WorldWideScience

Sample records for carbohydrate binding modules

  1. Using structure to inform carbohydrate binding module function

    NARCIS (Netherlands)

    Abbott, D. Wade; Lammerts van Bueren, Alicia

    2014-01-01

    Generally, non-catalytic carbohydrate binding module (CBM) specificity has been shown to parallel the catalytic activity of the carbohydrate active enzyme (CAZyme) module it is appended to. With the rapid expansion in metagenomic sequence space for the potential discovery of new CBMs in addition to

  2. Modeling of Carbohydrate Binding Modules Complexed to Cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Nimlos, M. R.; Beckham, G. T.; Bu, L.; Himmel, M. E.; Crowley, M. F.; Bomble, Y. J.

    2012-01-01

    Modeling results are presented for the interaction of two carbohydrate binding modules (CBMs) with cellulose. The family 1 CBM from Trichoderma reesei's Cel7A cellulase was modeled using molecular dynamics to confirm that this protein selectively binds to the hydrophobic (100) surface of cellulose fibrils and to determine the energetics and mechanisms for locating this surface. Modeling was also conducted of binding of the family 4 CBM from the CbhA complex from Clostridium thermocellum. There is a cleft in this protein, which may accommodate a cellulose chain that is detached from crystalline cellulose. This possibility is explored using molecular dynamics.

  3. Cloning and expression of carbohydrate binding module in Pichia pastoris

    OpenAIRE

    Moreira, Susana Margarida Gomes; Domingues, Lucília; Gama, F. M.; Casal, Margarida

    2005-01-01

    The main goal of this work is the production of recombinant biologically active peptides fused with a Carbohydrate Binding Module (CBM). Aiming at the optimization of large scale expression, CBM peptide production was done by cloning CBM coding sequence in two different systems of Pichia pastoris: pGAPZαC which has a constitutive promoter and pPICZαC which has an inductive promoter. The integration of the CBM coding sequence in the yeast genome was confirmed by slot-blot for...

  4. Family 42 carbohydrate-binding modules display multiple arabinoxylan-binding interfaces presenting different ligand affinities.

    Science.gov (United States)

    Ribeiro, Teresa; Santos-Silva, Teresa; Alves, Victor D; Dias, Fernando M V; Luís, Ana S; Prates, José A M; Ferreira, Luís M A; Romão, Maria J; Fontes, Carlos M G A

    2010-10-01

    Enzymes that degrade plant cell wall polysaccharides display a modular architecture comprising a catalytic domain bound to one or more non-catalytic carbohydrate-binding modules (CBMs). CBMs display considerable variation in primary structure and are grouped into 59 sequence-based families organized in the Carbohydrate-Active enZYme (CAZy) database. Here we report the crystal structure of CtCBM42A together with the biochemical characterization of two other members of family 42 CBMs from Clostridium thermocellum. CtCBM42A, CtCBM42B and CtCBM42C bind specifically to the arabinose side-chains of arabinoxylans and arabinan, suggesting that various cellulosomal components are targeted to these regions of the plant cell wall. The structure of CtCBM42A displays a beta-trefoil fold, which comprises 3 sub-domains designated as alpha, beta and gamma. Each one of the three sub-domains presents a putative carbohydrate-binding pocket where an aspartate residue located in a central position dominates ligand recognition. Intriguingly, the gamma sub-domain of CtCBM42A is pivotal for arabinoxylan binding, while the concerted action of beta and gamma sub-domains of CtCBM42B and CtCBM42C is apparently required for ligand sequestration. Thus, this work reveals that the binding mechanism of CBM42 members is in contrast with that of homologous CBM13s where recognition of complex polysaccharides results from the cooperative action of three protein sub-domains presenting similar affinities. PMID:20637315

  5. Carbohydrate microarrays reveal sulphation as a modulator of siglec binding.

    Science.gov (United States)

    Campanero-Rhodes, María Asunción; Childs, Robert A; Kiso, Makato; Komba, Shiro; Le Narvor, Christine; Warren, Joanna; Otto, Diana; Crocker, Paul R; Feizi, Ten

    2006-06-16

    Siglecs are receptors on cells of the immune, haemopoietic, and nervous systems that recognize sialyl-glycans with differing preferences for sialic acid linkage and oligosaccharide backbone sequence. We investigate here siglec binding using microarrays of Lewis(x) (Le(x))- and 3'-sialyl-Le(x)-related probes with different sulphation patterns. These include sulphation at position 3 of the terminal galactose of Le(x), position 6 of the galactose of Le(x) and sialyl-Le(x), position 6 of N-acetylglucosamine of Le(x) and sialyl-Le(x), or both positions of sialyl-Le(x). Recombinant soluble forms of five siglecs have been investigated: human Siglec-7, -8, -9, and murine Siglec-F and CD22 (Siglec-2). Each siglec has a different binding pattern. Unlike two C-type lectins of leukocytes, L-selectin and Langerin, which also bind to sulphated analogues of sialyl-Le(x), the siglecs do not give detectable binding signals with sulphated analogues that are lacking sialic acid. The sulphate groups modulate, however, positively or negatively the siglec binding intensities to the sialyl-Le(x) sequence. PMID:16647038

  6. Influence of a Mannan Binding Family 32 Carbohydrate Binding Module on the Activity of the Appended Mannanase

    OpenAIRE

    Mizutani, Kimiya; Fernandes, Vânia O.; Karita, Shuichi; Luís, Ana S.; Sakka, Makiko; Kimura, Tetsuya; Jackson, Adam; Zhang, Xiaoyang; Fontes, Carlos M. G. A.; Gilbert, Harry J.; Sakka, Kazuo

    2012-01-01

    In general, cellulases and hemicellulases are modular enzymes in which the catalytic domain is appended to one or more noncatalytic carbohydrate binding modules (CBMs). CBMs, by concentrating the parental enzyme at their target polysaccharide, increase the capacity of the catalytic module to bind the substrate, leading to a potentiation in catalysis. Clostridium thermocellum hypothetical protein Cthe_0821, defined here as C. thermocellum Man5A, is a modular protein comprising an N-terminal si...

  7. Engineering Cel7A carbohydrate binding module and linker for reduced lignin inhibition.

    Science.gov (United States)

    Strobel, Kathryn L; Pfeiffer, Katherine A; Blanch, Harvey W; Clark, Douglas S

    2016-06-01

    Non-productive binding of cellulases to lignin inhibits enzymatic hydrolysis of biomass, increasing enzyme requirements and the cost of biofuels. This study used site-directed mutagenesis of the Trichoderma Cel7A carbohydrate binding module (CBM) and linker to investigate the mechanisms of adsorption to lignin and engineer a cellulase with increased binding specificity for cellulose. CBM mutations that added hydrophobic or positively charged residues decreased the specificity for cellulose, while mutations that added negatively charged residues increased the specificity. Linker mutations that altered predicted glycosylation patterns selectively impacted lignin affinity. Beneficial mutations were combined to generate a mutant with 2.5-fold less lignin affinity while fully retaining cellulose affinity. This mutant was uninhibited by added lignin during hydrolysis of Avicel and generated 40% more glucose than the wild-type enzyme from dilute acid-pretreated Miscanthus. Biotechnol. Bioeng. 2016;113: 1369-1374. © 2015 Wiley Periodicals, Inc. PMID:26616493

  8. Analysis of the carbohydrate-binding-module from Fragaria x ananassa α-L-arabinofuranosidase 1.

    Science.gov (United States)

    Sin, I N; Perini, M A; Martínez, G A; Civello, P M

    2016-10-01

    α-L-arabinofuranosidases (EC 3.2.1.55) are enzymes involved in the catabolism of several cell-wall polysaccharides such as pectins and hemicelluloses, catalyzing the hydrolysis of terminal non-reducing α-L-arabinofuranosil residues. Bioinformatic analysis of the aminoacidic sequences of Fragaria x ananassa α-L-arabinofuranosidases predict a putative carbohydrate-binding-module of the family CBM_4_9, associated to a wide range of carbohydrate affinities. In this study, we report the characterization of the binding affinity profile to different cell wall polysaccharides of the putative CBM of α-L-arabinofuranosidase 1 from Fragaria x ananassa (CBM-FaARA1). The sequence encoding for the putative CBM was cloned and expressed in Escherichia coli, and the resultant recombinant protein was purified from inclusion bodies by a Nickel affinity chromatography under denaturing conditions. The refolded recombinant protein was then subjected to binding assays and affinity gel electrophoresis, which indicated its ability to bind cellulose and also high affinity for homogalacturonans. PMID:27262101

  9. Plant carbohydrate binding module enhances activity of hybrid microbial cellulase enzyme

    Directory of Open Access Journals (Sweden)

    Caitlin Siobhan Byrt

    2012-11-01

    Full Text Available A synthetic, highly active cellulase enzyme suitable for in planta production may be a valuable tool for biotechnological approaches to develop transgenic biofuel crops with improved digestibility. Here, we demonstrate that the addition of a plant derived carbohydrate binding module (CBM to a synthetic glycosyl hydrolase (GH improved the activity of the hydrolase in releasing sugar from plant biomass. A CEL-HYB1-CBM enzyme was generated by fusing a hybrid microbial cellulase, CEL-HYB1, with the carbohydrate-binding module (CBM of the tomato (Solanum lycopersicum SlCel9C1 cellulase. CEL-HYB1 and CEL-HYB1-CBM enzymes were produced in vitro using Pichia pastoris and the activity of these enzymes was tested using CMC, MUC and native crystalline cellulose assays. The presence of the CBM substantially improved the endo-glucanase activity of CEL-HYB1, especially against the native crystalline cellulose encountered in Sorghum plant cell walls. These results indicate that addition of an endogenous plant derived CBM to cellulase enzymes may enhance hydrolytic activity.

  10. The carbohydrate-binding module family 20-diversity, structure, and function

    DEFF Research Database (Denmark)

    Christiansen, Camilla; Abou Hachem, Maher; Janecek, S.;

    2009-01-01

    Starch-active enzymes often possess starch-binding domains (SBDs) mediating attachment to starch granules and other high molecular weight substrates. SBDs are divided into nine carbohydrate-binding module (CBM) families, and CBM20 is the earliest-assigned and best characterized family. High...... diversity characterizes CBM20s, which occur in starch-active glycoside hydrolase families 13, 14, 15, and 77, and enzymes involved in starch or glycogen metabolism, exemplified by the starch-phosphorylating enzyme glucan, water dikinase 3 from Arabidopsis thaliana and the mammalian glycogen phosphatases......, laforins. The clear evolutionary relatedness of CBM20s to CBM21s, CBM48s and CBM53s suggests a common clan hosting most of the known SBDs. This review surveys the diversity within the CBM20 family, and makes an evolutionary comparison with CBM21s, CBM48s and CBM53s, discussing intrafamily and interfamily...

  11. Novel characteristics of a carbohydrate-binding module 20 from hyperthermophilic bacterium.

    Science.gov (United States)

    Oh, Il-Nam; Jane, Jay-Lin; Wang, Kan; Park, Jong-Tae; Park, Kwan-Hwa

    2015-03-01

    In this study, a gene fragment coding carbohydrate-binding module 20 (CBM20) in the amylopullulanase (APU) gene was cloned from the hyperthermophilic bacteria Thermoanaerobacter pseudoethanolicus 39E and expressed in Escherichia coli. The protein, hereafter Tp39E, possesses very low sequence similarity with the CBM20s previously reported and has no starch binding site 2. Tp39E did not demonstrate thermal denaturation at 50 °C; however, thermal unfolding of the protein was observed at 59.5 °C. A binding assay with Tp39E was conducted using various soluble and insoluble substrates, and starch was the best binding polysaccharide. Intriguingly, Tp39E bound, to a lesser extent, to soluble and insoluble xylan as well. The dissociation constant (K d) and the maximum specific binding (B max) of Tp39E to corn starch granules were 0.537 μM and 5.79 μM/g, respectively, at pH 5.5 and 20 °C. 99APU1357 with a Tp39E domain exhibited 2.2-fold greater activity than a CBM20-truncation mutant when starch granules were the substrate. Tp39E was an independently thermostable CBM and had a considerable effect on APU activity in the hydrolysis of insoluble substrates. PMID:25575613

  12. Structural insights into the affinity of Cel7A carbohydrate-binding module for lignin.

    Science.gov (United States)

    Strobel, Kathryn L; Pfeiffer, Katherine A; Blanch, Harvey W; Clark, Douglas S

    2015-09-11

    The high cost of hydrolytic enzymes impedes the commercial production of lignocellulosic biofuels. High enzyme loadings are required in part due to their non-productive adsorption to lignin, a major component of biomass. Despite numerous studies documenting cellulase adsorption to lignin, few attempts have been made to engineer enzymes to reduce lignin binding. In this work, we used alanine-scanning mutagenesis to elucidate the structural basis for the lignin affinity of Trichoderma reesei Cel7A carbohydrate binding module (CBM). T. reesei Cel7A CBM mutants were produced with a Talaromyces emersonii Cel7A catalytic domain and screened for their binding to cellulose and lignin. Mutation of aromatic and polar residues on the planar face of the CBM greatly decreased binding to both cellulose and lignin, supporting the hypothesis that the cellulose-binding face is also responsible for lignin affinity. Cellulose and lignin affinity of the 31 mutants were highly correlated, although several mutants displayed selective reductions in lignin or cellulose affinity. Four mutants with increased cellulose selectivity (Q2A, H4A, V18A, and P30A) did not exhibit improved hydrolysis of cellulose in the presence of lignin. Further reduction in lignin affinity while maintaining a high level of cellulose affinity is thus necessary to generate an enzyme with improved hydrolysis capability. This work provides insights into the structural underpinnings of lignin affinity, identifies residues amenable to mutation without compromising cellulose affinity, and informs engineering strategies for family one CBMs. PMID:26209638

  13. Binding Preferences, Surface Attachment, Diffusivity, and Orientation of a Family 1 Carbohydrate-Binding Module on Cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Nimlos, M. R.; Beckham, G. T.; Matthews, J. F.; Bu, L.; Himmel, M. E.; Crowley, M. F.

    2012-06-08

    Cellulase enzymes often contain carbohydrate-binding modules (CBMs) for binding to cellulose. The mechanisms by which CBMs recognize specific surfaces of cellulose and aid in deconstruction are essential to understand cellulase action. The Family 1 CBM from the Trichoderma reesei Family 7 cellobiohydrolase, Cel7A, is known to selectively bind to hydrophobic surfaces of native cellulose. It is most commonly suggested that three aromatic residues identify the planar binding face of this CBM, but several recent studies have challenged this hypothesis. Here, we use molecular simulation to study the CBM binding orientation and affinity on hydrophilic and hydrophobic cellulose surfaces. Roughly 43 {mu}s of molecular dynamics simulations were conducted, which enables statistically significant observations. We quantify the fractions of the CBMs that detach from crystal surfaces or diffuse to other surfaces, the diffusivity along the hydrophobic surface, and the overall orientation of the CBM on both hydrophobic and hydrophilic faces. The simulations demonstrate that there is a thermodynamic driving force for the Cel7A CBM to bind preferentially to the hydrophobic surface of cellulose relative to hydrophilic surfaces. In addition, the simulations demonstrate that the CBM can diffuse from hydrophilic surfaces to the hydrophobic surface, whereas the reverse transition is not observed. Lastly, our simulations suggest that the flat faces of Family 1 CBMs are the preferred binding surfaces. These results enhance our understanding of how Family 1 CBMs interact with and recognize specific cellulose surfaces and provide insights into the initial events of cellulase adsorption and diffusion on cellulose.

  14. Characterization of the Carbohydrate Binding Module 18 gene family in the amphibian pathogen Batrachochytrium dendrobatidis.

    Science.gov (United States)

    Liu, Peng; Stajich, Jason E

    2015-04-01

    Batrachochytrium dendrobatidis (Bd) is the causative agent of chytridiomycosis responsible for worldwide decline in amphibian populations. Previous analysis of the Bd genome revealed a unique expansion of the carbohydrate-binding module family 18 (CBM18) predicted to be a sub-class of chitin recognition domains. CBM expansions have been linked to the evolution of pathogenicity in a variety of fungal species by protecting the fungus from the host. Based on phylogenetic analysis and presence of additional protein domains, the gene family can be classified into 3 classes: Tyrosinase-, Deacetylase-, and Lectin-like. Examination of the mRNA expression levels from sporangia and zoospores of nine of the cbm18 genes found that the Lectin-like genes had the highest expression while the Tyrosinase-like genes showed little expression, especially in zoospores. Heterologous expression of GFP-tagged copies of four CBM18 genes in Saccharomyces cerevisiae demonstrated that two copies containing secretion signal peptides are trafficked to the cell boundary. The Lectin-like genes cbm18-ll1 and cbm18-ll2 co-localized with the chitinous cell boundaries visualized by staining with calcofluor white. In vitro assays of the full length and single domain copies from CBM18-LL1 demonstrated chitin binding and no binding to cellulose or xylan. Expressed CBM18 domain proteins were demonstrated to protect the fungus, Trichoderma reeseii, in vitro against hydrolysis from exogenously added chitinase, likely by binding and limiting exposure of fungal chitin. These results demonstrate that cbm18 genes can play a role in fungal defense and expansion of their copy number may be an important pathogenicity factor of this emerging infectious disease of amphibians. PMID:25819009

  15. Promiscuous, non-catalytic, tandem carbohydrate-binding modules modulate the cell-wall structure and development of transgenic tobacco (Nicotiana tabacum) plants

    NARCIS (Netherlands)

    Olawole, O.; Jacobsen, E.; Timmers, J.F.P.; Gilbert, H.J.; Blake, W.; Knox, J.P.; Visser, R.G.F.; Vincken, J.P.

    2007-01-01

    We have compared heterologous expression of two types of carbohydrate binding module (CBM) in tobacco cell walls. These are the promiscuous CBM29 modules (a tandem CBM29-1-2 and its single derivative CBM29-2), derived from a non-catalytic protein1, NCP1, of the Piromyces equi cellulase/hemicellulase

  16. Probing the Functions of Carbohydrate Binding Modules in the CBEL Protein from the Oomycete Phytophthora parasitica.

    Directory of Open Access Journals (Sweden)

    Thomas Martinez

    Full Text Available Oomycetes are microorganisms that are distantly related to true fungi and many members of this phylum are major plant pathogens. Oomycetes express proteins that are able to interact with plant cell wall polysaccharides, such as cellulose. This interaction is thought to be mediated by carbohydrate-binding modules that are classified into CBM family 1 in the CAZy database. In this study, the two CBMs (1-1 and 1-2 that form part of the cell wall glycoprotein, CBEL, from Phytophthora parasitica have been submitted to detailed characterization, first to better quantify their interaction with cellulose and second to determine whether these CBMs can be useful for biotechnological applications, such as biomass hydrolysis. A variety of biophysical techniques were used to study the interaction of the CBMs with various substrates and the data obtained indicate that CBEL's CBM1-1 exhibits much greater cellulose binding ability than CBM1-2. Engineering of the family 11 xylanase from Talaromyces versatilis (TvXynB, an enzyme that naturally bears a fungal family 1 CBM, has produced two variants. The first one lacks its native CBM, whereas the second contains the CBEL CBM1-1. The study of these enzymes has revealed that wild type TvXynB binds to cellulose, via its CBM1, and that the substitution of its CBM by oomycetal CBM1-1 does not affect its activity on wheat straw. However, intriguingly the addition of CBEL during the hydrolysis of wheat straw actually potentiates the action of TvXynB variant lacking a CBM1. This suggests that the potentiating effect of CBM1-1 might not require the formation of a covalent linkage to TvXynB.

  17. Probing the Functions of Carbohydrate Binding Modules in the CBEL Protein from the Oomycete Phytophthora parasitica.

    Science.gov (United States)

    Martinez, Thomas; Texier, Hélène; Nahoum, Virginie; Lafitte, Claude; Cioci, Gianluca; Heux, Laurent; Dumas, Bernard; O'Donohue, Michael; Gaulin, Elodie; Dumon, Claire

    2015-01-01

    Oomycetes are microorganisms that are distantly related to true fungi and many members of this phylum are major plant pathogens. Oomycetes express proteins that are able to interact with plant cell wall polysaccharides, such as cellulose. This interaction is thought to be mediated by carbohydrate-binding modules that are classified into CBM family 1 in the CAZy database. In this study, the two CBMs (1-1 and 1-2) that form part of the cell wall glycoprotein, CBEL, from Phytophthora parasitica have been submitted to detailed characterization, first to better quantify their interaction with cellulose and second to determine whether these CBMs can be useful for biotechnological applications, such as biomass hydrolysis. A variety of biophysical techniques were used to study the interaction of the CBMs with various substrates and the data obtained indicate that CBEL's CBM1-1 exhibits much greater cellulose binding ability than CBM1-2. Engineering of the family 11 xylanase from Talaromyces versatilis (TvXynB), an enzyme that naturally bears a fungal family 1 CBM, has produced two variants. The first one lacks its native CBM, whereas the second contains the CBEL CBM1-1. The study of these enzymes has revealed that wild type TvXynB binds to cellulose, via its CBM1, and that the substitution of its CBM by oomycetal CBM1-1 does not affect its activity on wheat straw. However, intriguingly the addition of CBEL during the hydrolysis of wheat straw actually potentiates the action of TvXynB variant lacking a CBM1. This suggests that the potentiating effect of CBM1-1 might not require the formation of a covalent linkage to TvXynB. PMID:26390127

  18. RETENTION AND PAPER-STRENGTH CHARACTERISTICS OF ANIONIC POLYACRYLAMIDES CONJUGATED WITH CARBOHYDRATE-BINDING MODULES

    Directory of Open Access Journals (Sweden)

    Shingo Yokota

    2009-02-01

    Full Text Available The retention behavior of polymers having the specific affinities of glyco-hydrolases for pulp fibers was investigated with regard to paper-strength enhancement in contaminated papermaking systems. Carbohydrate-binding modules (CBMs of cellulases derived from Trichoderma viride and T. reesei, and of xylanase from Thermomyces lanuginosus, were obtained by site-directed digestion with papain, then introduced into anionic polyacrylamide (A-PAM via a peptide condensation reaction. Three types of CBM-conjugated A-PAMs (CBM-A-PAMs displayed different retention behavior, depending on the kind of pulp substrates, i.e. hardwood and softwood fibers. The CBM-A-PAM from T. viride demonstrated good additive retention for hardwood pulp fibers, resulting in high tensile strength of paper sheets, even under contaminated conditions in the presence of Ca2+ ions and ligninsulfonate. The CBM-A-PAM from T. reesei showed better performance for softwood than for hardwood sheets. The xylanase CBM-A-PAM was preferentially retained on hardwood fibers in which hemicelluloses might be present. Such an additive retention system, with inherent affinities of enzymes for pulp fibers, is expected to expand the application range of CBM-polymers in practical wet-end processes.

  19. The effect of the carbohydrate binding module on substrate degradation by the human chitotriosidase.

    Science.gov (United States)

    Stockinger, Linn Wilhelmsen; Eide, Kristine Bistrup; Dybvik, Anette Israelsen; Sletta, Håvard; Vårum, Kjell Morten; Eijsink, Vincent G H; Tøndervik, Anne; Sørlie, Morten

    2015-10-01

    Human chitotriosidase (HCHT) is one of two active glycoside hydrolase family 18 chitinases produced by humans. The enzyme is associated with several diseases and is thought to play a role in the anti-parasite responses of the innate immune system. HCHT occurs in two isoforms, one 50 kDa (HCHT50) and one 39 kDa variant (HCHT39). Common for both isoforms is a catalytic domain with the (β/α)8 TIM barrel fold. HCHT50 has an additional linker-region, followed by a C-terminal carbohydrate-binding module (CBM) classified as CBM family 14 in the CAZy database. To gain further insight into enzyme functionality and especially the effect of the CBM, we expressed both isoforms and compared their catalytic properties on chitin and high molecular weight chitosans. HCHT50 degrades chitin faster than HCHT39 and much more efficiently. Interestingly, both HCHT50 and HCHT39 show biphasic kinetics on chitosan degradation where HCHT50 is faster initially and HCHT39 is faster in the second phase. Moreover, HCHT50 produces distinctly different oligomer distributions than HCHT39. This is likely due to increased transglycosylation activity for HCHT50 due the CBM extending the positive subsites binding surface and therefore promoting transglycosylation. Finally, studies with both chitin and chitosan showed that both isoforms have a similarly low degree of processivity. Combining functional and structural features of the two isoforms, it seems that HCHT combines features of exo-processive and endo-nonprocessive chitinases with the somewhat unusual CBM14 to reach a high degree of efficiency, in line with its alleged physiological task of being a "complete" chitinolytic machinery by itself. PMID:26116146

  20. Improving the affinity of fibroblasts for bacterial cellulose using carbohydrate-binding modules fused to RGD

    OpenAIRE

    Andrade, Fábia K; Moreira, Susana Margarida Gomes; Domingues, Lucília; Gama, F. M.

    2010-01-01

    The attachment of cells to biomedical materials can be improved by using adhesion sequences, such as Arg-Gly-Asp (RGD), found in several extracellular matrix proteins. In this work, bifunctional recombinant proteins, with a Cellulose-Binding Module (CBM), from the cellulosome of Clostridium thermocellum and cell binding sequences - RGD, GRGDY - were cloned and expressed in E.coli. These RGD-containing cellulose binding proteins were purified and used to coat bacterial cellulose fibres. Its ef...

  1. Visualization of Nanofibrillar Cellulose in Biological Tissues Using a Biotinylated Carbohydrate Binding Module of β-1,4-Glycanase.

    Science.gov (United States)

    Knudsen, Kristina Bram; Kofoed, Christian; Espersen, Roall; Højgaard, Casper; Winther, Jakob Rahr; Willemoës, Martin; Wedin, Irene; Nuopponen, Markus; Vilske, Sara; Aimonen, Kukka; Weydahl, Ingrid Elise Konow; Alenius, Harri; Norppa, Hannu; Wolff, Henrik; Wallin, Håkan; Vogel, Ulla

    2015-08-17

    Nanofibrillar cellulose is a very promising innovation with diverse potential applications including high quality paper, coatings, and drug delivery carriers. The production of nanofibrillar cellulose on an industrial scale may lead to increased exposure to nanofibrillar cellulose both in the working environment and the general environment. Assessment of the potential health effects following exposure to nanofibrillar cellulose is therefore required. However, as nanofibrillar cellulose primarily consists of glucose moieties, detection of nanofibrillar cellulose in biological tissues is difficult. We have developed a simple and robust method for specific and sensitive detection of cellulose fibers, including nanofibrillar cellulose, in biological tissue, using a biotinylated carbohydrate binding module (CBM) of β-1,4-glycanase (EXG:CBM) from the bacterium Cellulomonas fimi. EXG:CBM was expressed in Eschericia coli, purified, and biotinylated. EXG:CBM was shown to bind quantitatively to five different cellulose fibers including four different nanofibrillar celluloses. Biotinylated EXG:CBM was used to visualize cellulose fibers by either fluorescence- or horse radish peroxidase (HRP)-tagged avidin labeling. The HRP-EXG:CBM complex was used to visualize cellulose fibers in both cryopreserved and paraffin embedded lung tissue from mice dosed by pharyngeal aspiration with 10-200 μg/mouse. Detection was shown to be highly specific, and the assay appeared very robust. The present method represents a novel concept for the design of simple, robust, and highly specific detection methods for the detection of nanomaterials, which are otherwise difficult to visualize. PMID:26208679

  2. Purification and simultaneous immobilization of Arabidopsis thaliana hydroxynitrile lyase using a family 2 carbohydrate-binding module.

    Science.gov (United States)

    Kopka, Benita; Diener, Martin; Wirtz, Astrid; Pohl, Martina; Jaeger, Karl-Erich; Krauss, Ulrich

    2015-05-01

    Tedious, time- and labor-intensive protein purification and immobilization procedures still represent a major bottleneck limiting the widespread application of enzymes in synthetic chemistry and industry. We here exemplify a simple strategy for the direct site-specific immobilization of proteins from crude cell extracts by fusion of a family 2 carbohydrate-binding module (CBM) derived from the exoglucanase/xylanase Cex from Cellulomonas fimi to a target enzyme. By employing a tripartite fusion protein consisting of the CBM, a flavin-based fluorescent protein (FbFP), and the Arabidopsis thaliana hydroxynitrile lyase (AtHNL), binding to cellulosic carrier materials can easily be monitored via FbFP fluorescence. Adsorption properties (kinetics and quantities) were studied for commercially available Avicel PH-101 and regenerated amorphous cellulose (RAC) derived from Avicel. The resulting immobilizates showed similar activities as the wild-type enzyme but displayed increased stability in the weakly acidic pH range. Finally, Avicel, RAC and cellulose acetate (CA) preparations were used for the synthesis of (R)-mandelonitrile in micro-aqueous methyl tert-butyl ether (MTBE) demonstrating the applicability and stability of the immobilizates for biotransformations in both aqueous and organic reaction systems. PMID:25755120

  3. Structural Insights into the Affinity of Cel7A Carbohydrate-binding Module for Lignin*

    OpenAIRE

    Strobel, Kathryn L.; Pfeiffer, Katherine A.; Blanch, Harvey W.; Clark, Douglas S.

    2015-01-01

    The high cost of hydrolytic enzymes impedes the commercial production of lignocellulosic biofuels. High enzyme loadings are required in part due to their non-productive adsorption to lignin, a major component of biomass. Despite numerous studies documenting cellulase adsorption to lignin, few attempts have been made to engineer enzymes to reduce lignin binding. In this work, we used alanine-scanning mutagenesis to elucidate the structural basis for the lignin affinity of Trichoderma reesei Ce...

  4. The C-terminal domain of the Arabinosyltransferase Mycobacterium tuberculosis EmbC is a lectin-like carbohydrate binding module.

    Directory of Open Access Journals (Sweden)

    Luke J Alderwick

    2011-02-01

    Full Text Available The D-arabinan-containing polymers arabinogalactan (AG and lipoarabinomannan (LAM are essential components of the unique cell envelope of the pathogen Mycobacterium tuberculosis. Biosynthesis of AG and LAM involves a series of membrane-embedded arabinofuranosyl (Araf transferases whose structures are largely uncharacterised, despite the fact that several of them are pharmacological targets of ethambutol, a frontline drug in tuberculosis therapy. Herein, we present the crystal structure of the C-terminal hydrophilic domain of the ethambutol-sensitive Araf transferase M. tuberculosis EmbC, which is essential for LAM synthesis. The structure of the C-terminal domain of EmbC (EmbC(CT encompasses two sub-domains of different folds, of which subdomain II shows distinct similarity to lectin-like carbohydrate-binding modules (CBM. Co-crystallisation with a cell wall-derived di-arabinoside acceptor analogue and structural comparison with ligand-bound CBMs suggest that EmbC(CT contains two separate carbohydrate binding sites, associated with subdomains I and II, respectively. Single-residue substitution of conserved tryptophan residues (Trp868, Trp985 at these respective sites inhibited EmbC-catalysed extension of LAM. The same substitutions differentially abrogated binding of di- and penta-arabinofuranoside acceptor analogues to EmbC(CT, linking the loss of activity to compromised acceptor substrate binding, indicating the presence of two separate carbohydrate binding sites, and demonstrating that subdomain II indeed functions as a carbohydrate-binding module. This work provides the first step towards unravelling the structure and function of a GT-C-type glycosyltransferase that is essential in M. tuberculosis.

  5. Carbohydrate-binding module 74 is a novel starch-binding domain associated with large and multidomain α-amylase enzymes.

    Science.gov (United States)

    Valk, Vincent; Lammerts van Bueren, Alicia; van der Kaaij, Rachel M; Dijkhuizen, Lubbert

    2016-06-01

    Microbacterium aurum B8.A is a bacterium that originates from a potato starch-processing plant and employs a GH13 α-amylase (MaAmyA) enzyme that forms pores in potato starch granules. MaAmyA is a large and multi-modular protein that contains a novel domain at its C terminus (Domain 2). Deletion of Domain 2 from MaAmyA did not affect its ability to degrade starch granules but resulted in a strong reduction in granular pore size. Here, we separately expressed and purified this Domain 2 in Escherichia coli and determined its likely function in starch pore formation. Domain 2 independently binds amylose, amylopectin, and granular starch but does not have any detectable catalytic (hydrolytic or oxidizing) activity on α-glucan substrates. Therefore, we propose that this novel starch-binding domain is a new carbohydrate-binding module (CBM), the first representative of family CBM74 that assists MaAmyA in efficient pore formation in starch granules. Protein sequence-based BLAST searches revealed that CBM74 occurs widespread, but in bacteria only, and is often associated with large and multi-domain α-amylases containing family CBM25 or CBM26 domains. CBM74 may specifically function in binding to granular starches to enhance the capability of α-amylase enzymes to degrade resistant starches (RSs). Interestingly, the majority of family CBM74 representatives are found in α-amylases originating from human gut-associated Bifidobacteria, where they may assist in resistant starch degradation. The CBM74 domain thus may have a strong impact on the efficiency of RS digestion in the mammalian gastrointestinal tract. PMID:27101946

  6. A mannanase, ManA, of the polycentric anaerobic fungus Orpinomyces sp. strain PC-2 has carbohydrate binding and docking modules.

    Science.gov (United States)

    Ximenes, Eduardo A; Chen, Huizhong; Kataeva, Irina A; Cotta, Michael A; Felix, Carlos R; Ljungdahl, Lars G; Li, Xin-Liang

    2005-07-01

    The anaerobic fungus Orpinomyces sp. strain PC-2 produces a broad spectrum of glycoside hydrolases, most of which are components of a high molecular mass cellulosomal complex. Here we report about a cDNA (manA) having 1924 bp isolated from the fungus and found to encode a polypeptide of 579 amino acid residues. Analysis of the deduced sequence revealed that it had a mannanase catalytic module, a family 1 carbohydrate-binding module, and a noncatalytic docking module. The catalytic module was homologous to aerobic fungal mannanases belonging to family 5 glycoside hydrolases, but unrelated to the previously isolated mannanases (family 26) of the anaerobic fungus Piromyces. No mannanase activity could be detected in Escherichia coli harboring a manA-containing plasmid. The manA was expressed in Saccharomyces cerevisiae and ManA was secreted into the culture medium in multiple forms. The purified extracellular heterologous mannanase hydrolyzed several types of mannan but lacked activity against cellulose, chitin, or beta-glucan. The enzyme had high specific activity toward locust bean mannan and an extremely broad pH profile. It was stable for several hours at 50 degrees C, but was rapidly inactivated at 60 degrees C. The carbohydrate-binding module of the Man A produced separately in E. coli bound preferably to insoluble lignocellulosic substrates, suggesting that it might play an important role in the complex enzyme system of the fungus for lignocellulose degradation. PMID:16175204

  7. Mechanism of chitosan recognition by CBM32 carbohydrate-binding modules from a Paenibacillus sp. IK-5 chitosanase/glucanase.

    Science.gov (United States)

    Shinya, Shoko; Nishimura, Shigenori; Kitaoku, Yoshihito; Numata, Tomoyuki; Kimoto, Hisashi; Kusaoke, Hideo; Ohnuma, Takayuki; Fukamizo, Tamo

    2016-04-15

    An antifungal chitosanase/glucanase isolated from the soil bacteriumPaenibacillussp. IK-5 has two CBM32 chitosan-binding modules (DD1 and DD2) linked in tandem at the C-terminus. In order to obtain insights into the mechanism of chitosan recognition, the structures of DD1 and DD2 were solved by NMR spectroscopy and crystallography. DD1 and DD2 both adopted a β-sandwich fold with several loops in solution as well as in crystals. On the basis of chemical shift perturbations in(1)H-(15)N-HSQC resonances, the chitosan tetramer (GlcN)4was found to bind to the loop region extruded from the core β-sandwich of DD1 and DD2. The binding site defined by NMR in solution was consistent with the crystal structure of DD2 in complex with (GlcN)3, in which the bound (GlcN)3stood upright on its non-reducing end at the binding site. Glu(14)of DD2 appeared to make an electrostatic interaction with the amino group of the non-reducing end GlcN, and Arg(31), Tyr(36)and Glu(61)formed several hydrogen bonds predominantly with the non-reducing end GlcN. No interaction was detected with the reducing end GlcN. Since Tyr(36)of DD2 is replaced by glutamic acid in DD1, the mutation of Tyr(36)to glutamic acid was conducted in DD2 (DD2-Y36E), and the reverse mutation was conducted in DD1 (DD1-E36Y). Ligand-binding experiments using the mutant proteins revealed that this substitution of the 36th amino acid differentiates the binding properties of DD1 and DD2, probably enhancing total affinity of the chitosanase/glucanase toward the fungal cell wall. PMID:26936968

  8. Cloning, purification, crystallization and preliminary X-ray studies of a carbohydrate-binding module from family 64 (StX).

    Science.gov (United States)

    Campos, Bruna Medeia; Liberato, Marcelo Vizona; Polikarpov, Igor; Zeri, Ana Carolina de Mattos; Squina, Fabio Marcio

    2015-03-01

    In recent years, biofuels have attracted great interest as a source of renewable energy owing to the growing global demand for energy, the dependence on fossil fuels, limited natural resources and environmental pollution. However, the cost-effective production of biofuels from plant biomass is still a challenge. In this context, the study of carbohydrate-binding modules (CBMs), which are involved in guiding the catalytic domains of glycoside hydrolases to polysaccharides, is crucial for enzyme development. Aiming at the structural and functional characterization of novel CBMs involved in plant polysaccharide deconstruction, an analysis of the CAZy database was performed and CBM family 64 was chosen owing to its capacity to bind with high specificity to microcrystalline cellulose and to the fact that is found in thermophilic microorganisms. In this communication, the CBM-encoding module named StX was expressed, purified and crystallized, and X-ray diffraction data were collected from native and derivatized crystals to 1.8 and 2.0 Å resolution, respectively. The crystals, which were obtained by the hanging-drop vapour-diffusion method, belonged to space group P3121, with unit-cell parameters a = b = 43.42, c = 100.96 Å for the native form. The phases were found using the single-wavelength anomalous diffraction method. PMID:25760706

  9. Cloning, purification, crystallization and preliminary X-ray studies of a carbohydrate-binding module (CBM_E1) derived from sugarcane soil metagenome

    Science.gov (United States)

    Campos, Bruna Medeia; Alvarez, Thabata Maria; Liberato, Marcelo Vizona; Polikarpov, Igor; Gilbert, Harry J.; Zeri, Ana Carolina de Mattos; Squina, Fabio Marcio

    2014-01-01

    In recent years, owing to the growing global demand for energy, dependence on fossil fuels, limited natural resources and environmental pollution, biofuels have attracted great interest as a source of renewable energy. However, the production of biofuels from plant biomass is still considered to be an expensive technology. In this context, the study of carbohydrate-binding modules (CBMs), which are involved in guiding the catalytic domains of glycoside hydrolases for polysaccharide degradation, is attracting growing attention. Aiming at the identification of new CBMs, a sugarcane soil metagenomic library was analyzed and an uncharacterized CBM (CBM_E1) was identified. In this study, CBM_E1 was expressed, purified and crystallized. X-ray diffraction data were collected to 1.95 Å resolution. The crystals, which were obtained by the sitting-drop vapour-diffusion method, belonged to space group I23, with unit-cell parameters a = b = c = 88.07 Å. PMID:25195898

  10. Influence of a family 29 carbohydrate binding module on the recombinant production of galactose oxidase in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Filip Mollerup

    2016-03-01

    Full Text Available Herein, we report the extracellular expression of carbohydrate active fusion enzymes in Pichia pastoris. Particularly, CBM29-1-2 from Piromyces equi was separately fused to the N- and C-terminus of galactose 6-oxidase (GaO, D-galactose: oxygen 6-oxidoreductase, EC 1.1.13.9, CAZy family AA5 from Fusarium graminearum, generating CBM29-GaO and GaO-CBM29, respectively. P. pastoris was transformed with expression vectors encoding GaO, CBM29-GaO and GaO-CBM29, and the fusion proteins were expressed in both shake-flask and 2L bioreactor systems. Volumetric production yields and specific GaO activity increased when expression was performed in a bioreactor system compared to shake-flask cultivation. This was observed for both CBM29-GaO and GaO-CBM29, and is consistent with previous reports of GaO expression in P. pastoris (Spadiut et al., 2010; Anasontzis et al., 2014 [1,2]. Fusion of CBM29 to the C-terminal of GaO (GaO-CBM29 resulted in a stable uniform protein at the expected calculated size (107 kDa when analyzed with SDS-PAGE. By comparison, the expression of the N-terminal fusion protein (CBM29-GaO was low, and two truncated versions of CBM29-GaO were coexpressed with the full-sized protein. Despite differences in protein yield, the specific GaO activity on galactose was not affected by CBM29 fusion to either the N- or C-terminus of the enzyme. A detailed description of the catalytic and physiochemical properties of CBM29-GaO and GaO-CBM29 is available in the parent publication (Mollerup et al., 2015 [3].

  11. Extra carbohydrate binding module contributes to the processivity and catalytic activity of a non-modular hydrolase family 5 endoglucanase from Fomitiporia mediterranea MF3/22.

    Science.gov (United States)

    Pan, Ronghua; Hu, Yimei; Long, Liangkun; Wang, Jing; Ding, Shaojun

    2016-09-01

    FmEG from Fomitiporia mediterranea is a non-modular endoglucanase composed of a 24-amino acids extension and 13-amino acids linker-like peptide at the N-terminus and a 312-amino acids GH5 catalytic domain (CD) at the C-terminus. In this study, six FmEG derivatives with deletion of N-terminal fragments or fusion with an extra family 1 carbohydrate-binding module (CBM1) was constructed in order to evaluate the contribution of CBM1 to FmEG processivity and catalytic activity. FmEG showed a weak processivity and released cellobiose (G2) and cellotriose (G3) as main end products, and cellotriose (G4) as minor end product from filter paper (FP), but more amount of G4 was released from regenerated amorphous cellulose (RAC). All derivatives had similar activity on carboxymethylcellulose (CMC) with the same optimal pH (7.0) and temperature (50°C). However, fusing an extra CBM1 to FmEG△24 or FmEG△37 with flexible peptide significantly improved its processivity and catalytic activity to FP and RAC. Overall, 1.79- and 1.84-fold increases in the soluble/insoluble product ratio on FP, and 1.38- and 1.39-fold increases on RAC, compared to FmEG△24, were recorded for CBM1-FmEG△24 and CBM1-linker-FmEG△24, respectively. Meanwhile, they displayed 2.64- and 2.67-fold more activity on RAC, and 1.68- and 1.77-fold on FP, respectively. Similar improvement was also obtained for CBM1-linker-FmEG△37 as compared with FmEG△37. Interestingly, fusion of an extra CBM1 with FmEG also caused an alteration of cleavage pattern on insoluble celluloses. Our results suggest that such improvements in processivity and catalytic activity may arise from CBM1 binding affinity. The N-terminal 24- or 37-amino acids may serve as linker for sufficient spatial separation of the two domains required for processivity and catalytic activity. In addition, deletion of the N-terminal 24- or 37-amino acids led to significant reduction in thermostability but not the enzymatic activity. PMID:27444328

  12. Roles of multiple surface sites, long substrate binding clefts, and carbohydrate binding modules in the action of amylolytic enzymes on polysaccharide substrates

    DEFF Research Database (Denmark)

    Nielsen, Morten Munch; Seo, E.S.; Dilokpimol, Adiphol;

    2008-01-01

    Germinating barley seeds contain multiple forms of alpha-amylase, which are subject to both differential gene expression and differential degradation as part of the repertoire of starch-degrading enzymes. The alpha-amylases are endo-acting and possess a long substrate binding cleft with a charact...

  13. Analysis of surface binding sites (SBSs) in carbohydrate active enzymes with focus on glycoside hydrolase families 13 and 77

    DEFF Research Database (Denmark)

    Cockburn, Darrell; Wilkens, Casper; Ruzanski, Christian;

    2014-01-01

    Surface binding sites (SBSs) interact with carbohydrates outside of the enzyme active site. They are frequently situated on catalytic domains and are distinct from carbohydrate binding modules (CBMs). SBSs are found in a variety of enzymes and often seen in crystal structures. Notably about half ...

  14. Deciphering Ligand Specificity of a Clostridium thermocellum Family 35 Carbohydrate Binding Module (CtCBM35) for Gluco- and Galacto- Substituted Mannans and Its Calcium Induced Stability

    OpenAIRE

    Ghosh, Arabinda; Luís, Ana Sofia; Brás, Joana L. A.; Pathaw, Neeta; Nikhil K. Chrungoo; Fontes, Carlos M. G. A.; Goyal, Arun

    2013-01-01

    This study investigated the role of CBM35 from Clostridium thermocellum (CtCBM35) in polysaccharide recognition. CtCBM35 was cloned into pET28a (+) vector with an engineered His6 tag and expressed in Escherichia coli BL21 (DE3) cells. A homogenous 15 kDa protein was purified by immobilized metal ion chromatography (IMAC). Ligand binding analysis of CtCBM35 was carried out by affinity electrophoresis using various soluble ligands. CtCBM35 showed a manno-configured ligand specific binding displ...

  15. The Multiple Carbohydrate Binding Specificities of Helicobacter pylori

    Science.gov (United States)

    Teneberg, Susann

    Persistent colonization of the human stomach by Helicobacter pylori is a risk factor for the development of peptic ulcer disease and gastric cancer. Adhesion of microbes to the target tissue is an important determinant for successful initiation, establishment and maintenance of infection, and a variety of different candidate carbohydrate receptors for H. pylori have been identified. Here the different the binding specifities, and their potential role in adhesion to human gastric epithelium are described. Finally, recent findings on the roles of sialic acid binding SabA adhesin in interactions with human neutrophils and erythrocytes are discussed.

  16. Comparison of docking methods for carbohydrate binding in calcium-dependent lectins and prediction of the carbohydrate binding mode to sea cucumber lectin CEL-III

    OpenAIRE

    Nurisso, Alessandra; Kozmon, Stanislav; Imberty, Anne

    2008-01-01

    Abstract Lectins display a variety of strategies for specific recognition of carbohydrates. In several lectin families from different origin, one or two calcium ions are involved in the carbohydrate binding site with direct coordination of the sugar hydroxyl groups. Our work implied a molecular docking study involving a set of bacterial and animal calcium-dependant lectins in order to compare the ability of three docking programs to reproduce key carbohydrate-metal interactions. Fl...

  17. Carbohydrates

    Science.gov (United States)

    ... girls Eating healthy at restaurants Special food issues Vegetarian eating Eating for strong bones Quiz: Food Facts Links to more information girlshealth glossary girlshealth.gov home http://www.girlshealth.gov/ Home Nutrition Nutrition basics Carbohydrates Carbohydrates Carbohydrates (say: kar-boh- ...

  18. Multiplicity of carbohydrate-binding sites in -prism fold lectins: occurrence and possible evolutionary implications

    Indian Academy of Sciences (India)

    Alok Sharma; Divya Chandran; Desh D Singh; M Vijayan

    2007-09-01

    The -prism II fold lectins of known structure, all from monocots, invariably have three carbohydrate-binding sites in each subunit/domain. Until recently, -prism I fold lectins of known structure were all from dicots and they exhibited one carbohydrate-binding site per subunit/domain. However, the recently determined structure of the -prism fold I lectin from banana, a monocot, has two very similar carbohydrate-binding sites. This prompted a detailed analysis of all the sequences appropriate for two-lectin folds and which carry one or more relevant carbohydrate-binding motifs. The very recent observation of a -prism I fold lectin, griffithsin, with three binding sites in each domain further confirmed the need for such an analysis. The analysis demonstrates substantial diversity in the number of binding sites unrelated to the taxonomical position of the plant source. However, the number of binding sites and the symmetry within the sequence exhibit reasonable correlation. The distribution of the two families of -prism fold lectins among plants and the number of binding sites in them, appear to suggest that both of them arose through successive gene duplication, fusion and divergent evolution of the same primitive carbohydrate-binding motif involving a Greek key. Analysis with sequences in individual Greek keys as independent units lends further support to this conclusion. It would seem that the preponderance of three carbohydrate-binding sites per domain in monocot lectins, particularly those with the -prism II fold, is related to the role of plant lectins in defence.

  19. Hepatitis C Virus Resistance to Carbohydrate-Binding Agents.

    Directory of Open Access Journals (Sweden)

    Laure Izquierdo

    Full Text Available Carbohydrate binding agents (CBAs, including natural lectins, are more and more considered as broad-spectrum antivirals. These molecules are able to directly inhibit many viruses such as Human Immunodeficiency Virus (HIV, Hepatitis C Virus (HCV, Dengue Virus, Ebola Virus or Severe Acute Respiratory Syndrome Coronavirus through binding to envelope protein N-glycans. In the case of HIV, it has been shown that CBAs select for mutant viruses with N-glycosylation site deletions which are more sensitive to neutralizing antibodies. In this study we aimed at evaluating the HCV resistance to CBAs in vitro. HCV was cultivated in the presence of increasing Galanthus nivalis agglutinin (GNA, Cyanovirin-N, Concanavalin-A or Griffithsin concentrations, during more than eight weeks. At the end of lectin exposure, the genome of the isolated strains was sequenced and several potential resistance mutations in the E1E2 envelope glycoproteins were identified. The effect of these mutations on viral fitness as well as on sensitivity to inhibition by lectins, soluble CD81 or the 3/11 neutralizing antibody was assessed. Surprisingly, none of these mutations, alone or in combination, conferred resistance to CBAs. In contrast, we observed that some mutants were more sensitive to 3/11 or CD81-LEL inhibition. Additionally, several mutations were identified in the Core and the non-structural proteins. Thus, our results suggest that in contrast to HIV, HCV resistance to CBAs is not directly conferred by mutations in the envelope protein genes but could occur through an indirect mechanism involving mutations in other viral proteins. Further investigations are needed to completely elucidate the underlying mechanisms.

  20. Alteration of the carbohydrate-binding specificity of a C-type lectin CEL-I mutant with an EPN carbohydrate-binding motif.

    Science.gov (United States)

    Hatakeyama, Tomomitsu; Ishimine, Tomohiro; Baba, Tomohiro; Kimura, Masanari; Unno, Hideaki; Goda, Shuichiro

    2013-07-01

    CEL-I is a Gal/GalNAc-specific C-type lectin isolated from the sea cucumber Cucumaria echinata. This lectin is composed of two carbohydrate-recognition domains (CRDs) with the carbohydrate-recognition motif QPD (Gln-Pro- Asp), which is generally known to exist in galactose-specific C-type CRDs. In the present study, a mutant CEL-I with EPN (Glu-Pro-Asn) motif, which is thought to be responsible for the carbohydrate-recognition of mannose-specific Ctype CRDs, was produced in Escherichia coli, and its effects on the carbohydrate-binding specificity were examined using polyamidoamine dendrimer (PD) conjugated with carbohydrates. Although wild-type CEL-I effectively formed complexes with N-acetylgalactosamine (GalNAc)-PD but not with mannose-PD, the mutant CEL-I showed relatively weak but definite affinity for mannose-PD. These results indicated that the QPD and EPN motifs play a significant role in the carbohydrate-recognition mechanism of CEL-I, especially in the discrimination of galactose and mannose. Additional mutations in the recombinant CEL-I binding site may further increase its specificity for mannose, and should provide insights into designing novel carbohydrate-recognition proteins. PMID:23157284

  1. Architecture of the sugar binding sites in carbohydrate binding proteins--a computer modeling study.

    Science.gov (United States)

    Rao, V S; Lam, K; Qasba, P K

    1998-11-01

    Different sugars, Gal, GalNAc and Man were docked at the monosaccharide binding sites of Erythrina corallodenron (EcorL), peanut lectin (PNA), Lathyrus ochrus (LOLI), and pea lectin (PSL). To study the lectin-carbohydrate interactions, in the complexes, the hydroxymethyl group in Man and Gal favors, gg and gt conformations respectively, and is the dominant recognition determination. The monosaccharide binding site in lectins that are specific to Gal/GalNAc is wider due to the additional amino acid residues in loop D as compared to that in lectins specific to Man/Glc, and affects the hydrogen bonds of the sugar involving residues from loop D, but not its orientation in the binding site. The invariant amino acid residues Asp from loop A, and Asn and an aromatic residue (Phe or Tyr) in loop C provides the basic architecture to recognize the common features in C4 epimers. The invariant Gly in loop B together with one or two residues in the variable region of loop D/A holds the sugar tightly at both ends. Loss of any one of these hydrogen bonds leads to weak interaction. While the subtle variations in the sequence and conformation of peptide fragment that resulted due to the size and location of gaps present in amino acid sequence in the neighborhood of the sugar binding site of loop D/A seems to discriminate the binding of sugars which differ at C4 atom (galacto and gluco configurations). The variations at loop B are important in discriminating Gal and GalNAc binding. The present study thus provides a structural basis for the observed specificities of legume lectins which uses the same four invariant residues for binding. These studies also bring out the information that is important for the design/engineering of proteins with the desired carbohydrate specificity. PMID:9849627

  2. Carbohydrates

    Science.gov (United States)

    Abumrad NA, Nassi F, Marcus A. Digestion and absorption of dietary fat, carbohydrate, and protein. In: Feldman M, Friedman LS, Brandt LJ, eds. Sleisenger & Fordtran's Gastrointestinal and Liver Disease. 10th ed. ...

  3. A Structural Model for Binding of the Serine-Rich Repeat Adhesin GspB to Host Carbohydrate Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Pyburn, Tasia M.; Bensing, Barbara A.; Xiong, Yan Q.; Melancon, Bruce J.; Tomasiak, Thomas M.; Ward, Nicholas J.; Yankovskaya, Victoria; Oliver, Kevin M.; Cecchini, Gary; Sulikowski, Gary A.; Tyska, Matthew J.; Sullam, Paul M.; Iverson, T.M. (VA); (UCLA); (Vanderbilt); (UCSF)

    2014-10-02

    GspB is a serine-rich repeat (SRR) adhesin of Streptococcus gordonii that mediates binding of this organism to human platelets via its interaction with sialyl-T antigen on the receptor GPIb{alpha}. This interaction appears to be a major virulence determinant in the pathogenesis of infective endocarditis. To address the mechanism by which GspB recognizes its carbohydrate ligand, we determined the high-resolution x-ray crystal structure of the GspB binding region (GspB{sub BR}), both alone and in complex with a disaccharide precursor to sialyl-T antigen. Analysis of the GspB{sub BR} structure revealed that it is comprised of three independently folded subdomains or modules: (1) an Ig-fold resembling a CnaA domain from prokaryotic pathogens; (2) a second Ig-fold resembling the binding region of mammalian Siglecs; (3) a subdomain of unique fold. The disaccharide was found to bind in a pocket within the Siglec subdomain, but at a site distinct from that observed in mammalian Siglecs. Confirming the biological relevance of this binding pocket, we produced three isogenic variants of S. gordonii, each containing a single point mutation of a residue lining this binding pocket. These variants have reduced binding to carbohydrates of GPIb{alpha}. Further examination of purified GspB{sub BR}-R484E showed reduced binding to sialyl-T antigen while S. gordonii harboring this mutation did not efficiently bind platelets and showed a significant reduction in virulence, as measured by an animal model of endocarditis. Analysis of other SRR proteins revealed that the predicted binding regions of these adhesins also had a modular organization, with those known to bind carbohydrate receptors having modules homologous to the Siglec and Unique subdomains of GspBBR. This suggests that the binding specificity of the SRR family of adhesins is determined by the type and organization of discrete modules within the binding domains, which may affect the tropism of organisms for different tissues.

  4. Carbohydrates

    Science.gov (United States)

    ... is fine because they contain important vitamins and minerals. But your body rapidly digests the starch in white potatoes. This can raise your blood glucose level. Healthy carbohydrates include: Natural sugars in fruits, vegetables, milk, and milk products Dietary fiber Starches in whole- ...

  5. A role for carbohydrate recognition in mammalian sperm-egg binding

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Gary F., E-mail: clarkgf@health.missouri.edu

    2014-08-01

    Highlights: • Mammalian sperm-egg binding as a carbohydrate dependent species recognition event. • The role of carbohydrate recognition in human, mouse and pig sperm-egg binding. • Historical perspective and future directions for research focused on gamete binding. - Abstract: Mammalian fertilization usually requires three sequential cell–cell interactions: (i) initial binding of sperm to the specialized extracellular matrix coating the egg known as the zona pellucida (ZP); (ii) binding of sperm to the ZP via the inner acrosomal membrane that is exposed following the induction of acrosomal exocytosis; and (iii) adhesion of acrosome-reacted sperm to the plasma membrane of the egg cell, enabling subsequent fusion of these gametes. The focus of this review is on the initial binding of intact sperm to the mammalian ZP. Evidence collected over the past fifty years has confirmed that this interaction relies primarily on the recognition of carbohydrate sequences presented on the ZP by lectin-like egg binding proteins located on the plasma membrane of sperm. There is also evidence that the same carbohydrate sequences that mediate binding also function as ligands for lectins on lymphocytes that can inactivate immune responses, likely protecting the egg and the developing embryo up to the stage of blastocyst hatching. The literature related to initial sperm-ZP binding in the three major mammalian models (human, mouse and pig) is discussed. Historical perspectives and future directions for research related to this aspect of gamete adhesion are also presented.

  6. Species Differences in the Carbohydrate Binding Preferences of Surfactant Protein D

    DEFF Research Database (Denmark)

    Crouch, Erika C.; Smith, Kelly; McDonald, Barbara; Briner, David; Linders, Bruce; McDonald, Joseph; Holmskov, Uffe; Head, James; Hartshorn, Kevan

    2006-01-01

    Interactions of surfactant protein D (SP-D) with micro-organisms and organic antigens involve binding to the trimeric neck plus carbohydrate recognition domain (neck+CRD). In these studies, we compared the ligand binding of homologous human, rat, and mouse trimeric neck+CRD fusion proteins, each...

  7. The ion dependence of carbohydrate binding of CBM36: an MD and 3D-RISM study.

    Science.gov (United States)

    Tanimoto, Shoichi; Higashi, Masahiro; Yoshida, Norio; Nakano, Haruyuki

    2016-09-01

    The molecular recognition process of the carbohydrate-binding module family 36 (CBM36) was examined theoretically. The mechanism of xylan binding by CBM36 and the role of Ca(2+) were investigated by the combined use of molecular dynamics simulations and the 3D reference interaction site model method. The CBM36 showed affinity for xylan after Ca(2+) binding, but not after Mg(2+) binding. Free-energy component analysis of the xylan-binding process revealed that the major factor for xylan-binding affinity is the electrostatic interaction between the Ca(2+) and the hydroxyl oxygens of xylan. The van der Waals interaction between the hydrophobic side chain of CBM36 and the glucopyranose ring of xylan also contributes to the stabilization of the xylan-binding state. Dehydration on the formation of the complex has the opposite effect on these interactions. The affinity of CBM36 for xylan results from a balance of the interactions between the binding ion and solvents, hydrophilic residues around xylan, and the hydroxyl oxygens of xylan. When CBM binds Ca(2+), these interactions are well balanced; in contrast, when CBM binds Mg(2+), the dehydration penalty is excessively large. PMID:27366974

  8. Lactobacillus rhamnosus GG SpaC pilin subunit binds to the carbohydrate moieties of intestinal glycoconjugates.

    Science.gov (United States)

    Nishiyama, Keita; Ueno, Shintaro; Sugiyama, Makoto; Yamamoto, Yuji; Mukai, Takao

    2016-06-01

    Lactobacillus rhamnosus GG (LGG) is a well-established probiotic strain. The beneficial properties of this strain are partially dependent on its prolonged residence in the gastrointestinal tract, and are likely influenced by its adhesion to the intestinal mucosa. The pilin SpaC subunit, located within the Spa pili structure, is the most well studied LGG adhesion factor. However, the binding epitopes of SpaC remain largely unknown. The aim of this study was to evaluate the binding properties of SpaC to the carbohydrate moieties of intestinal glycoconjugates using a recombinant SpaC protein. In a competitive enzyme-linked immunosorbent assay, SpaC binding was markedly reduced by addition of purified mucin and the mucin oligosaccharide fraction. Histochemical staining revealed that the binding of SpaC was drastically reduced by periodic acid treatment. Moreover, in the surface plasmon resonance-based Biacore assay, SpaC bound strongly to the carbohydrate moieties containing β-galactoside at the non-reducing terminus of glycolipids. We here provide the first demonstration that SpaC binds to the oligosaccharide chains of mucins, and that the carbohydrate moieties containing β-galactoside at the non-reducing termini of glycoconjugates play a crucial role in this binding. Our results demonstrate the importance of carbohydrates of SpaC for mucus interactions. PMID:26434750

  9. Biophysical studies on calcium and carbohydrate binding to carbohydrate recognition domain of Gal/GalNAc lectin from Entamoeba histolytica: insights into host cell adhesion.

    Science.gov (United States)

    Yadav, Rupali; Verma, Kuldeep; Chandra, Mintu; Mukherjee, Madhumita; Datta, Sunando

    2016-09-01

    Entamoeba histolytica, an enteric parasite expresses a Gal/GalNAc-specific lectin that contributes to its virulence by establishing adhesion to host cell. In this study, carbohydrate recognition domain of Hgl (EhCRD) was purified and biophysical studies were conducted to understand the thermodynamic basis of its binding to carbohydrate and Ca(++) Here, we show that carbohydrate recognition domain (CRD) of the lectin binds to calcium through DPN motif. To decipher the role of calcium in carbohydrate binding and host cell adhesion, biophysical and cell-based studies were carried out. We demonstrated that the presence of the cation neither change the affinity of the lectin for carbohydrates nor alters its conformation. Mutation of the calcium-binding motif in EhCRD resulted in complete loss of ability to bind calcium but retained its affinity for carbohydrates. Purified EhCRD significantly diminished adhesion of the amebic trophozoites to Chinese Hamster Ovary (CHO) cells as well as triggered red blood cell agglutination. The calcium-binding defective mutant abrogated amebic adhesion to CHO cells similar to the wild-type protein, but it failed to agglutinate RBCs suggesting a differential role of the cation in these two processes. This study provides the first molecular description of the role of calcium in Gal/GalNAc mediated host cell adhesion. PMID:27008865

  10. Localizing Carbohydrate Binding Sites in Proteins Using Hydrogen/Deuterium Exchange Mass Spectrometry

    Science.gov (United States)

    Zhang, Jingjing; Kitova, Elena N.; Li, Jun; Eugenio, Luiz; Ng, Kenneth; Klassen, John S.

    2016-01-01

    The application of hydrogen/deuterium exchange mass spectrometry (HDX-MS) to localize ligand binding sites in carbohydrate-binding proteins is described. Proteins from three bacterial toxins, the B subunit homopentamers of Cholera toxin and Shiga toxin type 1 and a fragment of Clostridium difficile toxin A, and their interactions with native carbohydrate receptors, GM1 pentasaccharides (β-Gal-(1→3)-β-GalNAc-(1→4)[α-Neu5Ac-(2→3)]-β-Gal-(1→4)-Glc), Pk trisaccharide (α-Gal-(1→4)-β-Gal-(1→4)-Glc) and CD-grease (α-Gal-(1→3)-β-Gal-(1→4)-β-GlcNAcO(CH2)8CO2CH3), respectively, served as model systems for this study. Comparison of the differences in deuterium uptake for peptic peptides produced in the absence and presence of ligand revealed regions of the proteins that are protected against deuterium exchange upon ligand binding. Notably, protected regions generally coincide with the carbohydrate binding sites identified by X-ray crystallography. However, ligand binding can also result in increased deuterium exchange in other parts of the protein, presumably through allosteric effects. Overall, the results of this study suggest that HDX-MS can serve as a useful tool for localizing the ligand binding sites in carbohydrate-binding proteins. However, a detailed interpretation of the changes in deuterium exchange upon ligand binding can be challenging because of the presence of ligand-induced changes in protein structure and dynamics.

  11. Identification and characterization of sulfated carbohydrate-binding protein from Lactobacillus reuteri.

    Directory of Open Access Journals (Sweden)

    Keita Nishiyama

    Full Text Available We previously purified a putative sulfated-galactosylceramide (sulfatide-binding protein with a molecular weight of 47 kDa from the cell surface of Lactobacillus reuteri JCM1081. The aim of this study was to identify the 47-kDa protein, examine its binding to sulfated glycolipids and mucins, and evaluate its role in bacterial adhesion to mucosal surfaces. By cloning and sequencing analysis, the 47-kDa protein was identified as elongation factor-Tu (EF-Tu. Adhesion properties were examined using 6 × Histidine-fused EF-Tu (His6-EF-Tu. Surface plasmon resonance analysis demonstrated pH-dependent binding of His6-EF-Tu to sulfated glycolipids, but not to neutral or sialylated glycolipids, suggesting that a sulfated galactose residue was responsible for EF-Tu binding. Furthermore, His6-EF-Tu was found to bind to porcine gastric mucin (PGM by enzyme-linked immunosorbent assay. Binding was markedly reduced by sulfatase treatment of PGM and in the presence of acidic and desialylated oligosaccharide fractions containing sulfated carbohydrate residues prepared from PGM, demonstrating that sulfated carbohydrate moieties mediated binding. Histochemical staining revealed similar localization of His6-EF-Tu and high iron diamine staining in porcine mucosa. These results indicated that EF-Tu bound PGM via sulfated carbohydrate moieties. To characterize the contribution of EF-Tu to the interaction between bacterial cells and PGM, we tested whether anti-EF-Tu antibodies could inhibit the interaction. Binding of L. reuteri JCM1081 to PGM was significantly blocked in a concentration-dependent matter, demonstrating the involvement of EF-Tu in bacterial adhesion. In conclusion, the present results demonstrated, for the first time, that EF-Tu bound sulfated carbohydrate moieties of sulfated glycolipids and sulfomucin, thereby promoting adhesion of L. reuteri to mucosal surfaces.

  12. Structure of Dioclea virgata lectin: relations between carbohydrate binding site and nitric oxide production

    Energy Technology Data Exchange (ETDEWEB)

    Delatorre, P.; Gadelha, C.A.A.; Santi-Gadelha, T. [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil); Nobrega, R.B.; Rocha, B.A.M.; Nascimento, K.S.; Naganao, C.S.; Sampaio, A.H.; Cavada, B.S. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil); Pires, A.F.; Assreuy, A.M.S. [Universidade Estadual do Ceara (UECE), Fortaleza, CE (Brazil)

    2012-07-01

    Full text: Lectins are proteins/glycoproteins with at least one noncatalytic domain binding reversibly to specific monosaccharides or oligosaccharides. By binding to carbohydrate moieties on the cell surface, lectins participate in a range of cellular processes without changing the properties of the carbohydrates involved. The lectin of Dioclea virgata (DvirL), both native and complexed with X-man, was submitted to X-ray diffraction analysis and the crystal structure was compared to that of other Diocleinae lectins in order to better understand differences in biological proper- ties, especially with regard to the ability of lectins to induce nitric oxide (NO) production. The DvirL diffraction analysis revealed that both the native crystal and the X-Man-complexed form are orthorhombic and belong to space group I222. The cell parameters were: a=65.4 , b=86.6 and c=90.2 (native structure), and a=61.89 , b=87.67 and c=88.78 (X-Man-complexed structure). An association was observed between the volume of the carbohydrate recognition domain (CRD), the ability to induce NO production and the relative positions of Tyr12, Arg228 and Leu99. Thus, differences in biological activity induced by Diocleinae lectins are related to the configuration of amino acid residues in the carbohydrate binding site and to the structural conformation of subsequent regions capable of influencing site-ligand interactions. In conclusion, the ability of Diocleinae lectins to induce NO production depends on CRD configuration. (author)

  13. Farnesoid X Receptor Inhibits the Transcriptional Activity of Carbohydrate Response Element Binding Protein in Human Hepatocytes

    OpenAIRE

    Caron, Sandrine; Huaman Samanez, Carolina; Dehondt, Hélène; Ploton, Maheul; Briand, Olivier; Lien, Fleur; Dorchies, Emilie; Dumont, Julie; Postic, Catherine; Cariou, Bertrand; Lefebvre, Philippe; Staels, Bart

    2013-01-01

    The glucose-activated transcription factor carbohydrate response element binding protein (ChREBP) induces the expression of hepatic glycolytic and lipogenic genes. The farnesoid X receptor (FXR) is a nuclear bile acid receptor controlling bile acid, lipid, and glucose homeostasis. FXR negatively regulates hepatic glycolysis and lipogenesis in mouse liver. The aim of this study was to determine whether FXR regulates the transcriptional activity of ChREBP in human hepatocytes and to unravel the...

  14. Glycobiochemistry of ticks, vectors of infectious diseases: carbohydrate-binding proteins and glycans

    Czech Academy of Sciences Publication Activity Database

    Grubhoffer, Libor; Hajdušek, Ondřej; Vancová, Marie; Štěrba, Ján; Rudenko, Natalia

    2009-01-01

    Roč. 276, S1 (2009), s. 141-141. ISSN 1742-464X. [34th FEBS Congress: Life's Molecular Interactions. 04.07.2009-09.07.2009, Prague] R&D Projects: GA MŠk(CZ) LC06009 Institutional research plan: CEZ:AV0Z60220518 Keywords : Carbohydrate-binding molecules * Ixodes ricinus * knock-down Subject RIV: EB - Genetics ; Molecular Biology

  15. Stability and Sugar Recognition Ability of Ricin-Like Carbohydrate Binding Domains

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Jianzhuang [ORNL; Nellas, Ricky B [ORNL; Glover, Mary M [ORNL; Shen, Tongye [ORNL

    2011-01-01

    Lectins are a class of proteins known for their novel binding to saccharides. Understanding this sugar recognition process can be crucial in creating structure-based designs of proteins with various biological roles. We focus on the sugar binding of a particular lectin, ricin, which has two -trefoil carbohydrate-binding domains (CRDs) found in several plant protein toxins. The binding ability of possible sites of ricin-like CRD has been puzzling. The apo and various (multiple) ligand-bound forms of the sugar-binding domains of ricin were studied by molecular dynamics simulations. By evaluating structural stability, hydrogen bond dynamics, flexibility, and binding energy, we obtained a detailed picture of the sugar recognition of the ricin-like CRD. Unlike what was previously believed, we found that the binding abilities of the two known sites are not independent of each other. The binding ability of one site is positively affected by the other site. While the mean positions of different binding scenarios are not altered significantly, the flexibility of the binding pockets visibly decreases upon multiple ligand binding. This change in flexibility seems to be the origin of the binding cooperativity. All the hydrogen bonds that are strong in the monoligand state are also strong in the double-ligand complex, although the stability is much higher in the latter form due to cooperativity. These strong hydrogen bonds in a monoligand state are deemed to be the essential hydrogen bonds. Furthermore, by examining the structural correlation matrix, the two domains are structurally one entity. Galactose hydroxyl groups, OH4 and OH3, are the most critical parts in both site 1 and site 2 recognition.

  16. Affinity labeling of the carbohydrate binding site of the lectin discoidin I using a photoactivatable radioiodinated monosaccharide

    International Nuclear Information System (INIS)

    N-(4-Azidosalicyl) galactosamine (GalNASA), a photoactivatable, radioiodinatable analog of N-acetylgalactosamine (GalNAc), has been prepared and characterized. The authors have used this reagent for labeling of the carbohydrate binding site of discoidin I, an endogenous lectin produced by Dictyostelium discoideum. GalNASA behaved as a ligand for discoidin I, as judged by its ability to compete in an assay measuring the carbohydrate binding activity of discoidin I. In this assay, it exhibited a K/sub i,app/ of 800 μM, comparable to that of GalNAc. The K/sub i,app/ of GalNASA decreased to 40 μm upon prior photolysis with ultraviolet light. In contrast, N-(4-azidosalicyl) ethanolamine produced no inhibition of carbohydrate binding regardless of photolysis. Covalent labeling of discoidin I with 125I-GalNASA was entirely dependent upon ultraviolet light. A portion of labeling, representing 40-60% of the total, was sensitive to reagents which were known to inhibit carbohydrate binding by discoidin I, including GalNAc, asialofetuin, and ethyl-enediaminetetraacetic acid. The carbohydrate-sensitive fraction of discoidin I photolabeling with 125I-GalNASA exhibited a K/sub d/ of 15-40 μM, in agreement with the K/sub i,app/ of prephotolyzed GalNASA observed in the carbohydrate binding assay. Partial proteolytic digestion of photolabeled discoidin I revealed specific fragments whose labeling was completely blocked by GalNAc. This indicated that the location of carbohydrate-sensitive labeling within the structure of discoidin I was restricted. One particular tryptic fragment, Tr1, was examined in detail. These data suggest that Tr1 is derived from the carbohydrate binding site of discoidin I

  17. Carbohydrate binding activity in human spermatozoa: localization, specificity, and involvement in sperm-egg fusion.

    Science.gov (United States)

    Gabriele, A; D'Andrea, G; Cordeschi, G; Properzi, G; Giammatteo, M; De Stefano, C; Romano, R; Francavilla, F; Francavilla, S

    1998-06-01

    Sperm carbohydrate binding activity is involved in gamete recognition. We identified a human sperm protein extracted under reducing conditions, and with a molecular mass of 65 kDa on sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), and which binds D-mannose coupled to albumin (DMA) in presence of cations and a neutral pH. Epifluorescence microscopy showed that fluorescein-DMA binds to dead or permeabilized sperm heads. The DMA-binding activity of human sperm heads was highly specific for a polysaccharide structure containing charged sugar residues. After capacitation, or induction of the acrosome reaction using solubilized zonae pellucidae, fluorescein-DMA was bound respectively to 10.3% (+/- 3.5%) and to 37.6% (+/- 2.1%) of viable sperm heads. The sequential analysis of viable spermatozoa for fluorescein-DMA binding and for rhodamine-Pisum sativum agglutinin binding, showed that DMA-binding sites are present in viable acrosome-reacted spermatozoa. Three dimensional analysis of fluorescence and ultrastructural studies showed that DMA-binding sites are mostly restricted to the sub-acrosomal space of the equatorial segment. Incubation of spermatozoa and zona-free hamster eggs in the presence of DMA was associated with a dose-dependent significant reduction in the number of spermatozoa bound to the oolemma, compared with a control, and to a dose-dependent inhibition of oocyte penetration. This effect was highly specific for DMA, suggesting that DMA-binding sites in human spermatozoa are involved in sperm-egg fusion. PMID:9665337

  18. Screening for carbohydrate-binding proteins in extracts of Uruguayan plants

    Directory of Open Access Journals (Sweden)

    Plá A.

    2003-01-01

    Full Text Available The presence of carbohydrate-binding proteins, namely lectins, ß-galactosidases and amylases, was determined in aqueous extracts of plants collected in Uruguay. Twenty-six extracts were prepared from 15 Uruguayan plants belonging to 12 Phanerogam families. Among them, 18 extracts caused hemagglutination (HAG that was inhibited by mono- and disaccharides in 13 cases, indicating the presence of lectins. The other 8 extracts did not cause any HAG with the four systems used to detect HAG activity (rabbit and mouse red cells, trypsin-treated rabbit and mouse red cells. For the extracts prepared from Solanum commersonii, HAG activity and HAG inhibition were similar for those prepared from tubers, leaves and fruits, with the chitocompounds being responsible for all the inhibitions. Purification of the S. commersonii tuber lectin was carried out by affinity chromatography on asialofetuin-Sepharose, and SDS-PAGE under reducing conditions gave a single band of Mr of approximately 80 kDa. The monomer N-acetylglucosamine did not inhibit HAG induced by the purified lectin, but chitobiose inhibited HAG at 24 mM and chitotriose inhibited it at 1 mM. ß-Galactosidase activity was detected in leaves and stems of Cayaponia martiana, and in seeds from Datura ferox. Only traces of amylase activity were detected in some of the extracts analyzed. The present screening increases knowledge about the occurrence of carbohydrate-binding proteins present in regional plants.

