WorldWideScience

Sample records for carbon 12 beams

  1. Fragmentation in Carbon Therapy Beams

    CERN Document Server

    Charara, Y M

    2010-01-01

    The state of the art Monte Carlo code HETC-HEDS was used to simulate spallation products, secondary neutron, and secondary proton production in A-150 Tissue Equivalent Plastic phantoms to investigate fragmentation of carbon therapy beams. For a 356 MeV/Nucleon carbon ion beam, production of charged particles heavier than protons was 0.24 spallation products per incident carbon ion with atomic numbers ranging from 1 through 5 (hydrogen to boron). In addition, there were 4.73 neutrons and 2.95 protons produced per incident carbon ion. Furthermore, as the incident energy increases, the neutron production rate increases at a rate of 20% per 10 MeV/nucleon. Secondary protons were created at a rate between 2.62-2.87 per carbon ion, while spallation products were created at a rate between 0.20-0.24 per carbon ion.

  2. Thick-target neutron, gamma-ray, and radionuclide production for protons below 12 MeV on nickel and carbon beam-stops

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, M.B.; Young, P.G.; Wilson, W.B.

    1998-03-01

    Nuclear model calculations using the GNASH code are described for protons below 12 MeV incident on nickel and carbon isotopes, for beam stop design in the Los Alamos Accelerator Production of Tritium Low Energy Demonstration Accelerator (LEDA) project. The GNASH calculations apply Hauser-Feshbach and preequilibrium reaction theories and can make use of pre-calculated direct reaction cross sections to low-lying residual nucleus states. From calculated thin target cross sections, thick target 6.7 MeV and 12 MeV proton-induced production of neutrons, gamma rays, and radionuclides are determined. Emission spectra of the secondary neutrons and gamma rays are also determined. The model calculations are validated through comparisons with experimental thin- and thick-target measurements. The results of this work are being utilized as source terms in MCNP analyses for LEDA.

  3. Carbon Fiber Damage in Accelerator Beam

    CERN Document Server

    Sapinski, M; Guerrero, A; Koopman, J; Métral, E

    2009-01-01

    Carbon fibers are commonly used as moving targets in Beam Wire Scanners. Because of their thermomechanical properties they are very resistant to particle beams. Their strength deteriorates with time due to radiation damage and low-cycle thermal fatigue. In case of high intensity beams this process can accelerate and in extreme cases the fiber is damaged during a single scan. In this work a model describing the fiber temperature, thermionic emission and sublimation is discussed. Results are compared with fiber damage test performed on SPS beam in November 2008. In conclusions the limits of Wire Scanner operation on high intensity beams are drawn.

  4. Particle radiotherapy with carbon ion beams.

    Science.gov (United States)

    Ohno, Tatsuya

    2013-03-04

    Carbon ion radiotherapy offers superior dose conformity in the treatment of deep-seated malignant tumours compared with conventional X-ray therapy. In addition, carbon ion beams have a higher relative biological effectiveness compared with protons or X-ray beams. The algorithm of treatment planning and beam delivery system is tailored to the individual parameters of the patient. The present article reviews the available literatures for various disease sites including the head and neck, skull base, lung, liver, prostate, bone and soft tissues and pelvic recurrence of rectal cancer as well as physical and biological properties.

  5. Carbon Fiber Damage in Particle Beam

    CERN Document Server

    Dehning, B; Kroyer, T; Meyer, M; Sapinski, M

    2011-01-01

    Carbon fibers are commonly used as moving targets in beam wire scanners. The heating of the fiber due to energy loss of the particles travelling through is simulated with Geant4. The heating induced by the beam electromagnetic field is estimated with ANSYS. The heat transfer and sublimation processes are modelled. Due to the model nonlinearity, a numerical approach based on discretization of the wire movement is used to solve it for particular beams. Radiation damage to the fiber is estimated with SRIM. The model is tested with available SPS and LEP data and a dedicated damage test on the SPS beam is performed followed by a post-mortem analysis of the wire remnants. Predictions for the LHC beams are made.

  6. Shunting arc plasma source for pure carbon ion beam.

    Science.gov (United States)

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse.

  7. RC T beams strengthened to shear with carbon fiber composites

    Directory of Open Access Journals (Sweden)

    L. A. Spagnolo JR

    Full Text Available This paper presents the experimental data of the behavior of reinforced concrete beams strengthened to shear with carbon fiber composites. The tests were composed of eight T beams, b w=15 cm, h=40 cm, flange width 40 cm, flange height 8 cm, and length 300 cm, divided into two series with the same longitudinal steel reinforcement and a reference beam without strengthening in each series. The beams had two types of arrangement of internal steel stirrups. The test variables were the internal and external geometric ratio of the transverse reinforcement and the mechanical ratio of carbon fiber composites stirrups. All the beams were loaded at two points. The strengthened beams were submitted to a preloading and the strengthening was applied to the cracked beam. All the beams were designed in order to guarantee shear failure, and the ultimate load of the strengthened beams was 36% to 54% greater than the reference beams. The Cracking Sliding Model applied to the strengthened beams was evaluated and showed good agreement with the experimental results.

  8. Carbon beam dosimetry using VIP polymer gel and MRI

    DEFF Research Database (Denmark)

    Kantemiris, I; Petrokokkinos, L; Angelopoulos, A

    2009-01-01

    VIP polymer gel dosimeter was used for Carbon ion beam dosimetry using a 150 MeV/n beam with 10 Gy plateau dose and a SOBP irradiation scheme with 5 Gy Bragg peak dose. The results show a decrease by 8 mm in the expected from Monte Carlo simulation range in water, suggesting that the dosimeter is...

  9. Model of Carbon Wire Heating in Accelerator Beam

    CERN Document Server

    Sapinski, M

    2008-01-01

    A heat flow equation with beam-induced heating and various cooling processes for a carbon wire passing through a particle beam is solved. Due to equation nonlinearity a numerical approach based on discretization of the wire movement is used. Heating of the wire due to the beam-induced electromagnetic field is taken into account. An estimation of the wire sublimation rate is made. The model is tested on SPS, LEP and Tevatron Main Injector data. Results are discussed and conclusions about limits of Wire Scanner operation on LHC beams are drawn.

  10. Electron beam irradiation-enhanced wettability of carbon fibers.

    Science.gov (United States)

    Kim, Bo-Hye; Lee, Dong Hun; Yang, Kap Seung; Lee, Byung-Cheol; Kim, Yoong Ahm; Endo, Morinobu

    2011-02-01

    A simple but controllable way of altering the surface nature of carbon fibers, without sacrificing their intrinsic mechanical properties, is demonstrated using electron beam irradiation. Such treatment leads to physically improved roughness as well as chemically introduced hydrophilic oxygen-containing functional groups on the surface of carbon fibers that are essential for assuring an efficient stress transfer from carbon fibers to a polymer matrix.

  11. Improvement of carbon fiber surface properties using electron beam irradiation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Carbon fiber-reinforced advance composites have been used for struetural applications, mainly on account of their mechanical properties. The main factor for a good mechanical performance of carbon fiber-reinforced composite is the interfacial interaction between its components, which are carbon fiber and polymeric matrix. The aim of this study is to improve the surface properties of the carbon fiber using ionizing radiation from an electron beam to obtain better adhesion properties in the resultant composite. EB radiation was applied on the carbon fiber itself before preparing test specimens for the mechanical tests. Experimental results showed that EB irradiation improved the tensile strength of carbon fiber samples. The maximum value in tensile strength was reached using doses of about 250kGy. After breakage, the morphology aspect of the tensile specimens prepared with irradiated and non-irradiated carbon fibers were evaluated. SEM micrographs showed modifications on the carbon fiber surface.

  12. Graphitic carbon grown on fluorides by molecular beam epitaxy.

    Science.gov (United States)

    Jerng, Sahng-Kyoon; Lee, Jae Hong; Kim, Yong Seung; Chun, Seung-Hyun

    2013-01-03

    We study the growth mechanism of carbon molecules supplied by molecular beam epitaxy on fluoride substrates (MgF2, CaF2, and BaF2). All the carbon layers form graphitic carbon with different crystallinities depending on the cation. Especially, the growth on MgF2 results in the formation of nanocrystalline graphite (NCG). Such dependence on the cation is a new observation and calls for further systematic studies with other series of substrates. At the same growth temperature, the NCG on MgF2 has larger clusters than those on oxides. This is contrary to the general expectation because the bond strength of the carbon-fluorine bond is larger than that of the carbon-oxygen bond. Our results show that the growth of graphitic carbon does not simply depend on the chemical bonding between the carbon and the anion in the substrate.

  13. Bulk Cutting of Carbon Nanotubes Using Electron Beam Irradiation

    Science.gov (United States)

    Ziegler, Kirk J. (Inventor); Rauwald, Urs (Inventor); Hauge, Robert H. (Inventor); Schmidt, Howard K. (Inventor); Smalley, Richard E. (Inventor); Kittrell, W. Carter (Inventor); Gu, Zhenning (Inventor)

    2013-01-01

    According to some embodiments, the present invention provides a method for attaining short carbon nanotubes utilizing electron beam irradiation, for example, of a carbon nanotube sample. The sample may be pretreated, for example by oxonation. The pretreatment may introduce defects to the sidewalls of the nanotubes. The method is shown to produces nanotubes with a distribution of lengths, with the majority of lengths shorter than 100 tun. Further, the median length of the nanotubes is between about 20 nm and about 100 nm.

  14. Carbon-nanotube electron-beam (C-beam) crystallization technique for silicon TFTs

    Science.gov (United States)

    Lee, Su Woong; Kang, Jung Su; Park, Kyu Chang

    2016-02-01

    We introduced a carbon-nanotube (CNT) electron beam (C-beam) for thin film crystallization and thin film transistor (TFT) applications. As a source of electron emission, a CNT emitter which had been grown on a silicon wafer with a resist-assisted patterning (RAP) process was used. By using the C-beam exposure, we successfully crystallized a silicon thin film that had nano-sized crystalline grains. The distribution of crystalline grain size was about 10 ˜ 30 nm. This nanocrystalline silicon thin film definitely had three crystalline directions which are (111), (220) and (311), respectively. The silicon TFTs crystallized by using a C-beam exposure showed a field effect mobility of 20 cm2/Vs and an on/off ratio of more than 107. The C-beam exposure can modify the bonding network of amorphous silicon with its proper energy.

  15. Design Study of a Superconducting Gantry for Carbon Beam Therapy

    CERN Document Server

    Kim, J

    2016-01-01

    This paper describes the design study of a gantry for a carbon beam. The designed gantry is compact such that its size is comparable to the size of the proton gantry. This is possible by introducing superconducting double helical coils for dipole magnets. The gantry optics is designed in such a way that it provides rotation-invariant optics and variable beam size as well as point-to-parallel scanning of a beam. For large-aperture magnet, three-dimensional magnetic field distribution is obtained by invoking a computer code, and a number of particles are tracked by integrating equations of motion numerically together with three-dimensional interpolation. The beam-shape distortion due to the fringe field is reduced to an acceptable level by optimizing the coil windings with the help of genetic algorithm. Higher-order transfer coefficients are calculated and shown to be reduced greatly with appropriate optimization of the coil windings.

  16. Beam current transformer (BCT) for experiment WA1/2

    CERN Multimedia

    1978-01-01

    In experiment WA1/2, a 400 GeV proton beam from the SPS was directed at a target, downstream of which a hadron line selected, in several narrow momentum bands, a beam of either pi+ and K+ or pi- and K-. These neutrino-parent particles, before entering a 292 m long decay tunnel, passed through a set of 2 BCTs of a design seen here. They measured the hadron intensity (10^10 to 10^11 particles/pulse) with a precision of the order of 1%. There were 2 of them, for enhanced precision and confidence. After the discovery of neutral currents in the Gargamelle-experiment, WA1/2 was the first follow-up, high-precision experiment (Z.Phys.C35, 443-452, 1987 and Z.Phys.C45, 361-379, 1990). See also 7706516X.

  17. Dose Response of Alanine Detectors Irradiated with Carbon Ion Beams

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Jäkel, Oliver; Palmans, Hugo

    2011-01-01

    Purpose: The dose response of the alanine detector shows a dependence on particle energy and type, when irradiated with ion beams. The purpose of this study is to investigate the response behaviour of the alanine detector in clinical carbon ion beams and compare the results with model predictions....... Methods: Alanine detectors have been irradiated with carbon ions with an energy range of 89-400 MeV/u. The relative effectiveness of alanine has been measured in this regime. Pristine and spread out Bragg peak depth-dose curves have been measured with alanine dosimeters. The track-structure based alanine......-dose curves deviate from predictions in the peak region, most pronounced at the distal edge of the peak. Conclusions: The used model and its implementation show a good overall agreement for quasi mono energetic measurements. Deviations in depth-dose measurements are mainly attributed to uncertainties...

  18. Measurements of the $^{12}$C Ion Beam Microdosimetric Characteristics

    CERN Document Server

    Molokanov, A G

    2005-01-01

    The results of experimental studies of the $^{12}$C ion beam with the primary energy of 500 MeV/amu from the JINR Nuclotron are presented. Depth-dose distributions have been measured by means of a diamond detector. The spectra of the linear energy transfer (LET) were studied at various beam penetration depths at several points from the beam entrance up to the region behind the Bragg peak by means of chemically etched track detectors. The track parameters were measured by means of an automatic optical image analyzer LUCIA-G based on a Leitz microscope. The value of the relative biological weighted effectiveness (RBWE), characterizing the value of the RBE during tumours radiotherapy, was calculated from the measured LET spectra on the basis of a biological weighting function. RBWE increases with the depth in the phantom, reaching the maximum value of about 3 just before the Bragg peak. Afterwards it decreases rather rapidly, which is to be considered when extended tumours are to be treated.

  19. Response of SOI image sensor to therapeutic carbon ion beam

    CERN Document Server

    Matsumura, Akihiko

    2015-01-01

    Carbon ion radiotherapy is known as a less invasive cancer treatment. The radiation quality is an important parameter to evaluate the biological effect and the clinical dose from the measured physical dose. The performance of SOPHIAS detector, which is the SOI image sensor having a wide dynamic range and large active area, was tested by using therapeutic carbon ion beam at Gunma University Heavy Ion Medical Center (GHMC). It was shown that the primary carbon and secondary particles can be distinguishable by SOPHIAS detector. On the other hand, a LET dependence was observed especially at the high LET region. This phenomenon will be studied by using the device simulator together with Monte Carlo simulation.

  20. Design study of a superconducting gantry for carbon beam therapy

    Science.gov (United States)

    Kim, J.; Yoon, M.

    2016-09-01

    This paper describes beam-optics design of a gantry for carbon ions in cancer therapy accelerators. A compact design is important for such a gantry. The designed gantry is compact such that its size is comparable to the size of the existing proton gantries. This is made possible by introducing superconducting double helical coils for dipole magnets. The gantry optics is designed in such a way that it provides rotation-invariant optics, a variable beam size, and point-to-parallel scanning of a beam. For large-aperture magnet, a three-dimensional magnetic field distribution is obtained by invoking a computer code, and a number of particles are tracked by integrating equations of motion numerically together with a three-dimensional interpolation. The beam-shape distortion due to the fringe field is reduced to an acceptable level by optimizing the coil windings with the help of a genetic algorithm. Higher-order transfer coefficients are calculated and shown to be reduced greatly with appropriate optimization of the coil windings.

  1. A simulation study of a C-shaped in-beam PET system for dose verification in carbon ion therapy

    Science.gov (United States)

    Jung An, Su; Beak, Cheol-Ha; Lee, Kisung; Hyun Chung, Yong

    2013-01-01

    The application of hadrons such as carbon ions is being developed for the treatment of cancer. The effectiveness of such a technique is due to the eligibility of charged particles in delivering most of their energy near the end of the range, called the Bragg peak. However, accurate verification of dose delivery is required since misalignment of the hadron beam can cause serious damage to normal tissue. PET scanners can be utilized to track the carbon beam to the tumor by imaging the trail of the hadron-induced positron emitters in the irradiated volume. In this study, we designed and evaluated (through Monte Carlo simulations) an in-beam PET scanner for monitoring patient dose in carbon beam therapy. A C-shaped PET and a partial-ring PET were designed to avoid interference between the PET detectors and the therapeutic carbon beam delivery. Their performance was compared with that of a full-ring PET scanner. The C-shaped, partial-ring, and full-ring scanners consisted of 14, 12, and 16 detector modules, respectively, with a 30.2 cm inner diameter for brain imaging. Each detector module was composed of a 13×13 array of 4.0 mm×4.0 mm×20.0 mm LYSO crystals and four round 25.4 mm diameter PMTs. To estimate the production yield of positron emitters such as 10C, 11C, and 15O, a cylindrical PMMA phantom (diameter, 20 cm; thickness, 20 cm) was irradiated with 170, 290, and 350 AMeV 12C beams using the GATE code. Phantom images of the three types of scanner were evaluated by comparing the longitudinal profile of the positron emitters, measured along the carbon beam as it passed a simulated positron emitter distribution. The results demonstrated that the development of a C-shaped PET scanner to characterize carbon dose distribution for therapy planning is feasible.

  2. Alanine Radiation Detectors in Therapeutic Carbon Ion Beams

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Jäkel, Oliver; Palmans, Hugo;

    of the depth dose curves. Solid state detectors, such as diamond detectors, radiochromic films, TLDs and the amino acid alanine are used due to there good spatial resolution. If used in particle beams their response often exhibits a dependence on particle energy and type, so the acquired signal is not always...... at energies below 20 MeV/u. We implemented this model in the Monte Carlo code FLUKA. At the GSI heavy ion facility in Darmstadt, Germany, alanine has been irradiated with carbon ions at energies between 88 an 400 MeV/u, which is the energy range used for therapy. The irradiation and the detector response have...

  3. Carbon dust particles in a beam-plasma discharge

    Science.gov (United States)

    Koval, O. A.; Vizgalov, V.; Shalpegin, A. V.

    2016-09-01

    This paper focuses on dynamics of micro-sized carbon dust grains in beam-plasma discharge (BPD) plasmas. It was demonstrated that injected dust particles can be captured and transported along the discharge. Longitudinal average velocity of the particles in the central area of the plasma column was 17 m/sec, and 2 m/sec in the periphery. Dust injection caused a decrease of emission intensity of metastable nitrogen molecular ion. This effect is suggested for a spectroscopy method for particles’ potential measurements. Five-micron radius carbon dust grains obtained potential above 500 V in the experiments on PR-2 installation, proving the feasibility of BPDs for the charging of fine dust particles up to high potential values, unattainable in similar plasma conditions.

  4. Electron beam influence on the carbon contamination of electron irradiated hydroxyapatite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hristu, Radu; Stanciu, Stefan G.; Tranca, Denis E.; Stanciu, George A., E-mail: stanciu@physics.pub.ro

    2015-08-15

    Highlights: • Carbon contamination mechanisms of electron-beam-irradiated hydroxyapatite. • Atomic force microscopy phase imaging used to detect carbon contamination. • Carbon contamination dependence on electron energy, irradiation time, beam current. • Simulation of backscattered electrons confirms the experimental results. - Abstract: Electron beam irradiation which is considered a reliable method for tailoring the surface charge of hydroxyapatite is hindered by carbon contamination. Separating the effects of the carbon contamination from those of irradiation-induced trapped charge is important for a wide range of biological applications. In this work we focus on the understanding of the electron-beam-induced carbon contamination with special emphasis on the influence of the electron irradiation parameters on this phenomenon. Phase imaging in atomic force microscopy is used to evaluate the influence of electron energy, beam current and irradiation time on the shape and size of the resulted contamination patterns. Different processes involved in the carbon contamination of hydroxyapatite are discussed.

  5. Dual ion beam deposition of carbon films with diamondlike properties

    Science.gov (United States)

    Mirtich, M. J.; Swec, D. M.; Angus, J. C.

    1984-01-01

    A single and dual ion beam system was used to generate amorphous carbon films with diamond like properties. A methane/argon mixture at a molar ratio of 0.28 was ionized in the low pressure discharge chamber of a 30-cm-diameter ion source. A second ion source, 8 cm in diameter was used to direct a beam of 600 eV Argon ions on the substrates (fused silica or silicon) while the deposition from the 30-cm ion source was taking place. Nuclear reaction and combustion analysis indicate H/C ratios for the films to be 1.00. This high value of H/C, it is felt, allowed the films to have good transmittance. The films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Although the measured density of the films was approximately 1.8 gm/cu cm, a value lower than diamond, the films exhibited other properties that were relatively close to diamond. These films were compared with diamondlike films generated by sputtering a graphite target.

  6. Geant4 simulations of proton beam transport through a carbon or beryllium degrader and following a beam line

    NARCIS (Netherlands)

    van Goethem, M. J.; van der Meer, R.; Reist, H. W.; Schippers, J. M.

    2009-01-01

    Monte Carlo simulations based on the Geant4 simulation toolkit were performed for the carbon wedge degrader used in the beam line at the Center of Proton Therapy of the Paul Scherrer Institute (PSI). The simulations are part of the beam line studies for the development and understanding of the GANTR

  7. Beam tests of the 12 MHz RFQ RIB injector for ATLAS.

    Energy Technology Data Exchange (ETDEWEB)

    Clifft, B. E.; Kaye, R. A.; Kedzie, M.; Shepard, K. W.

    1999-05-06

    Beam tests of the ANL 12 MHz Radio-Frequency Quadruple (RFQ), designed for use as the initial element of an injector system for radioactive beams into the existing ATLAS accelerators, are in progress. Recent high-voltage tests of the RFQ without beam achieved the design intervane voltage of 100 kV CW, enabling beam tests with A/q as large as 132 using beams from the ANL Physics Division 4 MV Dynamitron accelerator facility. Although the RFQ was designed for bunched beams, initial tests have been performed with unbunched beams. Experiments with stable, unbunched beams of singly-charged {sup 132}Xe and {sup 84}Kr measured the output beam energy distribution as a function of the RFQ operating voltage. The observed energies are in excellent agreement with numerical beam simulations.

  8. PREFACE 12th International Workshop on Slow Positron Beam Techniques

    Science.gov (United States)

    Buckman, Stephen; Sullivan, James; White, Ronald

    2011-01-01

    Preface These proceedings arose from the 12th International Workshop on Slow Positron Beam Techniques (SLOPOS12), which was held on Magnetic Island, North Queensland, Australia, between 1-6th August 2010. Meetings in the SLOPOS series are held (roughly) every three years and have now been held on (almost) all continents, indicating the truly international nature of the field. SLOPOS12 marked the second time that the Workshop had been held in the southern hemisphere, and the first time in Australia. SLOPOS12 attracted 122 delegates from 16 countries. Most encouraging was the attendance of 28 student delegates, and that about half of the overall delegates were early career researchers - a good sign for the future of our field. We also enjoyed the company of more than a dozen partners and families of delegates. In a slight departure from previous SLOPOS meetings, the International Advisory Committee approved a broader scope of scientific topics for inclusion in the program for the 2010 Workshop. This broader scope was intended to capture the applications of positrons in atomic, molecular and biomedical areas and was encapsulated in the byeline for SLOPOS-12: The 12th International Workshop on Slow Positron Beam Techniques for Solids, Surfaces, Atoms and Molecules. The scientific and social program for the meeting ran over 6 days with delegates gathering on Sunday August 1st and departing on August 6th. The scientific program included plenary, invited, contributed and student lectures, the latter being the subject of a student prize. In all there were 53 oral presentations during the week. There were also two poster sessions, with 63 posters exhibited, and a prize was awarded for the best poster by a student delegate. The standard of the student presentations, both oral and posters, was outstanding, so much so that the judging panel recommended an additional number of prizes be awarded. Topics that were the focus of invited presentations and contributed papers at

  9. Dosimetric characterization of the iBEAM evo carbon fiber couch for radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Smith, David W.; Christophides, Damianos; Dean, Christopher; Naisbit, Mitchell; Mason, Joshua; Morgan, Andrew [Department of Medical Physics and Clinical Engineering, St. James' s Institute of Oncology, Bexley Wing, St. James' s University Hospital, Leeds LS9 7TF (United Kingdom); Department of Medical Physics, St. Bartholomew' s Hospital, Barts and London NHS Trust, West Smithfield, London EC1A 7BE (United Kingdom); Department of Medical Physics and Clinical Engineering, St. James' s Institute of Oncology, Bexley Wing, St. James' s University Hospital, Leeds LS9 7TF (United Kingdom); Radiotherapy Physics Department, Beacon Centre, Musgrove Park Hospital, Taunton, Somerset TA1 5DA (United Kingdom)

    2010-07-15

    convolution algorithms failed to accurately calculate couch attenuation. The collapsed cone and superposition algorithms calculated attenuation within an absolute error of {+-}1.2% for 6 MV and {+-}0.8% for 10 MV for gantry angles from 0 deg. to 40 deg. Some differences in attenuation were observed dependent on how the couch was contoured. Conclusions: These results demonstrate that the presence of the iBEAM evo carbon fiber couch increases the surface dose and dose in the build up region. The inclusion of the couch in the planning scan is limited by the field of view employed and the couch height at the time of CT scanning.

  10. Hadrontherapy: Cancer Treatment With Proton and Carbon Beams

    Science.gov (United States)

    Amaldi, Ugo; Kraft, Gerhard

    Sixty years ago accelerator pioneer Robert Wilson published the paper in which he proposed using protons for cancer therapy. The introduction of protontherapy has been very slow, but in the last 10 years the field is booming and five companies offer turn-key centres. Fully stripped ions leave much more energy in the nuclei of the traversed cells than protons of the same range and are thus effective in controlling radio-resistant tumours which cannot be controlled neither with X-rays nor with protons. Paying particular attention to the European contributions, this contribution shortly reviews the history and the developments of carbon ion therapy, a recent chapter of the "hadrontherapy" which covers also radiotherapy with proton and neutron beams.

  11. Investigating the energy harvesting capabilities of a hybrid ZnO nanowires/carbon fiber polymer composite beam.

    Science.gov (United States)

    Masghouni, N; Burton, J; Philen, M K; Al-Haik, M

    2015-03-06

    Hybrid piezoelectric composite structures that are able to convert mechanical energy into electricity have gained growing attention in the past few years. In this work, an energy harvesting composite beam is developed by growing piezoelectric zinc oxide nanowires on the surface of carbon fiber prior to forming structural composites. The piezoelectric behavior of the composite beam was demonstrated under different vibration sources such as water bath sonicator and permanent magnet vibration shaker. The beam was excited at its fundamental natural frequency (43.2 Hz) and the open circuit voltage and the short circuit current were measured to be 3.1 mV and 23 nA, respectively. Upon connecting an optimal resistor (1.2 kΩ) in series with the beam a maximum power output 2.5 nW was achieved.

  12. Charged particle's flux measurement from PMMA irradiated by 80 MeV/u carbon ion beam.

    Science.gov (United States)

    Agodi, C; Battistoni, G; Bellini, F; Cirrone, G A P; Collamati, F; Cuttone, G; De Lucia, E; De Napoli, M; Domenico, A Di; Faccini, R; Ferroni, F; Fiore, S; Gauzzi, P; Iarocci, E; Marafini, M; Mattei, I; Muraro, S; Paoloni, A; Patera, V; Piersanti, L; Romano, F; Sarti, A; Sciubba, A; Vitale, E; Voena, C

    2012-09-21

    Hadrontherapy is an emerging technique in cancer therapy that uses beams of charged particles. To meet the improved capability of hadrontherapy in matching the dose release with the cancer position, new dose-monitoring techniques need to be developed and introduced into clinical use. The measurement of the fluxes of the secondary particles produced by the hadron beam is of fundamental importance in the design of any dose-monitoring device and is eagerly needed to tune Monte Carlo simulations. We report the measurements carried out with charged secondary particles produced from the interaction of a 80 MeV/u fully stripped carbon ion beam at the INFN Laboratori Nazionali del Sud, Catania, with a poly-methyl methacrylate target. Charged secondary particles, produced at 90° with respect to the beam axis, have been tracked with a drift chamber, while their energy and time of flight have been measured by means of a LYSO scintillator. Secondary protons have been identified exploiting the energy and time-of-flight information, and their emission region has been reconstructed backtracking from the drift chamber to the target. Moreover, a position scan of the target indicates that the reconstructed emission region follows the movement of the expected Bragg peak position. Exploiting the reconstruction of the emission region, an accuracy on the Bragg peak determination in the submillimeter range has been obtained. The measured differential production rate for protons produced with E(Prod)(kin) > 83 MeV and emitted at 90° with respect to the beam line is dN(P)/(dN(C)dΩ) (E(Prod)(kin) > 83 MeV, θ = 90°) = (2.69 ± 0.08(stat) ± 0.12(sys)) × 10⁻⁴ sr⁻¹.

  13. Interaction of the CERN Large Hadron Collider (LHC) Beam with Carbon Collimators

    CERN Document Server

    Schmidt, R; Hoffmann, Dieter H H; Kadi, Y; Shutov, A; Piriz, AR

    2006-01-01

    The LHC will operate at an energy of 7 TeV with a luminosity of 1034cm-2s-1. This requires two beams, each with 2808 bunches. The energy stored in each beam of 362 MJ. In a previous paper the mechanisms causing equipment damage in case of a failure of the machine protection system was discussed, assuming that the entire beam is deflected into a copper target [1, 2]. Another failure scenario is the deflection of beam into carbon material. Carbon collimators and beam absorbers are installed in many locations around the LHC to diffuse or absorb beam losses. Since the collimator jaws are close to the beam, it is very likely that they are hit first when the beam is accidentally deflected. Here we present the results of two-dimensional hydrodynamic simulations of the heating of a solid carbon cylinder irradiated by the LHC beam with nominal parameters, carried out using the BIG-2 computer code [3] while the energy loss of the 7 TeV protons in carbon is calculated using the well known FLUKA code [4]. Our calculation...

  14. Measurement of large angle fragments induced by 400 MeV n-1 carbon ion beams

    Science.gov (United States)

    Aleksandrov, Andrey; Consiglio, Lucia; De Lellis, Giovanni; Di Crescenzo, Antonia; Lauria, Adele; Montesi, Maria Cristina; Patera, Vincenzo; Sirignano, Chiara; Tioukov, Valeri

    2015-09-01

    The use of carbon ion beams in radiotherapy presents significant advantages when compared to traditional x-ray. In fact, carbon ions deposit their energy inside the human body at the end of their range, the Bragg peak. Unlike x-ray beams, where the energy deposition decreases exponentially inside the irradiated volume, the shape of carbon beams is sharp and focused. Advantages are an increased energy released in the cancer volume while minimizing the irradiation to healthy tissues. Currently, the use of carbon beams is limited by the poor knowledge we have about the effects of the secondary fragments on the irradiated tissues. The secondary particles produced and their angular distribution is crucial to determine the global dose deposition. The knowledge of the flux of secondary particles plays a key role in the real time monitoring of the dose profile in hadron therapy. We present a detector based on nuclear emulsions for fragmentation measurements that performs a sub-micrometric tridimensional spatial resolution, excellent multi-particle separation and large angle track recognition. Nuclear emulsions are assembled in order to realize a hybrid detector (emulsion cloud chamber (ECC)) made of 300 μm nuclear emulsion films alternated with lead as passive material. Data reported here have been obtained by exposing two ECC detectors to the fragments produced by a 400 MeV n-1 12C beam on a composite target at the GSI laboratory in Germany. The ECC was exposed inside a more complex detector, named FIRST, in order to collect fragments with a continuous angular distribution in the range 47°-81° with respect to the beam axis. Results on the angular distribution of fragments as well as their momentum estimations are reported here.

  15. Development of a polarized 31Mg+ beam as a spin-1/2 probe for BNMR

    Science.gov (United States)

    Levy, C. D. P.; Pearson, M. R.; Dehn, M. H.; Karner, V. L.; Kiefl, R. F.; Lassen, J.; Li, R.; MacFarlane, W. A.; McFadden, R. M. L.; Morris, G. D.; Stachura, M.; Teigelhöfer, A.; Voss, A.

    2016-12-01

    A 28 keV beam of 31Mg+ ions was extracted from a uranium carbide, proton-beam-irradiated target coupled to a laser ion source. The ion beam was nuclear-spin polarized by collinear optical pumping on the 2it {S}_{1/2}-2it {P}_{1/2} transition at 280 nm. The polarization was preserved by an extended 1 mT guide field as the beam was transported via electrostatic bends into a 2.5 T longitudinal magnetic field. There the beam was implanted into a single crystal MgO target and the beta decay asymmetry was measured. Both hyperfine ground states were optically pumped with a single frequency light source, using segmentation of the beam energy, which boosted the polarization by approximately 50 % compared to pumping a single ground state. The total decay asymmetry of 0.06 and beam intensity were sufficient to provide a useful spin-1/2 beam for future BNMR experiments. A variant of the method was used previously to optically pump the full Doppler-broadened absorption profile of a beam of 11Be+ with a single-frequency light source.

  16. Dose-response of EBT3 radiochromic films to proton and carbon ion clinical beams

    Science.gov (United States)

    Castriconi, Roberta; Ciocca, Mario; Mirandola, Alfredo; Sini, Carla; Broggi, Sara; Schwarz, Marco; Fracchiolla, Francesco; Martišíková, Mária; Aricò, Giulia; Mettivier, Giovanni; Russo, Paolo

    2017-01-01

    We investigated the dose-response of the external beam therapy 3 (EBT3) films for proton and carbon ion clinical beams, in comparison with conventional radiotherapy beams; we also measured the film response along the energy deposition-curve in water. We performed measurements at three hadrontherapy centres by delivering monoenergetic pencil beams (protons: 63-230 MeV; carbon ions: 115-400 MeV/u), at 0.4-20 Gy dose to water, in the plateau of the depth-dose curve. We also irradiated the films to clinical MV-photon and electron beams. We placed the EBT3 films in water along the whole depth-dose curve for 148.8 MeV protons and 398.9 MeV/u carbon ions, in comparison with measurements provided by a plane-parallel ionization chamber. For protons, the response of EBT3 in the plateau of the depth-dose curve is not different from that of photons, within experimental uncertainties. For carbon ions, we observed an energy dependent under-response of EBT3 film, from 16% to 29% with respect to photon beams. Moreover, we observed an under-response in the Bragg peak region of about 10% for 148.8 MeV protons and of about 42% for 398.9 MeV/u carbon ions. For proton and carbon ion clinical beams, an under-response occurs at the Bragg peak. For carbon ions, we also observed an under-response of the EBT3 in the plateau of the depth-dose curve. This effect is the highest at the lowest initial energy of the clinical beams, a phenomenon related to the corresponding higher LET in the film sensitive layer. This behavior should be properly modeled when using EBT3 films for accurate 3D dosimetry.

  17. Shear strengthening of pre-damaged reinforced concrete beams with carbon fiber reinforced polymer sheet strips

    Institute of Scientific and Technical Information of China (English)

    Feras ALZOUBI; ZHANG Qi; LI Zheng-liang

    2007-01-01

    This paper presents the results of an experimental investigation on the response of pre-damaged reinforced concrete (RC) beam strengthened in shear using applied-epoxy unidirectional carbon fiber reinforced polymer (CFRP) sheet. The reasearch included four test rectangular simply supported RC beams in shear capacity. One is the control beam, two RC beams are damaged to a predetermined degree from ultimate shear capacity of the control beam, and the last beam is left without pre-damaged and then strengthened with using externally bonded carbon fiber reinforced polymer to upgrade their shear capacity. We focused on the damage degree to beams during strengthening, therefore, only the beams with side-bonded CFRPs strips and horizontal anchored strips were used. The results show the feasibility of using CFRPs to restore or increase the load-carrying capacity in the shear of damaged RC beams. The failure mode of all the CFRP-strengthened beams is debonding of CFRP vertical strips. Two prediction available models in ACI-440 and fib European code were compared with the experimental results.

  18. Modeling the Biophysical Effects in a Carbon Beam Delivery Line using Monte Carlo Simulation

    CERN Document Server

    Cho, Ilsung; Cho, Sungho; Kim, Eun Ho; Song, Yongkeun; Shin, Jae-ik; Jung, Won-Gyun

    2016-01-01

    Relative biological effectiveness (RBE) plays an important role in designing a uniform dose response for ion beam therapy. In this study the biological effectiveness of a carbon ion beam delivery system was investigated using Monte Carlo simulation. A carbon ion beam delivery line was designed for the Korea Heavy Ion Medical Accelerator (KHIMA) project. The GEANT4 simulation tool kit was used to simulate carbon beam transporting into media. An incident energy carbon ion beam in the range between 220 MeV/u and 290 MeV/u was chosen to generate secondary particles. The microdosimetric-kinetic (MK) model is applied to describe the RBE of 10% survival in human salivary gland (HSG) cells. The RBE weighted dose was estimated as a function of the penetrating depth of the water phantom along the incident beam direction. A biologically photon-equivalent Spread Out Bragg Peak (SOBP) was designed using the RBE weighted absorbed dose. Finally, the RBE of mixed beams was predicted as a function of the water phantom depth.

  19. Modeling the biophysical effects in a carbon beam delivery line by using Monte Carlo simulations

    Science.gov (United States)

    Cho, Ilsung; Yoo, SeungHoon; Cho, Sungho; Kim, Eun Ho; Song, Yongkeun; Shin, Jae-ik; Jung, Won-Gyun

    2016-09-01

    The Relative biological effectiveness (RBE) plays an important role in designing a uniform dose response for ion-beam therapy. In this study, the biological effectiveness of a carbon-ion beam delivery system was investigated using Monte Carlo simulations. A carbon-ion beam delivery line was designed for the Korea Heavy Ion Medical Accelerator (KHIMA) project. The GEANT4 simulation tool kit was used to simulate carbon-ion beam transport into media. An incident energy carbon-ion beam with energy in the range between 220 MeV/u and 290 MeV/u was chosen to generate secondary particles. The microdosimetric-kinetic (MK) model was applied to describe the RBE of 10% survival in human salivary-gland (HSG) cells. The RBE weighted dose was estimated as a function of the penetration depth in the water phantom along the incident beam's direction. A biologically photon-equivalent Spread Out Bragg Peak (SOBP) was designed using the RBE-weighted absorbed dose. Finally, the RBE of mixed beams was predicted as a function of the depth in the water phantom.

  20. Mutational effects of γ-rays and carbon ion beams on Arabidopsis seedlings

    Science.gov (United States)

    Yoshihara, Ryouhei; Nozawa, Shigeki; Hase, Yoshihiro; Narumi, Issay; Hidema, Jun; Sakamoto, Ayako N.

    2013-01-01

    To assess the mutational effects of radiation on vigorously proliferating plant tissue, the mutation spectrum was analyzed with Arabidopsis seedlings using the plasmid-rescue method. Transgenic plants containing the Escherichia coli rpsL gene were irradiated with γ-rays and carbon ion beams (320-MeV 12C6+), and mutations in the rpsL gene were analyzed. Mutant frequency increased significantly following irradiation by γ-rays, but not by 320-MeV 12C6+. Mutation spectra showed that both radiations increased the frequency of frameshifts and other mutations, including deletions and insertions, but only γ-rays increased the frequency of total base substitutions. These results suggest that the type of DNA lesions which cause base substitutions were less often induced by 320-MeV 12C6+ than by γ-rays in Arabidopsis seedlings. Furthermore, γ-rays never increased the frequencies of G:C to T:A or A:T to C:G transversions, which are caused by oxidized guanine; 320-MeV 12C6+, however, produced a slight increase in both transversions. Instead, γ-rays produced a significant increase in the frequency of G:C to A:T transitions. These results suggest that 8-oxoguanine has little effect on mutagenesis in Arabidopsis cells. PMID:23728320

  1. Treatment of industrial effluents using electron beam accelerator and adsorption with activated carbon: a comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira Sampa, M.H. de E-mail: mhosampa@ipen.br; Rela, Paulo Roberto; Las Casas, Alexandre; Nunes Mori, Manoel; Lopes Duarte, Celina

    2004-10-01

    This paper presents preliminary results of a study that compares the use of electron beam processing and activated carbon adsorption to clean up a standardized organic aqueous solution and a real industrial effluent. The electron beam treatment was performed in a batch system using the IPEN's Electron Beam Accelerators from Radiation Dynamics Inc., Dynamitron 37.5 kW. The granular activated carbon removal treatment was performed using charcoal made from wood 'pinus'. If the adequate irradiation dose is delivered to the organic pollutant, it is possible to conclude for the studied compounds that the Electron Beam Process is similar to the activated carbon process in organic removal efficiency.

  2. Practical biological spread-out Bragg peak design of carbon beam

    CERN Document Server

    Kim, Chang Hyeuk; Chang, Seduk; Jang, Hong Suk; Kim, Jeong Hwan; Park, Dong Wook; Hwang, Won Taek; Yang, Tea-Keun

    2015-01-01

    The carbon beams show more advantages on the biological properties compared with proton beams in radiation therapy. The carbon beam shows high linear energy transfer (LET) to medium and it increases the relative biological effectiveness (RBE). To design spread-out Bragg peak (SOBP) of biological dose using carbon beam, a practical method was purposed by using the linear-quadratic (LQ) model and Geant4 based Monte Carlo simulation code. The various Bragg peak profiles and LET was calculated for each slice at the target region. To generate appropriate biological SOBP, a set of weighting factor, which is a power function in terms of energy step, was applied to the obtained each physical dose. The designed biological SOBP showed 1.34 % of uniformity.

  3. Experimental analysis of reinforced concrete beams strengthened in bending with carbon fiber reinforced polymer

    Directory of Open Access Journals (Sweden)

    M. M. VIEIRA

    Full Text Available The use of carbon fiber reinforced polymer (CFRP has been widely used for the reinforcement of concrete structures due to its practicality and versatility in application, low weight, high tensile strength and corrosion resistance. Some construction companies use CFRP in flexural strengthening of reinforced concrete beams, but without anchor systems. Therefore, the aim of this study is analyze, through an experimental program, the structural behavior of reinforced concrete beams flexural strengthened by CFRP without anchor fibers, varying steel reinforcement and the amount of carbon fibers reinforcement layers. Thus, two groups of reinforced concrete beams were produced with the same geometric feature but with different steel reinforcement. Each group had five beams: one that is not reinforced with CFRP (reference and other reinforced with two, three, four and five layers of carbon fibers. Beams were designed using a computational routine developed in MAPLE software and subsequently tested in 4-point points flexural test up to collapse. Experimental tests have confirmed the effectiveness of the reinforcement, ratifying that beams collapse at higher loads and lower deformation as the amount of fibers in the reinforcing layers increased. However, the increase in the number of layers did not provide a significant increase in the performance of strengthened beams, indicating that it was not possible to take full advantage of strengthening applied due to the occurrence of premature failure mode in the strengthened beams for pullout of the cover that could have been avoided through the use of a suitable anchoring system for CFRP.

  4. Three dimensional reconstruction of therapeutic carbon ion beams in phantoms using single secondary ion tracks

    CERN Document Server

    Reinhart, Anna Merle; Jakubek, Jan; Martisikova, Maria

    2016-01-01

    Carbon ion beam radiotherapy enables a very localised dose deposition. However, already small changes in the patient geometry or positioning errors can significantly distort the dose distribution. A live monitoring system of the beam delivery within the patient is therefore highly desirable and could improve patient treatment. We present a novel three-dimensional imaging method of the beam in the irradiated object, exploiting the measured tracks of single secondary ions emerging under irradiation. The secondary particle tracks are detected with a TimePix stack, a set of parallel pixelated semiconductor detectors. We developed a three-dimensional reconstruction algorithm based on maximum likelihood expectation maximisation. We demonstrate the applicability of the new method in an irradiation of a cylindrical PMMA phantom of human head size with a carbon ion pencil beam of 226MeV/u. The beam image in the phantom is reconstructed from a set of 9 discrete detector positions between -80 and 50 degrees from the bea...

  5. Cladding of the carbon fiber on the steel base using electron beam in the air atmosphere

    Science.gov (United States)

    Losinskaya, A.; Lozhkina, E.; Bardin, A.; Stepanova, N.

    2016-11-01

    The formation of the high-carbon layers on the low-carbon steel (0.18 % C) using the method of electron-beam partial melting of the carbon fibers is considered. A 1.4 MeV electron beam extracted into air was used. The features of the cladded layers formation using different binders for a reliable fixation of the cladding material are studied. It is revealed that the best results are obtained using the phenol-formaldehyde glue as the binder. A 3 mm thickness layers with 2.2 % C are shown to be formed.

  6. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions.

    Science.gov (United States)

    Zhang, Rui; Taddei, Phillip J; Fitzek, Markus M; Newhauser, Wayne D

    2010-05-07

    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient's body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. In most cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy.

  7. Water equivalent thickness values of materials used in beams of protons, helium, carbon and iron ions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Rui; Newhauser, Wayne D [Graduate School of Biomedical Sciences, University of Texas at Houston, 6767 Bertner, Houston, TX 77030 (United States); Taddei, Phillip J [Department of Radiation Physics, Unit 1202, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030 (United States); Fitzek, Markus M [Midwest Proton Radiotherapy Institute, 2425 Milo B Sampson Lane, Bloomington, IN 47408 (United States)], E-mail: wnewhaus@mdanderson.org

    2010-05-07

    Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy charged particle beam after it penetrates a patient's body or other materials in the beam line is very important and is usually stated in terms of the water equivalent thickness (WET). However, methods of calculating WET for heavy charged particle beams are lacking. Our objective was to test several simple analytical formulas previously developed for proton beams for their ability to calculate WET values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally measured heavy charged particle beam ranges and WET values from an iterative numerical method were compared with the WET values calculated by the analytical formulas. In most cases, the deviations were within 1 mm. We conclude that the analytical formulas originally developed for proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with good accuracy.

  8. Radiosensitivity and Induction of Apoptosis by High LET Carbon Ion Beam and Low LET Gamma Radiation: A Comparative Study

    Directory of Open Access Journals (Sweden)

    Atanu Ghorai

    2014-01-01

    Full Text Available Cancer treatment with high LET heavy ion beam, especially, carbon ion beam (12C, is becoming very popular over conventional radiotherapy like low LET gamma or X-ray. Combination of Poly(ADP-ribose polymerase (PARP inhibitor with xenotoxic drugs or conventional radiation (gamma or X-ray is the newer approach for cancer therapy. The aim of our study was to compare the radiosensitivity and induction of apoptosis by high LET 12C and low LET gamma radiation in HeLa and PARP-1 knocked down cells. We did comet assay to detect DNA breaks, clonogenic survival assay, and cell cycle analysis to measure recovery after DNA damage. We measured apoptotic parameters like nuclear fragmentation and caspase-3 activation. DNA damage, cell killing, and induction of apoptosis were significantly higher for 12C than gamma radiation in HeLa. Cell killing and apoptosis were further elevated upon knocking down of PARP-1. Both 12C and gamma induced G2/M arrest although the 12C had greater effect. Unlike the gamma, 12C irradiation affects DNA replication as detected by S-phase delay in cell cycle analysis. So, we conclude that high LET 12C has greater potential over low LET gamma radiation in killing cells and radiosensitization upon PARP-1 inhibition was several folds greater for 12C than gamma.

  9. Vibration Analysis of Randomly Oriented Carbon Nanotube Based on FGM Beam Using Timoshenko Theory

    Directory of Open Access Journals (Sweden)

    Mohammad Amin Rashidifar

    2015-02-01

    Full Text Available The carbon nanotube (CNT reinforced functionally graded materials (FGM are expected to be the new generation materials having wide range of unexplored potential applications in various technological areas such as aerospace and structural and chemical industry. The present work deals with the finite element modeling and free vibration analysis of CNT based functionally graded beam using three-dimensional Timoshenko beam theory. It has been assumed that the material properties of CNT based FG beam vary only along the thickness and these properties are evaluated by rule of mixture. The extended Hamilton principle has been applied to find out the governing equations of CNT based FG beam. Finite element method is used to solve governing equation with the exact shape functions. Initial analysis deals with CNTs assumed to be oriented along the length direction only. But practically it is not possible. So, further work deals with the free vibration analysis of functionally graded nanocomposite beams reinforced by randomly oriented straight single walled carbon nanotubes (SWCNTs. The Eshelby-Mori-Tanaka approach based on an equivalent fiber is used to investigate the material properties of the beam. Results are presented in tabular and graphical forms to show the effects of carbon nanotube orientations, slenderness ratios, and boundary conditions on the dynamic behavior of the beam.

  10. Impact of Various Beam Parameters on Lateral Scattering in Proton and Carbon-ion Therapy

    Science.gov (United States)

    Ebrahimi Loushab, M.; Mowlavi, A.A.; Hadizadeh, M.H.; Izadi, R.; Jia, S.B.

    2015-01-01

    Background In radiation therapy with ion beams, lateral distributions of absorbed dose in the tissue are important. Heavy ion therapy, such as carbon-ion therapy, is a novel technique of high-precision external radiotherapy which has advantages over proton therapy in terms of dose locality and biological effectiveness. Methods In this study, we used Monte Carlo method-based Geant4 toolkit to simulate and calculate the effects of energy, shape and type of ion beams incident upon water on multiple scattering processes. Nuclear reactions have been taken into account in our calculation. A verification of this approach by comparing experimental data and Monte Carlo methods will be presented in an upcoming paper. Results Increasing particle energies, the width of the Bragg curve becomes larger but with increasing mass of particles, the width of the Bragg curve decreases. This is one of the advantages of carbon-ion therapy to treat with proton. The transverse scattering of dose distribution is increased with energy at the end of heavy ion beam range. It can also be seen that the amount of the dose scattering for carbon-ion beam is less than that of proton beam, up to about 160mm depth in water. Conclusion The distortion of Bragg peak profiles, due to lateral scattering of carbon-ion, is less than proton. Although carbon-ions are primarily scattered less than protons, the corresponding dose distributions, especially the lateral dose, are not much less. PMID:26688795

  11. Hadron Cancer Therapy - relative merits of X-ray, proton and carbon beams

    Science.gov (United States)

    Jakel, Oliver

    2014-03-01

    -Heidelberg University has a long experience in radiotherapy with carbon ions, starting with a pilot project at GSI in 1997. This project was jointly run by the Dep. for Radiation Oncology of Heidelberg University, GSI and the German Cancer Research Center (DKFZ). A hospital based heavy ion center at Heidelberg University, the Heidelberg Ion Beam Therapy Center (HIT) was proposed by the same group in 1998 and started clinical operation in late 2009. Since then nearly 2000 patients were treated with beams of carbon ions and protons. Just recently the operation of the world's first and only gantry for heavy ions also started at HIT. Patient treatments are performed in three rooms. Besides that, a lot of research projects are run in the field of Medical Physics and Radiobiology using a dedicated experimental area and the possibility to use beams of protons, carbon, helium and oxygen ions being delivered with the raster scanning technique.

  12. Geant4 Simulation Study of Dose Distribution and Energy Straggling for Proton and Carbon Ion Beams in Water

    Directory of Open Access Journals (Sweden)

    Zhao Qiang

    2016-01-01

    Full Text Available Dose distribution and energy straggling for proton and carbon ion beams in water are investigated by using a hadrontherapy model based on the Geant4 toolkit. By gridding water phantom in N×N×N voxels along X, Y and Z axes, irradiation dose distribution in all the voxels is calculated. Results indicate that carbon ion beams have more advantages than proton beams. Proton beams have bigger width of the Bragg peak and broader lateral dose distribution than carbon ion beams for the same position of Bragg peaks. Carbon ion has a higher local ionization density and produces more secondary electrons than proton, so carbon ion beams can achieve a higher value of relative biological effectiveness.

  13. Average Frequency – RA Value for Reinforced Concrete Beam Strengthened with Carbon Fibre Sheet

    Directory of Open Access Journals (Sweden)

    Mohamad M. Z.

    2016-01-01

    Full Text Available Acoustic Emission (AE is one of the tools that can be used to detect the crack and to classify the type of the crack of reinforced concrete (RC structure. Dislocation or movement of the material inside the RC may release the transient elastic wave. In this situation, AE plays important role whereby it can be used to capture the transient elastic wave and convert it into AE parameters such as amplitude, count, rise time and duration. Certain parameter can be used directly to evaluate the crack behavior. But in certain cases, the AE parameter needs to add and calculate by using related formula in order to observe the behavior of the crack. Using analysis of average frequency and RA value, the crack can be classified into tensile or shear cracks. In this study, seven phases of increasing static load were used to observe the crack behavior. The beams were tested in two conditions. For the first condition, the beams were tested in original stated without strengthened with carbon fibre sheet (CFS at the bottom of the beam or called as tension part of the beam. For the second condition, the beams were strengthened with CFS at the tension part of the beam. It was found that, beam wrapped with CFS enhanced the strength of the beams in term of maximum ultimate load. Based on the relationship between average frequency (AF and RA value, the cracks of the beams can be classified.

  14. Reinforced concrete T-beams externally prestressed with unbonded carbon fiber-reinforced polymer tendons

    DEFF Research Database (Denmark)

    Bennitz, Anders; Nilimaa, Jonny; Ravn, Dorthe Lund

    2012-01-01

    This study describes a series of experiments examining the behavior of seven beams prestressed with unbonded external carbon fiberreinforced polymer (CFRP) tendons anchored using a newly developed anchorage and post-tensioning system. The effects of varying the initial tendon depth, prestressing...... force, and the presence of a deviator were investigated. The results were compared to those observed with analogous beams prestressed with steel tendons, common beam theory, and predictions made using an analytical model adapted from the literature. It was found that steel and CFRP tendons had very...

  15. Advanced Electron Beam Ion Sources (EBIS) for 2-nd generation carbon radiotherapy facilities

    CERN Document Server

    Shornikov, A.

    2016-01-01

    In this work we analyze how advanced Electron Beam Ion Sources (EBIS) can facilitate the progress of carbon therapy facilities. We will demonstrate that advanced ion sources enable operation of 2-nd generation ion beam therapy (IBT) accelerators. These new accelerator concepts with designs dedicated to IBT provide beams better suited for therapy and, are more cost efficient than contemporary IBT facilities. We will give a sort overview of the existing new IBT concepts and focus on those where ion source technology is the limiting factor. We will analyse whether this limitation can be overcome in the near future thanks to ongoing EBIS development.

  16. Analysis of the strength and stiffness of timber beams reinforced with carbon fiber and glass fiber

    Directory of Open Access Journals (Sweden)

    Juliano Fiorelli

    2003-06-01

    Full Text Available An experimental analysis of pinewood beams (Pinus caribea var hondurensis reinforced with glass and/or carbon fibers is discussed. The theoretical model employed to calculate the beam's bending strength takes into account the timber's ultimate limit states of tensile strength and failure by compression, considering a model of fragile elastic tension and plastic elastic compression. The validity of the theoretical model is confirmed by a comparison of the theoretical and experimental results, while the efficiency of the fiber reinforcement is corroborated by the increased strength and stiffness of the reinforced timber beams.

  17. Design and analysis of automotive carbon fiber composite bumper beam based on finite element analysis

    Directory of Open Access Journals (Sweden)

    Tie Wang

    2015-06-01

    Full Text Available In this article, the most important part of the automotive front bumper system, namely, the bumper beam, is studied by changing the material and thickness to improve the crashworthiness performance in low-velocity impact. According to the low-speed standard of automotives stated in E.C.E. United Nations Agreement, Regulation no. 42, the low-velocity impact simulation based on finite element analysis is carried out. Lightweight is the main purpose of this article. First, the bumper beam analysis is accomplished for carbon fiber composite and steel material to analyze their deformation, weight, impact force, energy absorption, and the acceleration of the impactor. As a consequence, the bumper beam made by carbon fiber composite achieves better impact behavior. Second, on the purpose of lightweight, the bumper beams of different thickness including 5.4, 6, 6.6, and 7.2 mm are investigated. The results show that the 5.4 mm bumper beam is the best selection without sacrificing the impact performance. Third, according to the stress distribution, the thickness distribution of the bumper beam is changed to get better lightweight results. It is indicated that the weight of the improved bumper beam is further reduced and the impact performance is not weakened.

  18. Experimental control of the beam properties of laser-accelerated protons and carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Amin, Munib

    2008-12-15

    The laser generation of energetic high quality beams of protons and heavier ions has opened up the door to a plethora of applications. These beams are usually generated by the interaction of a short pulse high power laser with a thin metal foil target. They could already be applied to probe transient phenomena in plasmas and to produce warm dense matter by isochoric heating. Other applications such as the production of radioisotopes and tumour radiotherapy need further research to be put into practice. To meet the requirements of each application, the properties of the laser-accelerated particle beams have to be controlled precisely. In this thesis, experimental means to control the beam properties of laser-accelerated protons and carbon ions are investigated. The production and control of proton and carbon ion beams is studied using advanced ion source designs: Experiments concerning mass-limited (i.e. small and isolated) targets are conducted. These targets have the potential to increase both the number and the energy of laser-accelerated protons. Therefore, the influence of the size of a plane foil target on proton beam properties is measured. Furthermore, carbon ion sources are investigated. Carbon ions are of particular interest in the production of warm dense matter and in cancer radiotherapy. The possibility to focus carbon ion beams is investigated and a simple method for the production of quasi-monoenergetic carbon ion beams is presented. This thesis also provides an insight into the physical processes connected to the production and the control of laser-accelerated ions. For this purpose, laser-accelerated protons are employed to probe plasma phenomena on laser-irradiated targets. Electric fields evolving on the surface of laser-irradiated metal foils and hollow metal foil cylinders are investigated. Since these fields can be used to displace, collimate or focus proton beams, understanding their temporal and spatial evolution is crucial for the design of

  19. Future carbon beams at SPIRAL1 facility: Which method is the most efficient?

    Energy Technology Data Exchange (ETDEWEB)

    Maunoury, L., E-mail: maunoury@ganil.fr; Delahaye, P.; Dubois, M.; Dupuis, M.; Frigot, R.; Grinyer, J.; Jardin, P.; Leboucher, C. [GANIL, CEA/CNRS, Bd Henri Becquerel, BP 55027, 14076 Caen Cedex 5 (France); Angot, J.; Lamy, T. [LPSC, Université Joseph Fourier Grenoble 1, Grenoble INP, 53 rue des martyrs, 38026 Grenoble Cedex (France)

    2014-02-15

    Compared to in-flight facilities, Isotope Separator On-Line ones can in principle produce significantly higher radioactive ion beam intensities. On the other hand, they have to cope with delays for the release and ionization which make the production of short-lived isotopes ion beams of reactive and refractory elements particularly difficult. Many efforts are focused on extending the capabilities of ISOL facilities to those challenging beams. In this context, the development of carbon beams is triggering interest [H. Frånberg, M. Ammann, H. W. Gäggeler, and U. Köster, Rev. Sci. Instrum. 77, 03A708 (2006); M. Kronberger, A. Gottberg, T. M. Mendonca, J. P. Ramos, C. Seiffert, P. Suominen, and T. Stora, in Proceedings of the EMIS 2012 [Nucl. Instrum. Methods Phys. Res. B Production of molecular sideband radioisotope beams at CERN-ISOLDE using a Helicon-type plasma ion source (to be published)]: despite its refractory nature, radioactive carbon beams can be produced from molecules (CO or CO{sub 2}), which can subsequently be broken up and multi-ionized to the required charge state in charge breeders or ECR sources. This contribution will present results of experiments conducted at LPSC with the Phoenix charge breeder and at GANIL with the Nanogan ECR ion source for the ionization of carbon beams in the frame of the ENSAR and EMILIE projects. Carbon is to date the lightest condensable element charge bred with an ECR ion source. Charge breeding efficiencies will be compared with those obtained using Nanogan ECRIS and charge breeding times will be presented as well.

  20. Future carbon beams at SPIRAL1 facility: Which method is the most efficient?

    Science.gov (United States)

    Maunoury, L.; Delahaye, P.; Angot, J.; Dubois, M.; Dupuis, M.; Frigot, R.; Grinyer, J.; Jardin, P.; Leboucher, C.; Lamy, T.

    2014-02-01

    Compared to in-flight facilities, Isotope Separator On-Line ones can in principle produce significantly higher radioactive ion beam intensities. On the other hand, they have to cope with delays for the release and ionization which make the production of short-lived isotopes ion beams of reactive and refractory elements particularly difficult. Many efforts are focused on extending the capabilities of ISOL facilities to those challenging beams. In this context, the development of carbon beams is triggering interest [H. Frånberg, M. Ammann, H. W. Gäggeler, and U. Köster, Rev. Sci. Instrum. 77, 03A708 (2006); M. Kronberger, A. Gottberg, T. M. Mendonca, J. P. Ramos, C. Seiffert, P. Suominen, and T. Stora, in Proceedings of the EMIS 2012 [Nucl. Instrum. Methods Phys. Res. B Production of molecular sideband radioisotope beams at CERN-ISOLDE using a Helicon-type plasma ion source (to be published)]: despite its refractory nature, radioactive carbon beams can be produced from molecules (CO or CO2), which can subsequently be broken up and multi-ionized to the required charge state in charge breeders or ECR sources. This contribution will present results of experiments conducted at LPSC with the Phoenix charge breeder and at GANIL with the Nanogan ECR ion source for the ionization of carbon beams in the frame of the ENSAR and EMILIE projects. Carbon is to date the lightest condensable element charge bred with an ECR ion source. Charge breeding efficiencies will be compared with those obtained using Nanogan ECRIS and charge breeding times will be presented as well.

  1. Three-dimensional ultrashort optical Airy beams in an inhomogeneous medium with carbon nanotubes

    Science.gov (United States)

    Zhukov, Alexander V.; Bouffanais, Roland; Belonenko, Mikhail B.; Dvuzhilov, Ilya S.

    2017-03-01

    In this Letter, we consider the problem of the dynamics of propagation of three-dimensional optical pulses (a.k.a. light bullets) with an Airy profile through a heterogeneous environment of carbon nanotubes. We show numerically that such beams exhibit sustained and stable propagation. Moreover, we demonstrate that by varying the density modulation period of the carbon nanotubes one can indirectly control the pulse velocity, which is a particularly valuable feature for the design and manufacturing of novel pulse delay devices.

  2. Experiments with the newly available carbon beams at ISOLDE

    CERN Multimedia

    Garcia borge, M J; Koester, U H; Koldste, G T

    2002-01-01

    Recent target-ions-source developments at ISOLDE providing significantly increased yields for carbon isotopes, open up for new and intriguing experiments. We propose to exploit this in two different ways. In particular we wish to do an elastic resonance scattering experiment of $^{9}$C on a proton target to gain information on the particle unbound system $^{10}$N. Furthermore we wish to perform decay experiments of the neutron-rich carbon isotopes, with special focus on $^{17-19}$C but also including a test to see whether the even more neutron-rich isotopes $^{20,22}$C are accessible at ISOLDE.

  3. Quasi-steady carbon plasma source for neutral beam injector.

    Science.gov (United States)

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2014-02-01

    Carbon plasma is successfully sustained during 1000 s without any carrier gas in the bucket type ionization chamber with cusp magnetic field. Every several seconds, seed plasmas having ∼3 ms duration time are injected into the ionization chamber by a shunting arch plasma gun. The weakly ionized carbon plasma ejected from the shunting arch is also ionized by 2.45 GHz microwave at the electron cyclotron resonance surface and the plasma can be sustained even in the interval of gun discharges. Control of the gun discharge interval allows to keep high pressure and to sustain the plasma for long duration.

  4. ELECTRO-THERMAL EFFECTS AND DEFORMATION RESPONSE OF CARBON FIBER MAT CEMENT BEAMS

    Institute of Scientific and Technical Information of China (English)

    ZhuSirong; LiZhuoqiu; SongXianhui

    2003-01-01

    A carbon fiber mat is a sheet composed of intercrossing short carbon fibers, which has more stable and lower electrical resistivity compared with dispersed short carbon fiber mixed in cement. Thereby carbon fiber mat cement could exhibit obvious electro-thermal effect. When electrified, the temperature of composite structures made up of cement mortar and carbon fiber mat will rise rapidly. If the temperature field is not uniform, temperature difference will cause structures to deform, which can be used to adjust the deformation of structures. The temperature field and deformation response driven by the electro-thermal effects of a type of carbon fiber mat cement beams are studied. Firstly, the temperature and deformation responses are studied using theories of thermal conduction and elasticity. Secondly, experimental results are given to verify the theoretical solution. These two parts lay the foundation for temperature and deformation adjustment.

  5. DNA damage response signaling in lung adenocarcinoma A549 cells following gamma and carbon beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Somnath [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Narang, Himanshi, E-mail: himinarang@gmail.com [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India); Sarma, Asitikantha [Radiation Biology Laboratory, Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110 067 (India); Krishna, Malini [Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2011-11-01

    Carbon beams (5.16 MeV/u, LET = 290 keV/{mu}m) are high linear energy transfer (LET) radiation characterized by higher relative biological effectiveness than low LET radiation. The aim of the current study was to determine the signaling differences between {gamma}-rays and carbon ion-irradiation. A549 cells were irradiated with 1 Gy carbon or {gamma}-rays. Carbon beam was found to be three times more cytotoxic than {gamma}-rays despite the fact that the numbers of {gamma}-H2AX foci were same. Percentage of cells showing ATM/ATR foci were more with {gamma}-rays however number of foci per cell were more in case of carbon irradiation. Large BRCA1 foci were found in all carbon irradiated cells unlike {gamma}-rays irradiated cells and prosurvival ERK pathway was activated after {gamma}-rays irradiation but not carbon. The noteworthy finding of this study is the early phase apoptosis induction by carbon ions. In the present study in A549 lung adenocarcinoma, authors conclude that despite activation of same repair molecules such as ATM and BRCA1, differences in low and high LET damage responses might be due to their distinct macromolecular complexes rather than their individual activation and the activation of cytoplasmic pathways such as ERK, whether it applies to all the cell lines need to be further explored.

  6. Preliminary studies of PQS PET detector module for dose verification of carbon beam therapy

    Science.gov (United States)

    Kim, H.-I.; An, S. Jung; Lee, C. Y.; Jo, W. J.; Min, E.; Lee, K.; Kim, Y.; Joung, J.; Chung, Y. H.

    2014-05-01

    PET imaging can be used to verify dose distributions of therapeutic particle beams such as carbon ion beams. The purpose of this study was to develop a PET detector module which was designed for an in-beam PET scanner geometry integrated into a carbon beam therapy system, and to evaluate its feasibility as a monitoring system of patient dose distribution. A C-shaped PET geometry was proposed to avoid blockage of the carbon beam by the detector modules. The proposed PET system consisted of 14 detector modules forming a bore with 30.2 cm inner diameter for brain imaging. Each detector module is composed of a 9 × 9 array of 4.0 mm × 4.0 mm × 20.0 mm LYSO crystal module optically coupled with four 29 mm diameter PMTs using Photomultiplier-quadrant-sharing (PQS) technique. Because the crystal pixel was identified based upon the distribution of scintillation lights of four PMTs, the design of the reflector between crystal elements should be well optimized. The optical design of reflectors was optimized using DETECT2000, a Monte Carlo code for light photon transport. A laser-cut reflector set was developed using the Enhanced Specular Reflector (ESR, 3M Co.) mirror-film with a high reflectance of 98% and a thickness of 0.064 mm. All 81 crystal elements of detector module were identified. Our result demonstrates that the C-shaped PET system is under development and we present the first reconstructed image.

  7. Relativistic electron beam transport through cold and shock-heated carbon samples from aerogel to diamond

    Science.gov (United States)

    Krauland, C. M.; Wei, M.; Zhang, S.; Santos, J.; Nicolai, P.; Theobald, W.; Kim, J.; Forestier-Colleoni, P.; Beg, F.

    2016-10-01

    Understanding the transport physics of a relativistic electron beam in various plasma regimes is crucial for many high-energy-density applications, such as fast heating for advanced ICF schemes and ion sources. Most short pulse laser-matter interaction experiments for transport studies have been performed with initially cold targets where the resistivity is far from that in warm dense plasmas. We present three experiments that have been performed on OMEGA EP in order to extend fast electron transport and energy coupling studies in pre-assembled plasmas from different carbon samples. Each experiment has used one 4 ns long pulse UV beam (1014 W/cm2) to drive a shockwave through the target and a 10 ps IR beam (1019 W/cm2) to create an electron beam moving opposite the shock propagation direction. These shots were compared with initially cold target shots without the UV beam. We fielded three different samples including 340 mg/cc CRF foam, vitreous carbon at 1.4 g/cc, and high density carbon at 3.4 g/cc. Electrons were diagnosed via x-ray fluorescence measurements from a buried Cu tracer in the target, as well as bremsstrahlung emission and escaped electrons reaching an electron spectrometer. Proton radiograph was also performed in the foam shots. Details of each experiment, available data and particle-in-cell simulations will be presented. This work is supported by US DOE NLUF Program, Grant Number DE-NA0002728.

  8. Reactions of carbon atoms in pulsed molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Reisler, H. [Univ. of Southern California, Los Angeles (United States)

    1993-12-01

    This research program consists of a broad scope of experiments designed to unravel the chemistry of atomic carbon in its two spin states, P and D, by using well-controlled initial conditions and state-resolved detection of products. Prerequisite to the proposed studies (and the reason why so little is known about carbon atom reactions), is the development of clean sources of carbon atoms. Therefore, in parallel with the studies of its chemistry and reaction dynamics, the authors continuously explore new, state-specific and efficient ways of producing atomic carbon. In the current program, C({sup 3}P) is produced via laser ablation of graphite, and three areas of study are being pursued: (i) exothermic reactions with small inorganic molecules (e.g., O{sub 2}, N{sub 2}O, NO{sub 2}) that can proceed via multiple pathways; (ii) the influence of vibrational and translational energy on endothermic reactions involving H-containing reactants that yield CH products (e.g., H{sub 2}O H{sub 2}CO); (iii) reactions of C({sup 3}P) with free radicals (e.g., HCO, CH{sub 3}O). In addition, the authors plan to develop a source of C({sup 1}D) atoms by exploiting the pyrolysis of diazotetrazole and its salts in the ablation source. Another important goal involves collaboration with theoreticians in order to obtain relevant potential energy surfaces, rationalize the experimental results and predict the roles of translational and vibrational energies.

  9. Nanoscale Soldering of Positioned Carbon Nanotubes using Highly Conductive Electron Beam Induced Gold Deposition

    DEFF Research Database (Denmark)

    Madsen, Dorte Nørgaard; Mølhave, Kristian; Mateiu, Ramona Valentina

    2003-01-01

    We have developed an in-situ method for controlled positioning of carbon nanotubes followed by highly conductive contacting of the nanotubes, using electron beam assisted deposition of gold. The positioning and soldering process takes place inside an Environmental Scanning Electron Microscope (E...

  10. In vivo radiobiological assessment of the new clinical carbon ion beams at CNAO.

    Science.gov (United States)

    Facoetti, A; Vischioni, B; Ciocca, M; Ferrarini, M; Furusawa, Y; Mairani, A; Matsumoto, Y; Mirandola, A; Molinelli, S; Uzawa, A; Vilches, Freixas G; Orecchia, R

    2015-09-01

    In this article, the in vivo study performed to evaluate the uniformity of biological doses within an hypothetical target volume and calculate the values of relative biological effectiveness (RBE) at different depths in the spread-out Bragg peak (SOBP) of the new CNAO (National Centre for Oncological Hadrontherapy) carbon beams is presented, in the framework of a typical radiobiological beam calibration procedure. The RBE values (relative to (60)Co γ rays) of the CNAO active scanning carbon ion beams were determined using jejunal crypt regeneration in mice as biological system at the entrance, centre and distal end of a 6-cm SOBP. The RBE values calculated from the iso-effective doses to reduce crypt survival per circumference to 10, ranged from 1.52 at the middle of the SOBP to 1.75 at the distal position and are in agreement with those previously reported from other carbon ion facilities. In conclusion, this first set of in vivo experiments shows that the CNAO carbon beam is radiobiologically comparable with the NIRS (National Institute of Radiological Sciences, Chiba, Japan) and GSI (Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany) ones.

  11. Influence of electron beam irradiation on physicochemical properties of poly(trimethylene carbonate)

    NARCIS (Netherlands)

    Jozwiakowska, Joanna; Wach, Radoslaw A.; Rokita, Bozena; Ulanski, Piotr; Nalawade, Sameer P.; Grijpma, Dirk W.; Feijen, Jan; Rosiak, Janusz M.

    2011-01-01

    Electron beam (EB) irradiation of poly(trimethylene carbonate) (PTMC), an amorphous, biodegradable polymer used in the field of biomaterials, results in predominant cross-linking and finally in the formation of gel fraction, thus enabling modification of physicochemical properties of this material w

  12. SEMICONDUCTOR TECHNOLOGY Supercritical carbon dioxide process for releasing stuck cantilever beams

    Science.gov (United States)

    Yu, Hui; Chaoqun, Gao; Lei, Wang; Yupeng, Jing

    2010-10-01

    The multi-SCCO2 (supercritical carbon dioxide) release and dry process based on our specialized SCCO2 semiconductor process equipment is investigated and the releasing mechanism is discussed. The experiment results show that stuck cantilever beams were held up again under SCCO2 high pressure treatment and the repeatability of this process is nearly 100%.

  13. Morphological and structural modifications of multiwalled carbon nanotubes by electron beam irradiation

    Science.gov (United States)

    Elsehly, Emad M.; Chechenin, N. G.; Makunin, A. V.; Motaweh, H. A.

    2016-10-01

    Effects of electron beam irradiation on a morphology and structure of multiwalled carbon nanotubes sample in a normal imaging regime of a scanning electron microscope (SEM) were investigated. Direct SEM observations give evidence that irradiation by electron beam in SEM eliminates morphological unevenness, in the form of round spots of white contrast, on the surface of carbon nanotubes (CNTs) and makes the tubes thinner. Electron dispersive analysis and Raman spectroscopy are used to explore the origin and nature of these spots. From this analysis we found that e-beam irradiation improves the CNTs graphitization. The synergy of thermal heating and ionization produced by the irradiation are discussed as possible mechanisms of the observed effects.

  14. Fluence correction factor for graphite calorimetry in a clinical high-energy carbon-ion beam

    Science.gov (United States)

    Lourenço, A.; Thomas, R.; Homer, M.; Bouchard, H.; Rossomme, S.; Renaud, J.; Kanai, T.; Royle, G.; Palmans, H.

    2017-04-01

    The aim of this work is to develop and adapt a formalism to determine absorbed dose to water from graphite calorimetry measurements in carbon-ion beams. Fluence correction factors, {{k}\\text{fl}} , needed when using a graphite calorimeter to derive dose to water, were determined in a clinical high-energy carbon-ion beam. Measurements were performed in a 290 MeV/n carbon-ion beam with a field size of 11  ×  11 cm2, without modulation. In order to sample the beam, a plane-parallel Roos ionization chamber was chosen for its small collecting volume in comparison with the field size. Experimental information on fluence corrections was obtained from depth-dose measurements in water. This procedure was repeated with graphite plates in front of the water phantom. Fluence corrections were also obtained with Monte Carlo simulations through the implementation of three methods based on (i) the fluence distributions differential in energy, (ii) a ratio of calculated doses in water and graphite at equivalent depths and (iii) simulations of the experimental setup. The {{k}\\text{fl}} term increased in depth from 1.00 at the entrance toward 1.02 at a depth near the Bragg peak, and the average difference between experimental and numerical simulations was about 0.13%. Compared to proton beams, there was no reduction of the {{k}\\text{fl}} due to alpha particles because the secondary particle spectrum is dominated by projectile fragmentation. By developing a practical dose conversion technique, this work contributes to improving the determination of absolute dose to water from graphite calorimetry in carbon-ion beams.

  15. Making junctions between carbon nanotubes using an ion beam

    CERN Document Server

    Krasheninnikov, A V; Keinonen, J; Banhart, F

    2003-01-01

    Making use of empirical potential molecular dynamics, we study ion bombardment of crossed single-walled carbon nanotubes as a tool to join the nanotubes. We demonstrate that ion irradiation should result in welding of crossed nanotubes, both suspended and deposited on substrates. We further predict optimum ion doses and energies for ion-mediated nanotube welding which may potentially be used for developing complicated networks of joined nanotubes.

