WorldWideScience

Sample records for carbohydrate metabolism determined

  1. Carbohydrate Metabolism Disorders

    Science.gov (United States)

    ... you eat. Food is made up of proteins, carbohydrates, and fats. Chemicals in your digestive system (enzymes) ... metabolic disorder, something goes wrong with this process. Carbohydrate metabolism disorders are a group of metabolic disorders. ...

  2. Determination of the activity signature of key carbohydrate metabolism enzymes in phenolic-rich grapevine tissues

    DEFF Research Database (Denmark)

    Covington, Elizabeth Dunn; Roitsch, Thomas Georg; Dermastia, Marina

    2016-01-01

    assays for enzymes of primary carbohydrate metabolism, while based on our recently published one for quantitative measurement of activities using coupled spectrophotometric assays in a 96-well format, is tailored to the complexities of phenolic- and anthocyanin-rich extracts from grapevine leaf....... As a case study we applied the protocol to grapevine leaf samples infected with plant pathogenic bacteria 'Candidatus Phytoplasma solani', known to alter carbohydrate metabolism in grapevine. The described adaptations may be useful for determination of metabolic fingerprints for physiological phenotyping...

  3. Disorders of Carbohydrate Metabolism

    Science.gov (United States)

    ... Fundamentals Heart and Blood Vessel Disorders Hormonal and Metabolic Disorders Immune Disorders Infections Injuries and Poisoning Kidney and ... Fundamentals Heart and Blood Vessel Disorders Hormonal and Metabolic Disorders Immune Disorders Infections Injuries and Poisoning Kidney and ...

  4. Carbohydrate Metabolism in Submariner Personnel

    Science.gov (United States)

    1983-06-01

    metabolism the Wilkerson Point System, for glucose values, used in conjunction with patterns of insulin response described by Kraft(4) serves as the means...amount of exercise and carbohydrate metabolism characteristics occurred in both submariners and non-submariners. An inverse relationship also seems to...individuals(7). In the present study a significant negative correlation was also found between exercise vs one and two hour postprandial glucose and two hour

  5. Impact of Dietary Carbohydrate and Protein Levels on Carbohydrate Metabolism

    Science.gov (United States)

    Lasker, Denise Ann

    2009-01-01

    The goal of this dissertation was to investigate the impact of changing dietary carbohydrate (CARB) intakes within recommended dietary guidelines on metabolic outcomes specifically associated with glycemic regulations and carbohydrate metabolism. This research utilized both human and animal studies to examine changes in metabolism across a wide…

  6. Simple and robust determination of the activity signature of key carbohydrate metabolism enzymes for physiological phenotyping in model and crop plants

    DEFF Research Database (Denmark)

    Jammer, Alexandra; Gasperl, Anna; Luschin-Ebengreuth, Nora;

    2015-01-01

    The analysis of physiological parameters is important to understand the link between plant phenotypes and their genetic bases, and therefore is needed as an important element in the analysis of model and crop plants. The activities of enzymes involved in primary carbohydrate metabolism have been...... shown to be strongly associated with growth performance, crop yield, and quality, as well as stress responses. A simple, fast, and cost-effective method to determine activities for 13 key enzymes involved in carbohydrate metabolism has been established, mainly based on coupled spectrophotometric kinetic...

  7. Gender Differences in Carbohydrate Metabolism and Carbohydrate Loading

    Directory of Open Access Journals (Sweden)

    Willoughby Darryn

    2006-06-01

    Full Text Available Abstract Prior to endurance competition, many endurance athletes participate in a carbohydrate loading regimen in order to help delay the onset of fatigue. The "classic" regimen generally includes an intense glycogen depleting training period of approximately two days followed by a glycogen loading period for 3–4 days, ingesting approximately 60–70% of total energy intake as carbohydrates, while the newer method does not consist of an intense glycogen depletion protocol. However, recent evidence has indicated that glycogen loading does not occur in the same manner for males and females, thus affecting performance. The scope of this literature review will include a brief description of the role of estradiol in relation to metabolism and gender differences seen in carbohydrate metabolism and loading.

  8. Metabolic determinants of body weight after cats were fed a low-carbohydrate high-protein diet or a high-carbohydrate low-protein diet ad libitum for 8 wk.

    Science.gov (United States)

    Coradini, M; Rand, J S; Morton, J M; Rawlings, J M

    2014-10-01

    Overweight and obese conditions are common in cats and are associated with the development of a number of diseases. Knowledge of metabolic determinants and predictors of weight gain may enable better preventative strategies for obesity in cats. Lean, healthy cats were fed either a low-carbohydrate high-protein diet (n 16) or a high-carbohydrate low-protein (n 16) diet ad libitum for 8 wk. Potential determinants and predictors of final body weight assessed were body fat and lean masses, energy required for maintenance, energy requirements above maintenance for each kilogram of weight gain, insulin sensitivity index, fasting, mean 24-h and peak plasma glucose, insulin, and leptin concentrations, and fasting and mean 24-h serum adiponectin concentrations. In cats fed the low-carbohydrate high-protein diet, after adjusting for initial body weight, those with higher energy requirements for weight gain and higher fasting glucose concentration had higher final body weights (P ≤ 0.01). Predicted final body weights using initial body weight, fasting glucose and mean 24-h insulin concentrations (partial R(2) 37.3%) were imprecise. An equation using just initial body weight and fasting glucose concentration would be of more practical value, but was marginally less precise. In cats fed the high-carbohydrate low-protein diet, those with lower fasting leptin concentration initially had higher final body weights (P = 0.01). Predicted final body weights using initial body weight, energy requirements for maintenance, total body fat percentage and fasting leptin concentration (partial R(2) 39.2%) were reasonably precise. Further studies are warranted to confirm these findings and to improve the precision of predicted final body weights.

  9. Hearing Loss, Dizziness, and Carbohydrate Metabolism

    Directory of Open Access Journals (Sweden)

    Albernaz, Pedro L. Mangabeira

    2015-07-01

    Full Text Available Introduction Metabolic activity of the inner ear is very intense, and makes it sensitive to changes in the body homeostasis. This study involves a group of patients with inner ear disorders related to carbohydrate metabolism disturbances, including hearing loss, tinnitus, dizziness, and episodes of vertigo. Objectives To describe the symptoms of metabolic inner ear disorders and the examinations required to establish diagnoses. These symptoms are often the first to allow for an early diagnosis of metabolic disorders and diabetes. Methods Retrospective study of 376 patients with inner ear symptoms suggestive of disturbances of carbohydrate metabolism. The authors present patientś clinical symptoms and clinical evaluations, with emphasis on the glucose and insulin essays. Results Authors based their conclusions on otolaryngological findings, diagnostic procedures and treatment principles. They found that auditory and vestibular symptoms usually occur prior to other manifestations of metabolic changes, leading to an early diagnosis of hyperinsulinemia, intestinal sugar malabsorption or diabetes. Previously undiagnosed diabetes mellitus type II was found in 39 patients. Conclusions The identification of carbohydrate metabolism disturbances is important not only to minimize the patients' clinical symptoms, but also to help maintain their general health.

  10. Exercise and Regulation of Carbohydrate Metabolism.

    Science.gov (United States)

    Mul, Joram D; Stanford, Kristin I; Hirshman, Michael F; Goodyear, Laurie J

    2015-01-01

    Carbohydrates are the preferred substrate for contracting skeletal muscles during high-intensity exercise and are also readily utilized during moderate intensity exercise. This use of carbohydrates during physical activity likely played an important role during the survival of early Homo sapiens, and genes and traits regulating physical activity, carbohydrate metabolism, and energy storage have undoubtedly been selected throughout evolution. In contrast to the life of early H. sapiens, modern lifestyles are predominantly sedentary. As a result, intake of excessive amounts of carbohydrates due to the easy and continuous accessibility to modern high-energy food and drinks has not only become unnecessary but also led to metabolic diseases in the face of physical inactivity. A resulting metabolic disease is type 2 diabetes, a complex endocrine disorder characterized by abnormally high concentrations of circulating glucose. This disease now affects millions of people worldwide. Exercise has beneficial effects to help control impaired glucose homeostasis with metabolic disease, and is a well-established tool to prevent and combat type 2 diabetes. This chapter focuses on the effects of exercise on carbohydrate metabolism in skeletal muscle and systemic glucose homeostasis. We will also focus on the molecular mechanisms that mediate the effects of exercise to increase glucose uptake in skeletal muscle. It is now well established that there are different proximal signaling pathways that mediate the effects of exercise and insulin on glucose uptake, and these distinct mechanisms are consistent with the ability of exercise to increase glucose uptake in the face of insulin resistance in people with type 2 diabetes. Ongoing research in this area is aimed at defining the precise mechanism by which exercise increases glucose uptake and insulin sensitivity and the types of exercise necessary for these important health benefits.

  11. Simple and robust determination of the activity signature of key carbohydrate metabolism enzymes for physiological phenotyping in model and crop plants.

    Science.gov (United States)

    Jammer, Alexandra; Gasperl, Anna; Luschin-Ebengreuth, Nora; Heyneke, Elmien; Chu, Hyosub; Cantero-Navarro, Elena; Großkinsky, Dominik K; Albacete, Alfonso A; Stabentheiner, Edith; Franzaring, Jürgen; Fangmeier, Andreas; van der Graaff, Eric; Roitsch, Thomas

    2015-09-01

    The analysis of physiological parameters is important to understand the link between plant phenotypes and their genetic bases, and therefore is needed as an important element in the analysis of model and crop plants. The activities of enzymes involved in primary carbohydrate metabolism have been shown to be strongly associated with growth performance, crop yield, and quality, as well as stress responses. A simple, fast, and cost-effective method to determine activities for 13 key enzymes involved in carbohydrate metabolism has been established, mainly based on coupled spectrophotometric kinetic assays. The comparison of extraction buffers and requirement for dialysis of crude protein extracts resulted in a universal protein extraction protocol, suitable for the preparation of protein extracts from different organs of various species. Individual published kinetic activity assays were optimized and adapted for a semi-high-throughput 96-well assay format. These assays proved to be robust and are thus suitable for physiological phenotyping, enabling the characterization and diagnosis of the physiological state. The potential of the determination of distinct enzyme activity signatures as part of a physiological fingerprint was shown for various organs and tissues from three monocot and five dicot model and crop species, including two case studies with external stimuli. Differential and specific enzyme activity signatures are apparent during inflorescence development and upon in vitro cold treatment of young inflorescences in the monocot ryegrass, related to conditions for doubled haploid formation. Likewise, treatment of dicot spring oilseed rape with elevated CO2 concentration resulted in distinct patterns of enzyme activity responses in leaves.

  12. Carbohydrate metabolism of rats with biliary obstruction.

    Directory of Open Access Journals (Sweden)

    Kim,Hitoshi

    1990-08-01

    Full Text Available Carbohydrate metabolism of rats with obstructive jaundice caused by bile duct ligation was studied by intravenous glucose tolerance test (IVGTT and by liver perfusion. The altered levels of carbohydrate-metabolizing enzyme were examined in relation to the glucose metabolism of the cholestatic rats. In the IVGTT, the rate of fractional glucose removal was increased with increases in plasma insulin and glucagon and with a decrease in non-esterified fatty acid. In liver perfusion, neither the glucose uptake nor insulin extraction by the whole liver of icteric rats was different from the control. The increased rate of glucose removal in IVGTT may be due to enhanced glucose utilization by peripheral tissues resulting from hypersecretion of insulin. In liver perfusate supplemented with glucose, a decrease in the glucose uptake per unit liver weight was observed in relation to the lowered glucokinase activity. Formation of glycogen from glucose and of glucose from lactate was also impaired, indicating inhibition of the gluconeogenic system or relative hyperfunction of the glycolytic system, which may further contribute to the reduction in glycogen content. These metabolic disorders correlated well with the changes in activities of key carbohydrate-metabolizing enzymes, which showed a characteristic pattern consistent with the loss of differentiated hepatic functions. Uptake of glucose and its conversion to glycogen were reduced in the cholestatic liver in close association with altered activities of some of related enzymes. However, due to increased utilization by the peripheral tissues, the total amount of glucose utilized in the whole rat was not reduced.

  13. Metabolic aspects of low carbohydrate diets and exercise

    OpenAIRE

    Peters Sandra; LeBlanc Paul

    2004-01-01

    Abstract Following a low carbohydrate diet, there is a shift towards more fat and less carbohydrate oxidation to provide energy to skeletal muscle, both at rest and during exercise. This review summarizes recent work on human skeletal muscle carbohydrate and fat metabolic adaptations to a low carbohydrate diet, focusing mainly on pyruvate dehydrogenase and pyruvate dehydrogenase kinase, and how these changes relate to the capacity for carbohydrate oxidation during exercise.

  14. Metabolic aspects of low carbohydrate diets and exercise

    Directory of Open Access Journals (Sweden)

    Peters Sandra

    2004-01-01

    Full Text Available Abstract Following a low carbohydrate diet, there is a shift towards more fat and less carbohydrate oxidation to provide energy to skeletal muscle, both at rest and during exercise. This review summarizes recent work on human skeletal muscle carbohydrate and fat metabolic adaptations to a low carbohydrate diet, focusing mainly on pyruvate dehydrogenase and pyruvate dehydrogenase kinase, and how these changes relate to the capacity for carbohydrate oxidation during exercise.

  15. UV-B radiation does not limit carbohydrate level and carbohydrate metabolism in cucumber leaves

    Directory of Open Access Journals (Sweden)

    Magdalena Rybus-Zając

    2014-08-01

    Full Text Available Cucumber is a vegetable exhibiting relatively high sensitivity to environmental stress factors. When it is grown outdoors, from early stages of development there is a real risk of exposure to elevated UV-B radiation. In order to explain the effects of time-dependent UV-B doses on carbohydrate level and metabolism, the photosynthetic activity, accumulation of carbohydrates and activities of carbohydrate-related enzymes were determined in the cucumber leaves. Elevated UV-B radiation led to an increase in the rate of photosynthesis, which was reflected by an increase in SPAD values. Higher photosynthetic activity resulted in an increase in levels of soluble sugars. In view of the above-mentioned results, radiation stress led to a UV-B time-dependent dose increase in the activity of two enzymes decomposing carbohydrate: invertase and glucosidase. Our results suggest that the exposure of cucumber plants to supplemental UV-B doses does not limit the availability of the photoassimilate. Carbohydrates are required to provide not only respiratory energy for protection, maintenance (and repair of plant activity and structure, but also provide biosynthetic carbon skeletons for secondary metabolite synthesis

  16. Impact of dietary polyphenols on carbohydrate metabolism.

    Science.gov (United States)

    Hanhineva, Kati; Törrönen, Riitta; Bondia-Pons, Isabel; Pekkinen, Jenna; Kolehmainen, Marjukka; Mykkänen, Hannu; Poutanen, Kaisa

    2010-03-31

    Polyphenols, including flavonoids, phenolic acids, proanthocyanidins and resveratrol, are a large and heterogeneous group of phytochemicals in plant-based foods, such as tea, coffee, wine, cocoa, cereal grains, soy, fruits and berries. Growing evidence indicates that various dietary polyphenols may influence carbohydrate metabolism at many levels. In animal models and a limited number of human studies carried out so far, polyphenols and foods or beverages rich in polyphenols have attenuated postprandial glycemic responses and fasting hyperglycemia, and improved acute insulin secretion and insulin sensitivity. The possible mechanisms include inhibition of carbohydrate digestion and glucose absorption in the intestine, stimulation of insulin secretion from the pancreatic beta-cells, modulation of glucose release from the liver, activation of insulin receptors and glucose uptake in the insulin-sensitive tissues, and modulation of intracellular signalling pathways and gene expression. The positive effects of polyphenols on glucose homeostasis observed in a large number of in vitro and animal models are supported by epidemiological evidence on polyphenol-rich diets. To confirm the implications of polyphenol consumption for prevention of insulin resistance, metabolic syndrome and eventually type 2 diabetes, human trials with well-defined diets, controlled study designs and clinically relevant end-points together with holistic approaches e.g., systems biology profiling technologies are needed.

  17. Impact of Dietary Polyphenols on Carbohydrate Metabolism

    Directory of Open Access Journals (Sweden)

    Kati Hanhineva

    2010-03-01

    Full Text Available Polyphenols, including flavonoids, phenolic acids, proanthocyanidins and resveratrol, are a large and heterogeneous group of phytochemicals in plant-based foods, such as tea, coffee, wine, cocoa, cereal grains, soy, fruits and berries. Growing evidence indicates that various dietary polyphenols may influence carbohydrate metabolism at many levels. In animal models and a limited number of human studies carried out so far, polyphenols and foods or beverages rich in polyphenols have attenuated postprandial glycemic responses and fasting hyperglycemia, and improved acute insulin secretion and insulin sensitivity. The possible mechanisms include inhibition of carbohydrate digestion and glucose absorption in the intestine, stimulation of insulin secretion from the pancreatic b-cells, modulation of glucose release from the liver, activation of insulin receptors and glucose uptake in the insulin-sensitive tissues, and modulation of intracellular signalling pathways and gene expression. The positive effects of polyphenols on glucose homeostasis observed in a large number of in vitro and animal models are supported by epidemiological evidence on polyphenol-rich diets. To confirm the implications of polyphenol consumption for prevention of insulin resistance, metabolic syndrome and eventually type 2 diabetes, human trials with well-defined diets, controlled study designs and clinically relevant end-points together with holistic approaches e.g., systems biology profiling technologies are needed.

  18. Magnesium and disturbances in carbohydrate metabolism.

    Science.gov (United States)

    Mooren, Frank C

    2015-09-01

    Magnesium is actively involved in a number of metabolic reactions as an important co-factor, with special emphasis on carbohydrate metabolism. After a brief overview of the regulation of intra- and extracellular magnesium, the present review first describes the regulatory role of magnesium in important metabolic pathways involved in energy metabolism and glycaemic control. Next the clinical significance of hypomagnesaemic conditions with regard to the management of glucose in prediabetic stages, such as insulin resistance/impaired glucose tolerance and in type 2 diabetes mellitus are characterized. Cross-sectional as well as longitudinal studies suggest that a reduced dietary magnesium intake serves as a risk factor for the incidence of both impaired glucose regulation and type 2 diabetes. Mechanisms that might be responsible for diabetes-associated hypomagnesaemia are discussed. Furthermore, the role of hypomagnesaemia in the development and progression of chronic diabetic complications are addressed. Finally, the available literature on the effects of magnesium supplementation on glycaemic control parameters during prediabetic conditions (preventive approach) as well as type 2 diabetes mellitus (therapeutic approach) are reviewed systematically. There is considerable evidence that chronic magnesium supplementation may delay the progression from impaired glucose regulation to type 2 diabetes; however, the effects of oral magnesium supplementation as an adjunct therapy for type 2 diabetes are quite heterogeneous with respect to the various measures of glycaemic control. The results of this review suggest a requirement for critical consideration of the pros and cons of magnesium replacement therapy, based on variables such as magnesium status, stage of disease and glycaemic control.

  19. Carbohydrate metabolism of cactus in a desert environment.

    Science.gov (United States)

    Sutton, B G

    1981-09-01

    The concentration of glucan, mucilage, soluble carbohydrates, and malic acid were determined in Opuntia bigelovii Engelm. during a 23-week period. The experiment began during the dry summer by irrigation to stimulate Crassulacean acid metabolism and was followed by 13 weeks of drought. After the 13-week drought period, the plants were irrigated throughout a 10-week period until late December. The maximum level of malic acid determined each day at dawn decreased throughout the drought period and increased after irrigation. High levels of malic acid occurring at dawn are indicative of active Crassulacean acid metabolism. Soluble carbohydrates also decreased during drought and increased after irrigation. Both glucan and mucilage increased slightly for about 9 weeks during the drought period and then began to decrease. Irrigation was accompanied by a further decrease in concentration of glucan and mucilage. Since both glucan and mucilage changed in a similar manner and since their concentrations in the tissue are correlated, it is hypothesized that both function as storage carbohydrates. Whereas glucan is the nocturnal substrate for malic acid synthesis, there are no data to support or refute a similar hypothesis for mucilage.

  20. Carbohydrate metabolism and its regulatory hormones in anorexia nervosa.

    Science.gov (United States)

    Casper, R C

    1996-04-16

    Findings of studies of carbohydrate metabolism in anorexia nervosa are reviewed. Topics covered included fasting blood sugar concentrations; serum insulin concentrations, insulin receptor binding activity, insulin sensitivity, and insulin resistance; plasma ketone bodies and free fatty acids; glucose tolerance tests; growth hormone, cortisol, intestinal hormones, and norepinephrine. Metabolic changes reported in anorexia nervosa are similar to those found in human and animal studies of states of caloric and carbohydrate restriction. Restoration of normal body weight is associated with normalization of virtually all measures. It is concluded that published studies offer no conclusive evidence for a syndrome-specific impairment in carbohydrate metabolism in anorexia nervosa.

  1. Low-carbohydrate nutrition and metabolism.

    Science.gov (United States)

    Westman, Eric C; Feinman, Richard D; Mavropoulos, John C; Vernon, Mary C; Volek, Jeff S; Wortman, James A; Yancy, William S; Phinney, Stephen D

    2007-08-01

    The persistence of an epidemic of obesity and type 2 diabetes suggests that new nutritional strategies are needed if the epidemic is to be overcome. A promising nutritional approach suggested by this thematic review is carbohydrate restriction. Recent studies show that, under conditions of carbohydrate restriction, fuel sources shift from glucose and fatty acids to fatty acids and ketones, and that ad libitum-fed carbohydrate-restricted diets lead to appetite reduction, weight loss, and improvement in surrogate markers of cardiovascular disease.

  2. CARBOHYDRATE INGESTION AND EXERCISE: EFFECTS ON METABOLISM AND PERFORMANCE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@KEY POINTS ■ Carbohydrate is the preferred fuel for most competitive sports;an inadequate supply of carbohydrate in the body often leads to poor performance. ■ Carbohydrate ingestion during exercise increases blood glucose availability and maintains the ability of the body to use carbohydrate as fuel during exercise.When carbohydrate is consumed during exercise,glucose uptake by muscles is increased,and the breakdown of glycogen in the liver into blood glucose is reduced,thus saving liver glycogen until late in exercise.The use of muscle glycogen for energy is generally unaffected by carbohydrate feeding.However,during prolonged running,the breakdown of muscle glycogen may be slowed because the supply of blood glucose is improved when carbohydrate is consumed.These metabolic responses underlie the performance benefit that accompanies carbohydrate ingestion during exercise. ■ There are some minor differences among glucose,sucrose,and maltodextrins in their effects on metabolism,but each of them can enhance performance when ingested in the appropriate quantity during exercise.Fructose alone is not an effective carbohydrate supplement because of its slow absorption and slow conversion by the body to glucose,but when small amounts of fructose are combined with other carbohydrates,fructose can be beneficial. ■ Ingesting carbohydrate at a rate of 30-60 grams per hour can improve exercise erformance.A good way to achieve this carbohydrate intake is to consume 600-to-1200 ml(20-to-40 oz)of a sports drink during each hour of exercise.Consuming carbohydrate in a beverage provides an added benefit of preventing potentially harmful effects of dehydration on performance.

  3. The Effects of Breakfast Consumption and Composition on Metabolic Wellness with a Focus on Carbohydrate Metabolism.

    Science.gov (United States)

    Maki, Kevin C; Phillips-Eakley, Alyssa K; Smith, Kristen N

    2016-05-01

    Findings from epidemiologic studies indicate that there are associations between breakfast consumption and a lower risk of type 2 diabetes mellitus (T2DM) and metabolic syndrome, prompting interest in the influence of breakfast on carbohydrate metabolism and indicators of T2DM risk. The objective of this review was to summarize the available evidence from randomized controlled trials assessing the impact of breakfast on variables related to carbohydrate metabolism and metabolic wellness. Consuming compared with skipping breakfast appeared to improve glucose and insulin responses throughout the day. Breakfast composition may also be important. Dietary patterns high in rapidly available carbohydrate were associated with elevated T2DM risk. Therefore, partial replacement of rapidly available carbohydrate with other dietary components, such as whole grains and cereal fibers, proteins, and unsaturated fatty acids (UFAs), at breakfast may be a useful strategy for producing favorable metabolic outcomes. Consumption of fermentable and viscous dietary fibers at breakfast lowers glycemia and insulinemia. Fermentable fibers likely act through enhancing insulin sensitivity later in the day, and viscous fibers have an acute effect to slow the rate of carbohydrate absorption. Partially substituting protein for rapidly available carbohydrate enhances satiety and diet-induced thermogenesis, and also favorably affects lipoprotein lipids and blood pressure. Partially substituting UFA for carbohydrate has been associated with improved insulin sensitivity, lipoprotein lipids, and blood pressure. Overall, the available evidence suggests that consuming breakfast foods high in whole grains and cereal fiber, while limiting rapidly available carbohydrate, is a promising strategy for metabolic health promotion.

  4. Carbohydrate metabolism and carbon fixation in Roseobacter denitrificans OCh114.

    Directory of Open Access Journals (Sweden)

    Kuo-Hsiang Tang

    Full Text Available The Roseobacter clade of aerobic marine proteobacteria, which compose 10-25% of the total marine bacterial community, has been reported to fix CO(2, although it has not been determined what pathway is involved. In this study, we report the first metabolic studies on carbohydrate utilization, CO(2 assimilation, and amino acid biosynthesis in the phototrophic Roseobacter clade bacterium Roseobacter denitrificans OCh114. We develop a new minimal medium containing defined carbon source(s, in which the requirements of yeast extract reported previously for the growth of R. denitrificans can be replaced by vitamin B(12 (cyanocobalamin. Tracer experiments were carried out in R. denitrificans grown in a newly developed minimal medium containing isotopically labeled pyruvate, glucose or bicarbonate as a single carbon source or in combination. Through measurements of (13C-isotopomer labeling patterns in protein-derived amino acids, gene expression profiles, and enzymatic activity assays, we report that: (1 R. denitrificans uses the anaplerotic pathways mainly via the malic enzyme to fix 10-15% of protein carbon from CO(2; (2 R. denitrificans employs the Entner-Doudoroff (ED pathway for carbohydrate metabolism and the non-oxidative pentose phosphate pathway for the biosynthesis of histidine, ATP, and coenzymes; (3 the Embden-Meyerhof-Parnas (EMP, glycolysis pathway is not active and the enzymatic activity of 6-phosphofructokinase (PFK cannot be detected in R. denitrificans; and (4 isoleucine can be synthesized from both threonine-dependent (20% total flux and citramalate-dependent (80% total flux pathways using pyruvate as the sole carbon source.

  5. Metabolic syndrome and low-carbohydrate ketogenic diets in the medical school biochemistry curriculum.

    Science.gov (United States)

    Feinman, Richard D; Makowske, Mary

    2003-09-01

    One of Robert Atkins contributions was to define a diet strategy in terms of an underlying metabolic principle ("the science behind Atkins"). The essential feature is that, by reducing insulin fluxes, lipids are funnelled away from storage and oxidized. Ketosis can be used as an indicator of lipolysis. A metabolic advantage is also proposed: controlled carbohydrates leads to greater weight loss per calorie than other diets. Although the Atkins diet and its scientific rationale are intended for a popular audience, the overall features are consistent with current metabolic ideas. We have used the Atkins controlled-carbohydrate diet as a focal point for teaching nutrition and metabolism in the first-year medical school curriculum. By presenting metabolism in the context of the current epidemic of obesity and of metabolic syndrome and related disorders, we provide direct application of the study of metabolic pathways, a subject not traditionally considered by medical students to be highly relevant to medical practice. We present here a summary of the metabolic basis of the Atkins diet as we teach it to medical students. We also discuss a proposed mechanism for metabolic advantage that is consistent with current ideas and that further brings out ideas in metabolism for students. The topics that are developed include the role of insulin and glucagon in lipolysis, control of lipoprotein lipase, the glucose-glycogen-gluconeogenesis interrelations, carbohydrate-protein interactions and ketosis. In essence, the approach is to expand the traditional feed-fast (post-absorptive) cycles to include the effect of low-carbohydrate meals: the disease states studied are generalized from traditional study of diabetes to include obesity and metabolic syndrome. The ideal diet for weight loss and treatment of metabolic syndrome, if it exists, remains to be determined, but presenting metabolism in the context of questions raised by the Atkins regimen prepares future physicians for

  6. Normal Roles for Dietary Fructose in Carbohydrate Metabolism

    Directory of Open Access Journals (Sweden)

    Maren R. Laughlin

    2014-08-01

    Full Text Available Although there are many well-documented metabolic effects linked to the fructose component of a very high sugar diet, a healthy diet is also likely to contain appreciable fructose, even if confined to that found in fruits and vegetables. These normal levels of fructose are metabolized in specialized pathways that synergize with glucose at several metabolic steps. Glucose potentiates fructose absorption from the gut, while fructose catalyzes glucose uptake and storage in the liver. Fructose accelerates carbohydrate oxidation after a meal. In addition, emerging evidence suggests that fructose may also play a role in the secretion of insulin and GLP-1, and in the maturation of preadipocytes to increase fat storage capacity. Therefore, fructose undergoing its normal metabolism has the interesting property of potentiating the disposal of a dietary carbohydrate load through several routes.

  7. Protein,carbohydrate and lipid metabolism

    Institute of Scientific and Technical Information of China (English)

    1995-01-01

    950255 Effects of TPN and indomethacin on stressresponse and protein metabolism after surgery.QUANZhufu(全竹富),et al.General Hosp,Nanjing Com-mand,Nanjing,210002.Med J Chin PLA 1995;20(1):24-26.The study was planned to evaluate effects of TPNand indomethacin on stress response after trauma,andprotein metabolism in patients who had received totalgastrectomy for cardiac cancer of stomach.19 caseswere divided into control,TPN,and indomethacin

  8. Transporter’s evolution and carbohydrate metabolic clusters

    NARCIS (Netherlands)

    Plantinga, Titia H.; Does, Chris van der; Driessen, Arnold J.M.

    2004-01-01

    The yiaQRS genes of Escherichia coli K-12 are involved in carbohydrate metabolism. Clustering of homologous genes was found throughout several unrelated bacteria. Strikingly, all four bacterial transport protein classes were found, conserving transport function but not mechanism. It appears that dur

  9. Derivatization Reaction of Carbohydrates with Urea as the Reagent and Fluorimetric Determination of Carbohydrates

    Institute of Scientific and Technical Information of China (English)

    YANG,Jing-He(杨景和); CAO,Xi-Hui(曹西慧); WANG,Min(王敏); WU,Xia(吴霞); SUN,Chang-Xia(孙长侠)

    2002-01-01

    It is found that in the presence of sulfuric acid carbohydrates condense with urea to afford the condensation products, which emit fluorescence. Under optimum conditions, the fluorescence intensities of system are proportional to the concentrations of carbohydrates. Based on this linear relationship,quantitative determination of kinds of carbohydrates has been made. Among an the carbohydrates tested, the sensitivity of α-rhamnose is the highest and its limits of detection reaches 3.5 × 10-8 mol/L. So α-rhamnose can be selectively determed in the presence of other carbohydrates. A interaction mechanism is also discussed.

  10. A quick look at biochemistry : Carbohydrate metabolism

    NARCIS (Netherlands)

    Dashty, Monireh

    2013-01-01

    In mammals, there are different metabolic pathways in cells that break down fuel molecules to transfer their energy into high energy compounds such as adenosine-5'-triphosphate (ATP), guanosine-5'-triphosphate (GTP), reduced nicotinamide adenine dinucleotide (NADH2), reduced flavin adenine dinucleot

  11. Does caffeine alter muscle carbohydrate and fat metabolism during exercise?

    DEFF Research Database (Denmark)

    Graham, Terry E; Battram, Danielle S; Dela, Flemming

    2008-01-01

    and carbohydrate metabolism. While caffeine certainly mobilizes fatty acids from adipose tissue, rarely have measures of the respiratory exchange ratio indicated an increase in fat oxidation. However, this is a difficult measure to perform accurately during exercise, and small changes could be physiologically......Caffeine, an adenosine receptor antagonist, has been studied for decades as a putative ergogenic aid. In the past 2 decades, the information has overwhelmingly demonstrated that it indeed is a powerful ergogenic aid, and frequently theories have been proposed that this is due to alterations in fat...... important. The few studies examining human muscle metabolism directly have also supported the fact that there is no change in fat or carbohydrate metabolism, but these usually have had a small sample size. We combined the data from muscle biopsy analyses of several similar studies to generate a sample size...

  12. Digestible and indigestible carbohydrates: interactions with postprandial lipid metabolism.

    Science.gov (United States)

    Lairon, Denis; Play, Barbara; Jourdheuil-Rahmani, Dominique

    2007-04-01

    The balance between fats and carbohydrates in the human diet is still a matter of very active debate. Indeed, the processing of ordinary mixed meals involves complex processes within the lumen of the upper digestive tract for digestion, in the small intestine mucosa for absorption and resecretion, and in peripheral tissues and in the circulation for final handling. The purpose of this review is to focus on available knowledge on the interactions of digestible or indigestible carbohydrates with lipid and lipoprotein metabolism in the postprandial state. The observations made in humans after test meals are reported and interpreted in the light of recent findings on the cellular and molecular levels regarding possible interplays between carbohydrates and lipid moieties in some metabolic pathways. Digestible carbohydrates, especially readily digestible starches or fructose, have been shown to exacerbate and/or delay postprandial lipemia, whereas some fiber sources can lower it. While interactions between dietary fibers and the process of lipid digestion and absorption have been studied mainly in the last decades, recent studies have shown that dietary carbohydrate moieties (e.g., glucose) can stimulate the intestinal uptake of cholesterol and lipid resecretion. In addition to the well-known glucose/fructose transporters, a number of transport proteins have recently been involved in intestinal lipid processing, whose implications in such interactions are discussed. The potential importance of postprandial insulinemia in these processes is also evaluated in the light of recent findings. The interactions of carbohydrates and lipid moieties in the postprandial state may result from both acute and chronic effects, both at transcriptional and posttranscriptional levels.

  13. A holistic view of dietary carbohydrate utilization in lobster: digestion, postprandial nutrient flux, and metabolism.

    Directory of Open Access Journals (Sweden)

    Leandro Rodríguez-Viera

    Full Text Available Crustaceans exhibit a remarkable variation in their feeding habits and food type, but most knowledge on carbohydrate digestion and utilization in this group has come from research on few species. The aim of this study was to make an integrative analysis of dietary carbohydrate utilization in the spiny lobster Panulirus argus. We used complementary methodologies such as different assessments of digestibility, activity measurements of digestive and metabolic enzymes, and post-feeding flux of nutrients and metabolites. Several carbohydrates were well digested by the lobster, but maize starch was less digestible than all other starches studied, and its inclusion in diet affected protein digestibility. Most intense hydrolysis of carbohydrates in the gastric chamber of lobster occurred between 2-6 h after ingestion and afterwards free glucose increased in hemolymph. The inclusion of wheat in diet produced a slow clearance of glucose from the gastric fluid and a gradual increase in hemolymph glucose. More intense hydrolysis of protein in the gastric chamber occurred 6-12 h after ingestion and then amino acids tended to increase in hemolymph. Triglyceride concentration in hemolymph rose earlier in wheat-fed lobsters than in lobsters fed other carbohydrates, but it decreased the most 24 h later. Analyses of metabolite levels and activities of different metabolic enzymes revealed that intermolt lobsters had a low capacity to store and use glycogen, although it was slightly higher in wheat-fed lobsters. Lobsters fed maize and rice diets increased amino acid catabolism, while wheat-fed lobsters exhibited higher utilization of fatty acids. Multivariate analysis confirmed that the type of carbohydrate ingested had a profound effect on overall metabolism. Although we found no evidence of a protein-sparing effect of dietary carbohydrate, differences in the kinetics of their digestion and absorption impacted lobster metabolism determining the fate of other

  14. A holistic view of dietary carbohydrate utilization in lobster: digestion, postprandial nutrient flux, and metabolism.

    Science.gov (United States)

    Rodríguez-Viera, Leandro; Perera, Erick; Casuso, Antonio; Perdomo-Morales, Rolando; Gutierrez, Odilia; Scull, Idania; Carrillo, Olimpia; Martos-Sitcha, Juan A; García-Galano, Tsai; Mancera, Juan Miguel

    2014-01-01

    Crustaceans exhibit a remarkable variation in their feeding habits and food type, but most knowledge on carbohydrate digestion and utilization in this group has come from research on few species. The aim of this study was to make an integrative analysis of dietary carbohydrate utilization in the spiny lobster Panulirus argus. We used complementary methodologies such as different assessments of digestibility, activity measurements of digestive and metabolic enzymes, and post-feeding flux of nutrients and metabolites. Several carbohydrates were well digested by the lobster, but maize starch was less digestible than all other starches studied, and its inclusion in diet affected protein digestibility. Most intense hydrolysis of carbohydrates in the gastric chamber of lobster occurred between 2-6 h after ingestion and afterwards free glucose increased in hemolymph. The inclusion of wheat in diet produced a slow clearance of glucose from the gastric fluid and a gradual increase in hemolymph glucose. More intense hydrolysis of protein in the gastric chamber occurred 6-12 h after ingestion and then amino acids tended to increase in hemolymph. Triglyceride concentration in hemolymph rose earlier in wheat-fed lobsters than in lobsters fed other carbohydrates, but it decreased the most 24 h later. Analyses of metabolite levels and activities of different metabolic enzymes revealed that intermolt lobsters had a low capacity to store and use glycogen, although it was slightly higher in wheat-fed lobsters. Lobsters fed maize and rice diets increased amino acid catabolism, while wheat-fed lobsters exhibited higher utilization of fatty acids. Multivariate analysis confirmed that the type of carbohydrate ingested had a profound effect on overall metabolism. Although we found no evidence of a protein-sparing effect of dietary carbohydrate, differences in the kinetics of their digestion and absorption impacted lobster metabolism determining the fate of other nutrients.

  15. Fat and carbohydrate metabolism during exercise in late-onset Pompe disease

    DEFF Research Database (Denmark)

    Preisler, Nicolai; Laforet, Pascal; Madsen, Karen Lindhardt;

    2012-01-01

    forearm exercise testing, and peak work capacity was determined. Fat and carbohydrate metabolism during cycle exercise was examined with a combination of indirect calorimetry and stable isotope methodology. Finally, the effects of an IV glucose infusion on heart rate, ratings of perceived exertion...... examined the metabolic response to exercise in patients with late-onset Pompe disease, in order to determine if a defect in energy metabolism may play a role in the pathogenesis of Pompe disease. We studied six adult patients with Pompe disease and 10 healthy subjects. The participants underwent ischemic......, and work capacity during exercise were determined. We found that peak oxidative capacity was reduced in the patients to 17.6 vs. 38.8 ml kg(-1) min(-1) in healthy subjects (p = 0.002). There were no differences in the rate of appearance and rate of oxidation of palmitate, or total fat and carbohydrate...

  16. Impeded Carbohydrate Metabolism in Rice Plants under Submergence Stress

    Institute of Scientific and Technical Information of China (English)

    Malay Kumar ADAK; Nirmalya GHOSH; Dilip Kumar DASGUPTA; Sudha GUPTA

    2011-01-01

    The detrimental effects of submergence on physiological performances of some rice varieties with special references to carbohydrate metabolisms and their allied enzymes during post-flowering stages have been documented and clarified in the present investigation.It was found that photosynthetic rate and concomitant translocation of sugars into the panicles were both related to the yield.The detrimental effects of the complete submergence were recorded in generation of sucrose,starch,sucrose phosphate synthase and phosphorylase activity in the developing panicles of the plants as compared to those under normal or control (i.e.non-submerged) condition.The accumulation of starch was significantly lower in plants under submergence and that was correlated with ADP-glucose pyrophosphorylase activity.Photosynthetic rate was most affected under submergence in varying days of post-flowering and was also related to the down regulation of Ribulose bisphosphate carboxylase activity.However,under normal or control condition,there recorded a steady maintenance of photosynthetic rate at the post-flowering stages and significantly higher values of Ribulose bisphosphate carboxylase activity.Still,photosynthetic rate of the plants under both control and submerged conditions had hardly any significant correlation with sugar accumulation and other enzymes of carbohydrate metabolism like invertase with grain yield.Finally,plants under submergence suffered significant loss of yield by poor grain filling which was related to impeded carbohydrate metabolism in the tissues.It is evident that loss of yield under submergence is attributed both by lower sink size or sink capacity (number of panicles,in this case) as well as subdued carbohydrate metabolism in plants and its subsequent partitioning into the grains.

  17. Carbohydrate metabolism in the mosquito pathogen Bacillus sphaericus 2362.

    OpenAIRE

    Russell, B L; Jelley, S A; Yousten, A A

    1989-01-01

    Bacillus sphaericus 2362 is pathogenic for mosquito larvae and is being considered for large-scale production as a larvicide. The inability of the bacteria to metabolize carbohydrates requires that they be grown on proteinaceous media. This bacterium was found to be unable to transport glucose or sucrose into the cell, and it lacked glucokinase and hexokinase activity. In addition, it lacked phosphoglucose isomerase, phosphofructokinase, and glucose 6-phosphate dehydrogenase, which are early ...

  18. INFLUENCE OF CHITOSAN ON CARBOHYDRATE METABOLISM IN EXERCISING MICE

    Institute of Scientific and Technical Information of China (English)

    石磊; 黄伟

    2004-01-01

    Objective To study the mechanism of chitosan on carbohydrate metabolism disorder in exercising mice. Methods The animal model of carbohydrate metabolism disorder was established through swimming trainings and the content of blood glucose, muscle glycogen and liver glycogen in mice were all surveyed. Results When quiet, liver glycogen, muscle glycogen and blood glucose of drug-taking group were much higher than those of control group(P<0.05). Compared with control group, the liver glycogen and muscle glycogen of instant drug-taking group after exercises level to a higher degree (P<0.05). The renewing level of liver glycogen, muscle glycogen and blood glucose in drug-taking group after spending 24 hours on recovery was evidently higher than that of control-group (P<0.05). The exhaustive swimming time of drug-taking group was longer than that of exercise-control group by 33.99%. Conclusion Chitosan takes good effect on improving carbohydrate metabolism disorder resulting from exercises.

  19. Pill formulations and their effect on lipid and carbohydrate metabolism.

    Science.gov (United States)

    Brooks, P G

    1984-07-01

    Recent data on oral contraceptives (OCs) employing new low-dose formulations appear to indicate that most of the previously reported metabolic effects are minimized, particularly when a product is neigher ovverly estrogenic nor progestational. Evidence suggests that elevated levels of cholesterol and triglycerides in the plasma are correlated with the risk of cardiovascular disease. Epidemiologic students have indicated a correlation between elevation of low denisty lipoprotein (LDL) cholesterol and coronary heart disease, and a correlation between decreases in high density lipoprotein (HDL) cholesterol and arterial disease. Epidemiologic evidence seems to suggest that combination OCs are associated with increased cardiovascular risk, especially risks of venous thrombosis, myocardial infarction, and stroke. There is some debate as to whether OCs themselves are an independent risk factor or whether they increase the effects of other risk factors. Women using combination OCs have been reported to have higher total serum triglyceride and cholesterol concentrations, related primarily to the estrogen dose. While most of the earlier literature associated estrogens with a higher risk of cardiovascular disease, recent studies have increasingly implicated the progestin component. Increasing potencies of progestin have been found to proportionally lower the HDL-cholesterol level. There is a positive association between the estrogen dose and HDL-cholesterol level. Among combination pill users, HDL levels gevverally depend on the relative amounts and potencies of both components. It is generally agreed that there are some high-risk women who should be carefully monitored while using the pill or who should not use it at all. Steroid type and dosage both play a role in affecting carbohydrate metabolism. Ethinyl estradiol (EE), the estrogen component in most OCs, does not seem to have the same biphasic effect on carbohydrate metaolism as most other estrogens. Most of the recent

  20. Altered oxidative stress and carbohydrate metabolism in canine mammary tumors

    Directory of Open Access Journals (Sweden)

    K. Jayasri

    2016-12-01

    Full Text Available Aim: Mammary tumors are the most prevalent type of neoplasms in canines. Even though cancer induced metabolic alterations are well established, the clinical data describing the metabolic profiles of animal tumors is not available. Hence, our present investigation was carried out with the aim of studying changes in carbohydrate metabolism along with the level of oxidative stress in canine mammary tumors. Materials and Methods: Fresh mammary tumor tissues along with the adjacent healthy tissues were collected from the college surgical ward. The levels of thiobarbituric acid reactive substances (TBARS, glutathione, protein, hexose, hexokinase, glucose-6-phosphatase, fructose-1, 6-bisphosphatase, and glucose-6-phosphate dehydrogenase (G6PD were analyzed in all the tissues. The results were analyzed statistically. Results: More than two-fold increase in TBARS and three-fold increase in glutathione levels were observed in neoplastic tissues. Hexokinase activity and hexose concentration (175% was found to be increased, whereas glucose-6-phosphatase (33%, fructose-1, 6-bisphosphatase (42%, and G6PD (5 fold activities were reduced in tumor mass compared to control. Conclusion: Finally, it was revealed that lipid peroxidation was increased with differentially altered carbohydrate metabolism in canine mammary tumors.

  1. Physiological aspects of energy metabolism and gastrointestinal effects of carbohydrates.

    Science.gov (United States)

    Elia, M; Cummings, J H

    2007-12-01

    The energy values of carbohydrates continue to be debated. This is because of the use of different energy systems, for example, combustible, digestible, metabolizable, and so on. Furthermore, ingested macronutrients may not be fully available to tissues, and the tissues themselves may not be able fully to oxidize substrates made available to them. Therefore, for certain carbohydrates, the discrepancies between combustible energy (cEI), digestible energy (DE), metabolizable energy (ME) and net metabolizable energy (NME) may be considerable. Three food energy systems are in use in food tables and for food labelling in different world regions based on selective interpretation of the digestive physiology and metabolism of food carbohydrates. This is clearly unsatisfactory and confusing to the consumer. While it has been suggested that an enormous amount of work would have to be undertaken to change the current ME system into an NME system, the additional changes may not be as great as anticipated. In experimental work, carbohydrate is high in the macronutrient hierarchy of satiation. However, studies of eating behaviour indicate that it does not unconditionally depend on the oxidation of one nutrient, and argue against the operation of a simple carbohydrate oxidation or storage model of feeding behaviour to the exclusion of other macronutrients. The site, rate and extent of carbohydrate digestion in, and absorption from the gut are key to understanding the many roles of carbohydrate, although the concept of digestibility has different meanings. Within the nutrition community, the characteristic patterns of digestion that occur in the small (upper) vs large (lower) bowel are known to impact in contrasting ways on metabolism, while in the discussion of the energy value of foods, digestibility is defined as the proportion of combustible energy that is absorbed over the entire length of the gastrointestinal tract. Carbohydrates that reach the large bowel are fermented to

  2. Horizontal transfer of carbohydrate metabolism genes into ectomycorrhizal Amanita.

    Science.gov (United States)

    Chaib De Mares, Maryam; Hess, Jaqueline; Floudas, Dimitrios; Lipzen, Anna; Choi, Cindy; Kennedy, Megan; Grigoriev, Igor V; Pringle, Anne

    2015-03-01

    The genus Amanita encompasses both symbiotic, ectomycorrhizal fungi and asymbiotic litter decomposers; all species are derived from asymbiotic ancestors. Symbiotic species are no longer able to degrade plant cell walls. The carbohydrate esterases family 1 (CE1s) is a diverse group of enzymes involved in carbon metabolism, including decomposition and carbon storage. CE1 genes of the ectomycorrhizal A. muscaria appear diverged from all other fungal homologues, and more similar to CE1s of bacteria, suggesting a horizontal gene transfer (HGT) event. In order to test whether AmanitaCE1s were acquired horizontally, we built a phylogeny of CE1s collected from across the tree of life, and describe the evolution of CE1 genes among Amanita and relevant lineages of bacteria. CE1s of symbiotic Amanita were very different from CE1s of asymbiotic Amanita, and are more similar to bacterial CE1s. The protein structure of one CE1 gene of A. muscaria matched a depolymerase that degrades the carbon storage molecule poly((R)-3-hydroxybutyrate) (PHB). Asymbiotic Amanita do not carry sequence or structural homologues of these genes. The CE1s acquired through HGT may enable novel metabolisms, or play roles in signaling or defense. This is the first evidence for the horizontal transfer of carbohydrate metabolism genes into ectomycorrhizal fungi.

  3. Influence of dietary carbohydrate level on endocrine status and hepatic carbohydrate metabolism in the marine fish Sparus sarba.

    Science.gov (United States)

    Leung, L Y; Woo, Norman Y S

    2012-04-01

    Silver sea bream, Sparus sarba, were fed two diets of different carbohydrate levels (2 and 20% dextrin) for 4 weeks, and the effects on organ indices, liver composition, serum metabolite and hormone levels and gene expression profile of key enzymes of carbohydrate metabolism in the liver were investigated. By using real-time PCR, mRNA expression levels of carbohydrate metabolic enzymes including glucokinase (GK, glycolysis), glucose-6-phosphatase (G6Pase, gluconeogenesis), glycogen synthase (GS, glycogenesis), glycogen phosphorylase (GP, glycogenolysis) and glucose-6-phosphate dehydrogenase (G6PDH, pentose phosphate pathway) in liver of sea bream have been examined, and it was found that high dietary carbohydrate level increased mRNA level of GK but decreased mRNA levels of G6Pase and GP. However, mRNA levels of GS and G6PDH were not significantly influenced by dietary carbohydrate. Silver sea bream fed high dietary carbohydrate had higher hepatosomatic index (HSI), liver glycogen and protein, but there were no significant changes in gonadosomatic index (GSI), serum glucose and protein level, as well as liver lipid and moisture level. Pituitary growth hormone (GH) and hepatic insulin-like growth factor I (IGF-I) transcript abundance were assayed by real-time PCR, and it was found that both parameters remained unchanged in fish fed different dietary carbohydrate levels. Serum triiodothyronine (T(3)) and thyroxine (T(4)) were not significantly affected by dietary carbohydrate levels, but lower serum cortisol level was found in fish fed high dietary carbohydrate level. These results suggest that silver sea bream is able to adapt to a diet with high carbohydrate content (up to 20% dextrin), the consumption of which would lead to fundamental re-organization of carbohydrate metabolism resulting in hepatic glycogen deposition.

  4. Effect of Diisopropyl Phosphorofluoridate in Some Aspects of Carbohydrate Metabolism

    Directory of Open Access Journals (Sweden)

    A. K. Chatterjee

    1991-04-01

    Full Text Available An acute dose of DFP equivalent to 50 per cent of the LD50 cause glycogenolysis and hyperglycemia in male albino rats. The hyperglycemic effect can atleast be partially suppressed by the administration of insulin. Under sub-acute dose equivalent to 5 per cent of the LD50, there is glycogenolysis but no change is blood glucose. The action of DFP on carbohydrate metabolism seems to be mediated through adrenal gland. DFP also increases the glycolytic rate, suppresses the LDH activity and is hepatotoxic.

  5. Carbohydrate metabolism in women with a twin pregnancy.

    Science.gov (United States)

    Spellacy, W N; Buhi, W C; Birk, S A

    1980-06-01

    Carbohydrate metabolism was evaluated in 24 women with a twin pregnancy and 24 women with a singleton pregnancy. The groups were of similar age, parity, weight, and gestational age. In each woman an intravenous glucose tolerance test was done using a 25-g glucose load in the last half of gestation. Both blood glucose and plasma insulin levels were measured and statistically compared. The plasma human placental lactogen levels were significantly higher in the women with the twin gestation (7.3 +/- 0.7 versus 4.7 +/- 0.3 microgram/ml). Although the glucose disappearance rates (K) were not different, there was a significantly lower fasting as well as 5- and 15-minute blood glucose value in the twin pregnancy group. There was also a significantly lower 15-minute insulin level in the twin group. The importance of these findings to the clinical management of twin pregnancies and to the understanding of the metabolic changes in pregnancy is discussed.

  6. Temporal Coordination of Carbohydrate Metabolism during Mosquito Reproduction.

    Directory of Open Access Journals (Sweden)

    Yuan Hou

    2015-07-01

    Full Text Available Hematophagous mosquitoes serve as vectors of multiple devastating human diseases, and many unique physiological features contribute to the incredible evolutionary success of these insects. These functions place high-energy demands on a reproducing female mosquito, and carbohydrate metabolism (CM must be synchronized with these needs. Functional analysis of metabolic gene profiling showed that major CM pathways, including glycolysis, glycogen and sugar metabolism, and citrate cycle, are dramatically repressed at post eclosion (PE stage in mosquito fat body followed by a sharply increase at post-blood meal (PBM stage, which were also verified by Real-time RT-PCR. Consistent to the change of transcript and protein level of CM genes, the level of glycogen, glucose and trehalose and other secondary metabolites are also periodically accumulated and degraded during the reproductive cycle respectively. Levels of triacylglycerols (TAG, which represent another important energy storage form in the mosquito fat body, followed a similar tendency. On the other hand, ATP, which is generated by catabolism of these secondary metabolites, showed an opposite trend. Additionally, we used RNA interference studies for the juvenile hormone and ecdysone receptors, Met and EcR, coupled with transcriptomics and metabolomics analyses to show that these hormone receptors function as major regulatory switches coordinating CM with the differing energy requirements of the female mosquito throughout its reproductive cycle. Our study demonstrates how, by metabolic reprogramming, a multicellular organism adapts to drastic and rapid functional changes.

  7. Carbohydrates

    Science.gov (United States)

    Carbohydrates are one of the main types of nutrients. They are the most important source of energy for your body. Your digestive system changes carbohydrates into glucose (blood sugar). Your body uses this ...

  8. Mangiferin stimulates carbohydrate oxidation and protects against metabolic disorders induced by high-fat diets.

    Science.gov (United States)

    Apontes, Pasha; Liu, Zhongbo; Su, Kai; Benard, Outhiriaradjou; Youn, Dou Y; Li, Xisong; Li, Wei; Mirza, Raihan H; Bastie, Claire C; Jelicks, Linda A; Pessin, Jeffrey E; Muzumdar, Radhika H; Sauve, Anthony A; Chi, Yuling

    2014-11-01

    Excessive dietary fat intake causes systemic metabolic toxicity, manifested in weight gain, hyperglycemia, and insulin resistance. In addition, carbohydrate utilization as a fuel is substantially inhibited. Correction or reversal of these effects during high-fat diet (HFD) intake is of exceptional interest in light of widespread occurrence of diet-associated metabolic disorders in global human populations. Here we report that mangiferin (MGF), a natural compound (the predominant constituent of Mangifera indica extract from the plant that produces mango), protected against HFD-induced weight gain, increased aerobic mitochondrial capacity and thermogenesis, and improved glucose and insulin profiles. To obtain mechanistic insight into the basis for these effects, we determined that mice exposed to an HFD combined with MGF exhibited a substantial shift in respiratory quotient from fatty acid toward carbohydrate utilization. MGF treatment significantly increased glucose oxidation in muscle of HFD-fed mice without changing fatty acid oxidation. These results indicate that MGF redirects fuel utilization toward carbohydrates. In cultured C2C12 myotubes, MGF increased glucose and pyruvate oxidation and ATP production without affecting fatty acid oxidation, confirming in vivo and ex vivo effects. Furthermore, MGF inhibited anaerobic metabolism of pyruvate to lactate but enhanced pyruvate oxidation. A key target of MGF appears to be pyruvate dehydrogenase, determined to be activated by MGF in a variety of assays. These findings underscore the therapeutic potential of activation of carbohydrate utilization in correction of metabolic syndrome and highlight the potential of MGF to serve as a model compound that can elicit fuel-switching effects.

  9. Metabolic Effects of the Very-Low-Carbohydrate Diets: Misunderstood "Villains" of Human Metabolism

    Directory of Open Access Journals (Sweden)

    Manninen Anssi H

    2004-12-01

    Full Text Available Abstract During very low carbohydrate intake, the regulated and controlled production of ketone bodies causes a harmless physiological state known as dietary ketosis. Ketone bodies flow from the liver to extra-hepatic tissues (e.g., brain for use as a fuel; this spares glucose metabolism via a mechanism similar to the sparing of glucose by oxidation of fatty acids as an alternative fuel. In comparison with glucose, the ketone bodies are actually a very good respiratory fuel. Indeed, there is no clear requirement for dietary carbohydrates for human adults. Interestingly, the effects of ketone body metabolism suggest that mild ketosis may offer therapeutic potential in a variety of different common and rare disease states. Also, the recent landmark study showed that a very-low-carbohydrate diet resulted in a significant reduction in fat mass and a concomitant increase in lean body mass in normal-weight men. Contrary to popular belief, insulin is not needed for glucose uptake and utilization in man. Finally, both muscle fat and carbohydrate burn in an amino acid flame.

  10. Whey or Casein Hydrolysate with Carbohydrate for Metabolism and Performance in Cycling.

    Science.gov (United States)

    Oosthuyse, T; Carstens, M; Millen, A M E

    2015-07-01

    The protein type most suitable for ingestion during endurance exercise is undefined. This study compared co-ingestion of either 15 g/h whey or casein hydrolysate with 63 g/h fructose: maltodextrin (0.8:1) on exogenous carbohydrate oxidation, exercise metabolism and performance. 2 h postprandial, 8 male cyclists ingested either: carbohydrate-only, carbohydrate-whey hydrolysate, carbohydrate-casein hydrolysate or placebo-water in a crossover, double-blind design during 2 h of exercise at 60%W max followed by a 16-km time trial. Data were evaluated by magnitude-based inferential statistics. Exogenous carbohydrate oxidation, measured from (13)CO2 breath enrichment, was not substantially influenced by co-ingestion of either protein hydrolysate. However, only co-ingestion of carbohydrate-casein hydrolysate substantially decreased (98% very likely decrease) total carbohydrate oxidation (mean±SD, 242±44; 258±47; 277±33 g for carbohydrate-casein, carbohydrate-whey and carbohydrate-only, respectively) and substantially increased (93% likely increase) total fat oxidation (92±14; 83±27; 73±19 g) compared with carbohydrate-only. Furthermore, only carbohydrate-casein hydrolysate ingestion resulted in a faster time trial (-3.6%; 90% CI: ±3.2%) compared with placebo-water (95% likely benefit). However, neither protein hydrolysate enhanced time trial performance when compared with carbohydrate-only. Under the conditions of this study, ingesting carbohydrate-casein, but not carbohydrate-whey hydrolysate, favourably alters metabolism during prolonged moderate-strenuous cycling without substantially altering cycling performance compared with carbohydrate-only.

  11. Validation of lignocellulosic biomass carbohydrates determination via acid hydrolysis.

    Science.gov (United States)

    Zhou, Shengfei; Runge, Troy M

    2014-11-04

    This work studied the two-step acid hydrolysis for determining carbohydrates in lignocellulosic biomass. Estimation of sugar loss based on acid hydrolyzed sugar standards or analysis of sugar derivatives was investigated. Four model substrates (starch, holocellulose, filter paper and cotton) and three levels of acid/material ratios (7.8, 10.3 and 15.4, v/w) were studied to demonstrate the range of test artifacts. The method for carbohydrates estimation based on acid hydrolyzed sugar standards having the most satisfactory carbohydrate recovery and relative standard deviation. Raw material and the acid/material ratio both had significant effect on carbohydrate hydrolysis, suggesting the acid to have impacts beyond a catalyst in the hydrolysis. Following optimal procedures, we were able to reach a carbohydrate recovery of 96% with a relative standard deviation less than 3%. The carbohydrates recovery lower than 100% was likely due to the incomplete hydrolysis of substrates, which was supported by scanning electron microscope (SEM) images.

  12. Dietary carbohydrate restriction in type 2 diabetes mellitus and metabolic syndrome: time for a critical appraisal

    Directory of Open Access Journals (Sweden)

    Roth Karl S

    2008-04-01

    Full Text Available Abstract Current nutritional approaches to metabolic syndrome and type 2 diabetes generally rely on reductions in dietary fat. The success of such approaches has been limited and therapy more generally relies on pharmacology. The argument is made that a re-evaluation of the role of carbohydrate restriction, the historical and intuitive approach to the problem, may provide an alternative and possibly superior dietary strategy. The rationale is that carbohydrate restriction improves glycemic control and reduces insulin fluctuations which are primary targets. Experiments are summarized showing that carbohydrate-restricted diets are at least as effective for weight loss as low-fat diets and that substitution of fat for carbohydrate is generally beneficial for risk of cardiovascular disease. These beneficial effects of carbohydrate restriction do not require weight loss. Finally, the point is reiterated that carbohydrate restriction improves all of the features of metabolic syndrome.

  13. Dietary carbohydrate restriction in type 2 diabetes mellitus and metabolic syndrome: time for a critical appraisal.

    Science.gov (United States)

    Accurso, Anthony; Bernstein, Richard K; Dahlqvist, Annika; Draznin, Boris; Feinman, Richard D; Fine, Eugene J; Gleed, Amy; Jacobs, David B; Larson, Gabriel; Lustig, Robert H; Manninen, Anssi H; McFarlane, Samy I; Morrison, Katharine; Nielsen, Jørgen Vesti; Ravnskov, Uffe; Roth, Karl S; Silvestre, Ricardo; Sowers, James R; Sundberg, Ralf; Volek, Jeff S; Westman, Eric C; Wood, Richard J; Wortman, Jay; Vernon, Mary C

    2008-04-08

    Current nutritional approaches to metabolic syndrome and type 2 diabetes generally rely on reductions in dietary fat. The success of such approaches has been limited and therapy more generally relies on pharmacology. The argument is made that a re-evaluation of the role of carbohydrate restriction, the historical and intuitive approach to the problem, may provide an alternative and possibly superior dietary strategy. The rationale is that carbohydrate restriction improves glycemic control and reduces insulin fluctuations which are primary targets. Experiments are summarized showing that carbohydrate-restricted diets are at least as effective for weight loss as low-fat diets and that substitution of fat for carbohydrate is generally beneficial for risk of cardiovascular disease. These beneficial effects of carbohydrate restriction do not require weight loss. Finally, the point is reiterated that carbohydrate restriction improves all of the features of metabolic syndrome.

  14. REPEATED ACUTE STRESS INDUCED ALTERATIONS IN CARBOHYDRATE METABOLISM IN RAT

    Directory of Open Access Journals (Sweden)

    Nirupama R.

    2010-09-01

    Full Text Available Acute stress induced alterations in the activity levels of rate limiting enzymes and concentration of intermediates of different pathways of carbohydrate metabolism have been studied. Adult male Wistar rats were restrained (RS for 1 h and after an interval of 4 h they were subjected to forced swimming (FS exercise and appropriate controls were maintained. Five rats were killed before the commencement of the experiment (initial controls, 5 control and equal number of stressed rats were killed 2 h after RS and remaining 5 rats in each group were killed 4 h after FS. There was a significant increase in the adrenal 3β- hydroxy steroid dehydrogenase activity following RS, which showed further increase after FS compared to controls and thereby indicated stress response of rats. There was a significant increase in the blood glucose levels following RS which showed further increase and reached hyperglycemic condition after FS. The hyperglycemic condition due to stress was accompanied by significant increases in the activities of glutamate- pyruvate transaminase, glutamate- oxaloacetate transaminase, glucose -6- phosphatase and lactate dehydrogenase and significant decrease in the glucose -6- phosphate dehydrogenase and pyruvate dehydrogenase activities, whereas pyruvate kinase activity did not show any alteration compared to controls. Further, the glycogen and total protein contents of the liver were decreased whereas those of pyruvate and lactate showed significant increase compared to controls after RS as well as FS.The results put together indicate that acute stress induced hyperglycemia results due to increased gluconeogenesis and glycogenolysis without alteration in glycolysis. The study first time reveals that after first acute stress exposure, the subsequent stressful experience augments metabolic stress response leading to hyperglycemia. The results have relevance to human health as human beings are exposed to several stressors in a day and

  15. Carbohydrate restriction improves the features of Metabolic Syndrome. Metabolic Syndrome may be defined by the response to carbohydrate restriction

    Directory of Open Access Journals (Sweden)

    Feinman Richard D

    2005-11-01

    Full Text Available Abstract Metabolic Syndrome (MetS represents a constellation of markers that indicates a predisposition to diabetes, cardiovascular disease and other pathologic states. The definition and treatment are a matter of current debate and there is not general agreement on a precise definition or, to some extent, whether the designation provides more information than the individual components. We consider here five indicators that are central to most definitions and we provide evidence from the literature that these are precisely the symptoms that respond to reduction in dietary carbohydrate (CHO. Carbohydrate restriction is one of several strategies for reducing body mass but even in the absence of weight loss or in comparison with low fat alternatives, CHO restriction is effective at ameliorating high fasting glucose and insulin, high plasma triglycerides (TAG, low HDL and high blood pressure. In addition, low fat, high CHO diets have long been known to raise TAG, lower HDL and, in the absence of weight loss, may worsen glycemic control. Thus, whereas there are numerous strategies for weight loss, a patient with high BMI and high TAG is likely to benefit most from a regimen that reduces CHO intake. Reviewing the literature, benefits of CHO restriction are seen in normal or overweight individuals, in normal patients who meet the criteria for MetS or in patients with frank diabetes. Moreover, in low fat studies that ameliorate LDL and total cholesterol, controls may do better on the symptoms of MetS. On this basis, we feel that MetS is a meaningful, useful phenomenon and may, in fact, be operationally defined as the set of markers that responds to CHO restriction. Insofar as this is an accurate characterization it is likely the result of the effect of dietary CHO on insulin metabolism. Glucose is the major insulin secretagogue and insulin resistance has been tied to the hyperinsulinemic state or the effect of such a state on lipid metabolism. The

  16. Carbohydrate restriction improves the features of Metabolic Syndrome. Metabolic Syndrome may be defined by the response to carbohydrate restriction.

    Science.gov (United States)

    Volek, Jeff S; Feinman, Richard D

    2005-11-16

    Metabolic Syndrome (MetS) represents a constellation of markers that indicates a predisposition to diabetes, cardiovascular disease and other pathologic states. The definition and treatment are a matter of current debate and there is not general agreement on a precise definition or, to some extent, whether the designation provides more information than the individual components. We consider here five indicators that are central to most definitions and we provide evidence from the literature that these are precisely the symptoms that respond to reduction in dietary carbohydrate (CHO). Carbohydrate restriction is one of several strategies for reducing body mass but even in the absence of weight loss or in comparison with low fat alternatives, CHO restriction is effective at ameliorating high fasting glucose and insulin, high plasma triglycerides (TAG), low HDL and high blood pressure. In addition, low fat, high CHO diets have long been known to raise TAG, lower HDL and, in the absence of weight loss, may worsen glycemic control. Thus, whereas there are numerous strategies for weight loss, a patient with high BMI and high TAG is likely to benefit most from a regimen that reduces CHO intake. Reviewing the literature, benefits of CHO restriction are seen in normal or overweight individuals, in normal patients who meet the criteria for MetS or in patients with frank diabetes. Moreover, in low fat studies that ameliorate LDL and total cholesterol, controls may do better on the symptoms of MetS. On this basis, we feel that MetS is a meaningful, useful phenomenon and may, in fact, be operationally defined as the set of markers that responds to CHO restriction. Insofar as this is an accurate characterization it is likely the result of the effect of dietary CHO on insulin metabolism. Glucose is the major insulin secretagogue and insulin resistance has been tied to the hyperinsulinemic state or the effect of such a state on lipid metabolism. The conclusion is probably not

  17. Effects of training status on the metabolic responses to high carbohydrate and high fat meals.

    Science.gov (United States)

    Bowden, V L; McMurray, R G

    2000-03-01

    The purpose of this study was to determine if there is a difference between the way in which aerobically trained and untrained women metabolize fats and carbohydrates at rest in response to either a high-fat or high-carbohydrate meal. Subjects, 6 per group, were fed a high CHO meal (2068 kJ, 76% CHO, 23% fat, 5% protein) and a high fat meal (2093 kJ, 21% CHO, 72% fat, 8% protein) in counterbalanced order. Resting metabolic rate (RMR) was measured every half-hour for 5 hours. RMR was similar between groups. However, after ingesting a high CHO meal, trained subjects had a peak in metabolism at minute 60, not evident in the untrained subjects. In addition, postprandial RER from minutes 120-300 were lower and fat use was greater after the high CHO meal for the trained subjects. These results suggest that aerobically trained women have an accelerated CHO uptake and overall lower CHO oxidation following the ingestion of a high CHO meal.

  18. Carbohydrate metabolism after one year of using a gestodene containing monophasic oral contraceptive

    Directory of Open Access Journals (Sweden)

    Ayşegül Yıldırım

    2006-11-01

    Full Text Available Aim: To prospectively evaluate the effects of an oral contraceptive containing the progestin gestodene on carbohydrate metabolism in ordinary Turkish women Material / Method: Carbohydrate metabolism was prospectively evaluated in 53 normal women prior to and during their use of monophasic oral contraceptive containing the progestin gestodene plus ethinyl estradiol for one year. The women had a two hour oral glucose tolerance test using 75 gram glucose load, measuring serum glucose and insulin level, performed at the beginning of the contraceptive therapy and after one year. Results: The results demonstrate no significant changes in either of carbohydrate metabolic indices between the two tests.  Conclusion: The progestin containing contraceptive pill can be safely used in consideration of the carbohydrate metabolism.

  19. Carbohydrate metabolism after one year of using a gestodene containing monophasic oral contraceptive

    OpenAIRE

    Ayşegül Yıldırım; Efe Onganer; Kemal Erkal

    2006-01-01

    Aim: To prospectively evaluate the effects of an oral contraceptive containing the progestin gestodene on carbohydrate metabolism in ordinary Turkish women Material / Method: Carbohydrate metabolism was prospectively evaluated in 53 normal women prior to and during their use of monophasic oral contraceptive containing the progestin gestodene plus ethinyl estradiol for one year. The women had a two hour oral glucose tolerance test using 75 gram glucose load, measuring serum glucose and ...

  20. Metabolic and hormonal responses to body carbohydrate store depletion followed by high or low carbohydrate meal in sedentary and physically active subjects.

    Science.gov (United States)

    Mikulski, T; Ziemba, A; Nazar, K

    2010-04-01

    The study was designed to determine metabolic and hormonal responses to acute modification of body carbohydrate stores by exercise and subsequent meals and to find out whether the responses depend on the training status of subjects. Nine sedentary students and 10 endurance athletes took part in four experimental sessions. During control session, after overnight fast oxygen uptake and CO2 production were measured and blood glucose, free fatty acids (FFA), insulin (I), leptin (L), growth hormone (GH), testosterone (T), catecholamines, ACTH and cortisol were determined. The remaining sessions were preceded by 1.5 h exercise at 70% HRmax in the evening followed by 12-16 hrs fast till morning when subjects ate either high-carbohydrate (H-CHO) or low-carbohydrate (L-CHO) meal or fasted. Respiratory gases and blood samples were collected before and 2 hours after meal. In glycogen depleted subjects respiratory quotient (RQ), I, norepinephrine (NE) and L decreased, whilst other variables were unaltered. Changes in I and NE were greater in athletes than in sedentary subjects. After H-CHO RQ, blood glucose, I and NE increased and FFA, GH and T decreased. The latter effect was greater in athletes than in untrained subjects. After L-CHO, RQ was at the fasting level and FFA increased only in sedentary group. In both groups I increased and GH and T decreased. Neither meal affected L concentration. In conclusion, hormonal and metabolic changes observed after depleting carbohydrate stores resemble those occurring during starvation. Composition of the ingested meal affects postprandial metabolism, which additionally depends on the subjects' training status.

  1. [Quality of carbohydrates in the diet and their effect on metabolic control of type 2 diabetes].

    Science.gov (United States)

    Pincheira, Daniela; Morgado, Romina; Alviña, Marcela; Vega, Claudia

    2014-12-01

    The objective of this study was to determine the relationship between the parameters of metabolic control and quality of carbohydrates (CHO) of the diet in individuals with type 2 diabetes, controlled with diet and/or Metformin. In 108 men and women aged between 18 and 60 years, glycosylated hemoglobin A (HbA1c) between 6% and 10%, without sulfonylureas or insulin theraphy; were examined through two separate surveys of 24-hour recall. The CHO intake, GI, GL of diet was analyzed. Values of HbA1c were collected from medical records. Data was tabulated in SPSS version 17 software. The Pearson correlation test was used to analyze the degree of association between variables, considering significant at p diet and HbA1c levels in the individuals. In conclusion the study showed that the quality of CHO, mainly GI, are strongly associated with metabolic control of DM 2.

  2. Dietary carbohydrate restriction induces a unique metabolic state positively affecting atherogenic dyslipidemia, fatty acid partitioning, and metabolic syndrome.

    Science.gov (United States)

    Volek, Jeff S; Fernandez, Maria Luz; Feinman, Richard D; Phinney, Stephen D

    2008-09-01

    Abnormal fatty acid metabolism and dyslipidemia play an intimate role in the pathogenesis of metabolic syndrome and cardiovascular diseases. The availability of glucose and insulin predominate as upstream regulatory elements that operate through a collection of transcription factors to partition lipids toward anabolic pathways. The unraveling of the details of these cellular events has proceeded rapidly, but their physiologic relevance to lifestyle modification has been largely ignored. Here we highlight the role of dietary input, specifically carbohydrate intake, in the mechanism of metabolic regulation germane to metabolic syndrome. The key principle is that carbohydrate, directly or indirectly through the effect of insulin, controls the disposition of excess dietary nutrients. Dietary carbohydrate modulates lipolysis, lipoprotein assembly and processing and affects the relation between dietary intake of saturated fat intake and circulating levels. Several of these processes are the subject of intense investigation at the cellular level. We see the need to integrate these cellular mechanisms with results from low-carbohydrate diet trials that have shown reduced cardiovascular risk through improvement in hepatic, intravascular, and peripheral processing of lipoproteins, alterations in fatty acid composition, and reductions in other cardiovascular risk factors, notably inflammation. From the current state of the literature, however, low-carbohydrate diets are grounded in basic metabolic principles and the data suggest that some form of carbohydrate restriction is a candidate to be the preferred dietary strategy for cardiovascular health beyond weight regulation.

  3. [Mathematical model for carbohydrate energy metabolism. Mechanism of the Pasteur effect].

    Science.gov (United States)

    Khainrikh, R; Dynnik, V V; Sel'kov, E E

    1980-06-01

    The simple mathematical model based on the stoichiometric structure of carbohydrate metabolism and the only allosteric regulation presented, i. e. activation of phosphofructokinase by AMP, was used to study the mechanism of the Pasteur effect, e. g. interrelationship of glycolysis, the Krebs cycle and H-transporting shuttles at varying rates of oxidative phosphorylation and ATPase load. It was shown that the mechanism of the Pasteur effect is based on the presence of two negative feed-back mechanisms in carbohydrate metabolism, namely by the level of ATP in glycolysis and by the level of mitochondrial NADH in the Krebs cycle and H-transporting shuttles. It was also shown that the value and sign of the Pasteur effect depend on the level of ATPase load. The role of this phenomenon in stabilization of ATP in the cell is discussed. The effects of changes in the allosteric properties of phosphofructokinase and low activity of H-transporting shuttles on the Pasteur effect was studied. It was shown that the low values of the pasteur effect in tumour tissues are mainly determined by an insufficient activity of oxidative phosphorylation.

  4. Horizontal transfer of carbohydrate metabolism genes into ectomycorrhizal Amanita

    NARCIS (Netherlands)

    Chaib De Mares, Maryam; Hess, Jaqueline; Floudas, Dimitrios; Lipzen, Anna; Choi, Cindy; Kennedy, Megan; Grigoriev, Igor V.; Pringle, Anne

    2015-01-01

    - The genus Amanita encompasses both symbiotic, ectomycorrhizal fungi and asymbiotic litter decomposers; all species are derived from asymbiotic ancestors. Symbiotic species are no longer able to degrade plant cell walls. The carbohydrate esterases family 1 (CE1s) is a diverse group of enzymes invol

  5. [Carbohydrate metabolism in the brain in comatose states].

    Science.gov (United States)

    Khapiĭ, Kh Kh; Gruzman, A B

    1990-01-01

    The article confirms an earlier discovered phenomenon that during comas and in post-coma periods the brain releases glucose and consumes lactate. It is suggested that the phenomenon is based on glucogenesis taking place in the brain from non-carbohydrate glucose precursors, which is phylogenetically predetermined and biologically expedient.

  6. Effects of soybean carbohydrates and Lactobacillus helveticus BGRA43 on metabolic processes in rat colon

    Directory of Open Access Journals (Sweden)

    Lukić Jovanka

    2016-01-01

    Full Text Available Aim of this work was to assess the metabolic and physiological changes that occurred in the hind gut of rats after feeding with soybean carbohydrates alone and in combination with Lactobacillus helveticus BGRA43. Wistar rats were gavaged with soybean flour for 28 days. The parameters assessed included fecal volatile organic compounds, and L-lactate, reducing sugars, proteins, ammonia and water levels in the colonic lumen. The presence of lactic acid (LAB, sulfate reducing (SRB and methanogenic bacteria was assessed by semi-quantitative PCR. Malondialdehyde levels as well as lymphoid tissue size in ileal and colonic mucosa were also evaluated. On the basics of the results obtained, correlation network was created, setting the parameters tested in research in two metabolic groups: saccharolytic and proteolytic fermentation group. The principal finding of the study is a negative correlation between oral administration of BGRA43 and increase of parameters related to carbohydrate fermentation in the gut, and a positive correlation to factors related to proteolytic fermentation. On the contrary, soybean carbohydrates were correlated with increased values of factors related to carbohydrate catabolism. Different effects of BGRA43 and soybean carbohydrates on metabolic processes in colonic lumen indicate the possibility of applying the BGRA43 in alleviating the gastrointestinal symptoms occurring after consuming hardly digestible carbohydrates. [Projekat Ministarstva nauke Republike Srbije, br. 173019

  7. Radio-metabolite analysis of carbon-11 biochemical partitioning to non-structural carbohydrates for integrated metabolism and transport studies.

