); Lu Dong; Wu Xin; Sun Haining; Ma Shuang; Li Renmin; Li Wenjian [Institute of Modern Physics, Chinese Academy of Sciences, Nanchang Road No. 509, Lanzhou 730000 (China)

    2010-09-15

    To evaluate biological action of microorganism exposed to charged particles during the long distance space exploration, induction of inactivation and mutation in a red yeast strain Rhodotorula glutinis AY 91015 by carbon beams of different LET values (14.9-120.0 keV {mu}m{sup -1}) was investigated. It was found that survival curves were exponential, and mutation curves were linear for all LET values. The dependence of inactivation cross section on LET approached saturation near 120.0 keV {mu}m{sup -1}. The mutation cross section saturated when LET was higher than 58.2 keV {mu}m{sup -1}. Meanwhile, the highest RBE{sub i} for inactivation located at 120.0 keV {mu}m{sup -1} and the highest RBE{sub m} for mutation was at 58.2 keV {mu}m{sup -1}. The experiments imply that the most efficient mutagenic part of the depth dose profile of carbon ion is at the plateau region with intermediate LET value in which energy deposited is high enough to induce mutagenic lesions but too low to induce over kill effect in the yeast cells.

  4. Increased Tensile Strength of Carbon Nanotube Yarns and Sheets through Chemical Modification and Electron Beam Irradiation

    Science.gov (United States)

    Miller, Sandi G.; Williams, Tiffany S.; Baker, James S.; Sola, Francisco; Lebron-Colon, Marisabel; McCorkle, Linda S.; Wilmoth, Nathan G.; Gaier, James; Chen, Michelle; Meador, Michael A.

    2014-01-01

    The inherent strength of individual carbon nanotubes offers considerable opportunity for the development of advanced, lightweight composite structures. Recent work in the fabrication and application of carbon nanotube (CNT) forms such as yarns and sheets has addressed early nanocomposite limitations with respect to nanotube dispersion and loading; and has pushed the technology toward structural composite applications. However, the high tensile strength of an individual CNT has not directly translated to macro-scale CNT forms where bulk material strength is limited by inter-tube electrostatic attraction and slippage. The focus of this work was to assess post processing of CNT sheet and yarn to improve the macro-scale strength of these material forms. Both small molecule functionalization and e-beam irradiation was evaluated as a means to enhance tensile strength and Youngs modulus of the bulk CNT material. Mechanical testing results revealed a tensile strength increase in CNT sheets by 57 when functionalized, while an additional 48 increase in tensile strength was observed when functionalized sheets were irradiated; compared to unfunctionalized sheets. Similarly, small molecule functionalization increased yarn tensile strength up to 25, whereas irradiation of the functionalized yarns pushed the tensile strength to 88 beyond that of the baseline yarn.

  5. Changes in optical properties of polystyrene thin films by proton beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Sung Hyun; Jung, Jin Mook; Choi, Jae Hak [Dept. of of Polymer Science and Engineering, Chungnam National University, Daejeon (Korea, Republic of); Jung, Chan Hee; Hwang, In Tae; Shin, Jun Hwa [Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup(Korea, Republic of)

    2017-06-15

    In this study, changes in optical properties of polystyrene (PS) thin films by proton irradiation were investigated. PS thin films were irradiated with 150 keV proton ions at fluences ranging from 1 × 10{sup 15} to 1 × 10{sup 16} ions cm{sup -2}. The chemical structures and optical properties of proton beam-irradiated PS thin films were investigated by using a FT-IR spectrometer, an UVvis spectrophotometer, a photoluminescence (PL) and a fluorescence microscope. The results of the chemical structure analysis revealed that chemical functional groups, such as OH, C=O, and C=C, were formed in the PS films due to the oxidation and formation of carbon clusters by proton beam irradiation. The PL emission was generated and gradually red-shifted with an increasing fluence due to the higher formation of sp2 carbon clusters by proton beam irradiation. The highest PL intensity was obtained at a fluence of 5×10{sup 15} ions cm{sup -2}. The optical band gap of PS calculated by using a Tauc’s plot decreased with increasing the fluence due to the formation of sp2 carbon clusters by proton beam irradiation.

  6. Macroscopic folded form factors for 12C + 12C inelastic scattering

    International Nuclear Information System (INIS)

    Rickertsen, L.D.; Satchler, G.R.; Stokstad, R.G.; Wieland, R.M.

    1976-01-01

    The angular distributions for the scattering of carbon-12 from carbon-12 at 117.1 MeV are shown as is also the result of coupled-channel calculations for the elastic and inelastic scattering using these folded form factors

  7. Surface composition of biomedical components by ion beam analysis

    International Nuclear Information System (INIS)

    Kenny, M.J.; Wielunski, L.S.; Baxter, G.R.

    1991-01-01

    Materials used for replacement body parts must satisfy a number of requirements such as biocompatibility and mechanical ability to handle the task with regard to strength, wear and durability. When using a CVD coated carbon fibre reinforced carbon ball, the surface must be ion implanted with uniform dose of nitrogen ions in order to make it wear resistant. The mechanism by which the wear resistance is improved is one of radiation damage and the required dose of about 10 16 cm -2 can have a tolerance of about 20%. To implant a spherical surface requires manipulation of the sample within the beam and control system (either computer or manually operated) to enable uniform dose all the way from polar to equatorial regions on the surface. A manipulator has been designed and built for this purpose. In order to establish whether the dose is uniform, nuclear reaction analysis using the reaction 14 N(d,α) 12 C is an ideal method of profiling. By taking measurements at a number of points on the surface, the uniformity of nitrogen dose can be ascertained. It is concluded that both Rutherford Backscattering and Nuclear Reaction Analysis can be used for rapid analysis of surface composition of carbon based materials used for replacement body components. 2 refs., 2 figs

  8. The effects of beam energy and substrate temperature on the tribological properties of hard-carbon films on aluminum

    International Nuclear Information System (INIS)

    Wei, R.; Wilbur, P.J.; Erdemir, A.; Kustas, F.M.

    1992-01-01

    Hard-carbon films were applied on flat 6061-T6 aluminum substrates using a broad-beam ion source operating on methane and producing carbonaceous ions with energies that varied from 250 to 1050 eV. Films were evaluated using a reciprocating alumina ball-on-flat sliding wear tester operating in an ambient air test environment. The films facilitated substantial reductions in friction coefficients to 0.08-0.2 from 0.4-0.7 for uncoated aluminum. At a sufficiently high normal load, the films failed and friction coefficients increased to the higher range. The best film caused this critical normal load to increase from less than 0.1 N for untreated aluminum to greater than 30 N. A near-optimal beam ion energy (450 eV) was identified for good quality films. At lower energies (e.g. 250 eV) films were discontinuous, while at higher energies (e.g. 1050 eV) high sputter rates limited film growth. When an aluminum flat was held at low temperature during processing, the films were smooth and adhered well, but they became rougher and adhered poorly as the temperature was increased above approximately 300degC. (orig.)

  9. Beam beam tune shifts for 36 bunch operation in the Tevatron

    International Nuclear Information System (INIS)

    Bagley, P.

    1996-10-01

    We are preparing to upgrade the Tevatron Collider from 6 to 36 bunch operation. The 36 bunches are in 3 ''trains'' of 12 bunches. The spacing between bunches within a train is 21 RF buckets (53.106 MHz) and 139 empty buckets separate the trains. Because the 36 bunches are not evenly spaced around the machine, the different bunches within a train pass the opposing bunches at different points in the ring and so feel different beam beam effects. Through most of the machine the beams have helical separation, so these are mainly long range beam beam effects. As a first, very simple step, we've looked at the differences in the tunes of the different anti-proton (anti p) bunches. During the 36 bunch studies in Fall 1995, we used a new tune measurement system to measure these in several different machine conditions. We compare these measurements to calculations of the tunes for a anti p with zero transverse and longitudinal oscillation amplitudes. We discuss experimental problems, and the assumptions, approximations, and effects included in the calculations. Our main intent is to gain confidence that we can accurately model beam beam effects in the Tevatron

  10. Studies of beam dynamics in relativistic klystron two-beam accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Lidia, Steven M.

    1999-11-01

    Two-beam accelerators (TBAs) based upon free-electron lasers (FELs) or relativistic klystrons (RK-TBAs) have been proposed as efficient power sources for next generation high-energy linear colliders. Studies have demonstrated the possibility of building TBAs from X-band (~8-12 GHz) through Ka band (~ 30-35 GHz) frequency regions. Provided that further prototyping shows stable beam propagation with minimal current loss and production of good quality, high-power rf fields, this technology is compatible with current schemes for electron-positron colliders in the multi-TeV center-of-mass scale. A new method of simulating the beam dynamics in accelerators of this type has been developed in this dissertation. There are three main components to this simulation. The first is a tracking algorithm to generate nonlinear transfer maps for pushing noninteracting particles through the external fields. The second component is a 3D Particle-In-Cell (PIC) algorithm that solves a set of Helmholtz equations for the self-fields, including the conducting boundary condition, and generates impulses that are interleaved with the nonlinear maps by means of a split-operation algorithm. The Helmholtz equations are solved by a multi-grid algorithm. The third component is an equivalent circuit equation solver that advances the modal rf cavity fields in time due to excitation by the modulated beam. The RTA project is described, and the simulation code is used to design the latter portions of the experiment. Detailed calculations of the beam dynamics and of the rf cavity output are presented and discussed. A beamline design is presented that will generate nearly 1.2 GW of power from 40 input, gain, and output rv cavities over a 10 m distance. The simulations show that beam current losses are acceptable, and that longitudinal and transverse focusing techniques are sufficient capable of maintaining a high degree of beam quality along the entire beamline. Additional experimental efforts are also

  11. 750 keV beam line construction at the KEK

    International Nuclear Information System (INIS)

    Ishimaru, H.; Anami, S.; Inagaki, T.; Sakaue, T.; Itoh, K.; Fukumoto, S.

    1976-01-01

    The construction of 750 keV beam line of the KEK injector of the 12 GeV proton synchrotron was described. The beam line consists of the beam focusing quadrupoles, vacuum system, the electrostatic chopper and the various beam monitors. (author)

  12. Dosimetric variation due to CT inter-slice spacing in four-dimensional carbon beam lung therapy

    International Nuclear Information System (INIS)

    Kumagai, Motoki; Mori, Shinichiro; Kandatsu, Susumu; Baba, Masayuki; Sharp, Gregory C; Asakura, Hiroshi; Endo, Masahiro

    2009-01-01

    When CT data with thick slice thickness are used in treatment planning, geometrical uncertainty may induce dosimetric errors. We evaluated carbon ion dose variations due to different CT slice thicknesses using a four-dimensional (4D) carbon ion beam dose calculation, and compared results between ungated and gated respiratory strategies. Seven lung patients were scanned in 4D mode with a 0.5 mm slice thickness using a 256-multi-slice CT scanner. CT images were averaged with various numbers of images to simulate reconstructed images with various slice thicknesses (0.5-5.0 mm). Two scenarios were studied (respiratory-ungated and -gated strategies). Range compensators were designed for each of the CT volumes with coarse inter-slice spacing to cover the internal target volume (ITV), as defined from 4DCT. Carbon ion dose distribution was computed for each resulting ITV on the 0.5 mm slice 4DCT data. The accumulated dose distribution was then calculated using deformable registration for 4D dose assessment. The magnitude of over- and under-dosage was found to be larger with the use of range compensators designed with a coarser inter-slice spacing than those obtained with a 0.5 mm slice thickness. Although no under-dosage was observed within the clinical target volume (CTV) region, D95 remained at over 97% of the prescribed dose for the ungated strategy and 95% for the gated strategy for all slice thicknesses. An inter-slice spacing of less than 3 mm may be able to minimize dose variation between the ungated and gated strategies. Although volumes with increased inter-slice spacing may reduce geometrical accuracy at a certain respiratory phase, this does not significantly affect delivery of the accumulated dose to the target during the treatment course.

  13. Dynamics and adsorption of gas molecules using proton beams

    International Nuclear Information System (INIS)

    Kim, J. Y.; Kim, E. K.; Lee, J. K.

    2008-04-01

    We irradiated nano sized MgO powders and carbon nanotubes by proton beams with energy of 35 MeV for different dosing time and the difference before and after the irradiation was investigated by using NO and Ar gas adsorptions studies. Particular interest was given to the irradiation of proton beams on quasicrystals made with Ti-Zr-Ni to remove the oxygen layer on the surface of the sample. Quasicrystals are known to exhibit a 5-fold rotational symmetry which is theoretically forbidden in a concept of solid state physics, and have a potential applications on large amount of hydrogen loading due to their structural complexity and chemical affinity with hydrogen. The results are summarized as four major accomplishments. 1) Proton irradiated MgO powders demonstrated the increased number of NO atomic layers in a layer-by-layer fashion suggesting that the surface of the sample became homogeneous compare to the pure samples. 2) the synchrotron based X-ray diffraction data suggests that NO molecules form an 1x1 commensurate structure on MgO (100) surface evidenced by the NO peak location at the Q values of 2.12 A -1 . 3) Proton irradiated SWCNTs exhibit the uniform Ar atomic layer formation suggesting that the surface of the CNTs can be homonized by the proton beam irradiation, and 4) 20 MeV of proton beam can effectively remove the oxygen layer on metal oxides so that Ti-Zr-Ni quasicrystals can load a large amount of hydrogen (exceeding to the density of liquid hydrogen) at room temperature.

  14. A beam monitor using silicon pixel sensors for hadron therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhen, E-mail: zwang@mails.ccnu.edu.cn; Zou, Shuguang; Fan, Yan; Liu, Jun; Sun, Xiangming, E-mail: sphy2007@126.com; Wang, Dong; Kang, Huili; Sun, Daming; Yang, Ping; Pei, Hua; Huang, Guangming; Xu, Nu; Gao, Chaosong; Xiao, Le

    2017-03-21

    We report the design and test results of a beam monitor developed for online monitoring in hadron therapy. The beam monitor uses eight silicon pixel sensors, Topmetal-II{sup -}, as the anode array. Topmetal-II{sup -} is a charge sensor designed in a CMOS 0.35 µm technology. Each Topmetal-II{sup -} sensor has 72×72 pixels and the pixel size is 83×83 µm{sup 2}. In our design, the beam passes through the beam monitor without hitting the electrodes, making the beam monitor especially suitable for monitoring heavy ion beams. This design also reduces radiation damage to the beam monitor itself. The beam monitor is tested with a carbon ion beam at the Heavy Ion Research Facility in Lanzhou (HIRFL). Results indicate that the beam monitor can measure position, incidence angle and intensity of the beam with a position resolution better than 20 µm, angular resolution about 0.5° and intensity statistical accuracy better than 2%.

  15. Degradation mechanism of Direct Pink 12B treated by iron-carbon micro-electrolysis and Fenton reaction.

    Science.gov (United States)

    Wang, Xiquan; Gong, Xiaokang; Zhang, Qiuxia; Du, Haijuan

    2013-12-01

    The Direct Pink 12B dye was treated by iron-carbon micro-electrolysis (ICME) and Fenton oxidation. The degradation pathway of Direct Pink 12B dye was inferred by ultraviolet visible (UV-Vis), infrared absorption spectrum (IR) and high performance liquid chromatography-mass spectrometry (HPLC-MS). The major reason of decolorization was that the conjugate structure was disrupted in the iron-carbon micro-electrolysis (ICME) process. However, the dye was not degraded completely because benzene rings and naphthalene rings were not broken. In the Fenton oxidation process, the azo bond groups surrounded by higher electron cloud density were first attacked by hydroxyl radicals to decolorize the dye molecule. Finally benzene rings and naphthalene rings were mineralized to H2O and CO2 under the oxidation of hydroxyl radicals. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  16. A synchronous beam sweeper for heavy ions

    International Nuclear Information System (INIS)

    Bogaty, J.M.

    1989-01-01

    The Argonne Tandem Linac Accelerator System (ATLAS) facility at Argonne National Laboratory provides a wide range of accelerated heavy ions from the periodic table. Frequently, the beam delivery rate of 12 MHz is too fast for the type of experiment on line. Reaction by-products from a target bombardment may have a decay interval much longer than the dead time between beam bunches. To prevent data from being corrupted by incoming ions a beam sweeper was developed which synchronously eliminates selected beam bunches to suit experimental needs. As the SWEEPER is broad band (DC to 6 MHz) beam delivery rates can be instantaneously changed. Ion beam bunches are selectively kicked out by an electrostatic dipole electrode pulsed to 2 kVDC. The system has been used for almost three years with several hundred hours of operating time logged to date. Beam bunch delivery rates of 6 MHz down to 25 kHz have been provided. Since this is a non-resonant system any beam delivery rate from 6 MHz down to zero can be set. In addition, burst modes have been used where beam is supplied in 12 MHz bursts and then shut down for a period of time set by the user. 3 figs

  17. Numerical investigation of a plasma beam entering transverse magnetic fields

    International Nuclear Information System (INIS)

    Koga, J.; Geary, J.L.; Tajima, T.; Rostoker, N.