  16. Hardness and stress of amorphous carbon film deposited by glow discharge and ion beam assisting deposition

    CERN Document Server

    Marques, F C

    2000-01-01

    The hardness and stress of amorphous carbon films prepared by glow discharge and by ion beam assisting deposition are investigated. Relatively hard and almost stress free amorphous carbon films were deposited by the glow discharge technique. On the other hand, by using the ion beam assisting deposition, hard films were also obtained with a stress of the same order of those found in tetrahedral amorphous carbon films. A structural analysis indicates that all films are composed of a sp sup 2 -rich network. These results contradict the currently accepted concept that both stress and hardness are only related to the concentration of sp sup 3 sites. Furthermore, the same results also indicate that the sp sup 2 sites may also contribute to the hardness of the films.

  17. Experimental studies of superhard materials carbon nitride CNx prepared by ion-beam synthesis method

    Institute of Scientific and Technical Information of China (English)

    辛火平; 林成鲁; 许华平; 邹世昌; 石晓红; 吴兴龙; 朱宏; P.L.FHemment

    1996-01-01

    Formation of superhard materials carbon nitride CNt by using ion-beam synthesis method is reported.100-keV high-dose N+ ions were implanted into carbon thin films at different temperatures.The samples were evaluated by X-ray photoelectron spectroscopy (XPS),Fourier transformation-infrared absorption spectroscopy (FTIR),Raman spectroscopy,cross-sectional transmission electron microscopy (XTEM),Rutherford backscattering spectroscopy (RBS).X-ray diffraction analysis (XRD) and Vickers microhardness measurement.The results show that the buried carbon nitride CN> layer has been successfully formed by using 100-keV high-dose N+ ions implantation into carbon thin film.Implantation of reactive ions into silicon (IRIS) computer program has been used to simulate the formation of the buried β-C3N4 layer as N+ ions are implanted into carbon.A good agreement between experimental measurements and IRIS simulation is found.

  18. Vacuum performance of a carbon fibre cryosorber for the LHC LSS beam screen

    CERN Document Server

    Anashin, V V; Dostovalov, R V; Korotaeva, Z A; Krasnov, A A; Malyshev, O B; Poluboyarov, V A

    2004-01-01

    A new carbon fibre material was developed at the Institute of Solid State Chemistry and Mechanochemistry at the Siberian Branch of the Russian Academy of Science (SB RAS) to meet the large hadron collider (LHC) vacuum chamber. The material must have a large sorbing capacity, a certain pumping speed, a working temperature range between 5 and 20K, a low activation temperature (below room temperature), a certain size in order to fit into the limited space available and it should be easy to mount. The vacuum parameters of the LHC vacuum chamber prototype with a carbon fibre cryosorber mounted onto the beam screen were studied in the beam screen temperature range from 14 to 25K at the Budker Institute of Nuclear Physics SB RAS. This carbon fibre material has shown sufficient sorption capacity for hydrogen at operational temperatures of the beam screen in the LHC long straight sections. It is also very important that this material does not crumble and makes a convenient fixation onto the beam screen in comparison t...

  19. Clinical output factors for carbon-ion beams passing through polyethylene

    CERN Document Server

    Kanematsu, Nobuyuki; Ogata, Risa; Himukai, Takeshi

    2013-01-01

    Purpose: A recent study suggested that polyethylene (PE) range compensators would cause extra carbon-ion attenuation by 0.45%/cm due to limitations in water equivalence. The present study aims to assess its influence on tumor dose in carbon-ion radiotherapy. Methods: Carbon-ion radiation was modeled to be composed of primary carbon ions and secondary particles. For these components, tumor dose fraction and relative biological effectiveness (RBE) were estimated at a reference depth in the middle of spread-out Bragg peak. The PE effect was estimated for clinical carbon-ion beams and was partially tested by experiment. The two-component model was integrated into a treatment-planning system, with which the PE effect on tumor dose was investigated in two clinical cases. Results: The fluence and clinical attenuation coefficients for dose decrease per polyethylene thickness were estimated to be 0.1%-0.3%/cm and 0.2%-0.4%/cm, depending on energy and modulation of clinical carbon-ion beams. In the treatment-planning s...

  20. Nano-structural Modification of Amorphous Carbon Thin Films by Low-energy Electron Beam Irradiation

    Institute of Scientific and Technical Information of China (English)

    EijiIwamura; MasanoriYamaguchi

    2004-01-01

    A new approach using a low-energy electron beam radiation system was investigated to synthesize carbon hybrid structures in amorphous carbon thin films. Two types of amorphous carbon films, which were 15at% iron containing film and with column/inter-column structures, were deposited onto Si substrates by a sputtering technique and subsequently exposed to an electron shower of which the energy and dose rate were much smaller compared to an intense electron beam used in a transmission electron microscopy. As a result of the low-energy and low-dose electron irradiation process, graphitic structures formed in amorphous matrix at a relatively low temperature up to 450 K. Hybrid carbon thin films containing onion-like structures in an amorphous carbon matrix were synthesized by dynamic structural modification of iron containing amorphous carbon thin films. It was found that the graphitization progressed more in the electron irradiation than in annealing at 773K, and it was attributed to thermal and catalytic effects which are strongly related to grain growth of metal clusters. On the other hand, a reversal of TEM image contrast was observed in a-C films with column/inter-column structures. It is presumed that preferable graphitization occurred in the inter-column regions induced by electron irradiation.

  1. Nano-structural Modification of Amorphous Carbon Thin Films by Low-energy Electron Beam Irradiation

    Institute of Scientific and Technical Information of China (English)

    Eiji Iwamura; Masanori Yamaguchi

    2004-01-01

    A new approach using a low-energy electron beam radiation system was investigated to synthesize carbon hybrid structures in amorphous carbon thin films. Two types of amorphous carbon films, which were 15at% iron containing film and with column/inter-column structures, were deposited onto Si substrates by a sputtering technique and subsequently exposed to an electron shower of which the energy and dose rate were much smaller compared to an intense electron beam used in a transmission electron microscopy. As a result of the low-energy and low-dose electron irradiation process,graphitic structures formed in amorphous matrix at a relatively low temperature up to 450 K. Hybrid carbon thin films containing onion-like structures in an amorphous carbon matrix were synthesized by dynamic structural modification of iron containing amorphous carbon thin films. It was found that the graphitization progressed more in the electron irradiation than in annealing at 773K, and it was attributed to thermal and catalytic effects which are strongly related to grain growth of metal clusters. On the other hand, a reversal of TEM image contrast was observed in a-C films with column/inter-column structures. It is presumed that preferable graphitization occurred in the inter-column regions induced by electron irradiation.

  2. Deposition of diamond like carbon films by using a single ion gun with varying beam source

    Institute of Scientific and Technical Information of China (English)

    JIANG Jin-qiu; Chen Zhu-ping

    2001-01-01

    Diamond like carbon films have been successfully deposited on the steel substrate, by using a single ion gun with varying beam source. The films may appear blue, yellow and transparent in color, which was found related to contaminants from the sample holder and could be avoided. The thickness of the films ranges from tens up to 200 nanometers, and the hardness is in the range 20 to 30 GPa. Raman analytical results reveal the films are in amorphous structure. The effects of different beam source on the films structure are further discussed.

  3. Flexural Strength of Carbon Fiber Reinforced Polymer Repaired Cracked Rectangular Hollow Section Steel Beams

    Directory of Open Access Journals (Sweden)

    Tao Chen

    2015-01-01

    Full Text Available The flexural behavior of rectangular hollow section (RHS steel beams with initial crack strengthened externally with carbon fiber reinforced polymer (CFRP plates was studied. Eight specimens were tested under three-point loading to failure. The experimental program included three beams as control specimens and five beams strengthened with CFRP plates with or without prestressing. The load deflection curves were graphed and failure patterns were observed. The yield loads and ultimate loads with or without repairing were compared together with the strain distributions of the CFRP plate. It was concluded that yield loads of cracked beams could be enhanced with repairing. Meanwhile, the ultimate loads were increased to some extent. The effect of repair became significant with the increase of the initial crack depth. The failure patterns of the repaired specimens were similar to those of the control ones. Mechanical clamping at the CFRP plate ends was necessary to avoid premature peeling between the CFRP plate and the steel beam. The stress levels in CFRP plates were relatively low during the tests. The use of prestressing could improve the utilization efficiency of CFRP plates. It could be concluded that the patching repair could be used to restore the load bearing capacity of the deficient steel beams.

  4. Charged particle’s flux measurement from PMMA irradiated by 80 MeV/u carbon ion beam

    Science.gov (United States)

    Agodi, C.; Battistoni, G.; Bellini, F.; Cirrone, G. A. P.; Collamati, F.; Cuttone, G.; De Lucia, E.; De Napoli, M.; Di Domenico, A.; Faccini, R.; Ferroni, F.; Fiore, S.; Gauzzi, P.; Iarocci, E.; Marafini, M.; Mattei, I.; Muraro, S.; Paoloni, A.; Patera, V.; Piersanti, L.; Romano, F.; Sarti, A.; Sciubba, A.; Vitale, E.; Voena, C.

    2012-09-01

    Hadrontherapy is an emerging technique in cancer therapy that uses beams of charged particles. To meet the improved capability of hadrontherapy in matching the dose release with the cancer position, new dose-monitoring techniques need to be developed and introduced into clinical use. The measurement of the fluxes of the secondary particles produced by the hadron beam is of fundamental importance in the design of any dose-monitoring device and is eagerly needed to tune Monte Carlo simulations. We report the measurements carried out with charged secondary particles produced from the interaction of a 80 MeV/u fully stripped carbon ion beam at the INFN Laboratori Nazionali del Sud, Catania, with a poly-methyl methacrylate target. Charged secondary particles, produced at 90° with respect to the beam axis, have been tracked with a drift chamber, while their energy and time of flight have been measured by means of a LYSO scintillator. Secondary protons have been identified exploiting the energy and time-of-flight information, and their emission region has been reconstructed backtracking from the drift chamber to the target. Moreover, a position scan of the target indicates that the reconstructed emission region follows the movement of the expected Bragg peak position. Exploiting the reconstruction of the emission region, an accuracy on the Bragg peak determination in the submillimeter range has been obtained. The measured differential production rate for protons produced with EProdkin > 83 MeV and emitted at 90° with respect to the beam line is dNP/(dNCdΩ) (EProdkin > 83 MeV, θ = 90°) = (2.69 ± 0.08stat ± 0.12sys) × 10-4 sr-1.

  5. Comparison of the radiobiological effect of carbon ion beam therapy and conventional radiation therapy on cervical cancer.

    Science.gov (United States)

    Suzuki, Yoshiyuki; Nakano, Takashi; Ohno, Tatsuya; Oka, Kuniyuki

    2008-09-01

    Little clinical evidence has been provided to show the minimization of radiation resistance of tumors using high linear energy transfer radiation. We therefore investigated the radiobiological and molecular pathological aspects of carbon beam therapy. A total of 27 patients with squamous cell carcinoma (SCC) of the cervix were treated using a carbon beam and 50 control patients with SCC of the cervix using a photon beam. The expression of Ki-67, p53, and p27 proteins before radiotherapy and 5 and 15 days after therapy initiation were investigated using immunohistochemistry. Similar changes were observed in Ki-67 labeling index (LI) and p53 LI during carbon and photon beam therapies. However, for carbon beam therapy, the mean p27 LI significantly decreased from 25.2% before treatment to 18.6% on the 5th day after treatment initiation, followed by a significant increase to 36.1% on the 15th day. In contrast, for photon beam therapy, the p27 LI consistently decreased from the initial 19.9% to 13.7% on the 15th day. Histological effects were observably stronger under carbon than photon beam therapy, though no statistically significant difference was observed (p = 0.07 on the 5th day and p = 0.10 on the 15th day). The changes in p27 LI under carbon beam therapy were significantly different from those under photon beam therapy, which suggests important molecular differences in the radio-biological response between therapies. Further investigation is required to elucidate the clinical relevance of these putative changes and optimize the relative biological effectiveness of carbon beam to X-ray.

  6. Monte Carlo simulations of ripple filters designed for proton and carbon ion beams in hadrontherapy with active scanning technique

    Energy Technology Data Exchange (ETDEWEB)

    Bourhaleb, F; Givehchi, N; Iliescu, S; Rosa, A La; Pecka, A; Peroni, C [Dipartimento di Fisica Sperimentale, Universita' di Torino, Via P. Giuria 1, Torino 10125 (Italy); Attili, A; Cirio, R; Marchetto, F; Donetti, M; Garella, M A; Giordanengo, S; Pardo, J [INFN, Sezione di Torino, Via P. Giuria 1, Torino 10125 (Italy); Cirrone, P [INFN, Laboratori Nazionali del Sud, Via S.Sofia 62, Catania 95125 (Italy)], E-mail: bourhaleb@to.infn.it

    2008-02-01

    Proton and carbon ion beams have a very sharp Bragg peak. For proton beams of energies smaller than 100 MeV, fitting with a gaussian the region of the maximum of the Bragg peak, the sigma along the beam direction is smaller than 1 mm, while for carbon ion beams, the sigma derived with the same technique is smaller than 1 mm for energies up to 360 MeV. In order to use low energy proton and carbon ion beams in hadrontherapy and to achieve an acceptable homogeneity of the spread out Bragg peak (SOBP) either the peak positions along the beam have to be quite close to each other or the longitudinal peak shape needs to be broaden at least few millimeters by means of a properly designed ripple filter. With a synchrotron accelerator in conjunction with active scanning techniques the use of a ripple filter is necessary to reduce the numbers of energy switches necessary to obtain a smooth SOBP, leading also to shorter overall irradiation times. We studied the impact of the design of the ripple filter on the dose uniformity in the SOBP region by means of Monte Carlo simulations, implemented using the package Geant4. We simulated the beam delivery line supporting both proton and carbon ion beams using different energies of the beams. We compared the effect of different kind of ripple filters and their advantages.

  7. Anisotropic electron-beam damage and the collapse of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Crespi, V.H.; Chopra, N.G.; Cohen, M.L.; Zettl, A.; Louie, S.G. [Department of Physics, University of California at Berkeley, Berkeley, California 94720 (United States)]|[Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    1996-08-01

    Irradiation of multiwalled carbon nanotubes with the 800-keV electron beam of a transmission electron microscope induces anisotropic collapse of the nanotube. Tight-binding molecular-dynamics simulations of tube response following momentum transfer from large-angle electron-nuclear collisions reveal a strongly anisotropic threshold for atomic displacement. The theoretical displacement threshold for an impulse perpendicular to the local tangent plane of a single-walled tube is roughly half the damage threshold for impulses within the tangent plane. The electron beam preferentially damages the front and back of the nanotube, producing the observed anisotropic collapse perpendicular to the direction of the beam. The attraction of opposite faces of the inner wall then accelerates the collapse. {copyright} {ital 1996 The American Physical Society.}

  8. Consumption of carbon fiber plates in the reinforced concrete beams strengthened with CFPs

    Institute of Scientific and Technical Information of China (English)

    BU Liangtao; SONG Li; SHI Chuxian

    2007-01-01

    Four-point bending flexural tests were conducted to one full-size reinforced concrete (RC) beam and three full-size RC beams strengthened with carbon fiber plates (CFPs).The experimental results showed that the consumption of CFP had significant effects on failure modes and the flexural capacity.An analytical procedure,based on the limit failure ode and ductility,was presented to predict the applied area of CFP.An analytical program,based on Smith-Teng model and Cheng-Teng model,was provided to calculate the bonding length of CFP.The test results are used to validate the proposed procedure.The results are also applied to the design and construction of RC beam strengthened with CFP.

  9. Moment redistribution in continuous reinforced concrete beams strengthened with carbon-fiber-reinforced polymer laminates

    Science.gov (United States)

    Aiello, M. A.; Valente, L.; Rizzo, A.

    2007-09-01

    The results of tests on continuous steel-fiber-reinforced concrete (RC) beams, with and without an external strengthening, are presented. The internal flexural steel reinforcement was designed so that to allow steel yielding before the collapse of the beams. To prevent the shear failure, steel stirrups were used. The tests also included two nonstrengthened control beams; the other specimens were strengthened with different configurations of externally bonded carbon-fiber-reinforced polymer (CFRP) laminates. In order to prevent the premature failure from delamination of the CFRP strengthening, a wrapping was also applied. The experimental results obtained show that it is possible to achieve a sufficient degree of moment redistribution if the strengthening configuration is chosen properly, confirming the results provided by two simple numerical models.

  10. Variational principles for transversely vibrating multiwalled carbon nanotubes based on nonlocal Euler-Bernoulli beam model.

    Science.gov (United States)

    Adali, Sarp

    2009-05-01

    Variational principles are derived for multiwalled carbon nanotubes undergoing vibrations. Derivations are based on the continuum modeling with the Euler-Bernoulli beam representing the nanotubes and small scale effects taken into account via the nonlocal elastic theory. Hamilton's principle for multiwalled nanotubes is given and Rayleigh's quotient for the frequencies is derived for nanotubes undergoing free vibrations. Natural and geometric boundary conditions are derived which lead to a set of coupled boundary conditions due to nonlocal effects.

  11. Enhanced beam amplification in a photorefractive Bi{sub 12}TiO{sub 20} crystal by internal reflections

    Energy Technology Data Exchange (ETDEWEB)

    Khomenko, A.V.; Garcia-Weidner, A.; Tentori, D. [Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Carretera Tijuana-Ensenada km. 107, Apartado Postal 2732, Ensenada, B.C. (Mexico)

    1996-06-01

    We demonstrate experimentally that internal reflections of a signal and (or) a pump beam allow one to increase beam amplification by two-beam coupling in a long Bi{sub 12}TiO{sub 20} crystal. When fanning is negligible, we achieve an enhancement of the amplification by adjustment of the spatial period of the transformation of the beam{close_quote}s polarization states with periodic reflections of the beams on the crystal boundaries. For the case of strong fanning the fanned beam is redirected by the reflections on the crystal surface, which allows one to use it as a pump beam, thus increasing net amplification gain. {copyright} {ital 1996 Optical Society of America.}

  12. Mutagenic effects of carbon ion beam irradiations on dry Lotus japonicus seeds

    Science.gov (United States)

    Luo, Shanwei; Zhou, Libin; Li, Wenjian; Du, Yan; Yu, Lixia; Feng, Hui; Mu, Jinhu; Chen, Yuze

    2016-09-01

    Carbon ion beam irradiation is a powerful method for creating mutants and has been used in crop breeding more and more. To investigate the effects of carbon ion beams on Lotus japonicus, dry seeds were irradiated by 80 MeV/u carbon ion beam at dosages of 0, 100, 200, 300, 400, 500 and 600 Gy. The germination rate, survival rate and root length of M1 populations were explored and the dose of 400 Gy was selected as the median lethal dose (LD50) for a large-scale mutant screening. Among 2472 M2 plants, 127 morphological mutants including leaf, stem, flower and fruit phenotypic variation were found, and the mutation frequency was approximately 5.14%. Inter simple sequence repeat (ISSR) assays were utilized to investigate the DNA polymorphism between seven mutants and eight plants without phenotypic variation from M2 populations. No remarkable differences were detected between these two groups, and the total polymorphic rate was 0.567%.

  13. Electrochemical impedance spectroscopy on nanostructured carbon electrodes grown by supersonic cluster beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bettini, Luca Giacomo; Bardizza, Giorgio; Podesta, Alessandro; Milani, Paolo; Piseri, Paolo, E-mail: piseri@mi.infn.it [Universita degli Studi di Milano, Dipartimento di Fisica and CIMaINa (Italy)

    2013-02-15

    Nanostructured porous films of carbon with density of about 0.5 g/cm{sup 3} and 200 nm thickness were deposited at room temperature by supersonic cluster beam deposition (SCBD) from carbon clusters formed in the gas phase. Carbon film surface topography, determined by atomic force microscopy, reveals a surface roughness of 16 nm and a granular morphology arising from the low kinetic energy ballistic deposition regime. The material is characterized by a highly disordered carbon structure with predominant sp2 hybridization as evidenced by Raman spectroscopy. The interface properties of nanostructured carbon electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy employing KOH 1 M solution as aqueous electrolyte. An increase of the double layer capacitance is observed when the electrodes are heat treated in air or when a nanostructured nickel layer deposited by SCBD on top of a sputter deposited film of the same metal is employed as a current collector instead of a plain metallic film. This enhancement is consistent with an improved charge injection in the active material and is ascribed to the modification of the electrical contact at the interface between the carbon and the metal current collector. Specific capacitance values up to 120 F/g have been measured for the electrodes with nanostructured metal/carbon interface.

  14. Focused-Ion-Beam-Milled Carbon Nanoelectrodes for Scanning Electrochemical Microscopy

    Science.gov (United States)

    Chen, Ran; Hu, Keke; Yu, Yun; Mirkin, Michael V.; Amemiya, Shigeru

    2016-01-01

    Nanoscale scanning electrochemical microscopy (SECM) has emerged as a powerful electrochemical method that enables the study of interfacial reactions with unprecedentedly high spatial and kinetic resolution. In this work, we develop carbon nanoprobes with high electrochemical reactivity and well-controlled size and geometry based on chemical vapor deposition of carbon in quartz nanopipets. Carbon-filled nanopipets are milled by focused ion beam (FIB) technology to yield a flat disk tip with a thin quartz sheath as confirmed by transmission electron microscopy. The extremely high electroactivity of FIB-milled carbon nanotips is quantified by enormously high standard electron-transfer rate constants of ≥10 cm/s for Ru(NH3)63+. The tip size and geometry are characterized in electrolyte solutions by SECM approach curve measurements not only to determine inner and outer tip radii of down to ~27 and ~38 nm, respectively, but also to ensure the absence of a conductive carbon layer on the outer wall. In addition, FIB-milled carbon nanotips reveal the limited conductivity of ~100 nm-thick gold films under nanoscale mass-transport conditions. Importantly, carbon nanotips must be protected from electrostatic damage to enable reliable and quantitative nanoelectrochemical measurements. PMID:27642187

  15. Focused-electron-beam-induced processing (FEBIP) for emerging applications in carbon nanoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, Andrei G. [Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA (United States); Georgia Institute of Technology, Parker H. Petit Institute for Bioengineering and Bioscience, Atlanta, GA (United States); Kim, Songkil; Henry, Mathias [Georgia Institute of Technology, George W. Woodruff School of Mechanical Engineering, Atlanta, GA (United States); Kulkarni, Dhaval; Tsukruk, Vladimir V. [Georgia Institute of Technology, School of Materials Science and Engineering, Atlanta, GA (United States)

    2014-07-27

    Focused-electron-beam-induced processing (FEBIP), a resist-free additive nanomanufacturing technique, is an actively researched method for ''direct-write'' processing of a wide range of structural and functional nanomaterials, with high degree of spatial and time-domain control. This article attempts to critically assess the FEBIP capabilities and unique value proposition in the context of processing of electronics materials, with a particular emphasis on emerging carbon (i.e., based on graphene and carbon nanotubes) devices and interconnect structures. One of the major hurdles in advancing the carbon-based electronic materials and device fabrication is a disjoint nature of various processing steps involved in making a functional device from the precursor graphene/CNT materials. Not only this multi-step sequence severely limits the throughput and increases the cost, but also dramatically reduces the processing reproducibility and negatively impacts the quality because of possible between-the-step contamination, especially for impurity-susceptible materials such as graphene. The FEBIP provides a unique opportunity to address many challenges of carbon nanoelectronics, especially when it is employed as part of an integrated processing environment based on multiple ''beams'' of energetic particles, including electrons, photons, and molecules. This avenue is promising from the applications' prospective, as such a multi-functional (electron/photon/molecule beam) enables one to define shapes (patterning), form structures (deposition/etching), and modify (cleaning/doping/annealing) properties with locally resolved control on nanoscale using the same tool without ever changing the processing environment. It thus will have a direct positive impact on enhancing functionality, improving quality and reducing fabrication costs for electronic devices, based on both conventional CMOS and emerging carbon (CNT/graphene) materials. (orig.)

  16. Dosimetric characterization and application of an imaging beam line with a carbon electron target for megavoltage cone beam computed tomography.

    Science.gov (United States)

    Flynn, Ryan T; Hartmann, Julia; Bani-Hashemi, Ali; Nixon, Earl; Alfredo, R; Siochi, C; Pennington, Edward C; Bayouth, John E

    2009-06-01

    Imaging dose from megavoltage cone beam computed tomography (MVCBCT) can be significantly reduced without loss of image quality by using an imaging beam line (IBL), with no flattening filter and a carbon, rather than tungsten, electron target. The IBL produces a greater keV-range x-ray fluence than the treatment beam line (TBL), which results in a more optimal detector response. The IBL imaging dose is not necessarily negligible, however. In this work an IBL was dosimetrically modeled with the Philips Pinnacle3 treatment planning system (TPS), verified experimentally, and applied to clinical cases. The IBL acquisition dose for a 200 degrees gantry rotation was verified in a customized acrylic cylindrical phantom at multiple imaging field sizes with 196 ion chamber measurements. Agreement between the measured and calculated IBL dose was quantified with the 3D gamma index. Representative IBL and TBL imaging dose distributions were calculated for head and neck and prostate patients and included in treatment plans using the imaging dose incorporation (IDI) method. Surface dose was measured for the TBL and IBL for four head and neck cancer patients with MOSFETs. The IBL model, when compared to the percentage depth dose and profile measurements, had 97% passing gamma indices for dosimetric and distance acceptance criteria of 3%, 3 mm, and 100% passed for 5.2%, 5.2 mm. For the ion chamber measurements of phantom image acquisition dose, the IBL model had 93% passing gamma indices for acceptance criteria of 3%, 3 mm, and 100% passed for 4%, 4 mm. Differences between the IBL- and TBL-based IMRT treatment plans created with the IDI method were dosimetrically insignificant for both the prostate and head and neck cases. For IBL and TBL beams with monitor unit values that would result in the delivery of the same dose to the depth of maximum dose under standard calibration conditions, the IBL imaging surface dose was higher than the TBL imaging surface dose by an average of 18

  17. Tilting of carbon encapsulated metallic nanocolumns in carbon-nickel nanocomposite films by ion beam assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Matthias [Helmholtz-Zentrum Dresden-Rossendorf, PF-510119, 01314 Dresden (Germany); Technische Universitaet Dresden, D-01062 Dresden (Germany); Muecklich, Arndt; Zschornak, Matthias; Wintz, Sebastian; Gemming, Sibylle; Abrasonis, Gintautas [Helmholtz-Zentrum Dresden-Rossendorf, PF-510119, 01314 Dresden (Germany); Oates, Thomas W. H. [Leibniz-Institut fuer Analytische Wissenschaft, ISAS e.V., Albert-Einstein-Str. 9, 12489 Berlin (Germany); Luis Endrino, Jose [Surfaces and Coatings Department, Instituto de Ciencia de Materiales de Madrid, c/Sor Juana Ines de la Cruz 3, Cantoblanco, 28049 Madrid (Spain); Baehtz, Carsten; Shalimov, Artem [Helmholtz-Zentrum Dresden-Rossendorf, PF-510119, 01314 Dresden (Germany); Rossendorf Beamline, European Synchrotron Radiation Facility, F-38043 Grenoble (France)

    2012-07-30

    The influence of assisting low-energy ({approx}50-100 eV) ion irradiation effects on the morphology of C:Ni ({approx}15 at. %) nanocomposite films during ion beam assisted deposition (IBAD) is investigated. It is shown that IBAD promotes the columnar growth of carbon encapsulated metallic nanoparticles. The momentum transfer from assisting ions results in tilting of the columns in relation to the growing film surface. Complex secondary structures are obtained, in which a significant part of the columns grows under local epitaxy via the junction of sequentially deposited thin film fractions. The influence of such anisotropic film morphology on the optical properties is highlighted.

  18. Measurement of characteristic prompt gamma rays emitted from oxygen and carbon in tissue-equivalent samples during proton beam irradiation

    OpenAIRE

    Polf, Jerimy C.; Panthi, Rajesh; Mackin, Dennis S; McCleskey, Matt; Saastamoinen, Antti; Roeder, Brian T; Beddar, Sam

    2013-01-01

    The purpose of this work was to characterize how prompt gamma (PG) emission from tissue changes as a function of carbon and oxygen concentration, and to assess the feasibility of determining elemental concentration in tissues irradiated with proton beams. For this study, four tissue-equivalent water-sucrose samples with differing densities and concentrations of carbon, hydrogen, and oxygen were irradiated with a 48 MeV proton pencil beam. The PG spectrum emitted from each sample was measured ...

  19. Finite Element Modeling and Free Vibration Analysis of Functionally Graded Nanocomposite Beams Reinforced by Randomly Oriented Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Benedict Thomas

    2013-12-01

    Full Text Available This article deals with the finite element modeling and free vibration analysis of functionally graded nanocomposite beams reinforced by randomly oriented straight single-walled carbon nanotubes (SWCNTs. Nanostructural materials can be used to alter mechanical, thermal and electrical properties of polymer-based composite materials, because of their superior properties and perfect atom arrangement. Timoshenko beam theory is used to evaluate dynamic characteristics of the beam. The Eshelby–Mori–Tanaka approach based on an equivalent fiber is used to investigate the material properties of the beam. The equations of motion are derived by using Hamilton’s principle. The finite element method is employed to discretize the model and obtain a numerical approximation of the motion equation. Different SWCNTs distributions in the thickness direction are introduced to improve fundamental natural frequency and dynamic behavior of uniform functionally graded nanocomposite beam. Results are presented in tabular and graphical forms to show the effects of various material distributions, carbon nanotube orientations, shear deformation, slenderness ratios and boundary conditions on the dynamic behavior of the beam. The first five normalized mode shapes for functionally graded carbon nanotube reinforced composite (FG-CNTRC beams with different boundary conditions and different carbon nanotubes (CNTs orientation are presented. The results show that the above mentioned effects play very important role on the dynamic behavior of the beam.

  20. Comparison of two dedicated 'in beam' PET systems via simultaneous imaging of (12)C-induced beta(+)-activity.

    Science.gov (United States)

    Attanasi, F; Belcari, N; Del Guerra, A; Enghardt, W; Moehrs, S; Parodi, K; Rosso, V; Vecchio, S

    2009-01-21

    The selective energy deposition of hadrontherapy has led to a growing interest in quality assurance techniques such as 'in-beam' PET. Due to the current lack of commercial solutions, dedicated detectors need to be developed. In this paper, we compare the performances of two different 'in-beam' PET systems which were simultaneously operated during and after low energy carbon ion irradiation of PMMA phantoms at GSI Darmstadt. The results highlight advantages and drawbacks of a novel in-beam PET prototype against a long-term clinically operated tomograph for ion therapy monitoring.

  1. NOTE: Comparison of two dedicated 'in beam' PET systems via simultaneous imaging of 12C-induced β+-activity

    Science.gov (United States)

    Attanasi, F.; Belcari, N.; DelGuerra, A.; Enghardt, W.; Moehrs, S.; Parodi, K.; Rosso, V.; Vecchio, S.

    2009-01-01

    The selective energy deposition of hadrontherapy has led to a growing interest in quality assurance techniques such as 'in-beam' PET. Due to the current lack of commercial solutions, dedicated detectors need to be developed. In this paper, we compare the performances of two different 'in-beam' PET systems which were simultaneously operated during and after low energy carbon ion irradiation of PMMA phantoms at GSI Darmstadt. The results highlight advantages and drawbacks of a novel in-beam PET prototype against a long-term clinically operated tomograph for ion therapy monitoring.

  2. Carbon doping in molecular beam epitaxy of GaAs from a heated graphite filament

    Science.gov (United States)

    Malik, R. J.; Nottenberg, R. N.; Schubert, E. F.; Walker, J. F.; Ryan, R. W.

    1988-01-01

    Carbon doping of GaAs grown by molecular beam epitaxy has been obtained for the first time by use of a heated graphite filament. Controlled carbon acceptor concentrations over the range of 10 to the 17th-10 to the 20th/cu cm were achieved by resistively heating a graphite filament with a direct current power supply. Capacitance-voltage, p/n junction and secondary-ion mass spectrometry measurements indicate that there is negligible diffusion of carbon during growth and with postgrowth rapid thermal annealing. Carbon was used for p-type doping in the base of Npn AlGaAs/GaAs heterojunction bipolar transistors. Current gains greater than 100 and near-ideal emitter heterojunctions were obtained in transistors with a carbon base doping of 1 x 10 to the 19th/cu cm. These preliminary results indicate that carbon doping from a solid graphite source may be an attractive substitute for beryllium, which is known to have a relatively high diffusion coefficient in GaAs.

  3. Localized surface grafting reactions on carbon nanofibers induced by gamma and e-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Evora, M.C., E-mail: cecilia@ieav.cta.br [Institute for Advanced Studies-IEAV/DCTA, Av. Cel Jose Alberto Albano do Amarante, 1-Putim, 12228-001 São Jose dos Campos, SP (Brazil); Araujo, J.R., E-mail: jraraujo@inmetro.gov.br [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias, RJ (Brazil); Ferreira, E.H.M. [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias, RJ (Brazil); Strohmeier, B.R. [Thermo Fisher Scientific, 5225 Verona Road, Madison, WI 53711 (United States); Silva, L.G.A., E-mail: lgasilva@ipen.br [Institute for Nuclear and Energy Research- IPEN, Av. Prof lineu Prestes, 2242- Cidade Universitaria, 05508-000 SP (Brazil); Achete, C.A. [Instituto Nacional de Metrologia, Qualidade e Tecnologia, Av. Nossa Sra. das Graças, 50, 25250-020 Duque de Caxias, RJ (Brazil)

    2015-04-30

    Graphical abstract: - Highlights: • Methodology for the functionalization of carbon nanofibers was investigated. • Two radiation sources were used to promote grafting reactions: gamma and electron beam. • We report the optimum inhibitor concentration to achieve the functionalization. • Surface of carbon nanofibers showed an increase of oxygen content after irradiation. • The radiation-induced graphitization did not damage the overall sp{sup 2} structure. - Abstract: Electron beam and gamma-ray irradiation have potential application to modify the carbon fiber nanostructures in order to produce useful defects in the graphitic structure and create reactive sites. In this study, the methodology to functionalize carbon nanofiber (CNF), via a radiation process and using acrylic acid as a source of oxygen functional groups, was investigated. The samples were submitted to a direct grafting radiation process with electron beam and gamma-ray source. Several parameters were changed such as: acrylic acid concentration, radiation dose and percentage of inhibitor necessary to achieve functionalization, with higher percentage of oxygen functional groups on CNF surface, and better dispersion. The better results achieved were when mixing CNF in a solution of acrylic acid with 6% of inhibitor (FeSO{sub 4}·7H{sub 2}O) and irradiated at 100 kGy. The samples were characterized by X-ray photoelectron spectroscopy and the surface composition (atomic%) showed a significant increase of oxygen content for the samples after irradiation. Also, the dispersion of the functionalized CNF in water was stable during months which may be a good indication that the functionalization process of CNF via ionizing radiation was successful.

  4. Early Commissioning Experience and Future Plans for the 12 GeV Continuous Electron Beam Accelerator Facility

    Energy Technology Data Exchange (ETDEWEB)

    Spata, Michael F. [JLAB

    2014-12-01

    Jefferson Lab has recently completed the accelerator portion of the 12 GeV Upgrade for the Continuous Electron Beam Accelerator Facility. All 52 SRF cryomodules have been commissioned and operated with beam. The initial beam transport goals of demonstrating 2.2 GeV per pass, greater than 6 GeV in 3 passes to an existing experimental facility and greater than 10 GeV in 5-1/2 passes have all been accomplished. These results along with future plans to commission the remaining beamlines and to increase the performance of the accelerator to achieve reliable, robust and efficient operations at 12 GeV are presented.

  5. Rapid phase-correlated rescanning irradiation improves treatment time in carbon-ion scanning beam treatment under irregular breathing

    Science.gov (United States)

    Mori, Shinichiro; Furukawa, Takuji

    2016-05-01

    To shorten treatment time in pencil beam scanning irradiation, we developed rapid phase-controlled rescanning (rPCR), which irradiates two or more isoenergy layers in a single gating window. Here, we evaluated carbon-ion beam dose distribution with rapid and conventional PCR (cPCR). 4 dimensional computed tomography (4DCT) imaging was performed on 12 subjects with lung or liver tumors. To compensate for intrafractional range variation, the field-specific target volume (FTV) was calculated using 4DCT within the gating window (T20-T80). We applied an amplitude-based gating strategy, in which the beam is on when the tumor is within the gating window defined by treatment planning. Dose distributions were calculated for layered phase-controlled rescanning under an irregular respiratory pattern, although a single 4DCT data set was used. The number of rescannings was eight times. The prescribed doses were 48 Gy(RBE)/1 fr (where RBE is relative biological effectiveness) delivered via four beam ports to the FTV for the lung cases and 45 Gy(RBE)/2 fr delivered via two beam ports to the FTV for the liver cases. In the liver cases, the accumulated dose distributions showed an increased magnitude of hot/cold spots with rPCR compared with cPCR. The results of the dose assessment metrics for the cPCR and rPCR were very similar. The D 95, D max, and D min values (cPCR/rPCR) averaged over all the patients were 96.3  ±  0.9%/96.0  ±  1.2%, 107.3  ±  3.6%/107.1  ±  2.9%, and 88.8  ±  3.2%/88.1  ±  3.1%, respectively. The treatment times in cPCR and rPCR were 110.7 s and 53.5 s, respectively. rPCR preserved dose conformation under irregular respiratory motion and reduced the total treatment time compared with cPCR.

  6. Experiments and FLUKA simulations of $^{12}C$ and $^{16}O$ beams for therapy monitoring by means of in-beam Positron Emission Tomography

    CERN Document Server

    Sommerer,; Ferrari, A

    2007-01-01

    Since 1997 at the experimental C-12 ion therapy facility at Gesellschaft fuer Schwerionenforschung (GSI), Darmstadt, Germany, more than 350 patients have been treated. The therapy is monitored with a dedicated positron emission tomograph, fully integrated into the treatment site. The measured beta+-activity arises from inelastic nuclear interactions between the beam particles an the nuclei of the patients tissue. Because the monitoring is done during the irradiation the method is called in-beam PET. The underlying principle of this monitoring is a comparison between the measured activity and a simulated one. The simulations are presently done by the PETSIM code which is dedicated to C-12 beams. In future ion therapy centers like the Heidelberger Ionenstrahl Therapiezentrum (HIT), Heidelberg, Germany, besides C-12 also proton, $^3$He and O-16 beams will be used for treatment and the therapy will be monitored by means of in-beam PET. Because PETSIM is not extendable to other ions in an easy way, a code capable ...

  7. Charged particle's flux measurement from PMMA irradiated by 80 MeV/u carbon ion beam

    CERN Document Server

    Agodi, C; Bellini, F; Cirrone, G A P; Collamati, F; Cuttone, G; De Lucia, E; De Napoli, M; Di Domenico, A; Faccini, R; Ferroni, F; Fiore, S; Gauzzi, P; Iarocci, E; Marafini, M; Mattei, I; Muraro, S; Paoloni, A; Patera, V; Piersanti, L; Romano, F; Sarti, A; Sciubba, A; Vitale, E; Voena, C

    2012-01-01

    Hadrontherapy is an emerging technique in cancer therapy that uses beams of charged particles. To meet the improved capability of hadrontherapy in matching the dose release with the cancer position, new dose monitoring techniques need to be developed and introduced into clinical use. The measurement of the fluxes of the secondary particles produced by the hadron beam is of fundamental importance in the design of any dose monitoring device and is eagerly needed to tune Monte Carlo simulations. We report the measurements done with charged secondary particles produced from the interaction of a 80 MeV/u fully stripped carbon ion beam at the INFN Laboratori Nazionali del Sud, Catania, with a Poly-methyl methacrylate target. Charged secondary particles, produced at 90$\\degree$ with respect to the beam axis, have been tracked with a drift chamber, while their energy and time of flight has been measured by means of a LYSO scintillator. Secondary protons have been identified exploiting the energy and time of flight in...

  8. Evaluation of plastic materials for range shifting, range compensation, and solid-phantom dosimetry for carbon-ion beams

    CERN Document Server

    Kanematsu, Nobuyuki; Ogata, Risa

    2012-01-01

    Purpose: Beam range control is the essence of radiotherapy with heavy charged particles. In conventional broad-beam delivery, fine range adjustment is achieved by insertion of range shifting and compensating materials. Ideally, such material should be water equivalent as well as that for dosimetry. In this study, we evaluated dosimetric water equivalency of four common plastics, HDPE, PMMA, PET, and POM, by uniformity of effective densities for carbon-ion-beam interactions. Methods: Using the Bethe formula for stopping, the Gottschalk formula for multiple scattering, and the Sihver formula for nuclear interactions, we calculated the effective densities of the plastics for these interactions. We tested HDPE, PMMA, and POM in carbon-ion-beam experiment and measured attenuations of carbon ions, which were compared with empirical linear-attenuation-model calculations. Results: The theoretical calculations resulted in reduced multiple scattering and increased nuclear interactions for HDPE compared to water, which ...

  9. Delamination of carbon-fiber strengthening layer from concrete beam during deformation (infrared thermography

    Directory of Open Access Journals (Sweden)

    I. N. Shardakov

    2016-10-01

    Full Text Available Technology of strengthening reinforced concrete structures with composite materials has found wide application. The effectiveness of strengthening of concrete structures with externally bonded reinforcement is supported by a great deal of experimental evidence. However, the problem of serviceability of such structures has not been adequately explored. The present work describes the results of experimental studies on the loadcarrying capacity of concrete beams strengthened with carbon fiber reinforced plastic (CFRP. Special emphasis is placed on studying the debonding of the strengthening layer from the concrete surface and analyzing its influence on the load-carrying capacity of beams. Infrared thermography is used to detect the first signs of debonding and to assess the debond growth rate

  10. Cathodoluminescence, reflectivity changes, and accumulation of graphitic carbon during electron beam aging of phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Seager, C.H.; Tallant, D.R.; Warren, W.L. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    1997-11-01

    We demonstrate that extended e-beam exposure produces a contaminating overlayer on phosphors whose opacity increases roughly linearly with time. Raman scattering data and optical analysis indicate that this layer is graphitic in nature, arising from the electron-beam-stimulated conversion of hydrocarbons adsorbed from the vacuum ambient. The presence of this contamination optically attenuates emitted cathodoluminescence, prevents many low energy electrons from ever reaching the phosphor grains, and exacerbates surface charging which reduces the arrival energy of electrons above 1.5{endash}2 keV. All of these effects are shown to impact cathodoluminescent output in an important way, but an accurate accounting of their total impact will be required to assess the importance of other degradation mechanisms like enhanced nonradiative electron-hole recombination at surfaces, both carbon and noncarbon related. {copyright} {ital 1997 American Institute of Physics.}

  11. Vibration analysis of single-walled carbon peapods based on nonlocal Timoshenko beam theory

    Science.gov (United States)

    Ghadiri, Majid; Hajbarati, Hamid; Safi, Mohsen

    2017-04-01

    In this article, vibration behavior of single-walled carbon nanotube encapsulating C60 molecules is studied using the Eringen's nonlocal elasticity theory within the frame work of Timoshenko beam theory. The governing equation and boundary conditions are derived using Hamilton's principle. It is considered that the nanopeapod is embedded in an elastic medium and the C60 molecules are modeled as lumped masses attached to the nanobeam. The Galerkin's method is applied to determine the natural frequency of the nanobeam with clamped-clamped boundary conditions. Effects of nonlocality, foundation stiffness, and ratio of the fullerenes' mass to the nanotube's mass on the natural frequencies are investigated. In addition, by vanishing effects of shear deformation and rotary inertia, the results based on Euler-Bernoulli beam theory are presented.

  12. Laser transformation hardening on rod-shaped carbon steel byGaussian beam

    Institute of Scientific and Technical Information of China (English)

    Jong-Do KIM; Myeong-Hoon LEE; Su-Jin LEE; Woon-Ju KANG

    2009-01-01

    Laser transformation hardening(LTH) is one of the laser surface modification processes. The surface hardening of rod-shaped carbon steel (SM45C) was performed by lathe-based laser composite processor with Gaussian-beam optical head. The LTH characteristics by dominant processes, longitudinal and depth directional hardness distributions and behaviors of phase transformation in hardened zones were examined. Especially, two concepts of circumferential speed and theoretical overlap rate were applied. When laser power increased or circumferential speed decreased, the surface hardening depth gradually increases due to the increased heat input. Moreover, the longitudinal hardness distribution particularly shows periodicity of repetitive increase and decrease, which results from tempering effect by overlap. Finally, the feasibility of laser transformation hardening is verified by using the beam with Gaussian intensity distribution.

  13. Vibration of nonuniform carbon nanotube with attached mass via nonlocal Timoshenko beam theory

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Hai Li; Shen, Zhi Bin; Li, Dao Kui [National University of Defense Technology, Changsha (China)

    2014-09-15

    This paper studies the vibrational behavior of nonuniform single-walled carbon nanotube (SWCNT) carrying a nanoparticle. A nonuniform cantilever beam with a concentrated mass at the free end is analyzed according to the nonlocal Timoshenko beam theory. A governing equation of a nonuniform SWCNT with attached mass is established. The transfer function method incorporating with the perturbation method is utilized to obtain the resonant frequencies of a vibrating nonlocal cantilever-mass system. The effects of the nonlocal parameter, taper ratio and attached mass on the natural frequencies and frequency shifts are discussed. Obtained results indicate that the sensitivity of the frequency shifts on the attached mass increases when the length-to-diameter ratio decreases. Tapered SWCNT possesses higher fundamental frequencies if the taper ratio becomes larger.

  14. Experimental study on fire protection methods of reinforced concrete beams strengthened with carbon fiber reinforced polymer

    Institute of Scientific and Technical Information of China (English)

    HU Kexu; HE Guisheng; LU Fan

    2007-01-01

    In this paper,two reinforced concrete (RC) beams strengthened with carbon fiber reinforced polymer (CFRP)and attached with thick-painted fire resistant coating were tested for fire resistance following the standard fire testing procedures.The experimental results show that the specimen pasted with the insulated layer of 50 mm in thickness could resist fire for 2.5 h.It is also demonstrated that the steel wire mesh embedded in the insulated layer can effectively prevent it from cracking and eroding under firing.

  15. Geant4 simulation of clinical proton and carbon ion beams for the treatment of ocular melanomas with the full 3-D pencil beam scanning system

    Energy Technology Data Exchange (ETDEWEB)

    Farina, Edoardo; Riccardi, Cristina; Rimoldi, Adele; Tamborini, Aurora [University of Pavia and the INFN section of Pavia, via Bassi 6, 27100 Pavia (Italy); Piersimoni, Pierluigi [Division of Radiation Research, Loma Linda University, Loma Linda, CA 92354 (United States); Ciocca, Mario [Medical Physics Unit, CNAO Foundation, Strada Campeggi 53, 27100 Pavia (Italy)

    2015-07-01

    This work investigates the possibility to use carbon ion beams delivered with active scanning modality, for the treatment of ocular melanomas at the Centro Nazionale di Adroterapia Oncologica (CNAO) in Pavia. The radiotherapy with carbon ions offers many advantages with respect to the radiotherapy with protons or photons, such as a higher relative radio-biological effectiveness (RBE) and a dose release better localized to the tumor. The Monte Carlo (MC) Geant4 10.00 patch-03 toolkit is used to reproduce the complete CNAO extraction beam line, including all the active and passive components characterizing it. The simulation of proton and carbon ion beams and radiation scanned field is validated against CNAO experimental data. For the irradiation study of the ocular melanoma an eye-detector, representing a model of a human eye, is implemented in the simulation. Each element of the eye is reproduced with its chemical and physical properties. Inside the eye-detector a realistic tumor volume is placed and used as the irradiation target. A comparison between protons and carbon ions eye irradiations allows to study possible treatment benefits if carbon ions are used instead of protons. (authors)

  16. In silico carbon molecular beam epitaxial growth of graphene on the h-BN substrate: carbon source effect on van der Waals epitaxy

    Science.gov (United States)

    Lee, Jonghoon; Varshney, Vikas; Park, Jeongho; Farmer, Barry L.; Roy, Ajit K.

    2016-05-01

    Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon molecular beam epitaxy (CMBE) techniques using solid carbon sublimation have reported relatively poor quality of the graphene. In this article, the CMBE growth of graphene on the h-BN substrate is numerically studied in order to identify the effect of the carbon source on the quality of the graphene film. The carbon molecular beam generated by the sublimation of solid carbon source materials such as graphite and glassy carbon is mostly composed of atomic carbon, carbon dimers and carbon trimers. Therefore, the graphene film growth becomes a complex process involving various deposition characteristics of a multitude of carbon entities. Based on the study of surface adsorption and film growth characteristics of these three major carbon entities comprising graphite vapour, we report that carbon trimers convey strong traits of vdW epitaxy prone to high quality graphene growth, while atomic carbon deposition is a surface-reaction limited process accompanied by strong chemisorption. The vdW epitaxial behaviour of carbon trimers is found to be substantial enough to nucleate and develop into graphene like planar films within a nanosecond of high flux growth simulation, while reactive atomic carbons tend to impair the structural integrity of the crystalline h-BN substrate upon deposition to form an amorphous interface between the substrate and the growing carbon film. The content of reactive atomic carbons in the molecular beam is suspected to be the primary cause of low quality graphene reported in the literature. A possible optimization of the molecular beam composition towards the synthesis of better quality graphene films is suggested.Against the presumption that hexagonal boron-nitride (h-BN) should provide an ideal substrate for van der Waals (vdW) epitaxy to grow high quality graphene films, carbon

  17. 电子束再生粉状活性炭的研究%Study on Regeneration of Powdered Activated Carbon by Electron Beam

    Institute of Scientific and Technical Information of China (English)

    吴明红; 包伯荣; 陈捷; 陆丽蓉

    2000-01-01

    The powdered activated carbon which had adsorbed phenylglycine solution from pharmaceutics factory can be regenerated by mean of irradiation of high-energy electron beams in oxygen, nitrogen and water vapor respectively. The effects of radiation dose and beam current on regeneration of activated carbon in different atmosphere were studied. Differential scanning calorimetry (DSC) and the iodine number of activated carbon were used to monitor the change of carbon adsorption. The results show that the powder activated carbon polluted with phenlglycine could be regenerated effectively by irradiation of high energy electron beams in nitrogen stream. The generation did not need high temperature, and the weight loss of carbon and energy consumption were minimum.

  18. Study on Regeneration of Powdered Activated Carbon by Electron Beam%电子束再生粉状活性炭的研究

    Institute of Scientific and Technical Information of China (English)

    吴明红; 包伯荣; 陈捷; 陆丽蓉

    2001-01-01

    The powdered activated carbon which had adsorbed phenylglycine solution from pharmaceutics factory can be regenerated by mean of irradiation of high-energy electron beams in oxygen, nitrogen and water vapor respectively. The effects of radiation dose and beam current on regeneration of activated carbon in different atmosphere were studied. Differential scanning calorimetry (DSC) and the iodine number of activated carbon were used to monitor the change of carbon adsorption. The results show that the powder activated carbon polluted with phenlglycine could be regenerated effectively by irradiation of high energy electron beams in nitrogen stream. The generation did not need high temperature, and the weight loss of carbon and energy consumption were minimum.

  19. Measurement of inclusive charged current interactions on carbon in a few-GeV neutrino beam

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, Y.; jima, Y.Naka; Alcaraz-Aunion, J.L.; Brice, S.J.; Bugel, L.; Catala-Perez, J.; Cheng, G.; Conrad, J.M.; Djurcic, Z.; Dore, U.; Finley, D.A.; /Kyoto U. /Barcelona, IFAE /Fermilab /MIT /Valencia U. /Columbia U. /MIT /Columbia U. /INFN, Rome /Rome U. /Fermilab /Columbia U. /INFN, Rome /Rome U.

    2010-11-01

    The SciBooNE Collaboration reports a measurement of inclusive charged current interactions of muon neutrinos on carbon with an average energy of 0.8 GeV using the Fermilab Booster Neutrino Beam. We compare our measurement with two neutrino interaction simulations: NEUT and NUANCE. The charged current interaction rates (product of flux and cross section) are extracted by fitting the muon kinematics, with a precision of 6-15% for the energy dependent and 3% for the energy integrated analyses. We also extract CC inclusive interaction cross sections from the observed rates, with a precision of 10-30% for the energy dependent and 8% for the energy integrated analyses. This is the first measurement of the CC inclusive cross section on carbon around 1 GeV. These results can be used to convert previous SciBooNE cross section ratio measurements to absolute cross section values.

  20. Measurement of inclusive charged current interactions on carbon in a few-GeV neutrino beam

    CERN Document Server

    jima, Y Naka; Brice, S J; Bugel, L; Catala-Perez, J; Cheng, G; Conrad, J M; Djurcic, Z; Dore, U; Finley, D A; Franke, A J; Giganti, C; Gomez-Cadenas, J J; Guzowski, P; Hanson, A; Hayato, Y; Hiraide, K; Jover-Manas, G; Karagiorgi, G; Katori, T; Kobayashi, Y K; Kobilarcik, T; Kubo, H; Kurimoto, Y; Louis, W C; Loverre, P F; Ludovici, L; Mahn, K B M; Mariani, C; Masuike, S; Matsuoka, K; McGary, V T; Metcalf, W; Mills, G B; Mitsuka, G; Miyachi, Y; Mizugashira, S; Moore, C D; Nakaya, T; Napora, R; Nienaber, P; Orme, D; Otani, M; Russell, A D; Sanchez, F; Shaevitz, M H; Shibata, T -A; Sorel, M; Stefanski, R J; Takei, H; Tanaka, H -K; Tanaka, M; Tayloe, R; Taylor, I J; Tesarek, R J; Uchida, Y; Van de Water, R; Walding, J J; Wascko, M O; White, H B; Yokoyama, M; Zeller, G P; Zimmerman, E D

    2010-01-01

    The SciBooNE Collaboration reports a measurement of inclusive charged current interactions of muon neutrinos on carbon with an average energy of 0.8~GeV using the Fermilab Booster Neutrino Beam. We compare our measurement with two neutrino interaction simulations: NEUT and NUANCE. The charged current interaction rates (product of flux and cross section) are extracted by fitting the muon kinematics, with a precision of 6-15% for the energy dependent and 3% for the energy integrated analyses. We also extract CC inclusive interaction cross sections from the observed rates, with a precision of 10-30% for the energy dependent and 8% for the energy integrated analyses. This is the first measurement of the CC inclusive cross section on carbon around 1 GeV. These results can be used to convert previous SciBooNE cross section ratio measurements to absolute cross section values.

  1. Low carbon content NiTi shape memory alloy produced by electron beam melting

    Directory of Open Access Journals (Sweden)

    Otubo Jorge

    2004-01-01

    Full Text Available Earlier works showed that the use of electron beam melting is a viable process to produce NiTi shape memory alloy. In those works a static and a semi-dynamic processes were used producing small shell-shaped and cylindrical ingots respectively. The main characteristics of those samples were low carbon concentration and good composition homogeneity throughout the samples. This paper presents the results of scaling up the ingot size and processing procedure using continuous charge feeding and continuous casting. The composition homogeneity was very good demonstrated by small variation in martensitic transformation temperatures with carbon content around 0.013wt% compared to 0.04 to 0.06wt% of commercial products.

  2. ENGINEERED INTERFACE CHEMISTRY TO IMPROVE THE MECHANICAL PROPERTIES OF CARBON FIBER COMPOSITES CURED BY ELECTRON BEAM

    Energy Technology Data Exchange (ETDEWEB)

    Vautard, Frederic [ORNL; Grappe, Hippolyte A. [Oak Ridge Institute for Science and Education (ORISE); Ozcan, Soydan [ORNL

    2014-01-01

    A reactive sizing was designed to achieve high levels of interfacial adhesion and mechanical properties with a carbon fiber-acrylate system cured by electron beam (EB). The sizing was made of a partially cured epoxy sizing with a high density of pendant functional groups (acrylate functionality) able to generate a covalent bonding with the matrix. The interlaminar shear strength was clearly improved from 61 MPa to 81 MPa (+ 33 %) without any post-processing, reaching a similar value to the one obtained with the same system cured by a thermal treatment. Observation of the fracture profiles clearly highlighted a change in the fracture mechanism from a purely adhesive failure to a cohesive failure. Such improvements of the mechanical properties of carbon fiber composites cured by EB, without any post-cure, have not been reported previously to the best of our knowledge. This constitutes a breakthrough for the industrial development of composites EB curing.

  3. Monte Carlo simulation to evaluate the contamination in an energy modulated carbon ion beam for hadron therapy delivered by cyclotron.

    Science.gov (United States)

    Morone, M Cristina; Calabretta, Luciano; Cuttone, Giacomo; Fiorini, Francesca

    2008-11-07

    Protons and carbon ion beams for hadron therapy can be delivered by cyclotrons with a fixed energy. In order to treat patients, an energy degrader along the beam line will be used to match the particle range with the target depth. Fragmentation reactions of carbon ions inside the degrader material could introduce a small amount of unwanted contaminants to the beam, giving additional dose to the patient out of the target volume. A simulation study using the FLUKA Monte Carlo code has been carried out by considering three different materials as the degrader. Two situations have been studied: a realistic one, lowering the carbon beam energy from 300 MeV/n to 220 MeV/n, corresponding to a range of 10 cm in water, and the worst possible case, lowering the carbon energy to 50 MeV/n, corresponding to the millimeter range. The main component of the contaminant is represented by alpha particles and protons, with a typical momentum after the degrader greater than that of the primary beam, and can be eliminated by the action of a momentum analyzing system and slits, and by a second thin absorber. The residual component of fragments reaching the patient is negligible with respect to the fragment quantity generated by the primary beam inside the patient before arriving at the end of the target volume.

  4. A scintillating gas detector for 2D dose measurements in clinical carbon beams.

    Science.gov (United States)

    Seravalli, E; de Boer, M; Geurink, F; Huizenga, J; Kreuger, R; Schippers, J M; van Eijk, C W E; Voss, B

    2008-09-07

    A two-dimensional position sensitive dosimetry system based on a scintillating gas detector has been developed for pre-treatment verification of dose distributions in hadron therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. The primary electrons, created in the detector's sensitive volume by the incoming beam, drift in an electric field towards the GEMs and undergo gas multiplication in the GEM holes. During this process, photons are emitted by the excited Ar/CF4 gas molecules and detected by a mirror-lens-CCD camera system. Since the amount of emitted light is proportional to the dose deposited in the sensitive volume of the detector by the incoming beam, the intensity distribution of the measured light spot is proportional to the 2D hadron dose distribution. For a measurement of a 3D dose distribution, the scintillating gas detector is mounted at the beam exit side of a water-bellows phantom, whose thickness can be varied in steps. In this work, the energy dependence of the output signal of the scintillating gas detector has been verified in a 250 MeV/u clinical 12C ion beam by means of a depth-dose curve measurement. The underestimation of the measured signal at the Bragg peak depth is only 9% with respect to an air-filled ionization chamber. This is much smaller than the underestimation found for a scintillating Gd2O2S:Tb ('Lanex') screen under the same measurement conditions (43%). Consequently, the scintillating gas detector is a promising device for verifying dose distributions in high LET beams, for example to check hadron therapy treatment plans which comprise beams with different energies.

  5. The CBS-The Most Cost Effective and High Performance Carbon Beam Source Dedicated for a New Generation Cancer Therapy

    CERN Document Server

    Kumada, Masayuki; Leivichev, E B; Parkhomchuk, Vasily; Podgorny, Fedor; Rastigeev, Sergey; Reva, Vladimir B; Skrinsky, Aleksander Nikolayevich; Vostrikov, Vladimir

    2005-01-01

    A Carbon ion beam is a superior tool to x-rays or a proton beam in both physical and biological doses in treating a cancer. A Carbon beam has an advantage in treating radiation resistant and deep-seated tumors. Its radiological effect is of a mitotic independent nature. These features improve hypofractionation, typically reducing the number of irradiations per patient from 35 to a few. It has been shown that a superior QOL(Quality Of Life) therapy is possible by a carbon beam.The only drawback is its high cost. Nevertheless, tens of Prefectures and organizations are eagerly considering the possibility of having a carbon ion therapy facility in Japan. Germany, Austria, Italy, China, Taiwan and Korea also desire to have one.A carbon beam accelerator of moderate cost is about 100 Million USD. With the "CBS" design philosophy, which will be described in this paper, the cost could be factor of 2 or 3 less, while improving its performance more than standard designs. Novel extraction techniques, a new approach to a ...

  6. Production of clinically useful positron emitter beams during carbon ion deceleration

    Science.gov (United States)

    Lazzeroni, M.; Brahme, A.

    2011-03-01

    In external beam radiation therapy, radioactive beams offer the best clinical solution to simultaneously treat and in vivo monitor the dose delivery and tumor response using PET or PET-CT imaging. However, difficulties mainly linked to the low production efficiency have so far limited their use. This study is devoted to the analysis of the production of high energy 11C fragments, preferably by projectile fragmentation of a stable monodirectional and monoenergetic primary 12C beam in different absorbing materials (decelerators) in order to identify the optimal elemental composition. The study was performed using the Monte Carlo code SHIELD-HIT07. The track length and fluence of generated secondary particles were scored in a uniform absorber of 300 cm length and 10 cm radius, divided into slices of 1 cm thickness. The 11C fluence build-up and mean energy variation with increasing decelerator depth are presented. Furthermore, the fluence of the secondary 11C beam was studied as a function of its mean energy and the corresponding remaining range in water. It is shown that the maximum 11C fluence build-up is high in compounds where the fraction by weight of hydrogen is high, being the highest in liquid hydrogen. Furthermore, a cost effective alternative solution to the single medium initially envisaged is presented: a two-media decelerator that comprises a first liquid hydrogen section followed by a second decelerating section made of a hydrogen-rich material, such as polyethylene (C2H4). The purpose of the first section is to achieve a fast initial 11C fluence build-up, while the second section is primarily designed to modulate the mean energy of the generated 11C beam in order to reach the tumor depth. Finally, it was demonstrated that, if the intensity of the primary 12C beam can be increased by an order of magnitude, a sufficient intensity of the secondary 11C beam is achieved for therapy and subsequent therapeutic PET imaging sessions. Such an increase in the

  7. Dual-ion-beam deposition of carbon films with diamond-like properties

    Science.gov (United States)

    Mirtich, M. J.; Swec, D. M.; Angus, J. C.

    1985-01-01

    A single and dual ion beam system was used to generate amorphous carbon films with diamond like properties. A methane/argon mixture at a molar ratio of 0.28 was ionized in the low pressure discharge chamber of a 30-cm-diameter ion source. A second ion source, 8 cm in diameter was used to direct a beam of 600 eV Argon ions on the substrates (fused silica or silicon) while the deposition from the 30-cm ion source was taking place. Nuclear reaction and combustion analysis indicate H/C ratios for the films to be 1.00. This high value of H/C, it is felt, allowed the films to have good transmittance. The films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Although the measured density of the films was approximately 1.8 gm/cu cm, a value lower than diamond, the films exhibited other properties that were relatively close to diamond. These films were compared with diamond like films generated by sputtering a graphite target.

  8. Effects of evolving surface morphology on yield during focused ion beam milling of carbon

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.P. [Thin Film, Vacuum and Packaging Department, Sandia National Laboratories, P.O. Box 5800, MS 0959, Albuquerque, NM 87185 (United States)]. E-mail: dpadams@sandia.gov; Mayer, T.M. [Thin Film, Vacuum and Packaging Department, Sandia National Laboratories, P.O. Box 5800, MS 0959, Albuquerque, NM 87185 (United States); Vasile, M.J. [Thin Film, Vacuum and Packaging Department, Sandia National Laboratories, P.O. Box 5800, MS 0959, Albuquerque, NM 87185 (United States); Archuleta, K. [Thin Film, Vacuum and Packaging Department, Sandia National Laboratories, P.O. Box 5800, MS 0959, Albuquerque, NM 87185 (United States)

    2006-01-15

    We investigate evolving surface morphology during focused ion beam bombardment of C and determine its effects on sputter yield over a large range of ion dose (10{sup 17}-10{sup 19} ions/cm{sup 2}) and incidence angles ({theta} = 0-80{sup o}). Carbon bombarded by 20 keV Ga{sup +} either retains a smooth sputtered surface or develops one of two rough surface morphologies (sinusoidal ripples or steps/terraces) depending on the angle of ion incidence. For conditions that lead to smooth sputter-eroded surfaces there is no change in yield with ion dose after erosion of the solid commences. However, for all conditions that lead to surface roughening we observe coarsening of morphology with increased ion dose and a concomitant decrease in yield. A decrease in yield occurs as surface ripples increase wavelength and, for large {theta}, as step/terrace morphologies evolve. The yield also decreases with dose as rippled surfaces transition to have steps and terraces at {theta} = 75{sup o}. Similar trends of decreasing yield are found for H{sub 2}O-assisted focused ion beam milling. The effects of changing surface morphology on yield are explained by the varying incidence angles exposed to the high-energy beam.

  9. Flexural rigidity evolvement laws of reinforced concrete beams strengthened with carbon fiber laminates

    Institute of Scientific and Technical Information of China (English)

    NIU Peng-zhi; HUANG Pei-yan; DENG Jun; HAN Qiang

    2007-01-01

    Extensive research has shown that externally bonded carbon fiber reinforced polymer (CFRP) laminates are particularly suitable for improving the fatigue behavior of reinforced concrete (RC) beams. This paper presents the research on flexural rigidity evolvement laws by testing 14 simple-supported RC beams strengthened with carbon fiber laminates (CFL) under cyclic load, and 2 under monotone load as a reference. The cyclic load tests revealed the peak load applied onto the surface of a supported RC beam strengthened with CFL is linear to the logarithm of its fatigue life, and the flexural rigidity evolvement undergoes three distinct phases: a rapid decrease from the start to about 5% of the fatigue life; an even development from 5% to about 99% of the fatigue life; and a succedent rapid decrease to failure. When the ratio of fatigue cycles to the fatigue life is within 0.05 to 0.99, the flexural rigidity varies linearly with the ratio. The peak load does not affect the flexural rigidity evolvement if it is not high enough to make the main reinforcements yield. The dependences of the flexural rigidity of specimens formed in the same group upon their fatigue cycles normalized by fatigue life are almost coincident. This implies the flexural rigidity may be a material parameter independent of the stress level. These relationships of flexural rigidity to fatigue cycles, and fatigue life may be able to provide some hints for fatigue design and fatigue life evaluation of RC member strengthened with CFL; nevertheless the findings still need verifying by more experiments.

  10. Drought indicated in carbon-13/carbon-12 ratios of southwestern tree rings

    Energy Technology Data Exchange (ETDEWEB)

    Leavitt, S.W. (Univ. of Wisconsin-Parkside, Kenosha (United States)); Long, A. (Univ. of Arizona, Tucson (United States))

    1989-04-01

    Stomatal closure during periods of moisture deficiency should theoretically lead to elevated {sup 13}C/{sup 12}C ratios as reduction of available CO{sub 2} leads to diminished photosynthetic discrimination against {sup 13}C in favor of {sup 12}C. Stable-carbon isotope ratio chronologies developed from 5-yr tree-ring groups at 17 sites in six southwestern states were tested for a drought relationship by first fitting a spline curve to each chronology to remove the long-term trend and calculating indices as the ratio of actual to spline curve value. The time series of Del Indices so developed are significantly correlated with 5-yr mean Palmer Hydrological Drought Indices and reconstructed July Palmer Drought Severity Indices from respective areas. Overall, in the period since 1790, and driest pentads were 1900-04 and 1960-64, whereas the wettest were 1980-84 and 1915-19. Maps of drought represented for two pentads seem to be reasonable representations, although spatial correlations of Del Indices with PHDI were generally not significant. These Del Index drought reconstructions may provide a useful measure of past physiological response to drought, although the present cost of analysis would prevent this from being a routine method.

  11. Carbon-ion beam irradiation kills X-ray-resistant p53-null cancer cells by inducing mitotic catastrophe.

    Directory of Open Access Journals (Sweden)

    Napapat Amornwichet

    Full Text Available BACKGROUND AND PURPOSE: To understand the mechanisms involved in the strong killing effect of carbon-ion beam irradiation on cancer cells with TP53 tumor suppressor gene deficiencies. MATERIALS AND METHODS: DNA damage responses after carbon-ion beam or X-ray irradiation in isogenic HCT116 colorectal cancer cell lines with and without TP53 (p53+/+ and p53-/-, respectively were analyzed as follows: cell survival by clonogenic assay, cell death modes by morphologic observation of DAPI-stained nuclei, DNA double-strand breaks (DSBs by immunostaining of phosphorylated H2AX (γH2AX, and cell cycle by flow cytometry and immunostaining of Ser10-phosphorylated histone H3. RESULTS: The p53-/- cells were more resistant than the p53+/+ cells to X-ray irradiation, while the sensitivities of the p53+/+ and p53-/- cells to carbon-ion beam irradiation were comparable. X-ray and carbon-ion beam irradiations predominantly induced apoptosis of the p53+/+ cells but not the p53-/- cells. In the p53-/- cells, carbon-ion beam irradiation, but not X-ray irradiation, markedly induced mitotic catastrophe that was associated with premature mitotic entry with harboring long-retained DSBs at 24 h post-irradiation. CONCLUSIONS: Efficient induction of mitotic catastrophe in apoptosis-resistant p53-deficient cells implies a strong cancer cell-killing effect of carbon-ion beam irradiation that is independent of the p53 status, suggesting its biological advantage over X-ray treatment.

  12. Robustness of target dose coverage to motion uncertainties for scanned carbon ion beam tracking therapy of moving tumors

    Science.gov (United States)

    Eley, John Gordon; Newhauser, Wayne David; Richter, Daniel; Lüchtenborg, Robert; Saito, Nami; Bert, Christoph

    2015-02-01

    Beam tracking with scanned carbon ion radiotherapy achieves highly conformal target dose by steering carbon pencil beams to follow moving tumors using real-time magnetic deflection and range modulation. The purpose of this study was to evaluate the robustness of target dose coverage from beam tracking in light of positional uncertainties of moving targets and beams. To accomplish this, we simulated beam tracking for moving targets in both water phantoms and a sample of lung cancer patients using a research treatment planning system. We modeled various deviations from perfect tracking that could arise due to uncertainty in organ motion and limited precision of a scanned ion beam tracking system. We also investigated the effects of interfractional changes in organ motion on target dose coverage by simulating a complete course of treatment using serial (weekly) 4DCTs from six lung cancer patients. For perfect tracking of moving targets, we found that target dose coverage was high ({{\\overline{V}}95} was 94.8% for phantoms and 94.3% for lung cancer patients, respectively) but sensitive to changes in the phase of respiration at the start of treatment and to the respiratory period. Phase delays in tracking the moving targets led to large degradation of target dose coverage (up to 22% drop for a 15° delay). Sensitivity to technical uncertainties in beam tracking delivery was minimal for a lung cancer case. However, interfractional changes in anatomy and organ motion led to large decreases in target dose coverage (target coverage dropped approximately 8% due to anatomy and motion changes after 1 week). Our findings provide a better understand of the importance of each of these uncertainties for beam tracking with scanned carbon ion therapy and can be used to inform the design of future scanned ion beam tracking systems.

  13. Robustness of target dose coverage to motion uncertainties for scanned carbon ion beam tracking therapy of moving tumors.

    Science.gov (United States)

    Eley, John Gordon; Newhauser, Wayne David; Richter, Daniel; Lüchtenborg, Robert; Saito, Nami; Bert, Christoph

    2015-02-21

    Beam tracking with scanned carbon ion radiotherapy achieves highly conformal target dose by steering carbon pencil beams to follow moving tumors using real-time magnetic deflection and range modulation. The purpose of this study was to evaluate the robustness of target dose coverage from beam tracking in light of positional uncertainties of moving targets and beams. To accomplish this, we simulated beam tracking for moving targets in both water phantoms and a sample of lung cancer patients using a research treatment planning system. We modeled various deviations from perfect tracking that could arise due to uncertainty in organ motion and limited precision of a scanned ion beam tracking system. We also investigated the effects of interfractional changes in organ motion on target dose coverage by simulating a complete course of treatment using serial (weekly) 4DCTs from six lung cancer patients. For perfect tracking of moving targets, we found that target dose coverage was high ([Formula: see text] was 94.8% for phantoms and 94.3% for lung cancer patients, respectively) but sensitive to changes in the phase of respiration at the start of treatment and to the respiratory period. Phase delays in tracking the moving targets led to large degradation of target dose coverage (up to 22% drop for a 15° delay). Sensitivity to technical uncertainties in beam tracking delivery was minimal for a lung cancer case. However, interfractional changes in anatomy and organ motion led to large decreases in target dose coverage (target coverage dropped approximately 8% due to anatomy and motion changes after 1 week). Our findings provide a better understand of the importance of each of these uncertainties for beam tracking with scanned carbon ion therapy and can be used to inform the design of future scanned ion beam tracking systems.

  14. Electron Cloud in Steel Beam Pipe vs Titanium Nitride Coated and Amorphous Carbon Coated Beam Pipes in Fermilab's Main Injector

    Energy Technology Data Exchange (ETDEWEB)

    Backfish, Michael

    2013-04-01

    This paper documents the use of four retarding field analyzers (RFAs) to measure electron cloud signals created in Fermilab’s Main Injector during 120 GeV operations. The first data set was taken from September 11, 2009 to July 4, 2010. This data set is used to compare two different types of beam pipe that were installed in the accelerator. Two RFAs were installed in a normal steel beam pipe like the rest of the Main Injector while another two were installed in a one meter section of beam pipe that was coated on the inside with titanium nitride (TiN). A second data run started on August 23, 2010 and ended on January 10, 2011 when Main Injector beam intensities were reduced thus eliminating the electron cloud. This second run uses the same RFA setup but the TiN coated beam pipe was replaced by a one meter section coated with amorphous carbon (aC). This section of beam pipe was provided by CERN in an effort to better understand how an aC coating will perform over time in an accelerator. The research consists of three basic parts: (a) continuously monitoring the conditioning of the three different types of beam pipe over both time and absorbed electrons (b) measurement of the characteristics of the surrounding magnetic fields in the Main Injector in order to better relate actual data observed in the Main Injector with that of simulations (c) measurement of the energy spectrum of the electron cloud signals using retarding field analyzers in all three types of beam pipe.

  15. Imaging the interphase of carbon fiber composites using transmission electron microscopy:Preparations by focused ion beam, ion beam etching, and ultramicrotomy

    Institute of Scientific and Technical Information of China (English)

    Wu Qing; Li Min; Gu Yizhuo; Wang Shaokai; Zhang Zuoguang

    2015-01-01

    Three sample preparation techniques, focused ion beam (FIB), ion beam (IB) etching, and ultramicrotomy (UM) were used in comparison to analyze the interphase of carbon fiber/epoxy composites using transmission electron microscopy. An intact interphase with a relatively uniform thickness was obtained by FIB, and detailed chemical analysis of the interphase was investigated by electron energy loss spectroscopy. It shows that the interphase region is 200 nm wide with an increasing oxygen-to-carbon ratio from 10% to 19% and an almost constant nitrogen-to-carbon ratio of about 3%. However, gallium implantation of FIB tends to hinder fine structure analysis of the interphase. For IB etching, the interphase region is observed with transition morphology from amorphous resin to nano-crystalline carbon fiber, but the uneven sample thickness brings difficulty for quantitative chemical analysis. Moreover, UM tends to cause damage and/or deformation on the interphase. These results are meaningful for in-depth understanding on the interphase characteristic of carbon fiber composites.