  19. Flow cytometric analysis of lectin binding to in vitro-cultured Perkinsus marinus surface carbohydrates

    Science.gov (United States)

    Gauthier, J.D.; Jenkins, J.A.; La Peyre, Jerome F.

    2004-01-01

    Parasite surface glycoconjugates are frequently involved in cellular recognition and colonization of the host. This study reports on the identification of Perkinsus marinus surface carbohydrates by flow cytometric analyses of fluorescein isothiocyanate-conjugated lectin binding. Lectin-binding specificity was confirmed by sugar inhibition and Kolmogorov-Smirnov statistics. Clear, measurable fluorescence peaks were discriminated, and no parasite autofluorescence was observed. Parasites (GTLA-5 and Perkinsus-1 strains) harvested during log and stationary phases of growth in a protein-free medium reacted strongly with concanavalin A and wheat germ agglutinin, which bind to glucose-mannose and N-acetyl-D-glucosamine (GlcNAc) moieties, respectively. Both P. marinus strains bound with lower intensity to Maclura pomifera agglutinin, Bauhinia purpurea agglutinin, soybean agglutinin (N-acetyl-D-galactosamine-specific lectins), peanut agglutinin (PNA) (terminal galactose specific), and Griffonia simplicifolia II (GlcNAc specific). Only background fluorescence levels were detected with Ulex europaeus agglutinin I (L-fucose specific) and Limulus polyphemus agglutinin (sialic acid specific). The lectin-binding profiles were similar for the 2 strains except for a greater relative binding intensity of PNA for Perkinsus-1 and an overall greater lectin-binding capacity of Perkinsus-1 compared with GTLA-5. Growth stage comparisons revealed increased lectin-binding intensities during stationary phase compared with log phase of growth. This is the first report of the identification of surface glycoconjugates on a Perkinsus spp. by flow cytometry and the first to demonstrate that differential surface sugar expression is growth phase and strain dependent. ?? American Society of Parasitologists 2004.

  20. Conformational entropy changes upon lactose binding to the carbohydrate recognition domain of galectin-3

    International Nuclear Information System (INIS)

    The conformational entropy of proteins can make significant contributions to the free energy of ligand binding. NMR spin relaxation enables site-specific investigation of conformational entropy, via order parameters that parameterize local reorientational fluctuations of rank-2 tensors. Here we have probed the conformational entropy of lactose binding to the carbohydrate recognition domain of galectin-3 (Gal3), a protein that plays an important role in cell growth, cell differentiation, cell cycle regulation, and apoptosis, making it a potential target for therapeutic intervention in inflammation and cancer. We used 15N spin relaxation experiments and molecular dynamics simulations to monitor the backbone amides and secondary amines of the tryptophan and arginine side chains in the ligand-free and lactose-bound states of Gal3. Overall, we observe good agreement between the experimental and computed order parameters of the ligand-free and lactose-bound states. Thus, the 15N spin relaxation data indicate that the molecular dynamics simulations provide reliable information on the conformational entropy of the binding process. The molecular dynamics simulations reveal a correlation between the simulated order parameters and residue-specific backbone entropy, re-emphasizing that order parameters provide useful estimates of local conformational entropy. The present results show that the protein backbone exhibits an increase in conformational entropy upon binding lactose, without any accompanying structural changes

  1. Stability, subunit interactions and carbohydrate-binding of the seed lectin from Pterocarpus angolensis.

    Science.gov (United States)

    Echemendia-Blanco, Dannele; Van Driessche, Edilbert; Ncube, Ignatious; Read, John S; Beeckmans, Sonia

    2009-01-01

    From 1 kg of defatted Pterocarpus angolensis (mukwa tree) seed meal, 21.6 grams of an alpha,D-mannose/glucose-specific lectin can be purified on mannose-Sepharose. Relative affinities for several (oligo)saccharides and glycoproteins were studied by haemagglutination-inhibition. Gel filtration shows that the lectin exists as a dimer above pH 5 and as a monomer below pH 3.5. This is confirmed by studies on the release of lectin subunits that were adsorbed from solution to lectin monomers immobilized onto Eupergit-c. From the gel filtration patterns it is calculated that a residue with pK(a) of about 4.4 is involved in dimer dissociation. Titration of glutamic acids (E60, E209) is postulated to be involved. CD spectroscopy shows that the secondary structure of the lectin is unchanged between pH 1 and 12.5, and that the tertiary structure remains unchanged between pH 5 and 12. In the acid pH region, reversible spectral changes occur that may be due to the titration of one or more amino acids with a pK(a) value of 3.9-4.2, probably aspartic acid. These residues are implicated in sugar-binding but not in dimerization of the lectin. Only at pH 12.5, irreversible denaturation occurs. Mukwa lectin displays full carbohydrate-binding capacity between pH 4 and 12, as is concluded from ELLA (Enzyme Linked Lectin Assay) using ovalbumin and fetuin, and from binding of the same glycoproteins to immobilized lectin monomers. The lectin is rapidly and fully reversibly demetallized at pH 2.5 with 5 mM EDTA. The demetallized lectin is completely devoid of sugar-binding activity. Mukwa lectin is a very thermostable molecule (at least till 85 degrees C). However, addition of non-ionic detergents substantially lowers its thermostability. PMID:19508209

  2. Carbohydrate/glycan-binding specificity of legume lectins in respect to their proposed biological functions

    Directory of Open Access Journals (Sweden)

    Márcio Viana Ramos

    2000-01-01

    Full Text Available The lectins, proteins which specifically recognize carbohydrate moieties, have been extensively studied in many biochemical and structural aspects in order to establish the molecular basis of this non-catalytic event. On the other hand, their clinical and agricultural potentials have been growing fast. Although lectins, mainly those from legume plants, had been investigated for biological properties, studies about the physiological functions of lectins are scarce in literature. Therefore, despite the accumulated data on lectins (as proteins, the role played by these signalizing molecules is poorly discussed. In the light of our accumulated results on legume lectins, specially those obtained from plants belonging to the Diocleinae sub-tribe and available data in literature, we discuss here the main hypothesis of their functions according to their carbohydrate/glycan-binding specificity.As lectinas, proteinas que especificamente reconhecem estruturas que contém carboidratos, têm sido extensivamente estudadas em muitos aspectos bioquímicos e estruturais, objetivando estabelecer as bases moleculares deste evento não-catalítico. Por outro lado, os potenciais clínicos e agriculturais destas proteínas têm crescido rapidamente. Embora as lectinas, principalmente aquelas de legumes tenham sido bastante investigadas em suas propriedades biológicas, estudos sobre as funcões fisiológicas de lectinas são escassos na literatura. Além disto, a despeito da quantidade de dados acumulados sobre lectinas (como proteínas, o papel desempenhado por estas moléculas de sinalização é pobremente discutido. Valendo-se de nossos estudos sobre lectinas de leguminosas, principalmente da sub-tribo Diocleinae, e outros dados presentes na literatura, discutimos aqui, as principais hipóteses de suas funções com base na especificidade por carboidratos e glicanos complexos.

  3. The heparin-binding site in tetranectin is located in the N-terminal region and binding does not involve the carbohydrate recognition domain

    DEFF Research Database (Denmark)

    Lorentsen, R H; Graversen, Jonas Heilskov; Caterer, N R;

    2000-01-01

    element. Here we show that the heparin-binding site in tetranectin resides not in the carbohydrate recognition domain but within the N-terminal region, comprising the 16 amino acid residues encoded by exon 1. In particular, the lysine residues in the decapeptide segment KPKKIVNAKK (tetranectin residues 6...

  4. Improved binding affinity and interesting selectivities of aminopyrimidine-bearing carbohydrate receptors in comparison with their aminopyridine analogues.

    Science.gov (United States)

    Lippe, Jan; Seichter, Wilhelm; Mazik, Monika

    2015-12-28

    Due to the problems with the exact prediction of the binding properties of an artificial carbohydrate receptor, the identification of characteristic structural features, having the ability to influence the binding properties in a predictable way, is of high importance. The purpose of our investigation was to examine whether the previously observed higher affinity of 2-aminopyrimidine-bearing carbohydrate receptors in comparison with aminopyridine substituted analogues represents a general tendency of aminopyrimidine-bearing compounds. Systematic binding studies on new compounds consisting of 2-aminopyrimidine groups confirmed such a tendency and allowed the identification of interesting structure-activity relationships. Receptors having different symmetries showed systematic preferences for specific glycosides, which are remarkable for such simple receptor systems. Particularly suitable receptor architectures for the recognition of selected glycosides were identified and represent a valuable base for further developments in this field. PMID:26467387

  5. The Carbohydrate-linked Phosphorylcholine of the Parasitic Nematode Product ES-62 Modulates Complement Activation.

    Science.gov (United States)

    Ahmed, Umul Kulthum; Maller, N Claire; Iqbal, Asif J; Al-Riyami, Lamyaa; Harnett, William; Raynes, John G

    2016-05-27

    Parasitic nematodes manufacture various carbohydrate-linked phosphorylcholine (PCh)-containing molecules, including ES-62, a protein with an N-linked glycan terminally substituted with PCh. The PCh component is biologically important because it is required for immunomodulatory effects. We showed that most ES-62 was bound to a single protein, C-reactive protein (CRP), in normal human serum, displaying a calcium-dependent, high-avidity interaction and ability to form large complexes. Unexpectedly, CRP binding to ES-62 failed to efficiently activate complement as far as the C3 convertase stage in comparison with PCh-BSA and PCh-containing Streptococcus pneumoniae cell wall polysaccharide. C1q capture assays demonstrated an ES-62-CRP-C1q interaction in serum. The three ligands all activated C1 and generated C4b to similar extents. However, a C2a active site was not generated following ES-62 binding to CRP, demonstrating that C2 cleavage was far less efficient for ES-62-containing complexes. We proposed that failure of C2 cleavage was due to the flexible nature of carbohydrate-bound PCh and that reduced proximity of the C1 complex was the reason that C2 was poorly cleaved. This was confirmed using synthetic analogues that were similar to ES-62 only in respect of having a flexible PCh. Furthermore, ES-62 was shown to deplete early complement components, such as the rate-limiting C4, following CRP interaction and thereby inhibit classical pathway activation. Thus, flexible PCh-glycan represents a novel mechanism for subversion of complement activation. These data illustrate the importance of the rate-limiting C4/C2 stage of complement activation and reveal a new addition to the repertoire of ES-62 immunomodulatory mechanisms with possible therapeutic applications. PMID:27044740

  6. Targeting the Cryptococcus neoformans var. grubii Cell Wall Using Lectins: Study of the Carbohydrate-Binding Domain

    OpenAIRE

    Pamella de Brito Ximenes; Eduardo Isidoro Carneiro Beltrão; Danielle Patrícia Cerqueira Macêdo; Maria Daniela Silva Buonafina; Reginaldo Gonçalves de Lima-Neto; Rejane Pereira Neves

    2015-01-01

    Cryptococcus neoformans var. grubii is considered to be the major cause of cryptococcosis in immunosuppressed patients. Understanding cell wall glycoproteins using lectins is of medical interest and can contribute to specific therapy. The aim of this study was to evaluate the carbohydrates on the cell wall of Cryptococcus neoformans var. grubii clinical isolates, using a fluorescein isothiocyanate-lectin binding protocol. Thirty yeast strains stocked in the culture collection were cultivated ...

  7. In ovo carbohydrate supplementation modulates growth and immunity-related genes in broiler chickens.

    Science.gov (United States)

    Bhanja, S K; Goel, A; Pandey, N; Mehra, M; Majumdar, S; Mandal, A B

    2015-02-01

    A study was undertaken to investigate the role of in ovo administrated carbohydrates on the expression pattern of growth and immune-related genes. In ovo injections (n = 400) were carried out on the 14th day of incubation into the yolk sac/amnion of the broiler chicken embryos. Expression of growth-related genes: chicken growth hormone (cGH), insulin-like growth factor-I & II (IGF-I & II) and mucin were studied in hepatic and jejunum tissues of late-term embryo and early post-hatch chicks. Expression of candidate immune genes: Interleukin-2, 6, 10 and 12 (IL-2, IL-6, IL-10 and IL-12), Tumour necrosis factor-alpha (TNF-α) and Interferon gamma (IFN-γ) were studied in peripheral blood monocyte cells of in ovo-injected and control birds following antigenic stimulation with sheep RBC (SRBC) or mitogen concanavalin A (Con-A). Glucose injection significantly increased the expression of IGF-II gene during embryonic period and both cGH and IGF-II in early post-hatch period, while ribose-injected chicks had higher expression of IGF-II gene during embryonic stage. Enhanced mucin gene expression was also observed in fructose-injected chicks during embryonic age. Glucose-injected chicks had higher expression of IL-6 or IL-10, while those injected with fructose or ribose had higher expression of IL-2, IL-12 and IFN gamma. It is concluded that in ovo supplementation of carbohydrates might help in improving the growth of late-term embryos and chicks. In ovo glucose could modulate humoral-related immunity, while fructose or ribose might help in improving the cellular immunity in broiler chickens. PMID:24797673

  8. Monomerization of viral entry inhibitor griffithsin elucidates the relationship between multivalent binding to carbohydrates and anti-HIV activity

    Energy Technology Data Exchange (ETDEWEB)

    Moulaei, Tinoush; Shenoy, Shilpa R.; Giomarelli, Barbara; Thomas, Cheryl; McMahon, James B.; Dauter, Zbigniew; O' Keefe, Barry R.; Wlodawer, Alexander (NCI)

    2010-10-28

    Mutations were introduced to the domain-swapped homodimer of the antiviral lectin griffithsin (GRFT). Whereas several single and double mutants remained dimeric, insertion of either two or four amino acids at the dimerization interface resulted in a monomeric form of the protein (mGRFT). Monomeric character of the modified proteins was confirmed by sedimentation equilibrium ultracentrifugation and by their high resolution X-ray crystal structures, whereas their binding to carbohydrates was assessed by isothermal titration calorimetry. Cell-based antiviral activity assays utilizing different variants of mGRFT indicated that the monomeric form of the lectin had greatly reduced activity against HIV-1, suggesting that the antiviral activity of GRFT stems from crosslinking and aggregation of viral particles via multivalent interactions between GRFT and oligosaccharides present on HIV envelope glycoproteins. Atomic resolution crystal structure of a complex between mGRFT and nonamannoside revealed that a single mGRFT molecule binds to two different nonamannoside molecules through all three carbohydrate-binding sites present on the monomer.

  9. Carbohydrate microarrays

    DEFF Research Database (Denmark)

    Park, Sungjin; Gildersleeve, Jeffrey C; Blixt, Klas Ola; Shin, Injae

    2012-01-01

    In the last decade, carbohydrate microarrays have been core technologies for analyzing carbohydrate-mediated recognition events in a high-throughput fashion. A number of methods have been exploited for immobilizing glycans on the solid surface in a microarray format. This microarray-based technol......In the last decade, carbohydrate microarrays have been core technologies for analyzing carbohydrate-mediated recognition events in a high-throughput fashion. A number of methods have been exploited for immobilizing glycans on the solid surface in a microarray format. This microarray......-based technology has been widely employed for rapid analysis of the glycan binding properties of lectins and antibodies, the quantitative measurements of glycan-protein interactions, detection of cells and pathogens, identification of disease-related anti-glycan antibodies for diagnosis, and fast assessment of...

  10. Molecular cloning and expression of the carbohydrate response element binding protein gene and related genes involved in hepatic lipogenesis during post-hatch development of broiler chickens

    Science.gov (United States)

    Carbohydrate response element binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c) are known to be key regulators of glucose metabolism and lipid synthesis in mammals. Responding to changes in the level of glucose (ChREBP) and insulin (SREBP-1c), these two transcripti...

  11. Eggs modulate the inflammatory response to carbohydrate restricted diets in overweight men

    Directory of Open Access Journals (Sweden)

    Volek Jeff S

    2008-02-01

    Full Text Available Abstract Background Carbohydrate restricted diets (CRD consistently lower glucose and insulin levels and improve atherogenic dyslipidemia [decreasing triglycerides and increasing HDL cholesterol (HDL-C]. We have previously shown that male subjects following a CRD experienced significant increases in HDL-C only if they were consuming a higher intake of cholesterol provided by eggs compared to those individuals who were taking lower concentrations of dietary cholesterol. Here, as a follow up of our previous study, we examined the effects of eggs (a source of both dietary cholesterol and lutein on adiponectin, a marker of insulin sensitivity, and on inflammatory markers in the context of a CRD. Methods Twenty eight overweight men [body mass index (BMI 26–37 kg/m2] aged 40–70 y consumed an ad libitum CRD (% energy from CHO:fat:protein = 17:57:26 for 12 wk. Subjects were matched by age and BMI and randomly assigned to consume eggs (EGG, n = 15 (640 mg additional cholesterol/day provided by eggs or placebo (SUB, n = 13 (no additional dietary cholesterol. Fasting blood samples were drawn before and after the intervention to assess plasma lipids, insulin, adiponectin and markers of inflammation including C-reactive protein (CRP, tumor necrosis factor-alpha (TNF-α, interleukin-8 (IL-8, monocyte chemoattractant protein-1 (MCP-1, intercellular adhesion molecule-1 (ICAM-1, and vascular cell adhesion molecule-1(VCAM-1. Results Body weight, percent total body fat and trunk fat were reduced for all subjects after 12 wk (P Conclusion A CRD with daily intake of eggs decreased plasma CRP and increased plasma adiponectin compared to a CRD without eggs. These findings indicate that eggs make a significant contribution to the anti-inflammatory effects of CRD, possibly due to the presence of cholesterol, which increases HDL-C and to the antioxidant lutein which modulates certain inflammatory responses.

  12. Simultaneous Determination of Binding Constants for Multiple Carbohydrate Hosts in Complex Mixtures

    DEFF Research Database (Denmark)

    Meier, Sebastian; Beeren, Sophie

    2014-01-01

    We describe a simple method for the simultaneous determination of association constants for a guest binding to seven different hosts in a mixture of more than 20 different oligosaccharides. If the binding parameters are known for one component in the mixture, a single NMR titration suffices to...

  13. Thermodynamics of binding of divalent magnesium and manganese to uridine phosphates: implications for diabetes-related hypomagnesaemia and carbohydrate biocatalysis

    Directory of Open Access Journals (Sweden)

    Pohl Nicola L

    2008-07-01

    Full Text Available Abstract Background Although the necessity of divalent magnesium and manganese for full activity of sugar nucleotidyltransferases and glycosyltransferases is well known, the role of these metal cations in binding the substrates (uridine 5'-triphosphate, glucose-1-phosphate, N-acetylglucosamine-1-phosphate, and uridine 5'-diphosphate glucose, products (uridine 5'-diphosphate glucose, uridine 5'-diphosphate N-acetylglucosamine, pyrophosphate, and uridine 5'-diphosphate, and/or enzyme is not clearly understood. Results Using isothermal titration calorimetry we have studied the binding relationship between the divalent metals, magnesium and manganese, and uridine 5'-phosphates to determine the role these metals play in carbohydrate biosynthesis. It was determined from the isothermal titration calorimetry (ITC data that Mg+2 and Mn+2 are most tightly bound to PPi, Kb = 41,000 ± 2000 M-1 and 28,000 ± 50,000 M-1 respectively, and UTP, Kb = 14,300 ± 700 M-1 and 13,000 ± 2,000 M-1 respectively. Conclusion Our results indicate that the formal charge state of the phosphate containing substrates determine the binding strength. Divalent metal cations magnesium and manganese showed similar trends in binding to the sugar substrates. Enthalpy of binding values were all determined to be endothermic except for the PPi case. In addition, entropy of binding values were all found to be positive. From this data, we discuss the role of magnesium and manganese in both sugar nucleotidyltransferase and glycosyltransferase reactions, the differences in metal-bound substrates expected under normal physiological metal concentrations and those of hypomagnesaemia, and the implications for drug design.

  14. Conservation of carbohydrate binding interfaces: evidence of human HBGA selection in norovirus evolution.

    Directory of Open Access Journals (Sweden)

    Ming Tan

    Full Text Available BACKGROUND: Human noroviruses are the major viral pathogens of epidemic acute gastroenteritis. These genetically diverse viruses comprise two major genogroups (GI and GII and approximately 30 genotypes. Noroviruses recognize human histo-blood group antigens (HBGAs in a diverse, strain-specific manner. Recently the crystal structures of the HBGA-binding interfaces of the GI Norwalk virus and the GII VA387 have been determined, which allows us to examine the genetic and structural relationships of the HBGA-binding interfaces of noroviruses with variable HBGA-binding patterns. Our hypothesis is that, if HBGAs are the viral receptors necessary for norovirus infection and spread, their binding interfaces should be under a selection pressure in the evolution of noroviruses. METHODS AND FINDINGS: Structural comparison of the HBGA-binding interfaces of the two noroviruses has revealed shared features but significant differences in the location, sequence composition, and HBGA-binding modes. On the other hand, the primary sequences of the HBGA-binding interfaces are highly conserved among strains within each genogroup. The roles of critical residues within the binding sites have been verified by site-directed mutagenesis followed by functional analysis of strains with variable HBGA-binding patterns. CONCLUSIONS AND SIGNIFICANCE: Our data indicate that the human HBGAs are an important factor in norovirus evolution. Each of the two major genogroups represents an evolutionary lineage characterized by distinct genetic traits. Functional convergence of strains with the same HBGA targets subsequently resulted in acquisition of analogous HBGA binding interfaces in the two genogroups that share an overall structural similarity, despite their distinct locations and amino acid compositions. On the other hand, divergent evolution may have contributed to the observed overall differences between and within the two lineages. Thus, both divergent and convergent

  15. An efficient arabinoxylan-debranching α-L-arabinofuranosidase of family GH62 from Aspergillus nidulans contains a secondary carbohydrate binding site.

    Science.gov (United States)

    Wilkens, Casper; Andersen, Susan; Petersen, Bent O; Li, An; Busse-Wicher, Marta; Birch, Johnny; Cockburn, Darrell; Nakai, Hiroyuki; Christensen, Hans E M; Kragelund, Birthe B; Dupree, Paul; McCleary, Barry; Hindsgaul, Ole; Hachem, Maher Abou; Svensson, Birte

    2016-07-01

    An α-L-arabinofuranosidase of GH62 from Aspergillus nidulans FGSC A4 (AnAbf62A-m2,3) has an unusually high activity towards wheat arabinoxylan (WAX) (67 U/mg; k cat = 178/s, K m = 4.90 mg/ml) and arabinoxylooligosaccharides (AXOS) with degrees of polymerisation (DP) 3-5 (37-80 U/mg), but about 50 times lower activity for sugar beet arabinan and 4-nitrophenyl-α-L-arabinofuranoside. α-1,2- and α-1,3-linked arabinofuranoses are released from monosubstituted, but not from disubstituted, xylose in WAX and different AXOS as demonstrated by NMR and polysaccharide analysis by carbohydrate gel electrophoresis (PACE). Mutants of the predicted general acid (Glu(188)) and base (Asp(28)) catalysts, and the general acid pK a modulator (Asp(136)) lost 1700-, 165- and 130-fold activities for WAX. WAX, oat spelt xylan, birchwood xylan and barley β-glucan retarded migration of AnAbf62A-m2,3 in affinity electrophoresis (AE) although the latter two are neither substrates nor inhibitors. Trp(23) and Tyr(44), situated about 30 Å from the catalytic site as seen in an AnAbf62A-m2,3 homology model generated using Streptomyces thermoviolaceus SthAbf62A as template, participate in carbohydrate binding. Compared to wild-type, W23A and W23A/Y44A mutants are less retarded in AE, maintain about 70 % activity towards WAX with K i of WAX substrate inhibition increasing 4-7-folds, but lost 77-96 % activity for the AXOS. The Y44A single mutant had less effect, suggesting Trp(23) is a key determinant. AnAbf62A-m2,3 seems to apply different polysaccharide-dependent binding modes, and Trp(23) and Tyr(44) belong to a putative surface binding site which is situated at a distance of the active site and has to be occupied to achieve full activity. PMID:26946172

  16. Low or No Inhibitory Potency of the Canonical Galectin Carbohydrate-binding Site by Pectins and Galactomannans.

    Science.gov (United States)

    Stegmayr, John; Lepur, Adriana; Kahl-Knutson, Barbro; Aguilar-Moncayo, Matilde; Klyosov, Anatole A; Field, Robert A; Oredsson, Stina; Nilsson, Ulf J; Leffler, Hakon

    2016-06-17

    Some complex plant-derived polysaccharides, such as modified citrus pectins and galactomannans, have been shown to have promising anti-inflammatory and anti-cancer effects. Most reports propose or claim that these effects are due to interaction of the polysaccharides with galectins because the polysaccharides contain galactose-containing side chains that might bind this class of lectin. However, their direct binding to and/or inhibition of the evolutionarily conserved galactoside-binding site of galectins has not been demonstrated. Using a well established fluorescence anisotropy assay, we tested the direct interaction of several such polysaccharides with physiological concentrations of a panel of galectins. The bioactive pectic samples tested were very poor inhibitors of the canonical galactoside-binding site for the tested galectins, with IC50 values >10 mg/ml for a few or in most cases no inhibitory activity at all. The galactomannan Davanat® was more active, albeit not a strong inhibitor (IC50 values ranging from 3 to 20 mg/ml depending on the galectin). Pure synthetic oligosaccharide fragments found in the side chains and backbone of pectins and galactomannans were additionally tested. The most commonly found galactan configuration in pectins had no inhibition of the galectins tested. Galactosylated tri- and pentamannosides, representing the structure of Davanat®, had an inhibitory effect of galectins comparable with that of free galactose. Further evaluation using cell-based assays, indirectly linked to galectin-3 inhibition, showed no inhibition of galectin-3 by the polysaccharides. These data suggest that the physiological effects of these plant polysaccharides are not due to inhibition of the canonical galectin carbohydrate-binding site. PMID:27129206

  17. Two Secondary Carbohydrate Binding Sites on the Surface of Barley alpha-Amylase 1 Have Distinct Functions and Display Synergy in Hydrolysis of Starch Granules

    DEFF Research Database (Denmark)

    Nielsen, Morten Munch; Bozonnet, Sophie; Seo, Eun-Seong;

    2009-01-01

    Some polysaccharide processing enzymes possess secondary carbohydrate binding sites situated on the surface far from the active site. In barley alpha-amylase 1 (AMY1), two such sites, SBS1 and SBS2, are found on the catalytic (beta/alpha)8-barrel and the noncatalytic C-terminal domain, respective...

  18. An intermolecular binding mechanism involving multiple LysM domains mediates carbohydrate recognition by an endopeptidase

    DEFF Research Database (Denmark)

    Wong, Jaslyn E M M; Midtgaard, Søren Roi; Gysel, Kira; Thygesen, Mikkel B; Sørensen, Kasper K; Jensen, Knud J; Stougaard, Jens; Thirup, Søren; Blaise, Mickaël

    multiple LysM domains in substrate binding has so far lacked support from high-resolution structures of ligand-bound complexes. Here, a structural study of the Thermus thermophilus NlpC/P60 endopeptidase containing two LysM domains is presented. The crystal structure and small-angle X-ray scattering...

  19. Evaluation of natural phenolic antioxidants in traditional Chinese medicines as carbohydrate absorption modulators for potential development of anti-hyperglycemic functional foods

    OpenAIRE

    Wong, Wing-chiu; 王咏釗

    2013-01-01

    The purpose of this study was to design and develop anti-hyperglycemic functional foods containing phenolic carbohydrate absorption modulator. Physical, chemical, structural and digestive aspects of the reactions of carbohydrates in the presence of phenolic extracts of traditional Chinese medicines were investigated. Water extracts of 14 traditional Chinese medicinal (TCM) plants with reputation of usefulness in treating diabetes were examined for total phenolic contents, antioxidant acti...

  20. Targeting the Cryptococcus neoformans var. grubii Cell Wall Using Lectins: Study of the Carbohydrate-Binding Domain

    Directory of Open Access Journals (Sweden)

    Pamella de Brito Ximenes

    2015-02-01

    Full Text Available Cryptococcus neoformans var. grubii is considered to be the major cause of cryptococcosis in immunosuppressed patients. Understanding cell wall glycoproteins using lectins is of medical interest and can contribute to specific therapy. The aim of this study was to evaluate the carbohydrates on the cell wall of Cryptococcus neoformans var. grubii clinical isolates, using a fluorescein isothiocyanate-lectin binding protocol. Thirty yeast strains stocked in the culture collection were cultivated for 2 days at 30 °C with shaking. Cells were obtained by centrifugation, washed in phosphate-buffered saline, and a suspension of 107 cells/mL was obtained. To determine the binding profile of lectins, concanavalin A (Con A, wheat germ agglutinin (WGA, Ulex europaeus agglutinin I (UEA-I, and peanut agglutinin (PNA conjugated to fluorescein were used. All the tested clinical isolates of Cryptococcus neoformans var. grubii were intensely stained by WGA, moderately stained by Con A, and weakly stained by PNA and UEA-I. Thus, Cryptococcus can be detected in clinical specimens such as blood and cerebrospinal fluid using the fluorescent lectin WGA, which may be considered as an option for detection in cases of suspected cryptococcosis with low laboratory sensitivity. Future applications may be developed using this basic tool.

  1. Metabolic inhibition of galectin-1-binding carbohydrates accentuates anti-tumor immunity

    OpenAIRE

    Cedeno-Laurent, Filiberto; Opperman, Matthew; Barthel, Steven R.; Hays, Danielle; Schatton, Tobias; Zhan, Qian; He, Xiaoying; Matta, Khushi L.; Supko, Jeffrey G; Frank, Markus H; Murphy, George F.; Dimitroff, Charles J

    2011-01-01

    Galectin-1 (Gal-1) has been shown to play a major role in tumor immune escape by inducing apoptosis of effector leukocytes and correlating with tumor aggressiveness and disease progression. Targeting the Gal-1 – Gal-1 ligand axis, thus, represents a promising cancer therapeutic approach. Here, to test the Gal-1-mediated tumor immune evasion hypothesis and demonstrate the importance of Gal-1-binding N-acetyllactosamines in controlling the fate and function of anti-tumor immune cells, we treate...

  2. Solid phase measurements of antibody and lectin binding to xenogenic carbohydrate antigens

    DEFF Research Database (Denmark)

    Kirkeby, Svend; André, Sabine; Gabius, Hans-Joachim

    2004-01-01

    naturally occurring subfraction from human serum, to Galalpha containing neoglycoproteins and mouse laminin that were immobilized on microtiter plates. RESULTS: Galalpha reactive antibodies with similar monosaccharide specificity have distinct structural preference for sugar ligands. Laminin and......-Galalpha1 antibodies that both have been raised against glycans on rabbit red blood cells may recognize Galalpha-antigens with varying specificities. Binding results obtained after digestion with alpha-galactosidase indicate that some xenoreactive Galalpha groups are not directly accessible for removal by...

  3. Modulation of carbohydrate residues in regenerative nodules and neoplasms of canine and feline pancreas.

    OpenAIRE

    Skutelsky, E.; Alroy, J.; Ucci, A. A.; Carpenter, J.L.; Moore, F. M.

    1987-01-01

    The glycoconjugates of regenerative acinar cells, acinic cell carcinomas, islet cell tumors, and normal canine and feline pancreas were studied. The authors used biotinylated lectins as probes and avidin-biotin-peroxidase complex as visualant to identify and to compare the distribution of carbohydrate residues on paraffin sections from 74 cases. The findings demonstrate a difference in the staining pattern between normal acinar, islet, and ductal cells in each species and small differences in...

  4. Carbohydrate Microarrays in Plant Science

    DEFF Research Database (Denmark)

    Fangel, Jonatan Ulrik; Pedersen, H.L.; Vidal-Melgosa, S.;

    2012-01-01

    Almost all plant cells are surrounded by glycan-rich cell walls, which form much of the plant body and collectively are the largest source of biomass on earth. Plants use polysaccharides for support, defense, signaling, cell adhesion, and as energy storage, and many plant glycans are also important...... industrially and nutritionally. Understanding the biological roles of plant glycans and the effective exploitation of their useful properties requires a detailed understanding of their structures, occurrence, and molecular interactions. Microarray technology has revolutionized the massively high...... plant research and can be used to map glycan populations across large numbers of samples to screen antibodies, carbohydrate binding proteins, and carbohydrate binding modules and to investigate enzyme activities....

  5. Surface binding sites in carbohydrate active enzymes: An emerging picture of structural and functional diversity

    DEFF Research Database (Denmark)

    Svensson, Birte; Cockburn, Darrell

    2013-01-01

    universal and is in fact rare among some families of enzymes. In some cases an alternative to possessing a CBM is for the enzyme to bind to the substrate at a site on the catalytic domain, but away from the active site. Such a site is termed a surface (or secondary) binding site (SBS). SBSs have been...... identified in enzymes from a wide variety of families, though almost half are found in the α-amylase family GH13. The roles attributed to SBSs are not limited to targeting the enzyme to the substrate, but also include a variety of others such as guiding the substrate into the active site, altering enzyme...... specificity and acting as an allosteric site. Although SBSs share many roles with CBMs they may not simply be an alternative to CBMs, but rather complementary as SBSs and CBMs frequently co-occur in enzymes. Despite a relatively long history, it is only in recent years that SBSs have been studied in great...

  6. A computational approach for exploring carbohydrate recognition by lectins in innate immunity

    Directory of Open Access Journals (Sweden)

    Mark eAgostino

    2011-06-01

    Full Text Available Recognition of pathogen-associated carbohydrates by a broad range of carbohydrate binding proteins is central to both adaptive and innate immunity. A large functionally diverse group of mammalian carbohydrate binding proteins are lectins, which often display calcium-dependent carbohydrate interactions mediated by one or more carbohydrate recognition domains. We report here the application of molecular docking and site mapping to study carbohydrate recognition by several lectins involved in innate immunity or in modulating adaptive immune responses. It was found that molecular docking programs can identify the correct carbohydrate binding mode, but often have difficulty in ranking it as the best pose. This is largely attributed to the broad and shallow nature of lectin binding sites, and the high flexibility of carbohydrates. Site mapping is very effective at identifying lectin residues involved in carbohydrate recognition, especially with cases that were found to be particularly difficult to characterize via molecular docking. This study highlights the need for alternative strategies to examine carbohydrate-lectin interactions, and specifically demonstrates the potential for mapping methods to extract additional and relevant information from the ensembles of binding poses generated by molecular docking.

  7. Merging carbohydrate chemistry with lectin histochemistry to study inhibition of lectin binding by glycoclusters in the natural tissue context.

    Science.gov (United States)

    André, Sabine; Kaltner, Herbert; Kayser, Klaus; Murphy, Paul V; Gabius, Hans-Joachim

    2016-02-01

    Recognition of glycans by lectins leads to cell adhesion and growth regulation. The specificity and selectivity of this process are determined by carbohydrate structure (sequence and shape) and topology of its presentation. The synthesis of (neo)glycoconjugates with bi- to oligo-valency (glycoclusters) affords tools to delineate structure-activity relationships by blocking lectin binding to an artificial matrix, often a glycoprotein, or cultured cell lines. The drawback of these assays is that glycan presentation is different from that in tissues. In order to approach the natural context, we here introduce lectin histochemistry on fixed tissue sections to determine the susceptibility of binding of two plant lectins, i.e., GSA-II and WGA, to a series of 10 glycoclusters. Besides valency, this panel covers changes in the anomeric position (α/β) and the atom at the glycosidic linkage (O/S). Flanked by cell and solid-phase assays with human tumor lines and two mucins, respectively, staining (intensity and profile) was analyzed in sections of murine jejunum, stomach and epididymis as a function of glycocluster presence. The marked and differential sensitivity of signal generation to structural aspects of the glycoclusters proves the applicability of this method. This enables comparisons between data sets obtained by using (neo)glycoconjugates, cells and the tissue context as platforms. The special advantage of processing tissue sections is the monitoring of interference with lectin association at sites that are relevant for functionality. Testing glycoclusters in lectin histochemistry will especially be attractive in cases of multi-target recognition (glycans, proteins and lipids) by a tissue lectin. PMID:26553286

  8. Surface binding sites in amylase have distinct roles in recognition of starch structure motifs and degradation

    DEFF Research Database (Denmark)

    Cockburn, Darrell; Nielsen, Morten M.; Christiansen, Camilla;

    2015-01-01

    Carbohydrate converting enzymes often possess extra substrate binding regions that enhance their activity. These can be found either on separate domains termed carbohydrate binding modules or as so-called surface binding sites (SBSs) situated on the catalytic domain. SBSs are common in starch...

  9. Farnesoid X receptor inhibits the transcriptional activity of carbohydrate response element binding protein in human hepatocytes. : Transrepression of ChREBP by FXR

    OpenAIRE

    Caron, Sandrine; Samanez, Carolina Huaman; Dehondt, Hélène; Ploton, Maheul; Briand, Olivier; Lien, Fleur; Dorchies, Emilie; Dumont, Julie; Postic, Catherine; Cariou, Bertrand; Lefebvre, Philippe; Staels, Bart

    2013-01-01

    The glucose-activated transcription factor carbohydrate response element binding protein (ChREBP) induces the expression of hepatic glycolytic and lipogenic genes. The farnesoid X receptor (FXR) is a nuclear bile acid receptor controlling bile acid, lipid, and glucose homeostasis. FXR negatively regulates hepatic glycolysis and lipogenesis in mouse liver. The aim of this study was to determine whether FXR regulates the transcriptional activity of ChREBP in human hepatocytes and to unravel the...

  10. Nonalcoholic fatty liver disease: Regulation of glucose and fat metabolism in the liver by Carbohydrate Response Element Binding Protein (ChREBP) and impact of dietary influence

    OpenAIRE

    Elkatry, Haiam Omar Mohamed

    2011-01-01

    Deregulationen in der Leberlipidsynthese sind häufig mit Adipositas und Diabetes Typ 2 verbunden und daher ist ein detailliertes Verständnis der beteiligten, regulierenden Stoffwechselwege sehr wichtig, um künftig potentielle therapeutische Targets zu identifizieren. Die Leber ist der wichtigste Ort für den Kohlenhydratstoffwechsel (Glykolyse und Glykogen-Synthese) sowie Triglycerid-Synthese (Lipogenese). Carbohydrate-responsive element-binding protein (ChREBP) wurden in die Regulation durch ...

  11. Changes of Mouse Gut Microbiota Diversity and Composition by Modulating Dietary Protein and Carbohydrate Contents: A Pilot Study

    OpenAIRE

    Kim, Eunjung; Kim, Dan-Bi; Park, Jae-Yong

    2016-01-01

    Dietary proteins influence colorectal cancer (CRC) risk, depending on their quantity and quality. Here, using pyrosequencing, we compared the fecal microbiota composition in Balb/c mice fed either a normal protein/carbohydrate diet (ND, 20% casein and 68% carbohydrate) or a high-protein/low-carbohydrate diet (HPLCD, 30% casein and 57% carbohydrate). The results showed that HPLCD feeding for 2 weeks reduced the diversity and altered the composition of the microbiota compared with the ND mice, ...

  12. Counting carbohydrates

    Science.gov (United States)

    Carb counting; Carbohydrate-controlled diet; Diabetic diet; Diabetes-counting carbohydrates ... goal is not to limit carbohydrates in the diet completely, but to make ... with diabetes can better control their blood sugar if they ...

  13. Mining anaerobic digester consortia metagenomes for secreted carbohydrate active enzymes

    DEFF Research Database (Denmark)

    Wilkens, Casper; Busk, Peter Kamp; Pilgaard, Bo;

    . To gain insight into both the degradation of the carbohydrates and the various roles of the microbes in the ADs we have mined metagenomes from both types of ADs for glycoside hydrolases, carbohydrate esterases, polysaccharide lyases, auxiliary activities, and carbohydrate binding modules. The mining...... thermophilic and mesophilic ADs a wide variety of carbohydrate active enzyme functions were discovered in the metagenomic sequencing of the microbial consortia. The most dominating type of glycoside hydrolases were β-glucosidases (up to 27%), α-amylases (up to 10%), α-glucosidases (up to 8%), α......-galactosidases (up to 9%) and β-galactosidases (up to 7%). For carbohydrate esterases the by far most dominating type was acetylxylan esterases (up to 59%) followed by feruloyl esterases (up to 16%). Less than 15 polysaccharide lyases were identified in the different metagenomes and not surprisingly...

  14. Amino acid sequence and carbohydrate-binding analysis of the N-acetyl-D-galactosamine-specific C-type lectin, CEL-I, from the Holothuroidea, Cucumaria echinata.

    Science.gov (United States)

    Hatakeyama, Tomomitsu; Matsuo, Noriaki; Shiba, Kouhei; Nishinohara, Shoichi; Yamasaki, Nobuyuki; Sugawara, Hajime; Aoyagi, Haruhiko

    2002-01-01

    CEL-I is one of the Ca2+-dependent lectins that has been isolated from the sea cucumber, Cucumaria echinata. This protein is composed of two identical subunits held by a single disulfide bond. The complete amino acid sequence of CEL-I was determined by sequencing the peptides produced by proteolytic fragmentation of S-pyridylethylated CEL-I. A subunit of CEL-I is composed of 140 amino acid residues. Two intrachain (Cys3-Cys14 and Cys31-Cys135) and one interchain (Cys36) disulfide bonds were also identified from an analysis of the cystine-containing peptides obtained from the intact protein. The similarity between the sequence of CEL-I and that of other C-type lectins was low, while the C-terminal region, including the putative Ca2+ and carbohydrate-binding sites, was relatively well conserved. When the carbohydrate-binding activity was examined by a solid-phase microplate assay, CEL-I showed much higher affinity for N-acetyl-D-galactosamine than for other galactose-related carbohydrates. The association constant of CEL-I for p-nitrophenyl N-acetyl-beta-D-galactosaminide (NP-GalNAc) was determined to be 2.3 x 10(4) M(-1), and the maximum number of bound NP-GalNAc was estimated to be 1.6 by an equilibrium dialysis experiment. PMID:11866098

  15. Gamma-aminobutyric acid-modulated benzodiazepine binding sites in bacteria

    International Nuclear Information System (INIS)

    Benzodiazepine binding sites, which were once considered to exist only in higher vertebrates, are here demonstrated in the bacteria E. coli. The bacterial [3H]diazepam binding sites are modulated by GABA; the modulation is dose dependent and is reduced at high concentrations. The most potent competitors of E.Coli [3H]diazepam binding are those that are active in displacing [3H]benzodiazepines from vertebrate peripheral benzodiazepine binding sites. These vertebrate sites are not modulated by GABA, in contrast to vertebrate neuronal benzodiazepine binding sites. The E.coli benzodiazepine binding sites therefore differ from both classes of vertebrate benzodiazepine binding sites; however the ligand spectrum and GABA-modulatory properties of the E.coli sites are similar to those found in insects. This intermediate type of receptor in lower species suggests a precursor for at least one class of vertebrate benzodiazepine binding sites may have existed

  16. Thermodynamic Characterization of New Positive Allosteric Modulators Binding to the Glutamate Receptor A2 Ligand-Binding Domain

    DEFF Research Database (Denmark)

    Nørholm, Ann-Beth; Francotte, Pierre; Goffin, Eric; Botez, Iuliana; Danober, Laurence; Lestage, Pierre; Pirotte, Bernard; Kastrup, Jette Sandholm Jensen; Olsen, Lars; Oostenbrink, Chris

    2014-01-01

    5a (5-F) and 5b (6-F) are entropy driven. For 5d (8-F), both quantities were equal in size. Thermodynamic integration (TI) and one-step perturbation (OSP) were used to calculate the relative binding affinity of the modulators. The OSP calculations had a higher predictive power than those from TI......Positive allosteric modulation of the ionotropic glutamate receptor GluA2 presents a potential treatment of cognitive disorders, for example, Alzheimer's disease. In the present study, we describe the synthesis, pharmacology, and thermodynamic studies of a series of monofluoro-substituted 3......,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides. Measurements of ligand binding by isothermal titration calorimetry (ITC) showed similar binding affinities for the modulator series at the GluA2 LBD but differences in the thermodynamic driving forces. Binding of 5c (7-F) and 6 (no-F) is enthalpy driven, and...

  17. Copper at synapse: Release, binding and modulation of neurotransmission.

    Science.gov (United States)

    D'Ambrosi, Nadia; Rossi, Luisa

    2015-11-01

    Over the last decade, a piece of the research studying copper role in biological systems was devoted to unravelling a still elusive, but extremely intriguing, aspect that is the involvement of copper in synaptic function. These studies were prompted to provide a rationale to the finding that copper is released in the synaptic cleft upon depolarization. The copper pump ATP7A, which mutations are responsible for diseases with a prominent neurodegenerative component, seems to play a pivotal role in the release of copper at synapses. Furthermore, it was found that, when in the synaptic cleft, copper can control, directly or indirectly, the activity of the neurotransmitter receptors (NMDA, AMPA, GABA, P2X receptors), thus affecting excitability. In turn, neurotransmission can affect copper trafficking and delivery in neuronal cells. Furthermore, it was reported that copper can also modulate synaptic vesicles trafficking and the interaction between proteins of the secretory pathways. Interestingly, proteins with a still unclear role in neuronal system though associated with the pathogenesis of neurodegenerative diseases (the amyloid precursor protein, APP, the prion protein, PrP, α-synuclein, α-syn) show copper-binding domains. They may act as copper buffer at synapses and participate in the interplay between copper and the neurotransmitters receptors. Given that copper dysmetabolism occurs in several diseases affecting central and peripheral nervous system, the findings on the contribution of copper in synaptic transmission, beside its more consolidate role as a neuronal enzymes cofactor, may open new insights for therapy interventions. PMID:26187063

  18. Ecto-phosphatase activity on the external surface of Rhodnius prolixus salivary glands: modulation by carbohydrates and Trypanosoma rangeli.

    Science.gov (United States)

    Gomes, Suzete A O; Fonseca de Souza, André L; Kiffer-Moreira, Tina; Dick, Claudia F; dos Santos, André L A; Meyer-Fernandes, José R

    2008-05-01

    The salivary glands of insect's vectors are target organs to study the vectors-pathogens interactions. Rhodnius prolixus an important vector of Trypanosoma cruzi can also transmit Trypanosoma rangeli by bite. In the present study we have investigated ecto-phosphatase activity on the surface of R. prolixus salivary glands. Ecto-phosphatases are able to hydrolyze phosphorylated substrates in the extracellular medium. We characterized these ecto-enzyme activities on the salivary glands external surface and employed it to investigate R. prolixus-T. rangeli interaction. Salivary glands present a low level of hydrolytic activity (4.30+/-0.35 nmol p-nitrophenol (p-NP)xh(-1)xgland pair(-1)). The salivary glands ecto-phosphatase activity was not affected by pH variation; and it was insensitive to alkaline inhibitor levamisole and inhibited approximately 50% by inorganic phosphate (Pi). MgCl2, CaCl2 and SrCl2 enhanced significantly the ecto-phosphatase activity detected on the surface of salivary glands. The ecto-phosphatase from salivary glands surface efficiently releases phosphate groups from different phosphorylated amino acids, giving a higher rate of phosphate release when phospho-tyrosine is used as a substrate. This ecto-phosphatase activity was inhibited by carbohydrates as d-galactose and d-mannose. Living short epimastigotes of T. rangeli inhibited salivary glands ecto-phosphatase activity at 75%, while boiled parasites did not. Living long epimastigote forms induced a lower, but significant inhibitory effect on the salivary glands phosphatase activity. Interestingly, boiled long epimastigote forms did not loose the ability to modulate salivary glands phosphatase activity. Taken together, these data suggest a possible role for ecto-phosphatase on the R. prolixus salivary glands-T. rangeli interaction. PMID:18407240

  19. Cloning, expression, purification, crystallization and preliminary X-ray diffraction analysis of the VP8* carbohydrate-binding protein of the human rotavirus strain Wa

    Energy Technology Data Exchange (ETDEWEB)

    Kraschnefski, Mark J.; Scott, Stacy A. [Institute for Glycomics, Griffith University (Gold Coast Campus), PMB 50 Gold Coast Mail Centre, Queensland 9726 (Australia); Holloway, Gavan; Coulson, Barbara S.; Itzstein, Mark von [Department of Microbiology and Immunology, The University of Melbourne, Victoria 3010 (Australia); Blanchard, Helen, E-mail: h.blanchard@griffith.edu.au [Institute for Glycomics, Griffith University (Gold Coast Campus), PMB 50 Gold Coast Mail Centre, Queensland 9726 (Australia)

    2005-11-01

    The carbohydrate-binding component (VP8*{sub 64–223}) of the human Wa rotavirus spike protein has been overexpressed in E. coli, purified and crystallized in two different crystal forms. X-ray diffraction data have been collected that have enabled determination of the Wa VP8*{sub 64–223} structure by molecular replacement. Rotaviruses exhibit host-specificity and the first crystallographic information on a rotavirus strain that infects humans is reported here. Recognition and attachment to host cells, leading to invasion and infection, is critically linked to the function of the outer capsid spike protein of the rotavirus particle. In some strains the VP8* component of the spike protein is implicated in recognition and binding of sialic-acid-containing cell-surface carbohydrates, thereby enabling infection by the virus. The cloning, expression, purification, crystallization and initial X-ray diffraction analysis of the VP8* core from human Wa rotavirus is reported. Two crystal forms (trigonal P3{sub 2}21 and monoclinic P2{sub 1}) have been obtained and X-ray diffraction data have been collected, enabling determination of the VP8*{sub 64–223} structure by molecular replacement.

  20. Metabolite Regulation of Nuclear Localization of Carbohydrate-response Element-binding Protein (ChREBP): ROLE OF AMP AS AN ALLOSTERIC INHIBITOR.

    Science.gov (United States)

    Sato, Shogo; Jung, Hunmin; Nakagawa, Tsutomu; Pawlosky, Robert; Takeshima, Tomomi; Lee, Wan-Ru; Sakiyama, Haruhiko; Laxman, Sunil; Wynn, R Max; Tu, Benjamin P; MacMillan, John B; De Brabander, Jef K; Veech, Richard L; Uyeda, Kosaku

    2016-05-13

    The carbohydrate-response element-binding protein (ChREBP) is a glucose-responsive transcription factor that plays an essential role in converting excess carbohydrate to fat storage in the liver. In response to glucose levels, ChREBP is regulated by nuclear/cytosol trafficking via interaction with 14-3-3 proteins, CRM-1 (exportin-1 or XPO-1), or importins. Nuclear localization of ChREBP was rapidly inhibited when incubated in branched-chain α-ketoacids, saturated and unsaturated fatty acids, or 5-aminoimidazole-4-carboxamide ribonucleotide. Here, we discovered that protein-free extracts of high fat-fed livers contained, in addition to ketone bodies, a new metabolite, identified as AMP, which specifically activates the interaction between ChREBP and 14-3-3. The crystal structure showed that AMP binds directly to the N terminus of ChREBP-α2 helix. Our results suggest that AMP inhibits the nuclear localization of ChREBP through an allosteric activation of ChREBP/14-3-3 interactions and not by activation of AMPK. AMP and ketone bodies together can therefore inhibit lipogenesis by restricting localization of ChREBP to the cytoplasm during periods of ketosis. PMID:26984404

  1. Local conformational fluctuations can modulate the coupling between proton binding and global structural transitions in proteins

    OpenAIRE

    Whitten, Steven T; García-Moreno E., Bertrand; Hilser, Vincent J.

    2005-01-01

    Local conformational fluctuations in proteins can affect the coupling between ligand binding and global structural transitions. This finding was established by monitoring quantitatively how the population distribution in the ensemble of microstates of staphylococcal nuclease was affected by proton binding. Analysis of acid unfolding and proton-binding data with an ensemble-based model suggests that local fluctuations: (i) can be effective modulators of ligand-binding affinities, (ii) are impo...

  2. Changes of Mouse Gut Microbiota Diversity and Composition by Modulating Dietary Protein and Carbohydrate Contents: A Pilot Study.

    Science.gov (United States)

    Kim, Eunjung; Kim, Dan-Bi; Park, Jae-Yong

    2016-03-01

    Dietary proteins influence colorectal cancer (CRC) risk, depending on their quantity and quality. Here, using pyrosequencing, we compared the fecal microbiota composition in Balb/c mice fed either a normal protein/carbohydrate diet (ND, 20% casein and 68% carbohydrate) or a high-protein/low-carbohydrate diet (HPLCD, 30% casein and 57% carbohydrate). The results showed that HPLCD feeding for 2 weeks reduced the diversity and altered the composition of the microbiota compared with the ND mice, which included a decrease in the proportion of the family Lachnospiraceae and Ruminococcaceae and increases in the proportions of the genus Bacteroides and Parabacteroides, especially the species EF09600_s and EF604598_s. Similar changes were reported in patients with inflammatory bowel disease, and in mouse models of CRC and colitis, respectively. This suggests that HPLCD may lead to a deleterious luminal environment and may have adverse effects on the intestinal health of individuals consuming such a diet. PMID:27069907

  3. The role of the glucose-sensing transcription factor carbohydrate-responsive element-binding protein pathway in termite queen fertility.

    Science.gov (United States)

    Sillam-Dussès, David; Hanus, Robert; Poulsen, Michael; Roy, Virginie; Favier, Maryline; Vasseur-Cognet, Mireille

    2016-05-01

    Termites are among the few animals that themselves can digest the most abundant organic polymer, cellulose, into glucose. In mice and Drosophila, glucose can activate genes via the transcription factor carbohydrate-responsive element-binding protein (ChREBP) to induce glucose utilization and de novo lipogenesis. Here, we identify a termite orthologue of ChREBP and its downstream lipogenic targets, including acetyl-CoA carboxylase and fatty acid synthase. We show that all of these genes, including ChREBP, are upregulated in mature queens compared with kings, sterile workers and soldiers in eight different termite species. ChREBP is expressed in several tissues, including ovaries and fat bodies, and increases in expression in totipotent workers during their differentiation into neotenic mature queens. We further show that ChREBP is regulated by a carbohydrate diet in termite queens. Suppression of the lipogenic pathway by a pharmacological agent in queens elicits the same behavioural alterations in sterile workers as observed in queenless colonies, supporting that the ChREBP pathway partakes in the biosynthesis of semiochemicals that convey the signal of the presence of a fertile queen. Our results highlight ChREBP as a likely key factor for the regulation and signalling of queen fertility. PMID:27249798

  4. Carbohydrate Microarrays in Plant Science

    DEFF Research Database (Denmark)

    Fangel, Jonatan Ulrik; Pedersen, H.L.; Vidal-Melgosa, S.; Ahl, Louise Isager; Salmean, A.A.; Egelund, Jack; Rydahl, Maja Gro; Clausen, M.H.; Willats, William George Tycho

    2012-01-01

    Almost all plant cells are surrounded by glycan-rich cell walls, which form much of the plant body and collectively are the largest source of biomass on earth. Plants use polysaccharides for support, defense, signaling, cell adhesion, and as energy storage, and many plant glycans are also importa...... plant research and can be used to map glycan populations across large numbers of samples to screen antibodies, carbohydrate binding proteins, and carbohydrate binding modules and to investigate enzyme activities.......Almost all plant cells are surrounded by glycan-rich cell walls, which form much of the plant body and collectively are the largest source of biomass on earth. Plants use polysaccharides for support, defense, signaling, cell adhesion, and as energy storage, and many plant glycans are also important...... industrially and nutritionally. Understanding the biological roles of plant glycans and the effective exploitation of their useful properties requires a detailed understanding of their structures, occurrence, and molecular interactions. Microarray technology has revolutionized the massively high...

  5. The role of the glucose-sensing transcription factor carbohydrate-responsive element-binding protein pathway in termite queen fertility

    DEFF Research Database (Denmark)

    Sillam-Dussès, David; Hanus, Robert; Poulsen, Michael;

    2016-01-01

    Termites are among the few animals that themselves can digest the most abundant organic polymer, cellulose, into glucose. In mice and Drosophila, glucose can activate genes via the transcription factor carbohydrate-responsive element-binding protein (ChREBP) to induce glucose utilization and de...... novo lipogenesis. Here, we identify a termite orthologue of ChREBP and its downstream lipogenic targets, including acetyl-CoA carboxylase and fatty acid synthase. We show that all of these genes, including ChREBP, are upregulated in mature queens compared with kings, sterile workers and soldiers....... Suppression of the lipogenic pathway by a pharmacological agent in queens elicits the same behavioural alterations in sterile workers as observed in queenless colonies, supporting that the ChREBP pathway partakes in the biosynthesis of semiochemicals that convey the signal of the presence of a fertile queen...

  6. Tropomyosin-binding properties modulate competition between tropomodulin isoforms.

    Science.gov (United States)

    Colpan, Mert; Moroz, Natalia A; Gray, Kevin T; Cooper, Dillon A; Diaz, Christian A; Kostyukova, Alla S

    2016-06-15

    The formation and fine-tuning of cytoskeleton in cells are governed by proteins that influence actin filament dynamics. Tropomodulin (Tmod) regulates the length of actin filaments by capping the pointed ends in a tropomyosin (TM)-dependent manner. Tmod1, Tmod2 and Tmod3 are associated with the cytoskeleton of non-muscle cells and their expression has distinct consequences on cell morphology. To understand the molecular basis of differences in the function and localization of Tmod isoforms in a cell, we compared the actin filament-binding abilities of Tmod1, Tmod2 and Tmod3 in the presence of Tpm3.1, a non-muscle TM isoform. Tmod3 displayed preferential binding to actin filaments when competing with other isoforms. Mutating the second or both TM-binding sites of Tmod3 destroyed its preferential binding. Our findings clarify how Tmod1, Tmod2 and Tmod3 compete for binding actin filaments. Different binding mechanisms and strengths of Tmod isoforms for Tpm3.1 contribute to their divergent functional capabilities. PMID:27091317

  7. Carbohydrate Analysis

    Science.gov (United States)

    Bemiller, James N.

    Carbohydrates are important in foods as a major source of energy, to impart crucial textural properties, and as dietary fiber which influences physiological processes. Digestible carbohydrates, which are converted into monosaccharides, which are absorbed, provide metabolic energy. Worldwide, carbohydrates account for more than 70% of the caloric value of the human diet. It is recommended that all persons should limit calories from fat (the other significant source) to not more than 30% and that most of the carbohydrate calories should come from starch. Nondigestible polysaccharides (all those other than starch) comprise the major portion of dietary fiber (Sect. 10.5). Carbohydrates also contribute other attributes, including bulk, body, viscosity, stability to emulsions and foams, water-holding capacity, freeze-thaw stability, browning, flavors, aromas, and a range of desirable textures (from crispness to smooth, soft gels). They also provide satiety. Basic carbohydrate structures, chemistry, and terminology can be found in references (1, 2).

  8. Coordinate regulation/localization of the carbohydrate responsive binding protein (ChREBP) by two nuclear export signal sites: Discovery of a new leucine-rich nuclear export signal site

    International Nuclear Information System (INIS)

    Carbohydrate response element binding protein (ChREBP) is responsible for conversion of dietary carbohydrate to storage fat in liver by coordinating expression of the enzymes that channel glycolytic pyruvate into lipogenesis. The activation of ChREBP in response to high glucose is nuclear localization and transcription, and the inactivation of ChREBP under low glucose involves export from the nucleus to the cytosol. Here we report a new nuclear export signal site ('NES1') of ChREBP. Together these signals provide ChREBP with two NES sequences, both the previously reported NES2 and now the new NES1 coordinate to interact together with CRM1 (exportin) for nuclear export of the carbohydrate response element binding protein.

  9. The carboxy-terminal domain of Dictyostelium C-module-binding factor is an independent gene regulatory entity.

    Directory of Open Access Journals (Sweden)

    Jörg Lucas

    Full Text Available The C-module-binding factor (CbfA is a multidomain protein that belongs to the family of jumonji-type (JmjC transcription regulators. In the social amoeba Dictyostelium discoideum, CbfA regulates gene expression during the unicellular growth phase and multicellular development. CbfA and a related D. discoideum CbfA-like protein, CbfB, share a paralogous domain arrangement that includes the JmjC domain, presumably a chromatin-remodeling activity, and two zinc finger-like (ZF motifs. On the other hand, the CbfA and CbfB proteins have completely different carboxy-terminal domains, suggesting that the plasticity of such domains may have contributed to the adaptation of the CbfA-like transcription factors to the rapid genome evolution in the dictyostelid clade. To support this hypothesis we performed DNA microarray and real-time RT-PCR measurements and found that CbfA regulates at least 160 genes during the vegetative growth of D. discoideum cells. Functional annotation of these genes revealed that CbfA predominantly controls the expression of gene products involved in housekeeping functions, such as carbohydrate, purine nucleoside/nucleotide, and amino acid metabolism. The CbfA protein displays two different mechanisms of gene regulation. The expression of one set of CbfA-dependent genes requires at least the JmjC/ZF domain of the CbfA protein and thus may depend on chromatin modulation. Regulation of the larger group of genes, however, does not depend on the entire CbfA protein and requires only the carboxy-terminal domain of CbfA (CbfA-CTD. An AT-hook motif located in CbfA-CTD, which is known to mediate DNA binding to A+T-rich sequences in vitro, contributed to CbfA-CTD-dependent gene regulatory functions in vivo.

  10. Carbohydrate-active enzymes from pigmented Bacilli: a genomic approach to assess carbohydrate utilization and degradation

    Directory of Open Access Journals (Sweden)

    Henrissat Bernard

    2011-09-01

    Full Text Available Abstract Background Spore-forming Bacilli are Gram-positive bacteria commonly found in a variety of natural habitats, including soil, water and the gastro-intestinal (GI-tract of animals. Isolates of various Bacillus species produce pigments, mostly carotenoids, with a putative protective role against UV irradiation and oxygen-reactive forms. Results We report the annotation of carbohydrate active enzymes (CAZymes of two pigmented Bacilli isolated from the human GI-tract and belonging to the Bacillus indicus and B. firmus species. A high number of glycoside hydrolases (GHs and carbohydrate binding modules (CBMs were found in both isolates. A detailed analysis of CAZyme families, was performed and supported by growth data. Carbohydrates able to support growth as the sole carbon source negatively effected carotenoid formation in rich medium, suggesting that a catabolite repression-like mechanism controls carotenoid biosynthesis in both Bacilli. Experimental results on biofilm formation confirmed genomic data on the potentials of B. indicus HU36 to produce a levan-based biofilm, while mucin-binding and -degradation experiments supported genomic data suggesting the ability of both Bacilli to degrade mammalian glycans. Conclusions CAZy analyses of the genomes of the two pigmented Bacilli, compared to other Bacillus species and validated by experimental data on carbohydrate utilization, biofilm formation and mucin degradation, suggests that the two pigmented Bacilli are adapted to the intestinal environment and are suited to grow in and colonize the human gut.

  11. Functional equivalence of an evolutionarily conserved RNA binding module.

    Science.gov (United States)

    Wells, Melissa L; Hicks, Stephanie N; Perera, Lalith; Blackshear, Perry J

    2015-10-01

    Members of the tristetraprolin (TTP) family of proteins participate in the regulation of mRNA turnover after initially binding to AU-rich elements in target mRNAs. Related proteins from most groups of eukaryotes contain a conserved tandem zinc finger (TZF) domain consisting of two closely spaced, similar CCCH zinc fingers that form the primary RNA binding domain. There is considerable sequence variation within the TZF domains from different family members within a single organism and from different organisms, raising questions about sequence-specific effects on RNA binding and decay promotion. We hypothesized that TZF domains from evolutionarily distant species are functionally interchangeable. The single family member expressed in the fission yeast Schizosaccharomyces pombe, Zfs1, promotes the turnover of several dozen transcripts, some of which are involved in cell-cell interactions. Using knockin techniques, we replaced the TZF domain of S. pombe Zfs1 with the equivalent domains from human TTP and the single family member proteins expressed in the silkworm Bombyx mori, the pathogenic yeast Candida guilliermondii, and the plant Chromolaena odorata. We found that the TZF domains from these widely disparate species could completely substitute for the native S. pombe TZF domain, as determined by measurement of target transcript levels and the flocculation phenotype characteristic of Zfs1 deletion. Recombinant TZF domain peptides from several of these species bound to an AU-rich RNA oligonucleotide with comparably high affinity. We conclude that the TZF domains from TTP family members in these evolutionarily widely divergent species are functionally interchangeable in mRNA binding and decay. PMID:26292216

  12. Structural basis for entropy-driven cellulose binding by a type-A cellulose-binding module (CBM) and bacterial expansin

    OpenAIRE

    Georgelis, Nikolaos; Yennawar, Neela H.; Cosgrove, Daniel J.

    2012-01-01

    Components of modular cellulases, type-A cellulose-binding modules (CBMs) bind to crystalline cellulose and enhance enzyme effectiveness, but structural details of the interaction are uncertain. We analyzed cellulose binding by EXLX1, a bacterial expansin with ability to loosen plant cell walls and whose domain D2 has type-A CBM characteristics. EXLX1 strongly binds to crystalline cellulose via D2, whereas its affinity for soluble cellooligosaccharides is weak. Calorimetry indicated cellulose...

  13. Endogenous dopamine (DA) modulates [3H]spiperone binding in vivo in rat brain

    International Nuclear Information System (INIS)

    [3H]spiperone (SPI) binding in vivo, biochemical parameters and behavior were measured after modulating DA levels by various drug treatments. DA releasers and uptake inhibitors increased SPI binding in rat striatum. In other brain areas, the effects were variable, but only the pituitary remained unaffected. Surprisingly, nomifensine decreased SPI binding in frontal cortex. The effects of these drugs were monitored by measuring DA, serotonin (5-HT) and their metabolites in the same rats. The increased SPI binding in striatum was parallel to the locomotor stimulation with the following rank order: amfonelic acid greater than nomifensine greater than D-amphetamine greater than or equal to methylphenidate greater than amineptine greater than bupropion. Decreasing DA levels with reserpine or alpha-methyl-para-tyrosine reduced SPI binding by 45% in striatum only when both drugs were combined. In contrast, reserpine enhanced SPI binding in pituitary. Thus, the amount of releasable DA seems to modulate SPI binding characteristics. It is suggested that in vivo, DA receptors are submitted to dynamic regulation in response to changes in intrasynaptic concentrations of DA

  14. Endogenous dopamine (DA) modulates (3H)spiperone binding in vivo in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Bischoff, S.; Krauss, J.; Grunenwald, C.; Gunst, F.; Heinrich, M.; Schaub, M.; Stoecklin, K.V.; Vassout, A.; Waldmeier, P.; Maitre, L. (Research Department, CIBA-GEIGY Ltd., Basel (Switzerland))

    1991-01-01

    (3H)spiperone (SPI) binding in vivo, biochemical parameters and behavior were measured after modulating DA levels by various drug treatments. DA releasers and uptake inhibitors increased SPI binding in rat striatum. In other brain areas, the effects were variable, but only the pituitary remained unaffected. Surprisingly, nomifensine decreased SPI binding in frontal cortex. The effects of these drugs were monitored by measuring DA, serotonin (5-HT) and their metabolites in the same rats. The increased SPI binding in striatum was parallel to the locomotor stimulation with the following rank order: amfonelic acid greater than nomifensine greater than D-amphetamine greater than or equal to methylphenidate greater than amineptine greater than bupropion. Decreasing DA levels with reserpine or alpha-methyl-para-tyrosine reduced SPI binding by 45% in striatum only when both drugs were combined. In contrast, reserpine enhanced SPI binding in pituitary. Thus, the amount of releasable DA seems to modulate SPI binding characteristics. It is suggested that in vivo, DA receptors are submitted to dynamic regulation in response to changes in intrasynaptic concentrations of DA.

  15. Purification, crystallization and preliminary X-ray diffraction analysis of the carbohydrate-binding region of the Streptococcus gordonii adhesin GspB

    Energy Technology Data Exchange (ETDEWEB)

    Pyburn, Tasia M.; Yankovskaya, Victoria; Bensing, Barbara A.; Cecchini, Gary; Sullam, Paul M.; Iverson, T.M. (VA); (Vanderbilt); (UCSF)

    2012-07-11

    The carbohydrate-binding region of the bacterial adhesin GspB from Streptococcus gordonii strain M99 (GspB{sub BR}) was expressed in Escherichia coli and purified using affinity and size-exclusion chromatography. Separate sparse-matrix screening of GspB{sub BR} buffered in either 20 mM Tris pH 7.4 or 20 mM HEPES pH 7.5 resulted in different crystallographic behavior such that different precipitants, salts and additives supported crystallization of GspB{sub BR} in each buffer. While both sets of conditions supported crystal growth in space group P2{sub 1}2{sub 1}2{sub 1}, the crystals had distinct unit-cell parameters of a = 33.3, b = 86.7, c = 117.9 {angstrom} for crystal form 1 and a = 34.6, b = 98.3, c = 99.0 {angstrom} for crystal form 2. Additive screening improved the crystals grown in both conditions such that diffraction extended to beyond 2 {angstrom} resolution. A complete data set has been collected to 1.3 {angstrom} resolution with an overall R{sub merge} value of 0.04 and an R{sub merge} value of 0.33 in the highest resolution shell.

  16. Sepsis as a modulator of adaptation to low and high carbohydrate and low and high fat intakes.

    Science.gov (United States)

    Wolfe, R R

    1999-04-01

    Catabolism of lean body mass (particularly muscle) occurs in sepsis and other forms of critical illness despite apparently adequate nutritional support. The determination of the optimal balance of carbohydrate and fat intake in this circumstance should be based on the resulting effect on the maintenance of lean body mass, and the nature and extent of any side effects. The general stress response involves a disruption in normal glucoregulation, in that hepatic glucose production is accelerated and the normal blood glucose lowering action of insulin is diminished. Nonetheless, the capacity to oxidize glucose once inside the cells is not impaired. Lipolysis, or the breakdown of peripheral triglycerides to free fatty acids (FFA) and glycerol, is accelerated in critical illness, to a greater extent than fat oxidation. Provision of exogenous fat maintains fat stores, but has minimal effect on the direct oxidation of plasma FFA. From the results of oxidation studies, it seems that about 5 mg kg x min of glucose can be readily oxidized, and the balance of energy will be supplied by the oxidation of fat, either endogenous or exogenous. However, an additional consideration in determining the optimal caloric substrate is that insulin is a potent anabolic hormone and stimulates muscle protein synthesis. Consequently, provision of exogenous insulin enhances retention of muscle. This procedure dictates that almost all non-protein calories be provided as carbohydrate to avoid hypoglycemia. Preliminary studies suggest this may be the optimal approach in critically ill patients. Glucose and fatty acids are the major energy substrates in the body. The oxidative metabolism of these substrates provides the ATP needed for physiological function, including protein synthesis. Over the past 20 y, development of new techniques in nutritional support have made it possible to provide large amounts of carbohydrate and fat to critically-ill patients, along with protein or amino acids. However

  17. Binding of modulators to mouse and human multidrug resistance P-glycoprotein. A computational study.

    Science.gov (United States)

    Jara, Gabriel E; Vera, D Mariano A; Pierini, Adriana B

    2013-11-01

    The human multidrug resistance (MDR) P-glycoprotein (P-gp) mediates the extrusion of chemotherapeutic drugs from cancer cells. Modulators are relevant pharmaceutical targets since they are intended to control or to inhibit its pumping activity. In the present work, a common binding site for Rhodamine 123 and modulators with different modulation activity was found by molecular docking over the crystal structure of the mouse P-gp. The modulators involved a family of compounds, including derivatives of propafenone (3-phenylpropiophenone nucleus) and XR9576 (tariquidar). Our results showed that the relative binding energies estimated by molecular docking were in good correlation with the experimental activities. Preliminary classical molecular dynamics results on selected P-gp/modulator complexes were also performed in order to understand the nature of the prevalent molecular interactions and the possible main molecular features that characterize a modulator. Besides, the results obtained with a human P-gp homology model from the mouse structure are also presented and analyzed. Our observations suggest that the hydrophobicity and molecular flexibility are the main features related to the inhibitory activity. The latter factor would increase the modulator ability to fit the aromatic rings inside the transmembrane domain. PMID:24095875

  18. Characterization of an endo-processive-type xyloglucanase having a β-1,4-glucan-binding module and an endo-type xyloglucanase from Streptomyces avermitilis.

    Science.gov (United States)

    Ichinose, Hitomi; Araki, Yuko; Michikawa, Mari; Harazono, Koichi; Yaoi, Katsuro; Karita, Shuichi; Kaneko, Satoshi

    2012-11-01

    We cloned two glycoside hydrolase family 74 genes, the sav_1856 gene and the sav_2574 gene, from Streptomyces avermitilis NBRC14893 and characterized the resultant recombinant proteins. The sav_1856 gene product (SaGH74A) consisted of a catalytic domain and a family 2 carbohydrate-binding module at the C terminus, while the sav_2574 gene product (SaGH74B) consisted of only a catalytic domain. SaGH74A and SaGH74B were expressed successfully and had molecular masses of 92 and 78 kDa, respectively. Both recombinant proteins were xyloglucanases. SaGH74A had optimal activity at 60°C and pH 5.5, while SaGH74B had optimal activity at 55°C and pH 6.0. SaGH74A was stable over a broad pH range (pH 4.5 to 9.0), whereas SaGH74B was stable over a relatively narrow pH range (pH 6.0 to 6.5). Analysis of the hydrolysis products of tamarind xyloglucan and xyloglucan-derived oligosaccharides indicated that SaGH74A was endo-processive, while SaGH74B was a typical endo-enzyme. The C terminus of SaGH74A, which was annotated as a carbohydrate-binding module, bound to β-1,4-linked glucan-containing soluble polysaccharides such as hydroxyethyl cellulose, barley glucan, and xyloglucan. PMID:22941084

  19. Vina-Carb: Improving Glycosidic Angles during Carbohydrate Docking.

    Science.gov (United States)

    Nivedha, Anita K; Thieker, David F; Makeneni, Spandana; Hu, Huimin; Woods, Robert J

    2016-02-01

    Molecular docking programs are primarily designed to align rigid, drug-like fragments into the binding sites of macromolecules and frequently display poor performance when applied to flexible carbohydrate molecules. A critical source of flexibility within an oligosaccharide is the glycosidic linkages. Recently, Carbohydrate Intrinsic (CHI) energy functions were reported that attempt to quantify the glycosidic torsion angle preferences. In the present work, the CHI-energy functions have been incorporated into the AutoDock Vina (ADV) scoring function, subsequently termed Vina-Carb (VC). Two user-adjustable parameters have been introduced, namely, a CHI- energy weight term (chi_coeff) that affects the magnitude of the CHI-energy penalty and a CHI-cutoff term (chi_cutoff) that negates CHI-energy penalties below a specified value. A data set consisting of 101 protein-carbohydrate complexes and 29 apoprotein structures was used in the development and testing of VC, including antibodies, lectins, and carbohydrate binding modules. Accounting for the intramolecular energies of the glycosidic linkages in the oligosaccharides during docking led VC to produce acceptable structures within the top five ranked poses in 74% of the systems tested, compared to a success rate of 55% for ADV. An enzyme system was employed in order to illustrate the potential application of VC to proteins that may distort glycosidic linkages of carbohydrate ligands upon binding. VC represents a significant step toward accurately predicting the structures of protein-carbohydrate complexes. Furthermore, the described approach is conceptually applicable to any class of ligands that populate well-defined conformational states. PMID:26744922

  20. Role of the carbohydrate recognition domains of mouse galectin-4 in oligosaccharide binding and epitope recognition and expression of galectin-4 and galectin-6 in mouse cells and tissues

    Czech Academy of Sciences Publication Activity Database

    Marková, Vladimíra; Smetana Jr, K.; Jeníková, Gabriela; Láchová, Jitka; Krejčiříková, Veronika; Poplštein, M.; Fábry, Milan; Brynda, Jiří; Alvarez, R.; Cummings, R.; Malý, Petr

    2006-01-01

    Roč. 18, č. 1 (2006), s. 65-76. ISSN 1107-3756 R&D Projects: GA ČR(CZ) GA304/03/0090 Grant ostatní: National Institute of General Medical Sciences(US) GM62116 Institutional research plan: CEZ:AV0Z50520514 Keywords : galectin * glycoprotein binding * lectin-carbohydrate Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.854, year: 2006

  1. Understanding Carbohydrates

    Science.gov (United States)

    ... Low-calorie sweeteners are also called artificial sweeteners, sugar substitutes or non-nutritive sweeteners. They can be used to sweeten food and drinks for less calories and carbohydrate when they replace sugar. Sugar and Desserts With diabetes, it's important to ...