    1988-11-01

    We study plasma beam injection into transverse magnetic fields using both electrostatic and electromagnetic particle-in-cell (PIC) codes. In the case of small beam momentum or energy (low drift kinetic /beta/) we study both large and small ion gyroradius beams. Large ion gyroradius beams with a large dielectric constant /epsilon/ /muchreverse arrowgt/ (M/m)/sup /1/2// are found to propagate across the magnetic field via E /times/ B drifts at nearly the initial injection velocity, where /epsilon/ = 1 + (/omega//sup pi//sup 2/)/(/Omega//sub i//sup 2/) and (M/m) is the ion to electron mass ratio. Beam degradation and undulations are observed in agreement with previous experimental and analytical results. When /epsilon/ is on the order of (M/m)/sup /1/2//, the plasma beam propagates across field lines at only half its initial velocity and loses its coherent structure. When /epsilon/ is much less than (M/m)/sup /1/2//, the beam particles decouple at the magnetic field boundary, scattering the electrons and slightly deflecting the ions. For small ion gyroradius beam injection a flute type instability is observed at the beam magnetic fields interface. In the case of large beam momentum or energy (high drift kinetic /beta/) we observe good penetration of a plasma beam which shields the magnetic field from the interior of the beam (diagmagnetism). 25 refs., 13 figs., 1 tab

  18. Plasma-induced field emission and plasma expansion of carbon nanotube cathodes

    International Nuclear Information System (INIS)

    Liao Qingliang; Zhang Yue; Qi Junjie; Huang Yunhua; Xia Liansheng; Gao Zhanjun; Gu Yousong

    2007-01-01

    High intensity electron emission cathodes based on carbon nanotube films have been successfully fabricated. An investigation of the explosive field emission properties of the carbon nanotube cathode in a double-pulse mode was presented and a high emission current density of 245 A cm -2 was obtained. The formation of the cathode plasma layer was proved and the production process of the electron beams from the cathode was explained. The time and space resolution of the electron beams flow from the cathode was investigated. The plasma expanded at a velocity of ∼8.17 cm μs -1 towards the anode and influenced on the intensity and distribution of electron beams obviously. The formation of cathode plasma had no preferential position and the local enhancement of electron beams was random. This carbon nanotube cathode appears to be suitable for high-power microwave device applications

  19. SU-E-T-568: Improving Normal Brain Sparing with Increasing Number of Arc Beams for Volume Modulated Arc Beam Radiosurgery of Multiple Brain Metastases

    International Nuclear Information System (INIS)

    Hossain, S; Hildebrand, K; Ahmad, S; Larson, D; Ma, L; Sahgal, A

    2014-01-01

    Purpose: Intensity modulated arc beams have been newly reported for treating multiple brain metastases. The purpose of this study was to determine the variations in the normal brain doses with increasing number of arc beams for multiple brain metastases treatments via the TrueBeam Rapidarc system (Varian Oncology, Palo Alto, CA). Methods: A patient case with 12 metastatic brain lesions previously treated on the Leksell Gamma Knife Perfexion (GK) was used for the study. All lesions and organs at risk were contoured by a senior radiation oncologist and treatment plans for a subset of 3, 6, 9 and all 12 targets were developed for the TrueBeam Rapidarc system via 3 to 7 intensity modulated arc-beams with each target covered by at least 99% of the prescribed dose of 20 Gy. The peripheral normal brain isodose volumes as well as the total beam-on time were analyzed with increasing number of arc beams for these targets. Results: All intensisty modulated arc-beam plans produced efficient treatment delivery with the beam-on time averaging 0.6–1.5 min per lesion at an output of 1200 MU/min. With increasing number of arc beams, the peripheral normal brain isodose volumes such as the 12-Gy isodose line enclosed normal brain tissue volumes were on average decreased by 6%, 11%, 18%, and 28% for the 3-, 6-, 9-, 12-target treatment plans respectively. The lowest normal brain isodose volumes were consistently found for the 7-arc treatment plans for all the cases. Conclusion: With nearly identical beam-on times, the peripheral normal brain dose was notably decreased when the total number of intensity modulated arc beams was increased when treating multiple brain metastases. Dr Sahgal and Dr Ma are currently serving on the board of international society of stereotactic radiosurgery

  20. Dark matter search in a Beam-Dump eXperiment (BDX) at Jefferson Lab: an update on PR12-16-001

    Energy Technology Data Exchange (ETDEWEB)

    Battaglieri, M. [Istituto Nazionale di Fisica Nucleare (INFN), Genova (Italy); et. al.

    2017-12-07

    This document is an update to the proposal PR12-16-001 Dark matter search in a Beam-Dump eXperiment (BDX) at Jefferson Lab submitted to JLab-PAC44 in 2016 reporting progress in addressing questions raised regarding the beam-on backgrounds. The concerns are addressed by adopting a new simulation tool, FLUKA, and planning measurements of muon fluxes from the dump with its existing shielding around the dump. First, we have implemented the detailed BDX experimental geometry into a FLUKA simulation, in consultation with experts from the JLab Radiation Control Group. The FLUKA simulation has been compared directly to our GEANT4 simulations and shown to agree in regions of validity. The FLUKA interaction package, with a tuned set of biasing weights, is naturally able to generate reliable particle distributions with very small probabilities and therefore predict rates at the detector location beyond the planned shielding around the beam dump. Second, we have developed a plan to conduct measurements of the muon ux from the Hall-A dump in its current configuration to validate our simulations.

  1. Novel, compact, and simple ND:YVO4 laser with 12 W of CW optical output power and good beam quality

    Science.gov (United States)

    Zimer, H.; Langer, B.; Wittrock, U.; Heine, F.; Hildebrandt, U.; Seel, S.; Lange, R.

    2017-11-01

    We present first, promising experiments with a novel, compact and simple Nd:YVO4 slab laser with 12 W of 1.06 μm optical output power and a beam quality factor M2 2.5. The laser is made of a diffusion-bonded YVO4/Nd:YVO4 composite crystal that exhibits two unique features. First, it ensures a one-dimensional heat removal from the laser crystal, which leads to a temperature profile without detrimental influence on the laser beam. Thus, the induced thermo-optical aberrations to the laser field are low, allowing power scaling with good beam quality. Second, the composite crystal itself acts as a waveguide for the 809 nm pump-light that is supplied from a diode laser bar. Pump-light shaping optics, e.g. fast- or slow-axis collimators can be omitted, reducing the complexity of the system. Pump-light redundancy can be easily achieved. Eventually, the investigated slab laser might be suitable for distortion-free high gain amplification of weak optical signals.

  2. Mechanical and tribological properties of ion beam-processed surfaces

    International Nuclear Information System (INIS)

    Kodali, P.

    1998-01-01

    The intent of this work was to broaden the applications of well-established surface modification techniques and to elucidate the various wear mechanisms that occur in sliding contact of ion-beam processed surfaces. The investigation included characterization and evaluation of coatings and modified surfaces synthesized by three surface engineering methods; namely, beam-line ion implantation, plasma-source ion implantation, and DC magnetron sputtering. Correlation among measured properties such as surface hardness, fracture toughness, and wear behavior was also examined. This dissertation focused on the following areas of research: (1) investigating the mechanical and tribological properties of mixed implantation of carbon and nitrogen into single crystal silicon by beam-line implantation; (2) characterizing the mechanical and tribological properties of diamond-like carbon (DLC) coatings processed by plasma source ion implantation; and (3) developing and evaluating metastable boron-carbon-nitrogen (BCN) compound coatings for mechanical and tribological properties. The surface hardness of a mixed carbon-nitrogen implant sample improved significantly compared to the unimplanted sample. However, the enhancement in the wear factor of this sample was found to be less significant than carbon-implanted samples. The presence of nitrogen might be responsible for the degraded wear behavior since nitrogen-implantation alone resulted in no improvement in the wear factor. DLC coatings have low friction, low wear factor, and high hardness. The fracture toughness of DLC coatings has been estimated for the first time. The wear mechanism in DLC coatings investigated with a ruby slider under a contact stress of 1 GPa was determined to be plastic deformation. The preliminary data on metastable BCN compound coatings indicated high friction, low wear factor, and high hardness

  3. Construction and tests of an in-beam PET-like demonstrator for hadrontherapy beam ballistic control

    Energy Technology Data Exchange (ETDEWEB)

    Montarou, G., E-mail: montarou@clermont.in2p3.fr [Clermont University, Blaise Pascal University, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, Clermont-Ferrand F-63000 (France); Bony, M.; Busato, E.; Chadelas, R. [Clermont University, Blaise Pascal University, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, Clermont-Ferrand F-63000 (France); Donnarieix, D. [Centre Jean Perrin, Service de Physique Médicale, Clermont-Ferrand F-63000 (France); Force, P.; Guicheney, C.; Insa, C.; Lambert, D.; Lestand, L.; Magne, M.; Martin, F. [Clermont University, Blaise Pascal University, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, Clermont-Ferrand F-63000 (France); Millardet, C. [Centre Jean Perrin, Service de Physique Médicale, Clermont-Ferrand F-63000 (France); Nivoix, M.; Podlyski, F.; Rozes, A. [Clermont University, Blaise Pascal University, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, Clermont-Ferrand F-63000 (France)

    2017-02-11

    We present the first results obtained with a detector, called Large Area Pixelized Detector (LAPD), dedicated to the study the ballistic control of the beam delivered to the patient by in-beam and real time detection of secondary particles, emitted during its irradiation in the context of hadrontherapy. These particles are 511 keV γ from the annihilation of a positron issued from the β{sup +} emitters induced in the patient tissues along the beam path. The LAPD basic concepts are similar to a conventional PET camera. The 511 keV γ are detected and the reconstructed lines of response allow to measure the β{sup +} activity distribution. Nevertheless, when trying to use γ from positron annihilation for the ballistic control in hadrontherapy, the large prompt γ background should be taken into account and properly rejected. First reconstruction results, obtained with a phantom filled with a high intensity FDG source at the cancer research centre of Clermont-Ferrand are shown. We also report results of measurements performed at the Heidelberg Ion-Beam Therapy Centre with one third of the detector, using proton and carbon ion beams.

  4. Review of ion beam therapy: Present and Future

    International Nuclear Information System (INIS)

    Alonso, Jose R.

    2000-01-01

    First therapy efforts at the Bevalac using neon ions took place in the 70's and 80's. Promising results led to construction of HIMAC in Chiba Japan, and more recently to therapy trials at GSI. Both these facilities are now treating patients with carbon beams. Advances in both accelerator technology and beam delivery have taken place at these two centers. Plans are well along for new facilities in Europe and Japan

  5. Development of the TFTR neutral beam injection system

    International Nuclear Information System (INIS)

    Prichard, B.A. Jr.

    1978-01-01

    The TFTR Neutral Beam Lines are designed to inject 20 MW of 120 keV neutral deuterium atoms into the plasma. This is accomplished using 12 sources, 65 amperes each, mounted in 4 beam lines. The 120 kV sources are being developed by LBL and a prototype beam line which will be tested at Berkeley is being developed as a cooperative effort by LLL and LBL. The implementation of these beam lines has required the development of several associated pieces of hardware. The control and monitoring of the 12 sources will be done via the TFTR computer control system (CICADA) as will other parts of the machine, and software is being developed to condition and operate the sources automatically. The prototype beam line is scheduled to begin operation in the fall of 1978 and all four production beam lines on TFTR in 1982

  6. Reinforced concrete T-beams externally prestressed with unbonded carbon fiber-reinforced polymer tendons

    DEFF Research Database (Denmark)

    Bennitz, Anders; Nilimaa, Jonny; Täljsten, Björn

    2012-01-01

    force, and the presence of a deviator were investigated. The results were compared to those observed with analogous beams prestressed with steel tendons, common beam theory, and predictions made using an analytical model adapted from the literature. It was found that steel and CFRP tendons had very...... similar effects on the structural behavior of the strengthened beams; the minor differences that were observed are attributed to the difference between the modulus of elasticity of the CFRP and the steel used in the tests. The models predicted the beams' load-bearing behavior accurately but were less...

  7. Radiation processing of carbon fiber-acrylated epoxy composites

    International Nuclear Information System (INIS)

    Singh, A.; Saunders, C.B.

    1992-01-01

    Advanced composites, specifically carbon fiber reinforced epoxies, are being used for a variety of demanding structural applications, primarily because of their high strength-to-weight and stiffness-to-weight ratios, corrosion resistance, and damage tolerance characteristics. For these composites the key advantages of using electron beam (EB), rather than thermal curing, are curing at ambient temperature, reduced curing times for individual components, improved resin stability, fewer volatiles, and better control of the profile of energy absorption. Epoxy compounds do, however, have to be modified to make them EB curable. The electron beam penetration limit, a function of beam energy, product density, and the thickness of any container required, must also be examined when considering EB processing. Research is being conducted to develop EB-curable carbon fiber-acrylated epoxy composites. The tensile properties of these laminates are comparable to those of thermally cured epoxy laminates. Research is continuing to develop suitable resin formulations and coupling agents to optimize the mechanical properties of EB-cured carbon fiber laminates. In this chapter the EB curing of epoxies, processing considerations, and typical properties of EB-cured carbon fiber-acrylated epoxy laminates are discussed. (orig.)

  8. Reactions of carbon atoms in pulsed molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Reisler, H. [Univ. of Southern California, Los Angeles (United States)

    1993-12-01

    This research program consists of a broad scope of experiments designed to unravel the chemistry of atomic carbon in its two spin states, P and D, by using well-controlled initial conditions and state-resolved detection of products. Prerequisite to the proposed studies (and the reason why so little is known about carbon atom reactions), is the development of clean sources of carbon atoms. Therefore, in parallel with the studies of its chemistry and reaction dynamics, the authors continuously explore new, state-specific and efficient ways of producing atomic carbon. In the current program, C({sup 3}P) is produced via laser ablation of graphite, and three areas of study are being pursued: (i) exothermic reactions with small inorganic molecules (e.g., O{sub 2}, N{sub 2}O, NO{sub 2}) that can proceed via multiple pathways; (ii) the influence of vibrational and translational energy on endothermic reactions involving H-containing reactants that yield CH products (e.g., H{sub 2}O H{sub 2}CO); (iii) reactions of C({sup 3}P) with free radicals (e.g., HCO, CH{sub 3}O). In addition, the authors plan to develop a source of C({sup 1}D) atoms by exploiting the pyrolysis of diazotetrazole and its salts in the ablation source. Another important goal involves collaboration with theoreticians in order to obtain relevant potential energy surfaces, rationalize the experimental results and predict the roles of translational and vibrational energies.

  9. Low-dose ion-based transmission radiography and tomography for optimization of carbon ion-beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Magallanes Hernandez, Lorena

    2017-02-21

    In the last few decades, ion-beam radiotherapy has emerged as a highly effective tumor treatment modality. Its success relies on the capability to precisely confine the prescribed dose within the target volume, due to the inverted depth-dose profile and the finite range featured by charged particles. However, to fully exploit the physical and biological advantages of ion-beams, it is necessary to prioritize on innovative imaging techniques to monitor the ion-range inside the patient. Main range uncertainties result from X-ray-based calibration of the ion relative Water Equivalent Path Length (rWEPL) during the planning phase, and patient anatomical or positioning variation during the treatment. In this thesis, low-dose carbon-ion transmissionimaging performed with a Residual Range Detector (RRD) is proposed as imaging strategy for actively scanned beam delivery facilities. It enables the verification of the beam range and the patient positioning with ion-radiographies (iRAD), and ion computed tomographies (iCT) can directly provide the ion stopping-power of the traversed tissue for treatment planning purposes. First experimental investigations aiming to minimize the imaging dose to the object are presented. The performance of the integration-mode multi-channel array of 61 parallel-plate ionization chambers (PPICs), interleaved with 3 mm thickness PMMA slabs, was thoroughly investigated for low-fluence irradiation. This characterization has been pursued in terms of beam-monitoring performance at the Heidelberg Ion-beam Therapy Center (HIT, Heidelberg, Germany), RRD signal-to-noise ratio (SNR), RRD charge-collection efficiency and drift voltage applied to the PPICs. Pixel-wise metrics for signal quality evaluation based on specific channel-charge features have been developed to support the visual assessment of the acquired images. Phantoms of different complexity and tissue-equivalent composition were imaged with high (5000 primaries per raster-scanning point (RP

  10. Low-dose ion-based transmission radiography and tomography for optimization of carbon ion-beam therapy

    International Nuclear Information System (INIS)

    Magallanes Hernandez, Lorena

    2017-01-01

    In the last few decades, ion-beam radiotherapy has emerged as a highly effective tumor treatment modality. Its success relies on the capability to precisely confine the prescribed dose within the target volume, due to the inverted depth-dose profile and the finite range featured by charged particles. However, to fully exploit the physical and biological advantages of ion-beams, it is necessary to prioritize on innovative imaging techniques to monitor the ion-range inside the patient. Main range uncertainties result from X-ray-based calibration of the ion relative Water Equivalent Path Length (rWEPL) during the planning phase, and patient anatomical or positioning variation during the treatment. In this thesis, low-dose carbon-ion transmissionimaging performed with a Residual Range Detector (RRD) is proposed as imaging strategy for actively scanned beam delivery facilities. It enables the verification of the beam range and the patient positioning with ion-radiographies (iRAD), and ion computed tomographies (iCT) can directly provide the ion stopping-power of the traversed tissue for treatment planning purposes. First experimental investigations aiming to minimize the imaging dose to the object are presented. The performance of the integration-mode multi-channel array of 61 parallel-plate ionization chambers (PPICs), interleaved with 3 mm thickness PMMA slabs, was thoroughly investigated for low-fluence irradiation. This characterization has been pursued in terms of beam-monitoring performance at the Heidelberg Ion-beam Therapy Center (HIT, Heidelberg, Germany), RRD signal-to-noise ratio (SNR), RRD charge-collection efficiency and drift voltage applied to the PPICs. Pixel-wise metrics for signal quality evaluation based on specific channel-charge features have been developed to support the visual assessment of the acquired images. Phantoms of different complexity and tissue-equivalent composition were imaged with high (5000 primaries per raster-scanning point (RP

  11. Wide variety of flower-color and -shape mutants regenerated from leaf cultures irradiated with ion beams

    International Nuclear Information System (INIS)

    Okamura, M.; Yasuno, N.; Ohtsuka, M.; Tanaka, A.; Shikazono, N.; Hase, Y.