    Science.gov (United States)

    Babst, Benjamin A; Karve, Abhijit A; Judt, Tatjana

    2013-06-01

    Metabolism and phloem transport of carbohydrates are interactive processes, yet each is often studied in isolation from the other. Carbon-11 ((11)C) has been successfully used to study transport and allocation processes dynamically over time. There is a need for techniques to determine metabolic partitioning of newly fixed carbon that are compatible with existing non-invasive (11)C-based methodologies for the study of phloem transport. In this report, we present methods using (11)C-labeled CO2 to trace carbon partitioning to the major non-structural carbohydrates in leaves-sucrose, glucose, fructose and starch. High-performance thin-layer chromatography (HPTLC) was adapted to provide multisample throughput, raising the possibility of measuring different tissues of the same individual plant, or for screening multiple plants. An additional advantage of HPTLC was that phosphor plate imaging of radioactivity had a much higher sensitivity and broader range of sensitivity than radio-HPLC detection, allowing measurement of (11)C partitioning to starch, which was previously not possible. Because of the high specific activity of (11)C and high sensitivity of detection, our method may have additional applications in the study of rapid metabolic responses to environmental changes that occur on a time scale of minutes. The use of this method in tandem with other (11)C assays for transport dynamics and whole-plant partitioning makes a powerful combination of tools to study carbohydrate metabolism and whole-plant transport as integrated processes.

  8. Carbohydrate metabolism before and after dehiscence in the recalcitrant pollen of pumpkin (Cucurbita pepo L.).

    Science.gov (United States)

    Carrizo García, C; Guarnieri, M; Pacini, E

    2015-05-01

    Pumpkin (Cucurbita pepo L.) pollen is starchy, sucrose-poor and recalcitrant, features opposite to those of several model species; therefore, some differences in carbohydrate metabolism could be expected in this species. By studying pumpkin recalcitrant pollen, the objective was to provide new biochemical evidence to improve understanding of how carbohydrate metabolism might be involved in pollen functioning in advanced stages. Four stages were analysed: immature pollen from 1 day before anthesis, mature pollen, mature pollen exposed to the environment for 7 h, and pollen rehydrated in a culture medium. Pollen viability, water and carbohydrate content and activity of enzymes involved in carbohydrate metabolism were quantified in each stage. Pollen viability and water content dropped quickly after dehiscence, as expected. The slight changes in carbohydrate concentration and enzyme activity during pollen maturation contrast with major changes recorded with ageing and rehydration. Pumpkin pollen seems highly active and closely related to its surrounding environment in all the stages analysed; the latter is particularly evident among insoluble sucrolytic enzymes, mainly wall-bound acid invertase, which would be the most relevant for sucrose cleavage. Each stage was characterised by a particular metabolic/enzymatic profile; some particular features, such as the minor changes during maturation, fast sucrolysis upon rehydration or sharp decrease in insoluble sucrolytic activity with ageing seem to be related to the lack of dormancy and recalcitrant nature of pumpkin pollen.

  9. Anaplasma phagocytophilum Infection Subverts Carbohydrate Metabolic Pathways in the Tick Vector, Ixodes scapularis

    Science.gov (United States)

    Cabezas-Cruz, Alejandro; Alberdi, Pilar; Valdés, James J.; Villar, Margarita; de la Fuente, José

    2017-01-01

    The obligate intracellular pathogen, Anaplasma phagocytophilum, is the causative agent of human, equine, and canine granulocytic anaplasmosis and tick-borne fever (TBF) in ruminants. A. phagocytophilum has become an emerging tick-borne pathogen in the United States, Europe, Africa, and Asia, with increasing numbers of infected people and animals every year. It has been recognized that intracellular pathogens manipulate host cell metabolic pathways to increase infection and transmission in both vertebrate and invertebrate hosts. However, our current knowledge on how A. phagocytophilum affect these processes in the tick vector, Ixodes scapularis is limited. In this study, a genome-wide search for components of major carbohydrate metabolic pathways was performed in I. scapularis ticks for which the genome was recently published. The enzymes involved in the seven major carbohydrate metabolic pathways glycolysis, gluconeogenesis, pentose phosphate, tricarboxylic acid cycle (TCA), glyceroneogenesis, and mitochondrial oxidative phosphorylation and β-oxidation were identified. Then, the available transcriptomics and proteomics data was used to characterize the mRNA and protein levels of I. scapularis major carbohydrate metabolic pathway components in response to A. phagocytophilum infection of tick tissues and cultured cells. The results showed that major carbohydrate metabolic pathways are conserved in ticks. A. phagocytophilum infection inhibits gluconeogenesis and mitochondrial metabolism, but increases the expression of glycolytic genes. A model was proposed to explain how A. phagocytophilum could simultaneously control tick cell glucose metabolism and cytoskeleton organization, which may be achieved in part by up-regulating and stabilizing hypoxia inducible factor 1 alpha in a hypoxia-independent manner. The present work provides a more comprehensive view of the major carbohydrate metabolic pathways involved in the response to A. phagocytophilum infection in ticks

  10. Association of neural tube defects in children of mothers with MTHFR 677TT genotype and abnormal carbohydrate metabolism risk: a case-control study.

    Science.gov (United States)

    Cadenas-Benitez, N M; Yanes-Sosa, F; Gonzalez-Meneses, A; Cerrillos, L; Acosta, D; Praena-Fernandez, J M; Neth, O; Gomez de Terreros, I; Ybot-González, P

    2014-03-26

    Abnormalities in maternal folate and carbohydrate metabolism have both been shown to induce neural tube defects (NTD) in humans and animal models. However, the relationship between these two factors in the development of NTDs remains unclear. Data from mothers of children with spina bifida seen at the Unidad de Espina Bífida del Hospital Infantil Virgen del Rocío (case group) were compared to mothers of healthy children with no NTD (control group) who were randomly selected from patients seen at the outpatient ward in the same hospital. There were 25 individuals in the case group and 41 in the control group. Analysis of genotypes for the methylenetetrahydrofolate reductase (MTHFR) 677CT polymorphism in women with or without risk factors for abnormal carbohydrate metabolism revealed that mothers who were homozygous for the MTHFR 677TT polymorphism and at risk of abnormal carbohydrate metabolism were more likely to have offspring with spina bifida and high levels of homocysteine, compared to the control group. The increased incidence of NTDs in mothers homozygous for the MTHFR 677TT polymorphism and at risk of abnormal carbohydrate metabolism stresses the need for careful metabolic screening in pregnant women, and, if necessary, determination of the MTHFR 677CT genotype in those mothers at risk of developing abnormal carbohydrate metabolism.

  11. [Disorders of carbohydrate metabolism, dyslipidemia, and bone metabolic disease after hematopoietic stem cell transplantation].

    Science.gov (United States)

    Wędrychowicz, Anna; Starzykk, Jerzy

    2013-01-01

    Among long-term survivors after hematopoietic stem cell transplantation (HSCT) late endocrine complications are observed in 20-50%. Very often these complications influence significantly the patient´s life and have to be treated till the end of life. Their proper prevention and monitoring are extremely important in patients who underwent HSCT during childhood. Since the 90s of the last millennium/century, thyroid dysfunction, disorders of somatic and sexual development, and disturbances of fertility have been presented in several publications. In the paper, less known endocrine complications after HSCT published in the last years are discussed. Disorders of carbohydrate metabolism, post-transplant diabetes and insulin resistance are presented. Moreover, dyslipidemia, hypertension, and post-transplant bone metabolic disease are demonstrated/shown. The paper describes the etiopathogenesis, methods of prevention as well as treatment and the results of the treatment of these endocrine complications after HSCT. Moreover, actual recommendations for screening and prevention of endocrine complications in long-term HCT survivors are presented.

  12. Dietary carbohydrate deprivation increases 24-hour nitrogen excretion without affecting postabsorptive hepatic or whole body protein metabolism in healthy men

    NARCIS (Netherlands)

    Bisschop, PH; de Sain-van der Velden, MGM; Stellaard, F; Kuipers, F; Meijer, AJ; Sauerwein, HP; Romijn, JA

    2003-01-01

    Because insulin is an important regulator of protein metabolism, we hypothesized that physiological modulation of insulin secretion, by means of extreme variations in dietary carbohydrate content, affects postabsorptive protein metabolism. Therefore, we studied the effects of three isocaloric diets

  13. Enzymes and Metabolites in Carbohydrate Metabolism of Desiccation Tolerant Plants

    Directory of Open Access Journals (Sweden)

    Qingwei Zhang

    2016-12-01

    Full Text Available Resurrection plants can tolerate extreme water loss. Substantial sugar accumulation is a phenomenon in resurrection plants during dehydration. Sugars have been identified as one important factor contributing to desiccation tolerance. Phylogenetic diversity of resurrection plants reflects the diversity of sugar metabolism in response to dehydration. Sugars, which accumulate during dehydration, have been shown to protect macromolecules and membranes and to scavenge reactive oxygen species. This review focuses on the performance of enzymes participating in sugar metabolism during dehydration stress. The relation between sugar metabolism and other biochemical activities is discussed and open questions as well as potential experimental approaches are proposed.

  14. Postprandial lipid responses to standard carbohydrate challenges used to determine glycemic index values

    Science.gov (United States)

    Prior studies assessing metabolic effects of different types of carbohydrate have focused on their glycemic response. Not considered has been the response of postprandial cardiometabolic risk indicators. This study assessed the postprandial lipid responses to two forms of carbohydrates used as ref...

  15. Quantification of hepatic carbohydrate metabolism in conscious mice using serial blood and urine spots

    NARCIS (Netherlands)

    van Dijk, TH; Boer, TS; Havinga, R; Stellaard, F; Kuipers, F; Reijngoud, DJ

    2003-01-01

    In vivo studies of hepatic carbohydrate metabolism in (genetically modified) conscious mice are hampered by limitations of blood and urine sample sizes. We developed and validated methods to quantify stable isotope dilution and incorporation in small blood and urine samples spotted onto filter paper

  16. Role of gut microbiota in the control of energy and carbohydrate metabolism

    NARCIS (Netherlands)

    Venema, K.

    2010-01-01

    Purpose of review: To describe the recent developments and insights gained in the role played by the colonic microbiota in energy and carbohydrate metabolism related to obesity in humans. Recent findings: Previous findings that the ratio of Firmicutes and Bacteriodetes is important in energy harvest

  17. Carbon catabolite repression and global control of the carbohydrate metabolism in Lactococcus lactis.

    NARCIS (Netherlands)

    Luesink, E.J.

    1998-01-01

    In view of the economic importance of fermented dairy products considerable scientific attention has been given to various steps of fermentation processes, including the L-lactate formation of lactic acid bacteria (de Vos, 1996). In particular, the carbohydrate metabolism of L. lactis has been the s

  18. Exogenous classic phytohormones have limited regulatory effects on fructan and primary carbohydrate metabolism in perennial ryegrass (Lolium perenne L.

    Directory of Open Access Journals (Sweden)

    Anna eGasperl

    2016-01-01

    Full Text Available Fructans are polymers of fructose and one of the main constituents of water-soluble carbohydrates in forage grasses and cereal crops of temperate climates. Fructans are involved in cold and drought resistance, regrowth following defoliation and early spring growth, seed filling, have beneficial effects on human health and are used for industrial processes. Perennial ryegrass (Lolium perenne L. serves as model species to study fructan metabolism. Fructan metabolism is under the control of both synthesis by fructosyltransferases (FTs and breakdown through fructan exohydrolases (FEHs. The accumulation of fructans can be triggered by high sucrose levels and abiotic stress conditions such as drought and cold stress. However, detailed studies on the mechanisms involved in the regulation of fructan metabolism are scarce. Since different phytohormones, especially abscisic acid (ABA, are known to play an important role in abiotic stress responses, the possible short term regulation of the enzymes involved in fructan metabolism by the five classical phytohormones was investigated. Therefore, the activities of enzymes involved in fructan synthesis and breakdown, the expression levels for the corresponding genes and levels for water-soluble carbohydrates were determined following pulse treatments with ABA, auxin (AUX, ethylene (ET, gibberellic acid (GA or kinetin (KIN. The most pronounced fast effects were a transient increase of FT activities by AUX, KIN, ABA and ET, while minor effects were evident for 1-FEH activity with an increased activity in response to KIN and a decrease by GA. Fructan and sucrose levels were not affected. This observed discrepancy demonstrates the importance of determining enzyme activities to obtain insight into the physiological traits and ultimately the plant phenotype. The comparative analyses of activities for seven key enzymes of primary carbohydrate metabolism revealed no co-regulation between enzymes of the fructan and

  19. Carbohydrate restriction as the default treatment for type 2 diabetes and metabolic syndrome.

    Science.gov (United States)

    Feinman, Richard D; Volek, Jeff S

    2008-08-01

    Dietary carbohydrate restriction in the treatment of diabetes and metabolic syndrome is based on an underlying principle of control of insulin secretion and the theory that insulin resistance is a response to chronic hyperglycemia and hyperinsulinemia. As such, the theory is intuitive and has substantial experimental support. It has generally been opposed by health agencies because of concern that carbohydrate will be replaced by fat, particularly saturated fat, thereby increasing the risk of cardiovascular disease as dictated by the so-called diet-heart hypothesis. Here we summarize recent data showing that, in fact, substitution of fat for carbohydrate generally improves cardiovascular risk factors. Removing the barrier of concern about dietary fat makes carbohydrate restriction a reasonable, if not the preferred method for treating type 2 diabetes and metabolic syndrome. We emphasize the ability of low carbohydrate diets to improve glycemic control, hemoglobin A1C and to reduce medication. We review evidence that such diets are effective even in the absence of weight loss.

  20. Long-term low carbohydrate diet leads to deleterious metabolic manifestations in diabetic mice.

    Science.gov (United States)

    Handa, Keiko; Inukai, Kouichi; Onuma, Hirohisa; Kudo, Akihiko; Nakagawa, Fumiyuki; Tsugawa, Kazue; Kitahara, Atsuko; Moriya, Rie; Takahashi, Kazuto; Sumitani, Yoshikazu; Hosaka, Toshio; Kawakami, Hayato; Oyadomari, Seiichi; Ishida, Hitoshi

    2014-01-01

    We investigated long-term effects of low carbohydrate diets on wild type mice, streptozotocin-injected and KKAy obese diabetic mice. These mice were pair-fed three different types of diets, standard chow (SC, C∶P∶F = 63∶15∶22), a low carbohydrate (LC, C∶P∶F = 38∶25∶37) diet and a severely carbohydrate restricted (SR, C∶P∶F = 18∶45∶37) diet for 16 weeks. Despite comparable body weights and serum lipid profiles, wild type and diabetic mice fed the low carbohydrate diets exhibited lower insulin sensitivity and this reduction was dependent on the amount of carbohydrate in the diet. When serum fatty acid compositions were investigated, monounsaturation capacity, i.e. C16:1/C16:0 and C18:1/C18:0, was impaired in all murine models fed the low carbohydrate diets, consistent with the decreased expression of hepatic stearoyl-CoA desaturase-1 (SCD1). Interestingly, both the hepatic expressions and serum levels of fibroblast growth factor 21 (FGF21), which might be related to longevity, were markedly decreased in both wild type and KKAy mice fed the SR diet. Taking into consideration that fat compositions did not differ between the LC and SR diets, we conclude that low carbohydrate diets have deleterious metabolic effects in both wild type and diabetic mice, which may explain the association between diets relatively low in carbohydrate and the elevated risk of cardiovascular events observed in clinical studies.

  1. Long-term low carbohydrate diet leads to deleterious metabolic manifestations in diabetic mice.

    Directory of Open Access Journals (Sweden)

    Keiko Handa

    Full Text Available We investigated long-term effects of low carbohydrate diets on wild type mice, streptozotocin-injected and KKAy obese diabetic mice. These mice were pair-fed three different types of diets, standard chow (SC, C∶P∶F = 63∶15∶22, a low carbohydrate (LC, C∶P∶F = 38∶25∶37 diet and a severely carbohydrate restricted (SR, C∶P∶F = 18∶45∶37 diet for 16 weeks. Despite comparable body weights and serum lipid profiles, wild type and diabetic mice fed the low carbohydrate diets exhibited lower insulin sensitivity and this reduction was dependent on the amount of carbohydrate in the diet. When serum fatty acid compositions were investigated, monounsaturation capacity, i.e. C16:1/C16:0 and C18:1/C18:0, was impaired in all murine models fed the low carbohydrate diets, consistent with the decreased expression of hepatic stearoyl-CoA desaturase-1 (SCD1. Interestingly, both the hepatic expressions and serum levels of fibroblast growth factor 21 (FGF21, which might be related to longevity, were markedly decreased in both wild type and KKAy mice fed the SR diet. Taking into consideration that fat compositions did not differ between the LC and SR diets, we conclude that low carbohydrate diets have deleterious metabolic effects in both wild type and diabetic mice, which may explain the association between diets relatively low in carbohydrate and the elevated risk of cardiovascular events observed in clinical studies.

  2. Effects of oral contraceptive agents and sex steroids on carbohydrate metabolism.

    Science.gov (United States)

    Kalkhoff, R K

    1972-01-01

    The article offers a general interpretation of the influence of oral contraceptive agents on glucose tolerance, emphasizing comparisons of synthetic sex hormones. Although there are conflicting reports on steroid-induced diabetes in normal women, their glucose curves are often higher when under oral contraceptive treatment, suggesting that oral contraceptives may induce a form of subclinical diabetes melitus that is reversible. Evidence from diabetic women suggests definite deliterious effects from contraceptive administration. Estradiol, estriol, and estrone may improve glucose tolerance in nondiabetic women and reduce insulin requirements in diabetics. Progesterone has little effect on carbohydrate tolerance, as did synthetic progestin. Conjugated equine estrogens (equilenine or Premarin) may provoke mild to moderate deterioration of carbohydrate tolerance. Parenterally administered natural estrogens and orally administered synthetic derivatives appear to differ sharply in their effects. Sex hormones' effects on carbohydrate metabolism likely involve interactions with insulin and endogenous glucocorticoids.

  3. Role of Leu-enkephalin in the regulation of carbohydrate metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Zoloev, G.K.

    1987-10-01

    The aim of this investigation was to study the possible role of Leuenkephalin (LE) is the regulation of carbohydrate metabolism. Experiments were carried out on 166 mole albino rats weighing 180-220 g. Opioid peptides, namely LE, D-Ala/sup 2/-Leu/sup 5/-Arg/sup 6/-enkephalin, and d-Ala/sup 2/-D-Leu/sup 5/-D-Arg/sup 6/-enkephalin were injected intraperitoneally in a dose of 500 ..mu..g/kg, naloxone, a blocker of opiate receptors, was injected in a dose of 100 ..mu..g/kg, and the pharmacopoeial preparations Parathyroidin in a dose of 10 U/kg and adrenalin hydrochloride in a dose of 500 ..mu..g/kg. Animals of the control group were given injections of 0.2 ml of physiological saline. The rats were decapitated under superficial ether anesthesia 1 h after injection of the drugs. Insulin levels were determined by radioimmunoassay. Radioactivity was counted on a gamma-spectrometer. The glycogen concentration in the samples was determined spectrophotometrically and the cAMP concentration by radioimmunoassay. Radioactivity was counted on a Mark III scintillation counter.

  4. Interrelation between compensation of carbohydrate metabolism and severity of manifestations of oxidative stress in type II diabetes mellitus.

    Science.gov (United States)

    Nedosugova, L V; Lankin, V Z; Balabolkin, M I; Konovalova, G G; Lisina, M O; Antonova, K V; Tikhaze, A K; Belenkov, Yu N

    2003-08-01

    Glycosylation end-products formed during diabetes mellitus promoted atherogenic oxidative modification of low-density lipoproteins. We evaluated the effects of compensation of carbohydrate metabolism and therapy with antioxidant probucol on parameters of free radical oxidation in patients with type II diabetes mellitus. Compensation of carbohydrate metabolism reduced manifestations of oxidative stress, which was manifested in accelerated enzymatic utilization of reactive oxygen species and lipid peroxides and decreased content of free radical oxidation products in low-density lipoproteins. In patients with type II diabetes mellitus combination therapy with antioxidant probucol decreased the severity of oxidative stress and stabilized carbohydrate metabolism without increasing the dose of hypoglycemic preparations.

  5. Effects of Salt Stress on Carbohydrate Metabolism in Desert Soil Alga Microcoleus vaginatus Gom.

    Institute of Scientific and Technical Information of China (English)

    Lan-Zhou Chen; Dun-Hai Li; Li-Rong Song; Chun-Xiang Hu; Gao-Hong Wang; Yong-Ding Liu

    2006-01-01

    The effects of salt stress on carbohydrate metabolism in Microcoleus vaginatus Gom., a cyanobacterium isolated from desert algal crusts, were investigated in the present study. Extracellular total carbohydrates and exopolysaccharides (EPS) in the culture medium produced by M. vaginatus increased significantly during the growth phase and reached a maximum during the stationary phase. The production of extracellular carbohydrates also significantly increased under higher salt concentrations, which was attributed to an increase in low molecular weight carbohydrates. In the presence of NaCl, the production of cellular total carbohydrates decreased and photosynthetic activity was impaired, whereas cellular reducing sugars,water-soluble sugars and sucrose content and sucrose phosphate synthase activity increased, reaching a maximum in the presence of 200 mmol/L NaCl. These parameters were restored to original levels when the algae were transferred to a non-saline medium. Sodium and K+ concentrations of stressed cells decreased significantly and H+-ATPase activity increased after the addition of exogenous sucrose or EPS. The results suggest that EPS and sucrose are synthesized to maintain the cellular osmotic equilibrium between the intra- and extracellular environment, thus protecting algal cells from osmotic damage, which was attributed to the selective exclusion of cellular Na+ and K+ by H+-ATPase.

  6. Flight metabolism in Panstrongylus megistus (Hemiptera: Reduviidae: the role of carbohydrates and lipids

    Directory of Open Access Journals (Sweden)

    Lilián E Canavoso

    2003-10-01

    Full Text Available The metabolism of lipids and carbohydrates related to flight activity in Panstrongylus megistus was investigated. Insects were subjected to different times of flight under laboratory conditions and changes in total lipids, lipophorin density and carbohydrates were followed in the hemolymph. Lipids and glycogen were also assayed in fat body and flight muscle. In resting insects, hemolymph lipids averaged 3.4 mg/ml and significantly increased after 45 min of flight (8.8 mg/ml, P < 0.001. High-density lipophorin was the sole lipoprotein observed in resting animals. A second fraction with lower density corresponding to low-density lipophorin appeared in insects subjected to flight. Particles from both fractions showed significant differences in diacylglycerol content and size. In resting insects, carbohydrate levels averaged 0.52 mg/ml. They sharply declined more than twofold after 15 min of flight, being undetectable in hemolymph of insects flown for 45 min. Lipid and glycogen from fat body and flight muscle decreased significantly after 45 min of flight. Taken together, the results indicate that P. megistus uses carbohydrates during the initiation of the flight after which, switching fuel for flight from carbohydrates to lipids.

  7. Effects of in ovo injection of carbohydrates on embryonic metabolism, hatchability, and subsequent somatic characteristics of broiler hatchlings.

    Science.gov (United States)

    Zhai, W; Gerard, P D; Pulikanti, R; Peebles, E D

    2011-10-01

    The effects of the in ovo injection of different carbohydrate solutions on the internal egg temperature (IT), hatchability, and time of hatch of embryonated Ross × Ross 708 broiler hatching eggs were determined. In addition, the BW, liver weight, yolk sac weight (YSW), and yolk-free BW (YFBW) of the embryos on d 19.5 of incubation and of the chicks on day of hatch were determined. Eggs containing live embryos were injected in the amnion on d 18.5 of incubation using an automated multiple-egg injector. Solution injections delivered 1.2 mL of physiological saline (0.85%) alone or with a supplemental carbohydrate. The following supplemental carbohydrates were separately dissolved in saline at a concentration of 0.3 g/mL: glucose, fructose, sucrose, maltose, and dextrin. Temperature transponders were implanted in the air cells of embryonated and nonembryonated eggs after in ovo injection for the detection of IT at 6, 14, and 22 h after injection. The IT of embryonated eggs was significantly greater than that of nonembryonated eggs at all 3 times after the treatment period. Eggs that were injected with saline with or without supplemental carbohydrates experienced a reduction in IT when compared with control eggs whose shells were perforated without solution delivery, and the decrease in IT was associated with a delay in hatch time. Liver weight was negatively related to YSW and positively related to YFBW, and YSW was negatively related to YFBW. Although the saline and carbohydrate solution injections increased chick BW compared with noninjected controls, chick YFBW was decreased in the maltose- and sucrose-injected groups. In conclusion, the injection of 1.2 mL of saline with or without supplemental carbohydrates lowered embryonic metabolism, as reflected by a lower IT and a delay in time of hatch. However, effects of the different carbohydrate solutions on yolk absorption and tissue deposition in yolk-free embryos varied. These results suggest that lower volumes for

  8. Effect Of Boswellia Carterii Birdw On Carbohydrate Metabolism In Diabetic Male Albino Rats

    OpenAIRE

    Eman G. E. Helal*, Ashraf M. Mostafa**, Fawzy A. Ashour

    2005-01-01

    In the current study, thirty male adult albino rats were used to investigate the effect of Boswellia Carterii Birdw (BCB) on carbohydrate metabolism in alloxan-induced diabetes. Rats were divided into three equal groups, control, diabetic non treated and diabetic BCB treated groups. After thirty days of treatment five rats of each group were sacrificed and the others were left without any additional treatment for another 15 days (recovery period) then were sacrificed. The body weight of each ...

  9. Cardiovascular Risks Factors and their Relationship with Disorders of Carbohydrate and Lipid Metabolism

    Directory of Open Access Journals (Sweden)

    Lilian Leguen Gulgar

    2014-12-01

    Full Text Available Background: cardiovascular disease has been the leading cause of death in Cuba, where studies on emerging cardiovascular risk factors as predictors of cardiovascular risk are scarce. Objective: to determine the association between cardiovascular risk factors and disorders of carbohydrate and lipid metabolism. Methods: a correlational study was conducted with a sample of 105 men and women selected from a total of 346 workers of the University of Medical Sciences of Cienfuegos from June 2011 through July 2012. The variables analyzed were age, sex, blood pressure, waist circumference, tobacco use, fasting blood glucose, triglycerides, cholesterol, HDL cholesterol, apolipoprotein A and B, TC/HDL ratio and apo B/apo AI ratio. Results: women older than 45 years had a higher prevalence of elevated waist circumference (60.0 %, hypertension (46.7 % and type 2 diabetes mellitus (54.3 % with hypertriglyceridemia (43.3 %, low HDLc levels (36.7 % and were 2.8 times more likely to develop elevated waist circumference; 66.7 % of the diabetic patients had low HDLc levels, 33.3 % developed hypertriglyceridemia and 66.7 % had a high total cholesterol/HDL cholesterol ratio. Conclusions: an association between age older than 45 years, female sex, obesity, hypertension and type 2 diabetes mellitus was observed. There was a higher prevalence of hypertriglyceridemia and low HDL cholesterol levels in obese and diabetic patients. Increased risk of low HDL cholesterol and high total cholesterol / HDL cholesterol ratio were also found.

  10. Carbohydrate restriction has a more favorable impact on the metabolic syndrome than a low fat diet.

    Science.gov (United States)

    Volek, Jeff S; Phinney, Stephen D; Forsythe, Cassandra E; Quann, Erin E; Wood, Richard J; Puglisi, Michael J; Kraemer, William J; Bibus, Doug M; Fernandez, Maria Luz; Feinman, Richard D

    2009-04-01

    We recently proposed that the biological markers improved by carbohydrate restriction were precisely those that define the metabolic syndrome (MetS), and that the common thread was regulation of insulin as a control element. We specifically tested the idea with a 12-week study comparing two hypocaloric diets (approximately 1,500 kcal): a carbohydrate-restricted diet (CRD) (%carbohydrate:fat:protein = 12:59:28) and a low-fat diet (LFD) (56:24:20) in 40 subjects with atherogenic dyslipidemia. Both interventions led to improvements in several metabolic markers, but subjects following the CRD had consistently reduced glucose (-12%) and insulin (-50%) concentrations, insulin sensitivity (-55%), weight loss (-10%), decreased adiposity (-14%), and more favorable triacylglycerol (TAG) (-51%), HDL-C (13%) and total cholesterol/HDL-C ratio (-14%) responses. In addition to these markers for MetS, the CRD subjects showed more favorable responses to alternative indicators of cardiovascular risk: postprandial lipemia (-47%), the Apo B/Apo A-1 ratio (-16%), and LDL particle distribution. Despite a threefold higher intake of dietary saturated fat during the CRD, saturated fatty acids in TAG and cholesteryl ester were significantly decreased, as was palmitoleic acid (16:1n-7), an endogenous marker of lipogenesis, compared to subjects consuming the LFD. Serum retinol binding protein 4 has been linked to insulin-resistant states, and only the CRD decreased this marker (-20%). The findings provide support for unifying the disparate markers of MetS and for the proposed intimate connection with dietary carbohydrate. The results support the use of dietary carbohydrate restriction as an effective approach to improve features of MetS and cardiovascular risk.

  11. Fueling the caries process: carbohydrate metabolism and gene regulation by Streptococcus mutans

    Directory of Open Access Journals (Sweden)

    Zachary D. Moye

    2014-09-01

    Full Text Available The nature of the oral cavity and host behaviors has mandated that the oral microbiota evolve mechanisms for coping with environmental fluctuations, especially changes in the type and availability of carbohydrates. In the case of human dental caries, the presence of excess carbohydrates is often responsible for altering the local environment to be more favorable for species associated with the initiation and progression of disease, including Streptococcus mutans. Some of the earliest endeavors to understand how cariogenic species respond to environmental perturbations were carried out using chemostat cultivation, which provides fine control over culture conditions and bacterial behaviors. The development of genome-scale methodologies has allowed for the combination of sophisticated cultivation technologies with genome-level analysis to more thoroughly probe how bacterial pathogens respond to environmental stimuli. Recent investigations in S. mutans and other closely related streptococci have begun to reveal that carbohydrate metabolism can drastically impact pathogenic potential and highlight the important influence that nutrient acquisition has on the success of pathogens; inside and outside of the oral cavity. Collectively, research into pathogenic streptococci, which have evolved in close association with the human host, has begun to unveil the essential nature of careful orchestration of carbohydrate acquisition and catabolism to allow the organisms to persist and, when conditions allow, initiate or worsen disease.

  12. Grafting Helps Improve Photosynthesis and Carbohydrate Metabolism in Leaves of Muskmelon

    Directory of Open Access Journals (Sweden)

    Yi-Fei Liu, Hong-Yan Qi, Chun-Ming Bai, Ming-Fang Qi, Chuan-Qiang Xu, Jing-Hong Hao, Yan Li, Tian-Lai Li

    2011-01-01

    Full Text Available The most important quality for muskmelon (Cucumis melo L. is their sweetness which is closely related to the soluble sugars content. Leaves are the main photosynthetic organs in plants and thus the source of sugar accumulation in fruits since sugars are translocated from leaves to fruits. The effects of grafting muskmelon on two different inter-specific (Cucurbita maxima×C. moschata rootstocks was investigated with respect to photosynthesis and carbohydrate metabolism. Grafting Zhongmi1 muskmelon on RibenStrong (GR or Shengzhen1 (GS rootstocks increased chlorophyll a, chlorophyll b and chlorophyll a+b content and the leaf area in middle and late developmental stages of the plant compared to the ungrafted Zhongmi1 check (CK. Grafting enhanced the net photosynthesis rate, the stomatal conductance, concentration of intercellular CO2 and transpiration rate. Grafting influenced carbohydrates contents by changing carbohydrate metabolic enzymes activities which was observed as an increase in acid invertase and neutral invertase activity in the functional leaves during the early and middle developmental stages compared to CK. Grafting improved sucrose phosphate synthase and stachyose synthase activities in middle and late developmental stages, thus translocation of sugars (such as sucrose, raffinose and stachyose in GR and GS leaves were significantly enhanced. However, compared with CK, translocation of more sugars in grafted plants did not exert feedback inhibition on photosynthesis. Our results indicate that grafting muskmelon on inter-specific rootstocks enhances photosynthesis and translocation of sugars in muskmelon leaves.

  13. Modulation of antioxidant status, carbohydrate and lipid metabolism by melatonin on streptozotocin induced diabetic rats

    Directory of Open Access Journals (Sweden)

    Mirunalini Sankaran*

    2012-08-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Melatonin, “synchronizer of the biological clock” is major hormones secreted from the pineal gland have various therapeutic effects. The present study was designed to explore the modulatory effect of melatonin on antioxidant status, glucose and lipid metabolism in streptozotocin (STZ induced diabetic rats. Male Wistar rats weighing 180-200 g were made diabetic by administration of streptozotocin (STZ (40 mg/kg body weight intraperitoneally. Melatonin was administered intraperitoneally at a dose of 2 mg/kg body weight to STZ-induced diabetic rats for 30 days. Body weight, blood glucose, carbohydrate metabolic enzyme, lipid profile, antioxidant and lipid peroxidation status were assessed. The level of the blood glucose, carbohydrate metabolic enzymes (glucose-6-phosphatase and fructose-1,6-bisphosphatase and lipid peroxidative marker (TBARS were increased in STZ induced diabetic rats while the melatonin treatment revert back to the near normal condition. In contrast, administered melatonin resulted in an increased in body weight and insulin secretion in diabetic rats. The enzymatic antioxidants (SOD, CAT and GPX and non-enzymatic antioxidants (GSH, vitamin C and vitamin E were also increased by melatonin treatment. The cholesterol and phospholipids which were elevated in diabetic rats were normalized by the melatonin administration. Hence these findings indicate that melatonin protects against STZ induced oxidative stress and thus explain its use in treatment of diabetes by modulating lipid and glucose metabolism.

  14. Tocotrienols Reverse Cardiovascular, Metabolic and Liver Changes in High Carbohydrate, High Fat Diet-Fed Rats

    Directory of Open Access Journals (Sweden)

    Weng-Yew Wong

    2012-10-01

    Full Text Available Tocotrienols have been reported to improve lipid profiles, reduce atherosclerotic lesions, decrease blood glucose and glycated haemoglobin concentrations, normalise blood pressure in vivo and inhibit adipogenesis in vitro, yet their role in the metabolic syndrome has not been investigated. In this study, we investigated the effects of palm tocotrienol-rich fraction (TRF on high carbohydrate, high fat diet-induced metabolic, cardiovascular and liver dysfunction in rats. Rats fed a high carbohydrate, high fat diet for 16 weeks developed abdominal obesity, hypertension, impaired glucose and insulin tolerance with increased ventricular stiffness, lower systolic function and reduced liver function. TRF treatment improved ventricular function, attenuated cardiac stiffness and hypertension, and improved glucose and insulin tolerance, with reduced left ventricular collagen deposition and inflammatory cell infiltration. TRF improved liver structure and function with reduced plasma liver enzymes, inflammatory cell infiltration, fat vacuoles and balloon hepatocytes. TRF reduced plasma free fatty acid and triglyceride concentrations but only omental fat deposition was decreased in the abdomen. These results suggest that tocotrienols protect the heart and liver, and improve plasma glucose and lipid profiles with minimal changes in abdominal obesity in this model of human metabolic syndrome.

  15. In vivo sup 1 sup 3 C MRS studies of carbohydrate metabolism

    CERN Document Server

    Halliday, J

    2003-01-01

    The work described in this thesis was performed by the except where indicated, within the Magnetic Resonance Centre at the University of Nottingham during the period between October 1999 and October 2002. Although much is known about the major pathways of carbohydrate metabolism, there is still much to be learnt about the exact mechanisms of many of these pathways. Of particular interest is how these pathways are modified under different physiological conditions and in diseased states. sup 1 sup 3 C NMR spectroscopy provides a non-invasive means for studying carbohydrate metabolism in vivo, and the work presented within this thesis gives two such examples of this in human subjects. Natural abundance sup 1 sup 3 C NMR spectroscopy was used to measure glycogen levels in gastrocnemius muscle. The diurnal changes in response to mixed meals were measured in both type 2 diabetic subjects and age and weight matched controls. Metabolic studies were performed to complement the NMR measurements. The data obtained in th...

  16. Carbohydrate metabolism and quality of life in patients after surgical treatment of insulinoma

    Directory of Open Access Journals (Sweden)

    Ivan Ivanovich Dedov

    2014-08-01

    Full Text Available Objectives. T study the quality of life and status of carbohydrate metabolism in patients after surgical treatment insulinoma. Methods: The study involved 20 patients divided in two groups: the first group with a catamnesis duration of up to five years; the second group with a catamnesis duration of more than five years. We studied anthropometric parameters and carbohydrate metabolism as well as psychological questioning of patients using SF-36 questionnaire, the data was considered statistically significant at p<0.05. Results. severe combined postoperative complications were more frequent in the first group (63.6% vs. 22.2%, p=0.07, due to extend of the performed surgery. Adrenergic symptoms prior to the surgery were detected in 90.9% of cases in the first group and in 77.7% of cases in the second group. After treatment these numbers decreased to 36.4% and 11.1% respectively (p=0.039 and 0.026. Neuroglycopeniс symptoms before treatment were detected in 90.9% of cases in the first group and for all patients in the second, while after treatment persisted only in 45.5% and 33.3% of cases respectively (p=0.045 and 0.036. Carbohydrate metabolism have normalized for the majority of patients. Two patients (18.2% of the first group showed impaired glucose tolerance. Improved carbohydrate metabolism was associated with a decrease in body weight in both groups. Results of psychological questionnaires were comparable with the survey data obtained in general population in the Russian Federation. Conclusion. Surgical treatment of insulinomas is highly effective. Physical and psychological status of patients in most cases corresponds with those typical for this age-sex group of the population of the Russian Federation. Long-term treatment results do not depend on duration of the catamnesis. Complications that developed from surgical treatment have the main influence on the health of patients.

  17. Serum neutral amino acid concentrations in cirrhotic patients with impaired carbohydrate metabolism.

    Directory of Open Access Journals (Sweden)

    Watanabe,Akiharu

    1983-08-01

    Full Text Available Serum neutral amino acid levels in cirrhotic patients with abnormal oral glucose tolerance test patterns were not different from those of subjects without impaired carbohydrate metabolism. However, the characteristic features of serum aminograms in the patients, that is, increased levels of tyrosine, decreased levels of valine and leucine and the diminished ratio of branched chain amino acids to phenylalanine and tyrosine levels, were less pronounced in those treated with insulin. This finding is clinically important for evaluating the serum aminogram of cirrhotic patients under insulin therapy.

  18. Effect of mangiferin isolated from Salacia chinensis regulates the kidney carbohydrate metabolism in streptozotocin-induced diabetic rats

    Institute of Scientific and Technical Information of China (English)

    Periyar Selvam Sellamuthu; Palanisamy Arulselvan; Balu Periamallipatti Muniappan; Murugesan Kandasamy

    2012-01-01

    Objective: The present investigation was to evaluate the possible anti-diabetic effect of mangiferin from Salacia chinensis (S. chinensis) on the activities of kidney carbohydrate metabolic enzymes in chemically induced diabetic rats. Methods: Diabetes was induced by streptozotocin (STZ) in adult male rats, as a single intraperitoneal injection at a dose of 55 mg/kg body weight. The STZ-induced diabetic rats were treated by mangiferin and glibenclamide (positive control drug) for 30 days. At the end of the experiment, the rats were sacrificed and carbohydrate metabolic enzyme activities were analyzed in the kidney. Results: Diabetic control rats showed a significant increase in the level of fasting blood glucose and also increase the activities of carbohydrate metabolic enzymes in kidney on successive days of the experiment as compared with their basal values. Daily oral administration of mangiferin showed a significant decrease in the blood glucose when compared to diabetic control. The anti-hyperglycemic effect was obtained with the dose of 40 mg/kg b.wt. In addition, treatment of mangiferin shows alteration in kidney carbohydrate metabolic enzymes including gluconeogenic enzymes like glucose-6-phosphatase and fructose-1,6-disphosphatase. These results were comparable with positive control drug, glibenclamide. Conclusions: The results obtained in this study provide evidence of the anti-diabetic potential of mangiferin, mediated through the regulation of carbohydrate key metabolic enzyme activities.

  19. Effects of Mixed Isoenergetic Meals on Fat and Carbohydrate Metabolism during Exercise in Older Men

    Directory of Open Access Journals (Sweden)

    Minoo Bassami

    2011-01-01

    Full Text Available The present study was designed to investigate the effects of four different meals on fat and CHO metabolism during subsequent exercise in elderly males. Eight healthy males (age: 63.3 ± 5.2 years reported to the physiology laboratory on four separate occasions, each of which was allocated for the performance of a 30-minute exercise on a cycle ergometer at 60% ̇VO2max after having normal (N, high fat (HF, high carbohydrate high glycaemic index (HGI and high carbohydrate low glycaemic index (LGI meals. Fat oxidation during exercise after the meals (HF=0.26±0.04 g/min; N=0.21±0.04 g/min; HGI=0.22±0.03 g/min; LGI=0.19±0.03 g/min was not significant (>.05, and neither were the rates of carbohydrate oxidation (N=1.79±0.28, HF=1.58±0.22, HGI=1.68±0.22, and LGI=1.77±0.21 g/m. NEFA concentration increased after HF (<.05 but decreased after HGI and LGI (<.05. Glucose concentration decreased as a result of exercise after HF, and LGI (<.05 whereas insulin concentration decreased significantly during exercise after N, HF, and HGI (<.05. It can be concluded that, in elderly males, feeding isoenergetic meals containing different proportions of carbohydrate and fat do not significantly alter oxidation of fat and CHO during exercise in spite of changes in some circulating metabolites.

  20. The Role of Carbohydrate Response Element Binding Protein in Intestinal and Hepatic Fructose Metabolism

    Directory of Open Access Journals (Sweden)

    Katsumi Iizuka

    2017-02-01

    Full Text Available Many articles have discussed the relationship between fructose consumption and the incidence of obesity and related diseases. Fructose is absorbed in the intestine and metabolized in the liver to glucose, lactate, glycogen, and, to a lesser extent, lipids. Unabsorbed fructose causes bacterial fermentation, resulting in irritable bowl syndrome. Therefore, understanding the mechanisms underlying intestinal and hepatic fructose metabolism is important for the treatment of metabolic syndrome and fructose malabsorption. Carbohydrate response element binding protein (ChREBP is a glucose-activated transcription factor that controls approximately 50% of de novo lipogenesis in the liver. ChREBP target genes are involved in glycolysis (Glut2, liver pyruvate kinase, fructolysis (Glut5, ketohexokinase, and lipogenesis (acetyl CoA carboxylase, fatty acid synthase. ChREBP gene deletion protects against high sucrose diet-induced and leptin-deficient obesity, because Chrebp−/− mice cannot consume fructose or sucrose. Moreover, ChREBP contributes to some of the physiological effects of fructose on sweet taste preference and glucose production through regulation of ChREBP target genes, such as fibroblast growth factor-21 and glucose-6-phosphatase catalytic subunits. Thus, ChREBP might play roles in fructose metabolism. Restriction of excess fructose intake will be beneficial for preventing not only metabolic syndrome but also irritable bowl syndrome.

  1. The Roles of Vitamin A in the Regulation of Carbohydrate, Lipid, and Protein Metabolism

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2014-05-01

    Full Text Available Currently, two-thirds of American adults are overweight or obese. This high prevalence of overweight/obesity negatively affects the health of the population, as obese individuals tend to develop several chronic diseases, such as type 2 diabetes and cardiovascular diseases. Due to obesity’s impact on health, medical costs, and longevity, the rise in the number of obese people has become a public health concern. Both genetic and environmental/dietary factors play a role in the development of metabolic diseases. Intuitively, it seems to be obvious to link over-nutrition to the development of obesity and other metabolic diseases. However, the underlying mechanisms are still unclear. Dietary nutrients not only provide energy derived from macronutrients, but also factors such as micronutrients with regulatory roles. How micronutrients, such as vitamin A (VA; retinol, regulate macronutrient homeostasis is still an ongoing research topic. As an essential micronutrient, VA plays a key role in the general health of an individual. This review summarizes recent research progress regarding VA’s role in carbohydrate, lipid, and protein metabolism. Due to the large amount of information regarding VA functions, this review focusses on metabolism in metabolic active organs and tissues. Additionally, some perspectives for future studies will be provided.

  2. Iminosugar inhibitors of carbohydrate-active enzymes that underpin cereal grain germination and endosperm metabolism

    DEFF Research Database (Denmark)

    Andriotis, Vasilios M. E.; Rejzek, Martin; Rugen, Michael D.;

    2016-01-01

    limited knowledge about the nature and control of starch degradation in plants. Increased societal and commercial demand for enhanced yield and quality in starch crops requires a better understanding of starch metabolism as a whole. Here we review recent advances in understanding the roles of carbohydrate......-active enzymes in starch degradation in cereal grains through complementary chemical and molecular genetics. These approaches have allowed us to start dissecting aspects of starch degradation and the interplay with cell-wall polysaccharide hydrolysis during germination. With a view to improving and diversifying...... the properties and uses of cereal grains, it is possible that starch degradation may be amenable to manipulation through genetic or chemical intervention at the level of cell wall metabolism, rather than simply in the starch degradation pathway per se....

  3. Low humic acids promote in vitro lily bulblet enlargement by enhancing roots growth and carbohydrate metabolism * #

    Science.gov (United States)

    Wu, Yun; Xia, Yi-ping; Zhang, Jia-ping; Du, Fang; Zhang, Lin; Ma, Yi-di; Zhou, Hong

    2016-01-01

    Bulblet development is a problem in global lily bulb production and carbohydrate metabolism is a crucial factor. Micropropagation acts as an efficient substitute for faster propagation and can provide a controllable condition to explore bulb growth. The present study was conducted to investigate the effects of humic acid (HA) on bulblet swelling and the carbohydrate metabolic pathway in Lilium Oriental Hybrids ‘Sorbonne’ under in vitro conditions. HA greatly promoted bulblet growth at 0.2, 2.0, and 20.0 mg/L, and pronounced increases in bulblet sucrose, total soluble sugar, and starch content were observed for higher HA concentrations (≥2.0 mg/L) within 45 d after transplanting (DAT). The activities of three major starch synthetic enzymes (including adenosine 5'-diphosphate glucose pyrophosphorylase, granule-bound starch synthase, and soluble starch synthase) were enhanced dramatically after HA application especially low concentration HA (LHA), indicating a quick response of starch metabolism. However, higher doses of HA also caused excessive aboveground biomass accumulation and inhibited root growth. Accordingly, an earlier carbon starvation emerged by observing evident starch degradation. Relative bulblet weight gradually decreased with increased HA doses and thereby broke the balance between the source and sink. A low HA concentration at 0.2 mg/L performed best in both root and bulblet growth. The number of roots and root length peaked at 14.5 and 5.75 cm, respectively. The fresh bulblet weight and diameter reached 468 mg (2.9 times that under the control treatment) and 11.68 mm, respectively. Further, sucrose/starch utilization and conversion were accelerated and carbon famine was delayed as a result with an average relative bulblet weight of 80.09%. To our knowledge, this is the first HA application and mechanism research into starch metabolism in both in vitro and in vivo condition in bulbous crops. PMID:27819136

  4. Chromium picolinate modulates serotonergic properties and carbohydrate metabolism in a rat model of diabetes.

    Science.gov (United States)

    Komorowski, James R; Tuzcu, Mehmet; Sahin, Nurhan; Juturu, Vijaya; Orhan, Cemal; Ulas, Mustafa; Sahin, Kazim

    2012-10-01

    Chromium picolinate (CrPic) has shown both antidepressant and antidiabetic properties. In this study, the effects of CrPic on serotonergic properties and carbohydrate metabolism in diabetic rats were evaluated. Sixty male Sprague-Dawley rats were divided into four groups. (1) The control group received only standard diet (8 % fat). (2) The CrPic group was fed standard diet and CrPic (80 μg CrPic per kilogram body mass (b.m.)/day), for 10 weeks (microgram/kilogram b.m./day). (3) The HFD/STZ group fed a high-fat diet (HFD, 40 % fat) for 2 weeks and then received streptozotocin (STZ, 40 mg/kg, i.p.) (i.v.) HFD-STZ-CrPic group treated as the previous group and then were administered CrPic. CrPic administration to HFD/STZ-treated rats increased brain chromium levels and improved all measurements of carbohydrate metabolism and serotonergic properties (P<0.001). CrPic also significantly increased levels of insulin, tryptophan, and serotonin (P<0.001) in the serum and brain, and decreased cortisol levels in the serum (P<0.01). Except chromium levels, no significant effect of CrPic supplementation was detected on the overall measured parameters in the control group. CrPic administration was well tolerated without any adverse events. The results support the use of CrPic supplementation which improves serotonergic properties of brain in diabetes.

  5. Insights into glycogen metabolism in Lactobacillus acidophilus: impact on carbohydrate metabolism, stress tolerance and gut retention.

    Science.gov (United States)

    Goh, Yong Jun; Klaenhammer, Todd R

    2014-11-20

    In prokaryotic species equipped with glycogen metabolism machinery, the co-regulation of glycogen biosynthesis and degradation has been associated with the synthesis of energy storage compounds and various crucial physiological functions, including global cellular processes such as carbon and nitrogen metabolism, energy sensing and production, stress response and cell-cell communication. In addition, the glycogen metabolic pathway was proposed to serve as a carbon capacitor that regulates downstream carbon fluxes, and in some microorganisms the ability to synthesize intracellular glycogen has been implicated in host persistence. Among lactobacilli, complete glycogen metabolic pathway genes are present only in select species predominantly associated with mammalian hosts or natural environments. This observation highlights the potential involvement of glycogen biosynthesis in probiotic activities and persistence of intestinal lactobacilli in the human gastrointestinal tract. In this review, we summarize recent findings on (i) the presence and potential ecological distribution of glycogen metabolic pathways among lactobacilli, (ii) influence of carbon substrates and growth phases on glycogen metabolic gene expression and glycogen accumulation in L. acidophilus, and (iii) the involvement of glycogen metabolism on growth, sugar utilization and bile tolerance. Our present in vivo studies established the significance of glycogen biosynthesis on the competitive retention of L. acidophilus in the mouse intestinal tract, demonstrating for the first time that the ability to synthesize intracellular glycogen contributes to gut fitness and retention among probiotic microorganisms.

  6. Effect of training in the fasted state on metabolic responses during exercise with carbohydrate intake.

    Science.gov (United States)

    De Bock, K; Derave, W; Eijnde, B O; Hesselink, M K; Koninckx, E; Rose, A J; Schrauwen, P; Bonen, A; Richter, E A; Hespel, P

    2008-04-01

    Skeletal muscle gene response to exercise depends on nutritional status during and after exercise, but it is unknown whether muscle adaptations to endurance training are affected by nutritional status during training sessions. Therefore, this study investigated the effect of an endurance training program (6 wk, 3 day/wk, 1-2 h, 75% of peak Vo(2)) in moderately active males. They trained in the fasted (F; n = 10) or carbohydrate-fed state (CHO; n = 10) while receiving a standardized diet [65 percent of total energy intake (En) from carbohydrates, 20%En fat, 15%En protein]. Before and after the training period, substrate use during a 2-h exercise bout was determined. During these experimental sessions, all subjects were in a fed condition and received extra carbohydrates (1 g.kg body wt(-1) .h(-1)). Peak Vo(2) (+7%), succinate dehydrogenase activity, GLUT4, and hexokinase II content were similarly increased between F and CHO. Fatty acid binding protein (FABPm) content increased significantly in F (P = 0.007). Intramyocellular triglyceride content (IMCL) remained unchanged in both groups. After training, pre-exercise glycogen content was higher in CHO (545 +/- 19 mmol/kg dry wt; P = 0.02), but not in F (434 +/- 32 mmol/kg dry wt; P = 0.23). For a given initial glycogen content, F blunted exercise-induced glycogen breakdown when compared with CHO (P = 0.04). Neither IMCL breakdown (P = 0.23) nor fat oxidation rates during exercise were altered by training. Thus short-term training elicits similar adaptations in peak Vo(2) whether carried out in the fasted or carbohydrate-fed state. Although there was a decrease in exercise-induced glycogen breakdown and an increase in proteins involved in fat handling after fasting training, fat oxidation during exercise with carbohydrate intake was not changed.

  7. Nutritional and metabolic responses in common dentex (Dentex dentex) fed on different types and levels of carbohydrates.

    Science.gov (United States)

    Pérez-Jiménez, Amalia; Abellán, Emilia; Arizcun, Marta; Cardenete, Gabriel; Morales, Amalia E; Hidalgo, M Carmen

    2015-06-01

    The present study was aimed to evaluate the capacity of common dentex (Dentex dentex) to efficiently use dietary carbohydrates. So, the effects of different type and levels of carbohydrates on growth performance, feed utilization, fish composition, plasma metabolites and key metabolic pathways in liver and white muscle of common dentex are presented. Nine isonitrogenous (43%) and isoenergetic (22 MJ kg(-1)) diets were formulated combining three types, pregelatinized starch (PS), dextrin (Dx) and maltodextrin (Mx), and three levels (12, 18 and 24%) of carbohydrates. Growth performance was not significantly influenced by treatments. The best feed utilization was observed in 18% Mx group. Higher hepatic lipid content was found in fish fed lower dietary carbohydrate levels. PS induced higher liver and white muscle hexokinase and pyruvate kinase activities compared to the lower values observed for Mx. Malic enzyme and glucose 6-phosphate dehydrogenase in liver and white muscle were lower in Mx group. The influence of dietary carbohydrates source was more noticeable than those induced by the carbohydrate level, when glycolysis and lipogenesis pathways were considered. Common dentex is able to use properly dietary carbohydrates, although optimal dietary inclusion levels are below 24%. The greater protein-sparing effect was promoted by the less complex carbohydrate (maltodextrin) and the best feed utilization indices were obtained at intermediate levels of inclusion (18%).

  8. Modulation of carbohydrate metabolism and peptide hormones by soybean isoflavones and probiotics in obesity and diabetes.

    Science.gov (United States)

    Ali, Ali A; Velasquez, Manuel T; Hansen, Carl T; Mohamed, Ali I; Bhathena, Sam J

    2005-11-01

    Soybean and its isoflavones have been shown to have beneficial effects on carbohydrate and lipid metabolism and on renal function. Probiotics may potentiate the beneficial effects of isoflavones by converting the inactive isoflavone glycoside to aglycones, which are biologically active, thereby producing a synergistic effect. We therefore studied the effects of soybean isoflavones in the presence and absence of probiotics on glucose and triglyceride metabolism and the peptide hormones involved in their metabolism. Lean and obese SHR/N-cp rats were fed AIN-93 diets containing 0.1% soybean isoflavone mixture, 0.1% probiotics mixture or both. Plasma was analyzed for glucose, triglycerides, parameters of renal function and peptide hormones -- insulin, leptin, glucagon and ACTH -- that are involved in glucose and lipid metabolism. Isoflavones given alone lowered plasma glucose in both phenotypes while triglyceride was decreased only in lean animals. Isoflavones also lowered aspartate amino transferase and alanine amino transferase in both phenotypes. Isoflavones had significant effect on plasma insulin, leptin and glucagon in lean rats but not in obese rats. Thus, our data show that in lean animals, isoflavones have hypoglycemic and hypolipidemic effect, and the effect is mediated by changes in peptide hormones. When lipid levels are very high as in obese rats, isoflavones fail to lower plasma triglyceride levels. Probiotics do not appear to enhance the effect of isoflavones.

  9. Is a Calorie Really a Calorie? Metabolic Advantage of Low-Carbohydrate Diets

    Directory of Open Access Journals (Sweden)

    Manninen Anssi H

    2004-12-01

    Full Text Available Abstract The first law of thermodynamics dictates that body mass remains constant when caloric intake equals caloric expenditure. It should be noted, however, that different diets lead to different biochemical pathways that are not equivalent when correctly compared through the laws of thermodynamics. It is inappropriate to assume that the only thing that counts in terms of food consumption and energy balance is the intake of dietary calories and weight storage. Well-controlled studies suggest that calorie content may not be as predictive of fat loss as is reduced carbohydrate consumption. Biologically speaking, a calorie is certainly not a calorie. The ideal weight loss diet, if it even exists, remains to be determined, but a high-carbohydrate/low-protein diet may be unsatisfactory for many obese individuals.

  10. A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis.

    Directory of Open Access Journals (Sweden)

    Peter G Kroth

    Full Text Available BACKGROUND: Diatoms are unicellular algae responsible for approximately 20% of global carbon fixation. Their evolution by secondary endocytobiosis resulted in a complex cellular structure and metabolism compared to algae with primary plastids. METHODOLOGY/PRINCIPAL FINDINGS: The whole genome sequence of the diatom Phaeodactylum tricornutum has recently been completed. We identified and annotated genes for enzymes involved in carbohydrate pathways based on extensive EST support and comparison to the whole genome sequence of a second diatom, Thalassiosira pseudonana. Protein localization to mitochondria was predicted based on identified similarities to mitochondrial localization motifs in other eukaryotes, whereas protein localization to plastids was based on the presence of signal peptide motifs in combination with plastid localization motifs previously shown to be required in diatoms. We identified genes potentially involved in a C4-like photosynthesis in P. tricornutum and, on the basis of sequence-based putative localization of relevant proteins, discuss possible differences in carbon concentrating mechanisms and CO(2 fixation between the two diatoms. We also identified genes encoding enzymes involved in photorespiration with one interesting exception: glycerate kinase was not found in either P. tricornutum or T. pseudonana. Various Calvin cycle enzymes were found in up to five different isoforms, distributed between plastids, mitochondria and the cytosol. Diatoms store energy either as lipids or as chrysolaminaran (a beta-1,3-glucan outside of the plastids. We identified various beta-glucanases and large membrane-bound glucan synthases. Interestingly most of the glucanases appear to contain C-terminal anchor domains that may attach the enzymes to membranes. CONCLUSIONS/SIGNIFICANCE: Here we present a detailed synthesis of carbohydrate metabolism in diatoms based on the genome sequences of Thalassiosira pseudonana and Phaeodactylum tricornutum

  11. High-protein-low-carbohydrate diet: deleterious metabolic and cardiovascular effects depend on age.

    Science.gov (United States)

    Bedarida, Tatiana; Baron, Stephanie; Vessieres, Emilie; Vibert, Francoise; Ayer, Audrey; Marchiol-Fournigault, Carmen; Henrion, Daniel; Paul, Jean-Louis; Noble, Florence; Golmard, Jean-Louis; Beaudeux, Jean-Louis; Cottart, Charles-Henry; Nivet-Antoine, Valerie

    2014-09-01

    High-protein-low-carbohydrate (HP-LC) diets have become widespread. Yet their deleterious consequences, especially on glucose metabolism and arteries, have already been underlined. Our previous study (2) has already shown glucose intolerance with major arterial dysfunction in very old mice subjected to an HP-LC diet. The hypothesis of this work was that this diet had an age-dependent deleterious metabolic and cardiovascular outcome. Two groups of mice, young and adult (3 and 6 mo old), were subjected for 12 wk to a standard or to an HP-LC diet. Glucose and lipid metabolism was studied. The cardiovascular system was explored from the functional stage with Doppler-echography to the molecular stage (arterial reactivity, mRNA, immunohistochemistry). Young mice did not exhibit any significant metabolic modification, whereas adult mice presented marked glucose intolerance associated with an increase in resistin and triglyceride levels. These metabolic disturbances were responsible for cardiovascular damages only in adult mice, with decreased aortic distensibility and left ventricle dysfunction. These seemed to be the consequence of arterial dysfunctions. Mesenteric arteries were the worst affected with a major oxidative stress, whereas aorta function seemed to be maintained with an appreciable role of cyclooxygenase-2 to preserve endothelial function. This study highlights for the first time the age-dependent deleterious effects of an HP-LC diet on metabolism, with glucose intolerance and lipid disorders and vascular (especially microvessels) and cardiac functions. This work shows that HP-LC lead to equivalent cardiovascular alterations, as observed in very old age, and underlines the danger of such diet.

  12. Regulation of Lactobacillus plantarum contamination on the carbohydrate and energy related metabolisms of Saccharomyces cerevisiae during bioethanol fermentation.

    Science.gov (United States)

    Dong, Shi-Jun; Lin, Xiang-Hua; Li, Hao

    2015-11-01

    During the industrial bioethanol fermentation, Saccharomyces cerevisiae cells are often stressed by bacterial contaminants, especially lactic acid bacteria. Generally, lactic acid bacteria contamination can inhibit S. cerevisiae cell growth through secreting lactic acid and competing with yeast cells for micronutrients and living space. However, whether are there still any other influences of lactic acid bacteria on yeast or not? In this study, Lactobacillus plantarum ATCC 8014 was co-cultivated with S. cerevisiae S288c to mimic the L. plantarum contamination in industrial bioethanol fermentation. The contaminative L. plantarum-associated expression changes of genes involved in carbohydrate and energy related metabolisms in S. cerevisiae cells were determined by quantitative real-time polymerase chain reaction to evaluate the influence of L. plantarum on carbon source utilization and energy related metabolism in yeast cells during bioethanol fermentation. Contaminative L. plantarum influenced the expression of most of genes which are responsible for encoding key enzymes involved in glucose related metabolisms in S. cerevisiae. Specific for, contaminated L. plantarum inhibited EMP pathway but promoted TCA cycle, glyoxylate cycle, HMP, glycerol synthesis pathway, and redox pathway in S. cerevisiae cells. In the presence of L. plantarum, the carbon flux in S. cerevisiae cells was redistributed from fermentation to respiratory and more reducing power was produced to deal with the excess NADH. Moreover, L. plantarum contamination might confer higher ethanol tolerance to yeast cells through promoting accumulation of glycerol. These results also highlighted our knowledge about relationship between contaminative lactic acid bacteria and S. cerevisiae during bioethanol fermentation.

  13. TPhP exposure disturbs carbohydrate metabolism, lipid metabolism, and the DNA damage repair system in zebrafish liver

    Science.gov (United States)

    Du, Zhongkun; Zhang, Yan; Wang, Guowei; Peng, Jianbiao; Wang, Zunyao; Gao, Shixiang

    2016-02-01

    Triphenyl phosphate is a high production volume organophosphate flame retardant that has been detected in multiple environmental media at increasing concentrations. The environmental and health risks of triphenyl phosphate have drawn attention because of the multiplex toxicity of this chemical compound. However, few studies have paid close attention to the impacts of triphenyl phosphate on liver metabolism. We investigated hepatic histopathological, metabolomic and transcriptomic responses of zebrafish after exposure to 0.050 mg/L and 0.300 mg/L triphenyl phosphate for 7 days. Metabolomic analysis revealed significant changes in the contents of glucose, UDP-glucose, lactate, succinate, fumarate, choline, acetylcarnitine, and several fatty acids. Transcriptomic analysis revealed that related pathways, such as the glycosphingolipid biosynthesis, PPAR signaling pathway and fatty acid elongation, were significantly affected. These results suggest that triphenyl phosphate exposure markedly disturbs hepatic carbohydrate and lipid metabolism in zebrafish. Moreover, DNA replication, the cell cycle, and non-homologous end-joining and base excision repair were strongly affected, thus indicating that triphenyl phosphate hinders the DNA damage repair system in zebrafish liver cells. The present study provides a systematic analysis of the triphenyl phosphate-induced toxic effects in zebrafish liver and demonstrates that low concentrations of triphenyl phosphate affect normal metabolism and cell cycle.

  14. Abdominal ultrasonography in inheredited diseases of carbohydrate metabolism; Ecografia dell'addome nelle malattie ereditarie del metabolismo dei carboidrati

    Energy Technology Data Exchange (ETDEWEB)

    Pozzato, Carlo; Curti, Alessandra; Cornalba, Gianpaolo [Milano Univ., Ospedale San Paolo, Milano (Italy). Unita' Operativa di Radiologia Diagnostica ed Interventistica, Istituto di Scienze Radiologiche; Radaelli, Giovanni [Milano Univ., Ospedale San Paolo, Milano (Italy). Unita' Operativa di Statistica Medica; Fiori, Laura; Rossi, Samantha; Riva, Enrica [Milano Univ., Ospedale San Paolo, Mialno (Italy). Dipartimento di Pediatria

    2005-02-01

    Purpose: To determine the usefulness of abdominal sonography in inherited diseases of carbohydrate metabolism. Materials and methods: Thirty patients (age range, 4 months to 27 years) with glycogen storage diseases, galactosemia, disorders of fructose metabolism were studied with sonography. Echogenicity of the liver, sonographic dimensions of liver, kidneys and spleen were evaluated. Plasma blood parameters (ALT, AST, total cholesterol, triglycerides) were determined. Results: Liver was enlarged in 21/22 patients (95.4%) with glycogen storage diseases, in both subjects with disorders of fructose metabolism, and in 2/6 patients (33.3%) with galactosemia. Hepatic echogenicity was increased in 20/22 patients (90.9%) with glycogen storage diseases, and in the subject with hereditary fructose intolerance. Patients with galactosemia did not show increased liver echogenicity. Both kidney were enlarged in 8/17 patients (47.0%) with glycogen storage disease type I. Subjects with increased hepatic echogenicity exhibited higher plasma concentrations of any blood parameter than the others with normal echogenicity (p<0.05). Conclusions: Sonography can be useful in identification of inherited diseases of carbohydrate metabolism even if further examinations are necessary for an ultimate diagnosis. [Italian] Scopo: Determinare l'utilita' dell'ecografia addominale nelle malattie ereditarie del metabolismo dei carboidrati. Materiale e metodi: Di 30 pazienti (eta' compresa tra 4 mesi e 27 anni), affetti da malattie di accumulo di glicogeno (glicogenosi), galattosemia, disordini del metabolismo del fruttosio, sono stati valutati tramite ecografia l'ecogenicita' epatica e le dimensioni ecografiche di fegato, reni e milza. Sono stati determinati alcuni parametri ematici (ALT, AST, colesterolo totale, trigliceridi). Risultati: Il fegato e' risultato ingrandito in 21/22 pazienti (95,4%) con malattie da accumolo di glicogeno, in entrambi i soggetti con

  15. The transcriptome of Euglena gracilis reveals unexpected metabolic capabilities for carbohydrate and natural product biochemistry.

    Science.gov (United States)

    O'Neill, Ellis C; Trick, Martin; Hill, Lionel; Rejzek, Martin; Dusi, Renata G; Hamilton, Chris J; Zimba, Paul V; Henrissat, Bernard; Field, Robert A

    2015-10-01

    Euglena gracilis is a highly complex alga belonging to the green plant line that shows characteristics of both plants and animals, while in evolutionary terms it is most closely related to the protozoan parasites Trypanosoma and Leishmania. This well-studied organism has long been known as a rich source of vitamins A, C and E, as well as amino acids that are essential for the human diet. Here we present de novo transcriptome sequencing and preliminary analysis, providing a basis for the molecular and functional genomics studies that will be required to direct metabolic engineering efforts aimed at enhancing the quality and quantity of high value products from E. gracilis. The transcriptome contains over 30,000 protein-encoding genes, supporting metabolic pathways for lipids, amino acids, carbohydrates and vitamins, along with capabilities for polyketide and non-ribosomal peptide biosynthesis. The metabolic and environmental robustness of Euglena is supported by a substantial capacity for responding to biotic and abiotic stress: it has the capacity to deploy three separate pathways for vitamin C (ascorbate) production, as well as producing vitamin E (α-tocopherol) and, in addition to glutathione, the redox-active thiols nor-trypanothione and ovothiol.

  16. A mini review of dolphin carbohydrate metabolism and suggestions for future research using exhaled air

    Directory of Open Access Journals (Sweden)

    Sam eRidgway

    2013-12-01

    Full Text Available In the 1960s, I explored some aspects of carbohydrate metabolism in healthy bottlenose dolphins (Tursiops truncatus. Their physiological picture resembled what had been described for hyperthyroid diabetics. Dolphins have elevated thyroid hormone turnover, and fasting dolphins maintain a relatively high level of plasma glucose. After dolphins ingest glucose, plasma levels remain high for many hours. Interestingly, plasma glucose must exceed 300 mg/dL (about twice as high as the human threshold before glucose appears in urine. Due to their diabetes-like states, trainability, and unique natural respiratory anatomy and physiology, dolphins may offer useful clues to metabolites in the breath that may be used to non-invasively monitor diabetes in humans. Dolphins take very rapid and deep breaths that are four or five times as deep as humans and other terrestrial mammals, making them ideal for physiological assessment using non-invasive exhaled air. Avenues for successfully identifying breath-based markers for metabolic disease and physiology in dolphins can be done with both modern technology and the evolutionarily advantageous canine nose. This review summarizes aspects of dolphin metabolism previously learned and offers new directions for diabetes research that may benefit both dolphin and human health.

  17. Self-selected unrefined and refined carbohydrate diets do not affect metabolic control in pump-treated diabetic patients.

    Science.gov (United States)

    Venhaus, A; Chantelau, E

    1988-03-01

    This study investigated whether unrefined or refined carbohydrate diets have any effect on metabolic control and on insulin requirement in near-normoglycaemic Type 1 (insulin-dependent) diabetic out-patients on continuous subcutaneous insulin infusion therapy. Two females and 8 males (aged 27 +/- 9 years; diabetes duration 13 +/- 8 years; duration of insulin pump therapy 22 +/- 5 months; means +/- SD) participated in a randomised cross-over study with two 6-week periods on self-selected refined and unrefined carbohydrate diets respectively. As a result, energy intake differed between the experimental diets (2372 +/- 669 kcal/day on unrefined diet vs 2757 +/- 654 kcal/day on refined diet, p = 0.04), as did the fibre intake (18 +/- 5 g/day with the refined carbohydrate diet vs 35 +/- 13 g/day with the unrefined carbohydrate diet, p = 0.02). The composition of nutrients was approximately 40% carbohydrate, 45% fat, and 13% protein with both diets. Body weight, HbA1c, daily mean blood glucose (7.2 +/- 0.6 mmol/l) and serum lipids remained virtually unchanged during the entire study. Insulin requirement varied between 40.1 +/- 7.9 U/day with the unrefined carbohydrate diet, and 42.5 +/- 10.1 U/day with the refined carbohydrate diet (NS). Thus, neither the refined nor the unrefined carbohydrate diet affected insulin requirement and metabolic control in these near-normoglycaemic, normolipaemic, non-obese, insulin-pump-treated Type 1 diabetic patients.

  18. Carbohydrate metabolism and pathogenesis of diabetes mellitus in dogs and cats.

    Science.gov (United States)

    Hoenig, Margarethe

    2014-01-01

    Diabetes mellitus (DM) is a common disease in dogs and cats and its prevalence is increasing in both species, probably due to an increase in obesity, although only in cats has obesity been clearly identified as a major risk factor for diabetes. While the classification of diabetes in dogs and cats has been modeled after that of humans, many aspects are different. Autoimmune destruction of beta cells, a feature of type 1 DM in people, is common in dogs; however, in contrast to what is seen in people, the disease occurs in older dogs. Diabetes also occurs in older cats but islet pathology in those species is characterized by the presence of amyloid, the hallmark of type 2 DM. Despite being overweight or obese, most naive diabetic cats, contrary to type 2 diabetic humans, present with low insulin concentrations. The physiology of carbohydrate metabolism and pathogenesis of diabetes, including histopathologic findings, in dogs and cats are discussed in this chapter.

  19. Effect of CoO nanoparticles on the carbohydrate metabolism of the brain of

    Directory of Open Access Journals (Sweden)

    Shamshad M. Shaikh

    2016-10-01

    Full Text Available The effect of CoO nanoparticles (NPs on the brain of mice administered through gastrointestinal tract for a period of 30 days was studied. AAS analysis revealed that NPs administered orally were retained by cerebellum, cerebral cortex, medulla oblongata and olfactory bulb. This retention of nanoparticles by the brain promoted a significant increase in glucose, pyruvate, lactate and glycogen levels along with the concomitant increase in hexokinase, glucose 6 phosphatase, and lactate dehydrogense activities. However, a decrease in glucose 6 phosphate dehydrogenase activity was observed in the brain regions indicating a deterioration of the pentose phosphate pathway. Thus, the present study suggests that the CoO NPs affect the carbohydrate metabolism of the brain.

  20. SulfoSYS (Sulfolobus Systems Biology) : towards a silicon cell model for the central carbohydrate metabolism of the archaeon Sulfolobus solfataricus under temperature variation

    NARCIS (Netherlands)

    Albers, Sonja-Verena; Birkeland, Nils-Kare; Driessen, Arnold J. M.; Gertig, Susanne; Haferkamp, Patrick; Klenk, Hans-Peter; Kouril, Theresa; Manica, Andrea; Pham, Trong K.; Ruoff, Peter; Schleper, Christa; Schomburg, Dietmar; Sharkey, Kieran J.; Siebers, Bettina; Sierocinski, Pawel; Steuer, Ralf; van der Oost, John; Westerhoff, Hans V.; Wieloch, Patricia; Wright, Phillip C.; Zaparty, Melanie; Birkeland, Nils-Kåre

    2009-01-01

    SulfoSYS (Sulfolobus Systems Biology) focuses on the study of the CCM (central carbohydrate metabolism) of Sulfolobus solfataricus and its regulation under temperature variation at the systems level. in Archaea, carbohydrates are metabolized by modifications of the classical pathways known from Bact

  1. SulfoSYS (Sulfolobus Systems Biology): towards a silicon cell model for the central carbohydrate metabolism of the archaeon Sulfolobus solfataricus under temperature variation.

    NARCIS (Netherlands)

    Albers, S.V.; Birkeland, N.K.; Driessen, A.J.; Gertig, S.; Haferkamp, P.; Klenk, H.P.; Kouril, T.; Manica, A.; Pham, T.K.; Ruoff, P.; Schleper, C.; Schomburg, D.; Sharkey, K.J.; Siebers, A.G.; Sierocinski, P.; Steuer, R.; Oost, J. van der; Westerhoff, H.V.; Wieloch, P.; Wright, P.C.; Zaparty, M.

    2009-01-01

    SulfoSYS (Sulfolobus Systems Biology) focuses on the study of the CCM (central carbohydrate metabolism) of Sulfolobus solfataricus and its regulation under temperature variation at the systems level. In Archaea, carbohydrates are metabolized by modifications of the classical pathways known from Bact

  2. SulfoSYS (Sulfolobus Systems Biology): towards a silicon cell model for the central carbohydrate metabolism of the archaeon Sulfolobus solfataricus under temperature variation

    NARCIS (Netherlands)

    Albers, S.V.; Birkeland, N.K.; Driessen, A.J.M.; Gertig, S.; Haferkamp, P.; Klenk, H.P.; Kouril, T.; Manica, A.; Pham, T.K.; Ruoff, P.; Schleper, C.; Schomburg, D.; Sharkey, K.; Siebers, B.; Sierocinski, P.; Steur, R.; Oost, van der J.; Westerhoff, H.V.; Wieloch, P.; Wright, P.C.; Zaparty, M.

    2009-01-01

    SulfoSYS (Sulfolobus Systems Biology) focuses on the study of the CCM (central carbohydrate metabolism) of Sulfolobus solfataricus and its regulation under temperature variation at the systems level. In Archaea, carbohydrates are metabolized by modifications of the classical pathways known from Bact

  3. Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin–cadmium induced diabetic nephrotoxic rats

    Energy Technology Data Exchange (ETDEWEB)

    Kandasamy, Neelamegam; Ashokkumar, Natarajan, E-mail: npashokkumar1@gmail.com

    2014-09-01

    Diabetic nephropathy is the kidney disease that occurs as a result of diabetes. The present study was aimed to evaluate the therapeutic potential of myricetin by assaying the activities of key enzymes of carbohydrate metabolism, insulin signaling molecules and renal function markers in streptozotocin (STZ)–cadmium (Cd) induced diabetic nephrotoxic rats. After myricetin treatment schedule, blood and tissue samples were collected to determine plasma glucose, insulin, hemoglobin, glycosylated hemoglobin and renal function markers, carbohydrate metabolic enzymes in the liver and insulin signaling molecules in the pancreas and skeletal muscle. A significant increase of plasma glucose, glycosylated hemoglobin, urea, uric acid, creatinine, blood urea nitrogen (BUN), urinary albumin, glycogen phosphorylase, glucose-6-phosphatase, and fructose-1,6-bisphosphatase and a significant decrease of plasma insulin, hemoglobin, hexokinase, glucose-6-phosphate dehydrogenase, glycogen and glycogen synthase with insulin signaling molecule expression were found in the STZ–Cd induced diabetic nephrotoxic rats. The administration of myricetin significantly normalizes the carbohydrate metabolic products like glucose, glycated hemoglobin, glycogen phosphorylase and gluconeogenic enzymes and renal function markers with increase insulin, glycogen, glycogen synthase and insulin signaling molecule expression like glucose transporter-2 (GLUT-2), glucose transporter-4 (GLUT-4), insulin receptor-1 (IRS-1), insulin receptor-2 (IRS-2) and protein kinase B (PKB). Based on the data, the protective effect of myricetin was confirmed by its histological annotation of the pancreas, liver and kidney tissues. These findings suggest that myricetin improved carbohydrate metabolism which subsequently enhances glucose utilization and renal function in STZ–Cd induced diabetic nephrotoxic rats. - Highlights: • Diabetic rats are more susceptible to cadmium nephrotoxicity. • Cadmium plays as a cumulative

  4. Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin-cadmium induced diabetic nephrotoxic rats.