  2. Healthy carbohydrates

    Science.gov (United States)

    Functional foods include dietary fiber consisting of health-promoting carbohydrates. We have produced novel prebiotics from orange peel and observed that they extend the shelf life of probiotic bacteria in synbiotics. Some pectic-oligosaccharides and xyloglucan-oligosaccharides also have anti-adhesi...

  3. SH2 Domains Serve as Lipid-Binding Modules for pTyr-Signaling Proteins.

    Science.gov (United States)

    Park, Mi-Jeong; Sheng, Ren; Silkov, Antonina; Jung, Da-Jung; Wang, Zhi-Gang; Xin, Yao; Kim, Hyunjin; Thiagarajan-Rosenkranz, Pallavi; Song, Seohyeon; Yoon, Youngdae; Nam, Wonhee; Kim, Ilshin; Kim, Eui; Lee, Dong-Gyu; Chen, Yong; Singaram, Indira; Wang, Li; Jang, Myoung Ho; Hwang, Cheol-Sang; Honig, Barry; Ryu, Sungho; Lorieau, Justin; Kim, You-Me; Cho, Wonhwa

    2016-04-01

    The Src-homology 2 (SH2) domain is a protein interaction domain that directs myriad phosphotyrosine (pY)-signaling pathways. Genome-wide screening of human SH2 domains reveals that ∼90% of SH2 domains bind plasma membrane lipids and many have high phosphoinositide specificity. They bind lipids using surface cationic patches separate from pY-binding pockets, thus binding lipids and the pY motif independently. The patches form grooves for specific lipid headgroup recognition or flat surfaces for non-specific membrane binding and both types of interaction are important for cellular function and regulation of SH2 domain-containing proteins. Cellular studies with ZAP70 showed that multiple lipids bind its C-terminal SH2 domain in a spatiotemporally specific manner and thereby exert exquisite spatiotemporal control over its protein binding and signaling activities in T cells. Collectively, this study reveals how lipids control SH2 domain-mediated cellular protein-protein interaction networks and suggest a new strategy for therapeutic modulation of pY-signaling pathways. PMID:27052731

  4. A phylogenetic study of SPBP and RAI1: evolutionary conservation of chromatin binding modules.

    Directory of Open Access Journals (Sweden)

    Sagar Darvekar

    Full Text Available Our genome is assembled into and array of highly dynamic nucleosome structures allowing spatial and temporal access to DNA. The nucleosomes are subject to a wide array of post-translational modifications, altering the DNA-histone interaction and serving as docking sites for proteins exhibiting effector or "reader" modules. The nuclear proteins SPBP and RAI1 are composed of several putative "reader" modules which may have ability to recognise a set of histone modification marks. Here we have performed a phylogenetic study of their putative reader modules, the C-terminal ePHD/ADD like domain, a novel nucleosome binding region and an AT-hook motif. Interactions studies in vitro and in yeast cells suggested that despite the extraordinary long loop region in their ePHD/ADD-like chromatin binding domains, the C-terminal region of both proteins seem to adopt a cross-braced topology of zinc finger interactions similar to other structurally determined ePHD/ADD structures. Both their ePHD/ADD-like domain and their novel nucleosome binding domain are highly conserved in vertebrate evolution, and construction of a phylogenetic tree displayed two well supported clusters representing SPBP and RAI1, respectively. Their genome and domain organisation suggest that SPBP and RAI1 have occurred from a gene duplication event. The phylogenetic tree suggests that this duplication has happened early in vertebrate evolution, since only one gene was identified in insects and lancelet. Finally, experimental data confirm that the conserved novel nucleosome binding region of RAI1 has the ability to bind the nucleosome core and histones. However, an adjacent conserved AT-hook motif as identified in SPBP is not present in RAI1, and deletion of the novel nucleosome binding region of RAI1 did not significantly affect its nuclear localisation.

  5. The Microtubule-Associated Protein END BINDING1 Modulates Membrane Trafficking Pathways in Plant Root Cells

    OpenAIRE

    Shahidi, Saeid

    2013-01-01

    EB1 protein preferentially binds to the fast growing ends of microtubules where it regulates microtubule dynamics. In addition to microtubules, EB1 interacts with several additional proteins, and through these interactions modulates various cellular processes. Arabidopsis thaliana eb1 mutants have roots that exhibit aberrant responses to touch/gravity cues. Columella cells in the centre of the root cap are polarized and play key roles in these responses by functioning as sensors.I examined th...

  6. Structure of the nidogen binding LE module of the laminin gamma1 chain in solution.

    Science.gov (United States)

    Baumgartner, R; Czisch, M; Mayer, U; Pöschl, E; Huber, R; Timpl, R; Holak, T A

    1996-04-01

    The structure of the single LE module between residues 791 and 848 of the laminin gamma1 chain, which contains the high affinity binding site for nidogen, has been probed using NMR methods. The module folds into an autonomous domain which has a stable and unique three-dimensional (3D) structure in solution. The 3D structure was determined on the basis of 362 interproton distance constraints derived from nuclear Overhauser enhancement measurements and 39 phi angles, supplemented by 5 psi and 22 chi1 angles. The main features of the NMR structures are two-stranded antiparallel beta-sheets which are separated by loops and cross-connected by four disulfide bridges. The N-terminal segment which contains the first three disulfide bridges is similar to epidermal growth factor. The C-terminal segment has an S-like backbone profile with a crossover at the last disulfide bridge and comprises two three-residue long beta-strands that form an antiparallel beta-sheet. The LE module possesses an exposed nidogen binding loop that projects away from the main body of the protein. The side-chains of three amino acids which are crucial for binding (Asp, Asn, Val) are all exposed at the domain surface. An inactivating Asn-Ser mutation in this region showed the same 3D structure indicating that these three residues, and possibly an additional Tyr in an adjacent loop, provide direct contacts in the interaction with nidogen. PMID:8648631

  7. Corticosteroid-binding globulin: modulating mechanisms of bioavailability of cortisol and its clinical implications.

    Science.gov (United States)

    Bae, Yoon Ju; Kratzsch, Juergen

    2015-10-01

    Corticosteroid-binding globulin (CBG) is the principal transport protein of glucocorticoids. Approximately 80-90% of serum cortisol binds to CBG with high affinity and only about 5% of cortisol remain unbound and is considered biologically active. CBG seems to modulate and influence the bioavailability of cortisol to local tissues. In this review, we will discuss physicochemical properties of CBG and structure of CBG in the mechanisms of binding and release of cortisol. This review describes several factors affecting CBG functions, such as genetic factors or temperature. Furthermore, clinical implications of CBG abnormalities and the measurement of CBG and its use for assessment of free cortisol levels are described in this review. PMID:26522460

  8. Molecular docking characterizes substrate-binding sites and efflux modulation mechanisms within P-glycoprotein.

    Science.gov (United States)

    Ferreira, Ricardo J; Ferreira, Maria-José U; dos Santos, Daniel J V A

    2013-07-22

    P-Glycoprotein (Pgp) is one of the best characterized ABC transporters, often involved in the multidrug-resistance phenotype overexpressed by several cancer cell lines. Experimental studies contributed to important knowledge concerning substrate polyspecificity, efflux mechanism, and drug-binding sites. This information is, however, scattered through different perspectives, not existing a unifying model for the knowledge available for this transporter. Using a previously refined structure of murine Pgp, three putative drug-binding sites were hereby characterized by means of molecular docking. The modulator site (M-site) is characterized by cross interactions between both Pgp halves herein defined for the first time, having an important role in impairing conformational changes leading to substrate efflux. Two other binding sites, located next to the inner leaflet of the lipid bilayer, were identified as the substrate-binding H and R sites by matching docking and experimental results. A new classification model with the ability to discriminate substrates from modulators is also proposed, integrating a vast number of theoretical and experimental data. PMID:23802684

  9. Imatinib binding to human serum albumin modulates heme association and reactivity.

    Science.gov (United States)

    Di Muzio, Elena; Polticelli, Fabio; Trezza, Viviana; Fanali, Gabriella; Fasano, Mauro; Ascenzi, Paolo

    2014-10-15

    Imatinib, an inhibitor of the Bcr-Abl tyrosine kinase, is approximately 95% bound to plasma proteins, α1-acid glycoprotein (AGP) being the primary carrier. However, human serum albumin (HSA) may represent the secondary carrier of imatinib in pathological states characterized by low AGP levels, such as pancreatic cancer, hepatic cirrhosis, hepatitis, hyperthyroidism, nephrotic syndrome, malnutrition, and cachexia. Here, thermodynamics of imatinib binding to full-length HSA and its recombinant Asp1-Glu382 truncated form (containing only the FA1, FA2, FA6, and FA7 binding sites; trHSA), in the absence and presence of ferric heme (heme-Fe(III)), and the thermodynamics of heme-Fe(III) binding to HSA and trHSA, in the absence and presence of imatinib, has been investigated. Moreover, the effect of imatinib on kinetics of peroxynitrite detoxification by ferric human serum heme-albumin (HSA-heme-Fe(III)) and ferric truncated human serum heme-albumin (trHSA-heme-Fe(III)) has been explored. All data were obtained at pH 7.0, and 20.0 °C and 37.0 °C. Imatinib binding to the FA7 site of HSA and trHSA inhibits allosterically heme-Fe(III) association to the FA1 site and vice versa, according to linked functions. Moreover, imatinib binding to the secondary FA2 site of HSA-heme-Fe(III) inhibits allosterically peroxynitrite detoxification. Docking simulations and local structural comparison with other imatinib-binding proteins support functional data indicating the preferential binding of imatinib to the FA1 and FA7 sites of HSA, and to the FA2 and FA7 sites of HSA-heme-Fe(III). Present results highlight the allosteric coupling of the FA1, FA2, and FA7 sites of HSA, and may be relevant in modulating ligand binding and reactivity properties of HSA in vivo. PMID:25057771

  10. Differential modulation by cations of sigma and phencyclidine binding sites in rat brain

    International Nuclear Information System (INIS)

    The present investigation attempted to differentiate haloperidol-sensitive sigma sites (sigma H) from phencyclidine (PCP) binding sites in rat brain membranes. We studied the effects of several cations at physiologically relevant concentrations on the binding of radioligands selective for sigma H sites ([3H]haloperidol, [3H](+)3-PPP**), and [3H](+)SKF10,047, or for PCP sites ([3H]PCP and [3H]TCP). The PCP sites displayed a markedly greater sensitivity to cations than sigma H sites. This property was reflected by a greater extent of inhibition of the binding of PCP-selective relative to sigma H-selective ligands at a given cation concentration, as well as by lower IC50's and by steeper slopes of the cation dose-response curves. Divalent cations were approximately 100 times more potent than monovalent cations. All cations were inhibitory, except Sr2+ and Ba2+ which, at micromolar concentrations, enhanced PCP binding but not sigma H binding. Thus, PCP-selective sites appeared to be distinct from sigma H sites with regards to several aspects of cation modulation. This is consistent with the view that PCP and sigma H sites are distinct molecular entities. Further, the marked cation sensitivity of the PCP site is consistent with the current hypothesis according to which the PCP site is linked to the N-methyl-D-aspartate (NMDA) receptor-cation channel complex

  11. Molecular simulations of carbohydrate-protein complexes

    OpenAIRE

    Eid, Sameh Mansour Abbas

    2013-01-01

    I. Generation and validation of a free-energy model for carbohydrate binding. Carbohy-drates play a key role in a variety of physiological and pathological processes and, hence, represent a rich source for the development of novel therapeutic agents. Being able to predict binding mode and binding affinity is an essential, yet lacking, aspect of the stru-cture-based design of carbohydrate-based ligands. To this end, we assembled a diverse data set of 316 carbohydrate–protein crystal structu...

  12. Binding of histone H1 to DNA is differentially modulated by redox state of HMGB1.

    Directory of Open Access Journals (Sweden)

    Eva Polanská

    Full Text Available HMGB1 is an architectural protein in chromatin, acting also as a signaling molecule outside the cell. Recent reports from several laboratories provided evidence that a number of both the intracellular and extracellular functions of HMGB1 may depend on redox-sensitive cysteine residues of the protein. In this study we demonstrate that redox state of HMGB1 can significantly modulate the ability of the protein to bind and bend DNA, as well as to promote DNA end-joining. We also report a high affinity binding of histone H1 to hemicatenated DNA loops and DNA minicircles. Finally, we show that reduced HMGB1 can readily displace histone H1 from DNA, while oxidized HMGB1 has limited capacity for H1 displacement. Our results suggested a novel mechanism for the HMGB1-mediated modulation of histone H1 binding to DNA. Possible biological consequences of linker histones H1 replacement by HMGB1 for the functioning of chromatin are discussed.

  13. Carbohydrates Through Animation: Preliminary Step

    Directory of Open Access Journals (Sweden)

    J.K. Sugai

    2004-05-01

    Full Text Available Methods of education are changing, so the educational tools must change too. The developmentof the systems of information and communication gave the opportunity to bring new technology tothe learning process. Modern education needs interactive programs that may be available to theacademic community, in order to ease the learning process and sharing of the knowledge. Then,an educational software on Carbohydrates is being developed using concept maps and FLASH-MXanimations program, and approached through six modules. The introduction of Carbohydrates wasmade by the module Carbohydrates on Nature, which shows the animations gures of a teacher andstudents, visiting a farm, identifying the carbohydrates found in vegetables, animals, and microor-ganisms, integrated by links containing short texts to help understanding the structure and functionof carbohydrates. This module was presented, as pilot experiment, to teachers and students, whichdemonstrated satisfaction, and high receptivity, by using animation and interactivitys program asstrategy to biochemistrys education. The present work is part of the project Biochemistry throughanimation, which is having continuity.

  14. Comparative analysis of carbohydrate active enzymes in Clostridium termitidis CT1112 reveals complex carbohydrate degradation ability.

    Directory of Open Access Journals (Sweden)

    Riffat I Munir

    Full Text Available Clostridium termitidis strain CT1112 is an anaerobic, gram positive, mesophilic, cellulolytic bacillus isolated from the gut of the wood-feeding termite, Nasutitermes lujae. It produces biofuels such as hydrogen and ethanol from cellulose, cellobiose, xylan, xylose, glucose, and other sugars, and therefore could be used for biofuel production from biomass through consolidated bioprocessing. The first step in the production of biofuel from biomass by microorganisms is the hydrolysis of complex carbohydrates present in biomass. This is achieved through the presence of a repertoire of secreted or complexed carbohydrate active enzymes (CAZymes, sometimes organized in an extracellular organelle called cellulosome. To assess the ability and understand the mechanism of polysaccharide hydrolysis in C. termitidis, the recently sequenced strain CT1112 of C. termitidis was analyzed for both CAZymes and cellulosomal components, and compared to other cellulolytic bacteria. A total of 355 CAZyme sequences were identified in C. termitidis, significantly higher than other Clostridial species. Of these, high numbers of glycoside hydrolases (199 and carbohydrate binding modules (95 were identified. The presence of a variety of CAZymes involved with polysaccharide utilization/degradation ability suggests hydrolysis potential for a wide range of polysaccharides. In addition, dockerin-bearing enzymes, cohesion domains and a cellulosomal gene cluster were identified, indicating the presence of potential cellulosome assembly.

  15. The lipopolysaccharide-binding protein participating in hemocyte nodule formation in the silkworm Bombyx mori is a novel member of the C-type lectin superfamily with two different tandem carbohydrate-recognition domains.

    Science.gov (United States)

    Koizumi, N; Imamura, M; Kadotani, T; Yaoi, K; Iwahana, H; Sato, R

    1999-01-25

    We recently isolated and characterized the lipopolysaccharide (LPS)-binding protein, BmLBP, from the larval hemolymph of the silkworm Bombyx mori. BmLBP is a pattern recognition molecule that recognizes the lipid A portion of LPS and participates in a cellular defense reaction. This paper describes the cDNA cloning of BmLBP. The deduced amino acid sequence of BmLBP revealed that BmLBP is a novel member of the C-type lectin superfamily with a unique structural feature that consists of two different carbohydrate-recognition domains in tandem, a short and a long form. PMID:9989592

  16. Binding of SGTA to Rpn13 selectively modulates protein quality control.

    Science.gov (United States)

    Leznicki, Pawel; Korac-Prlic, Jelena; Kliza, Katarzyna; Husnjak, Koraljka; Nyathi, Yvonne; Dikic, Ivan; High, Stephen

    2015-09-01

    Rpn13 is an intrinsic ubiquitin receptor of the 26S proteasome regulatory subunit that facilitates substrate capture prior to degradation. Here we show that the C-terminal region of Rpn13 binds to the tetratricopeptide repeat (TPR) domain of SGTA, a cytosolic factor implicated in the quality control of mislocalised membrane proteins (MLPs). The overexpression of SGTA results in a substantial increase in steady-state MLP levels, consistent with an effect on proteasomal degradation. However, this effect is strongly dependent upon the interaction of SGTA with the proteasomal component Rpn13. Hence, overexpression of the SGTA-binding region of Rpn13 or point mutations within the SGTA TPR domain both inhibit SGTA binding to the proteasome and substantially reduce MLP levels. These findings suggest that SGTA can regulate the access of MLPs to the proteolytic core of the proteasome, implying that a protein quality control cycle that involves SGTA and the BAG6 complex can operate at the 19S regulatory particle. We speculate that the binding of SGTA to Rpn13 enables specific polypeptides to escape proteasomal degradation and/or selectively modulates substrate degradation. PMID:26169395

  17. Modulation of [3H]-glutamate binding by serotonin in the rat hippocampus: An autoradiographic study

    International Nuclear Information System (INIS)

    Serotonin (5-HT) added in vitro increased [3H]-glutamate specific binding in the rat hippocampus, reaching statistical significance in layers rich in N-Methyl-D-Aspartate sensitive glutamate receptors. This effect was explained by a significant increase in the apparent affinity of [3H]-glutamate when 5-HT is added in vitro. Two days after lesion of serotonergic afferents to the hippocampus with 5,7- Dihydroxytryptamine [3H]-glutamate binding was significantly decreased in the CA3 region and stratum lacunosum moleculare of the hippocampus, this reduction being reversed by in vitro addition of 10 μM 5-HT. The decrease observed is due to a significant reduction of quisqualate-insensitive (radiatum CA3) and kainate receptors (strata oriens, radiatum, pyramidal of CA3). Five days after lesion [3H]-glutamate binding increased significantly in the CA3 region of the hippocampus but was not different from sham animals in the other hippocampal layers. Two weeks after lesion [3H]-glutamate binding to quisqualate-insensitive receptors was increased in all the hippocampal layers, while kainate and quisqualate-sensitive receptors were not affected. These data are consistent with the possibility that 5-HT is a direct positive modulator of glutamate receptor subtypes

  18. Nuclear Magnetic Resonance Insight into the Multiple Glycosaminoglycan Binding Modes of the Link Module from Human TSG-6.

    Science.gov (United States)

    Park, Younghee; Jowitt, Thomas A; Day, Anthony J; Prestegard, James H

    2016-01-19

    Tumor necrosis factor-stimulated gene-6 (TSG-6) is a hyaluronan (HA)-binding protein that is essential for stabilizing and remodeling the extracellular matrix (ECM) during ovulation and inflammatory disease processes such as arthritis. The Link module, one of the domains of TSG-6, is responsible for binding hyaluronan and other glycosaminoglycans found in the ECM. In this study, we used a well-defined chondroitin sulfate (CS) hexasaccharide (ΔC444S) to determine the structure of the Link module, in solution, in its chondroitin sulfate-bound state. A variety of nuclear magnetic resonance techniques were employed, including chemical shift perturbation, residual dipolar couplings (RDCs), nuclear Overhauser effects, spin relaxation measurements, and paramagnetic relaxation enhancements from a spin-labeled analogue of ΔC444S. The binding site for ΔC444S on the Link module overlapped with that of HA. Surprisingly, ΔC444S binding induced dimerization of the Link module (as confirmed by analytical ultracentrifugation), and a second weak binding site that partially overlapped with a previously identified heparin site was detected. A dimer model was generated using chemical shift perturbations and RDCs as restraints in the docking program HADDOCK. We postulate that the molecular cross-linking enhanced by the multiple binding modes of the Link module might be critical for remodeling the ECM during inflammation/ovulation and might contribute to other functions of TSG-6. PMID:26685054

  19. Modulation of calcium oxalate monohydrate crystallization by citrate through selective binding to atomic steps

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, S R; Wierzbicki, A; Salter, E A; Zepeda, S; Orme, C A; Hoyer, J R; Nancollas, G H; Cody, A M; De Yoreo, J J

    2004-10-19

    The majority of human kidney stones are composed primarily of calcium oxalate monohydrate (COM) crystals. Thus, determining the molecular mechanisms by which urinary constituents modulate calcium oxalate crystallization is crucial for understanding and controlling urolithiassis in humans. A comprehensive molecular-scale view of COM shape modification by citrate, a common urinary constituent, obtained through a combination of in situ atomic force microscopy (AFM) and molecular modeling is now presented. We show that citrate strongly influences the growth morphology and kinetics on the (-101) face but has much lower effect on the (010) face. Moreover, binding energy calculations show that the strength of the citrate-COM interaction is much greater at steps than on terraces and is highly step-specific. The maximum binding energy, -166.5 kJ {center_dot} mol{sup -1}, occurs for the [101] step on the (-101) face. In contrast, the value is only -56.9 kJ {center_dot} mol-1 for the [012] step on the (010) face. The binding energies on the (-101) and (010) terraces are also much smaller, -65.4 and -48.9 kJ {center_dot} mol{sup -1} respectively. All other binding energies lie between these extremes. This high selectivity leads to preferential binding of citrate to the acute [101] atomic steps on the (-101) face. The strong citrate-step interactions on this face leads to pinning of all steps, but the anisotropy in interaction strength results in anisotropic reductions in step kinetics. These anisotropic changes in step kinetics are, in turn, responsible for changes in the shape of macroscopic COM crystals. Thus, the molecular scale growth morphology and the bulk crystal habit in the presence of citrate are similar, and the predictions of molecular simulations are fully consistent with the experimental observations.

  20. A novel flow cytometric HTS assay reveals functional modulators of ATP binding cassette transporter ABCB6.

    Directory of Open Access Journals (Sweden)

    Kishore Polireddy

    Full Text Available ABCB6 is a member of the adenosine triphosphate (ATP-binding cassette family of transporter proteins that is increasingly recognized as a relevant physiological and therapeutic target. Evaluation of modulators of ABCB6 activity would pave the way toward a more complete understanding of the significance of this transport process in tumor cell growth, proliferation and therapy-related drug resistance. In addition, this effort would improve our understanding of the function of ABCB6 in normal physiology with respect to heme biosynthesis, and cellular adaptation to metabolic demand and stress responses. To search for modulators of ABCB6, we developed a novel cell-based approach that, in combination with flow cytometric high-throughput screening (HTS, can be used to identify functional modulators of ABCB6. Accumulation of protoporphyrin, a fluorescent molecule, in wild-type ABCB6 expressing K562 cells, forms the basis of the HTS assay. Screening the Prestwick Chemical Library employing the HTS assay identified four compounds, benzethonium chloride, verteporfin, tomatine hydrochloride and piperlongumine, that reduced ABCB6 mediated cellular porphyrin levels. Validation of the identified compounds employing the hemin-agarose affinity chromatography and mitochondrial transport assays demonstrated that three out of the four compounds were capable of inhibiting ABCB6 mediated hemin transport into isolated mitochondria. However, only verteporfin and tomatine hydrochloride inhibited ABCB6's ability to compete with hemin as an ABCB6 substrate. This assay is therefore sensitive, robust, and suitable for automation in a high-throughput environment as demonstrated by our identification of selective functional modulators of ABCB6. Application of this assay to other libraries of synthetic compounds and natural products is expected to identify novel modulators of ABCB6 activity.

  1. Structure-function analysis indicates that sumoylation modulates DNA-binding activity of STAT1

    Directory of Open Access Journals (Sweden)

    Grönholm Juha

    2012-10-01

    Full Text Available Abstract Background STAT1 is an essential transcription factor for interferon-γ-mediated gene responses. A distinct sumoylation consensus site (ψKxE 702IKTE705 is localized in the C-terminal region of STAT1, where Lys703 is a target for PIAS-induced SUMO modification. Several studies indicate that sumoylation has an inhibitory role on STAT1-mediated gene expression but the molecular mechanisms are not fully understood. Results Here, we have performed a structural and functional analysis of sumoylation in STAT1. We show that deconjugation of SUMO by SENP1 enhances the transcriptional activity of STAT1, confirming a negative regulatory effect of sumoylation on STAT1 activity. Inspection of molecular model indicated that consensus site is well exposed to SUMO-conjugation in STAT1 homodimer and that the conjugated SUMO moiety is directed towards DNA, thus able to form a sterical hindrance affecting promoter binding of dimeric STAT1. In addition, oligoprecipitation experiments indicated that sumoylation deficient STAT1 E705Q mutant has higher DNA-binding activity on STAT1 responsive gene promoters than wild-type STAT1. Furthermore, sumoylation deficient STAT1 E705Q mutant displayed enhanced histone H4 acetylation on interferon-γ-responsive promoter compared to wild-type STAT1. Conclusions Our results suggest that sumoylation participates in regulation of STAT1 responses by modulating DNA-binding properties of STAT1.

  2. Preferential binding of allosteric modulators to active and inactive conformational states of metabotropic glutamate receptors

    Directory of Open Access Journals (Sweden)

    Klein-Seetharaman Judith

    2008-02-01

    Full Text Available Abstract Metabotropic glutamate receptors (mGluRs are G protein coupled receptors that play important roles in synaptic plasticity and other neuro-physiological and pathological processes. Allosteric mGluR ligands are particularly promising drug targets because of their modulatory effects – enhancing or suppressing the response of mGluRs to glutamate. The mechanism by which this modulation occurs is not known. Here, we propose the hypothesis that positive and negative modulators will differentially stabilize the active and inactive conformations of the receptors, respectively. To test this hypothesis, we have generated computational models of the transmembrane regions of different mGluR subtypes in two different conformations. The inactive conformation was modeled using the crystal structure of the inactive, dark state of rhodopsin as template and the active conformation was created based on a recent model of the light-activated state of rhodopsin. Ligands for which the nature of their allosteric effects on mGluRs is experimentally known were docked to the modeled mGluR structures using ArgusLab and Autodock softwares. We find that the allosteric ligand binding pockets of mGluRs are overlapping with the retinal binding pocket of rhodopsin, and that ligands have strong preferences for the active and inactive states depending on their modulatory nature. In 8 out of 14 cases (57%, the negative modulators bound the inactive conformations with significant preference using both docking programs, and 6 out of 9 cases (67%, the positive modulators bound the active conformations. Considering results by the individual programs only, even higher correlations were observed: 12/14 (86% and 8/9 (89% for ArgusLab and 10/14 (71% and 7/9 (78% for AutoDock. These findings strongly support the hypothesis that mGluR allosteric modulation occurs via stabilization of different conformations analogous to those identified in rhodopsin where they are induced by

  3. Modulation of radioligand binding to the GABA(A)-benzodiazepine receptor complex by a new component from Cyperus rotundus.

    Science.gov (United States)

    Ha, Jeoung-Hee; Lee, Kwang-Youn; Choi, Hyoung-Chul; Cho, Jungsook; Kang, Byung-Soo; Lim, Jae-Chul; Lee, Dong-Ung

    2002-01-01

    Four sesquiterpenes, beta-selinene, isocurcumenol, nootkatone and aristolone and one triterpene, oleanolic acid were isolated from the ethylacetate fraction of the rhizomes of Cyperus rotundus and tested for their ability to modulate gamma-aminobutyric acid (GABA(A))-benzodiazepine receptor function by radioligand binding assays using rat cerebrocortical membranes. Among these compounds, only isocurcumenol, one of the newly identified constituents of this plant, was found to inhibit [3H]Ro15-1788 binding and enhance [3H]flunitrazepam binding in the presence of GABA. These results suggest that isocurcumenol may serve as a benzodiazepine receptor agonist and allosterically modulate GABAergic neurotransmission via enhancement of endogenous receptor ligand binding. PMID:11824542

  4. A novel function for the cellulose binding module of cellobiohydrolase I

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A homogeneous cellulose-binding module(CBM)of cellobiohydrolase I(CBHI)from Trichoderma pseudokoningii S-38 was obtained by the limited proteolysis with papain and a series of chromatographs filtration.Analysis of FT-IR spectra demonstrated that the structural changes result from a weakening and splitting of the hydrogen bond network in cellulose by the action of CBMCBHI at 40℃for 24 h.The results of molecular dynamic simulations are consistent with the experimental conclusions, and provide a nanoscopic view of the mechanism that strong and medium H-bonds decreased dramatically when CBM was bound to the cellulose surface.The function of CBMCBHI is not only limited to locating intact CBHI in close proximity with cellulose fibrils,but also is involved in the structural disruption at the fibre surface.The present studies provided considerable evidence for the model of the intramolecular synergy between the catalytic domain and their CBMs.

  5. Neuronal differentiation modulates the dystrophin Dp71d binding to the nuclear matrix

    International Nuclear Information System (INIS)

    The function of dystrophin Dp71 in neuronal cells remains unknown. To approach this issue, we have selected the PC12 neuronal cell line. These cells express both a Dp71f cytoplasmic variant and a Dp71d nuclear isoform. In this study, we demonstrated by electron and confocal microscopy analyses of in situ nuclear matrices and Western blotting evaluation of cell extracts that Dp71d associates with the nuclear matrix. Interestingly, this binding is modulated during NGF-induced neuronal differentiation of PC12 cells with a twofold increment in the differentiated cells, compared to control cells. Also, distribution of Dp71d along the periphery of the nuclear matrix observed in the undifferentiated cells is replaced by intense fluorescent foci localized in Center of the nucleoskeletal structure. In summary, we revealed that Dp71d is a dynamic component of nuclear matrix that might participate in the nuclear modeling occurring during neuronal differentiation

  6. σ1 Receptor Modulation of G-Protein-Coupled Receptor Signaling: Potentiation of Opioid Transduction Independent from Receptor Binding

    Science.gov (United States)

    Kim, Felix J.; Kovalyshyn, Ivanka; Burgman, Maxim; Neilan, Claire; Chien, Chih-Cheng

    2010-01-01

    σ Ligands modulate opioid actions in vivo, with agonists diminishing morphine analgesia and antagonists enhancing the response. Using human BE(2)-C neuroblastoma cells that natively express opioid receptors and human embryonic kidney (HEK) cells transfected with a cloned μ opioid receptor, we now demonstrate a similar modulation of opioid function, as assessed by guanosine 5′-O-(3-[35S]thio)triphosphate ([35S]GTPγS) binding, by σ1 receptors. σ Ligands do not compete opioid receptor binding. Administered alone, neither σ agonists nor antagonists significantly stimulated [35S]GTPγS binding. Yet σ receptor selective antagonists, but not agonists, shifted the EC50 of opioid-induced stimulation of [35S]GTPγS binding by 3- to 10-fold to the left. This enhanced potency was seen without a change in the efficacy of the opioid, as assessed by the maximal stimulation of [35S]GTPγS binding. σ1 Receptors physically associate with μ opioid receptors, as shown by coimmunoprecipitation studies in transfected HEK cells, implying a direct interaction between the proteins. Thus, σ receptors modulate opioid transduction without influencing opioid receptor binding. RNA interference knockdown of σ1 in BE(2)-C cells also potentiated μ opioid-induced stimulation of [35S]GTPγS binding. These modulatory actions are not limited to μ and δ opioid receptors. In mouse brain membrane preparations, σ1-selective antagonists also potentiated both opioid receptor and muscarinic acetylcholine receptor-mediated stimulation of [35S]GTPγS binding, suggesting a broader role for σ receptors in modulating G-protein-coupled receptor signaling. PMID:20089882

  7. Sigma 1 receptor modulation of G-protein-coupled receptor signaling: potentiation of opioid transduction independent from receptor binding.

    Science.gov (United States)

    Kim, Felix J; Kovalyshyn, Ivanka; Burgman, Maxim; Neilan, Claire; Chien, Chih-Cheng; Pasternak, Gavril W

    2010-04-01

    sigma Ligands modulate opioid actions in vivo, with agonists diminishing morphine analgesia and antagonists enhancing the response. Using human BE(2)-C neuroblastoma cells that natively express opioid receptors and human embryonic kidney (HEK) cells transfected with a cloned mu opioid receptor, we now demonstrate a similar modulation of opioid function, as assessed by guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTP gamma S) binding, by sigma(1) receptors. sigma Ligands do not compete opioid receptor binding. Administered alone, neither sigma agonists nor antagonists significantly stimulated [(35)S]GTP gamma S binding. Yet sigma receptor selective antagonists, but not agonists, shifted the EC(50) of opioid-induced stimulation of [(35)S]GTP gamma S binding by 3- to 10-fold to the left. This enhanced potency was seen without a change in the efficacy of the opioid, as assessed by the maximal stimulation of [(35)S]GTP gamma S binding. sigma(1) Receptors physically associate with mu opioid receptors, as shown by coimmunoprecipitation studies in transfected HEK cells, implying a direct interaction between the proteins. Thus, sigma receptors modulate opioid transduction without influencing opioid receptor binding. RNA interference knockdown of sigma(1) in BE(2)-C cells also potentiated mu opioid-induced stimulation of [(35)S]GTP gamma S binding. These modulatory actions are not limited to mu and delta opioid receptors. In mouse brain membrane preparations, sigma(1)-selective antagonists also potentiated both opioid receptor and muscarinic acetylcholine receptor-mediated stimulation of [(35)S]GTP gamma S binding, suggesting a broader role for sigma receptors in modulating G-protein-coupled receptor signaling. PMID:20089882

  8. Liver Fatty acid binding protein (L-Fabp) modulates murine stellate cell activation and diet induced nonalcoholic fatty liver disease

    OpenAIRE

    Chen, Anping; Tang, Youcai; Davis, Victoria; Hsu, Fong-Fu; Kennedy, Susan M; Song, Haowei; Turk, John; Brunt, Elizabeth M.; Newberry, Elizabeth P.; Davidson, Nicholas O.

    2013-01-01

    Activation of hepatic stellate cells (HSCs) is crucial to the development of fibrosis in nonalcoholic fatty liver disease. Quiescent HSCs contain lipid droplets (LDs), whose depletion upon activation induces a fibrogenic gene program. Here we show that liver fatty acid-binding protein (L-Fabp), an abundant cytosolic protein that modulates fatty acid (FA) metabolism in enterocytes and hepatocytes also modulates HSC FA utilization and in turn regulates the fibrogenic program. L-Fabp expression ...

  9. High-throughput screening of monoclonal antibodies against plant cell wall glycans by hierarchical clustering of their carbohydrate microarray binding profiles

    DEFF Research Database (Denmark)

    Moller, Isabel; Marcus, Susan E.; Haeger, Ash;

    2007-01-01

    Antibody-producing hybridoma cell lines were created following immunisation with a crude extract of cell wall polymers from the plant Arabidopsis thaliana. In order to rapidly screen the specificities of individual monoclonal antibodies (mAbs), their binding to microarrays containing 50 cell wall...... investigated using subsequent immunochemical and biochemical analyses and two novel mAbs are described in detail. mAb LM13 binds to an arabinanase-sensitive pectic epitope and mAb LM14, binds to an epitope occurring on arabinogalactan-proteins. Both mAbs display novel patterns of recognition of cell walls in...... plant materials....

  10. An in silico analysis of the binding modes and binding affinities of small molecule modulators of PDZ-peptide interactions.

    Directory of Open Access Journals (Sweden)

    Garima Tiwari

    Full Text Available Inhibitors of PDZ-peptide interactions have important implications in a variety of biological processes including treatment of cancer and Parkinson's disease. Even though experimental studies have reported characterization of peptidomimetic inhibitors of PDZ-peptide interactions, the binding modes for most of them have not been characterized by structural studies. In this study we have attempted to understand the structural basis of the small molecule-PDZ interactions by in silico analysis of the binding modes and binding affinities of a set of 38 small molecules with known K(i or K(d values for PDZ2 and PDZ3 domains of PSD-95 protein. These two PDZ domains show differential selectivity for these compounds despite having a high degree of sequence similarity and almost identical peptide binding pockets. Optimum binding modes for these ligands for PDZ2 and PDZ3 domains were identified by using a novel combination of semi-flexible docking and explicit solvent molecular dynamics (MD simulations. Analysis of the binding modes revealed most of the peptidomimectic ligands which had high K(i or K(d moved away from the peptide binding pocket, while ligands with high binding affinities remained in the peptide binding pocket. The differential specificities of the PDZ2 and PDZ3 domains primarily arise from differences in the conformation of the loop connecting βB and βC strands, because this loop interacts with the N-terminal chemical moieties of the ligands. We have also computed the MM/PBSA binding free energy values for these 38 compounds with both the PDZ domains from multiple 5 ns MD trajectories on each complex i.e. a total of 228 MD trajectories of 5 ns length each. Interestingly, computational binding free energies show good agreement with experimental binding free energies with a correlation coefficient of approximately 0.6. Thus our study demonstrates that combined use of docking and MD simulations can help in identification of potent inhibitors

  11. A novel fibronectin binding motif in MSCRAMMs targets F3 modules.

    Directory of Open Access Journals (Sweden)

    Sabitha Prabhakaran

    Full Text Available BACKGROUND: BBK32 is a surface expressed lipoprotein and fibronectin (Fn-binding microbial surface component recognizing adhesive matrix molecule (MSCRAMM of Borrelia burgdorferi, the causative agent of Lyme disease. Previous studies from our group showed that BBK32 is a virulence factor in experimental Lyme disease and located the Fn-binding region to residues 21-205 of the lipoprotein. METHODOLOGY/PRINCIPAL FINDINGS: Studies aimed at identifying interacting sites between BBK32 and Fn revealed an interaction between the MSCRAMM and the Fn F3 modules. Further analysis of this interaction showed that BBK32 can cause the aggregation of human plasma Fn in a similar concentration-dependent manner to that of anastellin, the superfibronectin (sFn inducing agent. The resulting Fn aggregates are conformationally distinct from plasma Fn as indicated by a change in available thermolysin cleavage sites. Recombinant BBK32 and anastellin affect the structure of Fn matrices formed by cultured fibroblasts and inhibit endothelial cell proliferation similarly. Within BBK32, we have located the sFn-forming activity to a region between residues 160 and 175 which contains two sequence motifs that are also found in anastellin. Synthetic peptides mimicking these motifs induce Fn aggregation, whereas a peptide with a scrambled sequence motif was inactive, suggesting that these motifs represent the sFn-inducing sequence. CONCLUSIONS/SIGNIFICANCE: We conclude that BBK32 induces the formation of Fn aggregates that are indistinguishable from those formed by anastellin. The results of this study provide evidence for how bacteria can target host proteins to manipulate host cell activities.

  12. Dansyl labeling to modulate the relative affinity of bile acids for the binding sites of human serum albumin.

    Science.gov (United States)

    Rohacova, Jana; Sastre, German; Marin, M Luisa; Miranda, Miguel A

    2011-09-01

    Binding of natural bile acids to human serum albumin (HSA) is an important step in enterohepatic circulation and provides a measure of liver function. In this article, we report on the use of four dansyl (Dns) derivatives of cholic acid (ChA) to demonstrate a regiodifferentiation in their relative affinity for the two binding sites of HSA. Using both steady-state and time-resolved fluorescence, formation of Dns-ChA@HSA complexes was confirmed; the corresponding binding constants were determined, and their distribution between bulk solution and HSA microenvironment was estimated. By means of energy transfer from Trp to the Dns moiety, donor-acceptor distances were estimated (21-25 Å) and found to be compatible with both site 1 and site 2 occupancies. Nevertheless, titration using warfarin and ibuprofen as specific displacement probes clearly indicated that 3α- and 3β-Dns-ChA bind to HSA at site 2, whereas their C-7 regioisomers bind to HSA at site 1. Furthermore, the C-3-labeled compounds are displaced by lithocholic acid, whereas they are insensitive to ChA, confirming the assumption that the former binds to HSA at site 2. Thus, Dns labeling provides a useful tool to modulate the relative affinity of ChA to the major binding sites of HSA and, in combination with other fluorescent ChA analogs, to mimic the binding behavior of natural bile acids. PMID:21797258

  13. Carbohydrate Metabolism Disorders

    Science.gov (United States)

    ... in your body tissues. If you have a metabolic disorder, something goes wrong with this process. Carbohydrate metabolism disorders are a group of metabolic disorders. Normally your enzymes break carbohydrates down into glucose ( ...

  14. Comparison of the binding properties of the mushroom Marasmius oreades lectin and Griffonia simplicifolia I-B isolectin to alphagalactosyl carbohydrate antigens in the surface phase

    DEFF Research Database (Denmark)

    Kirkeby, Svend; Winter, Harry C; Goldstein, Irwin J

    2004-01-01

    The binding of two alpha-galactophilic lectins, Marasmius oreades agglutinin (MOA), and Griffonia simplicifolia I isolectin B(4) (GS I-B(4)) to neoglycoproteins and natural glycoproteins were compared in a surface phase assay. Neoglycoproteins carrying various alpha-galactosylated glycans and lam...

  15. Modulation of the binding of basic fibroblast growth factor and heparanase activity by purified λ-carrageenan oligosaccharides.

    Science.gov (United States)

    Niu, Ting-Ting; Zhang, Dong-Sheng; Chen, Hai-Min; Yan, Xiao-Jun

    2015-07-10

    Inhibitors of angiogenesis and tumor metastasis are increasingly emerging as promising agents for cancer therapy. Here, we report λ-carrageenan oligosaccharides (λ-COs), highly-sulfated oligosaccharides acting as a basic fibroblast growth factor (bFGF) antagonist and heparanase inhibitor. λ-COs with degree of polymerization (DP) from 2 to 8 degraded by λ-carrageenase were separated and purified. The structures were identified by mass spectrometry. The activities of λ-COs are closely related with DP. λ-COs showed no cytotoxicity, but inactivated bFGF-induced cell proliferation; among them, λ-carraheptaose showed highest capability. Only λ-carraheptaose can effectively bind to bFGF. Binding kinetics showed that λ-carraheptaose and suramin had different binding modes, i.e., suramin displayed a fast association and fast dissociation, but λ-carraheptaose exhibited a slow association and slow dissociation. In addition, λ-COs showed the highest heparanase inhibitory ability and abolished the endothelial cell invasion. Thus, λ-COs may provide a tool to develop of new carbohydrate-based therapeutics against cancer and angiogenesis. PMID:25857962

  16. Dengue virus utilizes calcium modulating cyclophilin-binding ligand to subvert apoptosis.

    Science.gov (United States)

    Li, Jianling; Huang, Rongjie; Liao, Weiyong; Chen, Zhaoni; Zhang, Shijun; Huang, Renbin

    2012-02-24

    Dengue virus (DENV) capsid (C) proteins are the major structural component of virus particles. This study aimed to identify the host interacting partners of DENV C protein that could contribute to viral pathogenesis. DENV C protein was screened against human liver cDNA yeast two-hybrid library. We identified calcium modulating cyclophilin-binding ligand (CAML) as a novel interacting partner of DENV C protein. We report for the first time that CAML influenced DENV production. DENV production was significantly attenuated in CAML knock-down cells at 36h post-infection. CAML did not influence DENV entry, genome uncoating, viral transcription, viral translation and virus secretion. Our study pinpointed that CAML influenced the process of apoptosis by altering mitochondrial membrane potential and caspase-3 activation from 36h post-infection. Over-expression of CAML protected Huh7 cells from apoptosis and knock down of CAML favoured apoptosis following infection with DENV. We also showed that CAML expression was up-regulated during DENV infection. Increased CAML levels protected DENV-infected cells from undergoing apoptosis by preventing mitochondrial damage and caspase-3 activation which in turn favoured DENV production from 36h post-infection. Overall, this study demonstrated that DENV manipulated the levels of CAML to subvert the apoptotic process which in turn favoured efficient virus production. PMID:22281498

  17. Alternate carbohydrate and nontraditional inducer leads to increased productivity of a collagen binding domain fusion protein via fed-batch fermentation.

    Science.gov (United States)

    Fruchtl, McKinzie; Sakon, Joshua; Beitle, Robert

    2016-05-20

    The production of collagen binding domain fusion proteins is of significant importance because of their potential as therapeutic biomaterials. It was previously reported that the expression of collagen-binding domain fusion proteins in Escherichia coli was higher when expressed using lactose as an inducer and chemically defined growth media on a shake flask scale. In an effort to further investigate factors that affect expression levels on a fed-batch scale, alternative induction techniques were tested in conjunction with fed-batch fermentation. In this paper, we discuss ten fed-batch fermentation experiments utilizing either glucose or glycerol feed and using lactose or isopropyl-β-d-thiogalactopyranoside (IPTG) as an induction source. It was found that glycerol-fed fermentations induced with lactose allowed for greater expression of target protein, though lesser cell densities were achieved. PMID:26975843

  18. A CBM20 low-affinity starch-binding domain from glucan, water dikinase

    DEFF Research Database (Denmark)

    Christiansen, Camilla; Abou Hachem, Maher; Glaring, M.A.;

    2009-01-01

    from GA. Homology modelling identified possible structural elements responsible for this weak binding of the intracellular CBM20. Differential binding of fluorescein-labelled GWD3 and GA modules to starch granules in vitro was demonstrated by confocal laser scanning microscopy and yellow fluorescent......The family 20 carbohydrate-binding module (CBM20) of the Arabidopsis starch phosphorylator glucan, water dikinase 3 (GWD3) was heterologously produced and its properties were compared to the CBM20 from a fungal glucoamylase (GA). The GWD3 CBM20 has 50-fold lower affinity for cyclodextrins than that...... protein-tagged GWD3 CBM20 expressed in tobacco confirmed binding to starch granules in planta....

  19. Enthalpy-Entropy Compensation in the Binding of Modulators at Ionotropic Glutamate Receptor GluA2

    DEFF Research Database (Denmark)

    Krintel, Christian; Francotte, Pierre; Pickering, Darryl S;

    2016-01-01

    ligand binding domains and act by stabilizing the agonist-bound open-channel conformation. The driving forces behind the binding of these modulators can be significantly altered with only minor substitutions to the parent molecules. In this study, we show that changing the 7-fluorine substituent of...... Ser-497 to the hydroxyl group of 5, whereas the unfavorable entropy might be due to desolvation effects combined with a conformational restriction of Ser-497 and 5. In summary, this study shows a remarkable example of enthalpy-entropy compensation in drug development accompanied with a likely...

  20. Carbohydrate restriction and dietary cholesterol modulate the expression of HMG-CoA reductase and the LDL receptor in mononuclear cells from adult men

    Directory of Open Access Journals (Sweden)

    Volek Jeff S

    2007-11-01

    Full Text Available Abstract The liver is responsible for controlling cholesterol homeostasis in the body. HMG-CoA reductase and the LDL receptor (LDL-r are involved in this regulation and are also ubiquitously expressed in all major tissues. We have previously shown in guinea pigs that there is a correlation in gene expression of HMG-CoA reductase and the LDL-r between liver and mononuclear cells. The present study evaluated human mononuclear cells as a surrogate for hepatic expression of these genes. The purpose was to evaluate the effect of dietary carbohydrate restriction with low and high cholesterol content on HMG-CoA reductase and LDL-r mRNA expression in mononuclear cells. All subjects were counseled to consume a carbohydrate restricted diet with 10–15% energy from carbohydrate, 30–35% energy from protein and 55–60% energy from fat. Subjects were randomly assigned to either EGG (640 mg/d additional dietary cholesterol or SUB groups [equivalent amount of egg substitute (0 dietary cholesterol contributions per day] for 12 weeks. At the end of the intervention, there were no changes in plasma total or LDL cholesterol (LDL-C compared to baseline (P > 0.10 or differences in plasma total or LDL-C between groups. The mRNA abundance for HMG-CoA reductase and LDL-r were measured in mononuclear cells using real time PCR. The EGG group showed a significant decrease in HMG-CoA reductase mRNA (1.98 ± 1.26 to 1.32 ± 0.92 arbitrary units P

  1. Sequence analyses of fimbriae subunit FimA proteins on Actinomyces naeslundii genospecies 1 and 2 and Actinomyces odontolyticus with variant carbohydrate binding specificities

    Directory of Open Access Journals (Sweden)

    Persson Karina

    2006-05-01

    Full Text Available Abstract Background Actinomyces naeslundii genospecies 1 and 2 express type-2 fimbriae (FimA subunit polymers with variant Galβ binding specificities and Actinomyces odontolyticus a sialic acid specificity to colonize different oral surfaces. However, the fimbrial nature of the sialic acid binding property and sequence information about FimA proteins from multiple strains are lacking. Results Here we have sequenced fimA genes from strains of A.naeslundii genospecies 1 (n = 4 and genospecies 2 (n = 4, both of which harboured variant Galβ-dependent hemagglutination (HA types, and from A.odontolyticus PK984 with a sialic acid-dependent HA pattern. Three unique subtypes of FimA proteins with 63.8–66.4% sequence identity were present in strains of A. naeslundii genospecies 1 and 2 and A. odontolyticus. The generally high FimA sequence identity (>97.2% within a genospecies revealed species specific sequences or segments that coincided with binding specificity. All three FimA protein variants contained a signal peptide, pilin motif, E box, proline-rich segment and an LPXTG sorting motif among other conserved segments for secretion, assembly and sorting of fimbrial proteins. The highly conserved pilin, E box and LPXTG motifs are present in fimbriae proteins from other Gram-positive bacteria. Moreover, only strains of genospecies 1 were agglutinated with type-2 fimbriae antisera derived from A. naeslundii genospecies 1 strain 12104, emphasizing that the overall folding of FimA may generate different functionalities. Western blot analyses with FimA antisera revealed monomers and oligomers of FimA in whole cell protein extracts and a purified recombinant FimA preparation, indicating a sortase-independent oligomerization of FimA. Conclusion The genus Actinomyces involves a diversity of unique FimA proteins with conserved pilin, E box and LPXTG motifs, depending on subspecies and associated binding specificity. In addition, a sortase independent

  2. Module structure of interphotoreceptor retinoid-binding protein (IRBP may provide bases for its complex role in the visual cycle – structure/function study of Xenopus IRBP

    Directory of Open Access Journals (Sweden)

    Ghosh Debashis

    2007-08-01

    Full Text Available Abstract Background Interphotoreceptor retinoid-binding protein's (IRBP remarkable module structure may be critical to its role in mediating the transport of all-trans and 11-cis retinol, and 11-cis retinal between rods, cones, RPE and Müller cells during the visual cycle. We isolated cDNAs for Xenopus IRBP, and expressed and purified its individual modules, module combinations, and the full-length polypeptide. Binding of all-trans retinol, 11-cis retinal and 9-(9-anthroyloxy stearic acid were characterized by fluorescence spectroscopy monitoring ligand-fluorescence enhancement, quenching of endogenous protein fluorescence, and energy transfer. Finally, the X-ray crystal structure of module-2 was used to predict the location of the ligand-binding sites, and compare their structures among modules using homology modeling. Results The full-length Xenopus IRBP cDNA codes for a polypeptide of 1,197 amino acid residues beginning with a signal peptide followed by four homologous modules each ~300 amino acid residues in length. Modules 1 and 3 are more closely related to each other than either is to modules 2 and 4. Modules 1 and 4 are most similar to the N- and C-terminal modules of the two module IRBP of teleosts. Our data are consistent with the model that vertebrate IRBPs arose through two genetic duplication events, but that the middle two modules were lost during the evolution of the ray finned fish. The sequence of the expressed full-length IRBP was confirmed by liquid chromatography-tandem mass spectrometry. The recombinant full-length Xenopus IRBP bound all-trans retinol and 11-cis retinaldehyde at 3 to 4 sites with Kd's of 0.2 to 0.3 μM, and was active in protecting all-trans retinol from degradation. Module 2 showed selectivity for all-trans retinol over 11-cis retinaldehyde. The binding data are correlated to the results of docking of all-trans-retinol to the crystal structure of Xenopus module 2 suggesting two ligand-binding sites

  3. Steroid hormone modulation of 3H-prostaglanding E1 binding to bovine corpus leteum cell membranes.

    Science.gov (United States)

    Rao, C V

    1975-04-01

    The specific binding of 3H-prostaglandin E1 (3H-PGE1) to bovine corpus luteum cell membranes was not affected by cholesterol or various progestins at concentrations of up to 9.0x10-minus-6M. At concentrations above 2.5 x 10-minus-6M; estrone, 17beta-estradiol (but not 17alpha-estradiol or 17beta-estradiol glucuronide), estroil, equilin, D-equilenin, 17-ethynyl estradiol, diethylstilbestrol, cortisol, corticosterone, deoxycorticosterone and aldosterone inhibited specific binding of 3H-PGE1. On the other hand, testosterone and dihydrotestosterone (DHT) (but not androstenedione) significantly enhanced 3H-PGE1 binding. These findings permitted the following correlations between steroid structure and modulation of 3H-PGE1 binding: steroids with a free phenolic ring and a 17beta-hydroxyl or 17-keto group or C-21 steroids with a C-20 ketone and a C-21 hydroxy group decrease, whereas C-19 steroids with a C-17 hydroxy group enhance specific binding of 3H-PGE1. PGE receptors are heterogeneous with respect to affinity for 3H-PGE1. The steroids that decreased 3H-PGE1 binding caused a lowering to a complete loss of low affinity PGE receptors. Steroids that increased 3H-PGE1 binding caused appearance of new low affinity PGE receptors. Association rate constants for 3H-PGE1 binding were decreased by 17beta-estradiol (61%) and increased by DHT (59%). PMID:168618

  4. Carbohydrates in Supramolecular Chemistry.

    Science.gov (United States)

    Delbianco, Martina; Bharate, Priya; Varela-Aramburu, Silvia; Seeberger, Peter H

    2016-02-24

    Carbohydrates are involved in a variety of biological processes. The ability of sugars to form a large number of hydrogen bonds has made them important components for supramolecular chemistry. We discuss recent advances in the use of carbohydrates in supramolecular chemistry and reveal that carbohydrates are useful building blocks for the stabilization of complex architectures. Systems are presented according to the scaffold that supports the glyco-conjugate: organic macrocycles, dendrimers, nanomaterials, and polymers are considered. Glyco-conjugates can form host-guest complexes, and can self-assemble by using carbohydrate-carbohydrate interactions and other weak interactions such as π-π interactions. Finally, complex supramolecular architectures based on carbohydrate-protein interactions are discussed. PMID:26702928

  5. Structural and Functional Studies of Peptide-Carbohydrate Mimicry

    Science.gov (United States)

    Johnson, Margaret A.; Pinto, B. Mario

    Certain peptides act as molecular mimics of carbohydrates in that they are specifically recognized by carbohydrate-binding proteins. Peptides that bind to anti-carbohydrate antibodies, carbohydrate-processing enzymes, and lectins have been identified. These peptides are potentially useful as vaccines and therapeutics; for example, immunologically functional peptide molecular mimics (mimotopes) can strengthen or modify immune responses induced by carbohydrate antigens. However, peptides that bind specifically to carbohydrate-binding proteins may not necessarily show the corresponding biological activity, and further selection based on biochemical studies is always required. The degree of structural mimicry required to generate the desired biological activity is therefore an interesting question. This review will discuss recent structural studies of peptide-carbohydrate mimicry employing NMR spectroscopy, X-ray crystallography, and molecular modeling, as well as relevant biochemical data. These studies provide insights into the basis of mimicry at the molecular level. Comparisons with other carbohydrate-mimetic compounds, namely proteins and glycopeptides, will be drawn. Finally, implications for the design of new therapeutic compounds will also be presented.

  6. Modulation of gene expression via overlapping binding sites exerted by ZNF143, Notch1 and THAP11.

    Science.gov (United States)

    Ngondo-Mbongo, Richard Patryk; Myslinski, Evelyne; Aster, Jon C; Carbon, Philippe

    2013-04-01

    ZNF143 is a zinc-finger protein involved in the transcriptional regulation of both coding and non-coding genes from polymerase II and III promoters. Our study deciphers the genome-wide regulatory role of ZNF143 in relation with the two previously unrelated transcription factors Notch1/ICN1 and thanatos-associated protein 11 (THAP11) in several human and murine cells. We show that two distinct motifs, SBS1 and SBS2, are associated to ZNF143-binding events in promoters of >3000 genes. Without co-occupation, these sites are also bound by Notch1/ICN1 in T-lymphoblastic leukaemia cells as well as by THAP11, a factor involved in self-renewal of embryonic stem cells. We present evidence that ICN1 binding overlaps with ZNF143 binding events at the SBS1 and SBS2 motifs, whereas the overlap occurs only at SBS2 for THAP11. We demonstrate that the three factors modulate expression of common target genes through the mutually exclusive occupation of overlapping binding sites. The model we propose predicts that the binding competition between the three factors controls biological processes such as rapid cell growth of both neoplastic and stem cells. Overall, our study establishes a novel relationship between ZNF143, THAP11 and ICN1 and reveals important insights into ZNF143-mediated gene regulation. PMID:23408857

  7. Characterisation of the effect of ion channel modulators on I1-imidazoline binding sites in bovine adrenal medulla

    International Nuclear Information System (INIS)

    Full text: The structure of I1-imidazoline binding sites is still unknown and we have proposed that they represent ion channels (i). In these experiments we characterised the effects of the known ion channel modulators methyltriphenylphosphonium (MTPP), 4-aminopyridine (4-AP) and tetraethyl ammonium (TEA) on [3H] clonidine binding in bovine adrenal medullary membranes as these membranes have a relatively well defined I1-imidazoline binding site (Molderings et al, 1993). Membranes from bovine adrenal medulla's were prepared by a minor modification of the method of Rapier et al. [3H] Clonidine binding was performed by the method of Ernsberger et al (3), with [3H] clonidine (62 Ci/mmol) used at a final concentration of 5 nM. [3H] Clonidine binding was displaced from bovine adrenal medullary membranes by adrenergic drugs with the order of potency being oxymetazoline > clonidine > moxonidine = idazoxan >> yonimbine. This order of potency is consistent with previous studies of I1-imidazoline binding sites (4). Non-linear curve fitting to this data was consistent with a single site model. Both TEA and 4-AP displaced [ H] clonidine with similar potency to its effect on ion channels, TEA having a EC>> of 54 ± 0.3 μM (n=3). The displacement of [3H] clonidine produced by both TEA and 4-AP also fitted to a single site model. Displacement of [3 H] clonidine by MTPP fitted a two site model (p1-imidazoline binding sites defined with [3H] clonidine may represent ion channels. We have used this data to perform molecular modelling and have determined a common conformation of I1-prefering ligands which will aid in the development of I1-selective ligands in the future. Copyright (1998) Australian Neuroscience Society

  8. Crystal Structure of an Integron Gene Cassette-Associated Protein from Vibrio cholerae Identifies a Cationic Drug-Binding Module

    Energy Technology Data Exchange (ETDEWEB)

    Deshpande, Chandrika N.; Harrop, Stephen J.; Boucher, Yan; Hassan, Karl A.; Di Leo, Rosa; Xu, Xiaohui; Cui, Hong; Savchenko, Alexei; Chang, Changsoo; Labbate, Maurizio; Paulsen, Ian T.; Stokes, H.W.; Curmi, Paul M.G.; Mabbutt, Bridget C. (MIT); (UT-Australia); (Macquarie); (Toronto); (New South)

    2012-02-15

    The direct isolation of integron gene cassettes from cultivated and environmental microbial sources allows an assessment of the impact of the integron/gene cassette system on the emergence of new phenotypes, such as drug resistance or virulence. A structural approach is being exploited to investigate the modularity and function of novel integron gene cassettes. We report the 1.8 {angstrom} crystal structure of Cass2, an integron-associated protein derived from an environmental V. cholerae. The structure defines a monomeric beta-barrel protein with a fold related to the effector-binding portion of AraC/XylS transcription activators. The closest homologs of Cass2 are multi-drug binding proteins, such as BmrR. Consistent with this, a binding pocket made up of hydrophobic residues and a single glutamate side chain is evident in Cass2, occupied in the crystal form by polyethylene glycol. Fluorescence assays demonstrate that Cass2 is capable of binding cationic drug compounds with submicromolar affinity. The Cass2 module possesses a protein interaction surface proximal to its drug-binding cavity with features homologous to those seen in multi-domain transcriptional regulators. Genetic analysis identifies Cass2 to be representative of a larger family of independent effector-binding proteins associated with lateral gene transfer within Vibrio and closely-related species. We propose that the Cass2 family not only has capacity to form functional transcription regulator complexes, but represents possible evolutionary precursors to multi-domain regulators associated with cationic drug compounds.

  9. Crystal structure of an integron gene cassette-associated protein from Vibrio cholerae identifies a cationic drug-binding module.

    Directory of Open Access Journals (Sweden)

    Chandrika N Deshpande

    Full Text Available The direct isolation of integron gene cassettes from cultivated and environmental microbial sources allows an assessment of the impact of the integron/gene cassette system on the emergence of new phenotypes, such as drug resistance or virulence. A structural approach is being exploited to investigate the modularity and function of novel integron gene cassettes.We report the 1.8 Å crystal structure of Cass2, an integron-associated protein derived from an environmental V. cholerae. The structure defines a monomeric beta-barrel protein with a fold related to the effector-binding portion of AraC/XylS transcription activators. The closest homologs of Cass2 are multi-drug binding proteins, such as BmrR. Consistent with this, a binding pocket made up of hydrophobic residues and a single glutamate side chain is evident in Cass2, occupied in the crystal form by polyethylene glycol. Fluorescence assays demonstrate that Cass2 is capable of binding cationic drug compounds with submicromolar affinity. The Cass2 module possesses a protein interaction surface proximal to its drug-binding cavity with features homologous to those seen in multi-domain transcriptional regulators.Genetic analysis identifies Cass2 to be representative of a larger family of independent effector-binding proteins associated with lateral gene transfer within Vibrio and closely-related species. We propose that the Cass2 family not only has capacity to form functional transcription regulator complexes, but represents possible evolutionary precursors to multi-domain regulators associated with cationic drug compounds.

  10. Fluoxetine (Prozac) Binding to Serotonin Transporter Is Modulated by Chloride and Conformational Changes

    OpenAIRE

    Tavoulari, Sotiria; Forrest, Lucy R.; Rudnick, Gary

    2009-01-01

    Serotonin transporter (SERT) is the main target for widely used antidepressant agents. Several of these drugs, including imipramine, citalopram, sertraline, and fluoxetine (Prozac), bound more avidly to SERT in the presence of Cl–. In contrast, Cl– did not enhance cocaine or paroxetine binding. A Cl– binding site recently identified in SERT, and shown to be important for Cl– dependent transport, was also critical for the Cl– dependence of antidepressant affinity. Mutation of the residues cont...

  11. Structural proof of a dimeric positive modulator bridging two identical AMPA receptor-binding sites

    DEFF Research Database (Denmark)

    Kaae, Birgitte Høiriis; Harpsøe, Kasper; Kastrup, Jette Sandholm Jensen;

    2007-01-01

    have dramatically increased potencies, more than three orders of magnitude higher than the corresponding monomers. Dimer (R,R)-2a was cocrystallized with the GluR2-S1S2J construct, and an X-ray crystallographic analysis showed (R,R)-2a to bridge two identical binding pockets on two neighboring GluR2...... subunits. Thus, this is biostructural evidence of a homomeric dimer bridging two identical receptor-binding sites....

  12. Modulation of CRISPR locus transcription by the repeat-binding protein Cbp1 in Sulfolobus

    DEFF Research Database (Denmark)

    Deng, Ling; Kenchappa, Chandra Shekar; Peng, Xu;

    2012-01-01

    CRISPR loci are essential components of the adaptive immune system of archaea and bacteria. They consist of long arrays of repeats separated by DNA spacers encoding guide RNAs (crRNA), which target foreign genetic elements. Cbp1 (CRISPR DNA repeat binding protein) binds specifically to the multiple...... direct repeats of CRISPR loci of members of the acidothermophilic, crenarchaeal order Sulfolobales. cbp1 gene deletion from Sulfolobus islandicus REY15A produced a strong reduction in pre-crRNA yields from CRISPR loci but did not inhibit the foreign DNA targeting capacity of the CRISPR/Cas system....... Conversely, overexpression of Cbp1 in S. islandicus generated an increase in pre-crRNA yields while the level of reverse strand transcripts from CRISPR loci remained unchanged. It is proposed that Cbp1 modulates production of longer pre-crRNA transcripts from CRISPR loci. A possible mechanism is that it...

  13. The ankyrin repeats of G9a and GLP histone methyltransferases are mono- and dimethyllysine binding modules

    Energy Technology Data Exchange (ETDEWEB)

    Collins, Robert E.; Northrop, Jeffrey P.; Horton, John R.; Lee, David Y.; Zhang, Xing; Stallcup, Michael R.; Cheng, Xiaodong (USC); (Emory)

    2008-03-19

    Histone modifications have important roles in transcriptional control, mitosis and heterochromatin formation. G9a and G9a-like protein (GLP) are euchromatin-associated methyltransferases that repress transcription by mono- and dimethylating histone H3 at Lys9 (H3K9). Here we demonstrate that the ankyrin repeat domains of G9a and GLP bind with strong preference to N-terminal H3 peptides containing mono- or dimethyl K9. X-ray crystallography revealed the basis for recognition of the methylated lysine by a partial hydrophobic cage with three tryptophans and one acidic residue. Substitution of key residues in the cage eliminated the H3 tail interaction. Hence, G9a and GLP contain a new type of methyllysine binding module (the ankyrin repeat domains) and are the first examples of protein (histone) methyltransferases harboring in a single polypeptide the activities that generate and read the same epigenetic mark.

  14. The antimicrobial antiproteinase elafin binds to lipopolysaccharide and modulates macrophage responses.

    Science.gov (United States)

    McMichael, Jonathan W; Roghanian, Ali; Jiang, Lu; Ramage, Robert; Sallenave, Jean-Michel

    2005-05-01

    Lipopolysaccharides (LPS) of the outer membrane of Gram-negative bacteria represent a primary target for innate immune responses. We demonstrate here that the antimicrobial/anti-neutrophil elastase full-length elafin (FL-EL) is able to bind both smooth and rough forms of LPS. The N-terminus was shown to bind both forms of LPS more avidly. We demonstrate that the lipid A core-binding proteins polymyxin B (PB) and LPS-binding protein (LBP) compete with elafin for binding, and that LBP is able to displace prebound elafin from LPS. When PB, FL-EL, N-EL, and C-EL were pre-incubated with LPS before addition to immobilized LBP, PB was the most potent inhibitor of LPS transfer to LBP. These data prompted us to examine the biological consequences of elafin binding to LPS, using tumor necrosis factor (TNF)-alpha release by murine macrophages. In serum-containing conditions, N-EL had no effect, whereas both C-EL and FL-EL inhibited TNF-alpha production. In serum-free conditions, however, all moieties had a stimulatory activity on TNF-alpha release, with C-EL being the most potent at the highest concentration. The differential biological activity of elafin in different conditions suggests a role for this molecule in either LPS detoxification or activation of innate immune responses, depending on the external cellular environment. PMID:15668324

  15. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics.

    Science.gov (United States)

    Cantarel, Brandi L; Coutinho, Pedro M; Rancurel, Corinne; Bernard, Thomas; Lombard, Vincent; Henrissat, Bernard

    2009-01-01

    The Carbohydrate-Active Enzyme (CAZy) database is a knowledge-based resource specialized in the enzymes that build and breakdown complex carbohydrates and glycoconjugates. As of September 2008, the database describes the present knowledge on 113 glycoside hydrolase, 91 glycosyltransferase, 19 polysaccharide lyase, 15 carbohydrate esterase and 52 carbohydrate-binding module families. These families are created based on experimentally characterized proteins and are populated by sequences from public databases with significant similarity. Protein biochemical information is continuously curated based on the available literature and structural information. Over 6400 proteins have assigned EC numbers and 700 proteins have a PDB structure. The classification (i) reflects the structural features of these enzymes better than their sole substrate specificity, (ii) helps to reveal the evolutionary relationships between these enzymes and (iii) provides a convenient framework to understand mechanistic properties. This resource has been available for over 10 years to the scientific community, contributing to information dissemination and providing a transversal nomenclature to glycobiologists. More recently, this resource has been used to improve the quality of functional predictions of a number genome projects by providing expert annotation. The CAZy resource resides at URL: http://www.cazy.org/. PMID:18838391

  16. Oxytocin and/or steroid hormone binding globulin infused into the ventral tegmental area modulates progestogen-mediated lordosis

    OpenAIRE

    Frye, Cheryl A.; Alicia A Walf

    2009-01-01

    Estradiol (E2) and progesterone (P4) have classical, steroid receptor-mediated actions in the ventral medial hypothalamus to initiate lordosis of female rodents. P4 and the P4 metabolite and neurosteroid, 5α-pregnan-3α-ol-20-one (3α,5α-THP), have non-classical actions in the midbrain ventral tegmental area (VTA) to modulate lordosis. We investigated the role of steroid hormone binding globulin (SHBG) and oxytocin in the VTA as mechanisms for these effects. Rats were ovariectomized and surgica...

  17. EndB, a Multidomain Family 44 Cellulase from Ruminococcus flavefaciens 17, Binds to Cellulose via a Novel Cellulose-Binding Module and to Another R. flavefaciens Protein via a Dockerin Domain

    OpenAIRE

    Rincón, Marco T.; McCrae, Sheila I.; Kirby, James; Scott, Karen P.; Flint, Harry J.

    2001-01-01

    The mechanisms by which cellulolytic enzymes and enzyme complexes in Ruminococcus spp. bind to cellulose are not fully understood. The product of the newly isolated cellulase gene endB from Ruminococcus flavefaciens 17 was purified as a His-tagged product after expression in Escherichia coli and found to be able to bind directly to crystalline cellulose. The ability to bind cellulose is shown to be associated with a novel cellulose-binding module (CBM) located within a region of 200 amino aci...

  18. Fine carbohydrate recognition of Euphorbia milii lectin.

    Science.gov (United States)

    Irazoqui, Fernando J; Vozari-Hampe, Magdolna M; Lardone, Ricardo D; Villarreal, Marcos A; Sendra, Victor G; Montich, Guillermo G; Trindade, Vera M; Clausen, Henrik; Nores, Gustavo A

    2005-10-14

    Glycans are key structures involved in biological processes such as cell attachment, migration, and invasion. Information coded on cell-surface glycans is frequently deciphered by proteins, as lectins, that recognize specific carbohydrate topology. Here, we describe the fine carbohydrate specificity of Euphorbia milii lectin (EML). Competitive assays using various sugars showed that GalNAc was the strongest inhibitor, and that the hydroxyl axial position of C4 and acetamido on C2 of GalNAc are critical points of EML recognition. A hydrophobic locus adjacent to GalNAc is also an important region for EML binding. Direct binding assays of EML revealed a stereochemical requirement for a structure adjacent to terminal GalNAc, showing that GalNAc residue is a necessary but not sufficient condition for EML interaction. The capacity of EML to bind epithelial tumor cells makes it a potentially useful tool for study of some over-expressed GalNAc glycoconjugates. PMID:16122701

  19. Miniaturizing VEGF: Peptides mimicking the discontinuous VEGF receptor-binding site modulate the angiogenic response

    Science.gov (United States)

    De Rosa, Lucia; Finetti, Federica; Diana, Donatella; di Stasi, Rossella; Auriemma, Sara; Romanelli, Alessandra; Fattorusso, Roberto; Ziche, Marina; Morbidelli, Lucia; D’Andrea, Luca Domenico

    2016-08-01

    The angiogenic properties of VEGF are mediated through the binding of VEGF to its receptor VEGFR2. The VEGF/VEGFR interface is constituted by a discontinuous binding region distributed on both VEGF monomers. We attempted to reproduce this discontinuous binding site by covalently linking into a single molecular entity two VEGF segments involved in receptor recognition. We designed and synthesized by chemical ligation a set of peptides differing in length and flexibility of the molecular linker joining the two VEGF segments. The biological activity of the peptides was characterized in vitro and in vivo showing a VEGF-like activity. The most biologically active mini-VEGF was further analyzed by NMR to determine the atomic details of its interaction with the receptor.