  16. Strain measurements on concrete beam and carbon fiber cable with distributed optical fiber Bragg grating sensors

    Science.gov (United States)

    Nellen, Philipp M.; Bronnimann, Rolf; Sennhauser, Urs J.; Askins, Charles G.; Putnam, Martin A.

    1996-09-01

    We report on civil engineering applications of wavelength multiplexed optical fiber Bragg grating arrays directly produced on the draw tower for testing and surveying advanced structures and materials such as carbon fiber reinforced concrete elements and prestressing cables. We equipped a 6 by 0.9 by 0.5 m concrete beam, which was reinforced with carbon fiber reinforced epoxy laminates, and a 7-m long prestressing carbon fiber cable made of seven twisted strands, with optical fiber Bragg grating sensors. Static strains up to 8000 micrometers/m and dynamic strains up to 1200 micrometers/m were measured with a Michelson interferometer used as Fourier spectrometer with a resolution of about 10 micrometers/m for all sensors. Comparative measurements with electrical resistance strain gauges were in good agreement with the fiber optical results. We installed the fiber sensors in two different arrangements: some Bragg grating array elements measured local strain while others were applied in an extensometric configuration to measure moderate strain over a base length of 0.1 to 1 m.

  17. The GLOBE Carbon Project: Integrating the Science of Carbon Cycling and Climate Change into K-12 Classrooms.

    Science.gov (United States)

    Ollinger, S. V.; Silverberg, S.; Albrechtova, J.; Freuder, R.; Gengarelly, L.; Martin, M.; Randolph, G.; Schloss, A.

    2007-12-01

    The global carbon cycle is a key regulator of the Earth's climate and is central to the normal function of ecological systems. Because rising atmospheric CO2 is the principal cause of climate change, understanding how ecosystems cycle and store carbon has become an extremely important issue. In recent years, the growing importance of the carbon cycle has brought it to the forefront of both science and environmental policy. The need for better scientific understanding has led to establishment of numerous research programs, such as the North American Carbon Program (NACP), which seeks to understand controls on carbon cycling under present and future conditions. Parallel efforts are greatly needed to integrate state-of-the-art science on the carbon cycle and its importance to climate with education and outreach efforts that help prepare society to make sound decisions on energy use, carbon management and climate change adaptation. Here, we present a new effort that joins carbon cycle scientists with the International GLOBE Education program to develop carbon cycle activities for K-12 classrooms. The GLOBE Carbon Cycle project is focused on bringing cutting edge research and research techniques in the field of terrestrial ecosystem carbon cycling into the classroom. Students will collect data about their school field site through existing protocols of phenology, land cover and soils as well as new protocols focused on leaf traits, and ecosystem growth and change. They will also participate in classroom activities to understand carbon cycling in terrestrial ecosystems, these will include plant- a-plant experiments, hands-on demonstrations of various concepts, and analysis of collected data. In addition to the traditional GLOBE experience, students will have the opportunity to integrate their data with emerging and expanding technologies including global and local carbon cycle models and remote sensing toolkits. This program design will allow students to explore research

  18. A Monte Carlo study for the calculation of the average linear energy transfer (LET) distributions for a clinical proton beam line and a radiobiological carbon ion beam line

    Science.gov (United States)

    Romano, F.; Cirrone, G. A. P.; Cuttone, G.; Di Rosa, F.; Mazzaglia, S. E.; Petrovic, I.; Ristic Fira, A.; Varisano, A.

    2014-06-01

    Fluence, depth absorbed dose and linear energy transfer (LET) distributions of proton and carbon ion beams have been investigated using the Monte Carlo code Geant4 (GEometry ANd Tracking). An open source application was developed with the aim to simulate two typical transport beam lines, one used for ocular therapy and cell irradiations with protons and the other for cell irradiations with carbon ions. This tool allows evaluation of the primary and total dose averaged LET and predict their spatial distribution in voxelized or sliced geometries. In order to reproduce the LET distributions in a realistic way, and also the secondary particles’ contributions due to nuclear interactions were considered in the computations. Pristine and spread-out Bragg peaks were taken into account both for proton and carbon ion beams, with the maximum energy of 62 MeV/n. Depth dose distributions were compared with experimental data, showing good agreement. Primary and total LET distributions were analysed in order to study the influence of contributions of secondary particles in regions at different depths. A non-negligible influence of high-LET components was found in the entrance channel for proton beams, determining the total dose averaged LET by the factor 3 higher than the primary one. A completely different situation was obtained for carbon ions. In this case, secondary particles mainly contributed in the tail that is after the peak. The results showed how the weight of light and heavy secondary ions can considerably influence the computation of LET depth distributions. This has an important role in the interpretation of results coming from radiobiological experiments and, therefore, in hadron treatment planning procedures.

  19. Deflection analysis of reinforced concrete beams strengthened with carbon fibre reinforced polymer under long-term load action

    Institute of Scientific and Technical Information of China (English)

    Mykolas DAUGEVI(C)IUS; Juozas VALIVONIS; Gediminas MAR(C)IUKAITIS

    2012-01-01

    This paper presents the results of an experimental research on reinforced concrete beams strengthened with an external carbon fibre reinforced polymer (CFRP) layer under long-term load action that lasted for 330 d.We describe the characteristics of deflection development of the beams strengthened with different additional anchorages of the external carbon fibre composite layer during the period of interest.The conducted experiments showed that the additional anchorage influences the slip of the extemal layer with respect to the strengthened element.Thus,concrete and carbon fibre composite interface stiffness decreases with a long-term load action.Therefore,the proposed method of analysis based on the built-up-bars theory can be used to estimate concrete and carbon fibre composite interface stiffness in the case of long-term load.

  20. Cell survival in carbon beams - comparison of amorphous track model predictions

    DEFF Research Database (Denmark)

    Grzanka, L.; Greilich, S.; Korcyl, M.

    distribution models, and gamma response models was developed. This software can be used for direct numerical comparison between the models, submodels and their parameters and experimental data. In the present paper, we look at 10%-survival data from cell lines irradiated in vitro with carbon and proton beams......Introduction: Predictions of the radiobiological effectiveness (RBE) play an essential role in treatment planning with heavy charged particles. Amorphous track models ( [1] , [2] , also referred to as track structure models) provide currently the most suitable description of cell survival under ion...... by Tsuruoka et al. [4] . Results and conclusion: Preliminary results show a good agreement of models predictions and the experimental data for clinical doses. When investigating the influence of radial dose distributions on inactivation cross section in the Katz model, we found that one of the most important...

  1. Amorphous track modelling of luminescence detector efficiency in proton and carbon beams

    DEFF Research Database (Denmark)

    Greilich, Steffen; Grzanka, Leszek; Bassler, Niels

    be seriously hampered by variations in detector efficiency (light output per energy imparted) due to high-LET effects and gradients along the physical size (~mm) of the detector crystals. Amorphous track models (ATMs) such as the Ion-Gamma-Kill (IGK) approach by Katz and co-workers or the ECLaT code by Geiß et...... assumptions in a variety of detectors. The library also includes simple particle transportation or can be interfaced to external transport codes. We applied our code to RL and OSL data from fiber-coupled Al2O3:C-detectors in a proton (nominal energies 10 MeV to 60 MeV) and a carbon beam (270 MeV/u). Results...

  2. Shear deformable deformation of carbon nanotubes based on a new analytical nonlocal Timoshenko beam nodel

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jianming; Yang, Yang [Department of Engineering Mechanics, Kunming University of Science and Technology, Kunming 650051, Yunnan (China)

    2015-03-10

    According to Hamilton’s principle, a new mathematical model and analytical solutions for nonlocal Timoshenko beam model (ANT) is established based on nonlocal elastic continuum theory when shear deformation and nonlocal effect are considered. The new ANT equilibrium equations and boundary conditions are derived for bending analysis of carbon nanotubes (CNTs) with simply supported, clamped and cantilever. The ANT deflection solutions demonstrate that the CNT stiffness is enhanced by the presence of nonlocal stress effects. Furthermore, the new ANT model concluded verifiable bending behaviors for a cantilever CNT with point load at the free end, which depends on the strength of nonlocal stress. Therefore, this new model will gives a better prediction for mechanical behaviors of nanostructures.

  3. Fragmentation Cross Sections of 12C on Different Targets at Beam Energies from 50 to 100 MeV/Nucleon

    Institute of Scientific and Technical Information of China (English)

    BIAN Bao-An; ZHANG Feng-Shou; ZHOU Hong-Yu

    2008-01-01

    The fragmentation cross sections of reactions 12C+2H,12C,14N,16O at beam energies from 50 to 100 MeV/nucleon are investigated using the isospin-dependent Boltzmann-Langevin equation model.It is found that fragment species increase approximately with the increasing target mass.The fragment species and some fragments production cross sections in reactions of 12C+12C,14N,16O show an obvious variation at the beam energies from 50 to 80 MeV/nucleon.However the calculated fragment production cross sections do not change much when the incident energy increases from 80 to 100 MeV/nucleon.

  4. Surface treatment of 0.20% C carbon steel by high-current pulsed electron beam

    Institute of Scientific and Technical Information of China (English)

    XU Guo-cheng; FU Shi-you; GUAN Qing-feng

    2006-01-01

    A high-current pulsed electron beam(HCPEB) generated on the system of Nadezhda-2 was applied to improve the microstructure and performance of 0.20% C low carbon steel. Surface layers of the samples bombarded by explosive electron beam at different pulses was observed by using electron microscopy. The physical model of the thermal-stress process and related modification mechanism as a result of HCPEB irradiation was also investigated. After HCPEB post treatments, obvious changes in microstructure and significant hardening occur in the depth of 200-250 μm from the surface after HCPEB irradiation. Rapid heating and subsequent rapid solidification induce heavy plastic deformation, which results in that the laminated structure of pearlite is substituted by dispersive rounded-like cementites in the near-surface. The effect of HCPEB treatment can reach more than 500 m depth from the surface. The original crystalline structure is changed to a different degree that grows with the numbers of bombardment, and in the surface layer amorphous states and nanocrystaline structures consisting of grains of γ-phase and cementite are found. The violent stress induced by HCPEB irradiation is the origin of the nanostructured and amorphous structure formation.

  5. Crystalline magnetic carbon nanoparticle assisted photothermal delivery into cells using CW near-infrared laser beam

    Science.gov (United States)

    Gu, Ling; Koymen, Ali R.; Mohanty, Samarendra K.

    2014-05-01

    Efficient and targeted delivery of impermeable exogenous material such as small molecules, proteins, and plasmids into cells in culture as well as in vivo is of great importance for drug, vaccine and gene delivery for different therapeutic strategies. Though advent of optoporation by ultrafast laser microbeam has allowed spatial targeting in cells, the requirement of high peak power to create holes on the cell membrane is not practical and also challenging in vivo. Here, we report development and use of uniquely non-reactive crystalline magnetic carbon nanoparticles (CMCNPs) for photothermal delivery (PTD) of impermeable dyes and plasmids encoding light-sensitive proteins into cells using low power continuous wave near-infrared (NIR) laser beam. Further, we utilized the magnetic nature of these CMCNPs to localize them in desired region by external magnetic field, thus minimizing the required number of nanoparticles. We discovered that irradiation of the CMCNPs near the desired cell(s) with NIR laser beam leads to temperature rise that not only stretch the cell-membrane to ease delivery, it also creates fluid flow to allow mobilization of exogenous substances to the delivery. Due to significant absorption properties of the CMCNPs in the NIR therapeutic window, PTD under in vivo condition is highly possible.

  6. Chromosome aberrations in human lymphocytes from the plateau region of the Bragg curve for a carbon-ion beam

    Science.gov (United States)

    Manti, L.; Durante, M.; Grossi, G.; Pugliese, M.; Scampoli, P.; Gialanella, G.

    2007-06-01

    Radiotherapy with high-energy carbon ion beams can be more advantageous compared to photons because of better physical dose distribution and higher biological efficiency in tumour cell sterilization. Despite enhanced normal tissue sparing, damage incurred by normal cells at the beam entrance is unavoidable and may affect the progeny of surviving cells in the form of inheritable cytogenetic alterations. Furthermore, the quality of the beam along the Bragg curve is modified by nuclear fragmentation of projectile and target nuclei in the body. We present an experimental approach based on the use of a polymethylmethacrylate (PMMA) phantom that allows the simultaneous exposure to a particle beam of several biological samples positioned at various depths along the beam path. The device was used to measure the biological effectiveness of a 60 MeV/amu carbon-ion beam at inducing chromosomal aberrations in G0-human peripheral blood lymphocytes. Chromosome spreads were obtained from prematurely condensed cells and all structural aberration types were scored in Fluorescence in situ Hybridization (FISH)-painted chromosomes 1 and 2. Our results show a marked increase with depth in the aberration frequency prior to the Bragg peak, which is consistent with a linear energy transfer (LET)-dependent increase in biological effectiveness.

  7. A large size ion beam figuring system for 1.2m astronomical telescopes fabrication

    Science.gov (United States)

    Xie, Xuhui; Yang, Bing; Zhou, Lin; Song, Ci; Hu, Hao

    2016-07-01

    An ion beam figuring system (KDIBF2000) for final figuring of large size optics has been designed and built by National University of Defense Technology in China. It can figure optics up to the maximum dimensions of 2.0m×2.0m×0.4m with five axes of servo-motion used to control ion source movement. For operational facility, there are two vacuum chambers with main work chamber and a small supplementary chamber isolated by a flapper valve. The main chamber has two work zones, which can meantime hold a large optics with Φ1.5m and a small optics with 0.4m. The small optics can be transferred through supplementary chamber with a moving vehicle. By this way, it is very convenient and economical to gain the material removal function and check the system's process performance. Now, this system has been gone into running to figure large SiC off-axis aspheric optics. Next step, a 1.2m SiC aspheric primary mirror will be figure by this system.

  8. Development and characterization of a 2D scintillation detector for quality assurance in scanned carbon ion beams

    Science.gov (United States)

    Tamborini, A.; Raffaele, L.; Mirandola, A.; Molinelli, S.; Viviani, C.; Spampinato, S.; Ciocca, M.

    2016-04-01

    At the Centro Nazionale di Adroterapia Oncologica (CNAO Foundation), a two-dimensional high resolution scintillating dosimetry system has been developed and tested for daily Quality Assurance measurements (QA) in carbon ion radiotherapy with active scanning technique, for both single pencil beams and scanned fields produced by a synchrotron accelerator. The detector consists of a thin plane organic scintillator (25×25 cm2, 2 mm thick) coupled with a high spatial resolution CCD camera (0.25 mm) in a light-tight box. A dedicated Labview software was developed for image acquisition triggered with the beam extraction, data post-processing and analysis. The scintillator system was preliminary characterized in terms of short-term reproducibility (found to be within±0.5%), linearity with the number of particles (linear fit χ2 = 0.996) and dependence on particle flux (measured to be < 1.5 %). The detector was then tested for single beam spot measurements (Full Width at Half Maximum and position) and for 6×6 cm2 reference scanned field (determination of homogeneity) for carbon ions with energy from 115 MeV/u up to 400 MeV/u. No major differences in the investigated beam parameters measured with scintillator system and the radiochromic EBT3 reference films were observed. The system allows therefore real-time monitoring of the carbon ion beam relevant parameters, with a significant daily time saving with respect to films currently used. The results of this study show the suitability of the scintillation detector for daily QA in a carbon ion facility with an active beam delivery system.

  9. Non-uniform shrinkage of multiple-walled carbon nanotubes under in situ electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lunxiong [South China Normal University, Brain Science Institute, Guangzhou (China); Xiamen University, China-Australia Joint Laboratory for Functional Nanomaterials and Physics Department, Xiamen (China); Su, Jiangbin [Xiamen University, China-Australia Joint Laboratory for Functional Nanomaterials and Physics Department, Xiamen (China); Chang Zhou University, School of Mathematics and Physics, Changzhou (China); Zhu, Xianfang [Xiamen University, China-Australia Joint Laboratory for Functional Nanomaterials and Physics Department, Xiamen (China)

    2016-10-15

    Instability of multiple-walled carbon nanotubes (MWCNTs) was investigated by in situ transmission electron microscopy at room temperature. Specially, the non-uniform shrinkage of tubes was found: The pristine MWCNT shrank preferentially in its axial direction from the most curved free cap end of the tube, but the shrinkage of the tube diameter was offset by the axial shrinkage: For the complex MWCNT, the two inner MWCNTs also preferentially axially shrank from their most curved cap ends and separated from each other. However, for the effect of the radial pressure from the out walls which enveloped the two inner tubes and the tube amorphization, the two inner tubes were extruded to come close to each other and finally touched again. The new ''evaporation'' and ''diffusion'' mechanisms of carbon atoms as driven by the nano-curvature of CNT and the electron beam-induced athermal activation were suggested to explain the above phenomena. (orig.)

  10. Increased Tensile Strength of Carbon Nanotube Yarns and Sheets through Chemical Modification and Electron Beam Irradiation

    Science.gov (United States)

    Miller, Sandi G.; Williams, Tiffany S.; Baker, James S.; Sola, Francisco; Lebron-Colon, Marisabel; McCorkle, Linda S.; Wilmoth, Nathan G.; Gaier, James; Chen, Michelle; Meador, Michael A.

    2014-01-01

    The inherent strength of individual carbon nanotubes offers considerable opportunity for the development of advanced, lightweight composite structures. Recent work in the fabrication and application of carbon nanotube (CNT) forms such as yarns and sheets has addressed early nanocomposite limitations with respect to nanotube dispersion and loading; and has pushed the technology toward structural composite applications. However, the high tensile strength of an individual CNT has not directly translated to macro-scale CNT forms where bulk material strength is limited by inter-tube electrostatic attraction and slippage. The focus of this work was to assess post processing of CNT sheet and yarn to improve the macro-scale strength of these material forms. Both small molecule functionalization and e-beam irradiation was evaluated as a means to enhance tensile strength and Youngs modulus of the bulk CNT material. Mechanical testing results revealed a tensile strength increase in CNT sheets by 57 when functionalized, while an additional 48 increase in tensile strength was observed when functionalized sheets were irradiated; compared to unfunctionalized sheets. Similarly, small molecule functionalization increased yarn tensile strength up to 25, whereas irradiation of the functionalized yarns pushed the tensile strength to 88 beyond that of the baseline yarn.

  11. One-dimensional carbon nanostructures for terahertz electron-beam radiation

    Science.gov (United States)

    Tantiwanichapan, Khwanchai; Swan, Anna K.; Paiella, Roberto

    2016-06-01

    One-dimensional carbon nanostructures such as nanotubes and nanoribbons can feature near-ballistic electronic transport over micron-scale distances even at room temperature. As a result, these materials provide a uniquely suited solid-state platform for radiation mechanisms that so far have been the exclusive domain of electron beams in vacuum. Here we consider the generation of terahertz light based on two such mechanisms, namely, the emission of cyclotronlike radiation in a sinusoidally corrugated nanowire (where periodic angular motion is produced by the mechanical corrugation rather than an externally applied magnetic field), and the Smith-Purcell effect in a rectilinear nanowire over a dielectric grating. In both cases, the radiation properties of the individual charge carriers are investigated via full-wave electrodynamic simulations, including dephasing effects caused by carrier collisions. The overall light output is then computed with a standard model of charge transport for two particularly suitable types of carbon nanostructures, i.e., zigzag graphene nanoribbons and armchair single-wall nanotubes. Relatively sharp emission peaks at geometrically tunable terahertz frequencies are obtained in each case. The corresponding output powers are experimentally accessible even with individual nanowires, and can be scaled to technologically significant levels using array configurations. These radiation mechanisms therefore represent a promising paradigm for light emission in condensed matter, which may find important applications in nanoelectronics and terahertz photonics.

  12. Microdosimetry of radiation fields from therapeutic C-12 beams in water: a study with Geant4 toolkit

    CERN Document Server

    Burigo, Lucas; Mishustin, Igor; Bleicher, Marcus

    2013-01-01

    We model the responses of Tissue-Equivalent Proportional Counters (TEPC) to radiation fields of therapeutic C-12 beams in a water phantom and to quasi-monoenergetic neutrons in a PMMA phantom. Simulations are performed with the Monte Carlo for Heavy Ion Therapy (MCHIT) model based on the Geant4 toolkit. The shapes of the calculated lineal energy spectra agree well with measurements in both cases. Measurements on the axis of a narrow C-12 beam with its width smaller than the TEPC diameter are studied in detail. The relation between LET and measured frequency-mean lineal energy yf is discussed. It is found that the choice of the nuclear fragmentation model used in MCHIT simulations has a relatively small influence on the calculated total lineal energy spectra. However, the shapes of the spectra measured with C-12 beams are better described by MCHIT calculations which take into account the production of delta-electrons. The validation of MCHIT with neutron beams gives us confidence in estimating the contribution...

  13. Wave propagation in double-walled carbon nanotubes on a novel analytically nonlocal Timoshenko-beam model

    Science.gov (United States)

    Yang, Yang; Zhang, Lixiang; Lim, C. W.

    2011-04-01

    This paper is concerned with the characteristics of wave propagation in double-walled carbon nanotubes (DWCNTs). The DWCNTs is simulated with a Timoshenko beam model based on the nonlocal continuum elasticity theory, referred to as an analytically nonlocal Timoshenko-beam (ANT) model. The governing equations of the DWCNTs beam consist of a set of four equations that are derived from the variational principle of the beam with high-order boundary conditions at the both ends, in which the effects of the nano-scale nonlocality and the van der Waals interaction between inner and outer tubes are inclusive. The characteristics of the wave propagation in the DWCNTs beam were analyzed with the new ANT model proposed and the comparisons with the partially nonlocal Timoshenko-beam (PNT) models in publication were made in details. The results show that the nonlocal effects of the ANT model proposed in the present study on the wave propagations are more significant because it is in stronger stiffness enhancement to the DWCNTs beam.

  14. Deposition of Diamond-Like carbon Films by High-Intensity Pulsed Ion Beam Ablation at Various Substrate Temperatures

    Institute of Scientific and Technical Information of China (English)

    梅显秀; 刘振民; 马腾才; 董闯

    2003-01-01

    Diamond-like carbon (DLC) films have been deposited on to Si substrates at substrate temperatures from 25℃to 400 ℃ by a high-intensity pulsed-ion-beam (HIPIB) ablation deposition technique. The formation of DLC is confirmed by Raman spectroscopy. According to an x-ray photoelectron spectroscopy analysis, the concentration of spa carbon in the films is about 40% when the substrate temperature is below 300 ℃. With increasing substrate temperature from 25 ℃ to 400 ℃, the concentration of sp3 carbon decreases from 43% to 8%. In other words,sp3 carbon is graphitized into sp2 carbon when the substrate temperature is above 300 ℃. The results of xray diffraction and atomic force microscopy show that, with increasing the substrate temperature, the surface roughness and the friction coefficient increase, and the microhardness and the residual stress of the films decrease.

  15. Lifetime dependence of nitrided carbon stripper foils on sputter angle during N{sup +} ion beam sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Sugai, I., E-mail: isao.Sugai@kek.jp [High Energy Accelerator Research Organization, Accelerator Laboratory, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Oyaizu, M. [High Energy Accelerator Research Organization, Institute of Particle and Nuclear Studies, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Takeda, Y. [High Energy Accelerator Research Organization, Accelerator Laboratory, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Kawakami, H. [High Energy Accelerator Research Organization, Institute of Particle and Nuclear Studies, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Kawasaki, K.; Hattori, T. [Department of Physics, Tokyo Institute of Technology, Ohokayama, Meguro, Tokyo 152-8550 (Japan); Kadono, T. [Department of Physics, University of Tokyo, Hongo, 7-3-1, Bunkyo, Tokyo 113-0033 (Japan)

    2015-09-01

    We fabricated high-lifetime thin nitride carbon stripper (NCS) foils with high nitrogen contents using ion-beam sputtering with reactive nitrogen gas and investigated the dependence of their lifetimes on the sputter angle. The nitrogen in carbon foils plays a critical role in determining their lifetime. Therefore, in order to investigate the effects of the nitrogen level in NCS foils on foil lifetime, we measured the sputtering yield for different sputter angles at a sputtering voltage of 10 kV while using carbon-based targets. We also measured the nitrogen-to-carbon thickness ratios of the foils using Rutherford backscattering spectrometry. The foils made at a sputter angle of 15° using a glassy amorphous carbon target exhibited an average increase of 200-fold in lifetime when compared to commercially available foils.

  16. Efficacy of supercritical carbon dioxide for nonthermal inactivation of Escherichia coli K12 in apple cider

    Science.gov (United States)

    This study evaluated the efficacy of a supercritical carbon dioxide (SCCO2) system with a gas-liquid porous metal contactor for eliminating Escherichia coli K12 in apple cider. Pasteurized, preservative-free apple cider was inoculated with E. coli K12 and processed using the SCCO2 system at CO2 conc...

  17. Double-differential fragmentation cross-section measurements of 95 MeV/nucleon 12C beams on thin targets for hadron therapy

    Science.gov (United States)

    Dudouet, J.; Juliani, D.; Labalme, M.; Cussol, D.; Angélique, J. C.; Braunn, B.; Colin, J.; Finck, Ch.; Fontbonne, J. M.; Guérin, H.; Henriquet, P.; Krimmer, J.; Rousseau, M.; Saint-Laurent, M. G.; Salvador, S.

    2013-08-01

    During therapeutic treatment with heavy ions like carbon, the beam undergoes nuclear fragmentation and secondary light charged particles, in particular protons and α particles, are produced. To estimate the dose deposited into the tumors and the surrounding healthy tissues, an accurate prediction on the fluences of these secondary fragments is necessary. Nowadays, a very limited set of double differential carbon fragmentation cross sections are being measured in the energy range used in hadron therapy (40 to 400 MeV/nucleon). Therefore, new measurements are performed to determine the double differential cross section of carbon on different thin targets. This work describes the experimental results of an experiment performed on May 2011 at GANIL. The double differential cross sections and the angular distributions of secondary fragments produced in the 12C fragmentation at 95 MeV/nucleon on thin targets (C, CH2, Al, Al2O3, Ti, and PMMA) have been measured. The experimental setup will be precisely described, the systematic error study will be explained and all the experimental data will be presented.

  18. Structural changes of electron and ion beam-deposited contacts in annealed carbon-based electrical devices

    KAUST Repository

    Batra, Nitin M

    2015-10-09

    The use of electron and ion beam deposition to make devices containing discrete nanostructures as interconnectors is a well-known nanofabrication process. Classically, one-dimensional materials such as carbon nanotubes (CNTs) have been electrically characterized by resorting to these beam deposition methods. While much attention has been given to the interconnectors, less is known about the contacting electrodes (or leads). In particular, the structure and chemistry of the electrode–interconnector interface is a topic that deserves more attention, as it is critical to understand the device behavior. Here, the structure and chemistry of Pt electrodes, deposited either with electron or ion beams and contacted to a CNT, are analyzed before and after thermally annealing the device in a vacuum. Free-standing Pt nanorods, acting as beam-deposited electrode models, are also characterized pre- and post-annealing. Overall, the as-deposited leads contain a non-negligible amount of amorphous carbon that is consolidated, upon heating, as a partially graphitized outer shell enveloping a Pt core. This observation raises pertinent questions regarding the definition of electrode–nanostructure interfaces in electrical devices, in particular long-standing assumptions of metal-CNT contacts fabricated by direct beam deposition methods.

  19. Structural changes of electron and ion beam-deposited contacts in annealed carbon-based electrical devices

    Science.gov (United States)

    Batra, Nitin M.; Patole, Shashikant P.; Abdelkader, Ahmed; Anjum, Dalaver H.; Deepak, Francis L.; Costa, Pedro M. F. J.

    2015-11-01

    The use of electron and ion beam deposition to make devices containing discrete nanostructures as interconnectors is a well-known nanofabrication process. Classically, one-dimensional materials such as carbon nanotubes (CNTs) have been electrically characterized by resorting to these beam deposition methods. While much attention has been given to the interconnectors, less is known about the contacting electrodes (or leads). In particular, the structure and chemistry of the electrode-interconnector interface is a topic that deserves more attention, as it is critical to understand the device behavior. Here, the structure and chemistry of Pt electrodes, deposited either with electron or ion beams and contacted to a CNT, are analyzed before and after thermally annealing the device in a vacuum. Free-standing Pt nanorods, acting as beam-deposited electrode models, are also characterized pre- and post-annealing. Overall, the as-deposited leads contain a non-negligible amount of amorphous carbon that is consolidated, upon heating, as a partially graphitized outer shell enveloping a Pt core. This observation raises pertinent questions regarding the definition of electrode-nanostructure interfaces in electrical devices, in particular long-standing assumptions of metal-CNT contacts fabricated by direct beam deposition methods.

  20. Measurement of charged particle yields from PMMA irradiated by a 220 MeV/u 12C beam

    Science.gov (United States)

    Piersanti, L.; Bellini, F.; Bini, F.; Collamati, F.; De Lucia, E.; Durante, M.; Faccini, R.; Ferroni, F.; Fiore, S.; Iarocci, E.; La Tessa, C.; Marafini, M.; Mattei, I.; Patera, V.; Ortega, P. G.; Sarti, A.; Schuy, C.; Sciubba, A.; Vanstalle, M.; Voena, C.

    2014-04-01

    The radiation used in hadrontherapy treatments interacts with the patient body producing secondary particles, either neutral or charged, that can be used for dose and Bragg peak monitoring and to provide a fast feedback on the treatment plans. Recent results obtained from the authors on simplified setups (mono-energetic primary beams interacting with homogeneous tissue-like target) have already indicated the correlation that exists between the flux of these secondaries coming from the target (e.g. protons and photons) and the position of the primary beam Bragg peak. In this paper, the measurements of charged particle fluxes produced by the interaction of a 220 MeV/u carbon ion beam at GSI, Darmstadt, with a polymethyl methacrylate target are reported. The emission region of protons (p), deuterons (d) and tritons (t) has been characterized using a drift chamber while the particle time-of-flight, used to compute the kinetic energy spectra, was measured with a LYSO scintillator. The energy released in the LYSO crystal was used for particle identification purposes. The measurements were repeated with the setup at 60° and 90° with respect to the primary beam direction. The accuracy on the fragments emission profile reconstruction and its relationship with the Bragg peak position have been studied. Based on the acquired experimental evidence, a method to monitor the dose profile and the position of the Bragg peak inside the target is proposed.

  1. Measurement of charged particle yields from PMMA irradiated by a 220 MeV/u (12)C beam.

    Science.gov (United States)

    Piersanti, L; Bellini, F; Bini, F; Collamati, F; De Lucia, E; Durante, M; Faccini, R; Ferroni, F; Fiore, S; Iarocci, E; La Tessa, C; Marafini, M; Mattei, I; Patera, V; Ortega, P G; Sarti, A; Schuy, C; Sciubba, A; Vanstalle, M; Voena, C

    2014-04-07

    The radiation used in hadrontherapy treatments interacts with the patient body producing secondary particles, either neutral or charged, that can be used for dose and Bragg peak monitoring and to provide a fast feedback on the treatment plans. Recent results obtained from the authors on simplified setups (mono-energetic primary beams interacting with homogeneous tissue-like target) have already indicated the correlation that exists between the flux of these secondaries coming from the target (e.g. protons and photons) and the position of the primary beam Bragg peak. In this paper, the measurements of charged particle fluxes produced by the interaction of a 220 MeV/u carbon ion beam at GSI, Darmstadt, with a polymethyl methacrylate target are reported. The emission region of protons (p), deuterons (d) and tritons (t) has been characterized using a drift chamber while the particle time-of-flight, used to compute the kinetic energy spectra, was measured with a LYSO scintillator. The energy released in the LYSO crystal was used for particle identification purposes. The measurements were repeated with the setup at 60° and 90° with respect to the primary beam direction. The accuracy on the fragments emission profile reconstruction and its relationship with the Bragg peak position have been studied. Based on the acquired experimental evidence, a method to monitor the dose profile and the position of the Bragg peak inside the target is proposed.

  2. Landsat 1-2 Return Beam Vidicon Film Only: 1972-1983

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The three-camera Return Beam Vidicon (RBV) that operated on Landsat satellites 1 and 2 acquired approximately 1600 sub-scenes at 80 meter resolution. The initial RBV...

  3. Landsat 1-2 Return Beam Vidicon Film Only: 1972-1983

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The three-camera Return Beam Vidicon (RBV) that operated on Landsat satellites 1 and 2 acquired approximately 1600 sub-scenes at 80 meter resolution. The initial...

  4. Fast dose analysis of movement effects during treatments with scanned proton and carbon-ion beams

    Science.gov (United States)

    Vignati, A.; Varasteh Anvar, M.; Giordanengo, S.; Monaco, V.; Attili, A.; Donetti, M.; Marchetto, F.; Mas Milian, F.; Ciocca, M.; Russo, G.; Sacchi, R.; Cirio, R.

    2017-01-01

    Charged particle therapy delivered using scanned pencil beams shows the potential to produce better dose conformity than conventional radiotherapy, although the dose distributions are more sensitive to anatomical changes and patient motion. Therefore, the introduction of engines to monitor the dose as it is being delivered is highly desirable, in order to enhance the development of adaptive treatment techniques in hadrontherapy. A tool for fast dose distributions analysis is presented, which integrates on GPU a Fast Forward Planning, a Fast Image Deformation algorithm, a fast computation of Gamma-Index and Dose-Volume Histogram. The tool is being interfaced with the Dose Delivery System and the Optical Tracking System of a synchrotron-based facility to investigate the feasibility to quantify, spill by spill, the effects of organ movements on dose distributions during treatment deliveries with protons and carbon-ions. The dose calculation and comparison times for a patient treated with protons on a 61.3 cm3 planning target volume, a CT matrix of 512x512x125 voxels, and a computation matrix of 170x170x125 voxels are within 1 s per spill. In terms of accuracy, the absolute dose differences compared with benchmarked Treatment Planning System results are negligible (<10-4 Gy).

  5. The effect of the iBEAM Evo carbon fiber tabletop on skin sparing.

    Science.gov (United States)

    Simpson, John B; Godwin, Guy A

    2011-01-01

    Replicating the attenuation properties of the treatment tabletop are of primary importance for accurate treatment planning; however, the effect of the tabletop on the skin-sparing properties of x-rays can be overlooked. Under some conditions, the reaction of skin to the radiation can be so serious as to be the dose-limiting organ for radiotherapy treatment. Hence, an understanding of the magnitude of the reduction in skin sparing is important. Because of the development of image-guided radiotherapy, modern tabletops have been developed without the use of metal supports that otherwise provided the necessary level of rigidity. Rigidity is instead provided by compressed foam within a carbon-fiber shell, which, although it provides artefact-free imaging and high levels of rigidity, has an adverse affect on the dose in the build-up region. Representative of this type is the iBEAM evo tabletop, whose effect on the skin dose was determined at 6-MV, 10-MV, and 18-MV x-rays. Skin dose was found to increase by 60-70% owing to the tabletop, with the effect increasing with field size and decreasing with energy. By considering an endpoint of erythema, a radiobiological advantage of selecting 10 MV over 6 MV for applicable treatments was demonstrated.

  6. Negative Resistance Effect and Charge Transfer Mechanisms in the lon Beam Deposited Diamond Like Carbon Superlattices

    Directory of Open Access Journals (Sweden)

    Andrius VASILIAUSKAS

    2011-03-01

    Full Text Available In the present study DLC:SiOx/DLC/DLC:SiOx/nSi and DLC:SiOx/DLC/DLC:SiOx/pSi structures were fabricated by ion beam deposition using a closed drift ion source. Current-voltage (I-V characteristics of the multilayer samples were measured at room temperature. The main charge transfer mechanisms were considered. Unstable negative resistance effect was observed for some DLC:SiOx/DLC/DLC:SiOx/nSi and DLC:SiOx/DLC/DLC:SiOx/pSi structures. In the case of the diamond like carbon superlattices fabricated on nSi it was observed only during the first measurement. In the case of the some DLC:SiOx/DLC/DLC:SiOx/pSi negative resistance "withstood" several measurements. Changes of the charge carrier mechanisms were observed along with the dissapear of the negative resistance peaks. It seems, that in such a case influence of the bulk related charge transfer mechanisms such as Poole-Frenkel emission increased, while the influence of the contact limited charge transfer mechanisms such as Schottky emission decreased. Observed results were be explained by current flow through the local microconducting channels and subsequent destruction of the localized current pathways as a result of the heating by flowing electric current.http://dx.doi.org/10.5755/j01.ms.17.1.240

  7. The relative biological effectiveness for carbon and oxygen ion beams using the raster-scanning technique in hepatocellular carcinoma cell lines.

    Directory of Open Access Journals (Sweden)

    Daniel Habermehl

    Full Text Available BACKGROUND: Aim of this study was to evaluate the relative biological effectiveness (RBE of carbon (12C and oxygen ion (16O-irradiation applied in the raster-scanning technique at the Heidelberg Ion beam Therapy center (HIT based on clonogenic survival in hepatocellular carcinoma cell lines compared to photon irradiation. METHODS: Four human HCC lines Hep3B, PLC, HepG2 and HUH7 were irradiated with photons, 12C and 16O using a customized experimental setting at HIT for in-vitro trials. Cells were irradiated with increasing physical photon single doses of 0, 2, 4 and 6 Gy and heavy ion-single doses of 0, 0.125, 0.5, 1, 2, 3 Gy (12C and 16O. SOBP-penetration depth and extension was 35 mm +/-4 mm and 36 mm +/-5 mm for carbon ions and oxygen ions respectively. Mean energy level and mean linear energy transfer (LET were 130 MeV/u and 112 keV/um for 12C, and 154 MeV/u and 146 keV/um for 16O. Clonogenic survival was computated and relative biological effectiveness (RBE values were defined. RESULTS: For all cell lines and both particle modalities α- and β-values were determined. As expected, α-values were significantly higher for 12C and 16O than for photons, reflecting a steeper decline of the initial slope of the survival curves for high-LET beams. RBE-values were in the range of 2.1-3.3 and 1.9-3.1 for 12C and 16O, respectively. CONCLUSION: Both irradiation with 12C and 16O using the raster-scanning technique leads to an enhanced RBE in HCC cell lines. No relevant differences between achieved RBE-values for 12C and 16O were found. Results of this work will further influence biological-adapted treatment planning for HCC patients that will undergo particle therapy with 12C or 16O.

  8. Integration of carbon nanotubes with semiconductor technology: fabrication of hybrid devices by III–V molecular beam epitaxy

    DEFF Research Database (Denmark)

    Stobbe, Søren; Lindelof, P. E.; Nygård, J.

    2006-01-01

    on incorporation of singlewall nanotubes in III–V semiconductor heterostructures grown by molecular beam epitaxy (MBE). We demonstrate that singlewall carbon nanotubes can be overgrown using MBE; electrical contacts to the nanotubes are obtained by GaMnAs grown at 250 °C. The resulting devices can exhibit field......We review a number of essential issues regarding the integration of carbon nanotubes in semiconductor devices for electronics: material compatibility, electrical contacts, functionalities, circuit architectures and reliability. In the second part of the paper, we present our own recent results...

  9. Secondary radiation measurements for particle therapy applications: prompt photons produced by 4He, 12C and 16O ion beams in a PMMA target

    Science.gov (United States)

    Mattei, I.; Bini, F.; Collamati, F.; De Lucia, E.; Frallicciardi, P. M.; Iarocci, E.; Mancini-Terracciano, C.; Marafini, M.; Muraro, S.; Paramatti, R.; Patera, V.; Piersanti, L.; Pinci, D.; Rucinski, A.; Russomando, A.; Sarti, A.; Sciubba, A.; Solfaroli Camillocci, E.; Toppi, M.; Traini, G.; Voena, C.; Battistoni, G.

    2017-02-01

    Charged particle beams are used in particle therapy (PT) to treat oncological patients due to their selective dose deposition in tissues with respect to the photons and electrons used in conventional radiotherapy. Heavy (Z  >  1) PT beams can additionally be exploited for their high biological effectiveness in killing cancer cells. Nowadays, protons and carbon ions are used in PT clinical routines. Recently, interest in the potential application of helium and oxygen beams has been growing. With respect to protons, such beams are characterized by their reduced multiple scattering inside the body, increased linear energy transfer, relative biological effectiveness and oxygen enhancement ratio. The precision of PT demands online dose monitoring techniques, crucial to improving the quality assurance of any treatment: possible patient mis-positioning and biological tissue changes with respect to the planning CT scan could negatively affect the outcome of the therapy. The beam range confined in the irradiated target can be monitored thanks to the neutral or charged secondary radiation emitted by the interactions of hadron beams with matter. Among these secondary products, prompt photons are produced by nuclear de-excitation processes, and at present, different dose monitoring and beam range verification techniques based on prompt-γ detection are being proposed. It is hence of importance to perform γ yield measurement in therapeutic-like conditions. In this paper we report on the yields of prompt photons produced by the interaction of helium, carbon and oxygen ion beams with a poly-methyl methacrylate (PMMA) beam stopping target. The measurements were performed at the Heidelberg Ion-Beam Therapy Center (HIT) with beams of different energies. An LYSO scintillator, placed at {{60}\\circ} and {{90}\\circ} with respect to the beam direction, was used as the photon detector. The obtained γ yields for the carbon ion beams are compared with results from the literature

  10. Monte Carlo simulation for calculation of fragments produced by 400 MeV/u carbon ion beam in water

    Science.gov (United States)

    Ou, Hai-Feng; Zhang, Bin; Zhao, Shu-Jun

    2017-04-01

    Monte Carlo simulation was an important approach to obtain accurate characteristics of radiotherapy. In this work, a 400 MeV/u carbon ion beam incident on water phantom was simulated with Gate/Geant4 tools. The authors obtained the dose distributions of H, He, Li, Be, B, C and their isotopes in water phantom, and drew a conclusion that the dose of 11C was the main reason of causing the embossment of total dose curve around 252 mm depth. The authors also studied detailedly the dose contribution distributions, yield distributions and average energy distributions of all kinds of fragments. The information of four distributions was very meaningful for understanding the effect of fragments in carbon ion beam radiotherapy. The method of this simulation was easy to extend. For example, for obtaining a special result, we may change the particle energy, particle type, target material, target geometry, physics process, detector, etc.

  11. Engineering the Activity and Lifetime of Heterogeneous Catalysts for Carbon Nanotube Growth via Substrate Ion Beam Bombardment (Postprint)

    Science.gov (United States)

    2014-07-31

    11,25 and chirality.19,20 CNTs are grown via heterogeneous catalysis using a thin film of catalyst on a wide variety of catalyst supports. Films of...another method in catalysis science to engineer supports to enhance both catalytic activity and lifetime with general implications for heterogeneous ...AFRL-RX-WP-JA-2014-0159 ENGINEERING THE ACTIVITY AND LIFETIME OF HETEROGENEOUS CATALYSTS FOR CARBON NANOTUBE GROWTH VIA SUBSTRATE ION BEAM

  12. Optimizing the e-beam profile of a single carbon nanotube field emission device for electric propulsion systems

    Directory of Open Access Journals (Sweden)

    Juliano Fujioka Mologni

    2010-04-01

    Full Text Available Preliminary studies on field emission (FE arrays comprised of carbon nanotubes (CNT as an electron source for electric propulsion system show remarkably promising results. Design parameters for a carbon nanotube (CNT field-emission device operating on triode configuration were numerically simulated and optimized in order to enhance the e-beam focusing quality. An additional focus gate (FG was integrated to the device to control the profile of the emitted e-beam. An axisymmetric finite element model was developed to calculate the electric field distribution on the vacuum region and a modified Fowler-Nordheim (FN equation was used to evaluate the current density emission and the effective emitter area. Afterward, a FE simulation was employed in order to calculate the trajectory of the emitted electrons and define the electron-optical properties of the e-beam. The integration of the FG was fully investigated via computational intelligence techniques. The best performance device according to our simulations presents a collimated e-beam profile that suits well for field emission displays, magnetic field detection and electron microscopy. The automated computational design tool presented in this study strongly benefits the robust design of integrated electron-optical systems for vacuum field emission applications, including electrodynamic tethering and electric propulsion systems.

  13. Large-angle production of charged pions by 3 GeV/c - 12 GeV/c protons on carbon, copper and tin targets

    CERN Document Server

    Catanesi, M G; Edgecock, R; Ellis, M; Robbins, S; Soler, F J P; Gössling, C; Bunyatov, S; Krasnoperov, A; Popov, B; Serdiouk, V; Tereschenko, V; Di Capua, E; Vidal-Sitjes, G; Artamonov, A; Arce, P; Giani, S; Gilardoni, S; Gorbunov, P; Grant, A; Grossheim, A; Gruber, P; Ivanchenko, V; Kayis-Topaksu, A; Panman, J; Papadopoulos, I; Pasternak, J; Chernyaev, E; Tsukerman, I; Veenhof, R; Wiebusch, C; Zucchelli, P; Blondel, A; Borghi, S; Campanelli, M; Morone, M C; Prior, G; Schroeter, R; Engel, R; Meurer, C; Kato, I; Gastaldi, Ugo; Mills, G B; Graulich, J S; Grégoire, G; Bonesini, M; Ferri, F; Paganoni, M; Paleari, F; Kirsanov, M; Bagulya, A; Grichine, V; Polukhina, N; Palladino, V; Coney, L; Schmitz, D; Barr, G; De Santo, A; Pattison, C; Zuber, K; Bobisut, F; Gibin, D; Guglielmi, A; Mezzetto, M; Dumarchez, J; Vannucci, F; Dore, U; Orestano, D; Pastore, F; Tonazzo, A; Tortora, L; Booth, C; Buttar, C; Hodgson, P; Howlett, L; Bogomilov, M; Chizhov, M; Kolev, D; Tsenov, R; Piperov, S; Temnikov, P; Apollonio, M; Chimenti, P; Giannini, G; Santin, G; Burguet-Castell, J; Cervera-Villanueva, A; Gómez-Cadenas, J J; Martín-Albo, J; Novella, P; Sorel, M; Tornero, A

    2008-01-01

    A measurement of the double-differential $\\pi^{\\pm}$ production cross-section in proton--carbon, proton--copper and proton--tin collisions in the range of pion momentum $100 \\MeVc \\leq p < 800 \\MeVc$ and angle $0.35 \\rad \\le \\theta <2.15 \\rad$ is presented. The data were taken with the HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 \\GeVc to 12 \\GeVc hitting a target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was done using a small-radius cylindrical time projection chamber (TPC) placed in a solenoidal magnet. An elaborate system of detectors in the beam line ensured the identification of the incident particles. Results are shown for the double-differential cross-sections at four incident proton beam momenta (3 \\GeVc, 5 \\GeVc, 8 \\GeVc and 12 \\GeVc).

  14. Secondary radiation measurements for particle therapy applications: Charged secondaries produced by 4He and 12C ion beams in a PMMA target at large angle

    CERN Document Server

    Rucinski, A; Battistoni, G; Collamati, F; Faccini, R; Frallicciardi, P M; Mancini-Terracciano, C; Marafini, M; Mattei, I; Muraro, S; Paramatti, R; Piersanti, L; Pinci, D; Russomando, A; Sarti, A; Sciubba, A; Camillocci, E Solfaroli; Toppi, M; Traini, G; Voena, C; Patera, V

    2016-01-01

    Measurements performed with the purpose of characterizing the charged secondary radiation for dose release monitoring in particle therapy are reported. Charged secondary yields, energy spectra and emission profiles produced in poly-methyl methacrylate (PMMA) target by 4He and 12C beams of different therapeutic energies were measured at 60 and 90 degree with respect to the primary beam direction. The secondary yields of protons produced along the primary beam path in PMMA target were obtained. The energy spectra of charged secondaries were obtained from time-of-flight information, whereas the emission profiles were reconstructed exploiting tracking detector information. The measured charged secondary yields and emission profiles are in agreement with the results reported in literature and confirm the feasibility of ion beam therapy range monitoring using 12C ion beam. The feasibility of range monitoring using charged secondary particles is also suggested for 4He ion beam.

  15. SYNTHESIS AND CHARACTERIZATION OF HIGH MOLECULAR WEIGHT POLY(1,2-PROPYLENE CARBONATE-co-1,2-CYCLOHEXYLENE CARBONATE)USING ZINC COMPLEX CATALYST

    Institute of Scientific and Technical Information of China (English)

    Jing-shu Wu; Min Xiao; Hu He; Shuan-jin Wang; Dong-mei Han; Yue-zhong Meng

    2011-01-01

    Using supported multi-component zinc dicarboxylate catalyst,poly(1,2-propylene carbonate-co-l,2-cyclohexylene carbonate) (PPCHC) was successfully synthesized from carbon dioxide (CO2) with propylene oxide (PO) and cyclohexene oxide (CHO).The conversion of epoxides dramatically increased up to 89.7% (yield:384.2 g of polymer per g of Zn) with increasing reaction temperature from 60℃ to 80℃.The optimized reaction temperature is 80℃.The chemical structure,the molecular weight,as well as thermal and mechanical properties of the resulting terpolymers were investigated extensively.When CHO feed content (mol%) is lower than 10%,the PPCHC terpolymers have number average molecular weight (Mn)ranging from 102 × 103 to 202 × 103 and molecular weight distribution (MWD) values ranging from 2.8 to 3.5.In contrast to poly(propylene carbonate) (PPC),the introduction of small amount of CHO leads to increase in the glass transition temperature from 38.0℃ to 42.6℃.Similarly,the mechanical strength of the synthesized terpolymer is greatly enhanced due to the incorporation of CHO.These improvements in mechanical and thermal properties are of importance for the practical application of PPC.

  16. PET monitoring of cancer therapy with He-3 and C-12 beams: a study with the GEANT4 toolkit

    CERN Document Server

    Pshenichnov, Igor; Mishustin, Igor; Greiner, Walter

    2007-01-01

    We study the spatial distributions of $\\beta^+$-activity produced by therapeutic beams of $^3$He and $^{12}$C ions in various tissue-like materials. The calculations were performed within a Monte Carlo model for Heavy-Ion Therapy (MCHIT) based on the GEANT4 toolkit. The contributions from $^{10,11}$C, $^{13}$N, $^{14,15}$O, $^{17,18}$F and $^{30}$P positron-emitting nuclei were calculated and compared with experimental data obtained during and after irradiation. Positron emitting nuclei are created by $^{12}$C beam in fragmentation reactions of projectile and target nuclei. This leads to a $\\beta^+$-activity profile characterised by a noticeable peak located close to the Bragg peak in the corresponding depth-dose distribution. On the contrary, as the most of positron-emitting nuclei are produced by $^3$He beam in target fragmentation reactions, the calculated total $\\beta^+$-activity during or soon after the irradiation period is evenly distributed within the projectile range. However, we predict also the pre...

  17. ARTICLE Crossed Beams Study on the Dynamics of F Atom Reaction with 1,2-Butadiene

    Science.gov (United States)

    Xiao, Chong-fa; Shen, Guan-lin; Wang, Xiu-yan; Yang, Xue-ming

    2010-12-01

    We have investigated the dynamics of the F+C4H6 reaction using the universal crossed molecular beam method. The C4H5F+H reaction channel was observed in this experiment. Angular resolved time-of-flight spectra have been measured for the C4H5F product. Product angular distributions as well as kinetic energy distributions were determined for this product channel. Experimental results show that the C4H5F product is largely backward scattered with considerable forward scattering signal, relative to the F atom beam direction. This suggests that the reaction channel mainly proceeds via a long-lived complex formation mechanism, with possible contribution from a direct SN2 type mechanism.

  18. Effects of initial stress on transverse wave propagation in carbon nanotubes based on Timoshenko laminated beam models

    Science.gov (United States)

    Cai, H.; Wang, X.

    2006-01-01

    Based on Timoshenko laminated beam models, this paper investigates the influence of initial stress on the vibration and transverse wave propagation in individual multi-wall carbon nanotubes (MWNTs) under ultrahigh frequency (above 1 THz), in which the initial stress in the MWNTs can occur due to thermal or lattice mismatch between different materials. Considering van der Waals force interaction between two adjacent tubes and effects of rotary inertia and shear deformation, results show that the initial stress in individual multi-wall carbon nanotubes not only affects the number of transverse wave speeds and the magnitude of transverse wave speeds, but also terahertz critical frequencies at which the number of wave speeds changes. When the initial stress in individual multi-wall carbon nanotubes is the compressive stress, transverse wave speeds decrease and the vibration amplitude ratio of two adjacent tubes increases. When the initial stress in individual multi-wall carbon nanotubes is the tensile stress, transverse wave speeds increase and the vibration amplitude ratio of two adjacent tubes decreases. The investigation of the effects of initial stress on transverse wave propagation in carbon nanotubes may be used as a useful reference for the application and the design of nanoelectronic and nanodrive devices, nano-oscillators, and nanosensors, in which carbon nanotubes act as basic elements.

  19. Study of 16O(12C,α20Ne)α for the investigation of carbon-carbon fusion reaction via the Trojan Horse Method

    Science.gov (United States)

    Rapisarda, G. G.; Spitaleri, C.; Bordeanu, C.; Hons, Z.; Kiss, G. G.; La Cognata, M.; Mrazek, J.; Nita, C.; Pantelica, D.; Petrascu, H.; Pizzone, R. G.; Romano, S.; Szücs, T.; Trache, L.; Tumino, A.; Velisa, G.

    2016-04-01

    Carbon-carbon fusion reaction represents a nuclear process of great interest in astrophysics, since the carbon burning is connected with the third phase of massive stars (M > 8 M⊙) evolution. In spite of several experimental works, carbon-carbon cross section has been measured at energy still above the Gamow window moreover data at low energy present big uncertainty. In this paper we report the results about the study of the 16O(12C,α 20Ne)α reaction as a possible three-body process to investigate 12C(12C,α)20Ne at astrophysical energy via Trojan Horse Method (THM). This study represents the first step of a program of experiments aimed to measure the 12C+12C cross section at astrophysical energy using the THM.

  20. Experimental study of the water-to-air stopping power ratio of monoenergetic carbon ion beams for particle therapy.

    Science.gov (United States)

    Sánchez-Parcerisa, D; Gemmel, A; Jäkel, O; Parodi, K; Rietzel, E

    2012-06-07

    Reference dosimetry with ionization chambers requires a number of chamber-specific and beam-specific calibration factors. For carbon ion beams, IAEA report TRS-398 yields a total uncertainty of 3% in the determination of the absorbed dose to water, for which the biggest contribution arises from the water-to-air stopping power ratio (s(w, air)), with an uncertainty of 2%. The variation of (s(w, air)) along the treatment field has been studied in several Monte Carlo works presented over the last few years. Their results were, in all cases, strongly dependent on the choice of mean ionization potentials (I-values) for air and water. A smaller dependence of (s(w, air)) with penetration depth was observed. Since a consensus on I(w, air) and I(air) has not yet been reached, the validity of such studies for clinical use cannot be assessed independently. Our approach is based on a direct experimental measurement of water-equivalent thicknesses of different air gaps at different beam energies. A theoretical expression describing the variation of the stopping power ratio with kinetic energy, s(w,air)(E), was derived from the Bethe-Bloch formula and fit to the measured data, yielding a coherent pair of I(w) and I(air) values with I(air)/I(w) = 1.157 ± 0.023. Additionally, the data from five different beam energies were combined in an average value of s(w,air) = 1.132 ± 0.003 (statistical) ± 0.003 (variation over energy range), valid for monoenergetic carbon ion beams at the plateau area of the depth dose distribution. A detailed uncertainty analysis was performed on the data, in order to assess the limitations of the method, yielding an overall standard uncertainty below 1% in s(w,air)(E). Therefore, when properly combined with the appropriate models for the fragment spectra, our experimental work can contribute to narrow the uncertainty margins currently in use in absorbed dose to water determination for dosimetry of carbon ion beam radiotherapy.

  1. Formation of Polyhydroxyalkanoate Blends by Pseudomonas pseudoalcaligenes M1-2 from Various Carbon Sources

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Pseudomonas pseudoalcaligenes strain M1-2 isolated from oil-contaminated soil collected from an oilfield in northern China was found to be able to synthesize a blend of polyhydroxyalkanoates (PHAs) containing monomers of 3-hydroxybutyrate (C4), 3-hydroxyvalerate (C5), 3-hydroxyheptanoate (C7), 3-hydroxyoctanoate (C8), 3-hydroxynonanoate (C9), 3-hydroxydecanoate (C10) and 3-hydroxydodecanoate (C12) from various carbon sources.The hydroxyalkanoate (HA) monomer composition varied both quantitatively and qualitatively, depending on the carbon sources used.The presence of octanoate in substrates of myristic acid or tridecanoate promoted the synthesis of HB monomer in the blend.Concentration of octanoate was also found to significantly affect the PHB content in the blend.A PHA biosynthesis pathway in Pseudomonas pseudoalcaligens M1-2 was proposed.

  2. Secondary radiation measurements for particle therapy applications: prompt photons produced by $^{4}$He, $^{12}$C and $^{16}$O ion beams in a PMMA target

    CERN Document Server

    Mattei, Ilaria; De Lucia, Erika; Faccini, Riccardo; Frallicciardi, Paola Maria; Mancini-Terracciano, Carlo; Marafini, Michela; Muraro, Silvia; Paramatti, Riccardo; Patera, Vincenzo; Piersanti, Luca; Pinci, Davide; Rucinski, Antoni; Russomando, Andrea; Sarti, Alessio; Sciubba, Adalberto; Camillocci, Elena Solfaroli; Toppi, Marco; Traini, Giacomo; Voena, Cecilia; Battistoni, Giuseppe

    2016-01-01

    Charged particle beams are used in Particle Therapy (PT) to treat oncological patients due to their selective dose deposition in tissues and to their high biological effect in killing cancer cells with respect to photons and electrons used in conventional radiotherapy. Nowadays, protons and carbon ions are used in PT clinical routine but, recently, the interest on the potential application of helium and oxygen beams is growing due to their reduced multiple scattering inside the body and increased linear energy transfer, relative biological effectiveness and oxygen enhancement ratio. The precision of PT demands for online dose monitoring techniques, crucial to improve the quality assurance of treatments. The beam range confined in the irradiated target can be monitored thanks to the neutral or charged secondary radiation emitted by the interactions of hadron beams with matter. Prompt photons are produced by nuclear de-excitation processes and, at present, different dose monitoring and beam range verification t...

  3. Comparison of two dedicated 'in beam' PET systems via simultaneous imaging of {sup 12}C-induced {beta}{sup +}-activity

    Energy Technology Data Exchange (ETDEWEB)

    Attanasi, F; Belcari, N; Del Guerra, A; Moehrs, S; Rosso, V; Vecchio, S [Universita di Pisa and Istituto Nazionale di Fisica Nucleare (INFN), Largo B. Pontecorvo 3, 56127 Pisa (Italy); Enghardt, W [Forschungszentrum Rossendorf, Institute of Nuclear and Hadron Physics, PO Box 510119, 01314 Dresden (Germany); Parodi, K [Heidelberg Ion Beam Therapy Center (HIT), Im Neuenheimer Feld 450, 69120 Heidelberg (Germany)], E-mail: sara.vecchio@pi.infn.it

    2009-01-21

    The selective energy deposition of hadrontherapy has led to a growing interest in quality assurance techniques such as 'in-beam' PET. Due to the current lack of commercial solutions, dedicated detectors need to be developed. In this paper, we compare the performances of two different 'in-beam' PET systems which were simultaneously operated during and after low energy carbon ion irradiation of PMMA phantoms at GSI Darmstadt. The results highlight advantages and drawbacks of a novel in-beam PET prototype against a long-term clinically operated tomograph for ion therapy monitoring. (note)

  4. Crystal Morphology and 13Carbon/12Carbon Composition of Solid Oxalate in Cacti 1

    Science.gov (United States)

    Rivera, E. R.; Smith, B. N.

    1979-01-01

    Morphology, crystal structure, and carbon isotopic composition of calcium oxalate from representative species from the family Cactaceae were determined using scanning electron microscopy, x-ray diffraction, and isotope ratio mass spectrometry. Crystals from one species in the Opuntieae tribe of the Cactaceae were druses with acute points composed of the monohydrate form of calcium oxalate (whewellite). Crystals from three species in the Cereeae tribe were the dihydrate form of calcium oxalate (weddellite) forming druses made up of tetragonal and isodiametric crystallites. The oxalate was relatively enriched in 13C isotope (-7.3 to - 8.7 ‰) compared with woody fibers (-13.3 to 14.1 ‰) from the same plants. Images PMID:16661115

  5. Extended high order sandwich panel theory for bending analysis of sandwich beams with carbon nanotube reinforced face sheets

    Science.gov (United States)

    Jedari Salami, S.

    2016-02-01

    Bending analysis of a sandwich beam with soft core and carbon nanotube reinforced composite (CNTRC) face sheets in the literature is presented based on Extended High order Sandwich Panel Theory (EHSAPT). Distribution of fibers through the thickness of the face sheets could be uniform or functionally graded (FG). In this theory the face sheets follow the first order shear deformation theory (FSDT). Besides, the two dimensional elasticity is used for the core. The field equations are derived via the Ritz based solution which is suitable for any essential boundary condition. The influences of boundary conditions on bending response of the sandwich panel with soft core and CNTRC face sheet are investigated. In each type of boundary condition the effect of distribution pattern of CNTRCs on many essential involved parameters of the sandwich beam with functionally graded carbon nanotube reinforced composite (FG- CNTRC) face sheets are studied in detail. Finally, experimental result have been compared with those obtained based on developed solution method. It is concluded that, the sandwich beam with X distribution figure of face sheets is the strongest with the smallest transverse displacement, and followed by the UD, O and ∧-ones, respectively.

  6. Strong Metal-Support Interaction: Growth of Individual Carbon Nanofibers from Amorphous Carbon Interacting with an Electron Beam

    DEFF Research Database (Denmark)

    Zhang, Wei; Kuhn, Luise Theil

    2013-01-01

    The article discusses the growth behavior of carbon nanofibers (CNFs). It mentions that CNFs can be synthesized using methods such as arc-discharge, laser ablation and chemical vapor deposition. It further states that CNFs can be grown from a physical mixing of amorphous carbon and CGO...

  7. Storage Stability in Reversion Mutation of a Rice Line Devoid of LOX-1,2 Acquired by Ion Beam Irradiation

    Institute of Scientific and Technical Information of China (English)

    JIANG Jiayue; wu Jinhua; WU Yuejin; SONG Mei; WANG Xiangqin; LIU Binmei; YU Zengliang

    2009-01-01

    The effect of absence of lipoxygenase isoenzyme(LOX)on storage stability was investigated.Rice mutant 1297 without lipoxygenase isoenzyme-1(LOX-1) or lipoxygenase isoenzyme-2(LOX-2)generated by ion beam irradiation from Wanjian2090 and reversion mutant RMl297 with LOX-1 and LOX-2 were subjected to an accelerated-aging experiment.Shanyou63 (with LOX-1 and LOX-2)served as control.Results showed that the germination and dehydrogenase activity decreased while the electrical conductivity and free fatty acid content increased in all varieties with accelerated aging.In 1297 that lacked LOX-1 and 2,there were slight changes in germination,dehydrogenase activity, membrane permeability and free fatty acid content during the thirty-day accelerated-aging experiment.But in varieties with LOX-1 and LOX-2,significant changres were observed,suggesting that LOX-1,2 might be a definite factor which influenced seed lifespan.This study also indicates that ion beam irradiation may be used as mutagen to generate mutant and reversion mutants for biological study and could become a new direction In lon beam application.

  8. 12th International Symposium on Electron Beam Ion Sources and Traps and Their Applications

    CERN Document Server

    Schwarz, Stefan; Baumann, Thomas M

    2014-01-01

    The EBIST symposia date back to 1977 and have taken place every 3 to 4 years to specifically discuss progress and exchange ideas in the design, development, applications of electron beam ion sources and traps, and the physics with highly charged ions. The topics to be covered in 2014 are: - Progress and status of EBIS/T facilities, - Atomic spectroscopy of highly charged ions, - Charge-exchange and surface interaction with highly charged ions, - Charge breeding of stable and radioactive isotopes, - Nuclear physics with highly charged ions.

  9. Radiation damage and thermal shock response of carbon-fiber-reinforced materials to intense high-energy proton beams

    Science.gov (United States)

    Simos, N.; Zhong, Z.; Ghose, S.; Kirk, H. G.; Trung, L.-P.; McDonald, K. T.; Kotsina, Z.; Nocera, P.; Assmann, R.; Redaelli, S.; Bertarelli, A.; Quaranta, E.; Rossi, A.; Zwaska, R.; Ammigan, K.; Hurh, P.; Mokhov, N.

    2016-11-01

    A comprehensive study on the effects of energetic protons on carbon-fiber composites and compounds under consideration for use as low-Z pion production targets in future high-power accelerators and low-impedance collimating elements for intercepting TeV-level protons at the Large Hadron Collider has been undertaken addressing two key areas, namely, thermal shock absorption and resistance to irradiation damage. Carbon-fiber composites of various fiber weaves have been widely used in aerospace industries due to their unique combination of high temperature stability, low density, and high strength. The performance of carbon-carbon composites and compounds under intense proton beams and long-term irradiation have been studied in a series of experiments and compared with the performance of graphite. The 24-GeV proton beam experiments confirmed the inherent ability of a 3D C/C fiber composite to withstand a thermal shock. A series of irradiation damage campaigns explored the response of different C/C structures as a function of the proton fluence and irradiating environment. Radiolytic oxidation resulting from the interaction of oxygen molecules, the result of beam-induced radiolysis encountered during some of the irradiation campaigns, with carbon atoms during irradiation with the presence of a water coolant emerged as a dominant contributor to the observed structural integrity loss at proton fluences ≥5 ×1020 p /cm2 . The carbon-fiber composites were shown to exhibit significant anisotropy in their dimensional stability driven by the fiber weave and the microstructural behavior of the fiber and carbon matrix accompanied by the presence of manufacturing porosity and defects. Carbon-fiber-reinforced molybdenum-graphite compounds (MoGRCF) selected for their impedance properties in the Large Hadron Collider beam collimation exhibited significant decrease in postirradiation load-displacement behavior even after low dose levels (˜5 ×1018 p cm-2 ). In addition, the

  10. Ion-beam and microwave-stimulated functionalization and derivatization of carbon nanotubes

    Science.gov (United States)

    Makala, Raghuveer S.

    Derivatizing carbon nanotubes (CNTs) with other low-dimensional nanostructures is of widespread interest for creating CNT-based nanocomposites and devices. Conventional routes based on wet-chemical oxidation or hydrophobic adsorption do not allow premeditated control over the location or spatial extent of functionalization. Moreover, aggressive oxidative treatments and agitation in corrosive environments lead to CNT shortening, damage, and incorporation of excess impurity concentrations. Thus, it is imperative to explore and develop alternative functionalization methods to overcome these shortcomings. The work presented in this thesis outlines two such methodologies: one based on focused ion irradiation for siteselective functionalization and the other that employs microwave-stimulation for mild, yet rapid and homogenous CNT functionalization. The utility of 10 and 30 kcV Ga+ focused ion beams (FIB) to thin, slice, weld, and alter the structure and composition at precise locations along the CNT axis is presented. This strategy of harnessing ion-beam-induced defect generation and doping is attractive for modulating chemical and electrical properties along the CNT length, and fabricate CNT-based heterostructures and networks. A novel approach that utilizes focused ion irradiation to site-selectively derivatize preselected segments of CNTs with controlled micro-/nano-scale lateral spatial resolution is demonstrated. Irradiation followed by air-exposure results in functionalized CNT segments ranging from the nanoscopic to the macroscopic scale. The functional moieties are utilized to site-selectively anchor Au nanoparticles, fluorescent nanospheres, an amino acid---lysine, a charge-transfer metalloprotein---azurin, and a photoactive protein---bacteriorhodopsin by means of electrostatic or covalent interactions. This approach is versatile and can be extended to obtaining other molecular moieties and derivatives opening up possibilities for building new types of nano

  11. Use of pyrolysis molecular beam mass spectrometry (py-MBMS) to characterize forest soil carbon: method and preliminary results.

    Science.gov (United States)

    Magrini, K A; Evans, R J; Hoover, C M; Elam, C C; Davis, M F

    2002-01-01

    The components of soil organic matter (SOM) and their degradation dynamics in forest soils are difficult to study and thus poorly understood, due to time-consuming sample collection, preparation, and difficulty of analyzing and identifying major components. As a result, changes in soil organic matter chemical composition as a function of age, forest type, or disturbance have not been examined. We applied pyrolysis molecular beam mass spectrometry (py-MBMS), which provides rapid characterization of SOM of whole soil samples. to the Tionesta soil samples described by Hoover, C.M., Magrini, K.A., Evans, R.J., 2002. Soil carbon content and character in an old growth forest in northwestern Pennsylvania: a case study introducing molecular beam mass spectrometry (PY-MBMS). Environmental Pollution 116 (Supp. 1), S269-S278. Our goals in this work were to: (1) develop and demonstrate an advanced, rapid analytical method for characterizing SOM components in whole soils, and (2) provide data-based models to predict soil carbon content and residence time from py-MBMS analysis. Using py-MBMS and pattern recognition techniques we were able to statistically distinguish among four Tionesta sites and show an increase in pyrolysis products of more highly decomposed plant materials at increasing sample depth. For example, all four sites showed increasing amounts of older carbon (phenolic and aromatic species) at deeper depths and higher amounts of more recent carbon (carbohydrates and lignin products) at shallower depths. These results indicate that this type of analysis could be used to rapidly characterize SOM for the purpose of developing a model, which could be used in monitoring the effect of forest management practices on carbon uptake and storage.

  12. Vitamin B12: one carbon metabolism, fetal growth and programming for chronic disease.

    Science.gov (United States)

    Rush, E C; Katre, P; Yajnik, C S

    2014-01-01

    This review brings together human and animal studies and reviews that examine the possible role of maternal vitamin B12 (B12) on fetal growth and its programming for susceptibility to chronic disease. A selective literature review was undertaken to identify studies and reviews that investigate these issues, particularly in the context of a vegetarian diet that may be low in B12 and protein and high in carbohydrate. Evidence is accumulating that maternal B12 status influences fetal growth and development. Low maternal vitamin B12 status and protein intake are associated with increased risk of neural tube defect, low lean mass and excess adiposity, increased insulin resistance, impaired neurodevelopment and altered risk of cancer in the offspring. Vitamin B12 is a key nutrient associated with one carbon metabolic pathways related to substrate metabolism, synthesis and stability of nucleic acids and methylation of DNA which regulates gene expression. Understanding of factors regulating maternal-fetal one carbon metabolism and its role in fetal programming of non communicable diseases could help design effective interventions, starting with maternal nutrition before conception.

  13. Phase space generation for proton and carbon ion beams for external users’ applications at the Heidelberg Ion Therapy Center

    Directory of Open Access Journals (Sweden)

    Thomas eTessonnier

    2016-01-01

    Full Text Available In the field of radiation therapy, accurate and robust dose calculation is required. For this purpose, precise modeling of the irradiation system and reliable computational platforms are needed. At the Heidelberg Ion Therapy Center (HIT, the beamline has been already modeled in the FLUKA Monte Carlo code. However, this model was kept confidential for disclosure reasons and was not available for any external team. The main goal of this study was to create efficiently phase space (PS files for proton and carbon ion beams, for all energies and foci available at HIT. PS are representing the characteristics of each particle recorded (charge, mass, energy, coordinates, direction cosines, generation at a certain position along the beam path. In order to achieve this goal, keeping a reasonable data size but maintaining the requested accuracy for the calculation, we developed a new approach of beam PS generation with the Monte-Carlo code FLUKA. The generated PS were obtained using an infinitely narrow beam and recording the desired quantities after the last element of the beamline, with a discrimination of primaries or secondaries. In this way, a unique PS can be used for each energy to accommodate the different foci by combining the narrow-beam scenario with a random sampling of its theoretical Gaussian beam in vacuum. PS can also reproduce the different patterns from the delivery system, when properly combined with the beam scanning information. MC simulations using PS have been compared to simulations including the full beamline geometry and have been found in very good agreement for several cases (depth dose distributions, lateral dose profiles, with relative dose differences below 0.5%. This approach has also been compared with measured data of ion beams with different energies and foci, resulting in a very satisfactory agreement. Hence, the proposed approach was able to fulfill the different requirements and has demonstrated its capability for

  14. High-current long-duration uniform electron beam generation in a diode with multicapillary carbon-epoxy cathode

    Energy Technology Data Exchange (ETDEWEB)

    Queller, T.; Gleizer, J. Z.; Krasik, Ya. E. [Physics Department, Technion, Haifa 32000 (Israel)

    2013-09-28

    The results of reproducibly generating an electron beam with a current density of up to 5 kA/cm{sup 2}, without the cathode-anode gap being shorted by the plasma formed inside the cathode carbon-epoxy capillaries, in a ∼350 kV, ∼600 ns diode, with and without an external guiding magnetic field, are presented. The cathode sustained hundreds of pulses without degradation of its emission properties. Time- and space-resolved emissions of the plasma and spectroscopy analyses were used to determine the cathode plasma's density, temperature, and expansion velocity.

  15. High-current long-duration uniform electron beam generation in a diode with multicapillary carbon-epoxy cathode

    Science.gov (United States)

    Queller, T.; Gleizer, J. Z.; Krasik, Ya. E.

    2013-09-01

    The results of reproducibly generating an electron beam with a current density of up to 5 kA/cm2, without the cathode-anode gap being shorted by the plasma formed inside the cathode carbon-epoxy capillaries, in a ˜350 kV, ˜600 ns diode, with and without an external guiding magnetic field, are presented. The cathode sustained hundreds of pulses without degradation of its emission properties. Time- and space-resolved emissions of the plasma and spectroscopy analyses were used to determine the cathode plasma's density, temperature, and expansion velocity.

  16. Ion beam induced charge collection (IBICC) from integrated circuit test structures using a 10 MeV carbon microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Guo, B.N.; Bouanani, M.E.; Duggan, J.L.; McDaniel, F.D. [Ion Beam Modification and Analysis Laboratory, Department of Physics, University of North Texas, Denton, Texas 76203 (United States); Doyle, B.L.; Walsh, D.S. [Ion Beam Materials Research Laboratory, Sandia National Laboratories, MS 1056, PO Box 5800, Albuquerque, New Mexico 87185 (United States)] Aton, T.J. [Silicon Technology Development, Texas Instruments Inc., PO Box 650311, MS 3704, Dallas, Texas 75265 (United States)

    1999-06-01

    As feature sizes of Integrated Circuits (ICs) continue to shrink, the sensitivity of these devices, particularly SRAMs and DRAMs, to natural radiation is increasing. In this paper, the Ion Beam Induced Charge Collection (IBICC) technique is utilized to simulate neutron-induced Si recoil effects in ICs. The IBICC measurements, conducted at the Sandia National Laboratories, employed a 10 MeV carbon microbeam with 1{mu}m diameter spot to scan test structures on specifically designed ICs. With the aid of IC layout information, an analysis of the charge collection efficiency from different test areas is presented. {copyright} {ital 1999 American Institute of Physics.}

  17. TH-C-12A-10: Surface Dose Enhancement Using Novel Hybrid Electron and Photon Low-Z Therapy Beams: Monte Carlo Simulation

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, C; Parsons, D [Dept of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia (Canada); Robar, J; Kelly, R [Dept of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia (Canada); Dept of Radiation Oncology, Dalhousie University, Halifax, Nova Scotia (Canada); Nova Scotia Cancer Centre, Halifax, NS (Canada)

    2014-06-15

    Purpose: The introduction of the TrueBeam linac platform provides access to an in-air target assembly making it possible to apply novel treatments using multiple target designs. One such novel treatment uses multiple low-Z targets to enhance surface dose replacing the use of synthetic tissue equivalent material (bolus). This treatment technique will decrease the common dosimetric and set up errors prevalent in using physical treatment accessories like bolus. The groundwork for a novel treatment beam used to enhance surface dose to within 80-100% of the dose at dmax by utilizing low-Z (Carbon) targets of various percent CSDA range thickness operated at 2.5–4 MeV used in conjunction with a clinical 6 MV beam is presented herein. Methods: A standard Monte Carlo model of a Varian Clinac accelerator was developed to manufacturers specifications. Simulations were performed using Be, C, AL, and C, as potential low-Z targets, placed in the secondary target position. The results determined C to be the target material of choice. Simulations of 15, 30 and 60% CSDA range C beams were propagated through slab phantoms. The resulting PDDs were weighted and combined with a standard 6 MV treatment beam. Versions of the experimental targets were installed into a 2100C Clinac and the models were validated. Results: Carbon was shown to be the low-Z material of choice for this project. Using combinations of 15, 30, 60% CSDA beams operated at 2.5 and 4 MeV in combination with a standard 6 MV treatment beam the surface dose was shown to be enhanced to within 80–100% the dose at dmax. Conclusion: The modeled low-Z beams were successfully validated using machined versions of the targets. Water phantom measurements and slab phantom simulations show excellent correlation. Patient simulations are now underway to compare the use of bolus with the proposed novel beams. NSERC.