    Science.gov (United States)

    Kandasamy, Neelamegam; Ashokkumar, Natarajan

    2014-09-01

    Diabetic nephropathy is the kidney disease that occurs as a result of diabetes. The present study was aimed to evaluate the therapeutic potential of myricetin by assaying the activities of key enzymes of carbohydrate metabolism, insulin signaling molecules and renal function markers in streptozotocin (STZ)-cadmium (Cd) induced diabetic nephrotoxic rats. After myricetin treatment schedule, blood and tissue samples were collected to determine plasma glucose, insulin, hemoglobin, glycosylated hemoglobin and renal function markers, carbohydrate metabolic enzymes in the liver and insulin signaling molecules in the pancreas and skeletal muscle. A significant increase of plasma glucose, glycosylated hemoglobin, urea, uric acid, creatinine, blood urea nitrogen (BUN), urinary albumin, glycogen phosphorylase, glucose-6-phosphatase, and fructose-1,6-bisphosphatase and a significant decrease of plasma insulin, hemoglobin, hexokinase, glucose-6-phosphate dehydrogenase, glycogen and glycogen synthase with insulin signaling molecule expression were found in the STZ-Cd induced diabetic nephrotoxic rats. The administration of myricetin significantly normalizes the carbohydrate metabolic products like glucose, glycated hemoglobin, glycogen phosphorylase and gluconeogenic enzymes and renal function markers with increase insulin, glycogen, glycogen synthase and insulin signaling molecule expression like glucose transporter-2 (GLUT-2), glucose transporter-4 (GLUT-4), insulin receptor-1 (IRS-1), insulin receptor-2 (IRS-2) and protein kinase B (PKB). Based on the data, the protective effect of myricetin was confirmed by its histological annotation of the pancreas, liver and kidney tissues. These findings suggest that myricetin improved carbohydrate metabolism which subsequently enhances glucose utilization and renal function in STZ-Cd induced diabetic nephrotoxic rats.

  5. Analysis of anoxybacillus genomes from the aspects of lifestyle adaptations, prophage diversity, and carbohydrate metabolism.

    Directory of Open Access Journals (Sweden)

    Kian Mau Goh

    Full Text Available Species of Anoxybacillus are widespread in geothermal springs, manure, and milk-processing plants. The genus is composed of 22 species and two subspecies, but the relationship between its lifestyle and genome is little understood. In this study, two high-quality draft genomes were generated from Anoxybacillus spp. SK3-4 and DT3-1, isolated from Malaysian hot springs. De novo assembly and annotation were performed, followed by comparative genome analysis with the complete genome of Anoxybacillus flavithermus WK1 and two additional draft genomes, of A. flavithermus TNO-09.006 and A. kamchatkensis G10. The genomes of Anoxybacillus spp. are among the smaller of the family Bacillaceae. Despite having smaller genomes, their essential genes related to lifestyle adaptations at elevated temperature, extreme pH, and protection against ultraviolet are complete. Due to the presence of various competence proteins, Anoxybacillus spp. SK3-4 and DT3-1 are able to take up foreign DNA fragments, and some of these transferred genes are important for the survival of the cells. The analysis of intact putative prophage genomes shows that they are highly diversified. Based on the genome analysis using SEED, many of the annotated sequences are involved in carbohydrate metabolism. The presence of glycosyl hydrolases among the Anoxybacillus spp. was compared, and the potential applications of these unexplored enzymes are suggested here. This is the first study that compares Anoxybacillus genomes from the aspect of lifestyle adaptations, the capacity for horizontal gene transfer, and carbohydrate metabolism.

  6. Effect of Combined Norethisterone Enantate 50mg Monthly InjectableContraceptive on Carbohydrate Metabolism

    Institute of Scientific and Technical Information of China (English)

    孙丹利; 沈康元; 孟远翔; 卢风英; 蒋海瑛; 杨华; 张美云; 陈爱君

    1994-01-01

    The effect on carbohydrate metabolism of using the combined injectable contraceptive Norethisteron enantate 50mg/ Estradiot valerate 5mg (NET-EN/ EV ) for 12 months was studied in 22 healthy women, other 20 healthy women were recruited as the blank controL Fasting plasma glucose, OGTT and plasma insulin response to glucose were measured in the follicular phase and luteal phase of pre-treatment cycle, in the luteal phase of the 3rd, 6th and 12th month during the treatment period, and in the post-treatment cycle. In the treatment group, no difference was observed in fasting glucose concentrations as compared with those of baseline values and with the control group.while the glucose concentrations of 2h after glucose load in the 3rd month reduced significantly as compared with those of baseline ( P< 0.01). The AUC of glucose indicated a significant decrease in the 3rd and 6th months (P< 0.05 and P< 0.01,respectively). Because all glucose concentrations in OGTT were within the normal range and the similar changes occurred in the control group, the reduction seems to be of little pathological significance. Plasma insulin levels of both fasting and 2h after glucose load,were significantly decreased in the 12th treatment month (P< 0.01 and P< 0.001,respeetively) and post-treatment cycle ( P< 0.01 and P< 0.001, respectively). The AUC of insulin showed a significant reduction, but similar changes were found in the control group. It is concluded that there is no significant effect on carbohydrate metabolism following the treatment of NET-EN 50mg/ EV 5rag for one year.

  7. Inulin oligofructose attenuates metabolic syndrome in high-carbohydrate, high-fat diet-fed rats.

    Science.gov (United States)

    Kumar, Senthil A; Ward, Leigh C; Brown, Lindsay

    2016-11-01

    Prebiotics alter bacterial content in the colon, and therefore could be useful for obesity management. We investigated the changes following addition of inulin oligofructose (IO) in the food of rats fed either a corn starch (C) diet or a high-carbohydrate, high-fat (H) diet as a model of diet-induced metabolic syndrome. IO did not affect food intake, but reduced body weight gain by 5·3 and 12·3 % in corn starch+inulin oligofructose (CIO) and high-carbohydrate, high-fat with inulin oligofructose (HIO) rats, respectively. IO reduced plasma concentrations of free fatty acids by 26·2 % and TAG by 75·8 % in HIO rats. IO increased faecal output by 93·2 %, faecal lipid excretion by 37·9 % and weight of caecum by 23·4 % and colon by 41·5 % in HIO rats. IO improved ileal morphology by reducing inflammation and improving the density of crypt cells in HIO rats. IO attenuated H diet-induced increases in abdominal fat pads (C 275 (sem 19), CIO 264 (sem 40), H 688 (sem 55), HIO 419 (sem 32) mg/mm tibial length), fasting blood glucose concentrations (C 4·5 (sem 0·1), CIO 4·2 (sem 0·1), H 5·2 (sem 0·1), HIO 4·3 (sem 0·1) mmol/l), systolic blood pressure (C 124 (sem 2), CIO 118 (sem 2), H 152 (sem 2), HIO 123 (sem 3) mmHg), left ventricular diastolic stiffness (C 22·9 (sem 0·6), CIO 22·9 (sem 0·5), H 27·8 (sem 0·5), HIO 22·6 (sem 1·2)) and plasma alanine transaminase (C 29·6 (sem 2·8), CIO 32·1 (sem 3·0), H 43·9 (sem 2·6), HIO 33·6 (sem 2·0) U/l). IO attenuated H-induced increases in inflammatory cell infiltration in the heart and liver, lipid droplets in the liver and plasma lipids as well as impaired glucose and insulin tolerance. These results suggest that increasing soluble fibre intake with IO improves signs of the metabolic syndrome by decreasing gastrointestinal carbohydrate and lipid uptake.

  8. Status of carbohydrate and lipid metabolism in obese patients with type 2 diabetes mellitus after biliopancreatic diversion surgery

    Directory of Open Access Journals (Sweden)

    E V Ershova

    2013-10-01

    Full Text Available We examined 70 patients with obesity and diabetes mellitus type 2 before and within 5 years after BPD: these patients showed a significant improvement in the status of carbohydrate and lipid metabolism within 3 months after surgery. This improvement has remained stable along with the reduced body weight during the whole observation period of up to 5 years.

  9. Changes in energy metabolism in relation to physical activity due to fermentable carbohydrates in group-housed growing pigs

    NARCIS (Netherlands)

    Schrama, J.W.; Bakker, G.C.M.

    1999-01-01

    Fermentable nonstarch polysaccharides (dietary fiber) affect energy retention in group-housed growing pigs by reducing physical activity. This study assessed the effects of fermentation and bulkiness of dietary carbohydrates on physical activity in relation to energy metabolism. Eight clusters of 14

  10. Carbohydrate Analysis

    Science.gov (United States)

    Bemiller, James N.

    Carbohydrates are important in foods as a major source of energy, to impart crucial textural properties, and as dietary fiber which influences physiological processes. Digestible carbohydrates, which are converted into monosaccharides, which are absorbed, provide metabolic energy. Worldwide, carbohydrates account for more than 70% of the caloric value of the human diet. It is recommended that all persons should limit calories from fat (the other significant source) to not more than 30% and that most of the carbohydrate calories should come from starch. Nondigestible polysaccharides (all those other than starch) comprise the major portion of dietary fiber (Sect. 10.5). Carbohydrates also contribute other attributes, including bulk, body, viscosity, stability to emulsions and foams, water-holding capacity, freeze-thaw stability, browning, flavors, aromas, and a range of desirable textures (from crispness to smooth, soft gels). They also provide satiety. Basic carbohydrate structures, chemistry, and terminology can be found in references (1, 2).

  11. Alteration of carbohydrates metabolism and midgut glucose absorption in Gromphadorhina portentosa after subchronic exposure to imidacloprid and fenitrothion.

    Science.gov (United States)

    Sawczyn, Tomasz; Dolezych, Bogdan; Klosok, Marcin; Augustyniak, Maria; Stygar, Dominika; Buldak, Rafal J; Kukla, Michal; Michalczyk, Katarzyna; Karcz-Socha, Iwona; Zwirska-Korczala, Krystyna

    2012-01-01

    This study was undertaken to test the hypothesis that following exposure to insecticides, changes take place in the metabolism of carbohydrates and absorption in the midgut of insects. The Madagascar hissing cockroach (Gromphadorhina portentosa) was chosen for the experiment as a model organism, due to it being easy to breed and its relatively large alimentary tract, which was important when preparing the microperfusion midgut bioassay. In each group of cockroaches treated with imidacloprid and fenitrothion, absorption of glucose, expressed as the area under the curve (AUC), was elevated compared to the control group. Glucose in the hemolymph of the examined insects was present in a vestigial amount, often below the threshold of determination, so the determinable carbohydrate indices were: hemolymph trehalose concentration and fat body glycogen content. The level of trehalose found in the hemolymph of insects when exposed to fenitrothion, and irrespective of the level of concentration mixed into food, were significantly lower when comparing to the control samples. Imidacloprid acted analogically with one exception at the concentration of 10 mg·kg(-1) dry food where trehalose concentration did not differ from the control values. Coupling with fat body glycogen concentration was less visible and appeared only at the concentrations of 5 and 10 mg imidacloprid·kg(-1) dry food. As described in this study changes in the sugar distribution and midgut glucose absorption indicate that insects cover the increased energy needs induced by insecticides; also at the gastrointestinal tract level. The result indicates that the midgut glucose absorption parameters could be considered as a non-specific biomarker of insecticide toxicity.

  12. The Effects of Space Flight on Some Liver Enzymes Concerned with Carbohydrate and Lipid Metabolism in Rats

    Science.gov (United States)

    Abraham, S.; Lin, C. Y.; Klein, H. P.; Volkmann, C.

    1978-01-01

    The activities of about 30 enzymes concerned with carbohydrate and lipid metabolism and the levels of glycogen and of individual fatty acids were measured in livers of rats ex- posed to prolonged space flight (18.5 days) aboard COSMOS 986 Biosatellite. When flight stationary, (FS) and flight centrifuged (FC) rats were compared at recovery (R(sub 0)), decrceases in the activities of glycogen phosphorylase, alpha glycerphosphate, acyl transferase, diglyceride acyl transferase, acconitase and Epsilon-phosphogluconate dehydrogenase were noted in the weightless group (FS). The significance of these findings was strengthened since all activities, showing alterations at R(sub 0), returned to normal 25 days post-flight. Differences were also seen in levels of two liver constituents. When glycogen and total fatty acids of the two groups of flight animals were determined, differences that could be attributed to reduced gravity were observed, the FS group at R(sub 0) contained, on the average, more than twice the amount of glycogen than did controls ad a remarkable shift in the ratio of palmitate to palmitoleate were noted. These metabolic alterations appear to be unique to the weightless condition. Our data justify the conclusion that centrifugation during space flight is equivalent to terrestrial gravity.

  13. The effects of space flight on some rat liver enzymes regulating carbohydrate and lipid metabolism

    Science.gov (United States)

    Abraham, S.; Lin, C. Y.; Klein, H. P.; Volkmann, C.

    1981-01-01

    The effects of space flight conditions on the activities of certain enzymes regulating carbohydrate and lipid metabolism in rat liver are investigated in an attempt to account for the losses in body weight observed during space flight despite preflight caloric consumption. Liver samples were analyzed for the activities of 32 cytosolic and microsomal enzymes as well as hepatic glycogen and individual fatty acid levels for ground control rats and rats flown on board the Cosmos 936 biosatellite under normal space flight conditions and in centrifuges which were sacrificed upon recovery or 25 days after recovery. Significant decreases in the activities of glycogen phosphorylase, alpha-glycerol phosphate acyl transferase, diglyceride acyl transferase, aconitase and 6-phosphogluconate dehydrogenase and an increase in palmitoyl CoA desaturase are found in the flight stationary relative to the flight contrifuged rats upon recovery, with all enzymes showing alterations returning to normal values 25 days postflight. The flight stationary group is also observed to be characterized by more than twice the amount of liver glycogen of the flight centrifuged group as well as a significant increase in the ratio of palmitic to palmitoleic acid. Results thus indicate metabolic changes which may be involved in the mechanism of weight loss during weightlessness, and demonstrate the equivalence of centrifugation during space flight to terrestrial gravity.

  14. A Laboratory Exercise in the Determination of Carbohydrate Structures.

    Science.gov (United States)

    White, Bernard J.; Robyt, John F.

    1988-01-01

    Describes an experiment in which students are given a naturally occurring oligosaccharide as an unknown and are asked to determine both its monosaccharide composition and its structure. Discusses methods and experimental techniques including thin layer chromatography and the use of enzymes. (CW)

  15. Genetic determinants for metabolic abnormalities

    NARCIS (Netherlands)

    Risselada, A.J.

    2012-01-01

    Psychiatric patients often use psychotropic drugs. Apart from frequent problems regarding lack of efficacy, use of these drugs also often results in (severe) adverse effects. The use of (atypical) antipsychotic drugs in particular can give rise to weight gain and metabolic deregulation regarding glu

  16. PHYSICO-CHEMICAL DETERMINATION OF CARBOHYDRATES IN THE FOODS AND BEVERAGES

    Directory of Open Access Journals (Sweden)

    I. I. Korenman

    2014-01-01

    Full Text Available Summary. The extraction of fructose, glucose, galactose, sucrose and lactose from aqueous salt solutions, hydrophilic solvents (aliphatic alcohols, alkyl acetates, ketones of double and triple mixtures has been studied. Under identical conditions set quantitative characteristics extraction has been established. It was found that from the all studied carbohydrateы most fully extracted disaccharides lactose and sucrose. The conditions of concentration and almost complete recovery of carbohydrates from aqueous salt solutions has beenoptimized. The technique of extraction-potentiometric selective determination of carbohydrates in foods and beverages has been developed. As a titrant was used isopropanol solution of boric acid. The developed method allows to determine separately the mono- or disaccharides in milk, which include those contained 5 or less carbohydrates. The complex of photocolorimetric, polarimetric, potentiometric and chromatographic methods for determining carbohydrates in aqueous media and food (diabetic confectionery, juices, dairy products, honey wasproposed. To determine the fructose, glucose and sucrose in natural juices us used optical methods (photoelectrocolorimeters, polarimetry. Method is express, does not require expensive equipment and reagents. Fructose and sucrose in diabetic confectionery was determined by ascending thin layer chromatography. Some diabetic products based on fructose, produced by Russian confectionery factorieshas beenanalyzed. Duration analysis, 50-60 minutes, selective determination of error within 5-7%. Extracts from honey and milk were analyzed potentiometrically. We have developed a technique characterized by the following advantages compared with state standards: rapidity (analysis time 30-35 min, accuracy (relative error within 5 %, does not require expensive equipment and reagents, as well as dilution and filtration of milk stage sampling.

  17. [The role of adipokines in formation of lipid and carbohydrate metabolic disorders in patients with cardiovascular disease].

    Science.gov (United States)

    Kravchun, P; Kadykova, O; Gabisoniia, T

    2012-12-01

    Cardio-vascular disease is an important public health problem in all developed countries.The challenge isto learn thepathogenic mechanisms of this disease.Attention of scientists of the world are drown to the role of hormones in the development of adipose tissue metabolic disorders. Adipose tissue is composed of adipocytes embedded in a loose connective tissue meshwork containing adipocyte precursors, fibroblasts, immune cells, and various other cell types. Adipose tissue was traditionally considered an energy storage depot with few interesting attributes. Due to the dramatic rise in obesity and its metabolic sequelae during the past decades, adipose tissue gained tremendous scientific interest. It is now regarded as an active endocrine organ that, in addition to regulating fat mass and nutrient homeostasis, releases a large number of bioactive mediators (adipokines) modulating hemostasis, blood pressure, lipid and glucose metabolism, inflammation, and atherosclerosis. The aim of our study was to examine the metabolic disorders in patients with cardiovascular disease. Based on identifying the nature of changes of insulin antagonists and of insulin sensitizers. We were investigated 68 patients with hypertension, which included 35 women and 33 men.Estimated distance of carbohydrate and lipid metabolism and adipose tissue hormone imbalance. Our results suggest that the mechanisms underlying the progression of diabetes and obesity in patients with hypertension against metabolic disorders that manifest dysfunction of carbohydrate and lipid metabolism are associated with insulinorezistense and hypervisfatinemia and hyperrezistinemia against hypoadiponektinemia occur in hypertensive patients by having diabetes mellitus type 2.

  18. Influence of low-power laser radiation on carbohydrate metabolism and insulin-glycemic balance in experimental animals

    Science.gov (United States)

    Radelli, Jolanta; Cieslar, Grzegorz; Sieron, Aleksander; Grzybek, Henryk

    1996-11-01

    The aim of the study was to determine the dose-dependent influence of low-power laser radiation on carbohydrate metabolism in 70 male Wistar rats. The animals were primarily divided into 2 groups: B - irradiated group and C - control one in which sham - irradiation was made. The rats from B - group were irradiated daily for 10 minutes with semiconductive laser emitting the radiation of infrared wavelength 904 nm. Within both groups the animals were divided into subgroups (B I - B VII and CI - C VII) in which the dissections were made on 1st, 3rd, 6th, 9th, and 14th day of irradiation and on 5th and 8th day after the end of cycle of irradiation respectively. In all subgroups blood samples were collected to determine the glucose and insulin levels. Parts of the liver and pancreas were taken for histological examination in light microscope and in electron microscope. The lowest, statistically significant glycaemia was observed in the subgroup B V. Significant increase of glycaemia and significantly higher insulin concentration was found only in the subgroup B VI. The I/G ratio increased significantly in the subgroup B V. Lower intensity of paS reaction was presented in subgroups B I, B III, B V, B VI and B VII. The increased amount of paS-positive substances was observed in the I and II zone of liver acinus. Electron microscopic studies of hepatocytes showed: numerous glycogen conglomerations in subgroups B I, B II, B VI and B VII, the extension of RER in B II and B III, light vacuoles in B II, Golgi apparatus and biliary canaliculus expansion in B V and structural changes of several mitochondria - slight swelling or discontinuation of their outer membranes, electron microscopic findings in pancreas cells included: lower number of typical granules in beta and alpha cells as well as Golgi apparatus results it was concluded that the influence of low power laser radiation on carbohydrate metabolism in generally insignificant. It is observed only for higher doses of

  19. D-pinitol attenuates the impaired activities of hepatic key enzymes in carbohydrate metabolism of streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Sivakumar, Selvaraj; Subramanian, Sorimuthu P

    2009-09-01

    During diabetes mellitus, endogenous hepatic glucose production is increased as a result of impaired activities of the key enzymes of carbohydrate metabolism, which leads to the condition known as hyperglycemia. D-pinitol, a bioactive constituent isolated from soybeans, has been shown to reduce hyperglycemia in experimental diabetes. We therefore designed this study to investigate the effect of oral administration of D-pinitol (50 mg/kg b. w. for 30 days) on the activities of key enzymes in carbohydrate and glycogen metabolism in the liver tissues of streptozotocin-induced diabetic rats. The efficacy was compared with glyclazide, a standard hypoglycemic drug. Oral administration of D-pinitol to diabetic group of rats showed a marked decrease in the levels of blood glucose, glycosylated hemoglobin and an increase in plasma insulin and body weight. The activities of the hepatic enzymes such as hexokinase, pyruvate kinase, glucose-6-phosphate dehydrogenase, glycogen synthase and hepatic glycogen content were significantly (p pinitol. The results suggest that alterations in the activities of key metabolic enzymes of carbohydrate metabolism could be one of the biochemical rationale by which D-pinitol attenuates the hyperglycemic effect in diabetic rats.

  20. The role of adrenals in diazinon-induced changes in carbohydrate metabolism in rats.

    Science.gov (United States)

    Matin, M A; Sattar, S; Husain, K

    1990-12-01

    Treatment of rats with diazinon (40 mg/kg, i.p.) resulted in hyperglycaemia and depletion of glycogen from the brain and peripheral tissues two hours after administration. The activities of glycogen phosphorylase and phosphoglucomutase were significantly higher in the brain and liver; that of glucose-6-phosphatase was not altered. The activities of the glycolytic enzymes hexokinase and lactate dehydrogenase were increased only in the brain. The cholinesterase activity in the brain was reduced by treatment with diazinon. The activities of the hepatic gluconeogenic enzymes fructose 1,6-diphosphatase and phosphoenolpyruvate carboxykinase were significantly increased. The lactate level was increased in the brain and blood, whereas that of pyruvate was not changed. The activity of glucose-6-phosphate dehydrogenase was not changed to any major extent. Cholesterol and ascorbic acid contents of adrenals were depleted in diazinon-treated animals. The changes were pronounced after intraperitoneal administration of 40 mg/kg diazinon, they were slight but significant after 20 mg/kg, and absent after 10 mg/kg. Hyperglycaemia and changes in carbohydrate metabolism were abolished by adrenalectomy suggesting possible involvement of adrenals.

  1. Modification of diazinon-induced changes in carbohydrate metabolism by adrenalectomy in rats.

    Science.gov (United States)

    Matin, M A; Husain, K; Khan, S N

    1990-06-01

    Treatment with diazinon (40 mg/kg, i.p.) resulted in hyperglycemia and depletion of glycogen from cerebral and peripheral tissues 2 hr after its administration in rats. The activities of the glycogenolytic enzymes glycogen phosphorylase and phosphoglucomutase were increased significantly in brain and liver, whereas that of glucose-6-phosphatase was not altered. The activities of the glycolytic enzymes hexokinase and lactate dehydrogenase were increased only in the brain. The cholinesterase activity of the brain was reduced by treatment with diazinon. The activities of the hepatic gluconeogenic enzymes fructose 1,6-diphosphatase and phosphoenolpyruvate carboxykinase were also increased significantly in diazinon-treated animals. The level of lactate was increased in brain and blood, whereas that of pyruvate was not changed. The activity of glucose-6-phosphate dehydrogenase was not changed significantly. The cholesterol and ascorbic acid contents of adrenals were depleted in diazinon-treated animals. The hyperglycemia and changes in carbohydrate metabolism were abolished by adrenalectomy, suggesting the possible involvement of the adrenals in the induced changes in diazinon-treated animals.

  2. Effect of adrenalectomy on diazinon-induced changes in carbohydrate metabolism.

    Science.gov (United States)

    Matin, M A; Khan, S N; Hussain, K; Sattar, S

    1989-01-01

    Treatment with diazinon resulted in hyperglycaemia and depletion of glycogen from cerebral and peripheral tissues 2 h after its administration in rats; the changes were maximal after 40 mg/kg diazinon, administered intraperitoneally. The activities of glycogen phosphorylase and phosphoglucomutase were significantly increased in brain and liver, while that of glucose-6-phosphatase was not altered. The activities of the glycolytic enzymes hexokinase and lactate dehydrogenase were increased only in brain. The cholinesterase activity of the brain was reduced by treatment with diazinon. The activities of hepatic gluconeogenic enzymes (fructose 1,6 diphosphatase and phosphoenolpyruvate carboxykinase) were also significantly increased in diazinon-treated animals. The level of lactate was increased in brain and blood while that of pyruvate was not changed. The activity of glucose-6-phosphate dehydrogenase was not significantly changed. Cholesterol and ascorbic acid contents of adrenals were depleted in diazinon-treated animals. Adrenalectomy abolished the hyperglycaemia and changes in carbohydrate metabolism, suggesting the possible involvement of adrenals in the induced changes in diazinon-treated animals.

  3. Efficacy of dietary supplementation with botanicals on carbohydrate metabolism in humans.

    Science.gov (United States)

    Cefalu, William T; Ye, Jianping; Wang, Zhong Q

    2008-06-01

    Botanical products are widely used in nutritional supplementation for promotion of health or prevention of diseases. With the high prevalence of obesity and type 2 diabetes, abnormalities in carbohydrate metabolism are common in the general population and obtaining glycemic control is important in reducing the complications of diabetes. If shown to be effective, botanical products have a unique position in potentially aiding the general public in regard to obesity and diabetes. They can be obtained "over-the-counter" and may have less side effects compared to many synthetic drugs. Although most of the popular botanicals have a long history in folk medicine, there is paucity of data regarding their efficacy and safety, particularly as it relates to human studies. In this review, we discuss the data that was available in the literature for nine botanicals that are frequently promoted to help manage blood glucose. They are Bitter Melon (Momordica charantia), Fenugreek (trigonella foenum graecum), Gymnema Sylvestre, Ivy Gourd (Coccinia indica), Nopal or Prickly Pear Cactus (Opuntia streptacantha), Ginseng, Aloe Vera, Russian Tarragon (Artemisia dracunculus), and Garlic (Allium sativum). The discussion is emphasized on the clinical aspect of these botanicals. Due to the lack of sufficient evidence from clinical studies for any of the botanicals reviewed, it is premature to actively recommend use of any particular herb to treat either glucose or other risk factors. Thus, well defined randomized clinical trials are warranted in this area.

  4. Beneficiary effect of Tinospora cordifolia against high-fructose diet induced abnormalities in carbohydrate and lipid metabolism in Wistar rats.

    Science.gov (United States)

    Reddy, S Sreenivasa; Ramatholisamma, P; Ramesh, B; Baskar, R; Saralakumari, D

    2009-10-01

    High intake of dietary fructose has been shown to exert a number of adverse metabolic eff ects in humans and experimental animals. The present study was designed to investigate the eff ect of the aqueous extract of Tinospora cordifolia stem (TCAE) on the adverse eff ects of fructose loading toward carbohydrate and lipid metabolism in rats. Adult male Wistar rats of body weight around 200 g were divided into four groups, two of which were fed with starch diet and the other two with high fructose (66 %) diet. Plant extract of TC (400 mg/kg/day) was administered orally to each group of the starch fed rats and the highfructose fed rats. At the end of 60 days of experimental period, biochemical parameters related to carbohydrate and lipid metabolism were assayed. Hyperglycemia, hyperinsulinemia, hypertriglyceridemia, insulin resistance, and elevated levels of hepatic total lipids, cholesterol, triglycerides, and free fatty acids (p TCAE treatment. Alterations in the activities of enzymes of glucose metabolism (hexokinase, phosphofructokinase, pyruvate kinase, glucose-6-phosphatase, fructose-1,6-bisphosphatase, and glucose-6-phosphate dehydrogenase) and lipid metabolism (fatty acid synthetase, lipoprotein lipase, and malic enzyme) as observed in the high fructose-fed rats were prevented with TCAE administration. In conclusion, our fi ndings indicate improvement of glucose and lipid metabolism in high-fructose fed rats by treatment with Tinospora cordifolia, and suggest that the plant can be used as an adjuvant for the prevention and/or management of insulin resistance and disorders related to it.

  5. Randomized controlled study of the influence of two low estrogen dose oral contraceptives containing gestodene or desogestrel on carbohydrate metabolism.

    Science.gov (United States)

    Lüdicke, Frank; Gaspard, Ulysse J; Demeyer, Fabienne; Scheen, A; Lefebvre, P

    2002-12-01

    This study compared the impact on carbohydrate metabolism of two combinedoral contraceptives (COCs). This open-label, single-center trial enrolled participants for a total of 15 cycles. Thirty-six women were randomized to receive either 20 microg ethinyl estradiol (EE) and 75 microg gestodene (GSD) or 20 microg ethinyl estradiol and 150 microg desogestrel (DSG) daily for 21 days out of 28. A glucose tolerance test was performed at baseline and cycles 6 and 13. The area under the curve (AUC) for glucose increased in both study groups. The change was statistically significant (p = 0.036) for the 20 EE/75 GSD group at cycle 6 versus baseline. Fasting blood glucose at cycle 13 was significantly (p Gestodene and desogestrel in combination with 20-microg ethinyl estradiol induce similar changes in carbohydrate metabolism which are smaller than those described earlier for COCs containing higher estrogen doses or more androgenic progestins such as levonorgestrel.

  6. Expression profiles of genes related to carbohydrate metabolism provide new insights into carbohydrate accumulation in seeds and seedlings of Ricinus communis in response to temperature.

    Science.gov (United States)

    Ribeiro, Paulo R; Ligterink, Wilco; Hilhorst, Henk W M

    2015-10-01

    Ricinus communis possesses a specific metabolic signature to adjust growth and developmental processes in response to temperature: carbohydrates are accumulated at low temperatures, whereas amino acids are accumulated at elevated temperatures. Our objective was to assess tissue-specific changes in transcript levels of genes related with carbohydrate biosynthesis and catabolism in response to temperature. For that, we measured transcript levels of genes encoding enzymes involved in starch biosynthesis, starch catabolism, and gluconeogenesis in R. communis leaves, roots, and seeds grown at 20 °C and 35 °C. Transcript levels of genes involved in starch catabolism were higher in leaves grown at 20 °C than at 35 °C, but up-regulation of genes involved in starch biosynthesis seems to compensate for this and, therefore, are the likely explanation for higher levels of starch in leaves grown at 20 °C. Higher levels of soluble carbohydrates in leaves grown at 20 °C may be caused by a coordinated increase in transcript level of genes associated with starch catabolism and gluconeogenesis pathways. In roots, transcript levels of genes associated with starch catabolism and gluconeogenesis seem to be enhanced at elevated temperatures. Higher levels of starch in seeds germinated at low temperatures is associated with higher transcript levels of genes involved in starch biosynthesis. Similarly, higher transcript levels of RcPEPCK and RcFBPase are most likely causal for fructose and glucose accumulation in seeds germinated at 20 °C. This study provides important insights in the understanding of the plasticity of R. communis in response to temperature that may apply to other species as well.

  7. Metabolism and fatty acid profile in fat and lean rainbow trout lines fed with vegetable oil: effect of carbohydrates.

    Directory of Open Access Journals (Sweden)

    Biju Sam Kamalam

    Full Text Available The present study investigated the effect of dietary carbohydrates on metabolism, with special focus on fatty acid bioconversion and flesh lipid composition in two rainbow trout lines divergently selected for muscle lipid content and fed with vegetable oils. These lines were chosen based on previously demonstrated potential differences in LC-PUFA synthesis and carbohydrate utilization. Applying a factorial study design, juvenile trout from the lean (L and the fat (F line were fed vegetable oil based diets with or without gelatinised starch (17.1% for 12 weeks. Blood, liver, muscle, intestine and adipose tissue were sampled after the last meal. Feed intake and growth was higher in the L line than the F line, irrespective of the diet. Moderate postprandial hyperglycemia, strong induction of hepatic glucokinase and repressed glucose-6-phosphatase transcripts confirmed the metabolic response of both lines to carbohydrate intake. Further at the transcriptional level, dietary carbohydrate in the presence of n-3 LC-PUFA deficient vegetable oils enhanced intestinal chylomicron assembly, disturbed hepatic lipid metabolism and importantly elicited a higher response of key desaturase and elongase enzymes in the liver and intestine that endorsed our hypothesis. PPARγ was identified as the factor mediating this dietary regulation of fatty acid bioconversion enzymes in the liver. However, these molecular changes were not sufficient to modify the fatty acid composition of muscle or liver. Concerning the genotype effect, there was no evidence of substantial genotypic difference in lipid metabolism, LC-PUFA synthesis and flesh fatty acid profile when fed with vegetable oils. The minor reduction in plasma glucose and triglyceride levels in the F line was linked to potentially higher glucose and lipid uptake in the muscle. Overall, these data emphasize the importance of dietary macro-nutrient interface in evolving fish nutrition strategies.

  8. Musa Paradisiaca flower extract improves carbohydrate metabolism in hepatic tissues of streptozotocin-induced experimental diabetes in rats

    Institute of Scientific and Technical Information of China (English)

    Shanmuga Sundaram.C; Subramanian.S

    2012-01-01

    Objective: Musa Paradisiaca, commonly known as plantains have been traditionally used for various medicinal purposes. In the absence of an ideal drug to alleviate the primary and secondary complications of diabetes mellitus, search for novel drugs without side effects, preferably from plant origin continues. Recently, we have reported the presence of biologically active phytochemicals as well as the hypoglycemic activity of Musa paradisiaca tepals extract in STZ induced experimental diabetes in rats. The present study was aimed to evaluate the role of tepals, an integrated part of Musa paradisiaca flowers on carbohydrate metabolism in hepatic tissues of experimental diabetic rats. Methods: Streptozotocin-induced diabetic rats were treated with ethanolic extract of tepals at a concentration of 200mg/kg body weight/day for 30 days. The levels of fasting blood glucose, plasma insulin and glycosylated hemoglobin were estimated. The activities of key enzymes in carbohydrate metabolism such as glucokinase, pyruvate kinase, glucose-6-phosphatase, fructose-1, 6-bisphosphatase, glucose-6-phosphate dehydrogenase, glycogen synthase and glycogen phosphorylase in hepatic tissues were assayed. The levels of glycogen in hepatic tissues were also estimated. Results: Oral administration ofMusa paradisiaca tepals extract significantly improved the altered levels of blood glucose, plasma insulin, glycosylated hemoglobin and modulated the activities of carbohydrate metabolizing enzymes. The glycogen content in hepatic tissues was significantly increased in diabetic rats treated with tepals extract. Conclusions: The results of the present study clearly indicate that the tepals extract plays pivotal role to maintain normoglycemia in diabetes by modulating the activities of carbohydrate metabolic enzymes.

  9. Exercise and postprandial lipid metabolism: an update on potential mechanisms and interactions with high-carbohydrate diets (review).

    Science.gov (United States)

    Gill, Jason M R; Hardman, Adrianne E

    2003-03-01

    Endurance trained people exhibit low levels of postprandial lipemia. However, this favorable situation is rapidly reversed with de-training and it is likely that the triglyceride (TG) lowering effects of exercise are mainly the result of acute metabolic responses to recent exercise rather than long-term training adaptations. A large body of evidence suggests that postprandial lipemia can be attenuated following an individual exercise session, with the energy expended during exercise being an important determinant of the extent of TG lowering. Increased lipoprotein lipase-mediated TG clearance and reduced hepatic TG secretion are both likely to contribute to the exercise-induced TG reductions. These changes may occur in response to post-exercise substrate deficits in skeletal muscle and/or the liver. In addition, regular exercise can oppose the hypertriglyceridaemia sometimes seen with low-fat, high-carbohydrate diets. Levels of physical activity should therefore be taken into account when considering nutritional strategies for reducing the risk of cardiovascular disease.

  10. Risk factors of disturbances in carbohydrate and lipid metabolism and some pleiotropic effects of antihypertensive therapy in pregnant women

    Directory of Open Access Journals (Sweden)

    A V Padyganova

    2013-03-01

    Full Text Available The any kind of hypertension developing during the pregnancy, associated with high cardiovascular risk in the future. At the pregnancy complicated by development by arterial hypertension, there are more expressed changes of a carbohydrate and lipide metabolism, than it is peculiar to normally proceeding pregnancy, were by important pathogenetic links of obesity, diabetes, cardiovascular complications. Identification of new mechanisms of action of antihypertensive means associated with positive influences on exchange processes, is represented very demanded, considering pandemic nature of prevalence of metabolic violations in modern population.

  11. Energy metabolism in young mink kits (Neovison vison) affected by protein and carbohydrate level in the diet

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Hansen, NE; Tauson, A-H

    information about the relative contribution of different nutrients to the total heat production (HE; Tauson et al. 1997). The aim of the study was to examine the effect of different provision of protein and carbohydrate on the energy metabolism and substrate oxidation of mink kits between 6 and 12 weeks......The mink is a strict carnivore and mink diets usually have a high content of protein. The energy metabolism in young minks in the transition period from milk to solid food is not investigated in detail, and the protein requirement is poorly defined. The substrate oxidation can give useful...

  12. Effect of discontinuation of long-term growth hormone treatment on carbohydrate metabolism and risk factors for cardiovascular disease in girls with Turner syndrome

    NARCIS (Netherlands)

    Y.K. van Pareren (Yvonne); S.M.P.F. de Muinck Keizer-Schrama (Sabine); Th. Stijnen (Theo); T.C.J. Sas (Theo); S.L.S. Drop (Stenvert)

    2002-01-01

    textabstractGH treatment increases insulin levels in girls with Turner syndrome (TS), who are already predisposed to develop diabetes mellitus and other risk factors for developing cardiovascular disease. Therefore, in the present study, we investigated carbohydrate metabolism and

  13. Effects of Carbohydrate and Dietary Fiber Intake, Glycemic Index and Glycemic Load on HDL Metabolism in Asian Populations.

    Science.gov (United States)

    Yanai, Hidekatsu; Katsuyama, Hisayuki; Hamasaki, Hidetaka; Abe, Shinichi; Tada, Norio; Sako, Akahito

    2014-10-01

    High-density lipoprotein (HDL) is a lipoprotein which has anti-atherogenic property by reverse cholesterol transport from the peripheral tissues to liver. Low HDL-cholesterol (HDL-C) levels are associated with the development of coronary artery diseases (CADs). Various epidemiological studies have suggested that the development of CAD increase in individuals with less than 40 mg/dL of HDL-C. In spite of accumulation of evidences which suggest a significant association between low HDL-C and cardiovascular diseases, effects of dietary factors on HDL metabolism remained largely unknown. There may be interracial differences in effects of dietary factors on HDL metabolism. Here we reviewed published articles about effects of carbohydrate and dietary fiber intake, glycemic index (GI) and glycemic load (GL), on HDL-C metabolism, regarding meta-analyses and clinical studies performed in Asian population as important articles. Low carbohydrate intake, GI and GL may be beneficially associated with HDL metabolism. Dietary fiber intake may be favorably associated with HDL metabolism in Asian populations.

  14. Immunoglobulin E sensitization to cross-reactive carbohydrate determinants: epidemiological study of clinical relevance and role of alcohol consumption

    DEFF Research Database (Denmark)

    Linneberg, Allan; Fenger, Runa Vavia; Husemoen, Lise-Lotte;

    2010-01-01

    The determinants and biologic significance of IgE-mediated sensitization to cross-reactive carbohydrate determinants (CCDs) are not entirely known. An association between alcohol consumption and CCD sensitization has been reported in studies from Spain and Portugal....

  15. Lectin histochemistry of intestinal carbohydrate determinants in representatives of different classes of vertebrates

    Directory of Open Access Journals (Sweden)

    Antonyuk R.V.

    2015-12-01

    Full Text Available Background. Glycoproteins (including mucin of vertebrate’s intestine play an important role in its protection against chemical and mechanical damage and bacterial attacks. Their diversity was described by many authors, but understanding of their chemical structure remains far from complete. These data can be extended by methods of lectin histochemistry. Objective. To investigate the rearrangement of intestinal carbohydrate determinants in the context of vertebrate evolution. Methods. Distal and proximal segments of small and large intestines of humans (Homo sapiens, laboratory (Wistar rat (Rattus norvegicus f. Domesticus, rock pigeon (Columba livia, smooth snake (Coronella austriaca, common frog (Rana temporaria, common carp (Cyprinus carpio that belong to different classes of vertebrates were taken for the experiment. Nine lectins with different carbohydrate specificities: wheat germ (WGA, potato (STA, elderberry bark (SNA, golden rain bark (LABA, locust bark (RPBA, roe carp (CCRA, Phaseolus vulgaris erytroagglutinin (PHA-E, peanut (PNA and jack fruit (AIA – were included into the panel. Results. Differences in lectin staining between small and large intestine were more pronounced in higher (human, rat than in lower (frog, carp vertebrates. Lectin receptors were more diverse in frog intestine in comparison with carp. Lectin interaction with mucin secretory granules of smooth snake revealed lack of N-acetyl-D-glucosamine residues and abundance of N-acetyl-D-galactosamine determinants. Conclusion. Intestines of all studied vertebrate species demonstrate high content of secretory mucins that exposed terminal acidic carbohydrates including sialic acid. The diversity and differences in the structure of glycans of the digestive tract of vertebrates is apparently determined by several factors – diet, environmental and living conditions, intestinal microbiota interactions etc. Citation: Antonyuk RV, Lutsyk AD. [Lectin histochemistry of intestinal

  16. Carbohydrate metabolism teaching strategy for the Pharmacy course, applying active teaching methodology

    Directory of Open Access Journals (Sweden)

    Uderlei Donizete Silveira Covizzi

    2012-12-01

    Full Text Available The traditional teaching method has been widely questioned on the development of skills and abilities in training healthcare professionals. In the traditional methodology the main transmitter of knowledge is the teacher while students assume passive spectator role. Some Brazilian institutions broke with this model, structuring the curriculum to student-centered learning. Some medical schools have adopted the Problem Based Learning (PBL, a methodology that presents problem questions, to be encountered by future physicians, for resolution in small tutorial groups. Our work proposes to apply an active teaching-learning methodology addressing carbohydrate metabolism during the discipline of biochemistry for under graduation students from pharmacy course. Thus, the academic content was presented through brief and objective talks. Later, learners were split into tutorial groups for the resolution of issues in context. During the activities, the teacher drove the discussion to the issues elucidation. At the end of the module learners evaluated the teaching methodology by means of an applied questionnaire and the developed content was evaluated by an usual individual test. The questionnaire analysis indicates that students believe they have actively participated in the teaching-learning process, being encouraged to discuss and understand the theme. The answers highlight closer ties between students and tutor. According to the professor, there is a greater student engagement with learning. It is concluded that an innovative methodology, where the primary responsibility for learning is centered in the student himself, besides to increase the interest in learning, facilitates learning by cases discussion in groups. The issues contextualization establishes a narrowing between theory and practice.

  17. α-Mangostin Mediated Pharmacological Modulation of Hepatic Carbohydrate Metabolism in Diabetes Induced Wistar Rat

    Directory of Open Access Journals (Sweden)

    Vikas Kumar

    2016-09-01

    Full Text Available Garcinia mangostana L. (Fruit has been commonly used as folklore drug in the treatment of various types of diseases. The present experiment was designed to evaluate the potential effect of α-mangostin mediated pharmacological modulation of hepatic carbohydrate metabolism in streptozotocin (STZ induced diabetic rats. Oral glucose tolerance test (OGTT was performed in normoglycemic rats. Single intraperitoneal injection of STZ (60 mg/kg, body weight was used for induction the diabetes in Swiss albino (Wistar strain rats. The rats were divided into different groups. Blood glucose level, body weight, insulin, glycated hemoglobin and hemoglobin levels were recorded at regular intervals. Biochemical parameters, liver enzymes, lipid profile, antioxidant parameters and inflammatory cytokine mediators were also scrutinized. Histopathology study of kidney, pancreas and liver were performed. The result of OGTT study depicted the better utilization of glucose in experimental rats. STZ induced diabetic rats treated with α-mangostin (25, 50 and 100 mg/kg, p.o. and glibenclamide depicted the decline in the level of blood glucose; enhanced body weight and showed the better utilization of glucose by different organs. STZ induced diabetic rats treated with α-mangostin illustrated the increased level of plasma insulin, hemoglobin, hexokinase, HDL, total protein, SOD, CAT, GSH and declined level of glycated hemoglobin, fructose-1-6-biphosphatase, glucose-6-Phosphatase, TC, TG, LDL, VLDL, CRE, BUN, SGOT, SGPT, ALP and LPO at effective dose dependent manners. Histological study showed the inflamed blood vessels in diabetic kidney, which was less in α-mangostin treated rats; diabetic pancreatic showed the complete damage of β cells, islets, aciini and producing necrosis, but all damage was less obvious in α-mangostin treating group rats; diabetic liver showed the damage of hepatocytes as well as central vein but was less in treated groups. Considering the

  18. A carbohydrate pulse experiment to demonstrate the sugar metabolization by S. mutans

    Directory of Open Access Journals (Sweden)

    T.P. Paulino

    2006-07-01

    Full Text Available Streptococcus mutans is a fast growing organism, of low cost and easily prepared culture medium. It has been  related  primarily to  an  elevated risk  of dental cavity development  in the host due  to the  acid-induced tooth demineralization. To prevent this disease, addition of fluoride can be required, promoting the mouth  hygiene. The  main  objective  of  this  experiment  is  to  show  the  influence  of  the  carbon  source  and fluoride on the acidogenic capacity of S.  mutans. The strain was cultivated in microaerophilia, at 37ºC for 12  hours  in  complete  medium  (stationary  phase.  The  cells  were  harvested  by  centrifugation  at  room temperature,  washed  with  saline  solution  and  suspended  in  the  same  solution.  The  absorbance  was adjusted  to  1  and  the  pH  to  7.3  using  0,1  mol/L  KOH  solution.  To  10  mL  of  the  cell  suspension,  distinct carbohydrates  (glucose,  xilose,  sucrose,  fructose  or  maltose  were  added,  enough  to  establish  a  50 mMol/L final concentration. Fluoride was added (1 mmol/L final concentration and the pH was monitored during  2 hours. In this  incubation  period,  the  suspension  was  kept  at  room  temperature  with  slow  stirring and  the  pH  was  monitored  each  7  minutes.  In  the  20  initial  minutes  of  incubation  with  glucose,  fructose, maltose  and  sucrose,  an  intense  and  very  similar  pH  decrease  (2.5  units  can  be  observed.  This acidification reflects both the sugar uptake and anaerobic metabolization. After this initial acid liberation, a phase of slow pH decrease is observed, continuing up to 120 minutes of incubation. In presence of xilose, the  acidification  is  less  intense  and  reaches  a  similar  value  to  that  of  the  control  without  carbohydrate

  19. Partial restoration of dietary fat induced metabolic adaptations to training by 7 days of carbohydrate diet

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Watt, Peter W; Richter, Erik A

    2002-01-01

    We tested the hypothesis that a shift to carbohydrate diet after prolonged adaptation to fat diet would lead to decreased glucose uptake and impaired muscle glycogen breakdown during exercise compared with ingestion of a carbohydrate diet all along. We studied 13 untrained men; 7 consumed a high...... +/- 59 vs. 688 +/- 43 mmol/kg dry wt) in Fat-CHO than in CHO. In conclusion, shift to carbohydrate diet after prolonged adaptation to fat diet and training causes increased resting muscle glycogen levels but impaired leg glucose uptake and similar muscle glycogen breakdown, despite higher resting levels...

  20. Ferulic Acid Alleviates Changes in a Rat Model of Metabolic Syndrome Induced by High-Carbohydrate, High-Fat Diet

    Directory of Open Access Journals (Sweden)

    Ketmanee Senaphan

    2015-08-01

    Full Text Available Metabolic syndrome is a cluster of metabolic abnormalities characterized by obesity, insulin resistance, hypertension and dyslipidemia. Ferulic acid (FA is the major phenolic compound found in rice oil and various fruits and vegetables. In this study, we examined the beneficial effects of FA in minimizing insulin resistance, vascular dysfunction and remodeling in a rat model of high-carbohydrate, high-fat diet-induced metabolic changes, which is regarded as an analogue of metabolic syndrome (MS in man. Male Sprague-Dawley rats were fed a high carbohydrate, high fat (HCHF diet and 15% fructose in drinking water for 16 weeks, where control rats were fed with standard chow diet and tap water. FA (30 or 60 mg/kg was orally administered to the HCHF and control rats during the last six weeks of the study. We observed that FA significantly improved insulin sensitivity and lipid profiles, and reduced elevated blood pressure, compared to untreated controls (p < 0.05. Moreover, FA also improved vascular function and prevented vascular remodeling of mesenteric arteries. The effects of FA in HCHF-induced MS may be realized through suppression of oxidative stress by down-regulation of p47phox, increased nitric oxide (NO bioavailability with up-regulation of endothelial nitric oxide synthase (eNOS and suppression of tumor necrosis factor-α (TNF-α. Our results suggest that supplementation of FA may have health benefits by minimizing the cardiovascular complications of MS and alleviating its symptoms.

  1. Ferulic Acid Alleviates Changes in a Rat Model of Metabolic Syndrome Induced by High-Carbohydrate, High-Fat Diet.

    Science.gov (United States)

    Senaphan, Ketmanee; Kukongviriyapan, Upa; Sangartit, Weerapon; Pakdeechote, Poungrat; Pannangpetch, Patchareewan; Prachaney, Parichat; Greenwald, Stephen E; Kukongviriyapan, Veerapol

    2015-08-04

    Metabolic syndrome is a cluster of metabolic abnormalities characterized by obesity, insulin resistance, hypertension and dyslipidemia. Ferulic acid (FA) is the major phenolic compound found in rice oil and various fruits and vegetables. In this study, we examined the beneficial effects of FA in minimizing insulin resistance, vascular dysfunction and remodeling in a rat model of high-carbohydrate, high-fat diet-induced metabolic changes, which is regarded as an analogue of metabolic syndrome (MS) in man. Male Sprague-Dawley rats were fed a high carbohydrate, high fat (HCHF) diet and 15% fructose in drinking water for 16 weeks, where control rats were fed with standard chow diet and tap water. FA (30 or 60 mg/kg) was orally administered to the HCHF and control rats during the last six weeks of the study. We observed that FA significantly improved insulin sensitivity and lipid profiles, and reduced elevated blood pressure, compared to untreated controls (p < 0.05). Moreover, FA also improved vascular function and prevented vascular remodeling of mesenteric arteries. The effects of FA in HCHF-induced MS may be realized through suppression of oxidative stress by down-regulation of p47phox, increased nitric oxide (NO) bioavailability with up-regulation of endothelial nitric oxide synthase (eNOS) and suppression of tumor necrosis factor-α (TNF-α). Our results suggest that supplementation of FA may have health benefits by minimizing the cardiovascular complications of MS and alleviating its symptoms.

  2. Mice lacking pituitary tumor transforming gene show elevated exposure of DGalNAc carbohydrate determinants

    Directory of Open Access Journals (Sweden)

    Lutsyk A. D.

    2012-04-01

    Full Text Available Aim. To investigate the influence of pituitary tumor transforming gene (pttg-1 knockout on glycome of parenchimal organs by means of lectin histochemistry. Methods. DGalNAc, DGlcNAc, NeuNAc carbohydrate determinants were labelled with soybean agglutinin (SBA and wheat germ agglutinin (WGA, conjugated to peroxidase, with subsequent visualization of the lectin-binding sites with diaminobenzidine. The testes and kidneys of murine strain BL6/C57 with the pttg-1 gene knockout (PTTG-KO were compared to the wild type (PTTG-WT animals, both groups 1 month of age. Results. Knockout of the pttg-1 gene was accompanied by enhanced exposure of the DGalNAc sugar residues within the Golgi complex of secondary spermatocytes, in a brush border of renal tubules and on the lumenal surface of collecting ducts. Conclusions. This study suggests that knockout of the pttg-1 gene may lead to the changes in carbohydrate processing in mammalian organism.

  3. Effect of training in the fasted state on metabolic responses during exercise with carbohydrate intake

    DEFF Research Database (Denmark)

    De Bock, K; Derave, W; Eijnde, B O

    2008-01-01

    Skeletal muscle gene response to exercise depends on nutritional status during and after exercise, but it is unknown whether muscle adaptations to endurance training are affected by nutritional status during training sessions. Therefore, this study investigated the effect of an endurance training...... program (6 wk, 3 day/wk, 1-2 h, 75% of peak Vo(2)) in moderately active males. They trained in the fasted (F; n = 10) or carbohydrate-fed state (CHO; n = 10) while receiving a standardized diet [65 percent of total energy intake (En) from carbohydrates, 20%En fat, 15%En protein]. Before and after...... adaptations in peak Vo(2) whether carried out in the fasted or carbohydrate-fed state. Although there was a decrease in exercise-induced glycogen breakdown and an increase in proteins involved in fat handling after fasting training, fat oxidation during exercise with carbohydrate intake was not changed....

  4. The bacterial metabolism of carbohydrates used in tests of intestinal permeability

    OpenAIRE

    Qureishy, Gulzar A.

    1984-01-01

    Carbohydrates have been used for tests of intestinal function for many years and the impaired absorption of carbohydrates in the intestinal lumen is either due to the damaged intestinal absorptive surface, as in coeliac disease etc., in some types of acute gastroenteritis , when the absorptive area is reduced by villous atrophy , or due to the bacterial overgrowth in the small intestinal lumen as in blind loop syndrome , some types of malabsorption , which possibly produce alteration in the m...

  5. Impact of motor transport emissions on carbohydrate metabolism in leaves of ornamental flower plants

    Directory of Open Access Journals (Sweden)

    V. P. Bessonova

    2012-02-01

    Full Text Available Investigation of carbohydrate exchange in leaves of Salvia sрlendens and Tagetes patula under conditions of environmental pollution by gaseous emission and lead is described in the article. Species differences of glucose quantity under the influence of ingredients of vehicle emissions are presented. Changes in maintenance of non-structural forms of carbohydrates took place as a result of dependences of enzymes activity from pollutants.

  6. The Influence of Carbohydrate Status and Low Temperature on the Respiratory Metabolism of Mitochondria from Etiolated Leaves of Winter Wheat

    Directory of Open Access Journals (Sweden)

    Olga A. Borovik

    2014-12-01

    Full Text Available The separate and combined effect of sucrose (12%, 7 days and low temperature (2 °С, 7 days on the growth of plants, the content of carbohydrates in the leaves and oxidative activity of mitochondria isolated from them has been studied on the etiolated plants of winter wheat (Triticum aestivum L.. It has been shown that sucrose and low temperature cause inhibition of the growth and increasing of the carbohydrates content. Using the different oxidation substrates (malate, malate + rotenone, succinate, NADH and NADPH have been identified changes in the mitochondrial oxidative activity and the functioning of alternative oxidase and rotenone-insensitive NAD(PH dehydrogenases. It has been determined that activity of the alternative oxidase and “external” rotenone-insensitive NAD(PH dehydrogenases in the mitochondria of etiolated leaves depends on the carbohydrate status of the plant, regardless of the growth temperature.

  7. Protective effects of L-arabinose in high-carbohydrate, high-fat diet-induced metabolic syndrome in rats

    Directory of Open Access Journals (Sweden)

    Lei Hao

    2015-12-01

    Full Text Available Background: L-Arabinose is a non-caloric sugar, which could affect glucose and lipid metabolism and suppress obesity. However, few reports have described the effect of L-arabinose in metabolic syndrome, a combination of medical disorders that increase the risk of diabetes and cardiovascular disease. Objective: This study was conducted to explore the effects of L-arabinose in rats with metabolic syndrome induced by a high-carbohydrate, high-fat (HCHF diet. Methods: After the rat model for metabolic syndrome was successfully established, L-arabinose was administrated by oral gavage for 6 weeks. The biochemical index and histological analysis were measured, and the expression levels of genes related to fatty acid metabolism were analyzed using real-time PCR. Results: Following treatment with L-arabinose, metabolic syndrome rats had an obvious reduction in body weight, systolic blood pressure, diastolic blood pressure, fasting blood glucose, triglycerides, total cholesterol, serum insulin, TNF-α, and leptin. Further study showed that treatment with L-arabinose significantly increased the expression of mRNA for hepatic CPT-1α and PDK4, but the expression of mRNA for hepatic ACCα was reduced. Conclusions: This work suggests that L-arabinose could lower body weight, Lee's index, and visceral index and improve dyslipidemia, insulin resistance, inflammation, and viscera function, which indicate that it might be a promising candidate for therapies combating metabolic syndrome.

  8. Carbohydrate metabolism is essential for the colonization of Streptococcus thermophilus in the digestive tract of gnotobiotic rats.

    Directory of Open Access Journals (Sweden)

    Muriel Thomas

    Full Text Available Streptococcus thermophilus is the archetype of lactose-adapted bacterium and so far, its sugar metabolism has been mainly investigated in vitro. The objective of this work was to study the impact of lactose and lactose permease on S. thermophilus physiology in the gastrointestinal tract (GIT of gnotobiotic rats. We used rats mono-associated with LMD-9 strain and receiving 4.5% lactose. This model allowed the analysis of colonization curves of LMD-9, its metabolic profile, its production of lactate and its interaction with the colon epithelium. Lactose induced a rapid and high level of S. thermophilus in the GIT, where its activity led to 49 mM of intra-luminal L-lactate that was related to the induction of mono-carboxylic transporter mRNAs (SLC16A1 and SLC5A8 and p27(Kip1 cell cycle arrest protein in epithelial cells. In the presence of a continuous lactose supply, S. thermophilus recruited proteins involved in glycolysis and induced the metabolism of alternative sugars as sucrose, galactose, and glycogen. Moreover, inactivation of the lactose transporter, LacS, delayed S. thermophilus colonization. Our results show i/that lactose constitutes a limiting factor for colonization of S. thermophilus, ii/that activation of enzymes involved in carbohydrate metabolism constitutes the metabolic signature of S. thermophilus in the GIT, iii/that the production of lactate settles the dialogue with colon epithelium. We propose a metabolic model of management of carbohydrate resources by S. thermophilus in the GIT. Our results are in accord with the rationale that nutritional allegation via consumption of yogurt alleviates the symptoms of lactose intolerance.

  9. [Noradrenaline and glycogen content and the activity of several enzymes of carbohydrate metabolism in normal, embryonic, and partly denervated livers and in hepatomas of the rat].

    Science.gov (United States)

    Iljin, S V; Shanigina, K I; Sydow, G; Parfhenova, N S

    1977-01-01

    The noradrenaline and glycogen contents as well as hexokinase, glucokinase and glucose-6-phosphatase activities were determined in normal, embryonic and partially denervated (bilateral dissection of the Nervus splanchnicus or Nervus vagus) rat liver and in two transplantable hepatomas. In embryonic liver and hepatomas a strong decrease or complete loss of noradrenaline and glycogen levels and glucokinase and glucose-6-phosphatase activities is demonstrable as compared to the livers of adult animals, while the hexokinase activity is enhanced. Following bilateral splanchnicotomy the glycogen content and hexokinase activity are enhanced; the glucose-6-phosphatase activity is reduced, and the liver does not contain any noradrenaline. Bilateral vagotomy causes decrease of the glycogen content, of the hexokinase and glucokinase activities and an enhancement of glucose-6-phosphatase activity. The results lend support to the idea of antagonistic action of the sympathetic and parasympathetic nervous systems upon several partial reactions of carbohydrate metabolism of liver. In addition, it can be assumed that the alterations of the carbohydrate metabolism demonstrable in hepatomas as compared to normal liver are not solely attributable to disturbance or breakdown of the nervous regulation.

  10. Carbohydrate metabolism of Xylella fastidiosa: Detection of glycolytic and pentose phosphate pathway enzymes and cloning and expression of the enolase gene

    Directory of Open Access Journals (Sweden)

    Facincani Agda Paula

    2003-01-01

    Full Text Available The objective of this work was to assess the functionality of the glycolytic pathways in the bacterium Xylella fastidiosa. To this effect, the enzymes phosphoglucose isomerase, aldolase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase of the glycolytic pathway, and glucose 6-phosphate dehydrogenase of the Entner-Doudoroff pathway were studied, followed by cloning and expression studies of the enolase gene and determination of its activity. These studies showed that X. fastidiosa does not use the glycolytic pathway to metabolize carbohydrates, which explains the increased duplication time of this phytopatogen. Recombinant enolase was expressed as inclusion bodies and solubilized with urea (most efficient extractor, Triton X-100, and TCA. Enolase extracted from X. fastidiosa and from chicken muscle and liver is irreversibly inactivated by urea. The purification of enolase was partial and resulted in a low yield. No enzymatic activity was detected for either recombinant and native enolases, aldolase, and glyceraldehyde-3-phosphate dehydrogenase, suggesting that X. fastidiosa uses the Entner-Doudoroff pathway to produce pyruvate. Evidence is presented supporting the idea that the regulation of genes and the presence of isoforms with regulation patterns might make it difficult to understand the metabolism of carbohydrates in X. fastidiosa.

  11. Leaf Responses of Micropropagated Apple Plants to Water Stress: Changes in Endogenous Hormones and Their Influence on Carbohydrate Metabolism

    Institute of Scientific and Technical Information of China (English)

    LI Tian-hong; LI Shao-hua

    2007-01-01

    The changes in the concentrations of endogenous hormones and their influence on carbohydrate metabolism in leaves of micropropagated Fuji apple plants were studied under water deficiency stress. The results showed that water stress induced a rapid increase in the concentration of abscisic acid (ABA) and led to a decrease in concentrations of both zeatin and gibberellins (GAs). The concentration of indole-3-acetic acid (IAA) changed in an independent manner, which was not correlated with the different levels of water stress. With regard to the carbohydrates, the contents of sorbitol and sucrose increased, whereas the content of starch decreased. The increase in the concentration of ABA was significantly correlated with both the increase in the activity of aldose-6-phosphate reductase (A6PR) and the decrease in the activity of sorbitol dehydrogenase (SDH), indicating that ABA played a regulatory role in sorbitol metabolism. The concentration of ABA was positively correlated to the activity of sucrose-phosphate synthase (SPS) but negatively correlated to the activities of acid invertase (AI) and ADP-glucose-pyrophosphorylase (ADPGppase) in water-stressed plants, which indicated that ABA promoted sucrose synthesis and inhibited sucrose degradation and starch synthesis at the same time. Under conditions of water stress, the decrease in the level of zeatin was accompanied by a decrease in the activities of SDH and ADPGPPase. GAs concentration showed positive correlation with ADPGPPase activity. IAA showed no significant correlation with any of the enzymes tested in this study. The results of this study suggested that ABA might be one of the key factors regulating the distribution of carbohydrates under water stress. The metabolism of sorbitol and starch under conditions of water stress might be regulated by the combined action of many plant hormones.

  12. Effect of Low Dietary Zinc Intake and Experimental Diabetes on the Zinc and Carbohydrate Metabolism in Rats

    OpenAIRE

    Kechrid, Zine

    2014-01-01

    To investigate the effect of low dietary zinc intake and experimental diabetes (IDDM) on the zinc and carbohydrate metabolism, 8-week-old male wealing normal albino (Wistar) rats were fed diets containing either adequate (54mg/kg) or low zinc (1mg/kg) quantities for one week. Ten rats from each group (n=20) were then intraperitoneally injected with alloxan to induce diabetes. The rats were sacrificed after a further three weeks. Body weight gain and food intake were recorded regularly. On day...

  13. Randomized controlled study of the influence of two low estrogen dose oral contraceptives containing gestodene or desogestrel on carbohydrate metabolism.

    OpenAIRE

    Ludicke, Frank; Gaspard, Ulysse; Demeyer, Fabienne; Scheen, André; Lefebvre, Pierre

    2002-01-01

    This study compared the impact on carbohydrate metabolism of two combinedoral contraceptives (COCs). This open-label, single-center trial enrolled participants for a total of 15 cycles. Thirty-six women were randomized to receive either 20 microg ethinyl estradiol (EE) and 75 microg gestodene (GSD) or 20 microg ethinyl estradiol and 150 microg desogestrel (DSG) daily for 21 days out of 28. A glucose tolerance test was performed at baseline and cycles 6 and 13. The area under the curve (AUC) f...

  14. Metabolic engineering of monoclonal antibody carbohydrates for antibody-drug conjugation.

    Science.gov (United States)

    Okeley, Nicole M; Toki, Brian E; Zhang, Xinqun; Jeffrey, Scott C; Burke, Patrick J; Alley, Stephen C; Senter, Peter D

    2013-10-16

    The role that carbohydrates play in antibody function and pharmacokinetics has made them important targets for modification. The terminal fucose of the N-linked glycan structure, which has been shown to be involved in modulation of antibody-directed cellular cytotoxicity, is a particularly interesting location for potential modification through incorporation of alternative sugar structures. A library of fucose analogues was evaluated for their ability to incorporate into antibody carbohydrates in place of the native fucose. A number of efficiently incorporated molecules were identified, demonstrating the ability of fucosyltransferase VIII to utilize a variety of non-natural sugars as substrates. Among these structures was a thiolated analogue, 6-thiofucose, which was incorporated into the antibody carbohydrate with good efficiency. This unnatural thio-sugar could then be used for conjugation using maleimide chemistry to produce antibody-drug conjugates with pronounced cytotoxic activities and improved homogeneity compared to drug attachment through hinge disulfides.

  15. Effects of carbohydrate dose and frequency on metabolism, gastrointestinal discomfort, and cross-country skiing performance.

    Science.gov (United States)

    Stocks, B; Betts, J A; McGawley, K

    2016-09-01

    This study investigated carbohydrate ingestion of varied doses and frequencies during a simulated cross-country skiing time trial. Ten men and three women (age: 30 ± 7 years; V ˙ O 2 m a x : 59.6 ± 5.7 mL/kg/min) completed four, 30-km classic technique roller skiing time trials on a treadmill. A 1:1 maltodextrin-fructose carbohydrate solution was provided at high (2.4 g/min; HC) and moderate (1.2 g/min; MC) ingestion rates, each at high (six feeds; HF) and low (two feeds; LF) frequencies. In the LF trials, blood glucose was elevated following carbohydrate ingestion (at 4 and 19 km) but was reduced at 14 and 29 km compared with HF strategies (P ≤ 0.05). Gastrointestinal discomfort was higher in HC-LF compared with all other trials (P ≤ 0.05). Whole-body lipid oxidation was lower and carbohydrate oxidation was higher in LF compared with HF trials (P ≤ 0.05). While performance time was not significantly different between trials (140:11 ± 15:31, 140:43 ± 17:40, 139:12 ± 15:32 and 140:33 ± 17:46 min:s in HC-HF, HC-LF, MC-HF, and MC-LF, respectively; P > 0.05), it was improved with trial order (P  0.05). Altering carbohydrate dose or frequency does not affect cross-country ski performance. However, low-frequency carbohydrate ingestion resulted in poorer maintenance of euglycemia, reduced lipid oxidation, and increased gastrointestinal discomfort.

  16. Low and high dietary protein:carbohydrate ratios during pregnancy affect materno-fetal glucose metabolism in pigs.

    Science.gov (United States)

    Metges, Cornelia C; Görs, Solvig; Lang, Iris S; Hammon, Harald M; Brüssow, Klaus-Peter; Weitzel, Joachim M; Nürnberg, Gerd; Rehfeldt, Charlotte; Otten, Winfried

    2014-02-01

    Inadequate dietary protein during pregnancy causes intrauterine growth retardation. Whether this is related to altered maternal and fetal glucose metabolism was examined in pregnant sows comparing a high-protein:low-carbohydrate diet (HP-LC; 30% protein, 39% carbohydrates) with a moderately low-protein:high-carbohydrate diet (LP-HC; 6.5% protein, 68% carbohydrates) and the isoenergetic standard diet (ST; 12.1% protein, 60% carbohydrates). During late pregnancy, maternal and umbilical glucose metabolism and fetal hepatic mRNA expression of gluconeogenic enzymes were examined. During an i.v. glucose tolerance test (IVGTT), the LP-HC-fed sows had lower insulin concentrations and area under the curve (AUC), and higher glucose:insulin ratios than the ST- and the HP-LC-fed sows (P < 0.05). Insulin sensitivity and glucose clearance were higher in the LP-HC sows compared with ST sows (P < 0.05). Glucagon concentrations during postabsorptive conditions and IVGTT, and glucose AUC during IVGTT, were higher in the HP-LC group compared with the other groups (P < 0.001). (13)C glucose oxidation was lower in the HP-LC sows than in the ST and LP-HC sows (P < 0.05). The HP-LC fetuses were lighter and had a higher brain:liver ratio than the ST group (P < 0.05). The umbilical arterial inositol concentration was greater in the HP-LC group (P < 0.05) and overall small fetuses (230-572 g) had higher values than medium and heavy fetuses (≥573 g) (P < 0.05). Placental lactate release was lower in the LP-HC group than in the ST group (P < 0.05). Fetal glucose extraction tended to be lower in the LP-HC group than in the ST group (P = 0.07). In the HP-LC and LP-HC fetuses, hepatic mRNA expression of cytosolic phosphoenolpyruvate carboxykinase (PCK1) and glucose-6-phosphatase (G6PC) was higher than in the ST fetuses (P < 0.05). In conclusion, the HP-LC and LP-HC sows adapted by reducing glucose turnover and oxidation and having higher glucose utilization, respectively. The HP-LC and LP

  17. Leptin and Adiponectin Levels in Patients with Chronic Hepatitis C with Carbohydrate and Lipid Metabolism Disorders

    Directory of Open Access Journals (Sweden)

    T. V. Antonova

    2014-01-01

    Full Text Available Aim: to analyze leptin and adiponectin serum levels in patients with chronic hepatitis C in comparison with metabolic syndrome components, biochemical features and stage of hepatitis.Materials and methods: In 93 patients with chronic HCV in age 20-55 with a few symptomatic HCV-infection and minimal liver fibrosis stage serum leptin and adiponectin was measured. Associations between leptin, adiponectin and metabolic abnormalities, biochemical features, and hepatic fibrosis were determined.Results: Abdominal obesity was revealed at 40% patients, overweight – at 41%, insulin resistance – at 36,6% cases. The leptin and adiponectin levels were within normal limits range at most patients. Patients with minimal liver fibrosis had higher index of leptin by comparison to patients with moderate and severe fibrosis (r= – 0,402, р= 0,018. In patients with HCV genotype 3a the adiponectin level was below, than in HCV genotype 1b. Patients with abdominal obesity and overweight had higher leptin and lower adiponectin indexes by comparison to patients without these metabolic abnormalities. Direct cross-correlation between the leptin level and body mass index (r=0,358, p=0,001, waist circumference (r=0,292, p=0,01; negative cross-correlation between the adiponectin level and body mass index (r=- 0,435, р <0,021, waist circumference (r=- 0,386, р =0,001 were displayed.Conclusion: Leptin and adiponectin blood levels in HCVpatientis associated with abdominal obesity and overweight. The connection of leptin level and liver fibrosis stage was revealed. Difference of adiponectin level in HCV-patients with 3a and 1b genotypes of virus was found.

  18. Involvement of cross-reactive carbohydrate determinants-specific IgE in pollen allergy testing

    Science.gov (United States)

    Yoshitake, Hiroshi; Matsumoto, Yuma; Kawada, Michitsugu; Takato, Yoshiki; Shinagawa, Kiyomi; Sakurai, Hiroyuki; Saito, Koichiro

    2017-01-01

    Background Specific IgE antibodies against the low-molecular-weight carbohydrate antigen that does not bridge IgE molecules on mast cells are not associated with clinical symptoms. Cross reactivity can be determined in allergen-specific IgE detection assays when the carbohydrate structures between pollen allergens and plant derived food allergens are similar; in such cases, false positive results for grain or legume allergens can be reported for pollen allergic patients who are not sensitized to those allergens. This phenomenon arises owing to the presence of cross-reactive carbohydrate determinants (CCDs). Objective This study aimed to assess the impact of CCD interference on the results for pollen allergen-specific IgE antibodies in the general adult population and to perform CCD inhibition tests evaluating the involvement of CCD on samples positive to pollen allergens. Methods Serum samples from 322 subjects were tested for IgE antibodies to pollens and CCD. The research subjects were given questionnaires about pollen allergic symptoms to help assess the presence of allergies. Allergen IgE antibodies for Japanese cedar, Japanese cypress, orchard grass, ragweed, MUXF, bromelain, horseradish peroxidase (HRP), and ascorbate oxidase (ASOD) were analyzed. Results It was observed that among individuals who tested positive to any of the pollen allergens, the positive ratio of CCD-specific IgE antibody was the highest for HRP (13.5%–50.0%). The results from the inhibition tests revealed that CCD was marginally present. Although IgE antibodies for cedar pollen did not react with CCD, IgE antibodies for Japanese cypress, orchard grass, and ragweed might be detected by the presence of CCD. Conclusion The results of the inhibition tests revealed the obvious presence of CCD suggesting its involvement. Considering these findings, careful evaluation of patient IgE results should be performed for Japanese cypress, orchard grass, and ragweed. PMID:28154803

  19. Proteomics Profiling Reveals Carbohydrate Metabolic Enzymes and 14-3-3 Proteins Play Important Roles for Starch Accumulation during Cassava Root Tuberization.

    Science.gov (United States)

    Wang, Xuchu; Chang, Lili; Tong, Zheng; Wang, Dongyang; Yin, Qi; Wang, Dan; Jin, Xiang; Yang, Qian; Wang, Liming; Sun, Yong; Huang, Qixing; Guo, Anping; Peng, Ming

    2016-01-01

    Cassava is one of the most important root crops as a reliable source of food and carbohydrates. Carbohydrate metabolism and starch accumulation in cassava storage root is a cascade process that includes large amounts of proteins and cofactors. Here, comparative proteomics were conducted in cassava root at nine developmental stages. A total of 154 identified proteins were found to be differentially expressed during starch accumulation and root tuberization. Many enzymes involved in starch and sucrose metabolism were significantly up-regulated, and functional classification of the differentially expressed proteins demonstrated that the majority were binding-related enzymes. Many proteins were took part in carbohydrate metabolism to produce energy. Among them, three 14-3-3 isoforms were induced to be clearly phosphorylated during storage root enlargement. Overexpression of a cassava 14-3-3 gene in Arabidopsis thaliana confirmed that the older leaves of these transgenic plants contained higher sugar and starch contents than the wild-type leaves. The 14-3-3 proteins and their binding enzymes may play important roles in carbohydrate metabolism and starch accumulation during cassava root tuberization. These results not only deepened our understanding of the tuberous root proteome, but also uncovered new insights into carbohydrate metabolism and starch accumulation during cassava root enlargement.

  20. Adaptive changes in amino acid metabolism permit normal longevity in mice consuming a low-carbohydrate ketogenic diet.

    Science.gov (United States)

    Douris, Nicholas; Melman, Tamar; Pecherer, Jordan M; Pissios, Pavlos; Flier, Jeffrey S; Cantley, Lewis C; Locasale, Jason W; Maratos-Flier, Eleftheria

    2015-10-01

    Ingestion of very low-carbohydrate ketogenic diets (KD) is associated with weight loss, lowering of glucose and insulin levels and improved systemic insulin sensitivity. However, the beneficial effects of long-term feeding have been the subject of debate. We therefore studied the effects of lifelong consumption of this diet in mice. Complete metabolic analyses were performed after 8 and 80weeks on the diet. In addition we performed a serum metabolomic analysis and examined hepatic gene expression. Lifelong consumption of KD had no effect on morbidity or mortality (KD vs. Chow, 676 vs. 630days) despite hepatic steatosis and inflammation in KD mice. The KD fed mice lost weight initially as previously reported (Kennnedy et al., 2007) and remained lighter and had less fat mass; KD consuming mice had higher levels of energy expenditure, improved glucose homeostasis and higher circulating levels of β-hydroxybutyrate and triglycerides than chow-fed controls. Hepatic expression of the critical metabolic regulators including fibroblast growth factor 21 were also higher in KD-fed mice while expression levels of lipogenic enzymes such as stearoyl-CoA desaturase-1 was reduced. Metabolomic analysis revealed compensatory changes in amino acid metabolism, primarily involving down-regulation of catabolic processes, demonstrating that mice eating KD can shift amino acid metabolism to conserve amino acid levels. Long-term KD feeding caused profound and persistent metabolic changes, the majority of which are seen as health promoting, and had no adverse effects on survival in mice.

  1. Euglena in time: Evolution, control of central metabolic processes and multi-domain proteins in carbohydrate and natural product biochemistry

    Directory of Open Access Journals (Sweden)

    Ellis C. O’Neill

    2015-12-01

    Full Text Available Euglena gracilis is a eukaryotic microalgae that has been the subject of scientific study for hundreds of years. It has a complex evolutionary history, with traces of at least four endosymbiotic genomes and extensive horizontal gene transfer. Given the importance of Euglena in terms of evolutionary cell biology and its unique taxonomic position, we initiated a de novo transcriptome sequencing project in order to understand this intriguing organism. By analysing the proteins encoded in this transcriptome, we can identify an extremely complex metabolic capacity, rivalling that of multicellular organisms. Many genes have been acquired from what are now very distantly related species. Herein we consider the biology of Euglena in different time frames, from evolution through control of cell biology to metabolic processes associated with carbohydrate and natural products biochemistry.