  20. Insulin and carbohydrate dysregulation.

    Science.gov (United States)

    Gelato, Marie C

    2003-04-01

    Patients with human immunodeficiency virus receiving highly active antiretroviral therapy (HAART) may experience abnormal body composition changes as well as metabolic abnormalities, including dyslipidemia, increases in triglycerides, low high-density lipoprotein cholesterol levels, and abnormal carbohydrate metabolism, ranging from insulin resistance with and without glucose intolerance to frank diabetes. Whether the body composition changes (i.e., increased visceral adiposity and fat wasting in the peripheral tissues) are linked to abnormalities in carbohydrate metabolism is unclear. The use of HAART with and without therapy with protease inhibitors (PIs) is related to carbohydrate abnormalities and changes in body composition. Regimens that include PIs appear to have a higher incidence of insulin resistance (up to 90%) and diabetes mellitus (up to 40%). The etiology of these abnormalities is not well understood; what is known about insulin and carbohydrate dysregulation with HAART is discussed. PMID:12652377

  1. The structure of cytomegalovirus immune modulator UL141 highlights structural Ig-fold versatility for receptor binding

    Energy Technology Data Exchange (ETDEWEB)

    Nemčovičová, Ivana [La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037 (United States); Slovak Academy of Sciences, Dúbravská cesta 9, SK 84505 Bratislava (Slovakia); Zajonc, Dirk M., E-mail: dzajonc@liai.org [La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037 (United States)

    2014-03-01

    The crystal structure of Human cytomegalovirus immune modulator UL141 was solved at 3.25 Å resolution. Here, a detailed analysis of its intimate dimerization interface and the biophysical properties of its receptor (TRAIL-R2 and CD155) binding interactions are presented. Natural killer (NK) cells are critical components of the innate immune system as they rapidly detect and destroy infected cells. To avoid immune recognition and to allow long-term persistence in the host, Human cytomegalovirus (HCMV) has evolved a number of genes to evade or inhibit immune effector pathways. In particular, UL141 can inhibit cell-surface expression of both the NK cell-activating ligand CD155 as well as the TRAIL death receptors (TRAIL-R1 and TRAIL-R2). The crystal structure of unliganded HCMV UL141 refined to 3.25 Å resolution allowed analysis of its head-to-tail dimerization interface. A ‘dimerization-deficient’ mutant of UL141 (ddUL141) was further designed, which retained the ability to bind to TRAIL-R2 or CD155 while losing the ability to cross-link two receptor monomers. Structural comparison of unliganded UL141 with UL141 bound to TRAIL-R2 further identified a mobile loop that makes intimate contacts with TRAIL-R2 upon receptor engagement. Superposition of the Ig-like domain of UL141 on the CD155 ligand T-cell immunoreceptor with Ig and ITIM domains (TIGIT) revealed that UL141 can potentially engage CD155 similar to TIGIT by using the C′C′′ and GF loops. Further mutations in the TIGIT binding site of CD155 (Q63R and F128R) abrogated UL141 binding, suggesting that the Ig-like domain of UL141 is a viral mimic of TIGIT, as it targets the same binding site on CD155 using similar ‘lock-and-key’ interactions. Sequence alignment of the UL141 gene and its orthologues also showed conservation in this highly hydrophobic (L/A)X{sub 6}G ‘lock’ motif for CD155 binding as well as conservation of the TRAIL-R2 binding patches, suggesting that these host

  2. The structure of cytomegalovirus immune modulator UL141 highlights structural Ig-fold versatility for receptor binding

    International Nuclear Information System (INIS)

    The crystal structure of Human cytomegalovirus immune modulator UL141 was solved at 3.25 Å resolution. Here, a detailed analysis of its intimate dimerization interface and the biophysical properties of its receptor (TRAIL-R2 and CD155) binding interactions are presented. Natural killer (NK) cells are critical components of the innate immune system as they rapidly detect and destroy infected cells. To avoid immune recognition and to allow long-term persistence in the host, Human cytomegalovirus (HCMV) has evolved a number of genes to evade or inhibit immune effector pathways. In particular, UL141 can inhibit cell-surface expression of both the NK cell-activating ligand CD155 as well as the TRAIL death receptors (TRAIL-R1 and TRAIL-R2). The crystal structure of unliganded HCMV UL141 refined to 3.25 Å resolution allowed analysis of its head-to-tail dimerization interface. A ‘dimerization-deficient’ mutant of UL141 (ddUL141) was further designed, which retained the ability to bind to TRAIL-R2 or CD155 while losing the ability to cross-link two receptor monomers. Structural comparison of unliganded UL141 with UL141 bound to TRAIL-R2 further identified a mobile loop that makes intimate contacts with TRAIL-R2 upon receptor engagement. Superposition of the Ig-like domain of UL141 on the CD155 ligand T-cell immunoreceptor with Ig and ITIM domains (TIGIT) revealed that UL141 can potentially engage CD155 similar to TIGIT by using the C′C′′ and GF loops. Further mutations in the TIGIT binding site of CD155 (Q63R and F128R) abrogated UL141 binding, suggesting that the Ig-like domain of UL141 is a viral mimic of TIGIT, as it targets the same binding site on CD155 using similar ‘lock-and-key’ interactions. Sequence alignment of the UL141 gene and its orthologues also showed conservation in this highly hydrophobic (L/A)X6G ‘lock’ motif for CD155 binding as well as conservation of the TRAIL-R2 binding patches, suggesting that these host–receptor interactions

  3. Drosophila Nanos acts as a molecular clamp that modulates the RNA-binding and repression activities of Pumilio

    Science.gov (United States)

    Weidmann, Chase A; Qiu, Chen; Arvola, René M; Lou, Tzu-Fang; Killingsworth, Jordan; Campbell, Zachary T; Tanaka Hall, Traci M; Goldstrohm, Aaron C

    2016-01-01

    Collaboration among the multitude of RNA-binding proteins (RBPs) is ubiquitous, yet our understanding of these key regulatory complexes has been limited to single RBPs. We investigated combinatorial translational regulation by Drosophila Pumilio (Pum) and Nanos (Nos), which control development, fertility, and neuronal functions. Our results show how the specificity of one RBP (Pum) is modulated by cooperative RNA recognition with a second RBP (Nos) to synergistically repress mRNAs. Crystal structures of Nos-Pum-RNA complexes reveal that Nos embraces Pum and RNA, contributes sequence-specific contacts, and increases Pum RNA-binding affinity. Nos shifts the recognition sequence and promotes repression complex formation on mRNAs that are not stably bound by Pum alone, explaining the preponderance of sub-optimal Pum sites regulated in vivo. Our results illuminate the molecular mechanism of a regulatory switch controlling crucial gene expression programs, and provide a framework for understanding how the partnering of RBPs evokes changes in binding specificity that underlie regulatory network dynamics. DOI: http://dx.doi.org/10.7554/eLife.17096.001 PMID:27482653

  4. Fatty-Acid Binding Proteins Modulate Sleep and Enhance Long-Term Memory Consolidation in Drosophila

    OpenAIRE

    Gerstner, Jason R.; Vanderheyden, William M.; Shaw, Paul J.; Landry, Charles F.; Yin, Jerry C. P.

    2011-01-01

    Sleep is thought to be important for memory consolidation, since sleep deprivation has been shown to interfere with memory processing. However, the effects of augmenting sleep on memory formation are not well known, and testing the role of sleep in memory enhancement has been limited to pharmacological and behavioral approaches. Here we test the effect of overexpressing the brain-type fatty acid binding protein (Fabp7) on sleep and long-term memory (LTM) formation in Drosophila melanogaster. ...

  5. It’s Not My Fault: Postdictive Modulation of Intentional Binding by Monetary Gains and Losses

    OpenAIRE

    Takahata, Keisuke; Takahashi, Hidehiko; Maeda, Takaki; Umeda, Satoshi; Suhara, Tetsuya; Mimura, Masaru; Kato, Motoichiro

    2012-01-01

    Sense of agency refers to the feeling that one’s voluntary actions caused external events. Past studies have shown that compression of the subjective temporal interval between actions and external events, called intentional binding, is closely linked to the experience of agency. Current theories postulate that the experience of agency is constructed via predictive and postdictive pathways. One remaining problem is the source of human causality bias; people often make misjudgments on the causa...

  6. Viral infection controlled by a calcium-dependent lipid-binding module in ALIX

    OpenAIRE

    Bissig, Christin; Lenoir, Marc; Velluz, Marie-Claire; Kufareva, Irina; Abagyan, Ruben; Overduin, Michael; Gruenberg, Jean

    2013-01-01

    ALIX plays a role in nucleocapsid release during viral infection, as does lysobisphosphatidic acid (LBPA). However, the mechanism remains unclear. Here we report that LBPA is recognized within an exposed site in ALIX Bro1 domain predicted by MODA, an algorithm for discovering membrane-docking areas in proteins. LBPA interactions revealed a strict requirement for a structural calcium tightly bound near the lipid interaction site. Unlike other calcium– and phospholipid-binding proteins, the all...

  7. NF45 and NF90 Bind HIV-1 RNA and Modulate HIV Gene Expression

    Directory of Open Access Journals (Sweden)

    Yan Li

    2016-02-01

    Full Text Available A previous proteomic screen in our laboratory identified nuclear factor 45 (NF45 and nuclear factor 90 (NF90 as potential cellular factors involved in human immunodeficiency virus type 1 (HIV-1 replication. Both are RNA binding proteins that regulate gene expression; and NF90 has been shown to regulate the expression of cyclin T1 which is required for Tat-dependent trans-activation of viral gene expression. In this study the roles of NF45 and NF90 in HIV replication were investigated through overexpression studies. Ectopic expression of either factor potentiated HIV infection, gene expression, and virus production. Deletion of the RNA binding domains of NF45 and NF90 diminished the enhancement of HIV infection and gene expression. Both proteins were found to interact with the HIV RNA. RNA decay assays demonstrated that NF90, but not NF45, increased the half-life of the HIV RNA. Overall, these studies indicate that both NF45 and NF90 potentiate HIV infection through their RNA binding domains.

  8. TRAF4 is a novel phosphoinositide-binding protein modulating tight junctions and favoring cell migration.

    Directory of Open Access Journals (Sweden)

    Adrien Rousseau

    2013-12-01

    Full Text Available Tumor necrosis factor (TNF receptor-associated factor 4 (TRAF4 is frequently overexpressed in carcinomas, suggesting a specific role in cancer. Although TRAF4 protein is predominantly found at tight junctions (TJs in normal mammary epithelial cells (MECs, it accumulates in the cytoplasm of malignant MECs. How TRAF4 is recruited and functions at TJs is unclear. Here we show that TRAF4 possesses a novel phosphoinositide (PIP-binding domain crucial for its recruitment to TJs. Of interest, this property is shared by the other members of the TRAF protein family. Indeed, the TRAF domain of all TRAF proteins (TRAF1 to TRAF6 is a bona fide PIP-binding domain. Molecular and structural analyses revealed that the TRAF domain of TRAF4 exists as a trimer that binds up to three lipids using basic residues exposed at its surface. Cellular studies indicated that TRAF4 acts as a negative regulator of TJ and increases cell migration. These functions are dependent from its ability to interact with PIPs. Our results suggest that TRAF4 overexpression might contribute to breast cancer progression by destabilizing TJs and favoring cell migration.

  9. Viral infection controlled by a calcium-dependent lipid-binding module in ALIX.

    Science.gov (United States)

    Bissig, Christin; Lenoir, Marc; Velluz, Marie-Claire; Kufareva, Irina; Abagyan, Ruben; Overduin, Michael; Gruenberg, Jean

    2013-05-28

    ALIX plays a role in nucleocapsid release during viral infection, as does lysobisphosphatidic acid (LBPA). However, the mechanism remains unclear. Here we report that LBPA is recognized within an exposed site in ALIX Bro1 domain predicted by MODA, an algorithm for discovering membrane-docking areas in proteins. LBPA interactions revealed a strict requirement for a structural calcium tightly bound near the lipid interaction site. Unlike other calcium- and phospholipid-binding proteins, the all-helical triangle-shaped fold of the Bro1 domain confers selectivity for LBPA via a pair of hydrophobic residues in a flexible loop, which undergoes a conformational change upon membrane association. Both LBPA and calcium binding are necessary for endosome association and virus infection, as are ALIX ESCRT binding and dimerization capacity. We conclude that LBPA recruits ALIX onto late endosomes via the calcium-bound Bro1 domain, triggering a conformational change in ALIX to mediate the delivery of viral nucleocapsids to the cytosol during infection. PMID:23664863

  10. Diarrhea caused by carbohydrate malabsorption.

    Science.gov (United States)

    Hammer, Heinz F; Hammer, Johann

    2012-09-01

    This article will focus on the role of the colon in the pathogenesis of diarrhea in carbohydrate malabsorption or physiologically incomplete absorption of carbohydrates, and on the most common manifestation of carbohydrate malabsorption, lactose malabsorption. In addition, incomplete fructose absorption, the role of carbohydrate malabsorption in other malabsorptive diseases, and congenital defects that lead to malabsorption will be covered. The article concludes with a section on diagnostic tools to evaluate carbohydrate malabsorption. PMID:22917167

  11. Glycosyltransferase engineering for carbohydrate synthesis.

    Science.gov (United States)

    McArthur, John B; Chen, Xi

    2016-02-01

    Glycosyltransferases (GTs) are powerful tools for the synthesis of complex and biologically-important carbohydrates. Wild-type GTs may not have all the properties and functions that are desired for large-scale production of carbohydrates that exist in nature and those with non-natural modifications. With the increasing availability of crystal structures of GTs, especially those in the presence of donor and acceptor analogues, crystal structure-guided rational design has been quite successful in obtaining mutants with desired functionalities. With current limited understanding of the structure-activity relationship of GTs, directed evolution continues to be a useful approach for generating additional mutants with functionality that can be screened for in a high-throughput format. Mutating the amino acid residues constituting or close to the substrate-binding sites of GTs by structure-guided directed evolution (SGDE) further explores the biotechnological potential of GTs that can only be realized through enzyme engineering. This mini-review discusses the progress made towards GT engineering and the lessons learned for future engineering efforts and assay development. PMID:26862198

  12. Ring size in cyclic endomorphin-2 analogs modulates receptor binding affinity and selectivity.

    Science.gov (United States)

    Piekielna, Justyna; Kluczyk, Alicja; Gentilucci, Luca; Cerlesi, Maria Camilla; Calo', Girolamo; Tomböly, Csaba; Łapiński, Krzysztof; Janecki, Tomasz; Janecka, Anna

    2015-06-01

    The study reports the solid-phase synthesis and biological evaluation of a series of new side chain-to-side chain cyclized opioid peptide analogs of the general structure Tyr-[D-Xaa-Phe-Phe-Asp]NH2, where Xaa = Lys (1), Orn (2), Dab (3), or Dap (4) (Dab = 2,4-diaminobutyric acid, Dap = 2,3-diaminopropionic acid), containing 17- to 14-membered rings. The influence of the ring size on binding to the MOP, DOP and KOP opioid receptors was studied. In general, the reduction of the size of the macrocyclic ring increased the selectivity for the MOP receptor. The cyclopeptide incorporating Xaa = Lys displayed subnanomolar MOP affinity but modest selectivity over the KOP receptor, while the analog with the Orn residue showed increased affinity and selectivity for MOP. The analog with Dab was a weak MOP agonist and did not bind to the other two opioid receptors. Finally, the peptide with Xaa = Dap was completely MOP receptor-selective with subnanomolar affinity. Interestingly, the deletion of one Phe residue from 1 led to the 14-membered Tyr-c[D-Lys-Phe-Asp]NH2 (5), a potent and selective MOP receptor ligand. The in vitro potencies of the new analogs were determined in a calcium mobilization assay performed in Chinese Hamster Ovary (CHO) cells expressing human recombinant opioid receptors and chimeric G proteins. A good correlation between binding and the functional test results was observed. The influence of the ring size, solid support and the N-terminal protecting group on the formation of cyclodimers was studied. PMID:25948019

  13. Selective binding of tumor suppressor p53 protein to topologically constrained DNA: Modulation by intercalative drugs

    Czech Academy of Sciences Publication Activity Database

    Pivoňková, Hana; Šebest, Peter; Pečinka, P.; Tichá, Olga; Němcová, Kateřina; Brázdová, Marie; Brázdová Jagelská, Eva; Brázda, Václav; Fojta, Miroslav

    2010-01-01

    Roč. 393, č. 4 (2010), s. 894-899. ISSN 0006-291X R&D Projects: GA AV ČR(CZ) IAA500040701; GA ČR(CZ) GP204/07/P476; GA ČR(CZ) GP301/07/P160; GA AV ČR(CZ) 1QS500040581; GA MŠk(CZ) LC06035; GA ČR(CZ) GA204/08/1560 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : p53 -DNA binding * supercoiled DNA * DNA topology Subject RIV: BO - Biophysics Impact factor: 2.595, year: 2010

  14. Functional modulation of insulin-like growth factor binding protein-3 expression in melanoma

    OpenAIRE

    Dar, Altaf A.; Majid, Shahana; Nosrati, Mehdi; deSemir, David; Federman, Scot; Kashani-Sabet, Mohammed

    2010-01-01

    Insulin-like growth factor binding protein-3 (IGFBP3) is a member of the IGFBP family, which regulates mitogenic and anti-apoptotic effects of insulin-like growth factors. In this report we evaluated the role of IGFBP3 in melanoma. Quantitative real-time PCR (qRT-PCR), western and ELISA analysis indicated a significant downregulation of IGFBP3 expression in melanoma cell lines as compared to a normal melanocyte cell line. Melanoma cell lines treated with the demethylating agent 5-AZA-2′ deoxy...

  15. Matrix Domain Modulates HIV-1 Gag's Nucleic Acid Chaperone Activity via Inositol Phosphate Binding

    OpenAIRE

    Jones, Christopher P.; Datta, Siddhartha A.K.; Rein, Alan; Rouzina, Ioulia; Musier-Forsyth, Karin

    2010-01-01

    Retroviruses replicate by reverse transcribing their single-stranded RNA genomes into double-stranded DNA using specific cellular tRNAs to prime cDNA synthesis. In HIV-1, human tRNA3Lys serves as the primer and is packaged into virions during assembly. The viral Gag protein is believed to chaperone tRNA3Lys placement onto the genomic RNA primer binding site; however, the timing and possible regulation of this event are currently unknown. Composed of the matrix (MA), capsid (CA), nucleocapsid ...

  16. O-GlcNAcylation modulates the self-aggregation ability of the fourth microtubule-binding repeat of tau

    International Nuclear Information System (INIS)

    In Alzheimer's disease (AD), tau protein is abnormally hyperphosphorylated and aggregated into paired helical filaments (PHFs). It was discovered recently that tau is also O-GlcNAcylated in human brains. And O-GlcNAcylation may regulate phosphorylation of tau in a site-specific manner. In this work, we focused on the fourth microtubule-binding repeat (R4) of tau, which has an O-GlcNAcylation site-Ser356. The aggregation behavior of this repeat and its O-GlcNAcylated form was investigated by turbidity, precipitation assay and electron microscopy. In addition, conformations of these two peptides were analyzed with circular dichroism (CD). Our results revealed that O-GlcNAcylation at Ser356 could greatly slow down the aggregation speed of R4 peptide. This modulation of O-GlcNAcylation on tau aggregation implies a new perspective of tau pathology

  17. Tight-binding electrons on triangular and kagome lattices under staggered modulated magnetic fields: quantum Hall effects and Hofstadter butterflies

    International Nuclear Information System (INIS)

    We consider the tight-binding models of electrons on a two-dimensional triangular lattice and kagome lattice under staggered modulated magnetic fields. Such fields have two components: a uniform-flux part with strength φ, and a staggered-flux part with strength Δφ. Various properties of the Hall conductances and Hofstadter butterflies are studied. When φ is fixed, variation of Δφ leads to the quantum Hall transitions and Chern numbers of Landau subbands being redistributed between neighboring pairs. The energy spectra with nonzero Δφs have similar fractal structures but quite different energy gaps compared with the original Hofstadter butterflies of Δφ = 0. Moreover, the fan-like structure of Landau levels in the low magnetic field region is also modified appreciably by Δφ.

  18. Tight-binding electrons on triangular and kagome lattices under staggered modulated magnetic fields: quantum Hall effects and Hofstadter butterflies

    Energy Technology Data Exchange (ETDEWEB)

    Li Juan; Wang Yifei; Gong Changde, E-mail: yfwang_nju@hotmail.com [Center for Statistical and Theoretical Condensed Matter Physics, and Department of Physics, Zhejiang Normal University, Jinhua 321004 (China)

    2011-04-20

    We consider the tight-binding models of electrons on a two-dimensional triangular lattice and kagome lattice under staggered modulated magnetic fields. Such fields have two components: a uniform-flux part with strength {phi}, and a staggered-flux part with strength {Delta}{phi}. Various properties of the Hall conductances and Hofstadter butterflies are studied. When {phi} is fixed, variation of {Delta}{phi} leads to the quantum Hall transitions and Chern numbers of Landau subbands being redistributed between neighboring pairs. The energy spectra with nonzero {Delta}{phi}s have similar fractal structures but quite different energy gaps compared with the original Hofstadter butterflies of {Delta}{phi} = 0. Moreover, the fan-like structure of Landau levels in the low magnetic field region is also modified appreciably by {Delta}{phi}.

  19. Fatty-acid binding proteins modulate sleep and enhance long-term memory consolidation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Jason R Gerstner

    Full Text Available Sleep is thought to be important for memory consolidation, since sleep deprivation has been shown to interfere with memory processing. However, the effects of augmenting sleep on memory formation are not well known, and testing the role of sleep in memory enhancement has been limited to pharmacological and behavioral approaches. Here we test the effect of overexpressing the brain-type fatty acid binding protein (Fabp7 on sleep and long-term memory (LTM formation in Drosophila melanogaster. Transgenic flies carrying the murine Fabp7 or the Drosophila homologue dFabp had reduced baseline sleep but normal LTM, while Fabp induction produced increases in both net sleep and LTM. We also define a post-training consolidation "window" that is sufficient for the observed Fabp-mediated memory enhancement. Since Fabp overexpression increases consolidated daytime sleep bouts, these data support a role for longer naps in improving memory and provide a novel role for lipid-binding proteins in regulating memory consolidation concurrently with changes in behavioral state.

  20. Dihydrostreptomycin Directly Binds to, Modulates, and Passes through the MscL Channel Pore

    Science.gov (United States)

    Gao, Ya; Li, Hua; Wang, Junmei; Blount, Paul

    2016-01-01

    The primary mechanism of action of the antibiotic dihydrostreptomycin is binding to and modifying the function of the bacterial ribosome, thus leading to decreased and aberrant translation of proteins; however, the routes by which it enters the bacterial cell are largely unknown. The mechanosensitive channel of large conductance, MscL, is found in the vast majority of bacterial species, where it serves as an emergency release valve rescuing the cell from sudden decreases in external osmolarity. While it is known that MscL expression increases the potency of dihydrostreptomycin, it has remained unclear if this effect is due to a direct interaction. Here, we use a combination of genetic screening, MD simulations, and biochemical and mutational approaches to determine if dihydrostreptomycin directly interacts with MscL. Our data strongly suggest that dihydrostreptomycin binds to a specific site on MscL and modifies its conformation, thus allowing the passage of K+ and glutamate out of, and dihydrostreptomycin into, the cell. PMID:27280286

  1. Cholesterol Oxidase Binds TLR2 and Modulates Functional Responses of Human Macrophages

    Directory of Open Access Journals (Sweden)

    Katarzyna Bednarska

    2014-01-01

    Full Text Available Cholesterol oxidase (ChoD is considered to be an important virulence factor for Mycobacterium tuberculosis (Mtb, but its influence on macrophage activity is unknown. Here we used Nocardia erythropolis ChoD, which is very similar to the Mtb enzyme (70% identity at the amino-acid level, to evaluate the impact of bacterial ChoD on the activity of THP-1-derived macrophages in vitro. We found that ChoD decreased the surface expression of Toll-like receptor type 2 (TLR2 and complement receptor 3 (CR3 on these macrophages. Flow cytometry and confocal microscopy showed that ChoD competed with lipoteichoic acid for ligand binding sites on TLR2 but not on CR3, suggesting that ChoD signaling is mediated via TLR2. Binding of ChoD to the membrane of macrophages had diverse effects on the activity of macrophages, activating p38 mitogen activated kinase and stimulating production of a large amount of interleukin-10. Moreover, ChoD primed macrophages to enhance the production of reactive oxygen species in response to the phorbol myristate acetate, which was reduced by “switching off” TLR-derived signaling through interleukin-1 receptor-associated kinases 1 and 4 inhibition. Our study revealed that ChoD interacts directly with macrophages via TLR2 and influences the biological activity of macrophages during the development of the initial response to infection.

  2. Temperature dependence and GABA modulation of (TH)triazolam binding in the rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Earle, M.E.; Concas, A.; Wamsley, J.K.; Yamamura, H.I.

    1987-07-27

    The hypnotic triazolam (TZ), a triazolobenzodiazepine displays a short physiological half life and has been used for the treatment of insomnia related to anxiety states. The authors major objectives were the direct measurement of the temperature dependence and the gamma-aminobutyric acid (GABA) effect of (TH)TZ binding in the rat brain. Saturation studies showed a shift to lower affinity with increasing temperatures (K/sub d/ = 0.27 +/- 08 nM at 0C; K/sub d/ = 1.96 +/- 0.85 nM at 37C) while the B/sub max/ values remained unchanged (1220 +/- 176 fmoles/mg protein at 0C and 1160 +/- 383 fmoles/mg protein at 37C). Saturation studies of (TH)TZ binding in the presence or absence of GABA (100 M) showed a GABA-shift. At 0C the K/sub d/ values were (K/sub d/ = 0.24 +/- 0.03 nM/-GABA; K/sub d/ = 0.16 +/- 0.04/+GABA) and at 37C the K/sub d/ values were (K/sub d/ = 1.84 +/- 0.44 nM/-GABA; K/sub d/ = 0.95 +/- 0.29 nM/+GABA). In contrast to reported literature, the authors findings show that TZ interacts with benzodiazepine receptors with a temperature dependence and GABA-shift consistent with predicted behavior for benzodiazepine agonists. 20 references, 3 tables.

  3. Temperature dependence and GABA modulation of [3H]triazolam binding in the rat brain

    International Nuclear Information System (INIS)

    The hypnotic triazolam (TZ), a triazolobenzodiazepine displays a short physiological half life and has been used for the treatment of insomnia related to anxiety states. The authors major objectives were the direct measurement of the temperature dependence and the gamma-aminobutyric acid (GABA) effect of [3H]TZ binding in the rat brain. Saturation studies showed a shift to lower affinity with increasing temperatures (K/sub d/ = 0.27 +/- 08 nM at 00C; K/sub d/ = 1.96 +/- 0.85 nM at 370C) while the B/sub max/ values remained unchanged (1220 +/- 176 fmoles/mg protein at 00C and 1160 +/- 383 fmoles/mg protein at 370C). Saturation studies of [3H]TZ binding in the presence or absence of GABA (100μM) showed a GABA-shift. At 00C the K/sub d/ values were (K/sub d/ = 0.24 +/- 0.03 nM/-GABA; K/sub d/ = 0.16 +/- 0.04/+GABA) and at 370C the K/sub d/ values were (K/sub d/ = 1.84 +/- 0.44 nM/-GABA; K/sub d/ = 0.95 +/- 0.29 nM/+GABA). In contrast to reported literature, the authors findings show that TZ interacts with benzodiazepine receptors with a temperature dependence and GABA-shift consistent with predicted behavior for benzodiazepine agonists. 20 references, 3 tables

  4. Cell Surface Binding and Internalization of Aβ Modulated by Degree of Aggregation

    Directory of Open Access Journals (Sweden)

    David A. Bateman

    2011-01-01

    Full Text Available The amyloid peptides, Aβ40 and Aβ42, are generated through endoproteolytic cleavage of the amyloid precursor protein. Here we have developed a model to investigate the interaction of living cells with various forms of aggregated Aβ40/42. After incubation at endosomal pH 6, we observed a variety of Aβ conformations after 3 (Aβ3, 24 (Aβ24, and 90 hours (Aβ90. Both Aβ4224 and Aβ4024 were observed to rapidly bind and internalize into differentiated PC12 cells, leading to accumulation in the lysosome. In contrast, Aβ40/4290 were both found to only weakly associate with cells, but were observed as the most aggregated using dynamic light scattering and thioflavin-T. Internalization of Aβ40/4224 was inhibited with treatment of monodansylcadaverine, an endocytosis inhibitor. These studies indicate that the ability of Aβ40/42 to bind and internalize into living cells increases with degree of aggregation until it reaches a maximum beyond which its ability to interact with cells diminishes drastically.

  5. Biochemical software: Carbohydrates on Laboratory

    OpenAIRE

    D.N. Heidrich; M.S.R.B. Figueiredo; R.V. Antonio,; da Costa, J. G.; P.B. Arantes; Figueiredo, L. F.; J.K. Sugai

    2005-01-01

    Educators around  the  world  are  being  challenged  to  develop  and  design  better and  more  effective strategies for student learning  using a variety  of modern  resources.  In this  present  work, an educa- tional  hypermedia  software  was constructed as a support tool to biochemistry teaching.  Occurrence, structure, main  characteristics and  biological  function  of the  biomolecule  Carbohydrates were pre- sented  through  modules.  The  software was developed  using concept  map...

  6. NITRIC OXIDE BINDS TO AND MODULATES THE ACTIVITY OF A POLLEN SPECIFIC ARABIDOPSIS DIACYLGLYCEROL KINASE

    KAUST Repository

    Wong, Aloysius Tze

    2014-06-01

    Nitric oxide (NO) is an important signaling molecule in plants. In the pollen of Arabidopsis thaliana, NO causes re-orientation of the growing tube and this response is mediated by 3′,5′-cyclic guanosine monophosphate (cGMP). However, in plants, NO-sensors have remained somewhat elusive. Here, the findings of an NO-binding candidate, Arabidopsis thaliana DIACYLGLYCEROL KINASE 4 (ATDGK4; AT5G57690) is presented. In addition to the annotated diacylglycerol kinase domain, this molecule also harbors a predicted heme-NO/oxygen (H-NOX) binding site and a guanylyl cyclase (GC) catalytic domain which have been identified based on the alignment of functionally conserved amino acid residues across species. A 3D model of the molecule was constructed, and from which the locations of the kinase catalytic center, the ATP-binding site, the GC and H-NOX domains were estimated. Docking of ATP to the kinase catalytic center was also modeled. The recombinant ATDGK4 demonstrated kinase activity in vitro, catalyzing the ATP-dependent conversion of sn-1,2-diacylglycerol (DAG) to phosphatidic acid (PA). This activity was inhibited by the mammalian DAG kinase inhibitor R59949 and importantly also by the NO donors diethylamine NONOate (DEA NONOate) and sodium nitroprusside (SNP). Recombinant ATDGK4 also has GC activity in vitro, catalyzing the conversion of guanosine-5\\'-triphosphate (GTP) to cGMP. The catalytic domains of ATDGK4 kinase and GC may be independently regulated since the kinase but not the GC, was inhibited by NO while Ca2+ only stimulates the GC. It is likely that the DAG kinase product, PA, causes the release of Ca2+ from the intracellular stores and Ca2+ in turn activates the GC domain of ATDGK4 through a feedback mechanism. Analysis of publicly available microarray data has revealed that ATDGK4 is highly expressed in the pollen. Here, the pollen tubes of mis-expressing atdgk4 recorded slower growth rates than the wild-type (Col-0) and importantly, they showed altered

  7. Structure of the ligand-binding domain (LBD) of human androgen receptor in complex with a selective modulator LGD2226

    International Nuclear Information System (INIS)

    Crystal structure of the ligand-binding domain of androgen receptor in complex with LGD2226. The androgen receptor (AR) is a ligand-inducible steroid hormone receptor that mediates androgen action, determining male sexual phenotypes and promoting spermatogenesis. As the androgens play a dominant role in male sexual development and function, steroidal androgen agonists have been used clinically for some years. However, there is a risk of potential side effects and most steroidal androgens cannot be dosed orally, which limits the use of these substances. 1,2-Dihydro-6-N,N-bis(2,2,2-trifluoroethyl) amino-4-trifluoromethyl-2-quinolinone (LGD2226) is a synthetic nonsteroidal ligand and a novel selective AR modulator. The crystal structure of the complex of LGD2226 with the androgen receptor ligand-binding domain (AR LBD) at 2.1 Å was solved and compared with the structure of the AR LBD–R1881 complex. It is hoped that this will aid in further explaining the selectivity of LGD2226 observed in in vitro and in vivo assays and in developing more selective and effective therapeutic agents

  8. Enthalpy-Entropy Compensation in the Binding of Modulators at Ionotropic Glutamate Receptor GluA2

    DEFF Research Database (Denmark)

    Krintel, Christian; Francotte, Pierre; Pickering, Darryl S;

    2016-01-01

    modulators BPAM97 (2) and BPAM344 (3) into a hydroxyl group (BPAM557 (4) and BPAM521 (5), respectively), leads to a more favorable binding enthalpy (ΔH, kcal/mol) from −4.9 (2) and −7.5 (3) to −6.2 (4) and −14.5 (5), but also a less favorable binding entropy (−TΔS, kcal/mol) from −2.3 (2) and −1.3 (3) to −0...... of 5 was examined with x-ray crystallography, showing that the only change compared to that of earlier compounds was the orientation of Ser-497 pointing toward the hydroxyl group of 5. The favorable enthalpy can be explained by the formation of a hydrogen bond from the side-chain hydroxyl group of...... Ser-497 to the hydroxyl group of 5, whereas the unfavorable entropy might be due to desolvation effects combined with a conformational restriction of Ser-497 and 5. In summary, this study shows a remarkable example of enthalpy-entropy compensation in drug development accompanied with a likely...

  9. Does positive selection drive transcription factor binding site turnover? A test with Drosophila cis-regulatory modules.

    Directory of Open Access Journals (Sweden)

    Bin Z He

    2011-04-01

    Full Text Available Transcription factor binding site(s (TFBS gain and loss (i.e., turnover is a well-documented feature of cis-regulatory module (CRM evolution, yet little attention has been paid to the evolutionary force(s driving this turnover process. The predominant view, motivated by its widespread occurrence, emphasizes the importance of compensatory mutation and genetic drift. Positive selection, in contrast, although it has been invoked in specific instances of adaptive gene expression evolution, has not been considered as a general alternative to neutral compensatory evolution. In this study we evaluate the two hypotheses by analyzing patterns of single nucleotide polymorphism in the TFBS of well-characterized CRM in two closely related Drosophila species, Drosophila melanogaster and Drosophila simulans. An important feature of the analysis is classification of TFBS mutations according to the direction of their predicted effect on binding affinity, which allows gains and losses to be evaluated independently along the two phylogenetic lineages. The observed patterns of polymorphism and divergence are not compatible with neutral evolution for either class of mutations. Instead, multiple lines of evidence are consistent with contributions of positive selection to TFBS gain and loss as well as purifying selection in its maintenance. In discussion, we propose a model to reconcile the finding of selection driving TFBS turnover with constrained CRM function over long evolutionary time.

  10. Pseudomonas aeruginosa pyocyanin modulates mucin glycosylation with sialyl-Lewis(x) to increase binding to airway epithelial cells.

    Science.gov (United States)

    Jeffries, J L; Jia, J; Choi, W; Choe, S; Miao, J; Xu, Y; Powell, R; Lin, J; Kuang, Z; Gaskins, H R; Lau, G W

    2016-07-01

    Cystic fibrosis (CF) patients battle life-long pulmonary infections with the respiratory pathogen Pseudomonas aeruginosa (PA). An overabundance of mucus in CF airways provides a favorable niche for PA growth. When compared with that of non-CF individuals, mucus of CF airways is enriched in sialyl-Lewis(x), a preferred binding receptor for PA. Notably, the levels of sialyl-Lewis(x) directly correlate with infection severity in CF patients. However, the mechanism by which PA causes increased sialylation remains uncharacterized. In this study, we examined the ability of PA virulence factors to modulate sialyl-Lewis(x) modification in airway mucins. We found pyocyanin (PCN) to be a potent inducer of sialyl-Lewis(x) in both mouse airways and in primary and immortalized CF and non-CF human airway epithelial cells. PCN increased the expression of C2/4GnT and ST3Gal-IV, two of the glycosyltransferases responsible for the stepwise biosynthesis of sialyl-Lewis(x), through a tumor necrosis factor (TNF)-α-mediated phosphoinositol-specific phospholipase C (PI-PLC)-dependent pathway. Furthermore, PA bound more efficiently to airway epithelial cells pre-exposed to PCN in a flagellar cap-dependent manner. Importantly, antibodies against sialyl-Lewis(x) and anti-TNF-α attenuated PA binding. These results indicate that PA secretes PCN to induce a favorable environment for chronic colonization of CF lungs by increasing the glycosylation of airway mucins with sialyl-Lewis(x). PMID:26555707

  11. Insights into Regulated Ligand Binding Sites from the Structure of ZO-1 Src Homology 3-Guanylate Kinase Module

    Energy Technology Data Exchange (ETDEWEB)

    Lye, Ming F.; Fanning, Alan S.; Su, Ying; Anderson, James M.; Lavie, Arnon (UNC); (UIC)

    2010-11-09

    Tight junctions are dynamic components of epithelial and endothelial cells that regulate the paracellular transport of ions, solutes, and immune cells. The assembly and permeability of these junctions is dependent on the zonula occludens (ZO) proteins, members of the membrane-associated guanylate kinase homolog (MAGUK) protein family, which are characterized by a core Src homology 3 (SH3)-GUK module that coordinates multiple protein-protein interactions. The structure of the ZO-1 SH3-GUK domain confirms that the interdependent folding of the SH3 and GUK domains is a conserved feature of MAGUKs, but differences in the orientation of the GUK domains in three different MAGUKs reveal interdomain flexibility of the core unit. Using pull-down assays, we show that an effector loop, the U6 region in ZO-1, forms a novel intramolecular interaction with the core module. This interaction is divalent cation-dependent and overlaps with the binding site for the regulatory molecule calmodulin on the GUK domain. These findings provide insight into the previously observed ability of the U6 region to regulate TJ assembly in vivo and the structural basis for the complex protein interactions of the MAGUK family.

  12. Adhesive and migratory effects of phosphophoryn are modulated by flanking peptides of the integrin binding motif.

    Directory of Open Access Journals (Sweden)

    Shigeki Suzuki

    Full Text Available Phosphophoryn (PP is generated from the proteolytic cleavage of dentin sialophosphoprotein (DSPP. Gene duplications in the ancestor dentin matrix protein-1 (DMP-1 genomic sequence created the DSPP gene in toothed animals. PP and DMP-1 are phosphorylated extracellular matrix proteins that belong to the family of small integrin-binding ligand N-linked glycoproteins (SIBLINGs. Many SIBLING members have been shown to evoke various cell responses through the integrin-binding Arg-Gly-Asp (RGD domain; however, the RGD-dependent function of PP is not yet fully understood. We demonstrated that recombinant PP did not exhibit any obvious cell adhesion ability, whereas the simultaneously purified recombinant DMP-1 did. A cell adhesion inhibitory analysis was performed by pre-incubating human osteosarcoma MG63 cells with various PP peptides before seeding onto vitronectin. The results obtained revealed that the incorporation of more than one amino acid on both sides of the PP-RGD domain was unable to inhibit the adhesion of MG63 cells onto vitronectin. Furthermore, the inhibitory activity of a peptide containing the PP-RGD domain with an open carboxyl-terminal side (H-463SDESDTNSESANESGSRGDA482-OH was more potent than that of a peptide containing the RGD domain with an open amino-terminal side (H-478SRGDASYTSDESSDDDNDSDSH499-OH. This phenomenon was supported by the potent cell adhesion and migration abilities of the recombinant truncated PP, which terminated with Ala482. Furthermore, various point mutations in Ala482 and/or Ser483 converted recombinant PP into cell-adhesive proteins. Therefore, we concluded that the Ala482-Ser483 flanking sequence, which was detected in primates and mice, was the key peptide bond that allowed the PP-RGD domain to be sequestered. The differential abilities of PP and DMP-1 to act on integrin imply that DSPP was duplicated from DMP-1 to serve as a crucial extracellular protein for tooth development rather than as an integrin

  13. Intrinsic nucleic acid dynamics modulates HIV-1 nucleocapsid protein binding to its targets.

    Science.gov (United States)

    Bazzi, Ali; Zargarian, Loussiné; Chaminade, Françoise; De Rocquigny, Hugues; René, Brigitte; Mély, Yves; Fossé, Philippe; Mauffret, Olivier

    2012-01-01

    HIV-1 nucleocapsid protein (NC) is involved in the rearrangement of nucleic acids occurring in key steps of reverse transcription. The protein, through its two zinc fingers, interacts preferentially with unpaired guanines in single-stranded sequences. In mini-cTAR stem-loop, which corresponds to the top half of the cDNA copy of the transactivation response element of the HIV-1 genome, NC was found to exhibit a clear preference for the TGG sequence at the bottom of mini-cTAR stem. To further understand how this site was selected among several potential binding sites containing unpaired guanines, we probed the intrinsic dynamics of mini-cTAR using (13)C relaxation measurements. Results of spin relaxation time measurements have been analyzed using the model-free formalism and completed by dispersion relaxation measurements. Our data indicate that the preferentially recognized guanine in the lower part of the stem is exempt of conformational exchange and highly mobile. In contrast, the unrecognized unpaired guanines of mini-cTAR are involved in conformational exchange, probably related to transient base-pairs. These findings support the notion that NC preferentially recognizes unpaired guanines exhibiting a high degree of mobility. The ability of NC to discriminate between close sequences through their dynamic properties contributes to understanding how NC recognizes specific sites within the HIV genome. PMID:22745685

  14. The fragile X protein binds mRNAs involved in cancer progression and modulates metastasis formation.

    Science.gov (United States)

    Lucá, Rossella; Averna, Michele; Zalfa, Francesca; Vecchi, Manuela; Bianchi, Fabrizio; La Fata, Giorgio; Del Nonno, Franca; Nardacci, Roberta; Bianchi, Marco; Nuciforo, Paolo; Munck, Sebastian; Parrella, Paola; Moura, Rute; Signori, Emanuela; Alston, Robert; Kuchnio, Anna; Farace, Maria Giulia; Fazio, Vito Michele; Piacentini, Mauro; De Strooper, Bart; Achsel, Tilmann; Neri, Giovanni; Neven, Patrick; Evans, D Gareth; Carmeliet, Peter; Mazzone, Massimiliano; Bagni, Claudia

    2013-10-01

    The role of the fragile X mental retardation protein (FMRP) is well established in brain, where its absence leads to the fragile X syndrome (FXS). FMRP is almost ubiquitously expressed, suggesting that, in addition to its effects in brain, it may have fundamental roles in other organs. There is evidence that FMRP expression can be linked to cancer. FMR1 mRNA, encoding FMRP, is overexpressed in hepatocellular carcinoma cells. A decreased risk of cancer has been reported in patients with FXS while a patient-case with FXS showed an unusual decrease of tumour brain invasiveness. However, a role for FMRP in regulating cancer biology, if any, remains unknown. We show here that FMRP and FMR1 mRNA levels correlate with prognostic indicators of aggressive breast cancer, lung metastases probability and triple negative breast cancer (TNBC). We establish that FMRP overexpression in murine breast primary tumours enhances lung metastasis while its reduction has the opposite effect regulating cell spreading and invasion. FMRP binds mRNAs involved in epithelial mesenchymal transition (EMT) and invasion including E-cadherin and Vimentin mRNAs, hallmarks of EMT and cancer progression. PMID:24092663

  15. Nuclear ubiquitination by FBXL5 modulates Snail1 DNA binding and stability.

    Science.gov (United States)

    Viñas-Castells, Rosa; Frías, Álex; Robles-Lanuza, Estefanía; Zhang, Kun; Longmore, Gregory D; García de Herreros, Antonio; Díaz, Víctor M

    2014-01-01

    The zinc finger transcription factor Snail1 regulates epithelial to mesenchymal transition, repressing epithelial markers and activating mesenchymal genes. Snail1 is an extremely labile protein degraded by the cytoplasmic ubiquitin-ligases β-TrCP1/FBXW1 and Ppa/FBXL14. Using a short hairpin RNA screening, we have identified FBXL5 as a novel Snail1 ubiquitin ligase. FBXL5 is located in the nucleus where it interacts with Snail1 promoting its polyubiquitination and affecting Snail1 protein stability and function by impairing DNA binding. Snail1 downregulation by FBXL5 is prevented by Lats2, a protein kinase that phosphorylates Snail1 precluding its nuclear export but not its polyubiquitination. Actually, although polyubiquitination by FBXL5 takes place in the nucleus, Snail1 is degraded in the cytosol. Finally, FBXL5 is highly sensitive to stress conditions and is downregulated by iron depletion and γ-irradiation, explaining Snail1 stabilization in these conditions. These results characterize a novel nuclear ubiquitin ligase controlling Snail1 protein stability and provide the molecular basis for understanding how radiotherapy upregulates the epithelial to mesenchymal transition-inducer Snail1. PMID:24157836

  16. Development and Application of a New Microarray- Based Method for High-Throughput Screening of Carbohydrate Active Enzymes

    DEFF Research Database (Denmark)

    Vidal Melgosa, Silvia

    biological roles in plants and in addition to biofuel production they are extensively used in other industrial processes including in detergents, textiles, paper and the food industry. A vast repertoire of CAZymes exists in nature but there is a growing disparity between our ability to putatively identify...... new CAZymes and our ability to empirically characterise their activities. This is a serious hindrance for the optimal exploitation of their diversity and there is therefore a pressing need for the development of new high-throughput technology for CAZyme screening. Here we describe the development of a...... new method for assessing CAZyme activities that is based on combining the multiplexing capacity of carbohydrate microarrays with the specificity of monoclonal antibodies and carbohydrate binding modules. The results presented in this thesis demonstrate that this new high-throughput semi...

  17. Carbohydrates and dietary fiber.

    Science.gov (United States)

    Suter, P M

    2005-01-01

    The most widely spread eating habit is characterized by a reduced intake of dietary fiber, an increased intake of simple sugars, a high intake of refined grain products, an altered fat composition of the diet, and a dietary pattern characterized by a high glycemic load, an increased body weight and reduced physical activity. In this chapter the effects of this eating pattern on disease risk will be outlined. There are no epidemiological studies showing that the increase of glucose, fructose or sucrose intake is directly and independently associated with an increased risk of atherosclerosis or coronary heart disease (CHD). On the other hand a large number of studies has reported a reduction of fatal and non-fatal CHD events as a function of the intake of complex carbohydrates--respectively 'dietary fiber' or selected fiber-rich food (e.g., whole grain cereals). It seems that eating too much 'fast' carbohydrate [i.e., carbohydrates with a high glycemic index (GI)] may have deleterious long-term consequences. Indeed the last decades have shown that a low fat (and consecutively high carbohydrate) diet alone is not the best strategy to combat modern diseases including atherosclerosis. Quantity and quality issues in carbohydrate nutrient content are as important as they are for fat. Multiple lines of evidence suggest that for cardiovascular disease prevention a high sugar intake should be avoided. There is growing evidence of the high impact of dietary fiber and foods with a low GI on single risk factors (e.g., lipid pattern, diabetes, inflammation, endothelial function etc.) as well as also the development of the endpoints of atherosclerosis especially CHD. PMID:16596802

  18. Distribution of a 69-kD laminin-binding protein in aortic and microvascular endothelial cells: modulation during cell attachment, spreading, and migration

    DEFF Research Database (Denmark)

    Yannariello-Brown, J; Wewer, U; Liotta, L;

    1988-01-01

    cultured subconfluent cells actively synthesizing matrix. Endothelial cells express a 69-kD laminin-binding protein that is membrane associated and appears to colocalize with actin microfilaments. The topological distribution of 69 kD and its cytoskeletal associations can be modulated by the cell during...

  19. Glutamate and glycine modulation of 3H-MK801 binding to the NMDA receptor-ion channel complex in the vitamin B-6 deficient neonatal rat brain

    International Nuclear Information System (INIS)

    The authors have previously shown that the concentrations of the neuroactive amino acids glutamate (GLU) and glycine (GLY) are significantly altered in the seizure-prone vitamin B-6 deficient neonatal rat brain. Recently, it has been shown that GLU and GLY modulate the binding of 3H-MK801 to the ion channel associated with the N-methyl-D-aspartate (NMDA)-glutamate receptor subtype. The present investigation was undertaken to determine if GLU or GLY modulation of 3H-MK801 binding was altered in B-6 deficient neonatal rat brain. Preparation of cortical membranes from control and deficient 14 day old rats and 3H-MK801 binding assay were done as described by Ransom and Stec. The results show a significant reduction in the potency and efficacy of GLU modulation of 3H-MK801 binding, as well as a reduction in the efficacy of GLY, in membrane preparations from deficient rats compared to controls. These results indicate a reduced ability of GLU and GLY to potentiate the binding of 3H-MK801 to the NMDA receptor-ion channel in the B-6 deficient neonatal rat brain

  20. Identification and Structural Basis of Binding to Host Lung Glycogen by Streptococcal Virulence Factors

    Energy Technology Data Exchange (ETDEWEB)

    Lammerts van Bueren,A.; Higgins, M.; Wang, D.; Burke, R.; Boraston, A.

    2007-01-01

    The ability of pathogenic bacteria to recognize host glycans is often essential to their virulence. Here we report structure-function studies of previously uncharacterized glycogen-binding modules in the surface-anchored pullulanases from Streptococcus pneumoniae (SpuA) and Streptococcus pyogenes (PulA). Multivalent binding to glycogen leads to a strong interaction with alveolar type II cells in mouse lung tissue. X-ray crystal structures of the binding modules reveal a novel fusion of tandem modules into single, bivalent functional domains. In addition to indicating a structural basis for multivalent attachment, the structure of the SpuA modules in complex with carbohydrate provides insight into the molecular basis for glycogen specificity. This report provides the first evidence that intracellular lung glycogen may be a novel target of pathogenic streptococci and thus provides a rationale for the identification of the streptococcal {alpha}-glucan-metabolizing machinery as virulence factors.

  1. Bioinformatics Identification of Modules of Transcription Factor Binding Sites in Alzheimer's Disease-Related Genes by In Silico Promoter Analysis and Microarrays

    Directory of Open Access Journals (Sweden)

    Regina Augustin

    2011-01-01

    Full Text Available The molecular mechanisms and genetic risk factors underlying Alzheimer's disease (AD pathogenesis are only partly understood. To identify new factors, which may contribute to AD, different approaches are taken including proteomics, genetics, and functional genomics. Here, we used a bioinformatics approach and found that distinct AD-related genes share modules of transcription factor binding sites, suggesting a transcriptional coregulation. To detect additional coregulated genes, which may potentially contribute to AD, we established a new bioinformatics workflow with known multivariate methods like support vector machines, biclustering, and predicted transcription factor binding site modules by using in silico analysis and over 400 expression arrays from human and mouse. Two significant modules are composed of three transcription factor families: CTCF, SP1F, and EGRF/ZBPF, which are conserved between human and mouse APP promoter sequences. The specific combination of in silico promoter and multivariate analysis can identify regulation mechanisms of genes involved in multifactorial diseases.

  2. Structure of the mouse galectin-4 N-terminal carbohydrate-recognition domain reveals the mechanism of oligosaccharide recognition

    Energy Technology Data Exchange (ETDEWEB)

    Krejciríková, Veronika; Pachl, Petr; Fábry, Milan; Malý, Petr; Rezácová, Pavlína; Brynda, Jirí (Czech Academy)

    2011-11-18

    Galectin-4, a member of the tandem-repeat subfamily of galectins, participates in cell-membrane interactions and plays an important role in cell adhesion and modulation of immunity and malignity. The oligosaccharide specificity of the mouse galectin-4 carbohydrate-recognition domains (CRDs) has been reported previously. In this work, the structure and binding properties of the N-terminal domain CRD1 were further investigated and the crystal structure of CRD1 in complex with lactose was determined at 2.1 {angstrom} resolution. The lactose-binding affinity was characterized by fluorescence measurements and two lactose-binding sites were identified: a high-affinity site with a K{sub d} value in the micromolar range (K{sub d1} = 600 {+-} 70 {mu}M) and a low-affinity site with K{sub d2} = 28 {+-} 10 mM.

  3. Biochemical software: Carbohydrates on Laboratory

    Directory of Open Access Journals (Sweden)

    D.N. Heidrich

    2005-07-01

    Full Text Available Educators around  the  world  are  being  challenged  to  develop  and  design  better and  more  effective strategies for student learning  using a variety  of modern  resources.  In this  present  work, an educa- tional  hypermedia  software  was constructed as a support tool to biochemistry teaching.  Occurrence, structure, main  characteristics and  biological  function  of the  biomolecule  Carbohydrates were pre- sented  through  modules.  The  software was developed  using concept  maps,  ISIS-Draw,  and  FLASH- MX animation program.  The chapter  Carbohydrates on Laboratory illustrates experimental methods of carbohydrates characterization, through  animation of a laboratory scenery.   The  subject was de- veloped showing reactions  as Bial, Benedict, Selliwanoff, Barfoed, Phenol  Sulphuric,  and Iodines, and also enzymatic  reactions  as glucose oxidase and amylase.  There are also links with short texts  in order to help the understanding of the contents  and principles of laboratory practice  as well as background reactions. Application of the software to undergraduate students and high school teachers  showed an excellent  acceptance.   All of them  considered  the  software  a very good learning  tool.  Both  teachers and students welcomed this program  as it is more flexible, and allows the learning in a more individual rhythm. In addition, application of the software would be suitable  to a more effective learning  and it is less expensive than conventional experimental teaching.

  4. RM-04RETINOBLASTOMA BINDING PROTEIN 4 (RBBP4) MODULATES TEMOZOLOMIDE RESPONSE THROUGH REGULATION OF MGMT EXPRESSION IN GLIOBLASTOMA

    Science.gov (United States)

    Kitange, Gaspar; Schroeder, Mark; Sarkaria, Jann

    2014-01-01

    Through shRNA library screen we identified RBBP4 as a modulator of TMZ response in glioblastoma (GBM). Consequently, we investigated the mechanisms whereby RBBP4 modulates TMZ response using shRNA to silence this gene in MGMT-expressing T98G and U138 GBM cells. The cytotoxicity was evaluated using fluorescence-based CYQUANT proliferation assay. A total of 4 shRNA constructs significantly suppressed RBBP4 in both T98G and U138. Cells expressing non-specific targeting shRNA (NT-shRNA) were used as control. RBBP4 knockdown significantly sensitized TMZ both in T98G and U138 cells; the relative fluorescence for the TMZ-treated (100 µM) control T98NT-shRNA cells was 1.17 ± 0.15, whereas for T98RBBP4-shRNA clones were 0.54 ± 0.02, 0.29 ± 0.03, 0.36 ± 0.05, and 0.34 ± 0.03, respectively (p < 0.001). Similar sensitization was observed in U138 cells; relative fluorescence for the TMZ-treated (300 µM) control U138NT-shRNA cells was 0.70 ± 0.05 and for U138RBBP4-shRNA clones were 0.42 ± 0.06, 0.27 ± 0.01, 0.28 ± 0.02, and 0.30 ± 0.01, respectively (p < 0.001). Interestingly, knockdown of RBBP4 in T98G was accompanied with a synthetic lethality to PARP inhibition and increased response to TMZ-induced DNA damage, as evidenced by increased phosphorylation of KAP1, CHK1 and CHK2. Moreover, phosphorylation of H2AX in response to TMZ treatment was significantly higher in T98RBBP4-shRNA clones. Consistent with deficient homologous recombination (HR), T98RBBP4-shRNA clones significantly expressed less RAD51 compared with the control T98NT-shRNA cells. Even more interesting, RBBP4 knockdown silenced MGMT expression in both T98G and U138, which was accompanied by decreased recruitment of acetylated H3K9 coupled with increased recruitment of tri-methylated H3K9. Moreover, RBBP4 knockdown was coupled with loss of p300 recruitment to bind MGMT promoter region. Collectively, these findings suggest that RBBP4 modulates TMZ response in GBM cells through epigenetic regulation of

  5. Recognition properties of receptors consisting of imidazole and indole recognition units towards carbohydrates

    Directory of Open Access Journals (Sweden)

    Monika Mazik

    2010-02-01

    Full Text Available Compounds 4 and 5, including both 4(5-substituted imidazole or 3-substituted indole units as the entities used in nature, and 2-aminopyridine group as a heterocyclic analogue of the asparagine/glutamine primary amide side chain, were prepared and their binding properties towards carbohydrates were studied. The design of these receptors was inspired by the binding motifs observed in the crystal structures of protein–carbohydrate complexes. 1H NMR spectroscopic titrations in competitive and non-competitive media as well as binding studies in two-phase systems, such as dissolution of solid carbohydrates in apolar media, revealed both highly effective recognition of neutral carbohydrates and interesting binding preferences of these acyclic compounds. Compared to the previously described acyclic receptors, compounds 4 and 5 showed significantly increased binding affinity towards β-galactoside. Both receptors display high β- vs. α-anomer binding preferences in the recognition of glycosides. It has been shown that both hydrogen bonding and interactions of the carbohydrate CH units with the aromatic rings of the receptors contribute to the stabilization of the receptor–carbohydrate complexes. The molecular modeling calculations, synthesis and binding properties of 4 and 5 towards selected carbohydrates are described and compared with those of the previously described receptors.

  6. ERp46 binds to AdipoR1, but not AdipoR2, and modulates adiponectin signalling

    International Nuclear Information System (INIS)

    The pleiotropic effects of the insulin-sensitizing adipokine adiponectin are mediated, at least in part, by two seven-transmembrane domain receptors AdipoR1 and AdipoR2. Recent reports indicate a role for AdipoR-binding proteins, namely APPL1, RACK1 and CK2β, in proximal signal transduction events. Here we demonstrate that endoplasmic reticulum protein 46 (ERp46) interacts specifically with AdipoR1 and provide evidence that ERp46 modulates adiponectin signalling. Co-immunoprecipitation followed by mass spectrometry identified ERp46 as an AdipoR1-, but not AdipoR2-, interacting protein. Analysis of truncated constructs and GST-fusion proteins revealed the interaction was mediated by the cytoplasmic, N-terminal residues (1-70) of AdipoR1. Indirect immunofluorescence microscopy and subcellular fractionation studies demonstrated that ERp46 was present in the ER and the plasma membrane (PM). Transient knockdown of ERp46 increased the levels of AdipoR1, and AdipoR2, at the PM and this correlated with increased adiponectin-stimulated phosphorylation of AMPK. In contrast, adiponectin-stimulated phosphorylation of p38MAPK was reduced following ERp46 knockdown. Collectively these results establish ERp46 as the first AdipoR1-specific interacting protein and suggest a role for ERp46 in adiponectin receptor biology and adiponectin signalling.

  7. A cholesterol-binding domain in STIM1 modulates STIM1-Orai1 physical and functional interactions.

    Science.gov (United States)

    Pacheco, Jonathan; Dominguez, Laura; Bohórquez-Hernández, A; Asanov, Alexander; Vaca, Luis

    2016-01-01

    STIM1 and Orai1 are the main components of a widely conserved Calcium influx pathway known as store-operated calcium entry (SOCE). STIM1 is a calcium sensor, which oligomerizes and activates Orai channels when calcium levels drop inside the endoplasmic reticulum (ER). The series of molecular rearrangements that STIM1 undergoes until final activation of Orai1 require the direct exposure of the STIM1 domain known as SOAR (Stim Orai Activating Region). In addition to these complex molecular rearrangements, other constituents like lipids at the plasma membrane, play critical roles orchestrating SOCE. PI(4,5)P2 and enriched cholesterol microdomains have been shown as important signaling platforms that recruit the SOCE machinery in steps previous to Orai1 activation. However, little is known about the molecular role of cholesterol once SOCE is activated. In this study we provide clear evidence that STIM1 has a cholesterol-binding domain located inside the SOAR region and modulates Orai1 channels. We demonstrate a functional association of STIM1 and SOAR to cholesterol, indicating a close proximity of SOAR to the inner layer of the plasma membrane. In contrast, the depletion of cholesterol induces the SOAR detachment from the plasma membrane and enhances its association to Orai1. These results are recapitulated with full length STIM1. PMID:27459950

  8. Cyclic AMP response element binding protein and brain-derived neurotrophic factor: Molecules that modulate our mood?

    Indian Academy of Sciences (India)

    A Nair; V A Vaidya

    2006-09-01

    Depression is the major psychiatric ailment of our times, afflicting ∼20% of the population. Despite its prevalence, the pathophysiology of this complex disorder is not well understood. In addition, although antidepressants have been in existence for the past several decades, the mechanisms that underlie their therapeutic effects remain elusive. Building evidence implicates a role for the plasticity of specific neuro-circuitry in both the pathophysiology and treatment of depression. Damage to limbic regions is thought to contribute to the etiology of depression and antidepressants have been reported to reverse such damage and promote adaptive plasticity. The molecular pathways that contribute to the damage associated with depression and antidepressant-mediated plasticity are a major focus of scientific enquiry. The transcription factor cyclic AMP response element binding protein (CREB) and the neurotrophin brain-derived neurotrophic factor (BDNF) are targets of diverse classes of antidepressants and are known to be regulated in animal models and in patients suffering from depression. Given their role in neuronal plasticity, CREB and BDNF have emerged as molecules that may play an important role in modulating mood. The purpose of this review is to discuss the role of CREB and BDNF in depression and as targets/mediators of antidepressant action.

  9. Phosphorylation of the leukemic oncoprotein EVI1 on serine 196 modulates DNA binding, transcriptional repression and transforming ability.

    Directory of Open Access Journals (Sweden)

    Daniel J White

    Full Text Available The EVI1 (ecotropic viral integration site 1 gene at 3q26 codes for a transcriptional regulator with an essential role in haematopoiesis. Overexpression of EVI1 in acute myeloid leukaemia (AML is frequently associated with 3q26 rearrangements and confers extremely poor prognosis. EVI1 mediates transcriptional regulation, signalling, and epigenetic modifications by interacting with DNA, proteins and protein complexes. To explore to what extent protein phosphorylation impacts on EVI1 functions, we analysed endogenous EVI1 protein from a high EVI1 expressing Fanconi anaemia (FA derived AML cell line. Mass spectrometric analysis of immunoprecipitated EVI1 revealed phosphorylation at serine 196 (S196 in the sixth zinc finger of the N-terminal zinc finger domain. Mutated EVI1 with an aspartate substitution at serine 196 (S196D, which mimics serine phosphorylation of this site, exhibited reduced DNA-binding and transcriptional repression from a gene promotor selectively targeted by the N-terminal zinc finger domain. Forced expression of the S196D mutant significantly reduced EVI1 mediated transformation of Rat1 fibroblasts. While EVI1-mediated serial replating of murine haematopoietic progenitors was maintained by EVI1-S196D, this was associated with significantly higher Evi1-trancript levels compared with WT-EVI1 or EVI1-S196A, mimicking S196 non-phosphorylated EVI1. These data suggest that EVI1 function is modulated by phosphorylation of the first zinc finger domain.

  10. ERp46 binds to AdipoR1, but not AdipoR2, and modulates adiponectin signalling

    Energy Technology Data Exchange (ETDEWEB)

    Charlton, Hayley K.; Webster, Julie; Kruger, Sarah; Simpson, Fiona; Richards, Ayanthi A. [Diamantina Institute for Cancer, Immunology and Metabolic Medicine, University of Queensland, Princess Alexandra Hospital, Brisbane, QLD 4102 (Australia); Whitehead, Jonathan P., E-mail: j.whitehead1@uq.edu.au [Diamantina Institute for Cancer, Immunology and Metabolic Medicine, University of Queensland, Princess Alexandra Hospital, Brisbane, QLD 4102 (Australia)

    2010-02-05

    The pleiotropic effects of the insulin-sensitizing adipokine adiponectin are mediated, at least in part, by two seven-transmembrane domain receptors AdipoR1 and AdipoR2. Recent reports indicate a role for AdipoR-binding proteins, namely APPL1, RACK1 and CK2{beta}, in proximal signal transduction events. Here we demonstrate that endoplasmic reticulum protein 46 (ERp46) interacts specifically with AdipoR1 and provide evidence that ERp46 modulates adiponectin signalling. Co-immunoprecipitation followed by mass spectrometry identified ERp46 as an AdipoR1-, but not AdipoR2-, interacting protein. Analysis of truncated constructs and GST-fusion proteins revealed the interaction was mediated by the cytoplasmic, N-terminal residues (1-70) of AdipoR1. Indirect immunofluorescence microscopy and subcellular fractionation studies demonstrated that ERp46 was present in the ER and the plasma membrane (PM). Transient knockdown of ERp46 increased the levels of AdipoR1, and AdipoR2, at the PM and this correlated with increased adiponectin-stimulated phosphorylation of AMPK. In contrast, adiponectin-stimulated phosphorylation of p38MAPK was reduced following ERp46 knockdown. Collectively these results establish ERp46 as the first AdipoR1-specific interacting protein and suggest a role for ERp46 in adiponectin receptor biology and adiponectin signalling.

  11. [Carbohydrates and fiber].

    Science.gov (United States)

    Lajolo, F M; de Menezes, E W; Filisetti-Cozzi, T M

    1988-09-01

    Dietary carbohydrates comprise two fractions that may be classified as digestible, and which are useful as energy sources (simple and complex carbohydrates) and fiber, which is presumed to be of no use to the human body. There are insufficient epidemiologic data on the metabolic effects of simple carbohydrates and it is not advisable to make quantitative recommendations of intake. It is questionable to recommend in developing countries that a fixed proportion of dietary energy be derived from simple sugars, due to the high prevalence of deficient energy intake, cultural habits, and regional differences in food intake and physical activity. In relation to recommendations of complex carbohydrates, it should be considered that their absorption is influenced by many factors inherent to the individual and to the foods. Fiber is defined as a series of different substances derived from tissue structures, cellular residues and undigested chemical substances that may be partially utilized after intestinal bacteria have acted on them. There is not a clear definition of the chemical composition of fiber, but it consists mainly of polysaccharides (such as cellulose, hemicellulose and pectins), lignin and end products of the interactions of various food components. The effects of fiber, such as control of food intake, regulation of gastrointestinal transit, post-prandial blood concentrations of cholesterol, glucose and insulin, flatulence and alterations in nutrient bioavailability are due to various physical properties inherent to its chemical components. Impairment of nutrient absorption may be harmful, mainly among populations whose food intake is lower than their energy needs, and with a high fiber content. This may be particularly important in pregnant women, growing children and the elderly, and should be considered when making nutrient recommendations. A precise knowledge of fiber is also important to calculate the real energy value of foods, mainly for two reasons: 1

  12. Prognostic Significance of Carbohydrate Antigen 19-9 in Unresectable Locally Advanced Pancreatic Cancer Treated With Dose-Escalated Intensity Modulated Radiation Therapy and Concurrent Full-Dose Gemcitabine: Analysis of a Prospective Phase 1/2 Dose Escalation Study

    International Nuclear Information System (INIS)

    Purpose: Although established in the postresection setting, the prognostic value of carbohydrate antigen 19-9 (CA19-9) in unresectable locally advanced pancreatic cancer (LAPC) is less clear. We examined the prognostic utility of CA19-9 in patients with unresectable LAPC treated on a prospective trial of intensity modulated radiation therapy (IMRT) dose escalation with concurrent gemcitabine. Methods and Materials: Forty-six patients with unresectable LAPC were treated at the University of Michigan on a phase 1/2 trial of IMRT dose escalation with concurrent gemcitabine. CA19-9 was obtained at baseline and during routine follow-up. Cox models were used to assess the effect of baseline factors on freedom from local progression (FFLP), distant progression (FFDP), progression-free survival (PFS), and overall survival (OS). Stepwise forward regression was used to build multivariate predictive models for each endpoint. Results: Thirty-eight patients were eligible for the present analysis. On univariate analysis, baseline CA19-9 and age predicted OS, CA19-9 at baseline and 3 months predicted PFS, gross tumor volume (GTV) and black race predicted FFLP, and CA19-9 at 3 months predicted FFDP. On stepwise multivariate regression modeling, baseline CA19-9, age, and female sex predicted OS; baseline CA19-9 and female sex predicted both PFS and FFDP; and GTV predicted FFLP. Patients with baseline CA19-9 ≤90 U/mL had improved OS (median 23.0 vs 11.1 months, HR 2.88, P<.01) and PFS (14.4 vs 7.0 months, HR 3.61, P=.001). CA19-9 progression over 90 U/mL was prognostic for both OS (HR 3.65, P=.001) and PFS (HR 3.04, P=.001), and it was a stronger predictor of death than either local progression (HR 1.46, P=.42) or distant progression (HR 3.31, P=.004). Conclusions: In patients with unresectable LAPC undergoing definitive chemoradiation therapy, baseline CA19-9 was independently prognostic even after established prognostic factors were controlled for, whereas CA19-9 progression

  13. EndB, a Multidomain Family 44 Cellulase from Ruminococcus flavefaciens 17, Binds to Cellulose via a Novel Cellulose-Binding Module and to Another R. flavefaciens Protein via a Dockerin Domain

    Science.gov (United States)

    Rincón, Marco T.; McCrae, Sheila I.; Kirby, James; Scott, Karen P.; Flint, Harry J.

    2001-01-01

    The mechanisms by which cellulolytic enzymes and enzyme complexes in Ruminococcus spp. bind to cellulose are not fully understood. The product of the newly isolated cellulase gene endB from Ruminococcus flavefaciens 17 was purified as a His-tagged product after expression in Escherichia coli and found to be able to bind directly to crystalline cellulose. The ability to bind cellulose is shown to be associated with a novel cellulose-binding module (CBM) located within a region of 200 amino acids that is unrelated to known protein sequences. EndB (808 amino acids) also contains a catalytic domain belonging to glycoside hydrolase family 44 and a C-terminal dockerin-like domain. Purified EndB is also shown to bind specifically via its dockerin domain to a polypeptide of ca. 130 kDa present among supernatant proteins from Avicel-grown R. flavefaciens that attach to cellulose. The protein to which EndB attaches is a strong candidate for the scaffolding component of a cellulosome-like multienzyme complex recently identified in this species (S.-Y. Ding et al., J. Bacteriol. 183:1945–1953, 2001). It is concluded that binding of EndB to cellulose may occur both through its own CBM and potentially also through its involvement in a cellulosome complex. PMID:11571138

  14. Insulin-like growth factor binding protein-5 modulates muscle differentiation through an insulin-like growth factor-dependent mechanism

    OpenAIRE

    1996-01-01

    The insulin-like growth factor binding proteins (IGFBPs) are a family of six secreted proteins which bind to and modulate the actions of insulin-like growth factors-I and -II (IGF-I and -II). IGFBP-5 is more conserved than other IGFBPs characterized to date, and is expressed in adult rodent muscle and in the developing myotome. We have shown previously that C2 myoblasts secrete IGFBP-5 as their sole IGFBP. Here we use these cells to study the function of IGFBP-5 during myogenesis, a process s...

  15. Production of Single-Chain Variable-Fragments against Carbohydrate Antigens

    OpenAIRE

    Yoko Fujita-Yamaguchi

    2014-01-01

    The production of human single-chain variable-fragments (scFvs) against carbohydrate antigens by phage display technology is seemingly a logical strategy towards the development of antibody therapeutics, since carbohydrates are self-antigens. Panning and screening of phages displaying human scFvs using a variety of neoglycolipids presenting structurally-defined carbohydrates resulted in a number of candidate phage clones as judged by cautious evaluation of DNA sequences and specific binding t...

  16. Effects of Carbohydrate Consumption Case Study: carbohydrates in Bread

    Directory of Open Access Journals (Sweden)

    Neacsu N.A.

    2014-12-01

    Full Text Available Carbohydrates perform numerous roles in living organisms; they are an important source of energy. The body uses carbohydrates to make glucose which is the fuel that gives it energy and helps keep everything going. However, excess carbohydrate consumption has negative health effects. Bread is a basic product in our nutrition and it also is a product with a high content of carbohydrates. So, it is important to find out more information on bread and on the recommended bread type best for consumption.

  17. Pharmacological characterization and modeling of the binding sites of novel 1,3-bis(pyridinylethynyl)benzenes as metabotropic glutamate receptor 5-selective negative allosteric modulators

    DEFF Research Database (Denmark)

    Mølck, Christina; Harpsøe, Kasper; Gloriam, David E;

    2012-01-01

    Metabotropic glutamate receptor subtype 5 (mGluR5) is a potential drug target in neurological and psychiatric disorders, and subtype-selective allosteric modulators have attracted much attention as potential drug candidates. In this study, the binding sites of three novel 2-methyl-6-(phenylethynyl......)pyridine (MPEP)-derived negative allosteric modulators, 2-, 3-, and 4-BisPEB, have been characterized. 2-, 3-, and 4-BisPEB are 1,3-bis(pyridinylethynyl)-benzenes and differ only by the position of the nitrogen atoms in the pyridine rings. Despite their high structural similarity, 2-BisPEB [1,3-bis(pyridin-2...

  18. Helicobacter pylori induces β3GnT5 in human gastric cell lines, modulating expression of the SabA ligand sialyl–Lewis x

    OpenAIRE

    Marcos, Nuno T; Magalhães, Ana; Ferreira, Bibiana; Maria J Oliveira; Carvalho, Ana S.; Mendes, Nuno; Gilmartin, Tim; Head, Steven R; Figueiredo, Céu; David, Leonor; Santos-Silva, Filipe; Celso A Reis

    2008-01-01

    Chronic Helicobacter pylori infection is recognized as a cause of gastric cancer. H. pylori adhesion to gastric cells is mediated by bacterial adhesins such as sialic acid–binding adhesin (SabA), which binds the carbohydrate structure sialyl–Lewis x. Sialyl–Lewis x expression in the gastric epithelium is induced during persistent H. pylori infection, suggesting that H. pylori modulates host cell glycosylation patterns for enhanced adhesion. Here, we evaluate changes in the glycosylation-relat...

  19. Organizing multivalency in carbohydrate recognition.

    Science.gov (United States)

    Müller, Christian; Despras, Guillaume; Lindhorst, Thisbe K

    2016-06-01

    The interactions of cell surface carbohydrates as well as of soluble glycoconjugates with their receptor proteins rule fundamental processes in cell biology. One of the supramolecular principles underlying and regulating carbohydrate recognition is multivalency. Many multivalent glycoconjugates have therefore been synthesized to study multivalency effects operative in glycobiology. This review is focused on smaller multivalent structures such as glycoclusters emphasizing carbohydrate-centered and heteromultivalent glycoconjugates. We are discussing primary, secondary and tertiary structural aspects including approaches to organize multivalency. PMID:27146554

  20. Combinatorial binding leads to diverse regulatory responses: Lmd is a tissue-specific modulator of Mef2 activity.

    Directory of Open Access Journals (Sweden)

    Paulo M F Cunha

    2010-07-01

    Full Text Available Understanding how complex patterns of temporal and spatial expression are regulated is central to deciphering genetic programs that drive development. Gene expression is initiated through the action of transcription factors and their cofactors converging on enhancer elements leading to a defined activity. Specific constellations of combinatorial occupancy are therefore often conceptualized as rigid binding codes that give rise to a common output of spatio-temporal expression. Here, we assessed this assumption using the regulatory input of two essential transcription factors within the Drosophila myogenic network. Mutations in either Myocyte enhancing factor 2 (Mef2 or the zinc-finger transcription factor lame duck (lmd lead to very similar defects in myoblast fusion, yet the underlying molecular mechanism for this shared phenotype is not understood. Using a combination of ChIP-on-chip analysis and expression profiling of loss-of-function mutants, we obtained a global view of the regulatory input of both factors during development. The majority of Lmd-bound enhancers are co-bound by Mef2, representing a subset of Mef2's transcriptional input during these stages of development. Systematic analyses of the regulatory contribution of both factors demonstrate diverse regulatory roles, despite their co-occupancy of shared enhancer elements. These results indicate that Lmd is a tissue-specific modulator of Mef2 activity, acting as both a transcriptional activator and repressor, which has important implications for myogenesis. More generally, this study demonstrates considerable flexibility in the regulatory output of two factors, leading to additive, cooperative, and repressive modes of co-regulation.

  1. Improving bacterial cellulose for blood vessel replacement: functionalization with a chimeric protein containing a cellulose-binding module and an adhesion peptide

    OpenAIRE

    Andrade, Fábia K.; Costa, Raquel; Domingues, Lucília; Soares, Raquel; Gama, F. M.

    2010-01-01

    Chimeric proteins containing a cellulose-binding module (CBM) and an adhesion peptide (RGD or GRGDY) were produced and used to improve the adhesion of human microvascular endothelial cells (HMEC) to bacterial cellulose (BC). The effect of these proteins on the HMEC–BC interaction was studied. The results obtained demonstrated that recombinant proteins containing adhesion sequences were able to significantly increase the attachment of HMEC to BC surfaces, especially the RGD sequenc...