  18. Synthesis of propylene carbonate from urea and 1,2-propanediol

    Institute of Scientific and Technical Information of China (English)

    Zhi Wen Gao; Shou Feng Wang; Chun Gu Xia

    2009-01-01

    The production of propylene carbonate(PC)from urea and 1,2-propanediol(PG)was investigated in a batch process.The catalytic performances of zinc chloride and magnesium chloride were investigated for this reaction system.The influences of various operation conditions on the PC yield were explored.In this work,MgCl2 and ZnCl2 showed the excellent catalytic activity toward PC synthesis,and the yields of propylene carbonate reached 96.5% and 92.4%,respectively.The optimum reaction conditions were as follows:ethanol/urea molar ratio of 4,catalyst concentration of 1.5%,reaction temperature of 160 ℃,reaction time of 3 h,respectively.The route from urea and 1,2-propanediol shows advantages,such as mild reaction condition and safe operation.The catalytic system is environmentally benign.

  19. Effects of the Amount and Shape of Carbon Fiber-Reinforced Polymer Strengthening Elements on the Ductile Behavior of Reinforced Concrete Beams

    Science.gov (United States)

    Hong, Sungnam

    2014-09-01

    A series of beam tests were performed to evaluate the ductility of reinforced concrete (RC) beams strengthened with carbon-fiber-reinforced polymer (CFRP) elements. A total of nine RC beams were produced and loaded up to failure in three-point bending under deflection control. In addition, the amount and shape of the CFRP elements (plates/sheets) were considered as the key test variables. Test results revealed that the strengthening with CFRP elements in the width direction was more effective than the strengthening across their height. The energy method used in an analysis showed that the energy ratio of the beams strengthened with CFRP plates were half or less than half of the energy ratio of the beams strengthened with CFRP sheets. In addition, the ductility of the beams decreased as the strengthening ratio of the CFRP elements increased.

  20. Synthesis of carbon-supported PtRh random alloy nanoparticles using electron beam irradiation reduction method

    Science.gov (United States)

    Matsuura, Yoshiyuki; Seino, Satoshi; Okazaki, Tomohisa; Akita, Tomoki; Nakagawa, Takashi; Yamamoto, Takao A.

    2016-05-01

    Bimetallic nanoparticle catalysts of PtRh supported on carbon were synthesized using an electron beam irradiation reduction method. The PtRh nanoparticle catalysts were composed of particles 2-3 nm in size, which were well dispersed on the surface of the carbon support nanoparticles. Analyses of X-ray diffraction and scanning transmission electron microscopy-energy-dispersive X-ray spectroscopy revealed that the PtRh nanoparticles have a randomly alloyed structure. The lattice constant of the PtRh nanoparticles showed good correlation with Vegard's law. These results are explained by the radiochemical formation process of the PtRh nanoparticles. Catalytic activities of PtRh/C nanoparticles for ethanol oxidation reaction were found to be higher than those obtained with Pt/C.

  1. Formation of Carbonized Polystyrene Sphere/hemisphere Shell Arrays by Ion Beam Irradiation and Subsequent Annealing or Chloroform Treatment

    Science.gov (United States)

    Song, Xianyin; Dai, Zhigao; Xiao, Xiangheng; Li, Wenqing; Zheng, Xudong; Shang, Xunzhong; Zhang, Xiaolei; Cai, Guangxu; Wu, Wei; Meng, Fanli; Jiang, Changzhong

    2015-01-01

    Heat-resistant two-dimensional (2D) sphere/hemisphere shell array is significant for the fabrication of novel nanostructures. Here large-area, well-ordered arrays of carbonized polystyrene (PS) hollow sphere/hemisphere with controlled size and morphology are prepared by combining the nanosphere self-assembly, kV Ag ion beam modification, and subsequent annealing or chloroform treatment. Potential mechanisms for the formation and evolution of the heat-resistant carbonized PS spherical shell with increasing ion fluence and energy are discussed. Combined with noble metal or semiconductor, these modified PS sphere arrays should open up new possibilities for high-performance nanoscale optical sensors or photoelectric devices. PMID:26640125

  2. Vacuum Electron-Beam Evaporation of Fe Nanocrystals on Si3N4 Buffer Layer for carbon Nanotube Growth

    Institute of Scientific and Technical Information of China (English)

    万青; 王太宏; 林成鲁

    2003-01-01

    Vacuum electron-beam evaporated iron nanocrystal is used for the growth of carbon nanotubes. Atomic force microscopy and Raman scattering studies reveal the formation of beta-iron silicide islands on bare silicon substrate after annealing at 700°C in N2 ambient. In order to eliminate the influence of iron-silicon interaction, Si3N4 buffer layer with the thickness of 80 nm is used. This technical route prevents effectively the formation of iron silicide and improves the quality of the iron nanocrystals. Using these iron nanocrystals with high density (about 7 × 1010/cm2) as catalyst, high-density multiwall carbon nanotubes are synthesized on Si3N4/Si substrate.

  3. Studies on 12 V substrate-integrated lead-carbon hybrid ultracapacitors

    Indian Academy of Sciences (India)

    A Banerjee; A K Shukla

    2015-05-01

    A cost-effective 12 V substrate-integrated lead-carbon hybrid ultracapacitor is developed and performance tested. These hybrid ultracapacitors employ flexible-graphite sheets as negative plate currentcollectors that are coated amperometrically with a thin layer of conducting polymer, namely poly-aniline to provide good adhesivity to activated-carbon layer. The positive plate of the hybrid ultracapacitors comprise conventional lead-sheet that is converted electrochemically into a substrate-integrated lead-dioxide electrode. 12 V substrate-integrated lead-carbon hybrid ultracapacitors both in absorbent-glass-mat and polymeric silicagel electrolyte configurations are fabricated and characterized. It is possible to realize 12 V configurations with capacitance values of ∼200 F and ∼300 F, energy densities of ∼1.9 Wh kg−1 and ∼2.5 Wh kg−1 and power densities of ∼2 kW kg−1 and ∼0.8 kW kg−1, respectively, having faradaic-efficiency values of ∼90 % with cycle-life in excess of 100,000 cycles. The effective cost of the mentioned hybrid ultracapacitors is estimated to be about ∼4 US$/Wh as compared to ∼20 US$/Wh for commercially available ultracapacitors.

  4. Experiments investigating the generation and transport of 10--12 MeV, 30-kA, mm-size electron beams with linear inductive voltage adders

    Energy Technology Data Exchange (ETDEWEB)

    Mazarakis, M.G.; Poukey, J.W.; Maenchen, J.E.

    1997-06-01

    The authors present the design, analysis, and results of the high-brightness electron beam experiments currently under investigation at Sandia National Laboratories. The anticipated beam parameters are the following: 8--12 MeV, 35--50 kA, 30--60 ns FWHM, and 0.5-mm rms beam radius. The accelerators utilized are SABRE and HERMES III. Both are linear inductive voltage adders modified to higher impedance and fitted with magnetically immersed foil less electron diodes. In the strong 20--50 Tesla solenoidal magnetic field of the diode, mm-size electron beams are generated and propagated to a beam stop. The electron beam is field emitted from mm-diameter needle-shaped cathode electrode and is contained in a similar size envelop by the strong magnetic field. These extremely space charge dominated beams provide the opportunity to study beam dynamics and possible instabilities in a unique parameter space. The SABRE experiments are already completed and have produced 30-kA, 1.5-mm FWHM electron beams, while the HERMES-III experiments are on-going.

  5. Cationic concentration effects on electron beam cured of carbon-epoxy composites

    Science.gov (United States)

    Nishitsuji, D. A.; Marinucci, G.; Evora, M. C.; Silva, L. G. A.

    2010-03-01

    Electron beam (e-beam) curing is a technology that offers advantages over the thermal curing process, that usually requires high temperature and are time-consuming. E-beam curing is faster and occurs at low temperatures that help reduce residual mechanical stresses in a thermoset composite. The aim of the present study is to analyze the effects of cationic initiator (diaryliodonium hexafluoroantimonate) ranged from 1 to 3 wt% in DGEBA (diglycidyl ether of bisphenol A) epoxy resin when cured by a 1.5 MeV electron beam. The specimens were cured to a total dose of 200.4 kGy for 40 min. Analyses by dynamic mechanical thermal analysis (DMTA) and differential scanning calorimetry (DSC) show that the e-beam irradiated samples with 2 wt% cationic initiator were 96% cured obtained a glass transition temperature (tan δ) of 167 °C. The same epoxy resin, thermally cured for 16 h with an anhydride hardener, reached a Tg (tan δ) of 136 °C. So, the irradiated sample had its Tg increased approximately 20% and the curing process was much less time consuming.

  6. Cationic concentration effects on electron beam cured of carbon-epoxy composites

    Energy Technology Data Exchange (ETDEWEB)

    Nishitsuji, D.A., E-mail: delmo_amari@yahoo.com.b [Brazilian Navy Technological Center, Sao Paulo (Brazil); Marinucci, G. [Brazilian Navy Technological Center, Sao Paulo (Brazil); Energetic and Nuclear Research Institute-IPEN-CNEN/SP, Av. Prof. Lineu Prestes, 2242-Cidade Universitaria, 05508-000 Sao Paulo/SP (Brazil); Evora, M.C. [Institute of Advanced Studies/CTA, Sao Jose dos Campos/SP (Brazil); Silva, L.G.A. [Energetic and Nuclear Research Institute-IPEN-CNEN/SP, Av. Prof. Lineu Prestes, 2242-Cidade Universitaria, 05508-000 Sao Paulo/SP (Brazil)

    2010-03-15

    Electron beam (e-beam) curing is a technology that offers advantages over the thermal curing process, that usually requires high temperature and are time-consuming. E-beam curing is faster and occurs at low temperatures that help reduce residual mechanical stresses in a thermoset composite. The aim of the present study is to analyze the effects of cationic initiator (diaryliodonium hexafluoroantimonate) ranged from 1 to 3 wt% in DGEBA (diglycidyl ether of bisphenol A) epoxy resin when cured by a 1.5 MeV electron beam. The specimens were cured to a total dose of 200.4 kGy for 40 min. Analyses by dynamic mechanical thermal analysis (DMTA) and differential scanning calorimetry (DSC) show that the e-beam irradiated samples with 2 wt% cationic initiator were 96% cured obtained a glass transition temperature (tan delta) of 167 deg. C. The same epoxy resin, thermally cured for 16 h with an anhydride hardener, reached a T{sub g} (tan delta) of 136 deg. C. So, the irradiated sample had its T{sub g} increased approximately 20% and the curing process was much less time consuming.

  7. Suspended carbon nanotube nanocomposite beams with a high mechanical strength via layer-by-layer nano-self-assembly

    Science.gov (United States)

    Lee, Dongjin; Cui, Tianhong

    2011-04-01

    The fabrication and characterization of single-walled carbon nanotube (SWCNT) composite thin film micropatterns and suspended beams prepared by lithography-compatible layer-by-layer (LbL) nano-self-assembly are demonstrated. Negatively charged SWCNTs are assembled with a positively charged polydiallyldimethylammonium chloride, and the composite thin film is patterned by oxygen plasma etching with a masking layer of photoresist, resulting in a feature size of 2 µm. Furthermore, the SWCNT nanocomposite stripe pattern with a metal clamp on both ends is released by etching a sacrificial layer of silicon dioxide in the hydrofluoric acid vapor. I-V measurement reveals that the resistance of SWCNT nanocomposite film decreases by 23% upon release, presumably due to the effect of reorientation of CNTs caused by the deflection of about 50 nm. A high Young's modulus is found in a range of 500-800 GPa based on the characterization of a fixed-fixed beam using nanoindentation. This value is much higher than those of the other CNT-polymer composites reported due to organization of structures by self-assembly and higher loading of CNTs. The stiff CNT-polymer composite thin film micropattern and suspended beam have potential applications to novel physical sensors, nanoelectromechanical switches, other M/NEMS devices, etc.

  8. Theoretical and experimental characterization of novel water-equivalent plastics in clinical high-energy carbon-ion beams

    Science.gov (United States)

    Lourenço, A.; Wellock, N.; Thomas, R.; Homer, M.; Bouchard, H.; Kanai, T.; MacDougall, N.; Royle, G.; Palmans, H.

    2016-11-01

    Water-equivalent plastics are frequently used in dosimetry for experimental simplicity. This work evaluates the water-equivalence of novel water-equivalent plastics specifically designed for light-ion beams, as well as commercially available plastics in a clinical high-energy carbon-ion beam. A plastic- to-water conversion factor {{H}\\text{pl,w}} was established to derive absorbed dose to water in a water phantom from ionization chamber readings performed in a plastic phantom. Three trial plastic materials with varying atomic compositions were produced and experimentally characterized in a high-energy carbon-ion beam. Measurements were performed with a Roos ionization chamber, using a broad un-modulated beam of 11  ×  11 cm2, to measure the plastic-to-water conversion factor for the novel materials. The experimental results were compared with Monte Carlo simulations. Commercially available plastics were also simulated for comparison with the plastics tested experimentally, with particular attention to the influence of nuclear interaction cross sections. The measured H\\text{pl,w}\\exp correction increased gradually from 0% at the surface to 0.7% at a depth near the Bragg peak for one of the plastics prepared in this work, while for the other two plastics a maximum correction of 0.8%-1.3% was found. Average differences between experimental and numerical simulations were 0.2%. Monte Carlo results showed that for polyethylene, polystyrene, Rando phantom soft tissue and A-150, the correction increased from 0% to 2.5%-4.0% with depth, while for PMMA it increased to 2%. Water-equivalent plastics such as, Plastic Water, RMI-457, Gammex 457-CTG, WT1 and Virtual Water, gave similar results where maximum corrections were of the order of 2%. Considering the results from Monte Carlo simulations, one of the novel plastics was found to be superior in comparison with the plastic materials currently used in dosimetry, demonstrating that it is feasible to tailor plastic

  9. Study of removal of Direct Yellow 12 by cadmium oxide nanowires loaded on activated carbon

    Energy Technology Data Exchange (ETDEWEB)

    Ghaedi, Mehrorang, E-mail: m_ghaedi@mail.yu.ac.ir [Chemistry Department, Yasouj University Yasouj 75914-35 (Iran, Islamic Republic of); Sadeghian, Batuol [Chemistry Department, Yasouj University Yasouj 75914-35 (Iran, Islamic Republic of); Kokhdan, Syamak Nasiri, E-mail: syamak.nasiri@yahoo.com [Chemistry Department, Yasouj University Yasouj 75914-35 (Iran, Islamic Republic of); Pebdani, Arezou Amiri [Chemistry Department, Yasouj University Yasouj 75914-35 (Iran, Islamic Republic of); Sahraei, Reza; Daneshfar, Ali; Mihandoost, Asma [Department of Chemistry, University of Ilam, P.O. Box: 65315-516, Ilam (Iran, Islamic Republic of)

    2013-05-01

    In this research, cadmium oxide nanowires loaded on activated carbon (CdO-NW-AC) has been synthesized by a simple procedure and characterized by different techniques such as XRD, SEM and UV–vis spectrometry. This new adsorbent has been efficiently utilized for the removal of the Direct Yellow 12 (DY-12) from wastewater. To obtain maximum DY-12 removal efficiency, the influences of variables such as pH, DY-12 concentration, amount of CdO-NW-AC, contact time, and temperature have been examined and optimized in a batch method. Following the variable optimization, the experimental equilibrium data (at different concentration of DY-12) was fitted to conventional isotherm models such as Langmuir, Freundlich and Tempkin. The applicability of each method is based on the R{sup 2} and error analysis for each model. It was found that the experimental equilibrium data well fitted to the Langmuir isotherm model. The dependency of removal process to time and the experimental data follow second order kinetic model with involvement of intraparticle diffusion model. The negative value of Gibbs's free energy and positive value of adsorption enthalpy show the spontaneous and endothermic nature of adsorption process. - Graphical abstract: Typical FE-SEM image of the CdO nanowires. Highlights: ► Cadmium oxide nanowires loaded on activated carbon was utilized as an adsorbent. ► It was used for the removal of Direct Yellow 12 from aqueous solutions. ► The adsorption of Direct Yellow 12 on this adsorbent is endothermic in nature. ► The adsorption equilibrium data was well described by the Langmuir isotherm model.

  10. Chemical investigations of isotope separation on line target units for carbon and nitrogen beams

    CERN Document Server

    Franberg, H; Gäggeler, H W; Köster, U

    2006-01-01

    Radioactive ion beams (RIBs) are of significant interest in a number of applications. Isotope separation on line (ISOL) facilities provide RIB with high beam intensities and good beam quality. An atom that is produced within the ISOL target will first diffuse out from the target material. During the effusion towards the transfer line and into the ion source the many contacts with the surrounding surfaces may cause unacceptable delays in the transport and, hence, losses of the shorter-lived isotopes. We performed systematic chemical investigations of adsorption in a temperature and concentration regime relevant for ISOL targets and ion source units, with regard to CO/sub x/ and NOmaterials are potential construction materials for the above-mentioned areas. Off-line and on-line tests have been performed using a gas thermochromatography setup with radioactive tracers. The experiments were performed at the production of tracers for atmospheric chemistry (PROTRAC) facility at the Paul Schener Institute in Villigen...

  11. Performances of the Front-End Electronics for the HADES RPC TOF wall on a 12C beam

    Science.gov (United States)

    Belver, D.; Cabanelas, P.; Castro, E.; Díaz, J.; Garzón, J. A.; Gil, A.; Gonzalez-Diaz, D.; Koenig, W.; Traxler, M.; Zapata, M.

    2009-05-01

    A Front-End Electronics (FEE) chain for timing accurate measurements has been developed for the RPC wall upgrade of the High-Acceptance DiElectron Spectrometer (HADES). The wall will cover an area of around 8 m with 1122 RPC cells (2244 electronic channels). The FEE chain consists of two boards: a four-channel DaughterBOard (DBO) and a 32-channel MotherBOard (MBO). The DBO uses a fast 2 GHz amplifier feeding a discriminator. The time and the charge information are encoded in the leading and the trailing edge (by a charge to width method) of an LVDS signal. Each MBO houses up to eight DBOs providing them regulated voltage supply, threshold values via DACs, test signals and collection of their trigger outputs. The MBO delivers LVDS signals to a time-to-digital converter readout board (TRB) based on HPTDC for data acquisition. In this work, we present the performance of the FEE measured using: (a) narrow electronic test pulses and (b) real signals read out in a fully instrumented RPC sextant installed in its final position at the HADES. The detector was exposed to particles coming from reactions of a 12C beam on Be and Nb targets at 2 GeV/A kinetic energy. Results for the whole electronic chain (DBO+MBO+TRB) show a timing jitter of around 40 ps/channel for pulses above 100 fC and 80 ps/channel for beam data taken with the RPC.

  12. Electron beam welding of copper lids. Status report up to 2001-12-31

    Energy Technology Data Exchange (ETDEWEB)

    Claesson, Soeren; Ronneteg, Ulf

    2003-10-01

    The report describes a summary of achieved results from 21 lid welds and numerous test block welds, performed at SKB Canister Laboratory in Oskarshamn for the period 1999-02-12 to 2001-12-31. Good weld quality has been achieved and some welds fulfilled the preliminary interpretation criteria, but the weld process need to be further developed before process qualification. Many different parameter settings have been tested and the influence on the weld profile has been mapped and documented. Deformations of the canister after welding have been measured and found to be very small. The preliminary inspection methods of the weld quality works satisfactory for the need of the development of the weld process. The welding machine is a new design developed for welding of thick copper in reduced pressure and performs well, but suffers from teething problems, which has delayed the work with development of the weld process. The welding system needs to be further developed and improved to work more reliably in a production plant.

  13. A Study of Charged Current Single Charged Pion Productions on Carbon in a Few-GeV Neutrino Beam

    Energy Technology Data Exchange (ETDEWEB)

    Hiraide, Katsuki [Kyoto Univ. (Japan)

    2009-01-01

    Understanding single charged pion production via neutrino-nucleus charged current interaction in the neutrino energy region of a few GeV is essential for future neutrino oscillation experiments since this process is a dominant background for vμ → vx oscillation measurements. There are two contributions to this process: single pion production via baryonic resonance (vμN → μ-+) and coherent pion production interacting with the entire nucleus (vμA → μ-+), where N is nucleon in the nucleus and A is the nucleus. The purpose of the study presented in this thesis is a precise measurement of charged current single charged pion productions, resonant and coherent pion productions, with a good final state separation in the neutrino energy region of a few GeV. In this thesis, we focus on the study of charged current coherent pion production from muon neutrinos scattering on carbon, vμ 12C → μ-12+, in the SciBooNE experiment. This is motivated by the fact that without measuring this component first, the precise determination of resonant pion production cross section can not be achieved since the contribution of coherent pion production in the region of small muon scattering angle is not small. Furthermore, the coherent process is particularly interesting because it is deeply rooted in fundamental physics via Adler's partially conserved axial-vector current theorem. We took data from June 2007 until August 2008, in both the neutrino and antineutrino beam. In total, 2.52 x 1020 protons on target were collected. We have performed a search for charged current coherent pion production by using SciBooNE's full neutrino data set, corresponding to 0.99 x 1020 protons on target. No evidence for coherent pion production is observed. We set 90% confidence level upper limits on the cross section ratio

  14. Atomistic description of electron beam damage in nitrogen-doped graphene and single-walled carbon nanotubes.

    Science.gov (United States)

    Susi, Toma; Kotakoski, Jani; Arenal, Raul; Kurasch, Simon; Jiang, Hua; Skakalova, Viera; Stephan, Odile; Krasheninnikov, Arkady V; Kauppinen, Esko I; Kaiser, Ute; Meyer, Jannik C

    2012-10-23

    By combining ab initio simulations with state-of-the-art electron microscopy and electron energy loss spectroscopy, we study the mechanism of electron beam damage in nitrogen-doped graphene and carbon nanotubes. Our results show that the incorporation of nitrogen atoms results in noticeable knock-on damage in these structures already at an acceleration voltage of 80 kV, at which essentially no damage is created in pristine structures at corresponding doses. Contrary to an early estimate predicting rapid destruction via sputtering of the nitrogen atoms, in the case of substitutional doping, damage is initiated by displacement of carbon atoms neighboring the nitrogen dopant, leading to the conversion of substitutional dopant sites into pyridinic ones. Although such events are relatively rare at 80 kV, they become significant at higher voltages typically used in electron energy loss spectroscopy studies. Correspondingly, we measured an energy loss spectrum time series at 100 kV that provides direct evidence for such conversions in nitrogen-doped single-walled carbon nanotubes, in excellent agreement with our theoretical prediction. Besides providing an improved understanding of the irradiation stability of these structures, we show that structural changes cannot be neglected in their characterization employing high-energy electrons.

  15. Formation of carburized layer structure with reverted austenite on low-carbon martensitic steel 12Kh2G2NMFT

    Science.gov (United States)

    Ivanov, A. S.; Bogdanova, M. V.

    2013-03-01

    The structure of surface layer in low-carbon martensitic steel 12Kh2G2NMFT obtained by carburizing followed by high-temperature tempering and quenching from the intercritical temperature range is investigated.

  16. Monte Carlo simulation of photon emission below a few hundred kiloelectronvolts for beam monitoring in carbon ion therapy

    Science.gov (United States)

    Yamaguchi, Mitsutaka; Nagao, Yuto; Satoh, Takahiro; Sugai, Hiroyuki; Sakai, Makoto; Arakawa, Kazuo; Kawachi, Naoki

    2017-01-01

    The purpose of this study is to determine whether the main component of the low-energy (63-68 keV) particles emitted perpendicularly to the 12C beam from the 12C-irradiated region in a water phantom is secondary electron bremsstrahlung (SEB). Monte Carlo simulations of a 12C-beam (290 MeV/u) irradiated on a water phantom were performed. A detector was placed beside the water phantom with a lead collimator between the phantom and the detector. To move the Bragg-peak position, a binary filter was placed in an upper stream of the phantom. The energy distributions of the particles incident on the detector and those deposited in the detector were analyzed. The simulation was also performed with suppressed delta-ray and/or bremsstrahlung generation to identify the SEB components. It was found that the particles incident on the detector were predominantly photons and neutrons. The yields of the photons and energy deposition decreased with the suppression of SEB generation. It is concluded that one of the predominant components of the yields in the regions shallower than the Bragg-peak position is due to SEB generation, and these components become significantly smaller in regions deeper than the Bragg-peak position.

  17. New deflected-beam gauge for pressures below 10/sup -12/ Torr

    CERN Document Server

    Blechschmidt, Diether

    1975-01-01

    A new ionization gauge for measurement of total gas pressures between 10/sup -12/ torr and 10/sup -14/ torr is described. The gauge's main features are a pair of collimating slots below the grid structure, two concentric hemi-spherical deflecting electrodes and a channel electron multiplier which detects low-energy ions passing through the deflector system. The detection of low-energy ions allows discrimination against desorbed ions (which are more energetic), while spurious signals due to X-rays may also be rejected. The channel electron multiplier leads to gauge sensitivities which are much higher than those of ordinary ionization gauges. The gauge has been tested down to 4*10/sup -13/ torr and found to have sensitivities of 1.5*10/sup 17/ and 8*10/sup 16 / counts/s.A.torr for N/sub 2/ and H/sub 2/ respectively. For a channel electron multiplier gain of 10/sup 7/ the gauge sensitivity is thus approximately=10/sup 5//torr. (17 refs).

  18. Chemical Investigations of ISOL target units for carbon and nitrogen beams

    CERN Document Server

    Franberg, H; Gäggeler, H W; Köster, U

    2006-01-01

    Radioactive Ion Beams (RIB) are of significant interest in a number of applications. ISOL (Isotope Separation On Line) facilities provide RIB with high beam intensities and good beam quality. An atom that is produced within the ISOL target will first diffuse out from the target material. During the effusion towards the transfer line and into the ion source the many contacts with the surrounding surfaces may cause unacceptable delays in the transport and, hence, losses of the shorter-lived isotopes. We performed systematic chemical investigations of adsorption in a temperature and concentration regime relevant for ISOL targets and ion source units, with regard to COx and NOx on Al2O3 and SiO2. These materials are potential construction materials for the above mentioned areas. Off-line and on-line tests have been performed using a gas thermo-chromatography set-up with radioactive tracers. The experiments were performed at the PROTRAC facility at Paul Scherrer Institute in Villigen, Switzerland.

  19. Metabolic Effect of Streptomyces Avermitilis Irradiated by Ion Beam of 12C6+%12C6+离子辐照对阿维链霉菌代谢效应研究

    Institute of Scientific and Technical Information of China (English)

    王曙阳; 薄永恒; 王丽华; 陈积红; 李文建; 梁剑平; 刘敬

    2013-01-01

      pH value, mycelium concentration, carbon source and nitrogen metabolism in flask fermentation of the mutant high-producing strain ZJAV-Y1-203 and the original strain ZJAV-A1 have been investigated, in order to show the metabolic effect of avermitilis irradiated by ion beam of 12C6+. In early stage (48 h) of the fermentation, pH value of the original fermentation was lower than that of the mutant strains. In 96∼196 h of fermentation, the nitrogen utilization in the strains ZJAV-Y1-203 was higher than that in the original strains, its reproductive was fast, and its growing was vigorous. The mycelium concentration of ZJAV-Y1-203 was greater than the original strain, and the pH value of fermentation were stable, so its metabolism was relatively more stable. In 144∼240 h of fermentation, the strain ZJAV-Y1-203 on sugar consumption was less than the original strains. The effect of 12C6+ion irradiation on metabolism of Streptomyces avermitilis is conducive to the synthesis of avermectin.%  对12C6+离子辐照诱变高产阿维链霉菌株ZJAV-Y1-203和原始菌株ZJAV-A-1的摇瓶发酵pH值、菌体浓度、碳源和氮源代谢进行了测定,研究了12C6+辐照对阿维链霉菌的代谢效应。在发酵前期(48 h),原始菌株发酵液pH值低于突变菌株;在发酵96∼196 h,诱变高产菌株ZJAV-Y1-203繁殖快,生长旺盛,N的利用率高;菌体浓度大于原始菌株的浓度,且发酵液的pH稳定,菌体处于代谢相对更稳定期;在发酵144∼240 h,诱变高产菌株ZJAV-Y1-203对糖源消耗低于原始菌株ZJAV-A-1。这些结果表明,12C6+离子辐照对阿维链霉菌代谢影响有利于阿维菌素合成。

  20. Measurement of the scalar polarizability of the indium $6p_{1/2}$ state using two-step atomic-beam spectroscopy

    CERN Document Server

    Augenbraun, Benjamin L; Rupasinghe, P M; Majumder, P K

    2016-01-01

    We have completed a measurement of the Stark shift within the $^{115}$In $6s_{1/2} \\rightarrow 6p_{1/2}$ excited-state transition using two-step laser spectroscopy in an indium atomic beam. Combining this measurement with recent experimental results we determine the scalar polarizability, $\\alpha_{0}$, of the $6p_{1/2}$ state to be $7683 \\pm43 \\,a_{0}^{3}$ in atomic units, a result which agrees very well with recent theoretical calculations. In this experiment, one laser, stabilized to the $5p_{1/2} \\rightarrow 6s_{1/2}$ 410~nm transition, was directed transversely to the atomic beam, while a second, overlapping laser was scanned across the 1343~nm $6s_{1/2} \\rightarrow 6p_{1/2}$ transition. We utilized two-tone frequency-modulation spectroscopy of the infrared laser beam to measure the second-step absorption in the interaction region, where the optical depth is less than 10$^{-3}$. In the course of our experimental work we also determined the hyperfine splitting within the $6p_{1/2}$ state, improving upon th...

  1. Search for Charged Current Coherent Pion Production on Carbon in a Few-GeV Neutrino Beam

    Energy Technology Data Exchange (ETDEWEB)

    Hiraide, K.; /Kyoto U.; Alcaraz-Aunion, J.L.; /Barcelona, IFAE; Brice, S.J.; /Fermilab; Bugel, Leonard G.; /MIT; Catala-Perez, J.; /Valencia U.; Cheng, G.; /Columbia U.; Conrad, J.M.; /MIT; Djurcic, Zelimir; /Columbia U.; Dore, U.; /Banca di Roma /Frascati; Finley, David A.; /Fermilab; Franke, A.J.; /Columbia U. /Banca di Roma /Frascati

    2008-11-01

    The SciBooNE Collaboration has performed a search for charged current coherent pion production from muon neutrinos scattering on carbon, nu{sub {mu}}{sup 12}C- {yields} {mu}{sup 12}Cpi{sup +}, with two distinct data samples. No evidence for coherent pion production is observed. We set 90% confidence level upper limits on the cross section ratio of charged current coherent pion production to the total charged current cross section at 0.67 x 10{sup -2} at mean neutrino energy 1.1 GeV and 1.36 x 10{sup -2} at mean neutrino energy 2.2 GeV.

  2. Inferring phytoplankton carbon and eco-physiological rates from diel cycles of spectral particulate beam-attenuation coefficient

    Directory of Open Access Journals (Sweden)

    G. Dall'Olmo

    2011-03-01

    Full Text Available The diurnal fluctuations in solar irradiance impose a fundamental frequency on ocean biogeochemistry. Observations of the ocean carbon cycle at these frequencies are rare, but could be considerably expanded by measuring and interpreting the inherent optical properties. A method is presented to analyze diel cycles in particulate beam-attenuation coefficient (cp measured at multiple wavelengths. The method is based on fitting observations with a size-structured population and optical model to infer the particle size distribution and physiologically relevant parameters of the cells responsible for the measured diel cycle in cp. Results show that the information related to size and contained in the spectral data can be exploited to independently estimate growth and loss rates during the day and night. In addition, the model can characterize the population of particles affecting the cp diel variability. Application of this method to spectral cp measured at a station in the oligotrophic Mediterranean Sea suggests that most of the observed variations in cp can be ascribed to a synchronized population of cells with an equivalent spherical diameter between 1 and 4 μm. The inferred carbon biomass of these cells was about 8–13 mg m−3 and accounted for approximately 20% of the total particulate organic carbon. If successfully validated and implemented on autonomous platforms, this method could improve our understanding of the ocean carbon cycle.

  3. Imperfection Sensitivity of Nonlinear Vibration of Curved Single-Walled Carbon Nanotubes Based on Nonlocal Timoshenko Beam Theory

    Directory of Open Access Journals (Sweden)

    Iman Eshraghi

    2016-09-01

    Full Text Available Imperfection sensitivity of large amplitude vibration of curved single-walled carbon nanotubes (SWCNTs is considered in this study. The SWCNT is modeled as a Timoshenko nano-beam and its curved shape is included as an initial geometric imperfection term in the displacement field. Geometric nonlinearities of von Kármán type and nonlocal elasticity theory of Eringen are employed to derive governing equations of motion. Spatial discretization of governing equations and associated boundary conditions is performed using differential quadrature (DQ method and the corresponding nonlinear eigenvalue problem is iteratively solved. Effects of amplitude and location of the geometric imperfection, and the nonlocal small-scale parameter on the nonlinear frequency for various boundary conditions are investigated. The results show that the geometric imperfection and non-locality play a significant role in the nonlinear vibration characteristics of curved SWCNTs.

  4. Measurement of neutral current coherent neutral pion production on carbon in a few-GeV neutrino beam

    CERN Document Server

    Kurimoto, Y; Brice, S J; Bugel, L; Catala-Perez, J; Cheng, G; Conrad, J M; Djurcic, Z; Dore, U; Finley, D A; Franke, A J; Giganti, C; Gomez-Cadenas, J J; Guzowski, P; Hanson, A; Hayato, Y; Hiraide, K; Jover-Manas, G; Karagiorgi, G; Katori, T; Kobayashi, Y K; Kobilarcik, T; Kubo, H; Louis, W C; Loverre, P F; Ludovici, L; Mahn, K B M; Mariani, C; Masuike, S; Matsuoka, K; McGary, V T; Metcalf, W; Mills, G B; Mitsuka, G; Miyachi, Y; Mizugashira, S; Moore, C D; Nakajima, Y; Nakaya, T; Napora, R; Nienaber, P; Orme, D; Otani, M; Russell, A D; Sanchez, F; Shaevitz, M H; Shibata, T -A; Sorel, M; Stefanski, R J; Takei, H; Tanaka, H -K; Tanaka, M; Tayloe, R; Taylor, I J; Tesarek, R J; Uchida, Y; Van de Water, R; Walding, J J; Wascko, M O; White, H B; Wilking, M J; Yokoyama, M; Zeller, G P; Zimmerman, E D

    2010-01-01

    The SciBooNE Collaboration reports a measurement of neutral current coherent neutral pion production on carbon by a muon neutrino beam with average energy 0.8 GeV. The separation of coherent from inclusive neutral pion production has been improved by detecting recoil protons from resonant neutral pion production. We measure the ratio of the neutral current coherent neutral pion production to total charged current cross sections to be (1.16 +/- 0.24) x 10-2. The ratio of charged current coherent pion to neutral current coherent pion production is calculated to be 0.14+0.30 -0.28, using our published charged current coherent pion measurement.

  5. Compilation of erosion yields of metal-doped carbon materials by deuterium impact from ion beam and low temperature plasma

    Energy Technology Data Exchange (ETDEWEB)

    Balden, M., E-mail: Martin.Balden@ipp.mpg.de [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85748 Garching (Germany); Starke, P. [Lehrstuhl fuer Experimentelle Plasmaphysik, Institut fuer Physik, Universitaet Augsburg, D-86135 Augsburg (Germany); Garcia-Rosales, C. [CEIT and Tecnun (University of Navarra), E-20018 San Sebastian (Spain); Adelhelm, C.; Sauter, P.A. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, 85748 Garching (Germany); Lopez-Galilea, I.; Ordas, N. [CEIT and Tecnun (University of Navarra), E-20018 San Sebastian (Spain); Fernandez, J.M. Ramos; Escandell, M. Martinez [Departamento de Quimica Inorganica, University of Alicante, E-03690 Alicante (Spain)

    2011-10-01

    The erosion yield by deuterium impact was determined for various doped carbon-based materials. Ion beam bombardment with 30 and 200 eV at elevated temperatures (600-850 K) and low temperature plasma exposure with 30 eV ion energy ({approx}7 x 10{sup 20} ions/m{sup 2}s) and about 170 times higher thermal atomic deuterium flux at 300 K and 630 K were performed. The total yield of fine-grain graphites doped with 4 at.% Ti and Zr is reduced by a factor of 4 for 30 and 200 eV D impact at elevated temperatures at D fluences above 10{sup 24} m{sup -2} compared to undoped graphite. Extensive carbide particle loss can be excluded up to fluences of {approx}10{sup 25} m{sup -2}.

  6. Wave dispersion in viscoelastic single walled carbon nanotubes based on the nonlocal strain gradient Timoshenko beam model

    Science.gov (United States)

    Tang, Yugang; Liu, Ying; Zhao, Dong

    2017-03-01

    Based on the nonlocal strain gradient theory and Timoshenko beam model, the properties of wave propagation in a viscoelastic single-walled carbon nanotube (SWCNT) are investigated. The characteristic equations for flexural and shear waves in visco-SWCNTs are established. The influence of the tube size on the wave dispersion is clarified. For a low damping coefficient, threshold diameter for shear wave (SW) is observed, below which the phase velocity of SW is equal to zero, whilst flexural wave (FW) always exists. For a high damping coefficient, SW is absolutely constrained, and blocking diameter for FW is observed, above which the wave propagation is blocked. The effects of the wave number, nonlocal and strain gradient length scale parameters on the threshold and blocking diameters are discussed in detail.

  7. The use of multi-gap resistive plate chambers for in-beam PET in proton and carbon ion therapy

    CERN Document Server

    Watts, David; Sauli, Fabio; Amaldi, Ugo

    2013-01-01

    On-line verification of the delivered dose during proton and carbon ion radiotherapy is currently a very desirable goal for quality assurance of hadron therapy treatment plans. In-beam positron emission tomography (ibPET), which can provide an image of the β+ activity induced in the patient during irradiation, which in turn is correlated to the range of the ion beam, is one of the modalities for achieving this goal. Application to hadron therapy requires that the scanner geometry be modified from that which is used in nuclear medicine. In particular, PET detectors that allow a sub-nanosecond time-of-flight (TOF) registration of the collinear photons have been proposed. Inclusion of the TOF information in PET data leads to more effective PET sensitivity. Considering the challenges inherent in the ibPET technique, namely limited β+ activity and the effect of biological washout due to blood flow, TOF-PET technologies are very attractive. In this context, the TERA Foundation is investigating the use of resistiv...

  8. Fabrication and characterization of tunnel barriers in a multi-walled carbon nanotube formed by argon atom beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Tomizawa, H. [Advanced Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Department of Applied Physics, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585 (Japan); Yamaguchi, T., E-mail: tyamag@riken.jp [Advanced Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Akita, S. [Department of Physics and Electronics, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531 (Japan); Ishibashi, K. [Advanced Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Department of Applied Physics, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585 (Japan); RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2015-07-28

    We have evaluated tunnel barriers formed in multi-walled carbon nanotubes (MWNTs) by an Ar atom beam irradiation method and applied the technique to fabricate coupled double quantum dots. The two-terminal resistance of the individual MWNTs was increased owing to local damage caused by the Ar beam irradiation. The temperature dependence of the current through a single barrier suggested two different contributions to its Arrhenius plot, i.e., formed by direct tunneling through the barrier and by thermal activation over the barrier. The height of the formed barriers was estimated. The fabrication technique was used to produce coupled double quantum dots with serially formed triple barriers on a MWNT. The current measured at 1.5 K as a function of two side-gate voltages resulted in a honeycomb-like charge stability diagram, which confirmed the formation of the double dots. The characteristic parameters of the double quantum dots were calculated, and the feasibility of the technique is discussed.

  9. Distortion of the per-pixel signal in the Timepix detector observed in high energy carbon ion beams

    Science.gov (United States)

    Hartmann, B.; Soukup, P.; Granja, C.; Jakubek, J.; Pospíšil, S.; Jäkel, O.; Martišíková, M.

    2014-09-01

    Within the application of the pixelated semiconductor Timepix detector for ion beam therapy purposes, distortion and non-linearity in the spectrometric pixel response to high energy carbon ions were observed. In this contribution, these effects are studied in detail. A distinct correlation between the arrival time of a particle during the exposure time and the respective detector signal was found. The hypothesis to explain these findings by oscillations in the pixel electronics leading to a second rise of the preamplifier output above threshold is discussed. Depending on the particle arrival time, the distortions can result in an artificially increased counter value and consequently an enlarged detector signal in energy mode. The effect appears when the signal per-pixel is above approximately 1 MeV, therefore becomig especially significant for measurements with heavy ions. The results presented in this publication are part of: B. Hartmann, A Novel Approach to Ion Spectroscopy of Therapeutic Ion Beams Using a Pixelated Semiconductor Detector, Ph.D. thesis, University of Heidelberg, Germany (2013).

  10. Ion Beam Induced Charge Collection (IBICC) from Integrated Circuit Test Structures Using a 10 MeV Carbon Microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Aton, T.J.; Doyle, B.L.; Duggan, J.L.; El Bouanani, M.; Guo, B.N.; McDaniel, F.D.; Renfrow, S.N.; Walsh, D.S.

    1998-11-18

    As future sizes of Integrated Circuits (ICs) continue to shrink the sensitivity of these devices, particularly SRAMs and DRAMs, to natural radiation is increasing. In this paper, the Ion Beam Induced Charge Collection (IBICC) technique is utilized to simulate neutron-induced Si recoil effects in ICS. The IBICC measurements, conducted at the Sandia National Laboratories employed a 10 MeV carbon microbeam with 1pm diameter spot to scan test structures on specifically designed ICS. With the aid of layout information, an analysis of the charge collection efficiency from different test areas is presented. In the present work a 10 MeV Carbon high-resolution microbeam was used to demonstrate the differential charge collection efficiency in ICS with the aid of the IC design Information. When ions strike outside the FET, the charge was only measured on the outer ring, and decreased with strike distance from this diode. When ions directly strike the inner and ring diodes, the collected charge was localized to these diodes. The charge for ions striking the gate region was shared between the inner and ring diodes. I The IBICC measurements directly confirmed the interpretations made in the earlier work.

  11. Relative Accuracy of 1-Minute and Daily Total Solar Radiation Data for 12 Global and 4 Direct Beam Solar Radiometers: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Myers, D. R.; Wilcox, S. M.

    2009-03-01

    This report evaluates the relative performance of 12 global and four direct beam solar radiometers deployed at a single site over a 12-month period. Test radiometer irradiances were compared with a reference irradiance consisting of either an absolute cavity radiometer (during calibrations) or a low uncertainty thermopile pyrheliometer (during the evaluation period) for pyrheliometers; and for pyranometers a reference global irradiance computed from the reference pyrheliometer and diffuse irradiance from a shaded pyranometer.

  12. Microstructural analysis of carbon films obtained from C{sub 60} fullerene ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Huck, H.; Halac, E.B.; Reinoso, M.; Dall' Asen, A.G.; Somoza, A.; Deng, W.; Brusa, R.S.; Karwasz, G.P.; Zecca, A

    2003-04-30

    Carbon films have been produced by accelerating C{sub 60}{sup +} ions on silicon substrates with energies between 100 and 800 eV. Furthermore some samples have been vacuum-annealed at 600 deg. C. The samples have been characterized by Raman and positron annihilation spectroscopies (RS-PAS). The measurements for the as-deposited material show that there is a coexistence of polymerized fullerenes and amorphous-carbon islands and that the structure depends on the energy of the incident ions. At low energies, fullerenes are deposited preserving the molecular identity and some intermolecular covalent bonds begin to insinuate; at higher energies, the amount of these covalent bonds increases and the amorphous islands predominate. After the annealing process, the amorphous phase organizes in graphitic clusters and the unbroken C{sub 60} cages are transformed back to pristine and slightly polymerized C{sub 60}.

  13. Effect of Gamma and electron beam irradiation on PAN-carbon fiber composite

    Energy Technology Data Exchange (ETDEWEB)

    Jafari, R.; Kasaei, H.; Hajihashemi, M.; Daneshvari, V.; Emamalizadeh, M.; Kasaei, M.H., E-mail: rvzreza@gmail.com [Materials Research School, Nuclear Science and Technology Research Institute, Isfahan, I. R. (Iran, Islamic Republic of)

    2016-11-01

    The aim of this study was to evaluate the effects of irradiation on structural, mechanical and thermal properties of PAN- carbon fiber composite. The overall applied doses were 250, 500, 750, and 1000 kGy. Irradiated and non-irradiated samples were characterized by Scanning electron microscopy, Fourier transform infrared spectroscopy and differential scanning calorimetry. Tensile strength test was conducted in order to measure mechanical properties. Scanning electron microscopy was used to evaluate microstructural behavior. Thermal behavior of the samples was studied by thermogravimetric analysis and differential scanning calorimetry. The results showed that by increasing gamma and electron doses the thermal behavior of the composite indicated higher decomposition degree as a function of the temperature. Electron irradiated carbon fiber surfaces are relatively smoothed than that virgin fibers. Bulges after gamma treatment were decreased and surface was unrough. (author)

  14. Inferring phytoplankton carbon and eco-physiological rates from diel cycles of spectral particulate beam-attenuation coefficient

    Directory of Open Access Journals (Sweden)

    G. Dall'Olmo

    2011-11-01

    Full Text Available The diurnal fluctuations in solar irradiance impose a fundamental frequency on ocean biogeochemistry. Observations of the ocean carbon cycle at these frequencies are rare, but could be considerably expanded by measuring and interpreting the inherent optical properties. A method is presented to analyze diel cycles in particulate beam-attenuation coefficient (cp measured at multiple wavelengths. The method is based on fitting observations with a size-structured population model coupled to an optical model to infer the particle size distribution and physiologically relevant parameters of the cells responsible for the measured diel cycle in cp. Results show that the information related to size and contained in the spectral data can be exploited to independently estimate growth and loss rates during the day and night. In addition, the model can characterize the population of particles affecting the diel variability in cp. Application of this method to spectral cp measured at a station in the oligotrophic Mediterranean Sea suggests that most of the observed variations in cp can be ascribed to a synchronized population of cells with an equivalent spherical diameter around 4.6±1.5 μm. The inferred carbon biomass of these cells was about 5.2–6.0 mg m−3 and accounted for approximately 10% of the total particulate organic carbon. If successfully validated, this method may improve our in situ estimates of primary productivity.

  15. Single-walled carbon nanotubes and nanocrystalline graphene reduce beam-induced movements in high-resolution electron cryo-microscopy of ice-embedded biological samples

    CERN Document Server

    Rhinow, Daniel; Turchanin, Andrey; Gölzhäuser, Armin; Kühlbrandt, Werner; 10.1063/1.3645010

    2011-01-01

    For single particle electron cryo-microscopy (cryoEM), contrast loss due to beam-induced charging and specimen movement is a serious problem, as the thin films of vitreous ice spanning the holes of a holey carbon film are particularly susceptible to beam-induced movement. We demonstrate that the problem is at least partially solved by carbon nanotechnology. Doping ice-embedded samples with single-walled carbon nanotubes (SWNT) in aqueous suspension or adding nanocrystalline graphene supports, obtained by thermal conversion of cross-linked self-assembled biphenyl precursors, significantly reduces contrast loss in high-resolution cryoEM due to the excellent electrical and mechanical properties of SWNTs and graphene.

  16. Stable carbon isotope fractionation in the UV photolysis of CFC-11 and CFC-12

    Directory of Open Access Journals (Sweden)

    A. Zuiderweg

    2011-12-01

    Full Text Available The chlorofluorocarbons CFC-11 (CCl3F and CFC-12 (CCl2F2 are stable atmospheric compounds that are produced at the earth's surface, but removed only at high altitudes in the stratosphere, where their removal liberates atomic chlorine that then catalytically destroys stratospheric ozone. For such long-lived compounds, isotope effects in the stratospheric removal reactions have a large effect on their global isotope budgets. We have determined the photolytic isotope fractionation for stable carbon isotopes of CFC-11 and CFC-12 in laboratory experiments. 13C/12C isotope fractionations (ϵ range from (−23.7 ± 0.9 to (−17.5 ± 0.4‰ for CFC-11 and (−69.2 ± 3.4 to (−49.4 ± 2.3‰ for CFC-12 between 203 and 288 K, a temperature range relevant to conditions in the troposphere and stratosphere. These results suggest that CFCs should become strongly enriched in 13C with decreasing mixing ratio in the stratosphere, similar to what has been recently observed for CFC chlorine isotopes. In conjunction with the strong variations in CFC emissions before and after the Montréal Protocol, the stratospheric enrichments should also lead to a significant temporal increase in the 13C content of the CFCs at the surface over the past decades, which should be recorded in atmospheric air archives such as firn air.

  17. [Carbon isotope (13C/12C) effect of photorespiration in photosynthetic organisms. Evidence for existence, probable mechanism].

    Science.gov (United States)

    Ivlev, A A

    2002-01-01

    Experimental evidence in favor of the new phenomenon predicted for photosynthesizing organisms, the fractionation of carbon isotopes in photorespiration is presented. A possible mechanism of this process is discussed. The fractionation of carbon in isotopes photorespiration occurs in the oxygenase phase of the functioning of ribulosebisphosphate carboxylase/oxygenase (rubisco), the key enzyme of photosynthesis, which is capable to act as carboxylase and oxygenase. Which function of the enzyme is active depends on CO2/O2 concentration ratio, which periodically changes in a cell. The key reaction in the mechanism of carbon isotope fractionation in photorespiration is glycine decarboxylation, which results in the splitting and removal from the cell of CO2 enriched with 12C and the accumulation of 13C photorespiratory carbon flow. The coupling of photorespiration and CO2 photoassimilation gives rise to two isotopically different carbon flows, which fill up separate carbohydrate pools, which are the sources of carbon in the following syntheses in the dark phase of photosynthesis. This enables one to identify, from the carbon isotope ratio of metabolites, their involvement in the photorespiratory and assimilatory carbon flows, to investigate the pathways of carbon metabolism, and to estimate more thoroughly the biosynthetic role of photorespiration.

  18. The use of multi-gap resistive plate chambers for in-beam PET in proton and carbon ion therapy.

    Science.gov (United States)

    Watts, David; Borghi, Giacomo; Sauli, Fabio; Amaldi, Ugo

    2013-07-01

    On-line verification of the delivered dose during proton and carbon ion radiotherapy is currently a very desirable goal for quality assurance of hadron therapy treatment plans. In-beam positron emission tomography (ibPET), which can provide an image of the β+ activity induced in the patient during irradiation, which in turn is correlated to the range of the ion beam, is one of the modalities for achieving this goal. Application to hadron therapy requires that the scanner geometry be modified from that which is used in nuclear medicine. In particular, PET detectors that allow a sub-nanosecond time-of-flight (TOF) registration of the collinear photons have been proposed. Inclusion of the TOF information in PET data leads to more effective PET sensitivity. Considering the challenges inherent in the ibPET technique, namely limited β+ activity and the effect of biological washout due to blood flow, TOF-PET technologies are very attractive. In this context, the TERA Foundation is investigating the use of resistive plate chambers (RPC) for an ibPET application because of their excellent timing properties and low cost. In this paper we present a novel compact multi-gap RPC (MRPC) module design and construction method, which considering the large number of modules that would be needed to practically implement a high-sensitivity RPC-PET scanner, could be advantageous. Moreover, we give an overview of the efficiency and timing measurements that have been obtained in the laboratory using such single-gap and multi-gap RPC modules.

  19. The use of multi-gap resistive plate chambers for in-beam PET in proton and carbon ion therapy

    Science.gov (United States)

    Watts, David; Borghi, Giacomo; Sauli, Fabio; Amaldi, Ugo

    2013-01-01

    On-line verification of the delivered dose during proton and carbon ion radiotherapy is currently a very desirable goal for quality assurance of hadron therapy treatment plans. In-beam positron emission tomography (ibPET), which can provide an image of the β+ activity induced in the patient during irradiation, which in turn is correlated to the range of the ion beam, is one of the modalities for achieving this goal. Application to hadron therapy requires that the scanner geometry be modified from that which is used in nuclear medicine. In particular, PET detectors that allow a sub-nanosecond time-of-flight (TOF) registration of the collinear photons have been proposed. Inclusion of the TOF information in PET data leads to more effective PET sensitivity. Considering the challenges inherent in the ibPET technique, namely limited β+ activity and the effect of biological washout due to blood flow, TOF-PET technologies are very attractive. In this context, the TERA Foundation is investigating the use of resistive plate chambers (RPC) for an ibPET application because of their excellent timing properties and low cost. In this paper we present a novel compact multi-gap RPC (MRPC) module design and construction method, which considering the large number of modules that would be needed to practically implement a high-sensitivity RPC-PET scanner, could be advantageous. Moreover, we give an overview of the efficiency and timing measurements that have been obtained in the laboratory using such single-gap and multi-gap RPC modules. PMID:23824118

  20. Synthesis and properties of novel aliphatic polycarbonate from carbon dioxide with 1,2-butylene oxide and ε-caprolactone

    Institute of Scientific and Technical Information of China (English)

    Yan Fei Liu; Ke Long Huang; Dong Ming Peng; Su Qin Liu; Hong Wu

    2007-01-01

    A new degradable aliphatic poly(butylene-co-ε-caprolactone carbonate) (PBCL) was synthesized through the terpolymerization of carbon dioxide, 1,2-butylene oxide (BO) and ε-caprolactone (CL), a polymer supported bimetallic complex (PBM) was used as a catalyst. The terpolymers prepared were characterized by FT-IR, 1H NMR, 13C NMR, WXRD and DSC. The hydrolysis tests were carried out to appraise the degradability of the copolymers.

  1. Simulation study on light ions identification methods for carbon beams from 95 to 400 MeV/A

    CERN Document Server

    Salvador, S; Fontbonne, J M; Dudouet, J; Colin, J; Cussol, D

    2013-01-01

    Monte Carlo simulations have been performed in order to evaluate the efficiencies of several light ions identification techniques. The detection system was composed with layers of scintillating material to measure either the deposited energy or the time-of-flight of ions produced by nuclear reactions between 12C projectiles and a PMMA target. Well known techniques such as (DELTA) E--Range, (DELTA) E--E--ToF and (DELTA)E--E are presented and their particle identification efficiencies are compared one to another regarding the generated charge and mass of the particle to be identified. The simulations allowed to change the beam energy matching the ones proposed in an hadron therapy facility, namely from 95 to 400 MeV/A.

  2. Electron-beam induced diamond-like-carbon passivation of plasmonic devices

    Science.gov (United States)

    Balaur, Eugeniu; Sadatnajafi, Catherine; Langley, Daniel; Lin, Jiao; Kou, Shan Shan; Abbey, Brian

    2015-12-01

    Engineered materials with feature sizes on the order of a few nanometres offer the potential for producing metamaterials with properties which may differ significantly from their bulk counterpart. Here we describe the production of plasmonic colour filters using periodic arrays of nanoscale cross shaped apertures fabricated in optically opaque silver films. Due to its relatively low loss in the visible and near infrared range, silver is a popular choice for plasmonic devices, however it is also unstable in wet or even ambient conditions. Here we show that ultra-thin layers of Diamond-Like Carbon (DLC) can be used to prevent degradation due to oxidative stress, ageing and corrosion. We demonstrate that DLC effectively protects the sub-micron features which make up the plasmonic colour filter under both atmospheric conditions and accelerated aging using iodine gas. Through a systematic study we confirm that the nanometre thick DLC layers have no effect on the device functionality or performance.

  3. The EGFR mutation status affects the relative biological effectiveness of carbon-ion beams in non-small cell lung carcinoma cells.

    Science.gov (United States)

    Amornwichet, Napapat; Oike, Takahiro; Shibata, Atsushi; Nirodi, Chaitanya S; Ogiwara, Hideaki; Makino, Haruhiko; Kimura, Yuka; Hirota, Yuka; Isono, Mayu; Yoshida, Yukari; Ohno, Tatsuya; Kohno, Takashi; Nakano, Takashi

    2015-06-11

    Carbon-ion radiotherapy (CIRT) holds promise to treat inoperable locally-advanced non-small cell lung carcinoma (NSCLC), a disease poorly controlled by standard chemoradiotherapy using X-rays. Since CIRT is an extremely limited medical resource, selection of NSCLC patients likely to benefit from it is important; however, biological predictors of response to CIRT are ill-defined. The present study investigated the association between the mutational status of EGFR and KRAS, driver genes frequently mutated in NSCLC, and the relative biological effectiveness (RBE) of carbon-ion beams over X-rays. The assessment of 15 NSCLC lines of different EGFR/KRAS mutational status and that of isogenic NSCLC lines expressing wild-type or mutant EGFR revealed that EGFR-mutant NSCLC cells, but not KRAS-mutant cells, show low RBE. This was attributable to (i) the high X-ray sensitivity of EGFR-mutant cells, since EGFR mutation is associated with a defect in non-homologous end joining, a major pathway for DNA double-strand break (DSB) repair, and (ii) the strong cell-killing effect of carbon-ion beams due to poor repair of carbon-ion beam-induced DSBs regardless of EGFR mutation status. These data highlight the potential of EGFR mutation status as a predictor of response to CIRT, i.e., CIRT may show a high therapeutic index in EGFR mutation-negative NSCLC.

  4. SU-D-12A-07: Optimization of a Moving Blocker System for Cone-Beam Computed Tomography Scatter Correction

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, L; Yan, H; Jia, X; Jiang, S; Wang, J [UT Southwestern Medical Center, Dallas, TX (United States); Zhang, H [Southern Medical University, Guangzhou, Guang Dong (China)

    2014-06-01

    Purpose: A moving blocker based strategy has shown promising results for scatter correction in cone-beam computed tomography (CBCT). Different parameters of the system design affect its performance in scatter estimation and image reconstruction accuracy. The goal of this work is to optimize the geometric design of the moving block system. Methods: In the moving blocker system, a blocker consisting of lead strips is inserted between the x-ray source and imaging object and moving back and forth along rotation axis during CBCT acquisition. CT image of an anthropomorphic pelvic phantom was used in the simulation study. Scatter signal was simulated by Monte Carlo calculation with various combinations of the lead strip width and the gap between neighboring lead strips, ranging from 4 mm to 80 mm (projected at the detector plane). Scatter signal in the unblocked region was estimated by cubic B-spline interpolation from the blocked region. Scatter estimation accuracy was quantified as relative root mean squared error by comparing the interpolated scatter to the Monte Carlo simulated scatter. CBCT was reconstructed by total variation minimization from the unblocked region, under various combinations of the lead strip width and gap. Reconstruction accuracy in each condition is quantified by CT number error as comparing to a CBCT reconstructed from unblocked full projection data. Results: Scatter estimation error varied from 0.5% to 2.6% as the lead strip width and the gap varied from 4mm to 80mm. CT number error in the reconstructed CBCT images varied from 12 to 44. Highest reconstruction accuracy is achieved when the blocker lead strip width is 8 mm and the gap is 48 mm. Conclusions: Accurate scatter estimation can be achieved in large range of combinations of lead strip width and gap. However, image reconstruction accuracy is greatly affected by the geometry design of the blocker.

  5. A PHOTOCHEMICAL MODEL FOR THE CARBON-RICH PLANET WASP-12b

    Energy Technology Data Exchange (ETDEWEB)

    Kopparapu, Ravi kumar; Kasting, James F. [Department of Geosciences, Penn State University, 443 Deike Building, University Park, PA 16802 (United States); Zahnle, Kevin J. [NASA Ames Research Center, MS 245-3, Moffett Field, CA 94035 (United States)

    2012-01-20

    The hot-Jupiter WASP-12b is a heavily irradiated exoplanet in a short-period orbit around a G0-star with twice the metallicity of the Sun. A recent thermochemical equilibrium analysis based on Spitzer and ground-based infrared observations suggests that the presence of CH{sub 4} in its atmosphere and the lack of H{sub 2}O features can only be explained if the carbon-to-oxygen ratio in the planet's atmosphere is much greater than the solar ratio ([C]/[O] = 0.54). Here, we use a one-dimensional photochemical model to study the effect of disequilibrium chemistry on the observed abundances of H{sub 2}O, CO, CO{sub 2}, and CH{sub 4} in the WASP-12b atmosphere. We consider two cases: one with solar [C]/[O] and another with [C]/[O] = 1.08. The solar case predicts that H{sub 2}O and CO are more abundant than CO{sub 2} and CH{sub 4}, as expected, whereas the high [C]/[O] model shows that CO, C{sub 2}H{sub 2}, and HCN are more abundant. This indicates that the extra carbon from the high [C]/[O] model is in hydrocarbon species. H{sub 2}O photolysis is the dominant disequilibrium mechanism that alters the chemistry at higher altitudes in the solar [C]/[O] case, whereas photodissociation of C{sub 2}H{sub 2} and HCN is significant in the super-solar case. Furthermore, our analysis indicates that C{sub 2}H{sub 2} is the major absorber in the atmosphere of WASP-12b and the absorption features detected near 1.6 and 8 {mu}m may be arising from C{sub 2}H{sub 2} rather than CH{sub 4}. The Hubble Space Telescope's WFC3 can resolve this discrepancy, as C{sub 2}H{sub 2} has absorption between 1.51 and 1.54 {mu}m, while CH{sub 4} does not.

  6. Modeling the Effects of Beam Size and Flaw Morphology on Ultrasonic Pulse/Echo Sizing of Delaminations in Carbon Composites

    Science.gov (United States)

    Margetan, Frank J.; Leckey, Cara A.; Barnard, Dan

    2012-01-01

    The size and shape of a delamination in a multi-layered structure can be estimated in various ways from an ultrasonic pulse/echo image. For example the -6dB contours of measured response provide one simple estimate of the boundary. More sophisticated approaches can be imagined where one adjusts the proposed boundary to bring measured and predicted UT images into optimal agreement. Such approaches require suitable models of the inspection process. In this paper we explore issues pertaining to model-based size estimation for delaminations in carbon fiber reinforced laminates. In particular we consider the influence on sizing when the delamination is non-planar or partially transmitting in certain regions. Two models for predicting broadband sonic time-domain responses are considered: (1) a fast "simple" model using paraxial beam expansions and Kirchhoff and phase-screen approximations; and (2) the more exact (but computationally intensive) 3D elastodynamic finite integration technique (EFIT). Model-to-model and model-to experiment comparisons are made for delaminations in uniaxial composite plates, and the simple model is then used to critique the -6dB rule for delamination sizing.

  7. Monte Carlo Calculations of Dose to Medium and Dose to Water for Carbon Ion Beams in Various Media

    DEFF Research Database (Denmark)

    Herrmann, Rochus; Petersen, Jørgen B.B.; Jäkel, Oliver

    .     The dose to medium (Dm ) may however differ from Dw , due to the different particle spectrum and stopping power found herein. Monte Carlo particle transport codes are capable of directly calculating dose to medium (Dm ), and was for instance recently investigated by Paganetti 2009 for various proton...... treatment plans. Here, we quantisize the effect of dose to water vs. dose to medium for a series of typical target materials found in medical physics. 2     Material and Methods The Monte Carlo code FLUKA [Battistioni et al. 2007] is used to simulate the particle fluence spectrum in a series of target...... the PSTAR, ASTAR stopping power routines available at NIST1 and MSTAR2 provided by H. Paul et al. 3     Results For a pristine carbon ion beam we encountered a maximum deviation between Dw and Dm up to 8% for bone. In addition we investigate spread out Bragg peak configurations which dilutes the effect...

  8. Internal length parameter and buckling analysis of carbon nanotubes using modified couple stress theory and Timoshenko beam model

    Science.gov (United States)

    Khajueenejad, F.; Ghanbari, J.

    2015-10-01

    The internal length parameter of the modified couple stress theory for single walled carbon nanotubes (CNTs) is determined in this paper. Buckling of CNTs have been studied using Timoshenko beam model and modified couple stress theory. The governing equations for three different end conditions, simple-simple, clamped-clamped and clamped-free, are solved using variational methods and an exact solution is provided for the buckling load. The effects of the internal length parameter on the buckling load of various CNT length and diameters are studied. It is observed that the internal length parameter has larger influence on the higher modes of buckling and for shorter nanotubes. A method presented to obtain the internal length parameter of higher order theories. By correlating the obtained results with the more accurate molecular dynamics simulations, the internal length parameter has been calculated for zigzag and armchair nanotubes. It is observed that the internal length parameter has slight dependency on the size of the CNTs and an average value is provided.

  9. Electrophysiological Monitoring in Patients With Tumors of the Skull Base Treated by Carbon-12 Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Carozzo, Simone [Department of Neuroscience, Ophthalmology, and Genetics, University of Genova, Genova (Italy); Schardt, Dieter [Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt (Germany); Narici, Livio [Department of Physics, University of Rome Tor Vergata, Rome (Italy); Combs, Stephanie E.; Debus, Jürgen [Department of Radiation Oncology, University of Heidelberg, Heidelberg (Germany); Sannita, Walter G., E-mail: wgs@dism.unige.it [Department of Neuroscience, Ophthalmology, and Genetics, University of Genova, Genova (Italy); Department of Psychiatry, State University of New York, Stony Brook, New York (United States)

    2013-03-15

    Purpose: To report the results of short-term electrophysiologic monitoring of patients undergoing {sup 12}C therapy for the treatment of skull chordomas and chondrosarcomas unsuitable for radical surgery. Methods and Materials: Conventional electroencephalogram (EEG) and retinal and cortical electrophysiologic responses to contrast stimuli were recorded from 30 patients undergoing carbon ion radiation therapy, within a few hours before the first treatment and after completion of therapy. Methodologies and procedures were compliant with the guidelines of the International Federation for Clinical Neurophysiology and International Society for Clinical Electrophysiology of Vision. Results: At baseline, clinical signs were reported in 56.6% of subjects. Electrophysiologic test results were abnormal in 76.7% (EEG), 78.6% (cortical evoked potentials), and 92.8% (electroretinogram) of cases, without correlation with neurologic signs, tumor location, or therapy plan. Results on EEG, but not electroretinograms and cortical responses, were more often abnormal in patients with reported clinical signs. Abnormal EEG results and retinal/cortical responses improved after therapy in 40% (EEG), 62.5% (cortical potentials), and 70% (electroretinogram) of cases. Results on EEG worsened after therapy in one-third of patients whose recordings were normal at baseline. Conclusions: The percentages of subjects whose EEG results improved or worsened after therapy and the improvement of retinal/cortical responses in the majority of patients are indicative of a limited or negligible (and possibly transient) acute central nervous system toxicity of carbon ion therapy, with a significant beneficial effect on the visual pathways. Research on large samples would validate electrophysiologic procedures as a possible independent test for central nervous system toxicity and allow investigation of the correlation with clinical signs; repeated testing over time after therapy would demonstrate, and may

  10. Electron beam generation and structure of defects in carbon and boron nitride nano-tubes

    Energy Technology Data Exchange (ETDEWEB)

    Zobelli, A

    2007-10-15

    The nature and role of defects is of primary importance to understand the physical properties of C and BN (boron nitride) single walled nano-tubes (SWNTs). Transmission electron microscopy (TEM) is a well known powerful tool to study the structure of defects in materials. However, in the case of SWNTs, the electron irradiation of the TEM may knock out atoms. This effect may alter the native structure of the tube, and has also been proposed as a potential tool for nano-engineering of nano-tubular structures. Here we develop a theoretical description of the irradiation mechanism. First, the anisotropy of the emission energy threshold is obtained via density functional based calculations. Then, we numerically derive the total Mott cross section for different emission sites of carbon and boron nitride nano-tubes with different chiralities. Using a dedicated STEM (Scanning Transmission Electron Microscope) microscope with experimental conditions optimised on the basis of derived cross-sections, we are able to control the generation of defects in nano-tubular systems. Either point or line defects can be obtained with a spatial resolution of a few nanometers. The structure, energetics and electronics of point and line defects in BN systems have been investigated. Stability of mono- and di- vacancy defects in hexagonal boron nitride layers is investigated, and their activation energies and reaction paths for diffusion have been derived using the nudged elastic band method (NEB) combined with density functional based techniques. We demonstrate that the appearance of extended linear defects under electron irradiation is more favorable than a random distribution of point defects and this is due to the existence of preferential sites for atom emission in the presence of pre-existing defects, rather than thermal vacancy nucleation and migration. (author)

  11. Computational modelling of a non-viscous fluid flow in a multi-walled carbon nanotube modelled as a Timoshenko beam.

    Science.gov (United States)

    Khosravian, N; Rafii-Tabar, H

    2008-07-09

    In the design of nanotube-based fluidic devices, a critical issue is the effect of the induced vibrations in the nanotube arising from the fluid flow, since these vibrations can promote structural instabilities, such as buckling transitions. It is known that the induced resonant frequencies depend on the fluid flow velocity in a significant manner. We have studied, for the first time, the flow of a non-viscous fluid in stubby multi-walled carbon nanotubes, using the Timoshenko classical beam theory to model the nanotubes as a continuum structure. We have obtained the variations of the resonant frequencies with the fluid flow velocity under several experimentally interesting boundary conditions and aspect ratios of the nanotube. The main finding from our work is that, compared to an Euler-Bernoulli classical beam model of a nanotube, the Timoshenko beam predicts the loss of stability at lower fluid flow velocities.

  12. Radiosensitivity of pimonidazole-unlabelled intratumour quiescent cell population to γ-rays, accelerated carbon ion beams and boron neutron capture reaction

    Science.gov (United States)

    Masunaga, S; Sakurai, Y; Tanaka, H; Hirayama, R; Matsumoto, Y; Uzawa, A; Suzuki, M; Kondo, N; Narabayashi, M; Maruhashi, A; Ono, K

    2013-01-01

    Objective To detect the radiosensitivity of intratumour quiescent (Q) cells unlabelled with pimonidazole to accelerated carbon ion beams and the boron neutron capture reaction (BNCR). Methods EL4 tumour-bearing C57BL/J mice received 5-bromo-29-deoxyuridine (BrdU) continuously to label all intratumour proliferating (P) cells. After the administration of pimonidazole, tumours were irradiated with c-rays, accelerated carbon ion beams or reactor neutron beams with the prior administration of a 10B-carrier. Responses of intratumour Q and total (P+Q) cell populations were assessed based on frequencies of micronucleation and apoptosis using immunofluorescence staining for BrdU. The response of pimonidazole-unlabelled tumour cells was assessed by means of apoptosis frequency using immunofluorescence staining for pimonidazole. Results Following c-ray irradiation, the pimonidazole-unlabelled tumour cell fraction showed significantly enhanced radiosensitivity compared with the whole tumour cell fraction, more remarkably in the Q than total cell populations. However, a significantly greater decrease in radiosensitivity in the pimonidazole-unlabelled cell fraction, evaluated using a delayed assay or a decrease in radiation dose rate, was more clearly observed among the Q than total cells. These changes in radiosensitivity were suppressed following carbon ion beam and neutron beam-only irradiaton. In the BNCR, the use of a 10B-carrier, especially L-para-boronophenylalanine-10B, enhanced the sensitivity of the pimonidazole-unlabelled cells more clearly in the Q than total cells. Conclusion The radiosensitivity of the pimonidazole-unlabelled cell fraction depends on the quality of radiation delivered and characteristics of the 10B-carrier used in the BNCR. Advances in knowledge The pimonidazole-unlabelled subfraction of Q tumour cells may be a critical target in tumour control. PMID:23255546

  13. Growth of Y3Fe5O12/GaN layers by laser molecular-beam epitaxy and characterization of their structural and magnetic properties

    Science.gov (United States)

    Kaveev, A. K.; Bursian, V. E.; Gastev, S. V.; Krichevtsov, B. B.; Suturin, S. M.; Volkov, M. P.; Sokolov, N. S.

    2016-12-01

    Laser molecular-beam epitaxy has been employed to obtain layers of yttrium-iron garnet (YIG) Y3Fe5O12 on gallium nitride substrates. It was found that there exists a polycrystalline YIG phase without admixtures of other structural phases. A magnetic anisotropy of films of the "easy-magnetic plane" type was found. The gyromagnetic ratio and the demagnetizing field 4π M S were calculated.

  14. On the feasibility of dose quantification with in-beam PET data in radiotherapy with {sup 12}C and proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Parodi, K.

    2004-11-01

    The physical advantages of light ions in combination with technological advances like intensity controlled raster scanning offer a unique tool for high precision radiotherapy. This is particularly applied to delicate clinical situations of inoperable tumours growing in close proximity to critical organs. The potential benefit of such a high selectivity of ion beam therapy demands the complex and strictly conformal dose delivery to be monitored in-situ and non-invasively in three dimensions. In contrast to conventional photon radiation, light ions exhibit a well defined range which determines the position of the maximum dose delivery in the inhomogeneous tumour target. This requires a monitoring technology along the ion trajectory offering millimetre precision. Additionally, accurate control of the lateral position of the irradiation field within the patient can be a crucial issue for the frequent case of portals passing adjacent to organs at risk. At present, positron emission tomography (PET) represents the only feasible method fulfilling these requirements. For this purpose a dedicated in-beam positron camera has been completely integrated into the experimental heavy ion treatment site at the Gesellschaft fuer Schwerionenforschung (GSI) Darmstadt. This allows to measure the minor amount of {beta}{sup +}-activity produced in nuclear reactions between the projectiles and the target nuclei of the tissue simultaneously to the tumour irradiation. The emitted signal is correlated but not directly proportional to the spatial pattern of the delivered dose. Hence, therapy control is achieved by comparing the measured {beta}{sup +}-activity distribution with a prediction based on the treatment plan and the specific time course of the particular irradiation. (orig.)

  15. Improvement of spread-out Bragg peak flatness for a carbon-ion beam by the use of a ridge filter with a ripple filter.

    Science.gov (United States)

    Hara, Yousuke; Takada, Yoshihisa; Hotta, Kenji; Tansho, Ryohei; Nihei, Tetsuya; Suzuki, Yojiro; Nagafuchi, Kosuke; Kawai, Ryuichi; Tanabe, Masaki; Mizutani, Shohei; Himukai, Takeshi; Matsufuji, Naruhiro

    2012-03-21

    We have developed a novel design method of ridge filters for carbon-ion therapy using a broad-beam delivery system to improve the flatness of a biologically effective dose in the spread-out Bragg peak (SOBP). So far, the flatness of the SOBP is limited to about ±5% for carbon beams since the weight control of component Bragg curves composing the SOBP is difficult. This difficulty arises from using a large number of ridge-bar steps (e.g. about 100 for a SOBP width of 60 mm) required to form the SOBP for the pristine Bragg curve with an extremely sharp distal falloff. Instead of using a single ridge filter, we introduce a ripple filter to broaden the Bragg peak so that the number of ridge-bar steps can be reduced to about 30 for SOBP with of 60 mm for the ridge filter designed for the broadened Bragg peak. Thus we can manufacture the ridge filter more accurately and then attain a better flatness of the SOBP due to well-controlled weights of the component Bragg curves. We placed the ripple filter on the same frame of the ridge filter and arranged the direction of the ripple-filter-bar array perpendicular to that of the ridge-filter-bar array. We applied this method to a 290 MeV u(-1) carbon-ion beam in Heavy Ion Medical Accelerator in Chiba and verified the effectiveness by measurements.