  2. . Effect of the venous outflow ways from pancreatic transplant on carbohydrate metabolism after autotransplantation of pancreas in the experiment

    Directory of Open Access Journals (Sweden)

    Voskanyan S.E..

    2013-12-01

    Full Text Available The aims: to compare the state of carbohydrate metabolism in animals after pancreatectomy with autotransplantation of the pancreatic segment and with organization of the venous outflow in the inferior vena or portal vein. Material and methods. Proximal resection of the pancreas (group 1, pancreatectomy with autologous transplantation of the pancreas and with reconstruction of the venous outflow from the transplant into the inferior vena cava (group 2 and pancreatectomy with autologous transplantation of the pancreas and with reconstruction of the venous outflow from the transplant into the portal vein (group 3 were performed in 45 animals in the experiment. Examining the status of carbohydrate metabolism was performed by intravenous test for glucose tolerance. Results. Primary higher increase in glucose concentrations as compared to the values obtained at the intact animals and its slower decrease have been observed in animals after pancreatectomy with autotransplantation of the segment of the pancreas on iliac vessels (group 2, as well as on the mesenteric vessels (group 3. Higher blood glucose compared to animals subjected proximal pancreatectomy after 40 minutes after administration of glucose was detected in animals undergoing autotransplantation of the pancreas on iliac vessels (group 2 and in animals after autotransplantation of the pancreas on mesenteric vessels (group 3— 11.82 (11,39-12,26 mmol/l and 10.65 (10,03-11,32 mmol/l, respectively. The glucose concentration in the blood plasma was lower in the animals of groups 2 and 3 below in comparison with the animals in group 1 to 120 minutes of the experiment. Significant differences in plasma glucose concentration between animals of groups 2 and 3 were not found. Conclusion. Significant effects of the ways of organization of the venous outflow from pancreatic transplant on the concentration of the glucose in the blood plasma by the carbohydrate load after pancreatectomy with

  3. Hydrogen peroxide functions as a secondary messenger for brassinosteroids-induced CO2 assimilation and carbohydrate metabolism in Cucumis sativus.

    Science.gov (United States)

    Jiang, Yu-ping; Cheng, Fei; Zhou, Yan-hong; Xia, Xiao-jian; Mao, Wei-hua; Shi, Kai; Chen, Zhi-xiang; Yu, Jing-quan

    2012-10-01

    Brassinosteroids (BRs) are potent regulators of photosynthesis and crop yield in agricultural crops; however, the mechanism by which BRs increase photosynthesis is not fully understood. Here, we show that foliar application of 24-epibrassinolide (EBR) resulted in increases in CO(2) assimilation, hydrogen peroxide (H(2)O(2)) accumulation, and leaf area in cucumber. H(2)O(2) treatment induced increases in CO(2) assimilation whilst inhibition of the H(2)O(2) accumulation by its generation inhibitor or scavenger completely abolished EBR-induced CO(2) assimilation. Increases of light harvesting due to larger leaf areas in EBR- and H(2)O(2)-treated plants were accompanied by increases in the photochemical efficiency of photosystem II (Φ(PSII)) and photochemical quenching coefficient (q(P)). EBR and H(2)O(2) both activated carboxylation efficiency of ribulose-1,5-bisphosphate oxygenase/carboxylase (Rubisco) from analysis of CO(2) response curve and in vitro measurement of Rubisco activities. Moreover, EBR and H(2)O(2) increased contents of total soluble sugar, sucrose, hexose, and starch, followed by enhanced activities of sugar metabolism such as sucrose phosphate synthase, sucrose synthase, and invertase. Interestingly, expression of transcripts of enzymes involved in starch and sugar utilization were inhibited by EBR and H(2)O(2). However, the effects of EBR on carbohydrate metabolisms were reversed by the H(2)O(2) generation inhibitor diphenyleneodonium (DPI) or scavenger dimethylthiourea (DMTU) pretreatment. All of these results indicate that H(2)O(2) functions as a secondary messenger for EBR-induced CO(2) assimilation and carbohydrate metabolism in cucumber plants. Our study confirms that H(2)O(2) mediates the regulation of photosynthesis by BRs and suggests that EBR and H(2)O(2) regulate Calvin cycle and sugar metabolism via redox signaling and thus increase the photosynthetic potential and yield of crops.

  4. Hydrogen peroxide functions as a secondary messenger for brassinosteroids-induced CO2 assimilation and carbohydrate metabolism in Cucumis sativus

    Institute of Scientific and Technical Information of China (English)

    Yu-ping JIANG; Fei CHENG; Yan-hong ZHOU; Xiao-jian XIA; Wei-hua MAO; Kai SHI; Zhi-xiang CHEN; Jing-quan YU

    2012-01-01

    Brassinosteroids (BRs) are potent regulators of photosynthesis and crop yield in agricultural crops;however,the mechanism by which BRs increase photosynthesis is not fully understood.Here,we show that foliar application of 24-epibrassinolide (EBR) resulted in increases in CO2 assimilation,hydrogen peroxide (H2O2) accumulation,and leaf area in cucumber.H2O2 treatment induced increases in CO2 assimilation whilst inhibition of the H2O2 accumulation by its generation inhibitor or scavenger completely abolished EBR-induced CO2 assimilation.Increases of light harvesting due to larger leaf areas in EBR- and H2O2-treated plants were accompanied by increases in the photochemical efficiency of photosystem Ⅱ (ΦPSⅡ) and photochemical quenching coefficient (qp).EBR and H2O2 both activated carboxylation efficiency of ribulose-1,5-bisphosphate oxygenase/carboxylase (Rubisco) from analysis of CO2 response curve and in vitro measurement of Rubisco activities.Moreover,EBR and H2O2 increased contents of total soluble sugar,sucrose,hexose,and starch,followed by enhanced activities of sugar metabolism such as sucrose phosphate synthase,sucrose synthase,and invertase.Interestingly,expression of transcripts of enzymes involved in starch and sugar utilization were inhibited by EBR and H2O2.However,the effects of EBR on carbohydrate metabolisms were reversed by the H2O2 generation inhibitor diphenyleneodonium (DPI) or scavenger dimethylthiourea (DMTU) pretreatment.All of these results indicate that H2O2 functions as a secondary messenger for EBR-induced CO2 assimilation and carbohydrate metabolism in cucumber plants.Our study confirms that H2O2 mediates the regulation of photosynthesis by BRs and suggests that EBR and H2O2 regulate Calvin cycle and sugar metabolism via redox signaling and thus increase the photosynthetic potential and yield of crops.

  5. Altered carbohydrate, lipid, and xenobiotic metabolism by liver from rats flown on Cosmos 1887

    Science.gov (United States)

    Merrill, A. H. Jr; Hoel, M.; Wang, E.; Mullins, R. E.; Hargrove, J. L.; Jones, D. P.; Popova, I. A.; Merrill AH, J. r. (Principal Investigator)

    1990-01-01

    To determine the possible biochemical effects of prolonged weightlessness on liver function, samples of liver from rats that had flown aboard Cosmos 1887 were analyzed for protein, glycogen, and lipids as well as the activities of a number of key enzymes involved in metabolism of these compounds and xenobiotics. Among the parameters measured, the major differences were elevations in the glycogen content and hydroxymethylglutaryl-CoA (HMG-CoA) reductase activities for the rats flown on Cosmos 1887 and decreases in the amount of microsomal cytochrome P-450 and the activities of aniline hydroxylase and ethylmorphine N-demethylase, cytochrome P-450-dependent enzymes. These results support the earlier finding of differences in these parameters and suggest that altered hepatic function could be important during spaceflight and/or the postflight recovery period.

  6. Investigation of Carbohydrate Metabolism and Transport in Castor Bean Seedlings by Cyclic JCross Polarization Imaging and Spectroscopy

    Science.gov (United States)

    Heidenreich, M.; Köckenberger, W.; Kimmich, R.; Chandrakumar, N.; Bowtell, R.

    1998-05-01

    NMR experiments using13C-labeled compounds offer the possibility of noninvasive monitoring of carbohydrate transport and metabolism in living plants, but are usually hampered by the low sensitivity of the13C nucleus. The problem of low sensitivity can be overcome by using the cyclicJcross polarization (CYCLCROP) technique, which allows the indirect detection of13C nuclei coupled to1H nuclei with the high NMR sensitivity of protons. We report here on methods for imaging and spectroscopy based on the CYCLCROP technique, and their use in the firstin vivoNMR study of carbohydrate transport and metabolism in castor bean seedlings (Ricinus communis L.). Comprehensive acquisition strategies for the various NMR methods are given, including the procedure for setting up the experiments. In addition, a full analysis of the effect of relaxation on the signals generated from smallJ-coupled spin systems by the CYCLCROP sequence is given, and the high sensitivity of the sequence is demonstrated. In thein vivostudy of six-day-old castor bean seedlings, we were able to measure the uptake of labeled hexoses, supplied in solution to the cotyledons, and their conversion to sucrose, as well as the transport of this sucrose in the vascular bundles. Images of the actual distribution of labeled sucrose in the hypocotyl of the seedling have also been obtained. The resulting data show some evidence for a preferential incorporation of labeled fructose in the process of sucrose synthesis, which decreases with the time of incubation.

  7. Fat and carbohydrate metabolism during exercise in phosphoglucomutase type 1 deficiency

    DEFF Research Database (Denmark)

    Preisler, Nicolai; Laforêt, Pascal; Echaniz-Laguna, Andoni;

    2013-01-01

    Phosphoglucomutase type 1 (PGM1) deficiency is a rare metabolic myopathy in which symptoms are provoked by exercise.......Phosphoglucomutase type 1 (PGM1) deficiency is a rare metabolic myopathy in which symptoms are provoked by exercise....

  8. The effects of handling and anesthetic agents on the stress response and carbohydrate metabolism in northern elephant seals.

    Directory of Open Access Journals (Sweden)

    Cory D Champagne

    Full Text Available Free-ranging animals often cope with fluctuating environmental conditions such as weather, food availability, predation risk, the requirements of breeding, and the influence of anthropogenic factors. Consequently, researchers are increasingly measuring stress markers, especially glucocorticoids, to understand stress, disturbance, and population health. Studying free-ranging animals, however, comes with numerous difficulties posed by environmental conditions and the particular characteristics of study species. Performing measurements under either physical restraint or chemical sedation may affect the physiological variable under investigation and lead to values that may not reflect the standard functional state of the animal. This study measured the stress response resulting from different handling conditions in northern elephant seals and any ensuing influences on carbohydrate metabolism. Endogenous glucose production (EGP was measured using [6-(3H]glucose and plasma cortisol concentration was measured from blood samples drawn during three-hour measurement intervals. These measurements were conducted in weanlings and yearlings with and without the use of chemical sedatives--under chemical sedation, physical restraint, or unrestrained. We compared these findings with measurements in adult seals sedated in the field. The method of handling had a significant influence on the stress response and carbohydrate metabolism. Physically restrained weanlings and yearlings transported to the lab had increased concentrations of circulating cortisol (F(11, 46 = 25.2, p<0.01 and epinephrine (F(3, 12 = 5.8, p = 0.01. Physical restraint led to increased EGP (t = 3.1, p = 0.04 and elevated plasma glucose levels (t = 8.2, p<0.01. Animals chemically sedated in the field typically did not exhibit a cortisol stress response. The combination of anesthetic agents (Telazol, ketamine, and diazepam used in this study appeared to alleviate a

  9. Carbohydrate metabolism during prolonged exercise and recovery: interactions between pyruvate dehydrogenase, fatty acids, and amino acids

    DEFF Research Database (Denmark)

    Mourtzakis, Marina; Saltin, B.; Graham, T.;

    2006-01-01

    During prolonged exercise, carbohydrate oxidation may result from decreased pyruvate production and increased fatty acid supply and ultimately lead to reduced pyruvate dehydrogenase (PDH) activity. Pyruvate also interacts with the amino acids alanine, glutamine, and glutamate, whereby the decline...... in pyruvate production could affect tricarboxycylic acid cycle flux as well as gluconeogenesis. To enhance our understanding of these interactions, we studied the time course of changes in substrate utilization in six men who cycled at 44 ± 1% peak oxygen consumption (mean ± SE) until exhaustion (exhaustion...... peaked at 2 h of exercise, whereas pyruvate production peaked at 1 h of exercise and was reduced ( 30%) thereafter, suggesting that pyruvate availability primarily accounted for reduced carbohydrate oxidation. Increased free fatty acid uptake (P

  10. Hormonal imbalance and disturbances in carbohydrate metabolism associated with chronic feeding of high sucrose low magnesium diet in weanling male wistar rats.

    Science.gov (United States)

    Garg, Meenakshi; Mehra, Pranav; Bansal, Devi Dayal

    2014-04-01

    This study was designed to determine chronic effect of high sucrose low magnesium (HSLM) diet in weanling rats on plasma thyroid profile, catecholamines and activities of key hepatic glycolytic, and gluconeogenic enzymes. Compared to control diet fed group, significantly elevated levels of plasma triiodothyronine, tetraiodothyronine, catecholamines (epinephrine, norepinephrine, and dopamine) and activity of hepatic glycolytic (hexokinase and glucokinase), and gluconeogenic (glucose-6-phosphatase) enzymes were observed in high sucrose and low magnesium fed groups. However, HSLM diet had an additive effect on all these three parameters. The study thus, assumes significance as it shows that hormonal imbalance and disorders in carbohydrate metabolism at an early stage of development can be due to dietary modification or due to deficiency of key element magnesium.

  11. Simultaneous determination of amino acids and carbohydrates in culture media of Clostridium thermocellum by valve-switching ion chromatography.

    Science.gov (United States)

    Fa, Yun; Yang, Haiyan; Ji, Chengshuai; Cui, He; Zhu, Xinshu; Du, Juan; Gao, Jun

    2013-10-10

    An improved method for the simultaneous determination of 20 amino acids and 7 carbohydrates using one-valve switching after injection, ion chromatography, and integrated pulsed amperometric detection is proposed. The resolution of the amino acids and carbohydrates in the cation trap column was investigated. In addition, parameters including flow liquid type, flow rate, concentration, and valve-switch timing were optimized. The method is time-saving, effective, and accurate for the simultaneous separation of amino acids and carbohydrates, with a mean correlation coefficient of >0.99 and repeatability of 0.5-4.6% for eight replicates. The method was successfully applied in the analysis of amino acids and carbohydrates in aseptic media and in extracellular culture media of three phenotypes of Clostridium thermocellum.

  12. The effects of carbohydrate variation in isocaloric diets on glycogenolysis and gluconeogenesis in healthy men

    NARCIS (Netherlands)

    Bisschop, PH; Arias, AMP; Ackermans, MT; Endert, E; Pijl, H; Kuipers, F; Meijer, AJ; Sauerwein, HP; Romijn, JA

    2000-01-01

    To evaluate the effect of dietary carbohydrate content on postabsorptive glucose metabolism, we quantified gluconeogenesis and glycogenolysis after 11 days of high carbohydrate (85% carbohydrate), control (44% carbohydrate), and very low carbohydrate (2% carbohydrate) diets in six healthy men. Diets

  13. Effects of grafting with pumpkin rootstock on carbohydrate metabolism in cucumber seedlings under Ca(NO3)2 stress.

    Science.gov (United States)

    Xing, Wen-wen; Li, Lin; Gao, Pan; Li, He; Shao, Qiao-sai; Shu, Sheng; Sun, Jin; Guo, Shi-rong

    2015-02-01

    This study investigated the effects of grafting on the carbohydrate status and the enzymes of carbohydrate metabolism in self-grafted and grafted cucumber seedlings using the salt-tolerant pumpkin rootstock 'Qingzhen 1' (Cucurbita maxima × Cucurbita moschata) under 80 mM Ca(NO3)2 stress for 6 d. The growth of self-grafted seedlings was significantly inhibited after the treatment of Ca(NO3)2 stress, whereas the inhibition of growth was alleviated in pumpkin rootstock-grafted seedlings. Ca(NO3)2 stress increased the contents of the total soluble sugar, sucrose and fructose, but decreased the starch content in rootstock-grafted leaves. However, compared with self-grafted plants, rootstock-grafted seedlings were observed with a higher content of sucrose and total soluble sugar (TSS) under salt stress. Rootstock-grafted seedlings exhibited higher activities of acid invertase (AI), neutral invertase (NI) and phosphate sucrose synthase (SPS) of sucrose metabolism in leaves than that of self-grafted seedlings under salinity. Moreover, the activities of fructokinase (FK), hexokinase (HK), phosphofructokinase (PFK) and pyruvate kinase (PK) of glycolysis were maintained at a higher level in leaves of rootstock-grafted seedlings after Ca(NO3)2 stress. Additionally, rootstock-grafting decrease the high percentage enhancement of key enzymes gene expression in glycolysis in the scion leaves of cucumber seedlings induced by salt stress. These results suggest that the rootstock-grafting improved salt tolerance, which might play a role in elevated sucrose metabolism and a glycolytic pathway regulated by the pumpkin rootstock.

  14. Metabolic engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system

    Directory of Open Access Journals (Sweden)

    Bolívar Francisco

    2010-04-01

    Full Text Available Abstract Background Shikimic acid (SA is utilized in the synthesis of oseltamivir-phosphate, an anti-influenza drug. In this work, metabolic engineering approaches were employed to produce SA in Escherichia coli strains derived from an evolved strain (PB12 lacking the phosphoenolpyruvate:carbohydrate phosphotransferase system (PTS- but with capacity to grow on glucose. Derivatives of PB12 strain were constructed to determine the effects of inactivating aroK, aroL, pykF or pykA and the expression of plasmid-coded genes aroGfbr, tktA, aroB and aroE, on SA synthesis. Results Batch cultures were performed to evaluate the effects of genetic modifications on growth, glucose consumption, and aromatic intermediate production. All derivatives showed a two-phase growth behavior with initial high specific growth rate (μ and specific glucose consumption rate (qs, but low level production of aromatic intermediates. During the second growth phase the μ decreased, whereas aromatic intermediate production reached its maximum. The double aroK- aroL- mutant expressing plasmid-coded genes (strain PB12.SA22 accumulated SA up to 7 g/L with a yield of SA on glucose of 0.29 mol/mol and a total aromatic compound yield (TACY of 0.38 mol/mol. Single inactivation of pykF or pykA was performed in PB12.SA22 strain. Inactivation of pykF caused a decrease in μ, qs, SA production, and yield; whereas TACY increased by 33% (0.5 mol/mol. Conclusions The effect of increased availability of carbon metabolites, their channeling into the synthesis of aromatic intermediates, and disruption of the SA pathway on SA production was studied. Inactivation of both aroK and aroL, and transformation with plasmid-coded genes resulted in the accumulation of SA up to 7 g/L with a yield on glucose of 0.29 mol/mol PB12.SA22, which represents the highest reported yield. The pykF and pykA genes were inactivated in strain PB12.SA22 to increase the production of aromatic compounds in the PTS

  15. Role of ghrelin and leptin in the regulation of carbohydrate metabolism. Part II. Leptin 

    Directory of Open Access Journals (Sweden)

    Ewa Otto-Buczkowska

    2012-10-01

    Full Text Available Leptin is produced by mature adipocytes. Its amount correlates positively with the mass of the adipose tissue. Leptin plays a crucial role in maintaining body weight and glucose homeostasis. It is transported through the blood-brain barrier to the central nervous system, where it activates the autonomic nervous system, causing the feeling of satiety and inhibiting appetite. It also acts through central and peripheral pathways, including the regulation of insulin secretion by pancreatic  cells. Leptin may also directly affect the metabolism and function of peripheral tissues. It has been found to play a role in peripheral insulin resistance by attenuating insulin action, and perhaps also insulin signaling, in various insulin-responsive cell types.Recent data provide convincing evidence that leptin has a beneficial influence on glucose homeostasis. Studies suggest that leptin could be used as an adjunct of insulin therapy in insulin-deficient diabetes, thereby providing an insight into the therapeutic implications of leptin as an anti-diabetic agent. Extensive research will be needed to determine long-term safety and efficacy of such a therapy. 

  16. 水生龟鳖类糖代谢的研究进展%Research Advances in Carbohydrate Metabolism in Aquatic Turtles

    Institute of Scientific and Technical Information of China (English)

    刘海燕; 杨振才

    2013-01-01

    水生龟鳖类是一种以摄食动物性蛋白质饲料为主的爬行动物,对糖的利用能力不高.本文综述了水生龟鳖类对糖的利用能力、糖代谢模式及调控机制的研究现状,并结合哺乳动物和鱼类的糖代谢机制比较其中的联系与区别,提出水生龟鳖类糖代谢研究中存在的问题及今后的研究方向.%Aquatic turtles are a kind of reptile mainly ingesting the animal protein feed, and they have a low a-bility in utilization of carbohydrate. This review summarizes the recent advances about utilization ability of carbohydrate , carbohydrate metabolism model and regulation mechanism for aquatic turtles, and compares the relation and difference of mammals and fish with turtles in the carbohydrate metabolism mechanism in order to put forward the questions and directions of the carbohydrate metabolism study in aquatic turtles.

  17. On-capillary sample cleanup method for the electrophoretic determination of carbohydrates in juice samples.

    Science.gov (United States)

    Morales-Cid, Gabriel; Simonet, Bartolomé M; Cárdenas, Soledad; Valcárcel, Miguel

    2007-05-01

    On many occasions, sample treatment is a critical step in electrophoretic analysis. As an alternative to batch procedures, in this work, a new strategy is presented with a view to develop an on-capillary sample cleanup method. This strategy is based on the partial filling of the capillary with carboxylated single-walled carbon nanotube (c-SWNT). The nanoparticles retain interferences from the matrix allowing the determination and quantification of carbohydrates (viz glucose, maltose and fructose). The precision of the method for the analysis of real samples ranged from 5.3 to 6.4%. The proposed method was compared with a method based on a batch filtration of the juice sample through diatomaceous earth and further electrophoretic determination. This method was also validated in this work. The RSD for this other method ranged from 5.1 to 6%. The results obtained by both methods were statistically comparable demonstrating the accuracy of the proposed methods and their effectiveness. Electrophoretic separation of carbohydrates was achieved using 200 mM borate solution as a buffer at pH 9.5 and applying 15 kV. During separation, the capillary temperature was kept constant at 40 degrees C. For the on-capillary cleanup method, a solution containing 50 mg/L of c-SWNTs prepared in 300 mM borate solution at pH 9.5 was introduced for 60 s into the capillary just before sample introduction. For the electrophoretic analysis of samples cleaned in batch with diatomaceous earth, it is also recommended to introduce into the capillary, just before the sample, a 300 mM borate solution as it enhances the sensitivity and electrophoretic resolution.

  18. Review: Use of residual dipolar couplings to determine the structure of carbohydrates.

    Science.gov (United States)

    Canales, A; Jiménez-Barbero, J; Martín-Pastor, M

    2012-12-01

    Solution nuclear magnetic resonance spectroscopy is especially useful in the carbohydrate field. The measurement of residual dipolar couplings provides long-range structural information, a valuable complement for the structural study of carbohydrates either in its free form or in the bound state to proteins. They permit to deduce the geometry and the flexibility of the glycosidic linkages, which have a major influence on the conformation of carbohydrates and their overall shape. This article reviews the current application of the residual dipolar couplings methodology to carbohydrates.

  19. Effects of clomazone herbicide on hematological and some parameters of protein and carbohydrate metabolism of silver catfish Rhamdia quelen.

    Science.gov (United States)

    Crestani, Márcia; Menezes, Charlene; Glusczak, Lissandra; Dos Santos Miron, Denise; Lazzari, Rafael; Duarte, Marta F; Morsch, Vera Maria; Pippi, Amy Lee; Vieira, Vânia Pimentel

    2006-09-01

    The effects of clomazone (0.5 and 1.0 mg/L) according to nominal concentrations used in paddy rice fields (0.4-0.7 mg/L) on protein and carbohydrate metabolism and haematological parameters were evaluated in silver catfish (Rhamdia quelen) after 12, 24, 48, 96 and 192 h of exposure with a recovery period of 96 and 192 h. Liver glycogen increased significantly (Pclomazone concentrations (Pclomazone exposure (22-67%), but reduced in the liver (PClomazone concentrations used in this study appear safe to fish, Rhamdia quelen, because overall parameters can be recovered after 96 and 192 h in clean water. ALT and AST activity may be an early biomarker of clomazone toxicity.

  20. Winter warming delays dormancy release, advances budburst, alters carbohydrate metabolism and reduces yield in a temperate shrub

    DEFF Research Database (Denmark)

    Pagter, Majken; Andersen, Uffe Brandt; Andersen, Lillie

    2015-01-01

    winter warming modifies phenological traits in a woody perennial known to have a large chilling requirement and to be sensitive to spring frost. Warming delayed dormancy release more in the cultivar ‘Narve Viking’ than in the cultivar ‘Titania’, but advanced budburst and flowering predominantly...... in ‘Titania’. Since ‘Narve Viking’ has a higher chilling requirement than ‘Titania’, this indicates that, in high-chillingrequiring genotypes, dormancy responses may temper the effect of warming on spring phenology. Winter Warming significantly reduced fruit yield the following summer in both cultivars...... at elevated temperature showed decreased levels of sucrose in stems of both cultivars and flower buds of ‘Narve Viking’, which, in buds, was associated with increased concentrations of glucose and fructose. Hence, winter warming influences carbohydrate metabolism, but it remains to be elucidated whether...

  1. Consequences of exchanging carbohydrates for proteins in the cholesterol metabolism of mice fed a high-fat diet.

    Directory of Open Access Journals (Sweden)

    Frédéric Raymond

    Full Text Available Consumption of low-carbohydrate, high-protein, high-fat diets lead to rapid weight loss but the cardioprotective effects of these diets have been questioned. We examined the impact of high-protein and high-fat diets on cholesterol metabolism by comparing the plasma cholesterol and the expression of cholesterol biosynthesis genes in the liver of mice fed a high-fat (HF diet that has a high (H or a low (L protein-to-carbohydrate (P/C ratio. H-P/C-HF feeding, compared with L-P/C-HF feeding, decreased plasma total cholesterol and increased HDL cholesterol concentrations at 4-wk. Interestingly, the expression of genes involved in hepatic steroid biosynthesis responded to an increased dietary P/C ratio by first down-regulation (2-d followed by later up-regulation at 4-wk, and the temporal gene expression patterns were connected to the putative activity of SREBF1 and 2. In contrast, Cyp7a1, the gene responsible for the conversion of cholesterol to bile acids, was consistently up-regulated in the H-P/C-HF liver regardless of feeding duration. Over expression of Cyp7a1 after 2-d and 4-wk H-P/C-HF feeding was connected to two unique sets of transcription regulators. At both time points, up-regulation of the Cyp7a1 gene could be explained by enhanced activations and reduced suppressions of multiple transcription regulators. In conclusion, we demonstrated that the hypocholesterolemic effect of H-P/C-HF feeding coincided with orchestrated changes of gene expressions in lipid metabolic pathways in the liver of mice. Based on these results, we hypothesize that the cholesterol lowering effect of high-protein feeding is associated with enhanced bile acid production but clinical validation is warranted. (246 words.

  2. Gallic acid ameliorates hyperglycemia and improves hepatic carbohydrate metabolism in rats fed a high-fructose diet.

    Science.gov (United States)

    Huang, Da-Wei; Chang, Wen-Chang; Wu, James Swi-Bea; Shih, Rui-Wen; Shen, Szu-Chuan

    2016-02-01

    Herein, we investigated the hypoglycemic effect of plant gallic acid (GA) on glucose uptake in an insulin-resistant cell culture model and on hepatic carbohydrate metabolism in rats with a high-fructose diet (HFD)-induced diabetes. Our hypothesis is that GA ameliorates hyperglycemia via alleviating hepatic insulin resistance by suppressing hepatic inflammation and improves abnormal hepatic carbohydrate metabolism by suppressing hepatic gluconeogenesis and enhancing the hepatic glycogenesis and glycolysis pathways in HFD-induced diabetic rats. Gallic acid increased glucose uptake activity by 19.2% at a concentration of 6.25 μg/mL in insulin-resistant FL83B mouse hepatocytes. In HFD-induced diabetic rats, GA significantly alleviated hyperglycemia, reduced the values of the area under the curve for glucose in an oral glucose tolerance test, and reduced the scores of the homeostasis model assessment of insulin resistance index. The levels of serum C-peptide and fructosamine and cardiovascular risk index scores were also significantly decreased in HFD rats treated with GA. Moreover, GA up-regulated the expression of hepatic insulin signal transduction-related proteins, including insulin receptor, insulin receptor substrate 1, phosphatidylinositol-3 kinase, Akt/protein kinase B, and glucose transporter 2, in HFD rats. Gallic acid also down-regulated the expression of hepatic gluconeogenesis-related proteins, such as fructose-1,6-bisphosphatase, and up-regulated expression of hepatic glycogen synthase and glycolysis-related proteins, including hexokinase, phosphofructokinase, and aldolase, in HFD rats. Our findings indicate that GA has potential as a health food ingredient to prevent diabetes mellitus.

  3. Polymorphism of CD36 gene, carbohydrate metabolism and plasma CD36 concentration in obese children. A preliminary study 

    Directory of Open Access Journals (Sweden)

    Monika E. Rać

    2012-11-01

    Full Text Available Introduction:CD36 may play an important role in removal of oxidized LDLs from plasma, protein glycation, the pathogenesis of insulin resistance, type 2 diabetes, and diabetic micro- and macroangiopathy. Some reports have pointed to decreased expression of macrophages in association with mutations of the CD36 gene in hyperglycemic and obese subjects. The aim of the study was to search for an association between CD36 gene polymorphism and carbohydrate metabolism disturbances or variability of plasma soluble CD36 concentrations in obese children.Material/Methods:The study included 60 children aged 10 to 15 years: 30 with (study group and 30 without (control group obesity. Each patient’s glycated hemoglobin, weight, height, waist and hip circumference, and systolic and diastolic blood pressure were measured, BMI, WHR and MAP were calculated, and oral glucose tolerance test was performed with glucose and insulin concentration measurements. Amplicons of exons 4–6 of CD36 were studied using DHPLC technique. The PCR products with alterations were bidirectionally sequenced. Plasma concentrations of human antigen CD36 was measured using a commercially available enzyme-linked immunosorbent assay (ELISA.Results:We found two intronic alterations: IVS3-6 T/C (rs3173798 and IVS4-10 G/A (rs3211892, one nonsynonymous substitution: G367A (Glu123Lys, rs183461468 in exon 5 and two synonymous transitions in exon 6: G573A (Pro191Pro, rs5956 and A591T (Thr197Thr, rs141680676. There were no significant differences in any biochemical or morphometric parameters between genotype groups.Discussion:The polymorphisms of the studied fragment of CD36 are not associated with carbohydrate metabolism disturbances or the variability of plasma soluble CD36 concentrations in obese children, but further research is necessary to assess their functional implications. 

  4. Effect of aging on brain respiration and carbohydrate metabolism of Syrian hamsters.

    Science.gov (United States)

    Fox, J H; Parmacek, M S; Patel-Mandlik, K

    1975-01-01

    Syrian hamsters were used to study the effect of aging on brain slice respiration and metabolism. Young animals (average age 8 months) and old animals (average age 18 months) were incubated under standard conditions with the following parameters being measured: oxygen uptake, 14CO2 production, glucose utilization, lactate and pyruvate formation. No differences were found in the two groups. It is still very likely that subtle differences exist but can only be documented under conditions of metabolic stress.

  5. [Effect of vibration, noise, physical exertion and unfavorable microclimate on carbohydrate metabolism in workers engaged into mining industry and machine building].

    Science.gov (United States)

    Lapko, I V; Kir'iakov, V A; Antoshina, L I; Pavlovskaia, N A; Kondratovich, S V

    2014-01-01

    The authors studied influence of vibration, noise, physical overexertion and microclimate on carbohydrates metabolism and insulin resistance in metal mining industry workers. Findings are that vibration disease appeared to have maximal effect on insulin resistance test results and insulin level. The authors suggested biomarkers for early diagnosis of insulin resistance disorders in metal mining industry workers.

  6. Additional Heparin Preadministration Improves Cardiac Glucose Metabolism Suppression over Low-Carbohydrate Diet Alone in ¹⁸F-FDG PET Imaging

    NARCIS (Netherlands)

    Scholtens, Asbjørn M; Verberne, Hein J; Budde, Ricardo P J; Lam, Marnix G E H

    2016-01-01

    Adequate suppression of cardiac glucose metabolism increases the interpretability and diagnostic reliability of (18)F-FDG PET studies performed to detect cardiac inflammation and infection. There are no standardized guidelines, though prolonged fasting (>6 h), carbohydrate-restricted diets, fatty me

  7. Glucagon-Like Peptide 2 Stimulates Postresection Intestinal Adaptation in Preterm Pigs by Affecting Proteins Related to Protein, Carbohydrate, and Sulphur Metabolism

    DEFF Research Database (Denmark)

    Jiang, Pingping; Vegge, Andreas; Thymann, Thomas

    2016-01-01

    cellular structural proteins, while the added GLP-2 treatment affected proteins involved in protein processing and the metabolism of protein, carbohydrate, and sulphur. CONCLUSION: In the first days following resection, proteins affected by resection plus GLP-2 treatment differed markedly from those...

  8. Low-carbohydrate/high-protein diet improves diastolic cardiac function and the metabolic syndrome in overweight-obese patients with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    H. von Bibra

    2014-03-01

    Conclusions: These data indicate, that a low-glycaemic/high-protein but not a low-fat/high-carbohydrate nutrition modulates diastolic dysfunction in overweight T2D patients, improves insulin resistance and may prevent or delay the onset of diabetic cardiomyopathy and the metabolic syndrome.

  9. Influence of Waterlogging on Carbohydrate Metabolism in Ragi and Rice Roots

    Directory of Open Access Journals (Sweden)

    Kulkarni, S. S.

    2013-04-01

    Full Text Available Effect of different durations of waterlogging (4, 8 and 12 days stress on carbohydrate status and activities of some related enzymes in ragi and rice roots was studied. In both ragi and rice roots there was decrease in starch and total sugar content in response to waterlogging conditions. Activity of α amylase was decrease in ragi roots while opposite trend was noticed in case of rice roots. The activity of pyruvate kinase was markedly increased due to 4, 8 and 12 days waterlogging in ragi roots while such increase was noticed in rice roots due to 12 days stress. Treatment of waterlogging caused enhancement in the activity of alkaline inorganic pyrophosphatase in the roots of both ragi and rice.

  10. Identification and quantitative determination of carbohydrates in ethanolic extracts of two conifers using 13C NMR spectroscopy.

    Science.gov (United States)

    Duquesnoy, Emilie; Castola, Vincent; Casanova, Joseph

    2008-04-07

    We developed a method for the direct identification and quantification of carbohydrates in raw vegetable extracts using (13)C NMR spectroscopy without any preliminary step of precipitation or reduction of the components. This method has been validated (accuracy, precision and response linearity) using pure compounds and artificial mixtures before being applied to authentic ethanolic extracts of pine needles, pine wood and pine cones and fir twigs. We determined that carbohydrates represented from 15% to 35% of the crude extracts in which pinitol was the principal constituent accompanied by arabinitol, mannitol, glucose and fructose.

  11. Effects of step-wise increases in dietary carbohydrate on circulating saturated Fatty acids and palmitoleic Acid in adults with metabolic syndrome.

    Science.gov (United States)

    Volk, Brittanie M; Kunces, Laura J; Freidenreich, Daniel J; Kupchak, Brian R; Saenz, Catherine; Artistizabal, Juan C; Fernandez, Maria Luz; Bruno, Richard S; Maresh, Carl M; Kraemer, William J; Phinney, Stephen D; Volek, Jeff S

    2014-01-01

    Recent meta-analyses have found no association between heart disease and dietary saturated fat; however, higher proportions of plasma saturated fatty acids (SFA) predict greater risk for developing type-2 diabetes and heart disease. These observations suggest a disconnect between dietary saturated fat and plasma SFA, but few controlled feeding studies have specifically examined how varying saturated fat intake across a broad range affects circulating SFA levels. Sixteen adults with metabolic syndrome (age 44.9±9.9 yr, BMI 37.9±6.3 kg/m2) were fed six 3-wk diets that progressively increased carbohydrate (from 47 to 346 g/day) with concomitant decreases in total and saturated fat. Despite a distinct increase in saturated fat intake from baseline to the low-carbohydrate diet (46 to 84 g/day), and then a gradual decrease in saturated fat to 32 g/day at the highest carbohydrate phase, there were no significant changes in the proportion of total SFA in any plasma lipid fractions. Whereas plasma saturated fat remained relatively stable, the proportion of palmitoleic acid in plasma triglyceride and cholesteryl ester was significantly and uniformly reduced as carbohydrate intake decreased, and then gradually increased as dietary carbohydrate was re-introduced. The results show that dietary and plasma saturated fat are not related, and that increasing dietary carbohydrate across a range of intakes promotes incremental increases in plasma palmitoleic acid, a biomarker consistently associated with adverse health outcomes.

  12. Adipose tissue transcriptional response of lipid metabolism genes in growing Iberian pigs fed oleic acid v. carbohydrate enriched diets.

    Science.gov (United States)

    Benítez, R; Núñez, Y; Fernández, A; Isabel, B; Rodríguez, C; Daza, A; López-Bote, C; Silió, L; Óvilo, C

    2016-06-01

    Diet influences animal body and tissue composition due to direct deposition and to the nutrients effects on metabolism. The influence of specific nutrients on the molecular regulation of lipogenesis is not well characterized and is known to be influenced by many factors including timing and physiological status. A trial was performed to study the effects of different dietary energy sources on lipogenic genes transcription in ham adipose tissue of Iberian pigs, at different growth periods and on feeding/fasting situations. A total of 27 Iberian male pigs of 28 kg BW were allocated to two separate groups and fed with different isocaloric feeding regimens: standard diet with carbohydrates as energy source (CH) or diet enriched with high oleic sunflower oil (HO). Ham subcutaneous adipose tissue was sampled by biopsy at growing (44 kg mean BW) and finishing (100 kg mean BW) periods. The first sampling was performed on fasted animals, while the last sampling was performed twice, with animals fasted overnight and 3 h after refeeding. Effects of diet, growth period and feeding/fasting status on gene expression were explored quantifying the expression of a panel of key genes implicated in lipogenesis and lipid metabolism processes. Quantitative PCR revealed several differentially expressed genes according to diet, with similar results at both timings: RXRG, LEP and FABP5 genes were upregulated in HO group while ME1, FASN, ACACA and ELOVL6 were upregulated in CH. The diet effect on ME1 gene expression was conditional on feeding/fasting status, with the higher ME1 gene expression in CH than HO groups, observed only in fasting samples. Results are compatible with a higher de novo endogenous synthesis of fatty acids (FA) in the carbohydrate-supplemented group and a higher FA transport in the oleic acid-supplemented group. Growth period significantly affected the expression of most of the studied genes, with all but PPARG showing higher expression in finishing pigs according to

  13. Teaching Arrangements of Carbohydrate Metabolism in Biochemistry Curriculum in Peking University Health Science Center

    Science.gov (United States)

    Chen, Hao; Ni, Ju-Hua

    2013-01-01

    Biochemistry occupies a unique place in the medical school curricula, but the teaching of biochemistry presents certain challenges. One of these challenges is facilitating students' interest in and mastery of metabolism. The many pathways and modes of regulation can be overwhelming for students to learn and difficult for professors to teach…

  14. Effects of heat stress on carbohydrate and lipid metabolism in growing pigs

    Science.gov (United States)

    Heat stress (HS) jeopardizes human and animal health and reduces animal agriculture productivity; however, its pathophysiology is not well understood. Study objectives were to evaluate the effects of HS on basal and stimulated energetic metabolism. Crossbred female pigs (57±5 kg body weight) were ...

  15. The Metabolic Effects of Low-Carbohydrate Diets and Incorporation into a Biochemistry Course

    Science.gov (United States)

    Pogozelski, Wendy; Arpaia, Nicholas; Priore, Salvatore

    2005-01-01

    One of the challenges in teaching biochemistry is facilitating students' interest in and mastery of metabolism. The many pathways and modes of regulation can be overwhelming for students to learn and difficult for professors to teach in an engaging manner. We have found it useful to take advantage of prevailing interest in popular yet…

  16. Teaching Arrangements of Carbohydrate Metabolism in Biochemistry Curriculum in Peking University Health Science Center

    Science.gov (United States)

    Chen, Hao; Ni, Ju-Hua

    2013-01-01

    Biochemistry occupies a unique place in the medical school curricula, but the teaching of biochemistry presents certain challenges. One of these challenges is facilitating students' interest in and mastery of metabolism. The many pathways and modes of regulation can be overwhelming for students to learn and difficult for professors to teach in an…

  17. Does gibberellin biosynthesis play a critical role in the growth of Lolium perenne? Evidence from a transcriptional analysis of gibberellin and carbohydrate metabolic genes after defoliation.

    Directory of Open Access Journals (Sweden)

    Qianhe eLiu

    2015-11-01

    Full Text Available Global meat and milk production depends to a large extent on grazed pastures, with Lolium perenne being the major forage grass in temperate regions. Defoliation and subsequent regrowth of leaf blades is a major and essential event with respect to L. perenne growth and productivity. Following defoliation, carbohydrates (mainly fructans and sucrose have to be mobilised from heterotrophic tissues to provide energy and carbon for regrowth of photosynthetic tissues. This mobilisation of reserve carbohydrates requires a substantial change in the expression of genes coding for enzymes involved in carbohydrate metabolism. Here we tested the hypothesis that gibberellins (GA are at the core of the processes regulating the expression of these genes. Thus, we examined the transcript profiles of genes involved in carbohydrate and GA metabolic pathways across a time course regrowth experiment. Our results show that following defoliation, the immediate reduction of carbohydrate concentrations in growing tissues is associated with a concomitant increase in the expression of genes encoding carbohydrate mobilising invertases, and was also associated with a strong decrease in the expression of fructan synthesising fructosyltransferase genes. We also show that the decrease in fructan levels is preceded by increased expression of the GA activating gene GA3-oxidase and decreased expression of the GA inactivating gene GA2-oxidase in sheaths. GA3-oxidase expression was negatively, while GA2-oxidase positively linked to sucrose concentrations. This study provides indicative evidence that gibberellins might play a role in L. perenne regrowth following defoliation and we hypothesise that there is a link between gibberellin regulation and sugar metabolism in L. perenne.

  18. Protective effects of vescalagin from pink wax apple [Syzygium samarangense (Blume) Merrill and Perry] fruit against methylglyoxal-induced inflammation and carbohydrate metabolic disorder in rats.

    Science.gov (United States)

    Chang, Wen-Chang; Shen, Szu-Chuan; Wu, James Swi-Bea

    2013-07-24

    The unbalance of glucose metabolism in humans may cause the excessive formation of methylglyoxal (MG), which can react with various biomolecules to form the precursor of advanced glycation end products (AGEs). Vescalagin (VES) is an ellagitannin that alleviates insulin resistance in cell study. Results showed that VES reduced the value of oral glucose tolerance test, cardiovascular risk index, AGEs, and tumor necrosis factor-α contents while increasing C-peptide and d-lactate contents significantly in rats orally administered MG and VES together. The preventive effect of VES on MG-induced inflammation and carbohydrate metabolic disorder in rats was thus proved. On the basis of the experiment data, a mechanism, which involves the increase in d-lactate to retard AGE formation and the decrease in cytokine release to prevent β-cell damage, is proposed to explain the bioactivities of VES in antiglycation and in the alleviation of MG-induced carbohydrate metabolic disorder in rats.

  19. [Influence of vasoactive substances on blood sugar and serum insulin in normal and diabetic carbohydrate metabolism (author's transl)].

    Science.gov (United States)

    Heidrich, H; Schirop, T; Fichte, K

    1977-01-21

    The effect of the following vasoactive substances, which are used in the treatment of peripheral arterial occlusive diseases, was investigated in a randomized study in 36 patients with normal and 52 patients with diabetic carbohydrate metabolism by intravenous infusion on the behaviour of blood sugar and serum insulin (IMI) during simultaneous oral glucose tolerance tests (100 g oligosaccharides). The substances used and the doses given were as follows: protein-free calf-blood extract (Actihaemyl, 0,5 ml per kg body weight), bencyclane (Fludilat, 200 mg), naftidrofuryl (Dusodril, 200 mg, pentoxifyllin (Trenal, 200 mg). The results obtained with the simultaneous treatment and oral glucose tolerance test were compared with a second OGTT carried out at an interval of 3-4 days under the same conditions but without administration of the substances (in a cross-over procedure) and the results of these experiments were compared with those obtained from an untreated control group. In subjects with a diabetic metabolic state, Actihaemyl led to a significant reduction of the blood sugar after oral glucose load (p less than 0,05) without producing any change in serum insulin. The same behaviour was exhibited by Fludilat for the total area integral and by Trental for the first 60 min after the oral glucose load. The change in the blood sugar behaviour was only significantly different from the untreated controls with Actihaemyl (p less than 0,05). In subjects with a normal metabolic state neither blood sugar nor serum insulin (IMI) were altered by any of the substances investigated.

  20. Transcript profiling of Paoenia ostii during artificial chilling induced dormancy release identifies activation of GA pathway and carbohydrate metabolism.

    Directory of Open Access Journals (Sweden)

    Shupeng Gai

    Full Text Available Endo-dormant flower buds must pass through a period of chilling to reinitiate growth and subsequent flowering, which is a major obstacle to the forcing culture of tree peony in winter. Customized cDNA microarray (8×15 K element was used to investigate gene expression profiling in tree peony 'Feng Dan Bai' buds during 24 d chilling treatment at 0-4°C. According to the morphological changes after the whole plants were transferred to green house, endo-dormancy was released after 18 d chilling treatment, and prolonged chilling treatment increased bud break rate. Pearson correlation hierarchical clustering of sample groups was highly consistent with the dormancy transitions revealed by morphological changes. Totally 3,174 significantly differentially-expressed genes (P<0.05 were observed through endo-dormancy release process, of which the number of up-regulated (1,611 and that of down-regulated (1,563 was almost the same. Functional annotation of differentially-expressed genes revealed that cellular process, metabolic process, response to stimulus, regulation of biological process and development process were well-represented. Hierarchical clustering indicated that activation of genes involved in carbohydrate metabolism (Glycolysis, Citrate cycle and Pentose phosphate pathway, energy metabolism and cell growth. Based on the results of GO analysis, totally 51 probes presented in the microarray were associated with GA response and GA signaling pathway, and 22 of them were differently expressed. The expression profiles also revealed that the genes of GA biosynthesis, signaling and response involved in endo-dormancy release. We hypothesized that activation of GA pathway played a central role in the regulation of dormancy release in tree peony.

  1. Regulation of Genes Controlling Carbohydrate Metabolism in the Heart of a Hibernating Mammal

    Science.gov (United States)

    2006-05-31

    concludes in mid-March. PTL is expressed in addition to hormone-sensitive lipase, the enzyme typically responsible for hydrolysis of triacylglycerols...same enzyme found in humans. 4 Figure 1. Model showing the metabolic involvement of pyruvate dehydrogenase kinase isozyme 4 (PDK- 4) and pancreatic...Gluconeogenesis TG HEART glucose ffa TG glycerol ffa acetyl-CoA TCA Cycle Oxidationβ- net 2 ATP Triglyceride Synthesis G-3-P ATP + CO2 + H2O PDK-4 PTL lactate

  2. Role of ghrelin and leptin in the regulation of carbohydrate metabolism. Part I. Ghrelin 

    Directory of Open Access Journals (Sweden)

    Ewa Otto-Buczkowska

    2012-10-01

    Full Text Available Ghrelin is a polypeptide that is excreted by the secretory cells of the gastric and intestinal mucosa, the arcuate nucleus of the hypothalamus as well as by the epsilon cells (ε located in the pancreatic islets. It plays an important role in maintaining the energy balance of the organism and influences the endocrine function of the pancreas and glucose metabolism. It takes part in the regulation of glucose homeostasis through the modulation of insulin secretion and insulin sensitivity.Due to the broad spectrum of ghrelin’s biological effects, ways to modify them are presently being investigated. Much attention is focused on the enzyme called ghrelin O-acyl transferase (GOAT, which mediates the physiological functions of ghrelin. Acyl-ghrelin and des-acyl-ghrelin appear to have opposite glucoregulatory effects. The regulation of acylation by GOAT seems therefore to play a role in mediating glucose metabolism. The modulation of GOAT or ghrelin signaling may be a clinically relevant strategy to treat obesity and metabolic diseases such as type 2 diabetes. 

  3. Metabolic and carbohydrate characteristics of different phenotypes of polycystic ovary syndrome

    Science.gov (United States)

    Çelik, Ebru; Türkçüoğlu, Ilgın; Ata, Barış; Karaer, Abdullah; Kırıcı, Pınar; Eraslan, Sevil; Taşkapan, Çağatay; Berker, Bülent

    2016-01-01

    Objective To compare the prevalence of various metabolic and cardiovascular risk factors and insulin resistance between polycystic ovary syndrome (PCOS) patients with or without hyperandrogenism. Material and Methods This is a retrospective cross-sectional study involving women with PCOS as diagnosed according to the Androgen Excess (AE) Society definition (n=504) and women with normoandrogenemic PCOS (n=183). Anthropometrics, lipid profile, glucose, insulin, oral glucose tolerance test (OGTT), and reproductive hormone levels were evaluated. Results Women with PCOS diagnosed according to the AE Society had a significantly higher prevalence of metabolic syndrome compared with the normoandrogenemic PCOS phenotype: odds ratio (OR) 2.95 [95% confidence interval (CI) 1.21–7.21]. There was no significant difference in the prevalence glucose intolerance test between the groups [OR: 2.15, 95% CI 0.71–6.56]. The prevalence of low high density lipoprotein (HDL)-cholesterol in the group under the AE-PCOS Society criteria was higher than that of the normoandrogenemic PCOS group [OR: 2.82, 95%CI 1.29–3.36]. Conclusion The risks of metabolic syndrome and cardiovascular disease may vary among the phenotypes of PCOS based on the Rotterdam criteria. This new data may be of reference in informing women with PCOS, although further prospective studies are needed to validate this proposition. PMID:27990089

  4. Determination of Total Carbohydrates in Algal Biomass: Laboratory Analytical Procedure (LAP)

    Energy Technology Data Exchange (ETDEWEB)

    Van Wychen, S.; Laurens, L. M. L.

    2013-12-01

    This procedure uses two-step sulfuric acid hydrolysis to hydrolyze the polymeric forms of carbohydrates in algal biomass into monomeric subunits. The monomers are then quantified by either HPLC or a suitable spectrophotometric method.

  5. Influence of glycorazmulin on the parameters of carbohydrate metabolism in alloxane diabetes

    Directory of Open Access Journals (Sweden)

    Ziyoda Fayzieva

    2010-09-01

    Full Text Available There was studied effect of glycorazmulin on the morphological structure of the liver and pancreatic gland under the conditions of alloxane diabetes. The study found that that glycorazmulin eliminates pathomorphological changes that occur in alloxane diabetes in the liver and pancreatic gland, and stimulates reparative processes in these organs. The effect of this preparation is mainly directed to stimulation of the regeneration of β-cells. The elimination of histostructural changes resulted in compensation of the damaged metabolic processes in diabetes mellitus. Besides, marked increase in C-peptide in the blood is the confirmation of the insulin secretion stimulation under the effect of this preparation.

  6. Identification of cross-reactive carbohydrate determinants in subjects reporting work-related respiratory symptoms

    Directory of Open Access Journals (Sweden)

    Marta Wiszniewska

    2015-02-01

    Full Text Available Introduction The role of cross-reactive carbohydrate determinants (CCDs in diagnostics of occupational allergy remains unclarified and its clinical relevance is still questioned. The aim of the study was to assess the frequency of positive response to CCDs in the subjects with suspected occupational allergy and the relationship between other diagnostic test results and final diagnosis. Material and methods The study group included 201 patients. They underwent clinical examination, skin prick test (SPT to common and occupational allergens, specific serum immunoglobulin (sIgE determinations, spirometry and specific inhalation challenge test. Moreover, sIgE to CCDs from bromelain was assessed in all subjects. Results Occupational respiratory allergy was recognized in 64.3% of CCD-positive and 52.4% of CCD-negative patients. Positive SPT results to common and occupational allergens were found in 64.3% and 35.7% of CCD-positive subjects, respectively. In all subjects with CCDs, the sIgE to grass pollens as well as to occupational allergens were detected. The total IgE level > 100 kU/l was significantly associated with the presence of sIgE to CCDs. Conclusions sIgE to CCDs were found in 7% of subjects suspected to suffer from occupational respiratory allergy. The presence of CCDs is not significantly associated with occupational respiratory allergy. It is also not more frequent in subjects reporting work-related respiratory symptoms in whom occupational allergy was not confirmed. The elevated total IgE level was related with CCD positivity. In patients with suspected occupational allergy, the presence of sIgE to CCDs in serum did not indicate the irrelevance of positive sIgE to occupational allergens.

  7. NIRS determination of non-structural carbohydrates, water soluble carbohydrates and other nutritive quality traits in whole plant maize with wide range variability

    Directory of Open Access Journals (Sweden)

    L. Campo

    2013-05-01

    Full Text Available The aim of this work was to study the potential of near-infrared reflectance spectroscopy (NIRS to predict non-structural carbohydrates (NSC, water soluble carbohydrates (WSC, in vitro organic dry matter digestibility (IVOMD, organic matter (OM, crude protein (CP, neutral detergent fiber (NDF, acid detergent fiber (ADF and starch in samples of whole plant maize with a wide range of variability. The samples were analyzed in reflectance mode by a spectrophotometer FOSS NIRSystems 6500. Four hundred and fifty samples of wide spectrum from different origin were selected out of 3000 scanned for the calibration set, whereas 87 independent random samples were used in the external validation. The goodness of the calibration models was evaluated using the following statistics: coefficient of determination (R2, standard error of cross-validation (SECV, standard error of prediction for external validation (SEP and the RPDCV and RPDP indexes [ratios of standard deviation (SD of reference analysis data to SECV and SEP, respectively]. The smaller the SECV and SEP and the greater the RPDCV and RPDP, the predictions are better. Trait measurement units were g/100g of dry matter (DM, except for IVOMD (g/100g OM. The SECV and RPDCV statistics of the calibration set were 1.34 and 3.2 for WSC, 2.57 and 3 for NSC and 2.3 and 2.2 for IVOMD, respectively. The SEP and RPDP statistics for external validation were 0.74 and 4.7 for WSC, 2.14 and 2.5 for NSC and 1.68 and 1.6 for IVOMD respectively. It can be concluded that the NIRS technique can be used to predict WSC and NSC with good accuracy, whereas prediction of IVOMD showed a lesser accuracy. NIRS predictions of OM, CP, NDF, ADF and starch also showed good accuracy.

  8. Effect of low carbohydrate high protein (LCHP) diet on lipid metabolism, liver and kidney function in rats.

    Science.gov (United States)

    Kostogrys, Renata B; Franczyk-Żarów, Magdalena; Maślak, Edyta; Topolska, Kinga

    2015-03-01

    The objective of this study was to compare effects of Western diet (WD) with low carbohydrate high protein (LCHP) diet on lipid metabolism, liver and kidney function in rats. Eighteen rats were randomly assigned to three experimental groups and fed for the next 2 months. The experimental diets were: Control (7% of soybean oil, 20% protein), WD (21% of butter, 20% protein), and LCHP (21% of butter and 52.4% protein) diet. The LCHP diet significantly decreased the body weight of the rats. Diet consumption was differentiated among groups, however significant changes were observed since third week of the experiment duration. Rats fed LCHP diet ate significantly less (25.2g/animal/day) than those from Control (30.2g/animal/day) and WD (27.8 g/animal/day) groups. Additionally, food efficiency ratio (FER) tended to decrease in LCHP fed rats. Serum homocysteine concentration significantly decreased in rats fed WD and LCHP diets. Liver weights were significantly higher in rats fed WD and LCHP diets. At the end of the experiment (2 months) the triacylglycerol (TAG) was significantly decreased in animals fed LCHP compared to WD. qRT-PCR showed that SCD-1 and FAS were decreased in LCHP fed rats, but WD diet increased expression of lipid metabolism genes. Rats receiving LCHP diet had two fold higher kidney weight and 54.5% higher creatinin level compared to Control and WD diets. In conclusion, LCHP diet decreased animal's body weight and decreased TAG in rat's serum. However, kidney damage in LCHP rats was observed.

  9. Effects of recombinant human growth hormone on hepatic lipid and carbohydrate metabolism in HIV-infected patients with fat accumulation.

    Science.gov (United States)

    Schwarz, Jean-Marc; Mulligan, Kathleen; Lee, Jeongae; Lo, Joan C; Wen, Michael; Noor, Mustafa A; Grunfeld, Carl; Schambelan, Morris

    2002-02-01

    We recently reported that treatment with a pharmacologic dose of recombinant human growth hormone (GH) resulted in a significant loss of body fat and gain in lean tissue in HIV-infected patients with syndromes of fat accumulation. However, insulin-mediated glucose disposal decreased transiently after one month of GH therapy. The present paper focuses on the changes of hepatic carbohydrate and fat metabolism associated with GH treatment in the same subjects. We assessed hepatic insulin sensitivity under both fasting and hyperinsulinemic-euglycemic clamp conditions prior to and after one and six months of GH treatment (3 mg/day) in five patients using stable isotope tracer techniques. Indirect calorimetry, and measurements of lipid concentrations. Fasting endogenous glucose production (EGP) increased significantly at one month (12.0 +/- 0.7 to 14.9 +/- 0.9 micromol/kg/min, P glucogenesis (GNG) (3.5 +/- 0.9 to 5.2 +/- 0.9 and 5.8 +/-1.2 micromol/kg/min, n = 4, P < 0.01 and P < 0.01 at one and six months, respectively); small changes in hepatic glycogenolysis also contributed. Sustained increases in lipolysis and progressive decreases in hepatic fractional de novo lipogenesis (DNL) and triglyceride concentrations occurred with GH treatment. These changes were accompanied by an improved lipid profile with a significant increase in HDL cholesterol and significant decreases in total and LDL cholesterol and triglyceride levels, the latter consistent with the decrease in hepatic DNL. During a hyperinsulinemic-euglycemic glucose clamp, EGP and GNG were markedly suppressed compared to the corresponding time points under fasting conditions, albeit less so when measured after one month of GH treatment. Thus, in HIV-infected patients with abnormal fat distribution, pharmacologic doses of GH improved the overall lipid profile, but worsened glucose homeostasis under both fasting and hyperinsulinemic conditions. The combined implications of these positive and negative metabolic

  10. Comparative Genomics Revealed Genetic Diversity and Species/Strain-Level Differences in Carbohydrate Metabolism of Three Probiotic Bifidobacterial Species

    Directory of Open Access Journals (Sweden)

    Toshitaka Odamaki

    2015-01-01

    Full Text Available Strains of Bifidobacterium longum, Bifidobacterium breve, and Bifidobacterium animalis are widely used as probiotics in the food industry. Although numerous studies have revealed the properties and functionality of these strains, it is uncertain whether these characteristics are species common or strain specific. To address this issue, we performed a comparative genomic analysis of 49 strains belonging to these three bifidobacterial species to describe their genetic diversity and to evaluate species-level differences. There were 166 common clusters between strains of B. breve and B. longum, whereas there were nine common clusters between strains of B. animalis and B. longum and four common clusters between strains of B. animalis and B. breve. Further analysis focused on carbohydrate metabolism revealed the existence of certain strain-dependent genes, such as those encoding enzymes for host glycan utilisation or certain membrane transporters, and many genes commonly distributed at the species level, as was previously reported in studies with limited strains. As B. longum and B. breve are human-residential bifidobacteria (HRB, whereas B. animalis is a non-HRB species, several of the differences in these species’ gene distributions might be the result of their adaptations to the nutrient environment. This information may aid both in selecting probiotic candidates and in understanding their potential function as probiotics.

  11. Tyrosol, a phenolic compound, ameliorates hyperglycemia by regulating key enzymes of carbohydrate metabolism in streptozotocin induced diabetic rats.

    Science.gov (United States)

    Chandramohan, Ramasamy; Pari, Leelavinothan; Rathinam, Ayyasamy; Sheikh, Bashir Ahmad

    2015-03-05

    The present study was designed to evaluate the effects of tyrosol, a phenolic compound, on the activities of key enzymes of carbohydrate metabolism in the control and streptozotocin-induced diabetic rats. Diabetes mellitus was induced in rats by a single intraperitoneal injection of streptozotocin (40 mg/kg body weight). Experimental rats were administered tyrosol 1 ml intra gastrically at the doses of 5, 10 and 20mg/kg body weight and glibenclamide 1 ml at a dose of 600 μg/kg body weight once a day for 45 days. At the end of the experimental period, diabetic control rats exhibited significant (ptyrosol to diabetic rats reversed all the above mentioned biochemical parameters to near normal in a dose dependent manner. Tyrosol at a dose of 20mg/kg body weight showed the highest significant effect than the other two doses. Immunohistochemical staining of pancreas revealed that tyrosol treated diabetic rats showed increased insulin immunoreactive β-cells, which confirmed the biochemical findings. The observed results were compared with glibenclamide, a standard oral hypoglycemic drug. The results of the present study suggest that tyrosol decreases hyperglycemia, by its antioxidant effect.

  12. DETERMINATION OF CRYSTALLINITY INDEX OF CARBOHYDRATE COMPONENTS IN HEMP (CANNABIS SATIVA L. WOODY CORE BY MEANS OF FT-IR SPECTROSCOPY

    Directory of Open Access Journals (Sweden)

    Esat Gümüşkaya

    2005-04-01

    Full Text Available In this study; it was investigated chemical compositions of hemp woody core and changes in crystallinity index of its carbohydrate components by using FT-IR spectroscopy was investigated. It was determined that carbohyrate components ratio in hemp woody core were similar to that in hard wood, but lignin content in hemp woody core was higher than in hard wood. Crystallinity index of carbohydrate components in hemp woody core increased by removing amorphous components. It was designated that monoclinic structure in hemp woody core and its carbohydrate components was dominant, but triclinic ratio increased by treated chemical isolation of carbohydrate from hemp woody core.

  13. INFLUENCE OF NEUROTIC AND AFFECTIVE DISORDERS ON FORMATION OF PREDICTORS OF ISCHEMIC HEART DISEASE AND DISORDERS OF CARBOHYDRATE AND LIPID METABOLISM

    Directory of Open Access Journals (Sweden)

    N. P. Garganeyeva

    2015-01-01

    Full Text Available The results of analysis of cardiovascular and psychosocial risk factors which influence the development and prediction of ischemic heart disease (IHD and disorders of carbohydrate and lipid metabolism in 132 patients with neurotic and affective disorders are presented. The significance of predictors of IHD formation was evaluated with method of logistic regression. According to results of stepwise procedure the total score of prediction of IHD in male group was 93.7%. The influence of mental factors on disorders of carbohydrate and lipid metabolism which lead to persistent rise of level of blood glucose, lipid spectrum indices imbalance, promoting the progression of cardiovascular risk in IHD patients with anxiety, depressive, asthenic and other non-psychotic mental disorders, was ascertained.

  14. MECHANISMS OF ACTION OF THE POWDER OF CURCUMA LONGA RHIZOME PLANT ON A CARBOHYDRATE METABOLISM AT ALLOXAN-INDUCED DIABETIC RATS

    Directory of Open Access Journals (Sweden)

    R. I. Aizman

    2014-01-01

    Full Text Available Aim. The effects of the powder of Curcuma longa plant rhizome as food additive on different processes of carbohydrate metabolism: glucose concentration in whole blood, concentration of hormones – insulin and C-peptide in plasma, content of glycogen in the liver, structural and functional organization of the islet apparatus of the pancreas in rats with alloxan-induced diabetes mellitus were studied.Material and methods. The study was conducted on Wistar adult male rats. All animals were divided into 4 groups: 1 and 2 – the controls, 3 and 4 – the rats with alloxan-induced model of diabetes mellitus. Animals of groups 1 and 3 were kept on standard chow, whereas the rats of groups 2 and 4 were feeded with additive of powder from Curcuma longa plant rhizome (2% by weight of feed.The concentration of glucose in blood and perfused solution was determined with picric acid method by intensity of colour reaction on spectrofotometer. Concentration of hormones (insulin, C-peptide was defined by immunoenzyme method with standard sets on tablet spectrofotometer. The morphological structure of a pancreas was studied by a method of light microscopy. Content of glycogen in a liver was measured by means of Shick-reaction on the Mac-Manus method with measurement of colour intensity on spectrofotometer.Results. Intake of the turmeric rhizomes powder by rats with diabetes, as compared with the diabetic animals on a standard diet, resulted in the lower increase of the glucose concentration in blood, the decrease of glucose absorption in the gut, higher concentration of the insulin and C-peptide in plasma and significant increase of glycogen content in the liver. The microstructure of pancreatic tissue samples of experimental animals using turmeric intake, was characterized by the better preservation of the islet apparatus in comparison with a group of animals on a standard diet.Conclusion. The results indicate the positive effect of the Curcuma longa

  15. Integrated Management Strategies Increase Cottonseed, Oil and Protein Production: The Key Role of Carbohydrate Metabolism

    Science.gov (United States)

    Yang, Hongkun; Zhang, Xinyue; Chen, Binglin; Meng, Yali; Wang, Youhua; Zhao, Wenqing; Zhou, Zhiguo

    2017-01-01

    Cottonseed, oil, and protein, as the by-products of cotton production, have the potential to provide commodities to meet the increasing demand of renewable bio-fuels and ruminant feed. An increase in crop yield per unit area requires high-yielding cultivar management with an economic nitrogen (N) rate, an optimal N application schedule, high-yielding plant populations and strong seedlings. Whether the integration of these agronomic practices into a coherent management system can increase the productivity of cotton fiber, embryo oil and protein requires experimental elucidation. In this 2-year study, conventional management practices (CM) were used as a control, and two integrated management strategies (IMS1 and IMS2) were considered at two soil fertility levels (high soil fertility and low soil fertility) to analyze the metabolic and biochemical traits of cotton embryos. The results illustrate that the cottonseed, oil, and protein yields for IMS1 and IMS2 were significantly higher than those under CM at both soil fertility levels and the fiber yield increased as well. The IMS regulated the maternal photo thermal environment by delaying the flowering date, resulting in increases in the seed weight. In developing cotton embryos, the IMS increased the embryo weight accumulation rate and biomass partitioning into oil and protein, which were associated with high activities of H+-ATPase, H+-PPase, sucrose synthase (SuSy), and cell wall invertase (C-INV) and low activities of sucrose phosphate synthase (SPS) and vacuole invertase (V-INV). Increased hexoses (D-fructose, D-glucose) content contributed to the oil and protein contents. These results suggest that increased sucrose/H+ symport, sucrose hydrolysis, hexoses synthesis, and cumulative photo-thermal product (PTP), especially in the early stage of embryo growth, play a dominant role in the high productivity of cotton oil and protein. PMID:28194156

  16. Sink filling, inulin metabolizing enzymes and carbohydrate status in field grown chicory (Cichorium intybus L.).

    NARCIS (Netherlands)

    Arkel, van J.; Vergauwen, R.; Sévenier, R.; Hakkert, J.C.; Laere, van A.; Bouwmeester, H.J.; Meer, van der I.M.

    2012-01-01

    Inulin is a fructose-based polymer that is isolated from chicory (Cichorium intybus L.) taproots. The degree of polymerization (DP) determines its application and hence the value of the crop. The DP is highly dependent on the field conditions and harvest time. Therefore, the present study was carrie

  17. Counting carbohydrates

    Science.gov (United States)

    Carb counting; Carbohydrate-controlled diet; Diabetic diet; Diabetes-counting carbohydrates ... Many foods contain carbohydrates (carbs), including: Fruit and fruit juice Cereal, bread, pasta, and rice Milk and milk products, soy milk Beans, legumes, ...

  18. Direct determination of amino acids and carbohydrates by high-performance capillary electrophoresis with refractometric detection.

    Science.gov (United States)

    Ivano, A R; Nazimov, I V; Lobazov, A P; Popkovich, G B

    2000-10-13

    This is an initial report to propose a novel approach in high-performance capillary electrophoresis (HPCE) for the direct detection of compounds without natural absorbance in the UV and visible spectral range, such as amino acids and carbohydrates. A refractometry detector with the 2 nl cell (Applied Systems, Minsk, Belarus) was employed to identify amino acids and carbohydrates without derivatization. The first results are provided on separation of seven free amino acids in the phosphate running buffer and three free carbohydrates in the borate-sodium dodecyl sulfate running buffer and detection by refractometer. Fused capillaries of 50 or 75 microm internal diameter and separation voltage (10-23 kV) were applied. Detection limits ranged typically from 10 to 100 fmol and the response was linear over two orders of magnitude for most of the amino acids and carbohydrates. The HPCE system demonstrated good long-term stability and reproducibility with a relative standard deviation, less than 5% for the migration time (n=10).

  19. Role of carbohydrate in determining the immunochemical properties of the hemagglutinin of influenza A virus

    Energy Technology Data Exchange (ETDEWEB)

    Gitelman, A.K.; Berezin, V.A.; Kharitonenkov, I.G. (Akademiya Meditsinskikh Nauk SSSR, Moscow)

    1981-01-01

    Most of the carbohydrate was removed from influenza with MRC II (H3N2) and its purified hemagglutinin (HA) on treatment with glycosidases, including ..cap alpha..-mannosidase, ..beta..-N-acetylglucosaminidase, ..beta..-galactosidase and ..cap alpha..-fucosidase. The release of 50 per cent of the carbohydrate from intact virus particles significantly affected hemagglutinating activity. The ability of untreated and glycosidase-treated virus to inhibit the binding of antibodies directed against the hemagglutinin was almost indistinguishable by competitive radioimmunoassay (RIA). Up to 60 per cent of the carbohydrate from the purified HA of influenza virus could be removed. The antigenicity of glycosidase treated HA molecules decreased 8-fold compared to intact HAs as measured by competitive RIA. In addition, glycosidase digestion of /sup 125/I-labeled HA resulted in a decrease in its reactivity in direct RIA. We conclude that the carbohydrate portion of the HA of influenza virus is not of major importance in defining the antigenicity of HA.

  20. DFT SOLVATION STUDIES OF CARBOHYDRATES: DETERMINATION OF ACCURATE ALPHA/BETA-ANOMERIC RATIOS

    Science.gov (United States)

    Solvents play an important role in carbohydrate structure. Therefore, it is important to include solvation effects in calculations to allow a better comparison with experimental data. One way to include solvation effects is via the use of continuum solvation models such as COSMO. Another possibil...

  1. Dietary glucose stimulus at larval stage modifies the carbohydrate metabolic pathway in gilthead seabream (Sparus aurata) juveniles: An in vivo approach using (14)C-starch.

    Science.gov (United States)

    Rocha, Filipa; Dias, Jorge; Geurden, Inge; Dinis, Maria Teresa; Panserat, Stephane; Engrola, Sofia

    2016-11-01

    The concept of nutritional programming was investigated in order to enhance the use of dietary carbohydrates in gilthead seabream juveniles. We assessed the long-term effects of high-glucose stimuli, exerted at the larval stage, on the growth performance, nutrient digestibility and metabolic utilization and gene expression of seabream juveniles, challenged with a high-carbohydrate intake. During early development, a group of larvae (control, CTRL) were kept under a rich-protein-lipid feeding regime whereas another group (GLU) was subjected to high-glucose stimuli, delivered intermittently over time. At juvenile stage, triplicate groups (IBW: 2.5g) from each fish nutritional background were fed a high-protein (59.4%) low-carbohydrate (2.0%) diet before being subjected to a low-protein (43.0%) high-carbohydrate (33.0%) dietary challenge for 36-days. Fish from both treatments increased by 8-fold their initial body weight, but neither growth rate, feed intake, feed and protein efficiency, nutrient retention (except lipids) nor whole-body composition were affected (P˃0.05) by fish early nutritional history. Nutrient digestibility was also similar among both groups. The metabolic fate of (14)C-starch and (14)C-amino acids tracers was estimated; GLU juveniles showed higher absorption of starch-derived glucose in the gut, suggesting an enhanced digestion of carbohydrates, while amino acid use was not affected. Moreover, glucose was less used for de novo synthesis of hepatic proteins and muscle glycogen from GLU fish (Pjuveniles.

  2. The improvement of large High-Density Lipoprotein (HDL) particle levels, and presumably HDL metabolism, depend on effects of low-carbohydrate diet and weight loss

    Science.gov (United States)

    Finelli, C.; Crispino, P.; Gioia, S.; La Sala, N.; D'amico, L.; La Grotta, M.; Miro, O.; Colarusso, D.

    2016-01-01

    Depressed levels of atheroprotective large HDL particles are common in obesity and cardiovascular disease (CVD). Increases in large HDL particles are favourably associated with reduced CVD event risk and coronary plaque burden. The objective of the study is to compare the effectiveness of low-carbohydrate diets and weight loss for increasing blood levels of large HDL particles at 1 year. This study was performed by screening for body mass index (BMI) and metabolic syndrome in 160 consecutive subjects referred to our out-patient Metabolic Unit in South Italy. We administered dietary advice to four small groups rather than individually. A single team comprised of a dietitian and physician administered diet-specific advice to each group. Large HDL particles at baseline and 1 year were measured using two-dimensional gel electrophoresis. Dietary intake was assessed via 3-day diet records. Although 1-year weight loss did not differ between diet groups (mean 4.4 %), increases in large HDL particles paralleled the degree of carbohydrate restriction across the four diets (p<0.001 for trend). Regression analysis indicated that magnitude of carbohydrate restriction (percentage of calories as carbohydrate at 1 year) and weight loss were each independent predictors of 1-year increases in large HDL concentration. Changes in HDL cholesterol concentration were modestly correlated with changes in large HDL particle concentration (r=0.47, p=.001). In conclusion, reduction of excess dietary carbohydrate and body weight improved large HDL levels. Comparison trials with cardiovascular outcomes are needed to more fully evaluate these findings. PMID:27103896

  3. The improvement of large High-Density Lipoprotein (HDL) particle levels, and presumably HDL metabolism, depend on effects of low-carbohydrate diet and weight loss.

    Science.gov (United States)

    Finelli, C; Crispino, P; Gioia, S; La Sala, N; D'amico, L; La Grotta, M; Miro, O; Colarusso, D

    2016-01-01

    Depressed levels of atheroprotective large HDL particles are common in obesity and cardiovascular disease (CVD). Increases in large HDL particles are favourably associated with reduced CVD event risk and coronary plaque burden. The objective of the study is to compare the effectiveness of low-carbohydrate diets and weight loss for increasing blood levels of large HDL particles at 1 year. This study was performed by screening for body mass index (BMI) and metabolic syndrome in 160 consecutive subjects referred to our out-patient Metabolic Unit in South Italy. We administered dietary advice to four small groups rather than individually. A single team comprised of a dietitian and physician administered diet-specific advice to each group. Large HDL particles at baseline and 1 year were measured using two-dimensional gel electrophoresis. Dietary intake was assessed via 3-day diet records. Although 1-year weight loss did not differ between diet groups (mean 4.4 %), increases in large HDL particles paralleled the degree of carbohydrate restriction across the four diets (p<0.001 for trend). Regression analysis indicated that magnitude of carbohydrate restriction (percentage of calories as carbohydrate at 1 year) and weight loss were each independent predictors of 1-year increases in large HDL concentration. Changes in HDL cholesterol concentration were modestly correlated with changes in large HDL particle concentration (r=0.47, p=.001). In conclusion, reduction of excess dietary carbohydrate and body weight improved large HDL levels. Comparison trials with cardiovascular outcomes are needed to more fully evaluate these findings.