  2. Recyclable Cellulose-Containing Magnetic Nanoparticles: Immobilization of Cellulose-Binding Module-Tagged Proteins and Synthetic Metabolon Featuring Substrate Channeling

    OpenAIRE

    Myung, Suwan; You, Chun; Zhang, Y. H. Percival

    2013-01-01

    Easily recyclable cellulose-containing magnetic nanoparticles were developed for immobilizing family 3 cellulose-binding module (CBM)-tagged enzymes/proteins and a self-assembled three-enzyme complex called the synthetic metabolon. Avicel (microcrystalline cellulose)-containing magnetic nanoparticles (A-MNPs) and two controls of dextran-containing magnetic nanoparticles (D-MNPs) and magnetic nanoparticles (MNPs) were prepared by a solvothermal method. Their adsorption ability was investigated...

  3. Specific binding of a mutated fragment of Clostridium perfringens enterotoxin to endothelial claudin-5 and its modulation of cerebral vascular permeability.

    Science.gov (United States)

    Liao, Zhuangbin; Yang, Zhenguo; Piontek, Anna; Eichner, Miriam; Krause, Gerd; Li, Longxuan; Piontek, Joerg; Zhang, Jingjing

    2016-07-01

    The vertebrate blood-brain barrier (BBB) creates an obstacle for central nervous system-related drug delivery. Claudin-5 (Cldn5), expressed in large quantities in BBB, plays a vital role in restricting BBB permeability. The C-terminal domain of Clostridium perfringens enterotoxin (cCPE) has been verified as binding to a subset of claudins (Cldns). The Cldn5-binding cCPE194-319 variant cCPEY306W/S313H was applied in this study to investigate its ability to modulate the permeability of zebrafish larval BBB. In vitro results showed that cCPEY306W/S313H is able to bind specifically to Cldn5 in murine brain vascular endothelial (bEnd.3) cells, and is transported along with Cldn5 from the cell membrane to the cytoplasm, which in turn results in a reduction in transendothelial electrical resistance (TEER). Conversely, this effect can be reversed by removal of cCPEY306W/S313H. In an in vivo experiment, this study estimates the capability of cCPEY306W/S313H to modulate Cldn5 using a rhodamine B-Dextran dye diffusion assay in zebrafish larval BBB. The results show that cCPEY306W/S313H co-localized with Cldn5 in zebrafish cerebral vascular cells and modulated BBB permeability, resulting in dye leakage. Taken together, this study suggests that cCPEY306W/S313H has the capability - both in vitro and in vivo - to modulate BBB permeability temporarily by specific binding to Cldn5. PMID:27095710

  4. IGD motifs, which are required for migration stimulatory activity of fibronectin type I modules, do not mediate binding in matrix assembly.

    Directory of Open Access Journals (Sweden)

    Lisa M Maurer

    Full Text Available Picomolar concentrations of proteins comprising only the N-terminal 70-kDa region (70K of fibronectin (FN stimulate cell migration into collagen gels. The Ile-Gly-Asp (IGD motifs in four of the nine FN type 1 (FNI modules in 70K are important for such migratory stimulating activity. The 70K region mediates binding of nanomolar concentrations of intact FN to cell-surface sites where FN is assembled. Using baculovirus, we expressed wildtype 70K and 70K with Ile-to-Ala mutations in (3FNI and (5FNI; (7FNI and (9FNI; or (3FNI, (5FNI, (7FNI, and (9FNI. Wildtype 70K and 70K with Ile-to-Ala mutations were equally active in binding to assembly sites of FN-null fibroblasts. This finding indicates that IGD motifs do not mediate the interaction between 70K and the cell-surface that is important for FN assembly. Further, FN fragment N-(3FNIII, which does not stimulate migration, binds to assembly sites on FN-null fibroblast. The Ile-to-Ala mutations had effects on the structure of FNI modules as evidenced by decreases in abilities of 70K with Ile-to-Ala mutations to bind to monoclonal antibody 5C3, which recognizes an epitope in (9FNI, or to bind to FUD, a polypeptide based on the F1 adhesin of Streptococcus pyogenes that interacts with 70K by the β-zipper mechanism. These results suggest that the picomolar interactions of 70K with cells that stimulate cell migration require different conformations of FNI modules than the nanomolar interactions required for assembly.

  5. Escherichia coli Single-Stranded DNA-Binding Protein: NanoESI-MS Studies of Salt-Modulated Subunit Exchange and DNA Binding Transactions

    Science.gov (United States)

    Mason, Claire E.; Jergic, Slobodan; Lo, Allen T. Y.; Wang, Yao; Dixon, Nicholas E.; Beck, Jennifer L.

    2013-02-01

    Single-stranded DNA-binding proteins (SSBs) are ubiquitous oligomeric proteins that bind with very high affinity to single-stranded DNA and have a variety of essential roles in DNA metabolism. Nanoelectrospray ionization mass spectrometry (nanoESI-MS) was used to monitor subunit exchange in full-length and truncated forms of the homotetrameric SSB from Escherichia coli. Subunit exchange in the native protein was found to occur slowly over a period of hours, but was significantly more rapid in a truncated variant of SSB from which the eight C-terminal residues were deleted. This effect is proposed to result from C-terminus mediated stabilization of the SSB tetramer, in which the C-termini interact with the DNA-binding cores of adjacent subunits. NanoESI-MS was also used to examine DNA binding to the SSB tetramer. Binding of single-stranded oligonucleotides [one molecule of (dT)70, one molecule of (dT)35, or two molecules of (dT)35] was found to prevent SSB subunit exchange. Transfer of SSB tetramers between discrete oligonucleotides was also observed and is consistent with predictions from solution-phase studies, suggesting that SSB-DNA complexes can be reliably analyzed by ESI mass spectrometry.

  6. Impact of Dietary Carbohydrate and Protein Levels on Carbohydrate Metabolism

    Science.gov (United States)

    Lasker, Denise Ann

    2009-01-01

    The goal of this dissertation was to investigate the impact of changing dietary carbohydrate (CARB) intakes within recommended dietary guidelines on metabolic outcomes specifically associated with glycemic regulations and carbohydrate metabolism. This research utilized both human and animal studies to examine changes in metabolism across a wide…

  7. The solvation of carbohydrates in dimethylsulfoxide and water

    International Nuclear Information System (INIS)

    The solvation of sucrose and other carbohydrates in DMSO and water is probed by intermolecular NOE measurements. The NOE effects are interpreted in terms of specific binding of the solvent to certain sites of the molecules. It is shown that DMSO attaches to specific sites of the sucrose molecule, whereas for water such a clear differentiation cannot be proven. (author)

  8. Dietary carbohydrates and endurance exercise.

    Science.gov (United States)

    Evans, W J; Hughes, V A

    1985-05-01

    Antecedent diet can greatly influence both substrate utilization during exercise and exercise performance itself. A number of studies have convincingly demonstrated that short-term (three to seven days) adaptation to a low carbohydrate diet results in greatly reduced liver and muscle glycogen stores. While carbohydrate utilization after such a diet is reduced, the limited glycogen stores can severely limit endurance exercise performance. High carbohydrate diets on the other hand expand carbohydrate stores which can limit performance. However, long-term adaptation to a low carbohydrate diet can greatly alter muscle and whole body energy metabolism to drastically limit the oxidation of limited carbohydrate stores with no adverse effect on performance. Glycogen loading techniques can result in supercompensation of muscle stores. Exercise induced depletion of muscle glycogen is the most important single factor in this phenomenon. Following the exercise a low carbohydrate diet for two to three days after which a high carbohydrate diet is eaten seemingly has the same effect on increasing muscle glycogen stores as simply eating a high carbohydrate diet. The form of the dietary carbohydrate during glycogen loading should be high in complex carbohydrates; however, the type of dietary starch that effects the greatest rate of resynthesis has not been investigated. Rapid resynthesis of glycogen following exercise is at least in part due to increased insulin sensitivity. The enhanced glucose transport caused by the increased sensitivity provides substrate for glycogen synthase. How rapidly this enhanced sensitivity returns to pre-exercise levels in humans is uncertain.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3993621

  9. Expression and Characterization of a Bifidobacterium adolescentis Beta-Mannanase Carrying Mannan-Binding and Cell Association Motifs

    OpenAIRE

    Kulcinskaja, Evelina; Rosengren, Anna; Ibrahim, Romany; Kolenová, Katarína; Stålbrand, Henrik

    2013-01-01

    The gene encoding β-mannanase (EC 3.2.1.78) BaMan26A from the bacterium Bifidobacterium adolescentis (living in the human gut) was cloned and the gene product characterized. The enzyme was found to be modular and to contain a putative signal peptide. It possesses a catalytic module of the glycoside hydrolase family 26, a predicted immunoglobulin-like module, and two putative carbohydrate-binding modules (CBMs) of family 23. The enzyme is likely cell attached either by the sortase mechanism (L...

  10. Carbohydrates and Diabetes (For Parents)

    Science.gov (United States)

    ... of diet foods. These foods may contain extra sugar as a substitute for fat calories. Try to include your child or teen as you evaluate and select healthy carbohydrate-containing foods. With ... blood sugar. By taking a smart approach to balancing carbohydrates, ...

  11. The conformational state of the nucleosome entry–exit site modulates TATA box-specific TBP binding

    OpenAIRE

    Aaron R Hieb; Gansen, Alexander; Böhm, Vera; Langowski, Jörg

    2014-01-01

    The TATA binding protein (TBP) is a critical transcription factor used for nucleating assembly of the RNA polymerase II machinery. TBP binds TATA box elements with high affinity and kinetic stability and in vivo is correlated with high levels of transcription activation. However, since most promoters use less stable TATA-less or TATA-like elements, while also competing with nucleosome occupancy, further mechanistic insight into TBP's DNA binding properties and ability to access chromatin is n...

  12. Catalytic Conversion of Carbohydrates

    DEFF Research Database (Denmark)

    Osmundsen, Christian Mårup

    a renewable route to aromatics. The conversion of biomass by high temperature processes is a desirable prospect due to the high volumetric production rates which can be achieved, and the ability of these types of processes to convert a wide range of substrates. Current processes however typically...... process could prove to be an efficient initial conversion step in the utilization of biomass for chemicals production. The shift from an oil based chemical industry to one based on renewable resources is bound to happen sooner or later, however the environmental problems associated with the burning of...... production of commodity chemicals from the most abundantly available renewable source of carbon, carbohydrates. The production of alkyl lactates by the Lewis acid catalyzed conversion of hexoses is an interesting alternative to current fermentation based processes. A range of stannosilicates were...

  13. Neuroplastin-65 and a mimetic peptide derived from its homophilic binding site modulate neuritogenesis and neuronal plasticity

    DEFF Research Database (Denmark)

    Owczarek, Sylwia; Soroka, Vladislav; Kiryushko, Darya;

    2011-01-01

    , but the exact binding mechanism has not yet been elucidated. In this study, we identify the homophilic binding motif of Np65 and show that a synthetic peptide modeled after this motif, termed enplastin, binds to Np65. We demonstrate that both Np65- and enplastin-induced intracellular signaling depends...... on fibroblast growth factor receptor, p38 mitogen-activated protein kinase, Ca(2+) /calmodulin-dependent protein kinase, and cytoplasmic Ca(2+) concentration. In addition, we show that interference with Np65 homophilic binding by enplastin has an inhibitory effect on Np65-mediated neurite outgrowth...

  14. Sequence analyses of fimbriae subunit FimA proteins on Actinomyces naeslundii genospecies 1 and 2 and Actinomyces odontolyticus with variant carbohydrate binding specificities

    OpenAIRE

    Persson Karina; Birve Anna; Öhman Ulla; Hallberg Kristina; Drobni Mirva; Johansson Ingegerd; Strömberg Nicklas

    2006-01-01

    Abstract Background Actinomyces naeslundii genospecies 1 and 2 express type-2 fimbriae (FimA subunit polymers) with variant Galβ binding specificities and Actinomyces odontolyticus a sialic acid specificity to colonize different oral surfaces. However, the fimbrial nature of the sialic acid binding property and sequence information about FimA proteins from multiple strains are lacking. Results Here we have sequenced fimA genes from strains of A.naeslundii genospecies 1 (n = 4) and genospecies...

  15. Comparison of β-adrenergic receptors between different strains of rat with different susceptibility to hypertension: a survey of binding characteristics, responsiveness and corticosteroid induced modulation

    International Nuclear Information System (INIS)

    The objective of this research was two fold: the first objective was to measure β-adrenergic receptor characteristics (Bmax and Kd) and responsiveness (isoproterenol induced c-AMP production) between different strains of rat with different susceptibility to hypertension. The second objective of this research was to determine if β-adrenergic receptors of arterial smooth muscle cells (ASMC) can be modulated by corticosteroids. These studies were done under controlled conditions using ASMC grown in culture from the rat aorta. [3H]-dihydroalprenolol (DHA) was used to measure β-adrenergic receptor binding characteristics (Kd and Bmax). Scatchard analysis of [3H]-DHA binding revealed one class of binding sites with affinity in the range of 100 pM. [3H]-DHA binding comparison between Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) revealed that the Bmax for SHR was significantly lower than WKY. However, isoproterenol stimulated c-AMP production by SHR, is significantly higher than WKY. Fischer 344 rats, showed similar Bmax, Kd, and responsiveness as WKY rats. Dahl-sensitive and Dahl-resistant rats had equal Bmax and Kd measured by [3H]-DHA binding

  16. A Hox Transcription Factor Collective Binds a Highly Conserved Distal-less cis-Regulatory Module to Generate Robust Transcriptional Outcomes.

    Science.gov (United States)

    Uhl, Juli D; Zandvakili, Arya; Gebelein, Brian

    2016-04-01

    cis-regulatory modules (CRMs) generate precise expression patterns by integrating numerous transcription factors (TFs). Surprisingly, CRMs that control essential gene patterns can differ greatly in conservation, suggesting distinct constraints on TF binding sites. Here, we show that a highly conserved Distal-less regulatory element (DCRE) that controls gene expression in leg precursor cells recruits multiple Hox, Extradenticle (Exd) and Homothorax (Hth) complexes to mediate dual outputs: thoracic activation and abdominal repression. Using reporter assays, we found that abdominal repression is particularly robust, as neither individual binding site mutations nor a DNA binding deficient Hth protein abolished cooperative DNA binding and in vivo repression. Moreover, a re-engineered DCRE containing a distinct configuration of Hox, Exd, and Hth sites also mediated abdominal Hox repression. However, the re-engineered DCRE failed to perform additional segment-specific functions such as thoracic activation. These findings are consistent with two emerging concepts in gene regulation: First, the abdominal Hox/Exd/Hth factors utilize protein-protein and protein-DNA interactions to form repression complexes on flexible combinations of sites, consistent with the TF collective model of CRM organization. Second, the conserved DCRE mediates multiple cell-type specific outputs, consistent with recent findings that pleiotropic CRMs are associated with conserved TF binding and added evolutionary constraints. PMID:27058369

  17. Carbohydrate determinants in ferret conjunctiva are affected by infection with influenza H1N1 virus

    DEFF Research Database (Denmark)

    Kirkeby, Svend; Martel, Cyril; Aasted, Bent; Vorum, Henrik

    2013-01-01

    Carbohydrates often accomplish as cell-surface receptors for microorganisms and influenza virus preferentially binds to sialic acid through the viral haemagglutinin. The virus may attach not only to the epithelium in the airways, but also to the surface ocular epithelium.......Carbohydrates often accomplish as cell-surface receptors for microorganisms and influenza virus preferentially binds to sialic acid through the viral haemagglutinin. The virus may attach not only to the epithelium in the airways, but also to the surface ocular epithelium....

  18. A Novel Binding Pattern Unique in Two Ligands for One Carbohydrate Recognition Domain in Galectins%半乳糖凝集素糖结合的新模式:一个糖结合域的双重配体结合

    Institute of Scientific and Technical Information of China (English)

    卞乘凤; 张英; 李德峰; 王大成

    2011-01-01

    半乳糖凝集素家族通过糖识别结构域(CRD)可以专一性识别和结合含β-半乳糖的多糖配体来发挥其生物学功能.到目前发现的CRD对β-半乳糖的识别模式是非常保守的,在结构已知的半乳糖凝集素结构中,一个CRD只能结合一个多糖配体分子.最近,通过对人源半乳糖凝聚素-3 CRD与对硝基TF二糖(TFN)复合物的晶体结构解析首次发现,一个CRD可以同时结合2个TFN分子.与这2个TFN分子有双向结合的残基突变体E165A结构分析显示,一个残基的突变引起的结构上的微小变化会使结合位点2丧失结合糖底物的能力,而位点1的配体结合却不受影响.这表明,结合位点1对糖底物保守的识别和结合是基本的、主要的,而结合位点2对于糖有条件的结合,是额外的、次要的.序列比对和立体化学分析显示,参与新位点2结合的关键残基在其他半乳糖凝集素分子中都是保守的,而它们参与糖配体结合并不常见,表明它们作用的发挥是有条件的.可能在复杂寡聚结构的情况下,如有多重分支结构,双重结合位点将有利于对这类配体分子的辨识和结合,已有一系列研究报道,具有分支结构的寡糖与半乳糖分子的亲和势明显高于单价糖配体,与上述分析相一致.对这类双重位点糖结合的可能生物学意义进行了讨论.%Galectins are a protein family with diverse biological functions,which are unique in specifically recognition and binding with β-galactosides as the primary structural basis for its functional performance.So far,all structurally characterized galectins display a conservative binding mode for the β-galactoside-containing carbohydrate ligands,in which one carbohydrate recognition domain (CRD) binds only one ligand.Here a novel binding pattern unique in two carbohydrate ligands for one CRD was reported,which is observed from the structure of Gal-3 CRD complexed with glycan TFN.In this doublet binding

  19. Starch-binding domains in the CBM45 family--low-affinity domains from glucan, water dikinase and α-amylase involved in plastidial starch metabolism.

    Science.gov (United States)

    Glaring, Mikkel A; Baumann, Martin J; Abou Hachem, Maher; Nakai, Hiroyuki; Nakai, Natsuko; Santelia, Diana; Sigurskjold, Bent W; Zeeman, Samuel C; Blennow, Andreas; Svensson, Birte

    2011-04-01

    Starch-binding domains are noncatalytic carbohydrate-binding modules that mediate binding to granular starch. The starch-binding domains from the carbohydrate-binding module family 45 (CBM45, http://www.cazy.org) are found as N-terminal tandem repeats in a small number of enzymes, primarily from photosynthesizing organisms. Isolated domains from representatives of each of the two classes of enzyme carrying CBM45-type domains, the Solanum tuberosumα-glucan, water dikinase and the Arabidopsis thaliana plastidial α-amylase 3, were expressed as recombinant proteins and characterized. Differential scanning calorimetry was used to verify the conformational integrity of an isolated CBM45 domain, revealing a surprisingly high thermal stability (T(m) of 84.8 °C). The functionality of CBM45 was demonstrated in planta by yellow/green fluorescent protein fusions and transient expression in tobacco leaves. Affinities for starch and soluble cyclodextrin starch mimics were measured by adsorption assays, surface plasmon resonance and isothermal titration calorimetry analyses. The data indicate that CBM45 binds with an affinity of about two orders of magnitude lower than the classical starch-binding domains from extracellular microbial amylolytic enzymes. This suggests that low-affinity starch-binding domains are a recurring feature in plastidial starch metabolism, and supports the hypothesis that reversible binding, effectuated through low-affinity interaction with starch granules, facilitates dynamic regulation of enzyme activities and, hence, of starch metabolism. PMID:21294843

  20. p300/cAMP-response-element-binding-protein ('CREB')-binding protein (CBP) modulates co-operation between myocyte enhancer factor 2A (MEF2A) and thyroid hormone receptor-retinoid X receptor.

    Science.gov (United States)

    De Luca, Antonio; Severino, Anna; De Paolis, Paola; Cottone, Giuliano; De Luca, Luca; De Falco, Maria; Porcellini, Antonio; Volpe, Massimo; Condorelli, Gianluigi

    2003-01-01

    Thyroid hormone receptors (TRs) and members of the myocyte enhancer factor 2 (MEF2) family are involved in the regulation of muscle-specific gene expression during myogenesis. Physical interaction between these two factors is required to synergistically activate gene transcription. p300/cAMP-response-element-binding-protein ('CREB')-binding protein (CBP) interacting with transcription factors is able to increase their activity on target gene promoters. We investigated the role of p300 in regulating the TR-MEF2A complex. To this end, we mapped the regions of these proteins involved in physical interactions and we evaluated the expression of a chloramphenicol acetyltransferase (CAT) reporter gene in U2OS cells under control of the alpha-myosin heavy chain promoter containing the thyroid hormone response element (TRE). Our results suggested a role of p300/CBP in mediating the transactivation effects of the TR-retenoid X receptor (RxR)-MEF2A complex. Our findings showed that the same C-terminal portion of p300 binds the N-terminal domains of both TR and MEF2A, and our in vivo studies demonstrated that TR, MEF2A and p300 form a ternary complex. Moreover, by the use of CAT assays, we demonstrated that adenovirus E1A inhibits activation of transcription by TR-RxR-MEF2A-p300 but not by TR-RxR-MEF2A. Our data suggested that p300 can bind and modulate the activity of TR-RxR-MEF2A at TRE. In addition, it is speculated that p300 might modulate the activity of the TR-RxR-MEF2A complex by recruiting a hypothetical endogenous inhibitor which may act like adenovirus E1A. PMID:12371907

  1. A single-molecule force spectroscopy study of the interactions between lectins and carbohydrates on cancer and normal cells

    Science.gov (United States)

    Zhao, Weidong; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Wang, Hongda

    2013-03-01

    The interaction forces between carbohydrates and lectins were investigated by single-molecule force spectroscopy on both cancer and normal cells. The binding kinetics was also studied, which shows that the carbohydrate-lectin complex on cancer cells is less stable than that on normal cells.The interaction forces between carbohydrates and lectins were investigated by single-molecule force spectroscopy on both cancer and normal cells. The binding kinetics was also studied, which shows that the carbohydrate-lectin complex on cancer cells is less stable than that on normal cells. Electronic supplementary information (ESI) available: Experimental details. See DOI: 10.1039/c3nr00553d

  2. C-type lectin-like carbohydrate recognition of the hemolytic lectin CEL-III containing ricin-type -trefoil folds.

    Science.gov (United States)

    Hatakeyama, Tomomitsu; Unno, Hideaki; Kouzuma, Yoshiaki; Uchida, Tatsuya; Eto, Seiichiro; Hidemura, Haruki; Kato, Norihisa; Yonekura, Masami; Kusunoki, Masami

    2007-12-28

    CEL-III is a Ca(2+)-dependent hemolytic lectin, isolated from the marine invertebrate Cucumaria echinata. The three-dimensional structure of CEL-III/GalNAc and CEL-III/methyl alpha-galactoside complexes was solved by x-ray crystallographic analysis. In these complexes, five carbohydrate molecules were found to be bound to two carbohydrate-binding domains (domains 1 and 2) located in the N-terminal 2/3 portion of the polypeptide and that contained beta-trefoil folds similar to ricin B-chain. The 3-OH and 4-OH of bound carbohydrate molecules were coordinated with Ca(2+) located at the subdomains 1alpha, 1gamma, 2alpha, 2beta, and 2gamma, simultaneously forming hydrogen bond networks with nearby amino acid side chains, which is similar to carbohydrate binding in C-type lectins. The binding of carbohydrates was further stabilized by aromatic amino acid residues, such as tyrosine and tryptophan, through a stacking interaction with the hydrophobic face of carbohydrates. The importance of amino acid residues in the carbohydrate-binding sites was confirmed by the mutational analyses. The orientation of bound GalNAc and methyl alpha-galactoside was similar to the galactose moiety of lactose bound to the carbohydrate-binding site of the ricin B-chain, although the ricin B-chain does not require Ca(2+) ions for carbohydrate binding. The binding of the carbohydrates induced local structural changes in carbohydrate-binding sites in subdomains 2alpha and 2beta. Binding of GalNAc also induced a slight change in the main chain structure of domain 3, which could be related to the conformational change upon binding of specific carbohydrates to induce oligomerization of the protein. PMID:17977832

  3. Heparin/heparan sulfates bind to and modulate neuronal L-type (Cav1.2) voltage-dependent Ca2+ channels

    DEFF Research Database (Denmark)

    Garau, Gianpiero; Magotti, Paola; Heine, Martin;

    2015-01-01

    Our previous studies revealed that L-type voltage-dependent Ca2+ channels (Cav1.2 L-VDCCs) are modulated by the neural extracellular matrix backbone, polyanionic glycan hyaluronic acid. Here we used isothermal titration calorimetry and screened a set of peptides derived from the extracellular...... domains of Cav1.2α1 to identify putative binding sites between the channel and hyaluronic acid or another class of polyanionic glycans, such as heparin/heparan sulfates. None of the tested peptides showed detectable interaction with hyaluronic acid, but two peptides derived from the first pore...

  4. Resveratrol and EGCG bind directly and distinctively to miR-33a and miR-122 and modulate divergently their levels in hepatic cells

    OpenAIRE

    Baselga-Escudero, Laura; Blade, Cinta; Ribas-Latre, Aleix; Casanova, Ester; Suárez, Manuel; Torres, Josep Lluís; Salvadó, M. Josepa; Arola, Lluis; Arola-Arnal, Anna

    2013-01-01

    Modulation of miR-33 and miR-122 has been proposed to be a promising strategy to treat dyslipidemia and insulin resistance associated with obesity and metabolic syndrome. Interestingly, specific polyphenols reduce the levels of these mi(cro)RNAs. The aim of this study was to elucidate the effect of polyphenols of different chemical structure on miR-33a and miR-122 expression and to determine whether direct binding of the polyphenol to the mature microRNAs (miRNAs) is a plausible mechanism of ...

  5. Escherichia coli OxyR modulation of bacteriophage Mu mom expression in dam+ cells can be attributed to its ability to bind hemimethylated Pmom promoter DNA.

    OpenAIRE

    Hattman, S; Sun, W.

    1997-01-01

    Transcription of the bacteriophage Mu mom operon is strongly repressed by the host OxyR protein in dam - but not dam + cells. In this work we show that the extent of mom modification is sensitive to the relative levels of the Dam and OxyR proteins and OxyR appears to modulate the level of mom expression even in dam + cells. In vitro studies demonstrated that OxyR is capable of binding hemimethylated P mom , although its affinity is reduced slightly compared with unmethylated DNA. Thus, OxyR m...

  6. Transition metals in carbohydrate chemistry

    DEFF Research Database (Denmark)

    Madsen, Robert

    1997-01-01

    This review describes the application of transition metal mediated reactions in carbohydrate synthesis. The different metal mediated transformations are divided into reaction types and illustrated by various examples on monosaccharide derivatives. Carbon-carbon bond forming reactions are further ...

  7. Carbohydrates, Sugar, and Your Child

    Science.gov (United States)

    ... are: simple carbohydrates (or simple sugars): these include fructose, glucose, and lactose, which also are found in nutritious ... look at the ingredient list for sugar, corn syrup or sweetener, dextrose, fructose, honey, or molasses, to name just a few. ...

  8. Carbohydrate-Related Inhibitors of Dengue Virus Entry

    Directory of Open Access Journals (Sweden)

    Takashi Suzuki

    2013-02-01

    Full Text Available Dengue virus (DENV, which is transmitted by Aedes mosquitoes, causes fever and hemorrhagic disorders in humans. The virus entry process mediated through host receptor molecule(s is crucial for virus propagation and the pathological progression of dengue disease. Therefore, elucidation of the molecular mechanisms underlying virus entry is essential for an understanding of dengue pathology and for the development of effective new anti-dengue agents. DENV binds to its receptor molecules mediated through a viral envelope (E protein, followed by incorporation of the virus-receptor complex inside cells. The fusion between incorporated virus particles and host endosome membrane under acidic conditions is mediated through the function of DENV E protein. Carbohydrate molecules, such as sulfated glycosaminoglycans (GAG and glycosphingolipids, and carbohydrate-recognition proteins, termed lectins, inhibit virus entry. This review focuses on carbohydrate-derived entry inhibitors, and also introduces functionally related compounds with similar inhibitory mechanisms against DENV entry.

  9. Drugs Modulate Interactions between the First Nucleotide-Binding Domain and the Fourth Cytoplasmic Loop of Human P-Glycoprotein.

    Science.gov (United States)

    Loo, Tip W; Clarke, David M

    2016-05-24

    Drug substrates stimulate ATPase activity of the P-glycoprotein (P-gp) ATP-binding cassette drug pump by an unknown mechanism. Cross-linking analysis was performed to test if drug substrates stimulate P-gp ATPase activity by altering cross-talk at the first transmission interface linking the drug-binding [intracellular loop 4 (S909C)] and first nucleotide-binding domains [NBD1 (V472C or L443C)]. In the absence of lipid (inactive P-gp), only V472C/S909C showed cross-linking. Drugs blocked V472C/S909C cross-linking. In the presence of lipids (active P-gp), drug substrates promoted only L443C/S909C cross-linking. This suggests that drug substrates stimulate ATPase activity through a conformational change that shifts Ser909 away from Val472 and toward Leu443. PMID:27159830

  10. The Affinity of the Dynein Microtubule-Binding Domain is Modulated by the Conformation of its Coiled-Coil Stalk*

    OpenAIRE

    Gibbons, I. R.; Garbarino, Joan E.; Tan, Carol E.; Reck-Peterson, Samara L; Vale, Ronald D.; Carter, Andrew P.

    2005-01-01

    The microtubule binding domain (MTBD) of dynein is separated from the AAA core of the motor by an ~15 nm stalk that is predicted to consist of an anti-parallel coiled coil. However, the structure of this coiled-coil and the mechanism it uses to mediate communication between the MTBD and ATP-binding core are unknown. Here, we sought to identify the optimal alignment between the hydrophobic heptad repeats in the two strands of the stalk coiled-coil. To do this, we fused the MTBD of mouse cytopl...

  11. MAD2B, a Novel TCF4-binding Protein, Modulates TCF4-mediated Epithelial-Mesenchymal Transdifferentiation*

    OpenAIRE

    Hong, Chun-Fu; Chou, Yu-Ting; Lin, Young-Sun; Wu, Cheng-Wen

    2009-01-01

    T cell factor 4 (TCF4) interacts with β-catenin in the WNT signaling pathway and transactivates downstream target genes involved in cancer progression. To identify proteins that regulate TCF4-mediated biological responses, we performed a yeast two-hybrid screen to search for a TCF4-binding protein(s) and found that MAD2B interacts with TCF4. We confirmed that MAD2B is a TCF4-binding protein by co-immunoprecipitation. Using the TOPFLASH reporter assay, we found that MAD2B blocks TCF4-mediated ...

  12. Sodium modulation of 3H-agonist and 3H-antagonist binding to alpha 2-adrenoceptor subtypes.

    OpenAIRE

    MacKinnon, A. C.; Spedding, M.; Brown, C. M.(University of Victoria, V8W 3P6, Victoria, British Columbia, Canada)

    1993-01-01

    1. The alpha 2-adrenoceptors on human platelets and neonatal rat lung were characterized with the agonist and antagonist ligands [3H]-adrenaline and [3H]-RS-15385-197 respectively. A correlation of affinities for 3H-antagonist binding showed the receptors to be of the alpha 2A-(platelet) and alpha 2B-(neonatal rat lung) adrenoceptor subtypes, whereas a correlation of affinities for 3H-agonist binding showed the receptors to have similar characteristics (r = 0.88). 2. NaCl (100 mM) had no effe...

  13. The Ku-binding motif is a conserved module for recruitment and stimulation of non-homologous end-joining proteins.

    Science.gov (United States)

    Grundy, Gabrielle J; Rulten, Stuart L; Arribas-Bosacoma, Raquel; Davidson, Kathryn; Kozik, Zuzanna; Oliver, Antony W; Pearl, Laurence H; Caldecott, Keith W

    2016-01-01

    The Ku-binding motif (KBM) is a short peptide module first identified in APLF that we now show is also present in Werner syndrome protein (WRN) and in Modulator of retrovirus infection homologue (MRI). We also identify a related but functionally distinct motif in XLF, WRN, MRI and PAXX, which we denote the XLF-like motif. We show that WRN possesses two KBMs; one at the N terminus next to the exonuclease domain and one at the C terminus next to an XLF-like motif. We reveal that the WRN C-terminal KBM and XLF-like motif function cooperatively to bind Ku complexes and that the N-terminal KBM mediates Ku-dependent stimulation of WRN exonuclease activity. We also show that WRN accelerates DSB repair by a mechanism requiring both KBMs, demonstrating the importance of WRN interaction with Ku. These data define a conserved family of KBMs that function as molecular tethers to recruit and/or stimulate enzymes during NHEJ. PMID:27063109

  14. Multifunctional roles for the N-terminal basic motif of Alfalfa mosaic virus coat protein: nucleolar/cytoplasmic shuttling, modulation of RNA-binding activity, and virion formation.

    Science.gov (United States)

    Herranz, Mari Carmen; Pallas, Vicente; Aparicio, Frederic

    2012-08-01

    In addition to virion formation, the coat protein (CP) of Alfalfa mosaic virus (AMV) is involved in the regulation of replication and translation of viral RNAs, and in cell-to-cell and systemic movement of the virus. An intriguing feature of the AMV CP is its nuclear and nucleolar accumulation. Here, we identify an N-terminal lysine-rich nucleolar localization signal (NoLS) in the AMV CP required to both enter the nucleus and accumulate in the nucleolus of infected cells, and a C-terminal leucine-rich domain which might function as a nuclear export signal. Moreover, we demonstrate that AMV CP interacts with importin-α, a component of the classical nuclear import pathway. A mutant AMV RNA 3 unable to target the nucleolus exhibited reduced plus-strand RNA synthesis and cell-to-cell spread. Moreover, virion formation and systemic movement were completely abolished in plants infected with this mutant. In vitro analysis demonstrated that specific lysine residues within the NoLS are also involved in modulating CP-RNA binding and CP dimerization, suggesting that the NoLS represents a multifunctional domain within the AMV CP. The observation that nuclear and nucleolar import signals mask RNA-binding properties of AMV CP, essential for viral replication and translation, supports a model in which viral expression is carefully modulated by a cytoplasmic/nuclear balance of CP accumulation. PMID:22746826

  15. Entirely Carbohydrate-Based Vaccines: An Emerging Field for Specific and Selective Immune Responses

    Science.gov (United States)

    Nishat, Sharmeen; Andreana, Peter R.

    2016-01-01

    Carbohydrates are regarded as promising targets for vaccine development against infectious disease because cell surface glycans on many infectious agents are attributed to playing an important role in pathogenesis. In addition, oncogenic transformation of normal cells, in many cases, is associated with aberrant glycosylation of the cell surface glycan generating tumor associated carbohydrate antigens (TACAs). Technological advances in glycobiology have added a new dimension to immunotherapy when considering carbohydrates as key targets in developing safe and effective vaccines to combat cancer, bacterial infections, viral infections, etc. Many consider effective vaccines induce T-cell dependent immunity with satisfactory levels of immunological memory that preclude recurrence. Unfortunately, carbohydrates alone are poorly immunogenic as they do not bind strongly to the MHCII complex and thus fail to elicit T-cell immunity. To increase immunogenicity, carbohydrates have been conjugated to carrier proteins, which sometimes can impede carbohydrate specific immunity as peptide-based immune responses can negate antibodies directed at the targeted carbohydrate antigens. To overcome many challenges in using carbohydrate-based vaccine design and development approaches targeting cancer and other diseases, zwitterionic polysaccharides (ZPSs), isolated from the capsule of commensal anaerobic bacteria, will be discussed as promising carriers of carbohydrate antigens to achieve desired immunological responses. PMID:27213458

  16. Entirely Carbohydrate-Based Vaccines: An Emerging Field for Specific and Selective Immune Responses.

    Science.gov (United States)

    Nishat, Sharmeen; Andreana, Peter R

    2016-01-01

    Carbohydrates are regarded as promising targets for vaccine development against infectious disease because cell surface glycans on many infectious agents are attributed to playing an important role in pathogenesis. In addition, oncogenic transformation of normal cells, in many cases, is associated with aberrant glycosylation of the cell surface glycan generating tumor associated carbohydrate antigens (TACAs). Technological advances in glycobiology have added a new dimension to immunotherapy when considering carbohydrates as key targets in developing safe and effective vaccines to combat cancer, bacterial infections, viral infections, etc. Many consider effective vaccines induce T-cell dependent immunity with satisfactory levels of immunological memory that preclude recurrence. Unfortunately, carbohydrates alone are poorly immunogenic as they do not bind strongly to the MHCII complex and thus fail to elicit T-cell immunity. To increase immunogenicity, carbohydrates have been conjugated to carrier proteins, which sometimes can impede carbohydrate specific immunity as peptide-based immune responses can negate antibodies directed at the targeted carbohydrate antigens. To overcome many challenges in using carbohydrate-based vaccine design and development approaches targeting cancer and other diseases, zwitterionic polysaccharides (ZPSs), isolated from the capsule of commensal anaerobic bacteria, will be discussed as promising carriers of carbohydrate antigens to achieve desired immunological responses. PMID:27213458

  17. ETS1 and ETS2 in p53 regulation: spatial separation of ETS binding sites (EBS) modulate protein: DNA interaction.

    Science.gov (United States)

    Venanzoni, M C; Robinson, L R; Hodge, D R; Kola, I; Seth, A

    1996-03-21

    p53 is an extensively studied tumor suppressor gene implicated in the genesis of a large number of varied tumors. However, the pathways of regulation for the wild-type p53 gene and its product are as yet unknown. In situ hybridization analyses of ETS1 and ETS2 expression during mouse embryogenesis, have shown a pattern similar to that of p53 gene expression. Significantly, we have identified several ETS-binding sites (EBS) in the promoter regions of the human and mouse p53 genes. In the human promoter two of these EBS are present in the form of a palindrome, with the two EBS cores being separated by four nucleotides. This report shows that the EBS palindrome of the human p53 promoter has a high affinity for ETS1 and ETS2 and that such binding interaction intracellularly is able to activate the transcription of a CAT reporter gene by 5-10-fold using COS cells. To investigate whether the spacing between the two EBS cores influences the DNA binding activity, we synthesized oligonucleotides with increasing distances (4,12,16, and 20 bases respectively) between the two EBS cores of the palindrome. We observed an inverse correlation between an increasing distance in the two EBS cores of the palindrome and the ETS1 and ETS2 DNA binding activity respectively. Interestingly, optimal DNA binding activity was observed when the distance between the two EBS cores was four bases, identical to that which occurs in the natural promoter. Furthermore we show that the p53 mRNA is expressed at higher levels in NIH3T3 cells overexpressing ETS2 gene product, suggesting that the ETS2 transcription factor is a likely candidate for regulating the expression of p53 in vivo. PMID:8649821

  18. Identification and modulation of a growth hormone-binding protein in rainbow trout (Oncorhynchus mykiss) plasma during seawater adaptation.

    OpenAIRE

    Sohm, F.; Manfroid, Isabelle; Pezet, A.; Rentier-Delrue, Françoise; Rand-Weaver, M; Kelly, P A; Boeuf, G.; Postel-Vinay, M C; de Luze, A; Edery, M.

    1998-01-01

    A soluble protein that specifically bound 125I-human growth hormone (hGH) was identified in rainbow trout plasma, using HPLC-gel filtration. The binding affinity of the protein for hGH was 1.2 x 10(9)M-1. 125I-rainbow trout GH (tGH) was also able to bind to the protein albeit with a lower affinity (6.6 x 10(7)M-1) than hGH. Crosslinking experiments using 125I-hGH revealed two specific bands of 150 and 130 kDa. The complex 125I-hGH-BP could be precipitated by a monoclonal anti-GH receptor anti...

  19. Binding specificity and in vivo targets of the EH domain, a novel protein-protein interaction module

    DEFF Research Database (Denmark)

    Salcini, A E; Confalonieri, S; Doria, M;

    1997-01-01

    EH is a recently identified protein-protein interaction domain found in the signal transducers Eps15 and Eps15R and several other proteins of yeast nematode. We show that EH domains from Eps15 and Eps15R bind in vitro to peptides containing an asparagine-proline-phenylalanine (NPF) motif. Direct...... screening of expression libraries with EH domains yielded a number of putative EH interactors, all of which possessed NPF motifs that were shown to be responsible for the interaction. Among these interactors were the human homolog of NUMB, a developmentally reguated gene of Drosophila, and RAB, the cellular...... cofactor of the HIV REV protein. We demonstrated coimmunoprecipitation of Eps15 with NUMB and RAB. Finally, in vitro binding of NPF-containing peptides to cellular proteins and EST database screening established the existence of a family of EH-containing proteins in mammals. Based on the characteristics of...

  20. Telomere-Binding Protein TPP1 Modulates Telomere Homeostasis and Confers Radioresistance to Human Colorectal Cancer Cells

    OpenAIRE

    Lei Yang; Wenbo Wang; Liu Hu; Xiaoxi Yang; Juan Zhong; Zheng Li; Hui Yang; Han Lei; Haijun Yu; ZhengKai Liao; Fuxiang Zhou; Conghua Xie; Yunfeng Zhou

    2013-01-01

    BACKGROUND: Radiotherapy is one of the major therapeutic strategies in cancer treatment. The telomere-binding protein TPP1 is an important component of the shelterin complex at mammalian telomeres. Our previous reports showed that TPP1 expression was elevated in radioresistant cells, but the exact effects and mechanisms of TPP1 on radiosensitivity is unclear. PRINCIPAL FINDINGS: In this study, we found that elevated TPP1 expression significantly correlated with radioresistance and longer telo...

  1. Telomere-Binding Protein TPP1 Modulates Telomere Homeostasis and Confers Radioresistance to Human Colorectal Cancer Cells

    OpenAIRE

    Yang, Lei; Wang, Wenbo; Hu, Liu; Yang, Xiaoxi; Zhong, Juan; Li, Zheng; Yang, Hui; Lei, Han; Yu, Haijun; Liao, Zhengkai; Zhou, Fuxiang; Xie, Conghua; Zhou, Yunfeng

    2013-01-01

    Background Radiotherapy is one of the major therapeutic strategies in cancer treatment. The telomere-binding protein TPP1 is an important component of the shelterin complex at mammalian telomeres. Our previous reports showed that TPP1 expression was elevated in radioresistant cells, but the exact effects and mechanisms of TPP1 on radiosensitivity is unclear. Principal Findings In this study, we found that elevated TPP1 expression significantly correlated with radioresistance and longer telome...

  2. Modulation of enteroviral proteinase cleavage of poly(A)-binding protein (PABP) by conformation and PABP-associated factors

    OpenAIRE

    Rivera, Carlos I.; Lloyd, Richard E.

    2008-01-01

    Poliovirus (PV) causes a drastic inhibition of cellular cap-dependant protein synthesis due to the cleavage of translation factors eukaryotic initiation factor 4G (eIF4G) and poly (A) binding protein (PABP). Only about half of cellular PABP is cleaved by viral 2A and 3C proteinases during infection. We have investigated PABP cleavage determinants that regulate this partial cleavage. PABP cleavage kinetics analyses indicate that PABP exists in multiple conformations, some of which are resistan...

  3. Ligand Selectivity of D2 Dopamine Receptors Is Modulated by Changes in Local Dynamics Produced by Sodium Binding

    OpenAIRE

    Ericksen, Spencer S.; Cummings, David F.; Weinstein, Harel; Schetz, John A.

    2008-01-01

    We have uncovered a significant allosteric response of the D2 dopamine receptor to physiologically relevant concentrations of sodium (140 mM), characterized by a sodium-enhanced binding affinity for a D4-selective class of agonists and antagonists. This enhancement is significantly more pronounced in a D2-V2.61(91)F mutant and cannot be mimicked by an equivalent concentration of the sodium replacement cation N-methyl-d-glucamine. This phenomenon was explored comput...

  4. Chemokine Binding Protein M3 of Murine Gammaherpesvirus 68 Modulates the Host Response to Infection in a Natural Host

    OpenAIRE

    David J. Hughes; Kipar, Anja; Leeming, Gail H.; Bennett, Elaine; Howarth, Deborah; Cummerson, Joanne A.; Papoula-Pereira, Rita; Flanagan, Brian F; Sample, Jeffery T.; Stewart, James P.

    2011-01-01

    Author Summary Infection of inbred strains of laboratory mice (Mus musculus) with the rodent γ-herpesvirus MHV-68 continues to be developed as an attractive experimental model of γ-herpesvirus infection. In this regard, the MHV-68 protein M3 has been shown to selectively bind and inhibit chemokines involved in the antiviral immune response, a property expected to contribute significantly to virus infection and host colonization. However, inactivation of the M3 gene has no discernable conseque...

  5. Expanding the 3-O-Sulfate Proteome-Enhanced Binding of Neuropilin-1 to 3-O-Sulfated Heparan Sulfate Modulates Its Activity.

    Science.gov (United States)

    Thacker, Bryan E; Seamen, Emylie; Lawrence, Roger; Parker, Matthew W; Xu, Yongmei; Liu, Jian; Vander Kooi, Craig W; Esko, Jeffrey D

    2016-04-15

    Binding of proteins to heparan sulfate is driven predominantly by electrostatic interactions between positively charged amino acid residues in the protein and negatively charged sulfate groups located at various positions along the polysaccharide chain. Although many heparin/heparan-sulfate-binding proteins have been described, few exhibit preferential binding for heparan sulfates containing relatively rare 3-O-sulfated glucosamine residues. To expand the "3-O-sulfate proteome," affinity matrices were created from Chinese hamster ovary (CHO) cell heparan sulfate engineered in vitro with and without 3-O-sulfate groups. Fractionation of different animal sera yielded several proteins that bound specifically to columns containing 3-O-sulfated heparan sulfate modified by two members of the heparan sulfate 3-O-sulfotransferase superfamily, Hs3st1 and Hs3st2. Neuropilin-1 was analyzed in detail because it has been implicated in angiogenesis and axon guidance. We show that 3-O-sulfation enhanced the binding of neuropilin-1 to heparan sulfate immobilized on plastic plates and to heparan sulfate present on cultured cells. Chemoenzymatically synthesized 3-O-sulfated heparan sulfate dodecamers protected neuropilin-1 from thermal denaturation and inhibited neuropilin-1-dependent, semaphorin-3a-induced growth cone collapse of neurons derived from murine dorsal root ganglia. The effect of 3-O-sulfation was cell autonomous and specific to Hs3st2 based on collapse assays of neurons derived from Hs3st1- and Hs3st2-deficient mice. Finally, 3-O-sulfated heparan sulfate enhanced the inhibition of endothelial cell sprouting by exogenous heparan sulfate. These findings demonstrate a reliable method to identify members of the 3-O-sulfate proteome and that 3-O-sulfation of heparan sulfate can modulate axonal growth cone collapse and endothelial cell sprouting. PMID:26731579

  6. Glycosylation Helps Cellulase Enzymes Bind to Plant Cell Walls (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2012-06-01

    Computer simulations suggest a new strategy to design enhanced enzymes for biofuels production. Large-scale computer simulations predict that the addition of glycosylation on carbohydrate-binding modules can dramatically improve the binding affinity of these protein domains over amino acid mutations alone. These simulations suggest that glycosylation can be used as a protein engineering tool to enhance the activity of cellulase enzymes, which are a key component in the conversion of cellulose to soluble sugars in the production of biofuels. Glycosylation is the covalent attachment of carbohydrate molecules to protein side chains, and is present in many proteins across all kingdoms of life. Moreover, glycosylation is known to serve a wide variety of functions in biological recognition, cell signaling, and metabolism. Cellulase enzymes, which are responsible for deconstructing cellulose found in plant cell walls to glucose, contain glycosylation that when modified can affect enzymatic activity-often in an unpredictable manner. To gain insight into the role of glycosylation on cellulase activity, scientists at the National Renewable Energy Laboratory (NREL) used computer simulation to predict that adding glycosylation on the carbohydrate-binding module of a cellulase enzyme dramatically boosts the binding affinity to cellulose-more than standard protein engineering approaches in which amino acids are mutated. Because it is known that higher binding affinity in cellulases leads to higher activity, this work suggests a new route to designing enhanced enzymes for biofuels production. More generally, this work suggests that tuning glycosylation in cellulase enzymes is a key factor to consider when engineering biochemical conversion processes, and that more work is needed to understand how glycosylation affects cellulase activity at the molecular level.

  7. Phosphatidylinositol 4,5-biphosphate (PIP2) modulates syntaxin-1A binding to sulfonylurea receptor 2A to regulate cardiac ATP-sensitive potassium (KATP) channels.

    Science.gov (United States)

    Xie, Li; Liang, Tao; Kang, Youhou; Lin, Xianguang; Sobbi, Roozbeh; Xie, Huanli; Chao, Christin; Backx, Peter; Feng, Zhong-Ping; Shyng, Show-Ling; Gaisano, Herbert Y

    2014-10-01

    Cardiac sarcolemmal syntaxin (Syn)-1A interacts with sulfonylurea receptor (SUR) 2A to inhibit ATP-sensitive potassium (KATP) channels. Phosphatidylinositol 4,5-bisphosphate (PIP2), a ubiquitous endogenous inositol phospholipid, known to bind Kir6.2 subunit to open KATP channels, has recently been shown to directly bind Syn-1A in plasma membrane to form Syn-1A clusters. Here, we sought to determine whether the interaction between Syn-1A and PIP2 interferes with the ability of Syn-1A to bind SUR2A and inhibit KATP channel activity. We found that PIP2 dose-dependently reduced SUR2A binding to GST-Syn-1A by in vitro pulldown assays. FRET studies in intact cells using TIRFM revealed that increasing endogenous PIP2 levels led to increased Syn-1A (-EGFP) cluster formation and a severe reduction in availability of Syn-1A molecules to interact with SUR2A (-mCherry) molecules outside the Syn-1A clusters. Correspondingly, electrophysiological studies employing SUR2A/Kir6.2-expressing HEK cells showed that increasing endogenous or exogenous PIP2 diminished the inhibitory effect of Syn-1A on KATP currents. The physiological relevance of these findings was confirmed by ability of exogenous PIP2 to block exogenous Syn-1A inhibition of cardiac KATP currents in inside-out patches of mouse ventricular myocytes. The effect of PIP2 on physical and functional interactions between Syn-1A and KATP channels is specific and not observed with physiologic concentrations of other phospholipids. To unequivocally demonstrate the specificity of PIP2 interaction with Syn-1A and its impact on KATP channel modulation by Syn-1A, we employed a PIP2-insensitive Syn-1A-5RK/A mutant. The Syn-1A-5RK/A mutant retains the ability to interact with SUR2A in both in vitro binding and in vivo FRET assays, although as expected the interaction is no longer disrupted by PIP2. Interestingly, at physiological PIP2 concentrations, Syn-1A-5RK/A inhibited KATP currents to a greater extent than Syn-1A-WT, indicating

  8. The ankyrin repeats of G9a and GLP histone methyltransferases are mono- and dimethyllysine binding modules

    OpenAIRE

    Collins, Robert E.; Northrop, Jeffrey P.; Horton, John R.; David Y. Lee; Zhang, Xing; Stallcup, Michael R.; Cheng, Xiaodong

    2008-01-01

    Histone modifications have important roles in transcriptional control, mitosis and heterochromatin formation. G9a and G9a-like protein (GLP) are euchromatin-associated methyltransferases that repress transcription by mono- and dimethylating histone H3 at Lys9 (H3K9). Here we demonstrate that the ankyrin repeat domains of G9a and GLP bind with strong preference to N-terminal H3 peptides containing mono- or dimethyl K9. X-ray crystallography revealed the basis for recognition of the methylated ...

  9. Transcriptional regulation of the carbohydrate utilization network in Thermotoga maritima

    Directory of Open Access Journals (Sweden)

    Dmitry A Rodionov

    2013-08-01

    Full Text Available Hyperthermophilic bacteria from the Thermotogales lineage can produce hydrogen by fermenting a wide range of carbohydrates. Previous experimental studies identified a large fraction of genes committed to carbohydrate degradation and utilization in the model bacterium Thermotoga maritima. Knowledge of these genes enabled comprehensive reconstruction of biochemical pathways comprising the carbohydrate utilization network. However, transcriptional factors (TFs and regulatory mechanisms driving this network remained largely unknown. Here, we used an integrated approach based on comparative analysis of genomic and transcriptomic data for the reconstruction of the carbohydrate utilization regulatory networks in 11 Thermotogales genomes. We identified DNA-binding motifs and regulons for 19 orthologous TFs in the Thermotogales. The inferred regulatory network in T. maritima contains 181 genes encoding TFs, sugar catabolic enzymes and ABC-family transporters. In contrast to many previously described bacteria, a transcriptional regulation strategy of Thermotoga does not employ global regulatory factors. The reconstructed regulatory network in T. maritima was validated by gene expression profiling on a panel of mono- and disaccharides and by in vitro DNA-binding assays. The observed upregulation of genes involved in catabolism of pectin, trehalose, cellobiose, arabinose, rhamnose, xylose, glucose, galactose, and ribose showed a strong correlation with the UxaR, TreR, BglR, CelR, AraR, RhaR, XylR, GluR, GalR, and RbsR regulons. Ultimately, this study elucidated the transcriptional regulatory network and mechanisms controlling expression of carbohydrate utilization genes in T. maritima. In addition to improving the functional annotations of associated transporters and catabolic enzymes, this research provides novel insights into the evolution of regulatory networks in Thermotogales.

  10. A new clan of CBM families based on bioinformatics of starch-binding domains from families CBM20 and CBM21

    DEFF Research Database (Denmark)

    Marhovic, M.; Svensson, Birte; MacGregor, E. A.;

    2005-01-01

    Approximately 10% of amylolytic enzymes are able to bind and degrade raw starch. Usually a distinct domain, the starch-binding domain (SBD), is responsible for this property. These domains have been classified into families of carbohydrate-binding modules (CBM). At present, there are six SBD...... families: CBM20, CBM21, CBM25, CBM26, CBM34, and CBM41. This work is concentrated on CBM20 and CBM21. The CBM20 module was believed to be located almost exclusively at the C-terminal end of various amylases. The CBM21 module was known as the N-terminally positioned SBD of Rhizopus glucoamylase. Nowadays...... many nonamylolytic proteins have been recognized as possessing sequence segments that exhibit similarities with the experimentally observed CBM20 and CBM21. These facts have stimulated interest in carrying out a rigorous bioinformatics analysis of the two CBM families. The present analysis showed that...

  11. Carbohydrates of human immunodeficiency virus

    DEFF Research Database (Denmark)

    Hansen, J E

    1992-01-01

    Elucidation of the mechanism by which viral infection induces the appearance of carbohydrate neoantigens is highly important. Results from such studies could be expected to be significant for a general understanding of the regulation of glycosylation, and perhaps especially important for the unde...

  12. Spatiotemporal Expression of Poly(rC)-Binding Protein PCBP2 Modulates Schwann Cell Proliferation After Sciatic Nerve Injury.

    Science.gov (United States)

    Chen, Zhigang; Zhang, Weidong; Ni, Li; Wang, Genlin; Cao, Yi; Wu, Weijie; Sun, Chi; Yuan, Damin; Ni, Haidan; Wang, Youhua; Yang, Huilin

    2016-07-01

    Poly(C)-binding proteins (PCBPs), also known as RNA-binding proteins, interact in a sequence-specific fashion with single-stranded poly(C). It was reported that PCBP2 contributed to gastric cancer proliferation and survival through miR-34a, and knockdown of PCBP2 inhibited glioma proliferation through inhibition of cell cycle progression. In addition, PCBP2 might play a critical role in the regulation of cortical neurons apoptosis induced by hypoxia or ischemia. Because of the essential role of PCBP2 in nervous system and cell growth, we investigated the spatiotemporal expression of PCBP2 in a rat sciatic nerve crush (SNC) model. We detected the upregulated expression of PCBP2 in Schwann cell after SNC. Besides, the peak expression of PCBP2 was in parallel with proliferation cell nuclear antigen. In vitro, we observed increased expression of PCBP2 during the process of TNF-α-induced Schwann cell proliferation. Specially, PCBP2-specific siRNA-transfected Schwann cell showed significantly decreased ability for proliferation. Together, all these data indicated that the change of PCBP2 protein expression was associated with Schwann cell proliferation after the trauma of the peripheral nervous system. PMID:26250704

  13. Chemokine binding protein M3 of murine gammaherpesvirus 68 modulates the host response to infection in a natural host.

    Directory of Open Access Journals (Sweden)

    David J Hughes

    2011-03-01

    Full Text Available Murine γ-herpesvirus 68 (MHV-68 infection of Mus musculus-derived strains of mice is an attractive model of γ-herpesvirus infection. Surprisingly, however, ablation of expression of MHV-68 M3, a secreted protein with broad chemokine-binding properties in vitro, has no discernable effect during experimental infection via the respiratory tract. Here we demonstrate that M3 indeed contributes significantly to MHV-68 infection, but only in the context of a natural host, the wood mouse (Apodemus sylvaticus. Specifically, M3 was essential for two features unique to the wood mouse: virus-dependent inducible bronchus-associated lymphoid tissue (iBALT in the lung and highly organized secondary follicles in the spleen, both predominant sites of latency in these organs. Consequently, lack of M3 resulted in substantially reduced latency in the spleen and lung. In the absence of M3, splenic germinal centers appeared as previously described for MHV-68-infected laboratory strains of mice, further evidence that M3 is not fully functional in the established model host. Finally, analyses of M3's influence on chemokine and cytokine levels within the lungs of infected wood mice were consistent with the known chemokine-binding profile of M3, and revealed additional influences that provide further insight into its role in MHV-68 biology.

  14. Chemokine binding protein M3 of murine gammaherpesvirus 68 modulates the host response to infection in a natural host.

    Science.gov (United States)

    Hughes, David J; Kipar, Anja; Leeming, Gail H; Bennett, Elaine; Howarth, Deborah; Cummerson, Joanne A; Papoula-Pereira, Rita; Flanagan, Brian F; Sample, Jeffery T; Stewart, James P

    2011-03-01

    Murine γ-herpesvirus 68 (MHV-68) infection of Mus musculus-derived strains of mice is an attractive model of γ-herpesvirus infection. Surprisingly, however, ablation of expression of MHV-68 M3, a secreted protein with broad chemokine-binding properties in vitro, has no discernable effect during experimental infection via the respiratory tract. Here we demonstrate that M3 indeed contributes significantly to MHV-68 infection, but only in the context of a natural host, the wood mouse (Apodemus sylvaticus). Specifically, M3 was essential for two features unique to the wood mouse: virus-dependent inducible bronchus-associated lymphoid tissue (iBALT) in the lung and highly organized secondary follicles in the spleen, both predominant sites of latency in these organs. Consequently, lack of M3 resulted in substantially reduced latency in the spleen and lung. In the absence of M3, splenic germinal centers appeared as previously described for MHV-68-infected laboratory strains of mice, further evidence that M3 is not fully functional in the established model host. Finally, analyses of M3's influence on chemokine and cytokine levels within the lungs of infected wood mice were consistent with the known chemokine-binding profile of M3, and revealed additional influences that provide further insight into its role in MHV-68 biology. PMID:21445235

  15. Modulation of the antioxidant activity of HO* scavengers by albumin binding: a 19F-NMR study.

    Science.gov (United States)

    Aime, Silvio; Digilio, Giuseppe; Bruno, Erik; Mainero, Valentina; Baroni, Simona; Fasano, Mauro

    2003-08-01

    The interaction between different HO(z.rad;) radical scavengers in a three-component antioxidant system has been investigated by means of 19F-NMR spectroscopy. This system is composed of bovine serum albumin (BSA), trolox, and N-(4-hydroxyphenyl)-trifluoroacetamide (CF(3)PAF). The antioxidant capacity of BSA and trolox has been assessed by measuring the amount of trifluoroacetamide (TFAM) arising from the radical mediated decomposition of CF(3)PAF. When assayed separately, both trolox and BSA behaved as antioxidants, as they were effective to protect CF(3)PAF from HO* radical-mediated decomposition. By contrast, trolox enhanced the production of TFAM in the presence of BSA, thus behaving as a pro-oxidant. Urate, carnosine, glucose, and propylgallate showed antioxidant properties both with or without BSA. CF(3)PAF and trolox were found to bind to BSA with association constants in the order of 5 x 10(3)M(-1) and to compete for the same binding sites. These results have been discussed in terms of BSA-catalysed cross-reactions between trolox-derived secondary radicals and CF(3)PAF. PMID:12878205

  16. Two unique ligand-binding clamps of Rhizopus oryzae starch binding domain for helical structure disruption of amylose.

    Directory of Open Access Journals (Sweden)

    Ting-Ying Jiang

    Full Text Available The N-terminal starch binding domain of Rhizopus oryzae glucoamylase (RoSBD has a high binding affinity for raw starch. RoSBD has two ligand-binding sites, each containing a ligand-binding clamp: a polyN clamp residing near binding site I is unique in that it is expressed in only three members of carbohydrate binding module family 21 (CBM21 members, and a Y32/F58 clamp located at binding site II is conserved in several CBMs. Here we characterized different roles of these sites in the binding of insoluble and soluble starches using an amylose-iodine complex assay, atomic force microscopy, isothermal titration calorimetry, site-directed mutagenesis, and structural bioinformatics. RoSBD induced the release of iodine from the amylose helical cavity and disrupted the helical structure of amylose type III, thereby significantly diminishing the thickness and length of the amylose type III fibrils. A point mutation in the critical ligand-binding residues of sites I and II, however, reduced both the binding affinity and amylose helix disruption. This is the first molecular model for structure disruption of the amylose helix by a non-hydrolytic CBM21 member. RoSBD apparently twists the helical amylose strands apart to expose more ligand surface for further SBD binding. Repeating the process triggers the relaxation and unwinding of amylose helices to generate thinner and shorter amylose fibrils, which are more susceptible to hydrolysis by glucoamylase. This model aids in understanding the natural roles of CBMs in protein-glycan interactions and contributes to potential molecular engineering of CBMs.

  17. Carbohydrates - Multiple Languages: MedlinePlus

    Science.gov (United States)

    ... Supplements Videos & Tools You Are Here: Home → Multiple Languages → All Health Topics → Carbohydrates URL of this page: https://medlineplus.gov/languages/carbohydrates.html Other topics A-Z A B ...

  18. Mechanistic insights into the distribution of carbohydrate clusters on cell membranes revealed by dSTORM imaging

    Science.gov (United States)

    Chen, Junling; Gao, Jing; Cai, Mingjun; Xu, Haijiao; Jiang, Junguang; Tian, Zhiyuan; Wang, Hongda

    2016-07-01

    Cell surface carbohydrates play significant roles in many physiological processes and act as primary markers to indicate various cellular physiological states. The functions of carbohydrates are always associated with their expression and distribution on cell membranes. Based on our previous work, we found that carbohydrates tend to form clusters; however, the underlying mechanism of these clusters remains unknown. Through the direct stochastic optical reconstruction microscopy (dSTORM) strategy, we found that with the contributions of lipid raft as a stable factor and actin cytoskeleton as a restrictive factor, carbohydrate clusters can stably exist with restricted size. Additionally, we revealed that the formation of most carbohydrate clusters (Gal and GlcANc clusters) depended on the carbohydrate-binding proteins (i.e., galectins) cross-linking their specific carbohydrate ligands. Our results clarify the organizational mechanism of carbohydrates on cell surfaces from their formation, stable existence and size-restriction, which promotes a better understanding of the relationship between the function and distribution of carbohydrates, as well as the structure of cell membranes.Cell surface carbohydrates play significant roles in many physiological processes and act as primary markers to indicate various cellular physiological states. The functions of carbohydrates are always associated with their expression and distribution on cell membranes. Based on our previous work, we found that carbohydrates tend to form clusters; however, the underlying mechanism of these clusters remains unknown. Through the direct stochastic optical reconstruction microscopy (dSTORM) strategy, we found that with the contributions of lipid raft as a stable factor and actin cytoskeleton as a restrictive factor, carbohydrate clusters can stably exist with restricted size. Additionally, we revealed that the formation of most carbohydrate clusters (Gal and GlcANc clusters) depended on the

  19. BA321, a novel carborane analog that binds to androgen and estrogen receptors, acts as a new selective androgen receptor modulator of bone in male mice.

    Science.gov (United States)

    Watanabe, Kenta; Hirata, Michiko; Tominari, Tsukasa; Matsumoto, Chiho; Endo, Yasuyuki; Murphy, Gillian; Nagase, Hideaki; Inada, Masaki; Miyaura, Chisato

    2016-09-01

    Carboranes are a class of carbon-containing polyhedral boron cluster compounds with globular geometry and hydrophobic surface that interact with hormone receptors such as estrogen receptor (ER) and androgen receptor (AR). We have synthesized BA321, a novel carborane compound, which binds to AR. We found here that it also binds to ERs, ERα and ERβ. In orchidectomized (ORX) mice, femoral bone mass was markedly reduced due to androgen deficiency and BA321 restored bone loss in the male, whilst the decreased weight of seminal vesicle in ORX mice was not recovered by administration of BA321. In female mice, BA321 acts as a pure estrogen agonist, and restored both the loss of bone mass and uterine atrophy due to estrogen deficiency in ovariectomized (OVX) mice. In bone tissues, the trabecular bone loss occurred in both ORX and OVX mice, and BA321 completely restored the trabecular bone loss in both sexes. Cortical bone loss occurred in ORX mice but not in OVX mice, and BA321 clearly restored cortical bone loss due to androgen deficiency in ORX mice. Therefore, BA321 is a novel selective androgen receptor modulator (SARM) that may offer a new therapy option for osteoporosis in the male. PMID:27402268

  20. An In-tether Chiral Center Modulates the Helicity, Cell Permeability, and Target Binding Affinity of a Peptide.

    Science.gov (United States)

    Hu, Kuan; Geng, Hao; Zhang, Qingzhou; Liu, Qisong; Xie, Mingsheng; Sun, Chengjie; Li, Wenjun; Lin, Huacan; Jiang, Fan; Wang, Tao; Wu, Yun-Dong; Li, Zigang

    2016-07-01

    The addition of a precisely positioned chiral center in the tether of a constrained peptide is reported, yielding two separable peptide diastereomers with significantly different helicity, as supported by circular dichroism (CD) and NMR spectroscopy. Single crystal X-ray diffraction analysis suggests that the absolute configuration of the in-tether chiral center in helical form is R, which is in agreement with theoretical simulations. The relationship between the secondary structure of the short peptides and their biochemical/biophysical properties remains elusive, largely because of the lack of proper controls. The present strategy provides the only method for investigating the influence of solely conformational differences upon the biochemical/biophysical properties of peptides. The significant differences in permeability and target binding affinity between the peptide diastereomers demonstrate the importance of helical conformation. PMID:27167181

  1. Fluorous-based carbohydrate quartz crystal microbalance.

    Science.gov (United States)

    Chen, Lei; Sun, Pengfei; Chen, Guosong

    2015-03-20

    Fluorous chemistry has brought many applications from catalysis to separation science, from supramolecular materials to analytical chemistry. However, fluorous-based quartz crystal microbalance (QCM) has not been reported so far. In the current paper, fluorous interaction has been firstly utilized in QCM, and carbohydrate-protein interaction and carbohydrate-carbohydrate interaction have been detected afterward. PMID:25541017

  2. Interactions of carbohydrates and proteins by fluorophore-assisted carbohydrate electrophoresis

    Indian Academy of Sciences (India)

    Gang-Liang Huang; Xin-Ya Mei; Peng-George Wang

    2006-06-01

    A sensitive, specific, and rapid method for the detection of carbohydrate-protein interactions is demonstrated by fluorophore-assisted carbohydrate electrophoresis (FACE). The procedure is simple and the cost is low. The advantage of this method is that carbohydrate-protein interactions can be easily displayed by FACE, and the carbohydrates do not need to be purified.

  3. Carbohydrates Through Animation: Preliminary Step

    OpenAIRE

    J.K. Sugai; M.S.R. Figueiredo; R.V. Antônio; P.M Oliveira; V.A Cardoso; Ricardo, J.; Merino, E; Figueiredo, L. F.; D.N. Heidrich

    2004-01-01

    Methods of education are changing, so the educational tools must change too. The developmentof the systems of information and communication gave the opportunity to bring new technology tothe learning process. Modern education needs interactive programs that may be available to theacademic community, in order to ease the learning process and sharing of the knowledge. Then,an educational software on Carbohydrates is being developed using concept maps and FLASH-MXanimations program, and approach...

  4. Dopaminergic modulation of mitral cell activity in the frog olfactory bulb: a combined radioligand binding-electrophysiological study

    International Nuclear Information System (INIS)

    Dopamine content in the amphibian olfactory bulb is supplied by interneurons scattered among mitral cells in the external plexiform/mitral cell layer. In mammals, dopamine has been found to be involved in various aspects of bulbar information processing by influencing mitral cell odour responsiveness. Dopamine action in the bulb depends directly on the localization of its receptor targets, found to be mainly of the D2 type in mammals. The present study assessed, in the frog, both the anatomical localization of D2-like, radioligand-labelled receptors of dopamine and the in vivo action of dopamine on unitary mitral cell activity in response to odours delivered over a wide range of concentrations. The [125I]iodosulpride-labelled D2 binding sites were visualized on frozen sagittal sections of frog brains by film radioautography. The sites were found to be restricted to the external plexiform/mitral cell layer; other layers of the olfactory bulb were devoid of specific labelling. Electrophysiological recordings of mitral unit activity revealed that dopamine or its agonist apomorphine induced a drastic reduction of spontaneous firing rate of mitral cells in most cases without altering odour intensity coding properties of these cells. Moreover, pre-treatment with the D2 antagonist eticlopride blocked the dopamine-induced reduction of mitral cell spontaneous activity.In the frog olfactory bulb, both anatomical localization of D2-like receptors and functional data on dopamine involvement in information processing differ from those reported in mammals. This suggests a phylogenetic evolution of dopamine action in the olfactory bulb. In the frog, anatomical data perfectly corroborate electrophysiological results, together strongly suggesting a direct action of dopamine on mitral cells. In a physiologically operating system, such an action would result in a global improvement of signal-to-noise ratio. (Copyright (c) 1997 Elsevier Science B.V., Amsterdam. All rights reserved.)

  5. Dopaminergic modulation of mitral cell activity in the frog olfactory bulb: a combined radioligand binding-electrophysiological study

    Energy Technology Data Exchange (ETDEWEB)

    Duchamp, A.; Moyse, E.; Delaleu, J.-C.; Coronas, V.; Duchamp-Viret, P. [Laboratoire de Physiologie Neurosensorielle, Universite Claude Bernard and CNRS, F69622 Villeurbanne (France)

    1997-04-28

    Dopamine content in the amphibian olfactory bulb is supplied by interneurons scattered among mitral cells in the external plexiform/mitral cell layer. In mammals, dopamine has been found to be involved in various aspects of bulbar information processing by influencing mitral cell odour responsiveness. Dopamine action in the bulb depends directly on the localization of its receptor targets, found to be mainly of the D{sub 2} type in mammals. The present study assessed, in the frog, both the anatomical localization of D{sub 2}-like, radioligand-labelled receptors of dopamine and the in vivo action of dopamine on unitary mitral cell activity in response to odours delivered over a wide range of concentrations. The [{sup 125}I]iodosulpride-labelled D{sub 2} binding sites were visualized on frozen sagittal sections of frog brains by film radioautography. The sites were found to be restricted to the external plexiform/mitral cell layer; other layers of the olfactory bulb were devoid of specific labelling. Electrophysiological recordings of mitral unit activity revealed that dopamine or its agonist apomorphine induced a drastic reduction of spontaneous firing rate of mitral cells in most cases without altering odour intensity coding properties of these cells. Moreover, pre-treatment with the D{sub 2} antagonist eticlopride blocked the dopamine-induced reduction of mitral cell spontaneous activity.In the frog olfactory bulb, both anatomical localization of D{sub 2}-like receptors and functional data on dopamine involvement in information processing differ from those reported in mammals. This suggests a phylogenetic evolution of dopamine action in the olfactory bulb. In the frog, anatomical data perfectly corroborate electrophysiological results, together strongly suggesting a direct action of dopamine on mitral cells. In a physiologically operating system, such an action would result in a global improvement of signal-to-noise ratio. (Copyright (c) 1997 Elsevier Science B

  6. Fatty Acid Binding Protein 5 Modulates Docosahexaenoic Acid-Induced Recovery in Rats Undergoing Spinal Cord Injury.

    Science.gov (United States)

    Figueroa, Johnny D; Serrano-Illan, Miguel; Licero, Jenniffer; Cordero, Kathia; Miranda, Jorge D; De Leon, Marino

    2016-08-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) promote functional recovery in rats undergoing spinal cord injury (SCI). However, the precise molecular mechanism coupling n-3 PUFAs to neurorestorative responses is not well understood. The aim of the present study was to determine the spatiotemporal expression of fatty acid binding protein 5 (FABP5) after contusive SCI and to investigate whether this protein plays a role in n-3 PUFA-mediated functional recovery post-SCI. We found that SCI resulted in a robust spinal cord up-regulation in FABP5 mRNA levels (556 ± 187%) and protein expression (518 ± 195%), when compared to sham-operated rats, at 7 days post-injury (dpi). This upregulation coincided with significant alterations in the metabolism of fatty acids in the injured spinal cord, as revealed by metabolomics-based lipid analyses. In particular, we found increased levels of the n-3 series PUFAs, particularly docosahexaenoic acid (DHA; 22:6 n-3) and eicosapentaenoic acid (EPA; 20:5 n-3) at 7 dpi. Animals consuming a diet rich in DHA and EPA exhibited a significant upregulation in FABP5 mRNA levels at 7 dpi. Immunofluorescence showed low basal FABP5 immunoreactivity in spinal cord ventral gray matter NeuN(+) neurons of sham-operated rats. SCI resulted in a robust induction of FABP5 in glial (GFAP(+), APC(+), and NG2(+)) and precursor cells (DCX(+), nestin(+)). We found that continuous intrathecal administration of FABP5 silencing with small interfering RNA (2 μg) impaired spontaneous open-field locomotion post-SCI. Further, FABP5 siRNA administration hindered the beneficial effects of DHA to ameliorate functional recovery at 7 dpi. Altogether, our findings suggest that FABP5 may be an important player in the promotion of cellular uptake, transport, and/or metabolism of DHA post-SCI. Given the beneficial roles of n-3 PUFAs in ameliorating functional recovery, we propose that FABP5 is an important contributor to basic repair mechanisms in the

  7. Binding and inhibition of drug transport proteins by heparin: a potential drug transporter modulator capable of reducing multidrug resistance in human cancer cells.