    2003-01-01

    The efficiency of ion-beam irradiation combined with tissue culture in obtaining floral mutants was investigated and compared with those of gamma rays and X-rays in carnation. Leaf segments of carnation plants in vitro were irradiated with the 220 MeV carbon ions, and cultured till the shoot regenerated. The carbon ion had the highest effect in reducing the regeneration frequency, and the RBE value with respect to gamma-rays was four. The higher mutation frequency and the wider mutation spectrum were obtained in plants irradiated with the carbon ions than low LET radiations. Three new carnation varieties developed by ion-beam irradiation were applied for the registration of the Japanese Ministry of Agriculture, Forestry and Fisheries. The results indicate that ion beam irradiation could induce wide variety of flower-color and -shape mutants, and that the combined method of ion-beam irradiation with tissue culture is useful to obtain the commercial varieties in a short time

  12. Temperature dependence of the beam-foil interaction

    International Nuclear Information System (INIS)

    Gay, T.J.; Berry, H.G.

    1978-01-01

    The beam energy dependence between 50 and 200 keV of the linear polarization fraction (M/I) of the 2s 1 S--3p 1 P, 5016 A transition in He I on temperature was measured. The thin carbon exciter foils were heated externally by nichrome resistance elements. The measurements of Hight et al. are duplicated; the energy and current dependences are the same for corresponding between beam heating and external heating. It was also observed that γ, the number of slow secondary electrons produced per incident ion, decreases with increasing foil temperature. These two effects, in conjunction, offer a plausible explanation for the variation of polarization with beam current density. 5 figures

  13. Mutation induction by ion beams in plants

    International Nuclear Information System (INIS)

    Tanaka, Atsushi

    2001-01-01

    The effect of ion beams such as C, He, and Ne ions was investigated on the mutation induction in plants with the expectation that ion beams of high linear energy transfer (LET) can frequently produce large DNA alternation such as inversion, translocation and large deletion rather than point mutation. Mutation frequency was investigated using Arabidopsis visible phenotype loci and was 8 to 33 fold higher for 220 MeV carbon ions than for electrons. Mutation spectrum was investigated on the flower color of chrysanthemum cv to find that flower mutants induced by ion beams show complex and stripe types rather than single color. Polymerase chain reaction analysis was performed to investigate DNA alteration of mutations. In conclusion, the characteristics of ion beams for the mutation induction are 1) high frequency, 2) broad mutation spectrum, and 3) novel mutants. (S. Ohno)

  14. Mutation induction by ion beams in plants

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    The effect of ion beams such as C, He, and Ne ions was investigated on the mutation induction in plants with the expectation that ion beams of high linear energy transfer (LET) can frequently produce large DNA alternation such as inversion, translocation and large deletion rather than point mutation. Mutation frequency was investigated using Arabidopsis visible phenotype loci and was 8 to 33 fold higher for 220 MeV carbon ions than for electrons. Mutation spectrum was investigated on the flower color of chrysanthemum cv to find that flower mutants induced by ion beams show complex and stripe types rather than single color. Polymerase chain reaction analysis was performed to investigate DNA alteration of mutations. In conclusion, the characteristics of ion beams for the mutation induction are 1) high frequency, 2) broad mutation spectrum, and 3) novel mutants. (S. Ohno)

  15. 4D in-beam positron emission tomography for verification of motion-compensated ion beam therapy

    International Nuclear Information System (INIS)

    Parodi, Katia; Saito, Nami; Chaudhri, Naved; Richter, Christian; Durante, Marco; Enghardt, Wolfgang; Rietzel, Eike; Bert, Christoph

    2009-01-01

    Purpose: Clinically safe and effective treatment of intrafractionally moving targets with scanned ion beams requires dedicated delivery techniques such as beam tracking. Apart from treatment delivery, also appropriate methods for validation of the actual tumor irradiation are highly desirable. In this contribution the feasibility of four-dimensionally (space and time) resolved, motion-compensated in-beam positron emission tomography (4DibPET) was addressed in experimental studies with scanned carbon ion beams. Methods: A polymethyl methracrylate block sinusoidally moving left-right in beam's eye view was used as target. Radiological depth changes were introduced by placing a stationary ramp-shaped absorber proximal of the moving target. Treatment delivery was compensated for motion by beam tracking. Time-resolved, motion-correlated in-beam PET data acquisition was performed during beam delivery with tracking the moving target and prolonged after beam delivery first with the activated target still in motion and, finally, with the target at rest. Motion-compensated 4DibPET imaging was implemented and the results were compared to a stationary reference irradiation of the same treatment field. Data were used to determine feasibility of 4DibPET but also to evaluate offline in comparison to in-beam PET acquisition. Results: 4D in-beam as well as offline PET imaging was found to be feasible and offers the possibility to verify the correct functioning of beam tracking. Motion compensation of the imaged β + -activity distribution allows recovery of the volumetric extension of the delivered field for direct comparison with the reference stationary condition. Observed differences in terms of lateral field extension and penumbra in the direction of motion were typically less than 1 mm for both imaging strategies in comparison to the corresponding reference distributions. However, in-beam imaging retained a better spatial correlation of the measured activity with the delivered

  16. Power and particle balance during neutral beam injection in TFTR

    International Nuclear Information System (INIS)

    Pitcher, C.S.; Budny, R.V.; Hill, K.W.; Kilpatrick, S.J.; Manos, D.M.; Medley, S.S.; Ramsey, A.T.

    1991-05-01

    Detailed boundary plasma measurements on TFTR have been made during a NBI power scan in the range P tot = 1MW--20MW in the L-mode regime. The behavior of the plasma density left-angle n e right-angle, radiated power P rad , carbon and deuterium fluxes Γ C , Γ D , and Ζ eff can be summarized as, left-angle n e right-angle ∝ P tot 1/2 , P rad , Γ C , Γ D ∝ P tot , and Ζ eff ∼ constant. It is shown that central fuelling by the neutral beams plays a minor role in the particle balance of the discharge. More important is the NBI role in the power balance. The TFTR data during NBI originate primarily at the graphite limiter

  17. Measurement of neutron production by 500 MeV proton beam

    International Nuclear Information System (INIS)

    Hirayama, Hideo; Ban, Shuichi

    1981-01-01

    Measurement of high energy neutrons is difficult, because the cross section data are scarce, the cross section at high energy is usually small, and the monoenergetic neutrons are hardly obtained. At the National Laboratory for High Energy Physics (KEK), various threshold detectors have been used for high energy neutron measurement. A carbon detector is a standard detector for high energy neutrons, since the cross section of the C 12 (n, 2n) C 11 reaction is almost constant at higher energy than 20 MeV, and the data have been well known. The half-life of the product (C 11 ) is about 20 min, and other activities with longer half-life than 1 min are restricted to Be 7 and C 11 . As a carbon detector, a plastic scintillator is used, and the neutron spectra observed at the Booster Beam Dump Room of KEK are presented. The results of measurements were compared with the calculated results using a Monte Carlo code made at KEK. Agreement between both results was good. (Kato, T.)

  18. RBE of heavy ions (carbon, neon, helium, proton) for acute cell death of pancreatic islet cells

    International Nuclear Information System (INIS)

    Tsubouchi, Susumu; Fukutsu, Kumiko; Itsukaichi, Hiromi

    2003-01-01

    At this fiscal year, only two times irradiation experiments with neon and helium beams were performed to obtain relative biological effectiveness (RBE) of heavy ions (carbon, neon, helium, proton) for acute cell death of pancreatic islet cells in vivo. First of all this project was designed to obtain RBE of 290 MeV carbon and 400 MeV neon beams in the high linear energy transfer (LET) region for acute cell death of pancreatic islets of golden hamster (Mesocricetus auratus) in the condition of in both in vivo and in vitro systems. As mentioned in previous report, in vitro system, however, resulted in ill success. This in vitro experiment was tentatively shelved for the time being. In return in vivo experiments for low LET region of neon beams (32.5 KeV/u), carbon beams (15.0 KeV/u) and helium beams (2 KeV/u) were performed in these two years. Last year these results together with those previously obtained for 200 KeV X-ray, 70 MeV proton, 290 MeV carbon (60 KeV/u), and neon (100 KeV/u) beams were reconsidered. At this year dose response relations (25, 50, 100, 150, and 200 Gy respectively) in acute cell death of pancreatic islets studied histologically after whole body irradiation of 3 weeks young male golden hamster with lower LET helium beams (2 KeV/u) and neon beams (32.5 KeV/u). Results indicated that mean cell lethal dose (Do) of helium beams (2 KeV/u) and neon beams (32.5 KeV/u) were 38 Gy and 49 Gy, respectively. Previously obtained Do data for 200 KeV x-ray, 70 MeV proton, 290 MeV carbon (15 KeV/u), 400 MeV neon (32.5 KeV/u), 290 MeV carbon (60 KeV/u), and 400 MeV neon (100 KeV/u) beams were 37 Gy, 38 Gy, 38 Gy, 49 Gy, 75 Gy, and 200 Gy, respectively. From these data estimated RBE of neon (100 KeV/u and 32.5 KeV/u), carbon (60 KeV/u and 15.0 KeV/u), 70 MeV proton and 150 MeV helium (2 KeV/u) beams were 0.19, 0.76, 0.49, 0.97, 0.97, 0.97, respectively. Therefore the order of RBE (or radiosensitivities) of islets cells with these various heavy ion beams was

  19. Thermal effect on transverse vibrations of double-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Zhang, Y Q; Liu, X; Liu, G R

    2007-01-01

    Based on the theory of thermal elasticity mechanics, a double-elastic beam model is developed for transverse vibrations of double-walled carbon nanotubes with large aspect ratios. The thermal effect is incorporated in the formulation. With this double-elastic beam model, explicit expressions are derived for natural frequencies and associated amplitude ratios of the inner to the outer tubes for the case of simply supported double-walled carbon nanotubes. The influence of temperature change on the properties of transverse vibrations is discussed. It is demonstrated that some properties of transverse vibrations of double-walled carbon nanotubes are dependent on the change of temperature

  20. Coupling carbon nanotube film microextraction with desorption corona beam ionization for rapid analysis of Sudan dyes (I-IV) and Rhodamine B in chilli oil.

    Science.gov (United States)

    Chen, Di; Huang, Yun-Qing; He, Xiao-Mei; Shi, Zhi-Guo; Feng, Yu-Qi

    2015-03-07

    A rapid analysis method by coupling carbon nanotube film (CNTF) microextraction with desorption corona beam ionization (DCBI) was developed for the determination of Sudan dyes (I-IV) and Rhodamine B in chilli oil samples. Typically, CNTF was immersed into the diluted solution of chilli oil for extraction, which was then placed directly under the visible plasma beam tip of the DCBI source for desorption and ionization. Under optimized conditions, five dyes were simultaneously determined using this method. Results showed that the analytes were enriched by the CNTF through the π-π interactions, and the proposed method could significantly improve the sensitivities of these compounds, compared to the direct analysis by DCBI-MS/MS. The method with a linear range of 0.08-12.8 μg g(-1) and good linear relationships (R(2) > 0.93) in a multiple reaction monitoring (MRM) mode was developed. Satisfactory reproducibility was achieved. Relative standard deviations (RSDs) were less than 20.0%. The recoveries ranged from 80.0 to 110.0%, and the limits of detection (LODs) were in the range of 1.4-21 ng g(-1). Finally, the feasibility of the method was further exhibited by the determination of five illegal dyes in chilli powder. These results demonstrate that the proposed method consumes less time and solvent than conventional HPLC-based methods and avoids the contamination of chromatographic column and ion source from non-volatile oil. With the help of a 72-well shaker, multiple samples could be treated simultaneously, which ensures high throughput for the entire pretreatment process. In conclusion, it provides a rapid and high-throughput approach for the determination of such illicit additions in chilli products.

  1. Failure modes of composite sandwich beams

    Directory of Open Access Journals (Sweden)

    Gdoutos E.

    2008-01-01

    Full Text Available A thorough investigation of failure behavior of composite sandwich beams under three-and four-point bending was undertaken. The beams were made of unidirectional carbon/epoxy facings and a PVC closed-cell foam core. The constituent materials were fully characterized and in the case of the foam core, failure envelopes were developed for general two-dimensional states of stress. Various failure modes including facing wrinkling, indentation failure and core failure were observed and compared with analytical predictions. The initiation, propagation and interaction of failure modes depend on the type of loading, constituent material properties and geometrical dimensions.

  2. Beam-Beam Effects

    International Nuclear Information System (INIS)

    Herr, W; Pieloni, T

    2014-01-01

    One of the most severe limitations in high-intensity particle colliders is the beam-beam interaction, i.e. the perturbation of the beams as they cross the opposing beams. This introduction to beam-beam effects concentrates on a description of the phenomena that are present in modern colliding beam facilities

  3. Method to measure composition modifications in polyethylene terephthalate during ion beam irradiation

    Science.gov (United States)

    Abdesselam, M.; Stoquert, J. P.; Chami, S.; Djebara, M.; Chami, A. C.; Siad, M.

    2009-01-01

    Matter losses of polyethylene terephthalate (PET, Mylar) films induced by 1600 keV deuteron beams have been investigated in situ simultaneously by nuclear reaction analysis (NRA), deuteron forward elastic scattering (DFES) and hydrogen elastic recoil detection (HERD) in the fluence range from 1 × 10 14 to 9 × 10 16 cm -2. Volatile degradation products escape from the polymeric film, mostly as hydrogen-, oxygen- and carbon-containing molecules. Appropriate experimental conditions for observing the composition and thickness changes during irradiation are determined. 16O(d,p 0) 17O, 16O(d,p 1) 17O and 12C(d,p 0) 13C nuclear reactions were used to monitor the oxygen and carbon content as a function of deuteron fluence. Hydrogen release was determined simultaneously by H(d,d)H DFES and H(d,H)d HERD. Comparisons between NRA, DFES and HERD measurements show that the polymer carbonizes at high fluences because most of the oxygen and hydrogen depletion has already occured below a fluence of 3 × 10 16 cm -2. Release curves for each element are determined. Experimental results are consistent with the bulk molecular recombination (BMR) model.

  4. 3D hybrid carbon composed of multigraphene bridged by carbon chains

    Directory of Open Access Journals (Sweden)

    Lingyu Liu

    2018-01-01

    Full Text Available The element carbon possesses various stable and metastable allotropes; some of them have been applied in diverse fields. The experimental evidences of both carbon chain and graphdiyne have been reported. Here, we reveal the mystery of an enchanting carbon allotrope with sp-, sp2-, and sp3-hybridized carbon atoms using a newly developed ab initio particle-swarm optimization algorithm for crystal structure prediction. This crystalline allotrope, namely m-C12, can be viewed as braided mesh architecture interwoven with multigraphene and carbon chains. The m-C12 meets the criteria for dynamic and mechanical stabilities and is energetically more stable than carbyne and graphdiyne. Analysis of the B/G and Poisson’s ratio indicates that this allotrope is ductile. Notably, m-C12 is a superconducting carbon with Tc of 1.13 K, which is rare in the family of carbon allotropes.

  5. High energy flux thermo-mechanical test of 1D-carbon-carbon fibre composite prototypes for the SPIDER diagnostic calorimeter

    International Nuclear Information System (INIS)

    De Muri, M.; Pasqualotto, R.; Dalla Palma, M.; Cervaro, V.; Fasolo, D.; Franchin, L.; Tollin, M.; Serianni, G.; Cavallin, T.; Greuner, H.; Böswirth, B.

    2014-01-01

    Operation of the thermonuclear fusion experiment ITER requires additional heating via injection of neutral beams from accelerated negative ions. In the SPIDER test facility, under construction in Padova, the production of negative ions will be studied and optimised. STRIKE (Short-Time Retractable Instrumented Kalorimeter Experiment) is a diagnostic used to characterise the SPIDER beam during short pulse operation (several seconds) to verify if the beam meets the ITER requirements about the maximum allowed beam non-uniformity (below ±10%). The major components of STRIKE are 16 1D-CFC (Carbon-Carbon Fibre Composite) tiles, observed at the rear side by a thermal camera. This contribution gives an overview of some tests under high energy particle flux, aimed at verifying the thermo-mechanical behaviour of several CFC prototype tiles. The tests were performed in the GLADIS facility at IPP (Max-Plank-Institut für Plasmaphysik), Garching. Dedicated linear and nonlinear simulations were carried out to interpret the experiments and a comparison of the experimental data with the simulation results is presented. The results of some morphological and structural studies on the material after exposure to the GLADIS beam are also given

  6. Single grain boundary break junction for suspended nanogap electrodes with gapwidth down to 1-2 nm by focused ion beam milling.