  16. Small phase pattern 2D beam steering and a single LCOS design of 40 1 × 12 stacked wavelength selective switches.

    Science.gov (United States)

    Yang, Haining; Robertson, Brian; Wilkinson, Peter; Chu, Daping

    2016-05-30

    Two-dimensional beam steering by small, square, phase patterns as small as 50 × 50 pixels on a phase-only liquid crystal on silicon (LCOS) device is experimentally verified as suitable for the application of wavelength selective switches (WSSs), in terms of the diffraction efficiency and steering accuracy. This enables a proposed highly functional and versatile stacked switch architecture, where 40 independent 1 × 12 WSSs can be realised on a single 4k LCOS device. They can be configured to support a 1 × N WSSs with N≤144, or an N × N wavelength crossconnect with N≤12.

  17. Protective Sliding Carbon-Based Nanolayers Prepared by Argon or Nitrogen Ion-Beam Assisted Deposition on Ti6Al4V Alloy

    Directory of Open Access Journals (Sweden)

    Petr Vlcak

    2016-01-01

    Full Text Available The microstructure and the surface properties of samples coated by carbon-based nanolayer were investigated in an effort to increase the surface hardness and reduce the coefficient of friction of the Ti6Al4V alloy. Protective carbon-based nanolayers were fabricated by argon or nitrogen ion-beam assisted deposition at ion energy of 700 eV on Ti6Al4V substrates. The Raman spectra indicated that nanolayers had a diamond-like carbon character with sp2 rich bonds. The TiC and TiN compounds formed in the surface area were detected by X-ray diffraction. Nanoscratch tests showed increased adhesion of a carbon-based nanolayer deposited with ion assistance in comparison with a carbon nanolayer deposited without ion assistance. The results showed that argon ion assistance leads to greater nanohardness than a sample coated by a carbon-based nanolayer with nitrogen ion assistance. A more than twofold increase in nanohardness and a more than fivefold decrease in the coefficient of friction were obtained for samples coated by a carbon-based nanolayer with ion assistance, in comparison with the reference sample.

  18. Proceedings of the International Conference on High-Power Particle Beams (12th) Held in Haifa, Israel on June 7-12, 1998. Volume 1

    Science.gov (United States)

    2007-11-02

    person is Charlie Martin . I want to wish him good health and continued participation with all of us as we go forward Lastly and most important, I want to...D. Martin , V. Zoita, M. Toma, E. Iliescu, C. Oproiu, S. Marghitu, M. Radoiu, V. Bestea, National Institute for Laser, Plasma and Radiation Physics...HIGH POWER BEAM DEVICES A.L. Eichenbaum , H. Kleinman, M. Arbel, A. Gover, Tel Aviv University, Tel Aviv, Israel 728 A HIGH-POWER RELATIVISTIC

  19. Structural properties and surface wettability of Cu-containing diamond-like carbon films prepared by a hybrid linear ion beam deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Peng; Sun, Lili; Li, Xiaowei [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Xu, Sheng [Gao Hong Coating Technology Co., Ltd, Huzhou 313000 (China); Ke, Peiling [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wang, Aiying, E-mail: aywang@nimte.ac.cn [Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2015-06-01

    Cu-containing diamond-like carbon (Cu-DLC) films were deposited on Si/glass substrate by a hybrid ion beam deposition system. The Cu concentration (0.1–39.7 at.%) in the film was controlled by varying the sputtering current. The microstructure and composition of Cu-DLC films were investigated systematically. The surface topography, roughness and surface wettability of the films were also studied. Results indicated that with increasing the Cu concentration, the water contact angle of the films changed from 66.8° for pure carbon film to more than 104.4° for Cu-DLC films with Cu concentration larger than 24.4 at.%. In the hydrophilic region, the polar surface energy decreased from 30.54 mJ/m{sup 2} for pure carbon film to 2.48 mJ/m{sup 2} for the film with Cu 7.0 at.%. - Highlights: • Cu-containing diamond-like carbon (DLC) films were deposited by a hybrid ion beam system. • Cu-containing DLC films exhibited a wide range of water contact angle. • The water contact angles vary with the surface energies and surface roughness.

  20. Four-dimensional layer-stacking carbon-ion beam dose distribution by use of a lung numeric phantom.

    Science.gov (United States)

    Mori, Shinichiro; Kumagai, Motoki; Miki, Kentaro

    2015-07-01

    To extend layer-stacking irradiation to accommodate intrafractional organ motion, we evaluated the carbon-ion layer-stacking dose distribution using a numeric lung phantom. We designed several types of range compensators. The planning target volume was calculated from the respective respiratory phases for consideration of intrafractional beam range variation. The accumulated dose distribution was calculated by registering of the dose distributions at respective phases to that at the reference phase. We evaluated the dose distribution based on the following six parameters: motion displacement, direction, gating window, respiratory cycle, range-shifter change time, and prescribed dose. All parameters affected the dose conformation to the moving target. By shortening of the gating window, dose metrics for superior-inferior (SI) and anterior-posterior (AP) motions were decreased from a D95 of 94 %, Dmax of 108 %, and homogeneity index (HI) of 23 % at T00-T90, to a D95 of 93 %, Dmax of 102 %, and HI of 20 % at T40-T60. In contrast, all dose metrics except the HI were independent of respiratory cycle. All dose metrics in SI motion were almost the same in respective motion displacement, with a D95 of 94 %, Dmax of 108 %, Dmin of 89 %, and HI of 23 % for the ungated phase, and D95 of 93 %, Dmax of 102 %, Dmin of 85 %, and HI of 20 % for the gated phase. The dose conformation to a moving target was improved by the gating strategy and by an increase in the prescribed dose. A combination of these approaches is a practical means of adding them to existing treatment protocols without modifications.

  1. World Carbon Black Output to Reach 12.7 Million Tons in 2015

    Institute of Scientific and Technical Information of China (English)

    Zhu Yongkang

    2012-01-01

    From April 13 to April 17, "Carbon Black China of 2012" (CBC2012) was held in Hangzhou, China. Mr. Paul Ita, the president of US marketing research institution Notch Consulting Group, announced that the prospect of carbon black industry was closely linked with the development of auto industry and tire industry. The demand for carbon black of 2010 increased by 15% compared with that of 2009; the growth rate of demand for carbon black was 5.8% in 2011 and the total output was 10.7 million tons, which increased by about 5.5% compared with that of 2010.

  2. 40 CFR 600.113-12 - Fuel economy and carbon-related exhaust emission calculations for FTP, HFET, US06, SC03 and cold...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Fuel economy and carbon-related... ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1978 and Later Model Year Automobiles-Test Procedures § 600.113-12 Fuel economy and carbon-related exhaust...

  3. Comparative study of RBE and cell survival fractions for $^{1}$H, $^{4}$He, $^{12}$C and $^{16}$O beams using Geant4 and Microdosimetric Kinetic model

    CERN Document Server

    Burigo, Lucas; Mishustin, Igor; Bleicher, Marcus

    2014-01-01

    Beams of $^{4}$He and $^{16}$O nuclei are considered for ion-beam cancer therapy as alternative options to protons and $^{12}$C nuclei. Spread-out Bragg peak (SOBP) distributions of physical dose and relative biological effectiveness for 10% survival are calculated by means of our Geant4-based Monte Carlo model for Heavy Ion Therapy (MCHIT) and the modified microdosimetric kinetic model. The depth distributions of cell survival fractions are calculated for $^{1}$H, $^{4}$He, $^{12}$C and $^{16}$O for tissues with normal (HSG cells), low and high radiosensitivity. In each case the cell survival fractions were compared separately for the target volume, behind and in front of it. In the case of normal radiosensitivity $^{4}$He and $^{12}$C better spare tissues in the entrance channel compared to protons and $^{16}$O. The cell survival fractions calculated, respectively, for the entrance channel and target volume are similar for $^{4}$He and $^{12}$C. When it is important to spare healthy tissues located after th...

  4. G64-12 and G64-37 are Carbon-Enhanced Metal-Poor Stars

    CERN Document Server

    Placco, Vinicius M; Reggiani, Henrique; Melendez, Jorge

    2016-01-01

    We present new high-resolution chemical-abundance analyses for the well-known high proper-motion subdwarfs G64-12 and G64-37, based on very high signal-to-noise spectra (S/N ~ 700/1) with resolving power R ~ 95,000. These high-quality data enable the first reliable determination of the carbon abundances for these two stars; we classify them as carbon-enhanced metal-poor (CEMP) stars based on their carbonicities, which both exceed [C/Fe] = +1.0. They are sub-classified as CEMP- no Group-II stars, based on their location in the Yoon-Beers diagram of absolute carbon abundance, A(C) vs. [Fe/H], as well as on the conventional diagnostic [Ba/Fe]. The relatively low absolute carbon abundances of CEMP-no stars, in combination with the high effective temperatures of these two stars (Teff ~ 6500 K) weakens their CH molecular features to the point that accurate carbon abundances can only be estimated from spectra with very high S/N. A comparison of the observed abundance patterns with the predicted yields from massive, ...

  5. Cell killing, nuclear damage and apoptosis in Chinese hamster V79 cells after irradiation with heavy-ion beams of (16)O, (12)C and (7)Li.

    Science.gov (United States)

    Pathak, Rupak; Dey, Subrata Kumar; Sarma, Asiti; Khuda-Bukhsh, Anisur Rahman

    2007-08-15

    Chinese hamster V79 cells were exposed to high LET (linear energy transfer) (16)O-beam (625keV/mum) radiation in the dose range of 0-9.83Gy. Cell survival, micronuclei (MN), chromosomal aberrations (CA) and induction of apoptosis were studied as a follow up of our earlier study on high LET radiations ((7)Li-beam of 60keV/mum and (12)C-beam of 295keV/mum) as well as (60)Co gamma-rays. Dose dependent decline in surviving fraction was noticed along with the increase of MN frequency, CA frequency as well as percentage of apoptosis as detected by nuclear fragmentation assay. The relative intensity of DNA ladder, which is a useful marker for the determination of the extent of apoptosis induction, was also increased in a dose dependent manner. Additionally, expression of tyrosine kinase lck-1 gene, which plays an important role in response to ionizing radiation induced apoptosis, was increased with the increase of radiation doses and also with incubation time. The present study showed that all the high LET radiations were generally more effective in cell killing and inflicting other cytogenetic damages than that of low LET gamma-rays. The dose response curves revealed that (7)Li-beam was most effective in cell killing as well as inducing other nuclear damages followed by (12)C, (16)O and (60)Co gamma-rays, in that order. The result of this study may have some application in biological dosimetry for assessment of genotoxicity in heavy ion exposed subjects and in determining suitable doses for radiotherapy in cancer patients where various species of heavy ions are now being generally used.

  6. The beam dump tunnels

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    In these images workers are digging the tunnels that will be used to dump the counter-circulating beams. Travelling just a fraction under the speed of light, the beams at the LHC will each carry the energy of an aircraft carrier travelling at 12 knots. In order to dispose of these beams safely, a beam dump is used to extract the beam and diffuse it before it collides with a radiation shielded graphite target.

  7. Measurement of the $^{12}$C($n,p$)$^{12}$B cross section at n_TOF (CERN) by in-beam activation analysis

    CERN Document Server

    Žugec, P.; Bosnar, D.; Mengoni, A.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Cortés, G.; Cortés-Giraldo, M.A.; Cosentino, L.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Duran, I.; Eleftheriadis, C.; Ferrari, A.; Finocchiaro, P.; Fraval, K.; Ganesan, S.; García, A.R.; Giubrone, G.; Gómez-Hornillos, M.B.; Gonçalves, I.F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Gurusamy, P.; Heinitz, S.; Jenkins, D.G.; Jericha, E.; Käppeler, F.; Karadimos, D.; Kivel, N.; Kokkoris, M.; Krtička, M.; Kroll, J.; Langer, C.; Lederer, C.; Leeb, H.; Leong, L.S.; Lo Meo, S.; Losito, R.; Manousos, A.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Mendoza, E.; Milazzo, P.M.; Mingrone, F.; Mirea, M.; Mondalaers, W.; Musumarra, A.; Paradela, C.; Pavlik, A.; Perkowski, J.; Plompen, A.; Praena, J.; Quesada, J.; Rauscher, T.; Reifarth, R.; Riego, A.; Roman, F.; Rubbia, C.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Tagliente, G.; Tain, J.L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Versaci, R.; Vermeulen, M.J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T.

    2014-01-01

    The integral cross section of the $^{12}$C($n,p$)$^{12}$B reaction has been determined for the first time in the neutron energy range from threshold to several GeV at the n_TOF facility at CERN. The measurement relies on the activation technique, with the $\\beta$-decay of $^{12}$B measured over a period of four half-lives within the same neutron bunch in which the reaction occurs. The results indicate that model predictions, used in a variety of applications, are mostly inadequate. The value of the integral cross section reported here can be used as a benchmark for verifying or tuning model calculations.

  8. Conversion from dose-to-graphite to dose-to-water in an 80 MeV/A carbon ion beam.

    Science.gov (United States)

    Rossomme, S; Palmans, H; Shipley, D; Thomas, R; Lee, N; Romano, F; Cirrone, P; Cuttone, G; Bertrand, D; Vynckier, S

    2013-08-21

    Based on experiments and numerical simulations, a study is carried out pertaining to the conversion of dose-to-graphite to dose-to-water in a carbon ion beam. This conversion is needed to establish graphite calorimeters as primary standards of absorbed dose in these beams. It is governed by the water-to-graphite mass collision stopping power ratio and fluence correction factors, which depend on the particle fluence distributions in each of the two media. The paper focuses on the experimental and numerical determination of this fluence correction factor for an 80 MeV/A carbon ion beam. Measurements have been performed in the nuclear physics laboratory INFN-LNS in Catania (Sicily, Italy). The numerical simulations have been made with a Geant4 Monte Carlo code through the GATE simulation platform. The experimental data are in good agreement with the simulated results for the fluence correction factors and are found to be close to unity. The experimental values increase with depth reaching 1.010 before the Bragg peak region. They have been determined with an uncertainty of 0.25%. Different numerical results are obtained depending on the level of approximation made in calculating the fluence correction factors. When considering carbon ions only, the difference between measured and calculated values is maximal just before the Bragg peak, but its value is less than 1.005. The numerical value is close to unity at the surface and increases to 1.005 near the Bragg peak. When the fluence of all charged particles is considered, the fluence correction factors are lower than unity at the surface and increase with depth up to 1.025 before the Bragg peak. Besides carbon ions, secondary particles created due to nuclear interactions have to be included in the analysis: boron ions ((10)B and (11)B), beryllium ions ((7)Be), alpha particles and protons. At the conclusion of this work, we have the conversion of dose-to-graphite to dose-to-water to apply to the response of a graphite

  9. ANSYS simulation study on displacement of carbon fiber reinforced concrete beam%碳纤维加固混凝土梁位移ANSYS模拟研究

    Institute of Scientific and Technical Information of China (English)

    王良超; 杨治华; 刘敏

    2012-01-01

    For beam mid-span displacement, theoretical calculation and ANSYS modeling computational analysis have been done to quantitative analysis of the effect of carbon fiber reinforcement beam, and improve the further relevant reinforcement theory, to provide a theoretical and com- putational support for real-strengthening works. The analysis shows that the values and trends of finite element analysis and theoretical calculations are very similar, which indicates that the finite element analysis is capable to simulate the beam actual stress state, the displacement of FRP rein- forced beam decreases 14.08%.%针对梁体跨中位移,通过理论计算以及ANSYS建模分析计算分析比较,定量分析碳纤维加固梁体的效果,进一步完善相关加固理论,为现实加固工程提供理论和计算支持,分析表明,有限元分析计算值和理论计算值在数值和发展趋势上都有很大的相似性,说明有限元分析能较好的模拟梁体实际受力状态,FRP加固后梁体位移减小14.08%。

  10. Carbon fiber reinforced polymer (CFRP inserted in different configurations of the tensile zone retrofitting with microconcrete containing steel fibers to the strengthening of beams

    Directory of Open Access Journals (Sweden)

    Vladimir José Ferrari

    2016-08-01

    Full Text Available It is researched, in this study, the strengthening technique known as Near Surface Mounted (NSM, which consists of the insertion of laminates of Carbon Fiber Reinforced Polymer (CFRP into notches in the covering concrete structures. In the strengthening in beams, the tensile zone is found damaged for several reasons (cracking and corrosion, for instance, which demands, in the practice of engineering, its preliminary retrofitting. It should be considered that the good performance of the material used in this retrofitting is fundamental for a higher efficiency of the strengthening. Therefore, it is proposed a methodology that consists of the reconstitution of the tensile zone of the beams with a cement-based composite of high performance (CCAD, which acts as a substrate for the application of CFRP and as an element for the transfer of efforts to the part strengthened. The retrofitting of this tensile zone was performed only in the shear span, as well as throughout of the zone with a view to evaluating the influence of this aspect on the performance of the beams. The CCAD, produced from Portland cement, steel fibers and microfibers, was evaluated using the Rilem (2002, showed to be able to delay the cracking. Tests performed in the beams with the tensile zone retrofitting by CCAD and strengthening using the technique NSM showed the efficiency of the proposed methodology.

  11. Application of hybrid supercapacitor using granule Li4Ti5O12/activated carbon with variation of current density

    Science.gov (United States)

    Lee, Byung-Gwan; Lee, Seung-Hwan

    2017-03-01

    We report the electrochemical performance of asymmetric hybrid supercapacitors composed of granule Li4Ti5O12 as an anode and activated carbon as a cathode with different current densities. It is demonstrated that the hybrid supercapacitors show good initial discharge capacities were ranged from 39.8 to 46.4 F g-1 in the current densities range of 0.3-1 A g-1. The performance degradation is proportional to the current density due to quick gassing, resulting from H2O and HF formation. In particular, the hybrid supercapacitors show the pretty good cycling stability of 97.4%, even at the high current density of 0.8 A g-1, which are among most important performance in the real application for energy storage devices. Therefore, we believe that hybrid supercapacitors using granule Li4Ti5O12/activated carbon are eligible for the promising next generation energy devices.

  12. Degradation mechanism of Direct Pink 12B treated by iron-carbon micro-electrolysis and Fenton reaction.

    Science.gov (United States)

    Wang, Xiquan; Gong, Xiaokang; Zhang, Qiuxia; Du, Haijuan

    2013-12-01

    The Direct Pink 12B dye was treated by iron-carbon micro-electrolysis (ICME) and Fenton oxidation. The degradation pathway of Direct Pink 12B dye was inferred by ultraviolet visible (UV-Vis), infrared absorption spectrum (IR) and high performance liquid chromatography-mass spectrometry (HPLC-MS). The major reason of decolorization was that the conjugate structure was disrupted in the iron-carbon micro-electrolysis (ICME) process. However, the dye was not degraded completely because benzene rings and naphthalene rings were not broken. In the Fenton oxidation process, the azo bond groups surrounded by higher electron cloud density were first attacked by hydroxyl radicals to decolorize the dye molecule. Finally benzene rings and naphthalene rings were mineralized to H2O and CO2 under the oxidation of hydroxyl radicals.

  13. Vision changes after spaceflight are related to alterations in folate- and vitamin B-12-dependent one-carbon metabolism.

    Science.gov (United States)

    Zwart, Sara R; Gibson, C Robert; Mader, Thomas H; Ericson, Karen; Ploutz-Snyder, Robert; Heer, Martina; Smith, Scott M

    2012-03-01

    Approximately 20% (7 of 38) of astronauts on International Space Station (ISS) missions have developed measurable ophthalmic changes after flight. This study was conducted to determine if the folate- and vitamin B-12-dependent 1-carbon metabolic pathway is altered in these individuals. Since 2006, we have conducted experiments on the ISS to evaluate nutritional status and related biochemical indices of astronauts before, during, and after flight. Data were modeled to evaluate differences between individuals with ophthalmic changes (n = 5) and those without them (n = 15), all of whom were on ISS missions of 48-215 d. We also determined whether mean preflight serum concentrations of the 1-carbon metabolites and changes in measured cycloplegic refraction after flight were associated. Serum homocysteine (Hcy), cystathionine, 2-methylcitric acid (2MCA), and methylmalonic acid concentrations were 25-45% higher (P refraction (P < 0.05), and preflight serum concentrations of 2MCA tended to be associated (P = 0.06) with ophthalmic changes. The biochemical differences observed in crewmembers with vision issues strongly suggest that their folate- and vitamin B-12-dependent 1-carbon transfer metabolism was affected before and during flight. The consistent differences in markers of 1-carbon metabolism between those who did and those who did not develop changes in vision suggest that polymorphisms in enzymes of this pathway may interact with microgravity to cause these pathophysiologic changes.

  14. Study of the time and space distribution of $\\beta^+$ emitters from $80\\ \\mega\\electronvolt/$u carbon ion beam irradiation on PMMA

    CERN Document Server

    Agodi, C; Cirrone, G A P; Collamati, F; Cuttone, G; De Lucia, E; De Napoli, M; Di Domenico, A; Faccini, R; Ferroni, F; Fiore, S; Gauzzi, P; Iarocci, E; Marafini, M; Mattei, I; Paoloni, A; Patera, V; Piersanti, L; Romano, F; Sarti, A; Sciubba, A; Voena, C

    2012-01-01

    Proton and carbon ion therapy is an emerging technique used for the treatment of solid cancers. The monitoring of the dose delivered during such treatments and the on-line knowledge of the Bragg peak position is still a matter of research. A possible technique exploits the collinear $511\\ \\kilo\\electronvolt$ photons produced by positrons annihilation from $\\beta^+$ emitters created by the beam. This paper reports rate measurements of the $511\\ \\kilo\\electronvolt$ photons emitted after the interactions of a $80\\ \\mega\\electronvolt / u$ fully stripped carbon ion beam at the Laboratori Nazionali del Sud (LNS) of INFN, with a Poly-methyl methacrylate target. The time evolution of the $\\beta^+$ rate was parametrized and the dominance of $^{11}C$ emitters over the other species ($^{13}N$, $^{15}O$, $^{14}O$) was observed, measuring the fraction of carbon ions activating $\\beta^+$ emitters $A_0=(10.3\\pm0.7)\\cdot10^{-3}$. The average depth in the PMMA of the positron annihilation from $\\beta^+$ emitters was also meas...

  15. Study of the time and space distribution of {beta}{sup +} emitters from 80MeV/u carbon ion beam irradiation on PMMA

    Energy Technology Data Exchange (ETDEWEB)

    Agodi, C. [Laboratori Nazionali del Sud dell' INFN, Catania (Italy); Bellini, F. [Dipartimento di Fisica, Sapienza Universita di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Cirrone, G.A.P. [Laboratori Nazionali del Sud dell' INFN, Catania (Italy); Collamati, F. [Dipartimento di Fisica, Sapienza Universita di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Cuttone, G. [Laboratori Nazionali del Sud dell' INFN, Catania (Italy); De Lucia, E. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); De Napoli, M. [Laboratori Nazionali del Sud dell' INFN, Catania (Italy); Di Domenico, A.; Faccini, R.; Ferroni, F. [Dipartimento di Fisica, Sapienza Universita di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Fiore, S. [Dipartimento di Fisica, Sapienza Universita di Roma, Roma (Italy); Gauzzi, P. [Dipartimento di Fisica, Sapienza Universita di Roma, Roma (Italy); INFN Sezione di Roma, Roma (Italy); Iarocci, E. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Dipartimento di Scienze di Base e Applicate per l' Ingegneria, Sapienza Universita di Roma, Roma (Italy); Marafini, M., E-mail: michela.marafini@roma1.infn.it [Museo Storico della Fisica e Centro Studi e Ricerche ' E. Fermi' , Roma (Italy); Mattei, I. [Dipartimento di Fisica, Roma Tre Universita di Roma, Roma (Italy); Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Paoloni, A. [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); and others

    2012-07-15

    Proton and carbon ion therapy is an emerging technique used for the treatment of solid cancers. The monitoring of the dose delivered during such treatments and the on-line knowledge of the Bragg peak position is still a matter of research. A possible technique exploits the collinear 511keV photons produced by positrons annihilation from {beta}{sup +} emitters created by the beam. This paper reports rate measurements of the 511keV photons emitted after the interactions of a 80MeV/u fully stripped carbon ion beam at the Laboratori Nazionali del Sud (LNS) of INFN, with a poly-methyl methacrylate target. The time evolution of the {beta}{sup +} rate was parametrized and the dominance of {sup 11}C emitters over the other species ({sup 13}N, {sup 15}O, {sup 14}O) was observed, measuring the fraction of carbon ions activating {beta}{sup +} emitters to be (10.3{+-}0.7) Multiplication-Sign 10{sup -3}. The average depth in the PMMA of the positron annihilation from {beta}{sup +} emitters was also measured, D{sub {beta}{sup +}}=5.3{+-}1.1mm, to be compared to the expected Bragg peak depth D{sub Bragg}=11.0{+-}0.5mm obtained from simulations.

  16. Secondary particle yields from 400 MeV/u carbon ion and 250 MeV proton beams incident on thick targets

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, A. [Fondazione CNAO, Centro Nazionale di Adroterapia Oncologica, strada Campeggi, 27100 Pavia (Italy); Ferrarini, M., E-mail: michele.ferrarini@polimi.it [Fondazione CNAO, Centro Nazionale di Adroterapia Oncologica, strada Campeggi, 27100 Pavia (Italy); Politecnico di Milano, Dipartimento di Energia, Via Ponzio 34/3, 20133 Milano (Italy); Pelliccioni, M. [Fondazione CNAO, Centro Nazionale di Adroterapia Oncologica, strada Campeggi, 27100 Pavia (Italy); INFN, Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati (Italy)

    2011-07-01

    The double differential particle yield produced by hadron beams striking thick targets of copper, tungsten and ICRU tissue, have been determined by means of the Monte Carlo transport code FLUKA (version FLUKA 2008.3b.1). 400 MeV/u carbon ion and 250 MeV proton pencil beams have been considered. Secondary neutrons, photons, and protons have been scored. In order to validate the obtained data, a few simulations have been also repeated with MCNPX 2.6.0. The calculated results are presented and compared with the experimental data reported in literature. They should be very useful to solve a number of problems related to technological aspects of hadrontherapy.

  17. Inhibitory effects of multiwall carbon nanotubes with high iron impurity on viability and neuronal differentiation in cultured PC12 cells.

    Science.gov (United States)

    Meng, Li; Jiang, Aihua; Chen, Rui; Li, Chen-zhong; Wang, Liming; Qu, Ying; Wang, Peng; Zhao, Yuliang; Chen, Chunying

    2013-11-08

    The increasing use of carbon nanotubes (CNTs) in biomedical applications has garnered a great concern on their potential negative effects to human health. CNTs have been reported to potentially disrupt normal neuronal function and they were speculated to accumulate and cause brain damage, although a lot of distinct and exceptional properties and potential wide applications have been associated with this material in neurobiology. Fe impurities strapped inside the CNTs may be partially responsible for neurotoxicity generation. In the present study, we selected rat pheochromocytoma (PC12) cells to investigate and compare the effects of two kinds of multiwall carbon nanotubes (MWCNTs) with different concentrations of Fe impurities which usually come from the massive production of CNTs by chemical vapor deposition. Exposure to Fe-high MWCNTs can reduce cell viability and increase cytoskeletal disruption of undifferentiated PC12 cells, diminish the ability to form mature neurites, and then adversely influence the neuronal dopaminergic phenotype in NGF-treated PC-12 cells. The present results highlight the critical role of iron residue in the adverse response to MWCNTs exposure in neural cells. These findings provide useful information for understanding the toxicity and safe application of carbon nanotubes.

  18. Effects of beam interruption time on tumor control probability in single-fractionated carbon-ion radiotherapy for non-small cell lung cancer

    Science.gov (United States)

    Inaniwa, T.; Kanematsu, N.; Suzuki, M.; Hawkins, R. B.

    2015-05-01

    Carbon-ion radiotherapy treatment plans are designed on the assumption that the beams are delivered instantaneously, irrespective of actual dose-delivery time structure in a treatment session. As the beam lines are fixed in the vertical and horizontal directions at our facility, beam delivery is interrupted in multi-field treatment due to the necessity of patient repositioning within the fields. Single-fractionated treatment for non-small cell lung cancer (NSCLC) is such a case, in which four treatment fields in multiple directions are delivered in one session with patient repositioning during the session. The purpose of this study was to investigate the effects of the period of dose delivery, including interruptions due to patient repositioning, on tumor control probability (TCP) of NSCLC. All clinical doses were weighted by relative biological effectiveness (RBE) evaluated for instantaneous irradiation. The rate equations defined in the microdosimetric kinetic model (MKM) for primary lesions induced in DNA were applied to the single-fractionated treatment of NSCLC. Treatment plans were made for an NSCLC case for various prescribed doses ranging from 25 to 50 Gy (RBE), on the assumption of instantaneous beam delivery. These plans were recalculated by varying the interruption time τ ranging from 0 to 120 min between the second and third fields for continuous irradiations of 3 min per field based on the MKM. The curative doses that would result in a TCP of 90% were deduced for the respective interruption times. The curative dose was 34.5 Gy (RBE) for instantaneous irradiation and 36.6 Gy (RBE), 39.2 Gy (RBE), 41.2 Gy (RBE), 43.3 Gy (RBE) and 44.4 Gy (RBE) for τ = 0 min, 15 min, 30 min, 60 min and 120 min, respectively. The realistic biological effectiveness of therapeutic carbon-ion beam decreased with increasing interruption time. These data suggest that the curative dose can increase by 20% or more compared to the planned dose if the

  19. Using spatial reliability in the probabilistic study of concrete structures: The example of a reinforced concrete beam subjected to carbonation inducing corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Defaux, G.; Pendola, M. [PHIMECA Engineering, 1 allee Alan Turing, 63170 Aubiere (France); Sudret, B. [EDF R and D, Department of Materials and Mechanics of Components, Site des Renardieres, 77818 Moret-sur-Loing Cedex (France)

    2006-07-01

    Several methods, simple or more sophisticated, are tested to determine useful information for reliability problems involving spatial variability. The methods are developed around a simple example of a reinforced concrete beam subjected to carbonation inducing corrosion. A point-in-space reliability analysis is conducted to estimate a first indicator on the length to be replaced. Then, random field are introduced and are taken into account in the reliability problem using simulations methods to determine the empirical cumulative density function (CDF) of the length to be repaired and its moments. Finally, analytical formulations are used to estimate the same moments but with small computational effort. (authors)

  20. Measurement of Analyzing Power for Proton-Carbon Elastic Scattering in the Coulomb-Nuclear Interference Region with a 22-GeV/c Polarized Proton Beam

    CERN Document Server

    Tojo, J; Bai, M; Bassalleck, B; Bunce, G M; Deshpande, A A; Doskow, J; Eilerts, S W; Fields, D E; Goto, Y; Huang, H; Hughes, V; Imai, K; Ishihara, M; Kanavets, V P; Kurita, K; Kwiatkowski, K K; Lewis, B; Lozowski, W R; Makdisi, Y I; Meyer, H O; Morozov, B V; Nakamura, M; Von Przewoski, B; Rinckel, T; Roser, T; Rusek, A; Saitô, N; Smith, B; Svirida, D N; Syphers, M J; Taketani, A; Thomas, T L; Underwood, D; Wolfe, D; Yamamoto, K; Zhu, L

    2002-01-01

    The analyzing power for proton-carbon elastic scattering in the coulomb-nuclear interference region of momentum transfer, $9.0\\times10^{-3}<-t<4.1\\times10^{-2}$ (GeV/$c)^{2}$, was measured with a 21.7 GeV/$c$ polarized proton beam at the Alternating Gradient Synchrotron of Brookhaven National Laboratory. The ratio of hadronic spin-flip to non-flip amplitude, $r_5$, was obtained from the analyzing power to be $\\text{Re} r_5=0.088\\pm 0.058$ and $\\text{Im} r_5=-0.161\\pm 0.226$.

  1. Carbon-carbon bond cleavage of 1,2-hydroxy ethers b7 vanadium(V) dipicolinate complexes

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Susan K [Los Alamos National Laboratory; Gordon, John C [Los Alamos National Laboratory; Thorn, David L [Los Alamos National Laboratory; Scott, Brian L [Los Alamos National Laboratory; Baker, R Tom [Los Alamos National Laboratory

    2009-01-01

    The development of alternatives to current petroleum-based fuels and chemicals is becoming increasingly important due to concerns over climate change, growing world energy demand, and energy security issues. Using non-food derived biomass to produce renewable feedstocks for chemicals and fuels is a particularly attractive possibility. However, the majority of biomass is in the form of lignocellulose, which is often not fully utilized due to difficulties associated with breaking down both lignin and cellulose. Recently, a number of methods have been reported to transform cellulose directly into more valuable materials such as glucose, sorbitol, 5-(chloromethyl)furfural, and ethylene glycol. Less progress has been made with selective transformations of lignin, which is typically treated in paper and forest industries by kraft pulping (sodium hydroxide/sodium sulfide) or incineration. Our group has begun investigating aerobic oxidative C-C bond cleavage catalyzed by dipicolinate vanadium complexes, with the idea that a selective C-C cleavage reaction of this type could be used to produce valuable chemicals or intermediates from cellulose or lignin. Lignin is a randomized polymer containing methoxylated phenoxy propanol units. A number of different linkages occur naturally; one of the most prevalent is the {beta}-O-4 linkage shown in Figure 1, containing a C-C bond with 1,2-hydroxy ether substituents. While the oxidative C-C bond cleavage of 1,2-diols has been reported for a number of metals, including vanadium, iron, manganese, ruthenium, and polyoxometalate complexes, C-C bond cleavage of 1,2-hydroxy ethers is much less common. We report herein vanadium-mediated cleavage of C-C bonds between alcohol and ether functionalities in several lignin model complexes. In order to explore the scope and potential of vanadium complexes to effect oxidative C-C bond cleavage in 1,2-hydroxy ethers, we examined the reactivity of the lignin model complexes pinacol monomethyl ether (A

  2. G64-12 and G64-37 Are Carbon-enhanced Metal-poor Stars

    Science.gov (United States)

    Placco, Vinicius M.; Beers, Timothy C.; Reggiani, Henrique; Meléndez, Jorge

    2016-10-01

    We present new high-resolution chemical-abundance analyses for the well-known high proper-motion subdwarfs G64-12 and G64-37, based on very high signal-to-noise ratio spectra ({{S}}/{{N}}˜ 700/1) with resolving power R ˜ 95,000. These high-quality data enable the first reliable determination of the carbon abundances for these two stars; we classify them as carbon-enhanced metal-poor (CEMP) stars based on their carboni cities, which both exceed [C/Fe] = +1.0. They are sub-classified as CEMP-no Group-II stars, based on their location in the Yoon-Beers diagram of absolute carbon abundance, A(C) versus [Fe/H], as well as on the conventional diagnostic [Ba/Fe]. The relatively low absolute carbon abundances of CEMP-no stars, in combination with the high effective temperatures of these two stars ({T}{eff}˜ 6500 {{K}}), weakens their CH molecular features to the point that accurate carbon abundances can only be estimated from spectra with very high S/N. A comparison of the observed abundance patterns with the predicted yields from massive, metal-free supernova models reduces the inferred progenitor masses by factors of ˜2-3, and explosion energies by factors of ˜10-15, compared to those derived using previously claimed carbon-abundance estimates. There are certainly many more warm CEMP-no stars near the halo main-sequence turnoff that have been overlooked in past studies, directly impacting the derived frequencies of CEMP-no stars as a function of metallicity, a probe that provides important constraints on Galactic chemical evolution models, the initial mass function in the early universe, and first-star nucleosynthesis.

  3. The effect of an electrically conductive carbon nanotube/collagen composite on neurite outgrowth of PC12 cells.

    Science.gov (United States)

    Cho, Youngnam; Borgens, Richard Ben

    2010-11-01

    We report the preparation of an electrically conductive composite composed of collagen and carbon nanotubes (CNTs) and its use as a substrate for the in vitro growth of PC12 cells. Morphological observation by scanning electron microscopy (SEM) indicated the homogenous dispersion of CNTs in the collagen matrix. Four-point probe and cyclic voltammogram studies demonstrated the enhanced electroactivity and a lowered electrical resistivity of the resulting composites even at low loadings (collagen matrix. SEM and immunofluorescent images have indicated that the morphological features of PC12 cells were dominantly influenced by electrical potential. Greater neurite extension was preferentially induced on the exposure of electrical stimulation by facilitating the differentiation of PC12 cells into neurons indicated by more significant filopodium extension. These electrically conductive, biocompatible CNT/collagen composites could be of benefit for the development of novel neural electrodes, enhancing the growth, differentiation, and branching of neurons in an electrically driven way.

  4. Carbon sequestration in surface flow constructed wetland after 12 years of swine wastewater treatment

    Science.gov (United States)

    Constructed wetlands used for the treatment of swine wastewater may potentially sequester significant amounts of carbon. In past studies, we evaluated the treatment efficiency of wastewater in marsh-pond-marsh design wetland system. The functionality of this system was highly dependent on soil carbo...

  5. Carbon sequestration in a surface flow constructed wetland after 12 years of swine wastewater treatment.

    Science.gov (United States)

    Reddy, Gudigopuram B; Raczkowski, Charles W; Cyrus, Johnsely S; Szogi, Ariel

    2016-01-01

    Constructed wetlands used for the treatment of swine wastewater may potentially sequester significant amounts of carbon. In past studies, we evaluated the treatment efficiency of wastewater in a marsh-pond-marsh design wetland system. The functionality of this system was highly dependent on soil carbon content and organic matter turnover rate. To better understand system performance and carbon dynamics, we measured plant dry matter, decomposition rates and soil carbon fractions. Plant litter decomposition rate was 0.0052 g day(-1) (±0.00119 g day(-1)) with an estimated half-life of 133 days. The detritus layer accumulated over the soil surface had much more humin than other C fractions. In marsh areas, soil C extracted with NaOH had four to six times higher amounts of humic acid, fulvic acid and humin than soil C extracted by cold and hot water, HCl/HF, and Na pyruvate. In the pond area, humic acid, fulvic acid and humin content were two to four times lower than in the marsh area. More soil C and N was found in the marsh area than in the pond area. These wetlands proved to be large sinks for stable C forms.

  6. SU-E-J-142: Prompt Gamma Emission Measurements From a Passively Scattered Proton Beam On Targets Containing 16O, 12C and 14N

    Energy Technology Data Exchange (ETDEWEB)

    Jeyasugiththan, J [Department of Physics, University of Cape Town, Cape Town (South Africa); Department of Clinical Oncology, Teaching Hospital, Jeffna (Sri Lanka); Peterson, S [Department of Physics, University of Cape Town, Cape Town (South Africa)

    2015-06-15

    Purpose: To measure the prompt gamma emission from the important elements found in tissue ({sup 16}O,{sup 12}C and {sup 14}N) in a clinical passive-scatter treatment environment. Methods: The targets (composed of water, Perspex, graphite and liquid nitrogen) were irradiated with a 200 MeV passive-scatter proton beam and the discrete prompt gamma energy spectra was detected by a high resolution 2′ × 2′ LaBr. detector. In order to reduce the high level of radiation produced by the beam line elements, the detector was surrounded by 10 cm of lead to attenuate the scattered gamma-rays entering the detector with an extra 5 cm thick layer of lead added along the beam direction. A 10 cm thick collimator with a 5 cm × 10 cm rectangular opening was also used. Results: The prompt gamma peaks at 6.13 MeV and 4.44 MeV were clearly identified as a Result of the inelastic nuclear reaction between the protons and the 16O atoms found in the water target. The 6.13 MeV peak was 5% higher than the peak at 4.44 MeV for the water target. The 4.44 MeV peak was the only identified emission in the prompt gamma energy spectra from the graphite target ({sup 12}C). The expected 2.313 MeV peak form the{sup 14}N (liquid nitrogen target) was identified, but the other expected {sup 14}N peaks could not be resolved. Conclusion: Prompt gamma measurements with a passive-scatter proton beam are possible, but the presence of a high amount of background radiation from the patient final collimator presents a challenge at the treatment isocenter. The prominent prompt gamma peaks at 6.13 MeV and 4.44 MeV were identified from the water, Perspex and graphite targets. The prompt gammas from the liquid nitrogen target were difficult to see, but may not be significant in the in-vivo verification process.

  7. Formation of tin-tin oxide core-shell nanoparticles in the composite SnO2-x/nitrogen-doped carbon nanotubes by pulsed ion beam irradiation

    Science.gov (United States)

    Korusenko, P. M.; Nesov, S. N.; Bolotov, V. V.; Povoroznyuk, S. N.; Pushkarev, A. I.; Ivlev, K. E.; Smirnov, D. A.

    2017-03-01

    The complex methods of transmission electron microscopy, energy dispersive X-ray analysis, and X-ray photoelectron spectroscopy were used to investigate the changes in the morphology, phase composition, and electronic structure of the composite SnO2-x/nitrogen-doped multiwalled carbon nanotubes (SnO2-x/N-MWCNTs) irradiated with the pulsed ion beam of nanosecond duration. The irradiation of the composite SnO2-x/N-MWCNTs leads to the formation of nanoparticles with the core-shell structure on the surface of CNTs with a sharp interfacial boundary. It has been established that the "core" is a metal tin (Sn0) with a typical size of 5-35 nm, and the "shell" is a thin amorphous layer (2-6 nm) consisting of nonstoichiometric tin oxide with a low oxygen content. The "core-shell" structure Snsbnd SnOx is formed due to the process of heating and evaporation of SnO2-x under the effect of the ion beam, followed by vapor deposition on the surface of carbon nanotubes.

  8. Investigation of the microstructure, mechanical properties and tribological behaviors of Ti-containing diamond-like carbon films fabricated by a hybrid ion beam method

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Wei [Ningbo Key Laboratory of Marine Protection Materials, Division of Surface Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Future Convergence Technology Division, Korea Institute of Science and Technology, Seoul, 130-650 (Korea, Republic of); Ke, Peiling [Ningbo Key Laboratory of Marine Protection Materials, Division of Surface Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Moon, Myoung-Woon; Lee, Kwang-Ryeol [Future Convergence Technology Division, Korea Institute of Science and Technology, Seoul, 130-650 (Korea, Republic of); Wang, Aiying, E-mail: aywang@nimte.ac.cn [Ningbo Key Laboratory of Marine Protection Materials, Division of Surface Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2012-07-31

    Diamond-like carbon (DLC) films with various titanium contents were investigated using a hybrid ion beam system comprising an anode-layer linear ion beam source and a DC magnetron sputtering unit. The film composition and microstructure were characterized carefully by X-ray photoelectron spectroscopy, transmission electron microscopy and Raman spectroscopy, revealing that the doped Ti atoms had high solubility in the DLC films. The maximum solubility was found to lie between about 7 and 13 at.%. When the Ti content was lower than this solubility, the doped Ti atoms dissolved in the DLC matrix and the films exhibited the typical features of the amorphous DLC structure and displayed low compressive stresses, friction coefficients and wear rates. However, as the doped content exceeded the solubility, Ti atoms bonded with C atoms, resulting in the formation of carbide nano-particles embedded in the DLC matrix. Although the emergence of the carbide nano-particles promoted graphitizing due to a catalysis effect, the film hardness was enhanced to a great extent. On the other hand, the hard carbides particles caused abrasive wear behavior, inducing a high friction coefficient and wear rate. - Highlights: Black-Right-Pointing-Pointer Ti doped DLC films (Ti {approx} 24 at.% )were deposited by a hybrid ion beam system. Black-Right-Pointing-Pointer Solubility of the Ti atoms in the DLC films was found around 7 {approx} 13 at .%. Black-Right-Pointing-Pointer Microstructure evolution from DLC to nanocomposite played key role in film behaviors.

  9. Flexural strengthening of reinforced concrete beams with carbon fibers reinforced polymer (CFRP sheet bonded to a transition layer of high performance cement-based composite

    Directory of Open Access Journals (Sweden)

    V. J. Ferrari

    Full Text Available Resistance to corrosion, high tensile strength, low weight, easiness and rapidity of application, are characteristics that have contributed to the spread of the strengthening technique characterized by bonding of carbon fibers reinforced polymer (CFRP. This research aimed to develop an innovate strengthening method for RC beams, based on a high performance cement-based composite of steel fibers (macro + microfibers to be applied as a transition layer. The purpose of this transition layer is better control the cracking of concrete and detain or even avoid premature debonding of strengthening. A preliminary study in short beams molded with steel fibers and strengthened with CFRP sheet, was carried out where was verified that the conception of the transition layer is valid. Tests were developed to get a cement-based composite with adequate characteristics to constitute the layer transition. Results showed the possibility to develop a high performance material with a pseudo strain-hardening behavior, high strength and fracture toughness. The application of the strengthening on the transition layer surface had significantly to improve the performance levels of the strengthened beam. It summary, it was proven the efficiency of the new strengthening technique, and much information can be used as criteria of projects for repaired and strengthened structures.

  10. Effect of electron beam irradiation on multi-walled carbon nanotubes%电子束辐照对多壁碳纳米管的影响

    Institute of Scientific and Technical Information of China (English)

    李斌; 凤仪; 丁克望; 钱刚; 张学斌; 刘衍芳

    2014-01-01

    在室温下采用透射电子显微镜中汇聚的电子束辐照多壁碳纳米管。结果表明,在能量为100 keV的电子束辐照下除了碳纳米管管壁有一些弯曲外没有其他结构被破坏;当电子能量增加到200 keV时,纳米管有明显的损伤,可以观察到纳米管的无定型化、纳米管外壁的凹坑和缺口。200 keV的电子束辐照还能形成碳洋葱和2根多壁纳米管的焊接。多壁碳纳米管的离位阀能为83~110 keV。能量超过阀能的电子束可以很轻易地损伤纳米管而低于阀能的电子束则很难损坏纳米管,其损伤机理为溅射和原子离位。%Multi-walled carbon nanotubes (MWCNTs) were irradiated with focused electron beams in a transmission electron microscope at room temperature. The results showed that carbon nanotubes had no obvious structural damages but only shell bending under 100 keV electron beam irradiation. However, when the electron energy increased to 200 keV, the nanotubes were damaged and amorphization, pits and gaps were detected. Furthermore, generating of carbon onions and welding between two MWCNTs occurred under 200 keV electron irradiation. It was easy to destroy the MWCNTs as the electron beams exceeded the displacement threshold energy that was calculated to be 83-110 keV. Conversely, the energy of electron beams below the threshold energy was not able to damage the tubes. The damage mechanism is sputtering and atom displacement.

  11. Plasma Polymerized Thin Films of Maleic Anhydride and 1,2-methylenedioxybenzene for Improving Adhesion to Carbon Surfaces

    DEFF Research Database (Denmark)

    Drews, Joanna Maria; Goutianos, Stergios; Kingshott, Peter

    2007-01-01

    Low power 2-phase AC plasma polymerization has been used to surface modify glassy carbon substrates that are used as an experimental model for carbon fibers in reinforced composites. In order to probe the role of carboxylic acid density on the interfacial adhesion strength a combination...... of different plasma powers and monomer compositions was used. Maleic anhydride (MAR) and 1,2-methylenedioxybenzene (MDOB) were plasma deposited separately and as mixtures to create layers with different surface compositions. In all cases the MAR was hydrolyzed to form carboxylic acid groups. Some carboxylic...... total veflectanc~ Fourier transform infrared spectroscopy. Atomic force microscopy was used to measure the thickness of the plasma films and to monitor the surface roughness for the different polymerization conditions. Finally, preliminary results of fracture energy measurements of the plasma modified...

  12. Electron-Beam Irradiation Effect on Thermal and Mechanical Properties of Nylon-6 Nanocomposite Fibers Infused with Diamond and Diamond Coated Carbon Nanotubes

    Science.gov (United States)

    Imam, Muhammad A.; Jeelani, Shaik; Rangari, Vijaya K.; Gome, Michelle G.; Moura, Esperidiana. A. B.

    2016-02-01

    Nylon-6 is an engineering plastic with excellent properties and processability, which are essential in several industrial applications. The addition of filler such as diamond (DN) and diamond coated carbon nanotubes (CNTs) to form molded composites may increase the range of Nylon-6 applications due to the resulting increase in strength. The effects of electron-beam irradiation on these thermoplastic nanocomposites are either increase in the cross-linking or causes chain scission. In this study, DN-coated CNTs were synthesized using the sonochemical technique in the presence of cationic surfactant cetyltrimethyl ammonium bromide (CTAB). The DN-coated CNTs nanoparticles and diamond nanoparticles were then introduced into Nylon-6 polymer through a melt extrusion process to form nanocomposite fibers. They were further tested for their mechanical (Tensile) and thermal properties (thermogravimetric analysis (TGA), differential scanning calorimetry (DSC)). These composites were further exposed to the electron-beam (160kGy, 132kGy and 99kGy) irradiation using a 1.5MeV electron-beam accelerator, at room temperature, in the presence of air and tested for their thermal and mechanical properties. The best ultimate tensile strength was found to be 690MPa and 864MPa irradiated at 132 for DN/CNTs/Nylon-6 and Diamond/Nylon-6 nanocomposite fiber as compared to 346MPa and 321MPa for DN/CNTs/Nylon-6 and Diamond/Nylon-6 nanocomposite fiber without irradiation. The neat Nylon-6 tensile strength was 240MPa. These results are consistent with the activation energy calculated from TGA graphs. DSC analysis result shows that the slight increase in glass transition temperature (Tg) and decrease in melting temperature (Tm) which was expected from high electron-beam radiation dose.

  13. THE INFLUENCE OF THE POROUS STRUCTURE OF LOCAL ACTIVATED CARBONS ON THE IMMOBILIZATION OF THE CONGO RED DYE AND VITAMIN B 12

    Directory of Open Access Journals (Sweden)

    N. Timbaliuc

    2013-06-01

    Full Text Available The adsorption properties of activated carbons, obtained from local raw materials (nut shells, peach and plum stones, towards Congo Red and vitamin B12 have been studied. The values of adsorption of these marker-substances are in direct correlation with the structural characteristics of the studied samples of activated carbons, in particular, with their mesopore volume.

  14. Titanium carbide-carbon porous nanocomposite materials for radioactive ion beam production: processing, sintering and isotope release properties

    CERN Document Server

    AUTHOR|(CDS)2081922; Stora, Thierry

    2017-01-26

    The Isotope Separator OnLine (ISOL) technique is used at the ISOLDE - Isotope Separator OnLine DEvice facility at CERN, to produce radioactive ion beams for physics research. At CERN protons are accelerated to 1.4 GeV and made to collide with one of two targets located at ISOLDE facility. When the protons collide with the target material, nuclear reactions produce isotopes which are thermalized in the bulk of the target material grains. During irradiation the target is kept at high temperatures (up to 2300 °C) to promote diffusion and effusion of the produced isotopes into an ion source, to produce a radioactive ion beam. Ti-foils targets are currently used at ISOLDE to deliver beams of K, Ca and Sc, however they are operated at temperatures close to their melting point which brings target degradation, through sintering and/or melting which reduces the beam intensities over time. For the past 10 years, nanostructured target materials have been developed and have shown improved release rates of the produced i...

  15. Protective effects of melatonin against 12C6+ beam irradiation-induced oxidative stress and DNA injury in the mouse brain

    Science.gov (United States)

    Wu, Z. H.; Zhang, H.; Wang, X. Y.; Yang, R.; Liu, B.; Liu, Y.; Zhao, W. P.; Feng, H. Y.; Xue, L. G.; Hao, J. F.; Niu, B. T.; Wang, Z. H.

    2012-01-01

    The purpose of this experiment was to estimate the protective effects of melatonin against radiation-induced brain damages in mice induced by heavy ion beams. Kun-Ming mice were randomly divided into five groups: normal control group, irradiation control group, and three different doses of melatonin (5, 10, and 20 mg/kg, i.p.) treated groups. Apart from the normal control group, the other four groups were exposed to whole-body 4.0 Gy carbon ion beam irradiation (approximately 0.5 Gy/min) after i.p. administration of normal saline or melatonin 1 h before irradiation. The oxidative redox status of brain tissue was assessed by measurement of malondiadehyde (MDA) levels, total superoxide dismutase (T-SOD), cytosolic superoxide dismutase (Cu/ZnSOD, SOD1) and mitochondrial superoxide dismutase (MnSOD, SOD2) activities at 8 h after irradiation. DNA damages were determined using the Comet assay and apoptosis and cell cycle distribution were detected by flow cytometric analyses. A dramatic dose-dependent decrease in MDA levels, tail moment, rates of tailing cells, and apoptosis, and a dose-dependent increase in T-SOD and SOD2 activities, in brain tissues in the melatonin-treated groups were detected compared with the irradiation only group. Furthermore, flow cytometric analysis demonstrated that the percentage of brain cells in the G0/G1 phase decreased significantly, while those in the S and G2/M stage increased dramatically, with mice pretreated with melatonin compared to the irradiation control group. These data indicate that melatonin has protective effects against irradiation-induced brain injury, and that its underlying protective mechanisms may relate to modulation of oxidative stress induced by heavy ionirradiation.

  16. SU-E-T-204: Comparison of Absorbed-Dose to Water in High-Energy Photon Beams Based On Addendum AAPM TG-51, IAEA TRS-398, and JSMP 12

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, N; Kita, A; Yoshioka, C; Sasamoto, K; Nishimoto, Y; Adachi, T [University of Fukui Hospital, Eiheiji, Fukui (Japan); Oguchi, H [Nagoya University Graduate School of Medicine, Nagoya, Aichi (Japan); Shioura, H; Kimura, H [University of Fukui, Eiheiji, Fukui (Japan)

    2015-06-15

    Purpose: Several clinical reference dosimetry protocols for absorbed-dose to water have recently been published: The American Association of Physicists in Medicine (AAPM) published an Addendum to the AAPM’s TG-51 (Addendum TG-51) in April 2014, and the Japan Society of Medical Physics (JSMP) published the Japan Society of Medical Physics 12 (JSMP12), a clinical reference dosimetry protocol, in September 2012. This investigation compared and evaluated the absorbed-dose to water of high-energy photon beams according to Addendum TG-51, International Atomic Energy Agency Technical Report Series No. 398 (TRS-398), and JSMP12. Methods: Differences in the respective beam quality conversion factors with Addendum TG-51, TRS-398, and JSMP12 were analyzed and the absorbed-dose to water using 6- and 10-MV photon beams was measured according to the protocols recommended in Addendum TG-51, TRS-398, and JSMP12. The measurements were conducted using two Farmer-type ionization chambers, Exradin A12 and PTW 30013. Results: The beam quality conversion factors for both the 6- and 10-MV photon beams with Addendum TG-51 were within 0.6%, in agreement with the beam quality conversion factors with TRS-398 and JSMP12. The Exradin A12 provided an absorbed-dose to water ratio from 1.003 to 1.006 with TRS-398 / Addendum TG-51 and from 1.004 to 1.005 with JSMP 12 / Addendum TG-51, whereas the PTW 30013 provided a ratio of 1.001 with TRS-398 / Addendum TG-51 and a range from 0.997 to 0.999 with JSMP 12 / Addendum TG-51. Conclusion: Despite differences in the beam quality conversion factor, no major differences were seen in the absorbed-dose to water with Addendum TG-51, TRS-398, and JSMP12. However, Addendum TG-51 provides the most recent data for beam quality conversion factors based on Monte Carlo simulation and greater detail for the measurement protocol. Therefore, the absorbed-dose to water measured with Addendum TG-51 is an estimate with less uncertainty.

  17. Differentiation of Pigment in Eggs Using Carbon ((13)C/(12)C) and Nitrogen ((15)N/(14)N) Stable Isotopes.

    Science.gov (United States)

    Sun, Feng M; Shi, Guang Y; Wang, Hui W

    2016-07-01

    Consumers prefer natural and healthy food, but artificial pigments are often abused in egg products. The study aimed at differentiating the origin of pigments in eggs by applying the technique of carbon ((13)C/(12)C) and nitrogen ((15)N/(14)N) stable isotope analysis. Five hundred sixty laying hens were randomly distributed into 14 treatments, which were divided into four groups: maize, carophyll red pigment, carophyll yellow pigment, and a mixture of carophyll red and yellow pigments. Eggs were collected and pretreated to determe the values of the Roche Yolk Color Fan (RCF), δ(13)C, and δ(15)N. With increasing maize content, the RCF and δ(13)C values of yolks increased. Moreover, the RCF values in the three pigment groups were significantly influenced by the artificial colors, but δ(13)C values were not significantly different, regardless of the existence of pigment. The δ(15)N values in all treatments did not vary as regularly as the carbon stable isotope. A strong positive correlation was found between RCF and δ(13)C in the maize group, but no such correlation was be observed in the pigment groups. It is concluded that carbon stable isotope ratio analysis (δ(13)C) of the yolk can be used to differentiate the origin of the pigment added to eggs.

  18. Studies of One-Nucleon Transfer Reactions on Boron -11 and CARBON-12.

    Science.gov (United States)

    Foot, Penelope Bernadette

    This thesis describes a study of the ^{11}B(d,n)^{12 }C and ^{12}C(t, alpha)^{11} B reactions. The Indiana University Cyclotron Facility produced the 79 MeV deuterons for the ^{11} B(d,n)^{12}C experiment. Time of flight measurements were performed to obtain neutron energy spectra. The energy resolution was typically 300 keV (~{1over 2} nsec). Cross sections were extracted for five well-resolved bound states in ^{12}C at 0.00, 4.44, 9.64, 12.71 and 15.11 MeV. The experimental cross sections were compared with the results of theoretical predictions. The effect of including, in these calculations, the breakup of the deuteron into low energy relative S states during the course of the reaction was investigated. Spectroscopic factors were then determined for the above five states in ^{12}C and compared with theoretical values. A subsequent experiment was performed at the same energy with vector polarized deuterons in order to study the effects of deuteron breakup on the corresponding analysing powers. This was the first time that analysing powers had been measured for this reaction. The effects on the cross section and analysing power calculations of exact finite range and the D state of the deuteron were investigated using the Reid soft-core potential for the proton-neutron interaction. The possible role of a two step process in the population of the 2 ^{+} state at 4.44 MeV in ^{12}C was examined. The effects on the analysing power for this state, of contributions from the 2p-1f shell in the 4.44 MeV wavefunction, were also discussed. Differential cross sections for the ^ {12}C(t,alpha) ^{11}B reaction, using 33 MeV tritons from the Daresbury Nuclear Structure Facility, were extracted for transitions to the 0.00, 2.125, 4.445, 5.021, 6.743, 7.286, 7.978 and 8.559 MeV states in ^{11 }B. The results of CRC calculations were compared with DWBA and CCBA calculation for the single step and two step transitions respectively. The spin of the 8.559 MeV state in ^{11}B, which

  19. Gas-Phase Synthesis of Dimethyl Carbonate from Methanol and Carbon Dioxide Over Co1.5PW12O40 Keggin-Type Heteropolyanion

    Directory of Open Access Journals (Sweden)

    Ahmed Aouissi

    2010-03-01

    Full Text Available The reactivity of Co1.5PW12O40 in the direct synthesis of dimethyl carbonate (DMC from CO2 and CH3OH was investigated. The synthesized catalyst has been characterized by means of FTIR, XRD, TG, and DTA and tested in gas phase under atmospheric pressure. The effects of the reaction temperature, time on stream, and methanol weight hourly space velocity (MWHSV on the conversion and DMC selectivity were investigated. The highest conversion (7.6% and highest DMC selectivity (86.5% were obtained at the lowest temperature used (200 °C. Increasing the space velocity MWHSV increased the selectivity of DMC, but decreased the conversion. A gain of 18.4% of DMC selectivity was obtained when the MWHSV was increased from 0.65 h-1 to 3.2 h-1.

  20. Microstructural morphology of the semi-solid high carbon steel T12 before and after rheo-rolling

    Institute of Scientific and Technical Information of China (English)

    Jiguang Li; Yonglin Kang; Aimin Zhao; Yi Sun; Man Cheng

    2005-01-01

    The semi-solid high carbon steel T12 was rolled in a closed box groove under a certain condition by the rheo-rolling equipment, and the microstructural morphology of the semi-solid T12 before and after deformation was investigated by optical microscope to analyze and summarize the microstructure evolution law of T12 deformed in semi-solid state. The experiment results show that the grain shape before deformation of the semi-solid T12 steel displays globule or ellipse by the electromagnetic stirring,the distribution of solid and liquid phases is homogeneous. But the microstructure of semi-solid product after rheo-rolling exhibits macrosegregation that the distribution of liquid and solid phases changes, the liquid phases divorce from the solid phases. In the transverse section, most of the solid phases get together in the center of the specimen, the liquid phases flow to the surface or the edge of the specimen, and the grains occur plastic deformation while reduction increased. In longitudinal section, the middle microstructure of the specimen is more homogeneous than that at the head or tail, the head microstructure is similar to the tail and the size of the grains is not homogeneous.

  1. The Effect of Externally Retrofitted Carbon Fiber Reinforced Polymer Composites on the Ductility of Reinforced Concrete Beams

    Science.gov (United States)

    2007-11-02

    Reinforcement Ratios 84 8-5 Ductility Indices 86 5 LIST OF FIGURES FIGURE PAGE 2-1 Failure Modes of Concrete Beams 17 2-2 Composite Jacket Installation...20 2-3 Composite Jacket Application 20 2-4 Four Point Bending Configuration 21 3-1 Stress-Strain Relationship for Concrete 27 3-2 Standard Rebar 28 3...researchers around the world, such as reinforcing and prestressing concrete structures, seismic retrofitting of concrete and unreinforced masonry

  2. The electron mass from $g$-factor measurements on hydrogen-like carbon $^{12}$C$^{5+}$

    CERN Document Server

    Köhler, Florian; Kracke, Anke; Werth, Günter; Quint, Wolfgang; Blaum, Klaus

    2016-01-01

    The electron mass in atomic mass units has been determined with a relative uncertainty of $2.8\\cdot 10^{-11}$, which represents a 13-fold improvement of the 2010 CODATA value. The underlying measurement principle combines a high-precision measurement of the Larmor-to-cyclotron frequency ratio on a single hydrogen-like carbon ion in a Penning trap with a corresponding very accurate $g$-factor calculation. Here, we present the measurement results in detail, including a comprehensive discussion of the systematic shifts and their uncertainties. A special focus is set on the various sources of phase jitters, which are essential for the understanding of the applied line-shape model for the $g$-factor resonance.

  3. Induced radioactivity of a GSO scintillator by secondary fragments in carbon ion therapy and its effects on in-beam OpenPET imaging.

    Science.gov (United States)

    Hirano, Yoshiyuki; Nitta, Munetaka; Nishikido, Fumihiko; Yoshida, Eiji; Inadama, Naoko; Yamaya, Taiga

    2016-07-01

    The accumulation of induced radioactivity within in-beam PET scanner scintillators is of concern for its long-term clinical usage in particle therapy. To estimate the effects on OpenPET which we are developing for in-beam PET based on GSOZ (Zi doped Gd2SiO5), we measured the induced radioactivity of GSO activated by secondary fragments in a water phantom irradiation by a (12)C beam with an energy of 290 MeV u(-1). Radioisotopes of Na, Ce, Eu, Gd, Nd, Pm and Tb including positron emitters were observed in the gamma ray spectra of the activated GSO with a high purity Ge detector and their absolute radioactivities were calculated. We used the Monte Carlo simulation platform, Geant4 in which the observed radioactivity was assigned to the scintillators of a precisely reproduced OpenPET and the single and coincidence rates immediately after one treatment and after one-year usage were estimated for the most severe conditions. Comparing the highest coincidence rate originating from the activated scintillators (background) and the expected coincidence rate from an imaging object (signal), we determined the expected signal-to-noise ratio to be more than 7 within 3 min and more than 10 within 1 min from the scan start time. We concluded the effects of scintillator activation and their accumulation on the OpenPET imaging were small and clinical long-term usage of the OpenPET was feasible.

  4. Induced radioactivity of a GSO scintillator by secondary fragments in carbon ion therapy and its effects on in-beam OpenPET imaging

    Science.gov (United States)

    Hirano, Yoshiyuki; Nitta, Munetaka; Nishikido, Fumihiko; Yoshida, Eiji; Inadama, Naoko; Yamaya, Taiga

    2016-07-01

    The accumulation of induced radioactivity within in-beam PET scanner scintillators is of concern for its long-term clinical usage in particle therapy. To estimate the effects on OpenPET which we are developing for in-beam PET based on GSOZ (Zi doped Gd2SiO5), we measured the induced radioactivity of GSO activated by secondary fragments in a water phantom irradiation by a 12C beam with an energy of 290 MeV u-1. Radioisotopes of Na, Ce, Eu, Gd, Nd, Pm and Tb including positron emitters were observed in the gamma ray spectra of the activated GSO with a high purity Ge detector and their absolute radioactivities were calculated. We used the Monte Carlo simulation platform, Geant4 in which the observed radioactivity was assigned to the scintillators of a precisely reproduced OpenPET and the single and coincidence rates immediately after one treatment and after one-year usage were estimated for the most severe conditions. Comparing the highest coincidence rate originating from the activated scintillators (background) and the expected coincidence rate from an imaging object (signal), we determined the expected signal-to-noise ratio to be more than 7 within 3 min and more than 10 within 1 min from the scan start time. We concluded the effects of scintillator activation and their accumulation on the OpenPET imaging were small and clinical long-term usage of the OpenPET was feasible.

  5. Mechanical Behavior of Carbon Fiber Reinforced Concrete Beam%碳纤维加固钢筋混凝土梁受力性能的研究

    Institute of Scientific and Technical Information of China (English)

    马守才

    2012-01-01

    碳纤维加固是一种近年来逐渐兴起的新兴加固技术,在加固行业得到了广泛的应用.和传统的加固技术相比,碳纤维加固技术具有诸多优点,如抗腐蚀性强、加固强度高和施工简便等.碳纤维与传统的加大混凝土截面或粘钢混凝土补强相比,具有节省空间,施工简便,不需要现场固定设施,施工质量易保证,基本不增加结构尺寸及自重,耐腐蚀、耐久性能好等特点.文章通过进行实验分析,对碳纤维加固混凝土梁受力性能进行了研究,得出影响碳纤维加固钢筋混凝土梁受力性能的主要因素,对实际应用具有一定的参考价值.%Carbon fiber reinforcement is an emerging reinforcement technique gradually rising in recent years, and is widely used in strengthening industry. Compared with the traditional strengthening technology, carbon fiber reinforcement technology has many advantages, such as high corrosion resistance, high reinforcement strength and the simple construction, etc. Compared with the traditional enlarging concrete section or sticky steel concrete reinforcing technique, it can a space, the construction is simple, do not need the fixed facilities, ensure the construction quality, do not need to increase structure size and weight, corrosion resistance, durability is good. Through the experimental analysis, this paper researches mechanical behavior of carbon fiber reinforced concrete beam, and finds out the main factors influencing mechanical behavior of carbon fiber reinforced concrete beam, which has the certain reference value for actual application.

  6. Nonthermal inactivation of Escherichia coli K12 in buffered peptone water using a pilot-plant scale supercritical carbon dioxide system with gas-liquid porous metal contractor

    Science.gov (United States)

    This study evaluated the effectiveness of a supercritical carbon dioxide (SCCO2) system, with a gas-liquid CO2 contactor, for reducing Escherichia coli K12 in diluted buffered peptone water. 0.1% (w/v) buffered peptone water inoculated with E. coli K12 was processed using the SCCO2 system at CO2 con...

  7. Evaluation of the vidar`s VXR-12 digitizer performances for film dosimetry of beams delimited by multileaf collimator

    Energy Technology Data Exchange (ETDEWEB)

    Julia, F. [Centre de Lutte Contre le Cancer Gustave-Roussy, 94 - Villejuif (France); Briot, E.

    1995-12-01

    The development of new irradiation techniques such as conformal radiotherapy increasingly implies the use of a multileaf collimator. The measurement of dose gradients in the penumbra region, and of dose distributions at the edge of complex shaped fields defined by multileaf collimators requires a high definition dosimetric method. Nowadays film digitizers have been notably improved and allow the film dosimetry to be faster, more accurate, presenting a sensitivity and high spatial resolution. To be able to perform the study of physical and dosimetric specifications of a multileaf collimator, we have evaluated the performances of the Vidar VCR-12 digitizer, with respect to its sensitivity, linearity, optical density range and the resolution. These performances were compared with the performances of different systems already in use in our department, either manual or automatic, using specific patterns. The main limitation for dosimetric use is the detection threshold that can introduce errors in isodose calculation, especially for the lowest values. The result of the intercomparisons have allowed corrections to be added, taking into account this Vidar problem. The results obtained after correction for the dose profiles of squared fields are in good agreement with ionization chamber measurements in a water phantom. It is concluded that Vidar digitizer is suitable for the use of film dosimetry for the dose distributions in fields defined by multileaf collimator.

  8. Thermo-mechanical vibration analysis of a single-walled carbon nanotube embedded in an elastic medium based on higher-order shear deformation beam theory

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi, Farzad; Salari, Erfan [Imam Khomeini International University, Qazvin (Iran, Islamic Republic of)

    2015-09-15

    In this study, the thermal effect on the free vibration characteristics of embedded Single-walled carbon nanotubes (SWCNTs) based on the size-dependent Reddy higher order shear deformation beam theory subjected to in-plane thermal loading is investigated by presenting a Navier-type solution and employing a semi-analytical Differential transform method (DTM) for the first time. In addition, the exact nonlocal Reddy beam theory solution presented here should be useful to engineers designing nanoelectromechanical devices. The small scale effect is considered based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are derived through Hamilton's principle, and they are solved by applying DTM. Numerical results reveal that the proposed modeling and semi-analytical approach can provide more accurate frequency results of the SWCNTs compared to analytical results and some cases in the literature. The detailed mathematical derivations are presented, and numerical investigations are performed, whereas emphasis is placed on investigating the effect of several parameters such as small-scale effects, boundary conditions, mode number, thickness ratio, temperature change, and Winkler spring modulus on the natural frequencies of the SWCNTs in detail. The vibration behavior of SWCNTs is significantly influenced by these effects. Results indicate that the inclusion of size effect results in a decrease in nanobeam stiffness and leads to a decrease in natural frequency. Numerical results are presented to serve as benchmarks for future analyses of SWCNTs.

  9. Measurement of neutron spectra generated by a 62 AMeV carbon-ion beam on a PMMA phantom using extended range Bonner sphere spectrometers

    Science.gov (United States)

    Bedogni, R.; Amgarou, K.; Domingo, C.; Russo, S.; Cirrone, G. A. P.; Pelliccioni, M.; Esposito, A.; Pola, A.; Introini, M. V.; Gentile, A.

    2012-07-01

    Neutrons constitute an important component of the radiation environment in hadron therapy accelerators. Their energy distribution may span from thermal up to hundred of MeV. The characterization of these fields in terms of dosimetric or spectrometric quantities is crucial for either the patient protection or the facility design aspects. To date, the Extended Range Bonner Sphere Spectrometer (ERBSS) is the only instrument able to simultaneously determine all spectral components in such workplaces. With the aim of providing useful data to the scientific community involved in neutron measurements at hadron therapy facilities, a measurement campaign was carried out at the Centro di AdroTerapia e Applicazioni Nucleari Avanzate (CATANA) of INFN-LNS (Laboratori Nazionali del Sud), where a 62 AMeV carbon ion is available. The beam was directed towards a PMMA phantom, simulating the patient, and two neutron measurement points were established at 0° and 90° with respect to the beam-line. The ERBSSs of UAB (Universidad Autónoma de Barcelona-Grup de Física de les Radiacions) and INFN (Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali di Frascati) were used to measure the resulting neutron fields. The two ERBSSs use different detectors and sphere diameters, and have been independently calibrated. The FRUIT code was used to unfold the results.

  10. Measurement of neutral current neutral pion production on Carbon in a Few-GeV Neutrino Beam

    CERN Document Server

    Kurimoto, Y

    2009-01-01

    The SciBooNE Collaboration has measured neutral current neutral pion production by the muon neutrino beam at a polystyrene target (C8H8). We obtained (7.7+- 0.5(stat.)+0.4-0.5 (sys.)) x 10^-2 as cross section ratio of the neutral current neutral pion production to total charged current cross section at the mean neutrino energy of 1.16 GeV. This result is consistent with the Monte Carlo prediction based on the Rein-Sehgal model

  11. Relationship between plant growth and cytological effect in root apical meristem after exposure of wheat dry seeds to carbon ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qingfang [Radiobiology Laboratory, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu Province 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wang, Zhuanzi; Zhou, Libin; Qu, Ying; Lu, Dong [Radiobiology Laboratory, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu Province 730000 (China); Yu, Lixia; Du, Yan [Radiobiology Laboratory, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu Province 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Jin, Wenjie [Radiobiology Laboratory, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu Province 730000 (China); Li, Wenjian, E-mail: wjli@impcas.ac.cn [Radiobiology Laboratory, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Gansu Province 730000 (China)

    2013-06-15

    In order to analyze the relationship between plant growth and cytological effects, wheat dry seeds were exposed to various doses of {sup 12}C{sup 6+} beams and the biological endpoints reflecting plant growth and root apical meristem (RAM) activities were investigated. The results showed that most of the seeds were able to germinate normally within all dose range, while the plant survival rate descended at higher doses. The seedling growth including root length and seedling height also decreased significantly at higher doses. Mitotic index (MI) in RAM had no changes at 10 and 20 Gy and decreased obviously at higher doses and the proportion of prophase cells had the same trend with MI. These data suggested that RAM cells experienced cell cycle arrest, which should be responsible for the inhibition of root growth after exposure to higher doses irradiation. Moreover, various types of chromosome aberrations (CAs) were observed in the mitotic cells. The frequencies of mitotic cells with lagging chromosomes and these with anaphase bridges peaked around 60 Gy, while the frequencies of these with fragments increased as the irradiation doses increased up to 200 Gy. The total frequencies of mitotic cells with CAs induced by irradiation increased significantly with the increasing doses. The serious damage of mitotic chromosomes maybe caused cell cycle arrest or cell death. These findings suggested that the influences of {sup 12}C{sup 6+} beams irradiation on plant growth were related to the alternation of mitotic activities and the chromosomal damages in RAM.

  12. A study of isospin symmetry breaking in carbon 12 with 50 MeV pions

    Energy Technology Data Exchange (ETDEWEB)

    Applegate, J M

    1993-03-01

    In the first experiment to use the superconducting RF cavity at LAMPF known as the Scruncher, cross sections have been measured for the 1+ doublet in {sup 12}C by 50 MeV {pi}r{sup {plus_minus}} scattering. The cross section ratio of the isoscalar to the isovector states was found to be 6.8 {plus_minus} 1.3 for {pi}{sup +}+ scattering and 3.9 {plus_minus} 1.4 for {pi}{sup {minus}} scattering. These ratios give an isospin mixing matrix element H{sub 01}, of 119 {plus_minus} 40 key, in good agreement with the average value of 123 {plus_minus} 26 key deduced from previous pion-scattering data and with values deduced from other probes. The ratio of {pi}{sup +} + p to {pi}{sup {minus}} + p cross sections was determined experimentally to be 2.60 {plus_minus} 0.11, in agreement with a theoretical value of 2.85. The agreement of these results indicates that the impulse approximation is valid at 50 MeV. Cross sections were also measured for the elastic and collective states in {sup 12}C and were generally described well by distorted wave Born approximation calculations published previously.