    Science.gov (United States)

    Chen, Yunliang; Scully, Michael; Petralia, Gloria; Kakkar, Ajay

    2014-01-01

    A major problem in cancer treatment is the development of resistance to chemotherapeutic agents, multidrug resistance (MDR), associated with increased activity of transmembrane drug transporter proteins which impair cytotoxic treatment by rapidly removing the drugs from the targeted cells. Previously, it has been shown that heparin treatment of cancer patients undergoing chemotherapy increases survival. In order to determine whether heparin is capable reducing MDR and increasing the potency of chemotherapeutic drugs, the cytoxicity of a number of agents toward four cancer cell lines (a human enriched breast cancer stem cell line, two human breast cancer cell lines, MCF-7 and MDA-MB-231, and a human lung cancer cell line A549) was tested in the presence or absence of heparin. Results demonstrated that heparin increased the cytotoxicity of a range of chemotherapeutic agents. This effect was associated with the ability of heparin to bind to several of the drug transport proteins of the ABC and non ABC transporter systems. Among the ABC system, heparin treatment caused significant inhibition of the ATPase activity of ABCG2 and ABCC1, and of the efflux function observed as enhanced intracellular accumulation of specific substrates. Doxorubicin cytoxicity, which was enhanced by heparin treatment of MCF-7 cells, was found to be under the control of one of the major non-ABC transporter proteins, lung resistance protein (LRP). LRP was also shown to be a heparin-binding protein. These findings indicate that heparin has a potential role in the clinic as a drug transporter modulator to reduce multidrug resistance in cancer patients. PMID:24253450

  8. The expression of spinal methyl-CpG-binding protein 2, DNA methyltransferases and histone deacetylases is modulated in persistent pain states

    Directory of Open Access Journals (Sweden)

    Tochiki Keri K

    2012-02-01

    Full Text Available Abstract Background DNA CpG methylation is carried out by DNA methyltransferases and induces chromatin remodeling and gene silencing through a transcription repressor complex comprising the methyl-CpG-binding protein 2 (MeCP2 and a subset of histone deacetylases. Recently, we have found that MeCP2 activity had a crucial role in the pattern of gene expression seen in the superficial dorsal horn rapidly after injection of Complete Freund's Adjuvant (CFA in the rat ankle joint. The aim of the present study was to analyse the changes in expression of MeCP2, DNA methyltransferases and a subset of histone deacetylases in the superficial dorsal horn during the maintenance phase of persistent pain states. In this process, the cell specific expression of MeCP2 was also investigated. Results Using immunohistochemistry, we found that neurones, oligodendrocytes and astrocytes expressed MeCP2. Microglia, oligodendrocyte precursor cells and Schwann cells never showed any positive stain for MeCP2. Quantitative analyses showed that MeCP2 expression was increased in the superficial dorsal horn 7 days following CFA injection in the ankle joint but decreased 7 days following spared nerve injury. Overall, the expression of DNA methyltransferases and a subset of histone deacetylases followed the same pattern of expression. However, there were no significant changes in the expression of the MeCP2 targets that we had previously shown are regulated in the early time points following CFA injection in the ankle joint. Finally, the expression of MeCP2 was also down regulated in damaged dorsal root ganglion neurones following spared nerve injury. Conclusion Our results strongly suggest that changes in chromatin compaction, regulated by the binding of MeCP2 complexes to methylated DNA, are involved in the modulation of gene expression in the superficial dorsal horn and dorsal root ganglia during the maintenance of persistent pain states.

  9. Microfibril-associated Protein 4 Binds to Surfactant Protein A (SP-A) and Colocalizes with SP-A in the Extracellular Matrix of the Lung

    DEFF Research Database (Denmark)

    Schlosser, Anders; Thomsen, Theresa H.; Shipley, J. Michael;

    2006-01-01

    seen to recombinant SP-A composed of the neck region and carbohydrate recognition domain of SP-A indicating that the interaction between MFAP4 and SP-A is mediated via the collagen domain of SP-A. Monoclonal antibodies directed against MFAP4 and SP-A were used for immunohistochemical analysis, which......Pulmonary surfactant protein A (SP-A) is an oligomeric collectin that recognizes lipid and carbohydrate moieties present on broad range of micro-organisms, and mediates microbial lysis and clearance. SP-A also modulates multiple immune-related functions including cytokine production and chemotaxis...... recombinant MFAP4 with a molecular mass of 36 and 66 kDa in the reduced and unreduced states respectively. Gel filtration chromatography and chemical crosslinking showed that MFAP4 forms oligomers of four dimers. We demonstrated calcium-dependent binding between MFAP4 and human SP-A1 and SP-A2. No binding was...

  10. The Ala54Thr Polymorphism of the Fatty Acid Binding Protein 2 Gene Modulates HDL Cholesterol in Mexican-Americans with Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Lorena M. Salto

    2015-12-01

    Full Text Available The alanine to threonine amino acid substitution at codon 54 (Ala54Thr of the intestinal fatty acid binding protein (FABP2 has been associated with elevated levels of insulin and blood glucose as well as with dyslipidemia. The aim of this study was to characterize the effect of this FABP2 polymorphism in Mexican-Americans with type 2 diabetes (T2D in the context of a three-month intervention to determine if the polymorphism differentially modulates selected clinical outcomes. For this study, we genotyped 43 participant samples and performed post-hoc outcome analysis of the profile changes in fasting blood glucose, HbA1c, insulin, lipid panel and body composition, stratified by the Ala54Thr polymorphism. Our results show that the Thr54 allele carriers (those who were heterozygous or homozygous for the threonine-encoding allele had lower HDL cholesterol and higher triglyceride levels at baseline compared to the Ala54 homozygotes (those who were homozygous for the alanine-encoding allele. Both groups made clinically important improvements in lipid profiles and glycemic control as a response to the intervention. Whereas the Ala54 homozygotes decreased HDL cholesterol in the context of an overall total cholesterol decrease, Thr54 allele carriers increased HDL cholesterol as part of an overall total cholesterol decrease. We conclude that the Ala54Thr polymorphism of FABP2 modulates HDL cholesterol in Mexican-Americans with T2D and that Thr54 allele carriers may be responsive in interventions that include dietary changes.

  11. Structural basis for the carbohydrate recognition of the Sclerotium rolfsii lectin.

    Science.gov (United States)

    Leonidas, Demetres D; Swamy, Bale M; Hatzopoulos, George N; Gonchigar, Sathisha J; Chachadi, Vishwanath B; Inamdar, Shashikala R; Zographos, Spyros E; Oikonomakos, Nikos G

    2007-05-11

    The crystal structure of a novel fungal lectin from Sclerotium rolfsii (SRL) in its free form and in complex with N-acetyl-d-galactosamine (GalNAc) and N-acetyl- d -glucosamine (GlcNAc) has been determined at 1.1 A, 2.0 A, and 1.7 A resolution, respectively. The protein structure is composed of two beta-sheets, which consist of four and six beta-strands, connected by two alpha-helices. Sequence and structural comparisons reveal that SRL is the third member of a newly identified family of fungal lectins, which includes lectins from Agaricus bisporus and Xerocomus chrysenteron that share a high degree of structural similarity and carbohydrate specificity. The data for the free SRL are the highest resolution data for any protein of this family. The crystal structures of the SRL in complex with two carbohydrates, GalNAc and GlcNAc, which differ only in the configuration of a single epimeric hydroxyl group, provide the structural basis for its carbohydrate specificity. SRL has two distinct carbohydrate-binding sites, a primary and a secondary. GalNAc binds at the primary site, whereas GlcNAc binds only at the secondary site. Thus, SRL has the ability to recognize and probably bind at the same time two different carbohydrate structures. Structural comparison to Agaricus bisporus lectin-carbohydrate complexes reveals that the primary site is also able to bind the Thomsen-Friedenreich antigen (Galbeta1-->3GalNAc-alpha- glycan structures) whereas the secondary site cannot. The features of the molecular recognition at the two sites are described in detail. PMID:17391699

  12. The role of carbohydrate in determining the immunochemical properties of the hemagglutinin of influenza A virus

    International Nuclear Information System (INIS)

    Most of the carbohydrate was removed from influenza with MRC II (H3N2) and its purified hemagglutinin (HA) on treatment with glycosidases, including α-mannosidase, #betta#-N-acetylglucosaminidase, #betta#-galactosidase and α-fucosidase. The release of 50 per cent of the carbohydrate from intact virus particles significantly affected hemagglutinating activity. The ability of untreated and glycosidase-treated virus to inhibit the binding of antibodies directed against the hemagglutinin was almost indistinguishable by competitive radioimmunoassay (RIA). Up to 60 per cent of the carbohydrate from the purified HA of influenza virus could be removed. The antigenicity of glycosidase treated HA molecules decreased 8-fold compared to intact HAs as measured by competitive RIA. In addition, glycosidase digestion of 125I-labeled HA resulted in a decrease in its reactivity in direct RIA. We conclude that the carbohydrate portion of the HA of influenza virus is not of major importance in defining the antigenicity of HA. (Author)

  13. Levorotatory carbohydrates and xylitol subdue Streptococcus mutans and Candida albicans adhesion and biofilm formation.

    Science.gov (United States)

    Brambilla, Eugenio; Ionescu, Andrei C; Cazzaniga, Gloria; Ottobelli, Marco; Samaranayake, Lakshman P

    2016-05-01

    Dietary carbohydrates and polyols affect the microbial colonization of oral surfaces by modulating adhesion and biofilm formation. The aim of this study was to evaluate the influence of a select group of l-carbohydrates and polyols on either Streptococcus mutans or Candida albicans adhesion and biofilm formation in vitro. S. mutans or C. albicans suspensions were inoculated on polystyrene substrata in the presence of Tryptic soy broth containing 5% of the following compounds: d-glucose, d-mannose, l-glucose, l-mannose, d- and l-glucose (raceme), d- and l-mannose (raceme), l-glucose and l-mannose, sorbitol, mannitol, and xylitol. Microbial adhesion (2 h) and biofilm formation (24 h) were evaluated using MTT-test and Scanning Electron Microscopy (SEM). Xylitol and l-carbohydrates induced the lowest adhesion and biofilm formation in both the tested species, while sorbitol and mannitol did not promote C. albicans biofilm formation. Higher adhesion and biofilm formation was noted in both organisms in the presence of d-carbohydrates relative to their l-carbohydrate counterparts. These results elucidate, hitherto undescribed, interactions of the individually tested strains with l- and d-carbohydrates, and how they impact fungal and bacterial colonization. In translational terms, our data raise the possibility of using l-form of carbohydrates and xylitol for dietary control of oral plaque biofilms. PMID:26456320

  14. A calcium-binding protein, rice annexin OsANN1, enhances heat stress tolerance by modulating the production of H2O2.

    Science.gov (United States)

    Qiao, Bei; Zhang, Qian; Liu, Dongliang; Wang, Haiqi; Yin, Jingya; Wang, Rui; He, Mengli; Cui, Meng; Shang, Zhonglin; Wang, Dekai; Zhu, Zhengge

    2015-09-01

    OsANN1 is a member of the annexin protein family in rice. The function of this protein and the mechanisms of its involvement in stress responses and stress tolerance are largely unknown. Here it is reported that OsANN1 confers abiotic stress tolerance by modulating antioxidant accumulation under abiotic stress. OsANN1-knockdown [RNA interference (RNAi)] plants were more sensitive to heat and drought stresses, whereas OsANN1-overexpression (OE) lines showed improved growth with higher expression of OsANN1 under abiotic stress. Overexpression of OsANN1 promoted SOD (superoxide dismutase) and CAT (catalase) activities, which regulate H2O2 content and redox homeostasis, suggesting the existence of a feedback mechanism between OsANN1 and H2O2 production under abiotic stress. Higher expression of OsANN1 can provide overall cellular protection against abiotic stress-induced damage, and a significant accumulation of OsANN1-green fluorescent protein (GFP) signals was found in the cytosol after heat shock treatment. OsANN1 also has calcium-binding and ATPase activities in vitro, indicating that OsANN1 has multiple functions in rice growth. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays demonstrated that OsANN1 interacts with OsCDPK24. This cross-talk may provide additional layers of regulation in the abiotic stress response. PMID:26085678

  15. Cause of impaired carbohydrate metabolism in hyperthyroidism

    International Nuclear Information System (INIS)

    Hyperthyroidism (HT) affects glucose metabolism in various ways. The role of insulin, glucagon and growth-hormone (GH) was determined. After glucose loading the insulin response is weaker in HT than in euthyroid subjects. Enhanced degradation of insulin has been reported. It is suggested that in HT the serum insulin concentration declines at a slightly accelerated rate. In HT the deranged carbohydrate metabolism might be a consequence of altered tissue sensitivity to insulin. To elucidate this problem insulin receptors on erythrocytes obtained from hyperthyroid women were investigated. The maximal specific binding of 125I-insulin to RBC of hyperthyroid patients was decreased and the analysis refers to a decreased receptor concentration in RBC. The nature of glucagon secretion and its influence on glucose metabolism in HT was investigated. The basal plasma glucagon is elevated in hyperthyroid patients. The suppression of glucagon secretion induced by an oral glucose loading was of significantly lesser degree in hyperthyroid patients than in controls. Applying the erythrocyte receptor assay a decreased specific binding of 125I-glucagon to RBC of hyperthyroid patients has been found and data indicate a significantly less glucagon receptor concentration in thyrotoxicosis. Physiological elevations of serum GH levels led to a significant impairment of glucose metabolism. Beside the GH-RH and somatostatin, the dopaminergic neurotransmitter system participates in the regulation of GH secretion too. It has been demonstrated that after administration of the dopamine agonist l-dopa the GH response was weaker in HT than in controls. This indicates that in thyrotoxicosis the GH secretion can not be stimulated in such a degree as in euthyroidism. (author)

  16. Carbohydrate metabolism in Spirochaeta stenostrepta.

    Science.gov (United States)

    Hespell, R B; Canale-Parola, E

    1970-07-01

    The pathways of carbohydrate metabolism in Spirochaeta stenostrepta, a free-living, strictly anaerobic spirochete, were studied. The organism fermented glucose to ethyl alcohol, acetate, lactate, CO(2), and H(2). Assays of enzymatic activities in cell extracts, and determinations of radioactivity distribution in products formed from (14)C-labeled glucose indicated that S. stenostrepta degraded glucose via the Embden-Meyerhof pathway. The spirochete utilized a clostridial-type clastic reaction to metabolize pyruvate to acetyl-coenzyme A, CO(2), and H(2), without production of formate. Acetyl-coenzyme A was converted to ethyl alcohol by nicotinamide adenine dinucleotide-dependent acetaldehyde and alcohol dehydrogenase activities. Phosphotransacetylase and acetate kinase catalyzed the formation of acetate from acetyl-coenzyme A. Hydrogenase and lactate dehydrogenase activities were detected in cell extracts. A rubredoxin was isolated from cell extracts of S. stenostrepta. Preparations of this rubredoxin stimulated acetyl phosphate formation from pyruvate by diethylaminoethyl cellulose-treated extracts of S. stenostrepta, an indication that rubredoxin may participate in pyruvate cleavage by this spirochete. Nutritional studies showed that S. stenostrepta fermented a variety of carbohydrates, but did not ferment amino acids or other organic acids. An unidentified growth factor present in yeast extract was required by the organism. Exogenous supplements of biotin, riboflavin, and vitamin B(12) were either stimulatory or required for growth. PMID:5423371

  17. Galactose recognition by a tetrameric C-type lectin, CEL-IV, containing the EPN carbohydrate recognition motif.

    OpenAIRE

    Hatakeyama, Tomomitsu; Kamiya, Takuro; Kusunoki, Masami; Nakamura-Tsuruta, Sachiko; Hirabayashi, Jun; Goda, Shuichiro; Unno, Hideaki

    2011-01-01

    CEL-IV is a C-type lectin isolated from a sea cucumber, Cucumaria echinata. This lectin is composed of four identical C-type carbohydrate-recognition domains (CRDs). X-ray crystallographic analysis of CEL-IV revealed that its tetrameric structure was stabilized by multiple interchain disulfide bonds among the subunits. Although CEL-IV has the EPN motif in its carbohydrate-binding sites, which is known to be characteristic of mannose binding C-type CRDs, it showed preferential binding of galac...

  18. Galactose Recognition by a Tetrameric C-type Lectin, CEL-IV, Containing the EPN Carbohydrate Recognition Motif*

    OpenAIRE

    Hatakeyama, Tomomitsu; Kamiya, Takuro; Kusunoki, Masami; Nakamura-Tsuruta, Sachiko; Hirabayashi, Jun; Goda, Shuichiro; Unno, Hideaki

    2011-01-01

    CEL-IV is a C-type lectin isolated from a sea cucumber, Cucumaria echinata. This lectin is composed of four identical C-type carbohydrate-recognition domains (CRDs). X-ray crystallographic analysis of CEL-IV revealed that its tetrameric structure was stabilized by multiple interchain disulfide bonds among the subunits. Although CEL-IV has the EPN motif in its carbohydrate-binding sites, which is known to be characteristic of mannose binding C-type CRDs, it showed preferential binding of galac...

  19. A single residue mutation abolishes attachment of the CBM26 starch-binding domain from Lactobacillus amylovorus alpha-amylase.

    Science.gov (United States)

    Rodríguez-Sanoja, Romina; Oviedo, N; Escalante, L; Ruiz, B; Sánchez, S

    2009-03-01

    Starch is degraded by amylases that frequently have a modular structure composed of a catalytic domain and at least one non-catalytic domain that is involved in polysaccharide binding. The C-terminal domain from the Lactobacillus amylovorus alpha-amylase has an unusual architecture composed of five tandem starch-binding domains (SBDs). These domains belong to family 26 in the carbohydrate-binding modules (CBM) classification. It has been reported that members of this family have only one site for starch binding, where aromatic amino acids perform the binding function. In SBDs, fold similarities are better conserved than sequences; nevertheless, it is possible to identify in CBM26 members at least two aromatic residues highly conserved. We attempt to explain polysaccharide recognition for the L. amylovorus alpha-amylase SBD through site-directed mutagenesis of aromatic amino acids. Three amino acids were identified as essential for binding, two tyrosines and one tryptophan. Y18L and Y20L mutations were found to decrease the SBD binding capacity, but unexpectedly, the mutation at W32L led to a total loss of affinity, either with linear or ramified substrates. The critical role of Trp 32 in substrate binding confirms the presence of just one binding site in each alpha-amylase SBD. PMID:19052787

  20. Cytokines modulate the sensitivity of human fibroblasts to stimulation with insulin-like growth factor-I (IGF-I) by altering endogenous IGF-binding protein production.

    Science.gov (United States)

    Yateman, M E; Claffey, D C; Cwyfan Hughes, S C; Frost, V J; Wass, J A; Holly, J M

    1993-04-01

    Human dermal fibroblasts produce a number of insulin-like growth factor-binding proteins (IGFBPs) including the main circulating form, IGFBP-3. It has been suggested that the regulation of IGFBP secretion may play a major role in modulating insulin-like growth factor (IGF) bioactivity. We have quantified the effects of two cytokines, transforming growth factor-beta 1 (TGF-beta 1) and tumour necrosis factor-alpha (TNF-alpha) which have opposing actions on fibroblast IGFBP-3 production, and examined their subsequent role in IGF-I mitogenesis. TGF-beta 1 caused a dose-dependent increase in IGFBP-3 in serum-free fibroblast-conditioned media. TGF-beta 1 (1 microgram/l) resulted in immunoreactive IGFBP-3 levels reaching 286.5 +/- 22.4% of control after 20 h, the increase being confirmed by Western ligand blot. TNF-alpha caused a dose-dependent decrease in fibroblast IGFBP-3 secretion, 1 microgram TNF-alpha/l reducing IGFBP-3 levels to 32.1 +/- 11.% of control. This effect was not due to cytotoxicity and was not cell-density-dependent. Fibroblast proliferation was examined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric cytochemical bioassay. The addition of IGF-I resulted in dose-dependent growth stimulation after 48 h, the effective range being 20-100 micrograms/l. The IGF-I analogue Long-R3-IGF-I which has little affinity for the IGFBPs was approximately 20-fold more potent in this assay, and was unaffected by exogenous IGFBP-3.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7684061

  1. Galectin-3 silencing inhibits epirubicin-induced ATP binding cassette transporters and activates the mitochondrial apoptosis pathway via β-catenin/GSK-3β modulation in colorectal carcinoma.

    Directory of Open Access Journals (Sweden)

    Yung-Kuo Lee

    Full Text Available Multidrug resistance (MDR, an unfavorable factor compromising the treatment efficacy of anticancer drugs, involves the upregulation of ATP binding cassette (ABC transporters and induction of galectin-3 signaling. Galectin-3 plays an anti-apoptotic role in many cancer cells and regulates various pathways to activate MDR. Thus, the inhibition of galectin-3 has the potential to enhance the efficacy of the anticancer drug epirubicin. In this study, we examined the effects and mechanisms of silencing galectin-3 via RNA interference (RNAi on the β-catenin/GSK-3β pathway in human colon adenocarcinoma Caco-2 cells. Galectin-3 knockdown increased the intracellular accumulation of epirubicin in Caco-2 cells; suppressed the mRNA expression of galectin-3, β-catenin, cyclin D1, c-myc, P-glycoprotein (P-gp, MDR-associated protein (MRP 1, and MRP2; and downregulated the protein expression of P-gp, cyclin D1, galectin-3, β-catenin, c-Myc, and Bcl-2. Moreover, galectin-3 RNAi treatment significantly increased the mRNA level of GSK-3β, Bax, caspase-3, and caspase-9; remarkably increased the Bax-to-Bcl-2 ratio; and upregulated the GSK-3β and Bax protein expressions. Apoptosis was induced by galectin-3 RNAi and/or epirubicin as demonstrated by chromatin condensation, a higher sub-G1 phase proportion, and increased caspase-3 and caspase-9 activity, indicating an intrinsic/mitochondrial apoptosis pathway. Epirubicin-mediated resistance was effectively inhibited via galectin-3 RNAi treatment. However, these phenomena could be rescued after galectin-3 overexpression. We show for the first time that the silencing of galectin-3 sensitizes MDR cells to epirubicin by inhibiting ABC transporters and activating the mitochondrial pathway of apoptosis through modulation of the β-catenin/GSK-3β pathway in human colon cancer cells.

  2. Mastering ectomycorrhizal symbiosis: the impact of carbohydrates.

    Science.gov (United States)

    Nehls, Uwe

    2008-01-01

    Mycorrhiza formation is the consequence of a mutualistic interaction between certain soil fungi and plant roots that helps to overcome nutritional limitations faced by the respective partners. In symbiosis, fungi contribute to tree nutrition by means of mineral weathering and mobilization of nutrients from organic matter, and obtain plant-derived carbohydrates as a response. Support with easily degradable carbohydrates seems to be the driving force for fungi to undergo this type of interaction. As a consequence, the fungal hexose uptake capacity is strongly increased in Hartig net hyphae of the model fungi Amanita muscaria and Laccaria bicolor. Next to fast carbohydrate uptake and metabolism, storage carbohydrates are of special interest. In functional A. muscaria ectomycorrhizas, expression and activity of proteins involved in trehalose biosynthesis is mainly localized in hyphae of the Hartig net, indicating an important function of trehalose in generation of a strong carbon sink by fungal hyphae. In symbiosis, fungal partners receive up to approximately 19 times more carbohydrates from their hosts than normal leakage of the root system would cause, resulting in a strong carbohydrate demand of infected roots and, as a consequence, a more efficient plant photosynthesis. To avoid fungal parasitism, the plant seems to have developed mechanisms to control carbohydrate drain towards the fungal partner and link it to the fungus-derived mineral nutrition. In this contribution, current knowledge on fungal strategies to obtain carbohydrates from its host and plant strategies to enable, but also to control and restrict (under certain conditions), carbon transfer are summarized. PMID:18272925

  3. Carbohydrate clearance receptors in transfusion medicine

    DEFF Research Database (Denmark)

    Sørensen, Anne Louise Tølbøll; Clausen, Henrik; Wandall, Hans H

    2012-01-01

    Complex carbohydrates play important functions for circulation of proteins and cells. They provide protective shields and refraction from non-specific interactions with negative charges from sialic acids to enhance circulatory half-life. For recombinant protein therapeutics carbohydrates are espe...

  4. Fat/carbohydrate ratio but not energy density determines snack food intake and activates brain reward areas

    OpenAIRE

    Hoch, Tobias; Kreitz, Silke; Gaffling, Simone; Pischetsrieder, Monika; Hess, Andreas

    2015-01-01

    The snack food potato chips induces food intake in ad libitum fed rats, which is associated with modulation of the brain reward system and other circuits. Here, we show that food intake in satiated rats is triggered by an optimal fat/carbohydrate ratio. Like potato chips, an isocaloric fat/carbohydrate mixture influenced whole brain activity pattern of rats, affecting circuits related e.g. to reward/addiction, but the number of modulated areas and the extent of modulation was lower compared t...

  5. Facultative thermogenesis induced by carbohydrate

    DEFF Research Database (Denmark)

    Astrup, A; Bülow, J; Christensen, N J;

    1986-01-01

    In addition to the obligatory thermogenesis due to processing and storage, carbohydrate ingestion is accompanied by a facultative thermogenesis mediated by catecholamines via beta-adrenoceptors. The anatomical origin of facultative thermogenesis has hitherto not been determined. The possible...... involvement of skeletal muscle was examined in lean, healthy subjects by measuring the response in forearm oxygen consumption to an oral glucose load. The study demonstrates an early component of skeletal muscle thermogenesis coinciding with the local glucose uptake, followed by a late facultative...... thermogenesis. The arterial epinephrine concentration increased to a maximum of 200% above base-line values 4 h after glucose. This value greatly exceeds the physiological threshold for the thermogenic action of epinephrine. In forearm venous blood the corresponding increase in epinephrine was only...

  6. The effect of carbohydrate and fat variation in euenergetic diets on postabsorptive free fatty acid release

    NARCIS (Netherlands)

    Bisschop, PH; Ackermans, MT; Endert, E; Ruiter, AFC; Meijer, AJ; Kuipers, F; Sauerwein, HP; Romijn, JA

    2002-01-01

    Diet composition and energy content modulate free fatty acid (FFA) release. The aim of this study was to evaluate the dose-response effects of euenergetic variations in dietary carbohydrate and fat content on postabsorptive FFA release. The rate of appearance (R-a) of palmitate was measured by infus

  7. Structural and evolutionary aspects of two families of non-catalytic domains present in starch and glycogen binding proteins from microbes, plants and animals

    DEFF Research Database (Denmark)

    Janeček, Štefan; Svensson, Birte; MacGregor, E. Ann

    2011-01-01

    kinase SNF1 complex, and an adaptor–regulator related to the SNF1/AMPK family, AKINβγ. CBM20s and CBM48s of amylolytic enzymes occur predominantly in the microbial world, whereas the non-amylolytic proteins containing these modules are mostly of plant and animal origin. Comparison of amino acid sequences......Starch-binding domains (SBDs) comprise distinct protein modules that bind starch, glycogen or related carbohydrates and have been classified into different families of carbohydrate-binding modules (CBMs). The present review focuses on SBDs of CBM20 and CBM48 found in amylolytic enzymes from several...... glycoside hydrolase (GH) families GH13, GH14, GH15, GH31, GH57 and GH77, as well as in a number of regulatory enzymes, e.g., phosphoglucan, water dikinase-3, genethonin-1, laforin, starch-excess protein-4, the β-subunit of AMP-activated protein kinase and its homologues from sucrose non-fermenting-1 protein...

  8. Carbohydrate recognition by the antiviral lectin cyanovirin-N.

    Science.gov (United States)

    Fujimoto, Yukiji K; Green, David F

    2012-12-01

    Cyanovirin-N (CVN) is a cyanobacterial lectin with potent antiviral activity and has been the focus of extensive preclinical investigation as a potential prophylactic for the prevention of the sexual transmission of the human immunodeficiency virus (HIV). Here we present a detailed analysis of carbohydrate recognition by this important protein, using a combination of computational methods, including extensive molecular dynamics simulations and molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) energetic analysis. The simulation results strongly suggest that the observed tendency of wild-type CVN to form domain-swapped dimers is the result of a previously unidentified cis-peptide bond present in the monomeric state. The energetic analysis additionally indicates that the highest-affinity ligand for CVN characterized to date (α-Man-(1,2)-α-Man-(1,2)-α-Man) is recognized asymmetrically by the two binding sites. Finally, we are able to provide a detailed map of the role of all binding site functional groups (both backbone and side chain) to various aspects of molecular recognition: general affinity for cognate ligands, specificity for distinct oligosaccharide targets, and the asymmetric recognition of α-Man-(1,2)-α-Man-(1,2)-α-Man. Taken as a whole, these results complement past experimental characterization (both structural and thermodynamic) to provide the most complete understanding of carbohydrate recognition by CVN to date. The results also provide strong support for the application of similar approaches to the understanding of other protein-carbohydrate complexes. PMID:23057413

  9. The solution structure of the C-terminal modular pair from Clostridium perfringens mu-toxin reveals a noncellulosomal dockerin module.

    Science.gov (United States)

    Chitayat, Seth; Adams, Jarrett J; Furness, Heather S T; Bayer, Edward A; Smith, Steven P

    2008-09-19

    The genome of the opportunistic pathogen Clostridium perfringens encodes a large number of secreted glycoside hydrolases. Their predicted activities indicate that they are involved in the breakdown of complex carbohydrates and other glycans found in the mucosal layer of the human gastrointestinal tract, within the extracellular matrix, and on the surface of host cells. One such group of these enzymes is the family 84 glycoside hydrolases, which has predicted hyaluronidase activity and comprises five members [C. perfringens glycoside hydrolase family 84 (CpGH84) A-E]. The first identified member, CpGH84A, corresponds to the mu-toxin whose modular architecture includes an N-terminal catalytic domain, four family 32 carbohydrate-binding modules, three FIVAR modules of unknown function, and a C-terminal putative calcium-binding module. Here, we report the solution NMR structure of the C-terminal modular pair from the mu-toxin. The three-helix bundle FIVAR module displays structural homology to a heparin-binding module within the N-terminal of the a C protein from group B Streptoccocus. The C-terminal module has a typical calcium-binding dockerin fold comprising two anti-parallel helices that form a planar face with EF-hand calcium-binding loops at opposite ends of the module. The size of the helical face of the mu-toxin dockerin module is approximately equal to the planar region recently identified on the surface of a cohesin-like X82 module of CpGH84C. Size-exclusion chromatography and heteronuclear NMR-based chemical shift mapping studies indicate that the helical face of the dockerin module recognizes the CpGH84C X82 module. These studies represent the structural characterization of a noncellulolytic dockerin module and its interaction with a cohesin-like X82 module. Dockerin/X82-mediated enzyme complexes may have important implications in the pathogenic properties of C. perfringens. PMID:18602403

  10. Effect of anti-carbohydrate antibodies on HIV infection in a monocytic cell line (U937)

    DEFF Research Database (Denmark)

    Hansen, J E; Nielsen, C; Clausen, H; Mathiesen, Lars Reinhardt; Nielsen, Jens Ole

    1991-01-01

    Monoclonal antibodies (mAbs) against carbohydrate epitopes of gp120 have recently been found to inhibit HIV infection of lymphocytes in vitro thereby opening new possibilities for vaccine considerations. Antibody-dependent enhancement of infection has however come increasingly into focus. This...... study therefore investigated the neutralization of HIV in a monocytic cell line (U937) using mAbs against these carbohydrate gp120-epitopes. While antibodies against one of the epitopes (AI) neutralized infection of U937 cells despite binding to the Fc-receptor, one mAb against the sialosyl-Tn epitope...

  11. Liver-specific gene expression: A-activator-binding site, a promoter module present in vitellogenin and acute-phase genes.

    OpenAIRE

    Kaling, M; Kugler, W.; Ross, K.; Zoidl, C.; Ryffel, G U

    1991-01-01

    The A2 vitellogenin gene of Xenopus laevis, which is expressed liver specifically, contains an A-activator-binding site (AABS) that mediates high in vitro transcriptional activity in rat liver nuclear extracts. Footprint experiments with DNase I and gel retardation assays revealed the binding of several proteins to AABS. Using binding sites of known DNA-binding proteins as competitors in the gel retardation assay, we found that the transcription factor C/EBP and/or one of its "iso-binders" as...

  12. Carbohydrate Detection and Lectin Isolation from Tegumental Tissue of Fasciola hepatica

    Directory of Open Access Journals (Sweden)

    MB Molaei Rad

    2010-02-01

    Full Text Available "nBackground: Fascioliasis is a chronic hepatic disease and may be resulted from mechani­cal/molecular parasite adhesion to host liver tissue. The aim of this study was to detect surface car­bohydrate and lectin, carbohydrate-binding protein isolation that might be responsible of this molecular binding."nMethods: The present experimental work was conducted in the Department of Medical Parasitol­ogy and Mycology, School of Public Health, Tehran University of Medical Sciences, Te­hran, Iran.  Fasciola hepatica parasites were collected from abattoir (Saman, Tehran, Iran and surface mannose-carbohydrate was detected by fluorescein isothiocyanate (FITC conju­gated lectin (Lentil. Lectin of tegumental tissue from F. hepatica was isolated by affinity chroma­tography and detected by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE."nResults: Mannose carbohydrate was observed on the surface of tegumental tissue from para­site under fluorescence microscope. Carbohydrate-binding protein or lectin with MW of 50 kDa also was isolated from homogenized tegument of helminth."nConclusion: These results are important for understanding of molecular pathogenesis of F. hepat­ica at the chronic phase of fascioliasis

  13. Carbohydrates mediate sperm-ovum adhesion and triggering of the acrosome reaction

    Institute of Scientific and Technical Information of China (English)

    DaulatR.P.Tulsiani

    2000-01-01

    The fertilization process is the net result of a complex sequence of events that collectively result in the fusion of the opposite gametes. The male gamete undergoes continuous morphological and biochemical modifications during sperm development in the testis (spermatogenesis), maturation in the epididymis, and capacitation in the female reproductive tract. Only the capacitated spermatozoa are able to recognize and bind to the bioactive glycan residue(s) on the ovum's extracellular coat, the zona pellucida (ZP). Sperm-zona binding in the mouse and several other species is believed to take place in two stages. First, capacitated (acrosome-intact) spermatozoa loosely and reversibly adhere to the zona-intact ovum. In the second stage tight irreversible binding occurs. Both types of bindings are attributed to the presence of glycan- binding proteins (receptors) on the sperm plasma membrane and their complementary bioactive glycan units (ligands) on the surface of the ZP. The carbohydrate-mediated adhesion event initiates a signal transduction cascade resulting in the exocytosis of acrosomal contents. This step is believed to be prerequisite which allows the hypemctivated acrosome-reacted spermatozoa to penetrate the ZP and fertilize the ovum. This review focuses on the role of carbohydrate residues in sperm-ovum interaction, and triggering of the acrosome reaction. I have attempted to discuss extensive progress that has been made to enhance our understanding of the well programmed multiple molecular events necessary for successful fertilization. This review will identify these events, and discuss the functional significance of carbohydrates in these events.

  14. Carbohydrates - Guidelines on Parenteral Nutrition, Chapter 5

    OpenAIRE

    Bolder, U; Ebener, C.; Hauner, H.; Jauch, KW; Kreymann, G.; Ockenga, J.; Traeger, K.; Working group for developing the guidelines for parenteral nutrition of The German Association for Nutritional Medicine

    2009-01-01

    The main role of carbohydrates in the human body is to provide energy. Carbohydrates should always be infused with PN (parenteral nutrition) in combination with amino acids and lipid emulsions to improve nitrogen balance. Glucose should be provided as a standard carbohydrate for PN, whereas the use of xylite is not generally recommended. Fructose solutions should not be used for PN. Approximately 60% of non-protein energy should be supplied as glucose with an intake of 3.0-3.5 g/kg body weigh...

  15. Utilization of carbohydrates by radiation processing

    Science.gov (United States)

    Kume, T.; Nagasawa, N.; Yoshii, F.

    2002-03-01

    Upgrading and utilization of carbohydrates such as chitosan, sodium alginate, carrageenan, cellulose, pectin have been investigated for recycling these bio-resources and reducing the environmental pollution. These carbohydrates were easily degraded by irradiation and various kinds of biological activities such as anti-microbial activity, promotion of plant growth, suppression of heavy metal stress, phytoalexins induction, etc. were induced. On the other hand, some carbohydrate derivatives, carboxymethylcellulose and carboxymethylstarch, could be crosslinked under certain radiation condition and produce the biodegradable hydrogel for medical and agricultural use.

  16. NMR investigations of protein-carbohydrate interactions : Studies on the relevance of Trp/Tyr variations in lectin binding sites as deduced from titration microcalorimetry and NMR studies on hevein domains. Determination of the NMR structure of the complex between pseudohevein and N,N ',N ''-triacetylchitotriose

    NARCIS (Netherlands)

    Asensio, JL; Siebert, HC; von der Lieth, CW; Laynez, J; Bruix, M; Soedjanaamadja, UM; Beintema, JJ; Canada, FJ; Gabius, HJ; Jimenez-Barbero, J

    2000-01-01

    Model studies on lectins and their interactions with carbohydrate ligands in solution are essential to gain insights into the driving forces for complex formation and to optimize programs for computer simulations. The specific interaction of pseudohevein with N,N',N"-triacetylchitotriose has been an

  17. MiRNA-205 modulates cellular invasion and migration via regulating zinc finger E-box binding homeobox 2 expression in esophageal squamous cell carcinoma cells

    Directory of Open Access Journals (Sweden)

    Yamashita Shunichi

    2011-03-01

    Full Text Available Abstract Background Esophageal squamous cell carcinoma (ESCC is often diagnosed at later stages until they are incurable. MicroRNA (miR is a small, non-coding RNA that negatively regulates gene expression mainly via translational repression. Accumulating evidence indicates that deregulation of miR is associated with human malignancies including ESCC. The aim of this study was to identify miR that could be specifically expressed and exert distinct biological actions in ESCC. Methods Total RNA was extracted from ESCC cell lines, OE21 and TE10, and a non-malignant human esophageal squamous cell line, Het-1A, and subjected to microarray analysis. Expression levels of miR that showed significant differences between the 2 ESCC and Het-1A cells based on the comprehensive analysis were analyzed by the quantitative reverse transcriptase (RT-PCR method. Then, functional analyses, including cellular proliferation, apoptosis and Matrigel invasion and the wound healing assay, for the specific miR were conducted. Using ESCC tumor samples and paired surrounding non-cancerous tissue obtained endoscopically, the association with histopathological differentiation was examined with quantitative RT-PCR. Results Based on the miR microarray analysis, there were 14 miRs that showed significant differences (more than 2-fold in expression between the 2 ESCC cells and non-malignant Het-1A. Among the significantly altered miRs, miR-205 expression levels were exclusively higher in 5 ESCC cell lines examined than any other types of malignant cell lines and Het-1A. Thus, miR-205 could be a specific miR in ESCC. Modulation of miR-205 expression by transfection with its precursor or anti-miR-205 inhibitor did not affect ESCC cell proliferation and apoptosis, but miR-205 was found to be involved in cell invasion and migration. Western blot revealed that knockdown of miR-205 expression in ESCC cells substantially enhanced expression of zinc finger E-box binding homeobox 2

  18. Workshop to establish databases of carbohydrate spectra

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The workshop was organized to formulate guidelines for establishing spectral databases of complex carbohydrates. The databases will enable the scientific community to avoid the great waste of research effort and funds that frequently occurs when carbohydrate chemists are forced to duplicate the structural characterization of previously characterized complex carbohydrates. Chemists waste their effort on repetitive characterizations because in the absence of spectral databases they are unaware they are analyzing a known molecule until they have completely determined its structure. Chemists will be able to avoid much of this wasted effort when the collections of mass and of nuclear magnetic resonance (NMR) spectra initiated at the workshop are subsequently developed into searchable databases. Then scientists only need query the databases with the spectrum or with information defining the spectrum of an unidentified carbohydrate to find out if it has been previously characterized.

  19. Structural analysis of the positive AMPA receptor modulators CX516 and Me-CX516 in complex with the GluA2 ligand-binding domain

    DEFF Research Database (Denmark)

    Krintel, Christian; Harpsøe, Kasper; Zachariassen, Linda G; Peters, Dan; Frydenvang, Karla; Pickering, Darryl S; Gajhede, Michael; Kastrup, Jette S

    Positive allosteric modulators of the ionotropic glutamate receptor A2 (GluA2) can serve as lead compounds for the development of cognitive enhancers. Several benzamide-type (S)-2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) receptor modulators such as aniracetam, CX516 and CX61...

  20. Carbohydrate Nutrition and Team Sport Performance.

    Science.gov (United States)

    Williams, Clyde; Rollo, Ian

    2015-11-01

    The common pattern of play in 'team sports' is 'stop and go', i.e. where players perform repeated bouts of brief high-intensity exercise punctuated by lower intensity activity. Sprints are generally 2-4 s long and recovery between sprints is of variable length. Energy production during brief sprints is derived from the degradation of intra-muscular phosphocreatine and glycogen (anaerobic metabolism). Prolonged periods of multiple sprints drain muscle glycogen stores, leading to a decrease in power output and a reduction in general work rate during training and competition. The impact of dietary carbohydrate interventions on team sport performance have been typically assessed using intermittent variable-speed shuttle running over a distance of 20 m. This method has evolved to include specific work to rest ratios and skills specific to team sports such as soccer, rugby and basketball. Increasing liver and muscle carbohydrate stores before sports helps delay the onset of fatigue during prolonged intermittent variable-speed running. Carbohydrate intake during exercise, typically ingested as carbohydrate-electrolyte solutions, is also associated with improved performance. The mechanisms responsible are likely to be the availability of carbohydrate as a substrate for central and peripheral functions. Variable-speed running in hot environments is limited by the degree of hyperthermia before muscle glycogen availability becomes a significant contributor to the onset of fatigue. Finally, ingesting carbohydrate immediately after training and competition will rapidly recover liver and muscle glycogen stores. PMID:26553494

  1. Dietary Carbohydrates and Childhood Functional Abdominal Pain.

    Science.gov (United States)

    Chumpitazi, Bruno P; Shulman, Robert J

    2016-01-01

    Childhood functional gastrointestinal disorders (FGIDs) affect a large number of children throughout the world. Carbohydrates (which provide the majority of calories consumed in the Western diet) have been implicated both as culprits for the etiology of symptoms and as potential therapeutic agents (e.g., fiber) in childhood FGIDs. In this review, we detail how carbohydrate malabsorption may cause gastrointestinal symptoms (e.g., bloating) via the physiologic effects of both increased osmotic activity and increased gas production from bacterial fermentation. Several factors may play a role, including: (1) the amount of carbohydrate ingested; (2) whether ingestion is accompanied by a meal or other food; (3) the rate of gastric emptying (how quickly the meal enters the small intestine); (4) small intestinal transit time (the time it takes for a meal to enter the large intestine after first entering the small intestine); (5) whether the meal contains bacteria with enzymes capable of breaking down the carbohydrate; (6) colonic bacterial adaptation to one's diet, and (7) host factors such as the presence or absence of visceral hypersensitivity. By detailing controlled and uncontrolled trials, we describe how there is a general lack of strong evidence supporting restriction of individual carbohydrates (e.g., lactose, fructose) for childhood FGIDs. We review emerging evidence suggesting that a more comprehensive restriction of fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP) may be effective. Finally, we review how soluble fiber (a complex carbohydrate) supplementation via randomized controlled intervention trials in childhood functional gastrointestinal disorders has demonstrated efficacy. PMID:27355647

  2. The Chemical Neurobiology of Carbohydrates

    OpenAIRE

    Murrey, Heather E.; Hsieh-Wilson, Linda C.

    2008-01-01

    The cell surface displays a complex array of oligosaccharides, glycoproteins, and glycolipids. This diverse mixture of glycans contains a wealth of information, modulating a wide range of processes such as cell migration, proliferation, transcriptional regulation, and differentiation. Glycosylation is one of the most ubiquitous forms of post-translational modification, with more than 50% of the human proteome estimated to be glycosylated. Glycosylation adds another dimension to the complexity...

  3. Positive and Negative Allosteric Modulation of an α1β3γ2 γ-Aminobutyric Acid Type A (GABAA) Receptor by Binding to a Site in the Transmembrane Domain at the γ+-β- Interface.

    Science.gov (United States)

    Jayakar, Selwyn S; Zhou, Xiaojuan; Savechenkov, Pavel Y; Chiara, David C; Desai, Rooma; Bruzik, Karol S; Miller, Keith W; Cohen, Jonathan B

    2015-09-18

    In the process of developing safer general anesthetics, isomers of anesthetic ethers and barbiturates have been discovered that act as convulsants and inhibitors of γ-aminobutyric acid type A receptors (GABAARs) rather than potentiators. It is unknown whether these convulsants act as negative allosteric modulators by binding to the intersubunit anesthetic-binding sites in the GABAAR transmembrane domain (Chiara, D. C., Jayakar, S. S., Zhou, X., Zhang, X., Savechenkov, P. Y., Bruzik, K. S., Miller, K. W., and Cohen, J. B. (2013) J. Biol. Chem. 288, 19343-19357) or to known convulsant sites in the ion channel or extracellular domains. Here, we show that S-1-methyl-5-propyl-5-(m-trifluoromethyl-diazirynylphenyl) barbituric acid (S-mTFD-MPPB), a photoreactive analog of the convulsant barbiturate S-MPPB, inhibits α1β3γ2 but potentiates α1β3 GABAAR responses. In the α1β3γ2 GABAAR, S-mTFD-MPPB binds in the transmembrane domain with high affinity to the γ(+)-β(-) subunit interface site with negative energetic coupling to GABA binding in the extracellular domain at the β(+)-α(-) subunit interfaces. GABA inhibits S-[(3)H]mTFD-MPPB photolabeling of γ2Ser-280 (γM2-15') in this site. In contrast, within the same site GABA enhances photolabeling of β3Met-227 in βM1 by an anesthetic barbiturate, R-[(3)H]methyl-5-allyl-5-(m-trifluoromethyl-diazirynylphenyl)barbituric acid (mTFD-MPAB), which differs from S-mTFD-MPPB in structure only by chirality and two hydrogens (propyl versus allyl). S-mTFD-MPPB and R-mTFD-MPAB are predicted to bind in different orientations at the γ(+)-β(-) site, based upon the distance in GABAAR homology models between γ2Ser-280 and β3Met-227. These results provide an explanation for S-mTFD-MPPB inhibition of α1β3γ2 GABAAR function and provide a first demonstration that an intersubunit-binding site in the GABAAR transmembrane domain binds negative and positive allosteric modulators. PMID:26229099

  4. Self-recognition and Ca2+-dependent carbohydrate-carbohydrate cell adhesion provide clues to the cambrian explosion.

    Science.gov (United States)

    Fernàndez-Busquets, Xavier; Körnig, André; Bucior, Iwona; Burger, Max M; Anselmetti, Dario

    2009-11-01

    The Cambrian explosion of life was a relatively short period approximately 540 Ma that marked a generalized acceleration in the evolution of most animal phyla, but the trigger of this key biological event remains elusive. Sponges are the oldest extant Precambrian metazoan phylum and thus a valid model to study factors that could have unleashed the rise of multicellular animals. One such factor is the advent of self-/non-self-recognition systems, which would be evolutionarily beneficial to organisms to prevent germ-cell parasitism or the introduction of deleterious mutations resulting from fusion with genetically different individuals. However, the molecules responsible for allorecognition probably evolved gradually before the Cambrian period, and some other (external) factor remains to be identified as the missing triggering event. Sponge cells associate through calcium-dependent, multivalent carbohydrate-carbohydrate interactions of the g200 glycan found on extracellular proteoglycans. Single molecule force spectroscopy analysis of g200-g200 binding indicates that calcium affects the lifetime (+Ca/-Ca: 680 s/3 s) and bond reaction length (+Ca/-Ca: 3.47 A/2.27 A). Calculation of mean g200 dissociation times in low and high calcium within the theoretical framework of a cooperative binding model indicates the nonlinear and divergent characteristics leading to either disaggregated cells or stable multicellular assemblies, respectively. This fundamental phenomenon can explain a switch from weak to strong adhesion between primitive metazoan cells caused by the well-documented rise in ocean calcium levels at the end of Precambrian time. We propose that stronger cell adhesion allowed the integrity of genetically uniform animals composed only of "self" cells, facilitating genetic constitutions to remain within the metazoan individual and be passed down inheritance lines. The Cambrian explosion might have been triggered by the coincidence in time of primitive animals

  5. Transcriptional modulation of hepatic lipoprotein assembly and secretion : coordinate regulation of the liver-fatty acid binding protein and microsomal triglyceride transfer protein genes

    OpenAIRE

    Spann, Nathanael J.

    2006-01-01

    Hepatic production of apolipoprotein (apo) B-containing lipoproteins provides a means to transport essential lipids and fat-soluble nutrients to peripheral tissues for utilization and storage. Liver-fatty acid binding protein (L-FABP) and microsomal triglyceride transfer protein (MTP) bind fatty acids and glycerolipids, respectively and facilitate their transfer into the VLDL assembly and secretion pathway. Sequence analysis reveals that the proximal promoter regions of L-FABP and MTP contain...

  6. Metabolic aspects of low carbohydrate diets and exercise

    Directory of Open Access Journals (Sweden)

    Peters Sandra

    2004-01-01

    Full Text Available Abstract Following a low carbohydrate diet, there is a shift towards more fat and less carbohydrate oxidation to provide energy to skeletal muscle, both at rest and during exercise. This review summarizes recent work on human skeletal muscle carbohydrate and fat metabolic adaptations to a low carbohydrate diet, focusing mainly on pyruvate dehydrogenase and pyruvate dehydrogenase kinase, and how these changes relate to the capacity for carbohydrate oxidation during exercise.

  7. MicroRNA-155 Modulates the Pathogen Binding Ability of Dendritic Cells (DCs) by Down-regulation of DC-specific Intercellular Adhesion Molecule-3 Grabbing Non-integrin (DC-SIGN)*

    OpenAIRE

    Martinez-Nunez, Rocio T.; Louafi, Fethi; Friedmann, Peter S.; Sanchez-Elsner, Tilman

    2009-01-01

    MicroRNA-155 (miR-155) has been involved in the response to inflammation in macrophages and lymphocytes. Here we show how miR-155 participates in the maturation of human dendritic cells (DC) and modulates pathogen binding by down-regulating DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN), after directly targeting the transcription factor PU.1. During the maturation of DCs, miR-155 increases up to 130-fold, whereas PU.1 protein levels decrease accordingly. We esta...

  8. Effect of carbohydrate ingestion subsequent to carbohydrate supercompensation on endurance performance.

    Science.gov (United States)

    Kang, J; Robertson, R J; Denys, B G; DaSilva, S G; Visich, P; Suminski, R R; Utter, A C; Goss, F L; Metz, K F

    1995-12-01

    This investigation determined whether carbohydrate ingestion during prolonged moderate-intensity exercise enhanced endurance performance when the exercise was preceded by carbohydrate supercompensation. Seven male trained cyclists performed two trials at an initial power output corresponding to 71 +/- 1% of their peak oxygen consumption. During the trials, subjects ingested either a 6% glucose/sucrose (C) solution or an equal volume of artificially flavored and sweetened placebo (P) every 20 min throughout exercise. Both C and P were preceded by a 6-day carbohydrate supercompensation procedure in which subjects undertook a depletion-taper exercise sequence in conjunction with a moderate- and high-carbohydrate diet regimen. Statistical analysis of time to exhaustion, plasma glucose concentration, carbohydrate oxidation rate, fat oxidation rate, and plasma glycerol concentration indicated that in spite of a carbohydrate supercompensation procedure administered prior to exercise, carbohydrate ingestion during exercise can exert an additional ergogenic effect by preventing a decline in blood glucose levels and maintaining carbohydrate oxidation during the later stages of moderate-intensity exercise. PMID:8605519

  9. Carbohydrate mouth rinse and caffeine improves high-intensity interval running capacity when carbohydrate restricted.

    Science.gov (United States)

    Kasper, Andreas M; Cocking, Scott; Cockayne, Molly; Barnard, Marcus; Tench, Jake; Parker, Liam; McAndrew, John; Langan-Evans, Carl; Close, Graeme L; Morton, James P

    2016-08-01

    We tested the hypothesis that carbohydrate mouth rinsing, alone or in combination with caffeine, augments high-intensity interval (HIT) running capacity undertaken in a carbohydrate-restricted state. Carbohydrate restriction was achieved by performing high-intensity running to volitional exhaustion in the evening prior to the main experimental trials and further refraining from carbohydrate intake in the post-exercise and overnight period. On the subsequent morning, eight males performed 45-min steady-state (SS) exercise (65% [Formula: see text]) followed by HIT running to exhaustion (1-min at 80% [Formula: see text]interspersed with 1-min walking at 6 km/h). Subjects completed 3 trials consisting of placebo capsules (administered immediately prior to SS and immediately before HIT) and placebo mouth rinse at 4-min intervals during HIT (PLACEBO), placebo capsules but 10% carbohydrate mouth rinse (CMR) at corresponding time-points or finally, caffeine capsules (200 mg per dose) plus 10% carbohydrate mouth rinse (CAFF + CMR) at corresponding time-points. Heart rate, capillary glucose, lactate, glycerol and NEFA were not different at exhaustion during HIT (P > 0.05). However, HIT capacity was different (P mouth rinsing and caffeine ingestion improves exercise capacity undertaken in carbohydrate-restricted states. Such nutritional strategies may be advantageous for those athletes who deliberately incorporate elements of training in carbohydrate-restricted states (i.e. the train-low paradigm) into their overall training programme in an attempt to strategically enhance mitochondrial adaptations of skeletal muscle. PMID:26035740

  10. Potential effect of ultrasound on carbohydrates.

    Science.gov (United States)

    Bera, Smritilekha; Mondal, Dhananjoy; Martin, Jacob T; Singh, Man

    2015-06-17

    The use of ultrasound has emerged as one of the most useful alternative energy sources for the synthesis of carbohydrate-derived biologically and pharmaceutically potential compounds. Spectacular advances have been made in the field of sonication-assisted organic reactions, which are known for producing superior yields, enhanced reactivity of the reactant, improved stereoselectivity, and shortened reaction times. Orthogonal protection-deprotection reactions and/or modification and manipulation of functional groups in carbohydrates are common synthetic steps in carbohydrate chemistry. These reaction steps can be driven by the ultrasonic energy generated by acoustic cavitation via the formation and subsequent collapse of ultrasound-induced bubbles. The ultrasound-assisted synthesis of differently functionalised monosaccharides is useful in a wide variety of applications of carbohydrate chemistry such as the glycosylation of oligosaccharides, one pot domino reactions, thioglycoside syntheses, azidoglycoside syntheses, 1,3-dipolar cycloaddition reactions, and syntheses of natural products. This review article covers ultrasound-mediated reactions on carbohydrates that have been described in the literature since 2000. PMID:25954862

  11. Crystallization and preliminary X-ray analysis of the human androgen receptor ligand-binding domain with a coactivator-like peptide and selective androgen receptor modulators

    International Nuclear Information System (INIS)

    The human androgen receptor ligand-binding domain has been crystallized as a ternary complex with a coactivator-like undecapeptide and two different synthetic ligands. The ligand-binding domain of the human androgen receptor has been cloned, overproduced and crystallized in the presence of a coactivator-like 11-mer peptide and two different nonsteroidal ligands. The crystals of the two ternary complexes were isomorphous and belonged to space group P212121, with one molecule in the asymmetric unit. They diffracted to 1.7 and 1.95 Å resolution, respectively. Structure determination of these two complexes will help in understanding the mode of binding of selective nonsteroidal androgens versus endogenous steroidal ligands and possibly the origin of their tissue selectivity

  12. Enhancement of rabbit protein S anticoagulant cofactor activity in vivo by modulation of the protein S C4B binding protein interaction.

    OpenAIRE

    Weinstein, R E; Walker, F. J.

    1990-01-01

    The carboxy-terminal region of protein S has been recently been observed to be involved in the interaction between protein S and C4b-binding protein (Walker, F. J. 1989. J. Biol. Chem. 264:17645-17658). A synthetic peptide, GVQLDLDEAI, corresponding to that region of protein S has been used to investigate the protein S/C4b-binding protein interaction in vitro and in vivo. Rabbit activated protein C possesses species-specific anticoagulant activity for which rabbit protein S functions as a cof...

  13. D1 dopamine receptor signaling is modulated by the R7 RGS protein EAT-16 and the R7 binding protein RSBP-1 in Caenoerhabditis elegans motor neurons.

    Directory of Open Access Journals (Sweden)

    Khursheed A Wani

    Full Text Available Dopamine signaling modulates voluntary movement and reward-driven behaviors by acting through G protein-coupled receptors in striatal neurons, and defects in dopamine signaling underlie Parkinson's disease and drug addiction. Despite the importance of understanding how dopamine modifies the activity of striatal neurons to control basal ganglia output, the molecular mechanisms that control dopamine signaling remain largely unclear. Dopamine signaling also controls locomotion behavior in Caenorhabditis elegans. To better understand how dopamine acts in the brain we performed a large-scale dsRNA interference screen in C. elegans for genes required for endogenous dopamine signaling and identified six genes (eat-16, rsbp-1, unc-43, flp-1, grk-1, and cat-1 required for dopamine-mediated behavior. We then used a combination of mutant analysis and cell-specific transgenic rescue experiments to investigate the functional interaction between the proteins encoded by two of these genes, eat-16 and rsbp-1, within single cell types and to examine their role in the modulation of dopamine receptor signaling. We found that EAT-16 and RSBP-1 act together to modulate dopamine signaling and that while they are coexpressed with both D1-like and D2-like dopamine receptors, they do not modulate D2 receptor signaling. Instead, EAT-16 and RSBP-1 act together to selectively inhibit D1 dopamine receptor signaling in cholinergic motor neurons to modulate locomotion behavior.

  14. D1 dopamine receptor signaling is modulated by the R7 RGS protein EAT-16 and the R7 binding protein RSBP-1 in Caenoerhabditis elegans motor neurons.

    Science.gov (United States)

    Wani, Khursheed A; Catanese, Mary; Normantowicz, Robyn; Herd, Muriel; Maher, Kathryn N; Chase, Daniel L

    2012-01-01

    Dopamine signaling modulates voluntary movement and reward-driven behaviors by acting through G protein-coupled receptors in striatal neurons, and defects in dopamine signaling underlie Parkinson's disease and drug addiction. Despite the importance of understanding how dopamine modifies the activity of striatal neurons to control basal ganglia output, the molecular mechanisms that control dopamine signaling remain largely unclear. Dopamine signaling also controls locomotion behavior in Caenorhabditis elegans. To better understand how dopamine acts in the brain we performed a large-scale dsRNA interference screen in C. elegans for genes required for endogenous dopamine signaling and identified six genes (eat-16, rsbp-1, unc-43, flp-1, grk-1, and cat-1) required for dopamine-mediated behavior. We then used a combination of mutant analysis and cell-specific transgenic rescue experiments to investigate the functional interaction between the proteins encoded by two of these genes, eat-16 and rsbp-1, within single cell types and to examine their role in the modulation of dopamine receptor signaling. We found that EAT-16 and RSBP-1 act together to modulate dopamine signaling and that while they are coexpressed with both D1-like and D2-like dopamine receptors, they do not modulate D2 receptor signaling. Instead, EAT-16 and RSBP-1 act together to selectively inhibit D1 dopamine receptor signaling in cholinergic motor neurons to modulate locomotion behavior. PMID:22629462

  15. Glycoconjugates of porphyrins with carbohydrates: methods of synthesis and biological activity

    International Nuclear Information System (INIS)

    Data on the main approaches to preparation of mono- and oligodentate glycoconjugates based on porphyrin scaffolds are surveyed. The prospects for using these compounds as sensitizers for photodynamic therapy of cancer and for suppression of bacterial and viral pathogens are considered. Data on the synthesis of oligodentate blocking agents for carbohydrate-binding proteins (lectins) based on porphyrin scaffolds are discussed. The bibliography includes 161 references

  16. Maize homologs of HCT, a key enzyme in lignin biosynthesis, bind the NLR Rp1 proteins to modulate the defense response

    Science.gov (United States)

    In plants, most disease resistance (R) genes encode nucleotide binding leucine-rich-repeat 42 (NLR) proteins that trigger a rapid localized cell death called a hypersensitive response (HR) 43 upon pathogen recognition. The maize NLR protein Rp1-D21 derives from an intragenic 44 recombination between...

  17. Small-Molecule Inhibitors of the LEDGF/p75 Binding Site of Integrase Block HIV Replication and Modulate Integrase Multimerization

    Science.gov (United States)

    Christ, Frauke; Shaw, Stephen; Demeulemeester, Jonas; Desimmie, Belete A.; Marchand, Arnaud; Butler, Scott; Smets, Wim; Chaltin, Patrick; Westby, Mike

    2012-01-01

    Targeting the HIV integrase (HIV IN) is a clinically validated approach for designing novel anti-HIV therapies. We have previously described the discovery of a novel class of integration inhibitors, 2-(quinolin-3-yl)acetic acid derivatives, blocking HIV replication at a low micromolar concentration through binding in the LEDGF/p75 binding pocket of HIV integrase, hence referred to as LEDGINs. Here we report the detailed characterization of their mode of action. The design of novel and more potent analogues with nanomolar activity enabled full virological evaluation and a profound mechanistic study. As allosteric inhibitors, LEDGINs bind to the LEDGF/p75 binding pocket in integrase, thereby blocking the interaction with LEDGF/p75 and interfering indirectly with the catalytic activity of integrase. Detailed mechanism-of-action studies reveal that the allosteric mode of inhibition is likely caused by an effect on HIV-1 integrase oligomerization. The multimodal inhibition by LEDGINs results in a block in HIV integration and in a replication deficiency of progeny virus. The allosteric nature of LEDGINs leads to synergy in combination with the clinically approved active site HIV IN strand transfer inhibitor (INSTI) raltegravir, and cross-resistance profiling proves the distinct mode of action of LEDGINs and INSTIs. The allosteric nature of inhibition and compatibility with INSTIs underline an interest in further (clinical) development of LEDGINs. PMID:22664975

  18. Enhancement of antiviral activity of collectin trimers through cross-linking and mutagenesis of the carbohydrate recognition domain

    DEFF Research Database (Denmark)

    White, Mitchell R; Boland, Patrick; Tecle, Tesfaldet; Gantz, Donald; Sørensen, Grith Lykke; Tornøe, Ida; Holmskov, Uffe; McDonald, Barbara; Crouch, Erika C; Hartshorn, Kevan L

    2010-01-01

    Surfactant protein D (SP-D) plays important roles in innate defense against respiratory viruses [including influenza A viruses (IAVs)]. Truncated trimers composed of its neck and carbohydrate recognition domains (NCRDs) bind various ligands; however, they have minimal inhibitory activity for IAV......, complementary strategies, namely cross-linking of NCRDs through various means and mutagenesis of CRD residues to increase viral binding. These findings may be relevant for antiviral therapy....

  19. Minimally refined biomass fuel. [carbohydrate-water-alcohol mixture

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, R.K.; Hirschfeld, T.B.

    1981-03-26

    A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water-solubilizes the carbohydrate; and the alcohol aids in the combustion of the carbohydrate and reduces the viscosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

  20. Modulation of DNA-polyamide interaction by β-alanine substitutions: a study of positional effects on binding affinity, kinetics and thermodynamics.

    Science.gov (United States)

    Wang, Shuo; Aston, Karl; Koeller, Kevin J; Harris, G Davis; Rath, Nigam P; Bashkin, James K; Wilson, W David

    2014-10-14

    Hairpin polyamides (PAs) are an important class of sequence-specific DNA minor groove binders, and frequently employ a flexible motif, β-alanine (β), to reduce the molecular rigidity to maintain the DNA recognition register. To better understand the diverse effects that β can have on DNA-PA binding affinity, selectivity, and especially kinetics, which have rarely been reported, we have initiated a detailed study for an eight-heterocyclic hairpin PA and its β derivatives with their cognate and mutant sequences. With these derivatives, all internal pyrroles of the parent PA are systematically substituted with single or double βs. A set of complementary experiments have been conducted to evaluate the molecular interactions in detail: UV-melting, biosensor-surface plasmon resonance, circular dichroism and isothermal titration calorimetry. The β substitutions generally weaken the binding affinities of these PAs with cognate DNA, and have large and diverse influences on PA binding kinetics in a position- and number-dependent manner. The DNA base mutations have also shown positional effects on the binding of a single PA. Besides the β substitutions, the monocationic Dp group [3-(dimethylamino)propylamine] in parent PA has been modified into a dicationic Ta group (3,3'-diamino-N-methyldipropylamine) to minimize the frequently observed PA aggregation with ITC experiments. The results clearly show that the Ta modification not only maintains the DNA binding mode and affinity of PA, but also significantly reduces PA aggregation and allows the complete thermodynamic signature of eight-ring hairpin PA to be determined for the first time. This combined set of results significantly extends our understanding of the energetic basis of specific DNA recognition by PAs. PMID:25141096

  1. Protein-carbohydrate complex reveals circulating metastatic cells in a microfluidic assay

    KAUST Repository

    Simone, Giuseppina

    2013-02-11

    Advances in carbohydrate sequencing technologies reveal the tremendous complexity of the glycome and the role that glycomics might have to bring insight into the biological functions. Carbohydrate-protein interactions, in particular, are known to be crucial to most mammalian physiological processes as mediators of cell adhesion and metastasis, signal transducers, and organizers of protein interactions. An assay is developed here to mimic the multivalency of biological complexes that selectively and sensitively detect carbohydrate-protein interactions. The binding of β-galactosides and galectin-3 - a protein that is correlated to the progress of tumor and metastasis - is examined. The efficiency of the assay is related to the expression of the receptor while anchoring to the interaction\\'s strength. Comparative binding experiments reveal molecular binding preferences. This study establishes that the assay is robust to isolate metastatic cells from colon affected patients and paves the way to personalized medicine. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The staphylococcal accessory regulator, SarA, is an RNA-binding protein that modulates the mRNA turnover properties of late-exponential and stationary phase Staphylococcus aureus cells

    Directory of Open Access Journals (Sweden)

    John M Morrison

    2012-03-01

    Full Text Available The modulation of mRNA turnover is gaining recognition as a mechanism by which Staphylococcus aureus regulates gene expression, but the factors that orchestrate alterations in transcript degradation are poorly understood. In that regard, we previously found that 138 mRNA species, including the virulence factors protein A (spa and collagen binding protein (cna, are stabilized in a sarA-dependent manner during exponential phase growth, suggesting that SarA protein may directly or indirectly effect the RNA turnover properties of these transcripts. Herein, we expanded our characterization of the effects of sarA on mRNA turnover during late exponential and stationary phases of growth. Results revealed that the locus affects the RNA degradation properties of cells during both growth phases. Further, using gel mobility shift assays and RIP-ChIP, it was found that SarA protein is capable of binding mRNA species that it stabilizes both in vitro and within bacterial cells. Taken together, these results suggest that SarA post-transcriptionally regulates S. aureus gene expression in a manner that involves binding to and consequently altering the mRNA turnover properties of target transcripts.

  3. Intrinsic Immunomodulatory Effects of Low-Digestible Carbohydrates Selectively Extend Their Anti-Inflammatory Prebiotic Potentials

    OpenAIRE

    Jérôme Breton; Coline Plé; Laetitia Guerin-Deremaux; Bruno Pot; Catherine Lefranc-Millot; Daniel Wils; Benoit Foligné

    2015-01-01

    The beneficial effects of carbohydrate-derived fibers are mainly attributed to modulation of the microbiota, increased colonic fermentation, and the production of short-chain fatty acids. We studied the direct immune responses to alimentary fibers in in vitro and in vivo models. Firstly, we evaluated the immunomodulation induced by nine different types of low-digestible fibers on human peripheral blood mononuclear cells. None of the fibers tested induced cytokine production in baseline condit...

  4. DcR3 binds to ovarian cancer via heparan sulfate proteoglycans and modulates tumor cells response to platinum with corresponding alteration in the expression of BRCA1

    International Nuclear Information System (INIS)

    Overcoming platinum resistance is a major obstacle in the treatment of Epithelial Ovarian Cancer (EOC). In our previous work Decoy Receptor 3 (DcR3) was found to be related to platinum resistance. The major objective of this work was to define the cellular interaction of DcR3 with EOC and to explore its effects on platinum responsiveness. We studied cell lines and primary cultures for the expression of and the cells ability to bind DcR3. Cells were cultured with DcR3 and then exposed to platinum. Cell viability was determined by MTT assay. Finally, the cells molecular response to DcR3 was studied using real time RT-PCR based differential expression arrays, standard RT-PCR, and Western blot. High DcR3 in the peritoneal cavity of women with EOC is associated with significantly shorter time to first recurrence after platinum based therapy (p = 0.02). None-malignant cells contribute DcR3 in the peritoneal cavity. The cell lines studied do not secrete DcR3; however they all bind exogenous DcR3 to their surface implying that they can be effected by DcR3 from other sources. DcR3s protein binding partners are minimally expressed or negative, however, all cells expressed the DcR3 binding Heparan Sulfate Proteoglycans (HSPGs) Syndecans-2, and CD44v3. DcR3 binding was inhibited by heparin and heparinase. After DcR3 exposure both SKOV-3 and OVCAR-3 became more resistant to platinum with 15% more cells surviving at high doses. On the contrary CaOV3 became more sensitive to platinum with 20–25% more cell death. PCR array analysis showed increase expression of BRCA1 mRNA in SKOV-3 and OVCAR-3 and decreased BRCA1 expression in CaOV-3 after exposure to DcR3. This was confirmed by gene specific real time PCR and Western blot analysis. Non-malignant cells contribute to the high levels of DcR3 in ovarian cancer. DcR3 binds readily to EOC cells via HSPGs and alter their responsiveness to platinum chemotherapy. The paradoxical responses seen were related to the expression pattern of

  5. Structural determination of the carbohydrate chains from arthropod and mollusc hemocyanin by means of 500-MHz 1H-NMR spectroscopy

    International Nuclear Information System (INIS)

    In this thesis carbohydrate structures of hemocyanins of arthropods and molluscs are studied. Hemocyanins are high-molecular-mass, copper-containing oxygen-transport proteins. The function of these carbohydrate chains are yet still unknown. It is not probable that they play a role in the oxygen-binding processes. They are rather thought to have a function in the build-up of the hemocyanin molecules. 286 refs.; 30 figs.; 25 tabs

  6. Crystallization of carbohydrate oxidase from Microdochium nivale

    Czech Academy of Sciences Publication Activity Database

    Dušková, Jarmila; Dohnálek, Jan; Skálová, Tereza; Ostergaard, L. H.; Fuglsang, C. C.; Kolenko, Petr; Štěpánková, Andrea; Hašek, Jindřich

    2009-01-01

    Roč. 65, č. 6 (2009), s. 638-640. ISSN 1744-3091 R&D Projects: GA AV ČR IAA500500701; GA ČR GA305/07/1073 Institutional research plan: CEZ:AV0Z40500505 Keywords : carbohydrate oxidase * crystallization * data processing Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.551, year: 2009

  7. The diagenesis of carbohydrates by hydrogen sulfide

    Science.gov (United States)

    Mango, Frank D.

    1983-08-01

    Carbohydrates react with hydrogen sulfide under low temperature (100° to 200°C) yielding a variety of organosulfur compounds including thiophenes, thiols, sulfides and sulfones. A polymer is also produced, whose elemental composition is within the range of natural coals. When reductive dehydration is carried out in the presence of hydrocarbon, organosulfur compounds are formed in the carbon number range of the hydrocarbon used. In these processes, an active hydrogen transfer catalyst is produced which facilitates the passage of hydrogen between normal paraffins and saccharide units, distributing sulfur between these two families primarily in the form of thiophene rings. The simplicity of these systems - H 2S, carbohydrates, H 2O, hydrocarbon - and the facility of the chemistry would suggest that the carbohydrates and hydrogen sulfide may be important agents in the diagenetic processes leading to petroleum and coal. Carbohydrate reduction by hydrogen sulfide may constitute an important route through which certain organosulfur compounds found in petroleum and coal entered these materials in early diagenesis.

  8. The clinical impact of carbohydrate malabsorption.

    Science.gov (United States)

    Born, Peter

    2011-03-01

    Malabsorption of carbohydrates such as fructose, lactose or sorbitol can often be detected among patients suffering from so-called non specific abdominal complaints. Sometimes the differential diagnosis may be difficult. So far successful treatment consists of dietary interventions only. Nevertheless, many questions are remaining still unanswered. PMID:21429446

  9. Separation and quantification of microalgal carbohydrates.

    Science.gov (United States)

    Templeton, David W; Quinn, Matthew; Van Wychen, Stefanie; Hyman, Deborah; Laurens, Lieve M L

    2012-12-28

    Structural carbohydrates can constitute a large fraction of the dry weight of algal biomass and thus accurate identification and quantification is important for summative mass closure. Two limitations to the accurate characterization of microalgal carbohydrates are the lack of a robust analytical procedure to hydrolyze polymeric carbohydrates to their respective monomers and the subsequent identification and quantification of those monosaccharides. We address the second limitation, chromatographic separation of monosaccharides, here by identifying optimum conditions for the resolution of a synthetic mixture of 13 microalgae-specific monosaccharides, comprised of 8 neutral, 2 amino sugars, 2 uronic acids and 1 alditol (myo-inositol as an internal standard). The synthetic 13-carbohydrate mix showed incomplete resolution across 11 traditional high performance liquid chromatography (HPLC) methods, but showed improved resolution and accurate quantification using anion exchange chromatography (HPAEC) as well as alditol acetate derivatization followed by gas chromatography (for the neutral- and amino-sugars only). We demonstrate the application of monosaccharide quantification using optimized chromatography conditions after sulfuric acid analytical hydrolysis for three model algae strains and compare the quantification and complexity of monosaccharides in analytical hydrolysates relative to a typical terrestrial feedstock, sugarcane bagasse. PMID:23177152

  10. Nutrient and carbohydrate partitioning in sorghum stover

    International Nuclear Information System (INIS)

    Sorghum [Sorghum bicolor (L.) Moench] stover has been demonstrated to be a potential biomass energy source. Complete aboveground crop removal, however, can result in soil degradation. Differential dry matter, nutrient, and carbohydrate partitioning by sorghum cultivars may allow management strategies that return certain parts to the field while removing other portions for alternative uses, such as energy production. A field study was conducted to determine N,P,K, nonstructural carbohydrate, cellulose hemicellulose, and lignin distributions in stover of three diverse sorghum cultivars of differing harvest indices. Determinations were based on total vegetative biomass; total blades; total stalks; and upper middle, and lower blades and stalks. Concentrations of N and P were higher in blades than stalks and generally declines from upper to lower stover parts. Large carbohydrate and lignin concentration differences were observed on the basis of cultivar and stover part. Greater nutrient partitioning to the upper third of the intermediate and forage-type sorghum stovers was observed as compared to the conventional grain cultivar. Stover carbohydrates for all cultivars were mainly contained in the lower two-thirds of the stalk fraction. A system was proposed for returning upper stover portion to soil, while removing remaining portions for alternative uses

  11. General Properties, Occurrence, and Preparation of Carbohydrates

    Science.gov (United States)

    Robyt, John F.