    Science.gov (United States)

    Cui, Ajuan; Liu, Zhe; Dong, Huanli; Wang, Yujin; Zhen, Yonggang; Li, Wuxia; Li, Junjie; Gu, Changzhi; Hu, Wenping

    2015-05-20

    Single grain boundary junctions are used for the fabrication of suspended nanogap electrodes with a gapwidth down to 1-2 nm through the break of such junctions by focused ion beam (FIB) milling. With advantages of stability and no debris, such nanogap electrodes are suitable for single molecular electronic device construction. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Beam-plasma interaction with an electron beam injecting into a symmetrically open plasma system; Electron beam relaxation. Puchkovo-plazmennoe vzaimodejstvie pri inzhektsii ehlektronnogo puchka v simmetrichno otkrytuyu plazmennuyu sistemu; Relaksatsiya ehlektronnogo puchka

    Energy Technology Data Exchange (ETDEWEB)

    Opanasenko, A V; Romanyuk, L I [AN Ukrainskoj SSR, Kiev (Ukrainian SSR). Inst. Yadernykh Issledovanij

    1989-10-01

    The relaxation of the electron beam with the electron density of 1-2 keV injected through the symmetrically open plasma system with the independent hot cathode Penning discharge is experimentally investigated. It is shown that the velocity distribution function of the electron beam changes after passing each wave generation zone induced by the beam. The contribution of different wave zones to the beam relaxation depends on the prehistory of the beam-plasma interaction and may be regulated by the selection of the plasma system parameters. By this way the complete relaxation of the electron beam can be achieved after the beam crossing the whole system.

  8. Simulation of dual carbon-bromine stable isotope fractionation during 1,2-dibromoethane degradation.

    Science.gov (United States)

    Jin, Biao; Nijenhuis, Ivonne; Rolle, Massimo

    2018-06-01

    We performed a model-based investigation to simultaneously predict the evolution of concentration, as well as stable carbon and bromine isotope fractionation during 1,2-dibromoethane (EDB, ethylene dibromide) transformation in a closed system. The modelling approach considers bond-cleavage mechanisms during different reactions and allows evaluating dual carbon-bromine isotopic signals for chemical and biotic reactions, including aerobic and anaerobic biological transformation, dibromoelimination by Zn(0) and alkaline hydrolysis. The proposed model allowed us to accurately simulate the evolution of concentrations and isotope data observed in a previous laboratory study and to successfully identify different reaction pathways. Furthermore, we illustrated the model capabilities in degradation scenarios involving complex reaction systems. Specifically, we examined (i) the case of sequential multistep transformation of EDB and the isotopic evolution of the parent compound, the intermediate and the reaction product and (ii) the case of parallel competing abiotic pathways of EDB transformation in alkaline solution.

  9. Carbon/proton therapy: A novel gantry design

    Directory of Open Access Journals (Sweden)

    D. Trbojevic

    2007-05-01

    Full Text Available A major expense and design challenge in carbon/proton cancer therapy machines are the isocentric gantries. The transport elements of the carbon/proton gantry are presently made of standard conducting dipoles. Because of their large weight, of the order of ∼100   tons, the total weight of the gantry with support structure is ∼600   tons. The novel gantry design that is described here is made of fixed field superconducting magnets, thus dramatically reducing magnet size and weight compared to conventional magnets. In addition, the magnetic field is constant throughout the whole energy region required for tumor treatment. Particles make very small orbit offsets, passing through the beam line. The beam line is built of combined-function dipoles such as a nonscaling fixed field alternating gradient (NS-FFAG structure. The very large momentum acceptance NS-FFAG comes from very strong focusing and very small dispersion. The NS-FFAG small magnets almost completely filled the beam line. They first make a quarter (or close to a quarter of an arc bending upward and an additional half of a circle beam line finishing so that the beam is pointed towards the patient. At the end of the gantry, additional magnets with a fast response are required to allow radial scanning and to provide the required position and spot size. The fixed field combined-function magnets for the carbon gantry could be made of superconducting magnets by using low temperature superconducting cable or by using high temperature superconductors.

  10. Carbon buildup monitoring using RBS: Correlation with secondary electrons

    International Nuclear Information System (INIS)

    Aguilera, E.F.; Rosales, P.; Martinez-Quiroz, E.; Murillo, G.; Fernandez, M.C.

    2006-01-01

    The RBS technique is applied to solve the problem of on-line monitoring of the carbon deposited on a thin backed foil under ion bombardment. An iterative method is used to reliably extract quantities such as number of projectiles and target thickness in spite of beam energy changes and detector unstabilities. Experimental values for secondary electron yields are also deduced. Results are reported for the thickness variation of thin carbon foils bombarded with carbon ions of energies between 8.95 and 13 MeV. A linear correlation of this variation is found with both, the ion fluence at target and the number of secondary electrons emitted. The correlation exists even though a wide range of beam currents, beam energies and bombarding times was used during the experiment. The measured electron yields show evidence for a change in the emission process between the original foils and the deposited layer, possibly due to a texture change

  11. Carbon supported nanoparticles Pt Ru (Pt Ru/C electrocatalysts) prepared using electron beam irradiation; Preparacao de nanoparticulas de PtRu suportadas em carbono (eletrocatalisadores PtRu/C) utilizando feixe de eletrons

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Dionisio F. da; Oliveira Neto, Almir; Pino, Eddy S.; Linardi, Marcelo; Spinace, Estevam V. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Programa de Celulas a Combustivel], e-mail: espinace@ipen.br, e-mail: dfsilva@ipen.br

    2006-07-01

    Carbon-supported Pt Ru (electrocatalysts PtRu/C nanoparticles) were prepared submitting a water/ethylene glycol mixture containing Pt(IV) and Ru(III) ions and the carbon support to electron beam irradiation. The PtRu/C electrocatalysts were characterized by EDX, XRD and cyclic voltammetry and tested for methanol electro-oxidation aiming fuel cell application. The obtained PtRu/C electrocatalysts were more active for methanol electro-oxidation than the commercial PtRu/C ETEK electrocatalyst at ambient temperature. (author)

  12. Beam-Mode Piezoelectric Properties of Ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 Single Crystals for Medical Linear Array Applications

    Science.gov (United States)

    Wang, Wei; Wang, Sheng; Zhang, Yaoyao; Zhao, Xiangyong; Luo, Haosu

    2011-11-01

    In this work, the dielectric and beam-mode piezoelectric properties of ternary 0.35Pb(In1/2Nb1/2)O3-0.35Pb(Mg1/3Nb2/3)O3-0.30PbTiO3 (PIMNT35/35/30) piezoelectric single crystals were investigated. The Curie temperature ( T C) and rhombohedral-to-tetragonal phase-transition temperature ( T rt) are 187°C and 127°C, about 30°C higher than those of PMNT crystals. The beam-mode coupling coefficient k {33/ w } was found to be 90.3%. Furthermore, 3.5-MHz linear arrays based on PIMNT35/35/30 crystals and Pb(Zr1- x Ti x )O3 ceramic (PZT-5H) were simulated using PiezoCAD software. The results indicate that the sensitivity and -6 dB bandwidth of a PIMNT35/35/30 transducer would be approximately 4 dB and 20% higher, respectively, compared with a traditional PZT transducer.

  13. High-rate nano-crystalline Li{sub 4}Ti{sub 5}O{sub 12} attached on carbon nano-fibers for hybrid supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Naoi, Katsuhiko; Isobe, Yusaku; Aoyagi, Shintaro [Institute of Symbiotic Science and Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8558 (Japan); Ishimoto, Shuichi [Institute of Symbiotic Science and Technology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8558 (Japan); Nippon Chemi-Con Corporation, 363 Arakawa, Takahagi-shi, Ibaraki 318-8505 (Japan)

    2010-09-15

    A lithium titanate (Li{sub 4}Ti{sub 5}O{sub 12})-based electrode which can operate at unusually high current density (300 C) was developed as negative electrode for hybrid capacitors. The high-rate Li{sub 4}Ti{sub 5}O{sub 12} electrode has a unique nano-structure consisting of unusually small nano-crystalline Li{sub 4}Ti{sub 5}O{sub 12} (ca. 5-20 nm) grafted onto carbon nano-fiber anchors (nc-Li{sub 4}Ti{sub 5}O{sub 12}/CNF). This nano-structured nc-Li{sub 4}Ti{sub 5}O{sub 12}/CNF composite are prepared by simple sol-gel method under ultra-centrifugal force (65,000 N) followed by instantaneous annealing at 900 C for 3 min. A model hybrid capacitor cell consisting of a negative nc-Li{sub 4}Ti{sub 5}O{sub 12}/CNF composite electrode and a positive activated carbon electrode showed high energy density of 40 Wh L{sup -1} and high power density of 7.5 kW L{sup -1} comparable to conventional EDLCs. (author)

  14. Bending Moment Decrease of Reinforced Concrete Beam Supported by Additional CFRP

    Directory of Open Access Journals (Sweden)

    Mykolas Daugevičius

    2011-04-01

    Full Text Available The calculation method of reinforced concrete beam with additional CFRP composite is proposed in this article. This method estimates tangential angular concrete deformations in tensioned beam layers between steel and bonded carbon fiber reinforced polymer. The horizontal slip of CFRP composite reduce beam bending moment capacity. An additional coefficient to reduce CFRP resultant force is necessary for better precision of bending moment capacity. Also, various calculation methods of bending moment capacity are considered. Article in Lithuanian

  15. A nonlinear beam model to describe the postbuckling of wide neo-Hookean beams

    Science.gov (United States)

    Lubbers, Luuk A.; van Hecke, Martin; Coulais, Corentin

    2017-09-01

    Wide beams can exhibit subcritical buckling, i.e. the slope of the force-displacement curve can become negative in the postbuckling regime. In this paper, we capture this intriguing behaviour by constructing a 1D nonlinear beam model, where the central ingredient is the nonlinearity in the stress-strain relation of the beams constitutive material. First, we present experimental and numerical evidence of a transition to subcritical buckling for wide neo-Hookean hyperelastic beams, when their width-to-length ratio exceeds a critical value of 12%. Second, we construct an effective 1D energy density by combining the Mindlin-Reissner kinematics with a nonlinearity in the stress-strain relation. Finally, we establish and solve the governing beam equations to analytically determine the slope of the force-displacement curve in the postbuckling regime. We find, without any adjustable parameters, excellent agreement between the 1D theory, experiments and simulations. Our work extends the understanding of the postbuckling of structures made of wide elastic beams and opens up avenues for the reverse-engineering of instabilities in soft and metamaterials.

  16. Np-237 incineration study in various beams in ADS setup QUINTA

    Directory of Open Access Journals (Sweden)

    Kilim Stanisław

    2018-03-01

    Full Text Available Neptunium-237 samples were irradiated in a spallation neutron field produced in accelerator-driven system (ADS setup QUINTA. Five experiments were carried out on the accelerators at the JINR in Dubna - one in carbon (C6+, three in deuteron, and one in a proton beam. The energy in carbon was 24 GeV, in deuteron 2, 4 and 8 GeV, respectively, and 660 MeV in the proton beam. The incineration study method was based on gamma-ray spectrometry. During the analysis of the spectra several fission products and one actinide were identified. Fission product activities yielded the number of fissions. The actinide (Np-238, a result of neutron capture by Np-237, yielded the number of captures. The main goal of this work was to find out if and how the incineration rate depended on parameters of the accelerator beam.

  17. Importance of beam-beam tune spread to collective beam-beam instability in hadron colliders

    International Nuclear Information System (INIS)

    Jin Lihui; Shi Jicong

    2004-01-01

    In hadron colliders, electron-beam compensation of beam-beam tune spread has been explored for a reduction of beam-beam effects. In this paper, effects of the tune-spread compensation on beam-beam instabilities were studied with a self-consistent beam-beam simulation in model lattices of Tevatron and Large Hodron Collider. It was found that the reduction of the tune spread with the electron-beam compensation could induce a coherent beam-beam instability. The merit of the compensation with different degrees of tune-spread reduction was evaluated based on beam-size growth. When two beams have a same betatron tune, the compensation could do more harm than good to the beams when only beam-beam effects are considered. If a tune split between two beams is large enough, the compensation with a small reduction of the tune spread could benefit beams as Landau damping suppresses the coherent beam-beam instability. The result indicates that nonlinear (nonintegrable) beam-beam effects could dominate beam dynamics and a reduction of beam-beam tune spread by introducing additional beam-beam interactions and reducing Landau damping may not improve the stability of beams

  18. Strengthening Reinforced Concrete Beams with CFRP and GFRP

    Directory of Open Access Journals (Sweden)

    Mehmet Mustafa Önal

    2014-01-01

    Full Text Available Concrete beams were strengthened by wrapping the shear edges of the beams twice at 45° in opposite directions by either carbon fiber reinforced polymer (CFRP or glass fiber reinforced polymer (GFRP. The study included 3 CFRP wrapped beams, 3 GFRP wrapped beams, and 3 control beams, all of which were 150 × 250 × 2200 mm and manufactured with C20 concrete and S420a structural steel at the Gazi University Technical Education Faculty labs, Turkey. Samples in molds were cured by watering in the open air for 21 days. Four-point bending tests were made on the beam test specimens and the data were collected. Data were evaluated in terms of load displacement, bearing strength, ductility, and energy consumption. In the CFRP and GFRP reinforced beams, compared to controls, 38% and 42%, respectively, strength increase was observed. In all beams, failure-flexural stress occurred in the center as expected. Most cracking was observed in the flexural region 4. A comparison of CFRP and GFRP materials reveals that GFRP enforced parts absorb more energy. Both materials yielded successful results. Thicker epoxy application in both CFRP and GFRP beams was considered to be effective in preventing break-ups.

  19. Development of the TFTR neutral beam injection system

    International Nuclear Information System (INIS)

    Prichard, B.A. Jr.

    1977-01-01

    The TFTR Neutral Beam Lines are designed to inject 20 MW of 120 keV neutral deuterium atoms into the plasma. This is accomplished using 12 sources, 65 amperes each, mounted in 4 beam lines. The 120 kV sources and a prototype beam line are being developed. The implementation of these beam lines has required the development of several associated pieces of hardware. 200 kV switch tubes for the power supplies are being developed for modulation and regulation of the accelerating supplies. A 90 cm metallic seal gate valve capable of sealing against atmosphere in either direction is being developed for separating the torus and beam line vacuum systems. A 70 x 80 cm fast shutter valve is also being developed to limit tritium migration from the torus into the beam line. Internal to the beam line a calorimeter, ion dump and deflection magnet have been designed to handle three beams, and optical diagnostics utilizing the doppler broadening and doppler shift of light emitted from the accelerated beam are being developed. The control and monitoring of the 12 sources will be done via the TFTR computer control system (CICADA) as will other parts of the machine, and software is being developed to condition and operate the sources automatically. The prototype beam line is scheduled to begin operation in the fall of 1978 and all four production beam lines on TFTR in 1982

  20. Plasma channels for electron beam transport

    International Nuclear Information System (INIS)

    Schneider, R.F.; Smith, J.R.; Moffatt, M.E.; Nguyen, K.T.; Uhm, H.S.

    1988-01-01

    In recent years, there has been much interest in transport of intense relativistic electron beams using plasma channels. These channels are formed by either: ionization of an organic gas by UV photoionization or electron impact ionization of a low pressure gas utilizing a low energy (typically several hundred volts) electron gun. The second method is discussed here. As their electron gun, the authors used a 12 volt lightbulb filament which is biased to -400 volts with respect to the grounded 15 cm diameter drift tube. The electrons emitted from the filament are confined by an axial magnetic field of --100 Gauss to create a plasma channel which is less than 1 cm in radius. The channel density has been determined with Langmuir probes and the resulting line densities were found to be 10 11 to 10 12 per cm. When a multi-kiloamp electron beam is injected onto this channel, the beam space charge will eject the plasma electrons leaving the ions behind to charge neutralize the electron beam, hence allowing the beam to propagate. In this work, the authors performed experimental studies on the dynamics of the plasma channel. These include Langmuir probe measurements of a steady state (DC) channel, as well as time-resolved Langmuir probe studies of pulsed channels. In addition they performed experimental studies of beam propagation in these plasma channels. Specifically, they observed the behavior of current transport in these channels. Detailed results of beam transport and channel studies are presented

  1. Imperfection Sensitivity of Nonlinear Vibration of Curved Single-Walled Carbon Nanotubes Based on Nonlocal Timoshenko Beam Theory

    Directory of Open Access Journals (Sweden)

    Iman Eshraghi

    2016-09-01

    Full Text Available Imperfection sensitivity of large amplitude vibration of curved single-walled carbon nanotubes (SWCNTs is considered in this study. The SWCNT is modeled as a Timoshenko nano-beam and its curved shape is included as an initial geometric imperfection term in the displacement field. Geometric nonlinearities of von Kármán type and nonlocal elasticity theory of Eringen are employed to derive governing equations of motion. Spatial discretization of governing equations and associated boundary conditions is performed using differential quadrature (DQ method and the corresponding nonlinear eigenvalue problem is iteratively solved. Effects of amplitude and location of the geometric imperfection, and the nonlocal small-scale parameter on the nonlinear frequency for various boundary conditions are investigated. The results show that the geometric imperfection and non-locality play a significant role in the nonlinear vibration characteristics of curved SWCNTs.