  4. Ocimum basilicum extract exhibits antidiabetic effects via inhibition of hepatic glucose mobilization and carbohydrate metabolizing enzymes

    Science.gov (United States)

    Ezeani, Chinelo; Ezenyi, Ifeoma; Okoye, Theophine; Okoli, Charles

    2017-01-01

    Aim: Ocimum basilicum L (Lamiaceae) is used as a traditional remedy for different ailments, including diabetes mellitus. This study investigated the antidiabetic effects of an extract of aerial parts of O. basilicum. Methods: Antihyperglycemic effect of the extract was determined by its effects on α-amylase and α-glucosidase in vitro, while antidiabetic properties were studied in alloxan induced diabetic rats treated for 28 days with extract and compared to those treated with oral metformin (150 mg/kg). The study and analysis was conducted between 2014 and 2015. Results: The treatment with 100 and 200 mg/kg extract significantly (P glycogenolysis and/or stimulate glycogenesis. PMID:28163956

  5. Effects of recombinant human growth hormone therapy on carbohydrate, lipid and protein metabolisms of children with Turner syndrome

    Science.gov (United States)

    Qi, Weibin; Li, Shuxian; Shen, Qiong; Guo, Xiuxia; Rong, Huijuan

    2014-01-01

    Objective: To study the effect of recombinant human growth hormone (rhGH) therapy on carbohydrate, lipid and protein metabolisms of Turner syndrome (TS). Metho d s: Total 45 patients with TS admitted between Jul. 2008 and Jun. 2011 were involved in this study. All patients received the clinical evaluation of body fat, plasma lipids, proteins and oral glucose tolerance test (OGTT) before and after rhGH therapy. Results : Our results indicated a significant decrease of body fat (FAT%) from 23.56±4.21 to 18.71±2.23 but no obvious change on the level of fat mass (FM) (p>0.05) was observed after rhGH therapy. We also detected significant changes on plasma high-density lipoprotein cholesterol (HDL-C) from (1.65±0.58 mmol/L) to (2.20±0.65 mmol/L) and low-density lipoprotein cholesterol (LDH-C) from (2.55±0.55 mmol/L) to (2.10±0.54 mmol/L) after rhGH exposure. However, no statistical significance was detected on the level of plasma triglyceride (TG), cholesterol (CHO). Interestingly, the levels of plasma retinol binding protein (RbP) (32.55±4.28mg/L), transferrin (TRF) (2.95±0.40 mg/L), serum albumin (PRE) (250.00±45.50 mg/L) and albumin (propagated) (33.58±4.25 mg/L) were significantly increased. When it goes to the oral glucose tolerance test (OGTT) test, there were 10 impaired glucose tolerance (IGT) cases among all patients before and after rhGH therapy. No significant change was observed on homeostasis model assessment- insulin resistance (HOMA-IR) level during rhGH intervention. Conclusion : Abnormal lipid and protein metabolisms of the children with TS can be improved with rhGH therapy for 6 months. PMID:25097506

  6. Carbohydrate Determinants in Ferret Conjunctiva are Affected by Infection with Influenza H1N1 Virus

    DEFF Research Database (Denmark)

    Kirkeby, Svend; Martel, Cyril J M; Aasted, Bent;

    2013-01-01

    virus to ferrets has an effect on the conjunctival cells and change their expression of glycans. Synthesized glycans are an integral part of the tear film and the present study contributes to reveal the changes that occur in the surface epithelium in the eyelid and thereby to elucidate......Abstract Background: Carbohydrates often accomplish as cell-surface receptors for microorganisms and influenza virus preferentially binds to sialic acid through the viral haemagglutinin. The virus may attach not only to the epithelium in the airways, but also to the surface ocular epithelium....... Purpose: To decide if ferrets can be used to study virus induced conjunctivitis and to evaluate changes in the conjunctival glycosylation pattern during an influenza attack. Methods: Ferrets were infected with H1N1 influenza virus via nasal inoculation. The in situ carbohydrate expressions in eyelid...

  7. PHYSICO-CHEMICAL DETERMINATION OF CARBOHYDRATES IN THE FOODS AND BEVERAGES

    OpenAIRE

    Ia. I. Korenman; N. Ia. Mokshina; A. A. Bychkova

    2014-01-01

    Summary. The extraction of fructose, glucose, galactose, sucrose and lactose from aqueous salt solutions, hydrophilic solvents (aliphatic alcohols, alkyl acetates, ketones) of double and triple mixtures has been studied. Under identical conditions set quantitative characteristics extraction has been established. It was found that from the all studied carbohydrateы most fully extracted disaccharides lactose and sucrose. The conditions of concentration and almost complete recovery of carbohydra...

  8. Slow-release carbohydrates: growing evidence on metabolic responses and public health interest. Summary of the symposium held at the 12th European Nutrition Conference (FENS 2015).

    Science.gov (United States)

    Vinoy, Sophie; Laville, Martine; Feskens, Edith J M

    2016-01-01

    To draw attention to the necessity of considering differences in the digestibility of carbohydrates, and more specifically of starch, a symposium was held at the 12th European Nutrition Conference (FENS), which took place in Berlin from October 20 to 23, 2015. The purpose of this session was to present the consolidated knowledge and recent advances regarding the relationship between slow-release carbohydrates, metabolic responses, and public health issues. Three main topics were presented: 1) the definition of, sources of, and recognised interest in the glycaemic response to slowly digestible starch (SDS); 2) clinical evidence regarding the physiological effects of slow-release carbohydrates from cereal foods; and 3) interest in reducing the postprandial glycaemic response to help prevent metabolic diseases. Foods with the highest SDS content induce the lowest glycaemic responses, as the starch is protected from gelatinisation during processing. In humans, high-SDS food consumption induces slower glucose release, lower postprandial insulinaemia, and stimulation of gut hormones. Moreover, postprandial hyperglycaemia is an independent risk factor for type two diabetes mellitus (T2DM) and cardiovascular disease (CVD). Therefore, given the plausible aetiologic mechanisms, we argue that postprandial glucose levels are relevant for health and disease and represent a meaningful target for intervention, for example, through dietary factors. This symposium was organised by Mondelez International R&D.

  9. Phylloxera (Daktulosphaira vitifoliae Fitch) alters the carbohydrate metabolism in root galls to allowing the compatible interaction with grapevine (Vitis ssp.) roots.

    Science.gov (United States)

    Griesser, Michaela; Lawo, Nora Caroline; Crespo-Martinez, Sara; Schoedl-Hummel, Katharina; Wieczorek, Krzysztof; Gorecka, Miroslawa; Liebner, Falk; Zweckmair, Thomas; Stralis Pavese, Nancy; Kreil, David; Forneck, Astrid

    2015-05-01

    Gall forming phylloxera may compete for nutrients with meristematic tissues and develop heterotrophic structures that act as carbon sinks. In this work, we studied the underlying starch metabolism, sink-source translocation of soluble sugars towards and within root galls. We demonstrated that nodosities store carbohydrates by starch accumulation and monitored the expression of genes involved in the starch metabolic. Thereby we proved that the nodosity is symplastically connected to the source tissues through its development and that the starch metabolism is significantly affected to synthesize and degrade starch within the gall. Genes required for starch biosynthesis and degradation are up-regulated. Among the carbohydrate transporters the expression of a glucose-6-phosphate translocater, one sucrose transporter and two SWEET proteins were increases, whereas hexose transporters, tonoplast monosaccharide transporter and Erd6-like sugar transporters were decreased. We found general evidence for plant response to osmotic stress in the nodosity as previously suggested for gall induction processes. We conclude that nodosities are heterogenous plant organs that accumulate starch to serve as temporary storage structure that is gradually withdrawn by phylloxera. Phylloxera transcriptionally reprograms gall tissues beyond primary metabolism and included downstream secondary processes, including response to osmotic stress.

  10. Non-alcoholic fatty liver disease and the metabolic syndrome: Effects of weight loss and a review of popular diets. Are low carbohydrate diets the answer?

    Institute of Scientific and Technical Information of China (English)

    Harjot K Gill; George Y Wu

    2006-01-01

    Non-alcoholic fatty liver disease (NAFLD) encompasses a wide spectrum of fat-induced liver injury, ranging from relatively benign steatosis to cirrhosis and liver failure.The presence of obesity and insulin resistance is strongly associated with non-alcoholic fatty liver and confers on it a greater risk of histologically advanced disease. There is a growing concern in the medical profession as the prevalence of this disease continues to rise in parallel with the rise in obesity and the metabolic syndrome.Treatment options are limited and dietary weight loss is often advised. Low fat diets are difficult to adhere to and recent studies have shown the potential of low carbohydrate diets for weight loss and improving insulin resistance. Thus far, no study has evaluated the effect of low carbohydrate diets on NAFLD. Future studies will be required to address this question and others with regards to the nutritional adequacy and long-term side effects of these diets.

  11. Determination of pH, buffering capacity, total carbohydrates and sucrose in sugar-free and light processed fruit juices

    Directory of Open Access Journals (Sweden)

    Juliana Dal Molin Netto

    2010-07-01

    Full Text Available Introduction: Tooth erosion is the irreversible loss of dental hard tissues caused by acids and/or chelation without bacterial involvement.Many studies showed that there is an increase of tooth erosion in population and that it is related to the consumption of soft drinks,including processed fruit juices. Objective: The aim of this study was to evaluate the pH, buffering capacity (BC, total carbohydrates and sucrose in 15 sugar-free and light processed fruit juices.Material and methods: The pH was determined with a Mettler Toledo 320 pH meter.The BC was determined by titration, adding 0.1 N NaOH in 10 mL of each drink until reaching a pH level of 7.0. The total carbohydrates were determined using the phenol sulfuric method, while the sucrose was determined through the incubation of each sample with the invertase enzyme.Results: The average value of pH was 2.61 (±0.29.The processed fruit juices analyzed needed, in average, 6.2 mL (±1.9 of NaOH in order to increase the pH to 7.0. The total carbohydrates showed to be according to the values presented in the labels.The sucrose content verified in each drink was very low and varied from 0.60 to 0.93 g / 200 mL.Conclusion: This study showed that the 15 drinks analyzed had low pH and erosive potential, once most juices presented high BC.The sucrose presented in each drink was very low, suggesting that they are not cariogenic. Nevertheless, further studies that demonstrate the action of these juices in the dental surface are required.

  12. Metabolism of dinosaurs as determined from their growth

    Science.gov (United States)

    Lee, Scott A.

    2015-09-01

    A model based on cellular properties is used to analyze the mass growth curves of 20 dinosaurs. This analysis yields the first measurement of the average cellular metabolism of dinosaurs. The organismal metabolism is also determined. The cellular metabolism of dinosaurs is found to decrease with mass at a slower rate than is observed in extant animals. The organismal metabolism increases with the mass of the dinosaur. These results come from both the Saurischia and Ornithischia branches of Dinosauria, suggesting that the observed metabolic features were common to all dinosaurs. The results from dinosaurs are compared to data from extant placental and marsupial mammals, a monotreme, and altricial and precocial birds, reptiles, and fish. Dinosaurs had cellular and organismal metabolisms in the range observed in extant mesotherms.

  13. Carbohydrates as food allergens

    OpenAIRE

    SOH, Jian Yi; Huang, Chiung Hui; Lee, Bee Wah

    2015-01-01

    The literature supports the notion that carbohydrate epitopes, on their own, do not contribute significantly to the induction of allergic reactions. They bind weakly to IgE antibodies and have been termed as cross reactive carbohydrate determinants. These epitopes cause confusion in in vitro IgE testing through nonspecific cross-reactivity. Coincident with the rising trends in food allergy prevalence, there has recently been reports of anaphylaxis induced by carbohydrate epitopes. There are t...

  14. Caffeine and carbohydrate supplementation during exercise when in negative energy balance: effects on performance, metabolism, and salivary cortisol.

    Science.gov (United States)

    Slivka, Dustin; Hailes, Walter; Cuddy, John; Ruby, Brent

    2008-12-01

    The ingestion of carbohydrate (+CHO) and caffeine (+CAF) during exercise is a commonly used ergogenic practice. Investigations are typically conducted with subjects who are in a rested state after an overnight fast. However, this state of positive energy balance is not achieved during many work and exercise circumstances. The aim of this study was to evaluate the substrate use and performance effects of caffeine and carbohydrate consumed alone and in combination while participants were in negative energy balance. Male participants (n = 9; 23 +/- 3 years; 74.1 +/- 10.6 kg) completed 4 trials in random order: -CAF/-CHO, -CAF/+CHO, +CAF/-CHO, and +CAF/+CHO. Diet and exercise were prescribed for 2 days before each trial to ensure negative energy balance. For each trial, before and after 2 h of cycling at 50% of maximal watts, a saliva sample and a muscle biopsy (vastus lateralis) were obtained. A simulated 20 km time trial was then performed. The respiratory exchange ratio was higher (p 0.05), or any of the other trials. When co-ingested with carbohydrate, caffeine increased fat use and decreased nonmuscle glycogen carbohydrate use over carbohydrate alone when participants are in negative energy balance; however, caffeine had no effect on the 20 km cycling time trial performance.

  15. [Influence of bean yellow mosaic virus on metabolism of photosynthetic pigments, proteins and carbohydrates in Glycine soja L].

    Science.gov (United States)

    Kyrychenko, A M

    2014-01-01

    This paper presents data on BYMV effects on some physiological processes of Glycine soja L. cultivated in the right-bank forest-steppe regions. Pigment content (chlorophyll a, b and carotenoids), soluble proteins and water soluble carbohydrates were estimated and, as has been shown, are subjected to significant changes as compared with control plants, namely: a decrease in the content of chlorophyll a, b and carotenoids was 64%, 53% and 36% compared with the control plants. The significant increase in carbohydrates (56% compared to the control) was observed at the end of the test period.

  16. Differences between the Bud End and Stem End of Potatoes in Dry Matter Content, Starch Granule Size, and Carbohydrate Metabolic Gene Expression at the Growing and Sprouting Stages.

    Science.gov (United States)

    Liu, Bailin; Zhang, Guodong; Murphy, Agnes; De Koeyer, David; Tai, Helen; Bizimungu, Benoit; Si, Huaijun; Li, Xiu-Qing

    2016-02-10

    Potatoes usually have the tuber bud end dominance in growth during tuber bulking and in tuber sprouting, likely using carbohydrates from the tuber stem end. We hypothesized that the tuber bud end and tuber stem end coordination in carbohydrate metabolism gene expression is different between the bulking dominance and sprouting dominance of the tuber bud end. After comparing the growing tubers at harvest from a green vine and the stage that sprouts just started to emerge after storage of tubers at room temperature, we found the following: (1) Dry matter content was higher in the tuber stem end than the tuber bud end at both stages. (2) The starch granule size was larger in the tuber bud end than in the tuber stem end. (3) The tuber bud end had higher gene expression for starch synthesis but a lower gene expression of sucrose transporters than the tuber stem end during tuber growing. (4) The tuber stem end at the sprouting stage showed more active gene expression in both starch degradation and resynthesis, suggesting more active export of carbohydrates, than the tuber bud end. The results indicate that the starch accumulation mechanism in the tuber bud end was different between field growing and post-harvest sprouting tubers and that tubers already increased dry matter and average starch granule sizes in the tuber bud end prior to the rapid growth of sprouts.

  17. Acclimatory responses of the Daphnia pulex proteome to environmental changes. I. Chronic exposure to hypoxia affects the oxygen transport system and carbohydrate metabolism

    Directory of Open Access Journals (Sweden)

    Madlung Johannes

    2009-04-01

    Full Text Available Abstract Background Freshwater planktonic crustaceans of the genus Daphnia show a remarkable plasticity to cope with environmental changes in oxygen concentration and temperature. One of the key proteins of adaptive gene control in Daphnia pulex under hypoxia is hemoglobin (Hb, which increases in hemolymph concentration by an order of magnitude and shows an enhanced oxygen affinity due to changes in subunit composition. To explore the full spectrum of adaptive protein expression in response to low-oxygen conditions, two-dimensional gel electrophoresis and mass spectrometry were used to analyze the proteome composition of animals acclimated to normoxia (oxygen partial pressure [Po2]: 20 kPa and hypoxia (Po2: 3 kPa, respectively. Results The comparative proteome analysis showed an up-regulation of more than 50 protein spots under hypoxia. Identification of a major share of these spots revealed acclimatory changes for Hb, glycolytic enzymes (enolase, and enzymes involved in the degradation of storage and structural carbohydrates (e.g. cellubiohydrolase. Proteolytic enzymes remained constitutively expressed on a high level. Conclusion Acclimatory adjustments of the D. pulex proteome to hypoxia included a strong induction of Hb and carbohydrate-degrading enzymes. The scenario of adaptive protein expression under environmental hypoxia can be interpreted as a process to improve oxygen transport and carbohydrate provision for the maintenance of ATP production, even during short episodes of tissue hypoxia requiring support from anaerobic metabolism.

  18. Dietary protein-to-carbohydrate ratio and added sugar as determinants of excessive gestational weight gain

    DEFF Research Database (Denmark)

    Maslova, Ekaterina; Halldorsson, Thorhallur I; Astrup, Arne

    2015-01-01

    OBJECTIVE: To examine the relation between the protein:carbohydrate (P/C) ratio and added sugar intake in pregnancy and gestational weight gain (GWG). DESIGN: A prebirth cohort including 103 119 pregnancies enrolled between 1996 and 2003. SETTING: All women in Denmark were eligible to participate...... for the analysis. EXPOSURE: Macronutrient intake was quantified using a validated food frequency questionnaire administered in the 25th week of gestation. The P/C ratio and added sugar intake were examined in quintiles. PRIMARY OUTCOME MEASURES: GWG was based on self-reported weight in gestational weeks 12 and 30...... sugars. Added sugar consumption was strongly associated with GWG (Q5 vs Q1: 34, 95% CI 28 to 40 g/week, p for trend intake of added sugar. These results are consistent...

  19. Dietary protein-to-carbohydrate ratio and added sugar as determinants of excessive gestational weight gain

    DEFF Research Database (Denmark)

    Maslova, Ekaterina; Halldorsson, Thorhallur I; Astrup, Arne;

    2015-01-01

    OBJECTIVE: To examine the relation between the protein:carbohydrate (P/C) ratio and added sugar intake in pregnancy and gestational weight gain (GWG). DESIGN: A prebirth cohort including 103 119 pregnancies enrolled between 1996 and 2003. SETTING: All women in Denmark were eligible to participate...... and defined as gain in g/week. We used multivariable linear regression, including adjusting for pre-pregnancy body mass index, to calculate relative change in GWG and 95% CI. RESULTS: Average GWG was 471(224) g/week. The adjusted weight gain was 16 g/week lower (95% CI 9 to 22, p for trend ....001) in the highest (Q5) versus lowest (Q1) quintile of the P/C ratio (∼3% average reduction across the entire pregnancy). Weight gain for those with >20%E vs

  20. Determination of free inositols and other low molecular weight carbohydrates in vegetables.

    Science.gov (United States)

    Hernández-Hernández, Oswaldo; Ruiz-Aceituno, Laura; Sanz, María Luz; Martínez-Castro, Isabel

    2011-03-23

    Different low molecular weight carbohydrates including saccharides, polyalcohols, sugar acids, and glycosides have been identified and quantified in different edible vegetables from Asteraceae, Amarantaceae, Amarylidaceae, Brassicaceae, Dioscoreaceae, and Solanaceae families by gas chromatography-mass spectrometry. Apart from glucose, fructose, and sucrose, other saccharides such as sedoheptulose in chicory, spinach, cabbage, purple yam, eggplant, radish, and oak leaf lettuce, rutinose in eggplant skin, and a glycosyl-inositol in spinach have been identified. chiro-Inositol was found in all vegetables of the Asteraceae family (3.1-32.6 mg 100 g(-1)), whereas scyllo-inositol was detected in those of purple yam, eggplant, artichoke, chicory, escarole, and endive (traces-23.2 mg 100 g(-1)). α-Galactosides, kestose, glucaric acid, and glycosyl-glycerols were also identified and quantified in some of the analyzed vegetables. Considering the bioactivity of most of these compounds, mainly chicory leaves, artichokes, lettuces, and purple yam could constitute beneficial sources for human health.

  1. Simultaneous determination of carbohydrates and simmondsins in jojoba seed meal (Simmondsia chinensis) by gas chromatography.

    Science.gov (United States)

    Lein, Sabine; Van Boven, Maurits; Holser, Ron; Decuypere, Eddy; Flo, Gerda; Lievens, Sylvia; Cokelaere, Marnix

    2002-11-22

    Separate methods for the analyses of soluble carbohydrates in different plants and simmondsins in jojoba seed meal are described. A reliable gas chromatographic procedure for the simultaneous quantification of D-pinitol, myo-inositoL sucrose, 5-alpha-D-galactopyranosyl-D-pinitol. 2-alpha-D-galactopyranosyl-D-pinitol, simmondsin, 4-demethylsimmondsin, 5-demethylsimmondsin and 4,5-didemethylsimmondsin as trimethylsilyl derivatives in jojoba seed meal has been developed. The study of different extraction mixtures allowed for the quantitative recovery of the 9 analytes by a mixture of methanol-water (80:20, v/v) in the concentration range between 0.1 and 4%. Comparison of the separation parameters on three different capillary stationary phases with MS detection allowed for the choice of the optimal gas chromatographic conditions for baseline separation of the analytes.

  2. Effects of sub-chronic exposure to SO{sub 2} on lipid and carbohydrate metabolism in rats

    Energy Technology Data Exchange (ETDEWEB)

    Lovati, M.R. [Institute of Pharmacological Sciences, Milan (Italy); Manzoni, C. [Institute of Pharmacological Sciences, Milan (Italy); Daldossi, M. [Institute of Pharmacological Sciences, Milan (Italy); Spolti, S. [Institute of Pharmacological Sciences, Milan (Italy); Sirtori, C.R. [Institute of Pharmacological Sciences, Milan (Italy)

    1996-01-01

    Sulfur dioxide (SO{sub 2}) is a ubiquitous air pollutant, present in low concentrations in the urban air, and in higher concentrations in the working environment. While toxicological reports on SO{sub 2} have extensively dealt with the pulmonary system, essentially no data are available on the effects of chronic exposure to this pollutant on intermediary metabolism, although some biochemical changes in lipid metabolism have been detected. The present investigation was aimed at evaluating the effects of sub-chronic exposure to SO{sub 2} on concentrations of serum lipids/lipoproteins and on glucose metabolism, in animal models of hypercholesterolemia and diabetes. A specially designed controlinert atmosphere chamber was used, where male Sprague-Dawley rats fed on either standard or cholesterol enriched (HC) diets, as well as streptozotocin diabetics, were exposed to SO{sub 2} at 5 and 10 ppm, 24 h per day for 14 days. In rats, both on a standard diet and on a HC regimen, SO{sub 2} exposure determined a significant dose-dependent increase in plasma triglycerides, up to +363% in the 10 ppm HC exposed animals. This same gas concentration significantly reduced HDL cholesterol levels. In contrast, exposure of diabetic animals to 10 ppm SO{sub 2} resulted in a fall (-41%) of plasma and liver triglycerides and in a concomitant increase (+62%) of plasma HDL cholesterol. This discrepancy could apparently be related to diverging effects of SO{sub 2} exposure on plasma insulin levels in the different animal groups. Kinetic analyses of triglyceride synthesis carried out in rats on a standard diet revealed, in exposed animals, a significant reduction in the secretory rate, in spite of the concomitant hypertriglyceridemia. These findings suggest that SO{sub 2} exposure can markedly modify major lipid and glycemic indices, also indicating a differential response in normo/hyperlipidemic versus diabetic animals. (orig.)

  3. Carbohydrate metabolism and metabolic disorders in horses Metabolismo de carboidratos e disfunções metabólicas em equinos

    Directory of Open Access Journals (Sweden)

    Rhonda M. Hoffman

    2009-07-01

    Full Text Available Horses evolved consuming primarily fermentable forage carbohydrates, but forage diets have been traditionally supplemented with grain meals rich in starch and sugar in order to provide additional calories, protein and micronutrients. Starch and sugar are important for performance horses, but the consumption starch-rich meals may cause equine digestive and metabolic disorders. The critical capacity for preileal starch digestibility appears to be 0.35 to 0.4% but may be as little, depending on the source of starch. Small intestinal absorption of simple sugars is limited by the activity and expression of two classes of glucose carrier proteins, which are affected by chronic intake of hydrolyzable carbohydrate but may be sluggish to respond to abrupt changes in diet, further exacerbating the risk of overload. The most rapid fermentation occurs during starch overload or in the presence of fructans. Rapid fermentation perturbs the microbial and pH balance of the cecum and colon, favoring proliferation of Lactobacillus spp and acid production and increasing the risk of colic and laminitis. In addition to digestive disturbances, feeding grain concentrates rich in hydrolyzable carbohydrate may increase the risk of insulin resistance, which has been associated with obesity, laminitis and chronic founder, developmental orthopedic disease, and Cushing's disease in horses. This threshold concentration of starch intake may be a starting point for horse owners, feed manufacturers and veterinarians that may be claimed to be "low" enough to reduce risk in insulin resistant horses sensitive to grain-associated disorders.Equinos desenvolvem-se consumindo primordialmente os carboidratos fermentáveis das forragens, porém as dietas a base de forragens vem sendo suplementadas com dietas a base de grãos, ricas em amido e açúcar, visando fornecer adicionais calorias, proteínas e micronutrientes. Amido e açucares são importantes para os equinos atletas, porém o

  4. 饲料糖含量对南方鲇幼鱼日常代谢率的影响%Effect of Carbohydrate Content in Feed on the Daily Metabolic Rateof.S.meridionalis

    Institute of Scientific and Technical Information of China (English)

    付世建; 谢小军

    2007-01-01

    The routine metabolic rate in southern catfish juvenile(24.3-250.8 g)fed with saccharine feed(CHO)Was measured in this study.Fish were fed with iso-nitrogenous(40% crude protein)and iso-lipidic(10% crude lipid)experimental feed containing 0(control feed),15%,30% of carbohydrate level.The routine metabolic rates of 15% and 30% dietary carbohydrate group were significandy higher than that of 0% dietary carbohydrate group.The relationship betwenn body mass(Wt)and routine metabolic rate(Rr)of gouthem catfishfed with different test feed could be described as:(1)0% CHO:In(Rr)=0.986 ln(Wt)+1.419 r2=0.922,,n=25,P<0.001;(2)15% CHO:ln(Rr)=0.912 ln(Wt)+1.74l r2=0.966,n=21.P<0.001;(3)30% CHO:ln(Rr)=0.762 ln(Wt)+2.378 r2=0.958,n=21,P<0.001. The intenrcept was increased and mass coefficient was decreased with the increase of carbohydrate level in feed. It could be concluded that southern Silurus meridionalis had poor metabolic capacity which led the increase of routine metabolic rate of fish with small size.But with the increase of body size southern Silurus meridionalis might had a better adaptation to high carbohydrate concentration.

  5. Rate of starch hydrolysis in vitro as a predictor of metabolic responses to complex carbohydrate in vivo.

    Science.gov (United States)

    O'Dea, K; Snow, P; Nestel, P

    1981-10-01

    This study was designed to determine whether the rate of hydrolysis of different starches by pancreatic amylase in vitro was proportional to the postprandial glucose and insulin response to those starches after oral ingestion. Lean young men consumed four test meals of rice containing 75 g starch: white rice, unpolished (brown) rice, ground white rice, and ground brown rice. Postprandial glucose and insulin responses were measured over 4 h and showed the following pattern: ground white rice congruent to ground brown rice greater than white rice greater than brown rice. The maximum increases in blood glucose after the four meals were brown rice 0.9 mM, white rice 1.5 mM, ground brown rice 3.3 mM, and ground white rice 3.6 mM. Samples of the cooked rices were incubated in vitro with pancreatic amylase for 30 min and the percentage starch hydrolysis determine. The relative rates of starch hydrolysis correlated very closely with the peak glucose responses: brown rice 17.6%, white rice 30.8%, ground brown rice 68.2% and ground white rice 71.8%. These results indicated that the rate of intestinal hydrolysis of starch is an extremely important determinant of the metabolic responses to a particular starch. The rate of starch hydrolysis can be determine simply by an in vitro method and should assist the design of diets for the treatment of diabetes.

  6. Extended exenatide administration enhances lipid metabolism and exacerbates pancreatic injury in mice on a high fat, high carbohydrate diet.

    Directory of Open Access Journals (Sweden)

    Rodney Rouse

    Full Text Available This study expanded upon a previous study in mice reporting a link between exenatide treatment and exocrine pancreatic injury by demonstrating temporal and dose responses and providing an initial mechanistic hypothesis. The design of the present study included varying lengths of exenatide exposure (3, 6 weeks to 12 weeks at multiple concentrations (3, 10, or 30 µg/kg with multiple endpoints (histopathology evaluations, immunoassay for cytokines, immunostaining of the pancreas, serum chemistries and measurement of trypsin, amylase, and, lipase, and gene expression profiles. Time- and dose-dependent exocrine pancreatic injury was observed in mice on a high fat diet treated with exenatide. The morphological changes identified in the pancreas involved acinar cell injury and death (autophagy, apoptosis, necrosis, and atrophy, cell adaptations (hypertrophy and hyperplasia, and cell survival (proliferation/regeneration accompanied by varying degrees of inflammatory response leading to secondary injury in pancreatic blood vessels, ducts, and adipose tissues. Gene expression profiles indicated increased signaling for cell survival and altered lipid metabolism in exenatide treated mice. Immunohistochemistry supported gene expression findings that exenatide caused and/or exacerbated pancreatic injury in a high fat diet environment potentially by further increasing high fat diet exacerbated lipid metabolism and resulting oxidative stress. Further investigation is required to confirm these findings and determine their relevance to human disease.

  7. Doubling the CO{sub 2} concentration enhanced the activity of carbohydrate-metabolism enzymes, source carbohydrate production, photoassimilate transport, and sink strength for Opuntia ficus-indica

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ning; Nobel, P.S. [Univ. of California, Los Angeles, CA (United States)

    1996-03-01

    After exposure to a doubled CO{sub 2} concentration of 750 {mu}mol mol{sup -1} air for about 3 months, glucose and starch in the chlorenchyma of basal cladodes of Opuntia ficus-indica increased 175 and 57%, respectively, compared with the current CO{sub 2} concentration of 370 {mu}mol mol{sup -1}, but sucrose content was virtually unaffected. Doubling the CO{sub 2} concentration increased the noncturnal malate production in basal cladodes by 75%, inorganic phosphate (Pi) by 32% soluble starch synthase activity by 30%, and sucrose-Pi synthase activity by 146%, but did not affect the activity of hexokinase. Doubling CO{sub 2} accelerated phloem transport of sucrose out of the basal cladodes, resulting in a 73% higher dry weight for the daughter cladodes. Doubling CO{sub 2} increased the glucose content in 14-d-old daughter cladodes by 167%, increased nocturnal malate production by 22%, decreased total amino acid content by 61%, and increased soluble starch synthase activity by 30% and sucrose synthase activity by 62%. No downward acclimation of photosynthesis during long-term exposure to elevated CO{sub 2} concentrations occurs for O. ficus-indica, consistent with its higher source capacity and sink strength than under current CO{sub 2}. These changes apparently do not result in Pi limitation of photosynthesis or suppression of genes governing photosynthesis for this perennial Crassulacean acid metabolism species, as occur for some annual crops.

  8. Effects of Second and Third Generation Oral Contraceptives on Lipid and Carbohydrate Metabolism in Overweight and Obese Women: A Randomized Triple-Blind Controlled Trial

    Science.gov (United States)

    Shahnazi, Mahnaz; Farshbaf-Khalili, Azizeh; Pourzeinali-Beilankouh, Samira; Sadrimehr, Farnaz

    2016-01-01

    Background Combined oral contraceptives (COCs) have not been shown to have major effects on lipid and carbohydrate metabolism in normal-weight women. However, we have limited information about the effects on women at high risk for cardiovascular disease and diabetes due to being overweight and obese. Objectives To evaluate the effects of second and third generation contraceptive pills on lipid and carbohydrate metabolism in overweight and obese women. Patients and Methods This triple-blind controlled trial was performed on 137 healthy women aged 18 - 40 years with a body mass index of 25-34.9 (kg/m2) who were referred to health centers in Tabriz, Iran from 2014 to 2015. The women were randomly divided into groups who were to take 30 mcg ethinyl estradiol/150 mcg levonorgestrel (EE/LGN) (n = 69) or 30 mcg ethinyl estradiol/150 mcg desogestrel (EE/DSG) (n = 68) with an allocation ratio of 1: 1 for three cycles. As primary outcomes, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and fasting plasma glucose (FPG) were assessed; total cholesterol (TC), triglycerides (TG), and 2-hour plasma glucose in the 75-g oral glucose tolerance test (2-hour 75-g OGTT) were assessed as secondary outcomes. Results The differences in lipid and carbohydrate parameters were not significant between the two groups, except for HDL-C (Adjusted MD (CI95%) = 7.00 (2.98 to 11.02)). HDL-C decreased with EE/LGN (P = 0.016) and increased with EE/DSG (P = 0.004). LDL-C and TC increased in both groups, whereas TG increased only with EE/DSG (P < 0.05). Compared with the baseline, FPG levels did not differ significantly in both groups, but EE/DSG increased 2-hour 75-g OGTT (P = 0.010). Conclusions We observed no significant differences between the two groups in lipid and carbohydrate metabolism, except for HDL-C. Considering the importance of overweight and obese women’s health, studies with longer follow-up periods are recommended in this respect. PMID

  9. Sensitive determination of carbohydrates labelled with p-nitroaniline by capillary electrophoresis with photometric detection using a 406 nm light-emitting diode.

    Science.gov (United States)

    Momenbeik, Fariborz; Johns, Cameron; Breadmore, Michael C; Hilder, Emily F; Macka, Miroslav; Haddad, Paul R

    2006-10-01

    p-Nitroaniline was explored as a derivatising reagent for UV absorbance detection of carbohydrates after separation by CE. This derivatising agent has three advantages: first, it has excellent water solubility; second, it has high molar absorptivity; and third, it is possible to obtain sensitive detection using a UV or blue light-emitting diode (LED) as the light source. The labelling reaction took less than 30 min to complete with high reaction yield. The separation process was modelled and optimised using an artificial neural network. Nine carbohydrates were separated by a CE system within 16 min using a 0.17 M boric acid buffer at pH 9.7. On-column LED detection at 406 nm allowed the detection of carbohydrates with good detection limits (quantification in the concentration range of 2.6-200 microM. This method was applied successfully to the determination of component carbohydrates in some food samples.

  10. Metabolism of organic acids, nitrogen and amino acids in chlorotic leaves of 'Honeycrisp' apple (Malus domestica Borkh) with excessive accumulation of carbohydrates.

    Science.gov (United States)

    Wang, Huicong; Ma, Fangfang; Cheng, Lailiang

    2010-07-01

    Metabolite profiles and activities of key enzymes in the metabolism of organic acids, nitrogen and amino acids were compared between chlorotic leaves and normal leaves of 'Honeycrisp' apple to understand how accumulation of non-structural carbohydrates affects the metabolism of organic acids, nitrogen and amino acids. Excessive accumulation of non-structural carbohydrates and much lower CO(2) assimilation were found in chlorotic leaves than in normal leaves, confirming feedback inhibition of photosynthesis in chlorotic leaves. Dark respiration and activities of several key enzymes in glycolysis and tricarboxylic acid (TCA) cycle, ATP-phosphofructokinase, pyruvate kinase, citrate synthase, aconitase and isocitrate dehydrogenase were significantly higher in chlorotic leaves than in normal leaves. However, concentrations of most organic acids including phosphoenolpyruvate (PEP), pyruvate, oxaloacetate, 2-oxoglutarate, malate and fumarate, and activities of key enzymes involved in the anapleurotic pathway including PEP carboxylase, NAD-malate dehydrogenase and NAD-malic enzyme were significantly lower in chlorotic leaves than in normal leaves. Concentrations of soluble proteins and most free amino acids were significantly lower in chlorotic leaves than in normal leaves. Activities of key enzymes in nitrogen assimilation and amino acid synthesis, including nitrate reductase, glutamine synthetase, ferredoxin and NADH-dependent glutamate synthase, and glutamate pyruvate transaminase were significantly lower in chlorotic leaves than in normal leaves. It was concluded that, in response to excessive accumulation of non-structural carbohydrates, glycolysis and TCA cycle were up-regulated to "consume" the excess carbon available, whereas the anapleurotic pathway, nitrogen assimilation and amino acid synthesis were down-regulated to reduce the overall rate of amino acid and protein synthesis.

  11. Determination of carbohydrates in honey and milk by capillary electrophoresis in combination with graphene-cobalt microsphere hybrid paste electrodes.

    Science.gov (United States)

    Liang, Peipei; Sun, Motao; He, Peimin; Zhang, Luyan; Chen, Gang

    2016-01-01

    A graphene-cobalt microsphere (CoMS) hybrid paste electrode was developed for the determination of carbohydrates in honey and milk in combination with capillary electrophoresis (CE). The performance of the electrodes was demonstrated by detecting mannitol, sucrose, lactose, glucose, and fructose after CE separation. The five analytes were well separated within 9 min in a 40 cm long capillary at a separation voltage of 12 kV. The electrodes exhibited pronounced electrocatalytic activity, lower detection potentials, enhanced signal-to-noise characteristics, and higher reproducibility. The relation between peak current and analyte concentration was linear over about three orders of magnitude. The proposed method had been employed to determine lactose in bovine milk and glucose and fructose in honey with satisfactory results. Because only electroactive substances in the samples could be detected on the paste electrode, the electropherograms of both food samples were simplified to some extent.

  12. Bacillus cereus ATCC 14579 RpoN (Sigma 54 Is a Pleiotropic Regulator of Growth, Carbohydrate Metabolism, Motility, Biofilm Formation and Toxin Production.

    Directory of Open Access Journals (Sweden)

    Hasmik Hayrapetyan

    Full Text Available Sigma 54 is a transcriptional regulator predicted to play a role in physical interaction of bacteria with their environment, including virulence and biofilm formation. In order to study the role of Sigma 54 in Bacillus cereus, a comparative transcriptome and phenotypic study was performed using B. cereus ATCC 14579 WT, a markerless rpoN deletion mutant, and its complemented strain. The mutant was impaired in many different cellular functions including low temperature and anaerobic growth, carbohydrate metabolism, sporulation and toxin production. Additionally, the mutant showed lack of motility and biofilm formation at air-liquid interphase, and this correlated with absence of flagella, as flagella staining showed only WT and complemented strain to be highly flagellated. Comparative transcriptome analysis of cells harvested at selected time points during growth in aerated and static conditions in BHI revealed large differences in gene expression associated with loss of phenotypes, including significant down regulation of genes in the mutant encoding enzymes involved in degradation of branched chain amino acids, carbohydrate transport and metabolism, flagella synthesis and virulence factors. Our study provides evidence for a pleiotropic role of Sigma 54 in B. cereus supporting its adaptive response and survival in a range of conditions and environments.

  13. Proteomics of Fusarium oxysporum race 1 and race 4 reveals enzymes involved in carbohydrate metabolism and ion transport that might play important roles in banana Fusarium wilt.

    Science.gov (United States)

    Sun, Yong; Yi, Xiaoping; Peng, Ming; Zeng, Huicai; Wang, Dan; Li, Bo; Tong, Zheng; Chang, Lili; Jin, Xiang; Wang, Xuchu

    2014-01-01

    Banana Fusarium wilt is a soil-spread fungal disease caused by Fusarium oxysporum. In China, the main virulence fungi in banana are F. oxysporum race 1 (F1, weak virulence) and race 4 (F4, strong virulence). To date, no proteomic analyses have compared the two races, but the difference in virulence between F1 and F4 might result from their differentially expressed proteins. Here we report the first comparative proteomics of F1 and F4 cultured under various conditions, and finally identify 99 protein species, which represent 59 unique proteins. These proteins are mainly involved in carbohydrate metabolism, post-translational modification, energy production, and inorganic ion transport. Bioinformatics analysis indicated that among the 46 proteins identified from F4 were several enzymes that might be important for virulence. Reverse transcription PCR analysis of the genes for 15 of the 56 proteins revealed that their transcriptional patterns were similar to their protein expression patterns. Taken together, these data suggest that proteins involved in carbohydrate metabolism and ion transport may be important in the pathogenesis of banana Fusarium wilt. Some enzymes such as catalase-peroxidase, galactosidase and chitinase might contribute to the strong virulence of F4. Overexpression or knockout of the genes for the F4-specific proteins will help us to further understand the molecular mechanism of Fusarium-induced banana wilt.

  14. Protective Effect of Free and Bound Polyphenol Extracts from Ginger (Zingiber officinale Roscoe on the Hepatic Antioxidant and Some Carbohydrate Metabolizing Enzymes of Streptozotocin-Induced Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Mutiu Idowu Kazeem

    2013-01-01

    Full Text Available This study investigated the hepatoprotective effects of polyphenols from Zingiber officinale on streptozotocin-induced diabetic rats by assessing liver antioxidant enzymes, carbohydrate-metabolizing enzymes and liver function indices. Initial oral glucose tolerance test was conducted using 125 mg/kg, 250 mg/kg, and 500 mg/kg body weight of both free and bound polyphenols from Z. officinale. 28 day daily oral administration of 500 mg/kg body weight of free and bound polyphenols from Z. officinale to streptozotocin-induced (50 mg/kg diabetic rats significantly reduced (P<0.05 the fasting blood glucose compared to control groups. There was significant increase (P<0.05 in the antioxidant enzymes activities in the animals treated with both polyphenols. Similarly, the polyphenols normalised the activities of some carbohydrate metabolic enzymes (hexokinase and phosphofructokinase in the liver of the rats treated with it and significantly reduced (P<0.05 the activities of liver function enzymes. The results from the present study have shown that both free and bound polyphenols from Z. officinale especially the free polyphenol could ameliorate liver disorders caused by diabetes mellitus in rats. This further validates the use of this species as medicinal herb and spice by the larger population of Nigerians.

  15. Bacillus cereus ATCC 14579 RpoN (Sigma 54) Is a Pleiotropic Regulator of Growth, Carbohydrate Metabolism, Motility, Biofilm Formation and Toxin Production.

    Science.gov (United States)

    Hayrapetyan, Hasmik; Tempelaars, Marcel; Nierop Groot, Masja; Abee, Tjakko

    2015-01-01

    Sigma 54 is a transcriptional regulator predicted to play a role in physical interaction of bacteria with their environment, including virulence and biofilm formation. In order to study the role of Sigma 54 in Bacillus cereus, a comparative transcriptome and phenotypic study was performed using B. cereus ATCC 14579 WT, a markerless rpoN deletion mutant, and its complemented strain. The mutant was impaired in many different cellular functions including low temperature and anaerobic growth, carbohydrate metabolism, sporulation and toxin production. Additionally, the mutant showed lack of motility and biofilm formation at air-liquid interphase, and this correlated with absence of flagella, as flagella staining showed only WT and complemented strain to be highly flagellated. Comparative transcriptome analysis of cells harvested at selected time points during growth in aerated and static conditions in BHI revealed large differences in gene expression associated with loss of phenotypes, including significant down regulation of genes in the mutant encoding enzymes involved in degradation of branched chain amino acids, carbohydrate transport and metabolism, flagella synthesis and virulence factors. Our study provides evidence for a pleiotropic role of Sigma 54 in B. cereus supporting its adaptive response and survival in a range of conditions and environments.

  16. Doubling the CO2 Concentration Enhanced the Activity of Carbohydrate-Metabolism Enzymes, Source Carbohydrate Production, Photoassimilate Transport, and Sink Strength for Opuntia ficus-indica.

    Science.gov (United States)

    Wang, N.; Nobel, P. S.

    1996-01-01

    After exposure to a doubled CO2 concentration of 750 [mu]mol mol-1 air for about 3 months glucose and starch in the chlorenchyma of basal cladodes of Opuntia ficus-indica increased 175 and 57%, respectively, compared with the current CO2 concentration of 370 [mu]mol mol-1, but sucrose content was virtually unaffected. Doubling the CO2 concentration increased the nocturnal malate production in basal cladodes by 75%, inorganic phosphate (Pi) by 32%, soluble starch synthase activity by 30%, and sucrose-Pi synthase activity by 146%, but did not affect the activity of hexokinase. Doubling CO2 accelerated phloem transport of sucrose out of the basal cladodes, resulting in a 73% higher dry weight for the daughter cladodes. Doubling CO2 increased the glucose content in 14-d-old daughter cladodes by 167%, increased nocturnal malate production by 22%, decreased total amino acid content by 61%, and increased soluble starch synthase activity by 30% and sucrose synthase activity by 62%. No downward acclimation of photosynthesis during long-term exposure to elevated CO2 concentrations occurs for O. ficus-indica (M. Cui, P.M. Miller, P.S. Nobel [1993] Plant Physiol 103: 519-524; P.S. Nobel, A.A. Israel [1994] J Exp Bot 45: 295-303), consistent with its higher source capacity and sink strength than under current CO2. These changes apparently do not result in Pi limitation of photosynthesis or suppression of genes governing photosynthesis for this perennial Crassulacean acid metabolism species, as occur for some annual crops. PMID:12226228

  17. Doubling the CO2 Concentration Enhanced the Activity of Carbohydrate-Metabolism Enzymes, Source Carbohydrate Production, Photoassimilate Transport, and Sink Strength for Opuntia ficus-indica.

    Science.gov (United States)

    Wang, N.; Nobel, P. S.

    1996-03-01

    After exposure to a doubled CO2 concentration of 750 [mu]mol mol-1 air for about 3 months glucose and starch in the chlorenchyma of basal cladodes of Opuntia ficus-indica increased 175 and 57%, respectively, compared with the current CO2 concentration of 370 [mu]mol mol-1, but sucrose content was virtually unaffected. Doubling the CO2 concentration increased the nocturnal malate production in basal cladodes by 75%, inorganic phosphate (Pi) by 32%, soluble starch synthase activity by 30%, and sucrose-Pi synthase activity by 146%, but did not affect the activity of hexokinase. Doubling CO2 accelerated phloem transport of sucrose out of the basal cladodes, resulting in a 73% higher dry weight for the daughter cladodes. Doubling CO2 increased the glucose content in 14-d-old daughter cladodes by 167%, increased nocturnal malate production by 22%, decreased total amino acid content by 61%, and increased soluble starch synthase activity by 30% and sucrose synthase activity by 62%. No downward acclimation of photosynthesis during long-term exposure to elevated CO2 concentrations occurs for O. ficus-indica (M. Cui, P.M. Miller, P.S. Nobel [1993] Plant Physiol 103: 519-524; P.S. Nobel, A.A. Israel [1994] J Exp Bot 45: 295-303), consistent with its higher source capacity and sink strength than under current CO2. These changes apparently do not result in Pi limitation of photosynthesis or suppression of genes governing photosynthesis for this perennial Crassulacean acid metabolism species, as occur for some annual crops.

  18. Interaction of storage carbohydrates and other cyclic fluxes with central metabolism: A quantitative approach by non-stationary 13C metabolic flux analysis

    NARCIS (Netherlands)

    Suarez Mendez, C.A.; Hanemaaijer, M.; Ten Pierick, A.; Wolters, J.C.; Heijnen, J.J.; Wahl, S.A.

    2016-01-01

    13C labeling experiments in aerobic glucose limited cultures of Saccharomyces cerevisiae at four different growth rates (0.054; 0.101, 0.207, 0.307 h−1) are used for calculating fluxes that include intracellular cycles (e.g., storage carbohydrate cycles, exchange fluxes with amino acids), which are

  19. Interaction of storage carbohydrates and other cyclic fluxes with central metabolism : A quantitative approach by non-stationary 13C metabolic flux analysis

    NARCIS (Netherlands)

    Suarez-Mendez, C. A.; Hanemaaijer, M.; ten Pierick, Angela; Wolters, J. C.; Heijnen, J.J.; Wahl, S. A.

    2016-01-01

    13C labeling experiments in aerobic glucose limited cultures of Saccharomyces cerevisiae at four different growth rates (0.054; 0.101, 0.207, 0.307 h-1) are used for calculating fluxes that include intracellular cycles (e.g., storage carbohydrate cycles, exchange fluxes with amino acids), which are

  20. Carbohydrates as allergens.

    Science.gov (United States)

    Commins, Scott P

    2015-01-01

    Complex carbohydrates are effective inducers of Th2 responses, and carbohydrate antigens can stimulate the production of glycan-specific antibodies. In instances where the antigen exposure occurs through the skin, the resulting antibody production can contain IgE class antibody. The glycan-stimulated IgE may be non-specific but may also be antigen specific. This review focuses on the production of cross-reactive carbohydrate determinants, the recently identified IgE antibody response to a mammalian oligosaccharide epitope, galactose-alpha-1,3-galactose (alpha-gal), as well as discusses practical implications of carbohydrates in allergy. In addition, the biological effects of carbohydrate antigens are reviewed in setting of receptors and host recognition.

  1. Daily training with high carbohydrate availability increases exogenous carbohydrate oxidation during endurance cycling.

    Science.gov (United States)

    Cox, Gregory R; Clark, Sally A; Cox, Amanda J; Halson, Shona L; Hargreaves, Mark; Hawley, John A; Jeacocke, Nikki; Snow, Rodney J; Yeo, Wee Kian; Burke, Louise M

    2010-07-01

    We determined the effects of varying daily carbohydrate intake by providing or withholding carbohydrate during daily training on endurance performance, whole body rates of substrate oxidation, and selected mitochondrial enzymes. Sixteen endurance-trained cyclists or triathletes were pair matched and randomly allocated to either a high-carbohydrate group (High group; n = 8) or an energy-matched low-carbohydrate group (Low group; n = 8) for 28 days. Immediately before study commencement and during the final 5 days, subjects undertook a 5-day test block in which they completed an exercise trial consisting of a 100 min of steady-state cycling (100SS) followed by a 7-kJ/kg time trial on two occasions separated by 72 h. In a counterbalanced design, subjects consumed either water (water trial) or a 10% glucose solution (glucose trial) throughout the exercise trial. A muscle biopsy was taken from the vastus lateralis muscle on day 1 of the first test block, and rates of substrate oxidation were determined throughout 100SS. Training induced a marked increase in maximal citrate synthase activity after the intervention in the High group (27 vs. 34 micromol x g(-1) x min(-1), P < 0.001). Tracer-derived estimates of exogenous glucose oxidation during 100SS in the glucose trial increased from 54.6 to 63.6 g (P < 0.01) in the High group with no change in the Low group. Cycling performance improved by approximately 6% after training. We conclude that altering total daily carbohydrate intake by providing or withholding carbohydrate during daily training in trained athletes results in differences in selected metabolic adaptations to exercise, including the oxidation of exogenous carbohydrate. However, these metabolic changes do not alter the training-induced magnitude of increase in exercise performance.

  2. Biodiversity, ecological determinants, and metabolic exploitation of sourdough microbiota.

    Science.gov (United States)

    De Vuyst, L; Vrancken, G; Ravyts, F; Rimaux, T; Weckx, S

    2009-10-01

    Sourdough is a microbial ecosystem of lactic acid bacteria (LAB) and yeasts in a matrix of mainly cereal flour and water. Culture-dependent and culture-independent microbiological analysis together with metabolite target analyses of different sourdoughs enabled to understand this complex fermentation process. It is difficult to link the species diversity of the sourdough microbiota with the (geographical) type of sourdough and the flour used, although the type and quality of the latter is the main source of autochthonous LAB in spontaneous sourdough fermentations and plays a key role in establishing stable microbial consortia within a short time. Carbohydrate fermentation targeted towards maltose catabolism, the use of external alternative electron acceptors, amino acid transamination reactions, and/or the arginine deiminase pathway are metabolic activities that favour energy production, cofactor (re)cycling, and/or tolerance towards acid stress, and hence contribute to the competitiveness and dominance of certain species of LAB found in sourdoughs. Also, microbial interactions play an important role. The availability of genome sequences for several LAB species that are of importance in sourdough as well as technological advances in the fields of functional genomics, transcriptomics, and proteomics enable new approaches to study sourdough fermentations beyond the single species level and will allow an integral analysis of the metabolic activities and interactions taking place in sourdough. Finally, the implementation of selected starter cultures in sourdough technology is of pivotal importance for the industrial production of sourdoughs to be used as flavour carrier, texture-improving, or health-promoting dough ingredient.

  3. Expanded potential of seleno-carbohydrates as a molecular tool for X-ray structural determination of a carbohydrate-protein complex with single/multi-wavelength anomalous dispersion phasing.

    Science.gov (United States)

    Suzuki, Tatsuya; Makyio, Hisayoshi; Ando, Hiromune; Komura, Naoko; Menjo, Masanori; Yamada, Yusuke; Imamura, Akihiro; Ishida, Hideharu; Wakatsuki, Soichi; Kato, Ryuichi; Kiso, Makoto

    2014-04-01

    Seleno-lactoses have been successfully synthesized as candidates for mimicking carbohydrate ligands for human galectin-9 N-terminal carbohydrate recognition domain (NCRD). Selenium was introduced into the mono- or di-saccharides using p-methylselenobenzoic anhydride (Tol2Se) as a novel selenating reagent. The TolSe-substituted monosaccharides were converted into selenoglycosyl donors or acceptors, which were reacted with coupling partners to afford seleno-lactoses. The seleno-lactoses were converted to the target compounds. The structure of human galectin-9 NCRD co-crystallized with 6-MeSe-lactose was determined with single/multi-wavelength anomalous dispersion (SAD/MAD) phasing and was similar to that of the co-crystal with natural lactose.

  4. Fat and carbohydrate intake over three generations modify growth, metabolism and cardiovascular phenotype in female mice in an age-related manner.

    Directory of Open Access Journals (Sweden)

    Samuel P Hoile

    Full Text Available Environmental challenges such as a high fat diet during pregnancy can induce changes in offspring growth, metabolism and cardiovascular function. However, challenges that are sustained over several generations can induce progressive compensatory metabolic adjustments in young adults. It is not known if such effects persist during ageing. We investigated whether diets with different fat and carbohydrate contents over three generations modifies markers of ageing. Female C57BL/6 F0 mice were fed diets containing 5% or 21% fat (w/w throughout pregnancy and lactation. Female offspring were fed the same diet as their dams until the F3 generation. In each generation, body weight, 24-hour food intake were recorded weekly, and plasma metabolites were measured by colorimetric assays, blood pressure by tail cuff plethysmography and vasoconstriction by myography on postnatal day 90 or 456. There was little effect of diet or generation on phenotypic markers in day 90 adults. There was a significant increase in whole body, liver and heart weight with ageing (d456 in the F3 21% fat group compared to the F1 and F3 5% groups. Fasting plasma glucose concentration was significantly increased with ageing in the 5% group in the F3 generation and in the 21% group in both generations. There was a significant effect of diet and generation on ex-vivo vasoconstriction in ageing females. Differences in dietary fat may induce metabolic compensation in young adults that persist over three generations. However, such compensatory effects decline during ageing.

  5. Protective Effect of Free and Bound Polyphenol Extracts from Ginger (Zingiber officinale Roscoe) on the Hepatic Antioxidant and Some Carbohydrate Metabolizing Enzymes of Streptozotocin-Induced Diabetic Rats.

    Science.gov (United States)

    Kazeem, Mutiu Idowu; Akanji, Musbau Adewunmi; Yakubu, Musa Toyin; Ashafa, Anofi Omotayo Tom

    2013-01-01

    This study investigated the hepatoprotective effects of polyphenols from Zingiber officinale on streptozotocin-induced diabetic rats by assessing liver antioxidant enzymes, carbohydrate-metabolizing enzymes and liver function indices. Initial oral glucose tolerance test was conducted using 125 mg/kg, 250 mg/kg, and 500 mg/kg body weight of both free and bound polyphenols from Z. officinale. 28 day daily oral administration of 500 mg/kg body weight of free and bound polyphenols from Z. officinale to streptozotocin-induced (50 mg/kg) diabetic rats significantly reduced (P diabetes mellitus in rats. This further validates the use of this species as medicinal herb and spice by the larger population of Nigerians.

  6. Rapid and sensitive determination of carbohydrates in foods using high temperature liquid chromatography with evaporative light scattering detection.

    Science.gov (United States)

    Terol, Amanda; Paredes, Eduardo; Maestre, Salvador E; Prats, Soledad; Todolí, José L

    2012-04-01

    In the present work, an evaporative light scattering detector was used as a high-temperature liquid chromatography detector for the determination of carbohydrates. The compounds studied were glucose, fructose, galactose, sucrose, maltose, and lactose. The effect of column temperature on the retention times and detectability of these compounds was investigated. Column heating temperatures ranged from 25 to 175°C. The optimum temperature in terms of peak resolution and detectability with pure water as mobile phase and a liquid flow rate of 1 mL/min was 150°C as it allowed the separation of glucose and the three disaccharides here considered in less than 3 min. These conditions were employed for lactose determination in milk samples. Limits of quantification were between 2 and 4.7 mg/L. On the other hand, a temperature gradient was developed for the simultaneous determination of glucose, fructose, and sucrose in orange juices, due to coelution of monosaccharides at temperatures higher than 70°C, being limits of quantifications between 8.5 and 12 mg/L. The proposed hyphenation was successfully applied to different types of milk and different varieties of oranges and mandarins. Recoveries for spiked samples were close to 100% for all the studied analytes.

  7. Carbohydrate Loading.

    Science.gov (United States)

    Csernus, Marilyn

    Carbohydrate loading is a frequently used technique to improve performance by altering an athlete's diet. The objective is to increase glycogen stored in muscles for use in prolonged strenuous exercise. For two to three days, the athlete consumes a diet that is low in carbohydrates and high in fat and protein while continuing to exercise and…

  8. Carbohydrate microarrays

    DEFF Research Database (Denmark)

    Park, Sungjin; Gildersleeve, Jeffrey C; Blixt, Klas Ola;

    2012-01-01

    In the last decade, carbohydrate microarrays have been core technologies for analyzing carbohydrate-mediated recognition events in a high-throughput fashion. A number of methods have been exploited for immobilizing glycans on the solid surface in a microarray format. This microarray-based technol...

  9. Simultaneous Determination of Binding Constants for Multiple Carbohydrate Hosts in Complex Mixtures

    DEFF Research Database (Denmark)

    Meier, Sebastian; Beeren, Sophie

    2014-01-01

    to determine binding constants for all other detectable and resolvable hosts. With the use of high-resolution 1H−13C HSQC experiments, complexes of amphiphiles with more than 10 different maltooligosaccharides can be resolved. Hereby, the binding capabilities of a set of structurally related hosts can...

  10. Reducing properties, energy efficiency and carbohydrate metabolism in hyperhydric and normal carnation shoots cultured in vitro: a hypoxia stress?

    Science.gov (United States)

    Saher, Shady; Fernández-García, Nieves; Piqueras, Abel; Hellín, Eladio; Olmos, Enrique

    2005-06-01

    Hyperhydricity is considered as a physiological disorder that can be induced by different stressing conditions. In the present work we have studied the metabolic and energetic states of hyperhydric carnation shoots. We have evaluated the hypothesis that hypoxia stress is the main factor affecting the metabolism of hyperhydric leaves. Our results indicate a low level of ATP in hyperhydric tissues, but only slight modifications in pyridine nucleotide contents. Concurrently, the glucose-6-phosphate dehydrogenase (G-6-PDH; EC 1.1.1.49) activity in hyperhydric leaves was increased but glucokinase (GK; EC 2.7.1.2) activity was unchanged. We have observed that the metabolism of pyruvate was altered in hyperhydric tissues by the induction of pyruvate synthesis via NADP-dependent malic enzyme (EC 1.1.1.40). The enzymes of the fermentative metabolism pyruvate decarboxylase (PDC; EC 4.1.1.1) and alcohol dehydrogenase (ADH; EC 1.1.1.1) were highly increased in hyperhydric leaves. Sucrose metabolism was modified in hyperhydric leaves with a high increase in the activity of both synthesis and catabolic enzymes. The analysis of the sucrose, glucose and fructose contents indicated that all of these sugars were accumulated in hyperhydric leaves. However, the pinitol content was drastically decreased in hyperhydric leaves. We consider that these results suggest that hyperhydric leaves of carnation have adapted to hypoxia stress conditions by the induction of the oxidative pentose phosphate and fermentative pathways.

  11. Oral administration of Nigella sativa oil ameliorates the effect of cisplatin on membrane enzymes, carbohydrate metabolism and oxidative damage in rat liver

    Directory of Open Access Journals (Sweden)

    Zeba Farooqui

    2016-01-01

    Full Text Available Cisplatin (CP is a potent anti-cancer drug widely used against solid tumors. However, it exhibits pronounced adverse effects including hepatotoxicity. Several strategies were attempted to prevent CP hepatotoxicity but were not found suitable for therapeutic application. Nigella sativa has been shown to prevent/reduce the progression of certain type of cardiovascular, kidney and liver diseases. Present study investigates whether N. sativa oil (NSO can prevent CP induced hepatotoxic effects. Rats were divided into four groups viz. control, CP, NSO and CPNSO. Animals in CPNSO and NSO group were administered NSO (2 ml/kg bwt, orally with or without single hepatotoxic dose of CP (6 mg/kg bwt, i.p. respectively. CP hepatotoxicity was recorded by increased serum ALT and AST activities. CP treatment caused oxidant/antioxidant imbalances as reflected by increased lipid peroxidation and decreased enzymatic and non-enzymatic antioxidants. Furthermore, the activities of various carbohydrate metabolism and membrane enzymes were altered by CP treatment. In contrast, NSO administration to CP treated rats, markedly ameliorated the CP elicited deleterious alterations in liver. Histopathological observations showed extensive liver damage in CP treated animals while greatly reduced tissue injury in CPNSO group. In conclusion, NSO appears to protect CP induced hepatotoxicity by improving energy metabolism and strengthening antioxidant defense mechanism.

  12. Expression patterns, activities and carbohydrate-metabolizing regulation of sucrose phosphate synthase, sucrose synthase and neutral invertase in pineapple fruit during development and ripening.

    Science.gov (United States)

    Zhang, Xiu-Mei; Wang, Wei; Du, Li-Qing; Xie, Jiang-Hui; Yao, Yan-Li; Sun, Guang-Ming

    2012-01-01

    Differences in carbohydrate contents and metabolizing-enzyme activities were monitored in apical, medial, basal and core sections of pineapple (Ananas comosus cv. Comte de paris) during fruit development and ripening. Fructose and glucose of various sections in nearly equal amounts were the predominant sugars in the fruitlets, and had obvious differences until the fruit matured. The large rise of sucrose/hexose was accompanied by dramatic changes in sucrose phosphate synthase (SPS) and sucrose synthase (SuSy) activities. By contrast, neutral invertase (NI) activity may provide a mechanism to increase fruit sink strength by increasing hexose concentrations. Furthermore, two cDNAs of Ac-sps (accession no. GQ996582) and Ac-ni (accession no. GQ996581) were first isolated from pineapple fruits utilizing conserved amino-acid sequences. Homology alignment reveals that the amino acid sequences contain some conserved function domains. Transcription expression analysis of Ac-sps, Ac-susy and Ac-ni also indicated distinct patterns related to sugar accumulation and composition of pineapple fruits. It suggests that differential expressions of multiple gene families are necessary for sugar metabolism in various parts and developmental stages of pineapple fruit. A cycle of sucrose breakdown in the cytosol of sink tissues could be mediated through both Ac-SuSy and Ac-NI, and Ac-NI could be involved in regulating crucial steps by generating sugar signals to the cells in a temporally and spatially restricted fashion.

  13. Excess nickel modulates activities of carbohydrate metabolizing enzymes and induces accumulation of sugars by upregulating acid invertase and sucrose synthase in rice seedlings.

    Science.gov (United States)

    Mishra, Pallavi; Dubey, R S

    2013-02-01

    The effects of increasing concentrations of nickel sulfate, NiSO(4) (200 and 400 μM) in the growth medium on the content of starch and sugars and activity levels of enzymes involved in starch and sugar metabolism were examined in seedlings of the two Indica rice cvs. Malviya-36 and Pant-12. During a 5-20 day growth period of seedlings in sand cultures, with Ni treatment, no definite pattern of alteration in starch level could be observed in the seedlings. In both roots and shoots of the seedlings Ni treatment led to a significant decrease in activities of starch degrading enzymes α-amylase, β-amylase, whereas starch phosphorylase activity increased. The contents of reducing, non-reducing, and total sugars increased in Ni-treated rice seedlings with a concomitant increase in the activities of sucrose degrading enzymes acid invertase and sucrose synthase. However, the activity of sucrose synthesizing enzyme sucrose phosphate synthase declined. These results suggest that Ni toxicity in rice seedlings causes marked perturbation in metabolism of carbohydrates leading to increased accumulation of soluble sugars. Such perturbation could serve as a limiting factor for growth of rice seedlings in Ni polluted environments and accumulating soluble sugars could serve as compatible solutes in the cells under Ni toxicity conditions.

  14. Effect of trichloroethylene (TCE) toxicity on the enzymes of carbohydrate metabolism, brush border membrane and oxidative stress in kidney and other rat tissues.

    Science.gov (United States)

    Khan, Sheeba; Priyamvada, Shubha; Khan, Sara A; Khan, Wasim; Farooq, Neelam; Khan, Farah; Yusufi, A N K

    2009-07-01

    Trichloroethylene (TCE), an industrial solvent, is a major environmental contaminant. Histopathological examinations revealed that TCE caused liver and kidney toxicity and carcinogenicity. However, biochemical mechanism and tissue response to toxic insult are not completely elucidated. We hypothesized that TCE induces oxidative stress to various rat tissues and alters their metabolic functions. Male Wistar rats were given TCE (1000 mg/kg/day) in corn oil orally for 25 d. Blood and tissues were collected and analyzed for various biochemical and enzymatic parameters. TCE administration increased blood urea nitrogen, serum creatinine, cholesterol and alkaline phosphatase but decreased serum glucose, inorganic phosphate and phospholipids indicating kidney and liver toxicity. Activity of hexokinase, lactate dehydrogenase increased in the intestine and liver whereas decreased in renal tissues. Malate dehydrogenase and glucose-6-phosphatase and fructose-1, 6-bisphosphatase decreased in all tissues whereas increased in medulla. Glucose-6-phosphate dehydrogenase increased but NADP-malic enzyme decreased in all tissues except in medulla. The activity of BBM enzymes decreased but renal Na/Pi transport increased. Superoxide dismutase and catalase activities variably declined whereas lipid peroxidation significantly enhanced in all tissues. The present results indicate that TCE caused severe damage to kidney, intestine, liver and brain; altered carbohydrate metabolism and suppressed antioxidant defense system.

  15. Evaluation of Health-Related Quality of Life according to Carbohydrate Metabolism Status: A Spanish Population-Based Study (Di@bet.es Study

    Directory of Open Access Journals (Sweden)

    C. Marcuello

    2012-01-01

    Full Text Available Objective. To evaluate the association between diabetes mellitus and health-related quality of life (HRQOL controlled for several sociodemographic and anthropometric variables, in a representative sample of the Spanish population. Methods. A population-based, cross-sectional, and cluster sampling study, with the entire Spanish population as the target population. Five thousand and forty-seven participants (2162/2885 men/women answered the HRQOL short form 12-questionnaire (SF-12. The physical (PCS-12 and the mental component summary (MCS-12 scores were assessed. Subjects were divided into four groups according to carbohydrate metabolism status: normal, prediabetes, unknown diabetes (UNKDM, and known diabetes (KDM. Logistic regression analyses were conducted. Results. Mean PCS-12/MCS-12 values were 50.9±8.5/ 47.6±10.2, respectively. Men had higher scores than women in both PCS-12 (51.8±7.2 versus 50.3±9.2; P<0.001 and MCS-12 (50.2±8.5 versus 45.5±10.8; P<0.001. Increasing age and obesity were associated with a poorer PCS-12 score. In women lower PCS-12 and MCS-12 scores were associated with a higher level of glucose metabolism abnormality (prediabetes and diabetes, (P<0.0001 for trend, but only the PCS-12 score was associated with altered glucose levels in men (P<0.001 for trend. The Odds Ratio adjusted for age, body mass index (BMI and educational level, for a PCS-12 score below the median was 1.62 (CI 95%: 1.2–2.19; P<0.002 for men with KDM and 1.75 for women with KDM (CI 95%: 1.26–2.43; P<0.001, respectively. Conclusion. Current study indicates that increasing levels of altered carbohydrate metabolism are accompanied by a trend towards decreasing quality of life, mainly in women, in a representative sample of Spanish population.

  16. Quantitative determination of carboxylic acids, amino acids, carbohydrates, ethanol and hydroxymethylfurfural in honey by (1)H NMR.

    Science.gov (United States)

    del Campo, Gloria; Zuriarrain, Juan; Zuriarrain, Andoni; Berregi, Iñaki

    2016-04-01

    A method using (1)H NMR spectroscopy has been developed to quantify simultaneously thirteen analytes in honeys without previous separation or pre-concentration steps. The method has been successfully applied to determine carboxylic acids (acetic, formic, lactic, malic and succinic acids), amino acids (alanine, phenylalanine, proline and tyrosine), carbohydrates (α- and β-glucose and fructose), ethanol and hydroxymethylfurfural in eucalyptus, heather, lavender, orange blossom, thyme and rosemary honeys. Quantification was performed by using the area of the signal of each analyte in the honey spectra, together with external standards. The regression analysis of the signal area against concentration plots, used for the calibration of each analyte, indicates a good linearity over the concentration ranges found in honeys, with correlation coefficients higher than 0.985 for the thirteen quantified analytes. The recovery studies give values over the 93.7-105.4% range with relative standard deviations lower than 7.4%. Good precision, with relative standard deviations over the range of 0.78-5.21% is obtained.

  17. Carbohydrate malabsorption

    DEFF Research Database (Denmark)

    Rumessen, J J; Nordgaard-Andersen, I; Gudmand-Høyer, E

    1994-01-01

    Previous studies in small series of healthy adults have suggested that parallel measurement of hydrogen and methane resulting from gut fermentation may improve the precision of quantitative estimates of carbohydrate malabsorption. Systematic, controlled studies of the role of simultaneous hydrogen...

  18. Determination of water-extractable nonstructural carbohydrates, including inulin, in grass samples with high-performance anion exchange chromatography and pulsed amperometric detection.

    Science.gov (United States)

    Raessler, Michael; Wissuwa, Bianka; Breul, Alexander; Unger, Wolfgang; Grimm, Torsten

    2008-09-10

    The exact and reliable determination of carbohydrates in plant samples of different origin is of great importance with respect to plant physiology. Additionally, the identification and quantification of carbohydrates are necessary for the evaluation of the impact of these compounds on the biogeochemistry of carbon. To attain this goal, it is necessary to analyze a great number of samples with both high sensitivity and selectivity within a limited time frame. This paper presents a rugged and easy method that allows the isocratic chromatographic determination of 12 carbohydrates and sugar alcohols from one sample within 30 min. The method was successfully applied to a variety of plant materials with particular emphasis on perennial ryegrass samples of the species Lolium perenne. The method was easily extended to the analysis of the polysaccharide inulin after its acidic hydrolysis into the corresponding monomers without the need for substantial change of chromatographic conditions or even the use of enzymes. It therefore offers a fundamental advantage for the analysis of the complex mixture of nonstructural carbohydrates often found in plant samples.

  19. Accurate determinations of one-bond 13C-13C couplings in 13C-labeled carbohydrates.

    Science.gov (United States)

    Azurmendi, Hugo F; Freedberg, Darón I

    2013-03-01

    Carbon plays a central role in the molecular architecture of carbohydrates, yet the availability of accurate methods for (1)D(CC) determination has not been sufficiently explored, despite the importance that such data could play in structural studies of oligo- and polysaccharides. Existing methods require fitting intensity ratios of cross- to diagonal-peaks as a function of the constant-time (CT) in CT-COSY experiments, while other methods utilize measurement of peak separation. The former strategies suffer from complications due to peak overlap, primarily in regions close to the diagonal, while the latter strategies are negatively impacted by the common occurrence of strong coupling in sugars, which requires a reliable assessment of their influence in the context of RDC determination. We detail a (13)C-(13)C CT-COSY method that combines a variation in the CT processed with diagonal filtering to yield (1)J(CC) and RDCs. The strategy, which relies solely on cross-peak intensity modulation, is inspired in the cross-peak nulling method used for J(HH) determinations, but adapted and extended to applications where, like in sugars, large one-bond (13)C-(13)C couplings coexist with relatively small long-range couplings. Because diagonal peaks are not utilized, overlap problems are greatly alleviated. Thus, one-bond couplings can be determined from different cross-peaks as either active or passive coupling. This results in increased accuracy when more than one determination is available, and in more opportunities to measure a specific coupling in the presence of severe overlap. In addition, we evaluate the influence of strong couplings on the determination of RDCs by computer simulations. We show that individual scalar couplings are notably affected by the presence of strong couplings but, at least for the simple cases studied, the obtained RDC values for use in structural calculations were not, because the errors introduced by strong couplings for the isotropic and

  20. Accurate determinations of one-bond 13C-13C couplings in 13C-labeled carbohydrates

    Science.gov (United States)

    Azurmendi, Hugo F.; Freedberg, Darón I.

    2013-03-01

    Carbon plays a central role in the molecular architecture of carbohydrates, yet the availability of accurate methods for 1DCC determination has not been sufficiently explored, despite the importance that such data could play in structural studies of oligo- and polysaccharides. Existing methods require fitting intensity ratios of cross- to diagonal-peaks as a function of the constant-time (CT) in CT-COSY experiments, while other methods utilize measurement of peak separation. The former strategies suffer from complications due to peak overlap, primarily in regions close to the diagonal, while the latter strategies are negatively impacted by the common occurrence of strong coupling in sugars, which requires a reliable assessment of their influence in the context of RDC determination. We detail a 13C-13C CT-COSY method that combines a variation in the CT processed with diagonal filtering to yield 1JCC and RDCs. The strategy, which relies solely on cross-peak intensity modulation, is inspired in the cross-peak nulling method used for JHH determinations, but adapted and extended to applications where, like in sugars, large one-bond 13C-13C couplings coexist with relatively small long-range couplings. Because diagonal peaks are not utilized, overlap problems are greatly alleviated. Thus, one-bond couplings can be determined from different cross-peaks as either active or passive coupling. This results in increased accuracy when more than one determination is available, and in more opportunities to measure a specific coupling in the presence of severe overlap. In addition, we evaluate the influence of strong couplings on the determination of RDCs by computer simulations. We show that individual scalar couplings are notably affected by the presence of strong couplings but, at least for the simple cases studied, the obtained RDC values for use in structural calculations were not, because the errors introduced by strong couplings for the isotropic and oriented phases are very

  1. The metabolic response to a high-protein, low-carbohydrate diet in men with type 2 diabetes mellitus.

    Science.gov (United States)

    Nuttall, Frank Q; Gannon, Mary C

    2006-02-01

    We recently reported that in subjects with untreated type 2 diabetes mellitus, a 5-week diet of 20:30:50 carbohydrate-protein-fat ratio resulted in a dramatic decrease in 24-hour integrated glucose and total glycohemoglobin compared with a control diet of 55:15:30. Body weight, total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and serum ketones were unchanged; insulin and nonesterified fatty acids were decreased. We now present data on other hormones and metabolites considered to be affected by dietary macronutrient changes. The test diet resulted in an elevated fasting plasma total insulin-like growth factor 1, but not growth hormone. Urinary aldosterone was unchanged; free cortisol was increased, although not statistically. Urinary pH and calcium were unchanged. Blood pressure, creatinine clearance, serum vitamin B12, folate, homocysteine, thyroid hormones, and uric acid were unchanged. Serum creatinine was modestly increased. Plasma alpha-amino nitrogen and urea nitrogen were increased. Urea production rate was increased such that a new steady state was present. The calculated urea production rate accounted for 87% of protein ingested on the control diet, but only 67% on the test diet, suggesting net nitrogen retention on the latter. The lack of negative effects, improved glucose control, and a positive nitrogen balance suggest beneficial effects for subjects with type 2 diabetes mellitus at risk for loss of lean body mass.

  2. A High-Fat Diet Differentially Affects the Gut Metabolism and Blood Lipids of Rats Depending on the Type of Dietary Fat and Carbohydrate

    Directory of Open Access Journals (Sweden)

    Adam Jurgoński

    2014-02-01

    Full Text Available The aim of this model study was to investigate how selected gut functions and serum lipid profile in rats on high-fat diets differed according to the type of fat (saturated vs. unsaturated and carbohydrate (simple vs. complex. The experiment was conducted using 32 male Wistar rats distributed into 4 groups of 8 animals each. For 4 weeks, the animals were fed group-specific diets that were either rich in lard or soybean oil (16% of the diet as the source of saturated or unsaturated fatty acids, respectively; further, each lard- and soybean oil-rich diet contained either fructose or corn starch (45.3% of the diet as the source of simple or complex carbohydrates, respectively. Both dietary factors contributed to changes in the caecal short-chain fatty acid concentrations, especially to the butyrate concentration, which was higher in rats fed lard- and corn starch-rich diets compared to soybean oil- and fructose-rich diets, respectively. The lowest butyrate concentration was observed in rats fed the soybean oil- and fructose-rich diet. On the other hand, the lard- and fructose-rich diet vs. the other dietary combinations significantly increased serum total cholesterol concentration, to more than two times serum triglyceride concentration and to more than five times the atherogenic index. In conclusion, a high-fat diet rich in fructose can unfavorably affect gut metabolism when unsaturated fats are predominant in the diet or the blood lipids when a diet is rich in saturated fats.

  3. Metabolismo de los hidratos de carbono en el síndrome de ovario poliquístico Metabolism of Carbohydrates in the Polycystic Ovary Syndrome

    Directory of Open Access Journals (Sweden)

    Melina Sabán

    2012-06-01

    Full Text Available El síndrome de ovario poliquístico (SOP es una entidad fisiopatológica compleja caracterizada por la presencia de: Irregularidades menstruales, hirsutismo, acné, obesidad y resistencia a la insulina. La frecuencia de intolerancia a los hidratos de carbono y diabetes mellitus en pacientes con SOP es del 30-40 % y 5-10 %; respectivamente. En pacientes con SOP el riesgo de desarrollar diabetes mellitus tipo 2 es mayor que el de la población general. Se debe destacar que la tolerancia a la glucosa alterada, representa un factor de riesgo importante para el desarrollo de diabetes y enfermedad cardiovascular. El método más sensible para detectar tolerancia a la glucosa alterada, en mujeres con SOP, es la prueba de tolerancia oral a la glucosa. De esta manera, el objetivo fue analizar los distintos mecanismos implicados en el SOP y las alteraciones del metabolismo de los hidratos carbono. Los autores declaran no poseer conflictos de interés.Polycystic ovary syndrome (PCO is a complex pathophysiological entity characterized by the presence of: menstrual irregularities, hirsutism, acne, obesity and insulin resistance. The estimated frequency of intolerance to carbohydrates and diabetes mellitus in patients with PCOS is 30-40 % and 5-10 %, respectively. In patients with PCO, the risk of developing type 2 diabetes mellitus is higher than in the general population. It should be noted that glucose intolerance is a major risk factor for developing diabetes and cardiovascular disease. The most sensitive test to detect glucose intolerance in women with PCO is the oral glucose tolerance test. Thus, the aim of this study was to analyze the different mechanisms involved in PCO and disorders of carbohydrate metabolism. No financial conflicts of interest exist.