    D-Glucose and its derivatives and analogues, N-acetyl-D-glucosamine, N-acetyl-D-muramic acid, D-glucopyranosyl uronic acid, and D-glucitol represent 99.9% of the carbohydrates on the earth. D-Glucose is found in the free state in human blood and in the combined state in disaccharides, sucrose, lactose, and α,α-trehalose, in cyclic dextrins, and in polysaccharides, starch, glycogen, cellulose, dextrans; N-acetyl-D-glucosamine and an analogue N-acetyl-D-muramic acid are found in bacterial cell wall polysaccharide, murein, along with teichoic acids made up of poly-glycerol or -ribitol phosphodiesters. Other carbohydrates, D-mannose, D-mannuronic acid, D-galactose, N-acetyl-D-galactosamine, D-galacturonic acid, D-iduronic acid, L-guluronic acid, L-rhamnose, L-fucose, D-xylose, and N-acetyl-D-neuraminic acid are found in glycoproteins, hemicelluloses, glycosaminoglycans, and polysaccharides of plant exudates, bacterial capsules, alginates, and heparin. D-Ribofuranose-5-phosphate is found in many coenzymes and is the backbone of RNAs (ribonucleic acid), and 2-deoxy-D-ribofuranose-5-phosphate is the backbone of DNA (deoxyribonucleic acid). D-Fructofuranose is found in sucrose, inulin, and levan. The general properties and occurrence of these carbohydrates and general methods of isolation and preparation of carbohydrates are presented.

  12. The fibronectin-binding integrins alpha5beta1 and alphavbeta3 differentially modulate RhoA-GTP loading, organization of cell matrix adhesions, and fibronectin fibrillogenesis

    DEFF Research Database (Denmark)

    Danen, Erik H J; Sonneveld, Petra; Brakebusch, Cord; Fassler, Reinhard; Sonnenberg, Arnoud

    2002-01-01

    We have studied the formation of different types of cell matrix adhesions in cells that bind to fibronectin via either alpha5beta1 or alphavbeta3. In both cases, cell adhesion to fibronectin leads to a rapid decrease in RhoA activity. However, alpha5beta1 but not alphavbeta3 supports high levels of...... RhoA activity at later stages of cell spreading, which are associated with a translocation of focal contacts to peripheral cell protrusions, recruitment of tensin into fibrillar adhesions, and fibronectin fibrillogenesis. Expression of an activated mutant of RhoA stimulates alphavbeta3-mediated...... fibrillogenesis. Despite the fact that alpha5beta1-mediated adhesion to the central cell-binding domain of fibronectin supports activation of RhoA, other regions of fibronectin are required for the development of alpha5beta1-mediated but not alphavbeta3-mediated focal contacts. Using chimeras of beta1 and beta3...

  13. Enhancing the Apoptotic Potential of Insulin-Like Growth Factor-Binding Protein-3 in Prostate Cancer by Modulation of CK2 Phosphorylation

    OpenAIRE

    Cobb, Laura J.; Mehta, Hemal; Cohen, Pinchas

    2009-01-01

    IGF-binding protein 3 (IGFBP-3) promotes apoptosis by both IGF-dependent and -independent mechanisms. We have previously reported that phosphorylation of IGFBP-3 (S156) by DNA-dependent protein kinase enhances its nuclear accumulation and is essential for its ability to interact with retinoid X receptor-α and induce apoptosis in cultured prostate cancer cells. Using specific chemical inhibitors and small interfering RNA, we demonstrate that preventing casein kinase 2 (CK2) activation enhanced...

  14. Carbohydrate deficient transferrin (CDT) in alcoholic cirrhosis: a kinetic study

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl; Grønbaek, M; Møller, Søren;

    1997-01-01

    controls (n = 8), which indicates a slow turnover rate of carbohydrate deficient transferrin. Food ingestion did not affect the circulating level of carbohydrate deficient transferrin, and the analysis of carbohydrate deficient transferrin was almost unaffected by the presence of ethanol in plasma within...... alcohol intake, but the overlap is substantial in patients with cirrhosis. Carbohydrate deficient transferrin has a low turnover rate in both patients with cirrhosis and normals....

  15. Chemical modification of carbohydrates in tissue sections may unmask mucin antigens.

    Science.gov (United States)

    Kirkeby, S

    2013-01-01

    Expression of mucins in cells and tissues is of great diagnostic and prognostic importance, and immunohistochemistry frequently is used to detect them. Reports concerning mucin localization in sections sometimes are conflicting, however, partly because immunogenic regions of the mucin molecule may be masked and thus not available for binding to an antibody. We modified carbohydrates in tissue sections chemically to enhance the binding of monoclonal mucin antibodies and of the lectin, Vicia villosa B4, to human tissue. The immunohistochemical localization of MUC1 and the simple mucin-type antigens, Tn and sialyl-Tn, was influenced by oxidation with periodic acid and by β-elimination before incubation. In some epithelial cells the staining was prevented by these procedures while in other cells it was evident. It appears that chemical modification can either destroy some antigen binding sites or unmask cryptic antigen binding sites in the mucin molecule and thereby make them accessible for immunohistochemical detection. PMID:22998734

  16. Collagen and Stretch Modulate Autocrine Secretion of Insulin-like Growth Factor-1 and Insulin-like Growth Factor Binding Proteins from Differentiated Skeletal Muscle Cells

    Science.gov (United States)

    Perrone, Carmen E.; Fenwick-Smith, Daniela; Vandenburgh, Herman H.

    1995-01-01

    Stretch-induced skeletal muscle growth may involve increased autocrine secretion of insulin-like growth factor-1 (IGF-1) since IGF-1 is a potent growth factor for skeletal muscle hypertrophy, and stretch elevates IGF-1 mRNA levels in vivo. In tissue cultures of differentiated avian pectoralis skeletal muscle cells, nanomolar concentrations of exogenous IGF-1 stimulated growth in mechanically stretched but not static cultures. These cultures released up to 100 pg of endogenously produced IGF-1/micro-g of protein/day, as well as three major IGF binding proteins of 31, 36, and 43 kilodaltons (kDa). IGF-1 was secreted from both myofibers and fibroblasts coexisting in the muscle cultures. Repetitive stretch/relaxation of the differentiated skeletal muscle cells stimulated the acute release of IGF-1 during the first 4 h after initiating mechanical activity, but caused no increase in the long-term secretion over 24-72 h of IGF-1, or its binding proteins. Varying the intensity and frequency of stretch had no effect on the long-term efflux of IGF-1. In contrast to stretch, embedding the differentiated muscle cells in a three-dimensional collagen (Type I) matrix resulted in a 2-5-fold increase in long-term IGF-1 efflux over 24-72 h. Collagen also caused a 2-5-fold increase in the release of the IGF binding proteins. Thus, both the extracellular matrix protein type I collagen and stretch stimulate the autocrine secretion of IGF-1, but with different time kinetics. This endogenously produced growth factor may be important for the growth response of skeletal myofibers to both types of external stimuli.

  17. Efficient, rapid one-electron photooxidation of chemisorbed polyhydroxyl alcohols and carbohydrates by TiO2 nanoparticles in an aqueous solution

    CERN Document Server

    Shkrob, I A; Gosztola, D J

    2004-01-01

    Time-resolved transient absorption spectroscopy has been used to study nanosecond and sub-microsecond electron dynamics in aqueous anatase nanoparticles in the presence of hole scavengers: chemisorbed polyols and carbohydrates. These polyhydroxylated compounds are rapidly oxidized by the holes; 50-60% of these holes are scavenged within the duration of 355 nm excitation laser pulse. The scavenging efficiency rapidly increases with the number of anchoring hydroxyl groups and varies considerably as a function of the carbohydrate structure. A specific binding site for the polyols and carbohydrates is suggested that involves an octahedral Ti atom chelated by the poly-OH ligand. This mode of binding accounts for the depletion of undercoordinated Ti atoms observed in the XANES spectra of polyol coated nanoparticles. We suggest that these binding sites trap a substantial fraction of holes before the latter descend to surface traps and/or recombine with free electrons. The resulting oxygen hole center rapidly loses a...

  18. UCP1 and UCP3 Expression Is Associated with Lipid and Carbohydrate Oxidation and Body Composition.

    Directory of Open Access Journals (Sweden)

    Bruno A P Oliveira

    Full Text Available Uncoupling proteins (UCPs are located in the inner membrane of mitochondria. These proteins participate in thermogenesis and energy expenditure. This study aimed to evaluate how UCP1 and UCP3 expression influences substrate oxidation and elicits possible changes in body composition in patients submitted to bariatric surgery.This is a longitudinal study comprising 13 women with obesity grade III that underwent bariatric surgery and 10 healthy weight individuals (control group. Body composition was assessed by bioelectrical impedance. Carbohydrate and fat oxidation was determined by indirect calorimetry. Subcutaneous adipose tissue was collected for gene expression analysis. QPCR was used to evaluate UCP1 and UCP3 expression.Obese patients and the control group differed significantly in terms of lipid and carbohydrate oxidation. Six months after bariatric surgery, the differences disappeared. Lipid oxidation correlated with the percentage of fat mass in the postoperative period. Multiple linear regression analysis showed that the UCP1 and UCP3 genes contributed to lipid and carbohydrate oxidation. Additionally, UCP3 expression was associated with BMI, percentage of lean body mass, and percentage of mass in the postoperative period.UCP1 and UCP3 expression is associated with lipid and carbohydrate oxidation in patients submitted to bariatric surgery. In addition, UCP3 participates in body composition modulation six months postoperatively.

  19. Galactose recognition by a tetrameric C-type lectin, CEL-IV, containing the EPN carbohydrate recognition motif.

    Science.gov (United States)

    Hatakeyama, Tomomitsu; Kamiya, Takuro; Kusunoki, Masami; Nakamura-Tsuruta, Sachiko; Hirabayashi, Jun; Goda, Shuichiro; Unno, Hideaki

    2011-03-25

    CEL-IV is a C-type lectin isolated from a sea cucumber, Cucumaria echinata. This lectin is composed of four identical C-type carbohydrate-recognition domains (CRDs). X-ray crystallographic analysis of CEL-IV revealed that its tetrameric structure was stabilized by multiple interchain disulfide bonds among the subunits. Although CEL-IV has the EPN motif in its carbohydrate-binding sites, which is known to be characteristic of mannose binding C-type CRDs, it showed preferential binding of galactose and N-acetylgalactosamine. Structural analyses of CEL-IV-melibiose and CEL-IV-raffinose complexes revealed that their galactose residues were recognized in an inverted orientation compared with mannose binding C-type CRDs containing the EPN motif, by the aid of a stacking interaction with the side chain of Trp-79. Changes in the environment of Trp-79 induced by binding to galactose were detected by changes in the intrinsic fluorescence and UV absorption spectra of WT CEL-IV and its site-directed mutants. The binding specificity of CEL-IV toward complex oligosaccharides was analyzed by frontal affinity chromatography using various pyridylamino sugars, and the results indicate preferential binding to oligosaccharides containing Galβ1-3/4(Fucα1-3/4)GlcNAc structures. These findings suggest that the specificity for oligosaccharides may be largely affected by interactions with amino acid residues in the binding site other than those determining the monosaccharide specificity. PMID:21247895

  20. Carbohydrate plasma expanders for passive tumor targeting

    DEFF Research Database (Denmark)

    Hoffmann, Stefan; Caysa, Henrike; Kuntsche, Judith;

    2013-01-01

    The objective of this study was to investigate the suitability of carbohydrate plasma volume expanders as a novel polymer platform for tumor targeting. Many synthetic polymers have already been synthesized for targeted tumor therapy, but potential advantages of these carbohydrates include...... inexpensive synthesis, constant availability, a good safety profile, biodegradability and the long clinical use as plasma expanders. Three polymers have been tested for cytotoxicity and cytokine activation in cell cultures and conjugated with a near-infrared fluorescent dye: hydroxyethyl starches (HES 200 k......Da and HES 450 kDa) and dextran (DEX 500 kDa). Particle size and molecular weight distribution were determined by asymmetric flow field-flow fractionation (AF4). The biodistribution was investigated non-invasively in nude mice using multispectral optical imaging. The most promising polymer conjugate was...

  1. Role of carbohydrate metabolism in grass tetany

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.K.; Madsen, F.C.; Lentz, D.E.; Hansard, S.L.

    1977-01-01

    Clinical hypomagnesemia is confined primarily to beef cattle in the United States but also occurs in dairy cattle in other countries, probably due to different management practices. During periods when grass tetany is likely, early vegetative temperate zone grasses are usually low in total readily available carbohydrates and magnesium but high in potassium and nitrogen. The tetany syndrome may include hypoglycemia and ketosis, suggesting an imbalance in intermediary energy metabolism. Many enzyme systems critical to cellular metabolism, including those which hydrolyze and transfer phosphate groups, are activated by Mg. Thus, by inference, Mg is required for normal glucose utilization, fat, protein, nucleic acid and coenzyme synthesis, muscle contraction, methyl group transfer, and sulfate, acetate, and formate activation. Numerous clinical and experimental studies suggest an intimate relationship between metabolism of Mg and that of carbohydrate, glucagon, and insulin. The objective is to review this literature and suggest ways in which these relationships might contribute to a chain of events leading to grass tetany.

  2. A rapid stereoselective synthesis of fluorinated carbohydrates

    International Nuclear Information System (INIS)

    Acetyl hypofluorite has been added to six unsaturated carbohydrates which contain the vinyl ether moiety. All reactions were rapid (less than 5 min.) at -78 degrees C and gave, with one exception, high yields of isomerically pure products. The hypofluorite was shown to add exclusively in a cis mode and with a strong preference for a particular 'face' of the double bond. As well as the syntheses, NMR data and preferred conformations for the fluorinated products are also discussed

  3. MicroRNA-155 modulates the pathogen binding ability of dendritic cells (DCs) by down-regulation of DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN).

    Science.gov (United States)

    Martinez-Nunez, Rocio T; Louafi, Fethi; Friedmann, Peter S; Sanchez-Elsner, Tilman

    2009-06-12

    MicroRNA-155 (miR-155) has been involved in the response to inflammation in macrophages and lymphocytes. Here we show how miR-155 participates in the maturation of human dendritic cells (DC) and modulates pathogen binding by down-regulating DC-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN), after directly targeting the transcription factor PU.1. During the maturation of DCs, miR-155 increases up to 130-fold, whereas PU.1 protein levels decrease accordingly. We establish that human PU.1 is a direct target for miR-155 and localize the target sequence for miR-155 in the 3'-untranslated region of PU.1. Also, overexpression of miR-155 in the THP1 monocytic cell line decreases PU.1 protein levels and DC-SIGN at both the mRNA and protein levels. We prove a link between the down-regulation of PU.1 and reduced transcriptional activity of the DC-SIGN promoter, which is likely to be the basis for its reduced mRNA expression, after miR-155 overexpression. Finally, we show that, by reducing DC-SIGN in the cellular membrane, miR-155 is involved in regulating pathogen binding as dendritic cells exhibited the lower binding capacity for fungi and HIV protein gp-120 when the levels of miR-155 were higher. Thus, our results suggest a mechanism by which miR-155 regulates proteins involved in the cellular immune response against pathogens that could have clinical implications in the way pathogens enter the human organism. PMID:19386588

  4. Cell surface carbohydrates as prognostic markers in human carcinomas

    DEFF Research Database (Denmark)

    Dabelsteen, Erik

    1996-01-01

    cell types; within a given tissue, variation in expression may be related to cell maturation. Tumour-associated carbohydrate structures often reflect a certain stage of cellular development; most of these moieties are structures normally found in other adult or embryonic tissues. There is no unique......Tumour development is usually associated with changes in cell surface carbohydrates. These are often divided into changes related to terminal carbohydrate structures, which include incomplete synthesis and modification of normally existing carbohydrates, and changes in the carbohydrate core...... tumour carbohydrate structure, since certain structures which are tumour-related in one organ may be normal constituents of other tissues. Tumour-associated carbohydrate changes have been used in the diagnosis of human cancers. Recently, however, it has been demonstrated that the expression of some...

  5. Analysis and validation of carbohydrate three-dimensional structures

    International Nuclear Information System (INIS)

    The article summarizes the information that is gained from and the errors that are found in carbohydrate structures in the Protein Data Bank. Validation tools that can locate these errors are described. Knowledge of the three-dimensional structures of the carbohydrate molecules is indispensable for a full understanding of the molecular processes in which carbohydrates are involved, such as protein glycosylation or protein–carbohydrate interactions. The Protein Data Bank (PDB) is a valuable resource for three-dimensional structural information on glycoproteins and protein–carbohydrate complexes. Unfortunately, many carbohydrate moieties in the PDB contain inconsistencies or errors. This article gives an overview of the information that can be obtained from individual PDB entries and from statistical analyses of sets of three-dimensional structures, of typical problems that arise during the analysis of carbohydrate three-dimensional structures and of the validation tools that are currently available to scientists to evaluate the quality of these structures

  6. Microarrays with varying carbohydrate density reveal distinct subpopulations of serum antibodies.

    Science.gov (United States)

    Oyelaran, Oyindasola; Li, Qian; Farnsworth, David; Gildersleeve, Jeffrey C

    2009-07-01

    Antigen arrays have become important tools for profiling complex mixtures of proteins such as serum antibodies. These arrays can be used to better understand immune responses, discover new biomarkers, and guide the development of vaccines. Nevertheless, they are not perfect and improved array designs would enhance the information derived from this technology. In this study, we describe and evaluate a strategy for varying antigen density on an array and then use the array to study binding of lectins, monoclonal antibodies, and serum antibodies. To vary density, neoglycoproteins containing differing amounts of carbohydrate were synthesized and used to make a carbohydrate microarray with variations in both structure and density. We demonstrate that this method provides variations in density on the array surface within a range that is relevant for biological recognition events. The array was used to evaluate density dependent binding properties of three lectins (Vicia villosa lectin B4, Helix pomatia agglutinin, and soybean agglutinin) and three monoclonal antibodies (HBTn-1, B1.1, and Bric111) that bind the tumor-associated Tn antigen. In addition, serum antibodies were profiled from 30 healthy donors. The results show that variations in antigen density are required to detect the full spectrum of antibodies that bind a particular antigen and can be used to reveal differences in antibody populations between individuals that are not detectable using a single antigen density. PMID:19366269

  7. Overlapping protein-binding sites within a negative regulatory element modulate the brain-preferential expression of the human HPRT gene

    Energy Technology Data Exchange (ETDEWEB)

    Rincon-Limas, D.E.; Amaya-Manzanares, E.; Nino-Rosales, M.L. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1994-09-01

    The hypoxanthine phosphoribosyltransferase (HPRT) gene, whose deficiency in humans causes the Lesch-Nyhan syndrome, is constitutively expressed at low levels in all tissues but at higher levels in the brain, the significance and mechanism of which is unknown. Towards dissecting this molecular mechanism, we have previously identified a 182 bp element (hHPRT-NE) within the 5{prime}-flanking region of the human HPRT gene which is involved not only in conferring neuronal specificity but also in repressing gene expression in non-neuronal tissues. Here we report that this element interacts with different nuclear proteins, some of which are present specifically in neuronal cells (complex I) and others of which are present in cells showing constitutive expression of the gene (complex II). In addition, we found that complex I factors are expressed in human NT2/D1 cells following induction of neuronal differentiation by retinoic acid. This finding correlates with an increase of HPRT gene transcription following neuronal differentiation, as demonstrated by RT-PCR and RNAase protection assays. We also mapped the binding sites for both complexes to a 60 bp region which, when tested by transient transfections in cultured fibroblasts, functioned as a repressor element. Methylation interference footprinting revealed a minimal unique DNA motif as the binding site for nuclear proteins from both neuronal and non-neuronal sources. Moreover, UV-crosslinking experiments showed that both complexes are formed by the association of several distinct proteins. Strikingly, site-directed mutagenesis of the footprinted region indicated that different nucleotides are essential for the association of these two complexes. These data suggest that differential formation of DNA-protein complexes at this regulatory domain could be a major determinant in the brain-preferential expression of the human HPRT gene.

  8. Protein-Carbohydrate Interactions as Part of Plant Defense and Animal Immunity

    Directory of Open Access Journals (Sweden)

    Kristof De Schutter

    2015-05-01

    Full Text Available The immune system consists of a complex network of cells and molecules that interact with each other to initiate the host defense system. Many of these interactions involve specific carbohydrate structures and proteins that specifically recognize and bind them, in particular lectins. It is well established that lectin-carbohydrate interactions play a major role in the immune system, in that they mediate and regulate several interactions that are part of the immune response. Despite obvious differences between the immune system in animals and plants, there are also striking similarities. In both cases, lectins can play a role as pattern recognition receptors, recognizing the pathogens and initiating the stress response. Although plants do not possess an adaptive immune system, they are able to imprint a stress memory, a mechanism in which lectins can be involved. This review will focus on the role of lectins in the immune system of animals and plants.

  9. Global microarray analysis of carbohydrate use in alkaliphilic hemicellulolytic bacterium Bacillus sp. N16-5.

    Directory of Open Access Journals (Sweden)

    Yajian Song

    Full Text Available The alkaliphilic hemicellulolytic bacterium Bacillus sp. N16-5 has a broad substrate spectrum and exhibits the capacity to utilize complex carbohydrates such as galactomannan, xylan, and pectin. In the monosaccharide mixture, sequential utilization by Bacillus sp. N16-5 was observed. Glucose appeared to be its preferential monosaccharide, followed by fructose, mannose, arabinose, xylose, and galactose. Global transcription profiles of the strain were determined separately for growth on six monosaccharides (glucose, fructose, mannose, galactose, arabinose, and xylose and four polysaccharides (galactomannan, xylan, pectin, and sodium carboxymethylcellulose using one-color microarrays. Numerous genes potentially related to polysaccharide degradation, sugar transport, and monosaccharide metabolism were found to respond to a specific substrate. Putative gene clusters for different carbohydrates were identified according to transcriptional patterns and genome annotation. Identification and analysis of these gene clusters contributed to pathway reconstruction for carbohydrate utilization in Bacillus sp. N16-5. Several genes encoding putative sugar transporters were highly expressed during growth on specific sugars, suggesting their functional roles. Two phosphoenolpyruvate-dependent phosphotransferase systems were identified as candidate transporters for mannose and fructose, and a major facilitator superfamily transporter was identified as a candidate transporter for arabinose and xylose. Five carbohydrate uptake transporter 1 family ATP-binding cassette transporters were predicted to participate in the uptake of hemicellulose and pectin degradation products. Collectively, microarray data improved the pathway reconstruction involved in carbohydrate utilization of Bacillus sp. N16-5 and revealed that the organism precisely regulates gene transcription in response to fluctuations in energy resources.

  10. Carbohydrate to protein ratio in food and cognitive performance in the morning.

    Science.gov (United States)

    Fischer, Karina; Colombani, Paolo C; Langhans, Wolfgang; Wenk, Caspar

    2002-03-01

    The effect of different carbohydrate to protein ratios in food on cognitive functions and the relation between postprandial metabolic and cognitive changes were studied in 15 healthy male students. Subjects were tested in three sessions, separated by 1 week, for short-term changes in mood states, objective cognitive functions, blood parameters, and indirect calorimetry using a repeated-measures, counterbalanced cross-over design. Measurements were made after an overnight fast before and hourly during 3.5 h after test meal ingestion. The isoenergetic (1670 kJ) test meals consisted of three carbohydrate to protein ratios, i.e. a carbohydrate-rich (CHO[4:1]), balanced (BAL[1:1]), and protein-rich (PRO[1:4]) meal, respectively. Overall accuracy in short-term memory was best after the PRO[1:4] meal concomitant to the least variation in glucose metabolism and glucagon to insulin ratio (GIR). Related to changes in glucose metabolism and/or in the ratios of large neutral amino acids (LNAA), respectively, attention and decision times were transiently improved within the first hour after the CHO[4:1] meal, whereas after the first hour the BAL[1:1] and PRO[1:4] meal resulted in improved performance. Overall reaction times of a central task were fastest after the BAL[1:1] meal concomitant to the highest overall tyrosine (Tyr) to LNAA ratio. Our findings suggest that the carbohydrate to protein ratio in food specifically influences higher cognitive functions in the morning. Except for a transient positive effect of rising blood glucose after a carbohydrate-rich meal, a protein-rich or balanced meal seems to result in better overall cognitive performance presumably because of less variation in glucose metabolism and/or higher modulation in LNAA ratios indicated by the overall GIR. PMID:11897269

  11. Self-powered wireless carbohydrate/oxygen sensitive biodevice based on radio signal transmission.

    Directory of Open Access Journals (Sweden)

    Magnus Falk

    Full Text Available Here for the first time, we detail self-contained (wireless and self-powered biodevices with wireless signal transmission. Specifically, we demonstrate the operation of self-sustained carbohydrate and oxygen sensitive biodevices, consisting of a wireless electronic unit, radio transmitter and separate sensing bioelectrodes, supplied with electrical energy from a combined multi-enzyme fuel cell generating sufficient current at required voltage to power the electronics. A carbohydrate/oxygen enzymatic fuel cell was assembled by comparing the performance of a range of different bioelectrodes followed by selection of the most suitable, stable combination. Carbohydrates (viz. lactose for the demonstration and oxygen were also chosen as bioanalytes, being important biomarkers, to demonstrate the operation of the self-contained biosensing device, employing enzyme-modified bioelectrodes to enable the actual sensing. A wireless electronic unit, consisting of a micropotentiostat, an energy harvesting module (voltage amplifier together with a capacitor, and a radio microchip, were designed to enable the biofuel cell to be used as a power supply for managing the sensing devices and for wireless data transmission. The electronic system used required current and voltages greater than 44 µA and 0.57 V, respectively to operate; which the biofuel cell was capable of providing, when placed in a carbohydrate and oxygen containing buffer. In addition, a USB based receiver and computer software were employed for proof-of concept tests of the developed biodevices. Operation of bench-top prototypes was demonstrated in buffers containing different concentrations of the analytes, showcasing that the variation in response of both carbohydrate and oxygen biosensors could be monitored wirelessly in real-time as analyte concentrations in buffers were changed, using only an enzymatic fuel cell as a power supply.

  12. Regulation of glucose and lipid metabolism by dietary carbohydrate levels and lipid sources in gilthead sea bream juveniles.

    Science.gov (United States)

    Castro, Carolina; Corraze, Geneviève; Firmino-Diógenes, Alexandre; Larroquet, Laurence; Panserat, Stéphane; Oliva-Teles, Aires

    2016-07-01

    The long-term effects on growth performance, body composition, plasma metabolites, liver and intestine glucose and lipid metabolism were assessed in gilthead sea bream juveniles fed diets without carbohydrates (CH-) or carbohydrate-enriched (20 % gelatinised starch, CH+) combined with two lipid sources (fish oil; or vegetable oil (VO)). No differences in growth performance among treatments were observed. Carbohydrate intake was associated with increased hepatic transcripts of glucokinase but not of 6-phosphofructokinase. Expression of phosphoenolpyruvate carboxykinase was down-regulated by carbohydrate intake, whereas, unexpectedly, glucose 6-phosphatase was up-regulated. Lipogenic enzyme activities (glucose-6-phosphate dehydrogenase, malic enzyme, fatty acid synthase) and ∆6 fatty acyl desaturase (FADS2) transcripts were increased in liver of fish fed CH+ diets, supporting an enhanced potential for lipogenesis and long-chain PUFA (LC-PUFA) biosynthesis. Despite the lower hepatic cholesterol content in CH+ groups, no influence on the expression of genes related to cholesterol efflux (ATP-binding cassette G5) and biosynthesis (lanosterol 14 α-demethylase, cytochrome P450 51 cytochrome P450 51 (CYP51A1); 7-dehydrocholesterol reductase) was recorded at the hepatic level. At the intestinal level, however, induction of CYP51A1 transcripts by carbohydrate intake was recorded. Dietary VO led to decreased plasma phospholipid and cholesterol concentrations but not on the transcripts of proteins involved in phospholipid biosynthesis (glycerol-3-phosphate acyltransferase) and cholesterol metabolism at intestinal and hepatic levels. Hepatic and muscular fatty acid profiles reflected that of diets, despite the up-regulation of FADS2 transcripts. Overall, this study demonstrated that dietary carbohydrates mainly affected carbohydrate metabolism, lipogenesis and LC-PUFA biosynthesis, whereas effects of dietary lipid source were mostly related with tissue fatty acid composition

  13. Multi-organ expression profiling uncovers a gene module in coronary artery disease involving transendothelial migration of leukocytes and LIM domain binding 2: The Stockholm Atherosclerosis Gene Expression (STAGE) study

    KAUST Repository

    Hägg, Sara

    2009-12-04

    Environmental exposures filtered through the genetic make-up of each individual alter the transcriptional repertoire in organs central to metabolic homeostasis, thereby affecting arterial lipid accumulation, inflammation, and the development of coronary artery disease (CAD). The primary aim of the Stockholm Atherosclerosis Gene Expression (STAGE) study was to determine whether there are functionally associated genes (rather than individual genes) important for CAD development. To this end, two-way clustering was used on 278 transcriptional profiles of liver, skeletal muscle, and visceral fat (n =66/tissue) and atherosclerotic and unaffected arterial wall (n =40/tissue) isolated from CAD patients during coronary artery bypass surgery. The first step, across all mRNA signals (n =15,042/12,621 RefSeqs/genes) in each tissue, resulted in a total of 60 tissue clusters (n= 3958 genes). In the second step (performed within tissue clusters), one atherosclerotic lesion (n =49/48) and one visceral fat (n =59) cluster segregated the patients into two groups that differed in the extent of coronary stenosis (P=0.008 and P=0.00015). The associations of these clusters with coronary atherosclerosis were validated by analyzing carotid atherosclerosis expression profiles. Remarkably, in one cluster (n =55/54) relating to carotid stenosis (P =0.04), 27 genes in the two clusters relating to coronary stenosis were confirmed (n= 16/17, P<10 -27and-30). Genes in the transendothelial migration of leukocytes (TEML) pathway were overrepresented in all three clusters, referred to as the atherosclerosis module (A-module). In a second validation step, using three independent cohorts, the Amodule was found to be genetically enriched with CAD risk by 1.8-fold (P<0.004). The transcription co-factor LIM domain binding 2 (LDB2) was identified as a potential high-hierarchy regulator of the A-module, a notion supported by subnetwork analysis, by cellular and lesion expression of LDB2, and by the

  14. Differential usage of storage carbohydrates in the CAM bromeliad Aechmea 'Maya' during acclimation to drought and recovery from dehydration.

    Science.gov (United States)

    Ceusters, Johan; Borland, Anne M; Londers, Elsje; Verdoodt, Veerle; Godts, Christof; De Proft, Maurice P

    2009-02-01

    CAM requires a substantial investment of resources into storage carbohydrates to account for nocturnal CO(2) uptake, thereby restricting carbohydrate partitioning to other metabolic activities, including dark respiration, growth and acclimation to abiotic stress. Flexible modulation of carbon flow to the different competing sinks under changing environmental conditions is considered a key determinant for the growth, productivity and ecological success of the CAM pathway. The aim of the present study was to examine how shifts in carbohydrate partitioning could assure maintenance of photosynthetic integrity and a positive carbon balance under conditions of increasing water deprivation in CAM species. Measurements of gas exchange, leaf water relations, malate, starch and soluble sugar (glucose, fructose and sucrose) contents were made in leaves of the CAM bromeliad Aechmea 'Maya' over a 6-month period of drought and subsequently over a 2-month period of recovery from drought. Results indicated that short-term influences of water stress were minimized by elevating the level of respiratory recycling, and carbohydrate pools were maintained at the expense of export for growth while providing a comparable nocturnal carbon gain to that in well-watered control plants. Longer term drought resulted in a disproportionate depletion of key carbohydrate reserves. Sucrose, which was of minor importance for providing substrate for the dark reactions under well-watered conditions, became the major source of carbohydrate for nocturnal carboxylation as drought progressed. Flexibility in terms of the major carbohydrate source used to sustain dark CO(2) uptake is therefore considered a crucial factor in meeting the carbon and energy demands under limiting environmental conditions. Recovery from CAM-idling was found to be dependent on the restoration of the starch pool, which was used predominantly for provision of substrate for nocturnal carboxylation, while net carbon export was limited

  15. Modulation of phenytoin teratogenicity and embryonic covalent binding by acetylsalicylic acid, caffeic acid, and alpha-phenyl-N-t-butylnitrone: implications for bioactivation by prostaglandin synthetase

    International Nuclear Information System (INIS)

    Teratogenicity of the anticonvulsant drug phenytoin is thought to involve its bioactivation by cytochromes P-450 to a reactive arene oxide intermediate. We hypothesized that phenytoin also may be bioactivated to a teratogenic free radical intermediate by another enzymatic system, prostaglandin synthetase. To evaluate the teratogenic contribution of this latter pathway, an irreversible inhibitor of prostaglandin synthetase, acetylsalicylic acid (ASA), 10 mg/kg intraperitoneally (ip), was administered to pregnant CD-1 mice at 9:00 AM on Gestational Days 12 and 13, 2 hr before phenytoin, 65 mg/kg ip. Other groups were pretreated 2 hr prior to phenytoin administration with either the antioxidant caffeic acid or the free radical spin trapping agent alpha-phenyl-N-t-butylnitrone (PBN). Caffeic acid and PBN were given ip in doses that respectively were up to 1.0 to 0.05 molar equivalents to the dose of phenytoin. Dams were killed on Day 19 and the fetuses were assessed for teratologic anomalies. A similar study evaluated the effect of ASA on the in vivo covalent binding of radiolabeled phenytoin administered on Day 12, in which case dams were killed 24 hr later on Day 13. ASA pretreatment produced a 50% reduction in the incidence of fetal cleft palates induced by phenytoin (p less than 0.05), without significantly altering the incidence of resorptions or mean fetal body weight. Pretreatment with either caffeic acid or PBN resulted in dose-related decreases in the incidence of fetal cleft palates produced by phenytoin, with maximal respective reductions of 71 and 82% at the highest doses of caffeic acid and PBN (p less than 0.05)

  16. DDB2 (damaged-DNA binding 2) protein: a new modulator of nanomechanical properties and cell adhesion of breast cancer cells

    Science.gov (United States)

    Barbieux, Claire; Bacharouche, Jalal; Soussen, Charles; Hupont, Sébastien; Razafitianamaharavo, Angélina; Klotz, Rémi; Pannequin, Rémi; Brie, David; Bécuwe, Philippe; Francius, Grégory; Grandemange, Stéphanie

    2016-02-01

    DDB2, known for its role in DNA repair, was recently shown to reduce mammary tumor invasiveness by inducing the transcription of IκBα, an inhibitor of NF-κB activity. Since cellular adhesion is a key event during the epithelial to mesenchymal transition (EMT) leading to the invasive capacities of breast tumor cells, the aim of this study was to investigate the role of DDB2 in this process. Thus, using low and high DDB2-expressing MDA-MB231 and MCF7 cells, respectively, in which DDB2 expression was modulated experimentally, we showed that DDB2 overexpression was associated with a decrease of adhesion abilities on glass and plastic areas of breast cancer cells. Then, we investigated cell nanomechanical properties by atomic force microscopy (AFM). Our results revealed significant changes in the Young's Modulus value and the adhesion force in MDA-MB231 and MCF7 cells, whether DDB2 was expressed or not. The cell stiffness decrease observed in MDA-MB231 and MCF7 expressing DDB2 was correlated with a loss of the cortical actin-cytoskeleton staining. To understand how DDB2 regulates these processes, an adhesion-related gene PCR-Array was performed. Several adhesion-related genes were differentially expressed according to DDB2 expression, indicating that important changes are occurring at the molecular level. Thus, this work demonstrates that AFM technology is an important tool to follow cellular changes during tumorigenesis. Moreover, our data revealed that DDB2 is involved in early events occurring during metastatic progression of breast cancer cells and will contribute to define this protein as a new marker of metastatic progression in this type of cancer.

  17. Carbohydrates/nucleosides/RNA-DNA-ligand interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kaptein, R.; McConnell, B.; Serianni, A.S.; Silks, L.A. III

    1994-12-01

    Carbohydrate and nucleotide structural determination using modern spectroscopic techniques is dependent on our ability to label oligonucleotides and oligosaccharides with stable isotopes. Uniform Carbon 13 and Nitrogen 15 labeling of oligonucleotides is important to present-day efforts, which are focused on determining the structure of relatively small oligosaccharides and oligonucleotides, which form the elements of larger structures. Because of the relatively recent interest in three-dimensional structure, the development of techniques used to label them has lagged behind parallel techniques used to label peptides and proteins. Therefore, this group`s discussion focused primarily on problems faced today in obtaining oligonucleotides labeled uniformly with carbon 13 and nitrogen 15.

  18. Chapter 22 (Part 3): Carbohydrate Chemistry

    OpenAIRE

    Christiansen, Mike A

    2012-01-01

    In this video I'll continue teaching you about carbohydrate chemistry. I'll teach you how to inter-covert between open- and close-chained forms of monosaccharides, illustrating their pyranose and furanose forms. I also teach you about alpha vs. beta sugars, which are called anomers, and I compare chair conformations with Haworth projections. I'll also teach you how to form glycosides from simple monosaccharides, with the mechanism. I'll introduce you to a few polysaccharides, which include st...

  19. Tools for glycomics: mapping interactions of carbohydrates in biological systems.

    Science.gov (United States)

    Ratner, Daniel M; Adams, Eddie W; Disney, Matthew D; Seeberger, Peter H

    2004-10-01

    The emerging field of glycomics has been challenged by difficulties associated with studying complex carbohydrates and glycoconjugates. Advances in the development of synthetic tools for glycobiology are poised to overcome some of these challenges and accelerate progress towards our understanding of the roles of carbohydrates in biology. Carbohydrate microarrays, fluorescent neoglycoconjugate probes, and aminoglycoside antibiotic microarrays are among the many new tools becoming available to glycobiologists. PMID:15457538

  20. Synthesis and evaluation of novel carbocyclic carbohydrate analogues

    OpenAIRE

    Adamson, Christopher William

    2016-01-01

    Carbohydrate analogues play an indispensible role in the study of glycan processing enzymes. These compounds have attracted attention as probes of enzyme mechanisms, as chemical tools for the elucidation of enzyme function and as potential pharmaceuticals. The development of organocatalytic aldol chemistry has fundamentally altered the way chemists approach the synthesis of carbohydrate analogues. In this thesis I highlight a novel strategy toward the synthesis of carbocyclic carbohydrate ana...

  1. CARBOHYDRATE INGESTION AND EXERCISE: EFFECTS ON METABOLISM AND PERFORMANCE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@KEY POINTS ■ Carbohydrate is the preferred fuel for most competitive sports;an inadequate supply of carbohydrate in the body often leads to poor performance. ■ Carbohydrate ingestion during exercise increases blood glucose availability and maintains the ability of the body to use carbohydrate as fuel during exercise.When carbohydrate is consumed during exercise,glucose uptake by muscles is increased,and the breakdown of glycogen in the liver into blood glucose is reduced,thus saving liver glycogen until late in exercise.The use of muscle glycogen for energy is generally unaffected by carbohydrate feeding.However,during prolonged running,the breakdown of muscle glycogen may be slowed because the supply of blood glucose is improved when carbohydrate is consumed.These metabolic responses underlie the performance benefit that accompanies carbohydrate ingestion during exercise. ■ There are some minor differences among glucose,sucrose,and maltodextrins in their effects on metabolism,but each of them can enhance performance when ingested in the appropriate quantity during exercise.Fructose alone is not an effective carbohydrate supplement because of its slow absorption and slow conversion by the body to glucose,but when small amounts of fructose are combined with other carbohydrates,fructose can be beneficial. ■ Ingesting carbohydrate at a rate of 30-60 grams per hour can improve exercise erformance.A good way to achieve this carbohydrate intake is to consume 600-to-1200 ml(20-to-40 oz)of a sports drink during each hour of exercise.Consuming carbohydrate in a beverage provides an added benefit of preventing potentially harmful effects of dehydration on performance.

  2. Renewable Hydrogen Carrier — Carbohydrate: Constructing the Carbon-Neutral Carbohydrate Economy

    Directory of Open Access Journals (Sweden)

    Y.-H. Percival Zhang

    2011-01-01

    Full Text Available The hydrogen economy presents an appealing energy future but its implementation must solve numerous problems ranging from low-cost sustainable production, high-density storage, costly infrastructure, to eliminating safety concern. The use of renewable carbohydrate as a high-density hydrogen carrier and energy source for hydrogen production is possible due to emerging cell-free synthetic biology technology—cell-free synthetic pathway biotransformation (SyPaB. Assembly of numerous enzymes and co-enzymes in vitro can create complicated set of biological reactions or pathways that microorganisms or catalysts cannot complete, for example, C6H10O5 (aq + 7 H2O (l à 12 H2 (g + 6 CO2 (g (PLoS One 2007, 2:e456. Thanks to 100% selectivity of enzymes, modest reaction conditions, and high-purity of generated hydrogen, carbohydrate is a promising hydrogen carrier for end users. Gravimetric density of carbohydrate is 14.8 H2 mass% if water can be recycled from proton exchange membrane fuel cells or 8.33% H2 mass% without water recycling. Renewable carbohydrate can be isolated from plant biomass or would be produced from a combination of solar electricity/hydrogen and carbon dioxide fixation mediated by high-efficiency artificial photosynthesis mediated by SyPaB. The construction of this carbon-neutral carbohydrate economy would address numerous sustainability challenges, such as electricity and hydrogen storage, CO2 fixation and long-term storage, water conservation, transportation fuel production, plus feed and food production.

  3. CARBOHYDRATE INTAKE CONSIDERATIONS FOR YOUNG ATHLETES

    Directory of Open Access Journals (Sweden)

    Veronica Montfort-Steiger

    2007-09-01

    Full Text Available Good nutritional practices are important for exercise performance and health during all ages. Athletes and especially growing children engaged in heavy training have higher energy and nutrient requirements compared to their non-active counterparts. Scientific understanding of sports nutrition for the young athlete is lacking behind the growing number of young athletes engaged in sports. Most of the sports nutrition recommendations given to athletic children and adolescents are based on adult findings due to the deficiency in age specific information in young athletes. Therefore, this review reflects on child specific sports nutrition, particularly on carbohydrate intake and metabolism that distinguishes the child athlete from the adult athlete. Children are characterised to be in an insulin resistance stage during certain periods of maturation, have different glycolytic/metabolic responses during exercise, have a tendency for higher fat oxidation during exercise and show different heat dissipation mechanisms compared to adults. These features point out that young athletes may need different nutritional advice on carbohydrate for exercise to those from adult athletes. Sport drinks for example may need to be adapted to children specific needs. However, more research in this area is warranted to clarify sports nutrition needs of the young athlete to provide better and healthy nutritional guidance to young athletes

  4. Crystallization of carbohydrate oxidase from Microdochium nivale

    International Nuclear Information System (INIS)

    Industrially used carbohydrate oxidase was successfully crystallized in several forms, diffraction data suitable for structural analysis were collected. Microdochium nivale carbohydrate oxidase was produced by heterologous recombinant expression in Aspergillus oryzae, purified and crystallized. The enzyme crystallizes with varying crystal morphologies depending on the crystallization conditions. Several different crystal forms were obtained using the hanging-drop vapour-diffusion method, two of which were used for diffraction measurements. Hexagon-shaped crystals (form I) diffracted to 2.66 Å resolution, with unit-cell parameters a = b = 55.7, c = 610.4 Å and apparent space group P6222. Analysis of the data quality showed almost perfect twinning of the crystals. Attempts to solve the structure by molecular replacement did not give satisfactory results. Recently, clusters of rod-shaped crystals (form II) were grown in a solution containing PEG MME 550. These crystals belonged to the monoclinic system C2, with unit-cell parameters a = 132.9, b = 56.6, c = 86.5 Å, β = 95.7°. Data sets were collected to a resolution of 2.4 Å. The structure was solved by the molecular-replacement method. Model refinement is currently in progress

  5. Postexercise recovery period: carbohydrate and protein metabolism.

    Science.gov (United States)

    Viru, A

    1996-02-01

    The essence of the postexercise recovery period is normalization of function and homeostatic equilibrium, and replenishment of energy resources and accomplishment of the reconstructive function. The repletion of energy stores is actualized in a certain sequence and followed by a transitory supercompensation. The main substrate for repletion of the muscle glycogen store is blood glucose derived from hepatic glucose output as well as from consumption of carbohydrates during the postexercise period. The repletion of liver glycogen is realized less rapidly. It depends to a certain extent on hepatic gluconeogenesis but mainly on supply with exogenous carbohydrates. The constructive function is founded on elevated protein turnover and adaptive protein synthesis. Whereas during and shortly after endurance exercise intensive protein breakdown was found in less active fast-twitch glycolytic fibers, during the later course of the recovery period the protein degradation rate increased together with intensification of protein synthesis rate in more active fast-twitch glycolytic oxidative and slow-twitch oxidative fibers. PMID:8680938

  6. Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils.

    Directory of Open Access Journals (Sweden)

    Lifeng Liu

    Full Text Available Cellulose represents the most abundant biopolymer in nature and has great economic importance. Cellulose chains pack laterally into crystalline forms, stacking into a complicated crystallographic structure. However, the mechanism of cellulose crystallization is poorly understood. Here, via functional characterization, we report that Brittle Culm1 (BC1, a COBRA-like protein in rice, modifies cellulose crystallinity. BC1 was demonstrated to be a glycosylphosphatidylinositol (GPI anchored protein and can be released into cell walls by removal of the GPI anchor. BC1 possesses a carbohydrate-binding module (CBM at its N-terminus. In vitro binding assays showed that this CBM interacts specifically with crystalline cellulose, and several aromatic residues in this domain are essential for binding. It was further demonstrated that cell wall-localized BC1 via the CBM and GPI anchor is one functional form of BC1. X-ray diffraction (XRD assays revealed that mutations in BC1 and knockdown of BC1 expression decrease the crystallite width of cellulose; overexpression of BC1 and the CBM-mutated BC1s caused varied crystallinity with results that were consistent with the in vitro binding assay. Moreover, interaction between the CBM and cellulose microfibrils was largely repressed when the cell wall residues were pre-stained with two cellulose dyes. Treating wild-type and bc1 seedlings with the dyes resulted in insensitive root growth responses in bc1 plants. Combined with the evidence that BC1 and three secondary wall cellulose synthases (CESAs function in different steps of cellulose production as revealed by genetic analysis, we conclude that BC1 modulates cellulose assembly by interacting with cellulose and affecting microfibril crystallinity.

  7. Binding Procurement

    Science.gov (United States)

    Rao, Gopalakrishna M.; Vaidyanathan, Hari

    2007-01-01

    This viewgraph presentation reviews the use of the binding procurement process in purchasing Aerospace Flight Battery Systems. NASA Engineering and Safety Center (NESC) requested NASA Aerospace Flight Battery Systems Working Group to develop a set of guideline requirements document for Binding Procurement Contracts.

  8. Glycosylation of dengue virus glycoproteins and their interactions with carbohydrate receptors: possible targets for antiviral therapy.

    Science.gov (United States)

    Idris, Fakhriedzwan; Muharram, Siti Hanna; Diah, Suwarni

    2016-07-01

    Dengue virus, an RNA virus belonging to the genus Flavivirus, affects 50 million individuals annually, and approximately 500,000-1,000,000 of these infections lead to dengue hemorrhagic fever or dengue shock syndrome. With no licensed vaccine or specific antiviral treatments available to prevent dengue infection, dengue is considered a major public health problem in subtropical and tropical regions. The virus, like other enveloped viruses, uses the host's cellular enzymes to synthesize its structural (C, E, and prM/M) and nonstructural proteins (NS1-5) and, subsequently, to glycosylate these proteins to produce complete and functional glycoproteins. The structural glycoproteins, specifically the E protein, are known to interact with the host's carbohydrate receptors through the viral proteins' N-glycosylation sites and thus mediate the viral invasion of cells. This review focuses on the involvement of dengue glycoproteins in the course of infection and the virus' exploitation of the host's glycans, especially the interactions between host receptors and carbohydrate moieties. We also discuss the recent developments in antiviral therapies that target these processes and interactions, focusing specifically on the use of carbohydrate-binding agents derived from plants, commonly known as lectins, to inhibit the progression of infection. PMID:27068162

  9. Evolutionary bases of carbohydrate recognition and substrate discrimination in the ROK protein family.

    Science.gov (United States)

    Conejo, Maria S; Thompson, Steven M; Miller, Brian G

    2010-06-01

    The ROK (repressor, open reading frame, kinase) protein family (Pfam 00480) is a large collection of bacterial polypeptides that includes sugar kinases, carbohydrate responsive transcriptional repressors, and many functionally uncharacterized gene products. ROK family sugar kinases phosphorylate a range of structurally distinct hexoses including the key carbon source D: -glucose, various glucose epimers, and several acetylated hexosamines. The primary sequence elements responsible for carbohydrate recognition within different functional categories of ROK polypeptides are largely unknown due to a limited structural characterization of this protein family. In order to identify the structural bases for substrate discrimination in individual ROK proteins, and to better understand the evolutionary processes that led to the divergent evolution of function in this family, we constructed an inclusive alignment of 227 representative ROK polypeptides. Phylogenetic analyses and ancestral sequence reconstructions of the resulting tree reveal a discrete collection of active site residues that dictate substrate specificity. The results also suggest a series of mutational events within the carbohydrate-binding sites of ROK proteins that facilitated the expansion of substrate specificity within this family. This study provides new insight into the evolutionary relationship of ROK glucokinases and non-ROK glucokinases (Pfam 02685), revealing the primary sequence elements shared between these two protein families, which diverged from a common ancestor in ancient times. PMID:20512568

  10. Power Module

    OpenAIRE

    Gang Fang

    2009-01-01

    Abstract: In this paper, we discuss the upgrade problem of module, and introduce the concepts of the power module, regular power module and uniform power module. We give some results of them. Key words: power group; power module; regular power module; uniform power module

  11. Acute Effects of Carbohydrate Supplementation on Intermittent Sports Performance

    Directory of Open Access Journals (Sweden)

    Lindsay B. Baker

    2015-07-01

    Full Text Available Intermittent sports (e.g., team sports are diverse in their rules and regulations but similar in the pattern of play; that is, intermittent high-intensity movements and the execution of sport-specific skills over a prolonged period of time (~1–2 h. Performance during intermittent sports is dependent upon a combination of anaerobic and aerobic energy systems, both of which rely on muscle glycogen and/or blood glucose as an important substrate for energy production. The aims of this paper are to review: (1 potential biological mechanisms by which carbohydrate may impact intermittent sport performance; (2 the acute effects of carbohydrate ingestion on intermittent sport performance, including intermittent high-intensity exercise capacity, sprinting, jumping, skill, change of direction speed, and cognition; and (3 what recommendations can be derived for carbohydrate intake before/during exercise in intermittent sports based on the available evidence. The most researched intermittent sport is soccer but some sport-specific studies have also been conducted in other sports (e.g., rugby, field hockey, basketball, American football, and racquet sports. Carbohydrate ingestion before/during exercise has been shown in most studies to enhance intermittent high-intensity exercise capacity. However, studies have shown mixed results with regards to the acute effects of carbohydrate intake on sprinting, jumping, skill, change of direction speed, and cognition. In most of these studies the amount of carbohydrate consumed was ~30–60 g/h in the form of a 6%–7% carbohydrate solution comprised of sucrose, glucose, and/or maltodextrin. The magnitude of the impact that carbohydrate ingestion has on intermittent sport performance is likely dependent on the carbohydrate status of the individual; that is, carbohydrate ingestion has the greatest impact on performance under circumstances eliciting fatigue and/or hypoglycemia. Accordingly, carbohydrate ingestion before

  12. Cognitive awareness of carbohydrate intake does not alter exercise-induced lymphocyte apoptosis

    OpenAIRE

    James Wilfred Navalta; Brian Keith McFarlin; Scott Lyons; Scott Wesley Arnett; Mark Anthony Schafer

    2011-01-01

    OBJECTIVE: The purpose of this investigation was to determine whether cognitive awareness of carbohydrate beverage consumption affects exercise‐induced lymphocyte apoptosis, independent of actual carbohydrate intake. INTRODUCTION: Carbohydrate supplementation during aerobic exercise generally protects against the immunosuppressive effects of exercise. It is not currently known whether carbohydrate consumption or simply the knowledge of carbohydrate consumption also has that effect. METHODS: E...

  13. Development of food ingredients for modulation of glycemia

    OpenAIRE

    Kett, Anthony Paul

    2013-01-01

    Starches are a source of digestible carbohydrate and are frequently used in formulated food products in the presence of other carbohydrates, proteins and fat. This thesis explored the effect of addition of neutral (Konjac glucomannan) or charged (milk proteins) polymers on the physical characteristics and digestion kinetics of waxy maize starch. The aim was to identify mechanisms to modulate the pasting properties and subsequent susceptibility to amylolytic digestion. Addition of αs- or β-cas...

  14. Anthrax carbohydrates, synthesis and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Russell W.; Boons, Geert-Jan; Quinn, Conrad; Vasan, Mahalakshmi; Wolfert, Margreet A.; Choudhury, Biswa; Kannenberg, Elmar; Leoff, Christine; Mehta, Alok; Saile, Elke; Rauvolfova, Jana; Wilkins, Patricia; Harvey, Alex J.

    2013-04-16

    The present invention presents the isolation, characterization and synthesis of oligosaccharides of Bacillus anthracis. Also presented are antibodies that bind to such saccharide moieties and various methods of use for such saccharide moieties and antibodies.

  15. Anthrax carbohydrates, synthesis and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Russell W.; Boons, Geert-Jan; Buskas, Therese; Kannenberg, Elmar; Mehta, Alok; Saile, Elke; Quinn, Conrad; Wilkins, Patricia; Vasan, Mahalakshmi; Wolfert, Margreet A.

    2016-04-12

    The present invention presents the isolation, characterization and synthesis of oligosaccharides of Bacillus anthracis. Also presented are antibodies that bind to such saccharide moieties and various methods of use for such saccharide moieties and antibodies.

  16. ON VASCULAR STENOSIS, RESTENOSIS AND MANNOSE BINDING LECTIN.

    Science.gov (United States)

    Kahlow, Barbara Stadler; Nery, Rodrigo Araldi; Skare, Thelma L; Ribas, Carmen Australia Paredes Marcondes; Ramos, Gabriela Piovezani; Petisco, Roberta Dombroski

    2016-03-01

    Mannose binding lectin is a lectin instrumental in the innate immunity. It recognizes carbohydrate patterns found on the surface of a large number of pathogenic micro-organisms, activating the complement system. However, this protein seems to increase the tissue damage after ischemia. In this paper is reviewed some aspects of harmful role of the mannose binding lectin in ischemia/reperfusion injury. PMID:27120743

  17. Designing a binding interface for control of cancer cell adhesion via 3D topography and metabolic oligosaccharide engineering.

    Science.gov (United States)

    Du, Jian; Che, Pao-Lin; Wang, Zhi-Yun; Aich, Udayanath; Yarema, Kevin J

    2011-08-01

    This study combines metabolic oligosaccharide engineering (MOE), a technology where the glycocalyx of living cells is endowed with chemical features not normally found in sugars, with custom-designed three-dimensional biomaterial substrates to enhance the adhesion of cancer cells and control their morphology and gene expression. Specifically, Ac(5)ManNTGc, a thiol-bearing analog of N-acetyl-d-mannosamine (ManNAc) was used to introduce thiolated sialic acids into the glycocalyx of human Jurkat T-lymphoma derived cells. In parallel 2D films and 3D electrospun nanofibrous scaffolds were prepared from polyethersulfone (PES) and (as controls) left unmodified or aminated. Alternately, the materials were malemided or gold-coated to provide bio-orthogonal binding partners for the thiol groups newly expressed on the cell surface. Cell attachment was modulated by both the topography of the substrate surface and by the chemical compatibility of the binding interface between the cell and the substrate; a substantial increase in binding for normally non-adhesive Jurkat line for 3D scaffold compared to 2D surfaces with an added degree of adhesion resulting from chemoselective binding to malemidede-derivatived or gold-coated surfaces. In addition, the morphology of the cells attached to the 3D scaffolds via MOE-mediated adhesion was dramatically altered and the expression of genes involved in cell adhesion changed in a time-dependent manner. This study showed that cell adhesion could be enhanced, gene expression modulated, and cell fate controlled by introducing the 3D topograhical cues into the growth substrate and by creating a glycoengineered binding interface where the chemistry of both the cell surface and biomaterials scaffold was controlled to facilitate a new mode of carbohydrate-mediated adhesion. PMID:21549424

  18. Export of Extracellular Polysaccharides Modulates Adherence of the Cyanobacterium Synechocystis

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, ML; Allen, R; Luo, YQ; Curtiss, R

    2013-09-10

    The field of cyanobacterial biofuel production is advancing rapidly, yet we know little of the basic biology of these organisms outside of their photosynthetic pathways. We aimed to gain a greater understanding of how the cyanobacterium Synechocystis PCC 6803 (Synechocystis, hereafter) modulates its cell surface. Such understanding will allow for the creation of mutants that autoflocculate in a regulated way, thus avoiding energy intensive centrifugation in the creation of biofuels. We constructed mutant strains lacking genes predicted to function in carbohydrate transport or synthesis. Strains with gene deletions of slr0977 (predicted to encode a permease component of an ABC transporter), slr0982 (predicted to encode an ATP binding component of an ABC transporter) and slr1610 (predicted to encode a methyltransferase) demonstrated flocculent phenotypes and increased adherence to glass. Upon bioinformatic inspection, the gene products of slr0977, slr0982, and slr1610 appear to function in O-antigen (OAg) transport and synthesis. However, the analysis provided here demonstrated no differences between OAg purified from wild-type and mutants. However, exopolysaccharides (EPS) purified from mutants were altered in composition when compared to wild-type. Our data suggest that there are multiple means to modulate the cell surface of Synechocystis by disrupting different combinations of ABC transporters and/or glycosyl transferases. Further understanding of these mechanisms may allow for the development of industrially and ecologically useful strains of cyanobacteria. Additionally, these data imply that many cyanobacterial gene products may possess as-yet undiscovered functions, and are meritorious of further study.

  19. [Determination of the total quantity of carbohydrates in dried yeast].

    Science.gov (United States)

    Maksimenko, O A; Ziukova, L A; Fedorovich, R M

    1975-01-01

    Different colourimetric methods for measuring carbohydrates in yeast have been compared. A method using 5% phenol aqueous solution in the presence of concentrated sulphuric acid has been developed to quantitate carbohydrates. The method has been described as applied to an analysis of dry yeast. PMID:1129224

  20. The role of carbohydrate in dietary prescription for weight loss

    DEFF Research Database (Denmark)

    Astrup, Arne

    to be shown whether a low-glycemic index diet provides benefits beyond this. Low-carbohydrate diets may be an option for inducing weight loss in obese patients, but a very low intake of carbohydrate-rich foods is not commensurate with a healthy and palatable diet in the long term. However, there is...

  1. Why use DFT methods in the study of carbohydrates?

    Science.gov (United States)

    The recent advances in density functional theory (DFT) and computer technology allow us to study systems with more than 100 atoms routinely. This makes it feasible to study large carbohydrate molecules via quantum mechanical methods, whereas in the past, studies of carbohydrates were restricted to ...

  2. Reinforcement effect of soy protein and carbohydrates in polymer composites

    Science.gov (United States)

    The modulus of soft polymer material can be increased by filler reinforcement. A review of using soy protein and carbohydrates as alternative renewable reinforcement material is presented here. Dry soy protein and carbohydrates are rigid and can form strong filler networks through hydrogen-bonding...

  3. The Klebsiella pneumoniae O12 ATP-binding Cassette (ABC) Transporter Recognizes the Terminal Residue of Its O-antigen Polysaccharide Substrate.

    Science.gov (United States)

    Mann, Evan; Mallette, Evan; Clarke, Bradley R; Kimber, Matthew S; Whitfield, Chris

    2016-04-29

    Export of the Escherichia coli serotype O9a O-antigenic polysaccharides (O-PS) involves an ATP-binding cassette (ABC) transporter. The process requires a non-reducing terminal residue, which is recognized by a carbohydrate-binding module (CBM) appended to the C terminus of the nucleotide-binding domain of the transporter. Here, we investigate the process in Klebsiella pneumoniae serotype O12 (and Raoultella terrigena ATCC 33257). The O12 polysaccharide is terminated at the non-reducing end by a β-linked 3-deoxy-d-manno-oct-2-ulosonic acid (Kdo) residue. The O12 ABC transporter also binds its cognate O-PS via a CBM, and export is dependent on the presence of the terminal β-Kdo residue. The overall structural architecture of the O12 CBM resembles the O9a prototype, but they share only weak sequence similarity, and the putative binding pocket for the O12 glycan is different. Removal of the CBM abrogated O-PS transport, but export was restored when the CBM was expressed in trans with the mutant CBM-deficient ABC transporter. These results demonstrate that the CBM-mediated substrate-recognition mechanism is evolutionarily conserved and can operate with glycans of widely differing structures. PMID:26934919

  4. Segmental extracellular and intracellular water distribution and muscle glycogen after 72-h carbohydrate loading using spectroscopic techniques.

    Science.gov (United States)

    Shiose, Keisuke; Yamada, Yosuke; Motonaga, Keiko; Sagayama, Hiroyuki; Higaki, Yasuki; Tanaka, Hiroaki; Takahashi, Hideyuki

    2016-07-01

    Body water content increases during carbohydrate loading because 2.7-4-g water binds each 1 g of glycogen. Bioelectrical impedance spectroscopy (BIS) allows separate assessment of extracellular and intracellular water (ECW and ICW, respectively) in the whole body and each body segment. However, BIS has not been shown to detect changes in body water induced by carbohydrate loading. Here, we aimed to investigate whether BIS had sufficient sensitivity to detect changes in body water content and to determine segmental water distribution after carbohydrate loading. Eight subjects consumed a high-carbohydrate diet containing 12 g carbohydrates·kg body mass(-1)·day(-1) for 72 h after glycogen depletion cycling exercise. Changes in muscle glycogen concentration were measured by (13)C-magnetic resonance spectroscopy, and total body water (TBW) was measured by the deuterium dilution technique (TBWD2O). ICW and ECW in the whole body (wrist-to-ankle) and in each body segment (arm, trunk, and leg) were assessed by BIS. Muscle glycogen concentration [72.7 ± 10.0 (SD) to 169.4 ± 55.9 mmol/kg wet wt, P < 0.001] and TBWD2O (39.3 ± 3.2 to 40.2 ± 3.0 kg, P < 0.05) increased significantly 72 h after exercise compared with baseline, respectively. Whole-body BIS showed significant increases in ICW (P < 0.05), but not in ECW. Segmental BIS showed significant increases in ICW in the legs (P < 0.05), but not in the arms or trunk. Our results suggest that increase in body water after carbohydrate loading can be detected by BIS and is caused by segment-specific increases in ICW. PMID:27231310

  5. Carbohydrate loading in the preoperative setting.

    Science.gov (United States)

    Hill, L T; Miller, M G A

    2015-03-01

    Nutrition support is an evolving field, and modern clinical nutrition practice should actively incorporate strategies to enhance various clinical outcomes. In surgical patients, clinical benefits can be maximised by nutritional support protocols that minimise and manage the perioperative fasting period. This approach, which includes the perioperative provision of clear carbohydrate-containing fluids, has been shown to be safe, is evidence based, and is supported by many professional societies. Such a strategy has been shown to aid the anaesthetic process and maintain an optimal metabolic state, including improved insulin sensitivity and blunted muscle catabolic activity. Some important consequences of this improved metabolic control include shorter hospital stay and fewer postoperative complications. A proactive multidisciplinary team approach is essential to use this nutrition support strategy with success across a hospital's surgical service. PMID:26294840

  6. Arabinogalactan proteins: focus on carbohydrate active enzymes

    Directory of Open Access Journals (Sweden)

    Eva eKnoch

    2014-06-01

    Full Text Available Arabinogalactan proteins (AGPs are a highly diverse class of cell surface proteoglycans that are commonly found in most plant species. AGPs play important roles in many cellular processes during plant development, such as reproduction, cell proliferation, pattern formation and growth, and in plant-microbe interaction. However, little is known about the molecular mechanisms of their function. Numerous studies using monoclonal antibodies that recognize different AGP glycan epitopes have shown the appearance of a slightly altered AGP glycan in a specific stage of development in plant cells. Therefore, it is anticipated that the biosynthesis and degradation of AGP glycan is tightly regulated during development. Until recently, however, little was known about the enzymes involved in the metabolism of AGP glycans. In this review, we summarize recent discoveries of carbohydrate active enzymes (CAZy; http://www.cazy.org/ involved in the biosynthesis and degradation of AGP glycans, and we discuss the biological role of these enzymes in plant development.

  7. Structure of a streptococcal adhesion carbohydrate receptor

    International Nuclear Information System (INIS)

    Interactions between complementary protein and carbohydrate structures on different genera of human oral bacteria have been implicated in the formation of dental plaque. The carbohydrate receptor on Streptococcus sanguis H1 that is specific for the adhesion on Capnocytophaga ochracea ATCC 33596 has been isolated from the streptococcal cell wall, purified, and structurally characterized. The hexasaccharide repeating unit of the polysaccharide was purified by reverse-phase, amino-bonded silica, and gel permeation high performance liquid chromatography. Earlier studies established that the repeating unit was a hexasaccharide composed of rhamnose, galactose, and glucose in the ration of 2:3:1, respectively. In the present study, determination of absolute configuration by gas chromatography of the trimethylsilyl (+)-2-butyl glycosides revealed that the rhamnose residues were of the L configuration while the hexoses were all D. 252Californium plasma desorption mass spectrometry of the native, the acetylated and the reduced and acetylated hexasaccharide determined that the molecular mass of the native hexasaccharide was 959, and that the 2 rhamnose residues were linked to each other at the nonreducing terminus of the linear molecule. Methylation analysis revealed the positions of the glycosidic linkages in the hexasaccharide and showed that a galactose residue was present at the reducing end. The structural characterization of the hexasaccharide was completed by one and two dimensional 1H and 13C NMR spectroscopy. Complete 1H and 13C assignments for each glycosyl residue were established by two-dimensional (1H,1H) correlation spectroscopy, homonuclear Hartmann-Hahn, and (13C,1H) correlation experiments. The configurations of the glycosidic linkages were inferred from the chemical shifts and coupling constants of the anomeric 1H and 13C resonances

  8. Sensitive LC MS quantitative analysis of carbohydrates by Cs+ attachment.

    Science.gov (United States)

    Rogatsky, Eduard; Jayatillake, Harsha; Goswami, Gayotri; Tomuta, Vlad; Stein, Daniel

    2005-11-01

    The development of a sensitive assay for the quantitative analysis of carbohydrates from human plasma using LC/MS/MS is described in this paper. After sample preparation, carbohydrates were cationized by Cs(+) after their separation by normal phase liquid chromatography on an amino based column. Cesium is capable of forming a quasi-molecular ion [M + Cs](+) with neutral carbohydrate molecules in the positive ion mode of electrospray ionization mass spectrometry. The mass spectrometer was operated in multiple reaction monitoring mode, and transitions [M + 133] --> 133 were monitored (M, carbohydrate molecular weight). The new method is robust, highly sensitive, rapid, and does not require postcolumn addition or derivatization. It is useful in clinical research for measurement of carbohydrate molecules by isotope dilution assay. PMID:16182559

  9. Expression, Purification, and Characterization of a Carbohydrate-Active Enzyme: A Research-Inspired Methods Optimization Experiment for the Biochemistry Laboratory

    Science.gov (United States)

    Willbur, Jaime F.; Vail, Justin D.; Mitchell, Lindsey N.; Jakeman, David L.; Timmons, Shannon C.

    2016-01-01

    The development and implementation of research-inspired, discovery-based experiences into science laboratory curricula is a proven strategy for increasing student engagement and ownership of experiments. In the novel laboratory module described herein, students learn to express, purify, and characterize a carbohydrate-active enzyme using modern…

  10. Low-carbohydrate/high-protein diet improves diastolic cardiac function and the metabolic syndrome in overweight-obese patients with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    H. von Bibra

    2014-03-01

    Conclusions: These data indicate, that a low-glycaemic/high-protein but not a low-fat/high-carbohydrate nutrition modulates diastolic dysfunction in overweight T2D patients, improves insulin resistance and may prevent or delay the onset of diabetic cardiomyopathy and the metabolic syndrome.

  11. Renewable Hydrogen Carrier — Carbohydrate: Constructing the Carbon-Neutral Carbohydrate Economy

    OpenAIRE

    Y.-H. Percival Zhang; Mielenz, Jonathan R.

    2011-01-01

    The hydrogen economy presents an appealing energy future but its implementation must solve numerous problems ranging from low-cost sustainable production, high-density storage, costly infrastructure, to eliminating safety concern. The use of renewable carbohydrate as a high-density hydrogen carrier and energy source for hydrogen production is possible due to emerging cell-free synthetic biology technology—cell-free synthetic pathway biotransformation (SyPaB). Assembly of numerous enzymes and ...

  12. Renewable Hydrogen Carrier — Carbohydrate: Constructing the Carbon-Neutral Carbohydrate Economy

    OpenAIRE

    Y.-H. Percival Zhang; Mielenz, Jonathan R.

    2011-01-01

    The hydrogen economy presents an appealing energy future but its implementation must solve numerous problems ranging from low-cost sustainable production, high-density storage, costly infrastructure, to eliminating safety concern. The use of renewable carbohydrate as a high-density hydrogen carrier and energy source for hydrogen production is possible due to emerging cell-free synthetic biology technology–cell-free synthetic pathway biotransformation (SyPaB). Assembly of numerous enzymes and ...

  13. Proteomics Profiling Reveals Carbohydrate Metabolic Enzymes and 14-3-3 Proteins Play Important Roles for Starch Accumulation during Cassava Root Tuberization.

    Science.gov (United States)

    Wang, Xuchu; Chang, Lili; Tong, Zheng; Wang, Dongyang; Yin, Qi; Wang, Dan; Jin, Xiang; Yang, Qian; Wang, Liming; Sun, Yong; Huang, Qixing; Guo, Anping; Peng, Ming

    2016-01-01

    Cassava is one of the most important root crops as a reliable source of food and carbohydrates. Carbohydrate metabolism and starch accumulation in cassava storage root is a cascade process that includes large amounts of proteins and cofactors. Here, comparative proteomics were conducted in cassava root at nine developmental stages. A total of 154 identified proteins were found to be differentially expressed during starch accumulation and root tuberization. Many enzymes involved in starch and sucrose metabolism were significantly up-regulated, and functional classification of the differentially expressed proteins demonstrated that the majority were binding-related enzymes. Many proteins were took part in carbohydrate metabolism to produce energy. Among them, three 14-3-3 isoforms were induced to be clearly phosphorylated during storage root enlargement. Overexpression of a cassava 14-3-3 gene in Arabidopsis thaliana confirmed that the older leaves of these transgenic plants contained higher sugar and starch contents than the wild-type leaves. The 14-3-3 proteins and their binding enzymes may play important roles in carbohydrate metabolism and starch accumulation during cassava root tuberization. These results not only deepened our understanding of the tuberous root proteome, but also uncovered new insights into carbohydrate metabolism and starch accumulation during cassava root enlargement. PMID:26791570

  14. Serum levels, ontogeny and heritability of chicken mannan-binding lectin (MBL)

    DEFF Research Database (Denmark)

    Laursen, S.B.; Hedemand, J.E.; Nielsen, O.L.; Thiel, S.; Koch, C.; Jensenius, J.C.

    1998-01-01

    Mannan-binding lectin (MBL) is a serum lectin found in mammals and recently also in birds. It is thought to play an important role in the innate immune defence through binding to surface carbohydrates on micro-organisms followed by complement activation via the MBL pathway. This results in...

  15. The case for low carbohydrate diets in diabetes management

    Directory of Open Access Journals (Sweden)

    McFarlane Samy I

    2005-07-01

    Full Text Available Abstract A low fat, high carbohydrate diet in combination with regular exercise is the traditional recommendation for treating diabetes. Compliance with these lifestyle modifications is less than satisfactory, however, and a high carbohydrate diet raises postprandial plasma glucose and insulin secretion, thereby increasing risk of CVD, hypertension, dyslipidemia, obesity and diabetes. Moreover, the current epidemic of diabetes and obesity has been, over the past three decades, accompanied by a significant decrease in fat consumption and an increase in carbohydrate consumption. This apparent failure of the traditional diet, from a public health point of view, indicates that alternative dietary approaches are needed. Because carbohydrate is the major secretagogue of insulin, some form of carbohydrate restriction is a prima facie candidate for dietary control of diabetes. Evidence from various randomized controlled trials in recent years has convinced us that such diets are safe and effective, at least in short-term. These data show low carbohydrate diets to be comparable or better than traditional low fat high carbohydrate diets for weight reduction, improvement in the dyslipidemia of diabetes and metabolic syndrome as well as control of blood pressure, postprandial glycemia and insulin secretion. Furthermore, the ability of low carbohydrate diets to reduce triglycerides and to increase HDL is of particular importance. Resistance to such strategies has been due, in part, to equating it with the popular Atkins diet. However, there are many variations and room for individual physician planning. Some form of low carbohydrate diet, in combination with exercise, is a viable option for patients with diabetes. However, the extreme reduction of carbohydrate of popular diets (

  16. Dietary non-digestible carbohydrates and the resistance to intestinal infections

    NARCIS (Netherlands)

    Bruggencate, ten S.J.M.

    2004-01-01

    Keywords: Non-digestible carbohydrates, prebiotics, inulin, FOS, calcium, microflora, short-chain fatty acids, mucin, intestinal permeability, salmonella, infection, rat, humanDietary non-digestible carbohydrates and the resistance to intestinal infectionsNon-digestible carbohydrates (NDC) stimulate

  17. Carbohydrate Content in the GDM Diet: Two Views: View 1: Nutrition Therapy in Gestational Diabetes: The Case for Complex Carbohydrates.

    Science.gov (United States)

    Hernandez, Teri L

    2016-05-01

    IN BRIEF Restriction of dietary carbohydrate has been the cornerstone for treatment of gestational diabetes mellitus (GDM). However, there is evidence that a balanced liberalization of complex carbohydrate as part of an overall eating plan in GDM meets treatment goals and may mitigate maternal adipose tissue insulin resistance, both of which may promote optimal metabolic outcomes for mother and offspring. PMID:27182176

  18. Covalent Attachment of Carbohydrate Derivatives to an Evanescent Wave Fiber Bragg Grating Biosensor

    Directory of Open Access Journals (Sweden)

    Christopher J. Stanford

    2009-01-01

    Full Text Available A carbohydrate-based biosensor was prepared by functionalization of the surface of an etched fiber Bragg grating with a glucopyranosyl-siloxane conjugate. Functionalization of the surface with the conjugate resulted in a Bragg grating shift of 24 pm. This shift in the refractive index is consistent with a theoretical shift calculated assuming monolayer coverage of the glucose conjugate on the sensor. The resulting functionalized fiber was shown to interact selectively with concanavalin A (Con A, a glucose binding protein (lectin. Exposure of the glucose-functionalized fiber to peanut agglutinin, a galactosebinding lectin, did not result in a change of the refractive index corresponding to a binding event.

  19. Cloning and characterization of two lipopolysaccharide-binding protein/bactericidal permeability-increasing protein (LBP/BPI) genes from the sea cucumber Apostichopus japonicus with diversified function in modulating ROS production.