  2. Measurement of the 115In(n,γ)116 m In reaction cross-section at the neutron energies of 1.12, 2.12, 3.12 and 4.12 MeV

    Science.gov (United States)

    Lawriniang, Bioletty Mary; Badwar, Sylvia; Ghosh, Reetuparna; Jyrwa, Betylda; Vansola, Vibha; Naik, Haladhara; Goswami, Ashok; Naik, Yeshwant; Datrik, Chandra Shekhar; Gupta, Amit Kumar; Singh, Vijay Pal; Pol, Sudir Shibaji; Subramanyam, Nagaraju Balabenkata; Agarwal, Arun; Singh, Pitambar

    2015-08-01

    The 115In(n,γ)116 m In reaction cross section at neutron energies of 1.12, 2.12, 3.12 and 4.12 MeV was determined by using an activation and off-line γ-ray spectrometric technique. The monoenergetic neutron energies of 1.12 - 4.12 MeV were generated from the 7Li(p,n) reaction by using proton beam with energies of 3 and 4 MeV from the folded tandem ion beam accelerator (FOTIA) at Bhabha Atomic Research Centre (BARC) and with energies of 5 and 6 MeV from the Pelletron facility at Tata Institute of Fundamental Research (TIFR), Mumbai. The 197Au(n,γ)198Au reaction cross-section was used as the neutron flux monitor.The 115In(n,γ)116 m In reaction cross section at neutron energies of 1.12, 2.12, 3.12 and 4.12 MeV was determined by using an activation and off-line γ-ray spectrometric technique. The monoenergetic neutron energies of 1.12 - 4.12 MeV were generated from the 7Li(p,n) reaction by using proton beam with energies of 3 and 4 MeV from the folded tandem ion beam accelerator (FOTIA) at Bhabha Atomic Research Centre (BARC) and with energies of 5 and 6 MeV from the Pelletron facility at Tata Institute of Fundamental Research (TIFR), Mumbai. The 197Au(n,γ)198 Au reaction cross-section was used as the neutron flux monitor. The 115In(n,γ)116 m In reaction cross-sections at neutron energies of 1.12 - 4.12 MeV were compared with the literature data and were found to be in good agreement with one set of data, but not with others. The 115In(n,γ)116 m In cross-section was also calculated theoretically by using the computer code TALYS 1.6 and was found to be slightly lower than the experimental data from the present work and the literature.)198Au reaction cross-section was used as the neutron flux monitor. The 115In(n,γ)116 m In reaction cross-sections at neutron energies of 1.12 - 4.12 MeV were compared with the literature data and were found to be in good agreement with one set of data, but not with others. The 115In(n,γ)116 m In cross-section was also calculated

  3. Effect of Catalytic Layer Thickness on Diameter of Vertically Aligned Individual Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Hyun Kyung Jung

    2014-01-01

    Full Text Available The effect of catalytic thin film thickness on the diameter control of individual carbon nanotubes grown by plasma enhanced chemical vapor deposition was investigated. Individual carbon nanotubes were grown on catalytic nanodot arrays, which were fabricated by e-beam lithography and e-beam evaporation. During e-beam evaporation of the nanodot pattern, more catalytic metal was deposited at the edge of the nanodots than the desired catalyst thickness. Because of this phenomenon, carbon atoms diffused faster near the center of the dots than at the edge of the dots. The carbon atoms, which were gathered at the interface between the catalytic nanodot and the diffusion barrier, accumulated near the center of the dot and lifted the catalyst off. From the experiments, an individual carbon nanotube with the same diameter as that of the catalytic nanodot was obtained from a 5 nm thick catalytic nanodot; however, an individual carbon nanotube with a smaller diameter (~40% reduction was obtained from a 50 nm thick nanodot. We found that the thicker the catalytic layer, the greater the reduction in diameter of the carbon nanotubes. The diameter-controlled carbon nanotubes could have applications in bio- and nanomaterial scanning and as a contrast medium for magnetic resonance imaging.

  4. Hyperon beams as a source of polarized protons

    International Nuclear Information System (INIS)

    Underwood, D.G.

    1978-01-01

    A high energy polarized proton beam which would utilize lambda decays as a source of polarized protons was proposed. We discuss the operation of such a beam and related physics experiments. 12 references

  5. Measurement of neutron production double-differential cross-sections on carbon bombared with 430 MeV/ Nucleon carbon irons

    Energy Technology Data Exchange (ETDEWEB)

    Itashiki, Yutaro; Imahayashi, Youichi; Shigyo, Nobuhiro; Uozumi, Yusuke [Kyushu University, Fukuoka (Japan); Satoh, Daiki [Japan Atomic Energy Agency, Ibaraki (Japan); Kajimoto, Tsuyoshi [Hiroshima University, Hiroshima (Japan); Sanami, Toshiya [High Energy Accelerator Research Organization, Ibaraki (Japan); Koba, Yusuke; Matufuji, Naruhiro [Institutes for Quantum and Radiological Science and Technology, Chiba (Japan)

    2016-12-15

    Carbon ion therapy has achieved satisfactory results. However, patients have a risk to get a secondary cancer. In order to estimate the risk, it is essential to understand particle transportation and nuclear reactions in the patient's body. The particle transport Monte Carlo simulation code is a useful tool to understand them. Since the code validation for heavy ion incident reactions is not enough, the experimental data of the elementary reaction processes are needed. We measured neutron production double-differential cross-sections (DDXs) on a carbon bombarded with 430 MeV/nucleon carbon beam at PH2 beam line of HIMAC facility in NIRS. Neutrons produced in the target were measured with NE213 liquid organic scintillators located at six angles of 15, 30, 45, 60, 75, and 90°. Neutron production double-differential cross-sections for carbon bombarded with 430 MeV/nucleon carbon ions were measured by the time-of-flight method with NE213 liquid organic scintillators at six angles of 15, 30, 45, 60, 75, and 90°. The cross sections were obtained from 1 MeV to several hundred MeV. The experimental data were compared with calculated results obtained by Monte Carlo simulation codes PHITS, Geant4, and FLUKA. PHITS was able to reproduce neutron production for elementary processes of carbon-carbon reaction precisely the best of three codes.

  6. Dosimetric commissioning and quality assurance of scanned ion beams at the Italian National Center for Oncological Hadrontherapy

    Energy Technology Data Exchange (ETDEWEB)

    Mirandola, Alfredo, E-mail: mirandola@cnao.it; Molinelli, S.; Vilches Freixas, G.; Mairani, A.; Gallio, E.; Panizza, D.; Russo, S.; Ciocca, M. [Fondazione CNAO, strada Campeggi 53, Pavia 27100 (Italy); Donetti, M. [INFN, Torino 10125, Italy and Fondazione CNAO, strada Campeggi 53, Pavia 27100 (Italy); Magro, G. [INFN–Dipartimento di Fisica, Università degli Studi di Pavia, Via U. Bassi 6, Pavia 27100, Italy and Fondazione CNAO, strada Campeggi 53, Pavia 27100 (Italy); Giordanengo, S. [INFN, Torino 10125 (Italy); Orecchia, R. [Fondazione CNAO, strada Campeggi 53, Pavia 27100, Italy and Radiotherapy Division, European Institute of Oncology, Via Ripamonti 435, Milano 20141 (Italy)

    2015-09-15

    Purpose: To describe the dosimetric commissioning and quality assurance (QA) of the actively scanned proton and carbon ion beams at the Italian National Center for Oncological Hadrontherapy. Methods: The laterally integrated depth-dose-distributions (IDDs) were acquired with the PTW Peakfinder, a variable depth water column, equipped with two Bragg peak ionization chambers. FLUKA Monte Carlo code was used to generate the energy libraries, the IDDs in water, and the fragment spectra for carbon beams. EBT3 films were used for spot size measurements, beam position over the scan field, and homogeneity in 2D-fields. Beam monitor calibration was performed in terms of number of particles per monitor unit using both a Farmer-type and an Advanced Markus ionization chamber. The beam position at the isocenter, beam monitor calibration curve, dose constancy in the center of the spread-out-Bragg-peak, dose homogeneity in 2D-fields, beam energy, spot size, and spot position over the scan field are all checked on a daily basis for both protons and carbon ions and on all beam lines. Results: The simulated IDDs showed an excellent agreement with the measured experimental curves. The measured full width at half maximum (FWHM) of the pencil beam in air at the isocenter was energy-dependent for both particle species: in particular, for protons, the spot size ranged from 0.7 to 2.2 cm. For carbon ions, two sets of spot size are available: FWHM ranged from 0.4 to 0.8 cm (for the smaller spot size) and from 0.8 to 1.1 cm (for the larger one). The spot position was accurate to within ±1 mm over the whole 20 × 20 cm{sup 2} scan field; homogeneity in a uniform squared field was within ±5% for both particle types at any energy. QA results exceeding tolerance levels were rarely found. In the reporting period, the machine downtime was around 6%, of which 4.5% was due to planned maintenance shutdowns. Conclusions: After successful dosimetric beam commissioning, quality assurance measurements

  7. Dosimetric commissioning and quality assurance of scanned ion beams at the Italian National Center for Oncological Hadrontherapy

    International Nuclear Information System (INIS)

    Mirandola, Alfredo; Molinelli, S.; Vilches Freixas, G.; Mairani, A.; Gallio, E.; Panizza, D.; Russo, S.; Ciocca, M.; Donetti, M.; Magro, G.; Giordanengo, S.; Orecchia, R.

    2015-01-01

    Purpose: To describe the dosimetric commissioning and quality assurance (QA) of the actively scanned proton and carbon ion beams at the Italian National Center for Oncological Hadrontherapy. Methods: The laterally integrated depth-dose-distributions (IDDs) were acquired with the PTW Peakfinder, a variable depth water column, equipped with two Bragg peak ionization chambers. FLUKA Monte Carlo code was used to generate the energy libraries, the IDDs in water, and the fragment spectra for carbon beams. EBT3 films were used for spot size measurements, beam position over the scan field, and homogeneity in 2D-fields. Beam monitor calibration was performed in terms of number of particles per monitor unit using both a Farmer-type and an Advanced Markus ionization chamber. The beam position at the isocenter, beam monitor calibration curve, dose constancy in the center of the spread-out-Bragg-peak, dose homogeneity in 2D-fields, beam energy, spot size, and spot position over the scan field are all checked on a daily basis for both protons and carbon ions and on all beam lines. Results: The simulated IDDs showed an excellent agreement with the measured experimental curves. The measured full width at half maximum (FWHM) of the pencil beam in air at the isocenter was energy-dependent for both particle species: in particular, for protons, the spot size ranged from 0.7 to 2.2 cm. For carbon ions, two sets of spot size are available: FWHM ranged from 0.4 to 0.8 cm (for the smaller spot size) and from 0.8 to 1.1 cm (for the larger one). The spot position was accurate to within ±1 mm over the whole 20 × 20 cm"2 scan field; homogeneity in a uniform squared field was within ±5% for both particle types at any energy. QA results exceeding tolerance levels were rarely found. In the reporting period, the machine downtime was around 6%, of which 4.5% was due to planned maintenance shutdowns. Conclusions: After successful dosimetric beam commissioning, quality assurance measurements

  8. Experience with carbon ion radiotherapy at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Jaekel, O. [Division of Medical Physics in Radiation Therapy (E040), German Cancer Research Center, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany)]. E-mail: o.jaekel@dkfz.de; Schulz-Ertner, D. [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany); Karger, C.P. [Division of Medical Physics in Radiation Therapy (E040), German Cancer Research Center, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Heeg, P. [Division of Medical Physics in Radiation Therapy (E040), German Cancer Research Center, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, 69120 Heidelberg (Germany); Debus, J. [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany)

    2005-12-15

    At GSI, a radiotherapy facility was established using beam scanning and active energy variation. Between December 1997 and April 2004, 220 patients have been treated at this facility with carbon ions. Most patients are treated for chordoma and chondrosarcoma of the base of skull, using a dose of 60 Gye (Gray equivalent) in 20 fractions. Carbon ion therapy is also offered in a combination with conventional radiotherapy for a number of other tumors (adenoidcystic carcinoma, chordoma of the cervical spine and sacrum, atypical menningeoma). The patients treated for skull base tumors showed an overall local control rate after two years of 90%. The overall treatment toxicity was mild. This shows that carbon ion radiotherapy can safely be applied using a scanned beam and encouraged the Heidelberg university hospital to build a hospital based facility for ion therapy.

  9. Crosslinking of thermoplastic composites using electron beam radiation

    International Nuclear Information System (INIS)

    Strong, A.B.; Black, S.R.; Bryce, G.R.; Olcott, D.D.

    1991-01-01

    The crosslinking of thermoset materials has been clearly demonstrated to improve many desirable physical and chemical properties for composite applications. While thermoplastic resins also offer many advantages for composite applications, they are not crosslinked and, therefore, may not meet the same property criteria as crosslinked thermosets. Electron beams have been used successfully for crosslinking non-reinforced thermoplastic materials. Electron beams have also been used for curing composite thermoset materials. This research utilizes electron beams to crosslink high performance thermoplastic composite materials (PEEK and PPS with glass and carbon fibers). The tensile strength and tensile modulus are compared under various crosslinking conditions. The method is found to have some advantages in potentially improving physical properties of thermoplastic composite materials

  10. Omega: A 24-beam UV irradiation facility

    International Nuclear Information System (INIS)

    Richardson, M.C.; Beich, W.; Delettrez, J.

    1985-01-01

    The authors report on the characterization and performance of the 24-beam Omega laser facility under full third harmonic (351-nm) upconversion. This system provides for the first time a multibeam laser facility for the illumination of spherical targets with UV laser light in symmetric irradiation conditions with energies in the kilojoule range. This facility is capable of providing sufficient irradiation uniformity to test concepts of direct drive laser fusion with UV-driven ablation targets. The results of initial studies of ablatively driven DT-fueled glass microballoon targets will be described. The 24-beam Omega Nd:phosphate glass facility is capable of providing at 1054 nm output powers in excess of 10 TW in short ( 10 4 full system shots to date) irradiation facility with beam synchronism of approx. =3 psec, beam placement accuracy on target of 10 μm, and interbeam energy variance of approx. =2%. From measured target plane intensity distributions, overall illumination uniformity with tangentially focused beams is estimated to be approx. =5%. In 1984, a symmetric set of six beams was upconverted to 351-nm radiation using the polarization-mismatch scheme developed by Craxton. Monolithic cells of 20-cm clear aperture containing both frequency and doubler and tripler type II KDP crystals in index-matching propylene carbonate liquid were incorporated to output of six of the Omega beams with a full set of UV beam diagnostics

  11. CLIC Drive Beam Position Monitor

    CERN Document Server

    Smith, S; Gudkov, D; Soby, L; Syratchev, I

    2011-01-01

    CLIC, an electron-positron linear collider proposed to probe the TeV energy scale, is based on a two-beam scheme where RF power to accelerate a high energy luminosity beam is extracted from a high current drive beam. The drive beam is efficiently generated in a long train at modest frequency and current then compressed in length and multiplied in frequency via bunch interleaving. The drive beam decelerator requires >40000 quadrupoles, each holding a beam position monitor (BPM). Though resolution requirements are modest (2 microns) these BPMs face several challenges. They must be compact and inexpensive. They must operate below waveguide cutoff to insure locality of position signals, ruling out processing at the natural 12 GHz bunch spacing frequency. Wakefields must be kept low. We find compact conventional stripline BPM with signals processed below 40 MHz can meet requirements. Choices of mechanical design, operating frequency, bandwidth, calibration and processing algorithm are presented. Calculations of wa...

  12. High resolution line for secondary radioactive beams at the U400M cyclotron

    International Nuclear Information System (INIS)

    Rodin, A.M.; Sidorchuk, S.I.; Stepantsov, S.V.

    1996-01-01

    For implementation of an experimental program for studying nuclear reactions with radioactive ion beams in the energy domain of 20 through 80 MeV · A the high resolution beam line ACCULINNA was put into commissioning on a primary beam line of the JINR U-400M cyclotron. By means of nuclear fragmentation of the 14 N beam with the energy of 51 MeV · A on the 170 mg/cm 2 carbon target radioactive beams of 6 He, 8 He and 8 B were obtained. Possibilities of further development of the set-up are discussed. 6 refs., 7 figs., 2 tabs

  13. The effect of CFRP on retrofitting of damaged HSRC beams using AE technique

    Science.gov (United States)

    Soffian Noor, M. S.; Noorsuhada, M. N.

    2017-12-01

    This paper presents the effect of carbon fibre reinforced polymer (CFRP) on retrofitted high strength reinforced concrete (HSRC) beams using acoustic emission (AE) technique. Two RC beam parameters were prepared. The first was the control beam which was undamaged HSRC beam. The second was the damaged HSRC beam retrofitted with CFRP on the soffit. The main objective of this study is to assess the crack modes of HSRC beams using AE signal strength. The relationship between signal strength, load and time were analysed and discussed. The crack pattern observed from the visual observation was also investigated. HSRC beam retrofitted with CFRP produced high signal strength compared to control beam. It demonstrates the effect of the AE signal strength for interpretation and prediction of failure modes that might occur in the beam specimens.

  14. Production and beam annealing of damage in carbon implanted silicon

    International Nuclear Information System (INIS)

    Kool, W.H.; Roosendaal, H.E.; Wiggers, L.W.; Saris, F.W.