  4. Various Terpenoids Derived from Herbal and Dietary Plants Function as PPAR Modulators and Regulate Carbohydrate and Lipid Metabolism

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Goto

    2010-01-01

    Full Text Available Several herbal plants improve medical conditions. Such plants contain many bioactive phytochemicals. Terpenoids (also called “isoprenoids” constitute one of the largest families of natural products accounting for more than 40,000 individual compounds of both primary and secondary metabolisms. In particular, terpenoids are contained in many herbal plants, and several terpenoids have been shown to be available for pharmaceutical applications, for example, artemisinin and taxol as malaria and cancer medicines, respectively. Various terpenoids are contained in many plants for not only herbal use but also dietary use. In this paper, we describe several bioactive terpenoids contained in herbal or dietary plants, which can modulate the activities of ligand-dependent transcription factors, namely, peroxisome proliferator-activated receptors (PPARs. Because PPARs are dietary lipid sensors that control energy homeostasis, daily eating of these terpenoids might be useful for the management for obesity-induced metabolic disorders, such as type 2 diabetes, hyperlipidemia, insulin resistance, and cardiovascular diseases.

  5. Durum wheat seedling responses to simultaneous high light and salinity involve a fine reconfiguration of amino acids and carbohydrate metabolism.

    Science.gov (United States)

    Woodrow, Pasqualina; Ciarmiello, Loredana F; Annunziata, Maria Grazia; Pacifico, Severina; Iannuzzi, Federica; Mirto, Antonio; D'Amelia, Luisa; Dell'Aversana, Emilia; Piccolella, Simona; Fuggi, Amodio; Carillo, Petronia

    2017-03-01

    Durum wheat plants are extremely sensitive to drought and salinity during seedling and early development stages. Their responses to stresses have been extensively studied to provide new metabolic targets and improving the tolerance to adverse environments. Most of these studies have been performed in growth chambers under low light [300-350 µmol m(-2) s(-1) photosynthetically active radiation (PAR), LL]. However, in nature plants have to face frequent fluctuations of light intensities that often exceed their photosynthetic capacity (900-2000 µmol m(-2) s(-1) ). In this study we investigated the physiological and metabolic changes potentially involved in osmotic adjustment and antioxidant defense in durum wheat seedlings under high light (HL) and salinity. The combined application of the two stresses decreased the water potential and stomatal conductance without reducing the photosynthetic efficiency of the plants. Glycine betaine (GB) synthesis was inhibited, proline and glutamate content decreased, while γ-aminobutyric acid (GABA), amides and minor amino acids increased. The expression level and enzymatic activities of Δ1-pyrroline-5-carboxylate synthetase, asparagine synthetase and glutamate decarboxylase, as well as other enzymatic activities of nitrogen and carbon metabolism, were analyzed. Antioxidant enzymes and metabolites were also considered. The results showed that the complex interplay seen in durum wheat plants under salinity at LL was simplified: GB and antioxidants did not play a main role. On the contrary, the fine tuning of few specific primary metabolites (GABA, amides, minor amino acids and hexoses) remodeled metabolism and defense processes, playing a key role in the response to simultaneous stresses.

  6. Inactivation of nitrate reductase alters metabolic branching of carbohydrate fermentation in the cyanobacterium Synechococcus sp. strain PCC 7002.

    Science.gov (United States)

    Qian, Xiao; Kumaraswamy, G Kenchappa; Zhang, Shuyi; Gates, Colin; Ananyev, Gennady M; Bryant, Donald A; Dismukes, G Charles

    2016-05-01

    To produce cellular energy, cyanobacteria reduce nitrate as the preferred pathway over proton reduction (H2 evolution) by catabolizing glycogen under dark anaerobic conditions. This competition lowers H2 production by consuming a large fraction of the reducing equivalents (NADPH and NADH). To eliminate this competition, we constructed a knockout mutant of nitrate reductase, encoded by narB, in Synechococcus sp. PCC 7002. As expected, ΔnarB was able to take up intracellular nitrate but was unable to reduce it to nitrite or ammonia, and was unable to grow photoautotrophically on nitrate. During photoautotrophic growth on urea, ΔnarB significantly redirects biomass accumulation into glycogen at the expense of protein accumulation. During subsequent dark fermentation, metabolite concentrations--both the adenylate cellular energy charge (∼ATP) and the redox poise (NAD(P)H/NAD(P))--were independent of nitrate availability in ΔnarB, in contrast to the wild type (WT) control. The ΔnarB strain diverted more reducing equivalents from glycogen catabolism into reduced products, mainly H2 and d-lactate, by 6-fold (2.8% yield) and 2-fold (82.3% yield), respectively, than WT. Continuous removal of H2 from the fermentation medium (milking) further boosted net H2 production by 7-fold in ΔnarB, at the expense of less excreted lactate, resulting in a 49-fold combined increase in the net H2 evolution rate during 2 days of fermentation compared to the WT. The absence of nitrate reductase eliminated the inductive effect of nitrate addition on rerouting carbohydrate catabolism from glycolysis to the oxidative pentose phosphate (OPP) pathway, indicating that intracellular redox poise and not nitrate itself acts as the control switch for carbon flux branching between pathways.

  7. Fat/carbohydrate ratio but not energy density determines snack food intake and activates brain reward areas.

    Science.gov (United States)

    Hoch, Tobias; Kreitz, Silke; Gaffling, Simone; Pischetsrieder, Monika; Hess, Andreas

    2015-05-14

    The snack food potato chips induces food intake in ad libitum fed rats, which is associated with modulation of the brain reward system and other circuits. Here, we show that food intake in satiated rats is triggered by an optimal fat/carbohydrate ratio. Like potato chips, an isocaloric fat/carbohydrate mixture influenced whole brain activity pattern of rats, affecting circuits related e.g. to reward/addiction, but the number of modulated areas and the extent of modulation was lower compared to the snack food itself.

  8. Fat/carbohydrate ratio but not energy density determines snack food intake and activates brain reward areas

    OpenAIRE

    Hoch, Tobias; Kreitz, Silke; Gaffling, Simone; Pischetsrieder, Monika; Hess, Andreas

    2015-01-01

    The snack food potato chips induces food intake in ad libitum fed rats, which is associated with modulation of the brain reward system and other circuits. Here, we show that food intake in satiated rats is triggered by an optimal fat/carbohydrate ratio. Like potato chips, an isocaloric fat/carbohydrate mixture influenced whole brain activity pattern of rats, affecting circuits related e.g. to reward/addiction, but the number of modulated areas and the extent of modulation was lower compared t...

  9. Effects of a diet rich in arabinoxylan and resistant starch compared with a diet rich in refined carbohydrates on postprandial metabolism and features of the metabolic syndrome

    DEFF Research Database (Denmark)

    Schioldan, Anne Grethe; Gregersen, Søren; Hald, Stine;

    2017-01-01

    Purpose: Low intake of dietary fibre is associated with the development of type 2 diabetes. Dyslipidaemia plays a key role in the pathogenesis of type 2 diabetes. Knowledge of the impact of dietary fibres on postprandial lipaemia is, however, sparse. This study aimed in subjects with metabolic......, crossover study with HCD and WCD for 4-week. Postprandial metabolism was evaluated by a meal-challenge test and insulin sensitivity was assessed by HOMA-IR and Matsuda index. Furthermore, fasting cholesterols, serum-fructosamine, circulating inflammatory markers, ambulatory blood pressure and intrahepatic...... lipid content were measured. Results: We found no diet effects on postprandial lipaemia. However, there was a significant diet × statin interaction on total cholesterol (P = 0.02) and LDL cholesterol (P = 0.002). HCD decreased total cholesterol (−0.72 mmol/l, 95% CI (−1.29; −0.14) P = 0.03) and LDL...

  10. Beta- lactam antibiotics stimulate biofilm formation in non-typeable haemophilus influenzae by up-regulating carbohydrate metabolism.

    Science.gov (United States)

    Wu, Siva; Li, Xiaojin; Gunawardana, Manjula; Maguire, Kathleen; Guerrero-Given, Debbie; Schaudinn, Christoph; Wang, Charles; Baum, Marc M; Webster, Paul

    2014-01-01

    Non-typeable Haemophilus influenzae (NTHi) is a common acute otitis media pathogen, with an incidence that is increased by previous antibiotic treatment. NTHi is also an emerging causative agent of other chronic infections in humans, some linked to morbidity, and all of which impose substantial treatment costs. In this study we explore the possibility that antibiotic exposure may stimulate biofilm formation by NTHi bacteria. We discovered that sub-inhibitory concentrations of beta-lactam antibiotic (i.e., amounts that partially inhibit bacterial growth) stimulated the biofilm-forming ability of NTHi strains, an effect that was strain and antibiotic dependent. When exposed to sub-inhibitory concentrations of beta-lactam antibiotics NTHi strains produced tightly packed biofilms with decreased numbers of culturable bacteria but increased biomass. The ratio of protein per unit weight of biofilm decreased as a result of antibiotic exposure. Antibiotic-stimulated biofilms had altered ultrastructure, and genes involved in glycogen production and transporter function were up regulated in response to antibiotic exposure. Down-regulated genes were linked to multiple metabolic processes but not those involved in stress response. Antibiotic-stimulated biofilm bacteria were more resistant to a lethal dose (10 µg/mL) of cefuroxime. Our results suggest that beta-lactam antibiotic exposure may act as a signaling molecule that promotes transformation into the biofilm phenotype. Loss of viable bacteria, increase in biofilm biomass and decreased protein production coupled with a concomitant up-regulation of genes involved with glycogen production might result in a biofilm of sessile, metabolically inactive bacteria sustained by stored glycogen. These biofilms may protect surviving bacteria from subsequent antibiotic challenges, and act as a reservoir of viable bacteria once antibiotic exposure has ended.

  11. Beta- lactam antibiotics stimulate biofilm formation in non-typeable haemophilus influenzae by up-regulating carbohydrate metabolism.

    Directory of Open Access Journals (Sweden)

    Siva Wu

    Full Text Available Non-typeable Haemophilus influenzae (NTHi is a common acute otitis media pathogen, with an incidence that is increased by previous antibiotic treatment. NTHi is also an emerging causative agent of other chronic infections in humans, some linked to morbidity, and all of which impose substantial treatment costs. In this study we explore the possibility that antibiotic exposure may stimulate biofilm formation by NTHi bacteria. We discovered that sub-inhibitory concentrations of beta-lactam antibiotic (i.e., amounts that partially inhibit bacterial growth stimulated the biofilm-forming ability of NTHi strains, an effect that was strain and antibiotic dependent. When exposed to sub-inhibitory concentrations of beta-lactam antibiotics NTHi strains produced tightly packed biofilms with decreased numbers of culturable bacteria but increased biomass. The ratio of protein per unit weight of biofilm decreased as a result of antibiotic exposure. Antibiotic-stimulated biofilms had altered ultrastructure, and genes involved in glycogen production and transporter function were up regulated in response to antibiotic exposure. Down-regulated genes were linked to multiple metabolic processes but not those involved in stress response. Antibiotic-stimulated biofilm bacteria were more resistant to a lethal dose (10 µg/mL of cefuroxime. Our results suggest that beta-lactam antibiotic exposure may act as a signaling molecule that promotes transformation into the biofilm phenotype. Loss of viable bacteria, increase in biofilm biomass and decreased protein production coupled with a concomitant up-regulation of genes involved with glycogen production might result in a biofilm of sessile, metabolically inactive bacteria sustained by stored glycogen. These biofilms may protect surviving bacteria from subsequent antibiotic challenges, and act as a reservoir of viable bacteria once antibiotic exposure has ended.

  12. ACTIVE TEACHING-LEARNING METHODOLOGY TO APPROACH CARBOHYDRATE AND LIPID METABOLISM: An interdisciplinary strategy that involved the Moodle tool in the development of Problem Based Learning

    Directory of Open Access Journals (Sweden)

    J. M.P. Borges

    2015-08-01

    Full Text Available Highlight the relevance of topics studied for professional practice and associate approaches provided by different areas of knowledge are pointed as essential aspects for significant learning. Contextualize the study of metabolic pathways, linking the clinical use and expanding the vision with the approach of cellular and molecular biology discipline was the motivation for the development of the strategy described and evaluated here. In this work, starting from the concept of active methodology of teaching and learning was developed a methodological strategy to approach the carbohydrate and lipid metabolism. This strategy included: questioning the content through the clinical case study on diabetes mellitus and hypercholesterolemia, individual and collective study in the external space the classroom with the help of Moodle tool, classroom discussion accompanied by the teacher, preparation of seminar, evaluation of the content through individual written test and evaluation of the method. Analysis of student involvement with method indicates an average frequency of 98% in the practical class of Biochemistry discipline, effective participation in the preparation of seminars, an increase of 2 points in average of individual written evaluation. As for the fact that the cases were studied in two curricular components, the answers show that 92% of students feel more compression. Only 6% of students think  unnecessary to interdisciplinary approach. As for the different steps of the method, the answers show that 99% of students consider how relevant the initial self-study and discussions in class. However, only 50% of students appreciated the use of Moodle tool. Thus, student responses indicated the perception of the effectiveness of the method for their ability to: stimulate interest in learning, stimulate the search for answers through research and the building of learning.

  13. Rice alcohol dehydrogenase 1 promotes survival and has a major impact on carbohydrate metabolism in the embryo and endosperm when seeds are germinated in partially oxygenated water

    Science.gov (United States)

    Takahashi, Hirokazu; Greenway, Hank; Matsumura, Hideo; Tsutsumi, Nobuhiro; Nakazono, Mikio

    2014-01-01

    Background and Aims Rice (Oryza sativa) has the rare ability to germinate and elongate a coleoptile under oxygen-deficient conditions, which include both hypoxia and anoxia. It has previously been shown that ALCOHOL DEHYDROGENASE 1 (ADH1) is required for cell division and cell elongation in the coleoptile of submerged rice seedlings by means of studies using a rice ADH1-deficient mutant, reduced adh activity (rad). The aim of this study was to understand how low ADH1 in rice affects carbohydrate metabolism in the embryo and endosperm, and lactate and alanine synthesis in the embryo during germination and subsequent coleoptile growth in submerged seedlings. Methods Wild-type and rad mutant rice seeds were germinated and grown under complete submergence. At 1, 3, 5 and 7 d after imbibition, the embryo and endosperm were separated and several of their metabolites were measured and compared. Key results In the rad embryo, the rate of ethanol fermentation was halved, while lactate and alanine concentrations were 2·4- and 5·7- fold higher in the mutant than in the wild type. Glucose and fructose concentrations in the embryos increased with time in the wild type, but not in the rad mutant. The rad mutant endosperm had lower amounts of the α-amylases RAMY1A and RAMY3D, resulting in less starch degradation and lower glucose concentrations. Conclusions These results suggest that ADH1 is essential for sugar metabolism via glycolysis to ethanol fermentation in both the embryo and endosperm. In the endosperm, energy is presumably needed for synthesis of the amylases and for sucrose synthesis in the endosperm, as well as for sugar transport to the embryo. PMID:24431339

  14. Absence of effects of dietary wheat bran on the activities of some key enzymes of carbohydrate and lipid metabolism in mouse liver and adipose tissue.

    Science.gov (United States)

    Stanley, J C; Lambadarios, J A; Newsholme, E A

    1986-03-01

    1. The effects of a 100 g/kg dietary substitution of wheat bran on the body-weight gain, food consumption and faecal dry weight of mice given a high-sucrose diet and on the activities of some key enzymes of carbohydrate and lipid metabolism in liver and adipose tissue were studied. 2. Wheat bran had no effect on body-weight gain, food consumption or faecal dry weight. 3. Wheat bran had no effect on the activities of hepatic glucose-6-phosphate dehydrogenase (EC 1.1.1.49), 6-phosphogluconate dehydrogenase (EC 1.1.1.44), malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+) (EC 1.1.1.40), ATP-citrate (pro-3S)-lyase (EC 4.1.3.8), pyruvate kinase (EC 2.7.1.40) and fructose-1,6-bisphosphatase (EC 3.1.3.11). The activity of hepatic 6-phosphofructokinase (EC 2.7.1.11) increased but only when expressed on a body-weight basis. 4. Wheat bran had no effect on the activities of adipose tissue glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+), ATP-citrate (pro-3S)-lyase, hexokinase (EC 2.7.1.1), 6-phosphofructokinase and pyruvate kinase. 5. These results suggest that unlike guar gum and bagasse, wheat bran does not change the flux through some pathways of lipogenesis in liver and adipose tissue when mice are given high-sucrose diets.

  15. Effect of a vitamin D{sub 3}-based nutritional supplement ('Videchol') on carbohydrate metabolism of rats following chronic low dose-rate irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Starikovich, L.S.; Vernikovska, Ya.I.; Vigovska, T.V.; Veliky, M.M. [Lviv Ivan Franko National University, Department of Biochemistry, Lviv (Ukraine); Becerril Aragon, G.A. [Lviv Ivan Franko National University, Department of Biochemistry, Lviv (Ukraine)]. E-mail: gabriel_aragon@mail.ru

    2001-09-01

    In this study we evaluated the effects of the administration of a vitamin D{sub 3} preparation 'Videchol' to chronically irradiated rats (1 cGy day{sup -1}) by the assessment of the activities of several glycolytic enzymes: lactic dehydrogenase (LDH) (EC 1.1.1.28), pyruvate kinase (PK) (EC 2.7.1.40) and hexokinase (HK) (EC 2.7.1.1), in populations of erythroid and myeloid bone marrow cells. Videchol treatment of irradiated rats led to the normalisation of HK and LDH activity at cumulative doses of around 30 cGy in granulocyte-monocyte cells and to normalisation of LDH and PK activities in erythroid cells starting at 20 cGy in comparison with irradiated rats who did not receive Videchol. The reaction kinetic parameters of LDH in erythrocytes changed according to the redistribution pattern of the isozymes throughout the different stages of the experiment. The administration of Videchol to irradiated rats led to a rearrangement of the LDH isozymes ratio characterised by kinetic properties more comparable to those of the controls. Thus, vitamin D{sub 3} appears to induce a normalisation of carbohydrate metabolism in rats chronically irradiated with low dose-rate ionising radiation. (author)

  16. Effect of the Ratio of Non-fibrous Carbohydrates to Neutral Detergent Fiber and Protein Structure on Intake, Digestibility, Rumen Fermentation, and Nitrogen Metabolism in Lambs.

    Science.gov (United States)

    Ma, T; Tu, Y; Zhang, N F; Deng, K D; Diao, Q Y

    2015-10-01

    This study aimed to investigate the effect of the ratio of non-fibrous carbohydrates to neutral detergent fibre (NFC/NDF) and undegraded dietary protein (UDP) on rumen fermentation and nitrogen metabolism in lambs. Four Dorper×thin-tailed Han crossbred lambs, averaging 62.3±1.9 kg of body weight and 10 mo of age, were randomly assigned to four dietary treatments of combinations of two levels of NFC/NDF (1.0 and 1.7) and two levels of UDP (35% and 50% of crude protein [CP]). Duodenal nutrient flows were measured with dual markers of Yb and Co, and microbial N (MN) synthesis was estimated using (15)N. High UDP decreased organic matter (OM) intake (p = 0.002) and CP intake (p = 0.005). Ruminal pH (p<0.001), ammonia nitrogen (NH3-N; p = 0.008), and total volatile fatty acids (p<0.001) were affected by dietary NFC/NDF. The ruminal concentration of NH3-N was also affected by UDP (p<0.001). The duodenal flow of total MN (p = 0.007) was greater for lambs fed the high NFC/NDF diet. The amount of metabolisable N increased with increasing dietary NFC:NDF (p = 0.02) or UDP (p = 0.04). In conclusion, the diets with high NFC/NDF (1.7) and UDP (50% of CP) improved metabolisable N supply to lambs.

  17. Proteomic analysis of Arabidopsis thaliana leaves in response to acute boron deficiency and toxicity reveals effects on photosynthesis, carbohydrate metabolism, and protein synthesis.

    Science.gov (United States)

    Chen, Mei; Mishra, Sasmita; Heckathorn, Scott A; Frantz, Jonathan M; Krause, Charles

    2014-02-15

    Boron (B) stress (deficiency and toxicity) is common in plants, but as the functions of this essential micronutrient are incompletely understood, so too are the effects of B stress. To investigate mechanisms underlying B stress, we examined protein profiles in leaves of Arabidopsis thaliana plants grown under normal B (30 μM), compared to plants transferred for 60 and 84 h (i.e., before and after initial visible symptoms) in deficient (0 μM) or toxic (3 mM) levels of B. B-responsive polypeptides were sequenced by mass spectrometry, following 2D gel electrophoresis, and 1D gels and immunoblotting were used to confirm the B-responsiveness of some of these proteins. Fourteen B-responsive proteins were identified, including: 9 chloroplast proteins, 6 proteins of photosynthetic/carbohydrate metabolism (rubisco activase, OEC23, photosystem I reaction center subunit II-1, ATPase δ-subunit, glycolate oxidase, fructose bisphosphate aldolase), 6 stress proteins, and 3 proteins involved in protein synthesis (note that the 14 proteins may fall into multiple categories). Most (8) of the B-responsive proteins decreased under both B deficiency and toxicity; only 3 increased with B stress. Boron stress decreased, or had no effect on, 3 of 4 oxidative stress proteins examined, and did not affect total protein. Hence, our results indicate relatively early specific effects of B stress on chloroplasts and protein synthesis.

  18. Effects of a low- or a high-carbohydrate diet on performance, energy system contribution, and metabolic responses during supramaximal exercise.

    Science.gov (United States)

    Lima-Silva, Adriano E; Pires, Flavio O; Bertuzzi, Romulo; Silva-Cavalcante, Marcos D; Oliveira, Rodrigo S F; Kiss, Maria Augusta; Bishop, David

    2013-09-01

    The purpose of the present study was to examine the effects of a high- or low-carbohydrate (CHO) diet on performance, aerobic and anaerobic contribution, and metabolic responses during supramaximal exercise. Six physically-active men first performed a cycling exercise bout at 115% maximal oxygen uptake to exhaustion after following their normal diet for 48 h (∼50% of CHO, control test). Seventy-two hours after, participants performed a muscle glycogen depletion exercise protocol, followed by either a high- or low-CHO diet (∼70 and 25% of CHO, respectively) for 48 h, in a random, counterbalanced order. After the assigned diet period (48 h), the supramaximal cycling exercise bout (115% maximal oxygen consumption) to exhaustion was repeated. The low-CHO diet reduced time to exhaustion when compared with both the control and the high-CHO diet (-19 and -32%, respectively, p diet was accompanied by a lower total aerobic energy contribution (-39%) compared with the high-CHO diet (p 0.05). The low-CHO diet was associated with a lower blood lactate concentration (p 0.05). In conclusion, a low-CHO diet reduces both performance and total aerobic energy provision during supramaximal exercise. As peak K(+) concentration was similar, but time to exhaustion shorter, the low-CHO diet was associated with an earlier attainment of peak plasma K(+) concentration.

  19. Comparative proteomic analysis of oil palm leaves infected with Ganoderma boninense revealed changes in proteins involved in photosynthesis, carbohydrate metabolism, and immunity and defense.

    Science.gov (United States)

    Jeffery Daim, Leona Daniela; Ooi, Tony Eng Keong; Ithnin, Nalisha; Mohd Yusof, Hirzun; Kulaveerasingam, Harikrishna; Abdul Majid, Nazia; Karsani, Saiful Anuar

    2015-08-01

    The basidiomycete fungal pathogen Ganoderma boninense is the causative agent for the incurable basal stem rot (BSR) disease in oil palm. This disease causes significant annual crop losses in the oil palm industry. Currently, there is no effective method for disease control and elimination, nor is any molecular marker for early detection of the disease available. An understanding of how BSR affects protein expression in plants may help identify and/or assist in the development of an early detection protocol. Although the mode of infection of BSR disease is primarily via the root system, defense-related genes have been shown to be expressed in both the root and leafs. Thus, to provide an insight into the changes in the global protein expression profile in infected plants, comparative 2DE was performed on leaf tissues sampled from palms with and without artificial inoculation of the Ganoderma fungus. Comparative 2DE revealed that 54 protein spots changed in abundance. A total of 51 protein spots were successfully identified by LC-QTOF MS/MS. The majority of these proteins were those involved in photosynthesis, carbohydrate metabolism as well as immunity and defense.

  20. Integrated responses to exhaustive exercise and recovery in rainbow trout white muscle: acid-base, phosphogen, carbohydrate, lipid, ammonia, fluid volume and electrolyte metabolism.

    Science.gov (United States)

    Wang, Y; Heigenhauser, G J; Wood, C M

    1994-10-01

    White muscle and arterial blood plasma were sampled at rest and during 4 h of recovery from exhaustive exercise in rainbow trout. A compound respiratory and metabolic acidosis in the blood was accompanied by increases in plasma lactate (in excess of the metabolic acid load), pyruvate, glucose, ammonia and inorganic phosphate levels, large elevations in haemoglobin concentration and haematocrit, red cell swelling, increases in the levels of most plasma electrolytes, but no shift of fluid out of the extracellular fluid (ECF) into the intracellular fluid (ICF) of white muscle. The decrease in white muscle pHi was comparable to that in pHe; both recovered by 4 h. Creatine phosphate and ATP levels were both reduced by 40% after exercise, the former recovering within 0.25 h, whereas the latter remained depressed until 4 h. Changes in creatine concentration mirrored those in creatine phosphate, whereas changes in IMP and ammonia concentration mirrored those in ATP. White muscle glycogen concentration was reduced 90% primarily by conversion to lactate; recovery was slow, to only 40% of resting glycogen levels by 4 h. During this period, most of the lactate and metabolic acid were retained in white muscle and there was excellent conservation of carbohydrate, suggesting that in situ glycogenesis rather than oxidation was the major fate of lactate. The redox state ([NAD+]/[NADH]) of the muscle cytoplasm, estimated from ICF lactate and pyruvate levels and pHi, remained unchanged from resting levels, challenging the traditional view of the 'anaerobic' production of lactate. Furthermore, the membrane potential, estimated from levels of ICF and ECF electrolytes using the Goldman equation, remained unchanged throughout, challenging the view that white muscle becomes depolarized after exhaustive exercise. Indeed, ICF K+ concentration was elevated. Lactate was distributed well out of electrochemical equilibrium with either the membrane potential (Em) or the pHe-pHi difference

  1. Learning about Carbohydrates

    Science.gov (United States)

    ... What Happens in the Operating Room? Learning About Carbohydrates KidsHealth > For Kids > Learning About Carbohydrates A A ... of energy for the body. Two Types of Carbohydrates There are two major types of carbohydrates (or ...

  2. Determination of carbohydrates in tobacco by pressurized liquid extraction combined with a novel ultrasound-assisted dispersive liquid-liquid microextraction method.

    Science.gov (United States)

    Cai, Kai; Hu, Deyu; Lei, Bo; Zhao, Huina; Pan, Wenjie; Song, Baoan

    2015-07-02

    A novel derivatization-ultrasonic assisted-dispersive liquid-liquid microextraction (UA-DLLME) method for the simultaneous determination of 11 main carbohydrates in tobacco has been developed. The combined method involves pressurized liquid extraction (PLE), derivatization, and UA-DLLME, followed by the analysis of the main carbohydrates with a gas chromatography-flame ionization detector (GC-FID). First, the PLE conditions were optimized using a univariate approach. Then, the derivatization methods were properly compared and optimized. The aldononitrile acetate method combined with the O-methoxyoxime-trimethylsilyl method was used for derivatization. Finally, the critical variables affecting the UA-DLLME extraction efficiency were searched using fractional factorial design (FFD) and further optimized using Doehlert design (DD) of the response surface methodology. The optimum conditions were found to be 44 μL for CHCl3, 2.3 mL for H2O, 11% w/v for NaCl, 5 min for the extraction time and 5 min for the centrifugation time. Under the optimized experimental conditions, the detection limit of the method (LODs) and linear correlation coefficient were found to be in the range of 0.06-0.90 μg mL(-1) and 0.9987-0.9999. The proposed method was successfully employed to analyze three flue-cured tobacco cultivars, among which the main carbohydrate concentrations were found to be very different.

  3. Fish –based diet- correlations between metabolism of carbohydrates, lipidis and proteins. Study case population of the Sulina Town, Danube Delta

    Directory of Open Access Journals (Sweden)

    Georgiana ENE

    2016-06-01

    Full Text Available According to literature data, the normal values of biochemical parameters in blood vary by sex, age, geographical region, and type of diet. The aim of this study was to analyze the benefits of a fish-based diet among the population of Sulina, in the Danube Delta (3,663 individuals, by performing a comparative hepatic evaluation, lipid profile, serum glucose levels and total protein profile of these patients. Fish is an important source of protein with high biological value, containing all essential aminoacids and low lipid levels. The novelty of the research is represented by the analyzed geographical area. The Danube Delta had no medical analysis laboratory until 2010, when the RoutineMed Sulina laboratory was opened. Patients had a set of biochemical tests in the RoutineMed Sulina laboratory and declared they eat fish or fish-based products at least once a week. Tests were performed on 200 patients for the evaluation of the liver of these patients: Aspartate Amino Transferase, alanine amino transferase, de Ritis ratio, High Density Lipoprotein, Low Density Lipoprotein, total lipids, total cholesterol, triglycerides and 200 tests for the evaluation of the serum glucose levels and total protein. Both women and men were involved in the research and patients were grouped into age ranges: 20-40 years, 40-60 years, > 60 years. The values obtained were statistically analyzed using the SPSS v. 20 software and then compared to the ranges considered normal for these parameters. The results obtained showed that patients with a fish-based diet seem to be healthier than those with a diet in which fish meat is scarce, as their blood biochemical parameters values are closer to normal, which leads to the conclusion that including fish and fish products in people's regular diet is beneficial in preventing lipid, protein and carbohydrate metabolism disorders and preserving the overall health of the body.

  4. PANCREATIC AND EXTRA-PANCREATIC EFFECTS OF INCRETINS AND PERSPECTIVES FOR STUDYING ENTEROINSULIN HORMONAL SYSTEM DURING GESTATIONAL DISORDER OF CARBOHYDRATE METABOLISM

    Directory of Open Access Journals (Sweden)

    T. V. Saprina

    2013-01-01

    Full Text Available The absence of an ideal medicine for the treatment of patients with type 2 diabetes, that would be able to provide not only high quality and constant monitoring of glycemia without increasing body weight, with no risk of hypoglycemia, with no negative impact on the heart, kidneys, liver, but could also ensure the preservation of the secretory function of β-cells, makes scientists continue to search for new opportunities to influence the occurrence and progression of T2D.Gastric inhibitory polypeptide (GIP and glucagon-like peptide-1 (GLP-1 are the two primary incretin hormones secreted from the intestine on ingestion of glucose or nutrients to stimulate insulin secretion from pancreatic β-cells. Within the pancreas, GIP and GLP-1 together promote β-cell proliferation and inhibit apoptosis, thereby expanding pancreatic β-cell mass, while GIP enhances postprandial glucagon response and GLP-1 suppresses it. In adipose tissues, GIP but not GLP-1 facilitates fat deposition. In bone, GIP promotes bone formation while GLP-1 inhibits bone absorption. In the brain, both GIP and GLP-1 are thought to be involved in memory formation as well as the control of appetite. In addition to these differences, secretion of GIP and GLP-1 and their insulinotropic effects on β-cells have been shown to differ in patients with type 2 diabetes compared to healthy subjects.Enteroinsulin hormones' role in the development of gestational disorder of carbohydrate metabolism is poorly understood.In a review article we analyze the publications that summarize what is known about the pancreatic and extra-pancreatic GIP and GLP-1-effects compared with healthy subjects and type 2 diabetes patients. The aspects of gestational diabetes pathophysiology and the perspectives for studying enteroinsulin hormonal system during pregnancy are also discussed in the article.

  5. [Effect of fragmentation and quality of carbohydrates diet on metabolic control parameters in insulin treated type 2 diabetic individuals].

    Science.gov (United States)

    Sambra Vásquez, Verónica; Tapia Fernández, Carolina; Vega Soto, Claudia

    2015-04-01

    Introducción: Actualmente no existe consenso en relación al fraccionamiento, cantidad y calidad de los hidratos de carbono (CHO) que debieran seguir los sujetos diabéticos tipo 2 insulino requirentes (DM2IR). Objetivo: Determinar la relación entre el fraccionamiento de la dieta, la calidad de CHO disponibles en cada tiempo de comida y los parámetros de control metabólico en sujetos con DM2IR con una o doble dosis de insulina de acción intermedia. Métodos: Se evaluaron a 40 sujetos con DM2IR, mediante encuestas alimentarias para obtener la cantidad de CHO, índice glicémico (IG), carga glicémica (CG) de los tiempos de comida y el fraccionamiento de la dieta. El control metabólico se determinó por exámenes de laboratorio (hemoglobina glicada; HbA1c, glicemia venosa de ayuno) y glicemias capilares de ayuno (GlicA), preprandiales (GlicPre), postprandiales (GlicPost) y “antes de dormir” (GlicAd) con hemoglucotest. Se aplicaron análisis estadísticos considerando significativo un p.

  6. Determination of the action modes of cellulases from hydrolytic profiles over a time course using fluorescence-assisted carbohydrate electrophoresis.

    Science.gov (United States)

    Zhang, Qing; Zhang, Xiaomei; Wang, Peipei; Li, Dandan; Chen, Guanjun; Gao, Peiji; Wang, Lushan

    2015-03-01

    Fluorescence-assisted carbohydrate electrophoresis (FACE) is a sensitive and simple method for the separation of oligosaccharides. It relies on labeling the reducing ends of oligosaccharides with a fluorophore, followed by PAGE. Concentration changes of oligosaccharides following hydrolysis of a carbohydrate polymer could be quantitatively measured continuously over time using the FACE method. Based on the quantitative analysis, we suggested that FACE was a relatively high-throughput, repeatable, and suitable method for the analysis of the action modes of cellulases. On account of the time courses of their hydrolytic profiles, the apparent processivity was used to show the different action modes of cellulases. Cellulases could be easily differentiated as exoglucanases, β-glucosidases, or endoglucanases. Moreover, endoglucanases from the same glycoside hydrolases family had a variety of apparent processivity, indicating the different modes of action. Endoglucanases with the same binding capacities and hydrolytic activities had similar oligosaccharide profiles, which aided in their classification. The hydrolytic profile of Trichoderma reesei Cel12A, an endoglucanases from T. reesei, contained glucose, cellobiose, and cellotriose, which revealed that it may have a new glucosidase activity, corresponding to that of EC 3.2.1.74. A hydrolysate study of a T. reesei Cel12A-N20A mutant demonstrated that the FACE method was sufficiently sensitive to detect the influence of a single-site mutation on enzymatic activity.

  7. METABOLISM

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Objective: To determine the allele frequencies of genetic variants 373 Ala→Pro and 451 Arg→Gln of cholesteryl ester transfer protein (CETP) and to explore their potential impacts on serum lipid metabolism. Methods: The genotypes in CETP codon 373 and 451 in 91 German healthy students and 409 an-

  8. The determination of standard metabolic rate in fishes.

    Science.gov (United States)

    Chabot, D; Steffensen, J F; Farrell, A P

    2016-01-01

    This review and data analysis outline how fish biologists should most reliably estimate the minimal amount of oxygen needed by a fish to support its aerobic metabolic rate (termed standard metabolic rate; SMR). By reviewing key literature, it explains the theory, terminology and challenges underlying SMR measurements in fishes, which are almost always made using respirometry (which measures oxygen uptake, ṀO2 ). Then, the practical difficulties of measuring SMR when activity of the fish is not quantitatively evaluated are comprehensively explored using 85 examples of ṀO2 data from different fishes and one crustacean, an analysis that goes well beyond any previous attempt. The main objective was to compare eight methods to estimate SMR. The methods were: average of the lowest 10 values (low10) and average of the 10% lowest ṀO2 values, after removing the five lowest ones as outliers (low10%), mean of the lowest normal distribution (MLND) and quantiles that assign from 10 to 30% of the data below SMR (q0·1 , q0·15 , q0·2 , q0·25 and q0·3 ). The eight methods yielded significantly different SMR estimates, as expected. While the differences were small when the variability was low amongst the ṀO2 values, they were important (>20%) for several cases. The degree of agreement between the methods was related to the c.v. of the observations that were classified into the lowest normal distribution, the c.v. MLND (C.V.MLND ). When this indicator was low (≤5·4), it was advantageous to use the MLND, otherwise, one of the q0·2 or q0·25 should be used. The second objective was to assess if the data recorded during the initial recovery period in the respirometer should be included or excluded, and the recommendation is to exclude them. The final objective was to determine the minimal duration of experiments aiming to estimate SMR. The results show that 12 h is insufficient but 24 h is adequate. A list of basic recommendations for practitioners who use respirometry

  9. The Correlation Between Soluble Carbohydrate Metabolism and Lipid Accumulation in Castor Seeds%蓖麻种子油脂累积与可溶性糖变化的关系

    Institute of Scientific and Technical Information of China (English)

    张洋; 刘爱忠

    2016-01-01

    The relationship between soluble carbohydrates metabolism and lipid accumulation in the development of castor seeds was studied by HPLC,RNA-seq sequencing and radioactive carbon isotope tracing method. Soluble carbohydrates in developing castor seeds were mainly composed of glucose,fructose and sucrose,and decreased obviously with seed development and oil accumulation. The significant negative correlation between sucrose content and lipid accumulation(r=0.980)was observed. Hexose-to-sucrose ratio was much higher and the genes related to carbohydrates metabolism were highly expressed in the early stage of seed development. Especially,sucrose synthase played the key role in carbohydrates metabolism. Hexose-to-sucrose ratio was decreased and the genes involved in carbohydrates metabolism were down regulated with the rapid accumulation of seed oil during the middle and late developmental stages,while the expressions of genes related to fatty acid synthesis and lipid accumulation increased significantly. Confirmed by 14C-sucrose isotope tracing experiments,the conversion of carbohydrates to oil was significantly inhibited by reducing the sucrose intake;consequently lipid accumulation was limited in developing castor seeds. Therefore,soluble carbohydrates metabolism(mainly sucrose)may play an important role in the process of lipid accumulation in castor seeds.%通过高效液相色谱、RNA-seq测序和放射性碳同位素示踪等技术研究了蓖麻种子发育过程中可溶性糖代谢与油脂累积过程的关系。结果表明,蓖麻种子可溶性糖主要由葡萄糖、果糖和蔗糖构成。随着种子发育和油脂累积,可溶性糖含量呈现明显的下降趋势。其中蔗糖含量变化与油脂累积存在极显著的负相关性(r=0.980)。在种子发育早期,己糖/蔗糖比值较高,糖代谢相关基因大量表达,其中蔗糖合成酶在蔗糖代谢过程中起关键性作用;而在发育中后期,随着种子油脂快速

  10. Investigating the Influence of (Deoxy)fluorination on the Lipophilicity of Non‐UV‐Active Fluorinated Alkanols and Carbohydrates by a New log P Determination Method

    Science.gov (United States)

    Wang, Zhong; Compain, Guillaume; Paumelle, Vincent; Fontenelle, Clement Q.; Wells, Neil; Weymouth‐Wilson, Alex

    2015-01-01

    Abstract Property tuning by fluorination is very effective for a number of purposes, and currently increasingly investigated for aliphatic compounds. An important application is lipophilicity (log P) modulation. However, the determination of log P is cumbersome for non‐UV‐active compounds. A new variation of the shake‐flask log P determination method is presented, enabling the measurement of log P for fluorinated compounds with or without UV activity regardless of whether they are hydrophilic or lipophilic. No calibration curves or measurements of compound masses/aliquot volumes are required. With this method, the influence of fluorination on the lipophilicity of fluorinated aliphatic alcohols was determined, and the log P values of fluorinated carbohydrates were measured. Interesting trends and changes, for example, for the dependence on relative stereochemistry, are reported. PMID:26592706

  11. Investigating the Influence of (Deoxy)fluorination on the Lipophilicity of Non-UV-Active Fluorinated Alkanols and Carbohydrates by a New log P Determination Method.

    Science.gov (United States)

    Linclau, Bruno; Wang, Zhong; Compain, Guillaume; Paumelle, Vincent; Fontenelle, Clement Q; Wells, Neil; Weymouth-Wilson, Alex

    2016-01-11

    Property tuning by fluorination is very effective for a number of purposes, and currently increasingly investigated for aliphatic compounds. An important application is lipophilicity (log P) modulation. However, the determination of log P is cumbersome for non-UV-active compounds. A new variation of the shake-flask log P determination method is presented, enabling the measurement of log P for fluorinated compounds with or without UV activity regardless of whether they are hydrophilic or lipophilic. No calibration curves or measurements of compound masses/aliquot volumes are required. With this method, the influence of fluorination on the lipophilicity of fluorinated aliphatic alcohols was determined, and the log P values of fluorinated carbohydrates were measured. Interesting trends and changes, for example, for the dependence on relative stereochemistry, are reported.

  12. 复方口服避孕药对糖代谢和脂代谢的影响%Influence of Combination Oral Contraceptives on Carbohydrates and Lipids Metabolism

    Institute of Scientific and Technical Information of China (English)

    王巍; 王蔼明; 姜文; 贾晓宁

    2012-01-01

    Combination oral contraceptives (COCs) should affect a series of metabolic factors, such as carbohydrates and lipids profile. The metabolic effects of the COCs seem to be related to their types and dose. The lower doses of estrogen influence the metabolism smaller. The metabolic effects of the progestins seem to be related to their androgenic properties. Non-androgenic or anti-androgenic progestins exert minimal influence on the lipid profile and carbohydrate metabolism. The carbohydrates and lipids metabolic effects of different kinds of COCs, different routes of delivery, and different methods of administration are discussed in this article. The metabolic effect of oral contraceptives on women with PCOS are discussed at the same time. This review are expected to reinforce the benefits and the risks of COCs.%复方口服避孕药可以影响一系列代谢因素的改变,如糖代谢和脂代谢相关指标.雌、孕激素对代谢的影响因其剂量和种类而异.雌激素剂量越低对代谢的影响越小;孕激素对代谢的影响与其雄激素样特性有关,非雄激素样或抗雄激素样特性的孕激素对糖代谢和脂代谢影响最小.本文分别就不同类型口服避孕药、不同给药途径和不同给药方式对糖代谢和脂代谢的影响,以及在避孕药的特殊使用人群多囊卵巢综合征患者中糖代谢和脂代谢的变化加以综述,使我们能够对避孕药有更加准确和客观的认识.

  13. Rapid determination of carbohydrates, ash, and extractives contents of straw using attenuated total reflectance fourier transform mid-infrared spectroscopy.

    Science.gov (United States)

    Tamaki, Yukihiro; Mazza, Giuseppe

    2011-06-22

    Analysis of the chemical components of lignocellulosic biomass is essential to understanding its potential for utilization. Mid-infrared spectroscopy and partial least-squares regression were used for rapid measurement of the carbohydrate (total glycans; glucan; xylan; galactan; arabinan; mannan), ash, and extractives content of triticale and wheat straws. Calibration models for total glycans, glucan, and extractives showed good and excellent predictive performance on the basis of slope, r², RPD, and R/SEP criteria. The xylan model showed good and acceptable predictive performance. However, the ash model was evaluated as providing only approximate quantification and screening. The models for galactan, arabinan, and mannan indicated poor and insufficient prediction for application. Most models could predict both triticale and wheat straw samples with the same degree of accuracy. Mid-infrared spectroscopic techniques coupled with partial least-squares regression can be used for rapid prediction of total glycans, glucan, xylan, and extractives in triticale and wheat straw samples.

  14. Size structure, not metabolic scaling rules, determines fisheries reference points

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Beyer, Jan

    2015-01-01

    that even though small species have a higher productivity than large species their resilience towards fishing is lower than expected from metabolic scaling rules. Further, we show that the fishing mortality leading to maximum yield per recruit is an ill-suited reference point. The theory can be used...... these empirical relations is lacking. Here, we combine life-history invariants, metabolic scaling and size-spectrum theory to develop a general size- and trait-based theory for demography and recruitment of exploited fish stocks. Important concepts are physiological or metabolic scaled mortalities and flux...... of individuals or their biomass to size. The theory is based on classic metabolic relations at the individual level and uses asymptotic size W∞ as a trait. The theory predicts fundamental similarities and differences between small and large species in vital rates and response to fishing. The central result...

  15. A double-blind comparative study of the effects of a 23-day oral contraceptive regimen with 20 microg ethinyl estradiol and 75 microg gestodene and a 21-day regimen with 30 microg ethinyl estradiol and 75 microg gestodene on hemostatic variables, lipids, and carbohydrate metabolism.

    Science.gov (United States)

    Endrikat, J; Klipping, C; Gerlinger, C; Ruebig, A; Schmidt, W; Holler, T; Düsterberg, B

    2001-10-01

    In this double-blind study we compared the influence of two oral contraceptives, a 23-day regimen with 20 microg ethinyl estradiol and 75 microg gestodene (23-day 20/75) and a 21-day regimen with 30 microg ethinyl estradiol and 75 microg gestodene (21-day 30/75), on hemostatic variables, lipids, and carbohydrate metabolism. The volunteers received the preparations daily for six 28-day cycles. Hemostatic variables and lipids were measured at baseline and after six treatment cycles. Carbohydrate metabolism was assessed by determination of the area under the curve (AUC) of carbohydrate parameters after oral glucose tolerance tests performed at baseline and after three treatment cycles. Data from 33 volunteers in each group were obtained. No significant differences between the effects of both treatments on the hemostatic system were detected. Neither the overall change of all hemostatic variables from baseline to treatment Cycle 6 [defined as primary target variable in the study] nor the change of any of the individual hemostatic parameters differed significantly between the treatment groups. Likewise, no significant nor clinically relevant differences in the effects of both treatments on the volunteers' lipid profiles were detected. The data on carbohydrate variables suggested a slightly more favorable influence of the 23-day 20/75 regimen. The increase of the glucose AUCs after three cycles tended to be stronger with the 21-day 30/75 regimen than with the 23-day 20/75 regimen. In addition, the AUCs for insulin and C-peptide were slightly reduced after three cycles with the 23-day 20/75 regimen but slightly increased with the 21-day 30/75 regimen. Both study treatments were safe and well tolerated by the volunteers as shown by the nature and frequency of adverse events, the routine laboratory examinations, and the physical and gynecological examinations. Both preparations provided adequate contraceptive reliability. The only pregnancy during treatment was attributable

  16. Experimentally determined temperature thresholds for Arctic plankton community metabolism

    Directory of Open Access Journals (Sweden)

    J. M. Holding

    2013-01-01

    Full Text Available Climate warming is especially severe in the Arctic, where the average temperature is increasing 0.4 °C per decade, two to three times higher than the global average rate. Furthermore, the Arctic has lost more than half of its summer ice extent since 1980 and predictions suggest that the Arctic will be ice free in the summer as early as 2050, which could increase the rate of warming. Predictions based on the metabolic theory of ecology assume that temperature increase will enhance metabolic rates and thus both the rate of primary production and respiration will increase. However, these predictions do not consider the specific metabolic balance of the communities. We tested, experimentally, the response of Arctic plankton communities to seawater temperature spanning from 1 °C to 10 °C. Two types of communities were tested, open-ocean Arctic communities from water collected in the Barents Sea and Atlantic influenced fjord communities from water collected in the Svalbard fjord system. Metabolic rates did indeed increase as suggested by metabolic theory, however these results suggest an experimental temperature threshold of 5 °C, beyond which the metabolism of plankton communities shifts from autotrophic to heterotrophic. This threshold is also validated by field measurements across a range of temperatures which suggested a temperature 5.4 °C beyond which Arctic plankton communities switch to heterotrophy. Barents Sea communities showed a much clearer threshold response to temperature manipulations than fjord communities.

  17. Construction of 12 EST libraries and characterization of a 12,226 EST dataset for chicory (Cichorium intybus root, leaves and nodules in the context of carbohydrate metabolism investigation

    Directory of Open Access Journals (Sweden)

    Boutry Marc

    2009-01-01

    Full Text Available Abstract Background The industrial chicory, Cichorium intybus, is a member of the Asteraceae family that accumulates fructan of the inulin type in its root. Inulin is a low calories sweetener, a texture agent and a health promoting ingredient due to its prebiotic properties. Average inulin chain length is a critical parameter that is genotype and temperature dependent. In the context of the study of carbohydrate metabolism and to get insight into the transcriptome of chicory root and to visualize temporal changes of gene expression during the growing season, we obtained and characterized 10 cDNA libraries from chicory roots regularly sampled in field during a growing season. A leaf and a nodule libraries were also obtained for comparison. Results Approximately 1,000 Expressed Sequence Tags (EST were obtained from each of twelve cDNA libraries resulting in a 12,226 EST dataset. Clustering of these ESTs returned 1,922 contigs and 4,869 singlets for a total of 6,791 putative unigenes. All ESTs were compared to public sequence databases and functionally classified. Data were specifically searched for sequences related to carbohydrate metabolism. Season wide evolution of functional classes was evaluated by comparing libraries at the level of functional categories and unigenes distribution. Conclusion This chicory EST dataset provides a season wide outlook of the genes expressed in the root and to a minor extent in leaves and nodules. The dataset contains more than 200 sequences related to carbohydrate metabolism and 3,500 new ESTs when compared to other recently released chicory EST datasets, probably because of the season wide coverage of the root samples. We believe that these sequences will contribute to accelerate research and breeding of the industrial chicory as well as of closely related species.

  18. Zinc-α2-glycoprotein is unrelated to gestational diabetes: anthropometric and metabolic determinants in pregnant women and their offspring.

    Directory of Open Access Journals (Sweden)

    Silvia Näf

    Full Text Available CONTEXT: Zinc-α2-Glycoprotein (ZAG is an adipokine with lipolytic action and is positively associated with adiponectin in adipose tissue. We hypothesize that ZAG may be related with hydrocarbonate metabolism disturbances observed in gestational diabetes mellitus (GDM. OBJECTIVE: The aim of this study was to analyze serum ZAG concentration and its relationship with carbohydrate metabolism in pregnant women and its influence on fetal growth. DESIGN: 207 pregnant women (130 with normal glucose tolerance (NGT and 77 with GDM recruited in the early third trimester and their offspring were studied. Cord blood was obtained at delivery and neonatal anthropometry was assessed in the first 48 hours. ZAG was determined in maternal serum and cord blood. RESULTS: ZAG concentration was lower in cord blood than in maternal serum, but similar concentration was observed in NGT and GDM pregnant women. Also similar levels were found between offspring of NGT and GDM women. In the bivariate analysis, maternal ZAG (mZAG was positively correlated with adiponectin and HDL cholesterol, and negatively correlated with insulin and triglyceride concentrations, and HOMA index. On the other hand, cord blood ZAG (cbZAG was positively correlated with fat-free mass, birth weight and gestational age at delivery. After adjusting for confounding variables, gestational age at delivery and HDL cholesterol emerged as the sole determinants of cord blood ZAG and maternal ZAG concentrations, respectively. CONCLUSION: mZAG was not associated with glucose metabolism during pregnancy. ZAG concentration was lower in cord blood compared with maternal serum. cbZAG was independently correlated with gestational age at delivery, suggesting a role during the accelerated fetal growth during latter pregnancy.

  19. Experimentally determined temperature thresholds for Arctic plankton community metabolism

    OpenAIRE

    J. M. Holding; Duarte, C. M.; Arrieta, J. M.; R. Vaquer-Sunyer; Coello-Camba, A.; P. Wassmann; S. Agustí

    2013-01-01

    Climate warming is especially severe in the Arctic, where the average temperature is increasing 0.4 C per decade, two to three times higher than the global average rate. Furthermore, the Arctic has lost more than half of its summer ice extent since 1980 and predictions suggest that the Arctic will be ice free in the summer as early as 2050, which could increase the rate of warming. Predictions based on the metabolic theory of ecology assume that temperature increase will enhance metabolic rat...

  20. Determinants of drug metabolism in early neonatal life

    NARCIS (Netherlands)

    K. Allegaert (Karel); J.N. van den Anker (John); G. Naulaers; J.N. de Hoon

    2007-01-01

    textabstractClinical pharmacology intends to predict drug-specific effects and side effects based on pharmacokinetics (i.e. absorption, distribution, metabolism and elimination) and pharmacodynamics (i.e. dose/effect relationship). Developmental pharmacology focuses on the maturational aspects of th

  1. Progress on carbohydrate metabolism regulating antioxidant capacity of postharvest Chinese bayberry fruit%糖代谢调控杨梅果实采后抗氧化活性机制研究进展

    Institute of Scientific and Technical Information of China (English)

    施丽愉; 陈伟; 苏新国; 杨震峰

    2013-01-01

    There are accumulated data indicating that the natural antioxidant compounds from Chinese bayberry fruits have biological properties which can enhance human health. Since antioxidant capacity is be-coming an important quality parameter for postharvest fruit, it is focusing on maintaining and improvement of antioxidant activity in fruit during postharvest storage. Carbohydrate metabolism is one of the most important physiological activities of postharvest fruit, and is also closely related to the biosynthesis and metabolism of anthocyanin and phenolic. This paper introduced the antioxidant properties of postharvest Chinese bayberry fruit, and focused on the research progress of carbohydrate metabolism regulating antioxidant capacity in post-harvest Chinese bayberry fruit. Moreover, this paper also indicated the future research highlights to the specific mechanism of carbohydrate metabolism in the biosynthesis and metabolism of anthocyanin and phenolic in bayberry fruit.%杨梅果实中天然抗氧化物质对人类健康的作用日益受到人们的重视,抗氧化活性的大小已成为衡量果实采后品质的一个重要指标,维持和提高果实采后抗氧化能力已成为果实采后贮运保鲜研究中的热点。糖代谢是果实采后主要的生理活动之一,与果实采后花色苷和酚类物质的代谢存在密切的联系。本文简要介绍了杨梅果实的抗氧化特性,重点综述了糖代谢调控果实采后抗氧化活性机制的研究进展,提出了糖代谢调控杨梅果实采后花色苷和酚类物质合成代谢机制的研究展望。

  2. Influence of high carbohydrate versus high fat diet in ozone induced pulmonary injury and systemic metabolic impairment in a Brown Norway (BN) rat model of healthy aging

    Science.gov (United States)

    Rationale: Air pollution has been recently linked to the increased prevalence of metabolic syndrome. It has been postulated that dietary risk factors might exacerbate air pollution-induced metabolic impairment. We have recently reported that ozone exposure induces acute systemic ...

  3. Effect of Different Rice-Crab Coculture Modes on Soil Carbohydrates

    Institute of Scientific and Technical Information of China (English)

    YAN Ying; LIU Ming-da; YANG Dan; ZHANG Wei; AN Hui; WANG Yao-jing; XIE Hong-tu; ZHANG Xu-dong

    2014-01-01

    Traditional agricultural systems have contributed to food and livelihood security. Rice-crab coculture (RC) is an important eco-agricultural process in rice production in northern China. Recognizing the soil fertility in RC may help develop novel sustainable agriculture. Soil carbohydrates are important factors in determining soil fertility in different culture modes. In this study, soil carbohydrates were analyzed under three different culture modes including rice monoculture (RM), conventional rice-crab coculture (CRC) and organic rice-crab coculture (ORC). Results showed that the contents of soil organic carbon and carbohydrates were signiifcantly higher in the ORC than those in RM. The increasing effect was greater with increased organic manure. Similar tendency was found in CRC, but the overall effect was less pronounced compared with ORC. Carbohydrates were more sensitive to RC mode and manure amendment than soil organic carbon. Compare to RM, the (Gal+Man)/(Ara+Xyl) ratio decreased in all the RC modes, indicating a relative enrichment in plant-derived carbohydrates due to the input of crab feed and manure. While the increasing (Gal+Man)/(Ara+Xyl) ratio in ORC modes with increased organic manure suggested that crab activity and metabolism induced microbially derived carbohydrates accumulation. The lower GluN/MurA ratio in ORC indicated an enhancement of bacteria contribution to SOM turnover in a short term. The ifndings reveal that the ORC mode could improve the quantity and composition of soil carbohydrates, effectively, to ensure a sustainable use of paddy soil.

  4. Carbohydrates and Diabetes

    Science.gov (United States)

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Carbohydrates and Diabetes KidsHealth > For Teens > Carbohydrates and Diabetes A A A What's in this ... that you should keep track of how many carbohydrates (carbs) you eat. But what exactly are carbohydrates ...

  5. Microbial metabolic activity in soil as measured by dehydrogenase determinations

    Science.gov (United States)

    Casida, L. E., Jr.

    1977-01-01

    The dehydrogenase technique for measuring the metabolic activity of microorganisms in soil was modified to use a 6-h, 37 C incubation with either glucose or yeast extract as the electron-donating substrate. The rate of formazan production remained constant during this time interval, and cellular multiplication apparently did not occur. The technique was used to follow changes in the overall metabolic activities of microorganisms in soil undergoing incubation with a limiting concentration of added nutrient. The sequence of events was similar to that obtained by using the Warburg respirometer to measure O2 consumption. However, the major peaks of activity occurred earlier with the respirometer. This possibly is due to the lack of atmospheric CO2 during the O2 consumption measurements.

  6. The determination of standard metabolic rate in fishes

    DEFF Research Database (Denmark)

    Chabot, Denis; Steffensen, John Fleng; Farrell, A.P.

    2016-01-01

    This review and data analysis outline how fish biologists should most reliably estimate the minimal amount of oxygen needed by a fish to support its aerobic metabolic rate (termed standard metabolic rate; SMR). By reviewing key literature, it explains the theory, terminology and challenges...... underlying SMR measurements in fishes, which are almost always made using respirometry (which measures oxygen uptake, ṀO2 ). Then, the practical difficulties of measuring SMR when activity of the fish is not quantitatively evaluated are comprehensively explored using 85 examples of ṀO2 data from different...... fishes and one crustacean, an analysis that goes well beyond any previous attempt. The main objective was to compare eight methods to estimate SMR. The methods were: average of the lowest 10 values (low10) and average of the 10% lowest ṀO2 values, after removing the five lowest ones as outliers (low10...

  7. EFFECTS OF DIETARY CARBOHYDRATE SOURCES AND LEVELS ON THE ACTIVITIES OF CARBOHYDRATE METABOLIC ENZYMES IN TURBOT%不同糖源及糖水平对大菱鲆糖代谢酶活性的影响

    Institute of Scientific and Technical Information of China (English)

    聂琴; 苗惠君; 苗淑彦; 陈尘悦; 李静; 张文兵; 麦康森

    2013-01-01

    采用3×4双因素实验设计,以初始质量为(8.06士0.08)g的大菱鲆幼鱼(Scophthalmus maximus L.)为对象,研究在饲料中添加3种糖源(葡萄糖、蔗糖和糊精)及4个水平(0、5%、15%、28%)对大菱鲆肝脏糖酵解关键酶己糖激酶(HK)、葡萄糖激酶(GK)、磷酸果糖激酶(PFK)、丙酮酸激酶(PK)和糖异生关键酶磷酸烯醇式丙酮酸羧激酶(PEPCK)、l,6-二磷酸果糖酶(FBPase)活性的影响.结果表明:饲料糖添加量从0升高到15%时,大菱鲆的糖酵解酶GK和PK活性随饲料葡萄糖或糊精含量的增加而增加;当饲料中葡萄糖或糊精含量为28%时,GK和PK活性有下降的趋势.3种糖源的4个添加水平对HK和PFK活性均无显著影响(P>0.05).添加不同水平的葡萄糖对大菱鲆糖异生途径的PEPCK活性无显著影响(P>0.05),但在饲料中葡萄糖添加量为5%时显著促进了FBPase活性(P<0.05),当葡萄糖添加量升高为15%或28%时,FBPase活性与对照组无显著差异(P>0.05).糊精作为饲料糖源时抑制了大菱鲆肝脏FBPase和PEPCK的活性,而添加不同水平的蔗糖对FBPase和PEPCK活性的影响均不显著(P>0.05).总的来说,从大菱鲆幼鱼肝脏糖代谢角度而言,在饲料中添加15%的葡萄糖或糊精时,可以有效促进大菱鲆肝脏糖酵解能力;较添加葡萄糖,糊精在促进大菱鲆肝脏糖酵解的同时对糖异生存在一定程度的抑制.蔗糖作为饲料糖源时,仅在添加量为28%时显著促进糖酵解酶GK活性,糖酵解其他酶活性以及糖异生酶活性均不受蔗糖水平的显著影响.%A 3×4 two-factorial experiment was conducted to investigate the effects of dietary carbohydrate sources (glucose,sucrose and dextrin) and levels (0,5%,15% and 28%) on the activities of glycolytic and gluconeogenic enzymes in turbot (Scophthalmus maximus L.).The initial weight of the turbot was (8.06±0.08) g.Each diet was fed to triplicate groups of turbot in a flow

  8. Carbohydrate Staple Food Modulates Gut Microbiota of Mongolians in China

    Science.gov (United States)

    Li, Jing; Hou, Qiangchuan; Zhang, Jiachao; Xu, Haiyan; Sun, Zhihong; Menghe, Bilige; Zhang, Heping

    2017-01-01

    Gut microbiota is a determining factor in human physiological functions and health. It is commonly accepted that diet has a major influence on the gut microbial community, however, the effects of diet is not fully understood. The typical Mongolian diet is characterized by high and frequent consumption of fermented dairy products and red meat, and low level of carbohydrates. In this study, the gut microbiota profile of 26 Mongolians whom consumed wheat, rice and oat as the sole carbohydrate staple food for a week each consecutively was determined. It was observed that changes in staple carbohydrate rapidly (within a week) altered gut microbial community structure and metabolic pathway of the subjects. Wheat and oat favored bifidobacteria (Bifidobacterium catenulatum, Bifodobacteriumbifidum, Bifidobacterium adolescentis); whereas rice suppressed bifidobacteria (Bifidobacterium longum, Bifidobacterium adolescentis) and wheat suppresses Lactobaciilus, Ruminococcus and Bacteroides. The study exhibited two gut microbial clustering patterns with the preference of fucosyllactose utilization linking to fucosidase genes (glycoside hydrolase family classifications: GH95 and GH29) encoded by Bifidobacterium, and xylan and arabinoxylan utilization linking to xylanase and arabinoxylanase genes encoded by Bacteroides. There was also a correlation between Lactobacillus ruminis and sialidase, as well as Butyrivibrio crossotus and xylanase/xylosidase. Meanwhile, a strong concordance was found between the gastrointestinal bacterial microbiome and the intestinal virome. Present research will contribute to understanding the impacts of the dietary carbohydrate on human gut microbiome, which will ultimately help understand relationships between dietary factor, microbial populations, and the health of global humans. PMID:28377764

  9. The reduction in postprandial lipemia after exercise is independent of the relative contributions of fat and carbohydrate to energy metabolism during exercise.

    Science.gov (United States)

    Malkova, D; Hardman, A E; Bowness, R J; Macdonald, I A

    1999-02-01

    A single session of exercise several hours before a high-fat meal reduces postprandial lipemia. The purpose of the present study was to test the hypothesis that this effect is independent of substrate metabolism during exercise. Twelve men aged 21 to 36 years underwent three oral fat tolerance tests with intervals of at least 1 week. On one occasion, only activities of daily living were allowed the preceding day (control). On the other two occasions, subjects ran on a treadmill for 90 minutes on the afternoon preceding the fat tolerance test; 90 minutes before running, they ingested either acipimox, an inhibitor of lipolysis in adipose tissue, or placebo. Acipimox abolished the increase in the nonesterified fatty acid (NEFA) concentration observed during the run after placebo and reduced lipid oxidation (placebo, 37 +/- 7 g; acipimox, 21 +/- 3 g; P postprandially with acipimox, compared with control and placebo (P response to the meal was lower in placebo compared with control and acipimox (P responses, postprandial lipemia was reduced to the same degree (compared with control, P exercise preceded by acipimox and by exercise preceded by placebo (area under the plasma triacylglycerol concentration v time curve: control, 8.77 +/- 1.17 mmol/L x 6 h; placebo, 6.95 +/- 0.97 mmol/L x 6 h; acipimox, 6.81 +/- 0.81 mmol/L x 6 h). These findings suggest that some factor other than the nature of the metabolic substrate used during exercise determines the attenuating effect of prior exercise on postprandial lipemia.

  10. Determinants of increased cardiovascular disease in obesity and metabolic syndrome.

    Science.gov (United States)

    Vazzana, N; Santilli, F; Sestili, S; Cuccurullo, C; Davi, G

    2011-01-01

    Obesity is associated with an increased mortality and morbidity for cardiovascular disease (CVD) and adipose tissue is recognised as an important player in obesity-mediated CVD. The diagnosis of the metabolic syndrome (MS) appears to identify substantial additional cardiovascular risk above and beyond the individual risk factors, even though the pathophysiology underlying this evidence is still unravelled. The inflammatory response related to fat accumulation may influence cardiovascular risk through its involvement not only in body weight homeostasis, but also in coagulation, fibrinolysis, endothelial dysfunction, insulin resistance (IR) and atherosclerosis. Moreover, there is evidence that oxidative stress may be a mechanistic link between several components of MS and CVD, through its role in inflammation and its ability to disrupt insulin-signaling. The cross-talk between impaired insulin-signaling and inflammatory pathways enhances both metabolic IR and endothelial dysfunction, which synergize to predispose to CVD. Persistent platelet hyperreactivity/activation emerges as the final pathway driven by intertwined interactions among IR, adipokine release, inflammation, dyslipidemia and oxidative stress and provides a pathophysiological explanation for the excess risk of atherothrombosis in this setting. Despite the availability of multiple interventions to counteract these metabolic changes, including appropriate diet, regular exercise, antiobesity drugs and bariatric surgery, relative failure to control the incidence of MS and its complications reflects both the multifactorial nature of these diseases as well as the scarce compliance of patients to established strategies. Evaluation of the impact of these therapeutic strategies on the pathobiology of atherothrombosis, as discussed in this review, will translate into an optimized approach for cardiovascular prevention.

  11. Assessment of the Role of Metabolic Determinants on the Relationship between Insulin Sensitivity and Secretion

    Science.gov (United States)

    Galgani, Jose E.; Gómez, Carmen; Mizgier, Maria L.; Gutierrez, Juan; Santos, Jose L.; Olmos, Pablo; Mari, Andrea

    2016-01-01

    Background Insulin secretion correlates inversely with insulin sensitivity, which may suggest the existence of a crosstalk between peripheral organs and pancreas. Such interaction might be mediated through glucose oxidation that may drive the release of circulating factors with action on insulin secretion. Aim To evaluate the association between whole-body carbohydrate oxidation and circulating factors with insulin secretion to consecutive oral glucose loading in non-diabetic individuals. Methods Carbohydrate oxidation was measured after an overnight fast and for 6 hours after two 3-h apart 75-g oral glucose tolerance tests (OGTT) in 53 participants (24/29 males/females; 34±9 y; 27±4 kg/m2). Insulin secretion was estimated by deconvolution of serum C-peptide concentration, β cell function by mathematical modelling and insulin sensitivity from an OGTT. Circulating lactate, free-fatty acids (FFA) and candidate chemokines were assessed before and after OGTT. The effect of recombinant RANTES (regulated on activation, normal T cell expressed and secreted) and IL8 (interleukin 8) on insulin secretion from isolated mice islets was also measured. Results Carbohydrate oxidation assessed over the 6-h period did not relate with insulin secretion (r = -0.11; p = 0.45) or β cell function indexes. Circulating lactate and FFA showed no association with 6-h insulin secretion. Circulating chemokines concentration increased upon oral glucose stimulation. Insulin secretion associated with plasma IL6 (r = 0.35; p<0.05), RANTES (r = 0.30; p<0.05) and IL8 (r = 0.41; p<0.05) determined at 60 min OGTT. IL8 was independently associated with in vivo insulin secretion; however, it did not affect in vitro insulin secretion. Conclusion Whole-body carbohydrate oxidation appears to have no influence on insulin secretion or putative circulating mediators. IL8 may be a potential factor influencing insulin secretion. PMID:28002466

  12. Carbohydrate modified diet & insulin sensitizers reduce body weight & modulate metabolic syndrome measures in EMPOWIR (enhance the metabolic profile of women with insulin resistance: a randomized trial of normoglycemic women with midlife weight gain.

    Directory of Open Access Journals (Sweden)

    Harriette R Mogul

    Full Text Available RATIONALE: Progressive midlife weight gain is associated with multiple adverse health outcomes and may represent an early manifestation of insulin resistance in a distinct subset of women. Emerging data implicate hyperinsulinema as a proximate cause of weight gain and support strategies that attenuate insulin secretion. OBJECTIVE: To assess a previously reported novel hypocaloric carbohydrate modified diet alone (D, and in combination with metformin (M and metformin plus low-dose rosiglitazone (MR, in diverse women with midlife weight gain (defined as >20lbs since the twenties, normal glucose tolerance, and hyperinsulinemia. PARTICIPANTS: 46 women, mean age 46.6±1.0, BMI 30.5±0.04 kg/m2, 54.5% white, 22.7% black, 15.9% Hispanic, at 2 university medical centers. METHODS: A dietary intervention designed to reduce insulin excursions was implemented in 4 weekly nutritional group workshops prior to randomization. MAIN OUTCOME MEASURE: Change in 6-month fasting insulin. Pre-specified secondary outcomes were changes in body weight, HOMA-IR, metabolic syndrome (MS measures, leptin, and adiponectin. RESULTS: Six-month fasting insulin declined significantly in the M group: 12.5 to 8.0 µU/ml, p = .026. Mean 6-month weight decreased significantly and comparably in D, M, and MR groups: 4.7, 5.4, and 5.5% (p's.049, .002, and.032. HOMA-IR decreased in M and MR groups (2.5 to 1.6 and 1.9 to 1.3, p's = .054, .013. Additional improvement in MS measures included reduced waist circumference in D and MR groups and increased HDL in the D and M groups. Notably, mean fasting leptin did not decline in a subset of subjects with weight loss (26.15±2.01 ng/ml to 25.99±2.61 ng/ml, p = .907. Adiponectin increased significantly in the MR group (11.1±1.0 to 18.5±7.4, p<.001 Study medications were well tolerated. CONCLUSIONS: These findings suggest that EMPOWIR's easily implemented dietary interventions, alone and in combination with pharmacotherapies that

  13. Power Analysis and Sample Size Determination in Metabolic Phenotyping.

    Science.gov (United States)

    Blaise, Benjamin J; Correia, Gonçalo; Tin, Adrienne; Young, J Hunter; Vergnaud, Anne-Claire; Lewis, Matthew; Pearce, Jake T M; Elliott, Paul; Nicholson, Jeremy K; Holmes, Elaine; Ebbels, Timothy M D

    2016-05-17

    Estimation of statistical power and sample size is a key aspect of experimental design. However, in metabolic phenotyping, there is currently no accepted approach for these tasks, in large part due to the unknown nature of the expected effect. In such hypothesis free science, neither the number or class of important analytes nor the effect size are known a priori. We introduce a new approach, based on multivariate simulation, which deals effectively with the highly correlated structure and high-dimensionality of metabolic phenotyping data. First, a large data set is simulated based on the characteristics of a pilot study investigating a given biomedical issue. An effect of a given size, corresponding either to a discrete (classification) or continuous (regression) outcome is then added. Different sample sizes are modeled by randomly selecting data sets of various sizes from the simulated data. We investigate different methods for effect detection, including univariate and multivariate techniques. Our framework allows us to investigate the complex relationship between sample size, power, and effect size for real multivariate data sets. For instance, we demonstrate for an example pilot data set that certain features achieve a power of 0.8 for a sample size of 20 samples or that a cross-validated predictivity QY(2) of 0.8 is reached with an effect size of 0.2 and 200 samples. We exemplify the approach for both nuclear magnetic resonance and liquid chromatography-mass spectrometry data from humans and the model organism C. elegans.

  14. A Darwinian view of metabolism: molecular properties determine fitness.

    Science.gov (United States)

    Firn, Richard D; Jones, Clive G

    2009-01-01

    Why do organisms make the types of chemicals that they do? Evolutionary theory tells us that individuals within populations will be subject to mutation and that some of those mutations will be enzyme variants that make new chemicals. A mutant making a novel chemical for that species will only survive in the population if the 'cost' of making the new chemical is outweighed by the benefits that result from making that molecule. The benefits, or adverse consequences, that a novel chemical X can confer to the individual organism are not a property of the simple existence of X in the cell but can be traced to one of the multiple properties that X will possess because of its molecular structure. By considering only three basic types of molecular property and by considering how selection pressures will differ for each kind of property, it is possible to account for much of the chemical diversity made by organisms. Such an evolutionary model can also explain why the properties of enzymes will differ depending on the molecular properties of the chemicals they make, and why the widely accepted terms 'primary metabolism' and 'secondary metabolism' have been so misleading and unsatisfactory.

  15. Regulation of carbohydrate metabolism in lymphoid tissue. Nature of the endogenous substrates and their contribution to the respiratory fuel of the sliced rat spleen in vitro.

    Science.gov (United States)

    Suter, D; Weidemann, M J

    1976-04-15

    1. Tissue glycogen contributes, maximally, only 10% of the respiratory fuel of the rat spleen slice in the absence of an added carbon source, and makes no significant contribution when glucose (3mM) is added. 2. The reserves of fatty acid in the form of triglyceride (35.5mumol of fatty acid/g dry wt. of tissue) fall by approx. 25% after incubation of spleen slices with or without added glucose for 2h, and , on this basis, account for 32% of the oxidative fuel. 3. In contrast, the total oxidative contribution of fatty acid reserves to the respiratory fuel, determined on the basis of inhibiton of respiration by 2-bromostearate, is 42-52%. This range includes tissue from both starved and well-fed animals and is not significantly altered by the presence of added glycose (3mM). 4. Large quantities of NH3 (31-35mumol//h per g dry wt. of tissue) are produced by spleen slices incubated in the absence of added substrates, and this value is suppressed by approx. 50% on incubation with glucose (3mM). Adenine nucleotide breakdown can account for only 17% of the total ammonia produced. 5. Individual free amino acid concentrations in spleen were determined, both in vivo and in slices before and after 60 min of incubation. Although the total free amino acid pool size increases by 45% during incubation, owing to protein breakdown, the tissue concentrations of aspartate, glutamate, glutamine and alanine do not increase. It is suggested that these amino acids areoxidized in a net sense to CO2 and water with the liberation of free NH3 via transamination reactions, glutaminase, the purine nucleotide cycle and the tricarboxylic acid cycle. 6. It is concluded that the normal endogenous metabolism of sliced rat spleen (43-52% due to lipids, 30% due to amino acids and 10% due to glycogen) is modified by added glycose only to the extent that glycogen oxidation and 50% of the contribtion made by ino acids are suppressed; endogenous lipid metabolism is unaffected.

  16. Metabolic stability and determination of cytochrome P450 isoenzymes' contribution to the metabolism of medetomidine in dog liver microsomes.

    Science.gov (United States)

    Duhamel, Marie-Claude; Troncy, Eric; Beaudry, Francis

    2010-08-01

    Medetomidine is a potent and selective alpha2-adrenergic agonist. The activation of alpha2-adrenergic receptor mediates a variety of effects including sedation, analgesia, relief of anxiety, vasoconstriction and bradycardia. However, our main interest is the sedative effects of medetomidine when used as a premedicant prior surgery in companion animals, especially in dogs. Recently, data suggested that following intravenous infusion at six dosing regiments non-linear pharmacokinetics was observed. Major causes of non-linear pharmacokinetics are the elimination of the drug not following a simple first-order kinetics and/or the elimination half-life changing due to saturation of an enzyme system. The goal of this study was to establish the metabolic stability and determine the metabolic pathway of medetomidine in dog liver microsomes. Consequently, Michaelis-Menten parameters (V(max), K(m)), T(1/2) and CL(i) were determined. The incubations were performed in a microcentrifuge tube and containing various concentrations of medetomidine (10-5000 nM), 1 mg/mL of microsomal proteins suspended in 0.1 M phosphate buffer, pH 7.4. Microsomal suspensions were preincubated with NADPH (1 mM) for 5 min at 37 degrees C prior to fortification with medetomidine. Samples were taken at various time points for kinetic information and the initial velocity (v(i)) was determined after 10 min incubation. The reaction was stopped by the addition of an internal standard solution (100 ng/mL of dextrometorphan in acetone). Medetomidine concentrations were determined using a selective and sensitive HPLC-ESI/MS/MS method. Using non-linear regression, we determined a K(m) value of 577 nM, indicating relatively low threshold enzyme saturation consistent with previous in vivo observation. The metabolic stability was determined at a concentration of 100 nm (dog liver microsomes, also consistent with previous in vivo data. Moreover, results suggest that principally medetomidine is metabolized by the

  17. Disturbed hepatic carbohydrate management during high metabolic demand in medium-chain acyl-CoA dehydrogenase (MCAD)-deficient mice

    NARCIS (Netherlands)

    Herrema, H.J.; Derks, T.G.; Dijk, van T.H.; Bloks, V.W.; Gerding, A.; Havinga, R.; Tietge, U.J.; Müller, M.R.; Smit, G.P.; Kuipers, F.; Reijngoud, D.J.