  13. MODIFICATION OF CARBON STEEL BY LASER SURFACE MELTING: PART I: EFFECT OF LASER BEAM TRAVELLING SPEED ON MICROSTRUCTURAL FEATURES AND SURFACE HARDNESS

    Directory of Open Access Journals (Sweden)

    Hashem F. El-Labban

    2013-01-01

    Full Text Available The present study aims to improve the surface hardness of carbon steel by application of laser surface melting of effective conditions. The travelling speed of laser beam during this treatment is one of the important treatment conditions. This study aims to investigate the effect of laser surface melting with different beam speeds on macro and microstructure as well as the hardness distribution through the thickness of carbon steel. To achieve this target, three different travelling speeds (1500, 1000 and 500 mm min-1 at a constant beam power of 800 W were chosen in this study. The resulted laser treated specimens were investigated in macro and microscopically scale using optical and scanning electron microscope. Hardness measurements were also carried out through the thickness of the laser treated specimens. The laser treated areas with all used travelling speeds results in melted and solidified zone on the surface of the steel. In the same time, Plates of acicular martensite structure were observed within the upper part of the melted and solidified zone in almost all experimental conditions, while some bainite structure in ferrite grains are detected in its lower part. By increasing the travelling speed, the depth of the laser treated zone was decreases, while travelling speed has much less significant effect on the laser treated zone width. The size of the formed martensite plates was increased by decreasing the travelling speed from 1500 to 500 mm min-1. On the other hand, the travelling speed has a straight effect on the length of the acicular martensite; as the travelling speed increases, the acicular martensite became longer, while it shows fine acicular martensite at lower travelling speeds. The depth that full martensite structure can be reached is increased by increasing travelling speed. At lower travelling speed (500 mm min-1, large amount of bainite structure is observed at the center of the treated zone up to its lower end. The

  14. Cryogenic optical measurements of 12-segment-bonded carbon-fiber-reinforced silicon carbide composite mirror with support mechanism

    Science.gov (United States)

    Kaneda, Hidehiro; Nakagawa, Takao; Onaka, Takashi; Enya, Keigo; Makiuti, Sin'itirou; Takaki, Junji; Haruna, Masaki; Kume, Masami; Ozaki, Tsuyoshi

    2008-03-01

    A 720 mm diameter 12-segment-bonded carbon-fiber-reinforced silicon carbide (C/SiC) composite mirror has been fabricated and tested at cryogenic temperatures. Interferometric measurements show significant cryogenic deformation of the C/SiC composite mirror, which is well reproduced by a model analysis with measured properties of the bonded segments. It is concluded that the deformation is due mostly to variation in coefficients of thermal expansion among segments. In parallel, a 4-degree-of-freedom ball-bearing support mechanism has been developed for cryogenic applications. The C/SiC composite mirror was mounted on an aluminum base plate with the support mechanism and tested again. Cryogenic deformation of the mirror attributed to thermal contraction of the aluminum base plate via the support mechanism is highly reduced by the support, confirming that the newly developed support mechanism is promising for its future application to large-aperture cooled space telescopes.

  15. Black carbon record of the wildfire history of western Sichuan Province in China over the last 12.8 ka

    Science.gov (United States)

    Sun, Weiwei; Zhang, Enlou; Shen, Ji; Chen, Rong; Liu, Enfeng

    2016-01-01

    Wildfire is recognized as a critical Earth system process which affects the global carbon cycle, atmospheric chemistry, and ecosystem dynamics. Estimating the potential impact of future climate change on the incidence of fire requires an understanding of the long-term interactions of fire, climate, vegetation, and human activity. Accordingly, we analyzed the black carbon content and the pollen stratigraphy of sediments spanning the past 12.8 ka from Lake Muge Co, an alpine lake in western Sichuan Province, in order to determine the main factors influencing regional fire regimes. The results demonstrate that wildfires occurred frequently and intensively during the late deglaciation and the early Holocene when the regional vegetation was dominated by deciduous forests. Wildfire occurrence decreased significantly during the Holocene climatic optimum between 9.2 and 5.6 cal ka BP. Overall, the wildfire history of western Sichuan Province is similar to that of the Chinese Loess Plateau and of East Asia as a whole, suggesting that regional-scale fires depended mainly on changes in the intensity of the Asian summer monsoon. In addition, the fire regime of western Sichuan Province may have been influenced by the establishment of human settlement and agriculture in western Sichuan Province and the southeastern Tibetan Plateau after about 5.5 cal ka BP, and by an intensification of cereal cultivation coupled with population expansion in southwestern China during the last two millennia.

  16. Estudio Experimental de Piezas Lineales de Hormigón Reforzadas con Fibras de Carbono Experimental Study of Reinforced Concrete Beams Strengthened with Carbon Fibers

    Directory of Open Access Journals (Sweden)

    M. Valcuende

    2004-01-01

    Full Text Available Se ha estudiado el comportamiento de seis vigas reforzadas simultáneamente con láminas y tejidos de fibra de carbono. Se analiza, para este tipo de refuerzos, la validez de dos de los métodos de cálculo posiblemente más utilizados. En ambos métodos se plantean las ecuaciones de equilibrio de fuerzas y momentos, pero se introducen suposiciones diferentes: i el acero tiene suficiente capacidad plástica para no romperse y ii el agotamiento se produce siempre por rotura de la lámina. Los resultados obtenidos ponen de manifiesto que refuerzos de láminas y tejidos de fibra de carbono influyen notablemente sobre las piezas, mejorando su capacidad portante y modificando su comportamiento estructural en cuanto a rigidez y ductilidadA study on the behaviour of six beams reinforced with carbon fiber laminates and fabrics was done. The validity of the two most commonly used methods of evaluating the effects of these reinforcements was analyzed. Both methods propose equilibrium equations based on forces and moments, although introducing two different suppositions: i that the steel posesses enough elasticity to avoid breakage, and ii failure is always produced by the breakage of the laminate. The results obtained demonstrate that carbon fiber laminates and fabric reinforcements have notable influence on the pieces, improving their loading capacities and modifying their structural behavior regarding stiffness and ductility

  17. Graphene crystal growth by thermal precipitation of focused ion beam induced deposition of carbon precursor via patterned-iron thin layers

    Directory of Open Access Journals (Sweden)

    Rius Gemma

    2014-01-01

    Full Text Available Recently, relevant advances on graphene as a building block of integrated circuits (ICs have been demonstrated. Graphene growth and device fabrication related processing has been steadily and intensively powered due to commercial interest; however, there are many challenges associated with the incorporation of graphene into commercial applications which includes challenges associated with the synthesis of this material. Specifically, the controlled deposition of single layer large single crystal graphene on arbitrary supports, is particularly challenging. Previously, we have reported the first demonstration of the transformation of focused ion beam induced deposition of carbon (FIBID-C into patterned graphitic layers by metal-assisted thermal treatment (Ni foils. In this present work, we continue exploiting the FIBID-C approach as a route for graphene deposition. Here, thin patterned Fe layers are used for the catalysis of graphenization and graphitization. We demonstrate the formation of high quality single and few layer graphene, which evidences, the possibility of using Fe as a catalyst for graphene deposition. The mechanism is understood as the minute precipitation of atomic carbon after supersaturation of some iron carbides formed under a high temperature treatment. As a consequence of the complete wetting of FIBID-C and patterned Fe layers, which enable graphene growth, the as-deposited patterns do not preserve their original shape after the thermal treatment

  18. Short-range correlations in carbon-12, oxygen-16, and neon-20: Intrinsic properties

    Science.gov (United States)

    Braley, R. C.; Ford, W. F.; Becker, R. L.; Patterson, M. R.

    1972-01-01

    The Brueckner-Hartree-Fock (BHF) method has been applied to nuclei whose intrinsic structure is nonspherical. Reaction matrix elements were calculated as functions of starting energy for the Hamada-Johnston interaction using the Pauli operator appropriate to O-16 and a shifted oscillator spectrum for virtual excited states. Binding energies, single particle energies, radii, and shape deformations of the intrinsic state, in ordinary as well as renormalized BHF, are discussed and compared with previous HF studies and with experiment when possible. Results are presented for C-12, 0-16 and Ne-20. It is found that the binding energies and radii are too small, but that separation energies are well reproduced when the renormalized theory is used.

  19. The Erosion and Erosion Products of Tungsten and Carbon Based Materials Bombarded by High Energy Pulse Electron Beam

    Institute of Scientific and Technical Information of China (English)

    LIUXiang; N.Yoshida; N.Noda; ZHANGFu; XUZengyu; LIUYong

    2001-01-01

    High Z and low Z materials are both the candidate plasma facing materials (PFM), up to now, the typical representative of high Z materials is tungsten, and the representatives of low Z materials are carbon materials (such as graphite, C/C composite) and beryllium. Most of these materials have been used as PFM limiters and diverter armor tiles of tokamak machines, tungsten, molybdenum and C/C composite are always used as high heat flux components.

  20. Pre-irradiation with low-dose 12C6+ beam significantly enhances the efficacy of AdCMV-p53 gene therapy in human non-small lung cancer

    Institute of Scientific and Technical Information of China (English)

    LIU Bing; DUAN Xin; ZHANG Hong; LI WenJian; LI Qiang; ZHOU GuangMing; XIE Yi; HAO JiFang; MIN FengLing; ZHOU QingMing

    2007-01-01

    The combination of ionizing radiation and gene therapy has been investigated. However, there are very few reports about the combination of heavy-ion irradiation and gene therapy. To determine if the pre-exposure to low-dose heavy ion beam enhances the suppression of AdCMV-p53 on non-small lung cancer (NSLC), the cells pre-irradiated or non-irradiated were infected with 20, 40 MOl of AdCMV-p53. Survival fraction and the relative biology effect (RBE) were determined by clonogenic assay. The results showed that the proportions of p53 positive cells in 12C6+ beam induced AdCMV-p53 infected cells were more than 90%, which were significantly more than those in γ-ray induced AdCMV-p53 infected cells. The pre-exposure to low-dose 12C6+ beam significantly prevented the G0/G1 arrest and activated G2/M checkpoints. The pre-exposure to 12C6+ beam significantly improved cell to apoptosis. RBEs for the 12C6+ + AdCMV-p53 infection groups were 30%-60%, 20% -130% and 30%-70% more than those for the 12C6+-irradiated only, AdCMV-p53 infected only, and γ-irradiation induced AdCMVp53 infected groups, respectively. The data suggested that the pre-exposure to low-dose 12C6+ beam significantly promotes exogenous p53 expression in NSLC, and the suppression of AdCMV-p53 gene therapy on NSLC.

  1. Pre-irradiation with low-dose 12C6+ beam significantly enhances the efficacy of AdCMV-p53 gene therapy in human non-small lung cancer

    Science.gov (United States)

    Liu, Bing; Zhang, Hong; Li, Wenjian; Li, Qiang; Zhou, Guangming; Xie, Yi; Hao, Jifang; Min, Fengling; Zhou, Qingming; Duan, Xin

    2007-04-01

    The combination of ionizing radiation and gene therapy has been investigated. However, there are very few reports about the combination of heavy-ion irradiation and gene therapy. To determine if the pre-exposure to low-dose heavy ion beam enhances the suppression of AdCMV-p53 on non-small lung cancer (NSLC), the cells pre-irradiated or non-irradiated were infected with 20, 40 MOI of AdCMV-p53. Survival fraction and the relative biology effect (RBE) were determined by clonogenic assay. The results showed that the proportions of p53 positive cells in 12C6+ beam induced AdCMV-p53 infected cells were more than 90%, which were significantly more than those in γ-ray induced AdCMV-p53 infected cells. The pre-exposure to low-dose 12C6+ beam significantly prevented the G0/G1 arrest and activated G2/M checkpoints. The pre-exposure to 12C6+ beam significantly improved cell to apoptosis. RBEs for the 12C6+ + AdCMV-p53 infection groups were 30% 60%, 20% 130% and 30% 70% more than those for the 12C6+-irradiated only, AdCMV-p53 infected only, and γ-irradiation induced AdCMVp53 infected groups, respectively. The data suggested that the pre-exposure to low-dose 12C6+ beam significantly promotes exogenous p53 expression in NSLC, and the suppression of AdCMV-p53 gene therapy on NSLC.

  2. Pre-irradiation with low-dose 12C6+beam significantly enhances the efficacy of AdCMV-p53 gene therapy in human non-small lung cancer

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The combination of ionizing radiation and gene therapy has been investigated. However, there are very few reports about the combination of heavy-ion irradiation and gene therapy. To determine if the pre-exposure to low-dose heavy ion beam enhances the suppression of AdCMV-p53 on non-small lung cancer (NSLC), the cells pre-irradiated or non-irradiated were infected with 20, 40 MOI of AdCMV-p53. Survival fraction and the relative biology effect (RBE) were determined by clonogenic assay. The results showed that the proportions of p53 positive cells in 12C6+ beam induced AdCMV-p53 infected cells were more than 90%, which were signifi-cantly more than those in γ-ray induced AdCMV-p53 infected cells. The pre-exposure to low-dose 12C6+ beam significantly prevented the G0/G1 arrest and activated G2/M checkpoints. The pre-exposure to 12C6+ beam significantly improved cell to apoptosis. RBEs for the 12C6+ + AdCMV-p53 infection groups were 30%-60%, 20%-130% and 30%-70% more than those for the 12C6+-irradiated only, AdCMV-p53 infected only, and γ-irradiation induced AdCMVp53 infected groups, respectively. The data suggested that the pre-exposure to low-dose 12C6+ beam significantly promotes exogenous p53 expression in NSLC, and the suppression of AdCMV-p53 gene therapy on NSLC.

  3. Measurement of Inclusive Neutral Current Neutral Pion Production on Carbon in a Few-GeV Neutrino Beam

    CERN Document Server

    Kurimoto, Y

    2009-01-01

    The SciBooNE Collaboration reports inclusive neutral current neutral pion production by a muon neutrino beam on a polystyrene target (C8H8). We obtain (7.7 \\pm 0.5(stat.) \\pm 0.5 (sys.)) x 10^(-2) as the ratio of the neutral current neutral pion production to total charged current cross section; the mean energy of neutrinos producing detected neutral pions is 1.1 GeV. The result agrees with the Rein-Sehgal model implemented in our neutrino interaction simulation program with nuclear effects. The spectrum shape of the neutral pion momentum and angle agree with the model. We also measure the ratio of the neutral current coherent pion production to total charged current cross section to be (0.9 \\pm 0.5) x 10^(-2).

  4. Polyvinyl acetate/poly(amide-12-b-ethylene oxide) blend membranes for carbon dioxide separation

    Institute of Scientific and Technical Information of China (English)

    Shichao; Feng; Jizhong; Ren; Hui; Li; Kaisheng; Hua; Xinxue; Li; Maicun; Deng

    2013-01-01

    In this paper,blend membranes from polyvinyl acetate(PVAc)and block copolymer poly(amide-12-b-ethylene oxide)(Pebax1074)are prepared by solution casting and solvent evaporation method.Although they are homogeneous on a macro-scale,the observations from DSC and SEM indicate micro-phase separation for PVAc/Pebax1074 blend membranes.With the increase of Pebax1074 content,gas permeabilities of CO2,H2,N2and CH4all increase greatly.PVAc/Pebax1074 blend membranes with high PVAc content are appropriate for CO2/CH4separation.The temperature dependence of gas permeability is divided into rubbery region and glassy region.The activation energies of permeation in rubbery region are smaller than those in glassy region,and they all decrease with increasing Pebax1074 content.For N2,H2and CH4,their gas permeation properties are mainly influenced by the dual-mode sorption and hydrostatic pressure effect.But for CO2,its permeability increases with the increase of pressure due to CO2-induced plasticization effect,which is more obvious for PVAc/Pebax1074 blend membranes with high PVAc content.

  5. Use of carbon and AlPO4 dual coating on H2Ti12O25 anode for high stability hybrid supercapacitor

    Science.gov (United States)

    Kim, Jin-Hyeon; Lee, Seung-Hwan

    2016-11-01

    We fabricated the cylindrical hybrid supercapacitors using the pristine H2Ti12O25, carbon coated H2Ti12O25, AlPO4 coated H2Ti12O25, AlPO4-carbon hybrid coated H2Ti12O25, and AlPO4-carbon dual coated H2Ti12O25 as anodes. The electrochemical performances and thermal stability of the hybrid supercapacitors with different surface-modified anodes were investigated. The uniform and ultrathin dual coated H2Ti12O25 maximizes the electrochemical performances with superior thermal stability. The dual coating layer acts as a bridge for the Li ion diffusion and electron conduction and as a barrier to suppress swelling phenomenon from HF attack. Moreover, the partially AlF3 areas at AlPO4 layer, due to the reaction with HF, have positive effects on electrochemical performances. Therefore, the novel design composed of carbon and AlPO4 can be regarded as an effective strategy for anode used in hybrid supercapacitors.

  6. FY12 ARRA-NRAP Report – Studies to Support Risk Assessment of Geologic Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J.; Shao, Hongbo; Thompson, C. J.; Zhong, Lirong; Jung, Hun Bok; Um, Wooyong

    2011-09-27

    This report summarizes results of research conducted during FY2012 to support the assessment of environmental risks associated with geologic carbon dioxide (CO2) sequestration and storage. Several research focus areas are ongoing as part of this project. This includes the quantification of the leachability of metals and organic compounds from representative CO2 storage reservoir and caprock materials, the fate of metals and organic compounds after release, and the development of a method to measure pH in situ under supercritical CO2 (scCO2) conditions. Metal leachability experiments were completed on 6 different rock samples in brine in equilibrium with scCO2 at representative geologic reservoir conditions. In general, the leaching of RCRA metals and other metals of concern was found to be limited and not likely to be a significant issue (at least, for the rocks tested). Metals leaching experiments were also completed on 1 rock sample with scCO2 containing oxygen at concentrations of 0, 1, 5, and 10% to simulate injection of CO2 originating from the oxy-fuel combustion process. Significant differences in the leaching behavior of certain metals were observed when oxygen is present in the CO2. These differences resulted from oxidation of sulfides, release of sulfate, ferric iron and other metals, and subsequent precipitation of iron oxides and some sulfates such as barite. Experiments to evaluate the potential for mobilization of organic compounds from representative reservoir materials and cap rock and their fate in porous media (quartz sand) have been conducted. Results with Fruitland coal and Gothic shale indicate that lighter organic compounds were more susceptible to mobilization by scCO2 compared to heavier compounds. Alkanes demonstrated very low extractability by scCO2. No significant differences were observed between the extractability of organic compounds by dry or water saturated scCO2. Reaction equilibrium appears to have been reached by 96 hours. When

  7. Geant4 simulation for a study of a possible use of carbon ions pencil beam for the treatment of ocular melanomas with the active scanning system at CNAO Centre

    Energy Technology Data Exchange (ETDEWEB)

    Farina, E. [University of Pavia-Department of Physics, via Bassi 6, 27100 Pavia (Italy); Piersimoni, P. [Division of Radiation Research, Loma Linda University, Loma Linda, CA 92354 (United States); Riccardi, C.; Rimoldi, A.; Tamborini, A. [University of Pavia-Department of Physics, via Bassi 6, 27100 Pavia (Italy); INFN Section of Pavia, via Bassi 6, 27100 Pavia (Italy); Ciocca, M. [Medical Physics Unit, Centro Nazionale di Adroterapia Oncologica - CNAO Foundation, Strada Campeggi 53, 27100 Pavia (Italy)

    2015-07-01

    The aim of this work is to validate the Geant4 application reproducing the CNAO (National Centre for Oncological Hadrontherapy) beamline and to study of a possible use of carbon ion pencil beams for the treatment of ocular melanomas at the CNAO Centre. The promising aspect of carbon ions radiotherapy for the treatment of this disease lies in its superior relative radiobiological effectiveness (RBE). The Monte Carlo Geant4 toolkit is used to simulate the complete CNAO extraction beamline, with the active and passive components along it. A human eye modeled detector, including a realistic target tumor volume, is used as target. Cross check with previous studies at CNAO using protons allows comparisons on possible benefits on using such a technique with respect to proton beams. Before the eye-detector irradiation a validation of the Geant4 simulation with CNAO experimental data is carried out with both carbon ions and protons. Important beam parameters such as the transverse FWHM and scanned radiation field 's uniformity are tested within the simulation and compared with experimental measurements at CNAO Centre. The physical processes involved in secondary particles generation by carbon ions and protons in the eye-detector are reproduced to take into account the additional dose to the primary beam given to irradiated eye's tissues. A study of beam shaping is carried out to produce a uniform 3D dose distribution (shaped on the tumor) by the use of a spread out Bragg peak. The eye-detector is then irradiated through a two dimensional transverse beam scan at different depths. In the use case the eye-detector is rotated of an angle of 40 deg. in the vertical direction, in order to mis-align the tumor from healthy tissues in front of it. The treatment uniformity on the tumor in the eye-detector is tested. For a more quantitative description of the deposited dose in the eye-detector and for the evaluation of the ratio between the dose deposited in the tumor and

  8. Simulation and dosimetric analysis of protons, {sup 4}He ions and {sup 12}C ions beams for brain neoplasm therapy; Simulacao e analise dosimetrica de feixes de protons e ions de {sup 4}He e {sup 12}C em tratamento de tumor cerebral

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Guilherme M.; Mello, Victor Barreto Braga [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil); Mello Neto, Joao R.T. de [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    2016-07-01

    This study aims to simulate protons, {sup 4}He ions and {sup 12}C ions beams, radiating the head of an average-sized man with the purpose of treating a hypothalamic tumor. GEANT4 was used to simulate the head (skin, skull and brain), and the beam, giving their characteristics and also the physical processes involved. The results sought herein are graphs of depth for relative dose for each of the three particles incident on the settings mentioned above. (author)

  9. Properties of nylon 12 balloons after thermal and liquid carbon dioxide treatments.

    Science.gov (United States)

    Ro, Andrew J; Davé, Vipul

    2013-03-01

    Critical design attributes of angioplasty balloons include the following: tear resistance, high burst pressures, controlled compliance, and high fatigue. Balloons must have tear resistance and high burst pressures because a calcified stenosis can be hard and nominal pressures of up to 16 atm can be used to expand the balloon. The inflated balloon diameter must be a function of the inflation pressure, thus compliance is predictable and controlled. Reliable compliance is necessary to prevent damage to vessel walls, which may be caused by over-inflation. Balloons are often inflated multiple times in a clinical setting and they must be highly resistant to fatigue. These design attributes are dependent on the mechanical properties and polymer morphology of the balloon. The effects of residual stresses on shrinkage, crystallite orientation, balloon compliance, and mechanical properties were studied for angioplasty nylon 12 balloons. Residual stresses of these balloons were relieved by oven heat treatment and liquid CO2 exposure. Residual stresses were measured by quantifying shrinkage at 80 °C of excised balloon samples using a dynamic mechanical analyzer. Shrinkage was lower after oven heat treatment and liquid CO2 exposure compared to the as-received balloons, in the axial and radial directions. As-received, oven heat treated, and liquid CO2-exposed balloon samples exhibited similar thermal properties (T(g), T(m), X(t)). Crystallite orientation was not observed in the balloon cylindrical body using X-ray scattering and polarized light microscopy, which may be due to balloon fabrication conditions. Significant differences were not observed between the stress-strain curves, balloon compliance, and average burst pressures of the as-received, oven heat treated, and liquid CO2-exposed balloons.

  10. GaAs microcrystals selectively grown on silicon: Intrinsic carbon doping during chemical beam epitaxy with trimethylgallium

    Science.gov (United States)

    Molière, T.; Jaffré, A.; Alvarez, J.; Mencaraglia, D.; Connolly, J. P.; Vincent, L.; Hallais, G.; Mangelinck, D.; Descoins, M.; Bouchier, D.; Renard, C.

    2017-01-01

    The monolithic integration of III-V semiconductors on silicon and particularly of GaAs has aroused great interest since the 1980s. Potential applications are legion, ranging from photovoltaics to high mobility channel transistors. By using a novel integration method, we have shown that it is possible to achieve heteroepitaxial integration of GaAs crystals (typical size 1 μ m) on silicon without any structural defect such as antiphase domains, dislocations, or stress, usually reported for direct GaAs heteroepitaxy on silicon. However, concerning their electronic properties, conventional free carrier characterization methods are impractical due to the micrometric size of GaAs crystals. In order to evaluate the GaAs material quality for optoelectronic applications, a series of indirect analyses such as atom probe tomography, Raman spectroscopy, and micro-photoluminescence as a function of temperature were performed. These revealed a high content of partially electrically active carbon originating from the trimethylgallium used as the Ga precursor. Nevertheless, the very good homogeneity observed by this doping mechanism and the attractive properties of carbon as a dopant once controlled to a sufficient degree are a promising route to device doping.

  11. Influence of different carbon sources on exopolysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus (B3, G12 and Streptococcus thermophilus (W22

    Directory of Open Access Journals (Sweden)

    Zehra Nur Yuksekdag

    2008-06-01

    Full Text Available Exopolysaccharides (EPSs production was studied by Lactobacillus delbrueckii subsp. bulgaricus (B3, G12 and Streptococcus thermophilus (W22 in the medium containing various carbon sources (glucose, fructose, sucrose or lactose. For all the strains, glucose was the most efficient carbon source and B3, G12 and W22 strains produced 211, 175 and 120 EPS mg/L respectively. Also, the influence of different concentrations of glucose (5,10,15,20,25,30 g/L on EPS production and growth was studied. The results indicated that EPS production and growth were stimulated by the high glucose concentration (30 g/L.

  12. The vertical distribution of the beam attenuation coefficient and its correlation to the particulate organic carbon in the north South China Sea

    Science.gov (United States)

    Cui, Wansong; Wang, Difeng; Gong, Fang; Bai, Yan; Zhang, Lin; Zhu, Qiankun; Chen, Peng

    2016-10-01

    The beam attenuation coefficient (c), an inherent optical property of water, can provide information about the particulate matter in the water. In this study, the vertical distribution of the particulate beam attenuation coefficient at 660 nm (cp(660)) and its correlation to the particulate organic carbon (POC) and chlorophyll a (Chl-a) concentrations in the north South China Sea (NSCS), was investigated based on the in situ data from two cruises covering the summer and autumn seasons during 2009-2010year. The results showed that in summer, the profiles of cp(660) at the near shore stations were generally well vertical mixed, except at the bottom layer where cp(660) sharply increased due to sediment resuspension. However, in the slope and basin, the profiles of cp(660) had the peak value in the subsurface layer, and the depth of maximum increased with the increasing of the water depth. The subsurface maximum of the cp(660) was corresponding to the subsurface maximum Chl-a in the shelf and basin in the NSCS in summer. In autumn, the depth profile of cp(660) was also well mixed in the near shore, similar as it in summer. In the basin, unlike the subsurface maximum in summer, cp(660) had the decreasing trend with the increasing of depth in most stations in autumn. The spatial distribution pattern of the surface cp(660) was similar in the two seasons, with high values in near shore and low values in the shelf and basin. This was mainly attributed to the river and terrigenous organic materials. There were good correlations between cp(660) and POC in both seasons, except some near shore stations with high sediment resuspension. That made the possibility of estimating the POC profile using the cp(660), and further calculating the vertical structure with satellite-derived surface POC.

  13. Microstructure and property of diamond-like carbon films with Al and Cr co-doping deposited using a hybrid beams system

    Science.gov (United States)

    Dai, Wei; Liu, Jingmao; Geng, Dongsen; Guo, Peng; Zheng, Jun; Wang, Qimin

    2016-12-01

    DLC films with weak carbide former Al and carbide former Cr co-doping (Al:Cr-DLC) were deposited by a hybrid beams system comprising an anode-layer linear ion beam source (LIS) and high power impulse magnetron sputtering using a gas mixture of C2H2 and Ar as the precursor. The doped Al and Cr contents were controlled via adjusting the C2H2 fraction in the gas mixture. The composition, microstructure, compressive stress, mechanical properties and tribological behaviors of the Al:Cr-DLC films were researched carefully using X-ray photoelectron spectroscopy, transmission electron microscopy, Raman spectroscopy, stress-tester, nanoindentation and ball-on-plate tribometer as function of the C2H2 fraction. The results show that the Al and Cr contents in the films increased continuously as the C2H2 fraction decreased. The doped Cr atoms preferred to bond with the carbon while the Al atoms mainly existed in metallic state. Structure modulation with alternate multilayer consisted of Al-poor DLC layer and Al-rich DLC layer was found in the films. Those periodic Al-rich DLC layers can effectively release the residual stress of the films. On the other hand, the formation of the carbide component due to Cr incorporation can help to increase the film hardness. Accordingly, the residual stress of the DLC films can be reduced without sacrificing the film hardness though co-doping Al and Cr atoms. Furthermore, it was found that the periodic Al-rich layer can greatly improve the elastic resilience of the DLC films and thus decreases the film friction coefficient and wear rate significantly. However, the existence of the carbide component would cause abrasive wear and thus deteriorate the wear performance of the films.

  14. Preparation of Cerium (III) 12-tungstophosphoric acid/ordered mesoporous carbon composite modified electrode and its electrocatalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Liu Lin [Faculty of Chemistry, Northeast Normal University, Changchun 130024 (China); Ndamanisha, Jean Chrysostome [Universite du Burundi, Institut de pedagogie appliquee, B.P 5223 Bujumbura (Burundi); Bai Jing [Faculty of Chemistry, Northeast Normal University, Changchun 130024 (China); Guo Liping, E-mail: guolp078@nenu.edu.c [Faculty of Chemistry, Northeast Normal University, Changchun 130024 (China)

    2010-03-30

    In this work, a novel structured Cerium (III) 12-tungstophosphoric acid (CePW)/ordered mesoporous carbon (OMC) composite is synthesized. The characterization of the material by the Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and electrochemical characterization shows that the novel CePW/OMC composite has improved properties based on the combination of CePW and OMC properties. CePW/OMC can be used to modify the glassy carbon (GC) electrode and the CePW/OMC/GC modified electrode shows an enhanced electrocatalytic activity. This property can be applied in the determination of some biomolecules. Especially, the detection and determination of the guanine (G) in the presence of adenine (A) is achieved. The catalytic current of G versus its concentration shows a good linearity with two good linear ranges from 4.0 x 10{sup -6} to 8.0 x 10{sup -5} M and from 8.0 x 10{sup -5} to 1.9 x 10{sup -3} M (correlation coefficient = 0.999 and 0.996) with a detection limit of 5.7 x 10{sup -9} M (S/N = 3). The linear range for adenine is 4.0 x 10{sup -6}-7.0 x 10{sup -4} M with a detection limit of 7.45 x 10{sup -8} M. With good stability and reproducibility, the present CePW/OMC/GC modified electrode should be a good model for constructing a novel and promising electrochemical sensing platform for further electrochemical detection of other biomolecules.

  15. A Phase 1/2 and Biomarker Study of Preoperative Short Course Chemoradiation With Proton Beam Therapy and Capecitabine Followed By Early Surgery for Resectable Pancreatic Ductal Adenocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Theodore S., E-mail: tshong1@partners.org [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Ryan, David P.; Borger, Darrell R.; Blaszkowsky, Lawrence S.; Yeap, Beow Y. [Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Ancukiewicz, Marek [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Deshpande, Vikram; Shinagare, Shweta [Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Wo, Jennifer Y.; Boucher, Yves [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Wadlow, Raymond C.; Kwak, Eunice L.; Allen, Jill N.; Clark, Jeffrey W.; Zhu, Andrew X. [Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Ferrone, Cristina R. [Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); Mamon, Harvey J. [Department of Radiation Oncology, Brigham and Women' s Hospital/Dana-Farber Cancer Institute, Boston, Massachusetts (United States); Adams, Judith; Winrich, Barbara; Grillo, Tarin [Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts (United States); and others

    2014-07-15

    Purpose: To evaluate the safety, efficacy and biomarkers of short-course proton beam radiation and capecitabine, followed by pancreaticoduodenectomy in a phase 1/2 study in pancreatic ductal adenocarcinoma (PDAC) patients. Methods and Materials: Patients with radiographically resectable, biopsy-proven PDAC were treated with neoadjuvant short-course (2-week) proton-based radiation with capecitabine, followed by surgery and adjuvant gemcitabine. The primary objective was to demonstrate a rate of toxicity grade ≥3 of <20%. Exploratory biomarker studies were performed using surgical specimen tissues and peripheral blood. Results: The phase 2 dose was established at 5 daily doses of 5 GyE. Fifty patients were enrolled, of whom 35 patients were treated in the phase 2 portion. There were no grade 4 or 5 toxicities, and only 2 of 35 patients (4.1%) experienced a grade 3 toxicity event (chest wall pain grade 1, colitis grade 1). Of 48 patients eligible for analysis, 37 underwent pancreaticoduodenectomy. Thirty of 37 (81%) had positive nodes. Locoregional failure occurred in 6 of 37 resected patients (16.2%), and distant recurrence occurred in 35 of 48 patients (72.9%). With median follow-up of 38 months, the median progression-free survival for the entire group was 10 months, and overall survival was 17 months. Biomarker studies showed significant associations between worse survival outcomes and the KRAS point mutation change from glycine to aspartic acid at position 12, stromal CXCR7 expression, and circulating biomarkers CEA, CA19-9, and HGF (all, P<.05). Conclusions: This study met the primary endpoint by showing a rate of 4.1% grade 3 toxicity for neoadjuvant short-course proton-based chemoradiation. Treatment was associated with favorable local control. In exploratory analyses, KRAS{sup G12D} status and high CXCR7 expression and circulating CEA, CA19-9, and HGF levels were associated with poor survival.

  16. How nanoscience translates into technology: the case of self-assembled monolayers, electron-beam writing, and carbon nanomembranes.

    Science.gov (United States)

    Palmer, R E; Robinson, A P G; Guo, Q

    2013-08-27

    One of the great quests in nanotechnology is to translate nanoprecision materials science into practical manufacturing processes. The paper by Angelova et al. in this issue of ACS Nano, which discusses the production of functional carbon-based membranes with a thickness of 0.5 to 3 nm, provides instructive insight into how researchers are pulling together complementary strands from a quarter century of nanoscience research to develop novel, hybrid processing schemes. In this Perspective, we reflect on the progress that is taking place in the two principal component technologies combined in this scheme, namely, (i) control of self-assembled monolayers, including their detailed atomic structures, and (ii) electron-induced manipulation and processing of molecular layers, as well as considering (iii) remaining challenges for thin membrane production in the future.

  17. Investigation of carbon-coated lithiated Li{sub 4+x}Ti{sub 5}O{sub 12}/C for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Mengjie; Zhang, Lin; Gong, Lijun; Liu, Hongbo; Chen, Yuxi, E-mail: yxchen@hnu.edu.cn

    2015-11-15

    Highlights: • Lithiated Li{sub 4+x}Ti{sub 5}O{sub 12}/C with pre-stored active Li ions has been synthesized. • The first-cycle coulombic efficiency of Li{sub 4+x}Ti{sub 5}O{sub 12}/C is over 100%. • Li{sub 4+x}Ti{sub 5}O{sub 12}/C displays excellent cyclic stability and capacity retention. • TiO{sub 2} nanoparticles and carbon coating are necessary for formation of Li{sub 4+x}Ti{sub 5}O{sub 12}/C. - Abstract: Carbon-coated Li{sub 4}Ti{sub 5}O{sub 12} and lithiated Li{sub 4+x}Ti{sub 5}O{sub 12} anode materials have been synthesized using nanosized anatase TiO{sub 2} and commercial TiO{sub 2} with mixed structure as Ti sources, respectively. Microstructural investigation indicates that Li{sub 4}Ti{sub 5}O{sub 12} and Li{sub 4+x}Ti{sub 5}O{sub 12} are covered by amorphous carbon layers with thickness of 2–3 nm. Their electrochemical performance has been evaluated, which indicates that an amount of active Li ions have been pre-stored in the Li{sub 4+x}Ti{sub 5}O{sub 12} lattice during solid-state synthesis, resulting in its first-cycle coulombic efficiency over 100%. Further, Li{sub 4+x}Ti{sub 5}O{sub 12}/C exhibits higher cyclic capacities than Li{sub 4}Ti{sub 5}O{sub 12}/C at different current density. The reversible charge capacity retention of Li{sub 4+x}Ti{sub 5}O{sub 12}/C reaches 98.5% after 100 cycles, which indicates that Li{sub 4+x}Ti{sub 5}O{sub 12}/C is promising candidate anode material for long lifetime lithium-ion batteries. The formation mechanism of Li{sub 4+x}Ti{sub 5}O{sub 12}/C has been discussed, in which the nanosized anatase TiO{sub 2} with high chemical activity and the carbon coating play key roles for the formation of Li{sub 4+x}Ti{sub 5}O{sub 12}/C.

  18. Metal-Free Oxidation of α-Hydroxy Ketones to 1,2-Diketones Catalyzed by Mesoporous Carbon Nitride with Visible Light

    Institute of Scientific and Technical Information of China (English)

    郑志硕; 周小松

    2012-01-01

    As a photocatalyst, mesoporous carbon nitride (mpg-C3N4) shows higher photocatalytic activities in organic synthesis. Herein we report an mpg-C3N4-catalyzed oxidation of α-hydroxy ketones to synthesize 1,2-diketones using visible light. This transformation represents a green and highly efficient synthetic route to synthesize 1,2-diketones for which catalytic approaches are scarce.

  19. Flying wire beam profile monitors at the KEK PS main ring

    Science.gov (United States)

    Igarashi, Susumu; Arakawa, Dai; Koba, Kiyomi; Sato, Hikaru; Toyama, Takeshi; Yoshii, Masahito

    2002-04-01

    Transverse beam profile monitors called "Flying Wires" have been installed and operated at the 12-GeV main ring of the KEK Proton Synchrotron. A carbon wire of 7 μm in diameter scans the beam with a maximum speed of 20 m/s and produces secondary particles from the beam-wire scattering. The minimum wire material and fast scanning speed have been chosen to achieve the precise profile measurement and minimum beam destruction because the requirements are critical for the lowest kinetic energy of 500 MeV. The basic performance has been thoroughly tested. A new stroboscopic procedure has been established to reconstruct beam profiles that rapidly change with a time scale of 1 ms or less. The monitors have demonstrated capability of obtaining profitable information for the mechanism of the halo formation and beam loss.

  20. Flying wire beam profile monitors at the KEK PS main ring

    CERN Document Server

    Igarashi, S; Koba, K; Sato, H; Toyama, T; Yoshii, M

    2002-01-01

    Transverse beam profile monitors called 'Flying Wires' have been installed and operated at the 12-GeV main ring of the KEK Proton Synchrotron. A carbon wire of 7 mu m in diameter scans the beam with a maximum speed of 20 m/s and produces secondary particles from the beam-wire scattering. The minimum wire material and fast scanning speed have been chosen to achieve the precise profile measurement and minimum beam destruction because the requirements are critical for the lowest kinetic energy of 500 MeV. The basic performance has been thoroughly tested. A new stroboscopic procedure has been established to reconstruct beam profiles that rapidly change with a time scale of 1 ms or less. The monitors have demonstrated capability of obtaining profitable information for the mechanism of the halo formation and beam loss.

  1. Interfacial Properties of Electron Beam Cured Composites

    Energy Technology Data Exchange (ETDEWEB)

    Eberle, C.C.

    1999-12-30

    The objectives of the CRADA are to: Confirm that fiber-resin adhesion is responsible for the observed poor shear properties; Determine the mechanism(s) responsible for poor adhesion between carbon fibers and epoxy resins after e-beam curing; Develop and evaluate resin systems and fiber treatments to improve the properties of e-beam cured, carbon-fiber-reinforced composites; and Develop refined methods for processing e-beam cured, carbon-fiber-reinforced composites.

  2. Measurement of Neutral Current Neutral Pion Production on Carbon in a Few-GeV Neutrino Beam

    Energy Technology Data Exchange (ETDEWEB)

    Kurimoto, Yoshinori [Kyoto Univ. (Japan)

    2010-01-01

    Understanding of the π0 production via neutrino-nucleus neutral current interaction in the neutrino energy region of a few GeV is essential for the neutrino oscillation experiments. In this thesis, we present a study of neutral current π0 production from muon neutrinos scattering on a polystyrene (C8H8) target in the SciBooNE experiment. All neutrino beam data corresponding to 0.99 × 1020 protons on target have been analyzed. We have measured the cross section ratio of the neutral current π0 production to the total charge current interaction and the π0 kinematic distribution such as momentum and direction. We obtain [7.7 ± 0.5(stat.) ± 0.5(sys.)] × 10-2 as the ratio of the neutral current neutral pion production to total charged current cross section; the mean energy of neutrinos producing detected neutral pions is 1.1 GeV. The result agrees with the Rein- Sehgal model, which is generally used for the Monte Carlo simulation by many neutrino oscillation experiments. We achieve less than 10 % uncertainty which is required for the next generation search for νµ → νe oscillation. The spectrum shape of the π0 momentum and the distribution of the π0 emitted angle agree with the prediction, which means that not only the Rein-Sehgal model but also the intra-nuclear interaction models describe our data well. We also measure the ratio of the neutral current coherent pion production to total charged current cross section to be (1.17 ± 0.23 ) × 10-2 based on the Rein and Sehgal model. The result gives the evidence for non-zero coherent pion production via neutral current interaction at the mean neutrino energy of 1.0 GeV.

  3. Site-specific forest-assembly of single-wall carbon nanotubes on electron-beam patterned SiO{sub x}/Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Wei Haoyan [Materials Science and Engineering Program, Department of Chemical, Materials and Biomolecular Engineering, Institute of Materials Science, University of Connecticut, Storrs, CT 06269 (United States); Kim, Sang Nyon; Kim, Sejong [Nanomaterials Optoelectronics Laboratory, Polymer Program, Institute of Materials Science, Department of Chemistry, University of Connecticut, Storrs, CT 06269 (United States); Huey, Bryan D. [Materials Science and Engineering Program, Department of Chemical, Materials and Biomolecular Engineering, Institute of Materials Science, University of Connecticut, Storrs, CT 06269 (United States); Papadimitrakopoulos, Fotios [Nanomaterials Optoelectronics Laboratory, Polymer Program, Institute of Materials Science, Department of Chemistry, University of Connecticut, Storrs, CT 06269 (United States); Marcus, Harris L. [Materials Science and Engineering Program, Department of Chemical, Materials and Biomolecular Engineering, Institute of Materials Science, University of Connecticut, Storrs, CT 06269 (United States)], E-mail: hmarcus@ims.uconn.edu

    2008-12-01

    Based on electron-beam direct writing on the SiO{sub x}/Si substrates, favorable absorption sites for ferric cations (Fe{sup 3+} ions) were created on the surface oxide layer. This allowed Fe{sup 3+}-assisted self-assembled arrays of single-wall carbon nanotube (SWNT) probes to be produced. Auger investigation indicated that the incident energetic electrons depleted oxygen, creating more dangling bonds around Si atoms at the surface of the SiO{sub x} layer. This resulted in a distinct difference in the friction forces from unexposed regions as measured by lateral force microscopy (LFM). Atomic force microscopy (AFM) affirmed that the irradiated domains absorbed considerably more Fe{sup 3+} ions upon immersion into pH 2.2 aqueous FeCl{sub 3} solution. This rendered a greater yield of FeO(OH)/FeOCl precipitates, primarily FeO(OH), upon subsequent washing with lightly basic dimethylformamide (DMF) solution. Such selective metal-functionalization established the basis for the subsequent patterned forest-assembly of SWNTs as demonstrated by resonance Raman spectroscopy.

  4. Influence of the delta ray production threshold on water-to-air stopping power ratio calculations for carbon ion beam radiotherapy.

    Science.gov (United States)

    Sánchez-Parcerisa, D; Gemmel, A; Jäkel, O; Rietzel, E; Parodi, K

    2013-01-07

    Previous calculations of the water-to-air stopping power ratio (s(w,)(air)) for carbon ion beams did not involve tracking of delta ray electrons, even though previous calculations with protons predict an effect up to 1%. We investigate the effect of the delta ray production threshold in s(w,)(air) calculations and propose an empirical expression which takes into account the effect of the delta ray threshold as well as the uncertainty in the mean ionization potentials (I-values) of air and water. The formula is derived from the results of Monte Carlo calculations using the most up-to-date experimental data for I-values and a delta ray production threshold of 10 keV. It allows us to reduce the standard uncertainty in s(w,)(air) below 0.8%, instead of the current 2% given in international protocols, which results in a reduction of the overall uncertainty for absolute dosimetry based on air-filled ionization chambers.

  5. Next generation multi-scale biophysical characterization of high precision cancer particle radiotherapy using clinical proton, helium-, carbon- and oxygen ion beams

    Science.gov (United States)

    Niklas, Martin; Zimmermann, Ferdinand; Chaudhri, Naved; Krunic, Damir; Tessonnier, Thomas; Ferrari, Alfredo; Parodi, Katia; Jäkel, Oliver; Debus, Jürgen; Haberer, Thomas; Abdollahi, Amir

    2016-01-01

    The growing number of particle therapy facilities worldwide landmarks a novel era of precision oncology. Implementation of robust biophysical readouts is urgently needed to assess the efficacy of different radiation qualities. This is the first report on biophysical evaluation of Monte Carlo simulated predictive models of prescribed dose for four particle qualities i.e., proton, helium-, carbon- or oxygen ions using raster-scanning technology and clinical therapy settings at HIT. A high level of agreement was found between the in silico simulations, the physical dosimetry and the clonogenic tumor cell survival. The cell fluorescence ion track hybrid detector (Cell-Fit-HD) technology was employed to detect particle traverse per cell nucleus. Across a panel of radiobiological surrogates studied such as late ROS accumulation and apoptosis (caspase 3/7 activation), the relative biological effectiveness (RBE) chiefly correlated with the radiation species-specific spatio-temporal pattern of DNA double strand break (DSB) formation and repair kinetic. The size and the number of residual nuclear γ-H2AX foci increased as a function of linear energy transfer (LET) and RBE, reminiscent of enhanced DNA-damage complexity and accumulation of non-repairable DSB. These data confirm the high relevance of complex DSB formation as a central determinant of cell fate and reliable biological surrogates for cell survival/RBE. The multi-scale simulation, physical and radiobiological characterization of novel clinical quality beams presented here constitutes a first step towards development of high precision biologically individualized radiotherapy. PMID:27494855

  6. Microdosimetry of proton and carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Liamsuwan, Thiansin [Thailand Institute of Nuclear Technology, Ongkharak, Nakhon Nayok 26120 (Thailand); Hultqvist, Martha [Medical Radiation Physics, Department of Physics, Stockholm University, SE-10691 (Sweden); Lindborg, Lennart; Nikjoo, Hooshang, E-mail: hooshang.nikjoo@ki.se [Radiation Biophysics Group, Department of Oncology-Pathology, Karolinska Institutet, Box 260 SE-17176, Stockholm (Sweden); Uehara, Shuzo [School of Health Sciences, Kyushu University, Fukuoka 812-8581 (Japan)

    2014-08-15

    Purpose: To investigate microdosimetry properties of 160 MeV/u protons and 290 MeV/u{sup 12}C ion beams in small volumes of diameters 10–100 nm. Methods: Energy distributions of primary particles and nuclear fragments in the beams were calculated from simulations with the general purpose code SHIELD-HIT, while energy depositions by monoenergetic ions in nanometer volumes were obtained from the event-by-event Monte Carlo track structure ion code PITS99 coupled with the electron track structure code KURBUC. Results: The results are presented for frequencies of energy depositions in cylindrical targets of diameters 10–100 nm, dose distributionsyd(y) in lineal energy y, and dose-mean lineal energies y{sup ¯}{sub D}. For monoenergetic ions, the y{sup ¯}{sub D} was found to increase with an increasing target size for high-linear energy transfer (LET) ions, but decrease with an increasing target size for low-LET ions. Compared to the depth dose profile of the ion beams, the maximum of the y{sup ¯}{sub D} depth profile for the 160 MeV proton beam was located at ∼0.5 cm behind the Bragg peak maximum, while the y{sup ¯}{sub D} peak of the 290 MeV/u {sup 12}C beam coincided well with the peak of the absorbed dose profile. Differences between the y{sup ¯}{sub D} and dose-averaged linear energy transfer (LET{sub D}) were large in the proton beam for both target volumes studied, and in the {sup 12}C beam for the 10 nm diameter cylindrical volumes. The y{sup ¯}{sub D} determined for 100 nm diameter cylindrical volumes in the {sup 12}C beam was approximately equal to the LET{sub D}. The contributions from secondary particles to the y{sup ¯}{sub D} of the beams are presented, including the contributions from secondary protons in the proton beam and from fragments with atomic number Z = 1–6 in the {sup 12}C beam. Conclusions: The present investigation provides an insight into differences in energy depositions in subcellular-size volumes when irradiated by proton and

  7. Carbon supported nanoparticles Pt Ru (Pt Ru/C electrocatalysts) prepared using electron beam irradiation; Preparacao de nanoparticulas de PtRu suportadas em carbono (eletrocatalisadores PtRu/C) utilizando feixe de eletrons

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Dionisio F. da; Oliveira Neto, Almir; Pino, Eddy S.; Linardi, Marcelo; Spinace, Estevam V. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Programa de Celulas a Combustivel], e-mail: espinace@ipen.br, e-mail: dfsilva@ipen.br

    2006-07-01

    Carbon-supported Pt Ru (electrocatalysts PtRu/C nanoparticles) were prepared submitting a water/ethylene glycol mixture containing Pt(IV) and Ru(III) ions and the carbon support to electron beam irradiation. The PtRu/C electrocatalysts were characterized by EDX, XRD and cyclic voltammetry and tested for methanol electro-oxidation aiming fuel cell application. The obtained PtRu/C electrocatalysts were more active for methanol electro-oxidation than the commercial PtRu/C ETEK electrocatalyst at ambient temperature. (author)

  8. Proceedings of the 1997 Particle Accelerator Conference Held in Vancouver, B.C., Canada on 12-16 May 1997. Volume 2: Beam Dynamics, Instrumentation and Controls.

    Science.gov (United States)

    2007-11-02

    Construction reports range from the CERN Large Hadron Collider and the Fermilab Main Injector and Recycler, to the BESSY-II light source and the TRIUMF-ISAC...include the initial operation of the SPring-8 light source, the PEP-II B-factory high-energy ring, the CERN LEP2 collider , and one sextant of RHIC...radioactive beam facility. Upcoming projects described include the US Spallation Neutron Source, the Japanese Hadron Facility and the RIKEN Beam

  9. Pyrolysis of Animal Bones with Vitamin B12: A Facile Route to Efficient Transition Metal-Nitrogen-Carbon (TM-N-C) Electrocatalysts for Oxygen Reduction.

    Science.gov (United States)

    Dou, Meiling; He, Duanpeng; Shao, Wenhao; Liu, Haijing; Wang, Feng; Dai, Liming

    2016-02-24

    By pyrolyzing cattle bones, hierarchical porous carbon (HPC) networks with a high surface area (2520 m(2)  g(-1) ) and connected pores were prepared at a low cost and large scale. Subsequent co-pyrolysis of HPC with vitamin B12 resulted in the formation of three-dimensional (3D) hierarchically structured porous cobalt-nitrogen-carbon (Co-N-HPC) electrocatalysts with a surface area as high as 859 m(2)  g(-1) as well as a higher oxygen reduction reaction (ORR) electrocatalytic activity, better operation stability, and higher tolerance to methanol than the commercial Pt/C catalyst in alkaline electrolyte.

  10. Crossed-beam reaction of carbon atoms with hydrocarbon molecules. V. Chemical dynamics of n-C4H3 formation from reaction of C(3Pj) with allene, H2CCCH2(X 1A1)

    Science.gov (United States)

    Kaiser, R. I.; Mebel, A. M.; Chang, A. H. H.; Lin, S. H.; Lee, Y. T.

    1999-06-01

    The crossed molecular beams technique was employed to investigate the reaction between ground state carbon atoms, C(3Pj), and allene, H2CCCH2(X 1A1), at two averaged collision energies of 19.6 and 38.8 kJ mol-1. Product angular distributions and time-of-flight spectra of C4H3 were recorded. Forward-convolution fitting of the data yields weakly polarized center-of-mass angular flux distributions isotropic at lower, but forward scattered with respect to the carbon beam at a higher collision energy. The maximum translational energy release and the angular distributions combined with ab initio and RRKM calculations are consistent with the formation of the n-C4H3 radical in its electronic ground state. The channel to the i-C4H3 isomer contributes less than 1.5%. Reaction dynamics inferred from the experimental data indicate that the carbon atom attacks the π-orbitals of the allenic carbon-carbon double bond barrierless via a loose, reactant-like transition state located at the centrifugal barrier. The initially formed cyclopropylidene derivative rotates in a plane almost perpendicular to the total angular momentum vector around its C-axis and undergoes ring opening to triplet butatriene. At higher collision energy, the butatriene complex decomposes within 0.6 ps via hydrogen emission to form the n-C4H3 isomer and atomic hydrogen through an exit transition state located 9.2 kJ mol-1 above the products. The explicit identification of the n-C4H3 radical under single collision represents a further example of a carbon-hydrogen exchange in reactions of ground state carbon atoms with unsaturated hydrocarbons. This channel opens a barrierless route to synthesize extremely reactive hydrocarbon radicals in combustion processes, interstellar chemistry, and hydrocarbon-rich atmospheres of Jupiter, Saturn, Titan, as well as Triton.

  11. P-23 Highlights 6/10/12: Cygnus Dual Beam Radiographic Facility Refurbishment completed at U1A tunnel in Nevada NNSS meeting Level 2 milestone

    Energy Technology Data Exchange (ETDEWEB)

    Deyoung, Anemarie [Los Alamos National Laboratory; Smith, John R. [Los Alamos National Laboratory

    2012-05-03

    A moratorium was placed on U.S. underground nuclear testing in 1992. In response, the Stockpile Stewardship Program was created to maintain readiness of the existing nuclear inventory through several efforts such as computer modeling, material analysis, and subcritical nuclear experiments (SCEs). As in the underground test era, the Nevada National Security Site (NNSS), formerly the Nevada Test Site, provides a safe and secure environment for SCEs by the nature of its isolated and secure facilities. A major tool for SCE diagnosis installed in the 05 drift laboratory is a high energy x-ray source used for time resolved imaging. This tool consists of two identical sources (Cygnus 1 and Cygnus 2) and is called the Cygnus Dual Beam Radiographic Facility (Figs. 2-6). Each Cygnus machine has 5 major elements: Marx Generator, Pulse Forming Line (PFL), Coaxial Transmission Line (CTL), 3-cell Inductive Voltage Adder (IVA), and Rod Pinch Diode. Each machine is independently triggered and may be fired in separate tests (staggered mode), or in a single test where there is submicrosecond separation between the pulses (dual mode). Cygnus must operate as a single shot machine since on each pulse the diode electrodes are destroyed. The diode is vented to atmosphere, cleaned, and new electrodes are inserted for each shot. There is normally two shots per day on each machine. Since its installation in 2003, Cygnus has participated in: 4 Subcritical Experiments (Armando, Bacchus, Barolo A, and Barolo B), a 12 shot plutonium physics series (Thermos), and 2 plutonium step wedge calibration series (2005, 2011), resulting in well over 1000 shots. Currently the Facility is in preparation for 2 SCEs scheduled for this calendar year - Castor and Pollux. Cygnus has performed well during 8 years of operations at NNSS. Many improvements in operations and performance have been implemented during this time. Throughout its service at U1a, major maintenance and replacement of many hardware items

  12. Ion-beam technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fenske, G.R. [Argonne National Lab., IL (United States)

    1993-01-01

    This compilation of figures and diagrams reviews processes for depositing diamond/diamond-like carbon films. Processes addressed are chemical vapor deposition (HFCVD, PACVD, etc.), plasma vapor deposition (plasma sputtering, ion beam sputtering, evaporation, etc.), low-energy ion implantation, and hybrid processes (biased sputtering, IBAD, biased HFCVD, etc.). The tribological performance of coatings produced by different means is discussed.

  13. Carbon ion beam triggers both caspase-dependent and caspase-independent pathway of apoptosis in HeLa and status of PARP-1 controls intensity of apoptosis.

    Science.gov (United States)

    Ghorai, Atanu; Sarma, Asitikantha; Bhattacharyya, Nitai P; Ghosh, Utpal

    2015-04-01

    High linear energy transfer (LET) carbon ion beam (CIB) is becoming very promising tool for various cancer treatments and is more efficient than conventional low LET gamma or X-rays to kill malignant or radio-resistant cells, although detailed mechanism of cell death is still unknown. Poly (ADP-ribose) polymerase-1 (PARP-1) is a key player in DNA repair and its inhibitors are well-known as radio-sensitizer for low LET radiation. The objective of our study was to find mechanism(s) of induction of apoptosis by CIB and role of PARP-1 in CIB-induced apoptosis. We observed overall higher apoptosis in PARP-1 knocked down HeLa cells (HsiI) compared with negative control H-vector cells after irradiation with CIB (0-4 Gy). CIB activated both intrinsic and extrinsic pathways of apoptosis via caspase-9 and caspase-8 activation respectively, followed by caspase-3 activation, apoptotic body, nucleosomal ladder formation and sub-G1 accumulation. Apoptosis inducing factor translocation into nucleus in H-vector but not in HsiI cells after CIB irradiation contributed caspase-independent apoptosis. Higher p53 expression was observed in HsiI cells compared with H-vector after exposure with CIB. Notably, we observed about 37 % fall of mitochondrial membrane potential, activation of caspase-9 and caspase-3 and mild activation of caspase-8 without any detectable apoptotic body formation in un-irradiated HsiI cells. We conclude that reduction of PARP-1 expression activates apoptotic signals via intrinsic and extrinsic pathways in un-irradiated cells. CIB irradiation further intensified both intrinsic and extrinsic pathways of apoptosis synergistically along with up-regulation of p53 in HsiI cells resulting overall higher apoptosis in HsiI than H-vector.

  14. A rich revenue from the use of radioactive beams and radioactive targets: recent highlights from the nTOF and ISOLDE facilities (1/2)

    CERN Document Server

    CERN. Geneva

    2008-01-01

    The On-Line Isotope Mass Separator ISOLDE is a facility dedicated to the production of a large variety of radioactive ion beams for a great number of different experiments, e.g. in the field of nuclear and atomic physics, solid-state physics, life sciences and material science. At ISOLDE, radioactive nuclides are produced in thick high-temperature targets via spallation, fission or fragmentation reactions. The targets are placed in the external proton beam of the PSB, which has an energy of 1.0 or 1.4 GeV and an intensity of about 2 microA. The target and ion-source together represent a small chemical factory for converting the nuclear reaction products into a radioactive ion beam. An electric field accelerates the ions, which are mass separated and steered to the experiments. Until now more than 600 isotopes of more than 60 elements (Z=2 to 88) have been produced with half-lives down to milliseconds and intensities up to 1011 ions per second. Through the advent of post-accelerated beams with the REX-ISOLDE c...

  15. 高桩码头梁构件碳纤维加固效果评价%Carbon fiber reinforcement effect evaluation of piled wharf”s beam component

    Institute of Scientific and Technical Information of China (English)

    刘阳阳; 李平杰; 戴宇文

    2015-01-01

    针对高桩码头梁构件碳纤维加固效果的问题,结合桥梁静载试验验证的理念,对高桩码头引桥碳纤维加固前后进行静载试验,通过比较碳纤维加固前后的位移、应力值,获得碳纤维加固前后承载能力提高情况,同时了解碳纤维加固后梁结构是否满足设计要求。通过静载试验结果分析可知:高桩码头梁构件碳纤维加固效果良好,可以推广使用。%Aiming at the problem of the reinforcement effect of the carbon fiber on the beam of long-piled wharf, we present the static test of the approach bridge of long piles wharf before and after the reinforcement of carbon fiber with the concept of bridge static test. The improvement of bearing capacity of the wharf with the reinforcement of the carbon fiber is obtained by comparisons of the settlements and stresses before and after the reinforcement. In the meanwhile, it is also examined whether the beam structure satisfies the design requirements or not. The analyses of the test results reveal that the strengthening effect of carbon fiber on the beams of long piled wharf is significant and the method can be spread.

  16. A novel method based on selective laser sintering for preparing high-performance carbon fibres/polyamide12/epoxy ternary composites

    Science.gov (United States)

    Zhu, Wei; Yan, Chunze; Shi, Yunsong; Wen, Shifeng; Liu, Jie; Wei, Qingsong; Shi, Yusheng

    2016-01-01

    A novel method based on selective laser sintering (SLS) process is proposed for the first time to prepare complex and high-performance carbon fibres/polyamide12/epoxy (CF/PA12/EP) ternary composites. The procedures are briefly described as follows: prepare polyamide12 (PA12) coated carbon fibre (CF) composite powder; build porous green parts by SLS; infiltrate the green parts with high-performance thermosetting epoxy (EP) resin; and finally cure the resin at high temperature. The obtained composites are a ternary composite system consisting of the matrix of novolac EP resin, the reinforcement of CFs and the transition thin layer of PA12 with a thickness of 595 nm. The SEM images and micro-CT analysis prove that the ternary system is a three-dimensional co-continuous structure and the reinforcement of CFs are well dispersed in the matrix of EP with the volume fraction of 31%. Mechanical tests show that the composites fabricated by this method yield an ultimate tensile strength of 101.03 MPa and a flexural strength of 153.43 MPa, which are higher than those of most of the previously reported SLS materials. Therefore, the process proposed in this paper shows great potential for manufacturing complex, lightweight and high-performance CF reinforced composite components in aerospace, automotive industries and other areas. PMID:27650254

  17. A novel method based on selective laser sintering for preparing high-performance carbon fibres/polyamide12/epoxy ternary composites.

    Science.gov (United States)

    Zhu, Wei; Yan, Chunze; Shi, Yunsong; Wen, Shifeng; Liu, Jie; Wei, Qingsong; Shi, Yusheng

    2016-09-21

    A novel method based on selective laser sintering (SLS) process is proposed for the first time to prepare complex and high-performance carbon fibres/polyamide12/epoxy (CF/PA12/EP) ternary composites. The procedures are briefly described as follows: prepare polyamide12 (PA12) coated carbon fibre (CF) composite powder; build porous green parts by SLS; infiltrate the green parts with high-performance thermosetting epoxy (EP) resin; and finally cure the resin at high temperature. The obtained composites are a ternary composite system consisting of the matrix of novolac EP resin, the reinforcement of CFs and the transition thin layer of PA12 with a thickness of 595 nm. The SEM images and micro-CT analysis prove that the ternary system is a three-dimensional co-continuous structure and the reinforcement of CFs are well dispersed in the matrix of EP with the volume fraction of 31%. Mechanical tests show that the composites fabricated by this method yield an ultimate tensile strength of 101.03 MPa and a flexural strength of 153.43 MPa, which are higher than those of most of the previously reported SLS materials. Therefore, the process proposed in this paper shows great potential for manufacturing complex, lightweight and high-performance CF reinforced composite components in aerospace, automotive industries and other areas.

  18. A novel method based on selective laser sintering for preparing high-performance carbon fibres/polyamide12/epoxy ternary composites

    Science.gov (United States)

    Zhu, Wei; Yan, Chunze; Shi, Yunsong; Wen, Shifeng; Liu, Jie; Wei, Qingsong; Shi, Yusheng

    2016-09-01

    A novel method based on selective laser sintering (SLS) process is proposed for the first time to prepare complex and high-performance carbon fibres/polyamide12/epoxy (CF/PA12/EP) ternary composites. The procedures are briefly described as follows: prepare polyamide12 (PA12) coated carbon fibre (CF) composite powder; build porous green parts by SLS; infiltrate the green parts with high-performance thermosetting epoxy (EP) resin; and finally cure the resin at high temperature. The obtained composites are a ternary composite system consisting of the matrix of novolac EP resin, the reinforcement of CFs and the transition thin layer of PA12 with a thickness of 595 nm. The SEM images and micro-CT analysis prove that the ternary system is a three-dimensional co-continuous structure and the reinforcement of CFs are well dispersed in the matrix of EP with the volume fraction of 31%. Mechanical tests show that the composites fabricated by this method yield an ultimate tensile strength of 101.03 MPa and a flexural strength of 153.43 MPa, which are higher than those of most of the previously reported SLS materials. Therefore, the process proposed in this paper shows great potential for manufacturing complex, lightweight and high-performance CF reinforced composite components in aerospace, automotive industries and other areas.

  19. Spin-alignment and g-factor measurement of the I{sup {pi}}=12{sup +} isomer in {sup 192}Pb produced in the relativistic-energy fragmentation of a {sup 238}U beam

    Energy Technology Data Exchange (ETDEWEB)

    Kmiecik, M.; Maj, A.; Ciemala, M.; Grebosz, J.; Lach, M.; Maier, K.H.; Mazurek, K.; Meczynski, W.; Myalski, S.; Styczen, J.; Zieblinski, M. [H. Niewodniczanski Inst. of Nuclear Physics PAN, Krakow (Poland); Gerl, J.; Becker, F.; Caceres, L.; Doornenbal, P.; Gorska, M.; Grawe, H.; Kojuharov, I.; Prokopowicz, W.; Saito, N.; Saito, T.R.; Wollersheim, H.J. [GSI, Darmstadt (Germany); Neyens, G.; Mallion, S.; Vermeulen, N. [Inst. voor Kern- en Stralingsfysica, K.U. Leuven (Belgium); Atanasova, L.; Detistov, P. [Univ. of Sofia ' St. Kl. Ohridski' (Bulgaria). Faculty of Physics; Balabanski, D.L. [Univ. degli Studi di Camerino (Italy); INFN sez. Perugia, Dipt. di Fisica, Camerino (Italy); Bulgarian Academy of Sciences, Inst. for Nuclear Research and Nuclear Energy, Sofia (Bulgaria); Bednarczyk, P. [H. Niewodniczanski Inst. of Nuclear Physics PAN, Krakow (Poland); GSI, Darmstadt (Germany); Benzoni, G.; Blasi, N.; Brambilla, S.; Million, B.; Wieland, O. [INFN Sez. di Milano (Italy); Bracco, A.; Camera, F.; Crespi, F.C.L.; Leoni, S.; Montanari, D. [INFN Sez. di Milano (Italy); Univ. degli Studi di Milano (Italy); Chamoli, S.K.; Hass, M.; Lakshmi, S. [Weizman Inst. of Science, Rehovot (Israel); Chmel, S. [Fraunhofer INT, Euskirchen (Germany); Daugas, J.M. [CEA, DAM, DIF, Arpajon Cedex (France); Georgiev, G. [Univ. Paris-Sud 11, CNRS/IN2P3, CSNSM, Orsay-Campus (France); Gladnishki, K. [Univ. of Sofia ' St. Kl. Ohridski' (Bulgaria). Faculty of Physics; Univ. degli Studi di Camerino (Italy); INFN sez. Perugia, Dipt. di Fisica, Camerino (Italy); Hoischen, R.; Rudolph, D. [Lund Univ., Dept. of Physics, Lund (Sweden); Ilie, G. [Univ. zu Koeln, Inst. fuer Kernphysik, Koeln (Germany); National Inst. for Physics and Nuclear Engineering, Bucharest (Romania); Ionescu-Bujor, M. [National Inst. for Physics and Nuclear Engineering, Bucharest (Romania); Jolie, J. [Univ. zu Koeln, Institut fuer Kernphysik, Koeln (Germany)] [and others

    2010-08-15

    The feasibility of measuring g -factors using the TDPAD method applied to high-energy, heavy fragmentation products is explored. The 2623keV I{sup {pi}}=12{sup +} isomer in {sup 192}Pb with {tau}=1.57{mu}s has been produced using the fragmentation of a 1A GeV {sup 238}U beam. The results presented demonstrate for the first time that such heavy nuclei produced in a fragmentation reaction with a relativistic beam are sufficiently well spin-aligned. Moreover, the rather large value of the alignment, 28(10)% of the maximum possible, is preserved during the separation process allowing the determination of magnetic moments. The measured values of the lifetime, {tau}=1.54(9) {mu}s, and the g-factor, g=-0.175(20), agree with the results of previous investigations using fusion-evaporation reactions. (orig.)

  20. Analysis of Mutagenic Effects Induced by Carbon Beams at Different LET in a Red Yeast Strain%不同LET C离子束对粘红酵母菌的突变效应分析

    Institute of Scientific and Technical Information of China (English)

    孙海宁; 王菊芳; 马爽; 陆栋; 吴鑫; 李文建

    2011-01-01

    To evaluate inactive and mutagenic effects of carbon beam at different LET, the inactivation cross section and mutation cross section induced by carbon beams of different LET values were investigated in a red yeast strain Rhodotorula glutinis AY 91015.It was found that the maximum inactivation cross section of 4.37μm2 , which was very close to the average nucleus cross section, was at LET of 120.0keV/μm.The maximum mutation cross section was at LET of 96.0 keV/μm.Meanwhile, the highest mutagenicity of carbon ion was found around 58.2 keV/μm.It implied that the most efficient LET to induce mutation in survival yeasts was 58.2 keV/μm, which corresponded to energy of 35 MeV/u carbon beam.The most effective carbon beam to induce inactivation and mutation located at different energy region.%以粘红酵母菌Rhodotorula glutinis A Y 91015为材料,研究了不同传能线密度(LET)的C离子对粘红酵母菌的失活截面和突变截面,评估了不同LET的C离子对微生物的失活效应和突变效应.结果表明,C离子LET为120.0 keV/tim时,单个粒子对粘红酵母菌的失活截面最大,为4.37 um2,接近酵母菌细胞核的平均核截面;LET为96.0 keV/μm时,单个粒子对粘红酵母菌的突变截面最大.通过对C离子束致突变能力的分析发现,C离子在LET为58.2 keV/μm时突变能力最强,这一结果显示在经C离子辐照后存活下来的粘红酵母菌中,可以引起有效突变的最佳LET为58.2 keV/μm左右,此时所对应的碳离子能量约为35 MeV/u.这些结果表明,C离子对粘红酵母菌的最佳致死效应和最佳致突变效应存在于不同的能量区域.

  1. Interaction of the carbon monoxide-releasing molecule Ru(CO)3Cl(glycinate) (CORM-3) with Salmonella enterica serovar Typhimurium: in situ measurements of carbon monoxide binding by integrating cavity dual-beam spectrophotometry.

    Science.gov (United States)

    Rana, Namrata; McLean, Samantha; Mann, Brian E; Poole, Robert K

    2014-12-01

    Carbon monoxide (CO) is a toxic gas that binds to haems, but also plays critical signalling and cytoprotective roles in mammalian systems; despite problems associated with systemic delivery by inhalation of the gas, it may be employed therapeutically. CO delivered to cells and tissues by CO-releasing molecules (CO-RMs) has beneficial and toxic effects not mimicked by CO gas; CO-RMs are also attractive candidates as novel antimicrobial agents. Salmonella enterica serovar Typhimurium is an enteropathogen causing gastroenteritis in humans. Recent studies have implicated haem oxygenase-1 (HO-1), the protein that catalyses the degradation of haem into biliverdin, free iron and CO, in the host immune response to Salmonella infection. In several studies, CO administration via CO-RMs elicited many of the protective roles of HO-1 induction and so we investigated the effects of a well-characterized water-soluble CO-RM, Ru(CO)3Cl(glycinate) (CORM-3), on Salmonella. CORM-3 exhibits toxic effects at concentrations significantly lower than those reported to cause toxicity to RAW 264.7 macrophages. We demonstrated here, through oxyhaemoglobin assays, that CORM-3 did not release CO spontaneously in phosphate buffer, buffered minimal medium or very rich medium. CORM-3 was, however, accumulated to high levels intracellularly (as shown by inductively coupled plasma MS) and released CO inside cells. Using growing Salmonella cultures without prior concentration, we showed for the first time that sensitive dual-beam integrating cavity absorption spectrophotometry can detect directly the CO released from CORM-3 binding in real-time to haems of the bacterial electron transport chain. The toxic effects of CO-RMs suggested potential applications as adjuvants to antibiotics in antimicrobial therapy.

  2. Development of a Compton camera for online ion beam range verification via prompt γ detection. Session: HK 12.6 Mo 18:30

    Energy Technology Data Exchange (ETDEWEB)

    Aldawood, S. [LMU Munich, Garching (Germany); King Saud University, Riyadh (Saudi Arabia); Liprandi, S.; Marinsek, T.; Bortfeldt, J.; Lang, C.; Lutter, R.; Dedes, G.; Parodi, K.; Thirolf, P.G. [LMU Munich, Garching (Germany); Maier, L.; Gernhaeuser, R. [TU Munich, Garching (Germany); Kolff, H. van der; Schaart, D. [TU Delft (Netherlands); Castelhano, I. [University of Lisbon, Lisbon (Portugal)

    2015-07-01

    A real-time ion beam verification in hadron-therapy is playing a major role in cancer treatment evaluation. This will make the treatment interuption possible if the planned and actual ion range are mismatched. An imaging system is being developed in Garching aiming to detect prompt γ rays induced by nuclear reactions between the ion beam and biological tissue. The Compton camera prototype consists of a stack of six customized double-sided Si-strip detectors (DSSSD, 50 x 50 mm{sup 2}, 128 strips/side) acting as scatterer, while the absorber is formed by a monolithic LaBr{sub 3}:Ce scintillator crystal (50 x 50 x 30 mm{sup 3}) read out by a position-sensitive multi-anode photomultiplier (Hamamatsu H9500). The study of the Compton camera properties and its individual component are in progress both in the laboratory as well as at the online facilities.

  3. Magnetic properties and structure of Ni80Fe20/Ni48Fe12Cr40 bilayer films deposited on SiO2/Si(100) by electron beam evaporation

    Institute of Scientific and Technical Information of China (English)

    WU Ping; GAO Yanqing; QIU Hong; PAN Liqing; TIAN Yue; Wang Fengping

    2007-01-01

    Ni80Fe20/Ni48Fe12Cr40 bilayer films and Ni80Fe20 monolayer films were deposited at room temperature on SiO2/Si(100) substrates by electron beam evaporation. The influence of the thickness of the Ni48Fe12Cr40underlayer on the structure, magnetization, and magnetoresistance of the Ni80Fe20/Ni48Fe12Cr40 bilayer film was investigated. The thickness of the Ni48Fe12Cr40 layer varied from about 1 nm to 18 nm while the Ni80Fe20 layer thickness was fixed at 45 nm. For the as-deposited bilayer films the introducing of the Ni48Fe12Cr40 underlayer promotes both the (111) texture and grain growth in the Ni80Fe20 layer. The Ni48Fe12Cr40 underlayer has no significant influence on the magnetic moment of the Ni80Fe20/Ni48Fe12Cr40 bilayer film. However, the coercivity of the bilayer film changes with the thickness of the Ni48Fe12Cr40underlayer. The optimum thickness of the Ni48Fe12Cr40 underlayer for improving the anisotropic magnetoresistance effect of the Ni80Fe20/Ni48Fe12Cr40 bilayer film is about 5 nm. With a decrease in temperature from 300 K to 81 K, the anisotropic magnetoresistance ratio of the Ni80Fe20 (45 nm)/Ni48Fe12Cr40 (5 nm) bilayer film increases linearly from 2.1% to 4.8% compared with that of the Ni80Fe20 monolayer film from 1.7% to 4.0%.