    1978-01-01

    The annealing of damage introduced by 70 keV C implantation of Si is studied for impact of H + and He + beams in the energy interval 30 to 200 keV. For a good description of the annealing behaviour it is necessary to account for the damage introduction which occurs simultaneously. It turns out that the initial damage annealing rate is proportional to the amount of damage. The proportionality constant is related to a quantity introduced in an earlier paper in order to describe saturation effects in the damage production after H + or He + impact in unimplanted Si. This indicates that the same mechanism governs both processes: beam induced damage annealing and saturation of the damage introduction. (author)

  15. Beam-transport system for high-resolution heavy-ion spectroscopy

    International Nuclear Information System (INIS)

    Roussel, P.; Kashy, E.

    1980-01-01

    A method is given to adjust a beam-transport system to the requirements of high-energy resolution heavy-ion spectroscopy. The results of a test experiment performed on a MP tandem with a 12 C beam are shown. A drastic improvement in energy resolution is obtained for a kinematical factor K=1/p dp/dtheta=0.12 [fr

  16. Chemical Investigations of ISOL target units for carbon and nitrogen beams

    CERN Document Server

    Franberg, H; Gäggeler, H W; Köster, U

    2006-01-01

    Radioactive Ion Beams (RIB) are of significant interest in a number of applications. ISOL (Isotope Separation On Line) facilities provide RIB with high beam intensities and good beam quality. An atom that is produced within the ISOL target will first diffuse out from the target material. During the effusion towards the transfer line and into the ion source the many contacts with the surrounding surfaces may cause unacceptable delays in the transport and, hence, losses of the shorter-lived isotopes. We performed systematic chemical investigations of adsorption in a temperature and concentration regime relevant for ISOL targets and ion source units, with regard to COx and NOx on Al2O3 and SiO2. These materials are potential construction materials for the above mentioned areas. Off-line and on-line tests have been performed using a gas thermo-chromatography set-up with radioactive tracers. The experiments were performed at the PROTRAC facility at Paul Scherrer Institute in Villigen, Switzerland.

  17. Charged particle therapy with mini-segmented beams

    Directory of Open Access Journals (Sweden)

    F. Avraham eDilmanian

    2015-12-01

    Full Text Available One of the fundamental attributes of proton therapy and carbon ion therapy is the ability of these charged particles to spare tissue distal to the targeted tumor. This significantly reduces normal tissue toxicity and has the potential to translate to a wider therapeutic index. Although, in general, particle therapy also reduces dose to the proximal tissues, particularly in the vicinity of the target, dose to the skin and to other very superficial tissues tends to be higher than that of megavoltage x-rays. The methods presented here, namely Interleaved carbon minibeams and Radiosurgery with arrays of proton and light ion minibeams, both utilize beams segmented into arrays of parallel minibeams of about 0.3 mm incident beam size. These minibeam arrays spare tissues, as demonstrated by synchrotron x-ray experiments. An additional feature of particle minibeams is their gradual broadening due to multiple Coulomb scattering as they penetrate tissues. In the case of interleaved carbon minibeams, which do not broaden much, two arrays of planar carbon minibeams that remain parallel at target depth, are aimed at the target from 90º angles and made to interleave at the target to produce a solid radiation field within the target. As a result the surrounding tissues are exposed only to individual carbon minibeam arrays and are therefore spared. The method was used in four-directional geometry at the NASA Space Radiation Laboratory to ablate a 6.5-mm target in a rabbit brain at a single exposure with 40 Gy physical absorbed dose. Contrast-enhanced magnetic resonance imaging and histology six month later showed very focal target necrosis with nearly no damage to the surrounding brain. As for minibeams of protons and light ions, for which the minibeam broadening is substantial, measurements at MD Anderson Cancer Center in Houston, Texas, and Monte Carlo simulations showed that the broadening minibeams will merge with their neighbors at a certain tissue depth

  18. Fast Automatic Beam-Based Alignment of the LHC Collimator Jaws

    CERN Document Server

    AUTHOR|(CDS)2080813; Assmann, R W

    2014-01-01

    The CERN Large Hadron Collider (LHC) in Geneva, Switzerland is the largest and most powerful particle accelerator ever built. With a circumference of 27 km, it is designed to collide particles in two counter-rotating beams at a centre-of-mass energy of 14 TeV to explore the fundamental forces and constituents of matter. Due to its potentially destructive high energy particle beams, the LHC is equipped with several machine protection systems. The LHC collimation system is tasked with scattering and absorbing beam halo particles before they can quench the superconducting magnets. The 108 collimators also protect the machine from damage in the event of very fast beam losses, and shields sensitive devices in the tunnel from radiation over years of operation. Each collimator is made up of two blocks or ‘jaws’ of carbon, tungsten or copper material. The collimator jaws need be placed symmetrically on either side of the beam trajectory, to clean halo particles with maximum efficiency. The beam orbit and beam siz...

  19. Simulation of 200-400 MeV/u "1"2C + "1"2C elastic scattering on SHARAQ spectrometer

    International Nuclear Information System (INIS)

    Yu Lei; Zhang Gaolong; Terashima, S.; Le Xiaoyun; Tanihata, I.

    2015-01-01

    In order to further obtain the information of three-body force (TBF) from 200-400 MeV/u "1"2C + "1"2C elastic scattering, we plan to perform this experiment on a SHARAQ spectrometer. Based on the experimental condition of the Radioactive Ion Beam Factory (RIBF)-SHARAQ facility, a simulation is given to find a compromise between the better energy and angular resolutions, and higher yield by optimizing the target thickness, beam transport mode, beam intensity and angular step. From the simulation, we found that the beam quality mainly limits the improvements of energy and angular resolutions. A beam tracking system as well as a lateral and angular dispersion-matching technique are adopted to reduce the influence of beam quality. According to the two angular settings of SHARAQ as well as the expected cross sections on the basis of the theoretical model, the energy and angular resolutions, and statistical accuracy are estimated. (authors)

  20. Production of radioactive molecular beams for CERN-ISOLDE

    CERN Document Server

    AUTHOR|(SzGeCERN)703149; Kröll, Thorsten

    SOLDE, the Isotope Separation On-Line facility, at CERN is a leading facility for the production of beams of exotic radioactive isotopes. Currently over 1000 different isotopes with half lives down to milliseconds can be extracted with beam intensities of up to 10^11 ions per second. However, due to the reactive target environment not all isotopes are extractable in sufficient amounts. In this work the extraction of short lived carbon and boron isotopes is investigated. Therefore a variety of experimental and computanional techniques have been used.

  1. Multi-beam injector development at LBL

    International Nuclear Information System (INIS)

    Rutkowski, H.L.; Faltens, A.; Brodzik, D.A.; Johnson, R.M.; Pike, C.D.; Vanecek, D.L.; Humphries, S. Jr.; Meyer, E.A.; Hewett, D.W.

    1990-06-01

    LBL is developing a multi-beam injector that will be used for scaled accelerator experiments related to Heavy Ion Fusion. The device will produce sixteen 0.5 Amp beams of C+ at 2 MeV energy. The carbon arc source has been developed to the point where the emittance is within a factor of four of the design target. Modelling of the source behavior to find ways to reduce the emittance is discussed. Source lifetime and reliability is also of paramount importance to us and data regarding the lifetime and failure modes of different source configurations is discussed. One half of the accelerating column has been constructed and tested at high voltage. One beam experiments in this half column are underway. The second half of the column is being built and the transition 2 MV experiments should begin soon. In addition to beam and source performance we also discuss the controls for the injector and the electronics associated with the source and current injection. 3 refs., 2 figs

  2. Power plant by deuteron beams using indirect-driven target

    International Nuclear Information System (INIS)

    Niu, Keishiro

    1989-01-01

    An indirect-driven target is proposed to be used for 6-beam nonuniform irradiation of deuteron particles. The target consists of 5 layers; tamper, radiator, smoother (radiation gap), absorber (pusher) and solid DT fuel. The fluctuation comes from nonuniform energy deposition in the radiator layer. Through the smoother layer, radiative energy transport from the radiator layer to the absorber layer is expected to smooth out the temperature fluctuation in the absorber layer. The total beam energy of 12 MJ is launched to the target by 6 beams. In order to delete the charge of the front edge of the propagating deuteron beam, the electron beam is proposed to be launched to the target with the same velocity and with the same number density at the same time of the deuteron extraction form the diode. To stabilize the beam propagation, the electron beam has a rotation velocity which induces the magnetic field in the propagation direction. The construction of the power supply system whose total stored energy is 12 MJ seems to be not difficult and to be economical. (author)

  3. Treatment of Human Cancer Using Relativistic Hadron Beams

    International Nuclear Information System (INIS)

    Chu, William T.

    2003-01-01

    The major sections of the powerpoint presentation is are: rationale and history, including the Berkeley laboratory legacy; an overview of proton therapy facilities; and future developments in three areas: beam scanning (IMpT); pCT, pPET, etc,; and carbon-ion therapy

  4. Isotope-beam modification of materials at eV energies

    International Nuclear Information System (INIS)

    Krug, C.; Radtke, C.; Stedile, F.C.; Baumvol, I.J.R.

    2001-01-01

    We developed a low energy ion beam deposition system for isotope-selective modification of materials. It consists of a conventional ion implanter (HVEE 500 kV) and an attachable deceleration system. 29 (N 2 ) + ion beams were used for the nitridation of Si(0 0 1) and the resulting 15 N retained doses and profiles were determined by narrow nuclear resonance profiling. 29 Si was deposited on amorphous carbon films on Si(0 0 1) and the doses evaluated by channeled α particle beams with detection of scattered α at grazing angles. 29 Si was also deposited on Si(0 0 1) and the resulting profiles determined by narrow nuclear resonance

  5. Effect of interstitial carbon on the structural and magnetic properties of Nd(Fe,M)12Cy (M=Ti, V, Mo)

    International Nuclear Information System (INIS)

    Yang Jinbo; Oleinek, Ph.; Eckert, D.; Wolf, M.; Mueller, K.-H.

    2000-01-01

    Nd(Fe,M) 12 C y carbides with M=Ti, V, and Mo have been prepared by heating fine powders of Nd(Fe,M) 12 in methane. The carbides retain the ThMn 12 -type crystal structure of the parent alloys, but the unit cell volume expands by about 3%. Upon carbon absorption, the Curie temperatures, saturation magnetization, and anisotropy fields of these compounds were increased. First-order magnetization processes (FOMPs) were detected on textured samples of these compounds when an external field is applied perpendicular to the alignment direction. It has been found that these FOMPs depend on the net carbon concentration y, the temperature as well as the kind of element M. The FOMPs appear above a certain carbon concentration and at temperatures below 150-100 K. We have not found any FOMPs in the nitrides of the same parent alloys. An estimation of the crystal-field (CF) parameters shows that the higher-order CF parameters of the Nd ions play the key role in the origin of the observed FOMPs. The dependence of the FOMPs on temperature is due to the thermal evolution of anisotropy constants K i (i=1, 2, 3) related to corresponding CF parameters

  6. Optimizing beam transport in rapidly compressing beams on the neutralized drift compression experiment – II

    Directory of Open Access Journals (Sweden)

    Anton D. Stepanov

    2018-03-01

    Full Text Available The Neutralized Drift Compression Experiment-II (NDCX-II is an induction linac that generates intense pulses of 1.2 MeV helium ions for heating matter to extreme conditions. Here, we present recent results on optimizing beam transport. The NDCX-II beamline includes a 1-m-long drift section downstream of the last transport solenoid, which is filled with charge-neutralizing plasma that enables rapid longitudinal compression of an intense ion beam against space-charge forces. The transport section on NDCX-II consists of 28 solenoids. Finding optimal field settings for a group of solenoids requires knowledge of the envelope parameters of the beam. Imaging the beam on the scintillator gives the radius of the beam, but the envelope angle is not measured directly. We demonstrate how the parameters of the beam envelope (radius, envelop angle, and emittance can be reconstructed from a series of images taken by varying the B-field strengths of a solenoid upstream of the scintillator. We use this technique to evaluate emittance at several points in the NDCX-II beamline and for optimizing the trajectory of the beam at the entry of the plasma-filled drift section. Keywords: Charged-particle beams, Induction accelerators, Beam dynamics, Beam emittance, Ion beam diagnostics, PACS Codes: 41.75.-i, 41.85.Ja, 52.59.Sa, 52.59.Wd, 29.27.Eg

  7. Simulations of beam trajectory for position target optimization of extraction system output beams cyclotron proton Decy-13

    International Nuclear Information System (INIS)

    Idrus Abdul Kudus; Taufik

    2015-01-01

    Positioning and track simulation beam the cyclotron Decy-13 for laying optimization the target system have been done using lorentz force function and scilab 5.4.1 simulation. Magnetic field and electric field is calculated using Opera3D/Tosca as a simulation input. Used radio frequency is 77.66 MHz with the amplitude voltage is 40 kV is obtained energy 13 MeV. The result showed that the coordinates of the laying of the target system in a vacuum chamber is located at x = -389 mm and y = 445 mm with the width of the output beam is 10 mm. The laying stripper position for the output in center target is located at x = -76 mm and y =416 mm from the center coordinate on the center of dee with the energy of proton is 13 MeV at the point of beam extraction carbon foil. The changes position laying is carried out on range x = -70; y = 424 mm until x = - 118; y = 374 mm result for shifting area stripper which is still capable of deflection the electron beam. (author)

  8. A comparison of protocols for external beam radiotherapy beam calibrations

    International Nuclear Information System (INIS)

    Saeed Al-Ahbabi, Salma; Bradley, D.A.; Beyomi, M.; Alkatib, Z.; Adhaheri, S.; Darmaki, M.; Nisbet, A.

    2012-01-01

    A number of codes of practice (CoP) for electron and photon radiotherapy beam dosimetry are currently in use. Comparison is made of the more widely used of these, specifically those of the International Atomic Energy Agency (IAEA TRS-398), the American Association of Physicists in Medicine (AAPM TG-51) and the Institute of Physics and Engineering in Medicine (IPEM 2003). All are based on calibration of ionization chambers in terms of absorbed dose to water, each seeking to reduce uncertainty in delivered dose, providing an even stronger system of primary standards than previous air-kerma based approaches. They also provide a firm, traceable and straight-forward formalism. Included in making dose assessments for the three CoP are calibration coefficients for a range of beam quality indices. Measurements have been performed using clinical photon and electron beams, the absorbed dose to water being obtained following the recommendations given by each code. Electron beam comparisons have been carried out using measurements for electron beams of nominal energies 6, 9, 12, 16 and 20 MeV. Comparisons were also carried out for photon beams of nominal energies 6 and 18 MV. For photon beams use was made of NE2571 cylindrical graphite walled ionization chambers, cross-calibrated against an NE2611 Secondary Standard; for electron beams, PTW Markus and NACP-02 plane-parallel chambers were used. Irradiations were made using Varian 600C/2100C linacs, supported by water tanks and Virtual Water™ phantoms. The absorbed doses for photon and electron beams obtained following these CoP are all in good agreement, with deviations of less than 2%. A number of studies have been carried out by different groups in different countries to examine the consistency of dosimetry codes of practice or protocols. The aim of these studies is to confirm that the goal of those codes is met, namely uniformity in establishment of dosimetry of all radiation beam types used in cancer therapy in the world

  9. Time Resolved Spectrometry on the Test Beam Line at CTF3

    CERN Document Server

    Olvegård, M; Lefèvre, T; Döbert, S; Adli, E

    2009-01-01

    The CTF3 provides a high current (28 A) high frequency (12 GHz) electron beam, which is used to generate high power radiofrequency pulses at 12 GHz by decelerating the electrons in resonant structures. A Test Beam Line (TBL) is currently being built in order to prove the efficiency and the reliability of the RF power production with the lowest level of particle losses. As the beam propagates along the line, its energy spread grows up to 60%. For instrumentation, this unusual characteristic implies the development of new and innovative techniques. One of the most important tasks is to measure the beam energy spread with a fast time resolution. The detector must be able to detect the energy transient due to beam loading in the decelerating structures (nanosecond) but should also be capable to measure bunch-to-bunch fluctuations (12 GHz). This paper presents the design of the spectrometer line detectors.

  10. Electron beam charge state amplifier (EBQA)--a conceptual evaluation

    International Nuclear Information System (INIS)

    Dooling, J. C.