    2008-01-01

    Medium-chain acyl-coenzyme A (CoA) dehydrogenase (MCAD) catalyzes crucial steps in mitochondrial fatty acid oxidation, a process that is of key relevance for maintenance of energy homeostasis, especially during high metabolic demand. To gain insight into the metabolic consequences of MCAD deficiency

  18. Mastering ectomycorrhizal symbiosis: the impact of carbohydrates.

    Science.gov (United States)

    Nehls, Uwe

    2008-01-01

    Mycorrhiza formation is the consequence of a mutualistic interaction between certain soil fungi and plant roots that helps to overcome nutritional limitations faced by the respective partners. In symbiosis, fungi contribute to tree nutrition by means of mineral weathering and mobilization of nutrients from organic matter, and obtain plant-derived carbohydrates as a response. Support with easily degradable carbohydrates seems to be the driving force for fungi to undergo this type of interaction. As a consequence, the fungal hexose uptake capacity is strongly increased in Hartig net hyphae of the model fungi Amanita muscaria and Laccaria bicolor. Next to fast carbohydrate uptake and metabolism, storage carbohydrates are of special interest. In functional A. muscaria ectomycorrhizas, expression and activity of proteins involved in trehalose biosynthesis is mainly localized in hyphae of the Hartig net, indicating an important function of trehalose in generation of a strong carbon sink by fungal hyphae. In symbiosis, fungal partners receive up to approximately 19 times more carbohydrates from their hosts than normal leakage of the root system would cause, resulting in a strong carbohydrate demand of infected roots and, as a consequence, a more efficient plant photosynthesis. To avoid fungal parasitism, the plant seems to have developed mechanisms to control carbohydrate drain towards the fungal partner and link it to the fungus-derived mineral nutrition. In this contribution, current knowledge on fungal strategies to obtain carbohydrates from its host and plant strategies to enable, but also to control and restrict (under certain conditions), carbon transfer are summarized.

  19. Molecular evidence for the coordination of nitrogen and carbon metabolisms, revealed by a study on the transcriptional regulation of the agl3EFG operon that encodes a putative carbohydrate transporter in Streptomyces coelicolor.

    Science.gov (United States)

    Cen, Xu-Feng; Wang, Jing-Zhi; Zhao, Guo-Ping; Wang, Ying; Wang, Jin

    2016-03-18

    In the agl3EFGXYZ operon (SCO7167-SCO7162, abbreviated as agl3 operon) of Streptomyces coelicolor M145, agl3EFG genes encode a putative ABC-type carbohydrate transporter. The transcription of this operon has been proved to be repressed by Agl3R (SCO7168), a neighboring GntR-family regulator, and this repression can be released by growth on poor carbon sources. Here in this study, we prove that the transcription of agl3 operon is also directly repressed by GlnR, a central regulator governing the nitrogen metabolism in S. coelicolor. The electrophoretic mobility shift assay (EMSA) employing the agl3 promoter and mixtures of purified recombinant GlnR and Agl3R indicates that GlnR and Agl3R bind to different DNA sequences within the promoter region of agl3 operon, which is further confirmed by the DNase I footprinting assay. As Agl3R and GlnR have been demonstrated to sense the extracellular carbon and nitrogen supplies, respectively, it is hypothesized that the transcription of agl3 operon is stringently governed by the availabilities of extracellular carbon and nitrogen sources. Consistent with the hypothesis, the agl3 operon is further found to be derepressed only under the condition of poor carbon and rich nitrogen supplies, when both regulators are inactivated. It is believed that activation of the expression of agl3 operon may facilitate the absorption of extracellular carbohydrates to balance the ratio of intracellular carbon to nitrogen.

  20. Metabolic equivalent determination in the cultural dance of hula.

    Science.gov (United States)

    Usagawa, T; Look, M; de Silva, M; Stickley, C; Kaholokula, J K; Seto, T; Mau, M

    2014-05-01

    Ethnic minorities share an unequal burden of cardiometabolic syndrome. Physical activity (PA) has been shown to be an important factor for improving the outcomes of these diseases. While metabolic equivalents (METs) have been calculated for diverse activities, most cultural activities have not been evaluated. Hula, the traditional dance of Native Hawaiians, is practiced by men and women of all ages but its MET value is unknown. To our knowledge, this is the first scientific evaluation of energy expenditure of hula. 19 competitive hula dancers performed 2 dance sets of low- and high-intensity hula. METs were measured with a portable indirect calorimetry device. Mean and standard deviations were calculated for all the variables. A 2-way ANOVA was conducted to identify differences for gender and intensity. The mean MET were 5.7 (range 3.17-9.77) and 7.55 (range 4.43-12.0) for low-intensity and high-intensity, respectively. There was a significant difference between intensities and no significant difference between genders. This study demonstrates that the energy expenditure of both low- and high-intensity hula met the recommended guidelines for moderate and vigorous intensity exercise, respectively, and that hula can be utilized as a prescribed PA.

  1. Remission of screen-detected metabolic syndrome and its determinants: an observational study

    Directory of Open Access Journals (Sweden)

    den Engelsen Corine

    2012-09-01

    Full Text Available Abstract Background Early detection and treatment of the metabolic syndrome may prevent diabetes and cardiovascular disease. Our aim was to assess remission of the metabolic syndrome and its determinants after a population based screening without predefined intervention in the Netherlands. Methods In 2006 we detected 406 metabolic syndrome cases (The National Cholesterol Education Program’s Adult Treatment Panel III (NCEP ATP III definition among apparently healthy individuals with an increased waist circumference. They received usual care in a primary care setting. After three years metabolic syndrome status was re-measured. We evaluated which baseline determinants were independently associated with remission. Results The remission rate among the 194 participants was 53%. Baseline determinants independently associated with a remission were the presence of more than three metabolic syndrome components (OR 0.46 and higher levels of waist circumference (OR 0.91, blood pressure (OR 0.98 and fasting glucose (OR 0.60. Conclusions In a population with screen-detected metabolic syndrome receiving usual care, more than half of the participants achieved a remission after three years. This positive result after a relatively simple strategy provides a solid basis for a nation-wide implementation. Not so much socio-demographic variables but a higher number and level of the metabolic syndrome components were predictors of a lower chance of remission. In such cases, primary care physicians should be extra alert.

  2. Determination of patterns of regional cerebral glucose metabolism in normal aging and dementia

    Energy Technology Data Exchange (ETDEWEB)

    Alavi, A.; Chawluk, J.; Hurtig, H.; Dann, R.; Rosen, M.; Kushner, M.; Silver, F.; Reivich, M.

    1985-05-01

    Regional cerebral metabolic rates for glucose (rCMRGlc) were measured using 18F-FDG and positron emission tomography (PET) in 14 patients with probable Alzheimer's disease (AD) (age=64), 9 elderly controls (age=61), and 9 young controls (age=28). PET studies were performed without sensory stimulation or deprivation. Metabolic rates in individual brain regions were determined using an atlas overlay. Relative metabolic rates (rCMRGl c/global CMRGlc) were determined for all subjects. Comparison of young and elderly controls demonstrated significant decreases in frontal metabolism (rho<0.005) and right inferior parietal (IP) metabolism (rho<0.02) with normal aging. Patients with mild-moderate AD (NMAD) (n=8) when compared to age-matched controls, showed further reduction in right IP metabolism (rho<0.02). SAD patients also demonstrated metabolic decrements in left hemisphere language areas (rho<0.01). This latter finding is consistent with language disturbance observed late in the course of the disease. Out data reveal progressive changes in patterns of cerebral glucose utilization with aging and demential with reflect salient clinical features of these processes.

  3. Intraspecific variation in flight metabolic rate in the bumblebee Bombus impatiens: repeatability and functional determinants in workers and drones.

    Science.gov (United States)

    Darveau, Charles-A; Billardon, Fannie; Bélanger, Kasandra

    2014-02-15

    The evolution of flight energetics requires that phenotypes be variable, repeatable and heritable. We studied intraspecific variation in flight energetics in order to assess the repeatability of flight metabolic rate and wingbeat frequency, as well as the functional basis of phenotypic variation in workers and drones of the bumblebee species Bombus impatiens. We showed that flight metabolic rate and wingbeat frequency were highly repeatable in workers, even when controlling for body mass variation using residual analysis. We did not detect significant repeatability in drones, but a smaller range of variation might have prevented us from finding significant values in our sample. Based on our results and previous findings, we associated the high repeatability of flight phenotypes in workers to the functional links between body mass, thorax mass, wing size, wingbeat frequency and metabolic rate. Moreover, differences between workers and drones were as predicted from these functional associations, where drones had larger wings for their size, lower wingbeat frequency and lower flight metabolic rate. We also investigated thoracic muscle metabolic phenotypes by measuring the activity of carbohydrate metabolism enzymes, and we found positive correlations between mass-independent metabolic rate and the activity of all enzymes measured, but in workers only. When comparing workers and drones that differ in flight metabolic rate, only the activity of the enzymes hexokinase and trehalase showed the predicted differences. Overall, our study indicates that there should be correlated evolution among physiological phenotypes at multiple levels of organization and morphological traits associated with flight.

  4. Metabolism

    Science.gov (United States)

    ... Are More Common in People With Type 1 Diabetes Metabolic Syndrome Your Child's Weight Healthy Eating Endocrine System Blood Test: Basic Metabolic Panel (BMP) Activity: Endocrine System Growth Disorders Diabetes Center Thyroid Disorders Your Endocrine System Movie: Endocrine ...

  5. Metabolism

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    2008255 Serum adiponectin level declines in the elderly with metabolic syndrome.WU Xiaoyan(吴晓琰),et al.Dept Geriatr,Huashan Hosp,Fudan UnivShanghai200040.Chin J Geriatr2008;27(3):164-167.Objective To investigate the correlation between ser-um adiponectin level and metabolic syndrome in the elderly·Methods Sixty-one subjects with metabolic syndrome and140age matched subjects without metabolic

  6. Interaction of Some Commercial Teas with Some Carbohydrate Metabolizing Enzymes Linked with Type-2 Diabetes: A Dietary Intervention in the Prevention of Type-2 Diabetes

    Directory of Open Access Journals (Sweden)

    Ganiyu Oboh

    2014-01-01

    (3-Ethylbenzo-Thiazoline~6-sulfonate “ABTS” scavenging ability and ferric reducing antioxidant property, and inhibition of pancreatic-α-amylase and intestinal-α-glucosidase in vitro. The study revealed that GT had the highest total phenol content, ascorbic acid content, ABTS* scavenging ability, and ferric reducing ability. Furthermore, all the teas inhibited Fe2+ and sodium nitroprusside induced lipid peroxidation in pancreas, with GT having the highest inhibitory effect. Conversely, there was no significant difference (P>0.05 in the inhibitory effects of the teas on α-amylase and α-glucosidase. The antidiabetic property of the teas could be attributed to their inhibitory effect on carbohydrate hydrolyzing enzymes implicated in diabetes and their antioxidant activities.

  7. Gastric emptying, glucose metabolism and gut hormones

    DEFF Research Database (Denmark)

    Vermeulen, Mechteld A R; Richir, Milan C; Garretsen, Martijn K

    2011-01-01

    To study the gastric-emptying rate and gut hormonal response of two carbohydrate-rich beverages. A specifically designed carbohydrate-rich beverage is currently used to support the surgical patient metabolically. Fruit-based beverages may also promote recovery, due to natural antioxidant...... and carbohydrate content. However, gastric emptying of fluids is influenced by its nutrient composition; hence, safety of preoperative carbohydrate loading should be confirmed. Because gut hormones link carbohydrate metabolism and gastric emptying, hormonal responses were studied....

  8. Nonstructural leaf carbohydrates dynamics of Pinus edulis during drought-induced tree mortality reveal role for carbon metabolism in mortality mechanism

    Science.gov (United States)

    Adams, Henry D.; Germino, Matthew J.; Breshears, David D.; Barron-Gafford, Greg A.; Guardiola-Claramonte, Maite; Zou, Chris B.; Huxman, Travis E.

    2013-01-01

    * Vegetation change is expected with global climate change, potentially altering ecosystem function and climate feedbacks. However, causes of plant mortality, which are central to vegetation change, are understudied, and physiological mechanisms remain unclear, particularly the roles of carbon metabolism and xylem function.

  9. Metabolomics changes in a rat model of obstructive jaundice: mapping to metabolism of amino acids, carbohydrates and lipids as well as oxidative stress.

    Science.gov (United States)

    Long, Yue; Dong, Xin; Yuan, Yawei; Huang, Jinqiang; Song, Jiangang; Sun, Yumin; Lu, Zhijie; Yang, Liqun; Yu, Weifeng

    2015-07-01

    The study examined the global metabolic and some biochemical changes in rats with cholestasis induced by bile duct ligation (BDL). Serum samples were collected in male Wistar rats with BDL (n = 8) and sham surgery (n = 8) at day 3 after surgery for metabolomics analysis using a combination of reversed phase chromatography and hydrophilic interaction chromatography (HILIC) and quadrupole-time-of-flight mass spectrometry (Q-TOF MS). The serum levels of malondialdehyde (MDA), total antioxidative capacity (T-AOC), glutathione (GSH) and glutathione disulfide (GSSG), the activities of superoxide dismutase (SOD) and glutathion peroxidase (GSH-Px) were measured to estimate the oxidative stress state. Key changes after BDL included increased levels of l-phenylalanine, l-glutamate, l-tyrosine, kynurenine, l-lactic acid, LysoPC(c) (14:0), glycine and succinic acid and decreased levels of l-valine, PC(b) (19:0/0:0), taurine, palmitic acid, l-isoleucine and citric acid metabolism products. And treatment with BDL significantly decreased the levels of GSH, T-AOC as well as SOD, GSH-Px activities, and upregulated MDA levels. The changes could be mapped to metabolism of amino acids and lipids, Krebs cycle and glycolysis, as well as increased oxidative stress and decreased antioxidant capability. Our study indicated that BDL induces major changes in the metabolism of all 3 major energy substances, as well as oxidative stress.

  10. Activity Changes of Carbohydrate Metabolism Related Enzymes of S. cerevisiae after A Satellite Flight%卫星搭载啤酒酵母糖代谢相关酶类活性变化

    Institute of Scientific and Technical Information of China (English)

    易宗春; 薛明; 韩庆玲; 吴小荣; 孙艳

    2009-01-01

    The viable conditions and activities of carbohydrate metabolism related enzymes (CMRE) of Saccharomy-ces cerevisiae took a flight in Practice 8 recoverable satellite for 15 days (space yeast) were analyzed. The yeast was cultured in liquid YPD medium overnight, then diluted with fresh YPD to 10~(-6) times before taking the satellite flight and filled another one to keep on the ground for 15 days as a control. After recovery, the cell viability was determines by colony counting on fiat plate, and the activities of CMRE including hexokinase, suceinate dehydrogenase, malate dehydrogenase, and the content of glycogen in whole cells of both yeasts (satellite and ground) were tested and deter-mined with zymolysis combined with spectrophotometry. The results showed that the colony forming amount of space yeast samples was obviously higher than that of the ground control samples, as high as 3.1 times. However, the activ-ities of hexokinase and snccinate dehydrogenase of space yeast were obviously lower than the ground control one; but the activity of malate dehydrogenase of space yeast was higher than the ground control one. The content of glycogen of space yeast was lower than the ground control one. These indicated that under the space flight could increase the via-bility of the yeast, and at the same time it accompanied with the changes of the activities of related enzymes and the level of glycogen that conduced to the viability of the yeast in space flight conditions.%分析了搭载于实践八号育种卫星的啤酒酵母的存活情况和糖代谢相关酶类活性.啤酒酵母于YPD液体培养基培养,培养过夜后用新鲜YPD稀释10~(-6)倍,分装后分剐置于地面和卫星搭栽两种条件下15 d.返回地面后收集样品,利用稀释平板计数法检测啤酒酵母活力,采用酶解结合分光光度法检测酵母糖原水平,分光光度法检测己糖激酶、琥珀酸脱氢酶和苹果酸脱氢酶的活性.结果发现,卫星搭载样品的菌

  11. Metabolic profile of injured human spinal cord determined using surface microdialysis.

    Science.gov (United States)

    Chen, Suliang; Phang, Isaac; Zoumprouli, Argyro; Papadopoulos, Marios C; Saadoun, Samira

    2016-12-01

    The management of patients having traumatic spinal cord injury would benefit from understanding and monitoring of spinal cord metabolic states. We hypothesized that the metabolism of the injured spinal cord could be visualized using Kohonen self-organizing maps. Sixteen patients with acute, severe spinal cord injuries were studied. Starting within 72 h of the injury, and for up to a week, we monitored the injury site hourly for tissue glucose, lactate, pyruvate, glutamate, and glycerol using microdialysis as well as intraspinal pressure and spinal cord perfusion pressure. A Kohonen map, which is an unsupervised, self-organizing topology-preserving neural network, was used to analyze 3366 h of monitoring data. We first visualized the different spinal cord metabolic states. Our data show that the injured cord assumes one or more of four metabolic states. On the basis of their metabolite profiles, we termed these states near-normal, ischemic, hypermetabolic, and distal. We then visualized how patients' intraspinal pressure and spinal cord perfusion pressure affect spinal cord metabolism. This revealed that for more than 60% of the time, spinal cord metabolism is patient-specific; periods of high intraspinal pressure or low perfusion pressure are not associated with specific spinal cord metabolic patterns. Finally, we determined relationships between spinal cord metabolism and neurological status. Patients with complete deficits have shorter periods of near-normal spinal cord metabolic states (7 ± 4% vs. 58 ± 12%, p injured spinal cord and may thus aid us in treating patients with acute spinal cord injuries.

  12. [Effect of ATP and glutaminic acid on carbohydrate-energy and nitrogen metabolism in the rat brain and liver under the effect of pulsed electromagnetic field].

    Science.gov (United States)

    Mishchenko, L I; Kolodub, F A

    1975-01-01

    Oxidative phosphorylation, content of lactate, creatine phosphate, ammonia and glutamine were studied as affected by ATP and glutaminic acid in the brain and liver of rat subjected to the action of the pulsed electromagnetic field of 7 kHz frequency (72 kA/m, 15 seances). ATP (1 mg per 100 g of weight) was found to have a normalizing effect on the processes of nitrogen metabolism in the rat brain, ATP increasing the intenstiy of the oxidative phosphorylation in the tissues of intact rats, has no analogous influence on the irradiated animals. With administration of glutaminic acid (5 mg per 100 g of weight) the processes of oxidative phosphorylation and nitrogen metabolism, disturbed under the effect of the pulsed electromagnetic field are normalized.

  13. Peroxisome proliferator-activated receptor alpha (PPARalpha) protects against oleate-induced INS-1E beta cell dysfunction by preserving carbohydrate metabolism

    DEFF Research Database (Denmark)

    Frigerio, F; Brun, T; Bartley, C;

    2009-01-01

    AIMS/HYPOTHESIS: Pancreatic beta cells chronically exposed to fatty acids may lose specific functions and even undergo apoptosis. Generally, lipotoxicity is triggered by saturated fatty acids, whereas unsaturated fatty acids induce lipodysfunction, the latter being characterised by elevated basal...... enzyme pyruvate carboxylase. PPARalpha overproduction increased both beta-oxidation and fatty acid storage in the form of neutral triacylglycerol, revealing overall induction of lipid metabolism. These observations were substantiated by expression levels of associated genes. CONCLUSIONS...

  14. WHAT CAN WE EXPECT USING ACE INHIBITOR RAMIPRIL IN PERSONS WITH HIGH CARDIOVASCULAR RISK AND EARLY DISORDERS OF CARBOHYDRATE METABOLISM? LESSONS OF DREAM TRIAL

    OpenAIRE

    M. N. Mamedov; M. B. Stroeva

    2008-01-01

    Primary prevention of diabetes in persons with high cardiovascular risk is an actual problem. Results of DREAM trial are discussed. Influence of ACE inhibitor, ramipril, on risk of diabetes onset in patients with pre-diabetes and low cardiovascular risk is focused. Metabolic effects of other groups of antihypertensive drugs and their ability to prevent diabetes onset are compared. Ramipril three years therapy resulted in normalization in glucose level but did not have effect on frequency of d...

  15. Effect of exposure to sublethal concentrations of sodium cyanide on the carbohydrate metabolism of the Indian Major Carp Labeo rohita (Hamilton, 1822

    Directory of Open Access Journals (Sweden)

    Praveen N. Dube

    2013-07-01

    Full Text Available Experiments were designed to study in-vivo effects of sodium cyanide on biochemical endpoints in the freshwater fish Labeo rohita. Fish were exposed to two sublethal concentrations (0.106 and 0.064mg/L for a period of 15 days. Levels of glycogen, pyruvate, lactate and the enzymatic activities of lactate dehydrogenase (LDH, succinate dehydrogenase (SDH, glucose-6-phosphate dehydrogenase (G6PDH, phosphorylase, alkaline phosphatase (ALP, acid phosphatase (AcP were assessed in different tissues (liver, muscle and gills. Result indicated a steady decrease in glycogen, pyruvate, SDH, ALP and AcP activity with a concomitant increase in the lactate, phosphorylase, LDH and G6PD activity in all selected tissues. The alterations in all the above biochemical parameters were significantly (p<0.05 time and dose dependent. In all the above parameters, liver pointing out the intensity of cyanide intoxication compare to muscle and gills. Study revealed change in the metabolic energy by means of altered metabolic profile of the fish. Further, these observations indicated that even sublethal concentrations of sodium cyanide might not be fully devoid of deleterious influence on metabolism in L. rohita.

  16. Carbohydrates in Supramolecular Chemistry.

    Science.gov (United States)

    Delbianco, Martina; Bharate, Priya; Varela-Aramburu, Silvia; Seeberger, Peter H

    2016-02-24

    Carbohydrates are involved in a variety of biological processes. The ability of sugars to form a large number of hydrogen bonds has made them important components for supramolecular chemistry. We discuss recent advances in the use of carbohydrates in supramolecular chemistry and reveal that carbohydrates are useful building blocks for the stabilization of complex architectures. Systems are presented according to the scaffold that supports the glyco-conjugate: organic macrocycles, dendrimers, nanomaterials, and polymers are considered. Glyco-conjugates can form host-guest complexes, and can self-assemble by using carbohydrate-carbohydrate interactions and other weak interactions such as π-π interactions. Finally, complex supramolecular architectures based on carbohydrate-protein interactions are discussed.

  17. Carbohydrate Content in the GDM Diet: Two Views: View 1: Nutrition Therapy in Gestational Diabetes: The Case for Complex Carbohydrates.

    Science.gov (United States)

    Hernandez, Teri L

    2016-05-01

    IN BRIEF Restriction of dietary carbohydrate has been the cornerstone for treatment of gestational diabetes mellitus (GDM). However, there is evidence that a balanced liberalization of complex carbohydrate as part of an overall eating plan in GDM meets treatment goals and may mitigate maternal adipose tissue insulin resistance, both of which may promote optimal metabolic outcomes for mother and offspring.

  18. Transformation with TT8 and HB12 RNAi Constructs in Model Forage (Medicago sativa, Alfalfa) Affects Carbohydrate Structure and Metabolic Characteristics in Ruminant Livestock Systems.

    Science.gov (United States)

    Li, Xinxin; Zhang, Yonggen; Hannoufa, Abdelali; Yu, Peiqiang

    2015-11-04

    Lignin, a phenylpropanoid polymer present in secondary cell walls, has a negative impact on feed digestibility. TT8 and HB12 genes were shown to have low expression levels in low-lignin tissues of alfalfa, but to date, there has been no study on the effect of down-regulation of these two genes in alfalfa on nutrient chemical profiles and availability in ruminant livestock systems. The objectives of this study were to investigate the effect of transformation of alfalfa with TT8 and HB12 RNAi constructs on carbohydrate (CHO) structure and CHO nutritive value in ruminant livestock systems. The results showed that transformation with TT8 and HB12 RNAi constructs reduced rumen, rapidly degraded CHO fractions (RDCA4, P = 0.06; RDCB1, P < 0.01) and totally degraded CHO fraction (TRDCHO, P = 0.08). Both HB12 and TT8 populations had significantly higher in vitro digestibility of neutral detergent fiber (NDF) at 30 h of incubation (ivNDF30) compared to the control (P < 0.01). The TT8 populations had highest ivDM30 and ivNDF240. Transformation of alfalfa with TT8 and HB12 RNAi constructs induced molecular structure changes. Different CHO functional groups had different sensitivities and different responses to the transformation. The CHO molecular structure changes induced by the transformation were associated with predicted CHO availability. Compared with HB12 RNAi, transformation with TT8 RNAi could improve forage quality by increasing the availability of both NDF and DM. Further study is needed on the relationship between the transformation-induced structure changes at a molecular level and nutrient utilization in ruminant livestock systems when lignification is much higher.

  19. The effect of intermittent energy and carbohydrate restriction v. daily energy restriction on weight loss and metabolic disease risk markers in overweight women.

    Science.gov (United States)

    Harvie, Michelle; Wright, Claire; Pegington, Mary; McMullan, Debbie; Mitchell, Ellen; Martin, Bronwen; Cutler, Roy G; Evans, Gareth; Whiteside, Sigrid; Maudsley, Stuart; Camandola, Simonetta; Wang, Rui; Carlson, Olga D; Egan, Josephine M; Mattson, Mark P; Howell, Anthony

    2013-10-01

    Intermittent energy restriction may result in greater improvements in insulin sensitivity and weight control than daily energy restriction (DER). We tested two intermittent energy and carbohydrate restriction (IECR) regimens, including one which allowed ad libitum protein and fat (IECR+PF). Overweight women (n 115) aged 20 and 69 years with a family history of breast cancer were randomised to an overall 25 % energy restriction, either as an IECR (2500-2717 kJ/d, diets (mean - 0·34 (95% CI - 0·66, - 0·02) units) and the IECR+PF diet (mean - 0·38 (95% CI - 0·75, - 0·01) units). Reductions with the IECR diets were significantly greater compared with the DER diet (mean 0·2 (95% CI - 0·19, 0·66) μU/unit, P= 0·02). Both IECR groups had greater reductions in body fat compared with the DER group (IECR: mean - 3·7 (95% CI - 2·5, - 4·9) kg, P= 0·007; IECR+PF: mean - 3·7 (95% CI - 2·8, - 4·7) kg, P= 0·019; DER: mean - 2·0 (95% CI - 1·0, 3·0) kg). During the weight maintenance phase, 1 d of IECR or IECR+PF per week maintained the reductions in insulin resistance and weight. In the short term, IECR is superior to DER with respect to improved insulin sensitivity and body fat reduction. Longer-term studies into the safety and effectiveness of IECR diets are warranted.

  20. 催花剂对观赏风梨丹尼斯植株体内碳水化合物代谢的影响%Effects of Different Flower-forcing Agents on Carbohydrate Metabolism of Guzmania ‘ Denise'

    Institute of Scientific and Technical Information of China (English)

    吴艳华; 夏忠强

    2012-01-01

    [Objective] The aim was to study the effects of different flower-forcing agents on carbohydrate metabolism differentiation of Guzmania 'Denise'. [Method] With Guzmania 'Denise' as the material,three kinds of flower-forcing agent (acetylene gas saturated solution,400 mg/L ethephon solution,calcium carbide) were adopted to treat potted Guzmania 'Denise'. With water treatment as CK.the carbohydrate metabolism situation of Guzmania ' Denise' in different treatments was studied. [ Result] With different flower-forcing agent treatment,the total soluble sugar content,starch content increased,which are more than that in CK. Among them,the increasing range was the largest in acetylene gas saturated solution treatment. [ Conclusion ] Flower-forcing agent could promote the accumulation of total soluble sugar and starch in Guzmania ' Denise' , the treatment effect of acetylene gas saturated solution was most obvious.%[目的]研究不同催花剂处理对观赏凤梨丹尼斯植株体内碳水化合物代谢的影响.[方法]以观赏凤梨丹尼斯(Guzmania‘Denise’)为试材,采用乙炔气体饱和溶液、浓度为400 mg/L的乙烯利溶液和电石3种催花剂对盆栽丹尼斯凤梨进行催花处理,以清水处理为对照,研究各处理丹尼斯植株体内碳水化合物代谢情况.[结果]不同催花剂处理后,丹尼斯凤梨植株体内可溶性总糖含量、淀粉含量逐渐增加,其含量水平高于对照.其中均以乙炔气体饱和溶液处理增加幅度最大.[结论]催花剂能促进观赏凤梨丹尼斯植株可溶性总糖与淀粉的积累,其中以乙炔气体饱和溶液处理增幅最大,效果最为明显.

  1. WHAT CAN WE EXPECT USING ACE INHIBITOR RAMIPRIL IN PERSONS WITH HIGH CARDIOVASCULAR RISK AND EARLY DISORDERS OF CARBOHYDRATE METABOLISM? LESSONS OF DREAM TRIAL

    Directory of Open Access Journals (Sweden)

    M. N. Mamedov

    2008-01-01

    Full Text Available Primary prevention of diabetes in persons with high cardiovascular risk is an actual problem. Results of DREAM trial are discussed. Influence of ACE inhibitor, ramipril, on risk of diabetes onset in patients with pre-diabetes and low cardiovascular risk is focused. Metabolic effects of other groups of antihypertensive drugs and their ability to prevent diabetes onset are compared. Ramipril three years therapy resulted in normalization in glucose level but did not have effect on frequency of diabetes onset. Change in life-style and regular usage of ACE inhibitor, ramipril, can contribute in normalization of glycemia level in patients with combination of pre-diabetes and arterial hypertension.

  2. Metabolism

    Science.gov (United States)

    ... a particular food provides to the body. A chocolate bar has more calories than an apple, so ... acid phenylalanine, needed for normal growth and protein production). Inborn errors of metabolism can sometimes lead to ...

  3. Radioiodinated branched carbohydrates

    Science.gov (United States)

    Goodman, Mark M.; Knapp, Jr., Furn F.

    1989-01-01

    A radioiodinated branched carbohydrate for tissue imaging. Iodine-123 is stabilized in the compound by attaching it to a vinyl functional group that is on the carbohydrate. The compound exhibits good uptake and retention and is promising in the development of radiopharmaceuticals for brain, heart and tumor imaging.

  4. Computerized molecular modeling of carbohydrates

    Science.gov (United States)

    Computerized molecular modleing continues to increase in capability and applicability to carbohydrates. This chapter covers nomenclature and conformational aspects of carbohydrates, perhaps of greater use to carbohydrate-inexperienced computational chemists. Its comments on various methods and studi...

  5. Carbohydrates and Diabetes (For Parents)

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old Carbohydrates and Diabetes KidsHealth > For Parents > Carbohydrates and Diabetes ... many kids with diabetes take to stay healthy. Carbohydrates and Blood Sugar The two main forms of ...

  6. Effects of Dietary Carbohydrate Sources on Growth Performance, Digestive Enzyme and Carbohydrate Metabolic Key Enzyme Activities of Large Yellow Croaker ( Larmichthys crocea Richardson)%饲料中糖源对大黄鱼生长性能及消化酶、糖代谢关键酶活性的影响

    Institute of Scientific and Technical Information of China (English)

    李弋; 周飘苹; 邱红; 候迎梅; 申屠基康; 周歧存

    2015-01-01

    为评估饲料中糖源对大黄鱼生长性能及消化酶、糖代谢关键酶活性的影响,进行为期8周的养殖试验. 以鱼粉、小麦蛋白粉和豆粕为蛋白质源,鱼油、豆油和大豆卵磷脂为脂肪源,葡萄糖、蔗糖、糊精、土豆淀粉、玉米淀粉和小麦淀粉分别为糖源,配制成6 种等氮等能的试验饲料. 每种试验饲料设3个重复,每个重复放养初始平均体重为(7.06±0.48) g的大黄鱼幼鱼50尾,以重复为单位养殖于浮伐式网箱(1.5 m×1.5 m×2.0 m)中,每天饲喂2次. 结果表明:小麦淀粉和玉米淀粉组大黄鱼的增重率、特定生长率、饲料效率和蛋白质效率均显著高于蔗糖和葡萄糖组( P0.05),但小麦淀粉、土豆淀粉和玉米淀粉组的全鱼粗脂肪含量显著高于糊精、蔗糖和葡萄糖组( P0.05). 由结果得出,大黄鱼对小麦淀粉和玉米淀粉等结构复杂多糖的利用能力要高于蔗糖和葡萄糖.%An 8-week feeding trial was conducted to evaluate the effects of dietary carbohydrate sources on growth performance, digestive enzyme and carbohydrate metabolic key enzyme activities of large yellow croak-er ( Larmichthys crocea Richardson) . Fish meal, wheat gluten and soybean meal were used as protein sources, fish oil, soybean oil and soybean lecithin were used as lipid sources, and wheat starch, corn starch, potato starch, dextrin, saccharose and glucose were used as carbohydrate sources, respectively, six isonitrogenous and isoenergetic diets were prepared. Each diet was randomly assigned to 3 replicates, and each replicate had 50 juvenile large yellow croaker with the initial average body weight of (7.06±0.48) g which were stocked in floating net cages (1.5 m×1.5 m×2.0 m), and were fed twice daily. The results showed as follows: fish fed the diets containing wheat starch or corn starch had significantly higher weight gain ratio ( WGR ) , specific growth rate ( SGR) , feed efficiency ( FE) and protein efficiency ratio

  7. Pre- and post-weaning diet alters the faecal metagenome in the cat with differences vitamin and carbohydrate metabolism gene abundances

    Science.gov (United States)

    Young, Wayne; Moon, Christina D.; Thomas, David G.; Cave, Nick J.; Bermingham, Emma N.

    2016-01-01

    Dietary format, and its role in pet nutrition, is of interest to pet food manufacturers and pet owners alike. The aim of the present study was to investigate the effects of pre- and post-weaning diets (kibbled or canned) on the composition and function of faecal microbiota in the domestic cat by shotgun metagenomic sequencing and gene taxonomic and functional assignment using MG-RAST. Post-weaning diet had a dramatic effect on community composition; 147 of the 195 bacterial species identified had significantly different mean relative abundances between kittens fed kibbled and canned diets. The kittens fed kibbled diets had relatively higher abundances of Lactobacillus (>100-fold), Bifidobacterium (>100-fold), and Collinsella (>9-fold) than kittens fed canned diets. There were relatively few differences in the predicted microbiome functions associated with the pre-weaning diet. Post-weaning diet affected the abundance of functional gene groups. Genes involved in vitamin biosynthesis, metabolism, and transport, were significantly enriched in the metagenomes of kittens fed the canned diet. The impact of post-weaning diet on the metagenome in terms of vitamin biosynthesis functions suggests that modulation of the microbiome function through diet may be an important avenue for improving the nutrition of companion animals. PMID:27876765

  8. Determinants of DHA status and functional effects on metabolic markers and immune modulation in early life

    DEFF Research Database (Denmark)

    Harsløf, Laurine Bente Schram

    intake and other potential determinants in infancy and childhood. The first part of the PhD thesis describes several potential determinants of infant and young child DHA status including genetic variation in FADS, breastfeeding and fish intake. Results can be found in Paper 1. Evidence for effects of n-3...... LCPUFA on metabolic markers such as glucose homeostasis, lipid profile and blood pressure in young children is limited. No studies have explored whether polymorphisms of genes encoding proteins involved in the mechanisms behind the effect (such as PPARG2 and COX2) can support the findings of diet studies...... by identifying the involved pathways and genes. The second part of the PhD thesis explores whether functional effects of n-3 LCPUFA on metabolic markers and immune maturation in young children can be supported by polymorphisms in genes involved in the mechanisms (PPARG2, COX2 and NFKB1). Results can be found...

  9. Dietary protein and carbohydrate affect feeding behavior and metabolic regulation in hummingbirds (Melanotrochilus fuscus) Las proteínas y carbohidratos dietarios afectan la conducta de alimentación y la regulación metabólica en picaflores (Melanotrochilus fuscus)

    OpenAIRE

    Zanotto,Flavia P.; Bicudo, J.E.P.W.

    2005-01-01

    The objective of this work was to link hummingbird feeding behavior with metabolic regulation and in addition to assess whether dietary composition would affect entrance into torpor. Hummingbirds were fed a combination of diets with contrasting amounts of protein and carbohydrate. The diets were composed of the following: 2.4 % protein (P) - 12 % sucrose (S) and 0.8 % protein (P) - 36 % sucrose (S). The main findings showed that periods of feeding on each of the diets could be distinguished a...

  10. Serum copper, zinc, and iron levels, and markers of carbohydrate metabolism in postmenopausal women with prediabetes and type 2 diabetes mellitus.

    Science.gov (United States)

    Skalnaya, Margarita G; Skalny, Anatoly V; Tinkov, Alexey A

    2016-11-16

    The objective of the present study was to evaluate serum level of copper, zinc, iron and metabolic parameters in postmenopausal women with diabetes. A total of 413 postmenopausal women were enrolled in the current study. Women were divided into 4 groups with equal age and body mass index according to glycated hemoglobin (HbA1c) levels (≤5.5; 5.5-6.0; 6.0-6.5; >6.5%). Serum Fe, Cu, and Zn levels were assessed using inductively-coupled plasma mass-spectrometry. Blood HbA1c, serum glucose, insulin, C-reactive protein (CRP), ferritin, and ceruloplasmin (Cp) were assessed using commercial kits. Homeostatic model assessment insulin resistance (HOMA-IR) and transferrin (Tf) saturation were calculated. The obtained data demonstrate that every 0.5% increase in HbA1c levels from 5.5% is associated with a significant elevation of glucose, insulin, CRP, and HOMA-IR values. Diabetic patients were characterized by significantly higher Fe (11%), Cu (8%), and Zn (6%) levels as compared to the controls. At the same time, the overall trend to increased metal levels in association with HbA1c was detected only for Fe (pdiabetic women was 3-fold higher than in the controls, whereas Tf saturation was decreased by 35%. Serum Cp levels were significantly increased by 19% in prediabetes, whereas in diabetic postmenopausal women no such increase was observed. A significant elevation of total metal concentration in diabetic subjects without a concomitant elevation of transport proteins may be indicative of increased levels of "free" Fe and Cu, known to be toxic.

  11. Changes of carbohydrate and protein metabolism in seedling leaves of a temperature-induced greenable albino mutant line W25 of rice

    Institute of Scientific and Technical Information of China (English)

    WU; SHUQingyao; XIAYingwu

    1998-01-01

    W25 is a low-temperature sensitive albino mutant line, Temperature not only controls the albino phenotype expression of W2o, but also determines whether it could survive, When the temperature is lower than 25℃. the leaves of W25 shows complete albino, but they exhibits normal green when temperature is higher than 30℃

  12. Utilization of economical substrate-derived carbohydrates by solventogenic clostridia: pathway dissection, regulation and engineering.

    Science.gov (United States)

    Gu, Yang; Jiang, Yu; Yang, Sheng; Jiang, Weihong

    2014-10-01

    Solventogenic clostridia can produce acetone, butanol and ethanol (ABE) by using different carbohydrates. For economical reasons, the utilization of cheap and renewable biomass in clostridia-based ABE fermentation has recently attracted increasing interests. With the study of molecular microbiology and development of genetic tools, the understanding of carbohydrate metabolism in clostridia has increased in recent years. Here, we review the pioneering work in this field, with a focus on dissecting the pathways and describing the regulation of the metabolism of economical substrate-derived carbohydrates by clostridia. Recent progress in the metabolic engineering of carbohydrate utilization pathways is also described.

  13. CARBOHYDRATE-CONTAINING COMPOUNDS WHICH BIND TO CARBOHYDRATE BINDING RECEPTORS

    DEFF Research Database (Denmark)

    1995-01-01

    Carbohydrate-containing compounds which contain saccharides or derivatives thereof and which bind to carbohydrate binding receptors are useful in pharmaceutical products for treatment of inflammatory diseases and other diseases.......Carbohydrate-containing compounds which contain saccharides or derivatives thereof and which bind to carbohydrate binding receptors are useful in pharmaceutical products for treatment of inflammatory diseases and other diseases....

  14. Dietary Proteins as Determinants of Metabolic and Physiologic Functions of the Gastrointestinal Tract

    Directory of Open Access Journals (Sweden)

    G. Harvey Anderson

    2011-05-01

    Full Text Available Dietary proteins elicit a wide range of nutritional and biological functions. Beyond their nutritional role as the source of amino acids for protein synthesis, they are instrumental in the regulation of food intake, glucose and lipid metabolism, blood pressure, bone metabolism and immune function. The interaction of dietary proteins and their products of digestion with the regulatory functions of the gastrointestinal (GI tract plays a dominant role in determining the physiological properties of proteins. The site of interaction is widespread, from the oral cavity to the colon. The characteristics of proteins that influence their interaction with the GI tract in a source-dependent manner include their physico-chemical properties, their amino acid composition and sequence, their bioactive peptides, their digestion kinetics and also the non-protein bioactive components conjugated with them. Within the GI tract, these products affect several regulatory functions by interacting with receptors releasing hormones, affecting stomach emptying and GI transport and absorption, transmitting neural signals to the brain, and modifying the microflora. This review discusses the interaction of dietary proteins during digestion and absorption with the physiological and metabolic functions of the GI tract, and illustrates the importance of this interaction in the regulation of amino acid, glucose, lipid metabolism, and food intake.

  15. Carbohydrates and Depression.

    Science.gov (United States)

    Wurtman, Richard J.; Wurtman, Judith J.

    1989-01-01

    Describes the symptoms, such as appetite change and mood fluctuation, basic mechanisms, and some treatments of Seasonal Affective Disorder (SAD), Carbohydrate-Craving Obesity (CCO) and Premenstrual Syndrome (PMS). Provides several tables and diagrams, and three reading references. (YP)

  16. Workshop to establish databases of carbohydrate spectra

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The workshop was organized to formulate guidelines for establishing spectral databases of complex carbohydrates. The databases will enable the scientific community to avoid the great waste of research effort and funds that frequently occurs when carbohydrate chemists are forced to duplicate the structural characterization of previously characterized complex carbohydrates. Chemists waste their effort on repetitive characterizations because in the absence of spectral databases they are unaware they are analyzing a known molecule until they have completely determined its structure. Chemists will be able to avoid much of this wasted effort when the collections of mass and of nuclear magnetic resonance (NMR) spectra initiated at the workshop are subsequently developed into searchable databases. Then scientists only need query the databases with the spectrum or with information defining the spectrum of an unidentified carbohydrate to find out if it has been previously characterized.

  17. The association between carbohydrate-rich foods and risk of cardiovascular disease is not modified by genetic susceptibility to dyslipidemia as determined by 80 validated variants.

    Directory of Open Access Journals (Sweden)

    Emily Sonestedt

    Full Text Available It is still unclear whether carbohydrate consumption is associated with cardiovascular disease (CVD risk. Genetic susceptibility might modify the associations between dietary intakes and disease risk.The aim was to examine the association between the consumption of carbohydrate-rich foods (vegetables, fruits and berries, juice, potatoes, whole grains, refined grains, cookies and cakes, sugar and sweets, and sugar-sweetened beverages and the risk of incident ischemic CVD (iCVD; coronary events and ischemic stroke, and whether these associations differ depending on genetic susceptibility to dyslipidemia.Among 26,445 individuals (44-74 years; 62% females from the Malmö Diet and Cancer Study cohort, 2,921 experienced an iCVD event during a mean follow-up time of 14 years. At baseline, dietary data were collected using a modified diet history method, and clinical risk factors were measured in 4,535 subjects. We combined 80 validated genetic variants associated with triglycerides and HDL-C or LDL-C, into genetic risk scores and examined the interactions between dietary intakes and genetic risk scores on the incidence of iCVD.Subjects in the highest intake quintile for whole grains had a 13% (95% CI: 3-23%; p-trend: 0.002 lower risk for iCVD compared to the lowest quintile. A higher consumption of foods rich in added sugar (sugar and sweets, and sugar-sweetened beverages had a significant cross-sectional association with higher triglyceride concentrations and lower HDL-C concentrations. A stronger positive association between a high consumption of sugar and sweets on iCVD risk was observed among those with low genetic risk score for triglycerides (p-interaction=0.05.In this prospective cohort study that examined food sources of carbohydrates, individuals with a high consumption of whole grains had a decreased risk of iCVD. No convincing evidence of an interaction between genetic susceptibility for dyslipidemia, measured as genetic risk scores of

  18. Meal composition and plasma amino acid ratios: Effect of various proteins or carbohydrates, and of various protein concentrations

    Science.gov (United States)

    Yokogoshi, Hidehiko; Wurtman, Richard J.

    1986-01-01

    The effects of meals containing various proteins and carbohydrates, and of those containing various proportions of protein (0 percent to 20 percent of a meal, by weight) or of carbohydrate (0 percent to 75 percent), on plasma levels of certain large neutral amino acids (LNAA) in rats previously fasted for 19 hours were examined. Also the plasma tryptophan ratios (the ratio of the plasma trytophan concentration to the summed concentrations of the other large neutral amino acids) and other plasma amino acid ratios were calculated. (The plasma tryptophan ratio has been shown to determine brain tryptophan levels and, thereby, to affect the synthesis and release of the neurotransmitter serotonin). A meal containing 70 percent to 75 percent of an insulin-secreting carbohydrate (dextrose or dextrin) increased plasma insulin levels and the tryptophan ratio; those containing 0 percent or 25 percent carbohydrate failed to do so. Addition of as little as 5 percent casein to a 70 percent carbohydrate meal fully blocked the increase in the plasma tryptophan ratio without affecting the secretion of insulin - probably by contributing much larger quantities of the other LNAA than of tryptophan to the blood. Dietary proteins differed in their ability to suppress the carbohydrate-induced rise in the plasma tryptophan ratio. Addition of 10 percent casein, peanut meal, or gelatin fully blocked this increase, but lactalbumin failed to do so, and egg white did so only partially. (Consumption of the 10 percent gelatin meal also produced a major reduction in the plasma tyrosine ratio, and may thereby have affected brain tyrosine levels and catecholamine synthesis.) These observations suggest that serotonin-releasing neurons in brains of fasted rats are capable of distinguishing (by their metabolic effects) between meals poor in protein but rich in carbohydrates that elicit insulin secretion, and all other meals. The changes in brain serotonin caused by carbohydrate-rich, protein

  19. 本草消渴丹对实验性糖尿病大鼠糖代谢酶活性的影响%Effect of Bencao Xiaoke Pill on Carbohydrate Metabolism Enzyme Activity in Type 2 Diabetic Rats

    Institute of Scientific and Technical Information of China (English)

    杨宏莉; 张宏馨; 李兰会; 王燕; 卢淑兰; 孙淑敏; 张伟伟

    2009-01-01

    Objective To study the effect of Chinese Herbal Compound-Bencao Xiaoke pill on the activity of key enzymes - hexokinase and malate dehydrogenase in the carbohydrate metabolism of type 2 diabetic rats and provide scientific basis for clinical application.Methods Type 2 diabetic rat model was built by small dose injection of streptozotocin (STZ) (25 mg/kg,intraperitoneal injection) and intake of high lipid die.After the model was established,the rats with diabetes were treated with Compound-Bencao Xiaoke pill and metformin.Blood glucose was detected every weekend by cutting rats' tails.After four weeks treatment the blood glucose,activities of muscle hexokinase(HK)and liver malate dehydrogenase(MDH) were tested.Results The blood glucose was significantly decreased as compared with model groups,and there had significant differences in the activities of HK of the muscle tissue and MDH of the liver.Conclusion One of the hypoglycemic mechanism for materia medica Xiaoke pills is to increese directly or indirectly the activity of carbohydrate metabolic enzymes.The Compound-Bencao xiaoke pill has certain effect on the weight loss of diabetic body.%目的 探讨中药复方-本草消渴丹对2型糖尿病大鼠糖代谢的关键酶己糖激酶、苹果酸脱氢酶活性的影响,为临床用药提供科学依据.方法 选择高脂、高糖饲料加小剂量链脲佐菌素(STZ,25 mg/kg,腹腔注射)的方法建立大鼠2型糖尿病模型,分别以本草消渴丹和西药二甲双胍进行干预,每周末断尾取血检测空腹血糖值.治疗4周后检测大鼠空腹血糖值、肌肉己糖激酶(HK)和肝脏苹果酸脱氢酶活性(MDH).结果 本草消渴丹治疗可以显著降低糖尿病大鼠血糖,其肌肉组织HK、肝脏组织MDH活性与模型组对比有显著性差异.结论 中药复方-本草消渴丹降低血糖的作用机制之一可能是直接或间接提高了葡萄糖氧化分解的酶活性;本草消渴丹对对抗糖尿病体重降低有一定作用.

  20. Effect of Weak Light Stress on Carbohydrate Metabolism of Flue-cured Tobacco%弱光胁迫对云南烤烟碳水化合物代谢的影响

    Institute of Scientific and Technical Information of China (English)

    彭振兴; 徐向丽; 徐双红; 易克; 韩定国; 朱毅

    2012-01-01

    [Objective] The study aimed o discuss the effect of weak light stress on the carbohydrate metabolism of Yuannan flue-cured tobaccos during the period from topping to baking. [Method] The flue-cured tobaccos was covered by using the sunshade net with the shading rate of 75% and the effect of weak light stress on the carbohydrate metabolism in the middle and upper leaves of Yuanyan 87. [Result] The weak light stress in the different time reduced the contents of starch, total sugar, reducing sugar and sucrose, but had no significant effect on the contents of glucose and fructose in the upper leaves of flue-cured tobacco; its influence on middle leaves was significant than that on the upper leaves, it reduced the contents of starch, total sugar and reducing sugar, increased the sucrose content, and had no notable effect on the contents of glucose and fructose in the middle leaves. [Conclusion] Under the weak light stress, the contents of starch, total sugar and reducing sugar in the tobacco leaves was decreased obviously. The influence of the weak light stress on the middle leaves was greater than that on the upper leaves, and the influence was enhanced with the prolonging of the stress tine, so in the production it should using the way with the reasonable density could reduce the influence of weak light stress on the flue-cured tobacco.%[目的]探讨弱光胁迫对云南烤烟打项至采烤期间碳水化合物代谢的影响,为云南烤烟提质增效提供理论依据.[方法]利用遮阳网(遮光率75%)对烤烟进行遮盖,研究弱光胁迫对云烟87中部及上部烟叶碳水化合物代谢的影响.[结果]不同时间的弱光胁迫降低了烤烟上部叶中淀粉、总糖、还原糖、蔗糖的含量,对葡萄糖、果糖含量无显著影响;对中部叶影响比上部叶显著,降低了中部烟叶中淀粉、总糖、还原糖的含量,增加了蔗糖含量,对葡萄糖、果糖含量无显著影响.[结论]在弱光胁迫下,烟叶中的淀粉

  1. Comparison of Carbohydrate Metabolism after Anthesis in the Leaves of Two Tomato Types%两种不同类型番茄叶片中碳水化合物代谢的比较

    Institute of Scientific and Technical Information of China (English)

    王利; 崔娜; 范海延; 苗青; 曲波; 李天来

    2012-01-01

    Two kinds of tomato Solanum chmielewskii and Micro-Tom were used to studcy the dynamic changes of carbohydrate in their leaves at different growth stages and define the carbohydrate metabolism after anthesis, providing a referance for the study of sugar metabolism of Micro-Tom and the utilization of wild tomato resources. The main results showed that the contents of fructose and glucose in the leaves of Micro -Tom were significantly 247% and 290% higher than those of Solanum chmielewskii at 25 days after anthesis and the sucrose contents in the leaves of Micro-Tom were 111%, 96% and 169% higher than those of Solanum chmielewskii at 25 days, 35 days and 45 days after anthesis, respectively; the content of starch in the leaves of Solanum chmielewskii was 142% higher than that of Micro-Tom. Activities of invertases including acid invertase and neutral invertase in Micro-Tom were 348% and 138% higher than those in Solanum chmielewskii at 25 days after anthesis; sucrose synthase in Micro-Tom was always higher than that in Solanum chmielewskii at the same stage, however, sucrose phosphate synthase in Solanum chmielewskii was always higher during the whole development of fruits.%选用野生型番茄克梅留斯基(Solanum chmielewskii)和普通栽培型番茄Micro-Tom(Solanum lycopersicum)为试验材料,比较两种不同类型番茄花后不同生长阶段叶片中碳水化合物代谢的动态变化,明确其在开花后叶片碳水化合物代谢的规律,为以Micro-Tom为试材的糖代谢研究及野生型番茄资源的利用服务.结果表明:在番茄开花后25d,叶片中果糖、葡萄糖含量Micro-Tom明显高于克梅留斯基,分别高出247%和290%;花后25,35d,45d Micro-Tom叶片中蔗糖含量高于克梅留斯基,分别高出111%、96%和169%;而克梅留斯基在花后15d,叶片中淀粉含量明显高于Micro-Tom,为142%.转化酶(酸性转化酶和中性转化酶)活性在花后25d Micro-Tom叶片明显高

  2. Stream hydraulics and temperature determine the metabolism of geothermal Icelandic streams

    Directory of Open Access Journals (Sweden)

    Demars B. O.L.

    2011-07-01

    Full Text Available Stream ecosystem metabolism plays a critical role in planetary biogeochemical cycling. Stream benthic habitat complexity and the available surface area for microbes relative to the free-flowing water volume are thought to be important determinants of ecosystem metabolism. Unfortunately, the engineered deepening and straightening of streams for drainage purposes could compromise stream natural services. Stream channel complexity may be quantitatively expressed with hydraulic parameters such as water transient storage, storage residence time, and water spiralling length. The temperature dependence of whole stream ecosystem respiration (ER, gross primary productivity (GPP and net ecosystem production (NEP = GPP − ER has recently been evaluated with a “natural experiment” in Icelandic geothermal streams along a 5–25 °C temperature gradient. There remained, however, a substantial amount of unexplained variability in the statistical models, which may be explained by hydraulic parameters found to be unrelated to temperature. We also specifically tested the additional and predicted synergistic effects of water transient storage and temperature on ER, using novel, more accurate, methods. Both ER and GPP were highly related to water transient storage (or water spiralling length but not to the storage residence time. While there was an additional effect of water transient storage and temperature on ER (r2 = 0.57; P = 0.015, GPP was more related to water transient storage than temperature. The predicted synergistic effect could not be confirmed, most likely due to data limitation. Our interpretation, based on causal statistical modelling, is that the metabolic balance of streams (NEP was primarily determined by the temperature dependence of respiration. Further field and experimental work is required to test the predicted synergistic effect on ER. Meanwhile, since higher metabolic activities allow for higher pollutant degradation or uptake

  3. 饲料中糊精水平对乌克兰鳞鲤生长及糖代谢的影响%Effects of Dietary Dextrin Level on Growth and Carbohydrate Metabolism of Ukraine Scaly Carp ( Cyprinus carpio)

    Institute of Scientific and Technical Information of China (English)

    高妍; 李静辉; 方珍珍; 程镇燕; 乔秀亭; 白东清

    2015-01-01

    In order to investigate the effects of dietary dextrin level on growth and carbohydrate metabolism of Ukraine scaly carp ( Cyprinus carpio) , Ukraine scaly carp with an average body weight about of 3.92 g were used as test object, and 2 experimental diets with 30% protein level were designed which containing 15% and 25% dextrin, respectively. A total of 300 Ukraine scaly carp were randomly divided into 2 groups with 3 repli?cates per group and 50 fish per replicate. After 8 weeks feeding, the growth indices, biochemical indices and carbohydrate metabolize enzyme activities of Ukraine scaly carp were examined. Glucokinase ( GK) and glu?cose?6?phosphatase ( G6Pase) mRNA expression levels in hepatopancreas and intestine during the refeeding af?ter fasting 48 h were tested. The results showed as follows: 1) specific growth rate in the 25% dextrin group was significantly higher than that in the 15% dextrin group ( P<0.05) . 2) The contents of serum triglyceride, cholesterol and glucose in the 25% dextrin group were significantly higher than those in the 15% dextrin group ( P<0.05) . 3) The activities of serum hexokinase ( HK) , GK, pyruvate kinase ( PK) and malate dehydrogen?ase ( MDH) and hepatopancreas HK, GK and G6Pase in the 25% dextrin group were significantly higher than those in the 15% dextrin group ( P<0.05) , while the activity of hepatopancreas MDH was significantly lower than that in the 15% dextrin group ( P<0.05) . 4) As for the GK mRNA expression level in hepatopancreas at 24 h after refeeding, the 25% dextrin group was significantly higher than the 15% dextrin group ( P<0.05);compared with 15% dextrin, the G6Pase mRNA expression level in hepatopancreas was significantly increased by 25% dextrin at 6 h after refeeding ( P<0.05) . The results indicate that the improvement effect of 25% of di?etary dextrin level for growth and carbohydrate metabolism of Ukraine scaly carp is better than 15% of dietary dextrin level under this experimental condition.%为了

  4. Use of scanning calorimetry and microrespiration to determine effects of Bt toxin doses on Pandemis leafroller (Lepidoptera: Tortricidae) metabolism

    Science.gov (United States)

    Differential scanning calorimetry and microrespiration were used to determine the effects of the biopesticide, Bt toxin, on the metabolism of infected Pandemis leafroller, Pandemis purusana (Kearfott). The metabolic heat rate, CO2 evolution, O2 consumption of 2nd and 3rd instars following a 2 h expo...

  5. 饲料碳、脂比例对胭脂鱼幼鱼生长及糖代谢的影响%Effects of dietary carbohydrate to lipid levels on growth performance and carbohydrate metabolism of juvenile Chinese sucker, Myxocyprinus asiaticus

    Institute of Scientific and Technical Information of China (English)

    张颂; 蒋明; 文华; 黄凤; 吴凡; 田娟; 刘伟

    2014-01-01

    [Objective]This study investigated the influences of dietary carbohydrate-to-lipid m( CHO)∶m ( L) on growth performance , feed utilization and carbohydrate metabolism enzymes activities of juvenile Chinese sucker , Myxocyprinus asiaticus to detect the suitable addition proportion of m( CHO)∶m( L) to the diet of juvenile Chinese sucker .[Method]Six isonitrogenous ( crude protein 41%) and isoenergetic (16 kJ/g) diets were formulated to contain with graded levels of m( CHO)∶m( L) (0.29,0.81,1.58, 2.88 ,5.46 and 13.22 ) .Each diet was randomly fed to one treatment of Chinese sucker with an average initial body mass of (4.01 ±0.02) g for 8 weeks.Mass gain rate(MGR), specific growth rate (SGR), body composition and carbohydrate metabolism enzymes activities of juvenile Chinese sucker were detec -ted and analyzed .[Result and conclusion]The mass gain rate and specific growth rate increased initially but then decreased with the increasing dietary m( CHO)∶m( L) , thus reaching the highest in fish fed di-ets with m(CHO)∶m(L) of 5.46, which was significantly higher than those of fish fed other diets (P0.05 ) .Based on broken-line regression analysis of SGR against di-etary m( CHO)∶m( L) , a m( CHO)∶m( L) of 4.65 was proved to be optimal for the growth of juvenile Chinese sucker .%【目的】研究饲料中碳水化合物(CHO)与脂肪(L)比例[m(CHO)∶m(L)]对胭脂鱼Myxocyprinus asiaticus幼鱼生长、饲料利用及糖代谢酶活力的影响,确定其适宜添加比例.【方法】以m( CHO)∶m( L)为0.29、0.81、1.58、2.88、5.46和13.22的6种等氮(粗蛋白质量分数41%)等能(16 kJ/g)饲料,投喂初始体质量为(4.01±0.02) g的胭脂鱼幼鱼8周,测定并分析其对胭脂鱼幼鱼增质量率、特定生长率、鱼体营养成分和糖代谢酶活力等指标的影响.【结果和结论】随着饲料m(CHO)∶m(L)增加,胭脂鱼幼鱼的增质量率和特定生长率先上升

  6. Determining novel functions of Arabidopsis 14-3-3 proteins in central metabolic processes

    Directory of Open Access Journals (Sweden)

    Diaz Celine

    2011-11-01

    Full Text Available Abstract Background 14-3-3 proteins are considered master regulators of many signal transduction cascades in eukaryotes. In plants, 14-3-3 proteins have major roles as regulators of nitrogen and carbon metabolism, conclusions based on the studies of a few specific 14-3-3 targets. Results In this study, extensive novel roles of 14-3-3 proteins in plant metabolism were determined through combining the parallel analyses of metabolites and enzyme activities in 14-3-3 overexpression and knockout plants with studies of protein-protein interactions. Decreases in the levels of sugars and nitrogen-containing-compounds and in the activities of known 14-3-3-interacting-enzymes were observed in 14-3-3 overexpression plants. Plants overexpressing 14-3-3 proteins also contained decreased levels of malate and citrate, which are intermediate compounds of the tricarboxylic acid (TCA cycle. These modifications were related to the reduced activities of isocitrate dehydrogenase and malate dehydrogenase, which are key enzymes of TCA cycle. In addition, we demonstrated that 14-3-3 proteins interacted with one isocitrate dehydrogenase and two malate dehydrogenases. There were also changes in the levels of aromatic compounds and the activities of shikimate dehydrogenase, which participates in the biosynthesis of aromatic compounds. Conclusion Taken together, our findings indicate that 14-3-3 proteins play roles as crucial tuners of multiple primary metabolic processes including TCA cycle and the shikimate pathway.

  7. The effect of low-carbohydrate diets for patients with non-alcoholic fatty liver disease and metabolic syndrome, obesity, weight%低碳水化合物饮食对非酒精性脂肪肝肥胖患者体重和代谢综合征的影响

    Institute of Scientific and Technical Information of China (English)

    王莹

    2015-01-01

    Objective: To investigate the effect of low-carbohydrate diets for patients with non-alcoholic fatty liver weight obesity and metabolic syndrome.Methods: 32 patients in patients with non-alcoholic fatty liver fat low carbohydrate diet intervention, before and after comparison analysis. Results: 32 cases of patients with BMI, TG, TC, LDL-C lowering, HDL-C increased compared with before the intervention significantly different (P <0.05). Conclusion: Low-carbohydrate diet on nonalcoholic fatty liver in obese patients with weight and metabolic syndrome improved significantly.%目的:探讨低碳水化合物饮食对非酒精性脂肪肝肥胖患者体重和代谢综合征的影响。方法32例非酒精性脂肪肝肥胖患者患者低碳水化合物饮食干预,前、后对照分析。结果32例患者BMI、TG、TC、LDL-C降低,HDL-C上升,与干预前比较差异明显(P <0.05)。结论低碳水化合物饮食对非酒精性脂肪肝肥胖患者体重和代谢综合征改善明显。

  8. Effect of low temperature on phytohormones and carbohydrates metabolism in Ber-muda grass%低温胁迫对狗牙根激素和碳水化合物代谢的影响

    Institute of Scientific and Technical Information of China (English)

    杨勇; 娄燕宏; 杨知建; 向佐湘; 徐庆国; 胡龙兴

    2016-01-01

    以杂交狗牙根品种天堂419,天堂328,老鹰草,运动百慕大和普通狗牙根品种保定狗牙根为试验材料,分析了人工模拟昼夜温度为适温(30℃/25℃)、亚适温(18℃/10℃)、冷害(8℃/4℃)和冻害(4℃/-4℃)等4种梯度降温冷驯化条件下,低温胁迫对狗牙根叶片细胞膜稳定性、叶绿素含量、内源激素(ABA、IAA,GA3和 tZR)以及可溶性糖、淀粉、果聚糖、总非结构性糖等碳水化合物代谢的影响。结果表明:随着温度的降低,狗牙根叶片的电导率显著升高,叶绿素含量下降,内源激素 ABA 含量升高,而 IAA,GA3和 tZR 含量均下降;碳水化合物中可溶性糖、果糖和总非结构性糖含量在5个品种中均呈不同程度的升高,但不同品种在冷驯化过程中不同温度处理下其变化差异较大,如天堂328、老鹰草和运动百慕大的淀粉含量下降;天堂419的淀粉含量变化不大,而保定狗牙根的淀粉含量则呈上升趋势。综合分析各生理指标的变化,5个狗牙根品种的抗寒能力强弱为:保定狗牙根最弱,而天堂419,老鹰草、天堂328和运动百慕大耐寒能力依次较强。低温胁迫下积累或维持较高的内源激素 ABA、GA3、IAA、tZR和碳水化合物可溶性糖和果聚糖可能是耐寒性较强的主要原因,这些代谢物的积累或维持有助于狗牙根细胞内渗透平衡和细胞膜稳定性的维持,延缓叶片的枯黄衰老和诱导抗性相关基因或蛋白的表达从而提高了狗牙根品种的抗寒能力。%To investigate the effects of modulated cold acclimation on the leaf membrane stability,chlorophyll content,endogenous hormones (ABA,IAA,GA3 ,tZR),and carbohydrate (soluble sugars,starch,fructan, total nonstructural carbohydrates)metabolism,five Bermuda grass cultivars,Tifway,Tifgreen,Tifsport, Tifeagle and Baoding were selected and treated under a range of temperatures

  9. Differential effects of two fermentable carbohydrates on central appetite regulation and body composition.

    Directory of Open Access Journals (Sweden)

    Tulika Arora

    Full Text Available BACKGROUND: Obesity is rising at an alarming rate globally. Different fermentable carbohydrates have been shown to reduce obesity. The aim of the present study was to investigate if two different fermentable carbohydrates (inulin and β-glucan exert similar effects on body composition and central appetite regulation in high fat fed mice. METHODOLOGY/PRINCIPAL FINDINGS: Thirty six C57BL/6 male mice were randomized and maintained for 8 weeks on a high fat diet containing 0% (w/w fermentable carbohydrate, 10% (w/w inulin or 10% (w/w β-glucan individually. Fecal and cecal microbial changes were measured using fluorescent in situ hybridization, fecal metabolic profiling was obtained by proton nuclear magnetic resonance ((1H NMR, colonic short chain fatty acids were measured by gas chromatography, body composition and hypothalamic neuronal activation were measured using magnetic resonance imaging (MRI and manganese enhanced MRI (MEMRI, respectively, PYY (peptide YY concentration was determined by radioimmunoassay, adipocyte cell size and number were also measured. Both inulin and β-glucan fed groups revealed significantly lower cumulative body weight gain compared with high fat controls. Energy intake was significantly lower in β-glucan than inulin fed mice, with the latter having the greatest effect on total adipose tissue content. Both groups also showed an increase in the numbers of Bifidobacterium and Lactobacillus-Enterococcus in cecal contents as well as feces. β-Glucan appeared to have marked effects on suppressing MEMRI associated neuronal signals in the arcuate nucleus, ventromedial hypothalamus, paraventricular nucleus, periventricular nucleus and the nucleus of the tractus solitarius, suggesting a satiated state. CONCLUSIONS/SIGNIFICANCE: Although both fermentable carbohydrates are protective against increased body weight gain, the lower body fat content induced by inulin may be metabolically advantageous. β-Glucan appears to suppress

  10. Determining the control circuitry of redox metabolism at the genome-scale.

    Directory of Open Access Journals (Sweden)

    Stephen Federowicz

    2014-04-01

    Full Text Available Determining how facultative anaerobic organisms sense and direct cellular responses to electron acceptor availability has been a subject of intense study. However, even in the model organism Escherichia coli, established mechanisms only explain a small fraction of the hundreds of genes that are regulated during electron acceptor shifts. Here we propose a qualitative model that accounts for the full breadth of regulated genes by detailing how two global transcription factors (TFs, ArcA and Fnr of E. coli, sense key metabolic redox ratios and act on a genome-wide basis to regulate anabolic, catabolic, and energy generation pathways. We first fill gaps in our knowledge of this transcriptional regulatory network by carrying out ChIP-chip and gene expression experiments to identify 463 regulatory events. We then interfaced this reconstructed regulatory network with a highly curated genome-scale metabolic model to show that ArcA and Fnr regulate >80% of total metabolic flux and 96% of differential gene expression across fermentative and nitrate respiratory conditions. Based on the data, we propose a feedforward with feedback trim regulatory scheme, given the extensive repression of catabolic genes by ArcA and extensive activation of chemiosmotic genes by Fnr. We further corroborated this regulatory scheme by showing a 0.71 r(2 (p<1e-6 correlation between changes in metabolic flux and changes in regulatory activity across fermentative and nitrate respiratory conditions. Finally, we are able to relate the proposed model to a wealth of previously generated data by contextualizing the existing transcriptional regulatory network.

  11. Dietary determinants of subclinical inflammation, dyslipidemia and components of the metabolic syndrome in overweight children: a review

    NARCIS (Netherlands)

    Zimmermann, M.B.; Aeberli, I.

    2008-01-01

    Objective: To review and summarize the dietary determinants of the metabolic syndrome, subclinical inflammation and dyslipidemia in overweight children. Design: Review of the current literature, focusing on pediatric studies. Participants: Normal weight, overweight, or obese children and adolescents

  12. Fructose-Glucose Composite Carbohydrates and Endurance Performance: Critical Review and Future Perspectives.

    Science.gov (United States)

    Rowlands, David S; Houltham, S; Musa-Veloso, K; Brown, F; Paulionis, L; Bailey, D

    2015-11-01

    Sports beverages formulated with fructose and glucose composites enhance exogenous carbohydrate oxidation, gut comfort, and endurance performance, relative to single-saccharide formulations. However, a critical review of performance data is absent. We conducted a comprehensive literature review of the effect of fructose:glucose/maltodextrin (glucose or maltodextrin) composites versus glucose/maltodextrin on endurance performance. Mechanistic associations were drawn from effects on carbohydrate metabolism, gut, and other sensory responses. Overall, 14 studies contained estimates of 2.5-3.0-h endurance performance in men, mostly in cycling. Relative to isocaloric glucose/maltodextrin, the ingestion of 0.5-1.0:1-ratio fructose:glucose/maltodextrin beverages at 1.3-2.4 g carbohydrate·min(-1) produced small to moderate enhancements (1-9 %; 95 % confidence interval 0-19) in mean power. When 0.5:1-ratio composites were ingested at ≥1.7 g·min(-1), improvements were larger (4-9 %; 2-19) than at 1.4-1.6 g·min(-1) (1-3 %; 0-6). The effect sizes at higher ingestion rates were associated with increased exogenous carbohydrate oxidation rate, unilateral fluid absorption, and lower gastrointestinal distress, relative to control. Solutions containing a 0.7-1.0:1 fructose:glucose ratio were absorbed fastest; when ingested at 1.5-1.8 g·min(-1), a 0.8:1 fructose:glucose ratio conveyed the highest exogenous carbohydrate energy and endurance power compared with lower or higher fructose:glucose ratios. To conclude, ingesting 0.5-1.0:1-ratio fructose:glucose/maltodextrin beverages at 1.3-2.4 g·min(-1) likely benefits 2.5-3.0 h endurance power versus isocaloric single saccharide. Further ratio and dose-response research should determine if meaningful performance benefits of composites accrue with ingestion carbohydrate demands may differ from the current analysis.

  13. Metabolic enzymes link morphine withdrawal with metabolic disorder

    Institute of Scientific and Technical Information of China (English)

    Xi Jiang; Jing Li; Lan Ma

    2007-01-01

    @@ Energy metabolism is a fundamental biological process that is vital for the survival of all species. Disorders in the metabolic system result in deficiency or redundancy of certain nutrients, including carbohydrates, lipids, amino acids, etc. Abnormality of the energy metabolism system leads to a number of metabolic diseases, such as the metabolic syndrome. Broadly speaking, the term "metabolic diseases" now tends to be widened to the category that refers to all diseases with metabolism disorder.

  14. Carbohydrates in therapeutics.

    Science.gov (United States)

    Kilcoyne, Michelle; Joshi, Lokesh

    2007-07-01

    Awareness of the importance of carbohydrates in living systems and medicine is growing due to the increasing understanding of their biological and pharmacological relevance. Carbohydrates are ubiquitous and perform a wide array of biological roles. Carbohydrate-based or -modified therapeutics are used extensively in cardiovascular and hematological treatments ranging from inflammatory diseases and anti-thrombotic treatments to wound healing. Heparin is a well-known and widely used example of a carbohydrate-based drug but will not be discussed as it has been extensively reviewed. We will detail carbohydrate-based and -modified therapeutics, both those that are currently marketed or in various stages of clinical trials and those that are potential therapeutics based on promising preclinical investigations. Carbohydrate-based therapeutics include polysaccharide and oligosaccharide anti-inflammatory, anti-coagulant and anti-thrombotic agents from natural and synthetic sources, some as an alternative to heparin and others which were designed based on known structure-functional relationships. Some of these compounds have multiple biological effects, showing anti-adhesive, anti-HIV and anti-arthrithic activities. Small molecules, derivatives or mimetics of complement inhibitors, are detailed for use in limiting ischemia/ reperfusion injuries. Monosaccharides, both natural and synthetic, have been investigated for their in vivo anti-inflammatory and cardioprotective properties. Modification by glycosylation of natural products, or glycosylation-mimicking modification, has a significant effect on the parent molecule including increased plasma half-life and refining or increasing desired functions. It is hoped that this review will highlight the vast therapeutic potential of these natural bioactive molecules.

  15. Determination of changes in the metabolic profile of avocado fruits (Persea americana) by two CE-MS approaches (targeted and non-targeted).

    Science.gov (United States)

    Contreras-Gutiérrez, Paulina K; Hurtado-Fernández, Elena; Gómez-Romero, María; Ignacio Hormaza, José; Carrasco-Pancorbo, Alegría; Fernández-Gutiérrez, Alberto

    2013-10-01

    A CZE method with two different MS detection conditions (MRM and Full Scan) was developed to determine qualitative and quantitative changes in the metabolic profile of avocado fruits (Persea americana). LODs in MRM approach were found between 20.1 and 203.0 ppb for abscisic acid and perseitol, respectively, whilst in Full Scan, varied within the range 0.22–1.90 ppm for the same metabolites. The RSDs for reproducibility test did not exceed 11.45%. The two MS approaches were used to quantify 10 metabolites (phenolic acids, flavonoids, a carbohydrate, an organic acid, a vitamin and a phytohormone) in 18 samples of avocado at different ripening states, and the achieved results were compared. Perseitol, quinic, chlorogenic, trans-cinnamic, pantothenic and abscisic acids, as well as epicatechin and catechin decreased during the ripening process, whereas ferulic and p-coumaric acids showed the opposite trend. Moreover, some other unknown compounds whose concentration changed largely during ripening were also studied by MS/MS and QTOF MS to get a tentative identification.

  16. Protein,carbohydrate and lipid metabolism

    Institute of Scientific and Technical Information of China (English)

    1993-01-01

    930463 The relation of polymorphism of LDLreceptor gene with serum cholesterol levels.FAN Leming(范乐明),et al.Atherosclerosis ResCenter,Nanjing Med Coll,Nanjing,210029.NatlMed J China 1993;73(4):242—244.PvuII polymorphism of LDL receptor gene andserum lipid levels were analysed in 115 nor-molipidemic subjects and 57 individuals with hy-percholesterolemia.A significant relationshipwas found between P2 allele and lower serumcholesterol level,suggesting that the LDL recep-tor might contribute to the variation in choles-terol levels in normolipidemic population.Al-

  17. Regulation of carbohydrate metabolism during Giardia encystment

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Jarroll, E.L.; Macechko, P.T.; Steimle, P.A.; Bulik, D.; Karr, C.D.; Keulen, Harry van; Paget, P.A.

    2001-01-01

    Giardia intestinalis trophozoites encyst when they are exposed to bile. During encystment, events related to the inducible synthesis of a novel N-acetyl-d-galactosamine (GalNAc) homopolymer, occur. Within the first 6 h of encystment, mRNA for glucosamine 6-P isomerase (GPI), the first inducible enzy

  18. Defective carbohydrate metabolism in multiple sclerosis

    OpenAIRE

    Mathur, Deepali

    2015-01-01

    La esclerosis múltiple (EM) es una enfermedad crónica del sistema nervioso central (SNC) en el que episodios repetidos de inflamación (bortes), dan lugar a inflamación que conduce a la interrupción de la vaina de mielina por daños producidos en la misma. Junto a este fenómeno de inflación focal, existe una inflamación difusa en el SNC, que unida a la anterior, dará lugar a que aparezca un proceso de neurodegeneración, que será el responsable último de la afectación axonal y neuronal difusa qu...

  19. Protein,carbohydrate and lipid metabolism

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    2010295 Relation of serum leptin and adiponectin to cardiovascular risk factors in older adults:a Guangzhou biobank cohort study-CVD. BAO Bei(鲍蓓),et al. Guangzhou No 12 Hosp,Guangzhou 510620.Chin J Epidemiol 2010;31(2):121-125. Objective To study the serum leptin and adiponectin levels among relatively healthy older people and their association with

  20. Carbohydrates, pollinators, and cycads

    Science.gov (United States)

    Marler, Thomas E; Lindström, Anders J

    2015-01-01

    Cycad biology, ecology, and horticulture decisions are not supported by adequate research, and experiments in cycad physiology in particular have been deficient. Our recent report on free sugar content in a range of cycad taxa and tissues sets the stage for developing continued carbohydrate research. Growth and development of cycad pollen, mediation of the herbivory traits of specialist pollinators, and support of expensive strobilus behavioral traits are areas of cycad pollination biology that would benefit from a greater understanding of the role of carbohydrate relations. PMID:26479502

  1. An old paper revisited: "a mathematical model of carbohydrate energy metabolism. Interaction between glycolysis, the Krebs cycle and the H-transporting shuttles at varying ATPases load" by V.V. Dynnik, R. Heinrich and E.E. Sel'kov.

    Science.gov (United States)

    Nazaret, Christine; Mazat, Jean-Pierre

    2008-06-07

    We revisit an old Russian paper by V.V. Dynnik, R. Heinrich and E.E. Sel'kov (1980a,b) describing: "A mathematical model of carbohydrate energy metabolism. Interaction between glycolysis, the Krebs cycle and the H-transporting shuttles at varying ATPases load". We analyse the model mathematically and calculate the control coefficients as a function of ATPase loads. We also evaluate the structure of the metabolic network in terms of elementary flux modes. We show how this model can respond to an ATPase load as well as to the glucose supply. We also show how this simple model can help in understanding the articulation between the major blocks of energetic metabolism, i.e. glycolysis, the Krebs cycle and the H-transporting shuttles.