  4. Preparation and electrochemical performance of hyper-networked Li4Ti5O12/carbon hybrid nanofiber sheets for a battery-supercapacitor hybrid system

    Science.gov (United States)

    Choi, Hong Soo; Kim, TaeHoon; Im, Ji Hyuk; Park, Chong Rae

    2011-10-01

    Hyper-networked Li4Ti5O12/carbon hybrid nanofiber sheets that contain both a faradaically rechargeable battery-type component, namely Li4Ti5O12, and a non-faradaically rechargeable supercapacitor-type component, namely N-enriched carbon, are prepared by electrospinning and their dual function as a negative electrode of lithium-ion batteries (LIBs) and a capacitor is tested for a new class of hybrid energy storage (denoted BatCap). An aqueous solution composed of polyvinylpyrrolidone, lithium hydroxide, titanium(IV) bis(ammonium-lactato)dihydroxide and ammonium persulfate is electrospun to obtain hyper-networked nanofiber sheets. Next, the sheets are exposed to pyrrole monomer vapor to prepare the polypyrrole-coated nanofiber sheets (PPy-HNS). The hyper-networked Li4Ti5O12/N-enriched carbon hybrid nanofiber sheets (LTO/C-HNS) are then obtained by a stepwise heat treatment of the PPy-HNS. The LTO/C-HNS deliver a specific capacity of 135 mAh g - 1 at 4000 mA g - 1 as a negative electrode for LIBs. In addition, potentiodynamic experiments are performed using a full cell with activated carbon (AC) as the positive electrode and LTO/C-HNS as the negative electrode to estimate the capacitance properties. This new asymmetric electrode system exhibits a high energy density of 91 W kg - 1 and 22 W kg - 1 at power densities of 50 W kg - 1 and 4000 W kg - 1, respectively, which are superior to the values observed for the {AC} \\parallel {AC} symmetric electrode system.

  5. Gold-Catalyzed Ring Expansion of Alkynyl Heterocycles through 1,2-Migration of an Endocyclic Carbon-Heteroatom Bond.

    Science.gov (United States)

    Chen, Ming; Sun, Ning; Xu, Wei; Zhao, Jidong; Wang, Gaonan; Liu, Yuanhong

    2015-12-14

    A mild and efficient gold-catalyzed oxidative ring-expansion of a series of alkynyl heterocycles using pyridine-N-oxide as the oxidant has been developed, which affords highly valuable six- or seven-membered heterocycles with wide functional group toleration. The reaction consists of a regioselective oxidation and a chemoselective migration of an endocyclic carbon-heteroatom bond (favored over C-H migration) with the order of migratory aptitude for carbon-heteroatom bonds being C-S>C-N>C-O. In the absence of an oxidant, polycyclic products are readily constructed through a ring-expansion/Nazarov cyclization reaction sequence.

  6. Quarterly Report for LANL Activities: FY12-Q2 National Risk Assessment Partnership (NRAP): Industrial Carbon Capture Program

    Energy Technology Data Exchange (ETDEWEB)

    Pawar, Rajesh J. [Los Alamos National Laboratory

    2012-04-17

    This report summarizes progress of LANL activities related to the tasks performed under the LANL FWP FE102-002-FY10, National Risk Assessment Partnership (NRAP): Industrial Carbon Capture Program. This FWP is funded through the American Recovery and Reinvestment Act (ARRA). Overall, the NRAP activities are focused on understanding and evaluating risks associated with large-scale injection and long-term storage of CO{sub 2} in deep geological formations. One of the primary risks during large-scale injection is due to changes in geomechanical stresses to the storage reservoir, to the caprock/seals and to the wellbores. These changes may have the potential to cause CO{sub 2} and brine leakage and geochemical impacts to the groundwater systems. While the importance of these stresses is well recognized, there have been relatively few quantitative studies (laboratory, field or theoretical) of geomechanical processes in sequestration systems. In addition, there are no integrated studies that allow evaluation of risks to groundwater quality in the context of CO{sub 2} injection-induced stresses. The work performed under this project is focused on better understanding these effects. LANL approach will develop laboratory and computational tools to understand the impact of CO{sub 2}-induced mechanical stress by creating a geomechanical test bed using inputs from laboratory experiments, field data, and conceptual approaches. The Geomechanical Test Bed will be used for conducting sensitivity and scenario analyses of the impacts of CO{sub 2} injection. The specific types of questions will relate to fault stimulation and fracture inducing stress on caprock, changes in wellbore leakage due to evolution of stress in the reservoir and caprock, and the potential for induced seismicity. In addition, the Geomechanical Test Bed will be used to investigate the coupling of stress-induced leakage pathways with impacts on groundwater quality. LANL activities are performed under two tasks

  7. Thickness dependence of magnetic properties and giant magneto-impedance effect in amorphous Co73Si12B15 thin films prepared by Dual-Ion beam assisted deposition

    Science.gov (United States)

    Zhang, Yu; Wang, San-sheng; Hu, Teng; He, Tong-fu; Chen, Zi-yu; Yi, Zhong; Meng, Li-Fei

    2017-03-01

    Dual-Ion Beam Assisted Deposition is a suitable method for the preparation of giant magneto-impedance (GMI) materials. In this paper, Co73Si12B15 thin films with different thicknesses were prepared by Dual-Ion Beam Assisted Deposition, and the influences of film thickness on magnetic properties and GMI effect were investigated. It was found that the asymmetric magnetic hysteresis loop in the prepared Co73Si12B15 thin films occurs at ambient temperature, and the shift behavior of hysteresis loop associated with film thickness. With the film thickness increasing, the values of shift field and coercive field and other parameters such as remanence and shift ratio appeared complex variation. At a certain frequency, the large GMI effect is only observed in some films, which have good magnetic properties including low coercivity, low remanence ratio and high shift ratio. The results indicated that the thickness dependence of magnetic properties nonlinearly determined the GMI effect in Co73Si12B15 thin films.

  8. Resolving two beams in beam splitters with a beam position monitor

    Energy Technology Data Exchange (ETDEWEB)

    Kurennoy, S. (Sergey)

    2002-01-01

    The beam transport system for the Advanced Hydrotest Facility (AHF) anticipates multiple beam splitters. Monitoring two separated beams in a common beam pipe in the splitter sections imposes certain requirements on diagnostics for these sections. In this note we explore a two-beam system in a generic beam monitor and study the feasibility of resolving the positions of the two beams with a single diagnostic device. In the Advanced Hydrotest Facility (AHF), 20-ns beam pulses (bunches) are extracted from the 50-GeV main proton synchrotron and then are transported to the target by an elaborated transport system. The beam transport system splits the beam bunches into equal parts in its splitting sections so that up to 12 synchronous beam pulses can be delivered to the target for the multi-axis proton radiography. Information about the transverse positions of the beams in the splitters, and possibly the bunch longitudinal profile, should be delivered by some diagnostic devices. Possible candidates are the circular wall current monitors in the circular pipes connecting the splitter elements, or the conventional stripline BPMs. In any case, we need some estimates on how well the transverse positions of the two beams can be resolved by these monitors.

  9. Acute toxicity of combined photon IMRT and carbon ion boost for intermediate-risk prostate cancer - Acute toxicity of 12C for PC

    Energy Technology Data Exchange (ETDEWEB)

    Nikoghosyan, Anna V.; Herfarth, Klaus; Didinger, Bernd; Muenter, Marc W.; Jensen, Alexandra D.; Debus, Juergen (Dept. of Radiation Oncology, Univ. of Heidelberg (Germany)), e-mail: a.nikoghosyan@med.uni-heidelberg.de; Schulz-Ertner, Daniela (Radiological Inst. (Medical Care Unit), Markus Hospital, Frankfurt/Main (Germany)); Jaekel, Oliver (Dept. of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ) Heidelberg (Germany); Heidelberg Ion Beam Therapy Centre of the Univ. Hospital Heidelberg (Germany)); Hoess, Angelika; Haberer, Thomas (Heidelberg Ion Beam Therapy Centre of the Univ. Hospital Heidelberg (Germany))

    2011-08-15

    Background. Carbon ion (12C) therapy in the treatment of prostate cancer (PC) might result in an improved outcome as compared to low linear energy transfer irradiation techniques. In this study, we present the first interim report of acute side effects of the first intermediate-risk PC patients treated at the GSI (Gesellschaft fuer Schwerionenforschung) and the Univ. of Heidelberg in an ongoing clinical phase I/II trial using combined photon intensity modulated radiation therapy (IMRT) and 12C carbon ion boost. Material and methods. Fourteen patients (planned accrual: 31 pts) have been treated within this trial so far. IMRT is prescribed to the median PTV at a dose of 30 x 2 Gy; 12C boost is applied to the prostate (GTV) at a dose of 6 x 3 GyE using raster scan technique. Safety margins added to the clinical target volume were determined individually for each patient based on five independent planning computed tomography (CT)-scans. Acute gastrointestinal (GI) and genitourinary (GU) toxicity was assessed and documented according to the CTCAE Version 3.0. Results. Radiotherapy was very well tolerated without any grade 3 or higher toxicity. Acute anal bleeding grade 2 was observed in 2/14 patients. Rectal tenesmus grade 1 was reported by three other patients. No further GI symptoms have been observed. Most common acute symptoms during radiotherapy were nocturia and dysuria CTC grade 1 and 2 (12/14). There was no severe acute GU toxicity. Conclusion. The combination of photon IMRT and carbon ion boost is feasible in patients with intermediate-risk PC. So far, the treatment has been well tolerated. Acute toxicity rates were in good accordance with data reported for high dose IMRT alone

  10. 40 CFR 600.510-12 - Calculation of average fuel economy and average carbon-related exhaust emissions.

    Science.gov (United States)

    2010-07-01

    ... fuel as determined in § 600.113-08(a) and (b); FEpet is the fuel economy while operated on petroleum... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Calculation of average fuel economy... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS...

  11. Impact of a CXCL12/CXCR4 Antagonist in Bleomycin (BLM) Induced Pulmonary Fibrosis and Carbon Tetrachloride (CCl4) Induced Hepatic Fibrosis in Mice

    Science.gov (United States)

    Chow, Leola N.; Schreiner, Petra; Ng, Betina Y. Y.; Lo, Bernard; Hughes, Michael R.; Scott, R. Wilder; Gusti, Vionarica; Lecour, Samantha; Simonson, Eric; Manisali, Irina; Barta, Ingrid; McNagny, Kelly M.; Crawford, Jason; Webb, Murray; Underhill, T. Michael

    2016-01-01

    Modulation of chemokine CXCL12 and its receptor CXCR4 has been implicated in attenuation of bleomycin (BLM)-induced pulmonary fibrosis and carbon tetrachloride (CCl4)-induced hepatic injury. In pulmonary fibrosis, published reports suggest that collagen production in the injured lung is derived from fibrocytes recruited from the circulation in response to release of pulmonary CXCL12. Conversely, in hepatic fibrosis, resident hepatic stellate cells (HSC), the key cell type in progression of fibrosis, upregulate CXCR4 expression in response to activation. Further, CXCL12 induces HSC proliferation and subsequent production of collagen I. In the current study, we evaluated AMD070, an orally bioavailable inhibitor of CXCL12/CXCR4 in alleviating BLM-induced pulmonary and CCl4-induced hepatic fibrosis in mice. Similar to other CXCR4 antagonists, treatment with AMD070 significantly increased leukocyte mobilization. However, in these two models of fibrosis, AMD070 had a negligible impact on extracellular matrix deposition. Interestingly, our results indicated that CXCL12/CXCR4 signaling has a role in improving mortality associated with BLM induced pulmonary injury, likely through dampening an early inflammatory response and/or vascular leakage. Together, these findings indicate that the CXCL12-CXCR4 signaling axis is not an effective target for reducing fibrosis. PMID:26998906

  12. Towards understanding the effects of carbon and nitrogen-doped carbon coating on the electrochemical performance of Li4Ti5O12 in lithium ion batteries: a combined experimental and theoretical study.

    Science.gov (United States)

    Ding, Zijing; Zhao, Liang; Suo, Liumin; Jiao, Yang; Meng, Sheng; Hu, Yong-Sheng; Wang, Zhaoxiang; Chen, Liquan

    2011-09-01

    We investigate the effects of carbon coating, with and without nitrogen-dopants, on the electrochemical performance of a promising anode material Li(4)Ti(5)O(12) (LTO) in lithium ion battery applications. The comparative experimental results show that LTO samples coated with nitrogen-doped carbon derived from pyridine and an ionic liquid exhibit significant improvements in rate capability and cycling performance compared with a LTO sample coated by carbon derived from toluene and the pristine LTO sample. For the first time, we construct an atomistic model for the interface between the lithium transition metal oxide and carbon coating layers. Our first-principles calculations based on density functional theory reveal that at this interface there is strong binding between the graphene coating layer and the Ti-terminated LTO surface, which significantly reduces the chemical activity of LTO surfaces and stabilizes the electrode/electrolyte interface, providing a clue to solve the swelling problem for LTO-based batteries. More importantly, electron transfer from the LTO surface to graphene greatly improves the electric conductivity of the interface. Nitrogen-dopants in graphene coatings further increase the interfacial stability and electric conductivity, which is beneficial to the electrochemical performance in energy storage applications.

  13. Carbon Fiber Laminate Strengthened RC Beams Subjected to Fatigue Loading at Elevated Temperature%温度升高对碳纤维薄板增强RC梁疲劳性能的影响

    Institute of Scientific and Technical Information of China (English)

    周芝林; 黄培彦; 郭馨艳

    2008-01-01

    The static and fatigue tests under cyclic bending loads at different ambient temperatures of 20 ℃ and 80℃ are carried out to investigate the fatigue behavior of the reinforced concrete(RC) beams strengthened with'carbon fi-ber laminates(CFLs). The failure modes of the strengthened beams include CFLs debonded near the mid-span and steel rebar yielded or broken. S-N curves of strengthened beams are developed according to the test results. The fa-tigue limit, load versus deflection curves and strain response of strengthened beams are obtained as well. The results show that the fatigue behaviors of the strengthened beams are not significantly influenced by the ambient tempera-tures (lower than 80℃) when the fatigue load levels equal 25.0 kN, 27.5 kN and 30.0 kN.%为了研究碳纤维薄板增强钢筋混凝土梁在不同温度下的疲劳性能,分别在20℃和80℃的温度条件下对26根增强梁进行了三点弯曲静载和疲劳试验.结果表明:当疲劳载荷水平为25.0 kN,27.5 kN和30.0 kN时,试件的S-N曲线、疲劳极限、破坏模式、挠度曲线和应变反映受环境温度的影响较小.

  14. High power semiconductor switches in the 12 kV, 50 kA pulse generator of the SPS beam dump kicker system

    CERN Document Server

    Bonthond, J; Faure, P; Vossenberg, Eugène B

    2001-01-01

    Horizontal deflection of the beam in the dump kicker system of the CERN SPS accelerator is obtained with a series of fast pulsed magnets. The high current pulses of 50 kA per magnet are generated with capacitor discharge type generators which, combined with a resistive free-wheel diode circuit, deliver a critically damped half-sine current with a rise-time of 25 ms. Each generator consists of two 25 kA units, connected in parallel to a magnet via a low inductance transmission line.

  15. Treatment of industrial effluents using electron beam accelerator and adsorption with activated carbon. A comparative study; Tratamento de efluentes industriais utilizando a radiacao ionizante de acelerador industrial de eletrons e por adsorcao com carvao ativado. Estudo comparativo

    Energy Technology Data Exchange (ETDEWEB)

    Las Casas, Alexandre

    2004-07-01

    Several methods are used In the pollutant removal from Industrial and domestic wastewater. However when the degradation of toxic organic pollutants, mainly the recalcitrant is objectified, the conventional treatments usually do not meet the desirable performance in the elimination or decrease the impact when the effluent are released to the environment what takes to the research of alternative methods that seek the improvement of the efficiency of the wastewater treatment systems jointly employees or separately. This work presents a study of degradation/removal of pollutants organic compounds comparing two methods using radiation from industrial electron beam and granular activated carbon (GAC). The removal efficiency of the pollutants was evaluated and it was verified that the efficiency of adsorption with activated carbon is similar to the radiation method. The obtained results allowed to evaluated the relative costs of these methods. (author)

  16. Glutamine Synthetases GLN1;2 and GLN2 in Relation to Arabidopsis Growth Response to Elevated Atmospheric Carbon Dioxide and Varying Nitrogen Forms

    DEFF Research Database (Denmark)

    Vurrakula, Swathi

    cues and adjusting it to the plant internal status. The two major types of GS include cytosolic GS1 (five isoforms in Arabidopsis, GLN1;1 to GLN1;5) and a single chloroplastic GS2. GS draws its substrates from carbon skeletons to synthesize amino acids. Thus, carbon and nitrogen metabolisms are closely....... Plants grown under elevated CO2 absorbed ammonia from the atmosphere, except with a high ammonium supply. GLN1;2 had a non-redundant role in determining vegetative growth and ammonium tolerance in response to elevated CO2. Under elevated CO2, GLN1;2 was compensable by GLN2 in assimilating nitrate...... but not ammonium. Reduced GS1 activity correlated with increased ammonia emissions from leaf surface, markedly so with an increased supply of both ammonium and CO2. GLN1;2 was also found to play a vital role in assimilating high levels of nitrate. Under current CO2 levels (400ppm) GLN2 had a non-redundant role...

  17. Evaluation of microwave and magnetic properties of substituted SrFe{sub 12}O{sub 19} and substituted SrFe{sub 12}O{sub 19}/multi-walled carbon nanotubes nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Asghari, Mahboubeh, E-mail: asghari_1420m@yahoo.com [Materials Engineering Department, Malek Ashtar University of Technology, Shahin Shahr (Iran, Islamic Republic of); Ghasemi, Ali; Paimozd, Ebrahim [Materials Engineering Department, Malek Ashtar University of Technology, Shahin Shahr (Iran, Islamic Republic of); Morisako, Akimitsu [Spin Device Technology Center, Faculty of Engineering, Shinshu University, Nagano (Japan)

    2013-12-16

    SrFe{sub 12−x}Cr{sub x/2}Al{sub x/2}O{sub 19} (x = 0–2.5) nanoparticles and ferrite/multi-walled carbon nanotubes (MWCNTs) nanocomposites were synthesized by a sol–gel method. The XRD patterns show a relatively weak peak around 26{sup °} which is corresponding to the graphite (002) lattice plane of the MWCNTs. The peak of Fourier transform infrared spectroscopy (FTIR) at 1729 cm{sup −1} can be assigned to C=O bond of carboxylic groups, indicating the presence of poly(acrylic acid) (PAA) chains in PAA–carbon nanotubes. Field emission scanning electron microscopy (FE-SEM) micrographs demonstrate that strontium ferrite nanoparticles are strung along the MWCNTs. Transmission electron microscopy (TEM) was employed to study the structure of MWCNTs. Vibrating sample magnetometer (VSM) measurements show that with an increase in x content, the values of saturation of magnetization of SrFe{sub 12−x}Cr{sub x/2}Al{sub x/2}O{sub 19} nanoparticles reduce, while coercivity increases. Results of reflection loss indicate that with adding Cr–Al cations and MWCNTs to strontium ferrite; it is possible to cover a wideband of electromagnetic waves in the frequency range of 50–74 and 12–18 GHz. In addition, it can be seen that the strontium ferrite nanoparticles and nanocomposites display a great potential application as wideband electromagnetic wave absorbers. - Highlights: • We synthesized SrFe{sub 12−x}Cr{sub x/2}Al{sub x/2}O{sub 19} nanoparticles and ferrite/MWCNTs nanocomposites. • Strontium ferrite nanoparticles attached along the surface of modified CNTs. • With an increase in x content, M{sub s} in Sr ferrite particles reduced while H{sub c} increased. • Nanocomposites have more effective microwave absorption than nanoparticles.

  18. Stripping voltammetric determination of Cd(Ⅱ) based on multiwalled carbon nanotube functionalized with 1-(2-pyridylazo)-2-naphthol

    Institute of Scientific and Technical Information of China (English)

    Alireza Mohadesi; Hadi Beitollahi; Mohammad Ali Karimi

    2011-01-01

    The present work has focused on the modification of multiwalled carbon nanotube with a ligand, l-(2-pyridylazo)-2-naphthol, and its potential application for the development of a new, simple and selective modified glassy carbon electrode for stripping voltammetric determination of Cd(Ⅱ). The analytical curve for Cd(Ⅱ) ions covered the linear range varying from 0.8 up to 220.4 μg L-1. The limit of detection was found to be 0.1 μg L-1, while the relative standard deviation (RSD) at 50.0 μg L-1 was 1.8% (n = 5). This modified electrode was successfully applied for determination of Cd(Ⅱ) in some water samples.

  19. Quasifree Lambda, Sigma^0, and Sigma^- electroproduction from 1,2H, 3,4He, and Carbon

    Energy Technology Data Exchange (ETDEWEB)

    F. Dohrmann; A. Ahmidouch; C.S. Armstrong; J. Arrington; R. Asaturyan; S. Avery; K. Bailey; H. Bitao; H. Breuer; D.S. Brown; R. Carlini; J. Cha; N. Chant; E. Christy; A. Cochran; L. Cole; J. Crowder; S. Danagoulian; M. Elaasar; R. Ent; H. Fenker; Y. Fujii; L. Gan; K. Garrow; D.F. Geesaman; P. Gueye; K. Hafidi; W. Hinton; H. Juengst; C. Keppel; Y. Liang; J.H. Liu; A. Lung; D. Mack; P. Markowitz; J. Mitchell; T. Miyoshi; H. Mkrtchyan; S.K. Mtingwa; B. Mueller; G. Niculescu; I. Niculescu; D. Potterveld; B.A. Raue; P.E. Reimer; J. Reinhold; J. Roche; M. Sarsour; Y. Sato; R.E. Segel; A. Semenov; S. Stepanyan; V. Tadevosyan; S. Tajima; L. Tang; A. Uzzle; S. Wood; H. Yamaguchi; C. Yan; L. Yuan; B. Zeidman; M. Zeier; B. Zihlmann

    2007-07-30

    Kaon electroproduction from light nuclei and hydrogen, using 1H, 2H, 3He, 4He, and Carbon targets has been measured at Jefferson Laboratory. The quasifree angular distributions of Lambda and Sigma hyperons were determined at Q^2= 0.35(GeV/c)^2 and W= 1.91GeV. Electroproduction on hydrogen was measured at the same kinematics for reference.

  20. Beam loading

    CERN Document Server

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  1. Multi-layer electrode with nano-Li4Ti5O12 aggregates sandwiched between carbon nanotube and graphene networks for high power Li-ion batteries.

    Science.gov (United States)

    Choi, Jin-Hoon; Ryu, Won-Hee; Park, Kyusung; Jo, Jeong-Dai; Jo, Sung-Moo; Lim, Dae-Soon; Kim, Il-Doo

    2014-12-05

    Self-aggregated Li4Ti5O12 particles sandwiched between graphene nanosheets (GNSs) and single-walled carbon nanotubes (SWCNTs) network are reported as new hybrid electrodes for high power Li-ion batteries. The multi-layer electrodes are fabricated by sequential process comprising air-spray coating of GNSs layer and the following electrostatic spray (E-spray) coating of well-dispersed colloidal Li4Ti5O12 nanoparticles, and subsequent air-spray coating of SWCNTs layer once again. In multi-stacked electrodes of GNSs/nanoporous Li4Ti5O12 aggregates/SWCNTs networks, GNSs and SWCNTs serve as conducting bridges, effectively interweaving the nanoporous Li4Ti5O12 aggregates, and help achieve superior rate capability as well as improved mechanical stability of the composite electrode by holding Li4Ti5O12 tightly without a binder. The multi-stacked electrodes deliver a specific capacity that maintains an impressively high capacity of 100 mA h g(-1) at a high rate of 100C even after 1000 cycles.

  2. Multi-layer electrode with nano-Li4Ti5O12 aggregates sandwiched between carbon nanotube and graphene networks for high power Li-ion batteries

    Science.gov (United States)

    Choi, Jin-Hoon; Ryu, Won-Hee; Park, Kyusung; Jo, Jeong-Dai; Jo, Sung-Moo; Lim, Dae-Soon; Kim, Il-Doo

    2014-12-01

    Self-aggregated Li4Ti5O12 particles sandwiched between graphene nanosheets (GNSs) and single-walled carbon nanotubes (SWCNTs) network are reported as new hybrid electrodes for high power Li-ion batteries. The multi-layer electrodes are fabricated by sequential process comprising air-spray coating of GNSs layer and the following electrostatic spray (E-spray) coating of well-dispersed colloidal Li4Ti5O12 nanoparticles, and subsequent air-spray coating of SWCNTs layer once again. In multi-stacked electrodes of GNSs/nanoporous Li4Ti5O12 aggregates/SWCNTs networks, GNSs and SWCNTs serve as conducting bridges, effectively interweaving the nanoporous Li4Ti5O12 aggregates, and help achieve superior rate capability as well as improved mechanical stability of the composite electrode by holding Li4Ti5O12 tightly without a binder. The multi-stacked electrodes deliver a specific capacity that maintains an impressively high capacity of 100 mA h g-1 at a high rate of 100C even after 1000 cycles.

  3. Kevlar and Carbon Fiber Sheet Reinforced Soil Reinforced Concrete Beam Flexural Performance Test Inquiry%碳纤维布及芳纶布加固钢筋混土梁受弯性能试验探究

    Institute of Scientific and Technical Information of China (English)

    邝美玲

    2016-01-01

    在土木工程建设中,碳纤维布及芳纶布为钢筋混土构件带来了新的加固机遇,已成为工程施工中的实质性保障,占据着综合比例的重要地位。基于此,从钢筋混土梁入手,结合相关试验案例,重点分析碳纤维布及芳纶布加固钢筋混土梁受弯性能的优化举措,以供相关研究参考。%In the civil engineering construction,carbon fiber and Kevlar fiber cloth cloth reinforced concrete soil reinforcement member has brought new opportunities,construction has become a substantive guarantee,occupies an important position integrated scale.Based on this,the soil from reinforced concrete beams,combining relevant test case focuses on Kevlar Reinforced with carbon fiber sheet reinforced concrete and soil beam flexural performance optimization initiatives for research reference.

  4. Synthesis of graphitized carbon, nanodiamond and graphene supported Li4Ti5O12 and comparison of their electrochemical performance as anodes for lithium ion batteries

    Science.gov (United States)

    Yang, Shuai; Miao, Juan; Wang, Qiufen; Lu, Mengwei; Sun, Jiufang; Wen, Tao

    2016-12-01

    Graphitized carbon (GC), nanodiamond (ND) and graphene (GE) supported Li4Ti5O12 (LTO) composites have been synthesized via a solid-state reaction, respectively. The particle sizes of LTO/GC, LTO/ND and LTO/GE are smaller than pure LTO. When tested as the anode for lithium ion batteries, the discharge capacities of LTO, LTO/GC, LTO/ND and LTO/GE composites are 100.1 mAh g-1, 150.4 mAh g-1, 90.4 mAh g-1 and 218.3 mAh g-1 at the current density of 175 mA g-1 after 500 cycles. Their rate capacities retain 59.8%, 80.0%, 81.0% and 85.7% at the current density of 175 mA g-1, 438 mA g-1, 875 mA g-1 and 175 mA g-1, respectively. Moreover, the recovery rates of their rate capacities are 78.6%, 83.4%, 88.9% and 90.1% when returned to the current density of 175 mA g-1, respectively. The reasons can be attributed to the synergistic effect between GC (ND and GE) and LTO as well as the features of the different carbon supports. This strategy, with the carbon constituting a good supporting structure, is an effective way to improve the cycling performance of anode materials for lithium ion batteries.

  5. Ultraviolet Photodissociation of Molecular Beams.

    Science.gov (United States)

    1980-12-15

    Continue on reerse side if neceesry and identify by block number) Photodissociation , excimer laser, nitrocompounds, carbon disulfide, sulfur dioxide ...4 ULTRAVIOLET PHOTODISSOCIATION OF MOLECULAR BEAMS. * TYPE OF REPORT (TECHNICAL, FINAL, ETC.) FINAL REPOT OR PERIOD 0/01/77 - 9/30/80 AUTHOR (S... Photodissociation of Final report for period 10/01/77 - 9/30/80 Molecular Beams 6. PERFORMIN, CRG. REPORT NUMBER 7. AUTHOR(e) S. CONTRACT OR GRANT NUMBER(e) R

  6. Beam transport elements

    CERN Multimedia

    1965-01-01

    Two of the beam transport elements for the slow ejection system. On the left, a quadrupole 1.2 m long with a 5 cm aperture, capable of producing a gradient of 5000 gauss. On the right, a 1 m bending magnet with a 4 cm gap; its field is 20 000 gauss.

  7. THE MECHANICAL BEHAVIOR EXPERIMENT AND ANALYSIS OF CONTINUOUS BEAMS STRENGTHENED WITH CARBON FIBER REINFORCED POLYMER SHEETS%碳纤维布加固连续梁力学性能试验及分析

    Institute of Scientific and Technical Information of China (English)

    程东辉; 王天峰; 易亚敏

    2011-01-01

    为了开展碳纤维布加固钢筋混凝土连续梁受力性能的研究工作,对3根两跨采用碳纤维布加固的钢筋混凝土连续梁进行三分点加载的受力性能试验研究,获得加固状态下钢筋混凝土连续梁正截面承载力、裂缝分布及开展、中支座塑性铰区分布长度等试验实测值和荷载-挠度曲线及内力重分布关系曲线。试验研究表明:钢筋混凝土连续梁在加固状态下的破坏呈现中支座纵向受力钢筋先屈服,跨中纵向受力钢筋后屈服,碳纤维布被拉断的形式;试验梁加载过程中有明显的内力重分布,承载力极限状态下内力重分布幅度超过50%;由于跨中碳纤维布的存在约束了连续梁的变形,从而导致中支座控制截面附近塑性区域分布长度比普通钢筋混凝土连续梁有所减小。%In order to study the mechanical behavior of concrete continuous beams strengthened with CFRP sheets, 3 two-span continuous beams were fabricated, and strengthened with CFRP sheets at each span. The test of loading on two-point was completed, from which the bearing capacity, cracks distribution, the test value of the length of plastic hinge region, curves of load-deformation and curves of internal force redistribution were obtained. The test results showed that the failure of concrete continuous beams strengthened with CFRP sheets was characterized by longtitudinal reinforcement yielded in intermediate support sections, then the longtitudinal reinforcement yielded in the middle span sections, at last carbon fiber polymer sheets were pulled off. The internal force redistribution appeared apparently in beams during loading process and the redistribution rate was over 50% in the state of ultimate bearing capacity. As CFRP confined the deflection of beams,the length of the plastic hinge region near the sections of intermediate support was reduced as compared to ordinary continuous reinforced beams.

  8. Carbon Isotope Fractionation in Reactions of 1,2-Dibromoethane with FeS and Hydrogen Sulfide

    Science.gov (United States)

    EDB (1,2-dibromoethane) is frequently detected at sites impacted by leaded gasoline. In reducing environments, EDB is highly susceptible to abiotic degradation. A study was conducted to evaluate the potential of compound-specific isotope analysis (CSIA) in assessing abiotic degr...

  9. Advances of Palladium-Catalyzed 1,2-Addition of Organohalide to Carbon-Heteroatom Multibond%钯催化的有机卤化物的1,2-加成反应研究进展

    Institute of Scientific and Technical Information of China (English)

    陈程; 吴良; 葛晨; 叶仕春; 贾义霞; 高建荣

    2013-01-01

    钯催化有机卤代烃参与的对碳杂原子重键化合物的1,2-加成反应,可以有效避免传统Grignard反应、Barbier反应中活泼有机金属试剂的制备,简化合成操作并提高底物官能团的适应性,具有良好的应用前景。本文对近年来该类反应在合成化学中的发展进行了综述。%Palladium-catalyzed 1,2-addition reaction of organohalide to carbon-heteroatom multibond effectively avoids the preparation of active organometallic reagent (commonly used in the traditional Grignard, Barbier reactions), and simplifies the synthetic process and improves scope of the substrate bearing different functional groups. This review summarized recent advances of this 1,2-addition reaction in organic chemistry.

  10. Monitor of SC beam profiles

    CERN Multimedia

    1977-01-01

    A high-resolution secondary emission grid for the measurement of SC beam profiles. Modern techniques of metal-ceramic bonding, developed for micro-electronics, have been used in its construction. (See Annual Report 1977 p. 105 Fig. 12.)

  11. 碳纤维加固钢-混凝土组合梁承载力极限状态计算%Analysis of Ultimate Load-carrying Capacity of Strengthening Steel-concrete Composite Beam Using Carbon Fiber

    Institute of Scientific and Technical Information of China (English)

    荣学亮; 黄侨

    2011-01-01

    Carbon fiber is a kind of optimal materials for bridge maintenance and reinforcement. Design method of strengthening steel-concrete composite bridges using carbon fiber was studied. Characteristic of bridge reinforce-ment under load and phasing of stress features were considered, and calculation method of ultimate limit state was suitable for existing bridge design code . Ultimate strain of carbon fiber in ultimate limit state is firstly established based on plane-section assumption and strain-lag of carbon fiber. Then computational scheme and calculation meth-od of flexural capacity in positive moment area and negative moment area for strengthening steel-concrete composite beam using carbon fiber are established respectively, which is reference for design of bridge strengthening.%碳纤维复合材料是进行桥梁维修和加固的理想材料.对采用碳纤维复合材料加固钢-混凝土组合梁桥的设计方法进行了分析.考虑桥梁结构带载加固分阶段受力的特点,与现行桥梁设计规范中承载能力极限状态计算方法相适应.首先基于平截面假设和碳纤维应变滞后的特点,确定承载能力极限状态下碳纤维片材的极限应变值.然后分别建立了碳纤维片材加固钢-混凝土组合梁在正弯矩区和负弯矩区抗弯承载力的计算图式和计算方法,可供桥梁加固工程设计参考.

  12. Analysis and theoretical modeling of the 18O enriched carbon dioxide spectrum by CRDS near 1.35 μm: (I) 16O12C18O, 16O12C17O, 12C16O2 and 13C16O2

    Science.gov (United States)

    Kassi, S.; Karlovets, E. V.; Tashkun, S. A.; Perevalov, V. I.; Campargue, A.

    2017-01-01

    The room temperature absorption spectrum of 18O enriched carbon dioxide has been recorded by very high-sensitivity Cavity Ring Down spectroscopy between 6977 and 7918 cm-1 (1.43-1.26 μm). The achieved sensitivity (noise equivalent absorption αmin 8×10-11 cm-1) has allowed for the detection of more than 8600 lines belonging to 166 bands of eleven carbon dioxide isotopologues. Line intensities of the weakest observed transitions are on the order of 2×10-30 cm/molecule. In this first part, we present the results relative to the 16O12C18O, 16O12C17O, 12C16O2 and 13C16O2 isotopologues. Their absorption lines were rovibrationally assigned on the basis of the predictions of their respective effective Hamiltonian model. Overall 5476 lines were measured and assigned to 93 bands. Forty nine of them, all belonging to 16O12C18O and 16O12C17O, are reported for the first time. The studied spectral region is formed by ΔP=10-12 series of transitions, where P=2V1+V2+3V3 is the polyad number (Vi are vibrational quantum numbers). The spectroscopic parameters of 58 bands of 16O12C18O and 16O12C17O were determined from a fit of the measured line positions. An inter- and an intrapolyad resonance perturbation were identified and analyzed in the 16O12C18O spectrum. The comparison with the line positions and line intensities included in the AMES line list is discussed. Global fits of the line intensities were performed in order to (i) improve the ΔP=10 and 11 sets of the effective dipole moment parameters of 16O12C18O and the ΔP=11 set of parameters of 16O12C17O and (ii) derive for the first time the ΔP=10 and 12 parameters of 16O12C17O and 16O12C18O, respectively.

  13. Beam collimator

    CERN Multimedia

    1977-01-01

    A four-block collimator installed on a control table for positioning the alignment reference marks. Designed for use with SPS secondary beams, the collimator operates under vacuum conditions. See Annual Report 1976 p. 121 and photo 7701014.

  14. Short-lived positron emitters in beam-on PET imaging during proton therapy

    Science.gov (United States)

    Dendooven, P.; Buitenhuis, H. J. T.; Diblen, F.; Heeres, P. N.; Biegun, A. K.; Fiedler, F.; van Goethem, M.-J.; van der Graaf, E. R.; Brandenburg, S.

    2015-12-01

    The only method for in vivo dose delivery verification in proton beam radiotherapy in clinical use today is positron emission tomography (PET) of the positron emitters produced in the patient during irradiation. PET imaging while the beam is on (so called beam-on PET) is an attractive option, providing the largest number of counts, the least biological washout and the fastest feedback. In this implementation, all nuclides, independent of their half-life, will contribute. As a first step towards assessing the relevance of short-lived nuclides (half-life shorter than that of 10C, T1/2  =  19 s) for in vivo dose delivery verification using beam-on PET, we measured their production in the stopping of 55 MeV protons in water, carbon, phosphorus and calcium The most copiously produced short-lived nuclides and their production rates relative to the relevant long-lived nuclides are: 12N (T1/2  =  11 ms) on carbon (9% of 11C), 29P (T1/2  =  4.1 s) on phosphorus (20% of 30P) and 38mK (T1/2  =  0.92 s) on calcium (113% of 38gK). No short-lived nuclides are produced on oxygen. The number of decays integrated from the start of an irradiation as a function of time during the irradiation of PMMA and 4 tissue materials has been determined. For (carbon-rich) adipose tissue, 12N dominates up to 70 s. On bone tissue, 12N dominates over 15O during the first 8-15 s (depending on carbon-to-oxygen ratio). The short-lived nuclides created on phosphorus and calcium provide 2.5 times more beam-on PET counts than the long-lived ones produced on these elements during a 70 s irradiation. From the estimated number of 12N PET counts, we conclude that, for any tissue, 12N PET imaging potentially provides equal to superior proton range information compared to prompt gamma imaging with an optimized knife-edge slit camera. The practical implementation of 12N PET imaging is discussed.

  15. Study of Target Fragmentation in the Interaction of 86 MeV/A $^{12}$Carbon with Tantalum, Bismuth and Uranium

    CERN Multimedia

    2002-01-01

    Using radiochemical techniques we will ; a)~~measure the target fragment mass and charge distributions from the interaction of 86~MeV/A |1|2C with Ta, Bi and U; ; b)~~measure the target fragment forward momentum and average kinetic energy using the thick target-thick catcher technique for the above reactions; and ; c)~~measure the target fragment angular and differential energy distributions using thin target-thin catcher techniques for the reactions with Ta and U. \\\\ \\\\ These measurements should allow us to better characterize the transition between low energy and realistic heavy ion reaction mechanisms.

  16. Facile Synthesis of Carbon-Coated Spinel Li4Ti5O12/Rutile-TiO2 Composites as an Improved Anode Material in Full Lithium-Ion Batteries with LiFePO4@N-Doped Carbon Cathode.

    Science.gov (United States)

    Wang, Ping; Zhang, Geng; Cheng, Jian; You, Ya; Li, Yong-Ke; Ding, Cong; Gu, Jiang-Jiang; Zheng, Xin-Sheng; Zhang, Chao-Feng; Cao, Fei-Fei

    2017-02-22

    The spinel Li4Ti5O12/rutile-TiO2@carbon (LTO-RTO@C) composites were fabricated via a hydrothermal method combined with calcination treatment employing glucose as carbon source. The carbon coating layer and the in situ formed rutile-TiO2 can effectively enhance the electric conductivity and provide quick Li(+) diffusion pathways for Li4Ti5O12. When used as an anode material for lithium-ion batteries, the rate capability and cycling stability of LTO-RTO@C composites were improved in comparison with those of pure Li4Ti5O12 or Li4Ti5O12/rutile-TiO2. Moreover, the potential of approximately 1.8 V rechargeable full lithium-ion batteries has been achieved by utilizing an LTO-RTO@C anode and a LiFePO4@N-doped carbon cathode.

  17. Beam simulation studies of ECR beam extraction and low energy beam transport for FRIB.

    Science.gov (United States)

    Ren, Haitao; Pozdeyev, Eduard; Lund, Steven M; Machicoane, Guillaume; Wu, Xiaoyu; Morgan, Glenn

    2016-02-01

    To meet the beam power requirements of 400 kW at the fragmentation target for facility for Rare Isotope Beams (FRIB), simultaneous acceleration of two-charge states should be used for heavier ions. These intense multi-charged ion beams will be produced by a 28 GHz electron cyclotron resonance (ECR) ion source at a high voltage of 35 kV. After extraction, the ion beam will be pre-accelerated to 12 keV/u with a 50 kV platform, transported down to an achromatic charge state selection (CSS) system followed by a vertical transport line, and then injected into a radio frequency quadrupole accelerator. The TRACK code developed at ANL is used to perform the simulations of the ECR beam extraction and low energy beam transport for FRIB. In this study, we include the magnetic field of ECR ion source into simulations. Different initial beam conditions as well as different space charge neutralization levels are tested for the ECR beamline. The beam loss in CSS system and the corresponding protective measures are discussed. The detailed results about the beam dynamic simulation and beam loss in CSS system will be presented in this paper.

  18. Beam instability Workshop - plenary sessions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The purpose of this workshop was to provide a review of the mechanisms of limiting beam instabilities, their cures, including feedback, and beam measurement for synchrotron radiation light sources. 12 plenary sessions took place whose titles are: 1) challenging brilliance and lifetime issues with increasing currents; 2) limiting instabilities in multibunch; 3) experience from high currents in B factories; 4) longitudinal dynamics in high intensity/bunch; 5) Transverse instabilities for high intensity/bunch; 6) working group introduction from ESRF experience; 7) impedance modelling: simulations, minimization; 8) report on the broadband impedance measurements and modelling workshop; 9) feedback systems for synchrotron light sources; 10) beam instabilities diagnostics; 11) harmonic cavities: the pros and cons; and 12) experimental study of fast beam-ion instabilities at PLS. This document gathers the 12 articles that were presented during these sessions.

  19. Herbivore perception decreases photosynthetic carbon-assimilation and reduces stomatal conductance by engaging 12-oxo-phytodienoic acid, mitogen-activated protein kinase 4 and cytokinin perception.

    Science.gov (United States)

    Meza-Canales, Ivan D; Meldau, Stefan; Zavala, Jorge A; Baldwin, Ian T

    2016-12-07

    Herbivory-induced changes in photosynthesis have been documented in many plant species, however the complexity of photosynthetic regulation and analysis has thwarted progress in understanding the mechanism involved, particularly those elicited by herbivore-specific elicitors. Here we analyzed the early photosynthetic gas-exchange responses in Nicotiana attenuata plants after wounding and elicitation with Manduca sexta oral-secretions, and the pathways regulating these responses. Elicitation with M. sexta oral-secretions rapidly decreased photosynthetic carbon-assimilation (AC ) in treated and systemic (untreated, vascularly connected) leaves, which were associated with changes in stomatal conductance, rather than with changes in Rubisco activity and RuBP-turnover. Phytohormone profiling and gas-exchange-analysis of oral-secretion-elicited transgenic plants altered in phytohormone regulation, biosynthesis and perception, combined with micrografting techniques, revealed that the local photosynthetic-responses were mediated by 12-oxo-phytodienoic acid (OPDA), while the systemic responses involved interactions among jasmonates, cytokinins and abscisic acid signaling mediated by mitogen activated protein kinase 4 (MPK4). The analysis also revealed a role for cytokinins interacting with MPK4 in CO2 -mediated stomatal regulation. Hence oral-secretions, while eliciting jasmonic acid-mediated defense responses, also elicits OPDA-mediated changes in stomatal conductance and AC , an observation illustrating the complexity and economy of the signaling that regulates defense and carbon assimilation pathways in response to herbivore attack.

  20. Synthesis of magnetic Pb/Fe304/Si02 and its catalytic activity for propylene carbonate synthesis via urea and 1,2-propylene glycol

    Institute of Scientific and Technical Information of China (English)

    Hualiang AN; Xinqiang ZHAO; Zhiguang JIA; Changcheng WU; Yanji WANG

    2009-01-01

    To facilitate the recovery of Pb/SiO2 catalyst, magnetic Pb/Fe3O4/SiO2 samples were prepared separately by emulsification, sol-gel and incipient impregnation methods. The catalyst samples were characterized by means of X-ray diffraction and N2 adsorption-desorption, and their catalytic activity was investigated in the reaction for synthesizing propylene carbonate from urea and 1,2-propylene glycol. When the gelatin was applied in the preparation of Fe3O4 at 60°C and the pH value was controlled at 4 in the preparation of Fe3O4/SiO2, the Pb/ Fe3O4/SiO2 sample shows good catalytic activity and magnetism. Under the reaction conditions of a reaction temperature of 180°C, reaction time of 2 h, catalyst percentage of 1.7 wt-% and a molar ratio of urea to PG of 1:4, the yield of propylene carbonate attained was 87.7%.

  1. Neutron yield of thick 12C and 13C targets with 20 and 30 MeV deuterons

    Science.gov (United States)

    Lhersonneau, G.; Malkiewicz, T.; Fadil, M.; Gorelov, D.; Jones, P.; Ngcobo, P. Z.; Sorri, J.; Trzaska, W. H.

    2016-12-01

    The neutron yield of thick targets of carbon, natural and enriched in 13C, bombarded by deuterons of 20 and 30 MeV has been measured by the activation method. The gain with respect to a 12C target is the same as with protons beams. The yield ratio is about 1.2 only and hardly can justify the use of a 13C target with deuteron beams. The data, apart from being of interest for the design of facilities where secondary neutron beams are used, provide a test case for calculations where both beam and target have a weakly bound neutron. The MCNPx code version 2.6.0, despite failing to reproduce some details of the experimental distributions, describes their global properties fairly well, especially the relative yields of the 12C and 13C targets.

  2. Infrared imaging diagnostics for INTF ion beam

    Science.gov (United States)

    Sudhir, D.; Bandyopadhyay, M.; Pandey, R.; Joshi, J.; Yadav, A.; Rotti, C.; Bhuyan, M.; Bansal, G.; Soni, J.; Tyagi, H.; Pandya, K.; Chakraborty, A.

    2015-04-01

    In India, testing facility named INTF [1] (Indian test facility) is being built in Institute for Plasma Research to characterize ITER-Diagnostic Neutral Beam (DNB). INTF is expected to deliver 60A negative hydrogen ion beam current of energy 100keV. The beam will be operated with 5Hz modulation having 3s ON/20s OFF duty cycle. To characterize the beam parameters several diagnostics are at different stages of design and development. One of them will be a beam dump, made of carbon fiber composite (CFC) plates placed perpendicular to the beam direction at a distance lm approximately. The beam dump needs to handle ˜ 6MW of beam power with peak power density ˜ 38.5MW/m2. The diagnostic is based on thermal (infra-red - IR) imaging of the footprint of the 1280 beamlets falling on the beam dump using four IR cameras from the rear side of the dump. The beam dump will be able to measure beam uniformity, beamlet divergence. It may give information on relative variation of negative ion stripping losses for different beam pulses. The design of this CFC based beam dump needs to address several physics and engineering issues, including some specific inputs from manufacturers. The manuscript will describe an overview of the diagnostic system and its design methodology highlighting those issues and the present status of its development.

  3. Cross sections of electron loss and capture for beams of O{sup +} in water vapor from the energy range of 0,2 to 1,2 MeV; Secoes de choque de perda e captura eletronica para feixes de O{sup +} em vapor de agua em uma faixa de energia entre 0,2 e 1,2 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Vitor Jesus de

    2015-06-01

    The study of the interactions between atoms and molecules is important for the knowledge of the cross sections of the processes that contribute to the deposition of energy by charged particle beams used in radiotherapy planning and transport particle simulation codes. Heavy ions, such as oxygen, induce many cellular and molecular damages in human cells.as a result of interaction between the projectile and atoms and molecules. The use of proton and carbon as the projectile interacting with water molecules is well characterized, however there are few studies with oxygen ions. In this work we are interested in the study of electron loss (projectile ionization) and electron capture with charge state 1+. The Pelletron accelerator of 1.7 MeV from the Federal University of Rio de Janeiro housed in the Atomic and Molecular collisions Laboratory (LACAM) has been used, which can accelerate atomic and molecular ions up to speeds of the order of hundredths of light speed, and consists of the source of negative ions, the Wien filter, the accelerator itself and the magnet load selector. The detection device used to evaluate the processes of interaction (capture and loss) between the beam of the O{sup +} and the water molecule is a Microchannel Plate (MCP) at the position sensitive anode. The collisions of O{sup +} beans are being studied in the range of 0.2 to 1.2 MeV with water vapor (Z = 10). Were obtained the respective absolute cross sections for electron loss and electron capture and compared with the cross sections of the molecule methane (CH4 → Z = 10), the isoelectronic water molecule. The experimental results show an agreement between the measurements with water and methane. Comparisons were made with results of theoretical models for electron loss using the 'Free Collision Model' and for capture the Bohr and Lindhard model. The theoretical results for electron loss show an agreement of experimental data with the model used. The model of Bohr and Lindhard

  4. Induction of DNA DSB and its rejoining in clamped and non-clamped tumours after exposure to carbon ion beams in comparison to X rays.

    Science.gov (United States)

    Hirayama, R; Uzawa, A; Matsumoto, Y; Noguchi, M; Kase, Y; Takase, N; Ito, A; Koike, S; Ando, K; Okayasu, R; Furusawa, Y

    2011-02-01

    We studied double-strand breaks (DSB) induction and rejoining in clamped and non-clamped transplanted tumours in mice leg after exposure to 80 keV µm(-1) carbon ions and X rays. The yields of DSB in the tumours were analysed by a static-field gel electrophoresis. The OER of DSB after X rays was 1.68±0.31, and this value was not changed after 1 h rejoining time (1.40±0.26). These damages in oxygenated conditions were rejoined 60-70% within 1 h in situ. No difference was found between the exposure to X rays and carbon ions for the induction and rejoining of DSB. Thus, the values of OER and rejoined fraction after exposure to carbon ions were similar to those after X rays, and the calculated relative biological effectivenesses of carbon ion were around 1 under both oxygen conditions. The yields of DSB in vivo depend on exposure doses, oxygen conditions and rejoining time, but not on the types of radiation quality.

  5. Carbon-11 pb-12: an attempt to visualize the dopamine d{sub 4} receptor in the primate brain with positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Langer, Oliver E-mail: oliver.langer@psyk.ks.se; Halldin, Christer; Chou Yuanhwa; Sandell, Johan; Swahn, Carl-Gunnar; Naagren, Kjell; Perrone, Roberto; Berardi, Francesco; Leopoldo, Marcello; Farde, Lars

    2000-11-01

    The dopamine D{sub 4} receptor (D{sub 4}R) is expressed in low density in various extrastriatal brain regions. This receptor subtype is discussed in relation to the pathophysiology and treatment of schizophrenia but no selective positron emission tomography (PET) ligand is available to date to study the distribution in vivo. The arylpiperazine derivative N-[2-[4-(4-chlorophenyl)piperazin-1-yl]ethyl]-3-methoxybenzamide (PB-12) is a novel, high-affinity ( K{sub i}=0.040 nM) and selective D{sub 4}R ligand. We radiolabeled PB-12 with carbon-11 (t{sub 1/2} 20.4 min) by O-methylation of the corresponding desmethyl analogue N-[2-[4-(4-chlorophenyl)piperazin-1-yl]ethyl]-3-hydroxybenzamide (LM-190) with [{sup 11}C]methyl triflate. Derivative LM-190 was prepared by condensing 3-hydroxybenzoic acid with the appropriate amine. For the radiolabeling, the incorporation yield was >90% and the total synthesis time including high performance liquid chromatography (HPLC) purification was about 35 min. The specific radioactivity of [{sup 11}C]PB-12 at time of injection was 67-118 GBq{center_dot}{mu}mol{sup -1}. PET studies in a cynomolgus monkey showed a high uptake and widespread distribution of radioactivity in the brain, including the neocortex and thalamus. About 40% of total radioactivity in plasma represented unchanged radioligand at 60 min after injection as determined by HPLC. Pretreatment with the D{sub 4}R ligand 3-{l_brace}[4-(4-chlorophenyl)piperazin-1-yl]methyl{r_brace}-1H-pyrollo[2,3-b]pyridine (L-745,870) prior to radioligand injection failed to demonstrate receptor-specific binding in the monkey brain. Furthermore, the brain radioactivity distribution was left unaffected by pretreating with unlabeled PB-12. This failure to detect a D{sub 4}R-specific signal may be related to a very low density of the D{sub 4}R in primate brain, insufficient binding affinity of the radioligand, and a high background of nonspecific binding. It can be concluded from these findings that

  6. IH-DTL design with KONUS beam dynamics for KHIMA project

    Science.gov (United States)

    Lee, Yumi; Kim, Eun-San; Li, Zhihui; Hahn, Garam

    2015-11-01

    The Kombinierte Null Grad Struktur (KONUS) beam dynamics design of the interdigit H-mode drift tube linac (IH-DTL) for the Korea Heavy Ion Medical Accelerator (KHIMA) project is presented. We performed a KONUS beam dynamics simulation for a carbon beam (12C4+) with the LORASR code. The 12C4+ beam was accelerated from an input energy of 0.4 MeV/u to an output energy of 7 MeV/u by the IH-DTL operated at 200 MHz. The optimization aims were to increase the transmission efficiency and to minimize the beam emittance growth, beam loss, and project costs. The buncher with two gaps and two quadrupole doublets were placed between the RFQ and the IH-DTL. The whole IH-DTL consists of two tanks, 56 acceleration gaps, and four quadrupole triplets. It achieves a transmission efficiency of 100%. The total length from the exit of the RFQ to the exit of the IH-DTL is approximately 507.7 cm.

  7. [Effect of accelerated heavy ions of carbon 12C, neon 20Ne and iron 56Fe on the chromosomal apparatus of human blood lymphocytes in vitro].

    Science.gov (United States)

    Repina, L A

    2011-01-01

    Cytogenetic assay of the chromosomal apparatus of human blood lymphocytes was carried out after in vitro irradiation by heavy charged particles with high LET values. Blood plasm samples enriched with lymphocytes were irradiated by accelerated ions of carbon 12C (290 MeV/nucleon and LET = 70 keV/microm), neon 20Ne (400 MeV/nucleon and LET = 70 keV/microm), and iron 56Fe (500 MeV/nucleon and LET = 200 keV/microm) in the dose range from 0.25 to 1 Gy. Rate of chromosome aberrations showed a linear dependence on doses from the densely ionizing radiations with high LET values. Frequency of dicentrics and centric rings in human lymphocytes irradiated by 12C with the energy of 290 MeV/nucleon was maximal at 1 Gy (p < 0.05) relative to the other heavy particles. It was found that relative biological effectiveness of heavy nuclei is several times higher than of 60Co gamma-radiation throughout the range of doses in this investigation.

  8. Fatigue behavior of RC T-beams

    Directory of Open Access Journals (Sweden)

    Omar A. Farghal

    2014-09-01

    Full Text Available The objective of this research is to study the fatigue performance of reinforced concrete (RC T-beams strengthened in shear with Carbon Fiber Reinforced Polymer (CFRP composite. Experiments were conducted on RC beams with and without CFRP sheets bonded on their web surfaces and subjected to static and cycling loading. The obtained results showed that the strengthened beams could survive one million cycles of cyclic loading (=50% of maximum static load with no apparent signs of damage (premature failure demonstrating the effectiveness of CFRP strengthening system on extending the fatigue life of structures. Also, for beams having the same geometry, the applied strengthening technique can significantly enhance the cycling load particularly, in case of beams provided with U-jacket sheets. Moreover, although the failure mode for the different beams was a brittle one, the strengthened beams provided with U-jacket sheets approved an acceptable enhancement in the structural ductility.

  9. Carbon dioxide stimulation of photosynthesis in Liquidambar styraciflua is not sustained during a 12-year field experiment.

    Science.gov (United States)

    Warren, Jeffrey M; Jensen, Anna M; Medlyn, Belinda E; Norby, Richard J; Tissue, David T

    2014-11-17

    Elevated atmospheric CO2 (eCO2) often increases photosynthetic CO2 assimilation (A) in field studies of temperate tree species. However, there is evidence that A may decline through time due to biochemical and morphological acclimation, and environmental constraints. Indeed, at the free-air CO2 enrichment (FACE) study in Oak Ridge, Tennessee, A was increased in 12-year-old sweetgum trees following 2 years of ∼40 % enhancement of CO2. A was re-assessed a decade later to determine if the initial enhancement of photosynthesis by eCO2 was sustained through time. Measurements were conducted at prevailing CO2 and temperature on detached, re-hydrated branches using a portable gas exchange system. Photosynthetic CO2 response curves (A versus the CO2 concentration in the intercellular air space (Ci); or A-Ci curves) were contrasted with earlier measurements using leaf photosynthesis model equations. Relationships between light-saturated photosynthesis (Asat), maximum electron transport rate (Jmax), maximum Rubisco activity (Vcmax), chlorophyll content and foliar nitrogen (N) were assessed. In 1999, Asat for eCO2 treatments was 15.4 ± 0.8 μmol m(-2) s(-1), 22 % higher than aCO2 treatments (P Asat declined to Asat = 6.9 or 5.7 ± 0.7 μmol m(-2) s(-1) for eCO2 or aCO2, respectively). In 1999, there was no treatment effect on area-based foliar N; however, by 2008, N content in eCO2 foliage was 17 % less than that in aCO2 foliage. Photosynthetic N-use efficiency (Asat : N) was greater in eCO2 in 1999 resulting in greater Asat despite similar N content, but the enhanced efficiency in eCO2 trees was lost as foliar N declined to sub-optimal levels. There was no treatment difference in the declining linear relationships between Jmax or Vcmax with declining N, or in the ratio of Jmax : Vcmax through time. Results suggest that the initial enhancement of photosynthesis to elevated CO2 will not be sustained through time if N becomes limited.

  10. Turn-By Beam Extraction during Acceleration in a Synchrotron

    Science.gov (United States)

    Tsoupas, Nicholaos; Trbojevic, Dejan

    2014-02-01

    A synchrotron to accelerate protons or carbon ions for medical applications is being designed at Brookhaven National Laboratory (BNL). Single beam bunches with maximum beam energy of 1.18 GeV and 400 MeV/u for protons and carbon ions respectively will be extracted from the synchrotron at 15 Hz. For protons, the maximum required energy for irradiating a tumor is ˜206 MeV. A pencil-like proton beam containing ˜5.4×107 p/bunch delivers a therapeutic dose of 2.5 Gy in ˜1.5 minutes to treat a tumor of 1 liter volume. It will take ˜80 minutes with bunches containing 4.5×104 ions/bunch to deliver the same dose of 2.5 Gy with a 400 MeV/u pencil-like carbon beam. This extended treatment time when using carbon ions is not acceptable. In addition, the synchrotron cannot be controlled with a beam bunch containing such a low number of carbon ions. To overcome these two problems of the extended treatment time and the low bunch intensity required for the treatment when carbon ions are used, we have devised a method to “peel” the required 4.5×104 carbon-ions/bunch from the accelerating carbon beam bunch containing ˜108 ions/bunch and deliver them to the tumor on a “turn-by-turn” basis. Unlike other methods of beam extraction from a synchrotron, such as resonance extraction, this method does not allow for any beam losses during the extraction and the carbon beam can be peeled off in less than 15 ms during the acceleration or deceleration cycle of the synchrotron. Thus, this turn-by-turn beam extraction method provides beam with variable energy and precisely controlled beam current during the 30 ms acceleration or deceleration time.

  11. From carbon nanotubes to carbon atomic chains

    Science.gov (United States)

    Casillas García, Gilberto; Zhang, Weijia; José-Yacamán, Miguel

    2010-10-01

    Carbyne is a linear allotrope of carbon. It is formed by a linear arrangement of carbon atoms with sp-hybridization. We present a reliable and reproducible experiment to obtain these carbon atomic chains using few-layer-graphene (FLG) sheets and a HRTEM. First the FLG sheets were synthesized from worm-like exfoliated graphite and then drop-casted on a lacey-carbon copper grid. Once in the TEM, two holes are opened near each other in a FLG sheet by focusing the electron beam into a small spot. Due to the radiation, the carbon atoms rearrange themselves between the two holes and form carbon fibers. The beam is concentrated on the carbon fibers in order excite the atoms and induce a tension until multi wall carbon nanotube (MWCNT) is formed. As the radiation continues the MWCNT breaks down until there is only a single wall carbon nanotube (SWCNT). Then, when the SWCNT breaks, an atomic carbon chain is formed, lasts for several seconds under the radiation and finally breaks. This demonstrates the stability of this carbon structure.

  12. Beam Diagnostics for the J-PARC Main Ring Synchrotron

    CERN Document Server

    Toyama, Takeshi; Hashimoto, Yoshinori; Hayashi, Naoki; Kishiro, Junichi; Lee, Seishu; Miura, Takako; Muto, Suguru; Toyokawa, Ryoji

    2005-01-01

    Beam diagnostics: beam intensity monitors (DCCT, SCT, FCT, WCM), beam position monitors (ESM), beam loss monitors (proportional chamber, air ion chamber), beam profile monitors (secondary electron emission, gas-sheet) have been designed, tested, and will be installed for the Main Ring synchrotron of J-PARC (Japan Proton Accelerator Research Complex). This paper describes the basic design principle and specification of each monitor, with a stress on how to cope with high power beam (average circulation current of ~12 A) and low beam loss operation (less than 1 W/m except a collimator region). Some results of preliminary performance test using present beams and a radiation source will be reported.

  13. Analysis and theoretical modeling of 18O enriched carbon dioxide spectrum by CRDS near 1.35 μm: (II) 16O13C18O, 16O13C17O, 12C18O2, 17O12C18O, 12C17O2, 13C18O2 and 17O13C18O

    Science.gov (United States)

    Karlovets, E. V.; Campargue, A.; Kassi, S.; Tashkun, S. A.; Perevalov, V. I.

    2017-04-01

    This contribution is the second part of the analysis of the room temperature absorption spectrum of 18O enriched carbon dioxide by very high sensitivity Cavity Ring Down spectroscopy between 6977 and 7918 cm-1 (1.43-1.26 μm). Overall, more than 8600 lines belonging to 166 bands of eleven carbon dioxide isotopologues were rovibrationnally assigned. In a first part (Kassi et al. J Quant Spectrosc Radiat Transfer 187 (2017) 414-425, http://dx.doi.org/10.1016/j.jqsrt.2016.09.002), the results relative to mono-substituted isotopologues, 16O12C18O, 16O12C17O, 12C16O2 and 13C16O2, were presented. This second contribution is devoted to the multiply-substituted isotopologues or clumped isotopologues of particular importance in geochemistry: 16O13C18O, 16O13C17O, 12C18O2, 17O12C18O, 12C17O2, 13C18O2 and 17O13C18O. On the basis of the predictions of effective Hamiltonian models, a total of 3195 transitions belonging to 73 bands were rovibrationnally assigned for these seven species. Among the 73 observed bands, 55 are newly reported. All the identified bands correspond to ΔP=10 and 11 series of transitions, where P= 2V1+V2+3V3 is the polyad number (Vi are vibrational quantum numbers). The accurate spectroscopic parameters of 70 bands have been determined from the standard band-by-band analysis. Global fits of the measured line intensities of the ΔP=10 series of transitions of 17O12C18O and 16O13C18O and of the ΔP=11 series of transitions of 12C18O2, 17O12C18O, 16O13C18O and 13C18O2 were performed to determine the corresponding sets of the effective dipole moment parameters.

  14. Characterization of carbon, nitrogen, oxygen and refractory metals in binary and ternary silicon-based films using ion beam methods; Caracterisation des elements: carbone, azote, oxygene et metal refractaire dans des depots binaires et ternaires a base de silicium par methodes d'analyse utilisant les faisceaux d'ions

    Energy Technology Data Exchange (ETDEWEB)

    Somatri-Bouamrane, R. [Lyon-1 Univ., 69 - Villeurbanne (France). Inst. de Physique Nucleaire]|[Universite Claude Bernard, 69 - Lyon (France)

    1996-12-19

    Ion beam methods (non Rutherford backscattering, nuclear reactions) have been carried out in order to characterize silicon-based films. The cross sections for the reactions {sup 12}C({alpha},{alpha}), {sup 14}N({alpha},{alpha}), {sup 16}O({alpha},{alpha}), {sup 28}Si({alpha},{alpha}) and {sup 14}N({alpha},p) have been measured within 2 and 7 MeV. CVD beta SiC films could be analyzed and the interface between silicon carbide and the (100) silicon substrate was studied. The epitaxial growth of the beta SiC film could be modelled by comparing the results obtained with ion beam analysis, infrared spectroscopy and electron microscopy. Moreover, the stoichiometry of low pressure CVD Me-Si-N (Me=Re, W, Ti, Ta) ternary systems was studied. The evolution of the nitrogen content in W-Si-N systems allowed to study their stability with respect to the annealing conditions. (N.T.)

  15. Direct determination of k Q for Farmer-type ionization chambers in a clinical scanned carbon ion beam using water calorimetry

    Science.gov (United States)

    Osinga-Blättermann, J.-M.; Brons, S.; Greilich, S.; Jäkel, O.; Krauss, A.

    2017-03-01

    Until now, the dosimetry of carbon ions with ionization chambers has not reached the same level of accuracy as that of high-energy photons. This is mainly caused by the approximately threefold larger uncertainty of the k Q factor of ionization chambers, which, due to the lack of experimental data, is still derived by calculations. Measurements of absorbed dose to water, D w, by means of water calorimetry have now been performed in the entrance channel of a scanned 6 cm  ×  6 cm radiation field of 429 MeV/u carbon ions, allowing the direct calibration of ionization chambers and thus the experimental determination of k Q. Within this work, values for k Q have been determined for the Farmer-type ionization chambers FC65-G and TM30013. A detailed investigation of the radiation field enabled the accurate determination of correction factors needed for both calorimetric and ionometric measurements. Finally, a relative standard measurement uncertainty of 0.8% (k  =  1) could be achieved for the experimental k Q values. For both chambers, the experimental k Q factors were found to be about 1% larger than those tabulated in the German DIN 6801-1 protocol, whereas compared to the theoretical values stated in the TRS-398 protocol, the experimental k Q value agrees within 0.4% for the TM30013 chamber but is about 1% lower in the case of the FC65-G chamber.

  16. Oxygen reduction in acid media: influence of the activity of CoNPc(1,2) bilayer deposits in relation to their attachment to the carbon black support and role of surface groups as a function of heat treatment

    NARCIS (Netherlands)

    Biloul, A.; Contamin, O.; Scarbeck, G.; Savy, M.; Palys, B.J.; Riga, J.; Verbist, J.

    1994-01-01

    O2 reduction was investigated using rotating disk electrode and voltammetry techniques on NPcCo(1,2) impregnations deposited onto two kinds of carbon black support. They were selected on the basis of their similar pH and dibuthylphthalate (DBP) adsorption values. Samples were also characterized by I

  17. BaFe12O19-chitosan Schiff-base Ag (I) complexes embedded in carbon nanotube networks for high-performance electromagnetic materials.

    Science.gov (United States)

    Zhao, Jie; Xie, Yu; Guan, Dongsheng; Hua, Helin; Zhong, Rong; Qin, Yuancheng; Fang, Jing; Liu, Huilong; Chen, Junhong

    2015-07-28

    The multiwalled carbon nanotubes/BaFe12O19-chitosan (MCNTs/BF-CS) Schiff base Ag (I) complex composites were synthesized successfully by a chemical bonding method. The morphology and structures of the composites were characterized with electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction techniques. Their conductive properties were measured using a four-probe conductivity tester at room temperature, and their magnetic properties were tested by a vibrating sample magnetometer. The results show that the BF-CS Schiff base Ag (I) complexes are embedded into MCNT networks. When the mass ratio of MCNTs and BF-CS Schiff base is 0.95:1, the conductivity, Ms (saturation magnetization), Mr (residual magnetization), and Hc (coercivity) of the BF-CS Schiff base composites reach 1.908 S cm(-1), 28.20 emu g(-1), 16.66 emu g(-1) and 3604.79 Oe, respectively. Finally, a possible magnetic mechanism of the composites has also been proposed.

  18. Free-standing electrodes composed of carbon-coated Li4Ti5O12 nanosheets and reduced graphene oxide for advanced sodium ion batteries

    Science.gov (United States)

    Xu, Guobao; Tian, Ye; Wei, Xiaolin; Yang, Liwen; Chu, Paul K.

    2017-01-01

    A free-standing electrode composed of carbon-coated Li4Ti5O12 nanosheets and reduced graphene oxide (designated as LTO-C/RGO) is fabricated for Na storage by modified vacuum filtration and subsequent annealing. In this process, graphene oxide with negative charges and LTO-C nanosheets with abundant charged ions are self-assembled into the nanocomposite based on the screening effect of electrostatic repulsion. The unique structure of the confined LTO-C nanosheets in a highly conductive interconnected RGO network not only promotes the reaction kinetics and structural stability of the electrodes during Na+ insertion/extraction, but also provides plenty of interfacial sites for Na+ adsorption giving rise to additional interfacial Na storage. The free-standing LTO-C/RGO anode for sodium ion battery exhibits a high capacity of 166 mAhg-1 at 1 C, good rate capability of 98.7 mAhg-1 at 5 C, and superior cyclic performance of 114 mAhg-1 at 2 C after 600 cycles. The materials boasting superior Na storage have large potential in high-performance sodium ion batteries in portable, flexible and wearable electronics.

  19. Carbon-rich presolar grains from massive stars. Subsolar 12C/13C and 14N/15N ratios and the mystery of 15N

    CERN Document Server

    Pignatari, M; Hoppe, P; Jordan, C J; Gibson, B K; Trappitsch, R; Herwig, F; Fryer, C; Hirschi, R; Timmes, F X

    2015-01-01

    Carbon-rich grains with isotopic anomalies compared to the Sun are found in primitive meteorites. They were made by stars, and carry the original stellar nucleosynthesis signature. Silicon carbide grains of Type X and C, and low-density graphites condensed in the ejecta of core-collapse supernovae. We present a new set of models for the explosive He shell and compare them with the grains showing 12C/13C and 14N/15N ratios lower than solar. In the stellar progenitor H was ingested into the He shell and not fully destroyed before the explosion. Different explosion energies and H concentrations are considered. If the SN shock hits the He-shell region with some H still present, the models can reproduce the C and N isotopic signatures in C-rich grains. Hot-CNO cycle isotopic signatures are obtained, including a large production of 13C and 15N. The short-lived radionuclides 22Na and 26Al are increased by orders of magnitude. The production of radiogenic 22Ne from the decay of 22Na in the He shell might solve the pu...

  20. Solvation structure and dynamics of cis- and trans-1,2 dichloroethene isomers in supercritical carbon dioxide. A molecular dynamics simulation study.

    Science.gov (United States)

    Dellis, Dimitris; Skarmoutsos, Ioannis; Samios, Jannis

    2011-10-27

    Molecular dynamics simulation techniques have been employed to investigate the solvation structure and dynamics in dilute mixtures of cis- and trans-1,2-dichloroethene in supercritical carbon dioxide. The calculations were performed for state points along a near-critical isotherm (1.02 T(c)) over a wide range of densities, using new developed optimized potential models for both isomers. The similarities and differences in the solvation structures around each isomer have been presented and discussed. The local density augmentation and enhancement factors of CO(2) around the isomers have been found significantly larger than the corresponding values for pure supercritical CO(2). The dynamic local density reorganization has been investigated and related to previously proposed relaxation mechanisms. The density dependence of the calculated self-diffusion coefficients has revealed the existence of a plateau in the region of 0.7-1.1 ρ(c), where the local density augmentation exhibits the maximum value. The reorientational dynamics of the C═C bond vector have been also studied, exhibiting significant differences between the two isomers in the case of the second-order Legendre time correlation functions.

  1. High throughput, colorimetric screening of microbial ester biosynthesis reveals high ethyl acetate production from Kluyveromyces marxianus on C5, C6, and C12 carbon sources.

    Science.gov (United States)

    Löbs, Ann-Kathrin; Lin, Jyun-Liang; Cook, Megan; Wheeldon, Ian

    2016-10-01

    Advances in genome and metabolic pathway engineering have enabled large combinatorial libraries of mutant microbial hosts for chemical biosynthesis. Despite these advances, strain development is often limited by the lack of high throughput functional assays for effective library screening. Recent synthetic biology efforts have engineered microbes that synthesize acetyl and acyl esters and many yeasts naturally produce esters to significant titers. Short and medium chain volatile esters have value as fragrance and flavor compounds, while long chain acyl esters are potential replacements for diesel fuel. Here, we developed a biotechnology method for the rapid screening of microbial ester biosynthesis. Using a colorimetric reaction scheme, esters extracted from fermentation broth were quantitatively converted to a ferric hydroxamate complex with strong absorbance at 520 nm. The assay was validated for ethyl acetate, ethyl butyrate, isoamyl acetate, ethyl hexanoate, and ethyl octanoate, and achieved a z-factor of 0.77. Screening of ethyl acetate production from a combinatorial library of four Kluyveromyces marxianus strains on seven carbon sources revealed ethyl acetate biosynthesis from C5, C6, and C12 sugars. This newly adapted method rapidly identified novel properties of K. marxianus metabolism and promises to advance high throughput microbial strain engineering for ester biosynthesis.

  2. The differences in binding 12-carbon aliphatic ligands by bovine β-lactoglobulin isoform A and B studied by isothermal titration calorimetry and X-ray crystallography.

    Science.gov (United States)

    Loch, Joanna I; Bonarek, Piotr; Polit, Agnieszka; Swiątek, Śylwia; Dziedzicka-Wasylewska, Marta; Lewiński, Krzysztof

    2013-08-01

    Isoforms A (LGB-A) and B (LGB-B) of bovine lactoglobulin, the milk protein, differ in positions 64 (D↔G) and 118 (V↔A). Interactions of LGB-A and LGB-B with sodium dodecyl sulfate (SDS), dodecyltrimethylammonium chloride (DTAC) and lauric acid (LA), 12-carbon ligands possessing differently charged polar groups, were investigated using isothermal titration calorimetry and X-ray crystallography, to study the proton linkage phenomenon and to distinguish between effects related to different isoforms and different ligand properties. The determined values of ΔS and ΔH revealed that for all ligands, binding is entropically driven. The contribution from enthalpy change is lower and shows strong dependence on type of buffer that indicates proton release from the protein varying with protein isoform and ligand type and involvement of LA and Asp64 (in isoform A) in this process. The ligand affinities for both isoforms were arranged in the same order, DTAC enthalpy, resulting in almost identical ΔG for complexes of both isoforms. The determined crystal structures showed that substitution in positions 64 and 118 did not influence the overall structure of LGB complexes. The chemical character of the ligand polar group did not affect the position of its aliphatic chain in protein β-barrel, indicating a major role of hydrophobic interactions in ligand binding that prevailed even with the repulsion between positively charged DTAC and lysine residues located at binding site entrance.

  3. Traceability of animal byproducts in quail (Coturnix coturnix japonica tissues using carbon (13C/12C and nitrogen (15N/14N stable isotopes

    Directory of Open Access Journals (Sweden)

    C Móri

    2007-12-01

    Full Text Available Consistent information on meat products consumed by the public is essential. The technique of stable isotopes is a powerful tool to recover consumers' confidence, as it allows the detection of animal byproduct residues in poultry meat, particularly in quail meat. This study aimed at checking the presence of poultry byproduct mixtures in quail diets by applying the technique of carbon (13C/12C and nitrogen (15N/14N stable isotopes in quail breast muscle, keel, and tibia. Sixty four one-day-old male quails were obtained from a commercial farm. Birds were housed in an experimental house from one to 42 days of age, and were randomly distributed into 8 experimental treatments, and fed diets containing poultry offal meal (POM, bovine meat and bone meal (MBM or poultry feather meal (PFM, or their mixtures. Four birds per treatment were slaughtered at 42 days of age, and breast (Pectoralis major, keel, and tibia were collected for analyses. The inclusion of animal byproducts in quail diets was detected by 13C e 15N analyses in the tissues of the birds; however, it was not possible to specify which byproducts were used. It was concluded that quail meat can be certified by the technique of stable isotopes.