    Science.gov (United States)

    Shao, Yina; Li, Chenghua; Che, Zhongjie; Zhang, Pengjuan; Zhang, Weiwei; Duan, Xuemei; Li, Ye

    2015-09-01

    Lipopolysaccharide-binding protein and bactericidal permeability-increasing protein (LBP/BPI) play crucial role in modulating cellular signals in response to Gram-negative bacteria infection. In the present study, two isoforms of LBP/BPI genes (designated as AjLBP/BPI1 and AjLBP/BPI2, respectively) were cloned from the sea cucumber Apostichopus japonicus by RACE approach. The full-length cDNAs of AjLBP/BPI1 and AjLBP/BPI2 were of 1479 and 1455 bp and encoded two secreted proteins of 492 and 484 amino acid residues, respectively. Signal peptide, two BPI/LBP/CETP and one central domain were totally conserved in the deduced amino acid of AjLBP/BPI1 and AjLBP/BPI2. Phylogentic analysis further supported that AjLBP/BPI1 and AjLBP/BPI2 belonged to new members of invertebrates LBP/BPI family. Spatial expression analysis revealed that both AjLBP/BPI1 and AjLBP/BPI2 were ubiquitously expressed in all examined tissues with the larger magnitude in AjLBP/BPI1. The Vibrio splenfidus challenge and LPS stimulation could significantly up-regulate the mRNA expression of both AjLBP/BPI1 and AjLBP/BPI2, with the increase of AjLBP/BPI2 expression occurred earlier than that of AjLBP/BPI1. More importantly, we found that LPS induced ROS production was markedly depressed after AjLBP/BPI1 knock-down, but there was no significant change by AjLBP/BPI2 silencing. Consistently, the expression level of unclassified AjToll, not AjTLR3, was tightly correlated with that of AjLBP/BPI1. Silencing the AjToll also depressed the ROS production in the cultured coelomocytes. All these results indicated that AjLBP/BPI1 and AjLBP/BPI2 probably played distinct roles in bacterial mediating immune response in sea cucumber, and AjLBP/BPI1 depressed coelomocytes ROS production via modulating AjToll cascade. PMID:25956196

  20. Molecular Cloning, Carbohydrate Specificity and the Crystal Structure of Two Sclerotium rolfsii Lectin Variants

    Directory of Open Access Journals (Sweden)

    Vassiliki I. Peppa

    2015-06-01

    Full Text Available SRL is a cell wall associated developmental-stage specific lectin secreted by Sclerotium rolfsii, a soil-born pathogenic fungus. SRL displays specificity for TF antigen (Galβ1→3GalNAc-α-Ser//Thr expressed in all cancer types and has tumour suppressing effects in vivo. Considering the immense potential of SRL in cancer research, we have generated two variant gene constructs of SRL and expressed in E. coli to refine the sugar specificity and solubility by altering the surface charge. SSR1 and SSR2 are two different recombinant variants of SRL, both of which recognize TF antigen but only SSR1 binds to Tn antigen (GalNAcα-Ser/Thr. The glycan array analysis of the variants demonstrated that SSR1 recognizes TF antigen and their derivative with high affinity similar to SRL but showed highest affinity towards the sialylated Tn antigen, unlike SRL. The carbohydrate binding property of SSR2 remains unaltered compared to SRL. The crystal structures of the two variants were determined in free form and in complex with N-acetylglucosamine at 1.7 Å and 1.6 Å resolution, respectively. Structural analysis highlighted the structural basis of the fine carbohydrate specificity of the two SRL variants and results are in agreement with glycan array analysis.

  1. Molecular Cloning, Carbohydrate Specificity and the Crystal Structure of Two Sclerotium rolfsii Lectin Variants.

    Science.gov (United States)

    Peppa, Vassiliki I; Venkat, Hemalatha; Kantsadi, Anastassia L; Inamdar, Shashikala R; Bhat, Ganapati G; Eligar, Sachin; Shivanand, Anupama; Chachadi, Vishwanath B; Satisha, Gonchigar J; Swamy, Bale M; Skamnaki, Vassiliki T; Zographos, Spyridon E; Leonidas, Demetres D

    2015-01-01

    SRL is a cell wall associated developmental-stage specific lectin secreted by Sclerotium rolfsii, a soil-born pathogenic fungus. SRL displays specificity for TF antigen (Galβ1→3GalNAc-α-Ser//Thr) expressed in all cancer types and has tumour suppressing effects in vivo. Considering the immense potential of SRL in cancer research, we have generated two variant gene constructs of SRL and expressed in E. coli to refine the sugar specificity and solubility by altering the surface charge. SSR1 and SSR2 are two different recombinant variants of SRL, both of which recognize TF antigen but only SSR1 binds to Tn antigen (GalNAcα-Ser/Thr). The glycan array analysis of the variants demonstrated that SSR1 recognizes TF antigen and their derivative with high affinity similar to SRL but showed highest affinity towards the sialylated Tn antigen, unlike SRL. The carbohydrate binding property of SSR2 remains unaltered compared to SRL. The crystal structures of the two variants were determined in free form and in complex with N-acetylglucosamine at 1.7 Å and 1.6 Å resolution, respectively. Structural analysis highlighted the structural basis of the fine carbohydrate specificity of the two SRL variants and results are in agreement with glycan array analysis. PMID:26076107

  2. Identification of the first insulin-like peptide in the disease vector Rhodnius prolixus: Involvement in metabolic homeostasis of lipids and carbohydrates.

    Science.gov (United States)

    Defferrari, Marina S; Orchard, Ian; Lange, Angela B

    2016-03-01

    Insulin-like peptides (ILPs) are functional analogs of insulin and have been identified in many insect species. The insulin cell signaling pathway is a conserved regulator of metabolism, and in insects, as well as in other animals, can modulate physiological functions associated with the metabolism of lipids and carbohydrates. In the present study, we have identified the first ILP from the Rhodnius prolixus genome (termed Rhopr-ILP) and investigated its involvement in energy metabolism of unfed and recently fed fifth instars. We have cloned the cDNA sequence and analyzed the expression profile of the transcript, which is predominantly present in neurosecretory cells in the brain, similar to other insect ILPs. Using RNAi, we have reduced the expression of this peptide transcript by 90% and subsequently measured the carbohydrate and lipid levels in the hemolymph, fat body and leg muscles. Reduced levels of Rhopr-ILP transcript induced increased carbohydrate and lipid levels in the hemolymph and increased lipid content in the fat body, in unfed insects and recently fed insects. Also their fat bodies displayed enlarged lipid droplets within the cells. On the other hand, the carbohydrate content in the fat body and in the leg muscles of unfed insects were decreased when compared to control insects. Our results indicate that Rhopr-ILP is a modulator of lipid and carbohydrate metabolism, probably through signaling the presence of available energy and nutrients in the hemolymph. PMID:26742603

  3. Special Attachments. Module 19.

    Science.gov (United States)

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This module on special attachments, one in a series dealing with industrial sewing machines, their attachments, and operation, covers four topics: gauges; cording attachment; zipper foot; and hemming, shirring, and binding. For each topic these components are provided: an introduction, directions, an objective, learning activities, student…

  4. Evidence against roles for phorbol binding protein Munc13-1, ADAM adaptor Eve-1, or vesicle trafficking phosphoproteins Munc18 or NSF as phospho-state-sensitive modulators of phorbol/PKC-activated Alzheimer APP ectodomain shedding

    Directory of Open Access Journals (Sweden)

    Lovestone Simon

    2007-12-01

    Full Text Available Abstract Background Shedding of the Alzheimer amyloid precursor protein (APP ectodomain can be accelerated by phorbol esters, compounds that act via protein kinase C (PKC or through unconventional phorbol-binding proteins such as Munc13-1. We have previously demonstrated that application of phorbol esters or purified PKC potentiates budding of APP-bearing secretory vesicles at the trans-Golgi network (TGN and toward the plasma membrane where APP becomes a substrate for enzymes responsible for shedding, known collectively as α-secretase(s. However, molecular identification of the presumptive "phospho-state-sensitive modulators of ectodomain shedding" (PMES responsible for regulated shedding has been challenging. Here, we examined the effects on APP ectodomain shedding of four phorbol-sensitive proteins involved in regulation of vesicular membrane trafficking of APP: Munc13-1, Munc18, NSF, and Eve-1. Results Overexpression of either phorbol-sensitive wildtype Munc13-1 or phorbol-insensitive Munc13-1 H567K resulted in increased basal APP ectodomain shedding. However, in contrast to the report of Roßner et al (2004, phorbol ester-dependent APP ectodomain shedding from cells overexpressing APP and Munc13-1 wildtype was indistinguishable from that observed following application of phorbol to cells overexpressing APP and Munc13-1 H567K mutant. This pattern of similar effects on basal and stimulated APP shedding was also observed for Munc18 and NSF. Eve-1, an ADAM adaptor protein reported to be essential for PKC-regulated shedding of pro-EGF, was found to play no obvious role in regulated shedding of sAPPα. Conclusion Our results indicate that, in the HEK293 system, Munc13-1, Munc18, NSF, and EVE-1 fail to meet essential criteria for identity as PMES for APP.

  5. Modulation of microRNA Expression in Subjects with Metabolic Syndrome and Decrease of Cholesterol Efflux from Macrophages via microRNA-33-Mediated Attenuation of ATP-Binding Cassette Transporter A1 Expression by Statins

    Science.gov (United States)

    Tseng, Pei-Chi; Lee, Tzong-Shyuan; Lee, Wen-Jane; Chang, Pey-Jium; Chiang, An-Na

    2016-01-01

    Metabolic syndrome (MetS) is a complicated health problem that encompasses a variety of metabolic disorders. In this study, we analyzed the relationship between the major biochemical parameters associated with MetS and circulating levels of microRNA (miR)-33, miR-103, and miR-155. We found that miRNA-33 levels were positively correlated with levels of fasting blood glucose, glycosylated hemoglobin A1c, total cholesterol, LDL-cholesterol, and triacylglycerol, but negatively correlated with HDL-cholesterol levels. In the cellular study, miR-33 levels were increased in macrophages treated with high glucose and cholesterol-lowering drugs atorvastatin and pitavastatin. miR-33 has been reported to play an essential role in cholesterol homeostasis through ATP-binding cassette transporter A1 (ABCA1) regulation and reverse cholesterol transport. However, the molecular mechanism underlying the linkage between miR-33 and statin treatment remains unclear. In the present study, we investigated whether atorvastatin and pitavastatin exert their functions through the modulation of miR-33 and ABCA1-mediated cholesterol efflux from macrophages. The results showed that treatment of the statins up-regulated miR-33 expression, but down-regulated ABCA1 mRNA levels in RAW264.7 cells and bone marrow-derived macrophages. Statin-mediated ABCA1 regulation occurs at the post-transcriptional level through targeting of the 3′-UTR of the ABCA1 transcript by miR-33. Additionally, we found significant down-regulation of ABCA1 protein expression in macrophages treated with statins. Finally, we showed that high glucose and statin treatment significantly suppressed cholesterol efflux from macrophages. These findings have highlighted the complexity of statins, which may exert detrimental effects on metabolic abnormalities through regulation of miR-33 target genes. PMID:27139226

  6. Linking Bacillus cereus Genotypes and Carbohydrate Utilization Capacity

    Science.gov (United States)

    Warda, Alicja K.; Siezen, Roland J.; Boekhorst, Jos; Wells-Bennik, Marjon H. J.; de Jong, Anne; Kuipers, Oscar P.; Nierop Groot, Masja N.; Abee, Tjakko

    2016-01-01

    We characterised carbohydrate utilisation of 20 newly sequenced Bacillus cereus strains isolated from food products and food processing environments and two laboratory strains, B. cereus ATCC 10987 and B. cereus ATCC 14579. Subsequently, genome sequences of these strains were analysed together with 11 additional B. cereus reference genomes to provide an overview of the different types of carbohydrate transporters and utilization systems found in B. cereus strains. The combined application of API tests, defined growth media experiments and comparative genomics enabled us to link the carbohydrate utilisation capacity of 22 B. cereus strains with their genome content and in some cases to the panC phylogenetic grouping. A core set of carbohydrates including glucose, fructose, maltose, trehalose, N-acetyl-glucosamine, and ribose could be used by all strains, whereas utilisation of other carbohydrates like xylose, galactose, and lactose, and typical host-derived carbohydrates such as fucose, mannose, N-acetyl-galactosamine and inositol is limited to a subset of strains. Finally, the roles of selected carbohydrate transporters and utilisation systems in specific niches such as soil, foods and the human host are discussed. PMID:27272929

  7. Contribution of plant carbohydrates to sedimentary carbon mineralization

    Energy Technology Data Exchange (ETDEWEB)

    Vichkovitten, T.; Holmer, M. [University of Southern Denmark, Odense (Denmark). Institute of Biology

    2004-09-01

    The decomposition of different types of organic matter in marine sediments, including eelgrass (Zostera marina) leaves, roots and rhizomes and a macroalga (Polysiphonia spp.), was studied under anoxic conditions using decomposition bags over a period of 24 weeks. The carbohydrate composition of the plant materials and sediment was analyzed using high performance liquid chromatography (HPLC) with pulsed amperometric detection (PAD) and the total sum of individual sugars was taken to represent the total carbohydrate content. The alga was degraded more rapidly than other plant materials, while eelgrass rhizome was recalcitrant to decomposition. The non-structural carbohydrate pool from all plant materials degraded quickly and was gone within the 24-week experiment. A clear reduction in carbohydrate yield for the plant materials provided the most consistent indicator of decomposition status. There was no evident change in carbohydrate amount and composition in the sediment during the decomposition experiments and the non-structural carbohydrates from plant materials were thus more labile and readily available for bacterial decomposition than the bulk of carbohydrates in the sediments. (author)

  8. Linking Bacillus cereus Genotypes and Carbohydrate Utilization Capacity.

    Directory of Open Access Journals (Sweden)

    Alicja K Warda

    Full Text Available We characterised carbohydrate utilisation of 20 newly sequenced Bacillus cereus strains isolated from food products and food processing environments and two laboratory strains, B. cereus ATCC 10987 and B. cereus ATCC 14579. Subsequently, genome sequences of these strains were analysed together with 11 additional B. cereus reference genomes to provide an overview of the different types of carbohydrate transporters and utilization systems found in B. cereus strains. The combined application of API tests, defined growth media experiments and comparative genomics enabled us to link the carbohydrate utilisation capacity of 22 B. cereus strains with their genome content and in some cases to the panC phylogenetic grouping. A core set of carbohydrates including glucose, fructose, maltose, trehalose, N-acetyl-glucosamine, and ribose could be used by all strains, whereas utilisation of other carbohydrates like xylose, galactose, and lactose, and typical host-derived carbohydrates such as fucose, mannose, N-acetyl-galactosamine and inositol is limited to a subset of strains. Finally, the roles of selected carbohydrate transporters and utilisation systems in specific niches such as soil, foods and the human host are discussed.

  9. Linking Bacillus cereus Genotypes and Carbohydrate Utilization Capacity.

    Science.gov (United States)

    Warda, Alicja K; Siezen, Roland J; Boekhorst, Jos; Wells-Bennik, Marjon H J; de Jong, Anne; Kuipers, Oscar P; Nierop Groot, Masja N; Abee, Tjakko

    2016-01-01

    We characterised carbohydrate utilisation of 20 newly sequenced Bacillus cereus strains isolated from food products and food processing environments and two laboratory strains, B. cereus ATCC 10987 and B. cereus ATCC 14579. Subsequently, genome sequences of these strains were analysed together with 11 additional B. cereus reference genomes to provide an overview of the different types of carbohydrate transporters and utilization systems found in B. cereus strains. The combined application of API tests, defined growth media experiments and comparative genomics enabled us to link the carbohydrate utilisation capacity of 22 B. cereus strains with their genome content and in some cases to the panC phylogenetic grouping. A core set of carbohydrates including glucose, fructose, maltose, trehalose, N-acetyl-glucosamine, and ribose could be used by all strains, whereas utilisation of other carbohydrates like xylose, galactose, and lactose, and typical host-derived carbohydrates such as fucose, mannose, N-acetyl-galactosamine and inositol is limited to a subset of strains. Finally, the roles of selected carbohydrate transporters and utilisation systems in specific niches such as soil, foods and the human host are discussed. PMID:27272929

  10. Gastrointestinal transit of extruded or pelletized diets in pacu fed distinct inclusion levels of lipid and carbohydrate

    Directory of Open Access Journals (Sweden)

    Claucia Aparecida Honorato

    2014-11-01

    Full Text Available The objective of this work was to evaluate the effect of pelletized or extruded diets, with different levels of carbohydrate and lipid, on the gastrointestinal transit time (GITT and its modulation in pacu (Piaractus mesopotamicus. One hundred and eighty pacu juveniles were fed with eight isonitrogenous diets containing two carbohydrate levels (40 and 50% and two lipid levels (4 and 8%. Four diets were pelletized and four were extruded. Carbohydrate and lipid experimental levels caused no changes to the bolus transit time. However, the bolus permanence time was related to diet processing. Fish fed pelletized diets exhibited the highest gastrointestinal transit time. Regression analysis of bolus behavior for pelletized and extruded diets with 4% lipid depicted different fits. GITT regression analysis of fish fed 8% lipid was fitted to a cubic equation and displayed adjustments of food permanence, with enhanced utilization of the diets, either with extruded or pelletized diets. GITT of fish fed extruded diets with 4% lipid was adjusted to a linear equation. The GITT of pacu depends on the diet processing and is affected by dietary levels of lipid and carbohydrate.

  11. Carbohydrates – Guidelines on Parenteral Nutrition, Chapter 5

    OpenAIRE

    Working group for developing the guidelines for parenteral nutrition of The German Association for Nutritional Medicine; Traeger, K.; Ockenga, J.; Kreymann, G.; Jauch, K.W.; Hauner, H.; Ebener, C.; Bolder, U

    2009-01-01

    The main role of carbohydrates in the human body is to provide energy. Carbohydrates should always be infused with PN (parenteral nutrition) in combination with amino acids and lipid emulsions to improve nitrogen balance. Glucose should be provided as a standard carbohydrate for PN, whereas the use of xylite is not generally recommended. Fructose solutions should not be used for PN. Approximately 60% of non-protein energy should be supplied as glucose with an intake of 3.0–3.5 g/kg body weigh...

  12. Crystallization of carbohydrate oxidase from Microdochium nivale.

    Science.gov (United States)

    Dusková, Jarmila; Dohnálek, Jan; Skálová, Tereza; Østergaard, Lars Henrik; Fuglsang, Claus Crone; Kolenko, Petr; Stepánková, Andrea; Hasek, Jindrich

    2009-06-01

    Microdochium nivale carbohydrate oxidase was produced by heterologous recombinant expression in Aspergillus oryzae, purified and crystallized. The enzyme crystallizes with varying crystal morphologies depending on the crystallization conditions. Several different crystal forms were obtained using the hanging-drop vapour-diffusion method, two of which were used for diffraction measurements. Hexagon-shaped crystals (form I) diffracted to 2.66 A resolution, with unit-cell parameters a = b = 55.7, c = 610.4 A and apparent space group P6(2)22. Analysis of the data quality showed almost perfect twinning of the crystals. Attempts to solve the structure by molecular replacement did not give satisfactory results. Recently, clusters of rod-shaped crystals (form II) were grown in a solution containing PEG MME 550. These crystals belonged to the monoclinic system C2, with unit-cell parameters a = 132.9, b = 56.6, c = 86.5 A, beta = 95.7 degrees . Data sets were collected to a resolution of 2.4 A. The structure was solved by the molecular-replacement method. Model refinement is currently in progress. PMID:19478452

  13. Carbohydrate degrading polypeptide and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Sagt, Cornelis Maria Jacobus; Schooneveld-Bergmans, Margot Elisabeth Francoise; Roubos, Johannes Andries; Los, Alrik Pieter

    2015-10-20

    The invention relates to a polypeptide having carbohydrate material degrading activity which comprises the amino acid sequence set out in SEQ ID NO: 2 or an amino acid sequence encoded by the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 4, or a variant polypeptide or variant polynucleotide thereof, wherein the variant polypeptide has at least 96% sequence identity with the sequence set out in SEQ ID NO: 2 or the variant polynucleotide encodes a polypeptide that has at least 96% sequence identity with the sequence set out in SEQ ID NO: 2. The invention features the full length coding sequence of the novel gene as well as the amino acid sequence of the full-length functional protein and functional equivalents of the gene or the amino acid sequence. The invention also relates to methods for using the polypeptide in industrial processes. Also included in the invention are cells transformed with a polynucleotide according to the invention suitable for producing these proteins.

  14. Application of radiation degraded carbohydrates for plants

    International Nuclear Information System (INIS)

    Radiation degraded carbohydrates such as chitosan, sodium alginate, carageenan, cellulose, pectin, etc. were applied for plant cultivation. Chitosan (poly-β -D-glucosamine) was easily degraded by irradiation and induced various kinds of biological activities such as anti-microbacterial activity, promotion of plant growth, suppression of heavy metal stress on plants, phytoalexins induction, etc. Pectic fragments obtained from degraded pectin also induced the phytoalexins such as glyceollins in soybean and pisafin in pea. The irradiated chitosan shows the higher elicitor activity for pisafin than that of pectin. For the plant growth promotion, alginate derived from brown marine algae, chitosan and ligno-cellulosic extracts show a strong activity. The hot water and ethanol extracts from EFB and sugar cane bagasse were increased by irradiation. These extracts promoted the growth of plants and suppressed the damage on barley with salt and Zn stress. The results show that the degraded polysaccharides by radiation have the potential to induce various biological activities and the products can be use for agricultural and medical fields

  15. Radiolabeled Peptide Scaffolds for PET/SPECT - Optical in Vivo Imaging of Carbohydrate-Lectin Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Deutscher, Susan

    2014-09-30

    The objective of this research is to develop phage display-selected peptides into radio- and fluoresecently- labeled scaffolds for the multimodal imaging of carbohydrate-lectin interactions. While numerous protein and receptor systems are being explored for the development of targeted imaging agents, the targeting and analysis of carbohydrate-lectin complexes in vivo remains relatively unexplored. Antibodies, nanoparticles, and peptides are being developed that target carbohydrate-lectin complexes in living systems. However, antibodies and nanoparticles often suffer from slow clearance and toxicity problems. Peptides are attractive alternative vehicles for the specific delivery of radionuclides or fluorophores to sites of interest in vivo, although, because of their size, uptake and retention may be less than antibodies. We have selected high affinity peptides that bind a specific carbohydrate-lectin complex involved in cell-cell adhesion and cross-linking using bacteriophage (phage) display technologies (1,2). These peptides have allowed us to probe the role of these antigens in cell adhesion. Fluorescent versions of the peptides have been developed for optical imaging and radiolabeled versions have been used in single photon emission computed tomography (SPECT) and positron emission tomography (PET) in vivo imaging (3-6). A benefit in employing the radiolabeled peptides in SPECT and PET is that these imaging modalities are widely used in living systems and offer deep tissue sensitivity. Radiolabeled peptides, however, often exhibit poor stability and high kidney uptake in vivo. Conversely, optical imaging is sensitive and offers good spatial resolution, but is not useful for deep tissue penetration and is semi-quantitative. Thus, multimodality imaging that relies on the strengths of both radio- and optical- imaging is a current focus for development of new in vivo imaging agents. We propose a novel means to improve the efficacy of radiolabeled and fluorescently

  16. Hydrogen and methane breath tests for evaluation of resistant carbohydrates

    DEFF Research Database (Denmark)

    Rumessen, J J

    1992-01-01

    This review considers in detail the background, principles, techniques, limitations and advantages of the hydrogen and methane breath tests. Resistant food carbohydrates, defined as dietary carbohydrates partly or totally escaping small intestinal assimilation, are fermented in the human colon....... Due to the large interindividual variations of hydrogen excretion, unabsorbable standards should be used. The intraindividual variations of H2 production/excretion and differences in fermentability of different carbohydrate substrates only allow for semiquantitative estimates of malabsorbed amounts of...... some carbohydrates. Methane breath tests may supplement the information gained from hydrogen measurements, but further evaluations are needed. The hydrogen breath technique is rapid, simple and non-invasive as well as non-radioactive. It may be carried out in a large number of intact individuals under...

  17. Synthesis of Heterocylic Compounds of Biological Interest from Carbohydrate Derivatives

    OpenAIRE

    M. F. Martinez Esperón; Fascio, M. L.; N. B. D’Accorso

    2000-01-01

    The synthesis of some isoxazolic compounds from carbohydrate derivatives is described. These products are obtained by 1,3-dipolar cycloaddition reaction and their functionalization leads to derivatives with potential biological activities.

  18. What I Need to Know about Carbohydrate Counting and Diabetes

    Science.gov (United States)

    ... zucchini. Foods that do not contain carbohydrates include meat, fish, and poultry; most types of cheese; nuts; ... Training & Career Development Research at NIDDK Research Resources Technology Advancement & Transfer Meetings & Events Health Information Health Topics ...

  19. Carbohydrate and steroid analysis by desorption electrospray ionization mass spectrometry.

    Science.gov (United States)

    Kauppila, Tiina J; Talaty, Nari; Jackson, Ayanna U; Kotiaho, Tapio; Kostiainen, Risto; Cooks, R Graham

    2008-06-21

    Desorption electrospray ionization mass spectrometry (DESI-MS) is applied to the analysis of carbohydrates and steroids; the detection limits are significantly improved by the addition of low concentrations of salts to the spray solvent. PMID:18535704

  20. Simple mucin-type carbohydrate antigens in major salivary glands

    DEFF Research Database (Denmark)

    Therkildsen, M H; Mandel, U; Thorn, J; Christensen, M; Dabelsteen, Erik

    1994-01-01

    Simple mucin-type carbohydrate antigens Tn, sialosyl-Tn and T are often markers of neoplastic transformation and have very limited expression in normal tissues. We performed an immunohistological study of simple mucin-type carbohydrate antigens, including H and A variants, with well-defined monoc......Simple mucin-type carbohydrate antigens Tn, sialosyl-Tn and T are often markers of neoplastic transformation and have very limited expression in normal tissues. We performed an immunohistological study of simple mucin-type carbohydrate antigens, including H and A variants, with well...... were predominantly observed in the cell cytoplasm, most often in the supranuclear area, suggesting localization to the Golgi region, whereas ductal contents were unstained. Mucous acinar cells expressed Tn, sialosyl-Tn, and H and A antigens, regardless of glandular location. Serous acinar cells, on the...

  1. Carbohydrate vaccines: developing sweet solutions to sticky situations?

    OpenAIRE

    Astronomo, Rena D.; Burton, Dennis R.

    2010-01-01

    The realm of carbohydrate vaccines has expanded far beyond the capsular polysaccharides of bacterial pathogens to include a diverse collection of targets representing nearly every biological kingdom. Recent technological advances in glycobiology and glycochemistry are paving the way for a new era in carbohydrate vaccine design enabling greater efficiency in the identification, synthesis and evaluation of unique glycan epitopes found on a plethora of pathogens and malignant cells. This article...

  2. Synthesis of carbohydrate-scaffolded thymine glycoconjugates to organize multivalency

    OpenAIRE

    Anna K. Ciuk; Lindhorst, Thisbe K

    2015-01-01

    Multivalency effects are essential in carbohydrate recognition processes as occurring on the cell surface. Thus many synthetic multivalent glycoconjugates have been developed as important tools for glycobiological research. We are expanding this collection of molecules by the introduction of carbohydrate-scaffolded divalent glycothymine derivatives that can be intramolecularily dimerized by [2 + 2] photocycloaddition. Thus, thymine functions as a control element that allows to restrict the co...

  3. Co-occurrence of carbohydrate malabsorption and primary epiploic appendagitis

    OpenAIRE

    Schnedl, Wolfgang J.; Kalmar, Peter; Mangge, Harald; Krause, Robert; Wallner-Liebmann, Sandra J.

    2015-01-01

    Unspecific abdominal complaints including bloating and irregular bowel movements may be caused by carbohydrate malabsorption syndromes, e.g., lactose and fructose malabsorption. These symptoms were investigated with hydrogen (H2) breath tests and correlated to carbohydrate malabsorption. During performing these H2-breath tests the patient presented with an acute, localized, non-migratory pain in the left lower abdominal quadrant. Primary epiploic appendagitis is a rare cause of abdominal acut...

  4. The case for low carbohydrate diets in diabetes management

    OpenAIRE

    McFarlane Samy I; Arora Surender K

    2005-01-01

    Abstract A low fat, high carbohydrate diet in combination with regular exercise is the traditional recommendation for treating diabetes. Compliance with these lifestyle modifications is less than satisfactory, however, and a high carbohydrate diet raises postprandial plasma glucose and insulin secretion, thereby increasing risk of CVD, hypertension, dyslipidemia, obesity and diabetes. Moreover, the current epidemic of diabetes and obesity has been, over the past three decades, accompanied by ...

  5. Structural Analysis of Carbohydrates by Mass Spectrometry

    OpenAIRE

    Konda, Chiharu

    2013-01-01

    Protein glycosylation is a highly frequent post-translational modification. Glycosylation is actively involved in intermolecular and intercellular binding events that are important to a wide range of biological functions such as immunity and fertility. The unique functions of glycans are directly related to their structures. In order to fully characterize the structure of an unknown glycan, 5 levels of structural information is needed: sugar unit identity, anomeric configuration, linkage type...

  6. Carbohydrate catabolic diversity of bifidobacteria and lactobacilli of human origin.

    Science.gov (United States)

    McLaughlin, Heather P; Motherway, Mary O'Connell; Lakshminarayanan, Bhuvaneswari; Stanton, Catherine; Paul Ross, R; Brulc, Jennifer; Menon, Ravi; O'Toole, Paul W; van Sinderen, Douwe

    2015-06-16

    Because increased proportions of particular commensal bacteria such as bifidobacteria and lactobacilli have been linked to human health through a variety of mechanisms, there is corresponding interest in identifying carbohydrates that promote growth and metabolic activity of these bacteria. We evaluated the ability of 20 carbohydrates, including several commercially available carbohydrates that are sold as prebiotic ingredients, to support growth of 32 human-derived isolates belonging to the genera Bifidobacterium and Lactobacillus, including those isolated from healthy elderly subjects. In general, bifidobacterial strains were shown to display more diverse carbohydrate utilization profiles compared to the tested Lactobacillus species, with several bifidobacterial strains capable of metabolizing xylo-oligosaccharide (XOS), arabinoxylan, maltodextrin, galactan and carbohydrates containing fructo-oligosaccharide (FOS) components. In contrast, maltodextrin, galactan, arabinogalactan and galactomannan did not support robust growth (≥0.8 OD600 nm) of any of the Lactobacillus strains assessed. Carbohydrate fermentation was variable among strains tested of the same species for both genera. This study advances our knowledge of polysaccharide utilization by human gut commensals, and provides information for the rational design of selective prebiotic food ingredients. PMID:25817019

  7. Carbohydrate Mimetic Peptides Augment Carbohydrate-Reactive Immune Responses in the Absence of Immune Pathology

    Energy Technology Data Exchange (ETDEWEB)

    Hennings, Leah; Artaud, Cecile; Jousheghany, Fariba; Monzavi-Karbassi, Behjatolah; Pashov, Anastas; Kieber-Emmons, Thomas, E-mail: tke@uams.edu [Winthrop P. Rockefeller Cancer Institute and Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2011-11-11

    Among the most challenging of clinical targets for cancer immunotherapy are Tumor Associated Carbohydrate Antigens (TACAs). To augment immune responses to TACA we are developing carbohydrate mimetic peptides (CMPs) that are sufficiently potent to activate broad-spectrum anti-tumor reactivity. However, the activation of immune responses against terminal mono- and disaccharide constituents of TACA raises concerns regarding the balance between “tumor destruction” and “tissue damage”, as mono- and disaccharides are also expressed on normal tissue. To support the development of CMPs for clinical trial testing, we demonstrate in preclinical safety assessment studies in mice that vaccination with CMPs can enhance responses to TACAs without mediating tissue damage to normal cells expressing TACA. BALB/c mice were immunized with CMPs that mimic TACAs reactive with Griffonia simplicifolia lectin 1 (GS-I), and tissue reactivity of serum antibodies were compared with the tissue staining profile of GS-I. Tissues from CMP immunized mice were analyzed using hematoxylin and eosin stain, and Luxol-fast blue staining for myelination. Western blots of membranes from murine mammary 4T1 cells, syngeneic with BALB/c mice, were also compared using GS-I, immunized serum antibodies, and naive serum antibodies. CMP immunization enhanced glycan reactivities with no evidence of pathological autoimmunity in any immunized mice demonstrating that tissue damage is not an inevitable consequence of TACA reactive responses.

  8. Carbohydrate Mimetic Peptides Augment Carbohydrate-Reactive Immune Responses in the Absence of Immune Pathology

    International Nuclear Information System (INIS)

    Among the most challenging of clinical targets for cancer immunotherapy are Tumor Associated Carbohydrate Antigens (TACAs). To augment immune responses to TACA we are developing carbohydrate mimetic peptides (CMPs) that are sufficiently potent to activate broad-spectrum anti-tumor reactivity. However, the activation of immune responses against terminal mono- and disaccharide constituents of TACA raises concerns regarding the balance between “tumor destruction” and “tissue damage”, as mono- and disaccharides are also expressed on normal tissue. To support the development of CMPs for clinical trial testing, we demonstrate in preclinical safety assessment studies in mice that vaccination with CMPs can enhance responses to TACAs without mediating tissue damage to normal cells expressing TACA. BALB/c mice were immunized with CMPs that mimic TACAs reactive with Griffonia simplicifolia lectin 1 (GS-I), and tissue reactivity of serum antibodies were compared with the tissue staining profile of GS-I. Tissues from CMP immunized mice were analyzed using hematoxylin and eosin stain, and Luxol-fast blue staining for myelination. Western blots of membranes from murine mammary 4T1 cells, syngeneic with BALB/c mice, were also compared using GS-I, immunized serum antibodies, and naive serum antibodies. CMP immunization enhanced glycan reactivities with no evidence of pathological autoimmunity in any immunized mice demonstrating that tissue damage is not an inevitable consequence of TACA reactive responses

  9. Assessing the Impacts of Low Carbohydrate Related Health Information on the Market Demand for US Vegetables

    OpenAIRE

    Paudel, Laxmi; Adhikari, Murali; Houston, Jack E.

    2005-01-01

    An Almost Ideal Demand System was estimated to examine the impacts of low carbohydrate information on the market demand for US vegetables. Analysis was extended to examine the performance of alternative carbohydrate information indexes. Study shows significant robust impacts of low carbohydrate information across all included vegetables. Results favor the general and weighted carbohydrate information index.

  10. Functional modulation of cerebral gamma-aminobutyric acidA receptor/benzodiazepine receptor/chloride ion channel complex with ethyl beta-carboline-3-carboxylate: Presence of independent binding site for ethyl beta-carboline-3-carboxylate

    Energy Technology Data Exchange (ETDEWEB)

    Taguchi, J.; Kuriyama, K. (Kyoto Prefectural Univ. of Medicine (Japan))

    1990-05-01

    Effect of ethyl beta-carboline-3-carboxylate (beta-CCE) on the function of gamma-aminobutyric acid (GABA)A receptor/benzodiazepine receptor/chloride ion channel complex was studied. Beta-CCE noncompetitively and competitively inhibited (3H)flunitrazepam binding to benzodiazepine receptor, but not (3H)muscimol binding to GABAA receptor as well as t-(3H)butylbicycloorthobenzoate (( 3H) TBOB) binding to chloride ion channel, in particulate fraction of the mouse brain. Ro15-1788 also inhibited competitively (3H) flunitrazepam binding. On the other hand, the binding of beta-(3H)CCE was inhibited noncompetitively and competitively by clonazepam and competitively by Ro15-1788. In agreement with these results, benzodiazepines-stimulated (3H)muscimol binding was antagonized by beta-CCE and Ro15-1788. Gel column chromatography for the solubilized fraction from cerebral particulate fraction by 0.2% sodium deoxycholate (DOC-Na) in the presence of 1 M KCl indicated that beta-(3H)CCE binding site was eluted in the same fraction (molecular weight, 250,000) as the binding sites for (3H)flunitrazepam, (3H)muscimol and (3H)TBOB. GABA-stimulated 36Cl- influx into membrane vesicles prepared from the bovine cerebral cortex was stimulated and attenuated by flunitrazepam and beta-CCE, respectively. These effects of flunitrazepam and beta-CCE on the GABA-stimulated 36Cl- influx were antagonized by Ro15-1788. The present results suggest that the binding site for beta-CCE, which resides on GABAA receptor/benzodiazepine receptor/chloride ion channel complex, may be different from that for benzodiazepine. Possible roles of beta-CCE binding site in the allosteric inhibitions on benzodiazepine binding site as well as on the functional coupling between chloride ion channel and GABAA receptor are also suggested.

  11. Functional modulation of cerebral gamma-aminobutyric acidA receptor/benzodiazepine receptor/chloride ion channel complex with ethyl beta-carboline-3-carboxylate: Presence of independent binding site for ethyl beta-carboline-3-carboxylate

    International Nuclear Information System (INIS)

    Effect of ethyl beta-carboline-3-carboxylate (beta-CCE) on the function of gamma-aminobutyric acid (GABA)A receptor/benzodiazepine receptor/chloride ion channel complex was studied. Beta-CCE noncompetitively and competitively inhibited [3H]flunitrazepam binding to benzodiazepine receptor, but not [3H]muscimol binding to GABAA receptor as well as t-[3H]butylbicycloorthobenzoate [( 3H] TBOB) binding to chloride ion channel, in particulate fraction of the mouse brain. Ro15-1788 also inhibited competitively [3H] flunitrazepam binding. On the other hand, the binding of beta-[3H]CCE was inhibited noncompetitively and competitively by clonazepam and competitively by Ro15-1788. In agreement with these results, benzodiazepines-stimulated [3H]muscimol binding was antagonized by beta-CCE and Ro15-1788. Gel column chromatography for the solubilized fraction from cerebral particulate fraction by 0.2% sodium deoxycholate (DOC-Na) in the presence of 1 M KCl indicated that beta-[3H]CCE binding site was eluted in the same fraction (molecular weight, 250,000) as the binding sites for [3H]flunitrazepam, [3H]muscimol and [3H]TBOB. GABA-stimulated 36Cl- influx into membrane vesicles prepared from the bovine cerebral cortex was stimulated and attenuated by flunitrazepam and beta-CCE, respectively. These effects of flunitrazepam and beta-CCE on the GABA-stimulated 36Cl- influx were antagonized by Ro15-1788. The present results suggest that the binding site for beta-CCE, which resides on GABAA receptor/benzodiazepine receptor/chloride ion channel complex, may be different from that for benzodiazepine. Possible roles of beta-CCE binding site in the allosteric inhibitions on benzodiazepine binding site as well as on the functional coupling between chloride ion channel and GABAA receptor are also suggested

  12. Modified carbohydrate-chitosan compounds, methods of making the same and methods of using the same

    Energy Technology Data Exchange (ETDEWEB)

    Venditti, Richard A; Pawlak, Joel J; Salam, Abdus; El-Tahlawy, Khaled Fathy

    2015-03-10

    Compositions of matter are provided that include chitosan and a modified carbohydrate. The modified carbohydrate includes a carbohydrate component and a cross linking agent. The modified carbohydrate has increased carboxyl content as compared to an unmodified counterpart carbohydrate. A carboxyl group of the modified carbohydrate is covalently bonded with an amino group of chitosan. The compositions of matter provided herein may include cross linked starch citrate-chitosan and cross linked hemicellulose citrate-chitosan, including foams thereof. These compositions yield excellent absorbency and metal chelation properties. Methods of making cross linked modified carbohydrate-chitosan compounds are also provided.

  13. Carbohydrate supplementation and prolonged intermittent high-intensity exercise in adolescents: research findings, ethical issues and suggestions for the future.

    Science.gov (United States)

    Phillips, Shaun M

    2012-10-01

    knowledge while safeguarding the health and well-being of young participants. It could be deemed unethical to continue study into carbohydrate supplementation while ignoring the potential health concerns and the possibility of generating similar performance enhancements using natural dietary interventions. Therefore, future work should investigate the influence of pre-exercise dietary intake on the prolonged intermittent, high-intensity exercise performance of adolescents. This would enable quantification of whether pre-exercise nutrition can modulate exercise performance and, if so, the optimum dietary composition to achieve this. Research could then combine this knowledge with ingestion of carbohydrate-containing products during exercise to facilitate ethical and healthy nutritional guidelines for enhancing the exercise performance of adolescents. This article addresses the available evidence regarding carbohydrate supplementation and prolonged intermittent, high-intensity exercise in adolescent team games players. It discusses the potential health concerns associated with the frequent use of carbohydrate-containing products by adolescents and how this affects the research ethics of the field, and considers directions for future work. PMID:22901040

  14. Automated Modular High Throughput Exopolysaccharide Screening Platform Coupled with Highly Sensitive Carbohydrate Fingerprint Analysis.

    Science.gov (United States)

    Rühmann, Broder; Schmid, Jochen; Sieber, Volker

    2016-01-01

    Many microorganisms are capable of producing and secreting exopolysaccharides (EPS), which have important implications in medical fields, food applications or in the replacement of petro-based chemicals. We describe an analytical platform to be automated on a liquid handling system that allows the fast and reliable analysis of the type and the amount of EPS produced by microorganisms. It enables the user to identify novel natural microbial exopolysaccharide producers and to analyze the carbohydrate fingerprint of the corresponding polymers within one day in high-throughput (HT). Using this platform, strain collections as well as libraries of strain variants that might be obtained in engineering approaches can be screened. The platform has a modular setup, which allows a separation of the protocol into two major parts. First, there is an automated screening system, which combines different polysaccharide detection modules: a semi-quantitative analysis of viscosity formation via a centrifugation step, an analysis of polymer formation via alcohol precipitation and the determination of the total carbohydrate content via a phenol-sulfuric-acid transformation. Here, it is possible to screen up to 384 strains per run. The second part provides a detailed monosaccharide analysis for all the selected EPS producers identified in the first part by combining two essential modules: the analysis of the complete monomer composition via ultra-high performance liquid chromatography coupled with ultra violet and electrospray ionization ion trap detection (UHPLC-UV-ESI-MS) and the determination of pyruvate as a polymer substituent (presence of pyruvate ketal) via enzymatic oxidation that is coupled to a color formation. All the analytical modules of this screening platform can be combined in different ways and adjusted to individual requirements. Additionally, they can all be handled manually or performed with a liquid handling system. Thereby, the screening platform enables a huge

  15. Crystallization and preliminary X-ray diffraction analysis of mouse galectin-4 N-terminal carbohydrate recognition domain in complex with lactose

    International Nuclear Information System (INIS)

    Mouse galectin-4 carbohydrate binding domain was overexpressed in E. coli and crystallized in the presence of lactose. The crystals belong to tetragonal space group P4212 and diffraction data were collected to 2.1 Å resolution. Galectin-4 is thought to play a role in the process of tumour conversion of cells of the alimentary tract and the breast tissue; however, its exact function remains unknown. With the aim of elucidating the structural basis of mouse galectin-4 (mGal-4) binding specificity, we have undertaken X-ray analysis of the N-terminal domain, CRD1, of mGal-4 in complex with lactose (the basic building block of known galectin-4 carbohydrate ligands). Crystals of CRD1 in complex with lactose were obtained using vapour-diffusion techniques. The crystals belong to tetragonal space group P4212 with unit-cell parameters a = 91.1, b = 91.16, c = 57.10 Å and preliminary X-ray diffraction data were collected to 3.2 Å resolution. An optimized crystallization procedure and cryocooling protocol allowed us to extend resolution to 2.1 Å. Structure refinement is currently under way; the initial electron-density maps clearly show non-protein electron density in the vicinity of the carbohydrate binding site, indicating the presence of one lactose molecule. The structure will help to improve understanding of the binding specificity and function of the potential colon cancer marker galectin-4

  16. Structural basis of carbohydrate recognition by a Man(alpha1-2)Man-specific lectin from Bowringia milbraedii.

    Science.gov (United States)

    Buts, Lieven; Garcia-Pino, Abel; Wyns, Lode; Loris, Remy

    2006-07-01

    The crystal structure of the seed lectin from the tropical legume Bowringia milbraedii was determined in complex with the disaccharide ligand Man(alpha1-2)Man. In solution, the protein exhibits a dynamic dimer-tetramer equilibrium, consistent with the concanavalin A-type tetramer observed in the crystal. Contacts between the tetramers are mediated almost exclusively through the carbohydrate ligand, resulting in a crystal lattice virtually identical to that of the concanavalin-A:Man(alpha1-2)Man complex, even though both proteins have less than 50% sequence identity. The disaccharide binds exclusively in a "downstream" binding mode, with the non-reducing mannose occupying the monosaccharide-binding site. The reducing mannose is bound in a predominantly polar subsite involving Tyr131, Gln218, and Tyr219. PMID:16567368

  17. Comparison of radioiodinated TOC, TOCA and Mtr-TOCA: the effect of carbohydration on the pharmacokinetics

    Energy Technology Data Exchange (ETDEWEB)

    Wester, H.-J.; Schottelius, M.; Scheidhauer, K.; Wolf, I.; Schwaiger, M. [Muenchen Univ. (Germany). Klinik und Poliklinik fuer Nuklearmedizin; Reubi, J.-C. [Bern Univ. (Switzerland). Pathologisches Inst.

    2002-01-01

    Although somatostatin-based peptide receptor imaging (sst-PRI) and peptide receptor radiotherapy (sst-PRRT) of human endocrine tumours and their metastases has become a valuable method, the experience with radiohalogenated sst-directed peptides has so far been disappointing. To extend the broad spectrum of radiohalogens with suitable radionuclide properties for sst-PRI and PRRT, new strategies in ligand development are required. The major drawbacks to be overcome include fast hepatic uptake, high abdominal background activity and low tumour uptake. Recently we introduced radiolabelled glycated octreotides as a new series of sst-binding radiotracers with excellent physicochemical characteristics. In this study we compared [{sup 125}I]Tyr{sup 3}-octreotide ([{sup 125}I]TOC, (1)), [{sup 125}I]Tyr{sup 3}-octreotate ([{sup 125}I]TOCA, (2)) and a carbohydrated octreotide derivative, maltotriose-[{sup 125}I]Tyr{sup 3}-octreotate ([{sup 125}I]Mtr-TOCA, (3)) to evaluate the effect of single C-terminal oxidation and simultaneous N-terminal carbohydration. The biodistribution was compared in nude mice bearing AR42J tumour xenografts. Compared with (1), activity uptake of (2) and (3) at 1 h was decreased in intestine [36% (2), 72% (3)], liver [62% (2), 79% (3)] and kidney [34% (2), 41% (3)], respectively. Blood clearance was fast for all compounds investigated. Using (1) as reference, tumour uptake of (2) and (3) was 3.8- and 4.3-fold higher at 1 h p.i. At 1 h the tumour-to-blood ratio of (3) was 28.2{+-}7.3, and the tumour-to-muscle ratio, 147{+-}48. Specificity of tumour uptake was demonstrated in AR42J tumour-bearing mice by pretreatment with 0.8 mg TOC/kg 5 min prior to injection of (3). In cells transfected with sst1-sst5, the binding profile of I-Mtr-TOCA revealed a very high affinity and selectivity for sst2. In a first scintigraphic [{sup 123}I]Mtr-TOCA study of a patient with a carcinoid of the small intestine with known peritoneal carcinomatosis and a solitary liver

  18. Comparison of radioiodinated TOC, TOCA and Mtr-TOCA: the effect of carbohydration on the pharmacokinetics.

    Science.gov (United States)

    Wester, Hans-Jürgen; Schottelius, Margret; Scheidhauer, Klemens; Reubi, Jean-Claude; Wolf, Ingo; Schwaiger, Markus

    2002-01-01

    Although somatostatin-based peptide receptor imaging (sst-PRI) and peptide receptor radiotherapy (sst-PRRT) of human endocrine tumours and their metastases has become a valuable method, the experience with radiohalogenated sst-directed peptides has so far been disappointing. To extend the broad spectrum of radiohalogens with suitable radionuclide properties for sst-PRI and PRRT, new strategies in ligand development are required. The major drawbacks to be overcome include fast hepatic uptake, high abdominal background activity and low tumour uptake. Recently we introduced radiolabelled glycated octreotides as a new series of sst-binding radiotracers with excellent physicochemical characteristics. In this study we compared [(125)I]Tyr(3)-octreotide ([(125)I]TOC, ( 1)), [(125)I]Tyr(3)-octreotate ([(125)I]TOCA, ( 2)) and a carbohydrated octreotide derivative, maltotriose-[(125)I]Tyr(3)-octreotate ([(125)I]Mtr-TOCA, ( 3)) to evaluate the effect of single C-terminal oxidation and simultaneous N-terminal carbohydration. The biodistribution was compared in nude mice bearing AR42J tumour xenografts. Compared with ( 1), activity uptake of ( 2) and ( 3) at 1 h was decreased in intestine [36% ( 2), 72% ( 3)], liver [62% ( 2), 79% ( 3)] and kidney [34% ( 2), 41% ( 3)], respectively. Blood clearance was fast for all compounds investigated. Using ( 1) as reference, tumour uptake of ( 2) and ( 3) was 3.8- and 4.3-fold higher at 1 h p.i. At 1 h the tumour-to-blood ratio of ( 3) was 28.2+/-7.3, and the tumour-to-muscle ratio, 147+/-48. Specificity of tumour uptake was demonstrated in AR42J tumour-bearing mice by pretreatment with 0.8 mg TOC/kg 5 min prior to injection of ( 3). In cells transfected with sst1-sst5, the binding profile of I-Mtr-TOCA revealed a very high affinity and selectivity for sst2. In a first scintigraphic [(123)I]Mtr-TOCA study of a patient with a carcinoid of the small intestine with known peritoneal carcinomatosis and a solitary liver metastasis, all tumour

  19. Structure of Bacteroides thetaiotaomicron BT2081 at 2.05 Å resolution: the first structural representative of a new protein family that may play a role in carbohydrate metabolism

    International Nuclear Information System (INIS)

    The crystal structure of BT2081 from B. thetaiotaomicron reveals a two-domain protein with a putative carbohydrate-binding site in the C-terminal domain. BT2081 from Bacteroides thetaiotaomicron (GenBank accession code NP-810994.1) is a member of a novel protein family consisting of over 160 members, most of which are found in the different classes of Bacteroidetes. Genome-context analysis lends support to the involvement of this family in carbohydrate metabolism, which plays a key role in B. thetaiotaomicron as a predominant bacterial symbiont in the human distal gut microbiome. The crystal structure of BT2081 at 2.05 Å resolution represents the first structure from this new protein family. BT2081 consists of an N-terminal domain, which adopts a β-sandwich immunoglobulin-like fold, and a larger C-terminal domain with a β-sandwich jelly-roll fold. Structural analyses reveal that both domains are similar to those found in various carbohydrate-active enzymes. The C-terminal β-jelly-roll domain contains a potential carbohydrate-binding site that is highly conserved among BT2081 homologs and is situated in the same location as the carbohydrate-binding sites that are found in structurally similar glycoside hydrolases (GHs). However, in BT2081 this site is partially occluded by surrounding loops, which results in a deep solvent-accessible pocket rather than a shallower solvent-exposed cleft

  20. X-Ray Crystal Structure of the Full Length Human Chitotriosidase (CHIT1) Reveals Features of Its Chitin Binding Domain

    Science.gov (United States)

    Fadel, Firas; Zhao, Yuguang; Cousido-Siah, Alexandra; Ruiz, Francesc X.; Mitschler, André; Podjarny, Alberto

    2016-01-01

    Chitinases are enzymes that catalyze the hydrolysis of chitin. Human chitotriosidase (CHIT1) is one of the two active human chitinases, involved in the innate immune response and highly expressed in a variety of diseases. CHIT1 is composed of a catalytic domain linked by a hinge to its chitin binding domain (ChBD). This latter domain belongs to the carbohydrate-binding module family 14 (CBM14 family) and facilitates binding to chitin. So far, the available crystal structures of the human chitinase CHIT1 and the Acidic Mammalian Chitinase (AMCase) comprise only their catalytic domain. Here, we report a crystallization strategy combining cross-seeding and micro-seeding cycles which allowed us to obtain the first crystal structure of the full length CHIT1 (CHIT1-FL) at 1.95 Å resolution. The CHIT1 chitin binding domain (ChBDCHIT1) structure shows a distorted β-sandwich 3D fold, typical of CBM14 family members. Accordingly, ChBDCHIT1 presents six conserved cysteine residues forming three disulfide bridges and several exposed aromatic residues that probably are involved in chitin binding, including the highly conserved Trp465 in a surface- exposed conformation. Furthermore, ChBDCHIT1 presents a positively charged surface which may be involved in electrostatic interactions. Our data highlight the strong structural conservation of CBM14 family members and uncover the structural similarity between the human ChBDCHIT1, tachycitin and house mite dust allergens. Overall, our new CHIT1-FL structure, determined with an adapted crystallization approach, is one of the few complete bi-modular chitinase structures available and reveals the structural features of a human CBM14 domain. PMID:27111557

  1. Serum levels of mannan-binding lectin in chickens prior to and during experimental infection with avian infectious bronchitis virus

    DEFF Research Database (Denmark)

    Juul-Madsen, H.R.; Munch, M.; Handberg, Kurt; Sørensen, P.; Johnson, A.A.; Norup, L.R.; Jørgensen, Poul Henrik

    2003-01-01

    Mannan-binding lectin (MBL) is a glycoprotein and a member of the C-type lectin super family, the collectin family, and the acute phase protein family. The MBL exerts its function by directly binding to microbial surfaces through its carbohydrate recognition domains, followed by direct opsonization...

  2. Expedient synthesis of C-aryl carbohydrates by consecutive biocatalytic benzoin and aldol reactions.

    Science.gov (United States)

    Hernández, Karel; Parella, Teodor; Joglar, Jesús; Bujons, Jordi; Pohl, Martina; Clapés, Pere

    2015-02-16

    The introduction of aromatic residues connected by a C-C bond into the non-reducing end of carbohydrates is highly significant for the development of innovative structures with improved binding affinity and selectivity (e.g., C-aril-sLex). In this work, an expedient asymmetric "de novo" synthetic route to new aryl carbohydrate derivatives based on two sequential stereoselectively biocatalytic carboligation reactions is presented. First, the benzoin reaction of aromatic aldehydes to dimethoxyacetaldehyde is conducted, catalyzed by benzaldehyde lyase from Pseudomonas fluorescens biovar I. Then, the α-hydroxyketones formed are reduced by using NaBH4 yielding the anti diol. After acetal hydrolysis, the aldol addition of dihydroxyacetone, hydroxyacetone, or glycolaldehyde catalyzed by the stereocomplementary D-fructose-6-phosphate aldolase and L-rhamnulose-1-phosphate aldolase is performed. Both aldolases accept unphosphorylated donor substrates, avoiding the need of handling the phosphate group that the dihydroxyacetone phosphate-dependent aldolases require. In this way, 6-C-aryl-L-sorbose, 6-C-aryl-L-fructose, 6-C-aryl-L-tagatose, and 5-C-aryl-L-xylose derivatives are prepared by using this methodology. PMID:25640727

  3. Effect of carbohydrate restriction and high carbohydrates diets on men with chemical diabetes.

    Science.gov (United States)

    Anderson, J W

    1977-03-01

    The influence of low carbohydrate (CHO) diets, starvation, and high CHO diets on glucose tolerance tests (GTT) and plasma insulin response of men with chemical diabetes was studied. The GTT and insulin responses of these seven lean diabetic men were unchanged when the carbohydrate content of the diet was reduced from 44 to 20% of calories. After a 48-hr fast a significant deterioration of the GTT was observed in these diabetic men but the percentage change was identical to that reported previously for normal men. Thus these studies indicate that changes in glucose mtes are quite similar to those reported previously for normal men. The fasting plasma glucose values of seven lean and four obese men with chemical diabetes were significantly lower after one week on a 75% CHO diet than values on a 44% CHO diet. The 75% CHO diet also was accompanied by slight improvements in the oral and intravenous GTT and by slightly lower plasma insulin responses. The improvement in glucose metabolism on high CHO diets appears to results from increased insulin sensitivity. Serum triglyceride values were approximately 55% higher on the 75% CHO diet than values on the 44% CHO diet for the 11 men but these differences were not statistically significant. These studies support previous observations and suggest that high CHO diets may be beneficial in the management of certain diabetic patients. However, further studies are required to determine the long-term effects of high CHO diets containing natural foods on the glucose and lipid metabolism of diabetic patients. PMID:842491

  4. Abelian modules

    OpenAIRE

    S. Halıcıoğlu; Harmanci, A.; GÜNGÖROĞLU, G.; N. Agayev

    2009-01-01

    In this note, we introduce abelian modules as a generalization of abelian rings. Let R be an arbitrary ring with identity. A module M is called abelian if, for any m Î M and any a Î R, any idempotent e Î R, mae=mea. We prove that every reduced module, every symmetric module, every semicommutative module and every Armendariz module is abelian. For an abelian ring R, we show that the module MR is abelian iff M[x]R[x] is abelian. We produce an example to show that M[x, α] need not be abe...

  5. Major role for carbohydrate epitopes preferentially recognized by chronically infected mice in the determination of Schistosoma mansoni schistosomulum surface antigenicity

    International Nuclear Information System (INIS)

    A radioimmunoassay that makes use of whole Schistosomula and 125I-labeled protein A has been used to characterize and to quantify the binding of antisera to the surface of 3 hr mechanically transformed schistosomula of Schistosoma mansoni. This technique facilitates the determination of epitopes on the schistosomula in addition to those detected by surface labeling and immunoprecipitation. By using this technique, it has been demonstrated that there is a much greater binding to the parasite surface of antibodies from chronically infected mice (CMS) than of antibodies from mice infected with highly irradiated cercariae (VMS), and CMS recognizes epitopes that VMS does not. Treatment of the surface of the schistosomula with trifluoromethanesulphonic acid and sodium metaperiodate has suggested that the discrepancy of the binding between the two sera is due to the recognition of a large number of additional epitopes by CMS, which are carbohydrate in nature. Some of the carbohydrate epitopes are expressed on the previously described surface glycoprotein antigens of M/sub r/ 200,000, 38,000, and 17,000

  6. Major role for carbohydrate epitopes preferentially recognized by chronically infected mice in the determination of Schistosoma mansoni schistosomulum surface antigenicity

    Energy Technology Data Exchange (ETDEWEB)

    Omer-ali, P.; Magee, A.I.; Kelly, C.; Simpson, A.J.G.

    1986-12-01

    A radioimmunoassay that makes use of whole Schistosomula and /sup 125/I-labeled protein A has been used to characterize and to quantify the binding of antisera to the surface of 3 hr mechanically transformed schistosomula of Schistosoma mansoni. This technique facilitates the determination of epitopes on the schistosomula in addition to those detected by surface labeling and immunoprecipitation. By using this technique, it has been demonstrated that there is a much greater binding to the parasite surface of antibodies from chronically infected mice (CMS) than of antibodies from mice infected with highly irradiated cercariae (VMS), and CMS recognizes epitopes that VMS does not. Treatment of the surface of the schistosomula with trifluoromethanesulphonic acid and sodium metaperiodate has suggested that the discrepancy of the binding between the two sera is due to the recognition of a large number of additional epitopes by CMS, which are carbohydrate in nature. Some of the carbohydrate epitopes are expressed on the previously described surface glycoprotein antigens of M/sub r/ 200,000, 38,000, and 17,000.

  7. Allosteric Modulation of Muscarinic Acetylcholine Receptors

    Directory of Open Access Journals (Sweden)

    Esam E. El-Fakahany

    2010-08-01

    Full Text Available An allosteric modulator is a ligand that binds to an allosteric site on the receptor and changes receptor conformation to produce increase (positive cooperativity or decrease (negative cooperativity in the binding or action of an orthosteric agonist (e.g., acetylcholine. Since the identification of gallamine as the first allosteric modulator of muscarinic receptors in 1976, this unique mode of receptor modulation has been intensively studied by many groups. This review summarizes over 30 years of research on the molecular mechanisms of allosteric interactions of drugs with the receptor and for new allosteric modulators of muscarinic receptors with potential therapeutic use. Identification of positive modulators of acetylcholine binding and function that enhance neurotransmission and the discovery of highly selective allosteric modulators are mile-stones on the way to novel therapeutic agents for the treatment of schizophrenia, Alzheimer’s disease and other disorders involving impaired cognitive function.

  8. Phase transformation of goethite into magnetite by reducing with carbohydrates

    Directory of Open Access Journals (Sweden)

    Dudchenko N.O.

    2015-09-01

    Full Text Available Phase transformations of synthetic goethite and goethite ore from Kryvyi Rih region by reducing with different carbohydrates (starch, glucose, fructose, sucrose and ascorbic acid were investigated by thermomagnetic analysis. Thermomagnetic analysis was carried-out using laboratory device that allows automatic registration of sample magnetization with the temperature (the rate of sample heating/cooling was 65-80°/min. The reduction reaction of synthetic goethite for all carbohydrates starts at the temperature of ~250°C while reduction of goethite ore for all carbohydrates starts at the temperature of ~450°C. We could relate this increasing of reduction start temperature with shielding effect of admixtures in the ore. Reduction of synthetic goethite at this temperature range leads to formation of magnetic phase with saturation magnetisation ~70 A*m2/kg. At the same time, reduction of goethite ore leads to formation of magnetic phase with saturation magnetisation ~25 A*m2/kg. One could attribute this decreased value of saturation magnetisation to the presence of other minerals (quartz, etc. in the ore. It was shown by X-Ray Diffraction method that goethite completely transforms into magnetite under heating with different carbohydrates up to 650°C. All carbohydrates reduce goethite to magnetite.

  9. Proteomic analysis of matrix of dental biofilm formed under dietary carbohydrate exposure.

    Science.gov (United States)

    Moi, G P; Cury, J A; Dombroski, T C D; Pauletti, B A; Paes Leme, A F

    2012-01-01

    To evaluate whether protein changes in extracellular matrix of dental biofilm are a unique property of sucrose, this in situ study was conducted using as active control glucose and fructose, the sucrose monosaccharide constituents. Proteins were analyzed by two-dimensional electrophoresis followed by LC-MS/MS after trypsin digestion. Absence or lower abundance of calcium-binding proteins and higher abundance of prolactin-induced proteins were found in biofilm formed in the presence of sucrose or its monosaccharide constituents compared with water, the negative control group. The data suggest that besides sucrose, other dietary carbohydrates may also provoke a change in the protein profile of extracellular matrix of dental biofilm formed. PMID:22614073

  10. β-Catenin Binds to the Activation Function 2 Region of the Androgen Receptor and Modulates the Effects of the N-Terminal Domain and TIF2 on Ligand-Dependent Transcription

    OpenAIRE

    Song, Liang-Nian; Herrell, Roger; Byers, Stephen; Shah, Salimuddin; Wilson, Elizabeth M.; Gelmann, Edward P.

    2003-01-01

    β-Catenin is a multifunctional molecule that is activated by signaling through WNT receptors. β-Catenin can also enhance the transcriptional activity of some steroid hormone receptors such as the androgen receptor and retinoic acid receptor α. Androgens can affect nuclear translocation of β-catenin and influence its subcellular distribution. Using mammalian two-hybrid binding assays, analysis of reporter gene transcription, and coimmunoprecipitation, we now show that β-catenin binds to the an...

  11. Structure of the mouse galectin-4 N-terminal carbohydrate-recognition domain reveals the mechanism of oligosaccharide recognition

    Czech Academy of Sciences Publication Activity Database

    Krejčiříková, Veronika; Pachl, Petr; Fábry, Milan; Malý, Petr; Řezáčová, Pavlína; Brynda, Jiří

    2011-01-01

    Roč. 67, Pt3 (2011), 204-211. ISSN 0907-4449 R&D Projects: GA ČR GA203/09/0820; GA ČR GA304/03/0090; GA ČR GA301/07/0600 Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z50520701; CEZ:AV0Z40550506 Keywords : S-type lectins * carbohydrate binding * molecular recognition Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 12.619, year: 2011

  12. Coronavirus receptor switch explained from the stereochemistry of protein-carbohydrate interactions and a single mutation.

    Science.gov (United States)

    Bakkers, Mark J G; Zeng, Qinghong; Feitsma, Louris J; Hulswit, Ruben J G; Li, Zeshi; Westerbeke, Aniek; van Kuppeveld, Frank J M; Boons, Geert-Jan; Langereis, Martijn A; Huizinga, Eric G; de Groot, Raoul J

    2016-05-31

    Hemagglutinin-esterases (HEs) are bimodular envelope proteins of orthomyxoviruses, toroviruses, and coronaviruses with a carbohydrate-binding "lectin" domain appended to a receptor-destroying sialate-O-acetylesterase ("esterase"). In concert, these domains facilitate dynamic virion attachment to cell-surface sialoglycans. Most HEs (type I) target 9-O-acetylated sialic acids (9-O-Ac-Sias), but one group of coronaviruses switched to using 4-O-Ac-Sias instead (type II). This specificity shift required quasisynchronous adaptations in the Sia-binding sites of both lectin and esterase domains. Previously, a partially disordered crystal structure of a type II HE revealed how the shift in lectin ligand specificity was achieved. How the switch in esterase substrate specificity was realized remained unresolved, however. Here, we present a complete structure of a type II HE with a receptor analog in the catalytic site and identify the mutations underlying the 9-O- to 4-O-Ac-Sia substrate switch. We show that (i) common principles pertaining to the stereochemistry of protein-carbohydrate interactions were at the core of the transition in lectin ligand and esterase substrate specificity; (ii) in consequence, the switch in O-Ac-Sia specificity could be readily accomplished via convergent intramolecular coevolution with only modest architectural changes in lectin and esterase domains; and (iii) a single, inconspicuous Ala-to-Ser substitution in the catalytic site was key to the emergence of the type II HEs. Our findings provide fundamental insights into how proteins "see" sugars and how this affects protein and virus evolution. PMID:27185912

  13. Carbohydrate mimetics and scaffolds: sweet spots in medicinal chemistry.

    Science.gov (United States)

    Cipolla, Laura; La Ferla, Barbara; Airoldi, Cristina; Zona, Cristiano; Orsato, Alexandre; Shaikh, Nasrin; Russo, Laura; Nicotra, Francesco

    2010-04-01

    Several glycoprocessing enzymes and glycoreceptors have been recognized as important targets for therapeutic intervention. This concept has inspired the development of important classes of therapeutics, such as anti-influenza drugs inhibiting influenza virus neuraminidase, anti-inflammatory drugs targeting lectin-sialyl-Lewis X interaction and glycosidase inhibitors against HIV, Gaucher's disease, hepatitis and cancer. These therapeutics are mainly carbohydrate mimics in which proper modifications permit stronger interactions with the target protein, higher stability, better pharmacokinetic properties and easier synthesis. Furthermore, the conformational rigidity and polyfunctionality of carbohydrates stimulate their use as scaffolds for the generation of libraries by combinatorial decoration with different pharmacophores. This mini-review will present examples of how to exploit carbohydrates mimics and scaffolds in drug research. PMID:21426009

  14. Binding of carbohydrates and protein inhibitors to the surface of alpha-amylases

    DEFF Research Database (Denmark)

    Bozonnet, Sophie; Bønsager, Birgit Christine; Kramhoft, B.;

    2005-01-01

    This review on barley alpha-amylases 1 (AMY1) and 2 (AMY2) addresses rational mutations at distal subsites to the catalytic site, polysaccharide hydrolysis, and interactions with proteinaceous inhibitors. Subsite mapping of barley alpha-amylases revealed 6 glycone and 4 aglycone substrate subsite...

  15. Binding of carbohydrates and protein inhibitors to the surface of alpha-amylases

    DEFF Research Database (Denmark)

    Bozonnet, Sophie; Bønsager, Birgit Christine; Kramhoft, B.; Mori, H.; Abou Hachem, Maher; Willemoes, Martin; Jensen, M.T.; Fukuda, Kenji; Nielsen, P.K.; Juge, N.; Aghajari, N.; Tranier, S.; Robert, X.; Haser, R.; Svensson, Birte

    2005-01-01

    This review on barley alpha-amylases 1 (AMY1) and 2 (AMY2) addresses rational mutations at distal subsites to the catalytic site, polysaccharide hydrolysis, and interactions with proteinaceous inhibitors. Subsite mapping of barley alpha-amylases revealed 6 glycone and 4 aglycone substrate subsites...

  16. Microalgal carbohydrates. An overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Markou, Giorgos; Georgakakis, Dimitris [Agricultural Univ. of Athens (Greece). Dept. of Natural Resources Management and Agricultural Engineering; Angelidaki, Irini [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Environmental Engineering

    2012-11-15

    Microalgal biomass seems to be a promising feedstock for biofuel generation. Microalgae have relative high photosynthetic efficiencies, high growth rates, and some species can thrive in brackish water or seawater and wastewater from the food- and agro-industrial sector. Today, the main interest in research is the cultivation of microalgae for lipids production to generate biodiesel. However, there are several other biological or thermochemical conversion technologies, in which microalgal biomass could be used as substrate. However, the high protein content or the low carbohydrate content of the majority of the microalgal species might be a constraint for their possible use in these technologies. Moreover, in the majority of biomass conversion technologies, carbohydrates are the main substrate for production of biofuels. Nevertheless, microalgae biomass composition could be manipulated by several cultivation techniques, such as nutrient starvation or other stressed environmental conditions, which cause the microalgae to accumulate carbohydrates. This paper attempts to give a general overview of techniques that can be used for increasing the microalgal biomass carbohydrate content. In addition, biomass conversion technologies, related to the conversion of carbohydrates into biofuels are discussed. (orig.)

  17. The carbohydrate at asparagine 386 on HIV-1 gp120 is not essential for protein folding and function but is involved in immune evasion

    Directory of Open Access Journals (Sweden)

    Groot Fedde

    2008-01-01

    Full Text Available Abstract Background The HIV-1 envelope glycoprotein gp120, which mediates viral attachment to target cells, consists for ~50% of sugar, but the role of the individual sugar chains in various aspects of gp120 folding and function is poorly understood. Here we studied the role of the carbohydrate at position 386. We identified a virus variant that had lost the 386 glycan in an evolution study of a mutant virus lacking the disulfide bond at the base of the V4 domain. Results The 386 carbohydrate was not essential for folding of wt gp120. However, its removal improved folding of a gp120 variant lacking the 385–418 disulfide bond, suggesting that it plays an auxiliary role in protein folding in the presence of this disulfide bond. The 386 carbohydrate was not critical for gp120 binding to dendritic cells (DC and DC-mediated HIV-1 transmission to T cells. In accordance with previous reports, we found that N386 was involved in binding of the mannose-dependent neutralizing antibody 2G12. Interestingly, in the presence of specific substitutions elsewhere in gp120, removal of N386 did not result in abrogation of 2G12 binding, implying that the contribution of N386 is context dependent. Neutralization by soluble CD4 and the neutralizing CD4 binding site (CD4BS antibody b12 was significantly enhanced in the absence of the 386 sugar, indicating that this glycan protects the CD4BS against antibodies. Conclusion The carbohydrate at position 386 is not essential for protein folding and function, but is involved in the protection of the CD4BS from antibodies. Removal of this sugar in the context of trimeric Env immunogens may therefore improve the elicitation of neutralizing CD4BS antibodies.

  18. Characterization of carbohydrate-protein matrices for nutrient delivery.

    Science.gov (United States)

    Zhou, Yankun; Roos, Yrjö H

    2011-05-01

    Amorphous carbohydrates may show glass transition and crystallization as a result of thermal or water plasticization. Proteins often affect the state transitions of carbohydrates in carbohydrate-protein systems. Water sorption behavior and effects of water on glass transition and crystallization in freeze-dried lactose, trehalose, lactose-casein (3: 1), lactose-soy protein isolate (3:1), trehalose-casein (3:1), and trehalose-soy protein isolate (3:1) systems were studied. Water sorption was determined gravimetrically as a function of time, and Brunauer-Emmett-Teller (BET) and Guggenheim-Anderson-de Boer (GAB) models were fitted to the experimental data. Glass transition temperature (T(g)) and instant crystallization temperature (T(ic)) in anhydrous and water plasticized systems were measured using differential scanning calorimetry (DSC). The Gordon-Taylor equation was used to model water content dependence of the T(g) values. The critical water content and water activity (a(w)) at 24 °C were calculated and crystallization of lactose and trehalose in the systems was followed at and above 0.54 a(w). Carbohydrate-protein systems showed higher amounts of sorbed water and less rapid sugar crystallization than pure sugars. A greater sugar crystallization delay was found in carbohydrate-casein systems than in carbohydrate-soy protein isolate systems. The T(g) and T(ic) values decreased with increasing water content and a(w). However, higher T(ic) values for lactose-protein systems were found than for lactose at the same a(w). Trehalose showed lower T(ic) value than lactose at 0.44 a(w) but no instant crystallization was measured below 0.44 a(w). State diagrams for each system are useful in selecting processing parameters and storage conditions in nutrient delivery applications. PMID:22417357

  19. Importance of low carbohydrate diets in diabetes management

    Directory of Open Access Journals (Sweden)

    Hall RM

    2016-03-01

    Full Text Available Rosemary M Hall, Amber Parry Strong, Jeremy D KrebsCentre for Endocrine, Diabetes and Obesity Research, Capital and Coast District Health Board, Wellington, New Zealand Abstract: Dietary strategies are fundamental in the management of diabetes. Historically, strict dietary control with a low carbohydrate diet was the only treatment option. With increasingly effective medications, the importance of dietary change decreased. Recommendations focused on reducing dietary fat to prevent atherosclerotic disease, with decreasing emphasis on the amount and quality of carbohydrate. As the prevalence of obesity and diabetes escalates, attention has returned to the macronutrient composition of the diet. Very low carbohydrate diets (VLCD's have demonstrated effective initial weight loss and improvement in glycemic control, but difficult long-term acceptability and worsening lipid profile. Modifications to the very low carbohydrate (VLC have included limiting saturated fat and increasing carbohydrate (CHO and protein. Reducing saturated fat appears pivotal in reducing low-density lipoprotein (LDL cholesterol and may mitigate adverse effects of traditional VLCD's. Increased dietary protein enhances satiety, reduces energy intake, and improves glycemic homeostasis, but without sustained improvements in glycemic control or cardiovascular risk over and above the effect of weight loss. Additionally, recent studies in type 1 diabetes mellitus suggest promising benefits to diabetes control with low carbohydrate diets, without concerning effects on ketosis or hypoglycemia. Dietary patterns may highlight pertinent associations. For example, Mediterranean-style and paleolithic-type diets, low in fat and carbohydrate, are associated with reduced body weight and improved glycemic and cardiovascular outcomes in type 2 diabetes mellitus (T2DM. A feature of these dietary patterns is low refined CHO and sugar and higher fiber, and it is possible that increasing sugar

  20. Diagnosing and Treating Intolerance to Carbohydrates in Children.

    Science.gov (United States)

    Berni Canani, Roberto; Pezzella, Vincenza; Amoroso, Antonio; Cozzolino, Tommaso; Di Scala, Carmen; Passariello, Annalisa

    2016-03-01

    Intolerance to carbohydrates is relatively common in childhood, but still poorly recognized and managed. Over recent years it has come to the forefront because of progresses in our knowledge on the mechanisms and treatment of these conditions. Children with intolerance to carbohydrates often present with unexplained signs and symptoms. Here, we examine the most up-to-date research on these intolerances, discuss controversies relating to the diagnostic approach, including the role of molecular analysis, and provide new insights into modern management in the pediatric age, including the most recent evidence for correct dietary treatment. PMID:26978392