  2. Exercise training with weight loss and either a high- or low-glycemic index diet reduces metabolic syndrome severity in older adults

    DEFF Research Database (Denmark)

    Malin, Steven K; Niemi, Nicole; Solomon, Thomas

    2012-01-01

    The efficacy of combining carbohydrate quality with exercise on metabolic syndrome risk is unclear. Thus, we determined the effects of exercise training with a low (LoGIx)- or high (HiGIx)-glycemic index diet on the severity of the metabolic syndrome (Z-score)....

  3. A low-carbohydrate/high-fat diet improves glucoregulation in type 2 diabetes mellitus by reducing postabsorptive glycogenolysis

    NARCIS (Netherlands)

    Allick, G; Bisschop, PH; Ackermans, MT; Endert, E; Meijer, AJ; Kuipers, F; Sauerwein, HP; Romijn, JA

    2004-01-01

    The aim of this study was to examine the mechanisms by which dietary carbohydrate and fat modulate fasting glycemia. We compared the effects of an eucaloric high-carbohydrate (89% carbohydrate) and high-fat (89% fat) diet on fasting glucose metabolism and insulin sensitivity in seven obese patients

  4. 贮藏温度对彩色马蹄莲块茎糖类代谢与生长的影响%Effects of Storage Treatments on Growth and Carbohydrate Metabolism of Calia Lily Tubers

    Institute of Scientific and Technical Information of China (English)

    周涤; 李瑞芳; 贾桂霞; 王贤; 卫尊征

    2011-01-01

    以彩色马蹄莲(Zantedeschia hybrids)的Black Magic为试材,研究其块茎经不同贮藏温度和时间处理后,块茎碳水化合物代谢及后期植株生长的变化.结果表明,贮藏温度越高,淀粉降解越快;各温度处理总可溶性糖含量与蔗糖含量变化趋势基本一致,9、12、15℃下,贮藏第28天总可溶性糖含量与蔗糖含量达到峰值后明显下降;12℃、15℃贮藏第56天淀粉酶活性达到峰值后明显下降,还原糖含量上升到较高水平,总可溶性糖含量处于较低水平;此阶段块茎萌芽率快速提高,萌芽伸长明显;块茎栽植后株高迅速增高、开花较多.贮藏第56天块茎休眠的打破、萌发与糖类物质变化密切相关.在本试验中,短期贮藏(56 d)以12℃为宜,长期贮藏(112 d)以12℃贮藏56 d再降低至6℃最佳.%Different temperature treatments on Calla lily were used to study the changes of carbohydrate metabolism in tubers, the germination and growth of Calla lily.The results indicated that starch content in tubers declined along with the increase of storage temperature, and the changes of sucrose content accorded with that of total soluble sugar, however, the changes of reducing sugar had the opposite trend at 56 d.Amylase activities decreased as the storage temperature increased.In this period tubers sprouted obviously, and plant height and flower numbers increased.It was suggested that the turning point of sugar contents should be related to the beginning of tuber sprout.The results indicated that the best treatments of short period storage is at 12 ℃ for 56 d, and long period storage is at 12 ℃ for 56 d,then turn to 6 ℃ for 56 d.

  5. Vida útil e metabolismo de carboidratos em raízes de mandioquinha-salsa sob refrigeração e filme de PVC Shelf life and carbohydrate metabolism of arracacha roots stored under refrigeration and PVC film

    Directory of Open Access Journals (Sweden)

    Rosilene Antonio Ribeiro

    2007-04-01

    Full Text Available O objetivo deste trabalho foi avaliar a influência da temperatura de armazenamento e do uso do filme de cloreto de polivinila (PVC sobre a perda de matéria fresca e água, incidência de danos causados por frio e metabolismo pós-colheita dos carboidratos, em raízes tuberosas de mandioquinha-salsa (Arracacia xanthorrhiza. O filme de PVC reduziu a perda de matéria fresca e manteve o teor de água das raízes, durante o armazenamento por 60 dias a 5 e 10ºC. Os danos causados por frio foram inibidos nas raízes embaladas em filme de PCV, em ambas as temperaturas de armazenamento. As baixas temperaturas induziram o acúmulo de açúcares solúveis e a degradação de amido e, para as raízes armazenadas sem PVC, o aumento do conteúdo dos açúcares solúveis foi transiente e a taxa de degradação de amido foi superior à das raízes armazenadas com PVC.The objective of this work was to evaluate the influence of the storage temperature and stretch polyvinylchloride (PVC film on the loss of fresh weight and water, on the development of chilling injury symptoms, and on the postharvest metabolism of carbohydrates, in arracacha tuber roots (Arracacia xanthorrhiza. The PVC film reduced the fresh weight loss and kept water content in the roots during 60-day storage period at 5 and 10ºC. PVC film in both storage temperatures inhibited the development of external and internal chilling injury symptoms. The low temperatures induced the increase of soluble sugar content and decrease of starch concentration, where the increase in soluble sugar was transient in roots stored without PVC film, and the rate of starch degradation was higher compared to the roots stored with PVC.

  6. Carbohydrates, Sugar, and Your Child

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old Carbohydrates, Sugar, and Your Child KidsHealth > For Parents > Carbohydrates, Sugar, ... a 1-ounce equivalent. previous continue Sizing Up Sugar Foods that are high in added sugar (soda, ...

  7. Litter size variation in hypothalamic gene expression determines adult metabolic phenotype in Brandt's voles (Lasiopodomys brandtii.

    Directory of Open Access Journals (Sweden)

    Xue-Ying Zhang

    Full Text Available BACKGROUND: Early postnatal environments may have long-term and potentially irreversible consequences on hypothalamic neurons involved in energy homeostasis. Litter size is an important life history trait and negatively correlated with milk intake in small mammals, and thus has been regarded as a naturally varying feature of the early developmental environment. Here we investigated the long-term effects of litter size on metabolic phenotype and hypothalamic neuropeptide mRNA expression involved in the regulation of energy homeostasis, using the offspring reared from large (10-12 and small (3-4 litter sizes, of Brandt's voles (Lasiopodomys brandtii, a rodent species from Inner Mongolia grassland in China. METHODOLOGY/PRINCIPAL FINDINGS: Hypothalamic leptin signaling and neuropeptides were measured by Real-Time PCR. We showed that offspring reared from small litters were heavier at weaning and also in adulthood than offspring from large litters, accompanied by increased food intake during development. There were no significant differences in serum leptin levels or leptin receptor (OB-Rb mRNA in the hypothalamus at weaning or in adulthood, however, hypothalamic suppressor of cytokine signaling 3 (SOCS3 mRNA in adulthood increased in small litters compared to that in large litters. As a result, the agouti-related peptide (AgRP mRNA increased in the offspring from small litters. CONCLUSIONS/SIGNIFICANCE: These findings support our hypothesis that natural litter size has a permanent effect on offspring metabolic phenotype and hypothalamic neuropeptide expression, and suggest central leptin resistance and the resultant increase in AgRP expression may be a fundamental mechanism underlying hyperphagia and the increased risk of overweight in pups of small litters. Thus, we conclude that litter size may be an important and central determinant of metabolic fitness in adulthood.

  8. The rate of metabolism as a factor determining longevity of the Saccharomyces cerevisiae yeast.

    Science.gov (United States)

    Molon, Mateusz; Szajwaj, Monika; Tchorzewski, Marek; Skoczowski, Andrzej; Niewiadomska, Ewa; Zadrag-Tecza, Renata

    2016-02-01

    Despite many controversies, the yeast Saccharomyces cerevisiae continues to be used as a model organism for the study of aging. Numerous theories and hypotheses have been created for several decades, yet basic mechanisms of aging have remained unclear. Therefore, the principal aim of this work is to propose a possible mechanism leading to increased longevity in yeast. In this paper, we suggest for the first time that there is a link between decreased metabolic activity, fertility and longevity expressed as time of life in yeast. Determination of reproductive potential and total lifespan with the use of fob1Δ and sfp1Δ mutants allows us to compare the "longevity" presented as the number of produced daughters with the longevity expressed as the time of life. The results of analyses presented in this paper suggest the need for a change in the definition of longevity of yeast by taking into consideration the time parameter. The mutants that have been described as "long-lived" in the literature, such as the fob1Δ mutant, have an increased reproductive potential but live no longer than their standard counterparts. On the other hand, the sfp1Δ mutant and the wild-type strain produce a similar number of daughter cells, but the former lives much longer. Our results demonstrate a correlation between the decreased efficiency of the translational apparatus and the longevity of the sfp1Δ mutant. We suggest that a possible factor regulating the lifespan is the rate of cell metabolism. To measure the basic metabolism of the yeast cells, we used the isothermal microcalorimetry method. In the case of sfp1Δ, the flow of energy, ATP concentration, polysome profile and translational fitness are significantly lower in comparison with the wild-type strain and the fob1Δ mutant.

  9. Specific Carbohydrate Diet: Does It Work?

    Science.gov (United States)

    ... Specific Carbohydrate Diet (SCD) Go Back The Specific Carbohydrate Diet (SCD) Email Print + Share There is no ... diet that has received attention is the Specific Carbohydrate Diet. This diet limits poorly digestible carbohydrates to ...

  10. Surface characterization of carbohydrate microarrays.

    Science.gov (United States)

    Scurr, David J; Horlacher, Tim; Oberli, Matthias A; Werz, Daniel B; Kroeck, Lenz; Bufali, Simone; Seeberger, Peter H; Shard, Alexander G; Alexander, Morgan R

    2010-11-16

    Carbohydrate microarrays are essential tools to determine the biological function of glycans. Here, we analyze a glycan array by time-of-flight secondary ion mass spectrometry (ToF-SIMS) to gain a better understanding of the physicochemical properties of the individual spots and to improve carbohydrate microarray quality. The carbohydrate microarray is prepared by piezo printing of thiol-terminated sugars onto a maleimide functionalized glass slide. The hyperspectral ToF-SIMS imaging data are analyzed by multivariate curve resolution (MCR) to discern secondary ions from regions of the array containing saccharide, linker, salts from the printing buffer, and the background linker chemistry. Analysis of secondary ions from the linker common to all of the sugar molecules employed reveals a relatively uniform distribution of the sugars within the spots formed from solutions with saccharide concentration of 0.4 mM and less, whereas a doughnut shape is often formed at higher-concentration solutions. A detailed analysis of individual spots reveals that in the larger spots the phosphate buffered saline (PBS) salts are heterogeneously distributed, apparently resulting in saccharide concentrated at the rim of the spots. A model of spot formation from the evaporating sessile drop is proposed to explain these observations. Saccharide spot diameters increase with saccharide concentration due to a reduction in surface tension of the saccharide solution compared to PBS. The multivariate analytical partial least squares (PLS) technique identifies ions from the sugars that in the complex ToF-SIMS spectra correlate with the binding of galectin proteins.

  11. Epidemiology of metabolic health : Lifestyle determinants and health-related quality of life

    NARCIS (Netherlands)

    Slagter, Sandra Nicole

    2017-01-01

    Overweight and obesity often leads to the development of a disturbed glucose metabolism, increased blood pressure and a disturbed fat profile (too low values of the "good" HDL-cholesterol and high triglycerides values). The combination of these metabolic complications, is called the metabolic syndro

  12. The case for low carbohydrate diets in diabetes management

    Directory of Open Access Journals (Sweden)

    McFarlane Samy I

    2005-07-01

    Full Text Available Abstract A low fat, high carbohydrate diet in combination with regular exercise is the traditional recommendation for treating diabetes. Compliance with these lifestyle modifications is less than satisfactory, however, and a high carbohydrate diet raises postprandial plasma glucose and insulin secretion, thereby increasing risk of CVD, hypertension, dyslipidemia, obesity and diabetes. Moreover, the current epidemic of diabetes and obesity has been, over the past three decades, accompanied by a significant decrease in fat consumption and an increase in carbohydrate consumption. This apparent failure of the traditional diet, from a public health point of view, indicates that alternative dietary approaches are needed. Because carbohydrate is the major secretagogue of insulin, some form of carbohydrate restriction is a prima facie candidate for dietary control of diabetes. Evidence from various randomized controlled trials in recent years has convinced us that such diets are safe and effective, at least in short-term. These data show low carbohydrate diets to be comparable or better than traditional low fat high carbohydrate diets for weight reduction, improvement in the dyslipidemia of diabetes and metabolic syndrome as well as control of blood pressure, postprandial glycemia and insulin secretion. Furthermore, the ability of low carbohydrate diets to reduce triglycerides and to increase HDL is of particular importance. Resistance to such strategies has been due, in part, to equating it with the popular Atkins diet. However, there are many variations and room for individual physician planning. Some form of low carbohydrate diet, in combination with exercise, is a viable option for patients with diabetes. However, the extreme reduction of carbohydrate of popular diets (

  13. Carbohydrates, pollinators, and cycads

    OpenAIRE

    2015-01-01

    Cycad biology, ecology, and horticulture decisions are not supported by adequate research, and experiments in cycad physiology in particular have been deficient. Our recent report on free sugar content in a range of cycad taxa and tissues sets the stage for developing continued carbohydrate research. Growth and development of cycad pollen, mediation of the herbivory traits of specialist pollinators, and support of expensive strobilus behavioral traits are areas of cycad pollination biology th...

  14. The use of carbohydrates during exercise as an ergogenic aid.

    Science.gov (United States)

    Cermak, Naomi M; van Loon, Luc J C

    2013-11-01

    Carbohydrate and fat are the two primary fuel sources oxidized by skeletal muscle tissue during prolonged (endurance-type) exercise. The relative contribution of these fuel sources largely depends on the exercise intensity and duration, with a greater contribution from carbohydrate as exercise intensity is increased. Consequently, endurance performance and endurance capacity are largely dictated by endogenous carbohydrate availability. As such, improving carbohydrate availability during prolonged exercise through carbohydrate ingestion has dominated the field of sports nutrition research. As a result, it has been well-established that carbohydrate ingestion during prolonged (>2 h) moderate-to-high intensity exercise can significantly improve endurance performance. Although the precise mechanism(s) responsible for the ergogenic effects are still unclear, they are likely related to the sparing of skeletal muscle glycogen, prevention of liver glycogen depletion and subsequent development of hypoglycemia, and/or allowing high rates of carbohydrate oxidation. Currently, for prolonged exercise lasting 2-3 h, athletes are advised to ingest carbohydrates at a rate of 60 g·h⁻¹ (~1.0-1.1 g·min⁻¹) to allow for maximal exogenous glucose oxidation rates. However, well-trained endurance athletes competing longer than 2.5 h can metabolize carbohydrate up to 90 g·h⁻¹ (~1.5-1.8 g·min⁻¹) provided that multiple transportable carbohydrates are ingested (e.g. 1.2 g·min⁻¹ glucose plus 0.6 g·min⁻¹ of fructose). Surprisingly, small amounts of carbohydrate ingestion during exercise may also enhance the performance of shorter (45-60 min), more intense (>75 % peak oxygen uptake; VO(₂peak)) exercise bouts, despite the fact that endogenous carbohydrate stores are unlikely to be limiting. The mechanism(s) responsible for such ergogenic properties of carbohydrate ingestion during short, more intense exercise bouts has been suggested to reside in the central nervous

  15. A cereal-based evening meal rich in indigestible carbohydrates increases plasma butyrate the next morning

    DEFF Research Database (Denmark)

    Nilsson, Anne C; Östman, Elin M; Knudsen, Knud Erik Bach;

    2010-01-01

    Epidemiological studies have shown an inverse relation between a whole grain consumption and risk of type-2 diabetes and cardiovascular disease. One tentative mechanism relates to colonic metabolism of indigestible carbohydrates. In a previous study, we reported a positive relation between colonic...... fermentation and improved glucose tolerance. This work can be seen as an extension of that study, focusing on the tentative role of specific colonic metabolites, i.e. SCFA. Plasma concentrations of acetate, propionate, and butyrate were determined in the morning in healthy participants (5 women and 10 men...... concentrations the following morning compared with an evening meal with white wheat bread (P fermentation and generation of SCFA, where in particular...

  16. Genetic determinism of bone and mineral metabolism in meat-type chickens: A QTL mapping study.

    Science.gov (United States)

    Mignon-Grasteau, Sandrine; Chantry-Darmon, Céline; Boscher, Marie-Yvonne; Sellier, Nadine; Chabault-Dhuit, Marie; Le Bihan-Duval, Elisabeth; Narcy, Agnès

    2016-12-01

    Skeletal integrity in meat-type chickens is affected by many factors including rapid growth rate, nutrition and genetics. To investigate the genetic basis of bone and mineral metabolism, a QTL detection study was conducted in an intercross between two lines of meat-type chickens divergently selected for their high (D +) or low (D -) digestive efficiency. Tibia size (length, diameter, volume) and ash content were determined at 3 weeks of age as well as phosphorus (P) retention and plasma concentration. Heritability of these traits and their genetic correlations with digestive efficiency were estimated. A QTL mapping study was performed using 3379 SNP markers. Tibia size, weight, ash content and breaking strength were highly heritable (0.42 to 0.61). Relative tibia diameter and volume as well as P retention were strongly and positively genetically correlated with digestive efficiency (0.57 to 0.80). A total of 35 QTL were identified (9 for tibia weight, 13 for tibia size, 5 for bone strength, 5 for bone mineralization, 2 for plasma P concentration and 1 for P retention). Six QTL were genome-wide significant, and 3 QTL for tibia relative volume, weight and ash weight on chromosome 6 were fixed, the positive allele coming from the D-line. For two QTL for ash content on chromosome 18 and relative tibia length on chromosome 26, the confidence intervals were small enough to identify potential candidate genes. These findings support the evidence of multiple genetic loci controlling bone and mineral metabolism. The identification of candidate genes may provide new perspectives in the understanding of bone regulation, even beyond avian species.

  17. Global microarray analysis of carbohydrate use in alkaliphilic hemicellulolytic bacterium Bacillus sp. N16-5.

    Directory of Open Access Journals (Sweden)

    Yajian Song

    Full Text Available The alkaliphilic hemicellulolytic bacterium Bacillus sp. N16-5 has a broad substrate spectrum and exhibits the capacity to utilize complex carbohydrates such as galactomannan, xylan, and pectin. In the monosaccharide mixture, sequential utilization by Bacillus sp. N16-5 was observed. Glucose appeared to be its preferential monosaccharide, followed by fructose, mannose, arabinose, xylose, and galactose. Global transcription profiles of the strain were determined separately for growth on six monosaccharides (glucose, fructose, mannose, galactose, arabinose, and xylose and four polysaccharides (galactomannan, xylan, pectin, and sodium carboxymethylcellulose using one-color microarrays. Numerous genes potentially related to polysaccharide degradation, sugar transport, and monosaccharide metabolism were found to respond to a specific substrate. Putative gene clusters for different carbohydrates were identified according to transcriptional patterns and genome annotation. Identification and analysis of these gene clusters contributed to pathway reconstruction for carbohydrate utilization in Bacillus sp. N16-5. Several genes encoding putative sugar transporters were highly expressed during growth on specific sugars, suggesting their functional roles. Two phosphoenolpyruvate-dependent phosphotransferase systems were identified as candidate transporters for mannose and fructose, and a major facilitator superfamily transporter was identified as a candidate transporter for arabinose and xylose. Five carbohydrate uptake transporter 1 family ATP-binding cassette transporters were predicted to participate in the uptake of hemicellulose and pectin degradation products. Collectively, microarray data improved the pathway reconstruction involved in carbohydrate utilization of Bacillus sp. N16-5 and revealed that the organism precisely regulates gene transcription in response to fluctuations in energy resources.

  18. Diet-gene interactions between dietary fat intake and common polymorphisms in determining lipid metabolism

    Directory of Open Access Journals (Sweden)

    Corella, Dolores

    2009-03-01

    Full Text Available Current dietary guidelines for fat intake have not taken into consideration the possible genetic differences underlying the individual variability in responsiveness to dietary components. Genetic variability has been identified in humans for all the known lipid metabolim-related genes resulting in a plethora of candidate genes and genetic variants to examine in diet-gene interaction studies focused on fat consumption. Some examples of fat-gene interaction are reviewed. These include: the interaction between total intake and the 514C/T in the hepatic lipase gene promoter in determining high-density lipoprotein cholesterol (HDL-C metabolism; the interaction between polyunsaturated fatty acids (PUFA and the 75G/A polymorphism in the APOA1 gene plasma HDL-C concentrations; the interaction between PUFA and the L162V polymorphism in the PPARA gene in determining triglycerides and APOC3 concentrations; and the interaction between PUFA intake and the 1131TC in the APOA5 gene in determining triglyceride metabolism. Although hundreds of diet-gene interaction studies in lipid metabolism have been published, the level of evidence to make specific nutritional recommendations to the population is still low and more research in nutrigenetics has to be undertaken.Las recomendaciones dietéticas actuales referentes al consumo de grasas en la dieta han sido realizadas sin tener en cuenta las posibles diferencias genéticas de las personas que podrían ser las responsables de las diferentes respuestas interindividuales que frecuentemente se observan ante la misma dieta. La presencia de variabilidad genética ha sido puesta de manifiesto para todos los genes relacionados con el metabolismo lipídico, por lo que existe un ingente número de genes y de variantes genéticas para ser incluidas en los estudios sobre interacciones dieta-genotipo en el ámbito específico del consumo de grasas y aceites. Se revisarán algunos ejemplos sobre interacciones grasa

  19. Determination of acrylamide in Chinese traditional carbohydrate-rich foods using gas chromatography with micro-electron capture detector and isotope dilution liquid chromatography combined with electrospray ionization tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Yu [Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310029, Zhejiang Province (China); Ren Yiping [Zhejiang Provincial Center for Disease Prevention and Control, Hangzhou 310009, Zhejiang Province (China); Zhao Hangmei [Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310029, Zhejiang Province (China); Zhang Ying [Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310029, Zhejiang Province (China)]. E-mail: y_zhang@zju.edu.cn

    2007-02-19

    The present study developed two analytical methods for quantification of acrylamide in complex food matrixes, such as Chinese traditional carbohydrate-rich foods. One is based on derivatization with potassium bromate and potassium bromide without clean-up prior to gas chromatography with micro-electron capture detector (GC-MECD). Alternatively, the underivatized acrylamide was detected by high-performance liquid chromatography coupled to quadrupole tandem mass spectrometry (HPLC-MS/MS) in the positive electrospray ionization mode. For both methods, the Chinese carbohydrate-rich samples were homogenized, defatted with petroleum ether and extracted with aqueous solution of sodium chloride. Recovery rates for acrylamide from spiked Chinese style foods with the spiking level of 50, 500 and 1000 {mu}g kg{sup -1} were in the range of 79-93% for the GC-MECD including derivatization and 84-97% for the HPLC-MS/MS method. Typical quantification limits of the HPLC-MSMS method were 4 {mu}g kg{sup -1} for acrylamide. The GC-MECD method achieved quantification limits of 10 {mu}g kg{sup -1} in Chinese style foods. Thirty-eight Chinese traditional foods purchased from different manufacturers were analyzed and compared with four Western style foods. Acrylamide contaminant was found in all of samples at the concentration up to 771.1 and 734.5 {mu}g kg{sup -1} detected by the GC and HPLC method, respectively. The concentrations determined with the two different quantitative methods corresponded well with each other. A convenient and fast pretreatment procedure will be optimized in order to satisfy further investigation of hundreds of samples.

  20. Determination of acrylamide in Chinese traditional carbohydrate-rich foods using gas chromatography with micro-electron capture detector and isotope dilution liquid chromatography combined with electrospray ionization tandem mass spectrometry.

    Science.gov (United States)

    Zhang, Yu; Ren, Yiping; Zhao, Hangmei; Zhang, Ying

    2007-02-19

    The present study developed two analytical methods for quantification of acrylamide in complex food matrixes, such as Chinese traditional carbohydrate-rich foods. One is based on derivatization with potassium bromate and potassium bromide without clean-up prior to gas chromatography with micro-electron capture detector (GC-MECD). Alternatively, the underivatized acrylamide was detected by high-performance liquid chromatography coupled to quadrupole tandem mass spectrometry (HPLC-MS/MS) in the positive electrospray ionization mode. For both methods, the Chinese carbohydrate-rich samples were homogenized, defatted with petroleum ether and extracted with aqueous solution of sodium chloride. Recovery rates for acrylamide from spiked Chinese style foods with the spiking level of 50, 500 and 1000 microg kg(-1) were in the range of 79-93% for the GC-MECD including derivatization and 84-97% for the HPLC-MS/MS method. Typical quantification limits of the HPLC-MSMS method were 4 microg kg(-1) for acrylamide. The GC-MECD method achieved quantification limits of 10 microg kg(-1) in Chinese style foods. Thirty-eight Chinese traditional foods purchased from different manufacturers were analyzed and compared with four Western style foods. Acrylamide contaminant was found in all of samples at the concentration up to 771.1 and 734.5 microg kg(-1) detected by the GC and HPLC method, respectively. The concentrations determined with the two different quantitative methods corresponded well with each other. A convenient and fast pretreatment procedure will be optimized in order to satisfy further investigation of hundreds of samples.

  1. Effects of Carbohydrate Consumption Case Study: carbohydrates in Bread

    Directory of Open Access Journals (Sweden)

    Neacsu N.A.

    2014-12-01

    Full Text Available Carbohydrates perform numerous roles in living organisms; they are an important source of energy. The body uses carbohydrates to make glucose which is the fuel that gives it energy and helps keep everything going. However, excess carbohydrate consumption has negative health effects. Bread is a basic product in our nutrition and it also is a product with a high content of carbohydrates. So, it is important to find out more information on bread and on the recommended bread type best for consumption.

  2. Cerebral carbohydrate cost of physical exertion in humans

    DEFF Research Database (Denmark)

    Dalsgaard, Mads K; Ogoh, Shigehiko; Dawson, Ellen A

    2004-01-01

    Above a certain level of cerebral activation the brain increases its uptake of glucose more than that of O(2), i.e., the cerebral metabolic ratio of O(2)/(glucose + 12 lactate) decreases. This study quantified such surplus brain uptake of carbohydrate relative to O(2) in eight healthy males who p...

  3. Metabolic responses during postprandial exercise.

    Science.gov (United States)

    Kang, Jie; Raines, Emily; Rosenberg, Joseph; Ratamess, Nicholas; Naclerio, Fernando; Faigenbaum, Avery

    2013-01-01

    To examine metabolic interaction between meal and exercise, 10 men and 10 women completed three trials: (1) exercise (E), (2) consumption of a meal (M), and (3) consumption of a meal followed by exercise (M+E). All trials commenced after an overnight fast and were preceded by a rest period in which resting metabolic rate (RMR) was determined. The meal contained 721 kilocalories composed of 41%, 36%, and 23% of carbohydrate, lipids, and protein, respectively. Exercise protocol consisted of three continuous 10-minute cycling at 50%, 60%, and 70% VO2peak. Measurement began 60 min after the start of the meal and included VO2 that was used to determine meal-induced thermogenesis (MIT). VO2 was greater (p exercise at 50% VO2peak than at rest. It appears that postprandial exercise of mild intensities can potentiate MIT, thereby provoking a greater increase in energy expenditure.

  4. Abdominal radiotherapy: a major determinant of metabolic syndrome in nephroblastoma and neuroblastoma survivors

    NARCIS (Netherlands)

    Waas, M. van; Neggers, S.J.; Raat, H.; Rij, C.M. van; Pieters, R.; Heuvel-Eibrink, M.M. van den

    2012-01-01

    BACKGROUND: Reports on metabolic syndrome in nephroblastoma and neuroblastoma survivors are scarce. Aim was to evaluate the occurrence of and the contribution of treatment regimens to the metabolic syndrome. PATIENTS AND METHODS: In this prospective study 164 subjects participated (67 adult long-ter

  5. How to determine control of growth rate in a chemostat. Using metabolic control analysis to resolve the paradox

    DEFF Research Database (Denmark)

    Snoep, Jacky L.; Jensen, Peter Ruhdal; Groeneveld, Philip

    1994-01-01

    how, paradoxically, one can determine control of growth rate, of growth yield and of other fluxes in a chemostat. We develop metabolic control analysis for the chemostat. this analysis does not depend on the particular way in which specific growth rate varies with the concentration of the growth...

  6. Modeling the in vitro intrinsic clearance of the slowly metabolized compound tolbutamide determined in sandwich-cultured rat hepatocytes

    NARCIS (Netherlands)

    Treijtel, N.; Barendregt, A.; Freidig, A.P.; Blaauboer, B.J.; Eijkeren, J.C.H. van

    2004-01-01

    An alternative approach is introduced in determining the in vitro intrinsic clearance of slowly metabolized compounds. The long-term sandwich rat hepatocyte culture was exploited, allowing for sufficient substrate depletion to obtain a reliable clearance estimation; in its physiology, it resembles t

  7. Carbohydrate Microarrays in Plant Science

    DEFF Research Database (Denmark)

    Fangel, Jonatan Ulrik; Pedersen, H.L.; Vidal-Melgosa, S.

    2012-01-01

    industrially and nutritionally. Understanding the biological roles of plant glycans and the effective exploitation of their useful properties requires a detailed understanding of their structures, occurrence, and molecular interactions. Microarray technology has revolutionized the massively high......-throughput analysis of nucleotides, proteins, and increasingly carbohydrates. Using microarrays, the abundance of and interactions between hundreds and thousands of molecules can be assessed simultaneously using very small amounts of analytes. Here we show that carbohydrate microarrays are multifunctional tools...... for plant research and can be used to map glycan populations across large numbers of samples to screen antibodies, carbohydrate binding proteins, and carbohydrate binding modules and to investigate enzyme activities....

  8. Prevalence and determinants of metabolic syndrome among women in Chinese rural areas.

    Directory of Open Access Journals (Sweden)

    Hui Cai

    Full Text Available BACKGROUND AND AIMS: Metabolic syndrome (MS is prevalent in recent years but few data is reported in the rural areas in China. The aim of this study was to examine MS prevalence and its risk factors among women in rural China. METHODS AND RESULTS: The Nantong Metabolic Syndrome Study (NMSS, a population based cross-sectional study, was conducted during 2007-2008 in Nantong, China. In person interviews, blood glucose and lipid measurements were completed for 13,505 female participants aged 18-74 years. The International Diabetes Federation (IDF, the US Third Report of the National Cholesterol Education Program, the Adult Treatment Panel (ATPIII and modified ATPIII for Asian population has determined three criteria of MS. These criteria for MS were used and compared in this study. The prevalence of MS was 22.0%, 16.9% and 23.3% according to IDF, ATPIII and ATPIII-modified criteria, respectively. Levels of agreement of these criteria for MS were above 0.75. We found that vigorous-intensity of occupational physical activity was associated with a low prevalence of MS with OR of 0.76 (95% confidence interval (CI: 0.63-0.91. Rice wine drinkers (alcohol >12.8 g/day had about 34% low risks of developing MS with OR of 0.66 (95% CI: 0.48-0.91, compared with non-drinkers. Odds ratio of MS was 1.81 (95% CI: 1.15-2.84 in women who smoked more than 20 pack-years, compared to non-smokers. Odds ratio of MS was 1.56 (95% CI: 1.25-1.95 in women who had familial history of diseases, including hypertension, diabetes and stroke, compared to women without familial history of those diseases. CONCLUSION: MS is highly prevalent among women in rural China. Both physical activity and rice wine consumption play a protective role, while family history and smoking are risk factors in MS development. Educational programs should be established for promoting healthy lifestyles and appropriate interventions in rural China.

  9. 反刍动物饲料碳水化合物和蛋白质组分划分及消化道代谢规律%Division of Carbohydrate and Protein Fractions in Feed for Ruminants and Their Metabolism in Digestive Tract

    Institute of Scientific and Technical Information of China (English)

    潘晓花; 杨亮; 杨琴; 熊本海

    2014-01-01

    饲料养分的绝大部分是碳水化合物和蛋白质,其营养价值的准确评定及其在瘤胃内代谢规律的精细化研究对发展反刍动物的精细饲养具有重要意义,目前在国际上受到广泛关注和应用的美国康奈尔净碳水化合物和蛋白质体系( Cornell Net Carbohydrate and Protein System, CNCPS)是一种反刍动物饲料营养价值评定的重要方法,但在国内实际生产中尚未广泛应用。本文系统地概述了CNCPS中碳水化合物和蛋白质各组分的划分及其变化,并通过列举常用饲料各组分的含量和变化范围及计算公式等,全面揭示了不同类型饲料中碳水化合物及蛋白质组分的含量特性及其差异的原因,以及瘤胃降解速率( Kd)及食糜流通速率( Kp)的变化规律;同时比较了CNCPS与传统饲料养分划分体系的联系与区别。%Carbohydrate and protein account for the most of feed nutrients, and accurate assessment of their nu-tritional values and ruminal metabolism become more and more significant.Cornell Net Carbohydrate and Pro-tein System( CNCPS) as an important method to evaluate feeds nutritional values, has not been widely used in ruminant production in China.This paper systematically reviewed the division of carbohydrate and protein frac-tions in CNCPS and their changes, as well as revealed ht e diversity of carbohydrate and protein fractions in dif-ferent feedstuffs and variation of rumen degradation rate (Kd) and passage rate (Kp).The relationship and difference between CNCPS system andother assessment systems were also reviewed.

  10. 糖对草鱼肝脂代谢关键基因转录水平的调控研究%Effects of Carbohydrates on Transcription of Five Key Genes Involved in Lipid Metabolism in Hepatopancreas of Grass Carp Ctenopharyngodon idella

    Institute of Scientific and Technical Information of China (English)

    孙君君; 卢荣华; 常志光; 秦超彬; 杨峰; 聂国兴

    2015-01-01

    在目前集约化水产养殖模式下,草鱼肝脂质代谢紊乱问题比较严重,已引起人们的高度关注。为获知糖对草鱼肝脂代谢的影响及作用机理,本研究分别从活体和细胞水平上分析了糖对肝脂代谢5个关键基因转录水平变化的影响。采用实时荧光定量 PCR(qRT‐PCR)技术,检测了在低糖(糖含量24%)和高糖(糖含量42%)投喂条件下草鱼肝脏中固醇调节元件结合蛋白‐1c、过氧化物酶体增殖物激活受体α和乙酰辅酶A羧化酶的转录水平变化,H·E染色观察肝脏组织形态学变化;并检测了在不同浓度葡萄糖作用下,草鱼肝细胞中固醇调节元件结合蛋白‐1c、脂肪酸合酶和脂蛋白脂酶基因的表达变化。结果显示,肝组织中固醇调节元件结合蛋白‐1c、乙酰辅酶A羧化酶在高糖组中的表达量显著高于对照组和低糖组(P <0.05),过氧化物酶体增殖物激活受体α在高糖和低糖条件下变化不明显(P>0.05);H · E染色观察发现在高糖条件下草鱼肝组织出现了大量的脂肪蓄积;在其肝细胞中固醇调节元件结合蛋白‐1c、脂肪酸合酶、脂蛋白脂酶的mRNA表达量随葡萄糖浓度增加均呈先升后降趋势,分别在葡萄糖浓度为10 mmol/L和20 mmol/L时达到最高值(P <0.05)。研究结果表明,葡萄糖可能通过调节固醇调节元件结合蛋白‐1c、乙酰辅酶A羧化酶和脂蛋白脂酶等基因的表达进而调节体内糖向脂的转化过程。研究结果为丰富鱼类糖代谢调控机理提供研究资料,并有望为提高鱼类饲料糖的利用效率提供理论依据。%In current intensive aquaculture ,the hepatopancreatic lipid metabolic disorderis are serious in grass carp (Ctenopharyngodon idellus) ,and has caused the attention of people .The transcriptional effects of carbohydrates on the five key genes involved in lipid metabolism in

  11. Determining the Control Circuitry of Redox Metabolism at the Genome-Scale

    DEFF Research Database (Denmark)

    Federowicz, Stephen; Kim, Donghyuk; Ebrahim, Ali

    2014-01-01

    -scale metabolic model to show that ArcA and Fnr regulate >80% of total metabolic flux and 96% of differential gene expression across fermentative and nitrate respiratory conditions. Based on the data, we propose a feedforward with feedback trim regulatory scheme, given the extensive repression of catabolic genes...... that are regulated during electron acceptor shifts. Here we propose a qualitative model that accounts for the full breadth of regulated genes by detailing how two global transcription factors (TFs), ArcA and Fnr of E. coli, sense key metabolic redox ratios and act on a genome-wide basis to regulate anabolic...

  12. Metabolic disorders in menopause

    OpenAIRE

    Grzegorz Stachowiak; Tomasz Pertyński; Magdalena Pertyńska-Marczewska

    2015-01-01

    Metabolic disorders occurring in menopause, including dyslipidemia, disorders of carbohydrate metabolism (impaired glucose tolerance – IGT, type 2 diabetes mellitus – T2DM) or components of metabolic syndrome, constitute risk factors for cardiovascular disease in women. A key role could be played here by hyperinsulinemia, insulin resistance and visceral obesity, all contributing to dyslipidemia, oxidative stress, inflammation, alter coagulation and atherosclerosis observed during the menopaus...

  13. Moderate carbohydrate, moderate protein weight loss diet reduces cardiovascular disease risk compared to high carbohydrate, low protein diet in obese adults: A randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Evans Ellen M

    2008-11-01

    Full Text Available Abstract Background To evaluate the metabolic effects of two weight loss diets differing in macronutrient composition on features of dyslipidemia and post-prandial insulin (INS response to a meal challenge in overweight/obese individuals. Methods This study was a parallel-arm randomized 4 mo weight loss trial. Adults (n = 50, 47 ± 7 y matched on BMI (33.6 ± 0.6 kg/m2, P = 0.79 consumed energy restricted diets (deficit ~500 kcal/d: PRO (1.6 g.kg-1.d-1 protein and -1.d-1 protein and > 220 g/d carbohydrate for 4 mos. Meal challenges of respective diets were utilized for determination of blood lipids and post-prandial INS and glucose response at the beginning and end of the study. Results There was a trend for PRO to lose more weight (-9.1% vs. -7.3%, P = 0.07 with a significant reduction in percent fat mass compared to CHO (-8.7% vs. -5.7%; P = 0.03. PRO also favored reductions in triacylglycerol (-34% vs. -14%; P P = 0.05; however, CHO favored reduction in LDL-C (-7% vs. +2.5%; P P P Conclusion A weight loss diet with moderate carbohydrate, moderate protein results in more favorable changes in body composition, dyslipidemia, and post-prandial INS response compared to a high carbohydrate, low protein diet suggesting an additional benefit beyond weight management to include augmented risk reduction for metabolic disease.

  14. Metabolic and Hormonal Determinants of Glomerular Filtration Rate and Renal Hemodynamics in Severely Obese Individuals

    Directory of Open Access Journals (Sweden)

    Edoardo Vitolo

    2016-10-01

    Full Text Available Objective: Renal function is often compromised in severe obesity. A true measurement of glomerular filtration rate (GFR is unusual, and how estimation formulae (EstForm perform in such individuals is unclear. We characterized renal function and hemodynamics in severely obese individuals, assessing the reliability of EstForm. Methods: We measured GFR (mGFR by iohexol plasma clearance, renal plasma flow (RPF by 123I-ortho-iodo-hippurate, basal and stimulated vascular renal indices, endothelium-dependent and -independent vasodilation using flow-mediated dilation (FMD as well as metabolic and hormonal profile in morbid, otherwise healthy, obese subjects. Results: Compared with mGFR, the better performing EstForm was CKD-EPI (5.3 ml/min/1.73 m2 bias by Bland-Altman analysis. mGFR was directly related with RPF, total and incremental glucose AUC, and inversely with PTH and h8 cortisol. Patients with mGFR below the median shown significantly higher PTH and lower vitamin D3. Basal or dynamic renal resistive index, FMD, pulse wave velocity were not related with mGFR. In an adjusted regression model, renal diameter and plasma flow remained related with mGFR (R2 = 0.67, accounting for 15% and 21% of mGFR variance, respectively. Conclusions: CKD-EPI formula should be preferred in morbid obesity; glucose increments during oral glucose tolerance test correlate with hyperfiltration; RPF and diameter are independent determinants of mGFR; slightly high PTH values, frequent in obesity, might influence mGFR.

  15. Does Inflammation Determine Whether Obesity Is Metabolically Healthy or Unhealthy? The Aging Perspective

    OpenAIRE

    Iftikhar Alam; Tze Pin Ng; Anis Larbi

    2012-01-01

    Obesity is a major health issue in developed as well as developing countries. While obesity is associated with relatively good health status in some individuals, it may become a health issue for others. Obesity in the context of inflammation has been studied extensively. However, whether obesity in its various forms has the same adverse effects is a matter of debate and requires further research. During its natural history, metabolically healthy obesity (MHO) converts into metabolically unhea...

  16. The growth of juvenile jaguar guapote (Cichlasoma managuense fed diets with different carbohydrate levels (ESP

    Directory of Open Access Journals (Sweden)

    Juan B Ulloa R.

    2016-03-01

    Full Text Available The experiment was conducted in a 16 45 L aquaria recirculation system. The objective was to evaluate the growth of jaguar guapote (Cichlasoma managuense when fed isocaloric diets with increasing carbohydrate levels from 11 to 36 percent. Relative metabolic growth rate and feed conversion were similar with diets containing 11.5%, 18.8% and 26.5% carbohydrate (P > 0.05 . The highest protein efficiency ratio (PER and apparent net protein utilization (NPUa values were found with the 18.8% carbohydrate diet. Growth performance, feed utilization parameters and the survival were the lowest with fish fed the highest carbohydrate level (35.6%. Fish body protein increased and body fat decreased with increasing dietary carbohydrate levels. The body ash showed a trend similar to the body protein. It is concluded that juvenile C. managuense can grow well when fed 40% protein diets containing up to 26.5% carbohydrate.

  17. CARBOHYDRATE INTAKE CONSIDERATIONS FOR YOUNG ATHLETES

    Directory of Open Access Journals (Sweden)

    Veronica Montfort-Steiger

    2007-09-01

    Full Text Available Good nutritional practices are important for exercise performance and health during all ages. Athletes and especially growing children engaged in heavy training have higher energy and nutrient requirements compared to their non-active counterparts. Scientific understanding of sports nutrition for the young athlete is lacking behind the growing number of young athletes engaged in sports. Most of the sports nutrition recommendations given to athletic children and adolescents are based on adult findings due to the deficiency in age specific information in young athletes. Therefore, this review reflects on child specific sports nutrition, particularly on carbohydrate intake and metabolism that distinguishes the child athlete from the adult athlete. Children are characterised to be in an insulin resistance stage during certain periods of maturation, have different glycolytic/metabolic responses during exercise, have a tendency for higher fat oxidation during exercise and show different heat dissipation mechanisms compared to adults. These features point out that young athletes may need different nutritional advice on carbohydrate for exercise to those from adult athletes. Sport drinks for example may need to be adapted to children specific needs. However, more research in this area is warranted to clarify sports nutrition needs of the young athlete to provide better and healthy nutritional guidance to young athletes

  18. Reducing Liver Fat by Low Carbohydrate Caloric Restriction Targets Hepatic Glucose Production in Non-Diabetic Obese Adults with Non-Alcoholic Fatty Liver Disease

    Science.gov (United States)

    Yu, Haoyong; Jia, Weiping; Guo, ZengKui

    2014-01-01

    Non-alcoholic fatty liver disease (NAFLD) impairs liver functions, the organ responsible for the regulation of endogenous glucose production and thus plays a key role in glycemic homeostasis. Therefore, interventions designed to normalize liver fat content are needed to improve glucose metabolism in patients affected by NAFLD such as obesity. Objective: this investigation is designed to determine the effects of caloric restriction on hepatic and peripheral glucose metabolism in obese humans with NAFLD. Methods: eight non-diabetic obese adults were restricted for daily energy intake (800 kcal) and low carbohydrate ( 0.05). Liver fat is the only independent variable highly correlated to HGP after the removal of confounders. Conclusion: NAFLD impairs HGP but not peripheral glucose disposal; low carbohydrate caloric restriction effectively lowers liver fat which appears to directly correct the HGP impairment. PMID:25411646

  19. Synthesis of carbohydrate-based surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Pemberton, Jeanne E.; Polt, Robin L.; Maier, Raina M.

    2016-11-22

    The present invention provides carbohydrate-based surfactants and methods for producing the same. Methods for producing carbohydrate-based surfactants include using a glycosylation promoter to link a carbohydrate or its derivative to a hydrophobic compound.

  20. PREPARATION OF CHEMICALLY WELL-DEFINED CARBOHYDRATE DENDRIMER CONJUGATES

    DEFF Research Database (Denmark)

    2004-01-01

    A method for the synthesis of dendrimer conjugates having a well-defined chemical structure, comprising one or more carbohydrate moieties and one or more immunomodulating substances coupled to a dendrimer, is presented. First, the carbohydrate is bound to the dendrimer in a chemoselective manner....... Subsequently, the immunomodulating substance is also bound in a chemoselective manner, to give a dendrimer conjugate with a well-defined structure and connectivity and containing a precise, pre-determined ratio of carbohydrate to immunomodulating substance. The invention also relates to novel dendrimer...

  1. A Moderate Low-Carbohydrate Low-Calorie Diet Improves Lipid Profile, Insulin Sensitivity and Adiponectin Expression in Rats

    Directory of Open Access Journals (Sweden)

    Jie-Hua Chen

    2015-06-01

    Full Text Available Calorie restriction (CR via manipulating dietary carbohydrates has attracted increasing interest in the prevention and treatment of metabolic syndrome. There is little consensus about the extent of carbohydrate restriction to elicit optimal results in controlling metabolic parameters. Our study will identify a better carbohydrate-restricted diet using rat models. Rats were fed with one of the following diets for 12 weeks: Control diet, 80% energy (34% carbohydrate-reduced and 60% energy (68% carbohydrate-reduced of the control diet. Changes in metabolic parameters and expressions of adiponectin and peroxisome proliferator activator receptor γ (PPARγ were identified. Compared to the control diet, 68% carbohydrate-reduced diet led to a decrease in serum triglyceride and increases inlow density lipoprotein-cholesterol (LDL-C, high density lipoprotein-cholesterol (HDL-C and total cholesterol; a 34% carbohydrate-reduced diet resulted in a decrease in triglycerides and an increase in HDL-cholesterol, no changes however, were shown in LDL-cholesterol and total cholesterol; reductions in HOMA-IR were observed in both CR groups. Gene expressions of adiponectin and PPARγ in adipose tissues were found proportionally elevated with an increased degree of energy restriction. Our study for the first time ever identified that a moderate-carbohydrate restricted diet is not only effective in raising gene expressions of adiponectin and PPARγ which potentially lead to better metabolic conditions but is better at improving lipid profiles than a low-carbohydrate diet in rats.

  2. A Moderate Low-Carbohydrate Low-Calorie Diet Improves Lipid Profile, Insulin Sensitivity and Adiponectin Expression in Rats.

    Science.gov (United States)

    Chen, Jie-Hua; Ouyang, Caiqun; Ding, Qiang; Song, Jia; Cao, Wenhong; Mao, Limei

    2015-06-11

    Calorie restriction (CR) via manipulating dietary carbohydrates has attracted increasing interest in the prevention and treatment of metabolic syndrome. There is little consensus about the extent of carbohydrate restriction to elicit optimal results in controlling metabolic parameters. Our study will identify a better carbohydrate-restricted diet using rat models. Rats were fed with one of the following diets for 12 weeks: Control diet, 80% energy (34% carbohydrate-reduced) and 60% energy (68% carbohydrate-reduced) of the control diet. Changes in metabolic parameters and expressions of adiponectin and peroxisome proliferator activator receptor γ (PPARγ) were identified. Compared to the control diet, 68% carbohydrate-reduced diet led to a decrease in serum triglyceride and increases inlow density lipoprotein-cholesterol (LDL-C), high density lipoprotein-cholesterol (HDL-C) and total cholesterol; a 34% carbohydrate-reduced diet resulted in a decrease in triglycerides and an increase in HDL-cholesterol, no changes however, were shown in LDL-cholesterol and total cholesterol; reductions in HOMA-IR were observed in both CR groups. Gene expressions of adiponectin and PPARγ in adipose tissues were found proportionally elevated with an increased degree of energy restriction. Our study for the first time ever identified that a moderate-carbohydrate restricted diet is not only effective in raising gene expressions of adiponectin and PPARγ which potentially lead to better metabolic conditions but is better at improving lipid profiles than a low-carbohydrate diet in rats.

  3. THE RESPONSE OF PLANT CARBOHYDRATES TO ELEVATED CO2: WHAT HAVE WE LEARNT FROM FACE STUDIES?

    Energy Technology Data Exchange (ETDEWEB)

    ROGERS,A.; AINSWORTH,E.A.; BERNACCHI,C.J.; GIBON,Y.; STITT,M.; LONG,S.P.

    2004-08-29

    Atmospheric CO{sub 2} concentration ([CO{sub 2}]) is expected to rise from a current level of 372 {micro}mol mol{sup -1} to about 550 {micro}mol mol{sup -1} by the middle of the century (Prentice 2001). Accumulation of foliar carbohydrates is one of the most pronounced and universal changes observed in the leaves of C{sub 3} plants grown at elevated [CO{sub 2}] (Drake et al 1997). Carbohydrates are the product of photosynthetic cells and the substrate for sink metabolism. However, carbohydrates are not just substrates, changes in the composition and pool size of foliar carbohydrates have the potential to communicate source-sink balance and a role for carbohydrates in the regulation of the expression of many plant genes is well established (Koch 1996). Importantly, carbohydrate feedback is thought to be the mechanism through which long-term exposure to elevated [CO{sub 2}] leads to a reduction in carboxylation capacity (Rogers et a1 199S, Long et al 2004). Foliar sugar content has recently been linked to an increased susceptibility of soybeans to insect herbivory (Hamilton et al submitted). In addition increases in the C:N ratio of leaf litter of plants grown at elevated [CO{sub 2}] has been implicated in negative feedbacks on ecosystem productivity (Oechel et al 1994). Understanding of the response of foliar carbohydrates will form an important part of our ability to understand and predict the effects of rising [CO{sub 2}] on plants and ecosystems. As Free-Air CO{sub 2} enrichment technology was emerging, understanding of the link between carbohydrates and plant responses to rising [CO{sub 2}] was increasing. However, there were concerns that the hypotheses generated using model system or from studies on mostly juvenile plants grown for relatively short periods of time in controlled environments may not translate to the field. Of particular concern was the effect of a limited rooting volume. Arp (1991) argued that photosynthetic acclimation to elevated [CO{sub 2

  4. Does Inflammation Determine Whether Obesity Is Metabolically Healthy or Unhealthy? The Aging Perspective

    Directory of Open Access Journals (Sweden)

    Iftikhar Alam

    2012-01-01

    Full Text Available Obesity is a major health issue in developed as well as developing countries. While obesity is associated with relatively good health status in some individuals, it may become a health issue for others. Obesity in the context of inflammation has been studied extensively. However, whether obesity in its various forms has the same adverse effects is a matter of debate and requires further research. During its natural history, metabolically healthy obesity (MHO converts into metabolically unhealthy obesity (MUHO. What causes this transition to occur and what is the role of obesity-related mediators of inflammation during this transition is discussed in this paper.

  5. Assessing Bacterial Interactions Using Carbohydrate-Based Microarrays

    Directory of Open Access Journals (Sweden)

    Andrea Flannery

    2015-12-01

    Full Text Available Carbohydrates play a crucial role in host-microorganism interactions and many host glycoconjugates are receptors or co-receptors for microbial binding. Host glycosylation varies with species and location in the body, and this contributes to species specificity and tropism of commensal and pathogenic bacteria. Additionally, bacterial glycosylation is often the first bacterial molecular species encountered and responded to by the host system. Accordingly, characterising and identifying the exact structures involved in these critical interactions is an important priority in deciphering microbial pathogenesis. Carbohydrate-based microarray platforms have been an underused tool for screening bacterial interactions with specific carbohydrate structures, but they are growing in popularity in recent years. In this review, we discuss carbohydrate-based microarrays that have been profiled with whole bacteria, recombinantly expressed adhesins or serum antibodies. Three main types of carbohydrate-based microarray platform are considered; (i conventional carbohydrate or glycan microarrays; (ii whole mucin microarrays; and (iii microarrays constructed from bacterial polysaccharides or their components. Determining the nature of the interactions between bacteria and host can help clarify the molecular mechanisms of carbohydrate-mediated interactions in microbial pathogenesis, infectious disease and host immune response and may lead to new strategies to boost therapeutic treatments.

  6. Investigation on Carbohydrate Counting Method in Type 1 Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Osman Son

    2014-01-01

    Full Text Available Objective. The results from Diabetes Control and Complications Trial (DCCT have propounded the importance of the approach of treatment by medical nutrition when treating diabetes mellitus (DM. During this study, we tried to inquire carbohydrate (Kh count method’s positive effects on the type 1 DM treatment’s success as well as on the life quality of the patients. Methods. 22 of 37 type 1 DM patients who applied to Eskişehir Osmangazi University, Faculty of Medicine Hospital, Department of Endocrinology and Metabolism, had been treated by Kh count method and 15 of them are treated by multiple dosage intensive insulin treatment with applying standard diabetic diet as a control group and both of groups were under close follow-up for 6 months. Required approval was taken from the Ethical Committee of Eskişehir Osmangazi University, Medical Faculty, as well as informed consent from the patients. The body weight of patients who are treated by carbohydrate count method and multiple dosage intensive insulin treatment during the study beginning and after 6-month term, body mass index, and body compositions are analyzed. A short life quality and medical research survey applied. At statistical analysis, t-test, chi-squared test, and Mann-Whitney U test were used. Results. There had been no significant change determined at glycemic control indicators between the Kh counting group and the standard diabetic diet and multiple dosage insulin treatment group in our study. Conclusion. As a result, Kh counting method which offers a flexible nutrition plan to diabetic individuals is a functional method.

  7. Metabolism and nutritional support in the surgical neonate.

    Science.gov (United States)

    Pierro, Agostino

    2002-06-01

    Various factors can influence the metabolism of surgical neonates. These include prematurity, operative stress, critical illness, and sepsis. The nutritional management of surgical infants with congenital or acquired intestinal abnormalities has improved after the introduction of parenteral nutrition. This article is focused on the energy and protein metabolism of surgical neonates with particular reference to the metabolic response to operative trauma and sepsis. The metabolic utilization of intravenous nutrients also is discussed. The metabolic response to operative trauma is different between neonates and adults. Infants have high rates of protein turnover and are avid retainers of nitrogen. Energy expenditure increases only transiently (4 to 6 hours) after major surgery in neonates. Protein turnover and catabolism seems not to be affected by major operative procedures in neonates. In neonates on parenteral nutrition, carbohydrate and fat have an equivalent effect on protein metabolism. The main determinants of fat utilization are carbohydrate intake and resting energy expenditure. Parenteral nutrition in surgical neonates is associated with increased production of oxygen-free radicals. This seems to be related to intravenous fat administration. Promoting fat utilization by reducing the carbohydrate to fat ratio in the intravenous diet reduces free radical activity to a similar extent as fat exclusion. Glutamine appears to be safe for use in neonates and infants and is "conditionally essential" in very-low birth weight infants and in septic neonates. Enteral glutamine supplementation in very-low birth weight infants reduces the risk of sepsis. The metabolism of surgical neonates is affected by operative trauma, critical illness, and sepsis. Nutritional support in surgical neonates has a profound impact on outcome. Exogenous glutamine can modulate immune, metabolic, and inflammatory responses. Further investigations are needed to clarify the clinical benefit of

  8. Decarbonylation and dehydrogenation of carbohydrates

    Science.gov (United States)

    Andrews, Mark A.; Klaeren, Stephen A.

    1991-01-01

    Carbohydrates, especially aldose or ketose sugars, including those whose carbonyl group is masked by hemi-acetal or hemi-ketal formation, are decarbonylated by heating the feed carbohydrate together with a transition metal complex in a suitable solvent. Also, primary alcohols, including sugar alditols are simultaneously dehydrogenated and decarbonylated by heating a mixture of rhodium and ruthenium complexes and the alcohol and optionally a hydrogen acceptor in an acceptable solvent. Such defarbonylation and/or dehydrogenation of sugars provides a convenient procedure for the synthesis of certain carbohydrates and may provide a means for the conversion of biomass into useful products.

  9. Type 2 diabetes, cognitive function and dementia: vascular and metabolic determinants.

    NARCIS (Netherlands)

    Berg, E. van den; Kessels, R.P.C.; Kappelle, L.J.; Hann, E.H. de; Biessels, G.J.

    2006-01-01

    Type 2 diabetes is a common metabolic disease with a rising global prevalence. It is associated with slowly progressive end-organ damage in the eyes and kidneys, but also in the brain. The latter complication is often referred to as "diabetic encephalopathy" and is characterized by mild to moderate

  10. Determination of Arsenic Poisoning and Metabolism in Hair by Synchrotron Radiation: The Case of Phar Lap

    Energy Technology Data Exchange (ETDEWEB)

    Kempson, Ivan M.; Henry, Dermot A. (Museum Vic.); (U. South Australia)

    2010-08-26

    Fresh physical evidence about the demise of the racehorse Phar Lap (see photograph) has been gathered from the study of mane hair samples by synchrotron radiation analysis with high resolution X-ray fluorescence (XRF) and X-ray absorption near edge structure (XANES) analyses. The results are indicative of arsenic ingestion and metabolism, and show that the racing champion died from arsenic poisoning.

  11. Atrial metabolism and tissue perfusion as determinants of electrical and structural remodelling in atrial fibrillation.

    Science.gov (United States)

    Opacic, Dragan; van Bragt, Kelly A; Nasrallah, Hussein M; Schotten, Ulrich; Verheule, Sander

    2016-04-01

    Atrial fibrillation (AF) is the most common tachyarrhythmia in clinical practice. Over decades of research, a vast amount of knowledge has been gathered about the causes and consequences of AF related to cellular electrophysiology and features of the tissue structure that influence the propagation of fibrillation waves. Far less is known about the role of myocyte metabolism and tissue perfusion in the pathogenesis of AF. However, the rapid rates of electrical activity and contraction during AF must present an enormous challenge to the energy balance of atrial myocytes. This challenge can be met by scaling back energy demand and by increasing energy supply, and there are several indications that both phenomena occur as a result of AF. Still, there is ample evidence that these adaptations fall short of redressing this imbalance, which may represent a driving force for atrial electrical as well as structural remodelling. In addition, several 'metabolic diseases' such as diabetes, obesity, and abnormal thyroid function precipitate some well-known 'culprits' of the AF substrate such as myocyte hypertrophy and fibrosis, while some other AF risk factors, such as heart failure, affect atrial metabolism. This review provides an overview of metabolic and vascular alterations in AF and their involvement in its pathogenesis.

  12. Understanding the determinants of selectivity in drug metabolism through modeling of dextromethorphan oxidation by cytochrome P450

    Science.gov (United States)

    Oláh, Julianna; Mulholland, Adrian J.; Harvey, Jeremy N.

    2011-01-01

    Cytochrome P450 enzymes play key roles in the metabolism of the majority of drugs. Improved models for prediction of likely metabolites will contribute to drug development. In this work, two possible metabolic routes (aromatic carbon oxidation and O-demethylation) of dextromethorphan are compared using molecular dynamics (MD) simulations and density functional theory (DFT). The DFT results on a small active site model suggest that both reactions might occur competitively. Docking and MD studies of dextromethorphan in the active site of P450 2D6 show that the dextromethorphan is located close to heme oxygen in a geometry apparently consistent with competitive metabolism. In contrast, calculations of the reaction path in a large protein model [using a hybrid quantum mechanical–molecular mechanics (QM/MM) method] show a very strong preference for O-demethylation, in accordance with experimental results. The aromatic carbon oxidation reaction is predicted to have a high activation energy, due to the active site preventing formation of a favorable transition-state structure. Hence, the QM/MM calculations demonstrate a crucial role of many active site residues in determining reactivity of dextromethorphan in P450 2D6. Beyond substrate binding orientation and reactivity of Compound I, successful metabolite predictions must take into account the detailed mechanism of oxidation in the protein. These results demonstrate the potential of QM/MM methods to investigate specificity in drug metabolism. PMID:21444768

  13. Dietary carbohydrate restriction as the first approach in diabetes management

    DEFF Research Database (Denmark)

    Feinman, Richard D; Pogozelski, Wendy K; Astrup, Arne;

    2015-01-01

    , in combination with the continued success of low-carbohydrate diets in the treatment of diabetes and metabolic syndrome without significant side effects, point to the need for a reappraisal of dietary guidelines. The benefits of carbohydrate restriction in diabetes are immediate and well documented. Concerns...... side effects comparable with those seen in many drugs. Here we present 12 points of evidence supporting the use of low-carbohydrate diets as the first approach to treating type 2 diabetes and as the most effective adjunct to pharmacology in type 1. They represent the best-documented, least......The inability of current recommendations to control the epidemic of diabetes, the specific failure of the prevailing low-fat diets to improve obesity, cardiovascular risk, or general health and the persistent reports of some serious side effects of commonly prescribed diabetic medications...

  14. The role of carbohydrate in dietary prescription for weight loss

    DEFF Research Database (Denmark)

    Astrup, Arne

    to be shown whether a low-glycemic index diet provides benefits beyond this. Low-carbohydrate diets may be an option for inducing weight loss in obese patients, but a very low intake of carbohydrate-rich foods is not commensurate with a healthy and palatable diet in the long term. However, there is evidence......The optimal diet for prevention of weight gain, obesity, metabolic syndrome, and type 2 diabetes is fat-reduced, fibre-rich, high in lowenergy density carbohydrates (fruit, vegetables, and whole grain products), and intake of energy-containing drinks is restricted. The reduction of the total fat...... content of ad libitum diets produces weight loss in both the short-term and over periods as long as 7 years. A fat-reduced diet, combined with physical activity, reduces all risk factors for cardiovascular disease, and reduces the incidence of type 2 diabetes. The combination of reduction of dietary fat...

  15. Dietary carbohydrate restriction as the first approach in diabetes management

    DEFF Research Database (Denmark)

    Feinman, Richard D; Pogozelski, Wendy K; Astrup, Arne;

    2015-01-01

    , in combination with the continued success of low-carbohydrate diets in the treatment of diabetes and metabolic syndrome without significant side effects, point to the need for a reappraisal of dietary guidelines. The benefits of carbohydrate restriction in diabetes are immediate and well documented. Concerns......The inability of current recommendations to control the epidemic of diabetes, the specific failure of the prevailing low-fat diets to improve obesity, cardiovascular risk, or general health and the persistent reports of some serious side effects of commonly prescribed diabetic medications...... side effects comparable with those seen in many drugs. Here we present 12 points of evidence supporting the use of low-carbohydrate diets as the first approach to treating type 2 diabetes and as the most effective adjunct to pharmacology in type 1. They represent the best-documented, least...

  16. Energy metabolism determines the sensitivity of human hepatocellular carcinoma cells to mitochondrial inhibitors and biguanide drugs.

    Science.gov (United States)

    Hsu, Chia-Chi; Wu, Ling-Chia; Hsia, Cheng-Yuan; Yin, Pen-Hui; Chi, Chin-Wen; Yeh, Tien-Shun; Lee, Hsin-Chen

    2015-09-01

    Human hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide particularly in Asia. Deregulation of cellular energetics was recently included as one of the cancer hallmarks. Compounds that target the mitochondria in cancer cells were proposed to have therapeutic potential. Biguanide drugs which inhibit mitochondrial complex I and repress mTOR signaling are clinically used to treat type 2 diabetes mellitus patients (T2DM) and were recently found to reduce the risk of HCC in T2DM patients. However, whether alteration of energy metabolism is involved in regulating the sensitivity of HCC to biguanide drugs is still unclear. In the present study, we treated four HCC cell lines with mitochondrial inhibitors (rotenone and oligomycin) and biguanide drugs (metformin and phenformin), and found that the HCC cells which had a higher mitochondrial respiration rate were more sensitive to these treatments; whereas the HCC cells which exhibited higher glycolysis were more resistant. When glucose was replaced by galactose in the medium, the altered energy metabolism from glycolysis to mitochondrial respiration in the HCC cells enhanced the cellular sensitivity to mitochondrial inhibitors and biguanides. The energy metabolism change enhanced AMP-activated protein kinase (AMPK) activation, mTOR repression and downregulation of cyclin D1 and Mcl-1 in response to the mitochondrial inhibitors and biguanides. In conclusion, our results suggest that increased mitochondrial oxidative metabolism upregulates the sensitivity of HCC to biguanide drugs. Enhancing the mitochondrial oxidative metabolism in combination with biguanide drugs may be a therapeutic strategy for HCC.

  17. Carbohydrate plasma expanders for passive tumor targeting

    DEFF Research Database (Denmark)

    Hoffmann, Stefan; Caysa, Henrike; Kuntsche, Judith

    2013-01-01

    The objective of this study was to investigate the suitability of carbohydrate plasma volume expanders as a novel polymer platform for tumor targeting. Many synthetic polymers have already been synthesized for targeted tumor therapy, but potential advantages of these carbohydrates include...... inexpensive synthesis, constant availability, a good safety profile, biodegradability and the long clinical use as plasma expanders. Three polymers have been tested for cytotoxicity and cytokine activation in cell cultures and conjugated with a near-infrared fluorescent dye: hydroxyethyl starches (HES 200 k......Da and HES 450 kDa) and dextran (DEX 500 kDa). Particle size and molecular weight distribution were determined by asymmetric flow field-flow fractionation (AF4). The biodistribution was investigated non-invasively in nude mice using multispectral optical imaging. The most promising polymer conjugate...

  18. Costus afer Possesses Carbohydrate Hydrolyzing Enzymes Inhibitory Activity and Antioxidant Capacity In Vitro

    Science.gov (United States)

    Tchamgoue, Armelle D.; Tchokouaha, Lauve R. Y.; Tarkang, Protus A.; Kuiate, Jules-Roger; Agbor, Gabriel A.

    2015-01-01

    Diabetes mellitus is a metabolic disorder of glucose metabolism which correlates with postprandial hyperglycemia and oxidative stress. Control of blood glucose level is imperative in the management of diabetes. The present study tested the hypothesis that Costus afer, an antihyperglycemic medicinal plant, possesses inhibitory activity against carbohydrate hydrolyzing enzymes. Hexane, ethyl acetate, methanol, and water extracts were prepared from the leaf, stem, and rhizome of C. afer and subjected to phytochemical screening, assayed for α-amylase and α-glucosidase inhibitory activities and antioxidant capacity (determined by total phenolic and total flavonoids contents, ferric reducing antioxidant power (FRAP), and DPPH radical scavenging activity). All extracts inhibited α-amylase and α-glucosidase activities. Ethyl acetate rhizome and methanol leaf extracts exhibited the best inhibitory activity against α-amylase and α-glucosidase (IC50: 0.10 and 5.99 mg/mL), respectively. Kinetic analysis revealed two modes of enzyme inhibition (competitive and mixed). All extracts showed antioxidant capacity, with hexane extracts exhibiting the best activity. DPPH assay revealed that methanol leaf, rhizome, and ethyl acetate stem extracts (IC50 < 5 mg/mL) were the best antioxidants. The presence of bioactive compounds such as flavonoids, alkaloids, phenols, and tannins may account for the antioxidant capacity and carbohydrate hydrolyzing enzyme inhibitory activity of C. afer. PMID:26246844

  19. Carbohydrates and Endothelial Function: Is a Low-Carbohydrate Diet or a Low-Glycemic Index Diet Favourable for Vascular Health?

    OpenAIRE

    2015-01-01

    Low-carbohydrate diets have become increasingly popular in both media and clinical research settings. Although they may improve some metabolic markers, their effects on arterial function remain unclear. Endothelial dysfunction is the well-established response to cardiovascular risk factors and a pivotal feature that precedes atherosclerotic diseases. It has been demonstrated that a high carbohydrate-induced hyperglycemia and subsequent oxidative stress acutely worsen the efficacy of the endot...

  20. Mechanisms involved in the regulation of photosynthetic efficiency and carbohydrate partitioning in response to low- and high-temperature flooding triggered in winter rye (Secale cereale) lines with distinct pink snow mold resistances.

    Science.gov (United States)

    Pociecha, E; Rapacz, M; Dziurka, M; Kolasińska, I

    2016-07-01

    In terms of climate changes and global warming, winter hardiness could be determined by unfavorable environmental conditions other than frost. These could include flooding from melting snow and/or rain, coincident with fungal diseases. Therefore, we designed an experiment to identify potential common mechanisms of flooding tolerance and snow mold resistance, involving the regulation of photosynthetic efficiency and carbohydrate metabolism at low temperatures. Snow mold-resistant and susceptible winter rye (Secale cereale) plants were characterized by considerably different patterns of response to flooding. These differences were clearer at low temperature, thus confirming a possible role of the observed changes in snow mold tolerance. The resistant plants were characterized by lower PSII quantum yields at low temperature, combined with much higher energy flux for energy dissipation from the PSII reaction center. During flooding, the level of soluble carbohydrates increased in the resistant plants and decreased in the susceptible ones. Thus increase in resistant line was connected with a decrease in the energy dissipation rate in PSII/increased photosynthetic activity (energy flux for electron transport), a lower rate of starch degradation and higher rates of sucrose metabolism in leaves. The resistant lines accumulated larger amounts of total soluble carbohydrates in the crowns than in the leaves. Irrespective of flooding treatment, the resistant lines allocated more sugars for cell wall composition, both in the leaves and crowns. Our results clearly indicated that studies on carbohydrate changes at low temperatures or during anoxia should investigate not only the alterations in water-soluble and storage carbohydrates, but also cell wall carbohydrates. The patterns of changes observed after low and high-temperature flooding were different, indicating separate control mechanisms of these responses. These included changes in the photosynthetic apparatus, starch

  1. Water-soluble carbohydrates and fructan structure patterns from Agave and Dasylirion species.

    Science.gov (United States)

    Mancilla-Margalli, N Alejandra; López, Mercedes G

    2006-10-04

    Fructans, storage carbohydrates with beta-fructofuranosyl linkages, are found in approximately 15% of higher plants. The metabolic flexibility of those molecules allows them easily to polymerize and depolymerize to soluble carbohydrates according to plant development stage and environmental conditions. In this work, water-soluble carbohydrates, including fructan structure patterns, were compared among Agave and Dasylirion species grown in different environmental regions in Mexico. Fructans were the main storage carbohydrate present in Agave stems, in addition to other carbohydrates related to its metabolism, whereas Dasylirion spp. presented a different carbohydrate distribution. A good correlation of water-soluble carbohydrate content with climatic conditions was observed. Fructans in Agave and Dasylirion genera were found in the form of polydisperse molecules, where structural heterogeneity in the same plant was evidenced by methylation linkage analysis and chromatographic methods. Fructans from the studied species were classified into three groups depending on DP and linkage-type abundance. These storage carbohydrates share structural characteristics with fructans in plants that belong to the Asparagales members. Agave and Dasylirion fructans can be categorized as graminans and branched neo-fructans, which we have termed agavins.

  2. Carbohydrate microarrays in plant science.

    Science.gov (United States)

    Fangel, Jonatan U; Pedersen, Henriette L; Vidal-Melgosa, Silvia; Ahl, Louise I; Salmean, Armando Asuncion; Egelund, Jack; Rydahl, Maja Gro; Clausen, Mads H; Willats, William G T

    2012-01-01

    Almost all plant cells are surrounded by glycan-rich cell walls, which form much of the plant body and collectively are the largest source of biomass on earth. Plants use polysaccharides for support, defense, signaling, cell adhesion, and as energy storage, and many plant glycans are also important industrially and nutritionally. Understanding the biological roles of plant glycans and the effective exploitation of their useful properties requires a detailed understanding of their structures, occurrence, and molecular interactions. Microarray technology has revolutionized the massively high-throughput analysis of nucleotides, proteins, and increasingly carbohydrates. Using microarrays, the abundance of and interactions between hundreds and thousands of molecules can be assessed simultaneously using very small amounts of analytes. Here we show that carbohydrate microarrays are multifunctional tools for plant research and can be used to map glycan populations across large numbers of samples to screen antibodies, carbohydrate binding proteins, and carbohydrate binding modules and to investigate enzyme activities.

  3. Transition metals in carbohydrate chemistry

    DEFF Research Database (Denmark)

    Madsen, Robert

    1997-01-01

    This review describes the application of transition metal mediated reactions in carbohydrate synthesis. The different metal mediated transformations are divided into reaction types and illustrated by various examples on monosaccharide derivatives. Carbon-carbon bond forming reactions are further ...

  4. Infant formula supplemented with low protein and high carbohydrate alters the intestinal microbiota in neonatal SD rats

    OpenAIRE

    Fan, Wenguang; Tang, Yaru; Qu, Yi; Cao, Fengbo; Huo, Guicheng

    2014-01-01

    Background Infant microbiota is influenced by numerous factors, such as delivery mode, environment, prematurity and diet (breast milk or formula) and last but not least, the diet composition. In the diet composition, protein and carbohydrate are very important for the growth of microbiota, many infant fomulas (different ratio protein/carbohydrate) can regulate the development of gut microbiota by different metabolism. The effect of low-protein, high-carbohydrate infant formula on the establis...

  5. Determinants of human adipose tissue gene expression: impact of diet, sex, metabolic status, and cis genetic regulation.

    Directory of Open Access Journals (Sweden)

    Nathalie Viguerie

    2012-09-01

    Full Text Available Weight control diets favorably affect parameters of the metabolic syndrome and delay the onset of diabetic complications. The adaptations occurring in adipose tissue (AT are likely to have a profound impact on the whole body response as AT is a key target of dietary intervention. Identification of environmental and individual factors controlling AT adaptation is therefore essential. Here, expression of 271 transcripts, selected for regulation according to obesity and weight changes, was determined in 515 individuals before, after 8-week low-calorie diet-induced weight loss, and after 26-week ad libitum weight maintenance diets. For 175 genes, opposite regulation was observed during calorie restriction and weight maintenance phases, independently of variations in body weight. Metabolism and immunity genes showed inverse profiles. During the dietary intervention, network-based analyses revealed strong interconnection between expression of genes involved in de novo lipogenesis and components of the metabolic syndrome. Sex had a marked influence on AT expression of 88 transcripts, which persisted during the entire dietary intervention and after control for fat mass. In women, the influence of body mass index on expression of a subset of genes persisted during the dietary intervention. Twenty-two genes revealed a metabolic syndrome signature common to men and women. Genetic control of AT gene expression by cis signals was observed for 46 genes. Dietary intervention, sex, and cis genetic variants independently controlled AT gene expression. These analyses help understanding the relative importance of environmental and individual factors that control the expression of human AT genes and therefore may foster strategies aimed at improving AT function in metabolic diseases.

  6. Carbohydrate drugs: current status and development prospect.

    Science.gov (United States)

    Zhang, Yan; Wang, Fengshan

    2015-04-01

    In recent years, there has been a great effort devoted to the investigation of the roles of carbohydrates in various essential biological processes and the development of carbohydrates to therapeutic drugs. This review summarizes the carbohydrate drugs which have been recorded in several pharmacopoeias, marketed, and under development. A prospect of the future development of carbohydrate drugs is discussed as well.

  7. Genetic determinants of both ethanol and acetaldehyde metabolism influence alcohol hypersensitivity and drinking behaviour among Scandinavians

    DEFF Research Database (Denmark)

    Linneberg, A; Gonzalez-Quintela, A; Vidal, C

    2010-01-01

    Although hypersensitivity reactions following intake of alcoholic drinks are common in Caucasians, the underlying mechanisms and clinical significance are not known. In contrast, in Asians, alcohol-induced asthma and flushing have been shown to be because of a single nucleotide polymorphism (SNP)......), the acetaldehyde dehydrogenase 2 (ALDH2) 487lys, causing decreased acetaldehyde (the metabolite of ethanol) metabolism and high levels of histamine. However, the ALDH2 487lys is absent in Caucasians....

  8. The human gut microbial ecology associated with overweight and obesity determines ellagic acid metabolism.

    Science.gov (United States)

    Selma, María V; Romo-Vaquero, María; García-Villalba, Rocío; González-Sarrías, Antonio; Tomás-Barberán, Francisco A; Espín, Juan C

    2016-04-01

    We recently identified three metabotypes (0, A and B) that depend on the metabolic profile of urolithins produced from polyphenol ellagic acid (EA). The gut microbiota and Gordonibacter spp. recently were identified as species able to produce urolithins. A higher percentage of metabotype B was found in patients with metabolic syndrome or colorectal cancer in comparison with healthy individuals. The aim of the present study was to analyse differences in EA metabolism between healthy overweight-obese and normoweight individuals and evaluate the role of gut microbial composition including Gordonibacter. Although the three metabotypes were confirmed in both groups, metabotype B prevailed in overweight-obese (31%) versus normoweight (20%) individuals while metabotype A was higher in normoweight (70%) than the overweight-obese group (57%). This suggests that weight gain favours the growth of bacteria capable of producing urolithin B and/or isourolithin A with respect to urolithin A-producing bacteria. Gordonibacter spp. levels were not significantly different between normoweight and overweight-obese groups but higher Gordonibacter levels were found in metabotype A individuals than in those with metabotype B. Other bacterial species have been reported to show a much closer relationship to obesity and dysbiosis than Gordonibacter. However, Gordonibacter levels are negatively correlated with metabotype B, which prevails in metabolic syndrome and colorectal cancer. This is the first report that links overweight and obesity with an alteration in the catabolism of EA, and where the correlation of Gordonibacter to this alteration is shown. Future investigation of Gordonibacter and urolithin metabotypes as potential biomarkers or