    1998-01-01

    A concept is presented for stripping low-energy, radioactive ions from 1+ to higher charge states. Referred to as an Electron Beam Charge State Amplifier (EBQA), this device accepts a continuous beam of singly-charged, radioactive ions and passes them through a high-density electron beam confined by a solenoidal magnetic field. Singly-charged ions may be extracted from standard Isotope-Separator-Online (ISOL) sources. An EBQA is potentially useful for increasing the charge state of ions prior to injection into post-acceleration stages at ISOL radioactive beam facilities. The stripping efficiency from q=1+ to 2+ (η 12 ) is evaluated as a function of electron beam radius at constant current with solenoid field, injected ion energy, and ion beam emittance used as parameters. Assuming a 5 keV, 1 A electron beam, η 12 = 0.38 for 0.1 keV, 132 Xe ions passing through an 8 Tesla solenoid, 1 m in length. Multi-pass configurations to achieve 3+ or 4+ charge states are also conceivable. The calculated efficiencies depend inversely on the initial ion beam emittances. The use of a helium-buffer-gas, ion-guide stage to improve the brightness of the 1+ beams [1] may enhance the performance of an EBQA

  11. Electron-beam-fusion progress report, January--June 1976

    International Nuclear Information System (INIS)

    1976-10-01

    Research progress is reported for the following areas: (1) Proto I, (2) Proto II, (3) EBFA, (4) power flow, (5) contract progress reports, (6) progress in the Sandia program, (7) repetitively operated pulse generator development, (8) electron beam power from inductive storage, (9) fusion target design, (10) beam physics research, (11) power flow, (12) heavy ion fusion, (13) particle beam source development, (14) beam target interaction and target response studies, (15) diagnostic development, and (16) hybrid systems

  12. Determination of ionization energies of CnN (n=4-12): Vacuum-ultraviolet (VUV) photoionization experiments and theoretical calculations

    International Nuclear Information System (INIS)

    Kostko, Oleg; Zhou, Jia; Sun, Bian Jian; Lie, Jie Shiuan; Chang, Agnes H.H.; Kaiser, Ralf I.; Ahmed, Musahid

    2010-01-01

    Results from single photon vacuum ultraviolet photoionization of astrophysically relevant CnN clusters, n = 4 - 12, in the photon energy range of 8.0 eV to 12.8 eV are presented. The experimental photoionization efficiency curves, combined with electronic structure calculations, provide improved ionization energies of the CnN species. A search through numerous nitrogen-terminated CnN isomers for n=4-9 indicates that the linear isomer has the lowest energy, and therefore should be the most abundant isomer in the molecular beam. Comparison with calculated results also shed light on the energetics of the linear CnN clusters, particularly in the trends of the even-carbon and the odd-carbon series. These results can help guide the search of potential astronomical observations of these neutral molecules together with their cations in highly ionized regions or regions with a high UV/VUV photon flux (ranging from the visible to VUV with flux maxima in the Lyman-a region) in the interstellar medium.

  13. Intense ion beams for inertial confinement fusion

    International Nuclear Information System (INIS)

    Mehlhorn, T.A.

    1997-01-01

    Intense beams of light of heavy ions are being studied as inertial confinement fusion (ICF) drivers for high yield and energy. Heavy and light ions have common interests in beam transport, targets, and alternative accelerators. Self-pinched transport is being jointly studied. This article reviews the development of intense ion beams for ICF. Light-ion drivers are highlighted because they are compact, modular, efficient and low cost. Issues facing light ions are: (1) decreasing beam divergence; (2) increasing beam brightness; and (3) demonstrating self-pinched transport. Applied-B ion diodes are favored because of efficiency, beam brightness, perceived scalability, achievable focal intensity, and multistage capability. A light-ion concept addressing these issues uses: (1) an injector divergence of ≤ 24 mrad at 9 MeV; (2) two-stage acceleration to reduce divergence to ≤ 12 mrad at 35 MeV; and (3) self-pinched transport accepting divergences up to 12 mrad. Substantial progress in ion-driven target physics and repetitive ion diode technology is also presented. Z-pinch drivers are being pursued as the shortest pulsed power path to target physics experiments and high-yield fusion. However, light ions remain the pulsed power ICF driver of choice for high-yield fusion energy applications that require driver standoff and repetitive operation. 100 refs

  14. Multicharged and intense heavy ion beam sources

    International Nuclear Information System (INIS)

    Kutner, V.B.

    1981-01-01

    The cyclotron plasma-are source (PIG), duoplasmatron (DP), laser source (LS), electron beam ion source (EBIS) and electron cyclotron resonance source (ECRS) from the viewpoint of generating intense and high charge state beams are considered. It is pointed out that for the last years three types of multicharged ion sources-EBIS, ECR and LS have been essentially developed. In the EBIS source the Xe 48+ ions are produced. The present day level of the development of the electron-beam ionization technique shows that by means of this technique intensive uranium nuclei beams production becomes a reality. On the ECR source Xe 26+ approximately 4x10 10 h/s, Asub(r)sup(12+) approximately 10 12 h/s intensive ion beams are produced. In the laser source a full number of C 6+ ions during one laser pulse constitutes not less than 10 10 from the 5x10mm 2 emission slit. At the present time important results are obtained pointing to the possibility to separate the ion component of laser plasma in the cyclotron central region. On the PIG source the Xe 15+ ion current up to 10μA per pulse is produced. In the duoplasmatron the 11-charge state of xenon ion beams is reached [ru

  15. High resolution, position sensitive detector for energetic particle beams

    International Nuclear Information System (INIS)

    Marsh, E.P.; Strathman, M.D.; Reed, D.A.; Odom, R.W.; Morse, D.H.; Pontau, A.E.

    1993-01-01

    The performance and design of an imaging position sensitive, particle beam detector will be presented. The detector is minimally invasive, operates a wide dynamic range (>10 10 ), and exhibits high spatial resolution. The secondary electrons produced when a particle beam passes through a thin foil are imaged using stigmatic ion optics onto a two-dimensional imaging detector. Due to the low scattering cross section of the 6 nm carbon foil the detector is a minimal perturbation on the primary beam. A prototype detector with an image resolution of approximately 5 μm for a field of view of 1 mm has been reported. A higher resolution detector for imaging small beams (<50 μm) with an image resolution of better than 0.5 μm has since been developed and its design is presented. (orig.)

  16. Embedding nano-Li{sub 4}Ti{sub 5}O{sub 12} in hierarchical porous carbon matrixes derived from water soluble polymers for ultra-fast lithium ion batteries anodic materials

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Chun-Kai; Bao, Qi; Huang, Yao-Hui; Duh, Jenq-Gong, E-mail: jgd@mx.nthu.edu.tw

    2016-07-15

    Li{sub 4}Ti{sub 5}O{sub 12}/hierarchical porous carbon matrixes composites are successfully prepared by a facile and fast polymers assisted sol–gel method, aiming to promote both electronic and ionic conductivity. As indicated by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy analysis, three less expensive cost and available water soluble polymers (e.g. PAA, CMC, and SA) can homogeneously react with Li–Ti–O precursor to incorporate into interior of nano-scale lithium titanate and provide a continues conductive network after pyrolysis. In addition, the results of scanning electron microscopy and transmission electron microscopy also prove that the Li{sub 4}Ti{sub 5}O{sub 12} nanoparticles are firmly embedded in porous carbon matrix with no obvious agglomeration. EIS measurement and cyclic voltammetry further reveal that the facilitated electrode kinetics and better ionic transport of Li{sub 4}Ti{sub 5}O{sub 12}/hierarchical porous carbon matrixes composites than that of Li{sub 4}Ti{sub 5}O{sub 12}. The c-CMC-LTO exhibits a superior capacity of 92 mAh g{sup −1} and retains its initial value with no obviously capacity decay over 200 cycles under an ultra-high C rate (50 C). - Graphical abstract: Schematic illustrations of the formation process of embedding LTO into Carbon matrixes derived from water soluable polymers (upper) and the electrochemical reaction paths in LTO/Carbon composites during charging/discharging processes (lower). - Highlights: • Hierarchical porous carbon matrixes were used to improve the Li{sub 4}Ti{sub 5}O{sub 12} anodes. • Carbon matrixes could suppress the agglomeration of Li{sub 4}Ti{sub 5}O{sub 12} nanoparticles. • meso-nanoporous carbon structure was beneficial for filtration of electrolyte. • The c-CMC-LTO exhibited superior high rate capability and cycling durability.

  17. Production of intense negative ion beams in magnetically insulated diodes

    International Nuclear Information System (INIS)

    Lindenbaum, H.

    1988-01-01

    Production of intense negative ion beams in magnetically insulated diodes was studied in order to develop an understanding of this process by measuring the ion-beam parameters as a function of diode and cathode plasma conditions in different magnetically insulated diodes. A coral diode, a racetrack diode, and an annular diode were used. The UCI APEX pulse line, with a nominal output of 1MV, 140kA, was used under matched conditions with a pulse length of 50 nsec. Negative-ion intensity and divergence were measured with Faraday cups and CR-39 track detectors. Cathode plasma was produced by passive dielectric cathodes and later, by an independent plasma gun. Negative-ion currents had an intensity of a few A/cm 2 with a divergence ranging between a few tenths milliradians for an active TiH 2 plasma gun and 300 milliradians for a passive polyethelene cathode. Negative ions were usually emitted from a few hot spots on the cathode surface. These hot spots are believed to cause transverse electrical fields in the diode gap responsible for the beam divergence. Mass spectrometry measurements showed that the ion beam consists of mainly H - ions when using a polyethelene or a TiH 2 cathodes, and mainly of negative carbon ions when using a carbon cathode

  18. Academic Training Lectures | Instrumentation | 12-14 November

    CERN Multimedia

    2014-01-01

    Instrumentation (1, 2 & 3) by Rhodri Jones (CERN)   Wednesday 12, Thursday 13 and Friday 14 November from 11:00 to 12:00 at CERN (40-S2-A01 - Salle Anderson) Description: The LHC is equipped with a full suite of sophisticated beam instrumentation which has been essential for rapid commissioning, the safe increase in total stored beam power and the understanding of machine optics and accelerator physics phenomena. These lectures will introduce these systems and comment on their contributions to the various stages of beam operation. They will include details on: the beam position system and its use for real-time global orbit feedback; the beam loss system and its role in machine protection; total and bunch by bunch intensity measurements; tune measurement and feedback; diagnostics for transverse beam size measurements, abort gap monitoring and longitudinal density measurements. Issues and problems encountered along the way will also be discussed together with the prospect for future upgrades. ...

  19. Beam optics study of a negative ion source for neutral beam injection application at ASIPP

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Jiang-Long; Liang, Li-Zhen [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Jiang, Cai-Chao [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Graduate school, University of Science and Technology of China, Hefei 230026 (China); Xie, Ya-Hong, E-mail: xieyh@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Hu, Chun-Dong; Li, Jun; Gu, Yu-Ming; Chen, Yu-Qian [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li, Jing-Yong; Wu, Ming-Shan [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Graduate school, University of Science and Technology of China, Hefei 230026 (China)

    2017-04-15

    In order to study the generation and extraction of negative ions for neutral beam injection application, a negative ion source is being designed and constructed at Institute of Plasma Physics, Chinese Academy of Sciences (ASIPP). Through a four electrode grids system inside the accelerator, a negative ion beam will be extracted and accelerated up to −60 kV on a reduced scale extraction area of 12 × 50 cm{sup 2} (the area of PG apertures is 185 cm{sup 2}). The beam optics is a key issue for the accelerator design, and greatly determine the source experimental performance in term of beam current, heat load on the grid, beam divergence, and so on. In this paper, the trajectories of electrons and negative ions were simulated in the electrode grids of the negative ion source. The filter capability of electron deflection magnet on the co-extracted electrons is evaluated and confirmed. The negative ion beam optics was designed according to the calculated results of beam divergence and beam radius along the beamlet in different acceleration voltages. The deflection effect of the electron deflection magnet on the negative ion beam was investigated in the single beamlet case and multi-beamlets case.

  20. Supersonic cluster beams: a powerful method for the deposition of nanostructured thin films with tailored properties

    International Nuclear Information System (INIS)

    Milani, P.

    2002-01-01

    By using a pulsed micro-plasma cluster source and by exploiting aero-dynamical effects typical of supersonic beams it is possible to obtain very high deposition rates with a control on neutral cluster mass distribution, allowing the deposition of thin films with controlled nanostructure. Due to high deposition rates, high lateral resolution, low temperature processing supersonic cluster beams can also be used for the micro and nano-patterning of cluster-assembled films when little or no post-growth manipulation or assembly is required. For example the nano and meso-structure of films obtained by carbon cluster beam deposition can be controlled by selecting in the beam the elemental building blocks, moreover functional properties such as field emission can be controlled and tailored. The use of supersonic cluster beams opens also new perspectives for the production of nano-structured films with novel physico-chemical and topological properties such as nano-structured carbon matrices containing carbide and transition metal particles. (Author)

  1. Evaluation of Mechanical Property of Carbon Fiber/Polypropylene Composite According to Carbon Fiber Surface Treatment

    International Nuclear Information System (INIS)

    Han, Song Hee; Oh, Hyun Ju; Kim, Seong Su

    2013-01-01

    In this study, the mechanical properties of a carbon fiber/polypropylene composite were evaluated according to the carbon fiber surface treatment. Carbon fiber surface treatments such as silane coupling agents and plasma treatment were performed to enhance the interfacial strength between carbon fibers and polypropylene. The treated carbon fiber surface was characterized by XP S, Sem, and single-filament tensile test. The interlaminar shear strength (Ilks) of the composite with respect to the surface treatment was determined by a short beam shear test. The test results showed that the Ilks of the plasma-treated specimen increased with the treatment time. The Ilks of the specimen treated with a silane coupling agent after plasma treatment increased by 48.7% compared to that of the untreated specimen

  2. Production of radioactive molecular beams for CERN-ISOLDE

    Energy Technology Data Exchange (ETDEWEB)

    Seiffert, Christoph

    2015-06-15

    ISOLDE, the Isotope Separation On-Line facility, at CERN is a leading facility for the production of beams of exotic radioactive isotopes. Currently over 1000 different isotopes with half lives down to milliseconds can be extracted with beam intensities of up to 10{sup 11} ions per second. However, due to the reactive target environment not all isotopes are extractable in sufficient amounts. In this work the extraction of short lived carbon and boron isotopes is investigated. Therefore a variety of experimental and computational techniques have been used.

  3. Coherent beam-beam effects

    International Nuclear Information System (INIS)

    Chao, A.W.

    1992-01-01

    There are two physical pictures that describe the beam-beam interaction in a storage ring collider: The weak-strong and the strong-strong pictures. Both pictures play a role in determining the beam-beam behavior. This review addresses only the strong-strong picture. The corresponding beam dynamical effects are referred to as the coherent beam-beam effects. Some basic knowledge of the weak-strong picture is assumed. To be specific, two beams of opposite charges are considered. (orig.)

  4. Spray drying of spherical Li{sub 4}Ti{sub 5}O{sub 12}/C powders using polyvinyl pyrrolidone as binder and carbon source

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wei [Research Center for New Energy Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 110049 (China); Shanghai Nanotechnology Promotion Center, Shanghai 200237 (China); Wang, Qian; Cao, Chunhui [Research Center for New Energy Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 110049 (China); Han, Xuewu [Research Center for New Energy Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Zhang, Jian, E-mail: zjskycn@163.com [Research Center for New Energy Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Xie, Xiaohua, E-mail: xiaohuaxie@126.com [Research Center for New Energy Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); Xia, Baojia [Research Center for New Energy Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050 (China); University of Chinese Academy of Sciences, Beijing 110049 (China)

    2015-02-05

    Highlights: • The spherical Li{sub 4}Ti{sub 5}O{sub 12}/C granules were prepared by spray drying. • Polyvinyl pyrrolidone (PVP) was used as binder and carbon source. • Tap density and spherical structure increase with the increase of PVP content. • Li{sub 4}Ti{sub 5}O{sub 12}/C granules exhibits better rate capability and excellent cyclability. - Abstract: Polyvinyl pyrrolidone (PVP) was used as binder and carbon source to synthesize stable and spherical Li{sub 4}Ti{sub 5}O{sub 12}/C granules by spray drying. The effects of PVP content and atmospheres on the properties of Li{sub 4}Ti{sub 5}O{sub 12} were investigated. The obtained samples were characterized by X-ray diffraction, scanning electron microscopy, Raman spectroscopy, and electrochemical tests, respectively. The results indicate that the average particle size, tap density and degree of spherical structure increase accordingly to the increase of PVP content. However, the large secondary particle would deteriorate the rate capacity at high current density. The carbon coating could significantly improve the rate capacity, which is attributed to the smaller primary particle and higher electrical conductivity.

  5. Radiosensitivity of cancer cells against carbon-ion beams in an aspect of the p53 gene status

    International Nuclear Information System (INIS)

    Takahashi, Akihisa; Ohnishi, Takeo; Matsumoto, Hideki

    2004-01-01

    We can easily understand that radiation sensitivities of cancer cells are dependent on the status of cancer-related genes. It is important to clarify which genes affect radiation sensitivity and reflect the effectiveness of radiation therapy for cancer cells. We have studied about the function of a tumor suppressor gene of p53, because p53 controls apoptosis, cell cycle and DNA repair from an aspect of important roles in cell fate. By analysis of function of p53 gene, therefore, we aim to predict the therapeutic effectiveness and to select the modalities of cancer therapies such as radiotherapy, chemotherapy and hyperthermia. As a final goal, we want to accept the most effective therapy, namely tailor-made cancer therapy, for each patient. Here, we introduce that carbon-beam therapy induced the expression of p53-independent apoptosis-related genes and NO radicals in mutated p53 cancer cells. (author)

  6. Characterization of carbon, nitrogen, oxygen and refractory metals in binary and ternary silicon-based films using ion beam methods

    International Nuclear Information System (INIS)

    Somatri-Bouamrane, R.

    1996-01-01

    Ion beam methods (non Rutherford backscattering, nuclear reactions) have been carried out in order to characterize silicon-based films. The cross sections for the reactions 12 C(α,α), 14 N(α,α), 16 O(α,α), 28 Si(α,α) and 14 N(α,p) have been measured within 2 and 7 MeV. CVD beta SiC films could be analyzed and the interface between silicon carbide and the (100) silicon substrate was studied. The epitaxial growth of the beta SiC film could be modelled by comparing the results obtained with ion beam analysis, infrared spectroscopy and electron microscopy. Moreover, the stoichiometry of low pressure CVD Me-Si-N (Me=Re, W, Ti, Ta) ternary systems was studied. The evolution of the nitrogen content in W-Si-N systems allowed to study their stability with respect to the annealing conditions. (N.T.)