  4. The Search and Study of Low-Mass Scalar Mesons in the Reaction np --> np Pi^{+}Pi_{-} at the Impulse of Neutron Beam $P_{n} = 5.20 ^{+}_{-}$ 0.12 GeV/c$

    CERN Document Server

    Troyan, Yu A; Troyan, A Yu; Plekhanov, E B; Jerusalimov, A P; Arakelian, S G

    2008-01-01

    Using irradiation of 1-m. HBC LHE JINR by qvasimonochromatic neutron beam with impulse Pn=(5.20 +/- 0.12)GeV/c which was produced after acceleration deuterons in the sinchrophasotron LHE JINR where selected 2560 events of reaction np --> npPi+Pi-. After supplementary sorting out events in which a secondary proton flies forward in general c.m.s. of reaction in the effective mass spectrum of Pi+Pi- - combinations there were found out nine peculiarities at masses 350, 408, 489, 579, 676, 762, 878, 1036, 1170 MeV/c^2 and with experimental widths not more than several tens MeV/c^2. The resosnsce effects are too increased after use additional criterion - balance of tne sum of the longitidual impulse of Pi+ and Pi- mesons in the general c.m.s. of the reaction. By these conditions the values of standart derivation from the background are (5 - 7.5). The direct measurement of the spin of resonances was carried out. Also other quantum numbers where obtained. All of these peculiarities have similar set of quantum numbers...

  5. Additional heat treatment of non-porous coatings obtained on medium carbon steel substrates by electron beam cladding of a Ti-Mo-C powder composition

    Science.gov (United States)

    Mul, D. O.; Drobyaz, E. A.; Zimoglyadova, T. A.; Bataev, V. A.; Lazurenko, D. V.; Shevtsova, L. I.

    2016-04-01

    The structure and microhardness of surface layers, obtained by non-vacuum electron beam cladding of Ti-Mo-C powder mixture on a steel substrate after different types of heat treatment, were investigated. After cladding samples were heat treated in a furnace at 200...500 °C, as well as quenched at 860 ° C and then underwent high-temperature tempering. Heat treatment of cladded coatings induced tempering of martensite and precipitation of cementite particles (Fe3C). Transmission electron microscopy of the samples after heating and holding at 300 ° C revealed precipitation of nanosized cubical TiC particles. The formation of hard nanosized particles led to the surface layer microhardness growth. The highest level of microhardness (which was 1.2...1.5-fold higher in comparison with coating microhardness after heat treatment) was achieved after heating of the claded material at 300 °C and 400 °C Additional quenching of samples at 860 °C did not increase the microhardness level.

  6. 预应力碳纤维片材在结构加固中的应用研究——以其对钢筋混凝土梁力学性能的增强为例%A Study on the Application of Prestressed Carbon Fiber Sheet Structure Reinforcement: Take the Reinforcement of Mechanical Performance of Reinforced Concrete Beams by it for Example

    Institute of Scientific and Technical Information of China (English)

    何令

    2012-01-01

    文章通过大型商业有限元软件ANSYS/Civil对预应力碳纤维片材增强钢筋混凝土梁的抗弯性能进行了数值模拟,分析了普通RC梁、碳纤维布增强RC梁、预应力碳纤维布增强RC梁的抗弯承载力、受力钢筋应力历程、RC梁挠度历程等力学性能.结果表明,粘贴预应力碳纤维布能够更好的改善钢筋混凝土梁的受力,提高增强RC梁的承载能力.%This article presents the carrying-out of the numerical simulation of the enhanced flexural performance of the concrete beams prestressed carbon fiber sheet of large commercial finite dement software ANSYS/Civil. It analyzes the mechanics properties of ordinary RC beam, carbon fiber enhanced RE beam, the bending proof carrying capacity of prestressed carbon fiber enhanced RC beam, the stress course of reinforced steel, the deflection proof course of RC beam. The finding reveals that bonding prestressed carbon fiber sheet is more capable to relax the stress on the steel concrete and enhance the stress of RC beams.

  7. A study of V79 cell survival after for proton and carbon ion beams as represented by the parameters of Katz' track structure model

    DEFF Research Database (Denmark)

    Grzanka, Leszek; Waligórski, M. P. R.; Bassler, Niels

    Katz’s theory of cellular track structure (1) is an amorphous analytical model which applies a set of four cellular parameters representing survival of a given cell line after ion irradiation. Usually the values of these parameters are best fitted to a full set of experimentally measured survival...... curves available for a variety of ions. Once fitted, using these parameter values and the analytical formulae of the model calculations, cellular survival curves and RBE may be predicted for that cell line after irradiation by any ion, including mixed ion fields. While it is known that the Katz model...... different sets of data obtained for the same cell line and different ions, measured at different laboratories, we have fitted model parameters to a set of carbon-irradiated V79 cells, published by Furusawa et al. (2), and to a set of proton-irradiated V79 cells, published by Wouters et al. (3), separately...

  8. Dosimetry auditing procedure with alanine dosimeters for light ion beam therapy

    DEFF Research Database (Denmark)

    Ableitinger, Alexander; Vatnitsky, Stanislav; Herrmann, Rochus

    2013-01-01

    verification aimed at measuring a dose of 10 Gy homogeneously delivered to a virtual-target volume of 8 × 8 × 12 cm3. In order to interpret the readout of the irradiated alanine dosimeters additional Monte Carlo simulations were performed to calculate the energy dependent detector response of the particle......Background and purpose In the next few years the number of facilities providing ion beam therapy with scanning beams will increase. An auditing process based on an end-to-end test (including CT imaging, planning and dose delivery) could help new ion therapy centres to validate their entire logistic...... chain of radiation delivery. An end-to-end procedure was designed and tested in both scanned proton and carbon ion beams, which may also serve as a dosimetric credentialing procedure for clinical trials in the future. The developed procedure is focused only on physical dose delivery and the validation...

  9. Simultaneous measurement of dopamine and ascorbate at their physiological levels using voltammetric microprobe based on overoxidized poly(1,2-phenylenediamine)-coated carbon fiber.

    Science.gov (United States)

    Mo, J W; Ogorevc, B

    2001-03-15

    Overoxidized poly-(1,2-phenylenediamine) (OPPD)-coated carbon fiber microelectrodes (CFMEs) exhibit, in combination with square-wave voltammetry (SWV) detection mode, the attractive ability to simultaneously measure low nM dopamine (DA) and mM ascorbate (AA) in a pH 7.4 medium. The PPD polymer film is electrodeposited onto a carbon fiber at a constant potential of 0.8 V versus Ag/AgCl using a solution containing sodium dodecylsulfate as the dopant. After overoxidation using cyclic voltammetry (CV) in the potential range from 0 to 2.2 V at a scan rate of 10 V/s, the resulting OPPD-CFME displays a high SWV current response to cationic DA at approximately 0.2 V and has a favorably low response to anionic AA at approximately 0.0 V vs Ag/AgCl. The preparation of the new OPPD-sensing film has been carefully studied and optimized. The OPPD properties and behavior were characterized using CV and SWV under various conditions and are discussed with respect to DA and AA detection. The linear calibration range for DA in the presence of 0.3 mM AA is 50 nM to 10 microM, with a correlation coefficient of 0.998 and a detection limit of 10 nM using 45-s accumulation. The detection limit for DA in the absence of AA was estimated to be 2 nM (S/N = 3). The linear range for AA in the presence of 100 nM DA is 0.2-2 mM, with a correlation coefficient of 0.999 and a detection limit of 80 microM. The reproducibilities of SWV measurements at OPPD-CFCMEs are 1.6% and 2.5% for 100 nM DA and 0.3 mM AA, respectively. Potential interfering agents, such as 3,4-dihydroxyphenylacetic acid, uric acid, oxalate, human serum proteins, and glucose, at their physiologically relevant or higher concentrations did not have any effect. These favorable features offer great promise for in vitro and in vivo application of the proposed OPPD-coated microprobe.

  10. Obtention of thermoluminescent efficiencies by means of irradiation of TLD-100 dosemeters with proton beams helium and carbon; Obtencion de eficiencias termoluminiscentes mediante irradiacion de dosimetros TLD-100 con haces de protones, helios y carbon

    Energy Technology Data Exchange (ETDEWEB)

    Avila, O.; Rodriguez V, M.; Aviles, P.; Gamboa de Buen, I.; Buenfil, A.E.; Ruiz T, C.; Brandan, M.E. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    In this work, the advances of a serial of measurements of relative efficiency thermoluminescent of heavy charged particles (PCP) with respect to gamma radiation for TLD-100, dosemeters of LiF: Mg,Ti manufactured by the Harshaw-Bicron company are reported. The PCP are essentials in the implementation of dosimetry associated with medical applications. The measurements before gamma radiation were carrying out using the Vickrad irradiator of the National Institute of Nuclear Research at dose of 1.663 Gy. The measures which are reported about protons, helium and carbon were realized using the Pelletron accelerator of the Physics Institute of the UNAM. (Author)

  11. Large-angle production of charged pions with incident pion beams on nuclear targets

    CERN Document Server

    Apollonio, M; Bagulya, A; Barr, G; Blondel, A; Bobisut, F; Bogomilov, M; Bonesini, M; Booth, C; Borghi, S; Bunyatov, S; Burguet-Castell, J; Catanesi, M G; Cervera-Villanueva, A; Chimenti, P; Coney, L; Di Capua, E; Dore, U; Dumarchez, J; Edgecock, R; Ellis, M; Ferri, F; Gastaldi, U; Giani, S; Giannini, G; Gibin, D; Gilardoni, S; Gorbunov, P; Gößling, C; Gómez-Cadenas, J J; Grant, A; Graulich, J S; Grégoire, G; Grichine, V; Grossheim, A; Guglielmi, A; Howlett, L; Ivanchenko, A; Ivanchenko, V; Kayis-Topaksu, A; Kirsanov, M; Kolev, D; Krasnoperov, A; MartíinAlbo, J; Meurer, C; Mezzetto, M; B Mills, G; Morone, M C; Novella, P; Orestano, D; Palladino, V; Panman, J; Papadopoulos, I; Pastore, F; Piperov, S; Polukhina, N; Popov, B; Prior, G; Radicioni, E; Schmitz, D; Schroeter, R; Skoro, G; Sorel, M; Tcherniaev, E; Temnikov, P; Tereschenko, V; Tonazzo, A; Tortora, L; Tsenov, R; Tsukerman, I; Vidal-Sitjes, G; Wiebusch, C; Zucchelli, P

    2009-01-01

    Measurements of the double-differential pi+/- production cross-section in the range of momentum 100 MeV/c <= p <= 800 MeV/c and angle 0.35 rad <= theta <= 2.15 rad using pi+/- beams incident on beryllium, aluminium, carbon, copper, tin, tantalum and lead targets are presented. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN PS. The secondary pions were produced by beams in a momentum range from 3 GeV/c to 12.9 GeV/c hitting a solid target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using a small-radius cylindrical time projection chamber (TPC) placed inside a solenoidal magnet. Incident particles were identified by an elaborate system of beam detectors. Results are obtained for the double-differential cross-sections d2sigma/dpdtheta at six incident beam momenta. Data at 3 GeV/c, 5 GeV/c, 8 GeV/c, and 12 GeV/c are available for all targets while additional data at 8.9 GeV/...

  12. Induction of apoptosis in murione spleen lymphocytes using carbon ion beam; Induction de l'apoptose dans les lymphocytes spleniques de souris par un faisceau d'ions carbone

    Energy Technology Data Exchange (ETDEWEB)

    Holl, V.; Coelho, D. [Lab. de Cancerologie Experimentale et de Radiobiologie, LCER, Inst. de Recherche contre les Cancers de l' Appareil Digestif, Hopitaux Universitaires, Strasbourg (France); Weltin, D. [Faculte de Medecine, Strasbourg (France); Dufour, P. [Lab. de Cancerologie Experimentale et de Radiobiologie, LCER, Inst. de Recherche contre les Cancers de l' Appareil Digestif, Hopitaux Universitaires, Strasbourg (France); Denis, J.M. [Faculte de Medecine, Univ. Catholique de Louvain, Bruxelles (Belgium); Florentin, I. [Centre National de la Recherche Scientifique, CNRS, Unite de Recherche Associee, Hopital Cochin, Paris (France); Mathieu, J. [Centre de Recherche du Service de Sante des Armees, CRSSA, La Tronche (France); Gueulette, J. [Faculte de Medecine, Univ. Catholique de Louvain, Bruxelles (Belgium); Bischoff, P. [Lab. de Cancerologie Experimentale et de Radiobiologie, LCER, Inst. de Recherche contre les Cancers de l' Appareil Digestif, Hopitaux Universitaires, Strasbourg (France)

    2001-02-01

    To assess the capacity of heavy ions to induce apoptosis in lymphocytes, mice have been irradiated with accelerated carbon ions (95 MeV/nucleon) at doses ranging from 0.1 to 4 Gy. Their spleens were removed 24 h later and gently dissociated to prepare a single cell suspension. Mononuclear cells were then maintained in culture at 37{sup o}C, and the occurrence of apoptosis in these cells was analysed 24 h later. Lymphocytes were also irradiated in vitro, in the presence of Ac-DEVD-CHO, a potent caspase-3 and -7 inhibitor. Results from three experiments performed at the Grand Accelerateur National d'Ions Lourds (GANIL, Caen, France) are reported here. They indicate that carbon ions induce a marked, dose-dependent, reduction of the spleen weight and cellularity. However, in sharp contrast with spleen cells prepared from X-ray irradiated mice, only a slight increase of apoptosis is evidenced in cultured lymphocytes from mice irradiated with heavy ions. The significance of such results is discussed. So far, few data exist concerning the biological effects of heavy ions, in particular their capacity to induce apoptosis in lymphocytes; the present study provides useful clues for further investigations. (author)

  13. Beam screens for the LHC beam pipes

    CERN Multimedia

    Patrice Loïez

    1997-01-01

    Cross-section of LHC prototype beam pipes showing the beam screens. Slits in the screens allow residual gas molecules to be pumped out and become frozen to the walls of the ultra-cold beam pipe. Beam screens like these have been designed to line the beam pipes, absorbing radiation before it can hit the magnets and warm them up, an effect that would greatly reduce the magnetic field and cause serious damage.

  14. Evaluation of NorESM-OC (versions 1 and 1.2), the ocean carbon-cycle stand-alone configuration of the Norwegian Earth System Model (NorESM1)

    Science.gov (United States)

    Schwinger, Jörg; Goris, Nadine; Tjiputra, Jerry F.; Kriest, Iris; Bentsen, Mats; Bethke, Ingo; Ilicak, Mehmet; Assmann, Karen M.; Heinze, Christoph

    2016-08-01

    Idealised and hindcast simulations performed with the stand-alone ocean carbon-cycle configuration of the Norwegian Earth System Model (NorESM-OC) are described and evaluated. We present simulation results of three different model configurations (two different model versions at different grid resolutions) using two different atmospheric forcing data sets. Model version NorESM-OC1 corresponds to the version that is included in the NorESM-ME1 fully coupled model, which participated in CMIP5. The main update between NorESM-OC1 and NorESM-OC1.2 is the addition of two new options for the treatment of sinking particles. We find that using a constant sinking speed, which has been the standard in NorESM's ocean carbon cycle module HAMOCC (HAMburg Ocean Carbon Cycle model), does not transport enough particulate organic carbon (POC) into the deep ocean below approximately 2000 m depth. The two newly implemented parameterisations, a particle aggregation scheme with prognostic sinking speed, and a simpler scheme that uses a linear increase in the sinking speed with depth, provide better agreement with observed POC fluxes. Additionally, reduced deep ocean biases of oxygen and remineralised phosphate indicate a better performance of the new parameterisations. For model version 1.2, a re-tuning of the ecosystem parameterisation has been performed, which (i) reduces previously too high primary production at high latitudes, (ii) consequently improves model results for surface nutrients, and (iii) reduces alkalinity and dissolved inorganic carbon biases at low latitudes. We use hindcast simulations with prescribed observed and constant (pre-industrial) atmospheric CO2 concentrations to derive the past and contemporary ocean carbon sink. For the period 1990-1999 we find an average ocean carbon uptake ranging from 2.01 to 2.58 Pg C yr-1 depending on model version, grid resolution, and atmospheric forcing data set.

  15. LHC beam loss pattern recognition

    CERN Document Server

    Marsili, A; Puzo, P

    2011-01-01

    One of the systems protecting CERN’s Large Hadron Collider (LHC) is the Beam Loss Monitoring system (BLM). More than 3600 monitors are installed around the ring. The beam losses are permanently integrated over 12 different time intervals (from 40 microseconds to 84 seconds). When any loss exceeds the thresholds defined for the integration window, the beam is removed from the machine. Understanding the origin of a beam loss is crucial for machine operation, as it can help to avoid a repetition of the same scenario. The signals read from given monitors can be considered as entries of a vector. This article presents how a loss map of unknown cause can be decomposed using vector based analysis derived from well-known loss scenarios. The algorithms achieving this decomposition are described, as well as the accuracy of the results.

  16. Mycosis fungoides. Electron beam therapy.

    Science.gov (United States)

    Spittle, M F

    1977-01-01

    The most effective treatment of late mycosis fungoides is total skin electron beam therapy. The beam at the Hammersmith Hospital in London has been adapted to treat these patients. Patients with advanced disease who have failed more conservative methods of treatment are irradiated. The electron beam is modified by the use of carbon and copper scatterers to produce an 80 percent depth dose at 5.5, 8 and 11.5 millimeters below the skin surface. The dose achieved in most patients is between 1500 rads and 2600 rads given in 10 to 13 treatments over 5-7 weeks. Recently the higher dose range has been employed and lithium flouride studies have shown that giving these doses from each of 4 fields, the dose achieved on the skin is approximately twice the given dose. The management of patients and the effects of treatment are discussed.

  17. Stable beams

    CERN Multimedia

    2015-01-01

    Stable beams: two simple words that carry so much meaning at CERN. When LHC page one switched from "squeeze" to "stable beams" at 10.40 a.m. on Wednesday, 3 June, it triggered scenes of jubilation in control rooms around the CERN sites, as the LHC experiments started to record physics data for the first time in 27 months. This is what CERN is here for, and it’s great to be back in business after such a long period of preparation for the next stage in the LHC adventure.   I’ve said it before, but I’ll say it again. This was a great achievement, and testimony to the hard and dedicated work of so many people in the global CERN community. I could start to list the teams that have contributed, but that would be a mistake. Instead, I’d simply like to say that an achievement as impressive as running the LHC – a machine of superlatives in every respect – takes the combined effort and enthusiasm of everyone ...

  18. Bamboo carbon assisted sol–gel synthesis of Li{sub 4}Ti{sub 5}O{sub 12} anode material with enhanced electrochemical activity for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Guoen; He, Jiarong [Institute of Biomaterial, College of Science, South China Agricultural University, Guangzhou 510642 (China); Song, Xinjian [Laboratory of Biological Resources Protection and Utilization of Hubei Province, Hubei Minzu University, Enshi 445000 (China); Huang, Xueyan [Institute of Biomaterial, College of Science, South China Agricultural University, Guangzhou 510642 (China); Yu, Xiaoyuan, E-mail: yuxiaoyuan@scau.edu.cn [Institute of Biomaterial, College of Science, South China Agricultural University, Guangzhou 510642 (China); Fang, Yueping [Institute of Biomaterial, College of Science, South China Agricultural University, Guangzhou 510642 (China); Chen, Dongyang, E-mail: dongyang.chen@northwestern.edu [Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113 (United States)

    2015-02-05

    Highlights: • Bamboo carbon is employed to assist the synthesis of spinel Li{sub 4}Ti{sub 5}O{sub 12} anode material (BC-LTO). • Bamboo carbon helps to reduce particle size and narrow size distribution of Li{sub 4}Ti{sub 5}O{sub 12} material. • BC-LTO anode material exhibits high capacities and excellent cycling performance. • BC-LTO anode displays excellent rate-capability and enhanced reversibility. - Abstract: To control the morphology of inorganic electrode materials for high performance lithium ion batteries, bamboo carbon with highly ordered three-dimensional microscopic porosity was employed to act as a template to confine the growth of spinel Li{sub 4}Ti{sub 5}O{sub 12} anode nanoparticle in its sol–gel synthesis. The bamboo carbon was removed by high temperature calcination thereafter to produce pure spinel Li{sub 4}Ti{sub 5}O{sub 12} (BC-LTO). The electrochemical properties of BC-LTO were thoroughly evaluated in lithium ion batteries and compared with the electrochemical properties of the spinel Li{sub 4}Ti{sub 5}O{sub 12} synthesized without bamboo carbon template (P-LTO). The crystal structures of BC-LTO and P-LTO were identified as the same spinel structure by X-ray diffraction. The positive effects of adding bamboo carbon during the electrode synthesis were observed to be reducing both the particle size and size distribution of BC-LTO as evidenced by scanning electron microscopy (SEM). Cyclic voltammetry (CV) analysis demonstrated that BC-LTO had a higher lithium insertion/extraction reversibility than P-LTO. The BC-LTO anode delivered a capacity of 160 mAh g{sup −1} after 50 cycles at a rate of 0.2 C, much higher than the P-LTO anode which only delivered 139 mAh g{sup −1} under the same conditions. Detailed galvanostatic charge/discharge tests using various current rates were carried out, and the results demonstrated that BC-LTO is a promising candidate anode material for high performance lithium ion batteries. The bamboo carbon

  19. The 12C(12C,α)20Ne and 12C(12C,p)23Na reactions at the Gamow peak via the Trojan Horse Method

    Science.gov (United States)

    Tumino, A.; Spitaleri, C.; Cherubini, S.; Guardo, L.; Gulino, M.; Indelicato, I.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Spartá, R.

    2016-05-01

    A measurement of the 12C(14N,α20Ne)2H and 12C(14N,p23Na)2Hreactions has been performed at a 14N beam energy of 30.0 MeV. The experiment aims to explore the extent to which contributing 24Mg excited states can be populated in the quasi-free reaction off the deuteron in 14N. In particular, the 24Mg excitation region explored in the measurement plays a key role in stellar carbon burning whose cross section is commonly determined by extrapolating high-energy fusion data. From preliminary results, α and proton channels are clearly identified. In particular, ground and first excited states of 20Ne and 23Na play a major role.

  20. Energy compensation of slow extracted beams with RF acceleration

    Science.gov (United States)

    Fujimoto, Tetsuya; Souda, Hikaru; Torikoshi, Masami; Kanai, Tatsuaki; Yamada, Satoru; Noda, Koji

    2016-03-01

    In a conventional carbon-ion radiotherapy facility, a carbon-ion beam is typically accelerated up to an optimum energy, slowly extracted from a synchrotron ring by a resonant slow extraction method, and ultimately delivered to a patient through a beam-delivery system. At Japan's Gunma University, a method employing slow-beam extraction along with beam-acceleration has been adopted. This method slightly alters the extracted-beam's energy owing to the acceleration component of the process, which subsequently results in a residual-range variation of approximately 2 mm in water-equivalent length. However, this range variation does not disturb a distal dose distribution with broad-beam methods such as the single beam-wobbling method. With the pencil-beam 3D scanning method, however, such a range variation disturbs a distal dose distribution because the variation is comparable to slice thickness. Therefore, for pencil-beam 3D scanning, an energy compensation method for a slow extracted beam is proposed in this paper. This method can compensate for the aforementioned energy variances by controlling net energy losses through a rotatable energy absorber set fixed between the synchrotron exit channel and the isocenter. Experimental results demonstrate that beam energies can be maintained constant, as originally hypothesized. Moreover, energy-absorber positions were found to be significantly enhanced by optimizing beam optics for reducing beam-size growth by implementation of the multiple-scattering effect option.

  1. Expression of genes encoding enzymes involved in the one carbon cycle in rat placenta is determined by maternal micronutrients (folic acid, vitamin B12) and omega-3 fatty acids.

    Science.gov (United States)

    Khot, Vinita; Kale, Anvita; Joshi, Asmita; Chavan-Gautam, Preeti; Joshi, Sadhana

    2014-01-01

    We have reported that folic acid, vitamin B12, and omega-3 fatty acids are interlinked in the one carbon cycle and have implications for fetal programming. Our earlier studies demonstrate that an imbalance in maternal micronutrients influence long chain polyunsaturated fatty acid metabolism and global methylation in rat placenta. We hypothesize that these changes are mediated through micronutrient dependent regulation of enzymes in one carbon cycle. Pregnant dams were assigned to six dietary groups with varying folic acid and vitamin B12 levels. Vitamin B12 deficient groups were supplemented with omega-3 fatty acid. Placental mRNA levels of enzymes, levels of phospholipids, and glutathione were determined. Results suggest that maternal micronutrient imbalance (excess folic acid with vitamin B12 deficiency) leads to lower mRNA levels of methylene tetrahydrofolate reductase (MTHFR) and methionine synthase , but higher cystathionine b-synthase (CBS) and Phosphatidylethanolamine-N-methyltransferase (PEMT) as compared to control. Omega-3 supplementation normalized CBS and MTHFR mRNA levels. Increased placental phosphatidylethanolamine (PE), phosphatidylcholine (PC), in the same group was also observed. Our data suggests that adverse effects of a maternal micronutrient imbalanced diet may be due to differential regulation of key genes encoding enzymes in one carbon cycle and omega-3 supplementation may ameliorate most of these changes.

  2. Expression of Genes Encoding Enzymes Involved in the One Carbon Cycle in Rat Placenta is Determined by Maternal Micronutrients (Folic Acid, Vitamin B12 and Omega-3 Fatty Acids

    Directory of Open Access Journals (Sweden)

    Vinita Khot

    2014-01-01

    Full Text Available We have reported that folic acid, vitamin B12, and omega-3 fatty acids are interlinked in the one carbon cycle and have implications for fetal programming. Our earlier studies demonstrate that an imbalance in maternal micronutrients influence long chain polyunsaturated fatty acid metabolism and global methylation in rat placenta. We hypothesize that these changes are mediated through micronutrient dependent regulation of enzymes in one carbon cycle. Pregnant dams were assigned to six dietary groups with varying folic acid and vitamin B12 levels. Vitamin B12 deficient groups were supplemented with omega-3 fatty acid. Placental mRNA levels of enzymes, levels of phospholipids, and glutathione were determined. Results suggest that maternal micronutrient imbalance (excess folic acid with vitamin B12 deficiency leads to lower mRNA levels of methylene tetrahydrofolate reductase (MTHFR and methionine synthase , but higher cystathionine b-synthase (CBS and Phosphatidylethanolamine-N-methyltransferase (PEMT as compared to control. Omega-3 supplementation normalized CBS and MTHFR mRNA levels. Increased placental phosphatidylethanolamine (PE, phosphatidylcholine (PC, in the same group was also observed. Our data suggests that adverse effects of a maternal micronutrient imbalanced diet may be due to differential regulation of key genes encoding enzymes in one carbon cycle and omega-3 supplementation may ameliorate most of these changes.

  3. Hydrogen adsorption in carbon nanostructures compared

    NARCIS (Netherlands)

    Schimmel, H.G.; Nijkamp, M.G.; Kearley, G.J.; Rivera, A.; de Jong, K.P.; Mulder, F.M.

    2004-01-01

    Recent reports continue to suggest high hydrogen storage capacities for some carbon nanostructures due to a stronger interaction between hydrogen and carbon. Here the interaction of hydrogen with activated charcoal, carbon nanofibers, single walled carbon nanotubes (SWNT), and electron beam ‘opened’

  4. Electron beam pumped semiconductor laser

    Science.gov (United States)

    Hug, William F. (Inventor); Reid, Ray D. (Inventor)

    2009-01-01

    Electron-beam-pumped semiconductor ultra-violet optical sources (ESUVOSs) are disclosed that use ballistic electron pumped wide bandgap semiconductor materials. The sources may produce incoherent radiation and take the form of electron-beam-pumped light emitting triodes (ELETs). The sources may produce coherent radiation and take the form of electron-beam-pumped laser triodes (ELTs). The ELTs may take the form of electron-beam-pumped vertical cavity surface emitting lasers (EVCSEL) or edge emitting electron-beam-pumped lasers (EEELs). The semiconductor medium may take the form of an aluminum gallium nitride alloy that has a mole fraction of aluminum selected to give a desired emission wavelength, diamond, or diamond-like carbon (DLC). The sources may be produced from discrete components that are assembled after their individual formation or they may be produced using batch MEMS-type or semiconductor-type processing techniques to build them up in a whole or partial monolithic manner, or combination thereof.

  5. Beam imaging sensor

    Energy Technology Data Exchange (ETDEWEB)

    McAninch, Michael D.; Root, Jeffrey J.

    2016-07-05

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature.

  6. 基于连续碳纤维/树脂智能材料的梁结构应变模态表征%Strain modal characterization of beams using continuous carbon fiber/polymer smart composite

    Institute of Scientific and Technical Information of China (English)

    朱四荣; 周志勇; 吕泳; 郑华升; 李卓球

    2013-01-01

    研制了一种具有动态传感功能的碳纤维/树脂智能层,可用于结构的应变模态诊断.通过不同加载频率下的单向拉伸实验揭示了这种智能材料对低频动态载荷的响应能力,并理论分析了动态响应误差的影响因素.在此基础上将碳纤维/环氧树脂智能层连续敷设于悬臂梁结构表面代替传统的点式应变片,进行应变模态测试.测试结果表明,碳纤维/环氧树脂智能层可以较精确地反映结构的前三阶固有频率,并较好地表征结构的前三阶应变模态振型.对悬臂梁局部附加质量后重新进行了模态试验,结果表明:附加质量后,智能层反映的结构固有频率显著下降;同时,在附加质量所在的节点位置,智能层反映的应变模态振型有突变产生,说明智能层所表征的应变模态对结构物性参数变化具有识别能力,采用智能层与采用应变片的实验结果一致.此外,基于碳纤维/树脂智能层的可覆盖性,采用有限的测点全面捕捉了结构的应变模态信息,并在测试中通过在可疑区域内逐步增加测点,实现了结构物性参数变化的定位.%A carbon fiber/polymer smart layer able to sense dynamic strain was developed to perform structural strain modal diagnosis.The sensitivity of such a smart material to dynamic load at low frequency was revealed by the tension tests conducted with different frequencies,and the influencing factors on the error of the dynamic response were analyzed theoretically.The smart layer was continuously laid on a cantilever beam and took place of traditional strain gauges to test its strain modals.The test results indicate that the smart layer is able to exactly present the natural frequencies and the strain modal shapes of the first three orders for the beam.The test was conducted again on the beam with added mass.It is found that the added mass leads to the decrease of the natural frequencies and induces mutations on the smart

  7. Ultracold ordered electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Habs, D.; Kramp, J.; Krause, P.; Matl, K.; Neumann, R.; Schwalm, D.

    1988-01-01

    We have started an experimental program to develop an ultracold electron beam, which can be used together with a standard electron cooling device in the Heidelberg Test Storage Ring TSR. In contrast to the standard-type design using electron beam extraction beam extraction from a heated cathode, the ultracold beam is produced by photoemission of electrons from a cooled semiconductor crystal irradiated with an intense near-infrared laser light beam. Adiabatic acceleration is expected to provide ordering of the electron beam itself. Besides the cooling of ion beams to extremely low temperatures, with the aim of obtaining crystallization, the ultracold beam will constitute an excellent target for atomic physics experiments.

  8. Dissolved inorganic carbon, pH and other variables measured from laboratory experiment studies from an experimental carbonate exposure system from 2013-05-15 to 2013-07-12 (NODC Accession 0123316)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains the carbon chemistry measurements of a laboratory experiment study to understand the effects of ocean acidification on winter...

  9. Dissolved inorganic carbon, pH and other variables measured from laboratory experiment studies from an experimental carbonate exposure system from 2013-12-09 to 2014-01-31 (NODC Accession 0123317)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This archival package contains the carbon chemistry measurements of a laboratory experiment study to understand the effects of ocean acidification on winter...

  10. Experimental verification of beam quality in high-contrast imaging with orthogonal bremsstrahlung photon beams.

    Science.gov (United States)

    Sarfehnia, Arman; Jabbari, Keyvan; Seuntjens, Jan; Podgorsak, Ervin B

    2007-07-01

    Since taken with megavoltage, forward-directed bremsstrahlung beams, the image quality of current portal images is inferior to that of diagnostic quality images produced by kilovoltage beams. In this paper, the beam quality of orthogonal bremsstrahlung beams defined as the 90 degrees component of the bremsstrahlung distribution produced from megavoltage electron pencil beams striking various targets is presented, and the suitability of their use for improved radiotherapy imaging is evaluated. A 10 MeV electron beam emerging through the research port of a Varian Clinac-18 linac was made to strike targets of carbon, aluminum, and copper. PDD and attenuation measurements of both the forward and orthogonal beams were carried out, and the results were also used to estimate the effective and mean energy of the beams. The mean energy of a spectrum produced by a carbon target dropped by 83% from 1296 keV in the forward direction to 217 keV in the orthogonal direction, while for an aluminum target it dropped by 77% to 412 keV, and for a copper target by 65% to 793 keV. An in-depth Monte Carlo study of photon yield and electron contamination was also performed. Photon yield and effective energy are lower for orthogonal beams than for forward beams, and the differences are more pronounced for targets of lower atomic number. Using their relatively low effective energy, orthogonal bremsstrahlung beams produced by megavoltage electrons striking low atomic number targets yield images with a higher contrast in comparison with forward bremsstrahlung beams.

  11. Intense laser-driven ion beams in the relativistic-transparency regime: acceleration, control and applications

    Science.gov (United States)

    Fernandez, Juan C.

    2016-10-01

    Laser-plasma interactions in the novel regime of relativistically-induced transparency have been harnessed to generate efficiently intense ion beams with average energies exceeding 10 MeV/nucleon (>100 MeV for protons) at ``table-top'' scales. We have discovered and utilized a self-organizing scheme that exploits persisting self-generated plasma electric ( 0.1 TV/m) and magnetic ( 104 Tesla) fields to reduce the ion-energy (Ei) spread after the laser exits the plasma, thus separating acceleration from spread reduction. In this way we routinely generate aluminum and carbon beams with narrow spectral peaks at Ei up to 310 MeV and 220 MeV, respectively, with high efficiency ( 5%). The experimental demonstration has been done at the LANL Trident laser with 0.12 PW, high-contrast, 0.65 ps Gaussian laser pulses irradiating planar foils up to 250 nm thick. In this regime, Ei scales empirically with laser intensity (I) as I 1 / 2. Our progress is enabled by high-fidelity, massive computer simulations of the experiments. This work advances next-generation compact accelerators suitable for new applications. E . g ., a carbon beam with Ei 400 MeV and 10% energy spread is suitable for fast ignition (FI) of compressed DT. The observed scaling suggests that is feasible with existing target fabrication and PW-laser technologies, using a sub-ps laser pulse with I 2.5 ×1021 W/cm2. These beams have been used on Trident to generate warm-dense matter at solid-densities, enabling us to investigate its equation of state and mixing of heterogeneous interfaces purely by plasma effects distinct from hydrodynamics. They also drive an intense neutron-beam source with great promise for important applications such as active interrogation of shielded nuclear materials. Considerations on controlling ion-beam divergence for their increased utility are discussed. Funded by the LANL LDRD program.

  12. Carbon Nanoelectronics

    Directory of Open Access Journals (Sweden)

    Cory D. Cress

    2014-01-01

    Full Text Available Initiated by the first single-walled carbon nanotube (SWCNT transistors [1,2], and reinvigorated with the isolation of graphene [3], the field of carbon-based nanoscale electronic devices and components (Carbon Nanoelectronics for short has developed at a blistering pace [4]. Comprising a vast number of scientists and engineers that span materials science, physics, chemistry, and electronics, this field seeks to provide an evolutionary transition path to address the fundamental scaling limitations of silicon CMOS [5]. Concurrently, researchers are actively investigating the use of carbon nanomaterials in applications including back-end interconnects, high-speed optoelectronic applications [6], spin-transport [7], spin tunnel barrier [8], flexible electronics, and many more.

  13. Omega spectrometer ready for SPS beams

    CERN Multimedia

    1977-01-01

    Two different beams arrive into the Omega magnet: - a tagged photon beam for a charm search - experiment WA4 by the Bonn-CERN-Daresbury-Ecole Polytechnique-Glasgow-Lancaster-Manchester-Orsay-Sheffield Collaboration; - a separated hadron beam, at first for a beam-dump experiment - WA12 by the Birmingham-CERN-Ecole Polytechnique-MPI, Munich-Neuchâtel Collaboration. Beams of either negative or positive pions or kaons, protons or antiprotons, all at an energy around 40 GeV were made to impinge on a copper target where a shower of hadrons was produced and, on occasion, two muons which before detection passed through an iron absorber (not visible here). WA12 was completed in February 1977. At the centre, on top of the superconducting magnet, the hut containing the TV cameras, These observe the particle events occurring in the spark chambers in the magnet below.

  14. Beam optics of the folded tandem ion accelerator at BARC

    Indian Academy of Sciences (India)

    S Santra; P Singh

    2002-07-01

    The beam optics of the 6 MV folded tandem ion accelerator, that has recently been commissioned at Bhabha Atomic Research Centre, Mumbai, is presented. Typical beam trajectories for proton and 12C beams under different conditions, are shown. The constraints on the design due to the use of the infrastructure of the Van de Graaff accelerator, which existed earlier, are discussed.

  15. Beam studies for the Proton Improvement Plan (PIP) -- reducing beam loss at the Fermilab Booster

    CERN Document Server

    Seiya, K; Johnson, D E; Kapin, V V; Pellico, W A; Tan, C Y; Tesarek, R J

    2015-01-01

    The Fermilab Booster is being upgraded under the Proton Improvement Plan (PIP) to be capable of providing a proton flux of $2.25^{17}$ protons per hour. The intensity per cycle will remain at the present operational $4.3^{12}$ protons per pulse, however the Booster beam cycle rate is going to be increased from 7.5 Hz to 15 Hz. One of the biggest challenges is to maintain the present beam loss power while the doubling the beam flux. Under PIP, there has been a large effort in beam studies and simulations to better understand the mechanisms of the beam loss. The goal is to reduce it by half by correcting and controlling the beam dynamics and by improving operational systems through hardware upgrades. This paper is going to present the recent beam study results and status of the Booster operations.

  16. Bio-Carbon Accounting for Bio-Oil Co-Processing: 14C and 13C/12C

    Energy Technology Data Exchange (ETDEWEB)

    Mora, Claudia I. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Li, Zhenghua [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vance, Zachary [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-21

    This is a powerpoint presentation on bio-carbon accounting for bio-oil co-processing. Because of the overlapping range in the stable C isotope compositions of fossil oils and biooils from C3-type feedstocks, it is widely thought that stable isotopes are not useful to track renewable carbon during co-production. In contrast, our study demonstrates the utility of stable isotopes to: • capture a record of renewable carbon allocation between FCC products of co-processing • record changes in carbon apportionments due to changes in reactor or feed temperature Stable isotope trends as a function of percent bio-oil in the feed are more pronounced when the δ13C of the bio-oil endmember differs greatly from the VGO (i.e., it has a C4 biomass source–corn stover, switch grass, Miscanthus, sugarcane– versus a C3 biomass source– pine, wheat, rice, potato), but trends on the latter case are significant for endmember differences of just a few permil. The correlation between measured 14C and δ13C may be useful as an alternative to carbon accounting, but the relationship must first be established for different bio-oil sources.

  17. Preparation and electrochemical performance of hyper-networked Li{sub 4}Ti{sub 5}O{sub 12}/carbon hybrid nanofiber sheets for a battery-supercapacitor hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hong Soo; Kim, TaeHoon; Im, Ji Hyuk; Park, Chong Rae, E-mail: crpark@snu.ac.kr [Carbon Nanomaterials Design Laboratory, Global Research Laboratory, Research Institute of Advanced Materials, and Department of Materials Science and Engineering, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of)

    2011-10-07

    Hyper-networked Li{sub 4}Ti{sub 5}O{sub 12}/carbon hybrid nanofiber sheets that contain both a faradaically rechargeable battery-type component, namely Li{sub 4}Ti{sub 5}O{sub 12}, and a non-faradaically rechargeable supercapacitor-type component, namely N-enriched carbon, are prepared by electrospinning and their dual function as a negative electrode of lithium-ion batteries (LIBs) and a capacitor is tested for a new class of hybrid energy storage (denoted BatCap). An aqueous solution composed of polyvinylpyrrolidone, lithium hydroxide, titanium(IV) bis(ammonium-lactato)dihydroxide and ammonium persulfate is electrospun to obtain hyper-networked nanofiber sheets. Next, the sheets are exposed to pyrrole monomer vapor to prepare the polypyrrole-coated nanofiber sheets (PPy-HNS). The hyper-networked Li{sub 4}Ti{sub 5}O{sub 12}/N-enriched carbon hybrid nanofiber sheets (LTO/C-HNS) are then obtained by a stepwise heat treatment of the PPy-HNS. The LTO/C-HNS deliver a specific capacity of 135 mAh g{sup -1} at 4000 mA g{sup -1} as a negative electrode for LIBs. In addition, potentiodynamic experiments are performed using a full cell with activated carbon (AC) as the positive electrode and LTO/C-HNS as the negative electrode to estimate the capacitance properties. This new asymmetric electrode system exhibits a high energy density of 91 W kg{sup -1} and 22 W kg{sup -1} at power densities of 50 W kg{sup -1} and 4000 W kg{sup -1}, respectively, which are superior to the values observed for the AC||AC symmetric electrode system.

  18. Literature in Focus Beta Beams: Neutrino Beams

    CERN Multimedia

    2009-01-01

    By Mats Lindroos (CERN) and Mauro Mezzetto (INFN Padova, Italy) Imperial Press, 2009 The beta-beam concept for the generation of electron neutrino beams was first proposed by Piero Zucchelli in 2002. The idea created quite a stir, challenging the idea that intense neutrino beams only could be produced from the decay of pions or muons in classical neutrino beams facilities or in future neutrino factories. The concept initially struggled to make an impact but the hard work by many machine physicists, phenomenologists and theoreticians over the last five years has won the beta-beam a well-earned position as one of the frontrunners for a possible future world laboratory for high intensity neutrino oscillation physics. This is the first complete monograph on the beta-beam concept. The book describes both technical aspects and experimental aspects of the beta-beam, providing students and scientists with an insight into the possibilities o...

  19. ISR beam scrapers

    CERN Multimedia

    1972-01-01

    Beam scrapers seen in the direction of the beam. The two horizontal scraper foils are near the centre of the beam pipe andthe two scrapers for protection of the vacuum chamber are further outside. In the lower part of the beam pipe is the vertical halo scraping blade.

  20. Telecommunication using muon beams

    Science.gov (United States)

    Arnold, Richard C.

    1976-01-01

    Telecommunication is effected by generating a beam of mu mesons or muons, varying a property of the beam at a modulating rate to generate a modulated beam of muons, and detecting the information in the modulated beam at a remote location.

  1. Ultracold Ordered Electron Beam

    Science.gov (United States)

    Habs, D.; Kramp, J.; Krause, P.; Matl, K.; Neumann, R.; Schwalm, D.

    1988-01-01

    We have started an experimental program to develop an ultracold electron beam, which can be used together with a standard electron cooling device in the Heidelberg Test Storage Ring TSR. In contrast to the standard-type design using electron beam extraction from a heated cathode, the ultracold beam is produced by photoemission of electrons from a cooled semiconductor crystal irradiated with an intense near-infrared laser light beam. Adiabatic acceleration is expected to provide ordering of the electron beam itself. Besides the cooling of ion beams to extremely low temperatures, with the aim of obtaining crystallization, the ultracold beam will constitute an excellent target for atomic physics experiments.

  2. Optical generation of non-diffracting beams via photorefractive holography

    CERN Document Server

    Vieira, Tarcio A; Gesualdi, Marcos R R; Zamboni-Rached, Michel

    2015-01-01

    This work presents, for the first time the optical generation of non-diffracting beams via photorefractive holography. Optical generation of non-diffracting beams using conventional optics components is difficult and, in some instances, unfeasible, as it is wave fields given by superposition of non-diffracting beams. It is known that computer generated holograms and spatial light modulators (SLMs) successfully generate such beams. With photorefractive holography technique, the hologram of a non-diffracting beam is constructed (recorded) and reconstructed (reading) optically in a nonlinear photorefractive medium. The experimental realization of a non-diffracting beam was made in a photorefractive holography setup using a photorefractive Bi12SiO20 (BSO) crystal as the holographic recording medium, where the non-diffracting beams, the Bessel beam arrays and superposition of co-propagating Bessel beams (Frozen Waves) were obtained experimentally. The experimental results are in agreement with the theoretically pr...

  3. FINAL REPORT: A Study of the Abundance and 13C/12C Ratio of Atmospheric Carbon Dioxide to Advance the Scientific Understanding of Terrestrial Processes Regulating the GCC

    Energy Technology Data Exchange (ETDEWEB)

    Keeling, R. F.; Piper, S. C.

    2008-12-23

    The main objective of this project was to continue research to develop carbon cycle relationships related to the land biosphere based on remote measurements of atmospheric CO2 concentration and its isotopic composition. The project continued time-series observations of atmospheric carbon dioxide and isotopic composition begun by Charles D. Keeling at remote sites, including Mauna Loa, the South Pole, and eight other sites. The program also included the development of methods for measuring radiocarbon content in the collected CO2 samples and carrying out radiocarbon measurements in collaboration with Tom Guilderson of Lawrence Berkeley National Laboratory (LLNL). The radiocarbon measurements can provide complementary information on carbon exchange rates with the land and oceans and emissions from fossil-fuel burning. Using models of varying complexity, the concentration and isotopic measurements were used to establish estimates of the spatial and temporal variations in the net CO2 exchange with the atmosphere, the storage of carbon in the land and oceans, and variable isotopic discrimination of land plants.

  4. Magnetic Force Microscopy Using Electron-Beam Fabricated Tips

    NARCIS (Netherlands)

    Rührig, M.; Porthun, S.; Lodder, J.C.

    1994-01-01

    We used a new concept of tip preparation for magnetic force microscopy (MFM) proposed recently based on coating electron beam deposited carbon needles with appropriate magnetic thin film materials. In combining the advantages of electron beam fabricated needles with those of already widely used thin

  5. Helium ion beam induced growth of hammerhead AFM probes

    NARCIS (Netherlands)

    Nanda, G.; Veldhoven, E. van; Maas, D.J.; Sadeghian Marnani, H.; Alkemade, P.F.A.

    2015-01-01

    The authors report the direct-write growth of hammerhead atomic force microscope (AFM) probes by He+ beam induced deposition of platinum-carbon. In order to grow a thin nanoneedle on top of a conventional AFM probe, the authors move a focused He+ beam during exposure to a PtC precursor gas. In the f

  6. Carbon dioxide, temperature, salinity and other variables collected via time series monitoring from MOORINGS in the Gulf of Mexico from 2009-05-12 to 2009-12-21 (NODC Accession 0100068)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NODC Accession 0100068 includes chemical, physical, time series and underway - surface data collected from MOORINGS in the Gulf of Mexico from 2009-05-12 to...

  7. Parabolic scaling beams.

    Science.gov (United States)

    Gao, Nan; Xie, Changqing

    2014-06-15

    We generalize the concept of diffraction free beams to parabolic scaling beams (PSBs), whose normalized intensity scales parabolically during propagation. These beams are nondiffracting in the circular parabolic coordinate systems, and all the diffraction free beams of Durnin's type have counterparts as PSBs. Parabolic scaling Bessel beams with Gaussian apodization are investigated in detail, their nonparaxial extrapolations are derived, and experimental results agree well with theoretical predictions.

  8. 高压氧舱抢救一氧化碳中毒12例临床分析%Hyperbaric oxygen chamber therapy in emergency treatment of carbon monoxide poisoning - Clinical analysis of 12 cases

    Institute of Scientific and Technical Information of China (English)

    董玉民; 赵玉红

    2001-01-01

    @@ 我院自1999年12月引进高压氧舱以来,至2000年3月共收治CO中毒病人12例,在应用药物治疗的同时,利用高压氧舱抢救CO中毒的患者中,取得了良好的疗效,现报告如下.

  9. The ATLAS beam conditions monitor

    CERN Document Server

    Mikuz, M; Dolenc, I; Kagan, H; Kramberger, G; Frais-Kölbl, H; Gorisek, A; Griesmayer, E; Mandic, I; Pernegger, H; Trischuk, W; Weilhammer, P; Zavrtanik, M

    2006-01-01

    The ATLAS beam conditions monitor is being developed as a stand-alone device allowing to separate LHC collisions from background events induced either on beam gas or by beam accidents, for example scraping at the collimators upstream the spectrometer. This separation can be achieved by timing coincidences between two stations placed symmetric around the interaction point. The 25 ns repetition of collisions poses very stringent requirements on the timing resolution. The optimum separation between collision and background events is just 12.5 ns implying a distance of 3.8 m between the two stations. 3 ns wide pulses are required with 1 ns rise time and baseline restoration in 10 ns. Combined with the radiation field of 10/sup 15/ cm/sup -2/ in 10 years of LHC operation only diamond detectors are considered suitable for this task. pCVD diamond pad detectors of 1 cm/sup 2/ and around 500 mum thickness were assembled with a two-stage RF current amplifier and tested in proton beam at MGH, Boston and SPS pion beam at...

  10. Application of the in-beam PET therapy monitoring on precision irradiations with helium ions; Anwendung des in-beam PET Therapiemonitorings auf Praezisionsbestrahlungen mit Helium-Ionen

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, F.

    2008-02-19

    The main goal of the present dissertation was to extend the in-beam PET method to new ion types. It was shown that the in-beam PET method can also be applied for {sup 3}He irradiations. For this experiments on a {sup 3}He beam were performed. The activity yield is at equal applied dose about three times larger than at {sup 12}C irradiations. The reachable range resolution is smaller than 1 mm. At the irradiation of an inhomogeneous phantom it was shown that a contrast between different materials is resolvable. From the experimentally determined reaction rates cross sections for the reactions leading to positron emitters were performed. The data taken in the {sup 3}He experiments were compared those obtained in carbon-ion experiments as well as literature data for proton irradiations. A comparison with the calculations of the simulation program SHIELD-HIT was performed. A collection of cross-section models and the established requirements for a simulation program applicable for in-beam PET are preparing for further work.

  11. 强流脉冲电子束作用下20钢的微观结构状态%The Microstructures in 0.20%C Carbon Steel Induced by High-Current Pulsed Electron Beam

    Institute of Scientific and Technical Information of China (English)

    李艳; 蔡杰; 邹阳; 万明珍; 关庆丰

    2011-01-01

    In order to investigate superfast deformation behavior of metal, annealed 0.20%C carbon steel was irradiated with high-current pulsed electron beam (HCPEB). The microstructures of irradiated samples were investigated by using X-ray diffraction (XRD), optical microscopy and transmission electron microscopy (TEM). The experimental results showed that stress of about 1 GPa order was introduced in the irradiated surface layer, which led to severe plastic deformation on the irradiated surface. Both of the complicated configurations of tangle dislocations and dislocation cells were formed within the sublayer. Simultaneously, dislocation loops companied with the dislocations configurations were also produced. In the situation of multi-pulses, characterization by TEM also revealed that the sublayer consisting of some region with the glassy and nanocrystalline structure. It is suggested that the high-level stress and strain rate induced by HCPEB irradiation could cause the shifting of whole atomic planes synchronously. This is the more possible mechanism of the formation of the glassy and nanocrystalline structure.%为了研究金属材料的超快变形行为,利用强流脉冲电子束(HCPEB)装置对20钢进行轰击,采用X射线衍射、光学显微镜及透射电镜等技术分析了受轰击样品的变形组织与结构。实验结果表明,强流脉冲电子束能够在材料表层诱发幅值为1 GPa量级的应力,快速的加热和冷却过程在近表层诱发了强烈的塑性变形,并在材料表层内形成了复杂的位错缠结结构和位错胞结构,同时还伴随位错圈等空位簇缺陷的形成,多次轰击导致局部区域形成纳米和非晶结构。HCPBE轰击诱发的幅值极大的应力和极高的应变速率而导致的整个原子平面的位移可能是非晶结构形成的

  12. Neutron beam measurement dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Amaro, C.R. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-11-01

    This report describes animal dosimetry studies and phantom measurements. During 1994, 12 dogs were irradiated at BMRR as part of a 4 fraction dose tolerance study. The animals were first infused with BSH and irradiated daily for 4 consecutive days. BNL irradiated 2 beagles as part of their dose tolerance study using BPA fructose. In addition, a dog at WSU was irradiated at BMRR after an infusion of BPA fructose. During 1994, the INEL BNCT dosimetry team measured neutron flux and gamma dose profiles in two phantoms exposed to the epithermal neutron beam at the BMRR. These measurements were performed as a preparatory step to the commencement of human clinical trials in progress at the BMRR.

  13. Vertical Beam Polarization at MAMI

    Science.gov (United States)

    Schlimme, B. S.; Achenbach, P.; Aulenbacher, K.; Baunack, S.; Bender, D.; Beričič, J.; Bosnar, D.; Correa, L.; Dehn, M.; Distler, M. O.; Esser, A.; Fonvieille, H.; Friščić, I.; Gutheil, B.; Herrmann, P.; Hoek, M.; Kegel, S.; Kohl, Y.; Kolar, T.; Kreidel, H.-J.; Maas, F.; Merkel, H.; Mihovilovič, M.; Müller, J.; Müller, U.; Nillius, F.; Nuck, A.; Pochodzalla, J.; Schoth, M.; Schulz, F.; Sfienti, C.; Širca, S.; Spruck, B.; Štajner, S.; Thiel, M.; Tioukine, V.; Tyukin, A.; Weber, A.

    2017-04-01

    For the first time a vertically polarized electron beam has been used for physics experiments at MAMI in the energy range between 180 and 855 MeV. The beam-normal single-spin asymmetry An, which is a direct probe of higher-order photon exchange beyond the first Born approximation, has been measured in the reaction 12C (e → , e ‧)12C . Vertical polarization orientation was necessary to measure this asymmetry with the existing experimental setup. In this paper we describe the procedure to orient the electron polarization vector vertically, and the concept of determining both its magnitude and orientation with the available setup. A sophisticated method has been developed to overcome the lack of a polarimeter setup sensitive to the vertical polarization component.

  14. Pioneer 12 (PN-12)

    Science.gov (United States)

    Lozier, D.; Fimmel, R.

    1991-01-01

    The DSN (Deep Space Network) mission support requirements for Pioneer 12 are summarized. The Pioneer 12 spacecraft is in a 24-hour elliptical orbit around Venus. Atmospheric and altimetry data are obtained mainly around periapsis, and planetary imaging is normally performed around apoapsis. The Pioneer 12 mission objectives are outlined and the DSN support requirements are defined through the presentation of tables and narratives describing the spacecraft flight profile; DSN support coverage; frequency assignments; support parameters for telemetry, command and support systems; and tracking support responsibility.

  15. Effect of unburned carbon content in fly ash on the retention of 12 elements out of coal-combustion flue gas.

    Science.gov (United States)

    Bartonová, Lucie; Cech, Bohumír; Ruppenthalová, Lucie; Majvelderová, Vendula; Juchelková, Dagmar; Klika, Zdenek

    2012-01-01

    The aim of this study was to evaluate whether unburned carbon particles present in fly ash can help in the retention of S, Cl, Br, As, Se, Cu, Ni, Zn, Ga, Ge, Rb, and Pb out of flue gas during the coal combustion at fluidised-bed power station where the coal was combusted along with limestone. The competitive influence of 10%-25% CaO in fly ashes on the distribution of studied elements was studied as well to be clear which factor governs behaviour of studied elements. Except of S (with significant association with CaO) and Rb and Pb (with major affinity to Al2O3) the statistically significant and positive correlation coefficients were calculated for the relations between unburned carbon content and Br (0.959), Cl (0.957), Cu (0.916), Se (0.898), Ni (0.866), As (0.861), Zn (0.742), Ge (0.717), and Ga (0.588) content. The results suggest that the unburned carbon is promising material in terms of flue gas cleaning even if contained in highly calcareous fly ashes.

  16. Effect of unburned carbon content in fly ash on the retention of 12 elements out of coal-combustion flue gas

    Institute of Scientific and Technical Information of China (English)

    Lucie Barto(n)ová; Bohumír (C)ech; Lucie Ruppenthalová; Vendula Majvelderová; Dagmar Juchelková; Zdeněk Klika

    2012-01-01

    The aim of this study was to evaluate whether unburned carbon particles present in fly ash can help in the retention of S,CI,Br,As,Se,Cu,Ni,Zn,Ga,Ge,Rb,and Pb out of flue gas during the coal combustion at fluidised-bed power station where the coal was combusted along with limestone.The competitive influence of 10%-25% CaO in fly ashes on the distribution of studied elements was studied as well to be clear which factor governs behaviour of studied elements.Except of S (with significant association with CaO) and Rb and Pb (with major affinity to Al2O3) the statistically significant and positive correlation coefficients were calculated for the relations between unburned carbon content and Br (0.959),Cl (0.957),Cu (0.916),Se (0.898),Ni (0.866),As (0.861),Zn (0.742),Ge (0.717),and Ga (0.588) content.The results suggest that the unburned carbon is promising material in terms of flue gas cleaning even if contained in highly calcareous fly ashes.

  17. Mutation induction by ion beams in plants

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Atsushi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2001-03-01

    The effect of ion beams such as C, He, and Ne ions was investigated on the mutation induction in plants with the expectation that ion beams of high linear energy transfer (LET) can frequently produce large DNA alternation such as inversion, translocation and large deletion rather than point mutation. Mutation frequency was investigated using Arabidopsis visible phenotype loci and was 8 to 33 fold higher for 220 MeV carbon ions than for electrons. Mutation spectrum was investigated on the flower color of chrysanthemum cv to find that flower mutants induced by ion beams show complex and stripe types rather than single color. Polymerase chain reaction analysis was performed to investigate DNA alteration of mutations. In conclusion, the characteristics of ion beams for the mutation induction are 1) high frequency, 2) broad mutation spectrum, and 3) novel mutants. (S. Ohno)

  18. Beam delivery for stable isotope separation

    Science.gov (United States)

    Forbes, Andrew; Strydom, Hendrick J.; Botha, Lourens R.; Ronander, Einar

    2002-10-01

    In the multi-photon dissociation process of Carbon isotope enrichment, IR photons are used to selectively excite a molecule with the given isotopic base element. This enrichment process is very sensitive to the beam's intensity and wavelength. Because the intensity is determined by the propagation of the field, the enrichment factors are also very dependent on the field propagation. In this paper, the influence of the wavelength and intensity of the beam, on the isotope selective dissociation of a CFC compound is investigated both experimentally and theoretically. Consideration is also given to some of the factors that influence the delivery of various beams to the reactor chamber, and their subsequent propagation through the reactor. The results show that suitable beam forming can lead to an improved isotope separation process.

  19. Systematic investigation of projectile fragmentation using beams of unstable B and C isotopes

    CERN Document Server

    Thies, R; Adachi, T; Aksyutina, Y; Alcantara-Núñes, J; Altstadt, S; Alvarez-Pol, H; Ashwood, N; Aumann, T; Avdeichikov, V; Barr, M; Beceiro-Novo, S; Bemmerer, D; Benlliure, J; Bertulani, C A; Boretzky, K; Borge, M J G; Burgunder, G; Caamano, M; Caesar, C; Casarejos, E; Catford, W; Cederkäll, J; Chakraborty, S; Chartier, M; Chulkov, L V; Cortina-Gil, D; Crespo, R; Datta, U; Fernández, P Díaz; Dillmann, I; Elekes, Z; Enders, J; Ershova, O; Estradé, A; Farinon, F; Fraile, L M; Freer, M; Freudenberger, M; Fynbo, H O U; Galaviz, D; Geissel, H; Gernhäuser, R; Göbel, K; Golubev, P; Diaz, D Gonzalez; Hagdahl, J; Heftrich, T; Heil, M; Heine, M; Henriques, A; Holl, M; Ickert, G; Ignatov, A; Jakobsson, B; Johansson, H T; Jonson, B; Kalantar-Nayestanaki, N; Kanungo, R; Kelic-Heil, A; Knöbel, R; Kröll, T; Krücken, R; Kurcewicz, J; Kurz, N; Labiche, M; Langer, C; Bleis, T Le; Lemmon, R; Lepyoshkina, O; Lindberg, S; Machado, J; Marganiec, J; Maroussov, V; Mostazo, M; Movsesyan, A; Najafi, A; Nilsson, T; Nociforo, C; Panin, V; Paschalis, S; Perea, A; Petri, M; Pietri, S; Plag, R; Prochazka, A; Rahaman, A; Rastrepina, G; Reifarth, R; Ribeiro, G; Ricciardi, M V; Rigollet, C; Riisager, K; Röder, M; Rossi, D; del Rio, J Sanchez; Savran, D; Scheit, H; Simon, H; Sorlin, O; Stoica, V; Streicher, B; Taylor, J T; Tengblad, O; Terashima, S; Togano, Y; Uberseder, E; Van de Walle, J; Velho, P; Volkov, V; Wagner, A; Wamers, F; Weick, H; Weigand, M; Wheldon, C; Wilson, G; Wimmer, C; Winfield, J S; Woods, P; Yakorev, D; Zhukov, M V; Zilges, A; Zuber, K

    2016-01-01

    Background: Models describing nuclear fragmentation and fragmentation-fission deliver important input for planning nuclear physics experiments and future radioactive ion beam facilities. These models are usually benchmarked against data from stable beam experiments. In the future, two-step fragmentation reactions with exotic nuclei as stepping stones are a promising tool to reach the most neutron-rich nuclei, creating a need for models to describe also these reactions. Purpose: We want to extend the presently available data on fragmentation reactions towards the light exotic region on the nuclear chart. Furthermore, we want to improve the understanding of projectile fragmentation especially for unstable isotopes. Method: We have measured projectile fragments from 10,12-18C and 10-15B isotopes colliding with a carbon target. These measurements were all performed within one experiment, which gives rise to a very consistent dataset. We compare our data to model calculations. Results: One-proton removal cross sec...

  20. Low current beam techniques

    Energy Technology Data Exchange (ETDEWEB)

    Saint, A.; Laird, J.S.; Bardos, R.A.; Legge, G.J.F. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Nishijima, T.; Sekiguchi, H. [Electrotechnical Laboratory, Tsukuba (Japan).

    1993-12-31

    Since the development of Scanning Transmission Microscopy (STIM) imaging in 1983 many low current beam techniques have been developed for the scanning (ion) microprobe. These include STIM tomography, Ion Beam Induced Current, Ion Beam Micromachining and Microlithography and Ionoluminense. Most of these techniques utilise beam currents of 10{sup -15} A down to single ions controlled by beam switching techniques This paper will discuss some of the low beam current techniques mentioned above, and indicate, some of their recent applications at MARC. A new STIM technique will be introduced that can be used to obtain Z-contrast with STIM resolution. 4 refs., 3 figs.

  1. Pyramid beam splitter

    Science.gov (United States)

    McKeown, Mark H.; Beason, Steven C.; Fairer, George

    1992-01-01

    The apparatus of the present invention provides means for obtaining accurate, dependable, measurement of bearings and directions for geologic mapping in subterranean shafts, such as, for example, nuclear waste storage investigations. In operation, a laser beam is projected along a reference bearing. A pyramid is mounted such that the laser beam is parallel to the pyramid axis and can impinge on the apex of the pyramid thus splitting the beam several ways into several beams at right angles to each other and at right angles to the reference beam. The pyramid is also translatable and rotatable in a plane perpendicular to the reference beam.

  2. Preparation and selective laser sintering behavior of carbon fiber/polyamide 1 2 composite%炭纤维/尼龙12复合粉体的制备及选择性激光烧结行为

    Institute of Scientific and Technical Information of China (English)

    吴琼; 陈惠; 巫静; 夏笑虹; 许小曙; 边宏; 刘洪波

    2016-01-01

    采用液相氧化法对PAN基短切炭纤维进行表面改性,再与尼龙12混合,采用选择性激光烧结成形技术制备炭纤维/尼龙12复合粉体试样。利用扫描电子显微镜(SEM)、傅里叶变换红外光谱(FT-IR)表征炭纤维改性前后的表面状态、复合粉体的分散状况及烧结试样的断口形貌。探讨了复合粉体的烧结行为及烧结试样的力学性能与孔隙率的关系。结果表明,改性炭纤维表面的含氧基团在激光烧结时热分解产生气体,导致烧结试样孔隙率较高、力学性能较差。改性炭纤维经高温热处理可以在保留炭纤维表面粗糙度的同时有效降低烧结试样的孔隙率,与未改性炭纤维/尼龙12试样相比,拉伸强度、拉伸模量、弯曲强度和弯曲模量均有不同程度的提高。%The PAN-based chopped carbon fibers were surface modified by liquid-phase oxidation,mixed with polyamide 12,and the carbon fiber reinforced polyamide 12 composites were prepared by selective laser sinte-ring technology.Scanning electron microscope and Fourier transform infrared spectrum were applied to the characterization of the surface state on the carbon fibers before and after modification,the dispersity of compos-ite powder,and fracture morphology of the sintered components.The sintering behavior of composite powder, the relationship between mechanical property and porosity of the sintered components were also discussed.The results show that the oxygen-containing groups on the surface of modified carbon fibers are thermal decomposed and release gas in the process of laser sintering,which cause a high porosity and poor mechanical properties of the sintered components.While the carbon fibers treated under high temperature after modification can preserve the surface roughness,lower the porosity at the same time,and compared with the unmodified carbon fiber re-inforced polyamide 1 2 sintered components,the tensile strength,tensile modulus

  3. Carbon Residence Times in Pedogenic Carbonate Pools

    Science.gov (United States)

    Monger, H.; Feng, Y.; Karnjanapiboonwang, A.

    2013-12-01

    Soil carbonate is a huge pool of terrestrial carbon that contains at least 930 to 940 Pg C and has influx rates on the order of 1 to 12 g CaCO3/m2/yr. Such large mass to flux ratios yield long mean residence times for carbon (e.g., 85,000 years)--assuming steady state. Like other global carbon pools, the soil carbonate pool has smaller sub-pools with higher influx rates and shorter mean residence times. For example, pedogenic carbonate in coppice dunes known to have formed since 1858 and carbonate formed on lithic artifacts in soils at archaeology sites suggests mean residence times can be as short as 120 years--again assuming steady state. Harder to assess are efflux rates as CO2 emissions or bicarbonate leaching. Some Bowen-ratio studies have nevertheless found evidence for CO2 emissions resulting from carbonate dissolution, and other studies have found evidence for bicarbonate leaching based on dissolution pipes through calcic horizons using soil morphology studies. Since an understanding of mean residence times are prerequisite for a better understanding of soil carbonate in the global carbon cycle, especially in a scenario of an expanding Aridosphere, more influx and efflux measurements are needed to evaluate the possibility of carbon sequestration by soil carbonate in hyperarid, arid, semiarid, or subhumid soils.

  4. Beam Dynamics and Beam Losses - Circular Machines

    CERN Document Server

    Kain, V

    2016-01-01

    A basic introduction to transverse and longitudinal beam dynamics as well as the most relevant beam loss mechanisms in circular machines will be presented in this lecture. This lecture is intended for physicists and engineers with little or no knowledge of this subject.

  5. Beam-beam issues in asymmetric colliders

    Energy Technology Data Exchange (ETDEWEB)

    Furman, M.A.

    1992-07-01

    We discuss generic beam-beam issues for proposed asymmetric e{sup +}- e{sup -} colliders. We illustrate the issues by choosing, as examples, the proposals by Cornell University (CESR-B), KEK, and SLAC/LBL/LLNL (PEP-II).

  6. Modelling radiation fields of ion beams in tissue-like materials

    Energy Technology Data Exchange (ETDEWEB)

    Burigo, Lucas Norberto

    2014-07-16

    lithium beams similar to the one for carbon beam. Well-adjusted biological dose distributions for H-1, He-4, C-12 and O-16 with a very flat spread-out Bragg peak (SOBP) plateau were calculated with MCHIT+MKM; MCHIT+MKM predicts less damage to healthy tissues in the entrance channel for SOBP He-4 and C-12 beams compared to H-1 and O-16 ones. No definitive advantages for oxygen ions with respect to carbon were found.

  7. Electron-beam-controlled laser with a grid-controlled electron gun

    Energy Technology Data Exchange (ETDEWEB)

    Avanesyan, V.S.; Dutov, A.I.; Lakhno, Y.V.; Malkhov, L.N.

    1977-08-01

    An experimental investigation was made of an electron-beam-controlled carbon dioxide laser with an electron gun in which the beam current was modulated by a control grid. The design features of the electron gun and laser are described and their performance is reported. Observations of instabilities of the electron beam in the gun are reported and methods for eliminating them are suggested.

  8. Influence of injection beam emittance on beam transmission efficiency in a cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Kurashima, Satoshi, E-mail: kurashima.satoshi@jaea.go.jp; Kashiwagi, Hirotsugu; Miyawaki, Nobumasa; Yoshida, Ken-Ichi; Okumura, Susumu [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan)

    2014-02-15

    The JAEA AVF cyclotron accelerates various kinds of high-energy ion beams for research in biotechnology and materials science. Beam intensities of an ion species of the order of 10{sup −9}–10{sup −6} ampere are often required for various experiments performed sequentially over a day. To provide ion beams with sufficient intensity and stability, an operator has to retune an ion source in a short time. However, the beam intensity downstream of the cyclotron rarely increases in proportion to the intensity at the ion source. To understand the cause of this beam behavior, transmission efficiencies of a {sup 12}C{sup 5+} beam from an electron cyclotron resonance ion source to the cyclotron were measured for various conditions of the ion source. Moreover, a feasible region for acceleration in the emittance of the injection beam was clarified using a transverse-acceptance measuring system. We confirmed that the beam emittance and profile were changed depending on the condition of the ion source and that matching between the beam emittance and the acceptance of the cyclotron was degraded. However, after fine-tuning to improve the matching, beam intensity downstream of the cyclotron increased.

  9. Successful Beam-Beam Tuneshift Compensation

    Energy Technology Data Exchange (ETDEWEB)

    Bishofberger, Kip Aaron [Univ. of California, Los Angeles, CA (United States)

    2005-01-01

    The performance of synchrotron colliders has been limited by the beam-beam limit, a maximum tuneshift that colliding bunches could sustain. Due to bunch-to-bunch tune variation and intra-bunch tune spread, larger tuneshifts produce severe emittance growth. Breaking through this constraint has been viewed as impossible for several decades. This dissertation introduces the physics of ultra-relativistic synchrotrons and low-energy electron beams, with emphasis placed on the limits of the Tevatron and the needs of a tuneshift-compensation device. A detailed analysis of the Tevatron Electron Lens (TEL) is given, comparing theoretical models to experimental data whenever possible. Finally, results of Tevatron operations with inclusion of the TEL are presented and analyzed. It is shown that the TEL provides a way to shatter the previously inescapable beam-beam limit.

  10. Beam Loss in Linacs

    CERN Document Server

    Plum, M A

    2016-01-01

    Beam loss is a critical issue in high-intensity accelerators, and much effort is expended during both the design and operation phases to minimize the loss and to keep it to manageable levels. As new accelerators become ever more powerful, beam loss becomes even more critical. Linacs for H- ion beams, such as the one at the Oak Ridge Spallation Neutron Source, have many more loss mechanisms compared to H+ (proton) linacs, such as the one being designed for the European Spallation Neutron Source. Interesting H- beam loss mechanisms include residual gas stripping, H+ capture and acceleration, field stripping, black-body radiation and the recently discovered intra-beam stripping mechanism. Beam halo formation, and ion source or RF turn on/off transients, are examples of beam loss mechanisms that are common for both H+ and H- accelerators. Machine protection systems play an important role in limiting the beam loss.

  11. High energy beam lines

    Science.gov (United States)

    Marchetto, M.; Laxdal, R. E.

    2014-01-01

    The ISAC post accelerator comprises an RFQ, DTL and SC-linac. The high energy beam lines connect the linear accelerators as well as deliver the accelerated beams to two different experimental areas. The medium energy beam transport (MEBT) line connects the RFQ to the DTL. The high energy beam transport (HEBT) line connects the DTL to the ISAC-I experimental stations (DRAGON, TUDA-I, GPS). The DTL to superconducting beam (DSB) transport line connects the ISAC-I and ISAC-II linacs. The superconducting energy beam transport (SEBT) line connects the SC linac to the ISAC-II experimental station (TUDA-II, HERACLES, TIGRESS, EMMA and GPS). All these lines have the function of transporting and matching the beams to the downstream sections by manipulating the transverse and longitudinal phase space. They also contain diagnostic devices to measure the beam properties.

  12. A racetrack microtron with high brightness beams

    Science.gov (United States)

    Shvedunov, V. I.; Barday, R. A.; Frolov, D. A.; Gorbachev, V. P.; Gribov, I. V.; Knapp, E. A.; Novikov, G. A.; Pakhomov, N. I.; Shvedunov, I. V.; Skachkov, V. S.; Sobenin, N. P.; Trower, W. P.; Tyurin, S. A.; Vetrov, A. A.; Yailijan, V. R.; Zayarny, D. A.

    2004-10-01

    Here we describe a racetrack microtron that provides electron beams at 12 energies from 4.85 to 34.2 MeV with ˜150 pC/bunch in ˜5 ps bunches having ˜10 mm mrad normalized transverse emittance. Our compact, inexpensive accelerator in addition to its external electron beams can generate electromagnetic radiation from ˜3 mm to ˜0.3 nm by a variety of mechanisms.

  13. A racetrack microtron with high brightness beams

    Energy Technology Data Exchange (ETDEWEB)

    Shvedunov, V.I.; Barday, R.A.; Frolov, D.A.; Gorbachev, V.P.; Gribov, I.V.; Knapp, E.A.; Novikov, G.A.; Pakhomov, N.I.; Shvedunov, I.V.; Skachkov, V.S.; Sobenin, N.P.; Trower, W.P. E-mail: trower@naxs.net; Tyurin, S.A.; Vetrov, A.A.; Yailijan, V.R.; Zayarny, D.A

    2004-10-01

    Here we describe a racetrack microtron that provides electron beams at 12 energies from 4.85 to 34.2 MeV with {approx}150 pC/bunch in {approx}5 ps bunches having {approx}10 mm mrad normalized transverse emittance. Our compact, inexpensive accelerator in addition to its external electron beams can generate electromagnetic radiation from {approx}3 mm to {approx}0.3 nm by a variety of mechanisms.

  14. Empirical model for controlling beam-beam effects in ISABELLE

    Energy Technology Data Exchange (ETDEWEB)

    Parzen, G

    1980-01-01

    The beam-beam interaction may limit the beam intensity in ISABELLE. Although considerable progress has been made in understanding the beam-beam interaction, there appears to be no reliable method at present for computing the effects of the beam-beam interaction. The steps taken at ISABELLE to limit beam-beam effects are based largely on the experience accumulated at the ISR. At the ISR, the beam-beam effects do not appear to be large, and the beam intensity at the ISR does not appear to be limited by beam-beam effects. The beam-beam effects may be much stronger in ISABELLE because of factors like higher intensity and stronger non-linearities.

  15. Beam Dynamics for ARIA

    CERN Document Server

    Ekdahl, Carl

    2015-01-01

    Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.

  16. Beam Dynamics for ARIA

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Carl August Jr. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-10-14

    Beam dynamics issues are assessed for a new linear induction electron accelerator being designed for flash radiography of large explosively driven hydrodynamic experiments. Special attention is paid to equilibrium beam transport, possible emittance growth, and beam stability. It is concluded that a radiographic quality beam will be produced possible if engineering standards and construction details are equivalent to those on the present radiography accelerators at Los Alamos.

  17. Electron beam focusing system

    Energy Technology Data Exchange (ETDEWEB)

    Dikansky, N.; Nagaitsev, S.; Parkhomchuk, V.

    1997-09-01

    The high energy electron cooling requires a very cold electron beam. Thus, the electron beam focusing system is very important for the performance of electron cooling. A system with and without longitudinal magnetic field is presented for dis