  7. 27.12 MHz plasma generation in supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Kawashima, Ayato; Toyota, Hiromichi; Nomura, Shinfuku; Takemori, Toshihiko; Mukasa, Shinobu; Maehara, Tsunehiro; Yamashita, Hiroshi

    2007-01-01

    An experiment was conducted for generating high-frequency plasma in supercritical carbon dioxide; it is expected to have the potential for applications in various types of practical processes. It was successfully generated at 6-20 MPa using electrodes mounted in a supercritical cell with a gap of 1 mm. Emission spectra were then measured to investigate the physical properties of supercritical carbon dioxide plasma. The results indicated that while the emission spectra for carbon dioxide and carbon monoxide could be mainly obtained at a low pressure, the emission spectra for atomic oxygen could be obtained in the supercritical state, which increased with the pressure. The temperature of the plasma in supercritical state was estimated to be approximately 6000-7000 K on the assumption of local thermodynamic equilibrium and the calculation results of thermal equilibrium composition in this state showed the increase of atomic oxygen by the decomposition of CO 2

  8. Processing and characterization of a carbon black-filled electrically conductive Nylon-12 nanocomposite produced by selective laser sintering

    International Nuclear Information System (INIS)

    Athreya, Siddharth Ram; Kalaitzidou, Kyriaki; Das, Suman

    2010-01-01

    Selective laser sintering (SLS), a layered manufacturing technique was explored to process an electrically conductive polymer nanocomposite made of Nylon-12 reinforced with 4 wt% of carbon black. SLS process parameters were optimized in order to maximize the flexural modulus. The porosity and morphology were studied using optical microscopy and scanning electron microscopy (SEM). The crystalline state was characterized using differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The electrical conductivity was determined using the four probe technique. Results indicate that carbon black-filled Nylon-12 nanocomposites can be successfully made by SLS. Maximum flexural modulus values of 1750 MPa and 1450 MPa were achieved for the neat polymer and the nanocomposite, respectively. A reduction in the flexural modulus of the nanocomposite is likely due to the formation of a segregated structure in the nanocomposite and a weak polymer-filler interface. The optimized neat polymer and the nanocomposites had average densities of around 97% and 96% relative to full density, respectively. The electrical conductivity of the nanocomposite was approximately 1 x 10 -4 S/cm, which is five orders of magnitude higher than that of the neat polymer processed by SLS, and indicates that the onset of percolation behavior occurs below the 4 wt% loading of carbon black.

  9. TU-E-BRA-11: Volume of Interest Cone Beam CT with a Low-Z Linear Accelerator Target: Proof-of-Concept.

    Science.gov (United States)

    Robar, J; Parsons, D; Berman, A; MacDonald, A

    2012-06-01

    This study demonstrates feasibility and advantages of volume of interest (VOI) cone beam CT (CBCT) imaging performed with an x-ray beam generated from 2.35 MeV electrons incident on a carbon linear accelerator target. The electron beam energy was reduced to 2.35 MeV in a Varian 21EX linear accelerator containing a 7.6 mm thick carbon x-ray target. Arbitrary imaging volumes were defined in the planning system to produce dynamic MLC sequences capable of tracking off-axis VOIs in phantoms. To reduce truncation artefacts, missing data in projection images were completed using a priori DRR information from the planning CT set. The feasibility of the approach was shown through imaging of an anthropomorphic phantom and the head-and-neck section of a lamb. TLD800 and EBT2 radiochromic film measurements were used to compare the VOI dose distributions with those for full-field techniques. CNR was measured for VOIs ranging from 4 to 15 cm diameter. The 2.35 MV/Carbon beam provides favorable CNR characteristics, although marked boundary and cupping artefacts arise due to truncation of projection data. These artefacts are largely eliminated using the DRR filling technique. Imaging dose was reduced by 5-10% and 75% inside and outside of the VOI, respectively, compared to full-field imaging for a cranial VOI. For the 2.35 MV/Carbon beam, CNR was shown to be approximately invariant with VOI dimension for bone and lung objects. This indicates that the advantage of the VOI approach with the low-Z target beam is substantial imaging dose reduction, not improvement of image quality. VOI CBCT using a 2.35 MV/Carbon beam is a feasible technique whereby a chosen imaging volume can be defined in the planning system and tracked during acquisition. The novel x-ray beam affords good CNR characteristics while imaging dose is localized to the chosen VOI. Funding for this project has been received from Varian Medical, Incorporated. © 2012 American Association of Physicists in Medicine.

  10. A p-Carbon CNI Polarimeter for RHIC

    International Nuclear Information System (INIS)

    Huang, H.; Bai, M.; Bunce, G.; Makdisi, Y.; Roser, T.; Imai, K.; Nakamura, M.; Tojo, J.; Yamamoto, K.; Zhu, L.; Bassalleck, B.; Eilerts, S.; Fields, D.E.; Lewis, B.; Smith, B.; Thomas, T. L.; Wolfe, D.; Goto, Y.; Hayoshi, N.; Ishihara, M.; Kurita, K.; Okamura, M.; Saito, N.; Taketani, A.; Doskow, J.; Kwiatkowski, K.; Lozowski, B.; Meyer, H.O.; Przewoski, B. V.; Rinckel, T.; Nurushev, S. B.; Strikhanov, M. N.; Runtzo, M. F.; Alekseev, I. G.; Svirida, D. N.; Deshpande, A.; Hughes, V.

    1999-01-01

    The RHIC spin program requires excellent polarimetry so that the knowledge of the beam polarization does not limit the errors on the experimental measurements. However, polarimetry of proton beams with energies higher than about 30 GeV poses a difficult challenge. For polarization monitoring during operation, a fast and reliable polarimeter is required that produces a polarization measurement with a 10% relative error within a few minutes. The p-Carbon elastic scattering in the Coulomb-Nuclear-Scattering (CNI) region has a calculable and large analyzing power, but detecting the recoil carbon needs sophisticated detector system and a very thin target. Experiment has been planned in the AGS. This paper describes the experimental setup in the AGS

  11. A novel method based on selective laser sintering for preparing high-performance carbon fibres/polyamide12/epoxy ternary composites

    Science.gov (United States)

    Zhu, Wei; Yan, Chunze; Shi, Yunsong; Wen, Shifeng; Liu, Jie; Wei, Qingsong; Shi, Yusheng

    2016-09-01

    A novel method based on selective laser sintering (SLS) process is proposed for the first time to prepare complex and high-performance carbon fibres/polyamide12/epoxy (CF/PA12/EP) ternary composites. The procedures are briefly described as follows: prepare polyamide12 (PA12) coated carbon fibre (CF) composite powder; build porous green parts by SLS; infiltrate the green parts with high-performance thermosetting epoxy (EP) resin; and finally cure the resin at high temperature. The obtained composites are a ternary composite system consisting of the matrix of novolac EP resin, the reinforcement of CFs and the transition thin layer of PA12 with a thickness of 595 nm. The SEM images and micro-CT analysis prove that the ternary system is a three-dimensional co-continuous structure and the reinforcement of CFs are well dispersed in the matrix of EP with the volume fraction of 31%. Mechanical tests show that the composites fabricated by this method yield an ultimate tensile strength of 101.03 MPa and a flexural strength of 153.43 MPa, which are higher than those of most of the previously reported SLS materials. Therefore, the process proposed in this paper shows great potential for manufacturing complex, lightweight and high-performance CF reinforced composite components in aerospace, automotive industries and other areas.

  12. Experimental evaluation of analytical penumbra calculation model for wobbled beams

    International Nuclear Information System (INIS)

    Kohno, Ryosuke; Kanematsu, Nobuyuki; Yusa, Ken; Kanai, Tatsuaki

    2004-01-01

    The goal of radiotherapy is not only to apply a high radiation dose to a tumor, but also to avoid side effects in the surrounding healthy tissue. Therefore, it is important for carbon-ion treatment planning to calculate accurately the effects of the lateral penumbra. In this article, for wobbled beams under various irradiation conditions, we focus on the lateral penumbras at several aperture positions of one side leaf of the multileaf collimator. The penumbras predicted by an analytical penumbra calculation model were compared with the measured results. The results calculated by the model for various conditions agreed well with the experimental ones. In conclusion, we found that the analytical penumbra calculation model could predict accurately the measured results for wobbled beams and it was useful for carbon-ion treatment planning to apply the model

  13. Elastic scattering of deuterons from hydrogen at 2.0, 1.6 and 1.2 GeV, and search for critical opalescence in inelastic scattering of proton from carbon-12 at 800 MeV

    International Nuclear Information System (INIS)

    Haji-Saeid, S.M.

    1980-01-01

    Large deuteron vector and tensor asymmetries have been measured for the first time at intermediate energies. The polarized deuteron beam whose tensor and vector components were 0.75 and 0.25, respectively, were used at energies of 2.0, 1.6 and 1.2 GeV. The tensor and vector quantities Pyy and Py were extracted from the data obtained within beam polarization normal to the scattering plane, and Pxx was obtained when the polarization was precessed into the scattering plane. Analysis of the data using multiple scattering theory demonstrates the importance of the non-eikonal correction to the Glauber Model and also the sensitivity of the data to double-spin flip components of the NN amplitudes. In another experiment the differential cross section for the 12C(P,P')12C*(15.11 MeV, 1 + T = 1) reaction has been measured at 800 MeV; the range of the angular distribution corresponds to momentum transfers of 0.7 to 2.4 fm -1 (1 to 3.3 mπ). The cross section decreases almost exponentially at large angles; no maximum is observed in the region where nuclear critical opalescence might be expected. The cross sections which measured in parallel to the 15.11 MeV state were for the levels at 11.83 (2 - ), 12.71 (1 + ), 13.35 (2 - ), 16.1 (2 + ) and 16.58 (2 - ) MeV

  14. Self-acceleration of relativistic modulated beams

    International Nuclear Information System (INIS)

    Ajzatskij, N.I.

    1989-01-01

    Unlike the case of self-acceleration of continuous beams, the self-acceleration of relativistic modulated beams requires the energy redistribution between the particles not at the period of excited oscillations but rather between the bunches. This may occur only in the case when the electron beam creates a multifrequency equilibrium state in the passive structure. In this case, there is a possibility for some bunches to be captured in the accelerating phase of the field without any external action. The authors have analyzed this possibility both theoretically and experimentally. 12 refs., 2 figs

  15. Performance requirements of the MedAustron beam delivery system

    CERN Document Server

    AUTHOR|(CDS)2073034

    The Austrian hadron therapy center MedAustron is currently under construction with patient treatment planned to commence in 2015. Tumors will be irradiated using proton and carbon ions, for which the steeply rising Bragg curve and finite range offer a better conformity of the dose to the geometrical shape of the tumor compared to conventional photon irradiation. The current trend is to move from passive scattering toward active scanning using a narrow pencil beam in order to reach an even better dose conformation and limit the need of patient specific hardware. The quality of the deposited dose will ultimately depend on the performance of the beam delivery chain: beam profile and extraction stability of the extracted beam, accuracy and ramp rate of the scanning magnet power supplies, and precision of the beam monitors used for verifying the delivered dose. With a sharp lateral penumbra, the transverse dose fall-off can be minimized. This is of particular importance in situations where the lesion is adjace...

  16. CERN PSB Beam Tests of CNAO Synchrotron's Digital LLRF

    CERN Document Server

    Angoletta, M E; De Martinis, C; Falbo, L; Findlay, A; Foglio, R; Hunt, S; Tourres, D; Vescovi, C

    2008-01-01

    The Italian National Centre for Oncological hAdrontherapy (CNAO), in its final construction phase, uses proton and carbon ion beams to treat patients affected by solid tumours. At the heart of CNAO is a 78- meter circumference synchrotron that accelerates particles to up to 400 MeV/u. The synchrotron relies on a digital LLRF system based upon Digital Signal Processors (DSPs) and Field Programmable Gate Array (FPGA). This system implements cavity servoing and beam control capabilities, such as phase and radial loops. Beam tests of the CNAO synchrotron LLRF system were carried out at CERN's Proton Synchrotron Booster (PSB) in autumn 2007, to verify the combined DSP/FPGA architecture and the beam control capabilities. For this, a prototype version of CNAO's LLRF system was adapted to the PSB requirements. This paper outlines the prototype system layout and describes the tests carried out and their results. In particular, system architecture and beam control capabilities were successfully proven by comparison wit...

  17. Particle beam source development

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Electron beam research directed toward providing improved in-diode pinched beam sources and establishing the efficiency and feasibility for superposition of many beams progressed in three major areas. Focusing stability has been improved from large effective aspect ratio (radius/gap of emitting surface) diodes. Substantial progress toward establishing the feasibility of combining beams guided along ionized current-carrying channels has been made. Two beams have been transported and overlayed on a target. Theoretical and experimental measurements on channel formation have resulted in specifications for the capacitor bank channel initiation system for a 12-beam combination experiment on Proto II. An additional area of beam research has been the development of a small pulsed X-ray source to yield high quality flash X-radiography of pellets. A source yielding approximately 100-μm resolution of objects has been demonstrated and work continues to improve the convenience and reliability of this source. The effort to extend the capability of higher power conventional pulse power generators to accelerate ions (rather than electrons), and assess the feasibility of this technology variation for target experiments and reactors has progressed. Progress toward development of a multistage accelerator for ions with pulse power technology centered on development of a new laboratory facility and design and procurement of hardware for a five-stage test apparatus for the Pulslac concept

  18. Chamonix'12 summary: Proposals for decisions

    International Nuclear Information System (INIS)

    Myers, S.; Zimmermann, F.

    2012-01-01

    The summary session of the LHC Performance Workshop in Chamonix, 6-10 February 2012, synthesized one week of presentations and intense discussions on the near-, medium- and long-term strategy for the LHC and LHC upgrades. In particular, Chamonix'12 discussed the lessons from 2011, the strategy, beam energy and beam parameters for 2012, the planning for the Long Shutdown no.1 (LS1), the measures and schemes for improving or maintaining the machine availability at higher beam energy, the injector performance and injector upgrade schedule, the HL-LHC project as well as possible additional or future LHC upgrades like LHeC and HELHC. Key workshop themes included the risk associated with 4 TeV beam energy in 2012, the beam energy after LS1, the turnaround time, the physics goal and optimized running schedule for 2012, the achievements and plans for Pb-Pb and p-Pb collisions, beam-beam effects, electron-cloud phenomena and UFOs. We report the proposals for decisions which have emerged at the Chamonix'12 workshop. The priorities for the 2012 run are: -) proton-proton run (integrated luminosity) with Higgs discovery or exclusion; -) proton-ion run; and -) machine studies and tests related to UFOs and quench levels. The date of the start of LS1 will be reviewed at the luminosity breakpoints. After LS1 the beam energy will be around 6.5 TeV/beam to limit the number of re-training quenches. (authors)

  19. SU-C-207A-06: On-Line Beam Range Verification with Multiple Scanning Particle Beams: Initial Feasibility Study with Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Y; Sun, X; Lu, W; Jia, X; Wang, J; Shao, Y [The University of Texas Southwestern Medical Ctr., Dallas, TX (United States)

    2016-06-15

    Purpose: To investigate the feasibility and requirement for intra-fraction on-line multiple scanning particle beam range verifications (BRVs) with in-situ PET imaging, which is beyond the current single-beam BRV with extra factors that will affect the BR measurement accuracy, such as beam diameter, separation between beams, and different image counts at different BRV positions. Methods: We simulated a 110-MeV proton beam with 5-mm diameter irradiating a uniform PMMA phantom by GATE simulation, which generated nuclear interaction-induced positrons. In this preliminary study, we simply duplicated these positrons and placed them next to the initial protons to approximately mimic the two spatially separated positron distributions produced by two beams parallel to each other but with different beam ranges. These positrons were then imaged by a PET (∼2-mm resolution, 10% sensitivity, 320×320×128 mm^3 FOV) with different acquisition times. We calculated the positron activity ranges (ARs) from reconstructed PET images and compared them with the corresponding ARs of original positron distributions. Results: Without further image data processing and correction, the preliminary study show the errors between the measured and original ARs varied from 0.2 mm to 2.3 mm as center-to-center separations and range differences were in the range of 8–12 mm and 2–8 mm respectively, indicating the accuracy of AR measurement strongly depends on the beam separations and range differences. In addition, it is feasible to achieve ≤ 1.0-mm accuracy for both beams with 1-min PET acquisition and 12 mm beam separation. Conclusion: This study shows that the overlap between the positron distributions from multiple scanning beams can significantly impact the accuracy of BRVs of distributed particle beams and need to be further addressed beyond the established method of single-beam BRV, but it also indicates the feasibility to achieve accurate on-line multi-beam BRV with further improved

  20. Effect of ion beam irradiation on metal particle doped polymer ...

    Indian Academy of Sciences (India)

    and converts polymeric structure into hydrogen depleted carbon network. ... Composite materials; ion beam irradiation; dielectric properties; X-ray diffraction. ..... Coat. Technol. 201 8225. Raja V, Sharma A K and Narasimha V V R 2004 Mater.